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1 Introduction

In recent years, bi-level programming has emerged as a pivotal concept in the
realm of optimization, addressing the inherent complexity found in hierarchical
decision-making environments. This intricate framework involves two levels of
decision-makers, termed the leader and the follower, each with distinct objec-
tives and constraints that are interdependent. The leader’s decisions influence
the follower’s feasible set, while the follower’s decisions, in turn, impact the
leader’s outcomes. Such a dynamic interplay naturally lends itself to model-
ing via bi-level programming, capturing the essence of interactions as seen in
Stackelberg games (Shi, G. Zhang, and Lu 2005; Stackelberg 2011; Dempe 2015).

The significance of bi-level programming is further exemplified by its wide
array of applications across various domains. However, the structure of bi-
level problems invariably renders them NP-hard, posing significant computa-
tional challenges (Jeroslow 1985; J. F. Bard 1991). This complexity necessi-
tates the development of efficient solution methodologies, such as reformulation
techniques and sophisticated algorithmic strategies, to render these problems
tractable (Deng 1998; Pineda, Bylling, and Morales 2017; Fischetti 2018).

One domain where bi-level programming has been extensively applied is
network optimization, exemplified by bi-level flow and routing problems. These
problems often involve scenarios where a leader, such as a toll authority, seeks to
optimize toll pricing strategies, while the follower, representing network users,
optimizes their routing decisions based on the imposed tolls (P. Marcotte 1986;
Labbé, Patrice Marcotte, and Gilles Savard 1998a). The iterative interplay be-
tween pricing strategies and user responses in congested networks aptly demon-
strates the power of bi-level models to capture and solve real-world problems
with hierarchical decision structures.

Another noteworthy application is found in the field of metabolic engineer-
ing, where bi-level optimization frameworks are employed to redesign metabolic
networks for enhanced biochemical production. In this context, the leader (en-
gineer) aims to maximize the production of specific chemicals through genetic
modifications, while the follower (microbe) naturally seeks to maximize growth,
creating a complex bi-objective landscape (Burgard, Pharkya, and Maranas
2003; Tepper and Shlomi 2010). The innovative application of bi-level program-
ming in this arena underscores its potential to drive advancements in biotech-
nology and industrial bioprocesses. Furthermore, the versatility of bi-level pro-
gramming extends to network interdiction problems, where an attacker (leader)
seeks to disrupt a network optimized by a defender (follower) to minimize losses
or maximize flow (Smith, Prince, and Geunes 2013). These models are integral
to understanding and mitigating vulnerabilities in critical infrastructure and
defense systems.

In light of the challenging nature of bi-level problems, our research focuses on
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developing efficient solution techniques, anchored in cutting-plane and branch-
and-bound methodologies. By exploring both strong duality and KKT-based
reformulations, we strive to advance the state-of-the-art in solving bi-level opti-
mization problems, offering novel insights and solutions to enhancing chemical
production in metabolic networks.

this dissertation contributes to the broader understanding and application
of bi-level programming by elucidating its theoretical underpinnings, computa-
tional strategies, and real-world implications. As it delves deeper into solution
methodologies and their applications, it aims to bridge the gap between theo-
retical constructs and practical implementation, Ultimately, providing a novel
algorithm that will facilitate more informed decision-making processes across
disciplines characterized by hierarchical interactions with special attention to
metabolic engineering and chemical production.
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2 Literature Review

2.1 Bi-level Programing I

Bi-level problems represent a nested hierarchical structure for two decision mak-
ers. Usually referred as leader and follower. This structure best describes a
Stackelberg game where players try to optimize their objective respectively.
Stackelberg first formulated this relationship on his work on market economy
(Stackelberg 2011) to describe when a player’s decision has the ability to influ-
ence over the second player’s objective, but neither player completely dominates
the other (Dempe 2015).In other words, both players objectives rely on the other
player’s decision (Shi, G. Zhang, and Lu 2005). Generally both objectives are
in a competing state, meaning that leader and follower have their own indepen-
dent objective with some shared variables. Such characteristics make the bi-level
problem NP-hard (Jeroslow 1985; J. F. Bard 1991).In other words, not solvable
in polynomial time and require enormous computational iterations (Deng 1998;
Pineda, Bylling, and Morales 2017).

Interestingly, researchers have given more attention to Bi-level problems
mainly because Bi-level models are convenient when representing structures
owned by one party but controlled by another (competing entities) (DeNegre
2011). Scenarios where this type of relationship between decision makers can
be found in different areas. Areas such as toll pricing (Labbé, Patrice Marcotte,
and Gilles Savard 1998b), gas distribution(Dempe et al. 2011), electrical grids
(Delgadillo, Arroyo, and Alguacil 2010), (Morton, Pan, and Saeger 2007), police
enforcement (Ajay, Thomas, and Chase 2010), metabolic engineering (Burgard,
Pharkya, and Maranas 2003; SunXu et al. 2013; Tepper and Shlomi 2010), and
the list keeps growing. The reader is directed to the work of (Dempe 2015;
Smith, Prince, and Geunes 2013; Benóıt Colson, Patrice Marcotte, and Gilles
Savard 2005) to find a more comprehensive details on the areas of application.
These models fall into the category of linear bi-level problems (LBLP).The com-
monality between the models mentioned previously is that the constraints are
linear functions and a subset of the variables belongs in Z2.

A LBLP is generally formulated as (1) according to (J. F. Bard 1991):

min
x∈X

F (x, y) = c1x+ d1y (1a)

subject to A1x+B1y ≤ b1 (1b)

min
y∈Y

f(x, y) = c2x+ d2y (1c)

subject to A2x+B2y ≤ b2 (1d)

Where equation (1a) represents the leader’s objective function, equation 1c
is the follower’s objective function. Let’s note that both decision makers have
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their own set of variables (x, y), in this case the leader’s decision variable is x
and the follower’s decision variable is y. Such variables can either be present in
both levels or just in one. Let’s also note that the set of the leader’s constraints
(1b) also includes the follower’s entire optimization problem. From the model
in (1) (J. F. Bard 1991) defines the following:

1. The constraint region of the LBLP as:

S = {(x, y) : x ∈ X, y ∈ Y,A1x+B1y ≤ b1, A2x+B2y ≤ b2}

2. For each fixed x ∈ X the follower’s feasible set is then:

S(x) = {y ∈ Y : B2y ≤ b2 −A2x}

Which is all the ys ∈ Y that satisfy the follower’s constraints when a fixed
x is evaluated.

3. The projection of S onto the leader’s decision space:

S(X) = {x ∈ X : ∃y ∈ Y,A1x+B1y ≤ b1, A2x+B2y ≤ b2}

In other words, the set of x for which there exists y from the follower’s
feasible set that satisfies both the leader’s and follower’s sets of constraints.

4. The follower’s rational reaction set for x ∈ S(X):

P (x) = {y ∈ Y : y ∈ argmin[f(x, ŷ) : ŷ ∈ S(x)]}

Where argmin[f(x, ŷ) : ŷ ∈ S(x)] = {y ∈ S(x) : f(x, y) ≤ f(x, ŷ), ŷ ∈
S(x)} basically, this defines the follower’s response where there is a y
from the follower’s feasible that provides the best solution.

5. The inducible region:

IR = {(x, y) : (x, y) ∈ S, y ∈ P (x)}

IR represents the set of the leader’s decision variables and corresponding
follower’s optimal solution(s) that belong to a feasible constraint region.

Usually there are some assumptions made for models such as (1). S is
nonempty and compact, P (x) ̸= ∅, in other words, for a decision by the leader,
the follower has possible responses. Under these assumptions the leader can
take two postures regarding the follower’s response.

(a) The leader assumes total cooperation from the follower, therefore the fol-
lower will choose an option that involves a higher leader’s objective function

(b) The follower cannot be influenced, so the leader can assume the follower will
choose a solution that does not lead to the best leader’s objective function.

The case described in (a) is defined in the literature as the optimistic ap-
proach, the pessimistic approach (b). Throughout the literature (a) and (b)
are the main alternatives for the LBLP. There is a wider exploration to (a) in
the literature. Its assumption allows for single level reformulations with proper
equilibrium constraints replacing the follower’s problem (Dempe 2003).

6



2.2 Flow and Routing Problems under a Bi-level frame-
work

The work of bi-level models in networks had been introduced by (P. Marcotte
1986) in a toll pricing setting.Commonly, toll pricing problems describe a situ-
ation where the follower decides over routing options from an origin node to a
sink node based on costs for using a path while the leader prices the different
possible paths. The problem consists in finding the optimal cost balance for
a congested network under traffic equilibrium. Later expanded to consider the
case of a deterministic toll-pricing problem in (Labbé, Patrice Marcotte, and
Gilles Savard 1998a) applied in a taxation problem where the leader is capable
of taxing products or services all the while the follower optimizes its own objec-
tive by considering the taxation planned by the leader. Usually, these problems
are solved by a reformulation as mixed integer program and then using short
path algorithms to find its solution. In some special cases, the problem can be
solved in polynomial time. The method consists in reformulating the problem
using binary variables. However, most models lack on incorporating some real-
life features. The toll pricing model serves as a foundation for further works
with different considerations and assumptions. Such is the case of (Dokka et al.
2016) who employed a two-point heuristics and robust optimization to solve
the toll pricing problem under uncertainty, with a closing note suggesting that
the simple nature does not fully show that the solution is in fact optimal for a
non-deterministic case. The case for a multi-commodity transportation network
under uncertainty was explored by (Alizadeh, P. Marcotte, and G. Savard 2013)
where the goal of the model is to estimate the revenue loss when randomness is
not taken into consideration. More recently, a bi-level model designed to solve
optimal toll rates in port traffic network design was solved with a method based
on memetic heuristics, where the upper level describes waiting times and the
lower levels describes user equilibrium (H. Zhang, Q. Zhang, and Chen 2019).
The process generates a random initial population and through genetic opera-
tions obtain an offspring population, then the second population is optimized
using tabu search, the updated population is kept after a selection operation,
only keeping those individuals presenting high fitness and abandoning those who
do not meet the criterion, the process is repeated until reaching end conditions.

Different methodologies have been used to solve the bi-level case on networks.
Cutting planes where introduced in every iteration of the algorithm to solve the
model proposed in (Hearn et al. 2001) to solve for fixed demand toll pricing
problems. This method becomes increasingly more complex accordingly to the
network complexity. In the work by (X. Zhang and Wee 2012), where the ob-
jective is to optimize network capacity by introducing toll pricing (congestion
prices). The network capacity improvement is calculated through the imple-
mentation of mixed integer variables to linearize constraints by introducing new
variables for each type of constraint. This method leads to single level problems
that can determine a global optimum at the expense of increasing the number
of variables to consider. Simulation has also played a part on the efforts to
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deal with the dynamic nature of the network itself (He 2017), however, this
approach comes with higher computational times as the process involves an ex-
tra step for transport simulation. More recently, complementary methods have
been developed to account for both deterministic and stochastic cases based
on local search method derived from the global optimum and a bi-level trust
region, in the work of (Gilbert, Patrice Marcotte, and Gilles Savard 2015) a
method is proposed to consider when users are discretely allocated to paths in
the network. LP duality has also been used to solve the bi-level case (Burgard,
Pharkya, and Maranas 2003), in the metabolic engineering framework, to opti-
mize the individual flows in the network which ultimately will lead to chemical
overproduction. In the same framework, a multi-objective approach has been
developed and solved through an enumeration technique (Andrade et al. 2020).

A branch and bound algorithm was expanded during the 1990’s to include MI-
BLP (Moore and Jonathan F. Bard 1990). This work was an early attempt to
develop an all-around algorithm to solve MIBLP. These algorithm comes with
its computational costs.The method will require better bounds as the num-
ber of variables increases. To work around, heuristics can then be employed
trading between speed and accuracy, and occasionally optimality may never be
confirmed. Work on cutting planes has been developed to complement the all-
around algorithm.The work in (Denegre and Ralphs 2009) discusses a way to
work with branch and cut and generate valid inequalities. The idea is to solve a
linear relaxation, then generate valid inequalities to improve bounds and branch
when necessary.

As of 2007 the most common solution approaches for different cases of bi-level
problems were: Vertex enumeration, where all functions involved are linear and
the set of variables are polyhedral and Branch and Bound, usually for problems
where the lower level is convex and regular and can be reformulated into a single
level problem, applications of these can be found with Mathematical Programs
with Equilibrium Constraints (MEPCS), which sometimes is another word for
bi-level models, (Benôıt Colson, Patrice Marcotte, and Gilles Savard 2007).

Bounds are extremely important in the work of bi-level problems, they provide
useful information to compute feasible solutions. Specially, this is true for bi-
level knapsack problems, where the use of good lower and upper bound can
be used to fix the variables of the leader to their optimal values forming a set
of different solutions later categorize is a set of different best solutions to then
solve different feasible problems (Raid et al. 2012).

Contemporary work, where both the leader’s and the follower’s variables are
mixed integer, have produced algorithms based on the use of intersection cuts,
which rely on defining convex-feasible sets that cut off the infeasible points in
the problem relaxation (Fischetti 2018), a key assumption is that the relax-
ation is compact and feasible. Another assumption is that the leader’s variables
influencing the follower’s decisions are integer and bounded. Some problems
under such assumptions can be seen in knapsack problems. Some variants of
the bi-level knapsack problem cannot be solved in polynomial time, rather a
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polynomial time approximation is designed (Caprara et al. 2013), this work also
includes description of variants on the bi-level knapsack problem.

Most of the linear reformulations are KKT based, this means, the introduction
of a new binary variable for each of the complementary slackness conditions
at the lower level. It easily becomes impractical for some bi-level problems.
Strong Duality based reformulations can be the solution to such impracticality.
SD-based reformulations assume that KKT conditions can be replaced by a
single quadratic constraint, where the latter can be then linearized considering a
binary decomposition, only if the upper-level variables are integer. This method
can result in adding more linear constraints and discrete variables. (Zare et
al. 2019), This method can be particularly useful when reformulations based
on KKT introduce more discrete variables than reformulations based on SD,
usually problems where the lower level is larger than the upper counterpart.

2.3 Network Interdiction

Possibly one of the best examples for the LBLP comes from the network interdic-
tion problems. In this setting leader could also be called interdictor, adversary,
attacker and the follower operator, owner, defender (Smith, Prince, and Geunes
2013), the follower optimizes its objective over the network and the leader will
alter the owner’s network, usually limiting the possible arcs available. Consider
the example of a pipeline network where the owner (follower) is interested in op-
timizing the flow from one node to a particular node over the network, typically
maximum flow problems. And an interdictor (leader) who may try to restrict
a strategic set of links in the network for its own advantage, thus limiting the
owner’s overall utility from the network, minimax. In this example the follower
is aware of the links which have been limited and adjusts the flow accordingly,
that is the flow distribution on the pipes will be different.
The general formulation of the minimax network interdiction is

min
y∈Y

max p(y)tv

s.t. Dv ≤ r(y)

v ≥ 0

Where y and v are the leader and follower variables, respectively, and where
p(y) and r(y) represent the follower’s profits and available resources, in other
words r(y) is the right hand side in the feasible set. The constraint Dv ≤ r(y)
usually consist of flow conservation and capacity constraints. Oftentimes Y , the
leader’s feasible region, consists of a single knapsack constraint, thus restricting
the leader to make binary decisions.
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2.4 Metabolic Engineering and Interdiction Problems

Metabolic networks are a representation of the relationships between the pro-
cesses carried out inside an organism (Lee et al. 2012). These relationships are
similar to the relationships found in network optimization, where the interest is
to calculate flow between nodes that conform the structure. For some networks,
the flow defines goods being moved from one place to another. In the case of
metabolic engineering, the flow is defined as the amount of mass that is being
moved between metabolites (nodes) over reactions (links, arcs). The network
usually is described by a N ×M where N is the number of metabolites and M
is the number of reactions. Usually M is larger in comparison to N , describing
an undetermined system.

An example of network interdiction problems, expressed as bi-level linear
problems, where the lower-level is a linear program and the upper-level is an
integer program comes from the metabolic engineering paradigm, explored in
the paper (Burgard, Pharkya, and Maranas 2003) where the leader (interdictor)
tries to disrupt a network by deleting arcs (reactions) to improve the production
of biochemicals. While the follower (network owner) tries to optimize its own
flow through the restricted network. The model for Flux Balance Analysis
(FBA) is the network owner in the LBLP.

2.4.1 Flux Balance Analysis as lower-level decision maker

This subsection is optional for the reader. However, its presence in this work
is to support and contextualize the ideas behind metabolic networks. The finer
details of metabolic network engineering are not in the scope if this section. The
work in (Edwards, Covert, and B. Palsson 2002), (Orth, Thiele, and Bernhard
O Palsson 2010), (Vital-Lopez, Memǐsević, and Dutta 2012), (Zomorrodi et al.
2012), (Raman and Chandra 2009), and (Anand, Mukherjee, and Padmanab-
han 2020) complement each other to offer a rich source for understanding the
principles of FBA and biological networks.
FBA provides a methodology to estimate the flow of metabolites through the
network.This methodology makes it possible to predict production rates (the
amount of mass that results from a particular reaction) and compute the flow
distribution in the network. Mathematically, FBA is expressed as model 3.

max νbiomass (3a)∑
Sij ∗ νj = 0 (3b)

νmin
j ≤ νj ≤ νmax

j (3c)

The Stoichiometric coefficients Sij are the amount of mass that is needed from
one arc to produce a metabolite, much like the coefficients on the arcs in the
max flow problems. Thus, the S coefficient helps to construct the conservation
constraints under steady state, the total flow in a particular node that is not the
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source or sink is zero, ie the flow that enters a node is the same flow that exits
the node. Each metabolite is governed by a number of reactions. Sij νj = 0
ensures that every metabolite (node) is balanced to a steady state and also in
line with mass conservation laws.
To close the search space for the FBA every reaction (link,arc) has a capacity.
The flow on each arc is denoted by νj , each arc is bounded by 3c where νmin

and νmax are the lower and upper bound respectively.

2.4.2 Gene Deletion and Bi-level Problems

Is a rational metabolic engineering strategy to predict allowable gene deletions
that could lead to the overproduction of a desirable compound (reaction prod-
uct). In this context, gene deletion refers to restricting the flow through a partic-
ular reaction to zero (knockout) (Edwards, Covert, and B. Palsson 2002). This
modifies the flow to a more desirable outcome. The question then shifts to find-
ing the best strategies for overproduction without hindering the cell’s growth.
One possible way to address this issue is answered in the work where the bi-level
OptKnock was first proposed (Burgard, Pharkya, and Maranas 2003). This is
mathematically expressed as model 4, where the objective is to identify the best
gene deletion that leads to the chemical maximization. Model 4 clearly reflects
the bi-level nature of the problem in gene deletion, as the leader’s problem has
a nested problem enclosed in the inner box. The model in the inner box is no
other than the FBA model reacting to the ŷ solution from the master problem.
Model 5 is a simplified version of model 4.

maxyj
νchemical

subject to∑
j∈M

(1− yj) ≤ K

maxνj
νbiomass

M∑
j=1

Sij ∗ vj = 0

νmin
j . yj ≤ νj ≤ νmax

j . yj , ∀j ∈M

yj = {0, 1}, ∀j ∈M

(4)

max νchemical (5a)∑
(1− yj) = K (5b)

(3) FBA

Models 2 and 5 share some similitude. In both models the leader is an ex-
ternal entity whose decision making is based on binary variables restricted to
a knapsack whose interest is to shape the network for profit. The follower is
an independent entity owner of the network whose variables are, in essence,

11



continuous and adapts its overall flow based on the leader’s decision. Equation
ν ≥ 0 in model 2 becomes LB ≤ ν ≤ UB in model 4 to completely describe the
transport fluxes in the metabolic network. Positive values correlates with the
uptake of a particular metabolite, inversely negative values conform to secretions
(Burgard, Pharkya, and Maranas 2003).

3 Bi-level Solving Methods

In this section two methods to solve the bi-level problem in (ibid.) are described.
The first method corresponds to a single level reformulation, the second method
correspond to the proposed algorithm in this work. The method relies on cutting
off infeasible solutions and improving the bounds until a solution is found.

3.1 Single Level Reformulation

The MILP reformulation to solve a bi-level linear problem requires the dualiza-
tion of the follower’s problem. This can be done under certain circumstances,
one of them being under the assumption of strong duality. Where the solution
of the primal model is the same as the solution of its dual model. It is important
to keep in mind that the solution to the inner problem is in itself a convex set,
and the maximal objective function value can be estimated by different feasible
flow distributions in the network (Tepper and Shlomi 2010).

The MILP from 1 mathematically is expressed as model 6, note the inclusion
of the follower’s constraints into leader’s set of constraints (equation 1d)

min
x∈X

F (x, y) = c1x+ d1y (6a)

subject to

A1x+B1y ≤ b1 (6b)

A2x+B2y ≤ b2 (6c)

b2 λ ≥ 0 (6d)

λ(A2 +B2) >= c2 + d2 (6e)

This method, as stated before, introduces λ as a dual variable from the
follower’s problem. By introducing a new variable, in some cases, there will
be non linear terms in the objective function. The non linear terms can be
expressed in a linear form by introducing additional variables and a system of
linear inequalities.

12



3.1.1 OptKnock

The bi-level model proposed in (Burgard, Pharkya, and Maranas 2003) refor-
mulates into a single level MILP. The follower’s model proposed in (ibid.) is
model 7.

max νbiomass (7a)

M∑
j=1

Sij ∗ νj = bi (7b)

νpts + νglk = νglc−uptake (7c)

νatp ≥ νatp−main (7d)

νbiomass ≥ νtarget (7e)

νmin
j ∗ yj ≤ νj ≤ νmax

j ∗ yj (7f)

Equation 7f includes the term yj which is the leader’s binary variable perform-
ing the gene deletion (Knockout). Equations 7c and 7d constitute biological
assumptions to fuel the network while equation 7e assures a minimum growth
and cell viability. The dual of model 7 is expressed as model 8.

min νatp−main ∗ µatp + νtarget ∗ µbiomas + νglc−uptake ∗ glc (8a)∑
λstoichi Si,glk + µglk + glc = 0 (8b)∑
λstoichi Si,pts + µpts + glc = 0 (8c)∑
λstoichi Si,biomas + µbiomas = 1 (8d)∑

λstoichi Si,j + µj = 0 (8e)

µmin
j ∗ (1− yj) ≤ µj ≤ µmax

j ∗ (1− yj) (8f)

µj ≥ µmin
j ∗ (1− yj) (8g)

µj ≤ µmax
j ∗ (1− yj) (8h)

µj ∈ ℜ (8i)

λstoichi ∈ ℜ (8j)

glc ∈ ℜ (8k)

Where λi, µj , are the dual variables associated with constraints 7b and 7f
respectively. And equation 8a describes the objective function.
Note that some variables in the objective function are non linear. Specifically,
the dual variables associated with the constraint 7f.
The linearization of the product of a continuous variable, µj , and a binary
variable, yj , when µj ∈

[
µmin
j , µmax

j

]
can be easily performed. However, in the

original paper it’s not really clear how to estimate the parameters µmin and
µmax.Moreover, the methodology did not include the follower’s primal variables
in the dual objective. The work published in ReacKnock (SunXu et al. 2013)
points out this issue and offers a better explanation for the MILP reformulation.
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3.1.2 ReacKnock

The models in OptKnock and ReacKnock are reformulated essentially with the
same method. However, in ReacKnock the constraints 7d, 7c and 7e are in-
cluded as part of the constraint 7f. In other words, all reaction requirements
are now part of the lower bounds. Thus, making some lower-bound constraints
redundant. The inner formulation (model 9) turns out to be more compact and
easier to trace.

max νbiomass (9a)∑
Sij ∗ νj = 0 (9b)

νmin
j ≤ νj ≤ νmax

j (9c)

νmin
j yj ≤ νj ≤ νmax

j yj (9d)

Its dual then can be written as model 10. Where α1, β1, α, β are the dual
variables associated with constraints 9c and 9d. And BM is a sufficiently large
number.

min
∑

(α1j ∗ UBj − β1j ∗ LBj) +
∑

(α2j ∗ UBj − β2 ∗ LBj) (10a)∑
λi ∗ Si,j − βi + αi − β2i + α2i = 0 (10b)

λbiomas ∗ Sbiomas,j − βbiomas + αbiomas − β2biomas + α2biomas = 1 (10c)

α1 ≤ BM ∗ (yj) (10d)

α1 ≥ −BM ∗ (yj) (10e)

α1 ≤ α+BM ∗ (1− yj) (10f)

α1 ≥ α−BM ∗ (1− yj) (10g)

β1 ≤ BM ∗ (yj) (10h)

β1 ≥ −BM ∗ (yj) (10i)

β1 ≤ β +BM ∗ (1− yj) (10j)

β1 ≥ β −BM ∗ (1− yj) (10k)

The single-level MILP reformulation of the bi-level problem, model 11, proved
to be efficient when transcribed into a working programming language. And,
the best for direct comparison in terms of computing time and solution quality.

max νchemical (11a)∑
Si,j ∗ νj = 0 (11b)
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∑
(1− yj) = k (11c)

νmin
j ≤ νj ≤ νmax

j (11d)

νmin
j ∗ yj ≤ νj ≤ νmax

j ∗ yj (11e)

νbiomas = (10a) (11f)

... Dual Constraints

(10k)

MILP reformulations in both cases need good bounds and a sufficiently large
BM to work properly and can be solved using commercial solvers.

3.1.3 RobustKnock

The linearization followed by (Tepper and Shlomi 2010) in their (RobustKnock)
model to guarantee more robust chemical rate production is, essentially, the
same as those of OptKnock and ReacKnock. However, a crucial difference is
the setup of the leader’s objective. In RobustKnock the leader’s objective is
defined as, maxmin νchemical, this is to maximize the minimal possible rate of
the bioengineering objective achieved by performing gene knockouts. While,
the follower’s objective remains identical as in the original, see model 4. The
linearization leads to adding dual variables and the boolean complements to
resolve the bi-linear terms. This method acknowledges that there might be so-
lutions that lead to unbounded solutions, eg. when the knockout doesn’t enable
a biomass production larger than the estimated threshold. To overcome this
issue Robustknock introduces additional decision variables to enforce feasibility
of the primal minimization problem.
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4 A unified branch and cut framework for metabolic
engineering

4.1 Introduction

The idea of modifying a microbe’s structure to increase the production of a
desired chemical is not new. This describes a hierarchical relationship between
the engineer, interested in optimizing chemical production, and the microbe,
whose interest lies in cellular growth. Metabolic engineers rely on a mathemat-
ical approach to analyze the flow of metabolites through a metabolic network
and compute chemical production rates called Flux Balance Analysis (FBA)
(Edwards, Covert, and B. Palsson 2002; Orth, Thiele, and Bernhard O Palsson
2010). A metabolic network is a complex grid of biochemical reactions that
occur within an organism. In this grid, the nodes are the metabolites and the
connecting edges (arcs) are the reactions of the organism. When organisms
are represented as metabolic networks, it provides a convenient framework to
study the results of engineered modifications often via gene knockouts (arc in-
tervention). Modified organisms have a positive impact on optimized chemical
production, better strains for agriculture, and better-designed medications in
the pharmaceutical industry (Volk et al. 2023). Gene deletion (knockout) is a
popular technique to modify an organism into a more economically valuable en-
tity that removes or activates specific genes within an organism (Griffiths 2020).
Switching subsets of arcs on and off would redistribute the network flow yielding
different production levels of a desired chemical. Mathematically, this can be
modeled by mapping the arcs in the metabolic network to binary variables and
finding a suitable assignment of binary values to them that maximizes chemi-
cal yield. Every organism’s growth response is different according to the genes
that are activated resulting in a combinatorial problem that can be efficiently
modeled using integer programming.

A substantial body of literature provides optimistic gene deletion strategies,
suggesting that organisms with modified networks will adapt to favor chemical
production (Pharkya and Maranas 2006; Pharkya, Burgard, and Maranas 2004;
Tamura et al. 2018; Kim and Reed 2010; Patil et al. 2005; Burgard, Pharkya,
and Maranas 2003; SunXu et al. 2013; Brochado and Patil 2014). However, most
organisms are set to follow their evolutionary goal that favors cellular growth,
thus the intervened organism will not necessarily yield a maximum chemical
production.

To handle this, typically, pessimistic gene deletion strategies are designed
to expect the worst outcome (Apaydin et al. 2017; Merkert, Orlinskaya, and
Weninger 2022). The literature points to mixed integer bi-level programming
and its single-level reformulations as the predominant methodology for both
optimistic and pessimistic approaches. However, to the best of our knowledge,
there are very few pessimistic approaches proposed in the literature. Our con-
tribution is to present a unified framework where a decision maker can choose
either approach and efficiently compute gene deletion strategies. We also in-
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troduce cuts that are stronger than no-good cuts (Balas and Jeroslow 1980)
and demonstrate that our algorithm is competent when compared with state-
of-the-art. Hierarchical structures with competing objectives can be found in
most research fields. Therefore, presenting our framework to solve optimistic
and pessimistic bi-level gene deletion has a positive impact as it expands both
the literature and the tools available. In addition, we also demonstrate that our
method is computationally competent when compared with the most prevalent
techniques.

Bacteria such as E. coli offer a possible alternative for commercial production
of bioproducts and biofuels (Rosales-Calderon and Arantes 2019; Na D et al.
2012). To validate our approach, we tested our proposed algorithm for the
overproduction of different chemicals while maximizing cellular growth from
different E. Coli reconstructions. Table 1 holds the different metabolic E. Coli
reconstructions, i.e. iJO1366 (Orth, Conrad, et al. 2011), iAF1260 (Bernhard
O Palsson et al. 2007), and iJR904 (Reed et al. 2003) and the chemicals to
optimize.

Chemical
E. coli Strain

iJO1366 iAF1260 iJR904
Succinate • •
Formate • • •
Acetate • • •
Lactate • •
Ethanol • •
Fumarate • •

Table 1: Chemical byproducts from E. coli for validating the algorithm

The rest of the paper is organized as follows. In Section 4.2, we formally
introduce bi-level programming and discuss several solution approaches. Sec-
tion 4.3 presents the fundamental concepts in metabolic engineering and gene
deletion. In Section 4.4, we elaborate on our solution approach, which involves
an algorithmic framework that generates and adds cuts based on the decision
maker’s chosen strategy. Section 4.5 details the biological assumptions and com-
putational experiments conducted to evaluate our algorithms and presents our
findings. Finally, our conclusions are summarized in Section 4.7.

4.2 Bi-level programming preliminaries

Bi-level problems represent a nested hierarchical structure for two decision-
makers, usually called leader and follower, and their respective problems, upper
and lower levels. Each level has its variables and constraints. And, there is at
least one set of variables that can appear in the constraints of both levels known
as linking variables. It is through the linking variables that the lower-level prob-
lem is parameterized. In other words, both players’ objectives rely on the other
player’s decision (Shi, G. Zhang, and Lu 2005). This structure best describes

17



a Stackelberg game where players try to optimize their objectives respectively.
Stackelberg first formulated this relationship in his work on market economy
(Stackelberg 2011) to describe when a player’s decision can influence the second
player’s objective, but neither player completely dominates the other (Dempe
2015). Such characteristics make the bi-level problem NP-hard (Jeroslow 1985;
J. F. Bard 1991). In other words, bi-level problems are usually not tractable
and require enormous computational effort (Deng 1998; Pineda, Bylling, and
Morales 2017).

A Bi-Level Programming Problem (BLPP), represented as problem (12), can
be formulated as follows (see Dempe 2015; Schmidt and Beck 2023; Bracken and
McGill 1973):

min
y∈Y

f(ν,y) (12a)

s.t. F (ν,y) ≥ 0 (12b)

ν ∈ argmin
ν′∈V

{g(ν′,y) : G(ν′,y) ≥ 0} (12c)

A hierarchical structure can be observed where the set of decision variables
of the upper level (leader) and lower level (follower) are given by y ∈ Y ⊂ Rn

and ν ∈ V ⊂ Rm and their respective objective functions by f : V ×Y → R and
g : V ×Y → R. The constraint functions of the leader (resp. follower) are given
by F : V × Y → Rp (resp. G : V × Y → Rq). Decisions are sequentially made.
First, the leader makes a decision on y and the follower solves the parameterised
problem given in (12c).

The optimal value function ψ(y) := min{f(ν,y) : G(ν,y) ≥ 0} is used to
re-write the BLPP as follows:

min
ν∈V,y∈Y

f(ν,y) (13a)

s.t. F (ν,y) ≥ 0 (13b)

G(ν,y) ≥ 0 (13c)

g(ν,y) ≤ ψ(y) (13d)

The constraint expressed by inequality (13d) models that any solution with
g(ν,y) bounded by ψ(y) will be a solution for the BLPP. Our approach is based
on the optimal value function and the High-Point Relaxation (HPR). The HPR
is given by (13a)-(13c), where the leader’s objective (13a) is optimized over the
shared constraint set (13b) and (13c), with the non-convex constraint (13d)
dropped (see Fischetti 2018). Solution procedures to solve the HPR involve in
integrating cutting planes and branch-and-bound methods.

We will now briefly discuss the other predominant technique to solve bi-
level optimization problems, which involves in reformulating the problem as a
single level program using strong duality when the follower’s problem is convex
(Burgard, Pharkya, and Maranas 2003; SunXu et al. 2013; Tepper and Shlomi
2010; Zare et al. 2019). We will discuss the details of reformulation here when
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the follower’s problem is a linear program as this is the structure that is relevant
to our work. Suppose V := {ν : ν ≥ 0} and the constraints and objective of
follower’s problem given in (12c) are given by the following functions:

g(ν,y) := ctν + dty

G(ν,y) := Cν +Dy − b

Associating dual variables π with the constraint functions G(ν,y) ≥ 0, the
dual of the parameterized follower problem can then be written as

dty + max
π∈Rq

+

(b−Dy)tπ (14a)

Ctπ ≤ c (14b)

Assuming both primal and dual problems have finite optimal objective values
and using the fact that only at optimality, these solutions are equal, we can
reformulate BLPP, problem (12), as follows:

min
ν∈V,y∈Y,π∈Rq

+

f(ν,y) (15a)

s.t. F (ν,y) ≥ 0 (15b)

G(ν,y) ≥ 0 (15c)

ctν = (b−Dy)tπ (15d)

Ctπ ≤ c (15e)

It is worth noting that strong-duality and KKT reformulations, using Com-
plementary slackness conditions, are equivalent and both introduce bi-linear
terms that require linearization (Schmidt and Beck 2023). Assuming each bi-
linear term involves in the product of a binary and a continuous variable, it
can be linearized by adding a new variable corresponding to each such bi-linear
term. However, this method might become cumbersome as the model increases
in size (Zare et al. 2019).

4.3 From flux balance analysis to bi-level gene deletions

In this section, we briefly discuss the basic aspects of flow (flux) estimations
in metabolic engineering and how it is modeled as a bi-level program. We
also describe the OptKnock model (Burgard, Pharkya, and Maranas 2003), as
this is the most popular optimization-based approach among researchers and
practitioners and helps motivate our methodology.

Metabolic networks have been constructed with genomics and biochemical
information to capture the relationship between the chemical processes inside
an organism, allowing the study of these networks regarding flow distribution
(Edwards, Covert, and B. Palsson 2002; Lee et al. 2012). The most popular
method to estimate the flow distribution in a single-cell organism is the FBA
(Orth, Thiele, and Bernhard O Palsson 2010). We denote M = {1, . . . ,m} to
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be the set of all reactions and N = {1, . . . , N} to be the set of all metabolites in
the metabolic network. The estimation of flow rates uses a mathematical repre-
sentation of the metabolic network where the metabolic reactions are captured
in S, a stoichiometric matrix of size n ×m. The entries of this sparse matrix
are the stoichiometric coefficients of the metabolites (rows) participating in a
reaction (columns). The mass flow through the reactions is denoted using the
vector ν ∈ Rm and the individual component of the vector corresponds to a
specific reaction. FBA is bound by the mass balance constraints Sν = 0. The
vector ν is also constrained by its lower and upper bounds, νmin and νmax re-
spectively, that define the allowable flow distribution of the system. We define
the feasible set for the FBA as

Φ := {ν : Sν = 0,νmin ≤ ν ≤ νmax, }

The complete FBA model is then given by

max
ν∈Φ

νb (16)

where νb is the component of ν corresponding to the biomass. The objective
function (16) in this model is cellular growth rate (biomass), which is defined
with respect to the organism, but from an application perspective one wishes
to increase the yield of any desired chemical within the metabolic network.
This requires experimentation to predict chemical production. The challenge
to develop engineered single-cell organisms is an ongoing effort in the field of
biotechnology for the optimal production of chemicals (Stephanopoulos 1998)
and bio-fuel factories (Yadav and Saxena 2013), contributing to different in-
dustries (Volk et al. 2023; Anand, Mukherjee, and Padmanabhan 2020), and
development of toolboxes such as COBRA (Heirendt et al. 2019).

The network’s flow distribution can be modified to a more desirable outcome via
gene knockouts. Gene deletion (knockouts) refers to restricting the flow through
a particular reaction to zero. We can model this by associating a binary variable
to each arc in the network (Edwards, Covert, and B. Palsson 2002). The binary
variables assume a value of one if the reaction is active and a value of zero in
the case the reaction is not active, thus ”knocked out”.

yi =

{
1 , if reaction i is present in the metabolic network

0 , “knocked out”.

For a given binary vector, y ∈ {0, 1}m, we define the parametrized FBA feasible
set as

Φ(y) = {ν : Sν = 0, νminyj ≤ νj ≤ νmaxyj ,∀j ∈M} (17)

Chemical predictions using only FBA seem to fail as the model doesn’t capture
the single-cell organism’s evolutionary objective (Bernhard O. Palsson, Ibarra,
and Edwards 2002; Raman and Chandra 2009). Generally, the organism’s ob-
jective and the desired chemical production are two independent, often compet-
ing, objectives. Mathematical optimization offers frameworks to deal with such
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cases. On the one hand, the work by Andrade et al. 2020, Daud et al. 2019 and
Maia et al. 2008 frame gene-knockouts as a bi-objective optimization problem
where the solution of the objectives, z1 = max νc and z2 = max νb, are found
in the Pareto frontier. On the other hand, this problem can be modelled as
a bi-level programming problem, wherein the leader will be the engineer and
the follower is the microbe (Smith, Prince, and Geunes 2013). The follower
optimizes its objective over the network while the leader alters the network by
limiting the possible reactions available. The leader makes binary decisions y,
a given number of reactions to suppress, denoted by K. We can then define the
leader’s feasible set as

Y = {y ∈ {0, 1}m :

m∑
i=1

(1− yi) = K} (18)

The bi-level gene knockout model, which was first formulated in Burgard, Pharkya,
and Maranas 2003, can then be written as

max
y∈Y

νc

s.t. ν ∈ argmax{νb : ν ∈ Φ(y)}
(19)

where νc denotes some component in ν corresponding to the desired chemical
to optimize the leader’s objective. It is one of the indices from the subset of de-
sired chemicals, C ⊂M , of the leader. More particularly, problem (19) has three
components: (i) leader’s objective to maximize the production rate of a deter-
mined chemical νc present in the metabolic network; (ii) knapsack constraint to
select the allowed number of reactions to knock-out; and (iii) follower’s problem
which is a parameterized FBA trying to optimise the growth of the organism.

The first bi-level gene knockout model, OptKnock, assumes an optimistic bi-
level approach where among the follower’s possible solutions the solution that
allows the best results for the leader is picked. In this paper, the solution
method employes the strong duality to reformulate the bi-level problem into a
single-level mixed integer problem. This method adds more linear constraints
and discrete variables to the problem (Zare et al. 2019). The inclusion of the
new variables results in non-linear terms in the objective function of the dual
problem, though the non-linearity is ignored. SunXu et al. 2013 developed a
subsequent model, called ReacKnock, where the non-linear terms are linearized
using McCormick envelopes exploiting the bounds of the continuous variable
and a sufficiently large number as a threshold (McCormick 1976; Asghari et al.
2022), increasing the number of constraints from the original model. The models
presented in Burgard, Pharkya, and Maranas 2003; SunXu et al. 2013 only
solve for optimistic gene deletions. In Tepper and Shlomi 2010, RobustKnock
model was developed considering the pessimistic approach to suggest robust
gene deletions. This model is approached as a max-min bi-level model and
linearised using a similar technique as in SunXu et al. 2013.
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4.4 Algorithm

In this section, we introduce our unified solution approach to identifying gene
deletion strategies, encompassing both optimistic and pessimistic approaches.
This integrated methodology allows decision-makers to explore gene knockouts
with a balanced perspective, considering both ideal outcomes, where the mi-
crobial response is aligned with maximum production goals, and worst-case sce-
narios, where cellular growth objectives dominate, potentially reducing chemical
yields. By incorporating both strategies, our approach enhances the robustness
and flexibility of metabolic engineering predictions, facilitating optimized gene
deletion strategies across varied biological objectives.

Our solution method iteratively solves the HPR problem (20), which is a
relaxation of problem (19). In each iteration, cuts are added to restrict the
search to bi-level feasible solutions (feasibility cuts) and eliminate solutions that
are not optimal (optimality cuts).

max
y∈Y

ν∈Φ(y)

νc
(20)

Figure 1: Framework to solve bi-level gene knockouts

The proposed algorithm to identify gene-knockout strategies is provided both
in Figure 1 and Algorithm 1. The algorithm accommodates both optimistic or
pessimistic strategy (depending on the choice of the decision maker), which we
will discuss shortly. A primal bound, denoted by LB, is set initially as a suffi-
ciently large negative number and will be updated as the algorithm progresses.
In each iteration, we solve the current HPR (20) to optimality which returns
the solution ν̂ and ŷ. We then solve the parameterized problem FBA(α, ŷ)

minMνb + ανc : ν ∈ Φ(ŷ) (21)
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where α is chosen depending on the decision maker’s strategy. The choice ofM ,
the objective coefficient of νb, will be explained shortly. If the parameterized
problem is infeasible or current incumbent solution is better than the FBA’s
solution corresponding to the chemical value for the suggested knockout set ŷ,
we then update the HPR by adding the cut∑

i∈I(ŷ)

yi ≥ 1, (22)

where I(ŷ) := {j : ŷj = 0,∀j ∈M}. This will restrict the solution ŷ from being
generated in subsequent iterations. Otherwise, the parametrised problem will
return a solution ν̂.

Algorithm 1 Bi-level Algorithm Framework

1: Input: gap, α ▷ α = 1 is optimistic and α = −1 is pessimistic
2: Initialise: LB = −∞, UB =∞
3: while UB−LB

LB ≤ gap do
4: (ν̂, ŷ)← HPR(ν,y)
5: UB = ν̂c
6: ν̄ ← FBA(α, ŷ)
7: if Φ(ŷ) = ∅ or LB ≥ ν̄c then
8: Add cut (

∑
j∈I(ŷ) yj ≥ 1) to HPR

▷ Either ŷ infeasible or incumbent is better
9: else if ν̄b > ν̂b then

10: Add cut (ν̄b ≤ νb + ν̄b(
∑

j∈I(ŷ) yj)) to HPR

▷ (ν̂, ŷ) is not optimal to FBA
11: else if α = −1 and ν̂c > ν̄c then
12: Add cut (ν̄c ≥ νc − ν̄c(

∑
j∈I(ŷ) yj)) to HPR

▷ Pessimistic cut to lower bound νc
13: else
14: LB = ν̄c
15: Set (ν̄, ŷ) as incumbent
16: end if
17: end while

An optimistic approach is based on the assumption that among the alter-
native optimal solutions to the follower’s problem, the follower will choose the
solution that is most beneficial for the leader with respect to the chemical mass
flow in the network. This subroutine sets objective function of the parametrised
problem (21) to max Mνb+νc, so the follower’s problem is optimised on νb and
among the alternate optimal solutions, the one with the maximum value νc is
chosen. It is essential to select the value of M carefully. This parameter must
be sufficiently large to ensure that the optimisation is performed on biomass νb
rather than on νv. However, M should not be excessively large, as this would
result in 1

M exceeding the numerical tolerance of the algorithm. Identifying an
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appropriate value for M is generally straightforward, as numerical tolerance is
typically set to a (very) small value.

A pessimistic approach is based on the assumption that the follower’s re-
sponse to the leader’s strategy is going to be detrimental to the leader’s solu-
tion. In other words, among the alternative optimal solutions, the follower will
choose the solution that has the least value for νc resulting in the worst scenario
for the leader. The objective function in the parametrized problem (21) is set
to max Mνb − νc. The optimisation is first performed on νb and then for the
worst outcomes with respect to νc.

The algorithm generates cuts according to the following specific conditions.
When we add in the cut

∑
j∈I(ŷ) yj ≥ 1, in both pessimistic and optimistic

approaches, we are simply discarding the suggested knockout ŷ from the HPR
problem, either because the solution leads to worse lower-level outcome or the
lower-lever becomes infeasible. We add the cut

ν̄b ≤ νb + ν̄b(
∑

j∈I(ŷ)

yj) (23)

for both approaches, when the biomass flow value in the follower’s optimal
solution (ν̄b) is greater than the biomass value in the HPR solution (ν̂b). In the
pessimistic approach, we add

ν̄c ≥ νc − ν̄c(
∑

j∈I(ŷ)

yj) (24)

to restrict the value of νc being higher than the worst case chemical production
value obtained in the follower’s optimal solution. If no cuts are added, then
we have obtained a better incumbent. We update the bounds in this case and
resolve the HPR. We now show the correctness of the above algorithm in the
following theorem.

Theorem 1. Algorithm 1 terminates at the optimal solution to (19) for both
optimistic and pessimistic cases.

Proof. We focus on the optimistic case as the pessimistic case follows similar
lines of reasoning. First, notice that the solution of Algorithm 1 is feasible to
(19) as cuts of type (23) will only accept optimal solutions to FBA. Furthermore,
notice that the solution vector of the HPR, i.e. (ν̂, ŷ), changes at least in one
component compared with the solutions in all previous iterations. Since there
are only finitely many of these, the algorithm will terminate. For an optimal
solution (ν∗,y∗) to (19), it is enough if we focus on cuts generated with respect
to (ν̃,y∗), for any ν̃. Cuts of type (22) are added only when current primal
solution is better than ν∗c as Φ(y∗) ̸= ∅. This solution is pruned from further
search only if there exist some incumbent solution (that is bi-level feasible) with
the optimal value greater than ν∗c , unless the incumbent is already optimal but
corresponding to some other knockout strategy.
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4.5 Computational experiments

The algorithms described in the previous section were implemented in Python
3.10 and used to solve some instances using the Gurobi 10 solver on a personal
computer with an Intel® CoreTM i7 processor running at 1.3 GHz to 1.5 GHz.
They were tested on three established E. coli metabolic networks: iJO1366,
iJR904, and iAF1260. The key criteria for comparing our algorithms with the
benchmark include the solving time (latency) for each method and the validity of
the solutions in terms of chemical production. The number of allowed knockouts
for the experiments was K = 1, 2, 3. Moreover, we test our solving methods
under biological assumptions for each metabolic network.

4.5.1 Biological assumptions

The biological assumptions activate the metabolic network for its growth by
setting specific flows on key reactions. The biological assumptions for the E.
coli metabolic network are set similarly through the different metabolic net-
works used for the computations, as outlined in Table 2. The benchmarks were
taken from (Tepper and Shlomi 2010) and (Mendoza 2018) for the pessimistic
and optimistic algorithms respectively. The growth in each strain is allowed
through glucose uptake. A minimum growth should be set before computing.
In most cases this is set to expect growth of at least 50% of the wild strain,
this is νmin

b = 50%WTb or νb = νtgtb . Wild strain refers to the unmodified
network’s flow estimation. However, each metabolic network is different, and
special adjustments have to be made on each metabolic network employing the
solving methods.

4.5.2 Assumptions

• Allowing glucose uptake.

• Unconstraining uptake routes for inorganic phosphate, sulfate, and am-
monia.

• Enabling secretion routes for acetate, carbon dioxide, ethanol, formate,
lactate and succinate.

• Constraining the phosphotransferase system.

• Constraining the O2 (oxygen) uptake.

The number of reactions translates to the number of continuous variables
in the follower’s problem and the number of binary variables in the master’s
problem. The KO size is a fraction of potential reactions for gene deletion, the
smaller the KO size the less computing is expected for the solving methods.
Finally, the algorithms were tested under their biological assumptions, different
K values, and different growth percentages. The characteristics of the E. coli
metabolic networks utilized in the computational experiment are summarized
in Table 3, where S stands for the stoichiometric matrix.
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Rxn νmin νmax Strain

ATPM 8.39 8.39 iAF1260
O2 -18.5 1e4 iAF1260
glc -10 -10 iAF1260

ATPM 7.6 7.6 iJR904
O2 -20 1e4 iJR904
glc -10 -10 iJR904

ATPM 3.5 1e4 iJO1366
O2 0 1e4 iJO1366
glc -10 -10 iJO1366

Table 2: Biological assumptions, all rates unit is mmol/g(Dw)h

Model
S size KO set

Bi-level Objective Bacteria
Metabolites Reactions Size %

iJO1366 1805 2583 37 1.43 Succinate E. coli
iJR904 761 1075 32 2.98 Acetate E. Coli
iAF1260 1668 2382 37 1.55 Succinate E.Coli

Table 3: Metabolic network characteristics and KO proportions

4.6 Results

The performance of our algorithms is compared against benchmarks that employ
the MILP reformulation, with a focus on solving time and growth outcomes. A
good solution is defined as one where the knockout strategy is computed within
a reasonable time. The solving time is extracted from the solver’s information
of computing time as wall-clock times.

4.6.1 Validation

To validate our optimistic algorithm we compared the results computed with
our method and the chemical production from the MILP benchmark (Mendoza
2018). Table 4 shows the biomass flux (νb), chemical flux (νc), and knockouts
produced by the various approaches for different levels of minimum growth.
Our method computes same values, for biomass and chemical production, as
the values from the MILP benchmark across varying percentages of minimum
biomass production (mbp). However, our method returns a different knockout
strategy when mbp >= 80%, this is because of the follower’s problem structure
where different strategies (flow distribution) could lead to the same objectives.

4.6.2 Performance

Following algorithm validation, we assess the performance of each method in
terms of solution time, measured in seconds, and presented in Table 5. We
compare the performance (solution time) between the optimistic benchmark
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Benchmark Optimistic Algorithm
mbp νb νc Knockouts νb νc Knockouts

10% 0.0531 8.9797 GLCptspp,PYK 0.0531 8.9797 GLCptspp,PYK
20% 0.0531 9.9797 GLCptspp,PYK 0.0531 8.9797 GLCptspp,PYK
30% 0.1173 2.3132 PFL,RPI 0.1173 2.3132 PFL,RPI
40% 0.1173 2.3132 PFL,RPI 0.1173 2.3132 PFL,RPI
50% 0.1831 1.4148 PFL,TKT2 0.1831 1.4148 PFL,TKT2
60% 0.1831 1.4148 PFL,TKT2 0.1831 1.4148 PFL,TKT2
70% 0.1831 1.4148 PFL,TKT2 0.1831 1.4148 PFL,TKT2
80% 0.2401 0.2504 FUM,MDH 0.2401 0.2504 FUM,GND
90% 0.2401 0.2504 FUM,SUCOAS 0.2401 0.2504 FUM,G6PDH2r

Table 4: IJO1366 with double knockouts

(B) and our optimistic algorithm (O). We could not compare the solution time
for the pessimistic benchmark as this information is not available. However, a
comparison of our pessimistic algorithm (P) against the optimistic algorithms
would help one to assess its performance.

Max Mean Min
mbp B O P B O P B O P

10% 28.265 10.473 6.633 8.4565 3.4337 2.6868 0.955 0.383 0.380
20% 23.559 9.921 6.625 8.8517 2.8867 2.6355 0.946 0.451 0.400
30% 29.639 10.083 6.615 9.8855 2.8805 2.6533 1.137 0.411 0.378
40% 15.594 9.684 7.728 7.0123 3.8932 2.7815 1.707 0.377 0.364
50% 18.432 9.535 6.008 7.0322 3.1038 2.5038 0.995 0.369 0.347
60% 18.345 8.402 8.102 8.2117 2.7713 2.7485 1.234 0.377 0.343
70% 12.301 7.187 5.692 6.5250 2.8377 2.1925 1.169 0.415 0.382
80% 13.292 5.632 4.721 6.0622 2.4868 1.8395 1.406 0.363 0.351
90% 21.059 4.886 4.502 7.9472 2.0978 1.5968 1.040 0.378 0.395

Table 5: Average solving time (seconds) for K = 2

In Figure 2, we present the box plot of solution time by strain and so-
lution method for various chemicals and target levels. We have a noticeable
improvement in the solution time our framework. Our optimistic solving time
is consistently outperforms the single level reformulation for all values of k. Our
pessimistic performance is competent for low values of k and deteriorates when
k = 3. This is an expected behaviour for the pessimistic approach.

We also present the solution time target levels and k values in Figure 3.
The vertical bars represent the variation across the three strains and chemical
targets. We make a similar observation here. The optimistic approach either
outperforms or is as good as the benchmark for all values of k. The pessimistic
approach works well for low values of k and deteriorates when k = 3.
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(a) k = 1 (b) k = 2

(c) k = 3

Figure 2: Time comparison by method and strain for various target levels and
chemical targets.
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Figure 3: Overall Performance of the three methods for various k and biomass
targets. The bars indicate the variation corresponding to the three strains and
various chemical targets.

4.6.3 Pessimistic vs optimistic

In general, the chemical production computed under the pessimistic approach
tends to be smaller or in the best scenario equal to the chemical values computed
using the optimistic approach. We present the ratio of optimal pessimistic and
optimistic solutions for various chemicals, k and strains in 4. There is generally
an increasing pattern seen by target levels for all chemicals for iAF strain and
it tends to stay the same for iJO strain. There are no such clear patterns with
the iJR strain.

In essence, the optimistic approach will give a theoretical maximum that
can be achieved whereas the pessimistic approach will provide a robust solution
where the risk of selecting a strategy that delivers the worst outcome is mini-
mized and the solution is not only bi-level feasible but also microbial feasible.
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Figure 4: Ratio of pessimistic to optimistic (in percentage) chemical production
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4.7 Conclusion

The framework we provide permits the user to pick either an optimistic or
pessimistic solution and we have demonstrated that it consistently outperforms
the benchmark (see Figure 2 and Table 4). Our algorithm in contrast with
the single-level reformulations do not deal with non-linear terms and extra dual
variables. It is a branch-and-cut algorithm where the optimality and feasibility
cuts are added to eliminate bilevel infeasible and suboptimal solutions from the
search space.

While there is no direct performance comparison with the pessimistic al-
gorithm and its benchmark. We compared our optimistic and pessimistic ap-
proach as in our methodology these algorithms share similarities. These algo-
rithms have a similar performance (see Figure 3). However, the performance
of the pessimistic approach deteriorates more in comparison as the number of
allowable knockouts increases. The optimistic and pessimistic algorithms when
K = 1 outperform the optimistic single-level reformulation by more than 70% in
running time. When K = 2 the algorithms’ performance is improved by at least
50%. However, when K increases the pessimistic approach explodes in its solv-
ing time due to the additional steps this procedure goes through (see Algorithm
1), and the combinatorial nature of finding the components in both subroutines.

5 Final Remarks

Our exploration of bi-level programming underscores its significance and ver-
satility in tackling complex hierarchical decision-making problems across vari-
ous domains such as network optimization and metabolic engineering. Bi-level
programming’s inherent NP-hardness challenges researchers to develop innova-
tive and computationally efficient methods to render these problems tractable.
Throughout our work, we have demonstrated that solution techniques, includ-
ing reformulating bi-level problems into single-level problems via strong duality
and employing cutting-edge methodologies like branch-and-bound and cutting
planes, play a pivotal role in optimizing decision-making processes when nested
decisions are involved.

Our specific application of bi-level modeling in metabolic engineering high-
lights the promise and potential of these frameworks in biotechnology. By emu-
lating the interaction between an engineer and a microbe in modifying metabolic
networks through gene knockouts, we provide a methodology not only to maxi-
mize chemical production but also to align biological and engineering objectives
in a coherent, structured manner.

Moreover, through the development of algorithms adopting both optimistic
and pessimistic strategies, this study provides pathways towards achieving max-
imum feasible solutions and robustness in decision-making processes. Our com-
putational results exhibit not only improvements in solution times but also high-
light the flexibility and applicability of these models to predictively simulate and
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optimize biological systems.
Ultimately, bi-level programming represents a profound tool for researchers

and practitioners seeking to disentangle and optimize complex interdependent
systems characterized by hierarchy and sequential decision-making. As advance-
ments in computational methods continue to evolve, so too will the efficacy and
applicability of bi-level programming across an ever-expanding array of scien-
tific and industrial domains. Future research and development in this area
promise to unlock even greater capabilities, supporting more efficient and im-
pactful decision-making in systems governed by hierarchical structure and in-
terdependent objectives.
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