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Abstract

Multiple-input multiple-output (MIMO) technology promises significant capacity

improvements in order to more efficiently utilise the radio frequency spectrum. To

achieve its anticipated multiplexing gain as well as meet the requirements for high

data rate services, proposed broadband systems are based on OFDM or similar

block based techniques, which are afflicted by poor design freedom at low redun-

dancy, and are known to suffer badly from co-channel interference (CCI) in the

presence of synchronisation errors. Non-block based approaches are scarce and

use mostly decision feedback equalisation (DFE) or V-BLAST approaches adop-

ted for the broadband case, as well as Tomlinson-Harashima precoding (THP).

These methods do not require a guard interval and can therefore potentially

achieve a higher spectral efficiency. The drawback of these schemes is the large

effort in determining the optimum detection order in both space and time, often

motivating the adoption of suboptimal approaches.

In this thesis, we focus on non-block based precoding and equalisation schemes

aiming to achieve higher data throughputs with improved bit error ratio (BER)

compared to existing approaches. In order to achieve this, a recently developed

broadband singular value decomposition (BSVD) technique is applied to decouple

a broadband MIMO channel into independent frequency selective single-input

single-output (SISO) subchannels of ordered qualities, thereby cancelling CCI.

Secondly, these dispersive broadband SISO subchannels are individually equali-

sed using non-linear DFE or THP schemes with a variable transmission rate that

best matches the individual qualities of the respective subchannels, whereby the

decision delay can be independently optimised for every subchannel. This me-

thod is benchmarked through simulations against a state-of-the-art broadband

MIMO THP technique with optimised spatio-temporal ordering showing that

improved BER performance can be achieved under the constraints of identical

data throughput and transmit power.

In order to maximise the data throughput of our proposed method or similar

multichannel systems, adaptive bit and power loading schemes have been applied.
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A rate-optimal approach known as a greedy algorithm is considered, whereby op-

timality is guaranteed by considering an appropriate bit allocation cost function

and then iteratively assigning one bit at a time to the least cost-expensive sub-

channel. Constraining the transmit power budget and target BER of the overall

transmission system, we propose a greedy power allocation (GPA) algorithm to

optimise the achieved data throughput. While maximising data rate, the GPA

algorithm can also save some unused power from the total transmit budget. This

power is further utilised to enhance the mean BER w.r.t. the constrained target

through two proposed power redistribution algorithms.

It is well known that the GPA algorithm is computationally very expensive

due to the iterative nature of the algorithm. In order to efficiently reduce the

computational complexity of the GPA algorithm, suboptimal GPA schemes are

proposed by considering a subchannel grouping concept. We show by numerical

results that these schemes, while hardly sacrificing any performance compared

to the original GPA algorithm, can significantly reduce the computational com-

plexity by an order of magnitude.
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AGC automatic gain control

AWGN additive white Gaussian noise

BER bit error ratio

BPSK binary phase-shift keying

BSVD broadband singular value decomposition

CCI co-channel interference

CDF cumulative distribution function

CFO carrier-frequency offset

CP cyclic prefix

CSI channel state information

DFE decision feedback equalisation

DFT discrete Fourier transform

DoF degrees of freedom

DPC dirty paper coding

DSP digital signal processing

FIR finite impulse response

FPR fairness-BER power redistribution

GBA greedy bit allocation

GPA greedy power allocation

g-GPA grouped greedy power allocation

IBI inter-block interference

IDFT inverse discrete Fourier transform

ISI inter-symbol-interference

LA linear algebra

LO left-over

LZ leading zeros

Md-GPA power moving-down greedy power allocation

Mu-GPA power moving-up greedy power allocation
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MIMO multiple-input multiple-output

ML maximum-likelihood

MSE mean square error

MMSE minimum mean square error

M-QAM M-ary quadrature amplitude modulation

NoI number of iterations

OFDM orthogonal frequency division multiplexing

PAPR peak-to-average power ratio

P/S parallel-to-serial

QPSK quadrature phase-shift keying

S/P serial-to-parallel

SER symbol error ratio

SIC successive interference cancellation

SISO single-input single-output

SNR signal-to-noise ratio

SVD singular value decomposition

THP Tomlinson-Harashima precoding

TZ trailing zeros

UPA uniform power allocation
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V-BLAST vertical Bell laboratories layered space-time
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Mathematical Notations

General Notations

a scalar quantities are denoted by lowercase plain fonts

a or A
vectors are denoted by lowercase boldface or uppercase underlined

plain fonts

A matrices are denoted by uppercase boldface

aij the entry of the ith row and jth column of matrix A

Ai the ith diagonal entry of matrix A

(A)i the ith row of matrix A

[A]j the jth column of matrix A

diag (A) the diagonal entries of matrix A

diag (a) a diagonal matrix with diagonal entries of a vector a = [a1, a2, · · · ]

Operators

|A| determinant of matrix A

|x| absolute value of symbol x

‖x‖2 euclidian norm of vector x

‖X‖F Frobenius norm of matrix X

δ [n] discrete delta function

⊗ Kronecker product

? convolution in time

(·)T
transposition

(·)∗ complex conjugate

(·)H
Hermitian transpose or complex conjugate transpose

(̃·) Parahermitian, Ã (z) = AH (z−1)

d·e ceil operator, rounding to the nearest integer towards +∞
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b·c floor operator, rounding to the nearest integer towards −∞
E [·] expectation operator

tr (·) trace operator

M (·) modulo operator

q (·) decision device (quantisation) operator

< (·) real part

= (·) imaginary part

Sets

Z set of integer numbers

R set of real numbers

C set of complex numbers

CM×N set of M × N matrices with complex entries

S set of symbol alphabets that is assigned for transmission

Symbols and Variables

Nt number of transmit antennas

Nr number of receive antennas

N number of subchannels or subcarriers

Nb data block size

M constellation size (or order) of an M-QAM modulation scheme

Q channel order

L filter order

0M×N M × N zero matrix

IN identity matrix of size N

ei the ith column of the correct size identity matrix

σ2
x variance or average power of the scalar random process x [n]

Rxx covariance matrix of the vector random process x [n]

Rxy covariance matrix between vector random processes x [n] and y [n]

CN (0, 1) complex Gaussian random variable of zero-mean and unit-variance
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Chapter 1

Introduction

1.1 Motivation

A significant leap in the world of wireless communication systems has emerged

due to the substantial advances in digital signal processing (DSP) along with the

tremendous progress in semiconductor technologies. The most obvious example

for such evolution is the mobile communication sector, where highly standardi-

sed forms of ubiquitous communications can be provided nowadays at low cost.

Noticeably, higher data rate services with high link reliability, such as high qua-

lity multimedia, have started to come into dramatic demand. These services

are known to require high bandwidth segments of the radio frequency spectrum.

However, the allocated electromagnetic spectrum for wireless communication sys-

tems is limited and therefore a limit to such services is inevitably exists. Moreo-

ver, the propagation of the broadband wireless channel is characterised by effects

such as time-varying behaviour, fading and multipath interference [1, 2]. Accor-

dingly, wireless communication designers are now focusing on the development of

systems that can provide high spectral efficiency to address the scarcity of the

radio frequency spectrum, and aim for a quality comparable to digital subscriber

lines (DSL).

Frequency reuse and cell sectorisation can be regarded as conventional design

methods to achieve higher spectral efficiency for cellular wireless communications,

such as, for example, applied in GSM systems. The capacity of these systems is

limited and is unlikely to be able to support the continuously growing demand for

higher data rate services. In contrast, over the last decade the spatial dimension

has been identified as a means to efficiently boost spectral efficiency and enhance

wireless system capacity without the need for extra bandwidth expansion. Thus,

in current second and third generation wireless systems smart antennas play an

1



1.1. Motivation 2

important role to release such capacity improvement by the adoption of e.g. adap-

tive antenna array processing techniques at least at one end of a communications

link [3]. By incorporating multiple antennas at both transmit and receive side of

a link, referred to as multiple-input multiple-output (MIMO) channel, spectral

efficiency of the overall configuration can be significantly increased. In particular,

it has been shown that the MIMO capacity increases linearly with the minimum

number of antennas of both sides at high signal-to-noise ratio (SNR), provided

that a rich scattering environment between antenna pairs exists and therefore the

different transmit paths in a MIMO channel are uncorrelated [4, 5]. This makes

MIMO technology a leading candidate for future communication systems in order

to keep in step with the demand for high speed wireless broadband services.

MIMO technology becomes a prominent and state-of-the-art component of

modern wireless communication systems and continues to motivate significant

research in space-time processing techniques to efficiently realise the anticipated

MIMO capacity gain (see for example [6, 7]). Nevertheless, the performance of

MIMO transceiver systems is highly dependent on the characteristics of propaga-

tion scenarios, traffic patterns, and most importantly interference profiles. Since

for high data rate services the coherence bandwidth of the MIMO channel is smal-

ler than the transmission bandwidth required to communicate these services, the

MIMO channel cannot be assumed flat-fading, and a more challenging frequency-

selective — sometimes called broadband — scenario emerges for communication.

Assuming stationarity, this frequency-selective channel can be modelled as a finite

impulse response (FIR) linear time-invariant filter. The order of this FIR filter

modelling the channel can be obtained as [8]

L =

⌈
τd
max

Ts

⌉

, (1.1)

where τd
max denotes the maximum delay spread of the multipath channel, Ts is

the sampling period, and d·e is the ceiling operator, which rounds up the argu-

ment to the nearest greater integer. Obviously, this frequency selective MIMO

channels incurs inter-symbol-interference (ISI) in the time domain known as tem-

poral interference and co-channel-interference (CCI) or spatial interference in the

spatial dimension. In order to mitigate both interference terms — often termino-

logically combined as spatio-temporal interference — and consequently achieve

higher spectral efficiency of the overall MIMO system, it is crucial to develop

sophisticated signal processing algorithms for transceiver designs of a precoder

and/or an equaliser, in order to achieve processing for adequate retrieval of ba-
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seband signals [2].

MIMO gains are mainly due to the fact that a rich scattering environment

provides independent transmission paths forming a multichannel system that per-

mits diversity. This gain promises significant improvements in terms of spectral

efficiency achieved through maximising the multiplexing gain, known as spatial

multiplexing, or maximising the diversity gain by enhancing the link reliability, as

for example in the case of space-time coding. In the following, both multiplexing

and diversity gains are briefly highlighted.

• Multiplexing gain is achieved by exploiting the spatial dimension for

transmitting several independent substreams of data across a MIMO chan-

nel. As discussed earlier, the improvement in capacity increases linearly

with the minimum number of antennas at both transmit and receive sides.

In order to optimally translate this capacity gain into a multiplexing gain,

a good transceiver design has to incorporate an efficient precoder and/or

equaliser to create independent subchannels — by decoupling the MIMO

system or providing suitable spatial interference cancellation — over which

signals can be spatially multiplexed.

• Diversity gain describes the enhancement in link reliability resulting from

multiple transmission of the same information over independently fading

paths. Diversity gain is achieved as the increase in probability that at least

one path of the MIMO channel will not be in a deep fade at any given

time instance. This form of spatial diversity decreases the fluctuations that

may be experienced in the received signal power and helps to provide an

instantaneous link-reliable path.

Sometimes array gain is noted as another form of exploiting diversity, whereby the

coherent combination of signals leads to an enhanced SNR and therefore improved

link reliability to what is aimed for by maximising the diversity gain [9].

In this thesis, the aim is to consider methods for maximising the multiplexing

gain for a frequency-selective MIMO channel.

The design of block-based precoding and equalisation schemes for enhancing

the multiplexing gain over broadband MIMO channels has been widely addres-

sed in the literature and resulted in a number of useful filter-bank based solutions

obtained for different optimisation criteria [10, 11], of which orthogonal frequency-

division multiplexing (OFDM) [12] is a subset. The drawback of a block-based

design is that the first number of degrees of freedom have to be spent invariably
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on the cancellation of inter-block-interference. It is only once inter-block inter-

ference (IBI) is removed in a zero-forcing fashion, that the optimality criterion,

such as in the MMSE sense, can be applied.

Typical non-block based precoding and equalisation approaches for the broad-

band case are scarce and use mostly decision feedback equalisation (DFE) [13], V-

BLAST approaches [14] adapted to the broadband case, or a mixture thereof [15],

as well as Tomlinson-Harashima precoding (THP) [16, 17]. These methods do not

require a guard interval, can be globally optimised w.r.t. to e.g. mean squared er-

ror (MSE), and can therefore potentially achieve a higher spectral efficiency than

block-based approaches. The drawback of these schemes is the large effort in de-

termining the optimum detection order in both space and time, often motivating

the adoption of suboptimal approaches [14, 17].

Besides spectral efficiency, which is the primary concern in the design of future

wireless communication systems, transmission power is another important issue.

Transmission power is controlled in order to limit interference in multiuser scena-

rios or minimise the radiation due to perceived health influences, and extend the

battery life-time of portable wireless devices. For multichannel systems, where

parallel subchannels available for communications are characterised by different

gains and SNRs, the role of transmit power allocation among these subchannels

becomes a key issue in realising higher data rates or enhanced quality of ser-

vice (QoS). This can be achieved through adaptive bit loading schemes which

however requires the availability of channel state information (CSI) at the trans-

mitter. Without the knowledge of CSI at the transmitter, non-adaptive power

allocation — such as uniform power allocation (UPA) — is generally a subopti-

mal bit allocation scheme resulting in reduced performance. Knowledge of CSI at

the transmitter is not a realistic assumption for time-varying channels unless the

channel can be regarded as time invariant for a sufficiently long period. Other-

wise it can be modelled by resorting to ensemble approximation of some invariant

parameters such as mean and variance that can be estimated and employed to

predict the channel evolution with sufficient accuracy [11]. This form of statisti-

cal CSI can be either obtained at the transmitter through sounding experiments

prior to the information transmission phase, or it can be passed from the receiver

to the transmitter if a feedback channel is available [8].

Therefore, in this thesis, we will focus on exploiting the multiplexing gain of

MIMO systems by proposing a non-block based approach to precoding and/or

equalisation. This approach is based on a generalisation of the singular value

decomposition (SVD) — optimal in many senses such as mutual information, ca-
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pacity, maximum likelihood, etc., to enable communication over a narrowband

MIMO channel [18] — to the broadband case. A recently proposed broad-

band SVD (BSVD) [19] is applied to decouple the broadband MIMO system

into frequency-selective single-input single-output (SISO) subchannels of ordered

quality. Instead of linear processing as proposed in [20, 21], here each broadband

SISO subchannel is equalised using a DFE or non-linear THP [22, 23], whereby the

decision delay can be independently optimised for every subchannel. Moreover,

power and bit allocation schemes are also proposed to efficiently and adaptively

maximise the overall data throughput of the outcome subchannels.

1.2 Thesis Contributions

The following contributions are considered novel to the best of our knowledge.

• Efficient THP precoding ordering [24]

A THP system for a MIMO flat-fading channel with a simple precoding or-

dering scheme is proposed. Inspired by a modified Gram-Schmidt algorithm

to compute the QR decomposition, the maximisation of diagonal entries of

the R-factor is performed in every orthogonalisation step. This was tested

for the equalisation case [25] and we extend this for the precoding case by

examining the influence on a THP system. Compared to the optimal orde-

ring of V-BLAST detection, this precoding order demonstrates comparable

results, which are however reached via a much simplified ordering algorithm.

• A non-linear BSVD-based precoder and equaliser design with a

heuristic bit loading and simplified processing [26, 27, 28]

A new non-block based precoding method for MIMO frequency-selective

channels based on a BSVD algorithm is proposed. This method is a two-

step approach. Firstly the broadband MIMO channel is decoupled into a

number of independent dispersive spectrally majorised SISO subchannels

using the BSVD algorithm. We thereafter apply the non-linear THP pre-

coding to mitigate the dispersiveness (ISI) of these SISO subchannels. Bit

loading is proposed to optimally utilise the spectral majorisation of the

resulting SISO subchannels in a heuristic fashion. This method is bench-

marked against recent results of both MMSE linear and THP designs for

frequency-selective MIMO channels. Simulation results show that an impro-

ved BER can be achieved especially for higher throughput targets compared

to state-of-the-art benchmarks. The overall system is bandwidth efficient
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as it does not rely on guard periods, such as found in linear block-based

transceiver approaches. The advantage over existing MIMO-DFE, THP, or

V-BLAST systems is that the determination of the detection order is much

simplified, as optimisation only has to be performed in the temporal dimen-

sion of each individual SISO subchannel rather than in the spatio-temporal

domain. Finally, we investigate the influence of insufficient diagonalisation

by the BSVD algorithm on system performance, which can arise due to

insufficient CSI or the desire to reduce the computational steps and order

of the BSVD algorithm.

• Greedy (incremental) power allocation algorithm with BER im-

provements [29, 30]

The rate maximisation problem of a multichannel/multicarrier system is

considered. An optimal greedy power allocation (GPA) algorithm is propo-

sed with the design constrained by the target BER, the total power budget,

and fixed discrete modulation orders. The key aspect of this algorithm

lies in adjusting the power to fulfil the BER constraint as best as pos-

sible across all subchannels resulting in a uniform power allocation (UPA)

scheme. Generally, some excess power remains unused which is iteratively

allocated according to the greedy approach. This method is compared to

other existing constrained mean-BER greedy bit allocation (GBA) schemes

showing advantages of the GPA algorithm in terms of data throughput and

power conservation. Finally, once the design constraints are satisfied, the

remaining power is utilised to improve the mean BER in two possible ways,

leading to improved performance of both GPA and UPA algorithms. This

redistribution is analysed for fairness in BER performance across all active

subchannels using the bisection method.

• Reduced-complexity schemes for greedy power allocation for MIMO

and multicarrier systems [31, 32, 33]

The implementation of the above GPA algorithm requires, at each iteration

step of the bit allocation, a global search for the subchannel that requires

the least power to achieve an improvement. For multicarrier systems with

a considerably large number of subcarriers such as OFDM for digital video

broadcast [34, 35, 36] this algorithm becomes computationally inefficient.

Therefore we propose reduced-complexity schemes for the optimal GPA al-

gorithm. Three suboptimal schemes are suggested, which independently

perform GPA on subsets of subchannels only. These subsets are formed
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in an initialisation step of a UPA algorithm by considering the QAM le-

vel boundaries of a given target BER. We demonstrate by analysis and

simulation how these schemes can significantly reduce the computational

complexity. Two of the proposed algorithms can achieve near optimal per-

formance by including a transfer of residual power between subsets at the

expense of a very small extra cost. Numerical results show that the two near

optimal schemes perform best in two separate and distinct SNR regions. A

complexity reduction figure of an order of magnitude can be reached with

a very small degradation in data throughput provided that the proper al-

gorithmic version is chosen.

1.3 Thesis Organisation

The remainder of this thesis is organised as follows.

Chapter 2 addresses a number of linear precoding and equalisation methods for

narrowband and broadband MIMO channels. Analysis for equalisation of narrow-

band (i.e., frequency-flat) channels is provided for both ZF and MMSE criteria

and supported by simulation results. For broadband or frequency-selective chan-

nels, both block-based methods such as OFDM and non-block based transmission

schemes, including a recently developed BSVD algorithm, are reviewed.

Chapter 3 proposes non-linear precoding and equalisation approaches for broad-

band MIMO channels. The first part of this Chapter is concerned with flat-fading

MIMO channels with emphasis on the impact of precoding ordering on BER per-

formance. Secondly, based on the BSVD algorithm, a broadband MIMO channel

is decoupled into a number of independent dispersive spectrally majorised SISO

subchannels over which either THP or DFE is used as a non-linear precoder

or equaliser to mitigate ISI incurred by these subchannels. We focus on THP

schemes since better performance can be achieved by overcoming the common

problem of DFE’s error propagation. Heuristic bit loading is applied for the

resulting ISI-free SISO subchannels to efficiently utilise the inherent spectral ma-

jorisation property of the BSVD algorithm. Simulation results show that better

performance can be achieved when compared with a state-of-the-art broadband

MIMO techniques. Finally, the impact of a premature truncation in the BSVD’s

computation, resulting in a poorer decoupling, is investigated in terms of BER

performance and computational cost. The same effect would also be incurred if

the BSVD is applied in the presence of channel estimation errors.
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Chapter 4 considers discrete bit and power loading schemes to maximise the

data throughput of a multichannel system. This problem arises in our BSVD-

based approach, but also in general for transmultiplexed systems such as OFDM.

Different from the standard water-filling algorithm, which assumes real-valued

data rates and thus reveals unsatisfactory results due to the indispensable final

rounding step, greedy approaches offer optimal discrete data throughputs through

an incremental allocation of data bits. Two greedy algorithms — both aiming to

maximise the data rate under a specified target BER constraint — are studied and

compared with the non-adaptive uniform power allocation, of which one controls

the power allocation (GPA) and the other concerns the bit allocation (GBA).

Results show that GPA performs better than GBA in terms of achieved data

througput, while both achieve higher data throughput than UPA. Since the bit

allocation strategy of both GPA and UPA algorithms is to implement the BER

constraint with its maximum target, some excess power is generally saved as a

result. This power is reconsidered by a second optimisation step to improve the

achieved mean BER.

Chapter 5 explores reduced complexity schemes of the optimal discrete GPA

algorithm presented in Chapter 4. Compared to the standard GPA three su-

boptimal schemes are proposed, which perform GPA on subsets of subchannels

only. These subsets are created by considering the minimum SNR boundaries of

QAM levels for a given target BER. The common theme amongst the proposed

algorithms is to restrict the greedy algorithm to these subsets which are grouped

according to the QAM level assigned to them in the UPA stage. In order to

exploit excess (i.e. unused) power in each subset, two algorithms are proposed

which carry left-over power forward into the next subset that is optimised by a

local greedy algorithm. In the first proposed, the algorithm moves the left-over

power upwards from the lowest to the highest subset, whereas the second scheme

moves the power from the highest towards the lower subsets. Computational

complexity of the proposed schemes is analysed and evaluated revealing that a

significant reduction in complexity can be achieved especially for a large numbers

of subchannels and at high SNRs. Highlighted by simulation results, the two

proposed algorithms can achieve near optimal performance in two separate and

distinctive SNR regions, however, at a much reduced complexity.

Chapter 6 summarises the work presented in this dissertation, draws final conclu-

sions, and provides suggestions for future research leading on from this thesis.



Chapter 2

Linear Precoding and

Equalisation Techniques

MIMO systems promise significant capacity improvements which can facilitate

parallel transmission of different data streams [4, 5]. In order to realise the anti-

cipated multiplexing gain, separation of these data streams is required either in

the transmitter or at the receiver leading to different precoding or equalisation

schemes, respectively (see e.g. [13]). Based on the strategy of how to equalise the

communication channel and separate the multiple data streams, these schemes

can be broadly divided into linear and non-linear approaches. It is well known

that linear precoding and equalisation methods have lower complexity than non-

linear methods, however, they often cannot achieve the same performance of data

detection that is produced by non-linear approaches [37].

In this Chapter, mitigation of interference and noise of the communication

channel is achieved using linear precoding and equalisation strategies. Both nar-

rowband and broadband MIMO channel models are considered. Moreover, block-

based and non-block based approaches are addressed and highlighted with some

simulation results.

2.1 Channel Model

A MIMO frequency selective channel created by Nt transmit and Nr receive an-

tennas as shown in Fig. 2.1 can be described by a finite impulse response (FIR)

filter H[n] of order Q or its corresponding transfer function H(z) given by

H (z) =

Q
∑

n=0

z−nH [n] . (2.1)

9
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x [n]
Nt

v [n]

Nr

y [n]H [n]

Figure 2.1: Generalised MIMO ISI channel model with Nt transmit and Nr receive antennas.

The matrix-valued character of (2.1) results in a transmission system suffering

from both spatial interference in terms of co-channel interference (CCI) as well

as temporal interference in terms of inter-symbol interference (ISI) such that the

received data vector y[n] ∈ CNr is given by

y[n] =

Q
∑

ν=0

H[ν] · x[n − ν] + v[n] . (2.2)

Where x[n] ∈ CNt is the transmitted data vector at symbol period n and v[n] ∈
CNr is additive white Gaussian noise (AWGN) at the receiver, which we assume to

be spatially and temporally uncorrelated, i.e. E
[
v[n] · vH[n − τ ]

]
= σ2

vδ [τ ] INr
.

In (2.1), H[n] is an Nr × Nt matrix containing the channel impulse response

coefficients at time period n such that hij [n] is the nth complex baseband channel

coefficient of the FIR filter describing the path from the jth transmit antenna to

the ith receive antenna.

2.2 Precoding and Equalisation for Narrowband

Channels

Linear algorithms are based on a linear computation of the channel matrix using

linear algebra (LA) manipulation, hence easy to implement [38]. Fig. 2.2 consti-

tutes the general model of a linear equalisation system, whereby the interference

N

ŝ [n]y [n]

NN

s [n]

v [n]

W [n]H [n] q (·)
s̃ [n]

Nr

Figure 2.2: General linear equalisation transceiver system model, where s [n] = x [n] in
Fig. 2.1.
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caused by the MIMO channel H [n] ∈ CNr×N is mitigated at the receiver using a

linear equaliser W [n] ∈ CN×Nr . The operator q (·) represents the decision device

(or quantiser) which maps the entries of s̃ [n] to the nearest alphabet defined by

the constellation set S corresponding to the used M-QAM modulation scheme,

which results in a receiver’s replica ŝ [n] of the transmitted data vector s [n].

In the following, the narrowband MIMO channel equalisation case is considered,

whereby the time index n is dropped from the notation leading to the simple com-

munication system depicted in Fig. 2.3 and defined by a reduced version of (2.2)

given as

y = Hs + v . (2.3)

Where y is the noisy Nr-dimensional received vector of the Nt-dimensional trans-

mit vector s over the Nr × Nt flat-fading channel H after adding the noise term

v with dimension Nr × 1. The channel entries hij are assumed i.i.d. complex

Gaussian random variables with zero-mean and unit-variance E
[
|hij|2

]
= 1,

i.e., hij ∈ CN (0, 1), this is a common assumption in the literature (see for

example [14, 39]). The transmitted data vector s ∈ SN is assumed to be a

spatially-uncorrelated and uniformly distributed complex random vector process

with zero-mean and variance σ2
s (i.e. Rss = E

[
ssH
]

= σ2
sINt

), while the noise

vector v is drawn from CN (0, σ2
v), or equivalently Rvv = E

[
vvH

]
= σ2

vINr
.

The equaliser WH is used to decouple the channel H and produce an estimate

s̃ of the transmitted data vector s under the design criterion of either zero forcing

(ZF) or minimum mean square error (MMSE). In the following both schemes will

be analysed and compared.

2.2.1 Zero Forcing Equaliser

The ZF approach is a very simple linear filter scheme that projects the channel

vectors of each receiver onto the subspace orthogonal to that spanned by the

channel vectors of all other receivers [40]. This is accomplished mathematically

s

v

H WH
s̃y

Figure 2.3: Narrowband equivalent linear equalisation system model of Fig. 2.2 with equaliser
WH.
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by computing the Moore-Penrose pseudo-inverse of the channel matrix, H+. Ac-

cordingly, nulling in the ZF criterion is equivalent to completely cancelling the

interference contributed by streams of other users (transmitting antennas) [41].

This has the advantage of creating independent virtual parallel subchannels. Ho-

wever, ZF receivers generally suffer from noise enhancement [42, 43]. The ZF

filter is therefore given by

WH
ZF = H+ =

(
HHH

)−1
HH, (2.4)

and its output as

s̃ZF = WH
ZFy = s +

(
HHH

)−1
HHv . (2.5)

The error covariance matrix is therefore given by

ΦZF = E

[

(̃sZF − s) (̃sZF − s)H
]

= σ2
v

(
HHH

)−1
. (2.6)

Note that since the ZF criterion nulls completely the spatial interference, it is

expected that the resulting error covariance matrix in (2.6) equals exactly the

covariance matrix of the noise v at the output of WH
ZF.

Noticeably, by referring to (2.6), it is evident that small eigenvalues of HHH

will lead to significant errors due to noise amplification. This, in fact, represents

the main drawback of the ZF filter design as it disregards the noise term from

the overall design and focuses only on perfectly removing the interference term

from signal s.

2.2.2 Minimum Mean Square Error Equaliser

The problem of noise enhancement of the ZF filter has already been addressed.

An improved performance can be achieved by considering the noise term in the

design of the linear filter WH of Fig. 2.3. This is achieved by the MMSE equaliser,

whereby the filter design accounts for a trade-off between noise amplification and

interference suppression [41]. The MMSE filter is obtained by solving for error

minimisation of the error criterion defined by

ϕ = E
[
eHe

]
= tr

(
E
[
eeH

])
, (2.7)

where the error vector e
d
= s − s̃ = s − WHy. Minimisation of ϕ leads to the

Wiener-Hopf equation [44]

WH
MMSERyy = Rsy . (2.8)
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This equation can also be obtained directly by invoking the orthogonality prin-

ciple [45, 46] which states that the estimate s̃ achieves minimum mean square

error if the error sequence e is orthogonal to the observation y, i.e., their cross-

correlation matrix has to be the zero matrix E
[
eyH

]
= 0. After some algebraic

manipulation, the linear MMSE-sense filter is given by

WH
MMSE =

(

HHH +
σ2

v

σ2
s

INt

)−1

HH, (2.9)

the derivation of which is continued in Appendix A.1. Similar to (2.6) it is not

difficult to obtain the error covariance matrix using the MMSE filter in (2.9)

as [41]

ΦMMSE = σ2
v

(

HHH +
σ2

v

σ2
s

INt

)−1

. (2.10)

Obviously by comparing (2.10) and (2.6), the error rate of the MMSE solution

ΦMMSE is less than its ZF counterpart ΦZF specifically at low signal-to-noise ratio

(SNR) defined as

SNR =
E
[
‖s‖2

2

]

E
[
‖v‖2

2

] =
tr (Rss)

tr (Rvv)
=

σ2
sNt

σ2
vNr

= Pbudget/N0, (2.11)

where Pbudget is the total transmit power budget and N0 is the total noise power

at the receiver. At high SNR, the second term in (2.10) will vanish, which leads

to asymptotic error performance similar to the ZF filter. Compared to the ZF

filter in (2.4), the MMSE filter in (2.9) can be viewed as a“regularised”expression

by a diagonal matrix of entries σ2
v

σ2
s
, which is equal to the reciprocal of the SNR

in (2.11) for equal numbers of transmit and receive antennas. This regularisation

introduces a bias that gives a much more reliable result than (2.4) when the

matrix is ill-conditioned1 and/or the estimation of the channel is noisy.

2.2.3 Precoding

So far the equalisation problem of the communication channel is performed at the

receiver. Before proceeding further, it is worth noting that the detailed analysis

presented above for both ZF and MMSE equalisation can also be derived in

case of transmit processing [47, 48, 13], i.e. pre-equalisation (precoding). The

transmitter in this case pre-distorts the transmit data in such a way that it cuts

1A matrix is said to be ill-conditioned if its condition number (the absolute ratio between
the maximum and minimum eigenvalues) is too large.
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the interference seen at the receiver to a tolerable level. However, this necessitates

the knowledge of channel state information (CSI) to be available at the transmit

side as well. In addition, a careful design of the precoder has to consider a

scaling factor to control the transmit power not to exceed Pbudget. Furthermore,

for better performance of precoding systems, a sort of power allocation scheme

should be incorporated otherwise most of the transmit power will be exerted on

weak eigenmodes thus wasting energy. In Sec. 2.3.3, transmit processing for the

broadband case will be discussed in detail.

2.2.4 Joint Transmit/Receive Processing

Unlike channel equalisation at the receiver or precoding at the transmitter, the

task of interference cancellation can be jointly shared between transmitter and re-

ceiver if CSI is assumed to be available at both sides. In fact, CSI can be obtained

at the transmitter by assuming channel reciprocity in case of time division duplex

systems or through feedback in frequency division duplex systems. To this end

a popular strategy based on the singular value decomposition (SVD) technique

of the channel matrix H can be used to decompose the MIMO channel into a

set of SISO subchannels, for which power loading schemes (e.g. water-filling) can

be used to maximise the channel capacity. As each subchannel has a different

SNR value, variable-rate coding is usually used among the data streams, which

increases the transceiver complexity [49]. The SVD scheme can be formulated by

factorising H as

H = UΣVH, (2.12)

where U ∈ CNr×Nr and V ∈ CNt×Nt are unitary2 matrices while Σ ∈ CNr×Nt is a

diagonal matrix that contains the singular values of H, σi, i = 1, · · · , N with

N = min (Nt, Nr) , (2.13)

sorted in a descending order such that σ1 ≥ σ2 ≥ · · · .
Now in order to decompose H into its singular values Σ, a precoder V and

an equaliser UH can be jointly applied at the transmitter and at the receiver,

respectively, such that the overall effective channel is given as

Heff = UHHV = UHUΣVHV = Σ, (2.14)

2A matrix A is said to be unitary if AAH = AHA = I.
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thus decoupling the MIMO system. This, in fact, is equivalent to transmitting

over N independent parallel subchannels with different gains σi, i = 1, · · · , N .

Here, in contrast to linear precoding and equalisation neither transmit power is

increased, nor channel noise is amplified due to the unitarity of precoder and

equaliser [16, 50]. It is also worth mentioning that applying SVD is optimal in

many senses (e.g. mutual information, capacity, Maximum Likelihood, etc.) to

enable communication over a narrowband MIMO channel [18] for scenarios where

cooperative transmit-receive processing is possible [51, 52].

Noticeably, transmit processing as well as receive processing can be regarded

as a constrained category of the joint optimisation of transmit and receive filters,

hence they act as suboptimum solutions of the joint optimisation case [48]. This

is true of course if a sort of power and/or bit loading scheme is considered to

either optimise (maximise) data rate under a constrained bit error ratio (BER)

or minimise BER for a given target data rate. However, if all subchannels are

loaded with the same data bits and the transmit power is uniformly allocated

across all subchannels this may result in inferior performance of the SVD scheme

as will be shown next.

A comparison of ZF and MMSE linear receivers along with the SVD scheme

for a 4×4 MIMO system, where Nt = Nr = 4, using QPSK transmission is shown

in Fig. 2.4. Results are obtained by averaging over 1,000 different channel reali-

sations of a flat-fading channel where channel entries are drawn from a complex

Gaussian random process with zero-mean and unit-variance, i.e. hij ∈ CN (0, 1).

It is clearly noted that the MMSE filter outperforms its ZF counterpart and

their BER performance converges at higher SNR where the regularisation factor

σ2
v/σ2

s � 1. The BER of the SVD scheme is dominated by the error performance

at the lowest subchannel gain, σ4 in this case as discussed above. Different perfor-

mances of different subchannels are also motivated by Fig. 2.5 where individual

layers of the undecided substreams s̃i, i = 1, . . . , 4 are separately plotted showing

difficult correct decisions arising for layer four.

2.3 Precoding and Equalisation for Broadband

Channels

In Section 2.2 precoding and equalisation schemes are discussed for the case of

narrowband MIMO systems where the channel is assumed flat-fading. However in

recent wireless communications and with the increased demand for higher data

rate applications the channel coherence bandwidth can no longer be assumed
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Figure 2.4: Linear ZF and MMSE equalisation performance compared with the SVD scheme
of a 4 × 4 MIMO system.
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flat. Therefore, in addition to spatial interference between data substreams of

adjacent transmit/receive antenna pairs, inter-symbol-interference (ISI) due to

channel frequency selectivity dispersion is incurred. MIMO systems with such

interference scenarios are usually referred to as broadband MIMO or MIMO ISI

systems whereas the resulting interference is known in the literature as spatio-

temporal interference [53, 54]. Hence, next-generation wireless communication

systems featuring high-rate transmission schemes have to consider such MIMO

ISI channels and aim to minimise the impact of both CCI and ISI plus the channel

noise for reliable data detection.

2.3.1 Linear Block Transmission

Given is the broadband MIMO channel in (2.1) of order Q. By assuming stationa-

rity, this channel can additionally be multiplexed into P polyphase components,

resulting in a block pseudo-circulant matrix H(P )(z) ∈ CPNr×PNt(z) of order dQ
P
e

expressed as

H(P )(z) =










H
(P )
0 (z) z−1H

(P )
P−1(z) · · · z−1H

(P )
1 (z)

H
(P )
1 (z) H

(P )
0 (z) · · · ...

...
. . .

. . . z−1H
(P )
P−1(z)

H
(P )
P−1(z) · · · H

(P )
1 (z) H

(P )
0 (z)










, (2.15)

with matrix-valued polyphase components H
(P )
p (z) such that

H(z) =

P−1∑

p=0

z−pH(P )
p (zP ) . (2.16)

The selection of P allows a trade-off between the dimension and order of the

MIMO system matrix H(P )(z). Note however that for a polynomial matrix H(z)

with Q > 0, H(P )(z) will also be polynomial even for large P . With H(P )[n] 


H(P )(z), the received data vector y(P )[m] ∈ CPNr in (2.2) can be rewritten as

y(P )[m] =

dQ/P e
∑

ν=0

H(P )[ν] · s(P )[m − ν] + v(P )[m], (2.17)
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where

s(P )[m] ∈ SPNt =









s [mP − P + 1]

s [mP − P + 2]
...

s [mP ]









, v(P )[m] ∈ C
PNr =









v [mP − P + 1]

v [mP − P + 2]
...

v [mP ]









are, respectively, the transmitted data vector and the noise vector at time period

m = P · n.

Block transmission utilises the sparseness of H(P )(z) for P > Q in combination

with the insertion of guard intervals to remove interference between successively

transmitted data vectors s(P )[m], known as inter-block interference (IBI). For

P > Q, (2.17) reduces to

y(P )[m] = H(P )[0] · s(P )[m] + H(P )[1] · s(P )[m − 1] + v(P )[m], (2.18)

whereby the term H(P )[1]·s(P )[m−1] represents IBI by the data vector s(P )[m−1],

which has been transmitted during the previous time slot m − 1. The matrix

H(P )[1] is block-banded and upper right triangular with

H1 =















0 · · · 0 H
(P )
L [0] · · · H

(P )
1 [0]

...
. . .

. . .
. . .

...
...

. . .
. . . H

(P )
L [0]

0
. . . 0

...
. . .

. . .
...

0 · · · 0 · · · · · · 0















(2.19)

such that IBI can be suppressed by either inserting (Q− 1)Nt trailing zeros (TZ)

into the transmit vector s(P )[m], or by discarding the first (Q− 1)Nr elements of

the receive vector y(P )[m], which is referred to the leading zeros (LZ) approach [55,

11].

In case of the availability of CSI at both transmitter and receiver, the remai-

ning system can be decoupled by performing an SVD of the now IBI-free relation

between y(P )[m] and s(P )[m]. If no CSI is available, specific channel-independent

schemes can be utilised for decoupling the overall system, such as OFDM, which

is a subset of TZ block transmission.

The drawback of block-transmission schemes lies in the required inclusion of

redundancy, which in first place has to be spent for IBI cancellation, whereby
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any remaining degrees of freedom can be applied to noise suppression and to the

exploitation of strong eigenmodes of the MIMO system.

2.3.2 OFDM in Brief

Orthogonal frequency division multiplexing (OFDM) [56, 57, 8] is a block-based

multicarrier modulation scheme. It converts the broadband channel into a num-

ber of narrowband (flat-fading) subchannels over which blocks of data symbols

are transmitted in parallel. With the aid of discrete Fourier transform (DFT)

and inverse DFT (IDFT) operators, the OFDM transmission system can be im-

plemented as shown in Fig 2.6 for a SISO channel h [n]. Theoretically, in order

to obtain an IBI-free transmission, a redundancy cyclic prefix (CP) of length not

less than the channel order has to be added to each transmitted block. By inser-

ting CP at the transmitter and removing it at the receiver, circular convolution

is converted to linear convolution. This CP redundancy, however, reduces the

overall spectrum efficiency of a block-based transceiver system. Recently, it has

been shown that the rate gain offered by CP of shorter lengths may exceed the

losses due to both ISI and IBI [58, 59].

OFDM systems are coupled with two main problems, namely: i) peak-to-

average power ratio (PAPR) and ii) sensitivity to synchronisation errors such as

carrier-frequency offset (CFO). The PAPR problem arises due to the application

of the IDFT at the OFDM modulator which results in a high dynamic range of

the transmitted power at each antenna. Consequently transmitted signals are

subjected to non-linear distortion of the transmit power amplifier. To avoid this,

either the transmit power has to be scaled down or PAPR-reduction schemes have

to be incorporated in OFDM systems [8].

Synchronisation is very important in OFDM-based systems since subcarriers

need to remain orthogonal with a defined frequency spacing between them. Due

to Doppler shifts and mismatch between transmit-receive local oscillators, a CFO

may arise which will lead to non-orthogonality of subcarriers and subsequently

inter-subcarrier interference. Often sophisticated CFO estimators to adjust the

synchronisation of transmission are required [56].
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Figure 2.6: A SISO-OFDM system model.
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2.3.3 MMSE Linear Precoder

The drawbacks of the above block-based transmission schemes lie in the required

inclusion of redundancy to cancel IBI in the form of CP or either TZ or LZ

for, respectively, OFDM or block transmission systems. In order to improve the

spectrum efficiency, non-block based schemes that do not require any redundancy

are of particular interest. In this Section a non-block based linear precoding

scheme for the MIMO broadband channel in Section 2.1 is depicted in Fig. 2.7,

where the transmitted signal s [n] ∈ SN is pre-processed by the FIR precoder

P [n] =

L∑

l=0

Plδ [n − l] . (2.20)

Where L is the filter order and Pl ∈ C
Nt×N , l = 0, · · · , L is the time slices of

P [n]. The filter output

x [n] =

L∑

l=0

Pls [n − l] ∈ C
Nt

is then transmitted over an N × Nt MIMO ISI channel

H [n] =

Q
∑

q=0

Hqδ [n − q] (2.21)

of order Q and channel responses Hq ∈ CNr×Nt, where Nr = N in this case (cf.

Fig. 2.7), such that the received signal y [n] ∈ CN is given as

y [n] = H [n] ? P [n] ? s [n] + v [n] ,

=

Q
∑

q=0

L∑

l=0

HqPls [n − q − l] + v [n] ,
(2.22)

where v [n] is, as above, representing the channel noise. A scalar receiver filter

acting as an automatic gain control (AGC) g ∈ C is applied to y [n] resulting in

estimates s̃ [n] = gy [n] of data symbols. These estimates are finally mapped to

y [n]

P[n]

x [n]

H [n]

s [n]

Nt

v [n]

NN N
gIN

ŝ [n]

q (·)
s̃ [n]

Figure 2.7: A typical linear broadband precoding system with Nt ≥ Nr = N .
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the nearest respective appropriate alphabets ŝ [n] using the decision (quantiser)

device q (·).
As in Sec. 2.2.2, the MMSE solution can be obtained by formulating the mean

square error (MSE) between the data symbol s [n] and its estimate s̃ [n] under a

total transmit power constraint such that

{Popt[n], gopt, νopt} = argmin
{P[n],g,ν}

E
[
‖s [n − ν] − s̃ [n]‖2

2

]

subject to E
[
‖x [n]‖2

2

]
= Pbudget,

(2.23)

where a latency time ν is introduced in the above optimisation problem to account

for the optimum decision delay [17]. Intuitively, the feasible range for the discrete

ν is [0, Q + L], i.e. ν ∈ {0, 1, · · · , Q + L}. In order to simplify the convolution

operator in (2.22) in a matrix formalisation, the solution presented in [17] defines

matrices

H =

Q
∑

q=0

[0L+1×q, IL+1, 0L+1×Q−q]
T ⊗ Hq ∈ CN(Q+L+1)×Nt(L+1),

and P =
[
PT

0 , · · · ,PT
L

]T ∈ CNt(L+1)×N ,

(2.24)

where ⊗ denotes the Kronecker product, such that the convolution coefficients of

H [n] ? P [n] in (2.22) are simply computed by the product HP, that is, the ith

N ×N block element of HP is the ith coefficient
∑

q+l+1=i HqPl of H [n] ? P [n].

Invoking (2.24) into (2.22) simplifies the computation of s̃ [n] as

s̃ [n] = gy [n] = g

Q+L
∑

i=0

S(i)HPs [n − i] + gv [n] , (2.25)

where a selection matrix

S(i) = eT
i+1 ⊗ IN ∈ {0, 1}N×N(Q+L+1) (2.26)

is introduced to return the ith block rows of size N starting from the (Ni + 1)th

row to row N (i + 1) of a matrix when applied from left, with ei ∈ {0, 1}Q+L+1

being the ith column of the identity matrix IQ+L+1. Substituting (2.25) into (2.23),

the MSE can be reformulated as

E
[
‖s [n − ν] − s̃ [n]‖2

2

]
= tr (Rss) − <

(

tr
(

gS(ν)HPRss

))

+ |g|2 tr (Rvv) + |g|2 HPRssP
HHH,

(2.27)
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while the transmit power required for the constraint in 2.23 is given by

E
[
‖x [n]‖2

2

]
= tr

(
PRssP

H
)

. (2.28)

Using the Lagrangian multiplier method, the optimised solution for P and g based

on ν is derived in [48] and given in [17], respectively, as:

P(ν) =
1

g(ν)
HHA−1S(ν),T ∈ C

Nt(L+1)×N , (2.29a)

g(ν) =
√

tr (HHHA−2S(ν),T RssS(ν)) /Pbudget , (2.29b)

νopt = argmin
ν∈{0,··· ,Q+L}

tr
(
S(ν)A−1S(ν),TRss

)
, (2.29c)

where

A = HHH + ξIN(Q+L+1) and ξ =
tr (Rvv)

Pbudget

. (2.30)

Note that optimisation of the decision delay (latency time) ν has to consider all

possible values of {0, · · · , Q + L} and select the one that minimises the MSE

according to (2.29c). Once νopt is obtained, both optimum precoder Popt and

optimum scalar receive filter gopt, which is restricted to be a positive real number,

can be found be substituting (2.29c) into (2.29a) and (2.29b), respectively.

2.3.4 Broadband SVD

Another non-block based approach to jointly equalise the broadband MIMO

channel can be achieved by considering a broadband singular value decomposi-

tion (BSVD) algorithm detailed in [19]. The application of the BSVD algorithm

to the channel matrix H(z) in (2.1) leads to a decomposition

H(z) = U(z)Σ(z)Ṽ(z) (2.31)

with paraunitary matrices U(z) and Ṽ(z) and an approximately diagonalised and

spectrally majorised matrix Σ(z). This decomposition is achieved by an iterative

algorithm, which in each step eliminates the largest off-diagonal element by a

delay step and a Jacobi rotation [19]. The algorithm has been shown to converge

by transferring the energy of the channel matrix onto the main diagonal, and the

approximation is due to limiting the number of algorithmic steps and the order

of the resulting polynomial matrices U(z), V(z) and Σ(z). The iteration steps
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are defined such that both U(z) ∈ CNt×Nr and V(z) ∈ CNt×Nt are paraunitary

(or lossless) by definition, i.e.

U(z) Ũ(z) = U(z)UH(z−1) = I (2.32)

Ũ(z)U(z) = I . (2.33)

The matrix Σ(z) ∈ C
Nr×Nt(z) is in the limit diagonal,

Σ(z) = diag (Σ0(z),Σ1(z), · · ·ΣN−1(z)) , (2.34)

where N is defined in (2.13). The diagonalisation can be ambiguous and has to be

tied down by an additional constraint. As an extension of the ordering of singular

values in a standard SVD, the algorithm in [19] aims to spectrally majorise Σ(z),

such that

Σ0(e
jΩ) ≥ Σ1(e

jΩ) ≥ · · · ≥ ΣN−1(e
jΩ) ∀Ω . (2.35)

Note that due to the iterative nature and the finite number of steps of the algo-

rithm in [19], (2.34) and (2.35) may only be approximately fulfilled.

Fig. 2.8 demonstrates the BSVD algorithm through an example of a 4 × 4

MIMO channel with individual responses drawn from a Saleh-Valenzuela indoor

channel model [60]. This channel model produces an average power profile for each

individual subchannel, while the actual channel coefficients are then drawn from

a complex Gaussian distribution with prescribed variance. The Saleh-Valenzuela

model simulates an indoor environment with clusters of rays, and average inter-

arrival times between both clusters and individual rays. The model parameters

have been adjusted to yield impulse responses which can be truncated without

loss of significant energy after 11 coefficients. Further, the overall MIMO channel

has been normalised to create a frequency-selective non-fading scenario such that

‖H(z)‖F =

√
√
√
√

M∑

m=1

N∑

n=1

L∑

l=0

|hmn(l)|2 = 1 . (2.36)

Fig. 2.8(a) shows the magnitude of the MIMO channel impulse responses for one

ensemble probe. Assuming CSI to be available at both Tx and Rx ends of the link,

the BSVD can be applied to H(z). The iterative algorithm in [19] stops if 99.9% of

channel energy is located on the main diagonal. The resulting diagonalised matrix

approximating (2.31) is truncated in its order to suppress tails of coefficients with

a size less than 0.1% of the largest coefficient in Σ(z) [61, 62]. The approximate

diagonalisation of H(z) according to (2.31) is presented in Fig. 2.8(b), where
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almost all energy from off-diagonal elements has been transferred onto the main

diagonal. The magnitude responses |Σi(e
jΩ)|, i = 0, 1, · · · , 3, of the decoupled

impulse responses along the main diagonal of Σ[n] are depicted in Fig. 2.8(c),

demonstrating the ordering due to spectral majorisation in (2.35).

2.4 Summary

Linear precoding and equalisation schemes for narrowband and broadband MIMO

systems have been introduced. These schemes include block-based and non-block

based methods to deal with both ISI and CCI interferences in the case of broad-

band MIMO channels. However, it is well-known that linear equalisation suffers

from noise amplification and therefore has a poor power efficiency. This problem

becomes serious in situations of rank-deficient MIMO channel matrices. Moreo-

ver, the design of linear precoders and equalisers has less degrees of freedom (DoF)

in terms of precoding or detection ordering which can only be optimised under

non-linear approaches. In fact, ordering plays an important role in performance

improvement of non-linear systems with successive interference cancellation (SIC)

which can be achieved either in the receiver or at the transmit side. In Chapter

3 non-linear precoding and equalisation approaches will be explored aiming to

achieve better performances with a reasonable processing complexity.
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Figure 2.8: An ensemble probe of H [n] for a 4 × 4 MIMO Saleh-Valenzuela indoor channel
model [60] in (a) and its approximately diagonalised system based on the BSVD algorithm
in (b), while spectral majorisation property of the BSVD is shown in (c).



Chapter 3

Non-Linear Precoding and

Equalisation Approaches

In this chapter, non-linear approaches are firstly studied for narrowband MIMO

systems comprising both receive processing and transmit preprocessing scena-

rios. The impact of ordering on performance measures in both cases is inves-

tigated and highlighted by simulation results. Secondly, for the more realistic

transceiver systems of a broadband MIMO channel, a novel approach based on

the recently developed BSVD presented in Sec. 2.3.4 is proposed. This approach

utilises the decomposition of a polynomial MIMO channel matrix into a num-

ber of independent frequency-selective SISO subchannels that is achieved by the

BSVD technique, thereby cancelling the co-channel-interference (CCI). The re-

maining ISI caused by these individual SISO subchannels is mitigated using some

of the non-linear precoding and equalisation schemes presented throughout this

chapter. Furthermore, the BSVD spectral majorisation property which results

in SISO subchannels with different qualities is exploit by a heuristic bit loading

approach.

Results of our proposed scheme are benchmarked against a state-of-the-art

broadband MIMO technique in [17] demonstrating that an improved BER per-

formance can be achieved under the constraints of identical data throughput and

transmit power.

3.1 MIMO Narrowband with Rx Processing

In this section we will address non-linear equalisation schemes for the MIMO

narrowband case where, beside channel noise, spatial interference contributed

from data streams transmitted in parallel exists. This interference, known also

26
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as multiuser interference, can be mitigated to reliably detect data on a symbol-

by-symbol basis rather than a vector of symbols as in the case of linear schemes.

Assuming knowledge of CSI at the receiver, receive processing of data is consi-

dered, highlighting the prominent role of ordering if better performance is to be

attained.

3.1.1 Maximum-Likelihood Detection

The optimum detection scheme of data transmitted over a MIMO narrowband

channel H ∈ CNr×Nt of Nt transmitting antennas and Nr receiving antennas is

achieved by the maximum-likelihood (ML) detector [63] as it optimally takes

into account the properties of noise and interference [64]. ML receivers detect

transmitted data symbols s ∈ SNt on a per-vector basis by estimating the most

probable transmitted data vector ŝ amongst all possible combinations SNt upon

receiving y ∈ CNrsuch that

ŝ = argmin
s∈SNt

‖y − Hs‖2
2 , (3.1)

where the set S denotes the used symbol alphabet which can be defined for a

constellation size (or order) M as [16]

S d
=
{

sI + jsQ | sI , sQ ∈
{

±1,±3, · · · ,±
(√

M − 1
)}}

(3.2)

Obviously, for the ML detector it is required to initiate an exhaustive search

of possible MNt different data vectors to find the solution in (3.1) for every single

vector detection. This of course restricts the application of the ML scheme for

practical use as the complexity increases rapidly with the number of antennas

and the constellation size. In other words, ML detection is not feasible for large

orders of MIMO systems even with smaller modulation orders such as BPSK.

Therefore, although ML detection is the best detection method for equiprobable

input symbols, its complexity of the subspace search is prohibitive for practical

systems [65, 64].

3.1.2 Decision Feedback Equalisation

The complexity burden encountered with ML estimation motivates for subopti-

mal detection schemes with reasonable complexity. To this end decision feedback

equalisation (DFE) [13, 66], a simple and popular conventional nonlinear tech-

nique, is established to separate data streams at the receiver of MIMO systems
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using successive interference cancellation. This is shown to overcome the disad-

vantages of noise enhancement associated with linear equalisation [50] at the cost

of extra complexity. DFE was originally developed to combat ISI of SISO sys-

tems (see e.g. [67, 68]) where previously detected symbols are used to assist in

subsequent symbols detection. This is referred to as temporal equalisation as

detection is performed in the discrete time index of the data sequence. Spatial

DFE, in contrast, arises for MIMO system to deal with the multiuser interference

— forming the basis behind the optimal BLAST detection algorithm [45, 69], as

will be shown in Sec. 3.1.3 — which is the interest of this Section.

A typical DFE system model is depicted in Fig. 3.1 where the received data

vector y is linearly processed by the feedforward filter matrix F before being consi-

dered by the non-linear feedback loop. The undecided symbol s̃ of the feedback

loop is then given by

s̃ = Fy + Bŝ,

= FHs + Fv + Bŝ,
(3.3)

where ŝ combines the decided estimates of s using the appropriate quantisation

or decision device q (·). For feasible realisability and to ensure spatial causality,

the feedback filter matrix B must be of strictly triangular structure. This can be

achieved using the well-known QR factorisation of the channel matrix H, that is

H = QR where Q ∈ CNr×Nr is a unitary matrix (i.e., QQH = QHQ = I) and

R ∈ CNr×Nt an upper triangular matrix. Noticeably QR factorisation is not an

optimal technique, however it is still widely used due to its numerical stability

and it is easy to implement [70].

For the sake of brevity we consider a MIMO system with equal numbers of

transmit and receive antennas Nt = Nr = N . Assuming perfect decisions of s̃, i.e.

ŝi = q (s̃i) = si, 1 ≤ i ≤ N , which is a common assumption in DFE systems [71]

called a “genie-aided” approach, the ZF solution can be formulated using (3.3) as

ŝ

v

H F q (·)

B

N Nr

s y

N

s̃

N

Figure 3.1: DFE system model.
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FH + B = I,

FQR + B = I .
(3.4)

Setting the feedforward filter F = GQH in (3.4), results in the feedback filter

B = I−GR where G is a diagonal matrix that is used to set the diagonal entries

of R to unity, i.e.

G = diag
(
r−1
11 , · · · , r−1

NN

)
. (3.5)

With the absence of noise and by substituting these filter settings for F and B

into (3.3) yields s̃ as

s̃ =










1 −b12 · · · −b1N

0
. . .

. . .
...

...
. . .

. . . −bN−1N

0 · · · 0 1










s +










0 b12 · · · b1N

...
. . .

. . .
...

...
. . . bN−1N

0 · · · · · · 0










ŝ . (3.6)

Using (3.6), it is easy to note that the last-indexed symbol sN of the transmitted

vector s is an error-free symbol. This is utilised in detecting the spatially previous

symbol sN−1 by subtracting out its interference signature on the statistics of

s̃N−1. Proceeding further, both sN and sN−1 are used to cancel their interference

contributions from s̃N−2 and so forth up to detecting the first-indexed symbol s1.

The design of the DFE system according to the MMSE criterion can be obtained

via Cholesky factorisation [69].

DFE systems can also be formulated for jointly dealing with CCI and ISI

interferences for MIMO ISI systems, see for example [72, 45]. However it is

important to point out that DFE analysis is difficult to formulate because of

the non-linear operation of their feedback loop. Linearised DFE models can

only be attained if past decisions are assumed correct as discussed above. This

assumption, in fact, is not a realistic assumption as it fails to account for the

so-called error propagation. The error propagation problem arises when wrong

decisions are made on past symbols and consequently used in detecting other

received symbols. This, in turn, adds disturbances in deciding on other symbols in

subsequent next layers. The overall performance of DFE systems may be seriously

deteriorated by the inherent error propagation problem. Decision ordering of

subsequent symbols can be used to significantly improve the performance of DFE

systems by partially overcoming, or reducing, the effect of the error propagation

problem. This can be considered either for MIMO frequency-flat systems [7, 39]

referred to as spatial ordering or for MIMO frequency selective systems [14, 17]

known as spatio-temporal ordering, both of which will be addressed in subsequent
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sections. To this end, an obvious consequence of spatial DFE systems leads to

the development of the vertical Bell laboratories layered space-time (V-BLAST)

architecture as will be discussed in the next section. Another drawback generated

for DFE systems is the delay in processing required by immediate decisions [50].

3.1.3 V-BLAST

Motivated by the study of layered space-time architecture of a MIMO system

in [73, 4, 5], decoupling between distinct spatial modes can result in a system in

which capacity increases linearly with min (Nt, Nr) for fixed bandwidth and total

transmit power. Consequently, V-BLAST architecture was proposed [74, 7, 6]

to realise the capacity advantage promised on MIMO channels with reasonable

complexity [39]. This architecture is, in fact, a layered detection scheme based

on the DFE method [75, 50, 76] presented in Sec. 3.1.2 in which a received data

vector is detected on a symbol-by-symbol basis, i.e. layer-by-layer. The successive

detection ordering of the V-BLAST is optimised in the sense of maximising the

worst post-detected SNR [7]. This leads to detecting weak layer components of the

data vector more reliably. Indeed the overall detection performance is dominated

by the signature of weak layers if the obvious order of antenna labelling is selected

as in the case of the DFE system. The optimum detection ordering strategy of

the V-BLAST is shown to minimise the symbol error ratio (SER) by detecting at

each iteration the component associated with the highest SNR [74], an approach

that is known as“best first” [46]. This can be viewed as a virtual relabelling of the

transmit antennas. Detection proceeds by nulling out the interference of other

layers in a successive manner which is a popular method of equalising interference

and achieving parallel AWGN subchannels.

In Table 3.1, the pseudo code of the V-BLAST algorithm is presented for

both ZF [7] and MMSE [77, 42] criteria, which can be briefly summarised by the

following four steps:

1. Ordering : determine the most reliable symbol component position (order)

ki according to the criterion in (c);

2. Nulling : compute its corresponding ZF or MMSE nulling vector wki
using (d),

then obtain the decision statistic s̃ki
as in (e);

3. Slicing : or quantising to the nearest alphabet according to the used constel-

lation as in (f);
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4. Cancellation: subtracting out its interference contribution from the received

vector y using (g).

Finally, the updates (h)-(j) are required to proceed with the next component.

Note that the difference between ZF and MMSE V-BLAST algorithms as

listed in Table 3.1 lies only in computing the position of the highest SNR symbol

component in (c). For ZF this is achieved by obtaining the minimum row-norm

of G, while for MMSE this is associated with the smallest diagonal entry [44] of

D =
[
HHH + ξINt

]−1
, (3.7)

with the MMSE filter given by

GMMSE = DHH, (3.8)

where ξ is, as in (2.30), the reciprocal of the SNR. As in linear filter systems,

the detection performance of the V-BLAST under the MMSE criterion outper-

forms the ZF one. In order to confirm this, simulations are conducted for a 4× 4

MIMO system using QPSK transmission averaged over 300 realisations of a chan-

nel matrix normalised such that ‖H‖F = 1. Results are compared with the ML

detection scheme described in Sec. 3.1.1 showing advantages of more than 5 dB

at BER = 10−3 gained by V-BLAST MMSE detection over its ZF counterpart

while less than 3 dB is lost compared to the ML detection.

The main computational bottleneck of the V-BLAST architecture lies in the

repeated pseudo-inverse or normal inverse in the ordering step of both ZF and

MMSE V-BLAST algorithms [78]. Suboptimal ordering approaches based on

computationally efficient algorithms for the QR decomposition are proposed in [79,

25, 80, 81], however with slight performance degradation compared to the original

V-BLAST. It is also shown in [82] that the V-BLAST algorithm is suboptimum in

scenarios with spatial loading1 when compared to the optimum water-filling algo-

rithm. It is noteworthy that the original V-BLAST performs well when Nr > Nt

due to the possibly high diversity level in the first stage that can reduce the error

propagation effect [37]. However, unsatisfactory performance is obtained when

equal numbers of antennas are used [76].

1The allocation of bits per subchannel and transmit power are made according to subchannel
conditions for maximum sum-capacity.
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Table 3.1: V-BLAST ZF and MMSE detection algorithms.

ZF V-BLAST MMSE V-BLAST
Initialisation:

a. G
(1)
ZF = H+ =

[
HHH

]−1
HH Compute D(1) and then G

(1)
MMSE

using (3.7) and (3.8), respectively
b. i = 1 i = 1

Recursion:

c. ki = argmin
j /∈{k1,...,ki−1}

∥
∥
∥
∥

(

G
(i)
ZF

)

j

∥
∥
∥
∥

2

2

ki = argmin
j /∈{k1,...,ki−1}

D
(i)
j

d. wki
=
(

G
(i)
ZF

)

ki

wki
=
(

G
(i)
MMSE

)

ki

e. s̃ki
= wki

y(i) s̃ki
= wki

y(i)

f. ŝki
= q (s̃ki

) ŝki
= q (s̃ki

)
g. y(i+1) = y(i) − ŝki

[H]ki
y(i+1) = y(i) − ŝki

[H]ki

h. G
(i+1)
ZF = H+

ki
[H]ki

= 0Nr×1

i. i = i + 1 Compute D(i) then G
(i)
MMSE

using (3.7) and (3.8), respectively
j. i = i + 1

0 5 10 15 20 25 30
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 
ZF V−BLAST
MMSE V−BLAST
ML

Figure 3.2: BER performance of V-BLAST ZF and MMSE against ML detection for a 4 × 4
MIMO system with QPSK modulation.
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3.2 MIMO Narrowband with Tx Processing

So far the task of non-linear separation of data streams by removing the dis-

tortion effect of the communication channel and minimising the received noise

is performed at the receiver. Beside point-to-point communications, the earlier

discussed methods are also suitable for uplink scenarios, i.e. multipoint-to-point

communications, where a common receiver can serve multiple decentralised mo-

bile terminals that do not cooperate [46]. An obvious drawback of receive proces-

sing is the increased complexity required by the receiver to mitigate the channel

interference and to provide reliable replicas of data streams [48]. The downlink

communication part of such systems is a challenging problem or even unfeasible

if channel equalisation resides at the individual receivers. To this end transmit

processing, assuming availability of CSI at the transmitter, is the proper stra-

tegy for dealing with such scenarios and achieving transmission with high-quality

performance while enabling low complexity receivers [53].

Dirty paper coding (DPC) [83, 84] represents the optimal transmit strategy

which permits a transmitter to send information so that each receiver can see no

interference from other receivers. The DPC technique has proven its optimality

in the achievable-rate sense that coincides with the theoretical capacity boundary

region [85], although it does not directly lead to a realisable transmission stra-

tegy [52]. An alternative practical implementation of DPC can be achieved by

Tomlinson-Harashima Precoding (THP), which is strongly related to DPC and

represents, in fact, a suboptimal realisation of DPC [17, 38]. THP was originally

and independently proposed in [22] and [23] to remove ISI in a SISO transmission

over frequency selective channels. Recently it has been also proposed for the equa-

lisation of multiuser interference in MIMO systems (see for example [86, 87, 39])

where it performs spatial pre-equalisation instead of temporal pre-equalisation for

ISI channels. In other words, THP in SISO systems cancels ISI caused by already

detected symbols by subtracting out their contribution from the received signal,

while in spatial THP interference from symbols sent at the same time instance

but designated for different receiving antennas is mitigated.

THP has also been applied to MIMO ISI systems [45, 88, 17], where in addi-

tion to interference from already precoded past data symbols, interference from

spatially already precoded symbols can be eliminated. In this case the optimum

precoding order — in time, space, or a mixture thereof — is important if a good

performance is to be attained. A number of sub-optimum schemes have also been

developed, which provide only a small performance degradation while seeking

optimum precoding in only temporal or spatial dimensions. The consideration
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of the temporal dimension has been shown to have a greater impact in order to

approach the optimum performance than spatial ordering [53, 17].

THP is typically a DFE system operated at the transmitter, whereby the

feedback loop is transferred from the receiver to the transmitter as shown in

Fig. 3.3. With the THP structure, the major drawback of error propagation

encountered in DFE systems is eliminated since the feedback loop is placed at

the transmitter where the signals are perfectly known [16]. Furthermore, with

precoding, no immediate decisions at the receiver are required. As a consequence

it is expected that a THP system, in general, has better performance than its

DFE receiver version [89] as will be supported by simulation results in Sec. 3.2.2.

Note that since the feedback loop is now located at the transmitter, its summa-

tion point suggests that the transmitted signal is unboundedly increased beyond

its original constellations S leading to a total transmit power increase as a result.

In order to limit the transmit power, the modulo operator M (·) is introduced

with its essential role to bring the signal amplitude back inside the boundaries of

S. For M-QAM modulation, the modulo operator is defined as

M (x) = x −
⌊< (x)

τ
+

1

2

⌋

τ − j

⌊= (x)

τ
+

1

2

⌋

τ, (3.9)

where τ is a constant depending on the used modulation scheme. For QPSK

τ = 2
√

2, while for a square M-QAM constellation, τ = 2
√

M . Despite its

original function to control the transmit power, the redistribution by the modulo

operator in (3.9) over the interval
[

−
√

M,
√

M
)

leads to a small increase in

transmit power known as a precoding loss given by [90]

E
[
‖s‖2

2

]

E
[
‖u‖2

2

] =
M

M − 1
. (3.10)

3.2.1 System Model

We consider a point-to-point flat-fading MIMO THP system with Nt = N trans-

mitting antennas and Nr receiving antennas as shown in Fig. 3.3, where the data

vector to be transmitted is denoted by s= [s1, s2, · · · , sN ]T. It is assumed that all

data symbols are spatially and temporally uncorrelated, i.e., E
[
ssH
]

= σ2
sIN .

These data streams are pre-processed by the feedback loop and then passed

through the permutation matrix Π ∈ {0, 1}N prior to transmission. The permu-

tation matrix Π is an orthogonal matrix that contains 1 in each row or column

and zeros elsewhere, which used to designate the precoding ordering of the data
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streams s, i.e.

ΠΠT = ΠTΠ = IN . (3.11)

Letting x be the N × 1 transmit signal vector, the received signal vector y with

dimension Nr × 1 is given by

y = Hx + v, (3.12)

where v is an Nr ×1 additive white Gaussian noise (AWGN) vector that corrupts

the received signal vector y and has zero-mean and variance E
[
vvH

]
= σ2

nINr
.

Assuming CSI availability at the transmitter, the role of the feedback filter

B is to successively pre-distort streams of s in such a way that annihilates, at

the receiver, the interference that would be experienced by propagation over the

channel. It is evident that the error propagation problem encountered with DFE

systems is now avoided because the transmitter has exact knowledge of the sym-

bols to be transmitted.

Based on the QR decomposition of the channel matrix H, the design of feed-

back and feedforward filter matrices B and W can be obtained for the ZF so-

lution and different precoding ordering in Π. Starting by finding out an equi-

valent linear model of the element-wise modulo operator M (·), the non-linear

feedback loop at the transmitter can be linearised [90, 46] as demonstrated in

Fig. 3.4. This can be achieved if we consider a new complex vector a with entries

ak, 1 ≤ k ≤ N defined as ak ∈ {τβI + jτβQ | βI, βQ ∈ Z} and chosen such that

the real and imaginary parts of the elements of the effective output data vector

u of the feedback loop are constrained in the square region
[

−
√

M,
√

M
)

, i.e.

< (uk) ,= (uk) , 1 ≤ k ≤ N ∈
[

−
√

M,
√

M
)

. With this arrangement the feedback

loop is now linearised and its output u can be given as

u = (IN − B)−1 (s + a) , (3.13)

Receiver

Transmitter

d̂

N N N NNr

ŝyxs

B

q (·)W

v

u
M (·)M (·)

N

HΠ
s̃

Figure 3.3: THP MIMO communication system with precoding order Π.
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Π
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B

us d

a

Figure 3.4: Linearised model of the modulo operator in Fig. 3.3.

which is equivalent to

uk = sk + ak +
N∑

l=1

bklul, k = 1, . . . , N . (3.14)

Equation (3.14) can be viewed as periodically expanding the initial signal constel-

lation in s into more and more discrete levels that lie in the same regular two-

dimensional grid of the initial constellation. This is due to the effect of adding ak

in (3.14) which is exactly the function of the modulo operator in (3.9). Therefore,

this suggests that the same modulo operation has to be used at the receiver just

before the slicer (quantiser) q as shown in Fig. 3.3 and highlighted by Fig. 3.5.

Accordingly, some known drawbacks of THP systems which mainly arise from

the signature of the modulo operator will be summarised in Sec. 3.2.3. Since the

selection of ak depends on the corresponding symbol sk of s, it is clear that the

vector u is still wide-sense stationary (WSS) i.e., E
[
uuH

]
= M

M−1
σ2

sIN or simply

σ2
u = M

M−1
σ2

s . Defining an equivalent data vector d = s+a, the equalised received

vector d̂ is given as

d̂ = WHΠ (IN − B)−1 d + Wv, (3.15)

the ZF solution can be formulated to perfectly remove interference, i.e.

WHΠ (IN − B)−1 = IN ,

⇒ B = IN − WHΠ .
(3.16)

As in DFE systems the QR decomposition of HΠ can be used to solve for the

ZF THP filters B and W in (3.16). Although the QR decomposition is possible

for non-square matrices, for the sake of simplicity, we will restrict ourselves to

systems with an equal number of transmit and receive antennas, i.e. Nr = N .

Applying the QR decomposition of the permuted channel
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Figure 3.5: Individual scatter plots of channel inputs xk and filtered received outputs s̃k for
a 4 × 4 MIMO THP system using 16-QAM modulation at SNR = 30 dB.

QR = HΠ, (3.17)

results in R = QHHΠ and leads to the system implementation shown in Fi-

gure 3.3. In order to have a strictly triangular structure of the feedback filter

B, which is necessary to assure spatial causality, a diagonal matrix G as defi-

ned in (3.5) is used to scale all the entries of the main diagonal of R to unity.

Therefore, W and B in (3.16) can be obtained as

W = GQH,

B = IN − GR
(3.18)

for the ZF solution.

3.2.2 THP Vs. DFE Performance Comparison

Computer simulations are conducted to investigate the performance improvement

of a THP system compared to its DFE counterpart under the ZF condition and

no ordering, i.e. Π = IN . For both the ZF and MMSE linear equalisers that

were presented in Sections 2.2.1 and 2.2.2, respectively, results are provided for

comparison. A 4×4 MIMO system with flat-fading channel where hij ∈ CN (0, 1)

is considered and results are averaged over 1000 different channel realisations.
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In Fig. 3.6, QPSK transmission is assumed while in Fig. 3.7, both 16-QAM and

64-QAM modulations are examined. It can be clearly noted from Fig. 3.6 that

both DFE and THP systems outperform ZF linear equalisation with a small

advantage of DFE over THP at low SNR regions owing to the modulo loss defined

in Sec. 3.2.3, and for the whole SNR range due to the precoding loss defined

in (3.10), which is almost 1.28 dB for QPSK.

When higher modulation orders are considered, it is clearly evident in Fig. 3.7

that both THP and DFE systems outperform linear equalisation for both the 16-

QAM and 64-QAM modulation schemes. However, the respective performance of

THP is much better than DFE owing to the absence of error propagation in the

case of THP. Error propagation deteriorates the performance of the DFE down

to the level of linear equalisation. Note that the mitigation of error propagation

can be confirmed by comparing THP with the error-free DFE version, namely

“DFE g-a”, revealing very close performance between each of them with a small

disadvantage for THP. This degradation agrees with the precoding loss of ap-

proximately 0.28 dB and 0.07 dB for 16-QAM and 64-QAM modulation orders,

respectively, according to (3.10).

The relative difference between BER curves for 64-QAM appears reduced

w.r.t. some of the curves for QPSK and 16-QAM. This is likely to be caused

by the BER performance of the worst subchannel, which dominates the overall

BER. This performance would be worst for 64-QAM and may be poor enough to

lead to little distinguish between the different precoding/equalisation schemes.

3.2.3 THP Drawbacks

As highlighted earlier in Sec. 3.2.1 due to the necessity to incorporate a modulo

operator in both transmitter and receiver of THP systems, some system draw-

backs arise, which can be summarised as follows [91, 92, 93]:

• THP systems perform well because of their inherent non-linear structure,

however they are very sensitive to errors in CSI that result in saturation

in received SNR as the transmitted power increases [94]. This of course

requires robust designs that take into account a combined optimisation of

THP and channel estimation [95, 96], or based on constrained power loa-

ding [97, 98].

• The modulo operator at the transmitter reshapes the probability density

function of the transmitted signal away from the capacity-achieving Gaus-

sian distribution as demonstrated by Fig. 3.5, resulting in a shaping loss
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Figure 3.6: DFE and THP performance Vs. Linear ZF and MMSE for a 4× 4 MIMO system
and QPSK transmission.
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Figure 3.7: DFE and THP performance Vs. Linear ZF and MMSE for a 4× 4 MIMO system
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of 1.53 dB (or equivalently 0.255 bits loss in capacity) for pulse ampli-

tude modulation (PAM) or square QAM with higher modulation orders

M [99, 100, 91].

• Another problem associated with the transmit modulo operator is the pre-

coding loss described by (3.10) and the deviation from the standard QAM

constellation demonstrated in Fig. 3.5 causes an increase in transmit power

which is more prominent for small constellation orders [90].

• Finally, modulo loss can occur and is caused by the modulo operator located

at the receiver, which is required to remove the distortion effect of its trans-

mitter counterpart. This modulo operator affects the received noise leading

to erroneous decisions of constellation points that are estimated near the

constellation boundary. This error becomes very serious at low SNRs and

small constellation sizes [93] (cf. Fig 3.6).

3.3 Ordering using QR Decomposition

The performance of the THP system presented in Sec. 3.2.2 is evaluated for the

case of no precoding ordering, Π = IN . However, systems with non-linear pre-

coding or equalisation suffer from different error rates for different transmitted

data streams [71]. Therefore it is better to order data streams in a manner that

reduces the error propagation problem in DFE systems or enhances the perfor-

mance of THP systems. In this Section, we will focus on the effect of precoding

ordering on the THP performance. Intuitively, since finding the optimal ordering

involves an exhaustive search over N ! possible permutations of Π, a suboptimal

ordering strategy is usually employed [97], the most important subset of which

will be investigated in the following. Thereafter the performance improvement

attained by these precoding ordering on the THP system analysed in Sec. 3.2.1

will be examined by simulations.

3.3.1 No and Arbitrary Ordering

In the case of no ordering, the permutation matrix Π in (3.17) is equal to the

identity matrix IN . Like in V-BLAST detection [6], this natural ordering does

not lead to improved performance. With arbitrary ordering we randomly select Π

from all possible permutation matrices, which should lead to the same result as no

ordering and hence is employed as a checking mechanism. Noteworthy, in order

to reach fair simulation results we aim to run our simulations over a sufficient
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number of channel realisations. The consequence of results for both methods can

later act as a measure to ensure that such a sufficient number of simulations has

been reached.

3.3.2 QR Implementation of V-BLAST Ordering

In Table 3.2, the QR algorithm that implements V-BLAST ordering is summari-

sed assuming a square channel matrix H of size N , where H̄k denotes the matrix

consisting of the remaining columns of H after deleting its kth column [H]k and

H̄k1,k2,··· ,ki
is the same as H̄k but with columns k1, k2, · · · , ki deleted instead. This

algorithm achieves V-BLAST ordering by following the signal space spanned by

the column vectors of H and selecting, at each iteration, the column position

that maximises the difference between itself and its projection as in steps (1)

and (4) [70].

Once all positions ki, 1 ≤ i ≤ N are determined, the columns of the permuta-

tion matrix are formulated as ΠV B = [ek1, · · · , ekN
], where ei is the ith column

of the identity matrix IN . The Q matrix is formulated by arranging the ortho-

normal column vectors qi, 1 ≤ i ≤ N , i.e. Q = [q1, ...,qN ]. The special QR

decomposition that implements the V-BLAST ordering is then HΠV B = QR

with the R factor calculated as in step (7).

3.3.3 QR Efficient Ordering

The V-BLAST ordering obtained above using Table 3.2 requires high computa-

tional complexity as will be demonstrated in Sec. 3.3.4. A much simpler approach

is to order the diagonal entries of the R factor of the QR decomposition. It is

straightforward to note that the statistics of the error covariance matrix of the

THP system are characterised by the noise term in (3.15). Substituting with the

feedforward filter W in (3.18) and matrix G in (3.5), the error covariance matrix

is given by

Φee = σ2
vG

2 = σ2
v · diag

(∣
∣
∣
∣

1

r11

∣
∣
∣
∣

2

, · · · ,

∣
∣
∣
∣

1

rNN

∣
∣
∣
∣

2
)

, (3.19)

with its diagonal entries inversely proportional to the square of the diagonal

entries of R [81, 40, 101]. This means that if diagonal entries of R are sorted

in a descending order very poor performance will result, however, if this order is

reversed, an enhanced performance can be expected.

An even more efficient ordering can be obtained if |rkk| is maximised in each

precoding step. This can be achieved with the modified Gram-Schmidt QR de-



3.3. Ordering using QR Decomposition 42

Table 3.2: QR implementation algorithm for V-BLAST ordering.

Initialisation:

1. Find kN such that kN = argmax
1≤k≤N

∥
∥
(
I− H̄kH̄

+
k

)
[H]k

∥
∥

2

2

2. Compute aN =
(
I − H̄kN

H̄+
kN

)
[H]kN

3. Then obtain qN = aN/ ‖aN‖2
2

Recursion:
for i = N − 1, N − 2, · · · , 1

4. Find ki such that ki = argmax
1≤k≤N

k 6=ki+1,...,kN

∥
∥
∥

(

I − H̄k,ki+1,...,kN
H̄+

k,ki+1,...,kN

)

[H]k

∥
∥
∥

2

2

5. Compute ai =
(

I − H̄ki,ki+1,...,kN
H̄+

ki,ki+1,...,kN

)

[H]ki

6. Then obtain qi = ai/ ‖ai‖2
2

end
Conclusion:

7. Calculate Q = [q1, ...,qN ], ΠV B = [ek1, · · · , ekN
], and R = QHHΠV B.

composition given in Table 3.3 [25]. Once all iterations in Table 3.3 are com-

pleted, the output matrices Q and R of this efficient QR decomposition are

reached as QR = HΠE, where ΠE denotes the efficient ordering obtained as

ΠE = [eπ1, · · · , eπN
]. These efficient ordering schemes avoid the computation of

a pseudo-inverse and hence achieve a lower computational complexity than the

V-BLAST approach in Table 3.2.

3.3.4 Ordering Complexity Evaluation

The computational costs of different QR decomposition schemes presented above

are derived and compared in Table 3.4 in terms of multiply accumulate (MAC)

operations. It is obvious that a reduction in computational costs from O (N5) to

O (N3) can be achieved with the sorted QR algorithms over the V-BLAST QR

scheme, where the computational cost of the pseudo inverse of an N -dimension

square matrix is assumed to be of order N3 MAC [102].

Table 3.4: Computational complexity comparison of the different ordering algorithms using
QR decomposition for Nt = Nr = N .

algorithm normal QR efficient-order QR [25] V-BLAST QR [70]
cost, [MAC] 1

2
(N3 + N2) N3 5

6
N5 + N4 + 2

3
N3 + 1

2
N2
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Table 3.3: QR efficient ordering algorithm.

Initialisation:
1. Q = H, R = 0, π = [1, 2, · · · , N ]

Recursion:
for i = 1, 2, · · · , N

2. Find ki such that ki = argmin
i≤k≤M

‖[Q]k‖
2
2

3. Interchange columns i and ki in Q, R and π

4. rii = ‖[Q]i‖2

5. [Q]i = [Q]i /rii

for k = i + 1, · · · , N

6. rik = [Q]Hi · [Q]k
7. [Q]k = [Q]k − rik · [Q]i

end
end

3.3.5 Performance of THP with Ordering

A 4×4 MIMO system with channel entries hij ∈ CN (0, 1) is examined in order to

investigate the performance of a THP system with different precoding ordering as

discussed above. Results are shown in Fig. 3.8 for 2000 channel realisations, for

which the BER performances of both “no order” and “arbitrary order” cases are

sufficiently similar as discussed earlier. Although the original V-BLAST ordering

represents the optimal detection ordering for the DFE, its application in the

precoding case does not lead to improved performance and performs even worse

than the “no order” case. Contrarily, reverse V-BLAST ordering is the optimum

in this case (cf. Fig. 3.8) since late precoded layers have more constraints to

avoid interference with previously precoded layers, therefore working with the

“best last” ordering strategy [51]. With a very small increase in computational

complexity (cf. Table 3.4), both “descending-reverse order” and “efficient order”

can greatly improve performance by achieving a gain in SNR of ' 2 and 3 dB at

BER = 10−2, respectively, compared to the THP systems without ordering. In

particular, the “efficient order” QR decomposition [25] loses only 0.5 dB in BER

performance compared to the optimum reverse V-BLAST ordering, but achieves

this at a cost that is almost two orders of magnitude lower.
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Figure 3.8: Effect of different precoding ordering on BER performance for a 4 × 4 MIMO
THP ZF system.

3.4 Existing MIMO Broadband Approaches

The detection order in the THP and particularly the DFE case are important

for the robustness of the transmission scheme. For narrowband MIMO systems,

the optimal detection order is provided by the V-BLAST algorithm, a successive

interference cancellation (SIC) method that has been adopted for the broadband

case in [14]. In a reduced approach, termed partially connected ordered SIC

DFE, data streams are successively extracted in the MIMO receiver, detected,

and their contributions subtracted out from the received signal to eliminate in-

terference from subsequently detected data streams. The ordering is determined

by means of identifying at each stage the best performing MMSE receiver for each

data stream. Thus, the strongest contributions, which are more resilient to inter-

ference, are detected first, while weak data streams can subsequently be detected

more reliably [14]. A fully connected algorithm achieves only a marginal per-

formance improvement in terms of BER at a significantly higher computational

effort.
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3.4.1 THP with Joint Spatio-Temporal Ordering

Fig. 3.9 shows a MIMO-THP transceiver model designed to combat spatio-temporal

interference that is incurred by the ISI MIMO channel H [n] of order Q shown in

Fig 2.1 and described by (2.1) with Nt transmit antennas and Nr = N receive an-

tennas. Joint spatio-temporal interference mitigation optimised w.r.t. the MSE

is presented in [17], whereby spatial precoding ordering, as presented in Sec. 3.3

for the narrowband case, is considered here designated by the permutation matrix

Πν =

N∑

i=1

eie
T
oi
∈ {0, 1}N×N , (3.20)

with precoding ordering O = (o1, . . . , oN), where {o1, . . . , oN} = {1, . . . , N},
while decision delay or latency time is signified by ν. Referring to Fig. 3.9,

two feedback filters are considered namely the spatial feedback filter B and the

temporal feedback filter T [n], which have to assure system causality by restricting

B ∈ LN×N . Here, L is the set of strictly lower left triangular matrices and T [n]

is defined as

T [n] =

LT∑

i=1

Tiδ [n − i] , (3.21)

where Ti ∈ CN×N and LT is the filter order. The precoder or feedforward filter

is denoted by P [n]. Prior to the modulo operation in the receiver a gain g is

applied to compensate for any scaling applied by the channel matrix H [n].

The equivalent data vector d [n] using the linearised transmit modulo model

of Fig. 3.9 (b) can be obtained from u [n] as

u [n] = Πνd [n] + Bu [n] + T [n] ? u [n]

⇒ d [n] = ΠT
ν (IN −B)u [n] − ΠT

ν

LT∑

i=1

Tiu [n − i] , (3.22)

note that Π−1
ν = ΠT

ν . By analogy with the linear precoding system depicted in

Fig. 2.7 and using the same definition for P and H as in (2.24) and for S(i) as

in (2.26), the observation d̂ [n] can similarly be given by

d̂ [n] = g

Q+L
∑

i=0

S(i)HPu [n − i] + gv [n] . (3.23)

To simplify the derivation of the MMSE MIMO-THP filters given in [17], a block
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Πν

T[n]

Nt

P[n]

H[n]

s [n] x [n]

y [n]

v [n]

u [n]
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N N N

N
q (·)

B

M (·)

M (·)

ŝ [n] d̂ [n]s̃ [n]

gIN

A1

(a)

A1

N

Πν

T[n]

u [n]

N N

B

d [n]s [n]

a [n]

(b)

A2

s̃ [n]

−â [n]

d̂ [n]

(c)

Figure 3.9: MIMO THP with spatio-temporal ordering optimisation; (a) shows the complete
transceiver model, (b) its linearised transmit modulo model, and (c) its linear receive modulo
model.
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diagonal permutation matrix blkdiag (Π0, . . . ,ΠQ+L) is defined such that

C = blkdiag (Π0, . . . ,ΠQ+L)H ∈ C
N(Q+L+1)×Nt(L+1) (3.24)

is a permuted block Toeplitz channel matrix, where the Q + L + 1 blocks of

dimension N × Nt (L + 1) of H are now differently permuted according to the

corresponding permutations Πi, 0 ≤ i ≤ Q+L. It is important to note that since

we are seeking the precoding ordering provided by the permutation matrix Πν , i.e.

at a latency time ν, therefore all other permutations Πi, i 6= ν are not affecting

the solution and hence can be arbitrarily selected (IN for example). With this

arrangement and by noting that

ΠiS
(i) = S(i)blkdiag (Π0, . . . ,ΠQ+L) , (3.25)

(3.23) can be reformulated as

d̂ [n] = g

Q+L
∑

i=0

ΠT
i ΠiS

(i)HPu [n − i] + gv [n] ,

= g

Q+L
∑

i=0

ΠT
i S(i)CPu [n − i] + gv [n] . (3.26)

Similar to the linear precoding case in (2.23), the MMSE MIMO-THP solution

can now be written as

{PTHP,BTHP,TTHP,1, . . . ,TTHP,LT
, gTHP, νTHP,OTHP}

=







argmin
{P,B,T1,...,TLT

,g,ν,O}
E

[∥
∥
∥d [n − ν] − d̂ [n]

∥
∥
∥

2

2

]

subject to B ∈ LN×N and E
[
‖x [n]‖2

2

]
= Pbudget .

(3.27)

Using (3.22), (3.26) and making use of
∑Q+L

i=0 S(ν),TS(ν) = IN(Q+L+1), the MSE

in (3.27) can be given as

E

[∥
∥
∥d [n − ν] − d̂ [n]

∥
∥
∥

2

2

]

= σ2
utr
(
IN + BBH

)
+ σ2

u

∑LT

i=1 tr
(
TiT

H
i

)

+ |g|2 tr (Rvv) + σ2
u |g|2 tr

(
CPPHCH

)

−2σ2
u<
(

tr
(

gS(ν)CP (IN − B)H
))

+2σ2
u

∑LT

i=1 <
(

tr
(

gΠT
ν+iS

(ν+i)CPTH
i Πν

))

,

(3.28)

where as in Sec. 3.2.1 u [n] is assumed spatially and temporally uncorrelated, i.e.
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E
[
u [n]uH [n + ν]

]
= σ2

uINδ [ν], in (3.28). The power constraint in (3.27) can

simply be rephrased as

E
[
‖x [n]‖2

2

]
= σ2

utr
(
PPH

)
= Pbudget, (3.29)

since x [n] = P [n]?u [n] and
∑L

i=0 tr
(
P [i]PH [i]

)
= tr

(
PPH

)
. Also the constraint

on B in (3.27) can be rewritten as

SiBei = 0i×1, i = 1, . . . , N, (3.30)

where another selection matrix Si is introduced as

Si = [Ii, 0i×N−i] ∈ {0, 1}i×N . (3.31)

Incorporating (3.28), (3.29), and (3.30) into the optimisation in (3.27) and using

the Lagrangian multiplier method as in (2.23), the solutions for the MMSE

MIMO-THP filters are given by [17]

PTHP =
1

gTHP

N∑

i=1

CHA
(OTHP),−1
νTHP,i S(νTHP),Teie

T
i , (3.32a)

BTHP = −gTHP

N∑

i=1

(
IN − ST

i Si

)
S(νTHP)CPTHPeie

T
i , (3.32b)

TTHP,i =







−gTHPΠνTHP
ΠT

νTHP+iS
(νTHP+i)CPTHP

for i = 1, . . . , Q + L − νTHP,

TTHP,i = 0N×N otherwise,

(3.32c)

gTHP =

√
√
√
√ σ2

u

Pbudget

N∑

i=1

eT
i S(νTHP)CCHA

(OTHP),−2
νTHP,i S(νTHP),Tei, (3.32d)

where

A
(O)
ν,i = ST

ν,iSν,iCCHST
ν,iSν,i + ξIN(Q+L+1) . (3.33)

The selection matrix Sν,i returns the first Nν+i rows of a matrix with N (Q + L + 1)

rows when applied from the left, defined as

Sν,i =
[
INν+i, 0Nν+i×N(Q+L−ν+1)−i

]
. (3.34)

Note that the optimum values for the latency and the precoding order are needed

to compute the filters in (3.32a)-(3.32d) which can be obtained according to the
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optimisation [17]

{νTHP,OTHP} = argmin
{ν,O}

N∑

i=1

eT
i S(ν)A

(O),−1
ν,i S(ν),Tei . (3.35)

In fact, (3.35) represents the computational bottleneck of the MMSE MIMO-

THP filter solution since for every latency value, which is found to lie in the

interval ν ∈ {L, . . . , Q + L} [17], all precoding orders O of a total number of N !

have to be considered resulting in a complexity burden in computing the inversion

of a size of N (Q + L + 1) × N (Q + L + 1) for the matrix A
(O)
ν,i in (3.35). In the

following, a simplification in computation of (3.35) is derived as follows [17].

Using (3.25), the l.h.s. of (3.35) can be rephrased as

N∑

i=1

eT
i ΠνΠ

T
ν S(ν)A

(O),−1
ν,i S(ν),TΠνΠ

T
ν ei

=

N∑

i=1

eT
oi
S(ν)Γ

(O),−1
ν,i S(ν),Teoi

,

(3.36)

where Γ
(O),−1
ν,i = Π

(O)
ν,i HHHΠ

(O)
ν,i + ξIN(Q+L+1) ∈ CN(Q+L+1)×N(Q+L+1) with a pro-

jector matrix Π
(O)
ν,i ∈ {0, 1}N(Q+L+1)×N(Q+L+1)defined as

Π
(O)
ν,i = blkdiag

(
ΠT

0 , . . .
)
ST

ν,iSν,iblkdiag (Π0, . . .)

=

ν∑

j=0

S(j),TS(j) − S(ν),TΠT
ν

(
IN − ST

i Si

)
ΠνS

(ν)

=

ν∑

j=0

S(j),TS(j) −







0N(Q+L+1)×N(Q+L+1), i = N

S(ν),T
N∑

j=i+1

eoj
eT

oj
S(ν), otherwise .

(3.37)

Interestingly, it is clear from (3.37) that the computation of Π
(O)
ν,i depends only

on the indices oi+1, . . . , oN of the precoding order O, which means that if i = N

no precoding order is required to compute Π
(O)
ν,i . This therefore motivates to start

with computing oN that minimises (3.36) and then successively compute the re-

maining orders oi, i = N − 1, . . . , 1 by minimising the ith summand of (3.36)

for fixed oi+1, . . . , oN . In other words, the precoding order can be achieved

using (3.37) and (3.36) according to

FindOTHP = (o1, . . . , oN)

such that oi = argmin
o∈O′

i

eT
o S(ν)Γ

(O),−1
ν,i S(ν),Teo, i = N, . . . , 1, (3.38)
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where O′

i = {1, . . . , N}\{oi+1, . . . , oN} is the set of possible values for oi (i.e. the

values that have not been selected yet), with obviously O′

N = {1, . . . , N}.
Now the precoding order OTHP is locally optimised for a given value of the

latency time ν. Consequently for a joint optimisation of both {ν,O} as in (3.35),

the above arrangements have to be considered for every ν ∈ {L, . . . , Q + L} and

ν has to be chosen to globally optimise (3.35) in conjunction with OTHP, i.e.

{νTHP,OTHP} that minimises (3.35).

3.5 Proposed Methods

In this section we introduce a number of non-linear precoding and equalisa-

tion techniques, which aim to remove IBI (as well as ISI) by means other than

the redundancy-incurring methods of linear block-based processing addressed

in Sections 2.3.1 and 2.3.2, which subsequently lead to reduced spectral effi-

ciency. Non block-based approaches with linear [17, 13] or non-linear proces-

sing [45, 88, 17, 72], on the other hand, lack the optimality gained by rate-loading

schemes as all subchannels have to be loaded with identical rate and power, the-

refore performance is dominated by poor subchannels. Moreover, an exhaustive

search is required in the case of non-linear processing to jointly optimise ordering

in space and time for transmitted data precoding [17] or received signal equalisa-

tion [14], or to provide a mixture thereof [15].

In our proposed methods, the joint equalisation and precoding of a broadband

MIMO system is based on a two-step approach, whereby first the MIMO channel

is decoupled into a number of independent SISO subchannels using the the BSVD

technique [19] presented in Sec. 2.3.4 thereby mitigating the CCI discussed in

Sec. 3.5.1. The remaining SISO subchannels are still dispersive and cause ISI,

whose mitigation is addressed in Sec. 3.5.2.

3.5.1 Mitigation of Co-Channel Interference

If channel state information is available at both receiver and transmitter, then

the paraunitary matrices U(z) ∈ CNt×Nr and V(z) ∈ CNt×Nt arising from a

broadband SVD [103, 19] of the channel matrix H (z) 
 H [n] as H(z) =

U(z)Σ(z)Ṽ(z) can be utilised to obtain a linear equaliser and precoder as depic-

ted in Fig. 3.10, where N = min (Nt, Nr). If
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X(z)

N

H(z) W(z)

NrNtN

P(z) Y (z)

Figure 3.10: Co-Channel interference mitigation with precoder P(z) and equaliser W(z).

U(z) =
[

U0(z) U 1(z) · · · UNr−1(z)
]

, (3.39)

and V(z) =
[

V 0(z) V 1(z) · · · V Nt−1(z)
]

, (3.40)

then the precoder and equaliser are defined, respectively, as

P(z) =
[

V 0(z) V 1(z) · · · V N−1(z)
]

, (3.41)

and W(z) =









Ũ0(z)

Ũ1(z)
...

ŨN−1(z)









, (3.42)

to obtain

Ṽ(z)P(z) =







INt
Nr ≥ Nt,

[

INr

0(Nt−Nr)×Nr

]

Nr < Nt,
(3.43)

and W(z)U(z) =

{ [
INt

0Nt×(Nr−Nt)

]
Nr ≥ Nt,

INr
Nr < Nt,

(3.44)

such that

Y (z) = Σ(z)X(z), (3.45)

where the channel noise v [n] is omitted in (3.45) for the sake of brevity. With

Σ(z) being approximately diagonal, the MIMO system has been decoupled and

co-channel interference is suppressed.

3.5.2 Mitigation of Inter-Symbol Interference

The transmission over each decoupled SISO subchannel of (3.45)

Yi(z) = Σi(z)Xi(z)
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is still subject to ISI, which we here aim to remove by non-linear methods. Dif-

ferent from standard transmission channels, even if the FIR components of the

channel matrix H (z) are minimum-phase, Σi(z) is generally non-minimum phase.

Either the DFE or THP system can be used to independently mitigate these indi-

vidual ISI (temporal) interferences generated by Σi(z), 1 ≤ i ≤ N . However, the

performance of a DFE/THP for a SISO subchannel depends on the subchannel

SNR, i.e. the performance of the various transmission subsystems drops with sub-

channel index i due to thespectral majorisation property in (2.35)of the BSVD

algorithm. This motivates the application of power or bit loading approaches to

distribute transmission rates according to the individual qualities of Σi(z)as will

be discussed in Sec. 3.5.2.2.

If an incorrect decision is incurred in a DFE, then this error may propagate

to degrade subsequent detections. For this reason, the DFE can be operated

in the transmitter instead, whereby the transmitted signal is shaped such that

interference annihilates at the receiver. Since the decision feedback is perfor-

med in the transmitter in the absence of channel noise, no incorrect decisions

or error propagation can be incurred as in the spatial interference case in Sec-

tion 3.2. The combination of a DFE operated in the transmitter with the limi-

tation of the transmit power by a modulo-extended constellation pattern leads

to the original THP [22, 23] system. For a QAM constellation map of K-bit

symbols, the standard constellation pattern consists of the values a + jb with

a, b ∈ {−K + 1,−K + 3, · · · , K − 3, K − 1} while for THP the transmit signal

amplitude will be distributed over the larger interval [−K, K) for both real and

imaginary part of the transmitted samples, leading to a small increase in transmit

power (cf. Fig. 3.5).

3.5.2.1 Temporal DFE

A DFE operates on the CCI-mitigated signal Yi(z) in the receiver, and contains a

linear feedforward filter to suppress all maximum phase components of the SISO

subchannel, and a feedback filter fed by detected symbols up to sampling period

n − 1 in order to remove the remaining minimum-phase part of the combined

response of subchannel Σi(z) and the feedforward filter. The parameters to be

selected for this DFE comprise of the lengths of both feedforward and feedback

filters, as well as the decision delay of the system, which is usually coupled to the

feedforward system [104]. Here, the parameters are selected in order to provide

an overall minimised MSE.

In the following, a SISO-DFE model optimised for MMSE is derived for the ge-
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neral system model outlined in Fig 3.11 with channel impulse response h[n] ∈ CQ,

feedforward filter f [n] ∈ CLf , feedback filter b[n] ∈ CLb and decision delay ∆ de-

fined such that q(y[n]) = x[n − ∆]. Whereby Fig. 3.11(a) describes the actual

system while Fig. 3.11(b) represents a simplified model assuming the correctness

of any decisions being made by the non-linear decision device q(·), which is refer-

red to as a genie-aided system. The simplicity of the genie-aided system is due

to the fact that instead of a system with feedback, the problem reduces to the

design of a two-channel system.

In matrix formulation, the equaliser output y[n] prior to any decision in

Fig. 3.11(b) is given by

y[n] = fH (Hxn + v) − bHDxn ,

whereby

fH=[f0, f1, · · · , fLf−1]

contains the coefficients of the feedforward and

bH=[b0, b1, · · · , bLb−1]

the coefficients of the feedback filter. Note that when no constraints are placed

on filter length, the optimal DFE filters generally have infinite length. To reduce

complexity, improve stability, or allow adaptability, however, many designs use

FIR filters in both the feedforward and feedback sections [104]. The convolutional

matrix H ∈ CLf×K with K = max{Lf +Q−1, Lb+∆+1} contains the coefficients

of the channel impulse response,

H =









h0 h1 · · · hQ−1

h0 h1 · · · hQ−1

. . .
. . .

h0 h1 · · · hQ−1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0Lf×K−Lf−Q+1









,

while the matrix D ∈ CLb×K

D =
[
0Lb×(∆+1) ILb

0Lb×(K−Lb−∆−1)

]

imposes the delay of ∆ + 1 samples imposed onto the input signal organised in a
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v[n]

h[n]x[n] f [n]

δ[n − 1]

y[n]
q(·)

b[n]

(a)

v[n]

h[n]x[n] f [n] y[n]

b[n]δ[n−∆−1]

(b)

Figure 3.11: SISO-DFE system with channel impulse response h [n], feedforward filter f [n],
feedback filter b [n] and decision delay ∆: (a) true system, (b) genie-aided version.

tap delay line vector xn ∈ CK ,

x =









x[n]

x[n − 1]
...

x[n − K + 1]









.

The error can be formulated as

e[n] = y[n] − x[n] = y[n] − dTxn (3.46)

incorporating the decision delay of ∆ samples by means of a pinning vector

d=
[
01×∆ 1 01×(K−∆−1)

]T
.

Squaring and taking expectations of (3.46) yields

ξDFE =
(
fH

H − bHD − dT
)
Rxx

(
H

Hf − DHb− d
)

+ fHRvvf

as the mean squared error of the genie-aided DFE system of Fig. 3.11(b). There-
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fore the MSE-optimal solution, can be found as

wopt =








[

H

D

]

Rxx

[

H

D

]H

+

[

Rvv 0Lf×Lb

0Lb×Lf
0Lb×Lb

]

︸ ︷︷ ︸

R








−1

[

H

D

]

Rxxd, (3.47)

where

w =

[

f

−b

]

∈ C
Lf +Lb . (3.48)

For a detailed derivation, please refer to Appendix A.2.

As an illustrative example for the above solution in (3.47), a 5-tap SISO

channel of complex entries and a power delay profile for both minimum phase

and non-minimum phase cases as shown by the left-most of Figs. 3.12(a) and (b),

is utilised. The role of the feedforward filter f and feedback filter b are apparent

from Fig. 3.12 as discussed above for both ZF (obtained from (3.47) by ignoring

the second term of R, i.e. Rvv = 0) and MMSE solutions with two different SNR

values of 10 and 20 dB. Note that the MMSE solution does not perfectly remove

the interference as in the ZF counterpart because the noise term is taken into

account for the MMSE design.

3.5.2.2 Temporal THP

Alternative to the DFE approach in Sec. 3.5.2.1, THP can be applied. With co-

channel interference mitigated by the BSVD step, we end up with a diagonalised

system with spectrally majorised individual dispersive SISO subchannels (3.51) as

depicted in Fig. 3.13. The next task is to mitigate the effect of dispersion incurred

by these SISO subchannels as well as to exploit the spectral majorisation of the

BSVD algorithm. To this end, a rate-scaled THP system is proposed whereby in-

dividual data layers are fashioned to achieve throughput that best matches their

respective SISO subchannels by selecting from different square M-QAM constel-

lations (QPSK, 16-QAM, 64-QAM, or 256-QAM) while the weakest subchannels

may or may not be used according to a transmission target throughput.

Given the ith subchannel Σi(z) which is usually non-minimum phase, the role

of the feedforward filter Fi(z) with length L
(i)
f is to drive the end-to-end discrete-

time response Σi(z)Fi(z) to a monic minimum phase system, while the task of the

L
(i)
b -tap feedback filter Bi(z) is to completely remove the remaining postcursor of

Σi(z)Fi(z) by the iterative THP feedback loop. These two filters along with the

decision delay are computed for each Σi(z) using spectral factorisation theory,
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Figure 3.12: An example of a 5-tap SISO system and its DFE ZF and MMSE filter solutions
at different SNR values for (a) minimum phase channel, and (b) non-minimum phase channel.
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Figure 3.13: Equivalent model to Fig. 3.10 with THP applied for resulting SISO subchannels
with details of THPi and Deci blocks are given in Fig. 3.14.
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details for which can be found in [13, 105].

A suitable bit loading is applied to each SISO subchannel according to its

strength. With the spectral majorisation property (2.35) of the iterative BSVD

algorithm, the resulting SISO subchannels appearing in the main diagonal of the

decoupled system in (2.34) are ordered in descending gain. The weakest subchan-

nels may be unreliable and hence deselected for transmission. We aim to operate

the proposed equivalent SISO system to achieve the same target throughput as

its respective original MIMO system. To achieve this, two THP methods are

used and described below, namely spectral factorisation and block transmission

schemes.

3.5.2.2.1 Spectral Factorisation. Fig. 3.14(a) shows a THP system desi-

gned to mitigate ISI of the ith subchannel Σi(z) in Fig. 3.13. The filter compu-

tations are based on the spectral factorisation method detailed in [13, 105]. Both

Fi(z) and Bi(z) along with the decision delay are computed for each Σi(z). The

decision delay is individually optimised for each SISO subchannel and is generally

equivalent to L
(i)
f − 1.

The importance of the spectral factorisation scheme lies in its capability of

establishing serial transmission between transmitter and receiver. In the next

section a second method is introduced, which is based on block transmission.

3.5.2.2.2 Block Transmission. THP can also be implemented in a block

transmission mode [91, 106]. Given the ith SISO subchannel from Sec. 3.5.1

in its discrete time version σi =
[

σ
(0)
ii , σ

(1)
ii , · · · , σ

(Li)
ii

]

of order Li, the block

transmission scheme can be formulated following the procedures presented in [91]

and with the aid of Fig. 3.14(b) as follows. The block input-output behaviour of

this SISO subchannel is formulated as a convolutional matrix

Σi =










σ
(0)
ii σ

(1)
ii · · · σ

(Li)
ii 0 · · · 0

0 σ
(0)
ii σ

(1)
ii · · · σ

(Li)
ii

. . .
...

...
. . .

. . . · · · · · · . . . 0

0 · · · 0 σ
(0)
ii σ

(1)
ii · · · σ

(Li)
ii










∈ C
Nb×Nb+Li−1 , (3.49)

where Nb is the block size of the data streams s = [sNb
, sNb−1, · · · , s1]

T. This

stacking can be easily performed using serial-to-parallel (S/P) and parallel-to-

serial (P/S) devices as shown in Fig. 3.14(b). The ZF-THP solution to such a

system can be obtained once the feedforward and feedback filter matrices Wi and
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Figure 3.14: A detailed SISO-THP transceiver for the ith subchannel of Fig. 3.13 using (a)
spectral factorisation and (b) block transmission schemes.
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Bi, respectively, have been evaluated using the QR decomposition

ΣH
i = Qi

[

RH
i 0

]H

. (3.50)

Here, Qi is a unitary matrix of size Nb + Li and Ri ∈ CNb×Nb is an upper

triangular matrix. The feedforward filter Wi is equal to the first Nb columns

of Qi, while the feedback filter is given by Bi = INb
− GiR

H
i , where Gi =

diag
(
r−1
11 , r−1

22 , · · · , r−1
NbNb

)
with rii being the ith diagonal element of Ri. This

translates ISI into CCI between different elements of the transmitted data block,

which can be easily addressed by subspace methods. However, using block trans-

mission sacrifices some redundancy to remove IBI between successive transmit

data blocks, and hence reduces the overall system spectral efficiency.

3.5.2.2.3 SISO-THP BER Comparison. The two SISO-THP schemes are

compared on the basis of identical transmit power for a 5-tap SISO channel. A

total of 300 channel realisations are used whereby channels obey an exponentially

decaying power profile with coefficients drawn from complex valued independent

Gaussian distributions. The average BER curves are plotted in Fig. 3.15 for

the spectral factorisation and block transmission schemes. It can be noted that

the block transmission scheme outperforms its spectral factorisation counterpart

due to the incorporated extra redundancy of Li

Nb
which in turn reduces the data

throughput by a factor of Nb

Nb+Li
. Referring to Fig. 3.15, it is also evident that when

Nb � Li, the redundancy approaches zero while the data throughput reduction

factor ' 1, resulting in both block transmission and spectral factorisation BER

performances converging to identical curves.

3.5.3 Approximate Diagonalisation by BSVD

Referring to (3.45), it is shown that the overall MIMO broadband system H(z)

can be reduced to a diagonalised system Σ(z) such that for a transmitted data

streams X(z) the received data is given by

Y (z) = Σ(z)X(z) + ξ(z) , (3.51)

where ξ(z) represents the AWGN noise at the receiver. Noting that the z-domain

representation of a random process does not exist, (3.51) utilises the z-domain

for notational convenience only, while all calculations would be performed in the

time domain.



3.5. Proposed Methods 60

0 1 2 3 4 5 6 7 8 9 10

10
−4

10
−3

10
−2

10
−1

10
0

SNR [dB]

B
E

R

 

 

spectral−factorization
N

b
 = 5 ~ redundancy = 100%

N
b
 = 10 ~ redundancy = 50%

N
b
 = 20 ~ redundancy = 25%

N
b
 = 100 ~ redundancy = 5%

Figure 3.15: BER performance comparison between spectral factorisation and block trans-
mission schemes of a SISO-THP system with 5-tap channel.

The ideal decoupling of the MIMO system in (3.51) such that CCI is per-

fectly eliminated requires an exact diagonalisation of H(z) using the BSVD algo-

rithm [19]. However, due to the approximate and iterative nature of the BSVD

algorithm this may not sufficiently fulfilled and non-zero off-diagonal elements of

finite size may remain in Σ(z) as a result (cf. Fig 2.8), which is likely to deteriorate

the overall error performance. Therefore, the selection of a reasonable number

of iterations (NoI) of the BSVD algorithm that results in a BER performance

close to one with a very high NoI of the overall system Σ(z) is investigated in

this section. The effect of NoI on performance is twofold, as off-diagonal elements

consume part of the system energy, and an imperfectly diagonalised Σ(z) will ad-

mit CCI. Therefore the idealistic approximation in (3.51) can be more correctly

described by the time domain formulation for the ith received symbol stream yi[l],

i = 0, · · · , N − 1, as

yi [l] =

Li∑

ν=0

σii [ν] · xi [l − ν] +

N−1∑

m=0
m6=i

Lim∑

ν=0

σim [ν] · xm [l − ν] + ξi [l] . (3.52)

The quantities Li and Lim in (3.52) denote, respectively, the order of the main

and off-diagonal polynomials of Σ(z), such that the majority of system energy

is preserved. In the following, we worked with a figure of 99.9% compared to
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the total energy. The second term on the r.h.s. of (3.52) represents the residual

CCI contributed by the off-diagonal terms in Σ(z). In Section 3.6, the effect of

the BSVD NoI on the overall BER performance is investigated in order to admit

a BSVD with a potentially lower NoI and lower computational complexity than

would otherwise be required.

3.6 Simulation Results

Computer simulations are conducted for a 4 × 4 MIMO system with a broad-

band channel of order Q = 5 and a power delay profile given in Table 3.5 where

the channel coefficients hij [n] are drawn from a zero-mean uncorrelated com-

plex Gaussian distribution. Results for our proposed method using BSVD with

spectral factorisation THP precoding, in the following labelled “BSVD-THP” are

benchmarked against both linear MIMO precoding addressed in Sec. 2.3.3 and

MIMO THP with spatio-temporal ordering presented in Sec. 3.4.1. We will denote

the benchmark system [17] for both linear and THP precoding as MIMO-Lin and

MIMO-THP, respectively. The length of the feedforward filter for both MIMO-

Lin and MIMO-THP systems as well as BSVD-SISO system is set to twice the

channel order i.e., 10 taps for both MIMO systems and L
(i)
f = 2 × Li for the

ith BSVD-SISO subsystem, while the feedback filter length of each BSVD-SISO

subsystem is set to the same order as its respective subchannel, i.e., L
(i)
b = Li.

A comparison between our proposed model and the benchmark systems is set

with the aim of achieving the same system throughput. Three cases to achieve

a target throughput of 8, 16 and 24 bits are considered. In each case, the ove-

rall throughput is achieved with our proposed BSVD-THP model by distributing

rates among individual SISO subchannels according to their strength while in the

MIMO case it is uniformly allocated by definition. We choose to assign these rates

with two constraints: 1) only discrete square-QAM constellations are permitted

and 2) transmission over the worst subchannel is avoided unless it is necessary to

achieve the target throughput. With these constraints, a reasonable bit loading

is proposed in a heuristic fashion as shown in Table 3.6. For the first two cases,

the same throughput can be attained with the utilisation of the first three sub-

channels only while the fourth subchannel is set inactive. However, for the case

of 24 bit throughput the fourth subchannel has to be used to achieve the target

throughput (cf. Table 3.6).

Results are averaged over a total number of 300 different channel realisa-

tions normalised for a frequency-selective non-fading scenario as in (2.36). Fi-
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Table 3.5: Channel power delay profile.

path delay (symbol) 1 2 3 4 5 6
relative power (dB) 0 -4 -8 -12 -16 -20

Table 3.6: SISO subchannels bit allocation for same target throughput as a 4 × 4 MIMO
system.

Throughput Case 1: 8-bits Case 2: 16-bits Case 3: 24-bits

MIMO QPSK 16-QAM 64-QAM
SISO-1 16-QAM 64-QAM 256-QAM
SISO-2 QPSK 64-QAM 256-QAM
SISO-3 QPSK 16-QAM 64-QAM
SISO-4 QPSK QPSK QPSK

gures 3.16, 3.17 and 3.18 demonstrate the BER performance comparison bet-

ween our BSVD-THP and both MIMO-Lin and MIMO-THP for the three target

throughput cases, respectively. The BSVD-THP curve that represents the same

achieved throughput as the benchmark MIMO systems is highlighted by (·)s in

all of these figures. In Fig. 3.16 it is clear that the average BER for the first

two subchannels (marked as “1-2”) is much better than both MIMO linear and

THP with 2 bits (25%) degradation in the overall throughput. For same achieved

throughput comparison the average BER of the first three subchannels (marked

as “1:3”) is slightly higher than MIMO-THP (< 0.5 dB loss at 10−3 BER) and

outperforms MIMO-THP for higher SNR (or BER < 10−4 performance). If the

fourth subchannel is used, the overall throughput can be increased by a factor

of 25% at the expense of very poor BER that dominates the overall performance

(marked as “all”). Note that for the BSVD-THP system, the mean BER of the

first combined k subchannels Pb is given for their individual subchannel BERs

Pb,i weighted by their respective allocated number of bits bi as

Pk =

∑k
i=1 biPb,i
∑k

i=1 bi

. (3.53)

For a higher throughput-achieving operation, the results of “16-bits” and “24-

bits” cases are shown in Fig. 3.17 and Fig. 3.18, respectively. In Fig. 3.17, the

BSVD-THP system clearly outperforms its MIMO benchmark counterpart over

the normal practical operating region (BER < 0.01). It is also noted that averaged

BER performances for both first two and first three subchannels are very close

to each other which reveals the good choice of individual rates (modulations)

that best match SISO subchannels strengths. An extra throughput of 12.5% can
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Figure 3.16: Case “8-bits” where the 1st SISO subchannel operates on 16-QAM and all other
subchannels on QPSK modulation.

be achieved if the fourth subchannel is used for transmission at the cost of an

increase in SNR of ' 1.5 dB in the medium operation region. Fig. 3.18 shows

the performance comparison for the 24-bits throughput case, where all SISO

subchannels have to be taken into account to achieve the same target throughput

as the MIMO benchmark (see Table 3.6). A gain of more than 2.5 dB in SNR can

be achieved at BER ≤ 0.05 , also it is obviously noted the close performance of

each combination of BSVD-THP subsystems which again demonstrates the good

choice of the individual rates that assigned to each BSVD-THP subchannel.

The results presented above assume near perfect diagonalisation of the BSVD

algorithm [19] in (3.51), however, as highlighted in Sec. 3.5.3 the actual BSVD dia-

gonalisation is provided by (3.52) and depends on the BSVD NoI. To investigate

the effect of this NoI on the performance of our proposed BSVD-THP method

and concentrate on a BSVD with simplified computations, another set of simu-

lation is conducted without considering bit loading. This means that all SISO

subchannels are loaded with the same modulation scheme, therefore different sub-

channel BERs are expected as a result of the spectral majorisation property of the

BSVD algorithm. SISO-THP under the spectral factorisation scheme presented

in (3.5.2.2.1), with filter parameters as above, is used to mitigate the individual

ISI of these SISO subsystems and overcome the error propagation problem which

a DFE scheme would experience.
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Figure 3.17: Case “16-bits” where the first two SISO subchannels operate on 64-QAM, 3rd
one on 16-QAM and last subchannel on QPSK modulation.
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Figure 3.18: Case “24-bits” where the first two SISO subchannels operate on 256-QAM, 3rd
one on 64-QAM and last subchannel on QPSK modulation.
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A 3 × 3 MIMO channel instance of order 4 and power profile in Table 3.5

normalised using (2.36) is decoupled into 3 SISO subchannel based on the BSVD

algorithm with different NoI values of 20, 60, and 100. In order to investigate

the BER performance for different transmission rates, three symbol mappings are

considered using square M-QAM modulation with M = 4, 16 and 64, i.e. QPSK,

16-QAM, and 64-QAM, respectively.

Figures 3.19, 3.20 and 3.21 demonstrate the BER results of the individual

SISO subchannels after applying the BSVD algorithm with the different NoI va-

lues for the three transmission rates of QPSK, 16-QAM, and 64-QAM, respecti-

vely. Obviously, the NoI determines how well both decoupling (2.34) and spectral

majorisation (2.35) can be achieved. The following comments can be drawn from

these simulation results:

• For all cases and all subchannels, BER performance is improved by increa-

sing the NoI. Also note that for high NoI, this advantage becomes incremen-

tal. This decrease allows for a significant reduction in system complexity by

choosing a moderate NoI without any degradation in performance as shown

in all of these Figures.

• The stronger the subchannel the more minor the effect of the NoI, as can

be easily noted in the 1st subchannel for all cases. Spectral majorisation is

a very useful instrument in practical applications since when some of the

weaker subchannels are not needed, the NoI can be decreased leading to

further reduction in system complexity.

• According to the NoI values conducted in this simulation, it is possible to

restrict the complexity of the BSVD algorithm to be run at only NoI = 60

with minimal and negligible degradation in the BER performance for the

MIMO transmission channels considered here, i.e. of order 4 and a decaying

power profile.

3.7 Conclusion

In this chapter we have addressed non-linear precoding and equalisation methods

for both narrowband and broadband MIMO channels. Schemes of decision feed-

back equalisation (DFE), Tomlinson-Harashima precoding (THP) and V-BLAST

detection have been considered which highlight the role of precoding and detec-

tion ordering of data substreams on the performance of narrowband systems. In
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Figure 3.19: SISO-THP performance of the individual subchannels resulting from the applica-
tion of the BSVD algorithm with varying NoI to a 3×3 MIMO system and QPSK transmission.
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Figure 3.20: SISO-THP performance of the individual subchannels resulting from the ap-
plication of the BSVD algorithm with varying NoI to a 3 × 3 MIMO system and 16-QAM
transmission.
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Figure 3.21: SISO-THP performance of the individual subchannels resulting from the ap-
plication of the BSVD algorithm with varying NoI to a 3 × 3 MIMO system and 64-QAM
transmission.

contrast, for the broadband case both spatial and temporal ordering have to be

optimised for improved performance. A novel approach based on a recently deve-

loped broadband SVD (BSVD), which can decouple a broadband MIMO channel

into a number of frequency selective SISO subchannels, is proposed. This ap-

proach shows better BER performance compared to a state-of-the-art method.

In order to maximise the data throughput of this scheme or similar multichannel

systems, adaptive bit and power loading schemes have to be applied which will

be considered in the next chapter.



Chapter 4

Greedy Power and Bit Loading

Schemes

Adaptation of transmission resources to channel conditions in multichannel sys-

tems has been proved to significantly enhance the overall system performance pro-

vided that channel state information (CSI) is known to the transmitter [5, 107].

This includes the achievement of either higher data rates or lower power require-

ments under one or more practical/design constraints known respectively in the

literature as rate maximisation [108, 109], or margin maximisation [110, 111].

The parameters to be considered in such loading problems are commonly: data

rate, bit error ratio (BER) and total transmit power. From a system design point

of view, the sum-rate of a multichannel system with different subchannel gains

is of particular interest, and can be optimised using power and/or bit loading

schemes.

Power and bit allocation problems are usually phrased as closed form ex-

pressions with respect to either channel capacity [108, 112] or bit error probabi-

lity [113, 114]. The optimal standard water-filling based solutions assume infinite

modulation orders and real-valued data rates which is realistically infeasible and

leads to a final rounding remedy step [109] that degrades the overall performance.

Alternatively, so-called incremental or greedy approaches optimising sum-rate

using power [115] and bit [116] loading schemes can achieve higher rates at the

expense of computational complexity. In this Chapter, we investigate the data

rate maximisation using both power and bit loading schemes under the Greedy

approach.

68
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4.1 Constrained Optimisation Problem

Rate maximisation of a multichannel system is extensively considered in the li-

terature, see for example [117, 118] for a review. The sum-rate maximisation

problem of such systems can be formulated as

maximise

N∑

i=1

bi (4.1a)

subject to
N∑

i=1

Pi ≤ Pbudget, (4.1b)

∀i : 1 ≤ i ≤ N,

Pi ≥ 0, (4.1c)

Pb ≤ Ptarget
b , (4.1d)

bi ≤ bmax. (4.1e)

Where bi and Pi are, respectively, the number of bits and amount of power allo-

cated to the ith subchannel, while N is the total number of subchannels of the

multichannel system and Pbudget is the total transmit power budget. The mean

BER of all subchannels is denoted by Pb, while Ptarget
b denotes the target BER.

We also assume that the system is constrained by a fixed permissible number of

bits which cannot be exceeded bmax to be loaded to each subchannel.

Based on the concept of SNR-gap approximation [119, 120], which signifies the

loss in SNR of a particular transmission scheme when compared to the theoretical

channel capacity, a closed form expression for bi can be given by [67]

bi = log2

(

1 +
γi

Γ

)

, (4.2)

where γi is the SNR of the ith subchannel and Γ denotes the SNR-gap. QAM

modulation schemes are considered for which the SNR-gap is given as [121]

Γ =
1

3

[

Q−1

(Ps,i

4

)]2

, (4.3)

where Q−1 is the inverse of the well-known Q-function defined as

Q (x) =
1√
2π

∞̂

x

e−u2/2du, (4.4)
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and Ps,i is the SER of the ith subchannel. It is clear from (4.3) that Γ is not fixed

for all subchannels but depends on the subchannel SER, which in turn depends

on bi and γi of (4.2). This dependence has to be carefully taken into account whe-

never the rate or the gain in (4.2) is changed. Nevertheless, this approximation

is valid only for very low BER, typically 10−6, and higher QAM orders which is

not usually the case for realistic wireless communication applications [109].

Defining the channel-to-noise ratio of the ith subchannel as

CNRi =
g2

i

N0
, (4.5)

where N0 is the total noise power at the receiver and gi is ith subchannel gain1,

the SNR of this subchannel γi in (4.2) is given by

γi = Pi × CNRi . (4.6)

We consider rectangular M-QAM modulation of order Mk, 1 ≤ k ≤ K, where

MK is the maximum QAM constellation that is permissible by the transmission

system, i.e., MK = 2bmax
. The BER of this modulation scheme is given by [122]

Pb,i = F (γi, Mk) =







Q
(√

2γi

)
for BPSK,

1−
[

1−2

(

1− 1√
Mk

)

Q
(√

3γi
Mk−1

)]2

log2Mk
for M QAM .

(4.7)

With the availability of channel state information (CSI) at the transmitter, sym-

bols of bk-bits, bk = log2Mk can be loaded to a subchannel with minimum required

SNR obtained from (4.7) as

γQAM
k = F−1 (Pb,i, Mk) =







1
2
[Q−1 (Pb,i)]

2
for BPSK,

Mk−1
3

[

Q−1

(
1−
√

1−Pb,i·log2Mk

2(1−1/
√

Mk)

)]2

for M QAM .

(4.8)

1These subchannels gains can be simply obtained for narrowband MIMO systems by consi-
dering the SVD of the MIMO channel. While for broadband MIMO systems, OFDM can be
used to deduce these gains.
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4.2 Uniform Power Allocation (UPA)

The simplest and most straightforward attempt to achieve bit loading and obtain

the sum-rate in (4.1a) is to distribute the power budget Pbudget equally across all

subchannels regardless of their CNRi to obtain the subchannels SNRs as

γi = P u
i × CNRi =

Pbudget

N
× CNRi . (4.9)

Referred to as uniform power allocation (UPA), this solution disregards the CSI

that is assumed to be available at the transmit side. In other wards, no utilisation

of the CSI is considered and therefore non-adaptive bit loading is obtained as a

result. Fulfilling the mean BER constraint in (4.1d) with equality, the bit loading

of the UPA can be achieved with the aid of Fig. 4.1 as follows.

1. Calculate γQAM
k for all Mk, 1 ≤ k ≤ K and Pb,i = Ptarget

b ∀i using (4.8).

2. For all subchannels i, 1 ≤ i ≤ N , find the modulation order index ki ∈
{0, 1, 2, · · · , K} that satisfies

ki : γi ≥ γQAM
ki

and γi < γQAM
ki+1 . (4.10)

3. Load all subchannels i, 1 ≤ i ≤ N with bu
i bits given by

bu
i =







log2Mki
for ki 6= 0

0 for ki = 0
(4.11)

to obtain the UPA sum-rate as

Bu =
N∑

i=1

bu
i . (4.12)

4.3 Water-Filling Solution

By relaxing the constraint of finite-alphabet constellations in (4.1e) and assuming

Gray coded bit mapping Ps,i ≈ Pb,i× log2Mi, where Mi = 2bi is the QAM constel-

lation size of bi-bits symbols, the optimum solution to the constrained optimisa-

tion problem in (4.1a) leads to the well-known water-filling algorithm [123, 5].

This algorithm generally allocates more power to strong subchannels and less

power or even no power to weak subchannels.
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Figure 4.1: Subchannels residing into QAM levels according to their SNRs and UPA.

Defining θi
d
= CNRi

Γ
and substituting with (4.6), (4.2) can be rewritten as

bi = log2 (1 + Pi · θi) . (4.13)

Before proceeding further, it is easy to note that if Pi =
Pbudget

N
in (4.13), the UPA

solution presented in Section 4.2 will result but, however, it will be continuous

and unbounded in the QAM order M . Now, the optimum power allocation that

maximises the sum-rate in (4.1a) with the closed-form formula for bi in (4.13) is

given by the water-filling solution

Pw
i =







α − θ−1
i 1 ≤ i ≤ Nw,

0 otherwise .
(4.14)

In (4.14) Nw is the number of active subchannels for transmission and α ∈ R

is a constant known as “water-level” and selected to fulfil the constraint of the

total power budget in (4.1b) with equality as illustrated by Fig. 4.2. For a proof,

please refer to Appendix A.3. Obviously by assuming sorting of subchannels with

respect to their gains θi in a descending order (θi ≥ θi+1, ∀i), α can be determined

as

α =
Pbudget +

∑Nw

i=1 θ−1
i

Nw
. (4.15)

In computing α, it is easy to determine how many subchannels Nw are considered
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Figure 4.2: Graphical illustration of the water-filling solution given in (4.14).

in (4.15) by picking up all subchannels below the water-level α, i.e.

Nw : α ≥ θ−1
Nw

and α < θ−1
Nw+1 . (4.16)

Note that from (4.15), α is dependent on the total transmit power, i.e., if more

power is available for transmission, α is consequently increased allowing for more

subchannels Nw to be selected for transmission (see Fig. 4.2).

The optimum bit loading using the solution in (4.14) can be obtained by

substituting in (4.13) to obtain

bw
i =







log2(α · θi) 1 ≤ i ≤ Nw,

0 otherwise .
(4.17)

Noticeably, the resultant bit allocation bw
i , 1 ≤ i ≤ Nw obtained by (4.17) is

real-valued and requires, in practice, a rounding off to the nearest integer value.

This quantisation leads to a loss in the sum-rate achieved by this solution, which

degrades the overall performance. In order to account for discrete bit allocation,

the actual sum-rate Bw can be given by the following discrete formula

Bw =
Nw∑

i=1

bbw
i c , (4.18)

where b·c denotes the floor operator, returning the largest integer less than or

equal to its argument.

Fig. 4.3 shows the sum-rate performance of both pure and discrete water-
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filling algorithms compared to the non-adaptive (uniform) power allocation case

for a 4 × 4 MIMO system with Rayleigh-fading channel coefficients. The result

for the ergodic channel capacity is given by [124]

C = E

[

log2

∣
∣
∣INr

+
Pbudget

NtN0
HHH

∣
∣
∣

]

= E

[
∑r

i=1 log2

(

1 +
Pbudget

NtN0
λi

)]

, [bps/Hz]

(4.19)

where r and λi are, respectively, the rank and the ith eigenvalue of HHH , are

also provided for the sake of comparison.

The Greedy Approach

So far, the solutions provided for the constrained optimisation problem given

through (4.1a)-(4.1e) are not efficient, in the sense that violating the finite mo-

dulation orders constraint in (4.1e) and inevitable rounding in case of the water-

filling solution or inefficient power allocation in case of the UPA scheme. Alterna-

tively, the so-called incremental or greedy approaches optimising sum-rate using

power [115] and bit [116] loading schemes can achieve higher rates at the expense

of computational complexity. In fact, the greedy algorithm offers the rate-optimal

solution in case of discrete bit loading [110, 125] like our optimisation problem.

Generally speaking, optimality in greedy approaches is guaranteed by consi-

dering an appropriate bit allocation cost function, similar to (4.8), and iteratively

assigning one bit (or the smallest possible bit allocation step2) at a time to the

least cost-expensive subchannel. The greedy algorithm is characterised by two

main properties [126]:

• Firstly, at each step, the algorithmic operating point is always moved to-

wards the direction that guarantees the largest possible increment (decre-

ment) to the assigned objective function to be maximised (minimised).

• Secondly, a greedy algorithm proceeds only in a forward way, that is, it

never tracks back.

In the following two Sections two greedy algorithms aiming to maximise the

sum-rate of a multichannel system by solving (4.1a)-(4.1e) are investigated and

2For instance, if only square QAM constellations are allowed by a particular transmission
system, a step of two bits is considered instead.
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Figure 4.3: Sum-rate results for water-filling and uniform power of a 4 × 4 MIMO system at
SER = 10−3 and varying SNR.

compared, namely Greedy Bit Allocation (GBA) and Greedy Power Allocation

(GPA).

4.4 Greedy Bit Allocation (GBA) Algorithm

In order to achieve the sum-rate optimality with the constraints given in (4.1b)-

(4.1e), the first greedy algorithm, GBA, is introduced by considering (4.7). The

bit allocation cost function is selected to accomplish the mean BER constraint

given in (4.1d) which is defined for different subchannels BERs as

Pb =

∑N
i=1 biPb,i
∑N

i=1 bi

. (4.20)

However in order to achieve this, an initial power allocation scheme implementing

a simple UPA, i.e., Pi =
Pbudget

N
is defined. Looking at (4.1b) and (4.1d), the key

constraints for the GBA algorithm are highlighted by

N∑

i=1

Pi = Pbudget and Pb ≤ Ptarget
b . (4.21)
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Similar to [116], an incremental bit loading approach is presented to maximise the

sum-rate by efficiently fulfilling the mean BER in (4.21). Referring to (4.7), the

GBA algorithm starts with filling all subchannels with the highest possible QAM

modulation order MK and then proceeds with a bit removal approach [127]. The

optimal strategy of the GBA is considered by avoiding the worst bit-loading that

violates the condition of Ptarget
b . In other words, at each algorithmic iteration this

algorithm executes the bit removal approach by selecting the subchannel of the

highest degradation impact on the mean BER Pb in (4.20).

This solution, however, lacks the benefit of the efficient power distribution

as power is assumed to be equally distributed amongst all subchannels. The

complete GBA algorithm is given in Table 4.1.

4.5 Greedy Power Allocation (GPA) Algorithm

The second greedy algorithm is introduced by considering the power aspect of the

bit allocation cost function. To distribute power more reliably compared to the

GBA algorithm which considers a UPA across all subchannels, a sort of optimal

power allocation is to be investigated. The water-filling solution addressed in

Section 4.3 gives the optimal power allocation in case of continuous bit loading,

i.e. bi ∈ R. In practice, however, only discrete bit loading is permitted. Towards

this end GPA is proposed to optimise the sum-rate under the constraints given

in (4.1b)-(4.1e). Expression (4.8) is of particular interest for this goal as it returns

the minimum required allocated power (
γQAM

k

CNRi
) for a certain subchannel i of CNRi

to be loaded with a QAM modulation scheme of order Mk. Therefore optimality

is guaranteed in terms of saving power [115].

By adjusting the transmit power to exactly fulfil the target BER Ptarget
b across

all subchannels Pb,i = Ptarget
b , the GPA algorithm is trying to maximise the sum-

rate. Accordingly, the key constraints of the GPA algorithm are

N∑

i=1

Pi ≤ Pbudget and Pb = Ptarget
b . (4.22)

Note that Pb,i = Ptarget
b ∀i guarantees Pb = Ptarget

b in (4.22). Furthermore, (4.22)

it represents a reasonable assumption in terms of fair QoS across all subchannels

compared to the GBA algorithm. To proceed with the GPA algorithm, an initia-

lisation step of a UPA arrangements presented in Section 4.2 has to be performed
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Table 4.1: Bit Loading using GBA - Constraint (4.21)

Initialisation:
Calculate γi for all subchannels using UPA in (4.9)

Load all subchannels with MK , i.e., ki = K and bgba
i = log2MK ∀i

Calculate Pb,i for all subchannels 1 ≤ i ≤ N using (4.7)
Evaluate Pb using (4.20)
if Pb ≤ Ptarget

b

Maintain current bit loading
else
Recursion:

while Pb > Ptarget
b

j = argmax
1≤i≤N

(Pb,i)

kj = kj − 1
if kj ≥ 1

bgba
j = bgba

j − log2

(
Mkj+1

Mkj

)

Re-calculate Pb,j with γj and Mkj
using (4.7)

Update Pb using (4.20)
else

bgba
j = 0, Pb,j = 0

Update Pb using (4.20)

if
∑

j bgba
j = 03

Pb = 0
end

end
end

end

Bgba =
∑N

i=1 bgba
i

first. Since in UPA subchannels are assigned QAM modulation orders Mki
that

are lower in power than their actual SNRs γi as clearly represented by (4.10),

some unused (excess) powers from the total budget highlighted by the shadowed

areas in Fig. 4.1 arise, and are given by

P ex,u =
N∑

i=1

γi − γQAM
ki

CNRi

= Pbudget −
N∑

i=1

γQAM
ki

CNRi

. (4.23)

These excess powers along with the UPA bit allocation bu
i in (4.11) are the starting

point of the iterative GPA algorithm. Basically, the GPA algorithm achieves

optimality by trying to allocate P ex,u, finding at each iteration, the subchannel

with the minimum power required to upgrade to the next QAM level. These

upgrade powers P up
i are initially computed for all subchannels 1 ≤ i ≤ N in the
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UPA initialisation step.

The procedure of the GPA algorithm including the UPA initialisation is illus-

trated in Fig. 4.1 and stated completely in Table 4.2. The algorithm starts with

loading subchannels with bits up to the nearest QAM level that is just less in

power than the subchannel SNRs provided by the UPA initialisation. Then the

excess power P ex,u is collected and iteratively allocated, under the greedy ap-

proach, to subchannels that have not yet reached their maximum allowable QAM

level MK = 2bmax
. Finally, the sum-rate of this algorithm Bgpa and its final excess

power P ex,gpa are evaluated. The power usage of both UPA and GPA algorithms

are therefore

P u
used = Pbudget − P ex,u, (4.24a)

and P gpa
used = Pbudget − P ex,gpa, (4.24b)

which is a useful measure of how efficient, in terms of power utilisation, both

algorithms are. Note that this quantity is not defined for the GBA algorithm as

it uses, by definition, the total power budget, i.e. P gba
used = Pbudget.

4.6 BER Improvement via Excess Power Redis-

tribution

Since UPA and GPA algorithms presented in Sections 4.2 and 4.5, respectively,

cannot attain the complete usage of the total power budget due to the constraint

of fixed modulation orders, in addition to that BER has to be tied to a given

target value Ptarget
b for mathematical tractability. Therefore our second stage of

interest after achieving either the maximum possible sum-rate in case of UPA or

optimal sum-rate in case of GPA is to focus on extra possible BER performance

improvement from the upper limit of the target BER. This Section proposes to

utilise the remaining excess power for this aim. This is achieved by the redistri-

bution of the excess power of both UPA and GPA algorithms given, respectively,

by (4.24a) and (4.24b) in two distinctive algorithms namely: Uniform Power

Redistribution (UPR) and Fairness-BER Power Redistribution (FPR), both of

which are presented in the following.
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Table 4.2: Bit Loading using UPA and GPA - Constraint (4.22)

Initialisation:

Calculate γQAM
k for all Mk with Pb,i = Ptarget

b using (4.8)
Equally allocate Pbudget among subchannels using (4.9)
for i = 1 to N

Find ki that satisfy: γi ≥ γQAM
ki

and γi < γQAM
ki+1

if ki = 0

bu
i = 0, P up

i =
γQAM
1

CNRi

elseif ki < K

bu
i = log2Mki

, P up
i =

γQAM
ki+1 −γQAM

ki

CNRi

else
bu
i = log2Mki

, P up
i = +∞

end
end

Bu =
∑N

i=1 bu
i

Collect the excess power P ex,u using (4.23)
Initiate GPA bit allocation bgpa

i = bu
i ∀i & excess power P ex,gpa = P ex,u

Recursion:
while P ex,gpa ≥ min(P up

i ) and min(ki) < K
1. j = argmin

1≤i≤N

(P up
i )

2. Update kj = kj + 1, P ex,gpa = P ex,gpa − P up
j

if kj = 1

3. bgpa
j = log2M1, P up

j =
γQAM
2 −γQAM

1

CNRj

elseif kj < K

4. bgpa
j = bgpa

j + log2

(
Mkj

Mkj−1

)

, P up
j =

γQAM
kj+1−γQAM

kj

CNRj

else

5. bgpa
j = bgpa

j + log2

(
Mkj

Mkj−1

)

, P up
j = +∞

end
end

Evaluate Bgpa =
∑N

i=1 bgpa
i and P ex,gpa

4.6.1 Uniform Power Redistribution (UPR)

The simplest and straightforward way to redistribute the excess power that is left

unused by the UPA and GPA algorithms is to equally allocate these powers across

all active subchannels regardless of how much BER improvement is attained by

each subchannel. We refer to this power redistribution algorithm as uniform

power redistribution (UPR). The excess powers P ex,u and P ex,gpa are utilised

for BER improvement of both UPA and GPA, respectively. For the UPA, the

algorithm can be described as follows.
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1. Determine the active subchannels i : bu
i 6= 0 and their respective alloca-

ted modulation orders Mki
that are occupied by the UPA, where ki, as

above, is the index of the QAM modulation order Mk that is assigned to

the subchannel i.

2. Calculate the minimum required SNR to achieve Ptarget
b across these active

subchannels using (4.8) as

γQAM
ki

= F−1
(
Ptarget

b , Mki

)

.

3. Equally allocate the excess power P ex,u among all active subchannels and

compute the subchannel new SNRs as

γu
i = γQAM

ki
+

P ex,u

Nu
a

× CNRi , (4.25)

where Nu
a is the number of active subchannels under the UPA scheme.

4. Calculate the subchannel new BERs using (4.7) as Pu
b,i = F (γu

i , Mki
) and

then the mean BER Pu

b using (4.20).

The same procedures are used for the case of the GPA algorithm to redistribute

P ex,gpa and obtain Pgpa

b but the redistribution in this case should include all active

subchannels under the GPA scheme, Ngpa
a .

Note that, in general P ex,gpa ≤ P ex,u due to the improvement in power allo-

cation gained by the GPA algorithm and Ngpa
a ≥ Nu

a as a result of the chance

to upgrade more inactive subchannels to be involved for transmission with the

GPA application. Consequently, P ex,gpa

Ngpa
a

� P ex,u

Nu
a

is most likely to be expected and

accordingly by substituting in (4.25), the subchannel new SNRs in case of GPA

will result in less improvement in the mean BER Pgpa

b of the GPA compared to

that obtained by UPA.

4.6.2 Fairness-BER Power Redistribution (FPR)

The UPR presented above equally allocates the excess power among all active

subchannels, and results in unequal subchannel BERs that depend on CNRi and

the occupied modulation orders Mki
for each active subchannel i. Therefore,

the expected mean BERs Pu

b or Pgpa

b may be dominated by the worst indivi-

dual subchannel BERs as a result. Moreover, it is desirable to achieve uniform
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BER performance across all subchannels for fairness in QoS or link reliability

applications. Therefore in this Section we adapt the power redistribution for an

algorithm that can achieve this QoS fairness across all active subchannels for both

UPA and GPA algorithms; this algorithm is here referred to as fairness-BER po-

wer redistribution (FPR). Because derivations are identical for UPA and GPA,

superscripts referring to either are omitted in the following.

Compared to the UPR algorithm, a new factor µi ∈ R, 1 ≤ i ≤ Na,
∑

i µi = 1

is introduced to the last term of the r.h.s of (4.25) to adjust the power redis-

tribution conditions for equal BERs across all active subchannels. This can be

mathematically formulated as

solve for µ = [µ1, µ2, · · · , µNa
]

that results in γF
i = F−1

(
PF

b , Mki

)
∀i : 1 ≤ i ≤ Na,

(4.26)

where

γF
i = γQAM

ki
+ µi · P ex · CNRi (4.27)

are the new subchannel SNRs and PF
b is the fair (constant) BER across all active

subchannels. From (4.26) and (4.27), the entries of the unknown vector µ are

given by

µi =
F−1

(
PF

b , Mki

)
− γQAM

ki

P ex · CNRi
, 1 ≤ i ≤ Na . (4.28)

Since
∑Na

i=1 µi = 1 and by defining the function

f (Pb)
d
=

Na∑

i=1

F−1 (Pb, Mki
) − γQAM

ki

P ex · CNRi
− 1, (4.29)

it is possible to find the solution PF
b of f (Pb) such that f (Pb) |Pb→PF

b
' 0. The

bisection method is used to find this root of f (Pb).

The complete FPR algorithm is given as follows.

1. Given the active subchannels i : 1 ≤ i ≤ Na and their respective allocated

Mki
as well as CNRi, Ptarget

b , and P ex for either UPA or GPA algorithm,

calculate γQAM
ki

= F−1
(
Ptarget

b , Mki

)
using (4.8).

2. Locate two possible appropriate BER points that return the function f (Pb)

in (4.29) with two opposite-sign values that are close to zero. These Pb

points exists in the domain
(
0,Ptarget

b − ε
]
, where ε → 0+ while the corres-

ponding domain of f (Pb) ranges in (∞,−1].
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3. Use the bisection method to find the root PF
b that returns f

(
PF

b

)
→ 0 .

This BER solution is denoted by PF,u
b for the UPA algorithm and by PF,gpa

b

for the GPA algorithm.

Notice that, the complexity of this algorithm is dominated by the root finding

search method. While less complex methods may exist in the literature, the

bisection approach has been chosen because of its relative simplicity.

Fig. 4.4 demonstrates a simulated example of the function f (Pb) against its

BER argument Pb for both UPA and GPA under the FPR algorithm of a 6 × 6

MIMO system with a channel probe of entries hij ∈ CN (0, 1), Ptarget
b = 10−3, and

SNR = 30 dB. Obviously, the BER improvement of the UPA is much better than

that of the GPA as the function root PF,u
b ≤ PF,gpa

b as discussed in Sec. 4.6.1.

This is again due to the good expenditure of power attained by the GPA that

is used to maximise the sum-rate. It is also clearly noted that f (Pb) reaches its

solution PF,u
b faster than PF,gpa

b and its values for both UPA and GPA intersect

at Ptarget
b of 10−3.

4.7 Simulation Results

Since (4.8) and (4.7) are deduced from each other, a fair comparison between

GBA and GPA algorithms in terms of data throughput would be expected. The

difference between the algorithms lies in the sense of optimality considered by

each of them as highlighted in Sec. 4.4 and Sec. 4.5, respectively plus the key

constraints of these two algorithms given, respectively, in (4.21) and (4.22). In

order to investigate the performance of both GPA and GBA algorithms, computer

simulations are conducted for a 4 × 4 frequency-flat MIMO system with channel

matrix H ∈ CNr×Nt . The channel matrix entries hij are drawn from independent

identically distributed complex Gaussian distribution with zero mean and unit

variance, hij ∈ CN (0, 1). A target BER of P target
b = 10−3 is to be achieved

through the bit loading schemes of the GBA and GPA along with the UPA

algorithm. Fixed QAM modulation orders of
{
21, 22, · · · , 2bmax}

, where bmax =

6 bits, are constrained by the system under consideration.

It is shown from the throughput results in Fig. 4.5 that the GPA algorithm

performs better than both GBA and UPA algorithms. An explanation of this is

as follows: since the power allocation of the GBA algorithm is done using the

UPA, which is an inefficient power allocation scheme, therefore wastes power for

unnecessary improvement (compared to the requirement of Ptarget
b ) of the mean

BER Pb < Ptarget
b . On the other hand, the GPA algorithm efficiently utilises the
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total power budget Pbudget (power is allocated according to the greedy approach)

to maximise the overall throughput while achieving BER to its maximum require-

ments, Pb,i = Ptarget
b , ∀i. This means better investment of the total power towards

the rate maximisation problem.

Fig. 4.6 shows the throughput versus different target BER values at SNR=25 dB.

Intuitively, throughput is increasing with the increase of target BER. The GPA

algorithm outperforms its GBA counterpart by more than 1.2 bits/symbol at

Ptarget
b = 10−7 and this improvement gradually decreasing with further increa-

sing of the target BER to reach ' 0.8 bit at Ptarget
b = 10−3. A fixed increase of

more than 1.6 bits/symbol over the whole target BER range can be noted as an

advantage of the GPA algorithm over the UPA scheme.

In Fig. 4.7, the power usage of UPA and GPA algorithms are compared, in

conjunction with the achieved rate in Fig. 4.5, which shows better performance

of GPA over UPA algorithm. Note that the GBA algorithm (shown as the Pbudget

curve) cannot be compared here as it spends, by definition, the entire power bud-

get to improve the achieved mean BER as will be shown in Fig. 4.8. Once the

throughput reaches its expected maximum of 24 bits (6 bits over all 4 subchan-

nels), extra power is no longer required. Therefore, the effective used power for

both UPA and GPA algorithms given in (4.24a) and (4.24b), respectively, starts

to saturate to the minimum power that is theoretically required to achieve the

maximum bit loading bmax for all subchannels, i.e.,
∑

i
γQAM

K

CNRi
which is found to be

≈ 38.17 dB and highlighted by the dashed line in Fig. 4.7.

As proposed in Section 4.6 and demonstrated in Fig. 4.7, the excess power of

both UPA and GPA algorithms is redistributed to improve the BER performance.

Fig. 4.8 shows these improvements for both power redistribution algorithms UPR

and FPR compared to the actual achieved BER of the GBA algorithm. Mean

BER is investigated against varying SNR showing BER improvements compared

to the target BER (of 10−3) for all algorithms. Interestingly, both UPA and

GPA algorithms with excess power redistribution can achieve better mean BER

performance than the GBA algorithm of [116]. Again these results should be

seen in conjunction with the achieved rate in Fig. 4.5. It is also noted that

FPR performs better than UPR if applied to the UPA, while the situation is

inverted for the GPA algorithm. This can be attributed to the fact that the

excess power of the UPA algorithm is greater than that of the GPA, and hence it

is most likely that the mean BER of UPA-UPR is dominated by subchannels of

poor CNRi while the FPR algorithm is advantageous in this case because of its

inherently fair BER property. On the other hand, since for the GPA algorithm
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Figure 4.8: BER improvements of UPA and GPA algorithms.

the excess power is relatively small and another constraint of balancing BERs

across all active subchannels, most of the redistributed power will be occupied by

subchannels in lower QAM levels leading to lower BER performance compared

to that obtained by the UPR algorithm.

4.8 Conclusion

In this Chapter, the problem of data rate maximisation has been considered. The

inefficient uniform power allocation (UPA) scheme leads to poor throughput per-

formance of multichannel systems with constrained-loading parameters. This can

be improved through rate maximisation using greedy power GPA and bit GBA

allocation schemes. Both algorithms share the main target of optimising the ove-

rall system throughput. The GPA algorithm tackles this from the efficient power

utilisation point of view keeping the target BER to its maximum requirements,

while the GBA algorithm guarantees a lower average BER than the target is.

Since the GBA approach sacrifices power utilisation by adapting UPA for BER

improvements, a degradation in the achieved data rate is expected as a result.

By optimising power allocation, GPA demonstrates optimal performance in the

discrete rate maximisation sense. Another aspect of UPA and GPA schemes is

that power can be saved in achieving the target BER, which can be redistributed
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for better BER using different design aspects. Simulation results show that both

UPA and GPA can achieve much better BER performance compared to the GBA

scheme. More importantly, GPA can achieve lower BER compared to the GBA

algorithm while keeping the data throughput to its optimal figure. In Table 4.3

power and bit loading schemes discussed in this chapter are briefly summarised.

The different schemes discussed in this chapter are optimal in various senses,

such as maximisation of the sum-rate. However, the computational complexity

of greedy algorithms is well-known to be excessive [118, 128], therefore the next

chapter will consider low-cost suboptimal approaches.

Table 4.3: Summary of power and bit loading schemes considered in this chapter.

scheme maximisation constraints power
allocation

bit
allocation

UPA - Pi =
Pbudget

N
and

Pb = Ptarget
b

uniform -

GBA sum-rate
∑N

i=1 Pi = Pbudget

and Pb ≤ Ptarget
b

uniform greedy,
bit-removal

GPA sum-rate
∑N

i=1 Pi ≤ Pbudget

and Pb = Ptarget
b

greedy greedy,
bit-filling



Chapter 5

Reduced-Complexity Schemes for

Greedy Power Allocation

The introduced greedy bit and power allocation algorithms in Chapter 4 share

the characteristic of high complexity. Owing to the iterative nature of these al-

gorithms to optimally achieve their respective objective functions, the computa-

tional complexity is dramatically increases with the number of subchannels. The

situation becomes practically prohibitive for multicarrier systems (e.g. OFDM)

as the number of subcarriers is usually high and can reach e.g. up to 213 for digital

video broadcasting (DVB) [34] for terrestrial (DVB-T) [35] or handheld (DVB-

H) [36] standards. While achieving rate optimality, the family of greedy algo-

rithms is also known to be greedy in terms of computing requirements. There-

fore, reduced complexity schemes are either water-filling-based only [123] or aim

at simplifications [128]. Seeking for suboptimal greedy power allocation schemes

with reduced-complexity is therefore of particular interest.

In this Chapter, reduced-complexity schemes for GPA are explored aiming to

achieve near optimum data throughput performance. Compared to the standard

GPA, which is optimal in terms of maximising the data throughput, three su-

boptimal schemes are proposed, which perform GPA on subsets of subchannels

only. These subsets are created by considering the minimum SNR boundaries

of QAM levels for a given target BER. We demonstrate how these schemes can

significantly reduce the computational complexity, especially for large number of

subcarriers. Two of the proposed algorithms can achieve near optimal perfor-

mance by including a transfer of residual power between subsets at the expense

of a very small extra cost.

88
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5.1 Multichannel System Models

In OFDM, multiplexing over MIMO channels, or general transmultiplexing tech-

niques a number of independent subcarriers or subchannels arise for transmis-

sion, which differ in SNR. Maximising the data throughput over these subcar-

riers/subchannels under the constraints in (4.1b)-(4.1e) with Pb,i = Ptarget
b ∀i :

1 ≤ i ≤ N is provided by the GPA algorithm presented in Section 4.5 as discussed

in Chapter 4. The basis over which the GPA achieves its optimal bit allocation

is formed by the subchannel gains gi, 1 ≤ i ≤ N given generally in (4.5). In

the following, we will introduce these subchannel gains for two different system

models.

• MIMO Narrowband

In a simple MIMO system of a narrowband channel characterised by a matrix H ∈
CNr×Nt of complex coefficients hij which describe the complex gains between the

jth transmit and the ith receive antenna. The SVD can be used to decouple the

system H into N = rank (H) ≤ min (Nt, Nr) subchannels whose gains are equal

to the singular values gi = σi, i = 1 . . .N that are ordered such that σi ≥ σi+1 ∀i.

The channel-to-noise ratio of the ith subchannel defined previously in (4.5) is

therefore

CNRi =
σ2

i

N0

. (5.1)

• MIMO-OFDM

For the broadband MIMO case, OFDM can be used to turn a frequency-selective

MIMO channel into a set of parallel frequency-flat MIMO channels. Applying

again the SVD on these frequency-flat MIMO channels analogous to the MIMO

narrowband case above results in an N -subcarrier system with different gains

|Hi| , i = 1 · · ·N , where N here denotes the total number of subcarriers of the

resultant OFDM multicarrier system. In severe ISI MIMO channels, N has to be

selected large enough to properly satisfy the uncorrelation assumption of these

frequency-flat MIMO channels. The channel-to-noise ratio of the ith subcarrier

is then

CNRi =
|Hi|2
N0

. (5.2)
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In both cases, we result in an N subchannel/subcarrier1 system whereby data-rate

is to be maximised.

5.2 Subchannel Grouping Concept

In Chapter 4, the analysis of both UPA and GPA algorithms assumed that the

BER is identical across all subchannels and equal to the target BER Pb,i =

Ptarget
b , therefore the subscript i will be dropped from the BER notation. Based

on (4.8), the minimum SNR that is required to allocate bk = log2Mk bits with

the achievement of Ptarget
b for any subchannel is

γQAM
k =







1
2

[
Q−1

(
Ptarget

b

)]2
for BPSK,

Mk−1
3

[

Q−1

(
1−
√

1−Ptarget
b

·log2Mk

2(1−1/
√

Mk)

)]2

for M QAM .
(5.3)

By equally allocating the transmit power budget across all subchannels, the UPA

algorithm described in Section 4.2 can be modified rephrased by considering the

division of subchannels into QAM groups. This can be viewed as collectively

grouping the subchannels in Fig. 4.1 according to their SNRs γi, 1 ≤ i ≤ N

resulting in either Fig. 5.1 in case of a multicarrier system or Fig. 5.2 in case of

an ordered multicarrier system or after applying the SVD in order to decouple a

narrowband MIMO system. With the aid of Figs. 5.1 and 5.2, these groups are

created by considering the minimum SNR boundaries of QAM levels for a given

target BER. In Sec. 5.2.1, a typical UPA is performed, however, in its subchannels

grouping version.

5.2.1 Grouped UPA and Initialisation Setup

The following steps constitute the grouped UPA concept and will form the first

stage of any later refinements.

1. Calculate γQAM
k for all Mk, 1 ≤ k ≤ K using (5.3).

2. Equally allocate Pbudget among all subchannels 1 ≤ i ≤ N and compute the

subchannel SNRs γi using (4.9).

1In the sequel, unless otherwise stated, we will use the term “subchannel” to refer to both
subchannels or subcarriers.
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γQAM
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& QAM levels

Figure 5.1: Subchannel grouping of a multicarrier system into K + 1 QAM groups based on
their SNRs in (4.9) and step (3) of Sec. 5.2.1.

3. Allocate subchannels according to their SNR γi to QAM groups Gk, 0 ≤
k ≤ K bounded by QAM levels γQAM

k and γQAM
k+1 with γQAM

0 = 0 and

γQAM
K+1 = +∞ (cf. Figs. 5.1 and 5.2) such that

γi ≥ γQAM
k and γi < γQAM

k+1 . (5.4)

4. For each QAM group Gk, load subchannels within this group with QAM

constellation Mk and compute the group’s total allocated bits

Bu
k =

∑

i∈Gk

bu
i,k =

∑

i∈Gk

log2Mk, (5.5)

with Bu
0 = 0. The excess (unallocated) power of the QAM group Gk as

in (4.23) is given by P ex,u

P ex,u
k =

∑

i∈Gk

γi−γQAM
k

CNRi
=
∑

i∈Gk
Pi − γQAM

k

CNRi

= Nk
Pbudget

N
−∑i∈Gk

γQAM
k

CNRi
,

(5.6)

where Nk, 1 ≤ k ≤ K is the number of subchannels that occupies the QAM

group Gk.

5. The overall allocated bits and the used power for the grouped UPA are
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Figure 5.2: Ordered subchannel grouping of a MIMO system into K + 1 QAM groups based
on their SNRs in (4.9) and step (3) of Sec. 5.2.1.

identical to that obtained by the UPA algorithm given in Section 4.2 and

are given, respectively, as

Bu =
K∑

k=1

Bu
k (5.7a)

P u
used = Pbudget − P ex,u, (5.7b)

where the overall excess power P ex,u in (5.7b), identical to the previous

case in (4.23), constitutes the power that remains unallocated in all QAM

groups, that is,

P ex,u =
K∑

k=0

P ex,u
k . (5.8)

Note that the summation in (5.7a) starts from group G1 since none of the

subchannels in G0 will be loaded in this initialisation.

The difference between the transmit power budget and the overall used power

P u
used represents a useful measure to indicate how well a bit loading scheme uti-

lises the total system transmit power Pbudget. The closer the used power to Pbudget,

the better is the utilisation of the available transmit power budget achieved by a

specific power loading scheme. Therefore, it is clear from (5.7b) that the amount

of excess power P ex,u
k that is left unused has an impact on the performance of the
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UPA scheme. The worst cases are P ex,u
0 and P ex,u

K which reveal inefficient power

allocations in situations of low-to-medium and medium-to-high SNRs, respecti-

vely, as will be discussed in Section 5.7.

5.2.2 Full GPA Algorithm and Ways Forward

Based on the initialisation step described in the previous section, the full GPA

algorithm [115] presented in Table 4.2 performs an iterative re-distribution of

the unallocated power of the UPA algorithm P ex,u by applying the algorithmic

steps detailed in the second (recursion) part of Table 4.2. At each iteration, this

algorithm achieves bit loading optimality by upgrading (to the next higher QAM

level) the subchannel with the least power requirements through an exhaustive

search by performing step (1) in Table 4.2 for all subchannels N . When either

i) the remaining power cannot support any further upgrades or ii) all subchannels

appear in the highest QAM level K, the algorithm stops, resulting in the system

allocated bits and used power given, respectively, by

Bgpa =

N∑

i=1

bgpa
i (5.9a)

P gpa
used = Pbudget − P ex,gpa . (5.9b)

Given Bu
k as defined in (5.5) and P ex,u

k in (5.6), three low-complexity greedy

algorithms are proposed to efficiently utilise the total excess power of the UPA

in (5.8) using the QAM grouping concept. More precisely, GPA is separately

accomplished for each QAM group Gk aiming to increase the total bit allocation

to this group and therefore the overall allocated bits. Based on the way of uti-

lising P ex,u
k , 0 ≤ k ≤ K, we propose three different algorithms, which below are

referred to as (i) grouped GPA (g-GPA), (ii) power Moving-up GPA (Mu-GPA)

and (iii) power Moving-down GPA (Md-GPA). In the following sections these

algorithms are presented in turns.

5.3 Grouped Greedy Power Allocation (g-GPA)

As discussed in Section 4.5, optimum discrete bit loading constrained by total

power and maximum permissible QAM order can be performed by the GPA ap-

proach. However, the direct application of the GPA algorithm is computationally



5.3. Grouped Greedy Power Allocation (g-GPA) 94

very costly due to the fact that at each iteration an exhaustive searching across all

N subchannels is required as is evident from Table 4.2. This searching step (1)

of Table 4.2 is, in fact, dominating the computational complexity of practical

loading algorithms [118, 128].

A simplification of the GPA algorithm can be achieved if subchannels are

firstly divided into QAM groups Gk, 0 ≤ k ≤ K according to their SNRs as

shown in Fig. 5.1 (for non-ordered2 subchannels). After ordering or due to the

implicit ordering of the singular values in case of SVD-based decoupling of MIMO

systems, the grouping as shown in Fig. 5.2 arises. The g-GPA algorithm proceeds

by independently applying the GPA algorithm to each group Gk, trying to allocate

as much of the excess power P ex,u
k within this QAM group as possible. This excess

power is iteratively allocated to subchannels within this group according to the

greedy concept with the aim of upgrading as many subchannels as possible to the

next QAM level.

With the aid of Fig. 5.3, the expected reduction in computational complexity

that can be gained by the arrangements of the g-GPA algorithm compared to the

standard full GPA presented in Section 4.5 is highlighted as follows. Assume that

subchannels are sorted in descending order with respect to their CNRi as shown

in Fig. 5.3. Since the GPA algorithm re-distributes the total excess power P ex,u

globally across all subchannels which spread over all QAM groups, it is possible

to find two subchannels i ∈ Gv and j ∈ Gu with the following properties:

CNRi > CNRj ,

∆γQAM
v = γQAM

v+1 − γQAM
v > ∆γQAM

u = γQAM
u+1 − γQAM

u .

(5.10a)

The upgrade powers required to promote subchannels i and j to QAM groups

Gv+1 and Gu+1, respectively, are therefore

P up
i =

∆γQAM
v

CNRi
and P up

j =
∆γQAM

u

CNRj
, (5.10b)

where QAM group Gv is higher than Gu. Obviously from (5.10a) and (5.10b), we

cannot assume that all upgrade powers P up
i , 1 ≤ i ≤ N are in ascending order as

it is possible to find P up
j < P up

i . Therefore, subchannel ordering does not lead to

any improvement in the complexity of the full GPA algorithm as all subchannels

N have to be considered in every iteration of power re-distribution. Contrarily,

2Ordering here refers to descending order of subchannels with respect to their CNRi.
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for the g-GPA algorithm since ∆γQAM
k is fixed for all subchannels in QAM group

Gk, ordering subchannels gains CNRi, i ∈ Gk (the denominators in (5.10b)) either

in ascending or descending fashion will lead to an overall ordering of P up
i , i ∈ Gk.

Accordingly, the allocation of P ex,u
k within this group can be done sequentially

without the need for any sorting, which will significantly simplify the computa-

tional complexity of the g-GPA algorithm, as will be discussed in detail in Section

5.6.

The pseudo code of the g-GPA algorithm for the subchannels in the kth QAM

group Gk is given in Table 5.1, where subchannels are assumed to be not ordered

in their CNR gains. Note that different from the standard GPA, this algorithm

permits upgrades to the next QAM level only for a given QAM group, with P up
j

set to +∞ in steps (5) and (6) in Table 5.1. Therefore some left-over (LO) power

P LO
k may remain for each QAM group Gk, resulting in a total LO power of

P LO
g =

K−1∑

k=0

P LO
k + P ex,u

K . (5.11)

Intuitively, for the overall operation of the g-GPA algorithm, the algorithm in

Table 5.1 has to be executed K times, once for each QAM group, from G0 to

GK−1, resulting in the system allocated bits and used power given, respectively,

by

Bg =

K−1∑

k=0

Bg
k + Bu

K (5.12a)

P g
used = Pbudget − P LO

g . (5.12b)

CNRi

γQAM
u

∆γQAM
u Group: Gu

...

γQAM
v+1

Group: Gv∆γQAM
v

...

...
γQAM

u+1

0

γQAM
v

i j

. . .

CNRj

· · ·
...

ordered subchannel indices

Figure 5.3: Illustration of the reduction in complexity gained by the g-GPA algorithm com-
pared to the standard GPA algorithm.



5.4. Power Moving-up GPA (Mu-GPA) 96

Table 5.1: g-GPA Algorithm for Subchannels in the kth QAM Group Gk

1. ∀i ∈ Gk, calculate the upgrade power P up
i = (γQAM

k+1 −γQAM
k )/CNRi

2. Initiate bg
i,k = bu

i,k in (5.5) and P LO
k = P ex,u

k in (5.6)

while P LO
k ≥ min(P up

i )
3. j = argmin

i∈Gk

(P up
i )

4. P LO
k = P LO

k − P up
j

if k = 0
5. bg

j,k = log2M1, P up
j = +∞

else

6. bg
j,k = bg

j,k + log2
Mk+1

Mk
, P up

j = +∞
end

end
7. Evaluate Bg

k =
∑

i∈Gk

bg
i,k and P LO

k

5.4 Power Moving-up GPA (Mu-GPA)

The g-GPA algorithm presented in Section 5.3 results in unallocated power P LO
k

for each QAM group Gk. This residual power can be exploited by a second stage,

whereby it is proposed to move power upwards starting from the lowest QAM

group G0 to QAM group GK−1 as outlined in Fig. 5.4 and by the flowchart in

Fig. 5.5. This modifies the g-GPA algorithm by considering the LO power P LO
0

of the QAM group G0 after running the g-GPA algorithm on that group and

assigns this power for re-distribution to group G1 along with the excess power

P ex,u
1 . Any LO power after running g-GPA on G1 is then passed further upwards

to G2, and so forth. At the kth algorithmic iteration, the Mu-GPA algorithm is

working with QAM group Gk and tries to allocate the sum of the excess power

missed by the UPA algorithm of that group as well as the LO power resulting

from the application of the g-GPA algorithm to the previous group Gk−1, i.e.,

P ex,u
k + P LO

k−1 (cf. Fig. 5.4). Finally, the LO power resulting from the QAM group

GK−1 is added to the excess power of the Kth QAM group P ex,u
K to end up with

a final LO power

P LO
Mu−g = P LO

K−1|Mu−g + P ex,u
K , (5.13)

where P LO
K−1|Mu−g is the final LO power of the iterative structure of the Mu-GPA

algorithm as demonstrated by the flowchart in Fig. 5.5. To distinguish from the

individual LO powers of the g-GPA algorithm P LO
k in (5.11), the subscript |Mu−g

is used to declare the Mu-GPA algorithm. The overall number of allocated bits
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Figure 5.4: Algorithmic arrangements for the Mu-GPA algorithm with final left-over power
in (5.13).
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Figure 5.5: Flowchart of the Mu-GPA algorithm.
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and the amount of used power for Mu-GPA algorithm are, respectively,

BMu−g =

K−1∑

k=0

BMu−g
k + Bu

K (5.14a)

PMu−g
used = Pbudget − P LO

Mu−g . (5.14b)

Note that this final LO power P LO
Mu−g is of course less than P LO

g of the g-GPA

algorithm as

P LO
K−1|Mu−g ≤

K−1∑

k=0

P LO
k (5.15)

which emphasises an improvement in bit allocation of the Mu-GPA over that

obtained by the g-GPA algorithm.

5.5 Power Moving-down GPA (Md-GPA)

A second algorithm is proposed to exploit the residual power P LO
k of each QAM

group of the g-GPA algorithm but in a possibly reverse direction compared to

the Mu-GPA algorithm. Starting from the highest-indexed QAM group GK−1

downwards to the lowest-indexed QAM group G0, the Md-GPA algorithm, simi-

lar to the Mu-GPA algorithm, tries to improve the bit allocation by efficiently

utilising P LO
k , K − 1 ≥ k ≥ 1 plus the excess power P ex,u

K . These procedures are

illustrated in Fig. 5.6 which show the direction of the LO power flow. Proceeding

downwards, at the kth stage the Md-GPA scheme applies the g-GPA algorithm

for the available power that comprises both the excess power missed by the UPA

algorithm of the previous QAM group (Gk+1 in this case) and the LO power of

the previous stage, i.e. P ex,u
k+1 + P LO

k+1, (cf. Fig. 5.6). Therefore, the excess power

of the QAM group under consideration along with its LO power is not utilised

within this group but is transferred to the next working group. This will finally

result in a LO power of

P LO
Md−g = P LO

0 |Md−g + P ex,u
0 . (5.16)

The subscript |Md−g is used, as in Section 5.4, to emphasis the LO power of the

Md-GPA algorithm. Again the final LO power P LO
Md−g is expected to be less than
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P LO
g of the g-GPA algorithm, which can be signified by noting that

P LO
0 |Md−g �

K−1∑

k=1

P LO
k + P ex,u

K (5.17)

P ex,u
0 ≥ P LO

0 . (5.18)

Equation (5.17) demonstrates a straightforward advantage of using Md-GPA com-

pared to g-GPA as all unallocated power terms of the g-GPA appearing in the

r.h.s. of (5.17) are efficiently re-distributed under the Md-GPA algorithm. Most

particularly P ex,u
K , which is entirely missed by the g-GPA, is allocated by the Md-

GPA algorithm. This will prominently improve the bit allocation of this scheme

especially for high SNR as will be discussed in Section 5.7. On the other hand the

only power term that is unallocated by the Md-GPA is P ex,u
0 in (5.18) which is

greater than P LO
0 of the g-GPA. By summing analogous sides of (5.17) and (5.18),

the final LO powers of both Md-GPA and g-GPA algorithms respectively result.

The flowchart of this algorithm is analogous to that of the Mu-GPA algorithm,

and hence omitted here. The overall number of the allocated bits and the amount

of used power are, respectively,

BMd−g =
K−1∑

k=0

BMd−g
k + Bu

K (5.19a)

PMd−g
used = Pbudget − P LO

Md−g . (5.19b)

5.6 Computational Complexity Evaluation

In order to address the significance of the proposed power loading schemes in

terms of simplicity compared to the full GPA algorithm, the computational com-

plexity of both the g-GPA and GPA algorithms are evaluated. Instead of jointly

applying the GPA algorithm across all subchannels which consequently requires

high system complexity especially for large numbers of subchannels, the g-GPA

algorithm only addresses a subset of subchannels within a specific QAM group at

a time. With the aid of Fig. 5.3 it is obvious that the search step (1) of Table 4.2,

which represents the complexity bottleneck of the GPA algorithm, has to include

all subchannels N in every iteration regardless of initial subchannel ordering. This

is because it is possible to find subchannels in lower QAM levels that require less

power to upgrade than others in higher QAM levels as demonstrated in Section
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5.3. Beyond the division of the QAM grouping concept, a further reduction in

complexity can be achieved if subchannels are initially ordered by their gains

CNRi. In this case the search step (3) in Table 5.1 can be replaced by a simple

incremental indexing.

Referring to Table 4.2 and Table 5.1, the computational complexities of both

GPA and g-GPA algorithms are summarised in Table 5.2, whereby the number of

operations is computed for each algorithm. We consider the cases where subchan-

nel SNRs are either ordered prior to involving g-GPA, or where the ordering is left

to any of the g-GPAs. Note that for the GPA algorithm, ordering of subchannels

does not lead to any improvement in complexity as the search step (1) in the while

loop has to include all subchannels. This is due to the fact that by relaxing the

grouping concept it is possible to find subchannels in lower QAM levels that need

less power to upgrade than others in higher QAM levels as highlighted in Section

5.3. Whereas in the case of the g-GPA algorithm, initial sorting of subchannels

according to their CNRi (see Fig. 5.2) is sufficient to avoid the repetitive search

(sorting) step (3) of Table 5.1 as this algorithm is independently applied for the

subchannels that are bounded by one QAM level only.

The quantities L1 and Lk
2 in Table 5.2 denote, respectively, the number of

iterations of the while loops for the GPA (Table 4.2) and the g-GPA (Table 5.1)

algorithms. Note that it is expected that L1 ≥ L2 =
∑K−1

k=0 Lk
2 as P ex,u in (5.6)

collected from all subchannels has to be re-distributed by the GPA algorithm,

while P ex,u
k collected only from subchannels i ∈ Gk is considered by the g-GPA

algorithm.

Obviously, the number of subchannels that occupies QAM group Gk defined

in (5.6) as Nk cannot be easily quantified as it depends on both the CNRi, which
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is a chi-squared distributed random variable, and the operating SNR. Therefore

the complexity of the g-GPA algorithm is evaluated in a heuristic fashion. In the

worst case and by assuming that subchannels are uniformly distributed across

all QAM groups, i.e. Nk = N/K, the complexity of the g-GPA algorithm can be

approximated as given in Table 5.2 which is lower than its GPA counterpart.

5.7 Numerical Results and Discussion

Sections 5.4 and 5.5 have shown that both Mu-GPA and Md-GPA algorithms

work very similarly in utilising the power P LO
k that remained unused by the g-

GPA algorithm for all groups k, 0 ≤ k ≤ K − 1. The two algorithms differ in the

direction in which P LO
k is transferred. Below we compare by simulations the bit

allocation performance of the two algorithms with the UPA, GPA, and the g-GPA

approaches. Two simulation sets of results are conducted to explore the achieved

data throughput of the considered algorithms for the case of MIMO narrowband

and OFDM-multicarrier systems.

5.7.1 MIMO Narrowband Case

The proposed loading schemes are tested for a 10×10 MIMO narrowband system

to investigate bit loading performance. The entries of the channel matrix H are

drawn from a complex Gaussian distribution with zero mean and unit variance,

i.e., hij ∈ CN (0, 1). Results presented below refer to ensemble averages across

104 different channel realisations for a target BER of Ptarget
b = 10−3 and various

levels of SNRs using square QAM modulation schemes Mk = 22k, k = 1 · · ·K
with K = 4 being the maximum permissible QAM level of constellation size, i.e.,

MK = 256 which is equivalent to encoding bmax = 8 bits per data symbol.

The total system data throughput is examined and shown in Fig. 5.7 for all

proposed algorithms in addition to both UPA and standard GPA algorithms. It

Table 5.2: Computational analysis for both GPA and g-GPA algorithms.

algorithm number of operations
GPA (order and no order) L1(2N + 7) + 4N + 1

g-GPA (no order)
∑K−1

k=0 Lk
2(2Nk + 4) + 2Nk + 2

≈ L2(2
N
K

+ 4) + 2N
K

+ 2

g-GPA (order)
∑K−1

k=0 Lk
2(Nk + 5) + 2Nk + 2

≈ L2(
N
K

+ 5) + 2N
K

+ 2
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is evident that UPA represents an inefficient way of bit loading since the perfor-

mance is approximately 5 to 10 dB below other algorithms for normal operating

SNR, and provide approximately half the throughput at 10 dB SNR.

Of the proposed low-complexity greedy algorithms, both Mu-GPA and Md-

GPA algorithms outperform the g-GPA without the refinement stage to allocate

residual power across QAM groups. Interestingly, Mu-GPA performs better at

low SNR, while Md-GPA performs better at higher SNRs. This can be attributed,

as discussed in Sections 5.4 and 5.5, to the fact that for low-to-medium SNRs P ex,u
K

(which is missed by the Mu-GPA) in this case will be relatively low and can be

allocated without violating the constraint on the maximum QAM level MK . In

contrast, P ex,u
0 which is missed by the Md-GPA is most likely to be high, please

see (5.6) and Fig. 5.2. For medium-to-high SNRs P ex,u
K > P ex,u

0 can be expected to

be high, and then Md-GPA is advantageous in its bit allocation, as the maximum

QAM level constraint is beginning to be felt and P ex,u
K is fully utilised by the

Md-GPA algorithm.

Finally, for very high SNRs most subchannels will appear in the highest QAM

group GK as their SNRs, γi in (4.9), exceed the highest QAM level γQAM
K in (5.3).

As a result, the overall throughput of all different algorithms reaches its expected

maximum of 10 × bmax bits/symbol.

The data throughput performance of the various algorithms can also be confir-

med when considering the power utilisation. Fig. 5.8 shows the total transmit

power budget and the levels of power allocation that are reached by the different

algorithms. For Md-GPA and Mu-GPA it can be noted that within their respec-

tive superiority regions both are very close to the performance of the standard

GPA which demonstrate the efficient utilisation of the LO power missed by the g-

GPA algorithm. Nevertheless, at high SNR both g-GPA and Mu-GPA algorithms

behaves like the UPA algorithm due to the increase of P ex,u
K which is missed by

both of them and therefore deteriorates their performances. Note that the mi-

nimum theoretical transmit power according to (5.3) that is required to load all

subchannels with bmax averaged over all 104 channel realisations is an approximate

SNR of 49.6 dB as shown in Fig. 5.8

5.7.2 OFDM-Multicarrier Case

Another simulation set is conducted to examine the performance of our propo-

sed greedy power allocation schemes for an OFDM-multicarrier system. Here
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we assume, for simplicity, a SISO-OFDM3 system, whereby the ISI channel is

characterised by an impulse response of order Q = 5 organised in a vector

h = [h0 · · ·hQ] ∈ C
Q+1 with entries drawn from an independent complex Gaus-

sian process with zero mean and unit variance. Results are considered for a

32-subcarrier system averaged over 104 different channel realisations for a tar-

get BER of Ptarget
b = 10−3 and varying SNR using the same QAM modulation

schemes of constellation orders Mk = 2k, k = 1 · · ·6, i.e. rectangular QAM modu-

lations with bmax = 6 bits. The total system throughput is shown in Fig. 5.9 for

all proposed algorithms in addition to both UPA and standard GPA algorithms.

It is clearly shown that both Mu-GPA and Md-GPA algorithms perform very

close to the GPA algorithm (with throughput loss ≤ 4 bits) within their SNR

favourable regions, which swap approximately at SNR = 25.8 dB. Fig. 5.10 again

shows the power usage of all algorithms that is required to reach their respective

throughput of Fig. 5.9. Compared to the optimum GPA, the Md-GPA algorithm

demonstrates very close power utilisation with some inferior performance due to

missing to allocate the final LO power in (5.16). At higher SNRs, both Mu-GPA

and g-GPA algorithms converge to the power usage performance of the UPA algo-

rithm as P ex,u
K dominates other P ex,u

k , 0 ≤ k ≤ K − 1 and therefore only Md-GPA

algorithm is advantageous in this region. Note that, similar to Fig. 5.8 the mi-

nimum theoretical transmit power according to (4.8) that is required to load all

subcarriers with bmax is an approximate SNR of 41.6 dB as shown in Fig. 5.10.

5.7.3 Computational Complexity Results

In order to evaluate the computational complexity of the proposed power alloca-

tion schemes compared to the standard GPA algorithm, the number of algorith-

mic operations presented in the complexity analysis in Section 5.6 is tested and

compared for both g-GPA and GPA algorithms using a 1024-subcarrier system.

Table 5.3 gives the simulation results of the number of operations (averaged over

104 channel instances) for both “no order” and “order” cases of the g-GPA algo-

rithm along with the GPA algorithm at three different values of SNR of 15, 25 and

35 dB. It is clearly noted that L2 =
∑K−1

k=0 Lk
2 is less than L1 for all SNR values

which validates the complexity analysis of Section 5.6. Furthermore, a reduction

of almost half the number of operations can be gained by ordering subchannels of

the g-GPA algorithm which results in an overall reduction factor compared to the

full GPA algorithm of approximately 2, 3, and an order of magnitude for SNR

3The extension to the MIMO-OFDM case is straightforward.



5.7. Numerical Results and Discussion 105

5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

200

SNR [dB]

T
hr

ou
gh

pu
t [

bi
ts

/s
ym

bo
l]

 

 

UPA
GPA
g−GPA
Mu−GPA
Md−GPA

25 26 27

115

120

125

130

135

 

 

Figure 5.9: Overall throughput for a 32-subcarrier system with a target BER of Ptarget

b
= 10−3.

5 10 15 20 25 30 35 40 45

10
1

10
2

10
3

10
4

SNR [dB]

P
us

ed
/N

0

 

 

UPA
GPA
g−GPA
Mu−GPA
Md−GPA
P

budget

25 25.5 26

10
2.5

10
2.6

 

 power required:
SNR = 41.6 dB

Figure 5.10: Total allocated power by the considered algorithms for a 32-subcarrier system
to achieve their respective throughput in Fig. 5.9 and a target BER of Ptarget

b
= 10−3.



5.8. Conclusion 106

values of 15 dB, 25 dB, and 35 dB, respectively (cf. Table 5.3).

The complexity analysis can also be evaluated by investigating the computa-

tion time of both GPA and g-GPA algorithms. Fig. 5.11 shows the computation

time against the number of subcarriers N for the g-GPA algorithm with both “no

order” and “order” cases compared to the GPA algorithm. Two different SNR

values of 15 dB and 35 dB that represent the approximate conditions of mobile

and fixed wireless communications, respectively, are considered in this simula-

tion. It is clear that the g-GPA algorithm has a higher computational efficiency

in particular for large values of N and high SNRs, while the effect of subcarrier

ordering is also evident as discussed in Section 5.6. Assuming a close correlation

between the number of operations and their computation time, it is noted that at

N = 1024 subcarriers these results coincide with that of Table 5.3. In a statisti-

cal fashion, Fig. 5.12 demonstrates the cumulative distribution function (CDF) of

the computation time for both algorithms at the same SNR values which reveals

the computational efficiency of the proposed g-GPA algorithm and its modified

versions of both Mu-GPA and Md-GPA.

5.8 Conclusion

Power allocation to achieve maximum data throughput under constraints on the

transmit power and the maximum QAM level has been discussed. The optimum

solution is provided by the greedy power allocation algorithm (GPA), which ope-

rates across all subchannels but is computationally very expensive. Therefore, in

this Chapter sub-optimal low-complexity alternatives have been explored. The

common theme amongst the proposed algorithms is to restrict the GPA algo-

rithm to subsets of subchannels, which are grouped according to the QAM level

assigned to them in the uniform power allocation stage. In order to exploit excess

(unused) power in each subset, two algorithms were created which carry left-over

(LO) power forward into the next subset that is optimised by a local greedy al-

gorithm. Two different schemes have been suggested, of which one moves the

LO power upwards from the lowest to the highest subgroup, where in the high

SNR case a limitation by the maximum defined QAM level can restrict the per-

formance. A second scheme moves the power from the highest towards lower

subgroups, whereby at low SNR the channel quality in the lowest subgroups may

not be such that it can be lifted across the lowest QAM level, and hence no bits

may be loaded with the excess power. However, in general both algorithms per-

form very close to the GPA in their respective domains of preferred operation,
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Table 5.3: Simulation results for the parametric analysis of the GPA and g-GPA algorithms
given in Table 5.2 for a 1024-subcarrier system and different SNR values.

SNR 15 dB 25 dB 35 dB

GPA
L1 112.5 600.6 621.2

number of operations×103 235.4 1,238.3 1,280.6
g-GPA

QAM-groups: Nk Lk
2 Nk Lk

2 Nk Lk
2

G0 1,024 103.2 946.8 425.1 234.7 140.6
G1 0 0 71.5 23.1 178.2 89.6
G2 0 0 5.7 0.89 293.0 140.2
G3 0 0 0 0 229.5 96.7
G4 0 0 0 0 80.9 27.0
G5 0 0 0 0 7.7 1.55

L2 =
∑K−1

k=0 Lk
2 - 103.2 - 449.1 - 495.7

number of operations×103

(no order)
213.8 812.2 232.8

number of operations×103

(order)
108.3 408.5 118.9
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Figure 5.11: Average computation time comparison between g-GPA and GPA algorithms for
Ptarget

b = 10−3 and varying N -subcarrier system at different SNR applications for (left) 15 dB
SNR and (right) 35 dB SNR.
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thus permitting power allocation close to the performance of the GPA at a much

reduced complexity.



Chapter 6

Conclusions and Future Work

This chapter first summarises the research reported in this thesis in Section 6.1,

while Section 6.2 provides ideas for potential future directions.

6.1 Thesis Summary

This thesis has been concerned with transceiver components for broadband MIMO

communications. In combination with a decoupling of the broadband MIMO

system by means of a BSVD, non-linear precoding and equalisation methods

have been investigated. Further, a number of bit and power allocation algo-

rithms have been surveyed in order to exploit the subchannels in a multichannel

transmission scenario such as the one arising from a combined BSVD and preco-

ding/equalisation approach.

In Chapter 2, linear precoding and equalisation methods for narrowband and

broadband MIMO communications channels have been reviewed. We have also

introduced the BSVD approach suggested by McWhirter et al. [19] to decouple a

broadband MIMO system into a series of spectrally majorised SISO subchannels,

which can avoid the spectral inefficiencies of block-based transceivers.

In Chapter 3, we have first proposed a suboptimum spatial THP precoding

ordering scheme to deal with flat-fading MIMO channels. The performance of

this scheme can achieve an SNR gain of ≈ 3 dB and only 0.5 dB loss in SNR at

BER = 10−2 compared, respectively, to a THP system without ordering and the

optimised ordering provided by the V-BLAST algorithm. The advantage of this

scheme lies in the significant reduction in computational complexity achieved over

the algorithm of V-BLAST ordering.

Secondly in Chapter 3, dealing with the broadband MIMO channels, a novel

non-linear precoding and equalisation system has been proposed. This approach is

109
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accomplished in two steps: firstly, the recently developed BSVD algorithm [19] is

applied to decouple the broadband MIMO channel into a number of independent

frequency selective and spectrally majorised (i.e with ordered gains) SISO sub-

channels, thus cancelling CCI. However, the SISO subchannels are dispersive and

therefore incur ISI which we mitigate non-linearly using either DFE or THP sys-

tems in the second step. The advantage of the THP system over the DFE one

is the absence of propagation errors. Moreover, in order to efficiently utilise the

spectral majorisation of the resulting SISO subchannels, a heuristic bit loading

has been applied to match the subchannels qualities and achieve better data

throughputs. Benchmarked against a state-of-the-art MIMO broadband THP

scheme, our proposed method has been shown that better BER performance can

be achieved, specially for higher data throughput targets, under the constraints

of identical data throughput and transmit power.

The decoupling achieved by the BSVD is not ideal due to the iterative na-

ture of the algorithm and needs to be approximated by a fixed number of itera-

tions (NoI). The impact of this NoI on the overall performance is twofold. Firstly,

some of the energy is lost in the off-diagonal entries of the MIMO channel, se-

condly these non-zero entries increase the level of CCI and produce more detection

errors as a result. In order to rely on the BSVD algorithm with a reasonable com-

plexity, the NoI has been investigated in the remainder of Chapter 3 leading to a

significantly simplified BSVD version that can achieve performance very close to

the idealised BSVD.

Further research in bit and power loading to optimise the achievable data

throughput for systems with different subchannel/subcarrier gains, such as our

proposed BSVD-THP model presented in Chapter 3, has been considered in Chap-

ter 4. There, the design is constrained by a transmit power budget, a target BER,

and a fixed number of permissible modulation orders. The optimum power allo-

cation for discrete bit loading of such systems can be achieved using the greedy

approach. Two greedy schemes are considered that can be described as greedy

power allocation (GPA) and greedy bit allocation (GBA) algorithms. Both of

these aim to maximise the sum-rate of a multichannel system, whereby either po-

wer or bit is allocated under the greedy algorithm for the same set of constrained

parameters. A fair comparison between the two algorithms is provided and un-

derpinned by simulation results which show the superiority of the GPA over the

GBA and both of them achieve higher data throughput than the non-adaptive

uniform power allocation (UPA) algorithm.

Since both GPA and UPA algorithms cannot completely use the power bud-
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get due to the fixed modulation orders, this excess power has been allocated in

a second optimisation step to improve the actual mean BER as opposed to the

value specified by the target BER. Two power redistribution algorithms are pro-

posed with different design aspects, namely uniform power redistribution (UPR)

and fairness-BER power redistribution (FPR). Analyses for both algorithms have

been derived and numerically supported by simulations, which interestingly de-

monstrate reciprocal behaviour across both schemes when coupled with UPA and

GPA algorithms.

The GPA scheme proposed in Chapter 4 is optimum in terms of the achieved

data throughput and power conservation senses. However, this power allocation

has been shown to be computationally very complex as in every single bit alloca-

tion iteration all subchannels/subcarriers have to be considered. For multicarrier

systems with a very high number of subcarrier, this results in an unrealistic com-

plexity.

In order to achieve a near-optimum data throughput but at a significantly re-

duced complexity, reduced-complexity GPA schemes have been proposed in Chap-

ter 5. These schemes have been based on a subcarrier grouping concept, whereby

all subcarriers are divided into subgroups bounded by the minimum QAM modu-

lation SNR levels that are required to achieve the target BER. Therefore starting

with the UPA algorithm, all subcarriers can be categorised into these QAM groups

according to their SNRs. Thereafter, the GPA is independently applied for each

local subgroup aiming to maximise the achieved data throughput of that group

which results in a left-over (LO) power for each subgroup.

These LO powers are further redistributed with two different scenarios, whe-

reby LO powers are utilised by permitting power moving up or down w.r.t. QAM

groups, leading to two different versions of the grouped GPA algorithm deno-

ted, respectively, by Mu-GPA and Md-GPA algorithms. Interestingly, the two

algorithms perform very close to the standard GPA algorithm, however, in two

distinct SNR regions — for the Mu-GPA at low SNR and for the Md-GPA at

high SNR. Computational complexity of the proposed grouped GPA scheme has

been analytically evaluated and compared to that required by the GPA algo-

rithm. Numerical results have shown that a significant reduction in gain of an

order of magnitude can be reached for large number of subcarriers and at high

SNR level with minimal degradation in achieved data throughput provided that

the correct algorithmic version (Mu-GPA or Md-GPA) is chosen according to the

SNR situation.
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6.2 Future Work

A number of research topics appear promising for future work, but are beyond

the scope of this thesis. A number of these ideas are briefly elaborated below.

BSVD-THP with adaptive bit and/or power loading.

The proposed BSVD-THP scheme in Chapter 3 assumes a heuristic bit loading

to utilise the inherent spectral majorisation property of the BSVD algorithm.

However, we believe that if this scheme is combined with an adaptive bit and/or

power loading such as given in Chapter 4, further performance improvements

can be achieved. Moreover, the optimality advantages of the GPA and GBA

algorithms in data throughput maximisation for a specified target BER can also

be directed towards minimising the mean BER for a fixed target data rate for the

proposed BSVD-THP scheme.

Joint bit and power loading approach.

Referring to both GPA and GBA algorithms addressed in Chapter 4, it is noted

that either bit or power is selected as the greedy parameter to be controlled. The

results of GPA and GBA do always completely achieve the desired target BER or

expending the power budget. Therefore a power redistribution algorithm appears

useful, as proposed in Chapter 4. A more flexible design could be created, if these

parameters are jointly optimised such that switching between both bit and po-

wer allocation schemes can be accomplished to solve the designated optimisation

problem.

Reduced GPA scheme with a proper algorithmic selection.

It has been shown in Chapter 5 that both algorithmic versions of the g-GPA

algorithm with power refinement step perform closely to the full GPA algorithm,

but exhibit this characteristic in two separate SNR regions. For a real-world

implementation, it is helpful to resort to only one algorithm leaving the selection

between the two algorithmic versions blind to the operator or overall system.

Therefore, a suitable threshold should be identified based on current propagation

scenarios for MIMO communication channel to assist in the algorithm selection.

This can be achieved by considering the parameters of the transmit power budget,

the CSI, and the target BER along with the permissible modulation orders.
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Appendix A

Some Thesis Derivations

A.1 MMSE Equaliser Solution

Starting with (2.7), the mean square error ϕ is given for equaliser WH by

ϕ = tr
(

E

[(
s− WHy

) (
s− WHy

)H
])

,

= tr
(
E
[
ssH + WHyyHW − syHW − WHysH

])
,

= tr
(
Rss + WHRyyW − RsyW −WHRys

)
.

(A.1)

Where Rss = E
[
ssH
]

and Ryy = E
[
yyH

]
are, respectively, the channel’s in-

put and output signal covariance matrices whereas Rsy = E
[
syH

]
is the cross-

covariance matrix between vectors s and y. Note that the last two terms of

the r.h.s of (A.1) are the hermitian of each other, i.e RsyW =
(
WHRys

)H
as

RH
ys = Rsy. Differentiating (A.1) w.r.t WH and equating to 0, the MMSE filter

WH
MMSE can be deduced as follows

∂ϕ

∂WH
= tr (RyyWMMSE − Rys) = 0

−→ WH
MMSERyy = Rsy (A.2)

Note that since Ryy is a positive semi-definite matrix, it equals its hermitian

Ryy = RH
yy as substituted in (A.2). Also (A.2) is identical to the Wiener-Hopf

equation that appeared in (2.8). From (2.3), both Ryy and Rsy are obtained as

follows.
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Ryy = E
[
yyH

]
,

= E

[

(Hs + v) (Hs + v)H
]

,

= E
[
HssHHH + HsvH + vsHHH + vvH

]
,

= HE
[
ssH
]
HH + HE

[
svH

]
+ E

[
vsH

]
HH + E

[
vvH

]
. (A.3)

Assuming independent and identically distributed (i.i.d) substreams of s and v

and uncorrelation between them, we can substitute the expectation terms in (A.3)

as; E
[
ssH
]

= σ2
sINt

, E
[
vvH

]
= σ2

vINr
, and E

[
svH

]
= E

[
vsH

]
= 0 resulting in

Ryy = σ2
sHHH + σ2

vINr
, (A.4)

similarly

Rsy = σ2
sH

H . (A.5)

Substituting from (A.4) and (A.5) into (A.2) yields the MMSE Linear filter for

flat-fading MIMO system as

WH
MMSE = HH

(

HHH + σ2
v

σ2
s
INr

)−1

,

=
(

HHH + σ2
v

σ2
s
INt

)−1

HH .

A.2 MMSE Solution for SISO-DFE

Since the MSE for the SISO-DFE system presented in Sec. 3.5.2.1 is quadratic

in both f and b, we can find the optimum solution using a standard gradient

approach. In order to achieve joint optimality, we combine the feedforward and

feedback coefficients into a single vector

w =

[

f

−b

]

∈ C
Lf +Lb,

which leads to the following notation for the MSE:

ξDFE =

(

wH

[

H

D

]

− dT

)

Rxx





[

H

D

]H

w − d



+wH

[

Rvv 0Lf×Lb

0Lb×Lf
0Lb×Lb

]

w .

The gradient can be obtained by differentiating with respect to the filter co-

efficients (note that f and b for convenience contain the complex conjugated
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coefficients, hence the differentiation has to be performed with respect to the

unconjugated variables in w∗):

∂

∂w∗ ξDFE =

[

H

D

]

Rxx





[

H

D

]H

w − d



+

[

Rvv 0Lf×Lb

0Lb×Lf
0Lb×Lb

]

w .

Equating the gradient to zero yields the optimum solution:

wopt =








[

H

D

]

Rxx

[

H

D

]H

+

[

Rvv 0Lf×Lb

0Lb×Lf
0Lb×Lb

]

︸ ︷︷ ︸

R








−1

[

H

D

]

Rxxd .

If the MSE-optimal set of coefficients are selected, the MMSE is given by

min ξDFE = wH
optRwopt − 2<

(

wH
opt

[

H

D

]

Rxxd

)

+ dTRxxd .

A.3 Water-Filling Solution Proof

The proof of the water filling solution given in (4.14) for the optimisation problem

given in (4.1a)-(4.1e) can be obtained following the Lagrange multiplier method

as follows.

Formulating the Lagrange function as

L(Pi, λ) =
K∑

i=1

log2 (1 + Pi · θi) − λ(
K∑

i=1

Pi − Pbudget) . (A.6)

Then set the partial derivative of L w.r.t. both Pi and λ to zero yields

∂L
∂Pi

=
1

ln2
· θi

1 + Piθi

− λ = 0, (A.7)

and
∂L
∂λ

=
K∑

i=1

Pi − Pbudget = 0 . (A.8)

Note that ∂L
∂λ

in (A.8) results in the original problem constraint, which is common

using the Lagrange multiplier method. Now from (A.7) we can obtain Pi =
1

λln2
− 1

θi
= α − θ−1

i , where α = 1
λln2

is the water-level constant selected to fulfil

the constraint of the total power budget in (4.1b).


