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Abstract

Low thrust propulsion such as solar electric and solar sail propulsion are being

considered to enhance or enable future space missions. This thesis generates new

non-Keplerian orbits for solar electric propulsion, solar sail propulsion and a hybrid

of sail/solar electric propulsion by utilising continuous low-thrust acceleration.

For solar electric propulsion, the idea to generate periodic orbits has been

extended from linear to non-linear order, and thus shows the feasibility of artifi-

cial halo orbits in the circular restricted three-body problem. Stable and unstable

artificial halo orbits using solar electric propulsion are found around artificial equi-

librium points in the forbidden regions for a solar sail.

The recent idea of a hybrid sail/solar electric spacecraft to reduce orbital trans-

fer time in the solar system has been extended to generate new artificial equilibrium

points in the Sun-Earth circular restricted three-body problem. Notably, it was

found that the hybrid sail can be used to generate artificial equilibria in the forbid-

den regions for a pure solar sail. The hybrid sail also shows a potential application

for a polar (Earth) observer mission. Moreover, it is shown that the hybrid sail

can be stabilised around unstable artificial equilibrium points by orienting the

thruster system while keeping the sail orientation fixed to ease the control issues

of actuating a large sail.

For solar sail propulsion, a novel family of displaced non-Keplerian orbits (light-

levitated geostationary orbits) are demonstrated in the Earth-sail two-body prob-

lem to prove the disputed claim of Forward that such orbits exist. A colloca-

tion scheme with inequality path constraints was found to be the most promising
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approach to generate such displaced geostationary orbits in the full non-linear

problem. However, only modest displacement geostationary orbits can exist.
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Chapter 1

Introduction

Section 1.1 describes the dynamical model of the circular restricted three-body

problem and the locations of the five Lagrange points therein. The only integral

of the circular restricted three-body problem, Jacobi’s integral, is also derived.

The various families of orbits i.e., periodic and quasi periodic orbits around the

Lagrange points for the classical case (a spacecraft under the gravitational force of

the primaries with no propulsion), and their applications for space science missions

are discussed in section 1.2. In this thesis three types of low-thrust propulsion sys-

tems are used to generate non-Keplerian orbits (NKO). These low-thrust propul-

sion systems, solar electric propulsion, solar sail and a combination of solar electric

propulsion and solar sail to form a hybrid propulsion system are discussed in sec-

tion 1.3. The key performance parameters for a solar electric propulsion system

and solar sail propulsion are also discussed. Among the solar electric propulsion

systems, electrostatic thrusters are discussed in detail as these thrusters can be

selected for the hybrid sail configuration.

In section 1.4, a literature review for non-Keplerian orbits in the restricted

three-body problem and two-body problem is provided. Moreover, three key re-

search objectives for the thesis are also outlined. Section 1.5 provides the thesis

layout. The conference and journal papers published by the author are provided

in the last section of this chapter.

1
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1.1 The Circular Restricted Three-body Prob-

lem

The circular restricted three-body problem (CRTBP) is one of the long standing

problems in celestial mechanics, originally formulated by Leonard Euler in 1772.

It describes the motion of an infinitesimal mass under the gravitational influence

of two massive bodies in circular motion about their common center of mass.

Although termed ‘three-body’, in reality the restricted problem is a one-body

problem of infinitesimal mass m, since the motion of the two massive bodies is

known; pure Keplerian circular motion. The CRTBP does not have an analytical

closed-form solution as six integrals of motion are required, while only one integral

of motion, Jacobi’s integral, is available. Let m1 and m2 denote the two massive

bodies, referred to as the primary masses. The main assumption is that

m << m2 < m1

so that the third body does not influence the motion of the primary masses. In or-

bital dynamics, this assumption can be used to model the motion of any spacecraft

in the Earth-Moon system or Sun-Earth system for example.

The next sub-section describes the equations of motion of the CRTBP in non-

dimensional units. The equilibrium points of these equations of motion are dis-

cussed in Sec. 1.1.2, and the only scalar constant of the CRTBP, Jacobi’s integral,

is given in Sec. 1.1.3.

1.1.1 Equations of Motion

The restricted three-body problem is usually modelled in a reference frame rotating

with angular speed ω =
√

G(m1+m2)
R3 defined by the orbital motion of the primaries,

where R is the distance between the primaries. The origin of this frame, illustrated

in Fig. 1.1, is at the center of the two primaries. The x-axis lies along the two

primaries, the z-axis is perpendicular to the orbit plane, parallel to the angular
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Figure 1.1: Geometry of the restricted-three body problem. The primary masses m1 and m2

are at rest in a synodic rotating reference frame (x, y, z) with origin at centre of mass (CM) and

with fixed seperation R.

velocity vector, and the y-axis completes the right-handed coordinate system. The

system is made non-dimensional by taking the units of length, mass and time such

that the distance between the primaries R, the product of gravitational constant

G and the sum of the masses of the primaries, G(m1 + m2), and the period of the

primaries are 1, 1 and 2π respectively.

Define the mass ratio µ = m2

m1+m2
, then m1 is located at (−µ, 0, 0) and m2 is

located at (1− µ, 0, 0) with respect to the center of mass. If r = [x y z]T denotes

the position vector of the mass m relative to the center of mass, then the position

vector of the mass m with respect to the primaries m1 and m2 is given by

r1 = [x + µ y z]T , r2 = [x− (1− µ) y z]T

The equations of motion of the mass m can now be written in the following non-

dimensional form

r̈ + 2 ω × ṙ + ω × (ω × r) = ag (1.1)

where ω‖ẑ (see Fig. 1.1), and the gravitational acceleration ag on the mass m is
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given by

ag = −1− µ

r3
1

r1 − µ

r3
2

r2

where in non-dimensional units Gm2 = µ and Gm1 = 1−µ. The component form

of the equations of motion Eq. (1.1) are given by

ẍ− 2ẏ = x− 1− µ

r3
1

(x + µ)− µ

r3
2

(x− (1− µ)) =
∂V

∂x
(1.2)

ÿ + 2ẋ = y

(
1− 1− µ

r3
1

− µ

r3
2

)
=

∂V

∂y
(1.3)

z̈ = z

(
−1− µ

r3
1

− µ

r3
2

)
=

∂V

∂z
(1.4)

where the pseudo-potential V , which is sum of the centrifugal and gravitational

potential is given by

V =
1

2
(x2 + y2) +

(
1− µ

r1

+
µ

r2

)

These nonlinear, coupled ordinary differential Eqs. (1.2-1.4) cannot be solved

in closed form. Numerical integration shows that there exist periodic solutions,

but that the majority of solutions are chaotic [89].

1.1.2 Location of Lagrange Points

The Lagrange points are equilibrium points where the infinitesimal mass m will

be at rest relative to the rotating frame so that ẋ = ẍ = ẏ = ÿ = ż = z̈ = 0.

Substituting these conditions in Eqs. (1.2-1.4) to obtain equilibrium points, it can

be seen that
∂V

∂x
=

∂V

∂y
=

∂V

∂z
= 0

It is easy to see from Eq. (1.4) that in order to set ∂V
∂z

= 0, one must have z = 0,

that is, all the equilibrium points lie in the x− y plane. Therefore, two conditions

∂V
∂x

= ∂V
∂y

= 0 are left to find the equilibrium points.

Substituting r1 = r2 = 1 in Eqs. (1.2-1.3), it can be seen that both equations

are satisfied i.e, ∂V
∂x

= ∂V
∂y

= 0, which results in the triangular Lagrange points L4
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Figure 1.2: Lagrange points of the circular restricted three body problem with µ = 0.1. The

only parameter of the system is µ (µ = 3.0032×10−6 for the Sun-Earth system, µ = 1.215×10−2

for the Earth-Moon system).

and L5 at (1/2−µ,
√

3/2, 0) and (1/2−µ,−√3/2, 0) respectively. Now, substituting

y = z = 0 in Eqs. (1.3-1.4) implies ∂V
∂y

= ∂V
∂z

= 0, and so finally a quintic equation

in x is solved to satisfy ∂V
∂x

= 0 (see Eq. 1.2), which results in the collinear Lagrange

points for the three real roots x(L1), x(L2) and x(L3). These points L1, · · · , L5

are shown in Fig. 1.2 in the rotating frame.

The Lagrange points have great utility for space science missions. Current

missions such as the SOHO spacecraft use the Earth-Sun L1 point to observe the

Sun continuously. The collinear points are unstable, therefore a spacecraft in the

vicinity of these points needs active control. The triangular points will be linearly

stable provided that µ ≤ 0.0385209, a condition that is true for all bodies in the

solar system [102].
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1.1.3 Jacobi’s Integral

Jacobi’s integral is the only scalar constant constraining the motion of the in-

finitesimal mass (spacecraft) in the circular restricted three-body problem. To

derive Jacobi’s constant, Eqs. (1.2-1.4) can be re-written in vector form as

r̈ + 2 ω × ṙ = ∇V (1.5)

Taking the scalar product with ṙ = v, it can be seen that

v.v̇ + 2v.(ω × v) = v.∇V =
dr

dt
.
∂V

∂r

Since V is a function of position and not explicitly of time, then

d
[

1
2
vT v

]

dt
=

dV

dt

which is an exact differential and so integration yields Jacobi’s constant C as

C(r,v) = 1
2
vT v − V (r) (1.6)

According to Poincaré [45], an infinite number of periodic orbits exist in the

3-body problem. These are natural periodic orbits in the 3-body problem and are

generated numerically since no closed form solutions of Eq. (1.1) exist. Notably,

no propulsion system is required to generate these natural orbits. Some useful

orbits for space science missions are discussed in next section.

1.2 Periodic and Quasi-Periodic Orbits

This section describes periodic and quasi-periodic orbits around the Lagrange

points L1,2 (see section 1.1.2) in the Sun-Earth system. One way to generate

periodic orbits from the nonlinear equations of motion is to first generate periodic

solutions of the corresponding linearised equations. Then, the bounded solution
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of the linearised equations around the Lagrange points are found to be

δx = −Ax cos(wxyt + φxy) (1.7)

δy = kAx sin(wxyt + φxy) (1.8)

δz = Az sin(wzt + φz) (1.9)

where δx, δy and δz are position components relative to the Lagrange points [75].

The parameters Ax and Az are the amplitude, and φxy and φz are the phase angles,

with wxy and wz the in and out of plane frequencies.

The linearised solution in Eqs. (1.7-1.9) will describe:

1. 2-D periodic orbit if we restrict the motion in the plane i.e., δz = 0 in

Eq. (1.9). Then Eqs. (1.7-1.8) illustrate a 2-D Lyapunov orbit.

2. 3-D quasi-periodic orbit if wxy/wz is an irrational number. This orbit is

usually referred to as Lissajous trajectory.

3. 3D periodic orbit if wxy/wz is a rational number.
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Figure 1.3: Linear-order L1 Lyapunov orbit (Ax(5000 km)) in the Sun-Earth system.

Fig. 1.3 shows a Lyapunov orbit around L1 in the plane. The Lyapunov orbit

is characterised by one parameter Ax and is symmetric about the x-axis.

Values of wxy and wz at L1,2 (see Table 1.1) are such that the ratio wxy/wz is an

irrational number, therefore, three-dimensional motion is a Lissajous trajectory.
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Figure 1.4: Linear-order L2 Lissajous orbit (Ax(6000 km), Az(15000 km)) in the Sun-Earth

system.

Table 1.1: Parameters of the linearised solution

at L1,2 of the Sun-Earth system.

Parameter Value at L1 Value at L2

wxy 2.08645 2.05701

wz 2.01521 1.98507

k 3.22927 3.18723
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The Lissajous trajectory is not a closed path or a periodic orbit. A Lissajous orbit

around L2 is shown in Fig. 1.4 at linear order. The Lissajous orbit is characterised

by two parameters Ax (or Ay) and Az. The Lagrange point L2 lies on the night

side of the Earth, and is therefore an ideal location for space-based astronomy. The

European Space Agency GAIA mission [79] will use a large amplitude Lissajous-L2

orbit without eclipse (as viewed from Earth along the x-axis) for 5-years.
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Figure 1.5: Third-order L1 halo orbit (Az(120, 000 km)) in the Sun-Earth system. Halo orbits

do not exist at linear order.

A special case exists where the ratio wxy/wz is a rational number and becomes

equal to one when the amplitude of the orbit is large so that the nonlinear terms of

Eq. (1.1) are significant. Then, a 3-D halo orbit is formed. A certain combination
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of amplitudes exists for the generation of halo orbits provided that the in-plane

amplitude Ax of the orbit becomes greater than some minimum amplitude Axmin,

i.e., (Ax > Axmin). Fig. 1.5 shows a halo orbit around L1. The halo orbit is charac-

terised by one parameter, usually Az, and is symmetric about the xz-plane. From

the Lagrange point L1 of the Sun-Earth system, a spacecraft has an uninterrupted

view of the Sun and Earth. The ISEE-3 and SOHO mission spacecraft both used

halo orbits (Az = 120, 000 km) around L1 [23]. The spacecraft is not placed at

the L1 point as the Sun is a powerful radio source, therefore any signal from the

spacecraft would be overwhelmed. Therefore, a spacecraft must orbit L1 in a halo

orbit which keeps it a few degrees away from the Sun-line.

The linear and third order analytic approximations of Lyapunov and halo orbits

are shown in Fig. 1.3 and Fig. 1.5 respectively. These approximations are used

as an initial guess to determine the periodic solution of the full non-linear system

Eq.(1.1), and necessary corrections to this initial guess are made using a differential

corrector scheme [90]. Whereas for Lissajous orbits, the analytic approximation

(first or third-order) is used as an initial guess, the quasi-periodic motion in the

full non-linear system is determined using a two-level differential corrector scheme

[42].

In this section non-Keplerian orbits in the classical case are generated in the

vicinity of the Lagrange points L1,2. These periodic orbits (Lyapunov, Lissajous

and halo) are unstable. Low-thrust propulsion has important roles for these pe-

riodic orbits. Firstly, low-thrust propulsion can be used to stabilise such orbits

[12, 50]. Secondly, low thrust propulsion can be used to generate such orbits around

points other than the classical Lagrange points, as will be seen later. However, we

will first discuss what types of low-thrust propulsion system exist.
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1.3 Low-Thrust Propulsion System

This section describes low-thrust propulsion systems such as solar electric propul-

sion which utilises propellant efficiently and solar sail propulsion system which

uses no propellant. In the final subsection, a hybrid propulsion concept is also

discussed.

The use of solar electric propulsion as a primary propulsion system has been

flight tested, For example, the NASA Deep Space-1 mission, launched in 1998, used

the NSTAR (NASA Solar Electric Propulsion Technology Application Readiness)

ion engine, and ESA’s SMART-1 spacecraft used a Hall-effect thruster as primary

propulsion, launched in September 2003. For solar sail propulsion a flight test was

attempted in June 2005 (Cosmos-1 mission) by the Planetary Society. However,

the mission aims for Cosmos-1, to demonstrate the first controlled-flight using

solar photons, was not completed due to launch failure. In fact, a controlled flight

of solar sail propulsion has yet to be flown. However, sail technologies to support

future missions are progressing.

1.3.1 Electric Propulsion System

More than 160 satellites have used an electric propulsion system in some form.

Electric propulsion systems consist of a power source (solar or nuclear), a thruster

system (including power conditioning) and propellant management (storage and

delivery) subsystem. This sub-section describes the different categories of electric

propulsion systems. In particular, electrostatic thrusters which can be used for

the hybrid sail configuration (see section 1.3.3) are considered.

Electric propulsion has a higher specific impulse Isp than chemical propulsion,

and therefore provides lower propellant consumption over long periods. Specific

impulse is defined as the thrust per unit weight of propellant flow at sea level, thus

Isp = T /ṁg0 = ve/g0 (1.10)
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where T = ṁve is the engine thrust, ṁ is the mass flow rate of the propellant and

g0 = 9.81 m/s2 is the gravitational acceleration constant at sea level. Other per-

formance characteristics of electric propulsion systems are the thruster efficiency

(ηe), specific mass (ke) and thruster lifetime [17].

Thruster efficiency (ηe) is defined as the jet power Pj = 1/2ṁv2
e in the exhaust

of the electric propulsion system divided by the electrical power Pe input to the

thruster

ηe =
Pj

Pe

=
1/2ṁv2

e

Pe

⇒ Pe =
ṁ(Ispg0)

2

2ηe

(1.11)

The specific mass ke is defined as the ratio of power processor and propulsion

system mass to the power Pe input to the thruster. Higher ηe and lower ke is

desired for an effective electric propulsion system.

Electric propulsion systems are classified into three classes i.e., electro-thermal,

electrostatic and electromagnetic systems.

1.3.1.1 Electrothermal thruster

Electro-thermal thrusters such as resistojets and arcjets thrusters heat the propel-

lant (commonly Hydrazine (N2H4)) by electrical resistance or electric discharge

respectively, with the heated propellant expanded through a nozzle. Resisto-

jet/arcjet systems are widely used for attitude control and for north-south station-

keeping on commercial communication satellites. Electrothermal thrusters will not

be considered further in this thesis, as these thrusters are not applicable (Isp < 1000

s) for applications to NKO.

1.3.1.2 Electrostatic thruster

Electrostatic thrusters use an applied electric field to accelerate positive ions. Both

grided ion engines (NASA 30-cm NSTAR-engine) and Hall-effect thrusters (ESA’s

SMART-1 spacecraft) are electrostatic thrusters. Other examples of grided ion

thruster are the UK-10 (10 cm exit diameter) that provides a maximum thrust of 25
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mN (Isp = 3345 s, Pe,max = 660 W, and ηe = 60%), and the RIT-10 thruster system

that provides a maximum thrust of 15 mN (Isp = 3467 s, Pe,max = 585 W, and ηe =

64%) [30].

In grided ion thrusters, the working fluid (Xenon) is ionized by stripping off

electrons, and then the positive ions are accelerated to a very high exhaust velocity

by means of an electrostatic field created between two perforated grids held at

high voltage. Positively charged ions are emitted at high exhaust velocity of order

30 km/s. In the Hall thruster (loosely speaking a gridless ion engine), an axial

electric field E and radial magnetic field B is generated which confines the electrons

(generated by an external cathode) to drift azimuthally along the E×B direction

in the discharge channel. The propellant ions, created by ionization of a rotating

plasma of electrons, are accelerated electrostatically (ions are too heavy to be

effected by B) and exit the thruster at high velocity to produce thrust. To prevent

a build up of charge on the spacecraft, the positively charged ions at exit are

electrically neutralised by ejecting electrons.

If an ion of mass mi having a total charge of q passes through an electric

potential difference Φ, an energy balance gives

1

2
miv

2
e = qΦ ⇒ ve =

√
2qΦ

mi

(1.12)

To throttle the engine, the control parameters are the voltage Φ and propellant

flow rate ṁ. Φ is the beam voltage for the grided ion engine and discharge voltage

for the Hall-effect thruster [18]. The specific impulse and thrust-to-power ratio are

obtained using Eq. (1.12) and can be written as

Isp =
ve

g0

=
1

g0

√
2q

mi

√
Φ (1.13)

T
Pe

=
ṁve

JΦ
=

ṁve
q

mi
ṁΦ

=

√
2mi

qΦ
(1.14)

where J is the beam current. Xenon is used as a propellant in both thruster systems

since Xenon ions have a large mass to charge ratio (mi/q). When throttling down

the engine, if the voltage Φ is kept fixed, then Eq.(1.13) shows that Isp will be
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fixed. The changing ṁ will cause a change of Pe (see Eq.(1.11)), and thus thrust

level T = ṁve. The state-of-art throttle-able NSTAR gridded ion engine was

designed for a life of 1 year and at full power Pe,max = 2.3 kW processed 83

kg propellant. However, the maximum throughput capability of the NSTAR ion

engine is assumed to be 130 kg without engine wearout [14]. Recently, the NSTAR

flight spare engine has demonstrated a lifetime of 3.5 years (the longest life of any

rocket engine) and processed 235 kg propellant [43]. However, the next generation

system (NEXT) has a larger propellant throughput capability (450 kg), higher

input power (6.9 kW), thrust (240 mN), and a lightweight gimbal mechanism

giving 18◦ thruster pitch/yaw [49]. Briefly, the life of an ion thruster is limited

by progressive grid/thruster component erosion from ion impingement, so that

large propellant throughput capability per engine is a technologically challenging

requirement.

Grided ion thrusters can be considered for non-Keplerian orbits. Firstly, the

grided ion thruster has a greater specific impulse Isp (> 3000 s) than electrothermal

thrusters Isp (< 1000 s) and Hall-effect thrusters Isp (' 1600 s), but Hall thrusters

provide more thrust T at a given input power Pe than the ion thruster. Secondly,

ion thrusters have greater efficiency (> 65%) and lifetime (2 − 3 years) than the

Hall-effect thruster efficiency (around 50%) and lifetime (8000 h). Thirdly, ion

thrusters have a narrower beam angle (typically 20◦) than the Hall-effect thruster,

which will be important for the hybrid sail concept described later in section 1.3.3.

1.3.1.3 Electromagnetic thruster

The electromagnetic thruster uses the electromagnetic forces generated in a very

high-current plasma discharge to accelerate ionized propellant and produce thrust.

The pulsed plasma thruster (PPT) is a pulsed mode electromagnetic thruster using

a solid propellant (Teflon). Recently a lightweight (total mass = 2 kg) micro-PPT

module with a thrust level of 150µ N (Peak power = 20 W, Isp=500 s and ηe = 5%)

has been proposed for solar sails as a secondary attitude control system [100].
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1.3.2 Solar Sail Propulsion

A solar sail consists of a large, lightweight reflector and uses momentum exchange

with solar photons to generate thrust. The photon pressure P exerted on a per-

pendicular surface is given by [64]

P =
W

c
(1.15)

where c is the speed of light (3 × 108m/s), and W is the energy flux across the

surface at a distance R1 from the Sun

W =
Ls

4πR2
1

=
Ls

4πR2
E

(
RE

R1

)2

= WE

(
RE

R1

)2

(1.16)

where Ls is the solar Luminosity (3.856 × 1026 W) and WE (1368 W/m2) is the

energy flux at RE, the mean distance of the Earth from the Sun. Substituting

Eq. (1.16) into Eq. (1.15), it can be seen that

P =
WE

c

(
RE

R1

)2

= P0

(
RE

R1

)2

(1.17)

where P0 = 4.563 × 10−6 N/m2 is the solar radiation pressure at 1 astronomical

unit (AU).

1.3.2.1 Solar Sail Model and Performance Parameters

An ideal solar sail (perfect reflecting surface) experiences an incident force equal to

the reflected force. The force on a sail area AS due to the incident solar radiation

is given by

Fi = PAS cos α r̂1 (1.18)

where α is the sail pitch angle defined as the angle between the sail normal u and

the incident radiation direction r̂1. AS cos α is the projected sail area along the

incident-radiation direction. The force on the sail surface due to the reflected solar

radiation is given by

Fr = PAS cos α (−s) (1.19)
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Figure 1.6: Solar radiation force on an ideal solar sail. The vector u is normal to the sail

surface.

where s is the specular reflection direction. The total force on the ideal sail is

therefore given by

FS = Fi + Fr = PAS cos α (r̂1 − s) (1.20)

From Fig. 1.6, it can be seen that

r̂1 − s = (cos α u− sin α t)− (− cos α u− sin α t) = 2 cos α u (1.21)

where t is in the transverse direction normal to u. Therefore, the total force is

given by

FS = 2PAS cos2 α u (1.22)

and the force is directed normal to the sail surface.

The solar sail performance is defined by the sail characteristic acceleration.

The sail characteristic acceleration ac is defined as the acceleration experienced by

the sail due to solar radiation pressure at 1 AU when oriented perpendicular to

the Sun (α = 0). From Eq. (1.22), ac is given by

ac =
2P0AS

m0

=
2P0

σT

(1.23)

where m0 is the total mass of the solar sail and σT = m0/AS is the total sail

loading. The sail mass m0 consists of the payload mass mpl and sail structural
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mass mS. Therefore, the sail characteristic acceleration ac can be written as

ac =
2P0AS

mpl + mS

⇒ AS =
mpl

2P0

ac
− σS

(1.24)

where σS = mS/AS is the sail assembly loading, and is a key technology parameter.

The sail assembly loading is a measure of the sail film thickness and structural

design. For a 100×100 m sail, a sail assembly loading of 10−14 g/m2 is estimated

based on developing sail technologies [22, 31, 93]. Eq. (1.24) shows that as σS

reduces, the required sail area AS decreases for a given payload mass mpl and

sail characteristic acceleration ac. Fig. 1.7a shows the sail characteristic thrust

Fc = m0ac generated with the length of a square sail. The Fig. 1.7b shows the

design space using Eq. (1.24) for a fixed sail assembly loading of σS = 10 g/m2,

and the maximum ac achievable with zero payload mass is 0.9126 mms−2. The

solar sail acceleration aSS = FS

m0
can be derived using Eq. (1.22) and Eq. (1.17) as

aSS = ac

(
RE

R1

)2

cos2 α u (1.25)

The solar sail acceleration aSS will become zero at α = αmax = π/2 when the sail

is edge-wise to the Sun.

Another equivalent performance parameter is the sail lightness number β0, and

is defined as the ratio of the sail acceleration when oriented normal to the Sun and

the Sun’s gravitational acceleration Gm1/R
2
1 so that

β0 =
ac

(
RE

R1

)2

Gm1/R2
1

=
ac

Gm1/R2
E

=
ac

5.93 mms−2
=

2P0/σT

5.93 mms−2
=

σ∗

σT

(1.26)

where σ∗ = 2P0/5.93 mms−2 = 1.53× 10−3kg/m2 is the critical sail loading.

So far an ideal sail has been assumed. However, a real sail will be Aluminium

coated on front side (for high reflectivity) and Chromium coated on back side (for

high emissivity due to thermal constraints), therefore only one side of the sail can

be directed towards the Sun. The sail characteristic acceleration for a real sail can

be written as [22]

ac =
2P0ASη

mpl + mS

⇒ ac =
2P0η

mpl/AS + σS

(1.27)
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Figure 1.7: (a) The (ideal) sail characteristic thrust Fc = m0ac = 2P0AS vs sail length (b)

Characteristic acceleration vs sail length for σS = 10 g/m2 and different payload masses mpl.
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(a)

 

(b)

 

(c)

Figure 1.8: Sail segments fully deployed by (a) NASA/ATK space system (b) NASA/L’Grade

system and (c) ESA/DLR joint programme.

where η = 0.90815 for a Al/Cr-coated solar sail.

1.3.2.2 Recent Advances in Solar Sail Technology

This section describes current solar sail development programmes. NASA’s In-

Space Propulsion Technology (ISP) programme is progressing to mature solar sail

technologies to enable or enhance near and mid-term space science missions. Two

different 20-m square solar sails with four segments were designed and fabricated by

ATK space systems and L’Grade Inc [44]. These two sails successfully completed

ground deployment tests under space environment and vacuum conditions at the
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Figure 1.9: Solar sail configuration with Solar Electric Propulsion [54].

NASA Glenn Research Centre in 2005, as shown in Fig. 1.8(a-b). The European

Space Agency ESA/DLR also deployed a 20-m sail as shown in Fig. 1.8(c). The

sail comprised four segments with four different sail membranes (12 µm Maylar,

4.0 µm polyethylen-naphthalate and two segments of 7.5 µm Kapton) [53].

ATK space systems used Al-coated (front side) 2.5 µm CP1 (Clear Plastic) as

the sail membrane and proposed a 3-axis attitude control system (ACS) comprising

a sliding mass along the boom with spreader bars, and micro-PPT at the boom tip

as secondary propulsion. L’Grade Inc. used Al-coated (front side) and Chromium

coated (backside) 2 µm Mylar as the sail membrane and a 3-axis attitude control

system provided by 4 vanes at the tips of the booms. Another option for ACS

could be to shift the centre-of-mass from the centre-of-pressure using a two-axis

gimballed control boom with a tip-mounted payload/bus.

1.3.3 Hybrid Sail

Solar electric propulsion and solar sail propulsion can be combined to enhance their

performance. Such a hybrid of sail/solar electric propulsion (SEP) spacecraft is

termed a hybrid sail, and its configuration is shown in Fig. 1.9.

The idea of the hybrid sail was first proposed by Leipold and Götz [54] who



Chapter 1 21

assume a square sail with an SEP thruster attached to the sail centre, with part of

the sail area at the sail center covered by flexible thin film solar cells (TFSC). The

thruster may be mounted on a gimbal for pitch/yaw control of the SEP system.

The SEP system may be jettisoned after fuel depletion. TFSC can act as a power

source for the SEP system and other subsystems of the hybrid sail. TFSC tech-

nology has many advantages over state-of-the-art wafer based solar cell technology

including high power to mass ratio, low costs and good resistance against radia-

tion. To qualify TFSC for future space use, flight experiments are being planned

in Low Earth orbit and Medium Earth orbit [34]. Leipold and Götz [54] and re-

cently Mengali and Quarta [71] in their studies show that the hybrid sail has the

attractive feature of reducing mission time with respect to a pure sail and a pure

SEP system respectively for many heliocentric transfers.

1.4 Literature Review of NKO and Thesis Ob-

jectives

In this section the literature for non-Keplerian Orbits (NKO) using low-thrust

propulsion will be reviewed . Furthermore, this section will also outline the thesis

objectives. The literature for non-Keplerian orbits using low-thrust propulsion is

classified into two and three-body problems.

The well known conic section Keplerian orbits exist in the two-body gravi-

tational problem. Low thrust propulsion systems can be used to modify these

Keplerian orbits into non-Keplerian orbits. In fact families of non-Keplerian or-

bits can be generated in this way. Although low-thrust propulsion systems other

than solar sails can be used for NKO, the solar sail is well suited for non-Keplerian

orbits since propellantless propulsion can enable longer mission lifetime. The de-

velopment of sail technologies to enable these NKO is in progress. The Geostorm

mission (NASA) and Geosail mission (ESA) are key near-term missions that will
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use solar sail NKO. Non-Keplerian orbits are a principal driver for developing near

term solar sails.

1.4.1 NKO and the Circular Restricted Three-Body Prob-

lem

In the circular restricted three-body problem, the gravitational forces of the two

primaries and the centripetal force on a spacecraft in a rotating frame are balanced

at the Lagrange points (see section 1.1.2). Therefore, in the neighborhood of the

Lagrange points the thrust from low-thrust propulsion can play a significant role.

The literature for halo orbits in the circular restricted three-body problem is firstly

discussed.

1.4.1.1 Artificial Equilibria and Halo orbits

Before discussing artificial halo orbits, ‘classical’ halo orbits are reviewed. Around

the collinear Lagrange points, ‘classical’ halo orbits have been studied extensively,

for example Farquhar [24], Farquhar and Kamel [25], Breakwell and Brown [13],

Richardson [82], Howell [41], Thurman and Worfolk [90] and Cielaszyk and Wie

[20]. In fact, Farquhar [24] first proposed a halo orbit around L2 in the Earth-Moon

system for continuous communication between the Earth and the far-side of the

Moon. Since the Earth views the same side of the Moon, a communication network

is necessary and a single spacecraft in a halo orbit can communicate with the far-

side of the Moon. Notably, Richardson [81, 82] used the method of Lindstedt-

Poincaré to obtain a third-order analytical approximation of (unstable) periodic

halo orbits in a simple, high-precision and straightforward manner (approximation

of a periodic orbit shown in Fig. 1.5). Stable halo orbits were found by Breakwell

and Brown around L2 in the Earth-Moon system [13], and later on by Howell [41]

for a wide range of mass ratios around all the three collinear Lagrange points in

an extensive numerical study.
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Artificial equilibrium points (AEPs) are similar to Lagrange points and can

be generated if a continuous acceleration is available from a low-thrust propulsion

system such as a solar sail, solar electric propulsion system or hybrid system. The

continuous acceleration from these propulsion systems can cancel any residual

acceleration at the AEP, and so can generate a static equilibrium point, or a

periodic orbit around the AEP if the linearised eigenvalue spectrum of the Jacobian

around the AEP contains at least one centre.

McInnes et al. [68] show that continuous surfaces of AEPs can be generated in

the CRTBP for a solar sail propulsion system, but only in certain allowed regions.

These AEPs are characterised by the sail lightness number and sail orientation.

The linearised eigenvalue spectrum for a solar-sail around AEPs contains at least

one centre, so linear periodic orbits can be generated or the Lindstedt Poincaré

method can be applied. McInnes [60] and Baoyin and McInnes [1], describe

halo orbits around AEPs on the line joining the two primaries in the solar sail

three-body problem. However, McInnes [60] describes stable regions of halo or-

bits around unstable AEPs, when the amplitude of the halo orbit becomes large.

Waters and McInnes [94] generate unstable ‘artificial’ halo orbits in the solar-sail

CRTBP about AEPs which are high above the ecliptic plane but normal to the

Sun-Earth line. By choosing AEPs above the ecliptic plane, Waters and McInnes

[94] found periodic orbits at linear order due to the coupling of the linearised

out-of-the plane dynamics with the linearised in-plane dynamics in contrast to

the classical case. Therefore, the linear solution can be used as an initial guess

to numerically continue to large amplitude halo orbits without using the Lindst-

edt Poincaré method. Since these halo orbits are unstable, Waters and McInnes

[95, 97] used an optimal controller to stabilise the sail onto unstable halo orbits us-

ing variation in the sail’s orientation. Waters and McInnes [95] also show that for

an arbitrary fixed point in three-dimensional space (away from the Sun-line) the

linearised eigenvalue spectrum does not contain a centre, therefore the Lindstedt-

Poinacare method fails to generate periodic orbits. The authors first assigned
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eigenvalues to the controller (pole-placement method) using single variable control

based on the Center Manifold Theorem1, and then used this controller to generate

periodic orbits. The linearised eigenvalue spectrum of the AEP has a negative

eigenvalue (stable mode) and positive eigenvalue (unstable mode), which means

that there is one trajectory going towards the fixed point (stable manifold) and one

departing (unstable manifold). Like equilibrium points, periodic orbits have sta-

ble and unstable modes (corresponding to eigenvalues of the Monodromy matrix)

which describe trajectories that wind onto and off the periodic orbit and represent

the stable and unstable manifolds of the periodic orbit. Waters and McInnes [96]

show that for a solar sail in the CRTBP there are equilibrium points that admit

homoclinic paths (i.e, the unstable and stable manifolds intersect and thus the

equilibrium points are self-connected fixed points). Moreover, halo orbits about

such equilibrium points inherit the homoclinic nature of the equilibrium point (a

behaviour of periodic orbits not observed in the classical Sun-Earth case). For a

solar sail, all of these ‘artificial’ halo orbits around AEPs, in and above the eclliptic

plane, are in the allowed/accessible volume of space.

Morimoto et al. [73] find AEPs in the CRTBP for a solar electric or nuclear

electric low-thrust propulsion system. These AEPs are characterised by the thrust

acceleration magnitude and thrust orientation. In particular, marginally stable

regions, in addition to unstable regions of AEPs, are found that differ from the

solar sail problem which has only unstable regions of AEPs. Marginally stable

regions are similar to L4 and L5 but are closer to the Earth. Therefore, Morimoto

et al. [73] suggest that the telecommunications link budget for a spacecraft in such

marginally stable regions will be less than that for L4 and L5. Morimoto et al.

[72] also find resonant periodic orbits with a constant, continuous acceleration at

linear order around the marginally stable AEPs along the axis joining the primary

1If the linearised eigenvalue spectrum about a fixed point consists of a centre (pure imaginary

eigenvalues) and stable mode (negative and real eigenvalue), then the nonlinear dynamics is

governed by the centre.
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bodies.

It is concluded from the above review that the existence of halo orbits (unstable

and stable halo orbits about unstable AEPs) for solar electric propulsion has not

been discussed in the literature. Only resonant periodic orbits at linear order

are shown [72] in the marginally stable region where large acceleration is required

since the marginally stable regions are far away from L2. The first objective of this

thesis is therefore to demonstrate the existence of such halo orbits, especially in

the forbidden/inaccessible volume of space for a solar sail and in the neighborhood

of the Lagrange points L1 and L2.

1.4.1.2 Applications of Artificial Equilibria

Two approaches exist in the literature to generate displaced NKO using low-thrust

propulsion. In the first approach, artificial equilibria (fixed points) are generated

using low-thrust propulsion in a rotating frame, and these artificial equilibria will

describe a displaced NKO when viewed from an inertial frame. In the second ap-

proach, the displaced NKO are generated directly in the rotating frame. For the

circular restricted Sun-Earth problem (an autonomous dynamical system) both

approaches are used to generate displaced NKO [2, 36], while for the circular re-

stricted Earth-Moon problem (a non-autonomous system for a solar sail) the sec-

ond approach is the only choice.

This section reviews the literature for the first approach i.e., generating artificial

equilibria using low-thrust propulsion in a rotating frame.

For an ideal solar sail, Forward [29] and McInnes [64, 68] first suggested the

application of artificial equilibria in the Sun-Earth rotating frame. Forward [29]

proposed fixed points (artificial equilibria) high above the ecliptic plane towards

the night-side of the Earth for high latitude communications and McInnes [64, 68]

proposed artificial equilibria towards the day-side of the Earth for real-time polar

imaging (a polar observer mission). Both are examples of one-year NKO in the

Sun-Earth three-body problem. McInnes [62] in subsequent studies finds for a
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Figure 1.10: Contours of sail lightness number β0 = (1) 0.05(2) 0.10(3) 0.15(4) 0.30 in the

xz-plane for (a) an ideal solar sail and (b) a realistic partially reflecting sail with sail reflectivity

0.9. No artificial equilibrium solutions exist in the gray region.

realistic, partially reflecting sail where the thrust vector is no longer strictly nor-

mal to the sail surface, a reduction in the volume of possible artificial equilibrium

solutions attached to the natural L1 and L2 Lagrange points (see Fig.1.10). The

significant reduction in volume about L2 suggests that a realistic sail cannot be

used for night-side communications along the polar axis as was proposed by For-

ward [29] for an ideal sail. Morrow et al. [74] also carried out an analysis for a

solar sail hovering in close proximity to an asteroid and found AEP solutions in

Hill’s problem, similar to the restricted three-body problem.

Missions have been proposed that use solar sails to generate AEPs in and

above the ecliptic plane. The NASA/NOAA (National Oceanic and Atmospheric

Administration) Geostorm warning mission is an application of solar sail equilibria

in the ecliptic plane sunward of L1 and requires a sail assembly loading of 14 g/m2

and sail size of order 100 × 100 m [93]. NOAA interest [21] in the polar observer

mission [29, 64] uses an application of sail equilibria out of the ecliptic plane.
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However, for a polar observer mission, a sail with the same sail assembly loading

as for the Geostorm mission and a payload mass of 100 kg needs a rather large

sail (180 × 180 m). The deployment and control of such a large solar sail will

be technologically difficult. Improvements in two key sail design parameters, a

decrease in the sail assembly loading and an increase in sail size are being developed

[31].

For an SEP system, where reaction mass provides a low thrust propulsive

force, Morimoto et al. [73] find artificial equilibrium points in the CRTBP. The

SEP system can be used to generate artificial equilibria in the forbidden regions of

the ideal/real sail problem. However, continuous acceleration from an SEP system

at AEPs for several years will require a large mass of propellant, unlike a sail which

is a true propellantless system.

The second objective of this thesis is therefore to investigate the properties

of artificial equilibria by combining solar sail and solar electric propulsion (hybrid

sail, see section 1.3.3) for applications that are technologically difficult using either

of these low thrust propulsion systems alone. Furthermore, the objective is to

investigate the use of the hybrid sail for displaced NKO (i.e., artificial equilibria in

the Sun-Earth rotating frame) extending the hybrid sail proposal by Leipold and

Götz [54] for orbital transfers in solar system.

1.4.1.3 Displaced NKO for the Non-Autonomous Solar Sail Problem

Although this thesis considers periodic orbits in the circular-restricted three-body

problem using low-thrust propulsion, recent literature has also focused on the

elliptical-restricted three-body problem (ERTBP) using low-thrust propulsion [8–

11, 37]. In the ERTBP, the two primaries move in elliptical orbits about their centre

of mass while the assumption that m << m2 < m1 still holds (see section 1.1). A

useful coordinate system to use for equilibria and periodic orbits in the ERTBP,

is a rotating and pulsating coordinate system in which the locations of primaries

and Lagrange points are fixed. Baoyin and McInnes [3] reconsider AEP solutions
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for a solar sail in the ERTBP and find equilibrium points exist only within the

ecliptic plane. However, the authors find that when the eccentricity of the orbit of

the primary bodies is small (like the Sun-Earth system), out-of-ecliptic equilibria

can be achieved with active control. The dynamical system in the ERTBP is non-

autonomous, therefore, periodic orbits of integer multiples of 1 year can only be

found. Biggs et al. [10] generate 1 year periodic orbits for a sail with characteristic

acceleration ac = 0.3 mms−2 (or β0 = 0.05) (a near-term sail) in the ERTBP high

above the ecliptic plane. The authors start from the 1 year orbit for a sail in

the CRTBP (i.e. e = 0) [94] and then used the eccentricity e as a continuation

parameter to find 1 year orbits in the ERTBP until they generate the desired

1 year orbit for the Sun-Earth system (e = 0.0167). This 1 year orbit remains

unstable in both the CRTBP and ERTBP cases. The orbit is in the accessible

region for a sail (far from Earth) and therefore can provide polar images. Biggs

et al. [9] also proposed tracking this orbit in the ERTBP using variation in the

sail’s orientation, and they find that maintaining the sail on the orbit generated

using the ERTBP will cause less tracking error than an orbit generated in the

CRTBP. Recently, starting from 1 year periodic orbits in the ERTBP, Biggs and

McInnes [8] found a family of one year periodic orbits (with different amplitudes)

above L1 by choosing the sail pitch angle as a continuation parameter for a fixed

β0 = 0.05. Furthermore, the authors choose some orbits from this family to show

that a formation can be used for remote sensing of the Earth’s North pole.

Although this thesis considers the displaced NKO analysis in the circular-

restricted Sun-Earth system, recent interest has emerged in the Earth-Moon CRTBP.

McInnes [61] first investigated displaced elliptical NKO at linear order above L2

using a solar sail (with a constant sail-orientation) in the rotating frame of the

Earth-Moon three-body system. The dynamics are non-autonomous since the di-

rection of the Sun-line is varying in the rotating frame. The author demonstrated

that a sail with ac = 0.2 mms−2 is displaced above L2 (i.e., z = 3500 km) and can

be used for lunar far side and polar communications with the Earth. Later, Simo
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and McInnes [61, 86] show that such displaced NKO exist at linear-order above

all of the Lagrange points L1, L2, · · · , L5 in the Earth-Moon restricted three-body

problem. In the full-nonlinear time-varying problem at low displacement above

L3, L4 and L5, a reference displaced NKO can be generated by choosing a set of

initial conditions with a fixed sail-attitude [86]. However, for an orbit above L2 in

the full-nonlinear time-varying problem, Simo and McInnes [85] proposed a hybrid

system with SEP thrusters tracking the displaced NKO generated at linear-order

using only a fixed-attitude sail. In fact, the thruster system is used to cancel the

non-linearities in the non-linear dynamics, and thus will force linear dynamics.

Recently, Ozimek et. al. generated displaced NKO below L1 and L2, and below

the lunar south pole in the full-nonlinear time-varying problem by varying the sail

attitude through a collocation scheme. They suggested that these displaced NKO

can be used for continuous constant communication with the lunar south pole us-

ing a single spacecraft with ac = 0.58− 1.70 mms−2 rather than two spacecraft as

proposed earlier [35].

1.4.2 NKO and the Two-Body Problem

This section reviews the literature for artificial equilibria/displaced NKO generated

using low-thrust propulsion in the two-body problem.

For low-thrust spacecraft, McInnes [66] investigated families of circular orbits

displaced above the central body by generating artificial equilibria in a rotating

frame of arbitrary angular velocity (a free parameter which in turn also deter-

mines the orbit period). In particular, a displaced orbit above and synchronous

with Saturn’s ring system is proposed for high-resolution imaging. However, a

large acceleration is required for the displaced orbit due to the large gravitational

parameter of Saturn. Lu and Love [57] proposed hovering (artificial equilibria)

over an asteroid generated by using continuous low-thrust propulsion as a means

to modify the orbit of an Earth-threatening asteroids/NEA (Near Earth Aster-

oid). To generate such artificial equilibria, two canted thrusters are required to
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avoid engine exhaust plume impingement on the NEA surface. Recently, McInnes

[65] proposed a low-thrust spacecraft in a displaced NKO, rather than artificial

equilibria, as a method of gravitational coupling. The thruster system in such a

displaced NKO need not be canted for certain orbit parameters (i.e., displacement

and orbit radius). Wie [99] suggested that such a displaced NKO can be used more

efficiently (i.e., provide larger deflection ∆V ) by flying multiple small spacecraft

rather than a single large spacecraft. Wie [99] also proposed static equilibria using

solar sails due to its propellantless nature and the absence of the impingement

problem on the NEA surface.

For a solar sail system, McInnes and Simmons [69] found families of Sun-

centered circular displaced NKO (orbit period as a free parameter) for solar physics

applications, and one year orbits synchronous with the Earth for space weather

missions. McInnes and Simmons [70] also find families of planet-centered circular

NKO behind the planet in the anti-Sun direction to observe the full 3D structure

of the geomagnetic tail. More explicitly, McInnes and Simmons [69, 70] formulate

two-body dynamics in the rotating frame to look for artificial equilibria and obtain

NKO when viewed in an inertial frame.

The planet Mercury has a very small J2-term (nearly zero oblateness), therefore

Leipold and Wagner [55] and Leipold et. al. [52] suggested that thrust normal to

the osculating orbit plane around Mercury can be used to generate forced Sun-

synchronous conditions (the rate of the line of longitude of the ascending node

of the orbit is equal to the rate of Mercury around the Sun). A solar sail with

a characteristic acceleration ac = 0.25 mms−2 (which becomes 2.65 mms−2 at

Mercury perigee and 1.15 mms−2 at Mercury apogee) is proposed in an elliptical

NKO around Mercury for remote sensing. McInnes et al. [16] suggested the

Geosail mission for observing the geomagnetic tail of the Earth using a solar sail.

An elliptical orbit (10× 30 Earth Radii) around Earth within the ecliptic plane is

chosen with the apse-line along the Sun-Earth line. A simple steering law to keep

the sail normal parallel to apsidal-line causes Sun-synchronous apse line rotation
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i.e., at a mean rate of 0.9865◦/day with a small characteristic acceleration of

ac = 0.136 mms−2, thus providing continuous coverage of the geomagnetic tail.

A controversial geostationary displaced NKO using a solar sail was first sug-

gested by Forward [27, 28]. A satellite in geostationary orbit has continuous com-

munication with a point on the ground since both the satellite and ground station

move with the same (Earth) angular velocity, thus greatly simplifying the ground

antenna tracking problem. Orbital positions on geostationary orbit (a single or-

bit) are defined by longitude and a station-keeping box of order 75 × 75 km or

150 × 150 km is assigned with respect to its original central (longitude) position

[59], within which the satellite is maintained. However, various slots (longitudes)

along geostationary orbit are already crowded. In order to increase the number

of slots over a particular longitude, Forward [27, 28] first proposed the idea to

‘levitate’ a spacecraft above or below the nominal geostationary orbit. Forward

tried to achieve ‘equilibrium’ in the Earth fixed rotating frame to form a NKO

in an inertial frame. By tilting the solar sail, Forward [27, 28] uses a component

of the sail acceleration perpendicular to the Earth’s equatorial plane to ‘levitate’

the sail above or below the Earth’s equatorial plane. However, Fischer and Haert-

ing [26], in their paper ‘Why light-levitation geostationary cylinderical orbits are

not feasible’, and later Kolk [91] claim such light-levitation is not possible, as the

component of sail acceleration neglected by Forward [27, 28] parallel to the Earth’s

equatorial plane does not allow for ‘equilibrium’.

The third objective of thesis is therefore to prove the assertion of Forward

[27, 28] that displaced geostationary NKO exist using solar sail propulsion. The

neglected parallel component of sail acceleration can be compensated for such that

displaced geostationary orbits can be shown to exist for the same three cases as

considered by Forward [27, 28] i.e., autum/spring equinoxes, summer solstice and

the worst-case of winter solstice.
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1.5 Thesis Layout

In this thesis, three new kinds of NKO are proposed using low thrust propulsion.

In Chapter 2, halo orbits about artificial equilibrium points near to the Sun-Earth

Lagrange points L1 and L2 in the circular restricted three-body problem are gen-

erated, where the third body is a spacecraft with solar electric propulsion. The

periodic orbit analysis of solar electric propulsion at linear order is extended to

nonlinear order using the Lindstedt-Poincaré method to find solutions of third-

order, and a differential corrector method is used to generate solutions for the full

nonlinear problem. The selected artificial equilibrium points inside L1 and beyond

L2 allow for halo orbits that are not accessible with solar sail propulsion. Stable ar-

tificial halo orbits are also computed using a continuation method, and such stable

orbits are demonstrated with a reasonably small low-thrust acceleration pointing

towards the Sun.

Chapter 3 proposes a new concept of creating artificial equilibrium points in

the circular restricted three-body problem, where the third body uses a hybrid of

solar sail and solar electric propulsion. This idea is important in that it extends

the hybrid sail concept, originally proposed to reduce orbital transfer time, to use

at equilibrium points. However, the hybrid sail equilibria require throttling of the

electric propulsion system and the AEPs of interest are unstable.

In Chapter 4, the hybrid sail is stabilised about unstable AEPs using the solar

electric propulsion gimbal pitch/yaw angles while keeping the sail at a fixed atti-

tude to ease the control issues for a large sail. Robustness against injection errors

is also demonstrated.

In Chapter 5, a novel analysis of displaced geostationary orbits in the Earth-sail

two-body problem is presented. The analysis resolves a long standing controversy

in orbital dynamics by demonstrating both analytically and numerically (using a

collocation scheme with inequality path constraints) that displaced geostationary

orbits can exist. However, only modest displaced geostationary orbits are shown
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due to the large parallel component of the sail acceleration in the equatorial plane.

In Chapter 6, periodic orbits around geostationary points in the Earth-sail

two-body problem are presented. However, theses are not true displaced geosta-

tionary orbits. A comparison of periodic orbits obtained using a differential cor-

rector scheme is also made with the periodic orbits computed using the collocation

scheme.

In Chapter 7, some concluding remarks are made along with some recommen-

dations for future research.

1.6 Papers Published

The results presented in this thesis have been published in one conference paper

and two international peer reviewed journals (AIAA Journal of Guidance, Control

and Dynamics; Celestial Mechanics and Dynamical Astronomy), and one paper

has been submitted for publication to the AIAA Journal of Guidance, Control and

Dynamics. These papers are listed below:

• S. Baig and C. R. McInnes. Artificial Three-Body Equilibria for Hybrid Low-

Thrust Propulsion. Journal of Guidance, Control and Dynamics, 31(6):1644-

1655, November-December 2008.

• S. Baig and C. R. McInnes. Artificial Halo Orbits for Low-Thrust Space-

craft. Celestial Mechanics and Dynamical Astronomy, 104(4):321-335, Au-

gust 2009.

• S. Baig and C. R. McInnes. Light Levitated Geostationary Cylinderical Or-

bits are Feasible. submitted to Journal of Guidance, Control and Dynamics,

August 2009.

• S. Baig and C. R. McInnes. Artificial Three-Body Equilibria for Hybrid Low-

Thrust Propulsion and Stabilization 59th IAC Congress, Glasgow, Scotland,

UK. IAC-08.C1.3.1, September 29-October 3, 2008.
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Artificial Halo Orbits for

Low-Thrust Propulsion

Spacecraft

This chapter aims to extend the analysis of Morimoto et al.’s orbits [72] for low-

thrust spacecraft at linear order to non-linear order (i.e., halo orbits). Thus, the

feasibility of halo orbits will be shown in the Sun-Earth system about artificial

equilibrium points (AEPs) which can be generated using low-thrust propulsion

spacecraft. In particular, the existence of halo orbits about unstable AEPs inside

L1 and beyond L2 are shown where a solar sail cannot be placed so that low-thrust

propulsion, such as solar electric propulsion, is the only option to generate artificial

halo orbits around these points inaccessible to a solar sail. Stable halo orbits for

low-thrust spacecraft about unstable AEPs are also shown using the orbit half

period as a continuation parameter.

This chapter is arranged as follows. In the next two sections the equations

of motion and periodic orbits at linear order are outlined for a low-thrust system

in the CRTBP as given by Morimoto et al. [72], as required for analysis of the

nonlinear system. However, it is shown that the system admits a constant of mo-

tion since the equations of motion not explicitly dependent on time (see Sect. 2.1).

34
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In addition, the linear order solution for the low-thrust system is derived in a

new compact manner (see Sect. 2.2). Halo orbits are computed analytically and

numerically about AEPs for low-thrust propulsion systems using the Lindstedt-

Poincaré and differential corrector method in Sect. 2.3 and Sect. 2.4 respectively. In

Sect. 2.5, stable halo orbits for low-thrust propulsion spacecraft are shown around

unstable artificial equilibrium point beyond L2.

2.1 Equations of Motion

The dynamical model of the CRTBP and the synodic coordinate frame (see Sect. 1.1.1)

is chosen to describe a low-thrust spacecraft in the gravitational influence of the

Sun-Earth system. A synodic coodinate frame i.e., co-rotating with the two pri-

mary masses m1 and m2 at constant angular velocity ω with origin at their center

of mass is shown in Fig. 2.1. The units are chosen to set the product of the grav-

itational constant and the sum of the primary masses, the distance between the

primaries, and the magnitude of the angular velocity of the rotating frame to be

unity as described in Section 1.1.1. In Fig. 2.1, r1 and r2 are the position vectors

of the spacecraft with respect to m1 and m2, respectively, with

r1 = [x + µ y z]T , r2 = [x− (1− µ) y z]T

where we denote r = [x y z]T as the position vector of the low-thrust spacecraft

relative to the center of mass. The non-dimensional equation of motion of a low-

thrust spacecraft in the rotating frame of reference is given by

r̈ + 2 ω × ṙ = ∇V + aT ≡ F (2.1)

where V is the effective potential given by

V =
1

2
(x2 + y2) +

(
1− µ

r1

+
µ

r2

)
(2.2)

The vector aT is the acceleration due to the low-thrust propulsion system. At

an equilibrium point r̈ and ṙ vanish, so an equilibrium point is a zero of F i.e.,
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Figure 2.1: Definition of coordinate system and low-thrust spacecraft in a periodic halo orbit

about an artificial equilibrium point beyond L2.

F (r0) = 0. Thus, a nonequilibrium point r0 in the rotating frame is changed into

an artificial equilibrium point with low-thrust acceleration vector aT satisfying the

following condition

−∇V = aT (r0) = aTuT (2.3)

where the magnitude and direction of the low-thrust acceleration is given by

aT = |∇V (r0)|
uT = − ∇V

|∇V |
(2.4)

Taking the dot product on both sides of Eq. (2.1) with ṙ = v, it is found that

v.v̇ + 2v.(ω × v)− v.aT = v.∇V =
dr

dt
.
∂V

∂r

or
d

[
1
2
vT v − aT

T r
]

dt
=

dV

dt

Therefore, the Jacobi constant for the low-thrust system is given by

C(r, v) = 1
2
vT v − aT

T r− V (r) (2.5)

For the correct initial conditions, the spacecraft will move on a periodic orbit

around an artificial equilibrium point r0 with constant continuous acceleration aT

satisfying Eq. (2.4), and having constant of motion C.
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Figure 2.2: Zero velocity curves in the Sun-Earth system for (a) energy values of the L1 and

(b) energy values of the L2 point . For the classical case aT = (0, 0, 0) (dashed contour lines)

and for the low-thrust system aT = (0.0001, 0, 0) (solid contour lines).

The classical case (with no propulsion) is Hamiltonian and time independent,

so an energy integral of motion exists and this energy is defined by Eq. (2.5)

with aT = (0, 0, 0) (see Eq. (1.6)). In the Sun-Earth system, the energies of the

spacecraft at rest at L1 and L2 (i.e., −V (rL1) and −V (rL2) are −1.500448970 and

−1.500446943 respectively.

Fig. 2.2 shows that the classical case contours are closed for energy values at

the L1 and L2 points (see dashed contour lines). However, in the case of a low-

thrust system for aT = (0.0001, 0, 0) and contours with the same energy values

(see solid contour lines), the contours at L1 and L2 points are opened, permitting

the spacecraft to escape from the Sun-Earth system.
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2.2 Linearised System

A linear system δẊ = AδX in the vicinity of an equilibrium point r0 is obtained

by perturbing the nonlinear system Eq. (2.1) such that r → r0 + δr, where r0 =

(x0, 0, 0), δr = (δx, δy, δz)T and δX = (δr, δṙ)T . The attitude of the low-thrust

system uT is not perturbed so as to restrict the stability analysis in the sense

of Lyapunov. Furthermore, aT is fixed with respect to the perturbation δr i.e.,

∂aT

∂r
= 0. Then, the Jacobian matrix A is given by

A =


 03 I3

M Ω


 (2.6)

where I3 is the 3× 3 unity matrix. Moreover,

M =
∂∇V

∂r

∣∣∣∣∣
r0

=




a 0 0

0 b 0

0 0 e


 , Ω =




0 2 0

−2 0 0

0 0 0




and

a = 2c + 1, b = 1− c, e = −c

with

c(x0, µ) =
µ

|x0 + µ− 1|3 +
1− µ

|x0 + µ|3 > 0

as µ > 0 and 1− µ > 0. In Eq. (2.6), the z equation is decoupled from the x and

y equations for the AEP r0 chosen on the x-axis (or in the x − y ecliptic plane),

so the out of ecliptic plane equation of motion is given by

δz̈ + cδz = 0

which has a simple harmonic solution δz = Az sin(wzt + φz), where wz =
√

c.

The characteristic polynomial for the x, y linearised system Eq. (2.6) rewritten in

matrix form 


δẋ

δẏ

δẍ

δÿ




=




0 0 1 0

0 0 0 1

a 0 0 2

0 b −2 0







δx

δy

δẋ

δẏ




(2.7)
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is given by

p(λ) = λ4 + (2− c)λ2 + (1 + c− 2c2)

By letting α = λ2, then the roots of p(α) = 0 are as follows

α1 =
c− 2 +

√
9c2 − 8c

2
, α2 =

c− 2−√9c2 − 8c

2
(2.8)

AEPs where c(x0, µ) > 1 are considered (the unstable region) and not the marginally

stable region (where 8/9 ≤ c(x0, µ) < 1) [73], then 9c2 − 8c > (c − 2)2. From

Eq. (2.8), then α1 > 0 and α2 < 0. So the eigenvalues spectrum of Eq. (2.7) con-

sists of a saddle and center {±iλ1,±λr}, where λ1 = wxy =
√−α2 and λr =

√
α1.

Let u1 + iw1 be an eigenvector of the linearised Eq. (2.7) corresponding to

eigenvalue iλ1 (see Appendix A.1) and let v1 and v2 be the eigenvectors corre-

sponding to eigenvalues +λr and −λr. Then, the generalised solution of Eq. (2.7)

is given by [5]



δx

δy

δẋ

δẏ




= cos(wxyt)[Au1 + Bw1] + sin(wxyt)[Bu1 − Aw1]

+Ceλrtv1 + De−λrtv2

(2.9)

where

u1 =
(
0, (a + w2

xy), 2w
2
xy, 0

)T
, w1 =

(−2wxy, 0, 0, wxy(a + w2
xy)

)T

C = 0 and D = 0 switch off the real modes to obtain bound solutions for δx and δy

(see Appendix A.2). Finally, the three-dimensional bound solution to the linear

problem Eq. (2.6) can be written as

δx = −Ax cos(wxyt + φxy), δy = kAx sin(wxyt + φxy),

δz = Az sin(wzt + φz)
(2.10)

with k =
a+w2

xy

2wxy
. For the AEPs in this chapter, the ratio of the in-plane wxy and

out of plane frequency wz is not a rational number, so a quasi-periodic Lissajous

trajectory can be obtained as shown in Fig. 2.3.
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Figure 2.3: Lissajous trajectory at AEP r0 = [1.02 0 0]T (beyond L2) in the Sun-Earth system.

Ax = Az = 2.3396× 10−5(3500 km) and φxy = φz = 0 are chosen for illustration purposes. The

AEP needs aT = (−0.0512, 0, 0).

2.3 Nonlinear Approximations

The Lindstedt-Poincaré method is used to find periodic approximations to the

equations of motion Eq. (2.1). In the CRTBP literature, Lindstedt-Poincaré [82,

90] is used quite extensively to force the two linear frequencies (wxy and wz) to

be equal by contributing nonlinear terms if the amplitudes Ax and Az of the

linear solution are large enough. The method is based on the assumption that

if the nonlinearities are small, then the frequency of the periodic solution to the

nonlinear system is a perturbation of the frequency of a periodic solution to the

linear system. Therefore, the nonlinearity alters the frequency from wxy to wxyw,

where

w = 1 + εw1 + ε2w2 + . . . (2.11)

This frequency correction allows the removal of secular terms through determi-

nation of wi during the development of the approximate periodic solution about

AEPs.

A Taylor series expansion of F to third-order [4] about AEP r0 is found by

making the transformation r → r0 + δr, so the system of nonlinear equations is
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obtained

δr̈ + 2 ω × δṙ = F (r0) +

(
δrT .

[
∂

∂r

])
∇V

∣∣∣
r=r0

+
1

2!

(
δrT .

[
∂

∂r

])2

∇V
∣∣∣
r=r0

+
1

3!

(
δrT .

[
∂

∂r

])3

∇V
∣∣∣
r=r0

+ O(δr4)

where it is assumed that ∂aT

∂r
, ∂2aT

∂r2 etc., are all zero. In component form the

equations of motion through third-order are given by

δẍ− 2δẏ − (2c + 1)δx = 3C
(
2δx2 − δy2 − δz2

)

+ 4Dδx(2δx2 − 3δy2 − 3δz2) + O(δr4)

δÿ + 2δẋ + (c− 1)δy = −6Cδxδy

− 3Dδy
(
4δx2 − δy2 − δz2

)
+ O(δr4)

δz̈ + w2
xyδz = −6Cδxδz − 3Dδz

(
4δx2 − δy2 − δz2

)

+ O(δr4) + ∆δz (2.12)

where C =
Vxxx|r=r0

12
and D =

Vxxxx|r=r0

48
are evaluated at the AEP r0 = (x0, 0, 0).

Note that to force the linearized z-equation to the form δz̈ + w2
xyδz = 0, the

term ∆ = w2
xy − c = w2

xy − w2
z(∆ = O(A2

z) = O(ε2)) should be considered on

the right-hand-side of the z−equation in higher-order spproximation (the linear

periodic solution given in Eq. (2.10) with wz replaced by wxy and acts as a first

approximation).

The following relations exist to switch off the secular terms which appear as a

result of method of successive approximations in the inhomogeneous part of the

system of equations of order O(ε2) and O(ε3).

w1 = 0, w2 = s1A
2
x + s2A

2
z

l1A
2
x + l2A

2
z + ∆ = 0, φz = φxy + nπ/2 n = 1, 3

The expressions for si, li are given in Ref. [90]. The closed orbit corresponding

to these constraints is a halo orbit. Northern halo orbits, whose maximum out-

of-plane component is above the ecliptic plane, are obtained corresponding to the
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solution n = 1 and n = 3 about AEPs near L1 and L2 respectively. The period of

the orbit can be found from the amplitude-frequency relation T = 2π/wxyw, where

w = 1+s1A
2
x +s2A

2
z. The minimum in-plane amplitude Axmin =

√
|∆/l1| required

to have a halo orbit can be derived from the above amplitude-constraint relation by

substituting Az = 0. The complete third-order successive approximation solution

of Eq. (2.12) using the Lindstedt-Poincaré method is given by [90]

δx(t) = −Ax cos τ1 + a21A
2
x + a22A

2
z + (a23A

2
x + ζa24A

2
z) cos 2τ1

+ (a31A
3
x + ζa32AxA

2
z) cos 3τ1

δy(t) = kAx sin τ1 + (b21A
2
x + ζb22A

2
z) sin 2τ1 + (b31A

3
x + ζb32AxA

2
z) sin 3τ1

+ (b33A
3
x + b34AxA

2
z + ζb35AxA

2
z) sin τ1

δz(t) = (−1)(n−1)/2Az cos τ1 + (−1)(n−1)/2d21AxAz(cos 2τ1 − 3)

+ (−1)(n−1)/2(d32AzA
2
x − d31A

3
z) cos 3τ1 (2.13)

where ζ = (−1)n and τ1 = wxywt + φ. The constants si, li, aij, bij and dij involve

C, D, k and wxy which in turn ultimately depend on r0 and µ. Note that the

numerical values of these constants will be different from that given in [82, 90] due

to the different scaling system chosen in the non-dimensionalisation (see Sect. 2.1).

In Eq. (2.13) the expression for δy(t) also contains the third-order correction to

the amplitude of sin τ1 by Thurman and Worfolk [90] in Richardson’s original

solution [82]. This correction allows faster convergence of the differential corrector

algorithm.

Fig. 2.4 shows that the magnitude of the low-thrust acceleration aT is zero

at L1 and L2 and increases to convert a nonequilibrium point at x0 away from

L1 and L2 into an equilibrium point. Artificial L1 and L2 points are chosen that

require a maximum aT ≈ 0.05 (0.296 mms−2) and aT ≈ 0.1 (0.593 mms−2), which

corresponds to a thrust of 150 mN and 300 mN for a 500 kg spacecraft. For points

inside L1 and beyond L2, the direction of aT is sunward, so these periodic artificial

halo orbits with a given z−amplitude cannot be generated with a solar sail.

Fig. 2.4 also shows that the period T = 2π
(1+w2)wxy

of these artificial halo orbits
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Figure 2.4: Period of artificial halo orbit vs AEPs selected at x0 near to (a) L1 and (b) L2

points in the Sun-Earth system. The dotted curve shows the low-thrust acceleration required at

x0 to create AEPs while the solid line shows the orbit period. aT = 0 at L1 and L2.
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Figure 2.5: Zero and second order frequencies vs AEPs selected at x0 near to (a) L1 and (b)

L2 points in the Sun-Earth system.
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Figure 2.6: The minimum x-amplitude to have artificial halo orbits vs AEPs selected at x0

near to (a) L1 and (b) L2 points.
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Figure 2.7: Orbit period versus AEPs selected at x0 near to (a) L1 and (b) L2 points with

various Az values: Az(125, 000) km for the black dashed-line, Az (3× 125, 000) km for the gray

solid-line, and Az (7× 125, 000) km for the black solid-line.
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follow the inverse behaviour of the zero order frequency wxy (see Fig. 2.5). Fig. 2.5

shows that the second order frequency correction to the zero order term is very

small, or approximately a maximum < 3.5% frequency correction to the zero order

solution (as w1 = 0) for Az = 8.3557 × 10−4 (125, 000 km). Fig. 2.5 also shows

that the correction can increase/decrease the period. Fig. 2.6 shows that the

minimum amplitude Axmin =
√
|∆
l1
| beyond artificial L2 points first increases then

decreases when aT exceeds ≈ 0.07 (0.415 mms−2), as at this point the rate at which
√

∆ decreases becomes more than the rate at which 1√
|l1|

increases. Although in

Figs. (2.4-2.5) Az is chosen with 125, 000 km, the effect of Az on the second order

frequency correction w2, and so period T is relatively small where the initial guess

from Lindstedt-Poincaré valid (see Fig. 2.7).

2.4 Differential Correction and Low-Thrust Halo

Orbits

The initial guess from the Lindstedt-Poincaré analysis can be used to integrate

the full nonlinear system of equations Eq. (2.1) along with the constant low-thrust

acceleration aT to generate periodic orbits around AEP r0. The trajectory will

not close as the Lindstedt-Poincaré method generates (periodic) solutions that are

approximations to the periodic solutions of the full nonlinear equations of motion.

The nonlinear equations of motion Eq. (2.1) with constant aT are symmetric

under the transformation y → −y and t → −t, so this symmetry about the xz-

plane with a time-reversal suggests periodic orbits need to be determined for a

half period T1/2 only. Let X0 = (x0, 0, z0, 0, ẏ0, 0) be initial data from Lindstedt-

Poincaré, so the spacecraft leaves perpendicularly from the y = 0 plane. On the

first return to the y = 0 plane, its state is

X(T1/2) = (x̃, 0, z̃, ˙̃x, ˙̃y, ˙̃z)
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Figure 2.8: Artificial halo orbits are shown in gray around artificial L1 points (n = 1) with

low thrust acceleration vectors aT = (±0.01, 0, 0) and aT = (±0.02, 0, 0). The classical halo

orbit is also shown (3rd dark black orbit). All periodic orbits have the same Az = 8.3557 ×
10−4 (125, 000 km).
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Figure 2.9: Artificial halo orbits are shown in gray around artificial L2 points (n = 3) with

low thrust acceleration vectors aT = (±0.01, 0, 0) and aT = (±0.02, 0, 0). The classical halo

orbit is also shown (3rd dark black orbit). All periodic orbits have the same Az = 8.3557 ×
10−4 (125, 000 km).
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so a periodic solution exists when ˙̃x = ˙̃z = 0.

Let X̄(t) represent the reference solution (known) corresponding to X0. This

solution can be used to relate the solution of the perturbed initial state ∆X0 from

the reference solution at t = 0 to its deviation in the final state from the reference

solution at T1/2 + ∆T1/2 by

∆X(T1/2 + ∆T1/2) =
∂X(T1/2,X0)

∂X0

∆X0 + Ẋ(T1/2)∆T1/2 (2.14)

The matrix ∂X
∂X0

= Φ is the state transition matrix evaluated along the reference

solution X̄(t). To make ˙̃x = ˙̃z = 0 at y = 0, x0, ẏ0, T1/2 are varied iteratively by

corrections ∆x0, ∆ẏ0 and ∆T1/2 while keeping z0 fixed. These corrections can be

calculated from Eq. (2.14) explicitly as follows




∆x0

∆ẏ0

∆T1/2


 =




φ21 φ25 ẏ

φ41 φ45 ẍ

φ61 φ65 z̈




−1

t=T1/2




0− y

0− ˙̃x

0− ˙̃z


 (2.15)

where φij are elements of the matrix Φ at T1/2. The full state transition matrix Φ

is computed by integrating the following variational equations

Φ̇ = A(t)Φ, Φ(0) = I6 (2.16)

along with the nonlinear system Ẋ = f(X) at each iteration for the corrected

initial conditions. In the above equation, A(t) = ∂f
∂X

is the Jacobian of f with

respect to X.

Figs. (2.8-2.9) show numerically generated periodic halo orbits as explained

above. The gray orbits are artificial periodic halo orbits around artificial L1 points

(see Fig. 2.8) and artificial L2 points (see Fig. 2.9) for low-thrust acceleration

values aT = 0.01 and aT = 0.02 with the same Az. The dashed gray orbits have

a low-thrust acceleration vector pointing towards the Sun, so a solar sail cannot

generate these periodic artificial halo orbits.
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2.5 Stable Low-Thrust Halo orbits

So far artificial halo orbits around unstable AEPs have been considered. The

instability of AEPs implies that artificial halo orbits around these points will also

be unstable. However, a continuation method may be used to generate families

of periodic orbit with large amplitude and move beyond the region where the

linear terms dominate (i.e., saddle behaviour), so regions of stable halo orbits with

low-thrust propulsion may be found.

Given a known periodic solution of Eq. (2.1) with a known initial condition

X0 and parameter of interest (for example Az), then the continuation method

computes the new initial condition to have a periodic orbit for a given fixed new

parameter (Az +∆Az). The continuation method, particularly relating to classical

halo orbits is discussed in [41, 47]. Usually the z−amplitude Az is used as a

continuation parameter and when it reaches an extreme value, the continuation

parameter is changed form Az to Ax. In this chapter, the half period T1/2 is chosen

as a continuation parameter when an initial guess from the Lindstedt-Poincaré

(third-order approximations) does not give convergence in the differential corrector

scheme (e.g., Az = 0.08453 (10×125, 000 km) for the AEP r0 = (1.01134, 0, 0)). It

is found that T1/2 as a continuation parameter at large amplitude provides better

convergence accuracy than Az and Ax, the conventional continuation parameters.

For an accurate given periodic orbit (X0, T1/2), the half period is changed from

T1/2 to T ′
1/2 = T1/2 +∆T1/2. Then (X0, T

′
1/2) is used as initial values for integrating

Eq. (2.1) and keep the period fixed at T ′
1/2. For a fixed period T ′

1/2, the second

term on the right-hand-side of Eq. (2.14) vanishes, and so the correction in the

initial condition ∆X0 can be calculated as

∆X0 =
∂X(T ′

1/2,X0)

∂X0

∣∣∣
−1

∆X(T ′
1/2) (2.17)

In particular, to ensure y, ˙̃x, ˙̃z are zero at T ′
1/2, x0, ẏ0 and z0 are varied iteratively by

corrections ∆x0, ∆ẏ0 and ∆z0. These corrections can be calculated from Eq. (2.17)
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as follows 


∆x0

∆ẏ0

∆z0


 =




φ21 φ25 φ23

φ41 φ45 φ43

φ61 φ65 φ63




−1

t=T ′
1/2




0− y

0− ˙̃x

0− ˙̃z


 (2.18)

where φij are elements of the matrix Φ at T ′
1/2.
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Figure 2.10: Artificial periodic halo orbits in the Sun-Earth system around AEP r0 =

(1.01134, 0, 0) with aT = (−0.01, 0, 0) pointing towards the Sun. The first five periodic or-

bits are generated by using an initial guess from Lindstedt-Poincaré. Large amplitude periodic

orbits are produced using the continuation method with ∆T1/2 = −0.02. The dashed line is the

stable halo orbit.

Fig. 2.10 shows a family of halo orbits about AEPs beyond L2. The period

corresponding to this family of orbits (solid line) is shown in Fig. 2.11. For compar-
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Figure 2.11: The half-period of classical halo orbits about L2 is shown by the dashed line, and

the half-period of artificial halo orbits about AEP r0 = (1.01134, 0, 0) is shown by the solid line.

1.006 1.008 1.010 1.012

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

xmax

z
m

a
x

Figure 2.12: Classical halo orbits about L2 shown by the dashed line, and artificial halo orbits

about AEP r0 = (1.01134, 0, 0) with low-thrust acceleration aT = (−0.01, 0.0) shown by the

solid line. Heavy dots on both curves corresponds to stable halo orbits.
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Table 2.1: Initial condition for stable orbits with aT = (−0.01, 0, 0) which corresponds to a

low-thrust acceleration 0.0593 mms−2 and low-thrust force 30 mN for a 500 kg spacecraft.

x0 (×108km) z0 (×106km) ẏ0 (×102m/s) T1/2 (days) C

1.509505487164924 2.158391940114810 -4.177777862144087 73.8218469 -1.49000437

1.509191101130694 2.173171517835050 -4.076979879730191 72.6592201 -1.49000439

1.508857610708376 2.189749813954399 -3.966248219678315 71.4965932 -1.49000442

ison, the period of classical halo orbits about L2 is also shown. Fig. 2.12 shows the

same family of orbits (see first plot in Fig. 2.10) characterised by their maximum

x-value xmax and maximum z-value zmax. Switching from the Lindstedt-Poincaré

analysis at xmax = 1.0126 to the continuation method with ∆T1/2 = −0.02 causes

a gap in the artificial halo orbits curves (see Figs. 2.11-2.12). However, halo orbits

exist in the gap and can be shown by choosing a smaller ∆T1/2.

According to Floquet theory, the first order or linear stability of periodic orbits

is described by the eigenvalues of the monodromy matrix Φ(T ). Let the nonlinear

system Eq. (2.1) be written as Ẋ = f(X). Since the trace of the Jacobian ∂f
∂X

= 0

[see Eq. (2.6)], eigenvalues of the monodromy matrix occur in reciprocal pairs [15].

The system is autonomous, so it has +1 as an eigenvalue for a periodic orbit [98].

Thus, two of the eigenvalues of the monodromy matrix are unity because of the

reciprocal pair condition, and the stability of the periodic orbit is given by the

complex conjugate eigenvalues on the unit circle in the complex plane. Thus, for

stable periodic orbits, the spectrum of the monodromy matrix is described by

{1, 1, λi, λ̄i, λj, λ̄j} (2.19)

i.e., modulus of all the eigenvalues lie on the unit circle. However, if all |λi| = 1

that does not provide the stability information of the nonlinear system. Therefore,

the nonlinear stability is tested by numerically integrating the nonlinear system

of equations and the periodic orbit keeps a halo shape for large integration times.

However, for artificial unstable periodic orbits, the eigenvalue spectrum of the
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monodromy matrix is given by

{1, 1, λr, 1/λr, λi, λ̄i} (2.20)

The initial condition for stable artificial periodic orbits is given in Table 2.1.

In the Sun-Earth system, the low-thrust acceleration 0.0593 mm/s2 corresponds

to 30 mN thrust for a 500 kg spacecraft. Assuming Isp = 3200 s and propellant

mass fraction of 50%, the propellant will be consumed within 11.5 years. However,

these stable orbits can maintain a halo shape for larger integration times i.e, 25

years (see Fig. 2.13). Stable halo orbits (shown by dots in Fig. 2.12) about L2

are between the L2 point and the Earth, while artificial stable orbits in the case of

low-thrust propulsion about AEP r0 = (1.01134, 0, 0) are closer to L2. The stable

halo orbits can also be found by choosing Ax as a continuation parameter with a

tolerance of |ẋ|+|ż|
2

< 10−7 and the orbit (Az(17.5 × 125, 000 km)) maintains halo

shape for 7 years only (a good tolerance 10−9 is obtained by choosing T1/2 as a

continuation parameter and the orbit is shown in Fig.2.13). Although the existence

of stable halo orbits for low-thrust propulsion spacecraft is shown around unstable

AEP, an in-depth stability analysis could be performed [51, 92], but is left to future

work.

2.6 Conclusions

The possibility of generating halo orbits using a near-term electric propulsion sys-

tem has been shown in the circular restricted three-body problem around nonequi-

librium points by changing these points into equilibrium points with low-thrust

acceleration. In particular, halo orbits around nonequilibrium points inside L1

and beyond L2 that require the low-thrust acceleration to be directed sunward are

shown to be feasible with such low-thrust propulsion. It is therefore impossible

for solar sails to generate these artificial halo orbits. We have also shown that

we may fine tune the initial data provided by the Lindstedt-Poincaré method, for
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Figure 2.13: Stable orbit around AEP r0 = (1.01134, 0, 0) with low-thrust acceleration aT =

(−0.01, 0.0) maintain halo shape for 25 years.
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the integration of the nonlinear equations of motion with constant continuous low-

thrust acceleration, to produce closed orbits around artificial equilibrium point

using a differential corrector. Both the period and minimum amplitude of halo

orbits about artificial equilibrium points inside L1 decreases with an increase in

low-thrust acceleration. The halo orbits about artificial equilibrium points beyond

L2 in contrast show an increase in period with an increase in low-thrust accelera-

tion. However, the minimum amplitude first increases and then decreases after the

thrust acceleration exceeds 0.415 mm/s2. Stable low-thrust halo orbits for a point

beyond L2 are also found using a continuation method, while the continuation

parameter is chosen as the half-period of the halo orbit. These stable halo orbits

are realisable with solar electric propulsion and found to be towards L2, while

the classical stable halo orbits around L2 are approximately halfway between the

Earth and L2.
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Artificial Three-Body Equilibria

for Hybrid Low-Thrust

Propulsion

This chapter proposes a new concept for creating artificial equilibrium points in

the circular restricted three-body problem using a hybrid sail i.e., with both SEP

and solar sail propulsion. The work aims to investigate the use of a hybrid sail

for artificial equilibrium points that are technologically difficult with either of

these propulsion systems alone. The hybrid sail has freedom in specifying the

sail lightness number, then minimising the required thrust acceleration from the

solar electric propulsion thruster while satisfying the equilibrium condition. The

stability analysis of such artificial equilibrium points uses a linear method which

results in a linear time varying (mass) system. The freezing time method then

provides unstable and marginally stable regions for hybrid solar sail artificial equi-

libria. Three propulsion systems (solar electric propulsion, solar sail and hybrid

sail) have been compared with a given payload mass and mission life for a polar

Earth observation mission. For a near-term sail assembly loading, for the hybrid

sail a substantially lower propellant mass is found compared with solar electric

propulsion and lower sail length with respect to a solar sail, and a lower total

58
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initial spacecraft mass.

In the next section the force model for a partially reflecting hybrid sail is de-

scribed. The solar radiation pressure (SRP) and SEP accelerations are normalised

with respect to a reference acceleration and are used in Sect. 3.2 to describe the

equations of motion of a hybrid sail in the CRTBP. In Sect. 3.2, for a hybrid sail

the required SEP acceleration is minimised for a given sail lightness number while

satisfying the equilibrium condition. Two strategies are discussed in Sect. 3.2.2

to maintain the equilibrium condition. In Sect. 3.3, because of the slowly time

varying (mass) linear system, the freezing time method is used to determine the

stability of AEPs of a hybrid sail in the Sun-Earth CRTBP. Section 3.4 compares

the performance of the hybrid sail relative to a pure sail and a pure SEP system

for a polar Earth observer mission. Finally, conclusions are presented in Sec. 3.5.

3.1 Partially Reflecting Hybrid Sail Model

3.1.1 Dimensional Force Model

The hybrid sail configuration is adopted from Leipold and Götz [54] as described

in the section 1.3.3. They developed a hybrid sail force model that takes differ-

ent reflectivities for the sail and TFSC area for their magnitude, but leaves the

thrust direction acting normal to the sail surface. This chapter considers a hy-

brid sail model which has a SRP force component along the sail surface (non-ideal

reflectivity) and so the total SRP force is no longer normal to sail surface.

The solar radiation pressure at a distance R1 from the Sun (see Eq.(1.15)) is

given by

P =
Ls

4πR1
2c

(3.1)

The unit vectors normal to and transverse to the hybrid sail surface are defined by

n and t respectively, as shown in Figure 3.1. The direction of incident photons is

described by r̂1 = cos αn−sin αt and so the SRP force due to the incident photons
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Figure 3.1: Solar radiation pressure force model for a specularly reflecting hybrid sail. The

solar electric propulsion thruster is also shown.

is then

Fi = PAT cos α (r̂1) (3.2)

where AT cos α is the projected area in the direction of the incident photons.

Specular reflection (no diffuse reflection and thermal re-emission) is assumed from

both TFSC area ATF and sail area AS. The force on the hybrid sail due to the

reflected photons is then

Fr = r̃SPAS cos α(−s) + r̃TF PATF cos α(−s) (3.3)

where r̃S is the sail film reflectivity and r̃TF is the thin film reflectivity. The

unit vector s = − cos αn − sin αt defines the direction of the specularly reflected

photons. The total force FS exerted on the hybrid sail due to incident and reflected

photons is therefore

FS = Fi + Fr = Fnn + Ftt (3.4)

with

Fn = (r̂1.n)2 [(1 + r̃S)PAS + (1 + r̃TF )PATF ]

Ft = (r̂1.n)(r̂1.t) [(1− r̃S)PAS + (1− r̃TF )PATF ]
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where r̂1.n = cos α and r̂1.t = − sin α, and so the SRP force on the hybrid sail FS

will now act in direction m as shown in Figure 3.1.

The force due to the SEP thruster placed at the centre of the sail, as shown in

Figure 3.1, is given by

FT = T uT (3.5)

where the unit vector uT denotes the thrust direction.

The total thrust provided by the hybrid sail due to the SRP and the SEP

thruster can be obtained from the sum of Eqs. (3.4) and (3.5).

3.1.2 Non-dimensional Acceleration Model

The hybrid sail model is considered in the Sun-Earth CRTBP and is made non-

dimensional by choosing the units as discussed in section 1.1.1. Thus, the nondi-

mensional unit of acceleration corresponds to aref = ω2R = 0.00593 m/s2 in the

Sun-Earth system.

To obtain the acceleration aS due to SRP for a hybrid sail in non-dimensional

form, which will be used in the equations of motion of the hybrid sail described

in the next section, Eq. (3.4) is divided by mass m and dimensional reference

acceleration ω2R, then re-arranging (see Appendix B.1) it is found that

aS = asm =
1

2
β0

m0

m

1− µ

r2
1

g(r̂1.n)2n +
1

2
β0

m0

m

1− µ

r2
1

h(r̂1.n)(r̂1.t)t (3.6)

where

g = (1 + r̃S)− ATF

AT
(r̃S − r̃TF )

h = (1− r̃S) + ATF

AT
(r̃S − r̃TF )

and m0 is the initial mass of hybrid sail and β0 = σ∗
(

m0
AT

)
is defined as the dimen-

sionless lightness number. The acceleration model for a non-ideal pure sail [62]

is easily recovered from Eq. (3.6) when the sail mass is constant m = m0 and

r̃TF = r̃S.
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Figure 3.2: Maximum cone angle for a hybrid sail (5% TFSC area relative to total area) is less

than that for a pure sail (with no TFSC area)

For a given m0, β0 and TFSC fractional area with respect to total area, the

magnitude of acceleration due to SRP acting on the hybrid sail increases with the

decrease of the hybrid sail mass m and may be written as

as =
1

2
β0

m0

m

1− µ

r2
1

cos α

√
g2cos2 α + h2 sin2 α (3.7)

The offset angle between m and n, usually called the centre-line angle φ, (see

Figure 3.1) can be obtained from Eq. (3.6) by dividing the ratio of transverse and

normal accelerations as

tan φ =
h

g
tan α (3.8)

The actual direction of the SRP acceleration for a hybrid sail is defined by the

cone angle θ. Using the relation α = θ + φ and Eq. (3.8), the cone angle θ can be

written as

tan θ =
(g − h) tan α

g + h tan2 α
(3.9)

Assuming a reflectivity for a typical aluminised sail film r̃S = 0.9 and for

the TFSC area r̃TF = 0.4 [54], Figure 3.2 shows that the maximum cone angle
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θmax = 61 deg of the hybrid sail is less than the maximum cone angle 64.15 deg of

a pure sail. This is due to the fact that for a hybrid sail r̃TF < r̃S.

The non-dimensional acceleration due to the SEP thruster can be obtained from

Eq. (3.5) by dividing through by the hybrid sail mass m and reference acceleration

aref as

aT =
T /m

aref

uT = aTuT (3.10)

These force models will now be used to define sets of AEP for a hybrid sail.

3.2 Equations of Motion and Artificial Equilibria
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Figure 3.3: Definition of coordinate system and hybrid sail using two low-thrust propulsion

systems.

Consider a synodic frame Fa(x, y, z) co-rotating with the two primary masses

at constant angular velocity ω with origin at their center of mass, as shown in

Figure 3.3 (see section 1.1.1 for synodic frame discussion). The nondimensional

equation of motion of a hybrid sail in the rotating synodic frame of reference Fa

is given by
d2r

dt2
+ 2ω × dr

dt
+∇U(r) = aS + aT (3.11)

where ω = [0 0 1]T . The vectors aS and aT are the accelerations due to solar

radiation pressure and the solar electric propulsion system and may be written in
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the frame Fa as

aS = asm
a, aT = aTua

T (3.12)

and scalar potential U(r) = −V (r) (see Eq. (2.2) for V (r)) includes the three-body

gravitational potential and centrifugal term i.e.,

U(r) = −
(

1− µ

r1

+
µ

r2

)
− 1

2
(x2 + y2) (3.13)

where r1 = [x + µ y z]T and r2 = [x− (1− µ) y z]T are the position vectors

of the hybrid sail with respect to the primary bodies. An artificial equilibrium

point r0 in the rotating frame of reference Fa is obtained if the vector sum of the

continuous low thrust acceleration from the two propulsion systems satisfies the

following equation

∇U(r0) = aS + aT , agc (3.14)

Now∇U(r0) = agc is the required acceleration vector to cancel the gravitational

forces of the two primary bodies and the centrifugal force in the rotating frame Fa.

It may also be defined as the required acceleration for converting a nonequilibrium

point into an AEP at r0. For a pure sail system [68], the required acceleration

vector is generated by the SRP acceleration vector alone, while for a pure SEP

system [73] it is generated by the acceleration vector from the SEP system alone.

For a hybrid sail, Eq. (3.14) shows that the required vector to keep the hybrid sail

at AEP r0 is generated by the vector sum of the SRP and the SEP acceleration

vectors. A new frame Fb is defined that will be useful in the next section to

minimise the thrust acceleration from the SEP system. Fb is defined with a set

of three orthogonal vectors {r1,ω × r1, r1 × (ω × r1)} and with its origin at the

hybrid sail position. The rotation matrix from Fa to Fb can then be written as

Cb/a(r0) =
[

r1

|r1|
ω×r1

|ω×r1|
r1×(ω×r1)
|r1×(ω×r1)|

]T

(3.15)

Therefore, the condition for artificial equilibrium Eq. (3.14), in Fb is given by

ab
gc = asm

b + aTub
T (3.16)
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where ab
gc = [a1 a2 a3]

T = Cb/a∇U(r0). Eq. (3.16) can now be rewritten as

a2
T = a2

gc − 2asm
b · ab

gc + a2
s (3.17)

 

 

( )11 ˆˆ rr ××  
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Figure 3.4: Definition of cone and clock angles for vectors n, m and agc in frame Fb

where agc = |∇U(r0)|. The required vector agc to keep the hybrid sail at an AEP,

and the direction m that defines the direction of the SRP acceleration vector can

be expressed in Fb according to Fig. 3.4 as

ab
gc = agc




cos θ̃

sin θ̃ sin δ̃

sin θ̃ cos δ̃


 , mb =




cos θ

sin θ sin δ

sin θ cos δ


 (3.18)

where the cone angle θ̃ and clock angle δ̃ of agc depend upon the AEP r0 and can

be calculated as

θ̃ = cos−1(
a1

agc

) (3.19)

δ̃ = tan−1(a2, a3) (3.20)

Using Eq. (3.18) in Eq. (3.17), the low thrust acceleration from the SEP system

of the hybrid sail can be expressed in terms of the sail pitch angle α and the sail

clock angle δ that defines the hybrid sail normal n as shown in Fig. 3.4 as
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a2
T (α, δ) = a2

gc − 2agcas

(
cos θ cos θ̃ + sin θ sin θ̃ cos(δ − δ̃)

)
+ a2

s (3.21)

where as and θ are functions of the pitch angle α as given by Eqs.(3.7) and (3.9)

respectively.
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Figure 3.5: Required low thrust acceleration from SEP at r0 = [1.005 0.005 0.005]T as a fuction

of the sail pitch angle α and sail clock angle δ for a sail with β0 = 0.03. Minimum aT = 0.0269

at optimal angles (α∗(0), δ∗(0)) = (40.23◦, 39.46◦).

For a pure sail or a pure SEP system the required acceleration magnitude and

thrust orientation are completely defined by the location of the artificial equilibria

r0. For a hybrid sail, the desired acceleration vector to keep the hybrid sail at

an AEP is obtained by the sum of the SRP acceleration vector and the SEP

acceleration vector, as shown in Fig. 3.3. By fixing β0, m = m0, Fig. 3.5 shows

that there is freedom in selecting the orientation of the SRP acceleration direction

to obtain the desired acceleration vector agc whilst minimising the SEP thrust.

Once the optimum orientation is selected to obtain the maximum benefit from the

SRP, the required orientation for the SEP thruster system uT may be determined

from condition for artificial equilibria Eq. (3.16).
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3.2.1 Minimisation of SEP Acceleration at t=0

The problem may now be formulated to determine the optimal hybrid sail cone

and clock angles (α∗(0), δ∗(0)) to minimise the thrust acceleration aT from the

SEP system at an AEP r0 and for a given sail lightness number β0. At initial time

t=0, m = m0 and Eq. (3.7) becomes

as = as(0) =
1

2
β0

1− µ

r2
1

cos α

√
g2cos2 α + h2 sin2 α (3.22)

Using Eq. (3.22) in Eq. (3.21) and setting the derivative of aT with respect to δ

to zero yields a stationary point for the optimal clock angle as

∂aT

∂δ
= agc

as(0)

aT

sin θ sin θ̃ sin(δ − δ̃) = 0 (3.23)

With α 6= 90 deg or as(0) 6= 0, θ 6= 0 and θ̃ 6= 0, Eq. (3.23) holds if

δ∗(0) = δ̃ (3.24)

This states that the hybrid sail clock angle should be aligned with the clock angle

of the vector agc in order to minimise the thrust acceleration from the SEP system.

Inserting this result into Eq. (3.21) yields

a2
T (α) = a2

gc − 2agcas(0) cos(θ̃ − θ) + a2
s(0) (3.25)

The above equation can be minimised numerically for α∗(0), and specifying the

bounds for α ∈ [0, π/2].

To show the feasibility of the hybrid sail for some practical missions to be

discussed in Sec. 3.4, the analysis in the xz-plane will be considered (since a2 = 0

in the xz-plane, so from Eq.(3.20), δ∗ = δ̃ = 0 if a3 > 0, or δ∗ = δ̃ = π if a3 < 0).

Fig. 3.6 shows families of acceleration contours near the Earth in the case of pure

SEP and a hybrid sail. The shaded area shows the region where the pure sail

cannot be placed as the SRP force direction is constrained by the maximum cone

angle (θ ≤ θmax) due to the sail film partial reflectivity. The benefit of the hybrid
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Figure 3.6: Thrust acceleration contours aT in the xz-plane. Values 0.02, 0.03 shown by dotted

lines for the pure SEP system and shown by solid lines for the hybrid sail. ∓23.5 deg are the

angles of the polar axis of the Earth (dashed lines) with respect to the normal to the ecliptic

plane at summer and winter solstices.
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sail is clear over the pure sail. The pure sail can be placed in the shaded region

by combining it with an electric thruster, since the thrust vector from the SEP

system of a hybrid sail can be oriented in any direction. In reality the SEP system

direction is limited by solar sail impingement and this will restrict the shaded

region for the hybrid sail. Also, the benefit of the hybrid sail is clear over pure

SEP, since a larger volume of space is available for artificial equilibrium solutions

around L2 and displaced equilibrium solutions towards Earth near L1 exist, with

the same low thrust acceleration value (aT = 0.02). This is due to part of the total

acceleration required to cancel the gravitational acceleration of the two primary

bodies and centrifugal force being available from the solar sail. In general, the

addition of a small SEP system to a solar sail allows the hybrid sail to be in

equilibrium closer the Earth, and in volumes of space inaccessible to a pure sail

system.

In Fig. 3.6 the electric thruster acceleration contours can be compared in the

case of the pure SEP and the hybrid sail system. The electric thruster acceleration

contour of value aT = 0.03 about the Earth in the case of the hybrid system is

not symmetric. This depends upon where the hybrid sail can or cannot use SRP

effectively. However, the electric thruster acceleration contours of values |∇U | =

0.03 around the Earth for pure SEP are symmetric due to the near symmetric

3-body potential at the Earth. From Earth towards L1 along the x-axis, and also

in regions beyond L2, the acceleration contours of the hybrid sail and pure SEP

are identical because at these locations the hybrid sail cannot use SRP effectively.

Here the sail pitch angle becomes approximately 90 deg to minimise the required

thrust acceleration from the SEP system. At these locations the hybrid sail will

not be of use as compared to a pure SEP system.

3.2.2 Equilibria Options During Mission Life

The hybrid sail is a variable mass system, unlike a pure sail which is a constant mass

system. As the SEP system consumes propellant, so the magnitude of the SRP
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acceleration continuously increases with time due to the decrease of the hybrid sail

mass m. In principle, the thrust magnitude needed from the SEP system should

decrease with mission lifetime. There are two options to keep the hybrid sail at

an AEP r0 during its mission life.

3.2.2.1 Option 1

In option 1, aT can be minimised at t = 0 or for initial mass m = m0 as in the

previous section, and the hybrid sail can be maintained at this optimum fixed

attitude (α∗(0), δ∗(0)) during the whole mission lifetime. Due to the increase of

the SRP acceleration as, the thrust from the SEP system should be adjusted in

magnitude (throttled) and its direction trimmed at each instant to ensure that the

equilibrium condition is satisfied. The algorithm works as follows:

(1) At t = 0, m = m0, choose an appropriate β0 so that the total sail area

AT = m0β0

σ∗ .

(2) In the xz-plane choose an AEP r0 which in turn determines the desired ac-

celeration vector agc. Calculate the cone angle θ̃ using Eq. (3.19). However,

in the xz-plane a2 = 0, so from Eq. (3.20) δ̃ = 0 or π depending on sign of

a3, which implies the clock angle δ∗(0) = 0 or π.

(3) Minimise aT given in Eq. (3.25) for a hybrid sail of mass m0 and determine

the optimum sail pitch angle α∗(0) and keep it fixed for mission lifetime τm

i.e., α∗(t) = α∗(0) for 0 ≤ t ≤ τm. The normal to the hybrid sail n, and unit

vector m along the SRP force given in Eq. (3.18) become

nb =
[

cos α∗(0) 0 ± sin α∗(0)
]T

mb =
[

cos θ∗(0) 0 ± sin θ∗(0)
]T

(3.26)

where θ∗(0) is calculated using Eq. (3.9).
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(4) Calculate the SRP acceleration as and SEP acceleration aT for a hybrid sail

of mass m from Eqs. (3.7) and (3.21) respectively at the optimum sail pitch

angle and clock angle δ∗(t) = δ̃ = 0(π).

(5) Calculate the propellant mass mprop(t) consumed up to time t

mprop(t) = m0

(
1− exp

(
− 1

Isp g0

∫ t

0

áT dt

))
(3.27)

so that the instantaneous mass of the hybrid sail m = m0 −mprop.

(6) Calculate the electric thruster direction at time t

ub
T = [u1 0 u3]

T =
1

aT

[
ab

gc − asm
b
]

(3.28)

(7) t = t +4t. If t < τm go to step 4; otherwise the calculation is over.

3.2.2.2 Option 2

In option 2, the optimum sail pitch angle α∗(t) at each instant t is determined

using the instantaneous mass m during the mission lifetime, instead of fixing it

at α∗(0). In this case both n and uT will be varied to keep the hybrid sail at an

artificial equilibrium point r0. The algorithm in this case works similarly to option

1, except step (3) and step (7) should be replaced accordingly:

(3) Minimise aT given in Eq. (3.21) with δ∗(t) = δ̃ = 0 or π and determine the

optimum sail pitch angle α∗(t) using the instantaneous mass m of the hybrid

sail. The unit vectors nb and so mb in this case will vary with time as

nb =
[

cos α∗(t) 0 ± sin α∗(t)
]T

mb =
[

cos θ∗(t) 0 ± sin θ∗(t)
]T

(3.29)

where θ∗(t) is calculated using α∗(t).
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(7) t = t +4t. If t < τm go to step 3; otherwise the calculation is over.

Note the ± sign in Eqs. (3.26) and (3.29). The +ve sign is used when δ = δ∗ = 0

and the −ve sign when δ = δ∗ = π (see Eq. (3.18)).

3.3 Linear Stability Analysis for the Hybrid Sail

3.3.1 Linearised System

To determine the local stability property of an AEP r0, the variational equations

in the vicinity of an equilibrium point are derived. Such linearised variational

equations are obtained by replacing the nonlinear system Eq. (3.11) by a linear

system around the equilibrium point r0. Using the transformation r = r0 + δr for

linearisation (in the xz-plane) and assuming the attitude of the hybrid sail na and

thruster pointing of the SEP system ua
T are not perturbed, so as to restrict the

stability analysis in the sense of Lyapunov, Eq. (3.11) can be rewritten in the form

d2δr

dt2
+ 2ω × dδr

dt
+∇U(r0 + δr) = aS(r0 + δr,na) + aT (r0 + δr,ua

T ) (3.30)

The gradient of the potential and the acceleration vectors due to SRP and SEP

can be expanded in Taylor series about the equilibrium point r0 to a first order as

∇U(r0 + δr) = ∇U(r0) +

[
∂∇U

∂r

]

r0

δr + O
(|δr|2)

aS(r0 + δr,na) = aS(r0) +

[
∂aS(r)

∂r

]

(r0,na)

δr + O
(|δr|2) (3.31)

aT (r0 + δr,ua
T ) = aT (r0) +

[
∂aT

∂r

]

(r0,ua
T )

δr + O
(|δr|2)

Assuming the acceleration aT is fixed with respect to the perturbation δr, it can

be seen that
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[
∂aT

∂r

]

r0

= 0 (3.32)

Substituting Eqs. (3.31) and (3.32) into Eq. (3.30) and using the artificial equilib-

rium condition of Eq. (3.14), then the linear variational equation around an AEP

r0 is obtained as

d2δr

dt2
+ 2ω × dδr

dt
−Kδr = 0 (3.33)

where

K = −
[
∂∇U

∂r

]

r0

+

[
∂aS(r)

∂r

]

(r0,na)

(3.34)

For an artificial equilibrium point r0 in the xz-plane, the explicit expression for K

is given in the Appendix B.2.

By letting δX = (δr, δṙ)T , the linear system is δẊ = A(t)δX. The Jacobian

matrix A(t) in the neighborhood of r0 is given by

A(t) =


03 I3

K Ω


 , Ω =




0 2 0

−2 0 0

0 0 0


 (3.35)

The Jacobian matrix is constant when the dynamics of the pure sail are linearised

in the CRTBP. However, the linearisaion for a hybrid sail in the CRTBP is a time

varying system as the matrix K given in Eq. (3.34) contains mass (time) varying

parameter. Furthermore, it is well known that if state deviations are known at a

time t0, then its value at time t is obtained simply from the product [84]

δX(t) = Φ(t, t0)δX(t0) (3.36)

where Φ(t, t0) is the state transition matrix. The determinant of the state transi-

tion matrix of the linearised system is

|Φ(t, t0)| = e
∫ t

t0
trA(τ) dτ

(3.37)
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where trA(τ) is the trace of A(t). The necessary condition for asymptotic stability

of a linear time varying system is that for any t > t0 [103]

∫ t

t0

trA(τ) dτ → −∞ as t →∞ (3.38)

(as ‖Φ(t, t0)‖ → 0 ⇒ Φ(t, t0) → 0 (a zero matrix) ⇒ |Φ(t, t0)| → 0 for t → ∞).

Since for the hybrid sail ∫ t

t0

trA(τ) dτ = 0 (3.39)

it can be concluded that the linear time-varying system of the hybrid sail is not

asymptotically stable, as is expected since there is no natural dissipation.

One approach to investigate the instability of slowly time-varying linear systems

is to employ a freezing-time method [87]. In this approach, the time varying

parameters (e.g., mass m for a hybrid system) are fixed at their current values

during each instant of time ti = t0, t1, t2, · · · , τm and the Jacobian matrix A(ti)

will be treated as constant for each interval ti to ti+1. Then, the eigenvalues of the

constant matrix A(ti) resulting from its characteristic equation are examined for

instability. The instability properties of the time-varying system are the same as

those of the frozen-time system provided that the eigenvalues of A(t) are bounded

away from the imaginary axis for all t ≥ 0 (i.e., eigenvalues do not cross the

imaginary axis) and if supt≥0 ‖ Ȧ(t) ‖ (i.e., the norm of the time derivative of

matrix A(t)) is sufficiently small [87].

3.3.2 Stability Analysis at t0 = 0

To determine the stability of the linear system δẊ = A(t0)δX, the Jacobian matrix

A(t) time dependance is frozen at t0 = 0 by substituting m = m0 in the matrix K

of Eq. (3.34), so that K may be written as
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K(t0) =




k1 0 k3

0 k5 0

k7 0 k9


 (3.40)

The characteristic equation of A(t0) in λ is given by

|A(t0)− λI6| = λ6 + p2λ
4 + p1λ

2 + p0 = 0 (3.41)

where

p2 = 4− k1 − k5 − k9 (3.42)

p1 = k1k5 − k3k7 − 4k9 + k1k9 + k5k9 (3.43)

p0 = k3k5k7 − k1k5k9 (3.44)

Defining κ = λ2, then the characteristic equation becomes cubic in κ such that

κ3 + p2κ
2 + p1κ + p0 = 0 (3.45)

The discriminant of the cubic Eq. (3.45) can then be defined as

D = 4p0p
3
2 − p2

1p
2
2 + 4p3

1 − 18p0p1p2 + 27p2
0 (3.46)

The roots of the cubic Eq. (3.45) in κ are real if the discriminant D ≤ 0, or al-

ternatively one real root and a pair of complex conjugate roots if D > 0. However,

if all the roots of the cubic equation are real i.e., D ≤ 0, then by Descartes’ rule

of signs [80], the number of positive real roots (including multiplicity) is equal to

the number of sign changes of the sequence p0, p1, p2 in Eq. (3.45).

The nature of the artificial equilibria (in the xz-plane) for the Sun-Earth

CRTBP, where the third body is a hybrid sail is shown in Fig. 3.7. The regions

are labelled as:

(a) Region I-if the discriminant D < 0 and p0 > 0, p1 > 0, p2 > 0, then by

Descartes’ rule of signs with no sign change of the coefficient sequence of
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Figure 3.7: Regions I-IV in the Sun-Earth three-body system are classified according to the

stability of artificial equilibria for a hybrid sail. 1,2 and 3 represent contours of D = 0, p0 = 0

and p1 = 0 respectively.

the cubic equation, all the roots of Eq. (3.45) are negative. Therefore, the

spectrum of the Jacobian A(t0) is centres given by

{±iλ1,±iλ2,±iλ3} Region I marginally stable

(b) Region II-if the discriminant D < 0 and p0 < 0, p1 > 0, p2 > 0 or in Region

III-if the discriminant D < 0 and p0 < 0, p1 < 0, p2 > 0, then by Descartes’

rule of signs with one sign change of the coefficient sequence of the cubic

equation, the spectrum of the Jacobian is centeres crossed with saddles

{±iλ1,±iλ2,±λr1} Region II and III unstable

(c) Region IV-if the discriminant D < 0 and p0 > 0, p1 < 0, p2 > 0, then by

Descartes’ rule of signs with two sign changes of the coefficient sequence of

the cubic Eq. (3.45), the spectrum is

{±iλ1,±λr1 ,±λr2} Region IV unstable
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The hybrid sail in Region I does not use SRP as the pitch angle α∗(0) becomes

approximately/or equal to 90◦ to minimise the thrust acceleration aT from the

SEP system. Therefore, in this region the hybrid sail acts as a pure SEP system

and the marginally stable region (centers) of the pure SEP system are recovered

[73].

During the mission life at an artificial equilibrium location r0, the mass m of

the hybrid sail changes according to Eq.(3.27). Hence the matrix A(t), and its

eigenvalues, also change with m. Simulations run for different artificial equilibria

in Regions II-IV with corresponding mass variation show very slow variation and

no sign change in the roots of the cubic Eq.(3.45) during the mission life (see

Fig. 3.8). Thus, no eigenvalues cross the imaginary axis and the small parameter

variations in A(t) during the mission life implies instability of Regions II-IV.
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Figure 3.8: Variation in the roots κ1, κ2, κ3 of cubic Eq. (3.45) due to decrease of hybrid sail

mass. The root κ3 corresponds to a saddle point. The AEP r0 = [0.99558 0 0.01016]T is chosen

for illustration, the hybrid sail has initial mass m0 = 500 kg and β0 = 0.03.



Chapter 3 78

0.005 0.01 0.015 0.02 0.025 0.03

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Polar distance (au)

T
hr

us
te

r 
ac

ce
le

ra
tio

n 
(m

m
/s

2 )

Pure SEP
Hybrid sail

β
0
=0.02 a

gc

β
0
=0.03 

Figure 3.9: Thrust acceleration magnitude required from pure SEP and hybrid sail (at t = 0)

at artificial equilibrium points above L1 along the Earth’s polar axis (north pole at summer

solstice).

3.4 Evaluation of Hybrid Sail Performance

This section compares the sizing of a hybrid sail, pure SEP system and pure sail

system for a polar (Earth) observer mission. In the polar observer mission, AEPs

along the polar axis, high above the L1 side of the Earth are selected in the Sun-

Earth system. Such equilibrium locations have been proposed by McInnes and

others [21, 67] in the case of a pure sail for continuous, low resolution imaging of

high latitude regions of the Earth and for polar telecommunication services at L2

[29].

The magnitude of the required acceleration agc for an AEP along the polar axis

is shown by the dotted lines in Fig. 3.9. It can be seen that agc has a minimum

value along the polar axis due to the Sun-Earth three body dynamics. To generate

an AEP, the pure SEP system alone provides the acceleration agc. For the hybrid

sail, the thruster system provides less acceleration aT (α∗(0)) shown by the solid

lines in Fig. 3.9 since part of the acceleration is provided by the SRP to achieve

agc.
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The initial (wet) mass for each propulsion system is calculated to position a

spacecraft on an AEP with a fixed payload mass mpl and fixed mission life τm. The

total payload mass (including a small optical imager and spacecraft bus) of 100

kg is assumed for the polar observer mission [67]. The pure sail is a propellantless

system, unlike pure SEP and the hybrid sail, and the pure sail mission life is limited

only by the sail film. Hence, for the pure sail system only the payload mass mpl

is fixed. Some near-term pure sail missions are envisaged with a sail lifetime of at

least 5 years [101].

3.4.1 Pure Sail

For a pure sail, the total mass m0 can be decomposed into the sail assembly mass

mS (sail film, booms and deployment module) and the payload mass mpl. The

sail assembly mass mS is usually written in terms of sail area and sail assembly

loading σS, a key technology parameter that is a measure of the sail film thickness

and lightness of the booms and deployment module (see Sect. 1.3.2). For a fixed

mpl and σS as given parameters, the initial mass can be calculated for a given

equilibrium location r0 as

m0 = mpl + mS = mpl + σS

[
mpl

σT − σS

]
(3.47)

where σT = m0

AS
is the total (pure) sail loading. It can be calculated from the

appropriate sail lightness number which is uniquely determined by the chosen

equilibrium location r0 and the sail film reflectivity r̃S [36].

3.4.2 Pure SEP

The polar observer mission is a long-term and large ∆V mission. To reduce m0

for a given mpl, in the case of pure SEP and the hybrid sail, the electric thruster

selection should be made to reduce the propellant mass mprop and the electric

propulsion inert mass. Ion thrusters, among various kinds of electric propulsion
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systems, are well-suited because of their potential for providing high Isp ≈ 3200 s

(reduces the propellant requirement), high efficiency and high total impulse (see

subsection 1.3.1.2). Higher efficiency for a given Isp and thrust level reduces the

input power of the SEP system, while higher total impulse reduces the number of

thrusters, and thus also the inert mass of the SEP system. For a pure SEP system

with TFSC technology as a power source, the initial mass m0 breakdown can be

written as

m0 = mpl + mTank + nTh ·minert + mprop + mTF (3.48)

where mTank is the (empty) propellant tank mass, mprop the propellant mass, mTF

the TFSC mass and minert the inert mass of the SEP system including the mass

of the thruster, power processor unit (PPU), thermal system for the PPU, Digital

Control and Interface unit (DCIU) and cabling/propellant feeding system. nTh

is the number of thrusters. Two thrusters are assumed in series, each with an

operating life of 2.5 years. In order to maintain the artificial equilibrium r0, a

constant acceleration agc(r0) should be provided by the pure SEP system during

mission life τm, and thus the propellant mass consumed mprop is given by

mprop = m0

(
1− exp

(−ágcτm

Ispg0

))
(3.49)

where ágc is the required dimensional acceleration. In the case of ion thrusters the

approximate relations in Eq.(3.48) are given by

mTank = 0.1mprop

minert = kePe,max

mTF = σTF ATF (3.50)

The reasonable assumption is made that the mass of the propellant tank mTank

is 10% of the propellant mass [32]. The specific mass ke is assumed to be 20

kg/kW (as for the NSTAR class engine [14]). The areal density σTF of the TFSC

is assumed to be 100 g/m2 [54]. The thin film solar cell area ATF is selected by

using the maximum power level required Pe,max (or maximum thrust Tmax), W
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the solar flux at the AEP r0, and efficiency ηTF (i.e., converting solar energy into

electrical energy) as follows

ATF =
Pe,max

WηTF

(3.51)

In Eq. (3.51) the TFSC area is assumed to be directed at the Sun while the ion

thruster is firing in the desired direction to maintain the artificial equilibrium

r0. Although TFSC technology gives larger ATF as compared to wafer based

technology for a required Pe,max, due to its low efficiency ηTF = 0.05, it results in

a lower mass mTF due to the small value of σTF . If ηe = 0.7 [48] is the efficiency

of converting electrical energy into constant exhaust velocity ve = Ispg0, then

Pe,max =
Tmaxve

2ηe

=
m0ágcIspg0

2ηe

(3.52)

The initial (wet) mass m0 for a pure SEP system then can be written in terms of

mpl and τm by substituting Eqs. (3.49-3.52) into Eq. (3.48) to obtain

m0 =
mpl

1− 1.1

(
1− exp

(−ágcτm

Ispg0

))
− ágcIspg0

2ηe

(
kenTh + σTF

WηTF

) (3.53)

3.4.3 Hybrid Sail

The initial mass breakdown for a hybrid sail is assumed as

m0 = mpl + mTank + nTh(minert + mgimbal) + mprop + mTF + mS (3.54)

Here the gimbal mass mgimbal for each engine is assumed to be 30% of the inert

mass of the thruster system minert [32]. A gimbal is required to actuate the thruster

relative to the sail assembly to maintain equilibrium. With a given m0, the propel-

lant mass mprop required to maintain the artificial equilibrium for a mission life τm

can be calculated using the algorithms described in section 3.2.2. In Eq. (3.54) for

mTank, minert and mTF , the same approximate relations for the pure SEP system
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given in Eq. (3.50) are assumed. However, for a given m0, the maximum thrust

level is replaced by Tmax = m0aT (α∗(0)) in Eq. (3.52) and moreover Eq. (3.51) is

divided by cos(α∗(0)), to calculate minert and mTF respectively since the TFSC is

attached to the sail and so is not Sun-pointing. Also, with a given m0, the sail

mass mS in Eq.(3.54) is given by

mS = σSAT = σS

(
m0β0

σ∗

)
(3.55)

In summary, for a given β0, τm, σS and an initial guess m0, the payload mass

mpl can be calculated using Eq. (3.54). A shooting method [6] is used to determine

m0 for different artificial equilibria along the polar axis so that the payload mass

mpl becomes 100 kg.

Figure 3.10 shows that the minimum initial mass m0 along the polar axis is

located at 0.0145 AU for a pure SEP, at 0.025 AU for a pure sail with sail film

reflectivity r̃S = 0.9, and at 0.0183 AU for a hybrid sail with β0 = 0.03. For the

pure SEP system, the minimum m0 at 0.0145 AU is due to the minimum agc at

0.0145 AU (see Fig. 3.9). For a pure sail, the minimum is shifted to 0.025 AU

due to the variation of SRP acceleration with α. For a hybrid sail, the location

for minimum m0 depends upon the minimum location of aT (α∗(0)) (see Figs. 3.9

and 3.10). Figures 3.10(a-c) also show the dependance of m0 for the pure sail

and hybrid sail systems with the variation of the sail assembly loading. The sail

assembly loading of 15 g/m2, 10 g/m2 and 5 g/m2 may be assumed for near, mid-

term and far-term sails [32]. Figure 3.10a shows that for a near-term sail assembly

loading of 14.1 g/m2 equal to that of the Geostorm mission [93], the minimum

initial mass m0 for a pure SEP (with propellant mass 295 kg, maximum power

level of 1.5 kW) along polar axis is equal to 500 kg (the effect of SRP on TFSC

area is neglected for a pure SEP case), whereas for a pure sail (with sail length of

180 m) is 557 kg, and the hybrid sail clearly has a lower initial mass of 375 kg (with

propellant mass 115 kg, sail length of 85 m and maximum power level of 732 W)

at an optimum distance of 0.0183 AU, and thus a lower launch mass and higher
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Figure 3.10: Spacecraft initial (wet) mass required for an AEP for a 100 kg payload for a

polar observer mission (above L1). Five-year mission lifetime is considered for a pure SEP and

hybrid sail. Initial mass variation for a pure and hybrid sail with sail assembly loading equal to

a) 14.1 g/m2 b) 10 g/m2 and c) 5 g/m2 are also shown. The vertical line shows that the pure

sail cannot be placed along the polar axis below 0.015 AU.
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Table 3.1: Mass breakdown for three different propulsion systems for a spacecraft stationed

at a polar distance 0.01831 AU along the polar axis above L1. A fixed payload mass and fixed

mission life of 5 years is assumed in the case of pure SEP and the hybrid sail.

Subsystem Pure saila Pure SEP Hybrid saila

mass budget, kg mass budget, kg mass budget, kg

mpl 100 100 100

mprop — 376 92

minert(1st thruster) — 51.5b 11.3b

mgimbal — — 3.4

mTank — 37.5 9.2

mTF — 4.5 1.2

minert(2nd thruster) — 51.5 14.7c

mS 360 — 56.5

m0 (total initial mass) 460 621 288

a Pure sail length = 190 m and hybrid sail length = 75 m; sail assembly loading

σS = 10 g/m2.

b Pe,max= 564 W for hybrid sail, Pe,max= 2.58 kW for pure SEP

c Also includes gimbal mass

resolution for imaging than the pure sail. Figure 3.10c shows, that for a far-term

sail assembly loading of 5 g/m2, the hybrid sail has a significant improvement in

payload fraction below 0.015 AU along the polar axis as compared with the pure

SEP, and also higher resolution for imaging than a pure sail.

Table 3.1 shows the initial mass breakdown with a mid-term sail assembly

loading, for station-keeping a 100 kg payload mass at a polar distance of 0.01831

AU (see Fig. 3.10b). The hybrid sail total initial mass m0 at this AEP is less than

that of the pure SEP and pure sail systems. The hybrid sail total mass is less than

the total mass of the pure SEP system as the savings in propellant mass and inert
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mass of the thruster system for the hybrid sail, totaling 389 kg, is greater than

the additional penalty of the sail assembly mass mS = 56.5 kg compared with the

pure SEP. The smaller inert mass of the thruster system for the hybrid sail is due

to the lower maximum power required as compared to the maximum power for a

pure SEP thruster system. The hybrid sail total mass is less than the total mass of

the pure sail as the savings from the sail mass for the hybrid sail, by reducing the

sail length, is greater than the penalty of propellant and inert mass of the thruster

system needed for the hybrid sail. Table 3.1 shows that the mass of TFSC area is

small compared to the inert mass, tank and propellant of SEP system [54].

Figs. (3.11-3.12) shows the hybrid sail parameters during the mission life when

it is in a static equilibrium with either of the two equilibria strategies (option 1

and option 2). Figure 3.11a shows the increase of SRP magnitude as due to the

decrease of mass m during the mission life. For option 2, there is a slow variation

in as due to the increase of the hybrid sail pitch angle α∗(t) as compared to the

fixed pitch angle α∗(0) for option 1 (see Fig. 3.11b). Figures 3.12a and 3.12b

show the required force and orientation of the SEP thruster system to maintain

the equilibrium condition. Although the same orientation, 52.66 deg for this AEP,

is required at the start of the mission in both options, there is less variation in

the orientation of the ion thruster system relative to the sail normal for option

2. Option 2 is better than option 1 as the thruster plume does not interact with

the sail film during the whole mission life (see Fig. 3.12b). Moreover, in option

2 less thrust is required during the whole mission life (see Fig. 3.12a) with fixed

Isp, which suggests less total propellant mass consumption, and hence less total

initial mass m0. However, for both options, the ion thruster system must have

the capability of throttling down, and a gimbal system is required to maintain

equilibrium.
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Figure 3.11: Hybrid sail during mission life stationed at polar distance 0.01831AU along the

polar axis above L1: a) SRP acceleration magnitude b) Pitch angle.
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Figure 3.12: Hybrid sail during mission life stationed at polar distance 0.01831AU along the

polar axis above L1: (a) ion thruster force, and b) ion thruster firing angle with respect to the

sail normal.
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3.5 Conclusions

In this chapter a new concept to generate artificial equilibrium points by using a

hybrid solar sail in the circular restricted three-body problem has been analysed.

The key idea is that the required acceleration vector to keep the hybrid sail at

an artificial equilibrium point is achieved by the vector sum of the solar radiation

pressure acceleration and the solar electric propulsion acceleration vectors. We

cast the problem to minimise the acceleration from the solar electric propulsion

system (SEP) of the hybrid sail for a given sail lightness number. It is shown that

the hybrid sail clock angle should be aligned with the clock angle of the required

acceleration vector to minimise the acceleration from the SEP system. Finally,

the minimisation problem for equilibrium reduces to numerically determining the

optimum hybrid sail pitch angle. Notably, it is found that a hybrid sail can be in

equilibrium in forbidden regions for a pure sail. A linear stability analysis shows

that the artificial equilibrium points for the hybrid sail are unstable in general,

apart from some region where the equilibria are marginally stable. Moreover, the

time-varying parameter (mass variation) of the hybrid sail does not change the

stability properties of the equilibria. It has been shown that the hybrid sail has a

potential application of hovering above the L1 point for real-time, low resolution

images of the poles. The hybrid sail along the polar axis is found to have a lower sail

length compared to a pure sail, and a lower propellant mass and maximum power

level as compared with a pure SEP system. For a near term sail assembly loading

(14.1 g/m2), the hybrid sail for the polar observer mission clearly demonstrates a

greater payload mass fraction. Furthermore, the hybrid sail can be used to obtain

higher resolution images by hovering in a region which is inaccessible for the pure

sail.
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Control of Hybrid Sail at an

Equilibrium Point

In the previous chapter, the hybrid sail concept, originally proposed for orbital

transfer is extended for use at equilibrium points, and an optimised hybrid sail

thrust strategy used to show the feasibility of the hybrid sail in terms of lower initial

spacecraft mass for the polar observation mission. However, artificial equilibrium

points (AEPs) along the Earth’s polar axis (the polar axis lies in Regions II and

III of Fig. 3.7) are unstable. Therefore, active control is required to maintain the

hybrid sail on unstable AEPs.

This chapter aims to stabilise the hybrid sail onto an unstable AEP. An optimal

controller (time-varying Linear Quadratic Regulator (LQR)) is developed to show

that equilibria for the hybrid sail can be made stable by using the solar electric

propulsion thruster gimbal angles as control parameters, while keeping the large

sail in a fixed attitude during the mission lifetime.

Before describing the time varying LQR-controller for the hybrid sail in sec-

tion 4.2, it is first shown in the next section that the hybrid sail is controllable

using the SEP system. The controllability of a hybrid sail (i.e., controllability of a

time-varying system [39]) on the finite time-interval [t0, tf ] means that there exist

gimbal angle variations which will drive the hybrid sail from any initial state at t0

89
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to the equilibrium point at time tf .

4.1 Controllability of the Hybrid Sail

In this section the controllability of the hybrid sail is demonstrated by gimballing

the SEP thruster while keeping the sail attitude fixed at α∗(0) during the mission

life.

The nonlinear dynamics of a hybrid sail in a synodic rotating frame Fa (see

Eq. (3.11)) can be re-written as

dr
dt

= v ≡ f1

dv
dt

= −2ω × v −∇U(r) + aS + aT ≡ f2
(4.1)

The SEP thruster(s) are mounted on a two degree-of-freedom gimbal allowing pitch

and yaw attitude control as shown in Fig. 4.1. The thrust acceleration from the

SEP system in Eq. (4.1) can then be written explicitly as

aT = aTua
T = aTCT

b/a(r0)u
b
T (4.2)

where CT
b/a is the transpose of the matrix given in Eq. (3.15), and
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Figure 4.1: SEP system pointing angles αT and γT defined in frame Fb allowing pitch and yaw

control. The frame Fb is defined in section 3.2.



Chapter 4 91

ub
T =




cos γT cos αT

sin γT

cos γT sin αT




For simplicity consider the nonlinear system in Eq. (4.1) [with Eq.(4.2)] as:

Ẋ(t) = f(X(t),u(t)) (4.3)

where X = [r v]T is the state vector and u(t) = (αT , δT ) is an input vector which

consists of the gimbal angles. These gimbal angles u∗(t) vary during the mission

life to maintain the equilibrium condition due to mass variation. Now linearise Eq.

(4.3) around the nominal (equilibrium) solution, [Xe,u
∗(t)] that is f(Xe,u

∗(t))=0.

Writing δX(t) = X(t)−Xe and δu(t) = u(t)−u∗(t), the linearised system can be

expressed in the form

δẊ(t) = A(t)δX(t) + B(t)δu(t) (4.4)

with

A(t) =

[
∂f

∂X

]

(Xe,u∗(t))
=




∂f1
∂r

∂f1
∂v

∂f2
∂r

∂f2
∂v




(Xe,u∗(t))

=


 03×3 I3

K Ω




(Xe,u∗(t))

(4.5)

where K and Ω are given in section 3.3, and

B(t) =

[
∂f

∂u

]

(Xe,u∗(t))
=




∂f1
∂u

∂f2
∂u




(Xe,u∗(t))

=


 03×1 03×1

∂aT

∂αT

∂aT

∂γT




(Xe,u∗(t))

(4.6)

and so δu = (δαT , δγT ) provides the variation in SEP thrust pointing to correct

for position and velocity errors.

If (A(t), B(t)) is controllable, then the linear time-varying system given in

Eq. (4.4) can be stabilised about an unstable AEP r0 by varying the thruster

orientation δu(t) around the reference orientation u∗(t). One of several known

controllability tests states that a linear time-varying system is controllable on

[t0, tf ] if and only if the following controllability Gramian W (t0, tf ) is nonsingular

[83]

W (t0, tf ) =

∫ tf

t0

Φ(t0, t)B(t)BT (t)ΦT (t0, t) dt (4.7)
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The controllability Gramian (a symmetric and positive definite matrix) can be eas-

ily computed by backward integration of the following matrix differential equations

with final condition W (tf , tf ) = 0 (a zero matrix) rather than by the definition

given in Eq. (4.7)

dW (t, tf )

dt
= A(t)W (t, tf ) + W (t, tf )A

T (t)−B(t)BT (t) (4.8)

If the controllability Gramian is invertible then the open-loop solution that has

the least energy among all controls and takes an arbitrary initial condition δX(t0)

to the desired final state δX(tf ) = 0 by time tf is given by

δu(t) = −BT (t)ΦT (t0, t)W
−1(t0, tf )δX(t0) (4.9)

where ΦT (t0, t) is the state-transition matrix of −AT (t) [46]; i.e.,

dΦT (t0, t)

dt
= −AT (t)ΦT (t0, t), ΦT (t0, t0) = I (4.10)

In this chapter Xe = (xe, 0, ze, 0, 0, 0) is chosen, and AEP xe = 0.9927 AU and

ze = 0.0167888 AU which corresponds to the minimum mass hybrid sail at a polar

distance of 0.018307 AU as shown in Fig. 3.10a. The hybrid sail pitch angle is

fixed at α∗(0) = 33.13 deg determined by minimising the SEP thrust acceleration

at t = 0 as described in section 3.2.2.1. Fig. 4.2 shows that the SEP system

(gimbal angles) can be used to stabilise the hybrid sail about this unstable AEP.

States histories in Fig. 4.2 can be obtained substituting Eq. (4.9) in Eq. (4.4),

and then integrating the resulting system for a given δX(0) and tf . Note that

the matrices W (t0, tf ) and ΦT (t0, t) in Eq. (4.9) are computed by integrating Eqs.

(4.8) and (4.10) respectively.

4.2 Linear State-Feedback Control

In this section an optimal state time-varying feedback controller is described to

control the hybrid sail about an unstable AEP r0. In optimal control theory [56],
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Figure 4.2: Open loop control: histories of (a) states and (b) control effort for initial condition

δX(0) = [0.001, 0.001, 0.001, 0.0, 0.0, 0.001] and tf = 2.55π.
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a linear state feedback is sought

δu(t) = −G(t)δX (4.11)

and choose δu to minimise

J =
1

2
δXT (tf )S(tf )δX(tf ) +

1

2

∫ tf

t0

(δXT QδX + δuT Rδu) dt (4.12)

subject to the linear dynamical system given in Eq. (4.4) with δX(t0) = δX0.

ST (tf ) = S(tf ) ≥ 0, QT = Q ≥ 0 and RT = R > 0 are selected to trade-

off requirements on the magnitude of the state δX against requirements on the

magnitude of the input δu. The required optimal solution for the feedback gain

G(t) is given by

Gopt(t) = R−1BT (t)P (t) (4.13)

where P (t) is the positive semidefinite solution of the matrix differential Riccatti

equation
dP (t)

dt
= −AT (t)P (t)− P (t)A(t)−Q

+PB(t)R−1BT (t)P (t), P (tf ) = S(tf )

(4.14)

The control law given in Eq. (4.11) stabilises the linear system Eq. (4.4). However,

the control law Eq. (4.11) will also work with the nonlinear system provided that

the linear system is asymptotically and the perturbations are small. The linear

control law Eq. (4.11) can be combined with Eq. (4.3), this yields the nonlinear

controlled system as

Ẋ(t) = f (X(t),u∗(t) + δu(t)) (4.15)

In the neighborhood of the desired AEP the linear system dominates and trajec-

tories are controlled. The question now reduces to how large is the domain of

attraction.

The results for the optimal state-feedback controller (the dashed line is the lin-

earised system of Eq. (4.4) and the solid line is the nonlinear system of Eq. (4.15))

are shown in Fig. 4.3 for the same injection errors as in Fig. 4.2. The control
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Figure 4.3: Finite horizon LQR control: histories of (a) states (the dashed line is the linear

system, and the solid line is the nonlinear system) and (b) control effort for initial condition

δX(0) = [0.001, 0.001, 0.001, 0.0, 0.0, 0.001] and tf = 10π (mission lifetime). Weighted matrices

S(tf ) = ρ1I6 = 06×6, Q = I6 and R = ρ2I2 = 10−4I2 are chosen.
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signal and state response settle to near zero in 4π (2 years) and the state deviation

has a good response compared to Fig. 4.2 due to the weight matrix selection Q

and R. Fig. 4.3b shows that the largest control signal magnitudes are applied

during the initial time interval due to the maximum displacement of hybrid sail.

The hybrid sail mass decreases during the mission life due to the decrease of

propellant mass. Two SEP thrusters are assumed in series for the whole mission

life tf = 10π (5 years). The second thruster should start working at the middle

of the mission life at t = 5π. If for some reason the state is perturbed, Fig.

4.4 shows that the hybrid sail is still stabilised about the AEP but with large

control effort δα compared to Fig. 4.3. In Fig. 4.5, it is apparent that the

maximum control angle deviation norm increases to 0.37 radians for δX(0) =

[0.001, 0.001, 0.001, 0.001, 0.001, 0.001] in nondimensional units, which is equal to

a position error of 150, 000 km and velocity error of 29 m/s in each direction. In

summary, the stability of the hybrid sail by the SEP system is robust to large

injection errors.

4.3 Conclusions

A simple strategy of controlling the orientation of the SEP gimbal (gimbal angles)

is shown to stabilise the hybrid sail, while keeping the large sail at an optimum

fixed attitude during the mission lifetime. For an injection error of 0.001 in initial

positions and initial velocities (which in dimensional units corresponds to 29 m/s

velocity error and 150, 000 km position error), the hybrid sail converges to the

desired equilibrium point. The control angles settle down to reference values in 4π

(2 years). In short, the stability of the hybrid sail using the SEP system alone is

robust to injection errors in positions and velocities.
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Figure 4.4: Finite horizon LQR control: histories of (a) states (the dashed line is the linear

system, and the solid line is the nonlinear system) and (b) control effort for initial condition

δX(t0) = [0.001, 0.001, 0.001, 0.0, 0.0, 0.001] perturbed at t0 = 5π and tf = 10π (mission lifetime).

Weighting matrices are S(tf ) = ρ1I6 = 06×6, Q = I6 and R = ρ2I2 = 10−4I2.
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Figure 4.5: Finite horizon LQR control: histories of (a) states (the dashed line is the linear

system, and the solid line is the nonlinear system) and (b) control effort for initial condition

δX(0) = [0.001, 0.001, 0.001, 0.001, 0.001, 0.001] and tf = 10π (mission lifetime). Weighting

matrices are S(tf ) = ρ1I6 = 06×6, Q = I6 and R = ρ2I2 = 10−4I2.
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Levitated Geostationary Orbits

In this chapter the Earth-sail system is considered as a two-body problem to

investigate light-levitated orbits (i.e., displaced NKO) in an Earth rotating frame

at a geostationary point. The chapter aims to prove the assertion by Forward

[29] that light-levitated geostationary orbits exist, possibly to increase the number

of available slots for geostationary communications satellites. Although, in the

literature [26, 91], it is claimed that such light-levitation is not possible due to

the component of the sail acceleration parallel to the Earth’s equatorial plane. In

this chapter, this parallel component is used to generate a periodic orbit, thus a

NKO for an observer in the Earth fixed rotating frame at a geostationary point

exists. However, it is shown that only modest displacements are possible above the

Earth’s equatorial plane. Light-levitated orbit applications to Space Solar Power

are also considered.

It is first shown from linear analysis that such NKO exist. The nonlinear

analysis is adopted from Ozimek et al. [58] who find displaced periodic orbits for

continuous lunar south pole coverage from a collocation scheme using (partly) a

numerical Jacobian matrix and a minimum elevation angle constraint. However,

levitated geostationary periodic orbits are computed in the nonlinear analysis using

an analytical Jacobian and a box around the linearised NKO as a path constraint.

While the existence of levitated geostationary orbits is demonstrated, as proposed

99
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by Forward [27, 28], only modest displacements are found due to the large in-plane

component of sail acceleration. Recently, Takeichi et al. [76] proposed a solar

power satellite system in which reflectors orbiting in levitated geostationary orbits

(typically at ±2 km levitation) are used to concentrate sunlight onto microwave

generator-transmitters orbiting separately at geostationary orbit and in-between

the reflectors. It is shown that these orbits are feasible.

The chapter is organised as follows: In section 5.1, the nonlinear equations of

motion in the Earth rotating frame are defined for a solar sail above the Earth’s

equatorial plane with the Sun-line assumed to be in the Earth’s equatorial plane.

In section 5.2 the solution to the linearised equations of motion around a geosta-

tionary point are considered. It is found that NKO exist at linear order. This

linear solution acts as an initial guess for finding NKO with the nonlinear equa-

tions of motion. In section 5.3 a collocation scheme is described which adjusts

the sail orientation for handling the nonlinearities of the Earth’s gravity around

the geostationary point to give displaced periodic solutions to the full nonlinear

non-autonomous system. In section 5.4 a linear analysis is conducted at the sum-

mer and winter solstices, when the Sun-line is at maximum excursion from the

Earth’s equatorial plane. In section 5.5 a collocation scheme is used to generate

displaced periodic orbits at the summer solstice. In section 5.6 light-levitated geo-

stationary orbits for the reflectors of solar power satellite systems are shown. In

section 5.7, the hybrid sail and pure electric propulsion are investigated to gener-

ate such displaced NKO (by generating an artificial equilibrium point in the Earth

fixed rotating frame).

5.1 Equations of Motion

A geostationary satellite (shown as geostationary point in Fig. 5.1) orbits the

Earth in the equatorial plane at the Earth’s rotational angular velocity ωe, i.e.,

the geostationary point moves with an orbital period equal to one sidereal day
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(τe = 23 h, 56 min, 4.1 s = 86164.1 s). If µg = 3986004.418 × 108 m3/s2 denotes

the gravitational parameter of the Earth, then the radius rgs of the geostationary

point follows from √
µg/r3

gs =
2π

τe

= ωe (5.1)

with the result that rgs = 42164.1696 km. Consider two coordinate systems, Earth-
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Figure 5.1: Two coordinate systems ECI (xI , yI , zI) and ECEF (xe, ye, ze) are shown. A solar

sail on a displaced orbit above the equatorial plane around a geostationary point at rgs, where

the sun line Ŝ is assumed to be in the Earth equatorial plane.

centred inertial (ECI) and Earth-centred, Earth-fixed (ECEF) with common origin

‘o’ at the Earth’s center of mass as shown in Fig. 5.1. The ECI system is an inertial

frame with axes xI , yI in the equatorial plane and the zI-axis is directed along the

Earth’s spin axis. Furthermore, the xI-axis is aligned with the vernal equinox.

The ECEF system is a rotating frame which is defined by the rotating Earth with

axes xe, ye in the Earth’s equatorial plane and ze is directed along the Earth’s

spin axis. The angular velocity of this frame is therefore ωe = ωeẑe. In addition,

the xe-axis points to the geostationary point and is aligned with the xI axis at

t = 0. The units are chosen to set the gravitational parameter µg, the distance

between the center of the Earth and the geostationary point rgs and the magnitude
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of the angular velocity of the rotating frame ωe to be unity. The unit reference

acceleration and unit reference time are then given by

ar = ω2
ergs = 0.224208 m/s2 (5.2)

τr =
τe

2π
sec (5.3)

In this chapter, an ideal solar sail and a spherically symmetric Earth are assumed.

Thus, the nondimensional equation of motion in the ECEF system is given by

d2r

dt2
+ 2ωe × dr

dt
+∇U = aSS (5.4)

where r = (x, y, z)T is the position vector of the solar sail with respect to the centre

of the Earth in the ECEF frame. The two-body pseudo-potential U is defined as

U = V + ϕ

where V is the potential due to the Earth’s gravity and ϕ is the potential due to

the centrifugal force in the rotating frame which are given by

V = −1/r (5.5)

ϕ = −(x2 + y2)/2

The solar radiation pressure aSS in Eq. (5.4) is defined by

aSS = a0(Ŝ(t).u)2u

where a0 is the sail characteristic acceleration, u is the sail normal unit vector,

and Ŝ(t) is the unit-vector in the direction of the Sun-line. Since the objective is

to compensate the neglected parallel component of the sail acceleration, so as a

starting point the Sun-line will be assumed in the Earth’s equatorial plane (which is

acceptable in autumn/spring equinoxes only). However, in winter/summer solstice

the Sun-line will be assumed 23.5 degree above/below the Earth’s equatorial plane

(see section 5.4) .Now, if the Sun-line direction is assumed to be in the Earth’s
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equatorial plane, then Ŝ(t) is given by

Ŝ(t) =




cos(Ω∗t)

− sin(Ω∗t)

0


 (5.6)

where Ω∗ is the nondimensional angular velocity of the ECEF-frame relative to

the Sun-line and calculated using

Ω∗ =
ωe − ωs

ωe

(5.7)

where ωs = 2π/(365.25× 86400) rad/s is the angular velocity of the Sun-line with

respect to the inertial frame. Fig. 5.2 describes the sail normal u using two angles:
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Figure 5.2: The sail pitch α is defined with respect to the Earth equatorial plane, while the

yaw angle δ is defined with respect to the Sun-line in the equatorial plane, where the Sun-line Ŝ

is in the equator plane.

the sail pitch angle α (out of the equatorial plane) and the sail yaw angle δ (in the

equatorial plane). Then, the expression for u in the ECEF-frame is then given by

u =




cos α cos(Ω∗t− δ)

− cos α sin(Ω∗t− δ)

sin α


 (5.8)
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Furthermore, the sail attitude is constrained such that Ŝ(t).u ≥ 0, so that the solar

radiation pressure acceleration can never be directed towards the Sun (−90◦ <

α < +90◦). Thus, Eq. (5.4) is nonlinear due to the Earth’s gravity ∇V , and

nonautonomous system due to the Sun-line direction Ŝ(t) changing with time in

the rotating ECEF-frame.

5.2 Linearised Equations

In this section, the dynamics of the solar sail in the neighborhood of the geosta-

tionary point at rgs = (xe, ye, ze)
T = (1, 0, 0)T is investigated. Perturbing Eqs.

(5.4) such that r → rgs + δr, it can be seen that

d2δr

dt2
+ 2ωe × dδr

dt
+∇U(rgs + δr) = aSS(rgs + δr) (5.9)

where δr = (ξ, η, ζ)T denotes a small displacement from the geostationary point

in the (xe, ye, ze) directions. Now, since ∇U(rgs) = 0, and ∂aSS

∂r = 0 (the solar

radiation field is assumed uniform), expanding in a Taylor series of each term

about rgs in Eq. (5.9) and retaining only the first order term in δr, it can be seen

that
d2δr

dt2
+ 2ωe × dδr

dt
+ Kδr = aSS (5.10)

where the matrix K is the partial derivatives of the pseudo-potential given by

K =
∂∇U
∂r

∣∣∣∣∣
r=rgs

=




U0
xx 0 0

0 U0
yy 0

0 0 U0
zz


 (5.11)

where U0
xx, U

0
yy and U0

zz are evaluated at the geostationary point. The sail attitude

is fixed such that u points along the Sun-line but is pitched at an angle α only.

Substituting δ = 0 in Eq. (5.8), Eq. (5.10) can then be written in component form
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as

d2ξ

dt2
− 2

dη

dt
+ U0

xxξ = a0 cos3 α cos(Ω∗t) = aξ (5.12)

d2η

dt2
+ 2

dξ

dt
+ U0

yyη = −a0 cos3 α sin(Ω∗t) = aη (5.13)

d2ζ

dt2
+ U0

zzζ = a0 cos2 α sin α = aζ (5.14)

Equations (5.12-5.14) define the linearised model for the forced nonlinear system

defined by Eq. (5.4). If the input aSS = (aξ, aη, aζ)
T does not drive the system

very far from equilibrium, then the linearised model is a valid representation of

Eq. (5.4), as the system is then operating in the linear range.

The solution for the uncoupled out-of-plane equation of motion Eq. (5.14) is

given by

ζ =

(
ζ0 − a0 cos2 α sin α

U0
zz

)
cos(

√
U0

zzt) +
a0 cos2 α sin α

U0
zz

(5.15)

Therefore, the motion along ζ is a periodic oscillation at an out-of-plane equatorial

distance a0 cos2 α sin α/U0
zz. To remove the periodic oscillation, the initial out-of-

plane equatorial distance is chosen as

ζ0 =
a0 cos2 α sin α

U0
zz

=
aζ

U0
zz

(5.16)

and so that the sail then remains at this distance. Eq. (5.16) shows that for a fixed

ζ0, the gravitational acceleration along the ze-axis (i.e., ζ0U0
zz) must be balanced

by two parameters a0 and the pitch angle α. For fixed ζ0, the sail characteristic

acceleration a0 can be minimised for an optimal choice of pitch angle determined

by

d cos2 α sin α

dα
= 0

α∗ = tan−1(2−1/2)

α∗ = 35.264◦ (5.17)

The autonomous (unforced) coupled Eqs. (5.12-5.13) have an eigenvalue spec-

trum (±ι̇, 0, 0). An in-plane solution of Eqs. (5.12-5.13) can be assumed that is
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periodic with the same frequency as the sail forcing Ω∗ in the rotating frame, that

is

ξ = Aξ cos(Ω∗t) + Bξ sin(Ω∗t)

η = Aη cos(Ω∗t) + Bη sin(Ω∗t) (5.18)

Substituting Eq. (5.18) in the Eqs. (5.12-5.13) and equating the coefficients of

cos(Ω∗t) and sin(Ω∗t), the following linear equations for Aξ, Aη, Bξ and Bη are

obtained



U0
xx − Ω∗2 0 0 −2Ω∗

0 2Ω∗ U0
xx − Ω∗2 0

0 −Ω∗2 + U0
yy 2Ω∗ 0

−2Ω∗ 0 0 −Ω∗2 + U0
yy







Aξ

Aη

Bξ

Bη




=




a0 cos3 α

0

0

−a0 cos3 α




(5.19)

so that the coefficients of the particular solution which define the size of the orbit

are given by

Aξ =

√
a2

ξ + a2
η(U

0
yy − 2Ω∗ − Ω∗2)

Ω∗4 − Ω∗2(4 + U0
yy + U0

xx) + U0
xxU

0
yy

= −551.131ap

Aη = 0

Bξ = 0

Bη =
−Aξ(Ω

∗2 + 2Ω∗ − U0
xx)

(Ω∗2 + 2Ω∗ − U0
yy)

= −2.0036Aξ = 1104.27ap (5.20)

where ap =
√

a2
ξ + a2

η = a0 cos3 α. Therefore, the solution to Eqs. (5.12-5.14) can

be written as

ξ(t) = Aξ cos(Ω∗t)

η(t) = Bη sin(Ω∗t)

ζ(t) = ζ0 (5.21)

The component of the sail acceleration parallel to the equatorial plane ap =

a0 cos3 α determines the semi-major and semiminor axes (Aξ, Bη) of the elliptic
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Figure 5.3: Displaced solar sail orbits of period T = 2π/Ω∗ around a geostationary

point. The solar sails are pitched at α∗ = 35.264◦ on each orbit. For the solid-line or-

bit at ζ0 = 0.000237168 (10 km), the gray-line orbit at ζ0 = 0.000355752 (15 km) and

the dashed-line orbit at ζ0 = 0.000474336 (20 km), the sails require a characteristic ac-

celeration a∗0 = 0.000616181 (0.138 mms−2), a∗0 = 0.000924272 (0.207 mms−2) and a∗0 =

0.00123236 (0.276 mms−2) respectively.

displaced orbit (see Eq. 5.20) while the component out of the equatorial plane

aζ = a0 cos2 α sin α determines the displacement above the equatorial plane (see

Eq. 5.16).

Figure 5.3 shows displaced elliptic orbits at displacement ζ0 (i.e., along the ze

axis) corresponding to 10 km, 15 km, and 20 km. The three sails have a minimum

sail characteristic acceleration a∗0 on the displaced orbits corresponding to the

optimum sail pitch angle α∗. Figure 5.3 shows that orbits with large displacements

ζ0 above the Earth’s equatorial plane need large a∗0 as expected. However, the size

Aξ, Bη of the displaced orbits also increases as the in-plane sail acceleration ap

increases.

Figure 5.4a shows that for a sail with characteristic acceleration a0 > a∗0, for a

given ζ0, then two displaced orbits can be generated corresponding to two specific

sail pitch angles. These pitch angles α1 and α2 can be determined by solving Eq.

(5.16) numerically. Thus, for a sail with a0 > a∗0 at a given ζ0, a displaced orbit

is parameterised by a0 and α. Fig. 5.4a also shows that for a larger pitch angle
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Figure 5.4: Displaced orbits of period T = 2π/Ω∗. (a) The two orbits are at the same displace-

ment ζ0 = 0.000237168 (10 km) for a sail with a0 = 0.001561 (0.35 mms−2). The sail is pitched

at angle α1 = 8.95◦ for the dashed-line orbit and at an angle α2 = 65.92◦ for the solid-line orbit

so that cos2 α1 sin α1 = cos2 α2 sin α2 (b) For a sail with a0 (0.138 mms−2), multiple orbits are

shown at different displacements ζ0 by varying the pitch angle at 60◦ (the gray solid-line orbit),

55◦ (the black solid-line orbit), 35.264◦ (the black dashed-line orbit), 25◦ (the gray dashed-line

orbit).
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α2, the size Aξ, Bη of the elliptic displaced orbit decreases due to the decrease of

ap (a0 cos3 α2 < a0 cos3 α1). Therefore, an orbit with a large pitch angle α2 does

not drive the system far from the geostationary point. Fig. 5.4b shows for a given

sail with a0 (0.138 mms−2), multiple orbits are obtained at different ζ0 by varying

the sail pitch angle α. Note that the maximum displacement ζ0 orbit, for a given

a0, also corresponds to α = 35.264◦.

5.3 Accommodating the Nonlinearities

The linearised model considered in Eqs. (5.12-5.13) is a linear nonautonomous

system because the linearised system considers that the Sun-line Ŝ(t) is changing

direction in the rotating frame, but neglects the effect of the non-linear Earth

gravity. Thus, the displaced orbit of the linear system will not be periodic in the

nonlinear system Eq.(5.4) due to the non-linear gravitational terms. In this section

displaced orbits for the full nonlinear nonautonomous system will be investigated.

If xT =
[
rT ,vT

]
denotes the state vector then Eq. (5.4) can be rewritten in

the rotating frame as

ẋ = f(t, x, u) =


 v

−2ωe × dr
dt
−∇U + aSS(t,u)


 (5.22)

Among the shooting and collocation methods, Ozimek et al. [58] finds that the

best method to solve for periodic orbits with path constraints is the collocation

method. Furthermore, a larger radius of convergence is expected with the colloca-

tion scheme. The use of controls in addition to states as independent parameters

allows more flexibility for robust convergence. Therefore, the collocation scheme

from reference [58] is adapted to find displaced periodic orbits. However, we im-

plement a pre-defined box around the linear periodic solution Eq. (5.21) as a path

constraint and the complete analytical Jacobian matrix (for faster convergence).

These will be discussed in subsection 5.3.2, and subsection 5.3.3 respectively.
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First, we describe the key idea of the collocation method to transform the

differential equations into (nonlinear) algebraic constraints.

5.3.1 Hermite Simpson Method

The transformation of the infinite-dimensional, continuous problem to the finite-

dimensional, parameter problem is called transcription. Hargraves and Paris [38]

introduced the direct transcription method in which state and control variables are

discretised to transform the equations of motion into a set of nonlinear constraints.

A discretisation of the time interval

0 = t1 < t2 < · · · < tn = T

is chosen. Therefore, the time domain [0 T ] is divided into n nodes, and n − 1

segments whereas the ith segment connects two neighboring nodes at time ti and

ti+1. Within each segment, the state history x can be approximated by cubic

piecewise polynomials (a well known Hermite-simpson method [7]) or higher order

polynomials [40]. For a given desired accuracy of the solution, the higher order

polynomial approximation reduces the number of nonlinear parameters and exe-

cution time. In this chapter, the Hermite-Simpson method is used to investigate

the initial feasibility of displaced orbits around geostationary points.

The four coefficients in the cubic polynomial are determined such that states

and derivatives at the node points ti and ti+1 of the ith segment match (see Fig.

5.5). The value of the cubic approximation at the midpoint ti,c = (ti + ti+1)/2 of

the segment is then

xi,c =
1

2
(xi + xi+1) +

h

8
{f(ti,xi,ui)− f(ti+1,xi+1,ui+1)} (5.23)

where h = ti+1 − ti, and xi,xi+1, ui, and ui+1 denote the states and controls at

node points ti and ti+1 respectively for the ith segment.

The differential equations are automatically satisfied at the node points. In

general, they will not be satisfied at the mid point of the segment. The defect
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Figure 5.5: ith segment for Hermite-Simpson transcription.

vector is defined as ∆ = ẋi,c− f(ti,c,xi,c,ui,c), so that it can be explicitly written

as

∆(ti,xi,ui, ti+1,xi+1,ui+1) = xi+1 − xi − h

6
{f(ti, xi, ui) + 4f(ti,c,xi,c,ui,c)

+f(ti+1, xi+1,ui+1)}
(5.24)

where the mid point control ui,c is linearly interpolated as

ui,c =
1

2
(ui + ui+1) (5.25)

The linear interpolation for control provides a smooth control history and is more

computationally efficient. It is through the defect Eq. (5.24) that the equations

of motion Eq. (5.22) are transcribed into nonlinear constraints that are driven

to zero by selecting xi, xi+1,ui, and ui+1 such that the equations of motion are

satisfied within a specified tolerance.

5.3.2 Statement of Problem

The problem of finding the displaced periodic orbit for the nonlinear nonau-

tonomous system Eq. (5.22) reduces to finding the solution of the (nonlinear)

vector constraint. However, the period of the orbit T = 2π/Ω∗ is known before-

hand since the dynamical system is nonautonomous. The constraints that need to

be satisfied for computing the displaced periodic orbits are

• The collocation constraint at ti,c

∆(ti,xi,ui, ti+1, xi+1,ui+1) = 0, i = 1, 2, · · · , n− 1 (5.26)
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• Equality constraints that satisfy the definition of the periodic orbit. There-

fore, the initial and the end point constraint at t1 and tn are

h1(x1, xn) = xn − x1 = 0, h2(y1, yn) = yn − y1 = 0

h3(z1, zn) = zn − z1 = 0, h4(ẋ1, ẋn) = ẋn − ẋ1 = 0

h5(ẏ1, ẏn) = ẏn − ẏ1 = 0, h6(ż1, żn) = żn − ż1 = 0

(5.27)

h7(u
(1)
1 , u(1)

n ) = u(1)
n − u

(1)
1 = 0

h8(u
(2)
1 , u(2)

n ) = u(2)
n − u

(2)
1 = 0

h9(u
(3)
1 , u(3)

n ) = u(3)
n − u

(3)
1 = 0

(5.28)

where ui = (u
(1)
i , u

(2)
i , u

(3)
i )T .

• Equality constraints at point ti. This control constraint represents the fact

that the sail orientation can be controlled by only two angles i.e., sail pitch

angle α and yaw angle δ so that

ψi(ui) = ‖ui‖2 − 1, i = 1, 2, · · · , n (5.29)

• The inequality path constraints g̃i(xi, ui) < 0 of the m-element column vector

are handled as an equality constraint by using slack variables. The idea is

that if g̃
(j)
i (xi,ui) < 0 , then g̃

(j)
i plus some positive number (i.e., slack

variable) is equal to zero. Let k2
i = [(k

(1)
i )2, (k

(2)
i )2, · · · , (k

(m)
i )2]T denote the

vector i.e., the element-wise square of the m-element slack variable ki. Thus,

the inequality path constraints g̃i(xi, ui) < 0 can be written as

gi(xi,ui) = g̃i(xi,ui) + k2
i = 0, i = 1, 2, · · · , n (5.30)

To find displaced periodic orbits at a given displacement ζ0 of the nonlinear

system Eq. (5.22), the path constraint is applied by choosing a box in the

neighborhood of the corresponding linearised displaced periodic orbit to be

discussed later in section 5.3.4. The path constraint forces the solution to
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remain inside a pre-defined box above the Earth equatorial plane. If rlb =

(xlb, ylb, zlb)
T and rub = (xub, yub, zub)

T denote the lower and upper bounds

of the box, then the path constraint can be written as

gi(ri,ki) =


 rlb − ri

ri − rub


 + k2

i = 0, i = 1, 2, · · · , n (5.31)

The constraints given in Eqs. (5.26-5.29) are necessary constraints for com-

puting a periodic orbit for the solar sail. However, these constraints together

with the pre-defined box constraint Eq. (5.31) are necessary to generate an

NKO above the Earth equatorial plane with the collocation scheme.

5.3.3 Newton’s Method and the Analytical Jacobian Ma-

trix

Newton’s method is a recursive method for finding the solutions of the (nonlinear)

algebraic equations C(X ) = 0 for the root X ∗ = 0. For this problem, the single

vector X is defined including all the independent variables i.e., node states and

control and slack variables. Therefore

X T =
[
xT

1 ,uT
1 ,xT

2 ,uT
2 , · · · ,xT

n ,uT
n , kT

1 ,kT
2 , · · · ,kT

n

]
(5.32)

where n is the total number of nodes. Therefore, the total number of free param-

eters in X T is 6n + 3n + nm = n(9 + m): 6n for the node states, 3n for node

controls and nm for the slack variables. Then, the full constraint vector C con-

sists of defect constraints, path constraints, and specific nodal constraints and is

defined as

C(X )T = (∆T
1,c,∆

T
2,c, · · · ,∆T

n−1,c, ψ1, ψ2, · · · , ψn, g
T
1 , gT

2 , · · · , gT
n , h1, h2, · · · , h9) = 0

(5.33)

Therefore a total of 6(n−1)+n+nm+9 = n(7+m)+3 constraints exist: 6(n−1)

for the defect, n for the node controls, nm for the path constraints, and 9 for the
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node constraints. Note that m = 6 for the pre-defined box constraints (see Eq.

(5.31)). The linearisation of C(X ) about the point X j gives

0 = C(X j+1) ≈ C(X j) +DC(X j)(X j+1 −X j)

or

C(X j) = DC(X j)(X j −X j+1) (5.34)

where the Jacobian DC ∈ R(n(7+m)+3)×(n(9+m)) and C(X j) ∈ Rn(7+m)+3. The

Jacobian DC is a rectangular matrix, i.e., there are always fewer constraint equa-

tions than unknowns. Therefore, the system of linear equations Eq. (5.34) has an

infinite number of solutions. However, the unique solution with minimum norm

‖X j − X j+1‖ subjected to Eq. (5.34) is called the minimum norm solution [19].

Using the pseudoinverse of DC(X j), then X j+1 closest to X j is

X j+1 = X j −DC(X j)
T

[DC(X j) · DC(X j)
T
]−1

C(X j) (5.35)

The algorithm converges quadratically until ‖C(X j+1)‖ is satisfied within a pre-

scribed tolerance (within 10−10). In Eq. (5.34), the Jacobian DC is a very large

sparse matrix (see Ozimek et al. [58] for a detailed discussion on calculating
[DC · DCT

]−1
C that exploits the sparse structure of DC). In this paper, all

the non-zero elements D∆i,c,Dψi,Dgi and Dhl of the Jacobian DC are calcu-

lated analytically (note that defect derivatives D∆i,c are calculated numerically in

reference [58] because a seventh degree polynomial approximation for the states

is used therein rather than the Hermite-Simpson method). The 6 × 18 defect

derivatives matrix D∆i,c is computed as

D∆i,c =

{
∂∆i,c

∂xi

,
∂∆i,c

∂xi+1

,
∂∆i,c

∂ui

,
∂∆i,c

∂ui+1

}
(5.36)

The derivatives of the defect vector ∆i,c with respect to states at the node points

of the ith segment are obtained from Eqs. (5.23) and (5.24), and are given by

∂∆i,c

∂xi

= −I6 − h

6

[
F (ti,xi,ui) + 4F (ti,c,xi,c, ui,c)

∂xi,c

∂xi

]

∂∆i,c

∂xi+1

= I6 − h

6

[
F (ti+1,xi+1,ui+1) + 4F (ti,c, xi,c,ui,c)

∂xi,c

∂xi+1

] (5.37)
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for i = 1, 2, · · · , n − 1, where F denotes the 6 × 6 matrix, and results from the

differentiation of the right side of the Eq. (5.22) f(t, x, u) with respect to states

x. I6 is the 6× 6 identity matrix, and

∂xi,c

∂xi

=
I6

2
+

h

8
F (ti,xi,ui)

∂xi,c

∂xi+1

=
I6

2
− h

8
F (ti+1, xi+1,ui+1)

(5.38)

The derivatives with respect to the controls are then found to be

∂∆i,c

∂ui

= −h

3

[
G(ti,c, xi,c, ui,c) +

{
I6

2
+

h

4
F (ti,c, xi,c, ui,c)

}
G(ti,xi,ui)

]

∂∆i,c

∂ui+1

= −h

3

[
G(ti,c, xi,c, ui,c) +

{
I6

2
− h

4
F (ti,c,xi,c,ui,c)

}
G(ti+1,xi+1, ui+1)

](5.39)

for i = 1, 2, · · · , n− 1, where G denotes the 6× 3 matrix, and results from differ-

entiation of the right side of equation f(t, x,u) with respect to the control vector

u. Dψi,Dgi and Dhl are given in the Appendix C.

5.3.4 Illustrative Examples

In this section periodic orbits will be illustrated for Eq. (5.22) using the col-

location scheme with inequality path constraints i.e., Eq. (5.31). Again it is

assumed that the Sun-line Ŝ(t) is in the Earth’s equatorial plane. The period

of the orbit is known (T = 2π
Ω∗ ) and is divided into n = 100 node points. Once

ui = (u
(1)
i , u

(2)
i , u

(3)
i ) is known from the converged solution X ∗ = X j+1 of Eq.

(5.35), the sail pitch αi and δi angle can be calculated as

αi = sin−1 u
(3)
i (5.40)

δi = tan−1

(
u

(1)
i sin Ω∗ti + u

(2)
i cos Ω∗ti

u
(1)
i cos Ω∗ti − u

(2)
i sin Ω∗ti

)
(5.41)

If inequality path constraints are neglected i.e., Eq. (5.31), then the problem

for computing periodic orbits reduces to satisfying the defect constraints, periodic

orbit definition constraints and the control constraints ψi = 0. The collocation
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scheme initially generates periodic solutions of period T = 2π
Ω∗ , however, it is not

a displaced orbit since it crosses the Earth’s equatorial plane (see Sect. 6.1 for

such orbits). This result suggests inequality path constraints must be enforced to

investigate displaced periodic orbits of Eq. (5.22).

A box in the neighborhood of the linearised forced periodic solution Eq. (5.21)

is chosen as an inequality path constraint (see Eq. (5.31)). The lower and upper

bounds of the box i.e., rlb = (xlb, ylb, zlb)
T and rub = (xub, yub, zub)

T are defined as

xlb = 1 + ξmin + νξmin, xub = 1 + ξmax + νξmax

ylb = ηmin + νηmin, yub = ηmax + νηmax

zlb = ζ0 − ρζ0, zub = ζ0 + ρζ0

(5.42)

where ξmin < 0, ξmax > 0, ηmin < 0 and ηmax > 0 are the minimum and maximum

x and y position on the linearised periodic displaced periodic orbit from the geo-

stationary point. ζ0 > 0 is the desired displacement above the Earth’s equatorial

plane and ν and ρ are parameters used for sizing the box dimensions.

The sail characteristic acceleration is chosen as a0 > a∗0 for a given ζ0 to force

the spacecraft in a region above the Earth’s equatorial plane. A nearby solution

will only exist if the chosen sail characteristic acceleration is sufficient to overcome

the non-linearities of the gravitational acceleration near the geostationary point.

To compute a displaced periodic orbit at 10 km above the Earth’s equatorial plane,

a sail characteristic acceleration of 0.328 mms−2 is required with the corresponding

pitch angle α = 65◦ determined from Eq. (5.16). A value of α > α∗ is required

to avoid a large ellipse (see Fig. 5.4a). The vector X is given by Eq. (5.32). For

the initial guess vector X , the initial state xi at all node points is the linearised

solution, and the initial guess for ui is computed from Eq. (5.8) with t = ti,

δ(ti) = 0 and α(ti) = 65◦. The initial guess at all node points for slack variables

can be determined by solving Eq. (5.31) for ki. For n = 100 node points, the size

of X and C are 1500 and 1303 respectively. Some 99.45% of entries in the matrix

DC are zero because of the sparse structure. With a few iterations of Eq. (5.35),

the collocation scheme finds the displaced periodic orbit satisfying the constraints
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Figure 5.6: A sail with characteristic acceleration 0.328 mms−2 shows a displaced periodic

orbits of period T = 2π/Ω∗ around a geostationary point (a) in the ECEF frame (b) in the ECI

frame (the black solid line orbit is a non-Keplerian orbit from the collocation scheme and the

gray solid line orbit is the Keplerian geostationary orbit) and (c) control history.
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Eqs. (5.26-5.29) and path constraint Eq. (5.31). ν = 0.25 and ρ = 0.15 are chosen

in the simulation. The resulting displaced orbit is shown by the solid-line in Fig.

5.6(a). The required sail pitch angle α and yaw angle δ are also shown by the

solid-line in Fig. 5.6c. The pitch angle is smooth and slowly varying except at the

end points (where only a few degrees per hour slew rate is required). Although

the control angles rates are not constrained, they can be easily included in the

collocation scheme. No variation of the sail yaw angle δ is seen which suggests

that the algorithm averages out the gravitational acceleration along the z axis to

generate the displaced periodic orbit 10 km above the Earth’s equatorial plane.

Fig. 5.6a shows the displaced periodic orbits in the ECEF frame. The displaced

periodic orbits computed from the collocation scheme can then be transformed

into the ECI frame using 


xI

yI

zI


 = Ci/e




x

y

z


 (5.43)

Since the Earth’s angular velocity ωe is unity in non-dimensional units, a rotation

matrix Ci/e from the ECEF to the ECI frame is given by

Ci/e =




cos t − sin t 0

sin t cos t 0

0 0 1


 (5.44)

The displaced periodic orbit is centered around the Earth in the ECI frame and

is shown in Fig. 5.6b. Note that the orbit is non-Keplerian as it does not pass

through the center of the Earth. Furthermore, the non-Keplerian orbit is pushed

slightly away from the Sun by the solar radiation pressure. Such an offset was also

suggested by Forward [28].

The possibility of displaced periodic orbits for a high performance solar sail

is now investigated with a characteristic acceleration of order 6 mms−2 [63]. A

linearised displaced periodic orbit at ζ0 = 0.0017788 (' 75 km) with a sail char-

acteristic acceleration a0 = 0.0268 (' 6 mms−2) is chosen as an initial guess for



Chapter 5 119

-1

-0.5

0

0.5

1
x 10

4
-2

-1

0

1

2

x 10
4

0

1

2

3

4

5

6

7

8

9

x 10
4

η (km)

+ 

Geostationary point

ξ (km)

ζ 
(m

)

Nonlinear displaced 
periodic orbit 

Linearized displaced 
periodic orbit  

(a)

-5

0

5

x 10
4

-5

0

5

x 10
4

0

2

4

6

8

x 10
4

x
I
 (km)

Earth
o

y
I
 (km)

z I (
m

)

Displaced orbit 

Geostationary
 orbit 

(b)

0 5 10 15 20
60

65

70

75

80

85

time (hours)

α 
(d

eg
)

0 5 10 15 20
-10

-5

0

5

10

time (hours)

δ 
(d

eg
)

Linearized displaced periodic orbit 

Nonlinear displaced periodic orbit 

(c)

Figure 5.7: Displaced periodic orbits using a high performance sail with a characteristic accel-

eration of 6 mms−2 (a) in the ECEF frame (b) in the ECI frame and (c) the control history.
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the collocation scheme (see dashed-line orbit and dashed-line control history in

Figs. 5.7a and 5.7c). The large pitch angle α = 74.8◦ in the control history is

due to a0 > a∗0 for the given ζ0 (75 km). This large pitch angle reduces the size

Aξ, Bη of the elliptic displaced orbit around the geostationary point (see Sec. 5.2).

ν = 0.25 and ρ = 0.2 are chosen for the box dimensions. The collocation scheme

converges on a solution which is effectively a 62 km displaced periodic orbit with

the control time history shown as the solid-line in Fig. 5.7. Fig. 5.7b shows that

the offset between the displaced orbit and geostationary orbit increases at higher

displacements ζ0. A 75× 75 km station-keeping box (i.e., ±0.05◦ in longitude and

latitude) [59] around a nominal geostationary point has an upper box-face at 37.5

km above the Earth’s equatorial plane, so a 62 km displaced orbit is well above

the conventional station-keeping box.

5.4 Linear Analysis with Seasonal Effects

So far, it is assumed that the Sun-line is in the Earth’s equatorial plane. In

reality, depending on the season, the Sun-line moves above and below the Earth’s

equatorial plane [27, 78]. During the summer solstice (June 21), the Sun-line is

23.5◦ below the Earth’s equatorial plane. During the winter solstice (22 December),

the Sun-line is 23.5◦ above the Earth’s equatorial plane. It is only during the

equinoxes (March 21, September 23) that the Sun-line is in the Earth’s equatorial

plane. In this section, a general expression for the forcing term in the linearised

model (see Eqs. (5.12-5.14)) will be developed i.e., solar sail acceleration (aξ, aη, aζ)

in the ECEF frame valid at the solstices and equinoxes. Secondly, the forcing term

is used to analyse the linear model at the solstices.

5.4.1 Direction of the Sun-line

Fig. 5.8 shows that the Sun-line Ŝ(t) is at an angle φ above the Earth’s equatorial

plane. Although φ changes with time, it may be assumed fixed for one orbit period
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Figure 5.8: The Sun-line Ŝ is shown at an arbitrary angle φ above the Earth’s equatorial

plane. Ŝ′ is the projection of the Sun-line in the Earth’s equatorial plane. The angle Ω∗t is in

the Earth’s equatorial plane and the angle φ is out of the Earth’s equatorial plane. The angle φ

is assumed constant over one orbit period.

T . This is a reasonable assumption given the seperation of time scales (1 day << 1

year). Now re-define the ECI-frame after each period T (since xe and S′ coincide

after one period T = 2π/Ω∗) with the xI-axis now along the projection of the

Sun-line Ŝ in the equatorial plane i.e., along S′ (see Fig. 5.8, xI and S′ coincide

at t = 0 so that time starts from zero for each simulation run). Then, the direction

of the Sun-line Ŝ(t) and hence the sail normal u in the ECEF-frame are given by

Ŝ =




cos(Ω∗t) sin(Ω∗t) 0

− sin(Ω∗t) cos(Ω∗t) 0

0 0 1







cos φ 0 − sin φ

0 1 0

sin φ 0 cos φ







1

0

0




=




cos(Ω∗t) cos φ

− sin(Ω∗t) cos φ

sin φ


 (5.45)
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u =




cos β cos(Ω∗t)

− cos β sin(Ω∗t)

sin β


 (5.46)

Note that in Eq.(5.6), the angle φ is constant and equal to zero over the orbit

period T . The angle that the sail normal makes with the Earth’s equatorial plane

is equal to β(= α + φ). It can be shown that Ŝ(t).u = cos α.

The Sun-line direction Ŝ(t) at the autumn/spring equinoxes, the winter and

the summer solstices is obtained by substituting φ = 0, φ = +φm = +23.5◦ and

φ = −φm = −23.5◦ respectively in the Eq. (5.45).

5.4.2 Linearised Solution

In summary, the forcing term of the linearised model i.e., aSS given on the right-

side of Eqs. (5.12-5.14)), in the ECEF-frame may be written as




aξ

aη

aζ


 = a0 cos2 α




cos β cos(Ω∗t)

− cos β sin(Ω∗t)

sin β


 (5.47)

where β is given by

β = α at autumn/spring equinoxes

β = α− φm at summer solstice (5.48)

β = α + φm at winter solstice

Therefore, the angle β is equal to α at the equinoxes and exactly 23.5◦ less or

greater at the solstices. With the sail forcing term Eq. (5.47), the solution of the

linearised Eqs. (5.12-5.14) will still have the same form as Eq. (5.21) except that
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Aξ, Bη and ζ0 are now replaced by

Aξ =
a0 cos2 α cos β (U0

yy − 2Ω∗ − Ω∗2)

Ω∗4 − Ω∗2(4 + U0
yy + U0

xx) + U0
xxU

0
yy

(5.49)

Bη =
−Aξ(Ω

∗2 + 2Ω∗ − U0
xx)

(Ω∗2 + 2Ω∗ − U0
yy)

(5.50)

ζ0 =
a0 cos2 α sin β

U0
zz

(5.51)

where β is defined by Eq. (5.48). The sail acceleration component in the equatorial-

plane ap =
√

a2
ξ + a2

η = a0 cos2 α cos β determines the size (Aξ, Bη) of the elliptic

displaced orbit, while the component out of the equatorial plane aζ = a0 cos2 α sin β

determines the levitation height ζ0 of the displaced orbit. To size the sail for a

mission based on a displaced orbit around a geostationary point, the worst-case

scenario should be considered which is the summer solstice (the lowest value of aζ

in Eq. (5.47)). Therefore, for a given ζ0, a0 could be minimised from the above

equation by maximizing cos2 α sin(α − φm), since β = α − φm at the summer

solstice. Therefore,
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Figure 5.9: 10 km levitated displaced periodic orbits for a sail with characteristic acceleration

a0 = 0.002795 (0.626 mms−2) at the summer solstice (dashed-line orbit with α = 70◦), winter

solstice (solid-line black orbit with α = 73◦) and at autumn/spring equinoxes (gray orbit with

α = 72.65◦).
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d cos2 α sin(α− φm)

dα
= 0

α̃ =
1

2

[
cos−1 (1/3 cos φm) + φm

]

α̃ = 47.850◦ (5.52)

Denote ã0 as the sail characteristic acceleration determined from Eq. (5.51) corre-

sponding to α = α̃ and β = α̃ − φm at a given displacement ζ0. Now, in order to

compensate for the Earth’s non-linear gravity with the collocation scheme the sail

characteristic acceleration is chosen as a0 > ã0. Similar to section 5.2, there will

be two specific pitch angles α1 and α2 for each a0 > ã0. In Fig. 5.9 the outer most

dashed-line shows the linearised periodic orbits at displacement ζ0 (10 km) with

a0 (0.626 mms−2) > ã0(0.286 mms−2) and a sail pitch angle α = 70◦ determined

from Eq. (5.51) with β = α−φm (the worst-case summer solstice). Depending on

the season the sun-line angle φ will vary. Therefore, for the same sail acceleration

and to keep fixed ζ0 (10 km), the sail pitch angle must vary from α = 72.6532◦

to α = 73.008◦ at the equinoxes and winter solstice respectively to form the new

linearised displaced periodic orbit. These orbits will act as an initial guess for the

collocation scheme to generate the new reference displaced periodic orbits with

seasonal effects.

5.5 Illustrative Examples at Summer Solstice

In this section, periodic orbits from the collocation scheme are computed for the

configuration at the summer solstice, with the worst-case geometry. For a displace-

ment ζ0 (32 km), the collocation scheme converges if the linearised periodic orbit

is chosen with a sail characteristic acceleration a0 (6 mms−2) > ã0 (0.916 mms−2),

where ã0 is computed from α̃ at ζ0 (32 km). In the linearised solution (see dashed-

line in Fig. 5.10) for a0 (6 mms−2), the sail pitch angle α = 79.33◦ is determined

from Eq. (5.51) for β = α − φm (summer solstice). In the collocation scheme for

the initial guess of the vector X , the xi at all node points (n = 150 node points)
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Figure 5.10: At the summer solstice (worst-case scenario), displaced periodic orbits for a sail

with a characteristic acceleration 6 mms−2 (a) in the ECEF frame (b) in the ECI frame and (c)

the control history (right).
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are from the linearised solution and the initial guess for the components of ui is

computed with δ = 0 and α = 79.33◦ i.e.,

ui =




cos(α− φm) cos(Ω∗ti − δ)

− cos(α− φm) sin(Ω∗ti − δ)

sin(α− φm)


 (5.53)

ν = 0.25 and ρ = 0.19 are chosen for sizing the box in Eq. (5.42) around the

linearised solution, and the inequality path constraints Eq. (5.31) are imposed in

the collocation scheme. In Eq. (5.22), the expression for the Sun-line Ŝ at the

summer solstice (i.e., Eq. (5.45) with φ = −φm) is used to compute aSS. Therefore,

G in Eq. (5.39) should be modified accordingly in this simulation. The size of

X and C are 1953 and 2250 respectively, and some 99.60% of the entries of the

matrix DC are zero. The collocation scheme converges to a periodic solution, a

25 km displaced periodic orbit with control time history shown in Fig. 5.10 as a

solid-line. From X ∗, the angles δi are still calculated from Eq. (5.41), but the

pitch angle αi is calculated as

αi = cos−1

(
u

(1)
i

cos(Ω∗ti − δi)

)
+ φm (5.54)

The Fig. 5.10 shows that the collocation scheme finds a periodic orbit displaced

25 km above the Earth’s equatorial plane around a geostationary point with a

high performance sail. It is noted that for a realistic sail model the large sail pitch

angle will result in significant deviation from an ideal solar sail. With the low and

moderate performance sail characteristic acceleration such as 0.9 mms−2 and 2.15

mms−2, the displaced periodic orbits at the summer solstice with the collocation

scheme are found at displacements of 9.5 km and 16 km respectively. However,

a sail with a characteristic acceleration of 60 mms−2 (a perforated sail [63]), the

collocation scheme converges to a displaced periodic orbit at 37.5 km, which is

just above the conventional station-keeping box.
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5.6 Application: Solar Power Transmission from

Space

The idea of transmitting solar energy from space was first introduced by Glaser

[33]. This section describes an example application of light levitated geostationary

orbits at ζ0(±2 km) for reflectors (solar sails pitched at α = ±45◦) of a solar power

satellite (SPS) system [76]. The two sails are in formation with a microwave

energy generator-transmitter which is orbiting around a geostationary point in

the Earth’s equatorial plane (i.e., ζ0 = 0) as shown in Fig. 5.11a. Note that

the energy generator-transmitter has the same in-plane acceleration ap as the two

displaced orbits in-plane acceleration ap = a0 cos3 α to ensure that the energy

generator-transmitter will always be below/above the pitched sails. The orbits of

the SPS system illustrated in Fig. 5.11a are different from reference [76] as the

Sun-pointing reflectors and the Earth-pointing transmitter are in orbits around

a geostationary point in the ECEF-frame (not stationary in the ECEF-frame).

The Sun-light reflected from the levitated sails will fall perpendicularly to the

microwave generator-transmitter which will transmit energy to the Earth-receiving

antenna.

The dashed-line orbits and the solid-line orbits, shown in Fig. 5.11b, are gen-

erated from the linear analysis and the collocation scheme respectively. The cor-

responding sail pitch angle α on these orbits is shown in Fig. 5.11c. The results

from the collocation scheme suggests that the sunlight from the sails on displaced

orbits will fall almost perpendicularly on generator-transmitter (see an offset angle

within ±5◦ in Fig. 5.11c).
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Figure 5.11: (a) The two solar sails are pitched at α = ±45◦ on displaced orbits (the solid-line

orbits) at a levitation distance ζ0 = ±2 km. The microwave energy generator-transmitter is

orbiting (the dashed-line orbit) in the Earth’s equatorial plane and is placed in centre of the

system. All three orbits have the same period T = 2π/Ω∗ and in-plane acceleration ap (b)

orbits from the linear analysis (sails on displaced orbits with a0 (0.03 mms−2) (i.e., ap (0.010635

mms−2) on all orbits)) and the non-linear analysis illustrating the SPS concept in ECEF-frame

at the equinoxes (c) sail pitch angle history.
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5.7 Equilibria in ECEF-Frame and Solar Power

Satellite System

In this section, the use of an electric propulsion system to cancel the sail-reflector

in-plane acceleration ap is investigated. The displacement ζ0 for the reflectors

is small (±2 km), so it will be interesting to calculate the ∆V delivered by the

thruster system to cancel ap for one year duration. This will result in equilibrium in

the ECEF-frame and a displaced NKO above the geostationary orbit when viewed

in the inertial frame. Moreover, it will be interesting to compare the ∆V per year

if a pure SEP spacecraft is levitated at the same displacement ζ0 (2 km).

Fig. 5.12a shows a light-levitated sail as proposed by Forward [27, 28]. The sail

acceleration component aζ will provide the levitation and satisfy the relationship

aζ = a0 cos2 α sin(α + φ) =
µgζ

0

r2
(5.55)

where a0 (0.06 mms−2) > ã0 (0.0573 mms−2), r =
√

r2
gs + (ζ0)2 =

√
1 + (ζ0)2,

µg = 1 and φ is the Sun’s declination angle that varies over one year as shown in

Fig. 5.12b. The sail pitch angle α can be computed from the above equation with

time (i.e., for any φ). The sail pitch angle α is equal to 65.1◦ at winter solstice

(φ = +23.5◦), 53.38◦ at summer solstice (φ = −23.5◦), and 63.58◦ at equinox

(φ = 0◦). To maintain equilibrium above geostationary orbit, the sail acceleration

component parallel to the equatorial plane ap must be cancelled out. Fig. 5.12c

shows that the sail in-plane acceleration will be maximum at the summer solstice.

The required ∆V per year can be computed as

∆V/year(m/s) =

∫ 1 year

0

|ap|ardt (5.56)

where ap = a0 cos2 α cos(α + φ), and ar is defined in Eq.(5.2). Briefly, the ∆V per

year is found to be 271 m/s to levitate at ζ0 (2 km). Therefore, ∆V = 2.71 km/s

for a 10 year mission. This will result in a propellant fraction of 8.27% for the 10

year mission if Isp = 3200 s is assumed.
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Ŝ  

 
N 

Earth-Sun line 

Equator 

Cylindrical Orbit 

(a)

0 50 100 150 200 250 300 350 400
-30

-20

-10

0

10

20

30

40

50

60

70

Time (days) since January 1

A
ng

le
s 

(d
eg

)

α
φ

(b)

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

-5

Time (days) since January 1

a p (
m

/s
2 )

(c)

Figure 5.12: (a) Light-levitated cylindrical orbit at +2 km (b) history of sail pitch angle α

and Sun’s declination angle φ over one year (c) component of sail acceleration parallel to Earth’s

equatorial plane ap = a0 cos2 α cos(α + φ).
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Table 5.1: ∆V budget to generate displaced NKO using pure a SEP system. The

displaced NKO with period τe is chosen above and synchronous with a geostationary

point at rgs.

Displacement above the Thrust acceleration ∆V /year ∆V for 10 years

Earth’s equatorial plane from electric propulsion

km mms−2 (m/s) (km/s)

2 0.010 335 3.35

4 0.021 670 6.70

6 0.032 1006 10.06

Now consider the ∆V per year for a pure SEP spacecraft to generate an AEP

at displacement ζ0 above the geostationary point. The type II orbit from reference

[66] is selected. Table 5.1 shows the constant thrust acceleration and ∆V required

to keep equilibrium in the ECEF-frame at different displacements ζ0 above the

Earth’s equatorial plane. It can be seen from Table 5.1 that as ζ0 increases, the ∆V

per year increases as expected, but the ∆V is large even for small displacements.

Moreover, it can be seen from Table 5.1 that the ∆V per year (335 m/s) for a pure

SEP spacecraft is greater than as compared with the ∆V per year (271 m/s) for

a hybrid sail at the same levitation distance of 2 km.

5.8 Conclusions

The possibility of generating displaced non-Keplerian periodic orbits around geo-

stationary points in the solar-sail two body problem has been analysed. It has

been shown that a family of displaced non-Keplerian orbits exist at linear order

around a geostationary point. It has also been demonstrated that the collocation

scheme is a promising approach to obtain displaced periodic orbits at non-linear

order for this problem as the inequality path constraints can be enforced easily.

The collocation scheme converges to a periodic solution provided the sail charac-

teristic acceleration is large enough to counter the variation in the Earth’s gravity
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on the displaced orbit around the geostationary point. For a high performance

sail with a characteristic acceleration of order 6 mms−2 and assuming the Sun-line

is in the Earth’s equatorial plane, a 62 km non-linear displaced orbit is obtained

above the Earth’s equatorial plane which is well above the station-keeping box

of order 75 × 75 km of geostationary communication satellites. For the realistic

worst-case scenario at the summer solstice, a high performance sail shows a non-

linear displaced periodic orbit at 25 km above the Earth’s equatorial plane, while

a perforated sail is just above the station-keeping box. Displaced orbits at ±2 km

are illustrated for an application to solar space power generation. These results

show that Forward’s original concept for displaced geostationary orbit is correct,

although displacement distances are modest.
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Periodic Orbits Around a

Geostationary Point

This chapter will investigate periodic orbits around a geostationary point using

a collocation method and differential corrector method respectively. It will be

assumed that the Sun-line S(t) is in the Earth’s equatorial plane. Both methods

generate families of periodic orbits of period T = 2π/Ω∗ and each orbit always

crosses the Earth’s equatorial plane. Therefore, these orbits are not displaced or

‘levitated’ above the Earth’s equatorial plane. Firstly, the collocation scheme is

used (with no inequality path constraints) to generate such orbits. These 2-body

orbits have interesting analogies with 3-body halo orbits.

6.1 Collocation Method with no Inequality Path

Constraints

Only the defect constraints, periodic orbit definition constraints and the control

constraints ψi = 0 are necessary for computing the periodic orbits for the sail, so

the inequality constraints (or Eq. (5.31)) are neglected. Then, the vector X of

133
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Eq. (5.32) is given by

X T =
[
xT

1 , uT
1 ,xT

2 ,uT
2 , · · · ,xT

n ,uT
n

]

The initial guess for states xi at all node points is provided from the linearised

solution Eq. (5.21), and the control ui at all node points is computed from Eq. (5.8)

with t = ti and the sail attitude constraint is fixed i.e., δ(t) = 0, α(t) = 35.264◦.

In particular, the solution of the linearised displaced orbit at ζ0 = 2.37× 10−4 ('
10 km) above the Earth’s equator plane with sail characteristic acceleration a∗0 =

0.000616181 (0.138 mms−2) is chosen as an initial guess for the states xi (see the

dashed-line orbit in Fig. 6.1). For n = 100, the size of X and C are 900 and

703 respectively. The algorithms converges in a few iterations of Eq. (5.35) and

finds the periodic solution (see the solid-line periodic orbit in Fig. 6.1) satisfying

the nonlinear non-autonomous differential equations and periodic orbit definition

constraints.

However, this periodic solution with the nonlinearity of the Earth’s gravity is

not a displaced periodic orbit since it crosses the Earth’s equatorial plane. The

control angle history of the sail on this nonlinear periodic orbit is almost constant

and is also shown by the solid-line in Fig. 6.2. The identical control history of

the linear and nonlinear solution and Fig. 6.1 implies that the collocation scheme

adjusts the states xi (or effectively position and velocity along the z-axis) from

the linearised solution Eq. (5.21) to provide a periodic solution of the full nonlin-

ear system. Therefore, it may be anticipated that these nonlinear periodic orbits

with a constant control history for the sail can also be obtained by using a shoot-

ing/differential corrector method which will effectively fine tune the initial guess

of the linear solution Eq. (5.21) to obtain periodic solution of Eq. (5.22). Fur-

thermore, the analysis with no inequality path constraints confirms that inequality

path constraints are necessary to investigate the displaced periodic orbits of Eq.

(5.22).
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Figure 6.1: (a) Dashed-line represent flat linearised displaced periodic orbit at distance of 10

km above the Earth’s equatorial plane. The solid-line is a periodic solution of Eq. (5.22) around

a geostationary point, however it is not a displaced orbit. Both orbits have the same period

T = 2π/Ω∗ and sail characteristic acceleration 0.138 mms−2 (b) periodic orbits x-y projection.
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6.2 Differential Corrector Method

This section evaluates whether the periodic orbits discussed in section 6.1 can also

be obtained for the nonlinear system using a differential corrector. The simple

case when the solar sail has a constant orientation (i.e., α(t) = α, δ(t) = 0) will be

analysed. The nonlinear equation of motion (see Eq. (5.4)), is then given by

d2r

dt2
+ 2ωe × dr

dt
+∇U = a0 cos2 α u (6.1)

where u = (cos α cos(Ω∗t),− cos α sin(Ω∗t), sin α)T .

6.2.1 Linear Periodic Solution for z-Equation

For the nonlinear analysis using the differential corrector method, the information

from the linear analysis (Sect. 5.2) with constant sail orientation can be used.

The linear solution ξ(t), η(t) (see Eq. (5.21)) is periodic with period T = 2π/Ω∗.

However, Eq.(5.16) is a condition for an NKO, with ζ(t) = ζ0. To obtain a periodic

solution in the z-equation (or ζ(t)) with frequency Ω∗, it is assumed that the

nonlinear terms along with the sail forcing term causes an out of plane frequency

equal to the in-plane frequency i.e., Ω∗, so with this assumption the linearised

equation in ζ(t) i.e., Eq. (5.14) can be re-written as

d2ζ

dt2
+ Ω∗2ζ = a0 cos2 α sin α = aζ (6.2)

Then, the linearised equation has a periodic solution with frequency Ω∗ given by

ξ(t) = Aξ cos(Ω∗t)

η(t) = Bη sin(Ω∗t)

ζ(t) = A1 cos(Ω∗t) + B1 sin(Ω∗t) + aζ/Ω
∗2 (6.3)

where Aξ and Bη are given in Eq. (5.20). The constants A1 and B1 are yet to be

determined. The linearised equation Eq. (5.14) is forced to the form Eq. (6.2),
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which can be accomplished by re-writing the z-equation of Eq. (6.2) with the

function ∆ = (Ω∗2 − U0
zz) and non-linear terms as

d2ζ

dt2
+ Ω∗2ζ = ∆ζ + a0 cos2 α sin α + (non-linear terms) (6.4)

Assuming weak excitation with the sail forcing term a0 = εā0 and making the

assumption that ∆ = O(ε), the sail characteristic acceleration a0 << 1 in non-

dimensional units and will act as a small parameter ε. Non-linear terms must then

be included if a periodic solution with frequency Ω∗ is expected for the z-equation.

Linearising Eq. (6.1) about the geostationary point rgs by making the trans-

formation r → rgs + δr, where δr = (ξ, η, ζ), and Taylor expanding ∇U about rgs

up to second order gives the systems of equations

d2δr

dt2
+ 2ωe × dδr

dt
+∇U

∣∣
r=rgs

+ δra(∂a∇U)
∣∣
r=rgs

+ 1
2
δra δrb(∂a∂b∇U)

∣∣
r=rgs

+O(δr3) = a(rgs + δr)

(6.5)

where tensor notation is used to represent the summation over indices a and b.

∂a∇U |r=rgs indicates the linearised matrix given in Eq. (5.11). Substituting

∇U
∣∣
r=rgs

= 0 and ∂aSS

∂r = 0 in Eq. (6.5), theses equations can be written in

component form as

d2ξ

dt2
− 2

dη

dt
+ U0

xxξ = 3C(2ξ2 − η2 − ζ2) + a0 cos3 α cos(Ω∗t)

d2η

dt2
+ 2

dξ

dt
+ U0

yyη = −6Cξη − a0 cos3 α sin(Ω∗t) (6.6)

d2ζ

dt2
+ Ω∗2ζ = −6Cξζ + a0 cos2 α sin α + ∆ζ

where C = −
√

x2
e

2x5
e

= −1
2
. Note that the term ∆ = O(ε) is added in the z-equation

as explained in Eq. (6.4). Now let the solution have a particular form of expansion,

namely

ξ(ε) = εξ1 + ε2ξ2 + · · ·
η(ε) = εη1 + ε2η2 + · · · (6.7)

ζ(ε) = εζ1 + ε2ζ2 + · · ·
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Substituting the series Eq. (6.7) into Eqs. (6.6), then assembling and equating

powers of ε.

At first order the linearised systems of equations Eq. (6.3) are obtained as

O(ε) :
d2ξ1

dt2
− 2

dη1

dt
+ U0

xxξ1 = ā0 cos3 α cos(Ω∗t)

d2η1

dt2
+ 2

dξ1

dt
+ U0

yyη1 = −ā0 cos3 α sin(Ω∗t) (6.8)

d2ζ1

dt2
+ Ω∗2ζ1 = ā0 cos2 α sin(α) = aζ

The solution of Eq. (6.8) is then

ξ1(t) = Aξ cos(Ω∗t)

η1(t) = Bη sin(Ω∗t) (6.9)

ζ1(t) = A1 cos(Ω∗t) + B1 sin(Ω∗t) + aζ/Ω
∗2

A1 and B1 will be determined later when removing the secular terms at higher

order. At second order it is found that

O(ε2) :
d2ξ2

dt2
− 2

dη2

dt
+ U0

xxξ2 = 3C(2ξ2
1 − η2

1 − ζ2
1 )

d2η2

dt2
+ 2

dξ2

dt
+ U0

yyη2 = −6Cξ1η1 (6.10)

d2ζ2

dt2
+ Ω∗2ζ2 = −6Cξ1ζ1 + ∆ζ1

Substituting in the ζ2-equation the expressions for ξ1 and ζ1 i.e., the first order

solution from Eq. (6.9), it can be seen that

d2ζ2

dt2
+ Ω∗2ζ2 =

(−6CAξaζ

Ω∗2 + ∆A1

)
cos(Ω∗t) + (∆B1) sin(Ω∗t)

+
∆aζ

Ω∗2

The solution ζ2 is required to have period 2π
Ω∗ , so the coefficients of cos(Ω∗t) and

sin(Ω∗t) must be zero otherwise any solution of ζ2 would contain the undesirable

terms t cos(Ω∗t) and t sin(Ω∗t), which are secular terms. Thus the coefficients of
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cos(Ω∗t) and sin(Ω∗t) are set to be zero

∆B1 = 0

−6CAξ
aζ

Ω∗2 + ∆A1 = 0

which implies constraints on the constants A1 and B1

B1 = 0

A1 =
1

∆

(
6CAξaζ

Ω∗2

)

So ζ1 in Eq. (6.9) now becomes

ζ1 =
1

∆

(
6CAξaζ

Ω∗2

)
cos(Ω∗t) +

aζ

Ω∗2 (6.11)

Thus, to order ε the expression for the periodic solution (see Eq. (6.7)) is given by

ξ = ε(Aξ cos(Ω∗t))

η = ε(Bη sin(Ω∗t))

ζ = ε(ζ1)

To remove the ε from the solution, apply the mapping ā0 ½ a0

ε
. In short, the

complete first order solution is given by

ξ(t) = Aξ cos(Ω∗t)

η(t) = Bη sin(Ω∗t) (6.12)

ζ(t) =
6CAξ

∆

(
a0 cos2 α sin α

Ω∗2

)
cos(Ω∗t) +

a0 cos2 α sin α

Ω∗2

The constant term in ζ(t) indicates that the solution does not have a mean value

of zero in ζ(t). Setting t = 0 in Eq. (6.12) a set of initial conditions are obtained.

If this initial condition is used to integrate the nonlinear equations of motion Eq.

(6.1), the trajectory corresponding to an almost periodic orbit is found. Then

using the differential corrector, the initial conditions can be tuned until the initial

conditions for a true periodic orbit are found.
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6.2.2 Symmetry in the Equations of Motion

Before applying the differential corrector, it is shown that the nonlinear equations

of motion (see Eq. (6.1)) are symmetric with respect to xz-plane under time

reversal i.e., y → −y and t → −t. Then, if (x(t), y(t), z(t)) is a solution of the

equations of motion at time t, (x(−t),−y(−t), z(−t)) is also a solution at time −t.

This symmetry in the equations of motion suggests that the periodic orbit can be

found using the differential corrector for the half period T1/2 = π/Ω∗ only.

The nonlinear equations of motion Eq. (6.1) can be written in component form

as

ẍ− 2ẏ = Ωx

ÿ + 2ẋ = Ωy (6.13)

z̈ = Ωz

where

Ωx ≡ −x

r3
+ x + aξ

Ωy ≡ −y

r3
+ y + aη

Ωz ≡ −z

r3
+ aζ

and aξ = a0 cos3 α cos(Ω∗t), aη = −a0 cos3 α sin(Ω∗t) and aζ = a0 cos2 α sin(α).

Making the transformation (x(t), y(t), z(t), t) → (x(−t),−y(−t), z(−t),−t) into

Eq. (6.13), it can be seen that

ẍ(−t)− 2ẏ(−t) = Ωx(x(−t), y(−t), z(−t),−t)

−ÿ(−t)− 2ẋ(−t) = Ωy(x(−t), y(−t), z(−t),−t)

z̈(−t) = Ωz(x(−t), y(−t), z(−t),−t)

Since

Ωx(x(−t), y(−t), z(−t),−t) = Ωx

Ωy(x(−t), y(−t), z(−t),−t) = −Ωy

Ωz(x(−t), y(−t), z(−t),−t) = Ωz
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which shows the symmetric solution (x(−t),−y(−t), z(−t),−t) also satisfies the

equations of motion.

6.2.3 Differential Corrector for Periodic Solution

In this section the differential corrector method is used to find the periodic solution

of the nonlinear equations of motion subjected to external excitation [77, 88] i.e.,

the periodically forced solar sail term. The initial conditions from Eq. (6.12) have

the form

x(0) = (1 + ξ(0), 0, ζ(0), 0, η̇(0), 0) = (x0, 0, z0, 0, ẏ0, 0)

so that the spacecraft leaves the xz-plane perpendicularly. On returning to the

xz-plane at time t = T1/2 = π/Ω∗, the conditions are

x(T1/2) = (x̃, 0, z̃, ˙̃x, ˙̃y, ˙̃z)

Let xT =
[
rT , vT

]
and let the non-linear system Eq. (6.1) can be written

as ẋ = f(t, x,u). To obtain a periodic orbit, the three independent parameters

x0, ẏ0, z0 can be varied iteratively to make the three parameters y, ˙̃x, ˙̃z zero at

t = T1/2. The corrections ∆x0, ∆ẏ0 and ∆z0 in x0, ẏ0, z0 can be calculated from

(see Eq. (2.15), whereas in Eq. (2.16) the matrix A(t) =
∂f
∂x is the Jacobian of the

nonlinear system ẋ = f(t, x,u).

The solid lines in Fig. 6.3 and Fig. 6.4 show the periodic orbits around the

geostationary point generated by the differential corrector method (as explained

above) with sail characteristic acceleration a0 (0.05 mms−2) and a0 (0.1 mms−2)

respectively. The dashed lines in Fig. 6.3 and Fig. 6.4 are the corresponding

linearised solution from Eq. (6.12). In both figures, the sail is pitched at an angle

α∗ = 35.264◦. The linearised solution is in good agreement with the numerically

generated differential corrector solution of the non-linear equations of motion. Fig.

6.4 shows that as the sail characteristic acceleration a0 increases the orbit (see

solid line) is shifted upward along the z-axis, however it always crosses the Earth’s

equatorial plane.
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Figure 6.3: Projections of periodic orbits (a0(0.05 mms−2)) around a geostationary point in

the ECEF-rotating frame. Dashed line is the linearised orbit and solid line is the nonlinear orbit

from the differential corrector.
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Figure 6.4: Projections of periodic orbits (a0(0.1 mms−2)) around a geostationary point in the

ECEF-rotating frame. Dashed line is the linearised orbit and solid line is the nonlinear orbit

from the differential corrector.
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The differential corrector algorithm converges up to a0 (0.3 mms−2) for the

initial guess given by Eq. (6.12). For a0 > 0.3 mms−2, the continuation method

can then be used to find periodic orbits. The sail characteristic acceleration a0 is

used as the continuation parameter. In Fig. 6.5, the thick solid line and dashed-

line periodic orbits are generated using the continuation method for a sail with

a0 (0.335 mms−2) and a0 (0.425 mms−2) respectively. Thus Fig. 6.5 shows that

there exists a family of periodic orbits with period T = 2π
Ω∗ around a geostationary

point.

To compare the differential corrector method with the collocation scheme, a

periodic orbit is generated using the collocation scheme (see Sect. 6.1) for a sail

with characteristic acceleration 0.425 mms−2 as shown in Fig. 6.6. The linearised

solution given by Eq.(5.21) is used as an initial guess with a fixed α∗ = 35.264◦ and

δ = 0. Note that, the corresponding orbit using the differential corrector scheme

for a0 (0.425 mms−2) is shown by the dashed-line in Fig. 6.5. The collocation

scheme has a larger radius of convergence since it converges to a periodic orbit

for a0 (0.425 mms−2), while the differential corrector scheme has to go through

a continuation method to obtain an orbit for a0 (0.425 mms−2). However, the

differential corrector has a simple (fixed) attitude strategy and the sail has two

perpendicular crossings of the xz-plane.

The periodic orbits shown in Fig. 6.5 will be inclined elliptical orbits in the

ECI-frame. However, these orbits will be slightly different from Keplerian inclined

elliptical orbits, since the sail follows the Sun-line to make an orbit period T =

2π/Ω∗.

6.3 Conclusions

A family of periodic orbits of period T = 2π/Ω∗ around a geostationary point has

been found using the collocation method and the differential corrector method,

however all the orbits cross the Earth’s equatorial plane. Choosing an initial
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Figure 6.5: Nonlinear periodic orbits of period T = 2π/Ω∗ around a geostationary point in

the ECEF-rotating frame with α∗ = 35.264◦ and different a0 parameters: a0 (0.215 mms−2)

for the thin solid-line, a0 (0.335 mms−2) for the thick solid-line, and a0 (0.425 mms−2) for the

dashed-line. The thick solid-line and dashed-line orbits are generated using the continuation

method while the thin solid line orbit is obtained using the differential corrector method.
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ECEF-frame and (b) sail control history obtained using the collocation scheme. The linearised
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guess from the linear analysis with α = 35.264◦ and varying the sail characteristic

acceleration a0, it is demonstrated that the differential scheme converges to the

periodic orbits. Starting from the linear solution, the maximum value of a0 for

which the collocation scheme converges to a periodic orbit is higher in value than

using the differential corrector method. Therefore, the collocation scheme has

a convergence radius greater than the differential corrector method. However,

periodic orbits from the differential corrector method (or strictly speaking from

the continuation method) have a simple (fixed) attitude strategy. Notably, the

analysis of the collocation scheme with no inequality path constraints suggests

that inequality path constraints are necessary to generate the displaced NKO of

Chapter 5.



Chapter 7

Conclusion

In this thesis new non-Keplerian orbits for solar electric propulsion spacecraft, so-

lar sail propulsion spacecraft and hybrid sail/solar electric propulsion spacecraft

have been devised. The appropriate low thrust propulsion system for generating

these new non-Keplerian orbits has been identified while considering current and

near-term technological constraints for these propulsion systems. The research

proposes solar electric propulsion spacecraft for halo orbits around artificial equi-

librium points (AEPs) along the Sun-Earth line in the forbidden regions for solar

sails, the hybrid sail for displaced non-Keplerian orbits above the ecliptic plane,

and solar sails for displaced non-Keplerian orbits above geostationary orbit. The

contribution of each chapter to the field is summarised below:

7.1 Chapter 2

In chapter 2, the possibility of halo orbits in the Sun-Earth circular restricted

three body problem was demonstrated using current and near-term solar electric

propulsion technologies. In particular, halo orbits are shown to exist about AEPs

at locations where a solar sail cannot generate periodic orbits because of the re-

quirement that the sail thrust cannot be directed towards the Sun i.e., AEPs inside

L1 and beyond L2. In addition to unstable halo orbits about these AEPs, it is

148
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also shown that stable halo orbits exist for AEPs beyond L2. Such stable halo

orbits require thrust acceleration available from current solar electric propulsion

technologies. The AEPs are chosen near to the natural Lagrange points L1 and

L2 to limit the power and thrust level from the solar-electric propulsion system.

7.2 Chapter 3 and Chapter 4

In chapter 3 a new idea for generating AEPs using a hybrid sail in the Sun-

Earth circular restricted three body problem is proposed. The idea extends the

hybrid sail concept, originally proposed for orbit transfer, to use at equilibrium

points. Notably, it was found that the hybrid sail can be in equilibrium in the

forbidden regions for a sail, thereby night-side communication along the polar axis

as envisaged by Forward is possible by using a thruster system with a sail. For

the Earth polar observer mission, it was found that for a hybrid sail with a given

near-term sail assembly loading and 5 year mission life, the sail size is smaller than

a pure solar sail and the propellant mass lower than a pure solar electric propulsion

spacecraft. In addition, the optimisation of the hybrid sail thrust strategy showed

the feasibility of the hybrid sail for the Earth polar observer mission in terms

of initial spacecraft mass. Thus, the hybrid sail has advantages for the Earth

polar observer mission since a large pure sail is difficult to control and the large

propellant mass in the pure solar electric propulsion system is difficult to process

with a single thruster.

In chapter 4 a strategy to stabilise the hybrid sail at artificial equilibria is

devised since the AEPs for the Earth polar observer mission are unstable. The

simple strategy of orienting the thruster system while keeping the large sail at a

fixed attitude is shown to be robust to injection errors and to stabilise the hybrid

sail at the desired AEP. An advantage of the hybrid sail is that a simple control

strategy is possible since the large sail is at a fixed attitude during whole mission

life.
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The hybrid sail is not an option to generate halo orbits about AEPs inside L1

and beyond L2 (Chapter 2) on the Sun-Earth line since the hybrid sail cannot use

solar radiation pressure at these locations, and acts as a pure solar electric propul-

sion system. Therefore, solar electric propulsion is the only option to generate

halo orbits around such AEPs.

7.3 Chapter 5 and Chapter 6

In chapter 5 an idea first proposed by Forward [27, 28], that light-levitated geo-

stationary orbits (displaced NKO) exist in the solar-sail two-body problem was

investigated. However, in the literature [26, 91] it was claimed that such light-

levitation is not possible. It was first shown that a family of displaced NKO exist

at linear order. Displaced NKO at non-linear order are then obtained using a

collocation scheme rather than the usual differential corrector scheme. For the

worst-case sail orientation at the summer solstice, it was found that a near term

and high performance sail can be displaced between 10 km and 25 km above the

Earth’s equatorial plane respectively, while a perforated sail can be displaced just

above the usual station-keeping box (75× 75) km for nominal geostationary satel-

lites. In short, only modest displacements are possible due to the large component

of sail acceleration in the equatorial plane.

In chapter 6, it was shown that inequality path constraints are necessary to

obtain displaced NKO, otherwise all the orbits generated using a differential cor-

rector (or continuation method) intersect the Earth’s equatorial plane. Therefore,

the collocation scheme is the most promising approach for generating the displaced

NKO given in chapter 5, as it can handle inequality path constraints.
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7.4 Future Work

For chapter 2, future work includes stabilisation of unstable artificial halo orbits

about AEPs using the thruster pitch and yaw angles. An in-depth stability analysis

of these halo orbits will also be interest, as mentioned in section 2.5.

For chapter 3 and chapter 4, the possibility of a hybrid sail being used to

generate periodic orbits can be investigated. In particular, a one year orbit in the

circular restricted three-body problem will be of interest to narrow the angle of

elevation of the hybrid sail as viewed from the pole compared to a fixed equilibrium

point on the day or night side of the Earth. Periodic orbits with fixed initial mass

can be generated and then tracked with the thruster gimbal angle to counter the

variation in the hybrid sail mass.

For chapter 5 and chapter 6, the high order Gauss-Lobatto collocation scheme

with constraints on the rates of the sail attitude angles can be used to generate

displaced NKO above geostationary orbit. The lower-order Hermite-Simpson col-

location scheme with larger nodes will accumulate rounding errors. Secondly, the

collocation scheme could be used to generate displaced NKO considering changes

in the Sun’s declination angle over one day, starting from an initial guess of the

linearised model with a fixed solar declination.

For a given displacement above the Earth’s equatorial plane, the size of the

displaced NKO around the equilibrium point and sail characteristic acceleration

can be reduced by investigating orbits beyond geostationary radius. Such orbits

will be displaced NKO, but the equilibrium point and so the orbit will not be

synchronous with the Earth. It will be of interest to investigate if the displacement

can become greater than the Earth’s radius to allow for polar communications.
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Linearized Solution

A.1 Eigenvector for Centre Eigenvalue

The eigenvector u1 + iw1 of the eigenvalue iλ1 is determined by




0 0 1 0

0 0 0 1

a 0 0 2

0 b −2 0







x1

x2

x3

x4




= iλ1




x1

x2

x3

x4




(A.1)

Consequently

x3 = iλ1x1, x4 = iλ1x2, ax1 + 2x4 = iλ1x3, bx2 − 2x3 = iλ1x4 (A.2)

Solving this system by choosing x2 = (a + λ2
1), we find




x1

x2

x3

x4




=




−2iλ1

(a + λ2
1)

2λ2
1

iλ1(a + λ2
1)




= u1 + iw1 (A.3)

Note that λ1 = wxy.
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A.2 Bounded solution for δx and δy

Substituting C = D = 0 in Eq. (2.9), the equations for δx and δy are obtained as

δx = −2wxyB cos(wxyt) + 2wxyA sin(wxyt)

δy = A(a + w2
xy) cos(wxyt) + B(a + w2

xy) sin(wxyt) (A.4)

The constants A and B can be determined in terms of initial position deviation

δx0 and δy0 by substituting t = 0 in Eq. (A.4) which yields

A =
δy0

a + w2
xy

B =
δx0

−2wxy

(A.5)

Substituting Eq. (A.5) in Eq. (A.4) and using the relations δx0 = Ax cos φ and

2wxyδy0

a+w2
xy

= Ax sin φ, it is found that

δx = −Ax cos(wxyt + φ)

δy =
a + w2

xy

2wxy

Ax sin(wxyt + φ)

where Ax is the x-amplitude of the orbit and the phase φ corresponds to the

starting point on the orbit.
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Hybrid sail acceleration due to

SRP with TFSC

B.1 Nondimensional solar sail acceleration due

to SRP with TFSC

Divide Eq. (3.4) by m and the dimensional reference acceleration ω2R, then the

hybrid sail acceleration due to SRP is given by

aS = ann + att (B.1)

where the normal and tangential acceleration components are given by

an = (r̂1.n)2
[
(1 + r̃S)PAS

m
1

ω2R
+ (1 + r̃TF )PATF

m
1

ω2R

]

at = (r̂1.n)(r̂1.t)
[
(1− r̃S)PAS

m
1

ω2R
+ (1− r̃TF )PATF

m
1

ω2R

]

Now, it can be seen that

PAS

m

1

ω2R
=

[
Ls

4πR1
2c

]
AS

m

[
R2

G(m1 + m2)

]

=
1

2

[
2

c

Ls

4πGm1

]
m1

(m1 + m2)

1

(R1

R
)2

AS

m
(B.2)
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The term 2
c

Ls

4πGm1
is the critical loading parameter σ∗ whose value is approximately

1.53× 10−3 kg/m2. Denoting β0 ≡ σ∗
(

m0
AT

)
, then Eq. (B.2) becomes as

PAS

m

1

ω2R
=

1

2
β0

m0

m

(
1− ATF

AT

)
1− µ

r2
1

(B.3)

Similarly, it can be seen that

PATF

m

1

ω2R
=

1

2
β0

m0

m

ATF

AT

1− µ

r2
1

(B.4)

Substitute Eqs. (B.3) and (B.4) in Eq. (B.1), the SRP acceleration vector for a

hybrid sail acting along m in non-dimensional form is then given by

aS = asm =
1

2
β0

m0

m

1− µ

r2
1

g(r̂1.n)2n +
1

2
β0

m0

m

1− µ

r2
1

h(r̂1.n)(r̂1.t)t (B.5)

where

g = (1 + r̃S)− ATF

AT
(r̃S − ηTF )

h = (1− r̃S) + ATF

AT
(r̃S − r̃TF )

B.2 Matrix K in Eq.(3.35)

For the matrix ∂∇U
∂r

in Eq. (3.34) the terms are

∂∇U

∂r
=




Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz


 (B.6)

The acceleration due to solar pressure for a hybrid sail can be rewritten using

Eqs. (3.12) and (3.7) as

aS =
1

2
β0

m0

m

1− µ

r4
1

ψ ma (B.7)

where

ψ =
[
(g2 − h2)(r1.n)4 + h2r2

1(r1.n)2
]1/2



Appendix B 156

The partial derivatives of Eq. (B.7) can then be obtained as

∂aS

∂r
= −2β0

m0

m

(1− µ)

r5
1

ψ




(x+µ)
r1

mx
y
r1

mx
z
r1

mx

(x+µ)
r1

my
y
r1

my
z
r1

my

(x+µ)
r1

mz
y
r1

mz
z
r1

mz




+
1

2
β0

m0

m

(1− µ)

r4
1




∂ψ
∂x

mx
∂ψ
∂y

mx
∂ψ
∂z

mx

∂ψ
∂x

my
∂ψ
∂y

my
∂ψ
∂z

my

∂ψ
∂x

mz
∂ψ
∂y

mz
∂ψ
∂z

mz




(B.8)

where




∂ψ
∂x

∂ψ
∂y

∂ψ
∂z


 =

2(g2 − h2)(r1.n)3 + h2r2
1(r1.n)

ψ




nx

ny

nz


 +

h2(r1.n)2

ψ




x + µ

y

z




and ma = [mx my mz]
T and na = [nx ny nz]

T may be calculated as

ma = CT
b/am

b

na = CT
b/an

b (B.9)

For an artificial equilibrium point r0 is in the xz-plane, mb and nb are given

by Eqs. (3.26) and (3.29) for option 1 and option 2 respectively. Furthermore, for

r0 in the xz-plane y = ny = my = 0, so the two matrices given in Eqs. (B.6) and

(B.8) finally reduce to

[
∂∇U

∂r

]

r0

=




Uxx 0 Uxz

0 Uyy 0

Uzx 0 Uzz


 (B.10)

and
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[
∂aS

∂r

]

(r0,na)

= −2β0
m0

m
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r5
1

ψ
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mx 0 z
r1
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mx 0 ∂ψ
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0 0 0

∂ψ
∂z

mz 0 ∂ψ
∂z

mz




(B.11)

so that K in Eq. (3.34) can be calculated using Eqs. (B.10) and (B.11).
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Jacobian Matrix

Elements of Dgi in the Jacobian matrix DC are given by

{
∂gi

∂xi

,
∂gi

∂ui

,
∂gi

∂ki

}
(C.1)

for i = 1, 2, · · · , n, and

∂gi

∂xi

=


 −I3 O3

I3 O3




where I3 and O3 are the 3× 3 identity and null matrix, and

∂gi

∂ui

= O6×3,
∂gi

∂ki

= 2kD
i

where kD
i is the 6×6 diagonal matrix with entries k

(1)
i , k

(2)
i , · · · , k

(6)
i . The non-zero

elements in Dψi are ∂ψi

∂ui
= 2uT

i for i = 1, 2, · · · , n. The non-zero elements of Dhl

are given by 


∂h1

∂x1

∂h2

∂x1

∂h3

∂x1

∂h4

∂x1

∂h5

∂x1

∂h6

∂x1




= −I6,




∂h1

∂xn

∂h2

∂xn

∂h3

∂xn

∂h4

∂xn

∂h5

∂xn

∂h6

∂xn




= I6
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and 


∂h7

∂u1

∂h8

∂u1

∂h9

∂u1


 = −I3,




∂h7

∂un

∂h8

∂un

∂h9

∂un


 = I3
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