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Abstract 
Drug detection has become a necessity with dynamic drug markets, the increasing and 

diverse number of compounds consumed by the world population, the rise of novel 

psychoactive substances (NPSs) and poly-drug use and lies at the heart of all drug-related 

issues, policies and legislation. The current screening tests provide inconsistent results across 

various classes of drugs, especially NPSs, and in different biofluids with high false-positive 

rates, necessitating secondary testing using expensive confirmatory techniques at already 

overloaded laboratories. To this effect, the potential of attenuated total reflectance – Fourier 

transform infrared (ATR-FTIR) spectroscopy in combination with chemometric analyses is 

evaluated in this thesis as a direct, rapid, adaptable and inexpensive screening method for 

the detection of methamphetamine (MA) in serum and urine. The method developed here 

required no prior sample preparation and is demonstrated to distinguish MA from drug-free 

samples in forensically and clinically relevant concentrations with sensitivities and 

specificities of ~91% in serum and ~95.5% in urine. Furthermore, discrimination of MA from 

its metabolites in serum and urine is also demonstrated as they are more likely to be found 

alongside MA in real-world samples. Limits of detection and quantification of ATR-FTIR 

spectroscopy for MA are also established at 0.1 mg/mL and 0.3 mg/mL in serum and 0.29 

mg/mL and 0.9 mg/mL in urine respectively to establish the applicability of this method in 

various settings. The suitability of this method as an alternative screening test is 

demonstrated by successfully discriminating MA from the common prescription drugs known 

to give false positives on immunoassays in a clinical setting. Finally, the suitability of this 

method in forensic toxicological screening is illustrated by distinguishing MA from its NPS 

analogues, synthetic cathinones. Through this work, the great potential of ATR-FTIR 

spectroscopy is demonstrated for the direct detection of drugs in biological samples to keep 

up with the ever-evolving drug markets.  
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1.1 Introduction 

Drug markets and patterns of drug use are becoming ever more dynamic, diverse, and 

complex with approximately 275 million drug users worldwide.1 The consumption of drugs is 

typically characterised by the use and abuse of illicit drugs as well as the non-medical use of 

pharmaceutical drugs. Globalization, new technology and the growth of online markets have 

led to an explosion of counterfeit drugs; not only for controlled psychoactive substances and 

lifestyle drugs but also for life-saving medicines such as antibiotics, antimalarials and 

cardiovascular, as well as cancer medicines.2-4 New psychoactive substances (NPS), also 

known as ‘designer drugs’, are being produced at an alarming rate to circumvent the global 

prohibitive legislation.3, 5 In the case of clinically approved pharmaceuticals, the adulteration 

stems from uncontrolled/illicit manufacturing practices as well as deliberate fraudulent 

production.6, 7 The greater availability and selection of substances leading to poly-drug use 

adds another layer of complexity whereby more than one drug is consumed simultaneously 

or consecutively by individuals.8 In turn, when drugs are then encountered, whether, in 

seizures by authorities, or consumers, it has become increasingly difficult to know their 

composition. In order to tackle this complex issue, there is a need for further technological 

advances in collection methods as well as sophisticated detection methods.  

1.2 Background  

Pharmaceutical products are highly regulated through various regulatory frameworks put in 

place by the likes of the European Medicines Agencies (EMA) or the Food and Drug 

Administration (FDA) bodies for individual countries. Further guiding principles are also 

provided by the World Health Organisation (WHO) for medicinal products. However, there 

are many instances where all these systems of checks and balances fail and the products that 

reach the consumer are not authentic. The WHO (1999, p. 8) defines counterfeit medicines 

as:  

One which is deliberately and fraudulently mislabelled with respect to 

identity and/or source. Counterfeiting can apply to both branded and 

generic products and counterfeit products may include products with the 

correct ingredients or with the wrong ingredients, without active 

ingredients, with insufficient active ingredient or with fake packaging. 
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This is a blanket term used to describe tampering of any kind with the original product. The 

term ‘substandard medicines’, usually preferred by the European Union, , refers to a drug 

that upon laboratory inspections fails to meet the specifications it claims to comply with.7, 9, 

10 Falsified medicines is another term used to describe such products whereby the products 

are deliberately and fraudulently designed to mimic the real medicines but in reality contain 

wrong dosages or no active pharmaceutical ingredient (API), or the wrong API.10, 11 The terms 

substandard and falsified are still preferred over the more inclusive term, ‘counterfeit’ so as 

to not confuse intellectual property issues with clinical, pharmacological and toxicological 

concerns.12, 13 

Counterfeit drugs, in the entirety of their definition, pose a serious threat to public health.13-

15 The UK is not a prime location for the manufacture of counterfeits, though it makes an 

attractive target for the sale and transit of such medicines. In 2021, over 3 million medicines 

were seized by the UK border authorities as part of a global operation, valued at over £9 

million.16 These seizures included drugs such as antidepressants, anabolic steroids, 

analgesics/painkillers, anti-cancer medication, antimalarials, hypnotic and sedative 

medication, erectile dysfunction pills and various medical devices.16 Following examination 

of 710,000 packages, these medicines were seized amongst legitimate products, and over 

3,100 online adverts were closed down. However, many medicines still make it into the 

legitimate supply chain. In such situations, they only come to light if the dispensing chemists 

can identify counterfeits visually or, in worse cases, the consumer following an adverse 

reaction. The UK supply chain is a complex system and allows for approximately 900 million 

medications to be prescribed annually in the UK. Though there are many safeguards in place 

to avoid counterfeit and falsified drugs from reaching the consumer, it is difficult to estimate 

the scale of this problem due to the lack of a systematic monitoring process.17, 18  

The inexorable growth of online pharmacies particularly popular in high-income countries 

such as the United States where between 19 and 26 million people buy medicines online, 

makes even the most regulated supply chains vulnerable.19 As part of Interpol’s Operation 

Pangea in 2015 to tackle illegal online sales of medicines, more than 6 million doses of 

lifestyle drugs such as slimming pills and erectile dysfunction medications as well as life-

saving drugs for cancer, depression and epilepsy were seized in the UK.20, 21 The internet 

provides counterfeiters access to various markets for parallel trading or those without strict 

regulatory oversight. Furthermore, current legislation and regulations do not provide a 
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strong enough deterrent, either through enforcement or penalties, for counterfeiters.7 In 

such situations, the drug users become the first to detect counterfeiting from an online sale. 

In the case of antimicrobials, it can cause drug resistance in people due to wrong doses in 

falsified drugs.22-24 While not many fatalities are officially attributed to counterfeits in the UK, 

such cases have been identified in other countries like the United States.6, 7, 25 

Notwithstanding the direct harm to public health, counterfeit medicines are expensive to 

investigate, costly to the overall healthcare system, and can be detrimental to the reputation 

of drug companies.26 Therefore, it becomes necessary to be able to identify counterfeit 

medicines not only in their original form but also in biological fluids once they have been 

consumed. 

Of the 275 million users of drugs, almost 13% of these suffer from drug use disorders due to 

the misuse of prescription drugs, traditional illicit drugs, and novel substances or any 

combination thereof.1 Traditional drugs of abuse such as cocaine and methamphetamine 

have a long history of abuse and misuse across the world. These drugs, though initially 

introduced for innocuous reasons such as improving efficiency by staying awake and working 

long hours, have high addiction potential. Their dependence, associated long-term health 

risks and crime place a huge burden on the healthcare systems. 

While these traditional illicit drugs are strictly monitored globally, illicitly produced new 

compounds are difficult to predict and monitor. As of 2021, over 1150 individual NPSs were 

reported by 133 countries to the Early Warning Advisory (EWA) of the United Nations Office 

of Drugs and Crime (UNODC).27 These are categorised into six groups based on their effect, 

most of which mimic traditional drugs (Figure 1-1).27 Due to the clandestine manufacture and 

consumption of these compounds, little is known about their pharmacology, potency, 

toxicity and long-term health effects.28 

The Council of the European Union has provided a more formal definition for NPSs that 

includes any ‘new narcotic or psychotropic drug, in pure form or in preparation, that is not 

controlled by the United Nations drug conventions, but which may pose a public health 

threat comparable to that posed by substance listed in these conventions’.29 However, this 
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is a legal, not medical or pharmacological definition. The initial development of these 

substances stems from failed pharmaceutical drug campaigns with expired patents that 

provide clandestine chemists with a large array of structures and synthetic routes to exploit.30 

Newer compounds however are purposely created either by making small chemical 

alterations to traditional drugs or with an aim to achieve the same physiological effects or 

the same ‘high’ as the traditional drugs. These are marketed as ‘legal highs’ or ‘research 

chemicals’ or ‘substances not for human consumption’, often under the guise of ‘bath salts’ 

or ‘plant food’ to circumvent drug and food legislation appearing not so dangerous to the 

consumers.31, 32 All these terms further add to the confusion in legal, and clinical situations 

when multiple substances are used in blends and sold under the names of traditional drugs.30, 

33, 34  

In the UK, there were over 3284 drug-related deaths reported in 2021, out of which at least 

439 were linked to the use of at least one NPS.29  Of those monitored by EWA, there are as 

many as 730 NPSs that are not routinely screened for in laboratories.35, 36 Traditional 

Figure 1-1: Emergence of NPS by effect group reported to the UNODC EWA 2009-2021. 
Figure reproduced from UNODC NPS report.27 Stimulants are shown in blue which is one 
of the two biggest contributors to drugs seized worldwide. 
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psychoactive substances with a long history of use have clinical, pharmacological and 

toxicological data for reference.37 In the case of NPSs, such information is only found 

anecdotally from clinical cases, poison centres and self-reported use, and is difficult to keep 

up to date for emerging compounds.38, 39 Targeted NPS analysis is only carried out if the 

surrounding environment indicates the use of NPSs.36, 40 Commercially available reference 

libraries do not always have the necessary data for constantly emerging new compounds. 

Moreover, the reference samples are difficult to obtain and maintain due to the immense 

variety and constant turnover in the drug markets. Similarly, appropriately validating 

methods for testing such compounds is a time-consuming process that takes longer than 

their lifespan in these markets. This highlights the possibility that the NPS statistics are 

underestimating the issue in cases of adverse reactions and fatalities. The differences in the 

capabilities of forensic and clinical laboratories, standard operating procedures for post-

mortem toxicology investigations for suspected drug-related deaths, as well as inconsistent 

recording and quality of reporting systems over time and across countries further complicate 

quantifying the impact of NPSs.8, 29  

Consequently, when considering patterns of drug use in the real world, the delineation 

between ‘good’ and ‘bad’ drugs and even ‘licit’ and ‘illicit’ drugs becomes increasingly 

blurred. The use of non-controlled medications in a non-prescribed way is one such example 

of ‘grey’ areas where there may be no legal precedent, but the potential for harm still exists. 

The use of NPSs to achieve the same effect as traditional drugs is another instance where the 

legislation falls short while the harm to human life continues.  

On a global scale, the production, supply and use of substances which are recognised as 

“drugs” or “controlled substances” are regulated by various international treaties; including 

Single Convention on Narcotic Drugs 1961, the Convention on Psychotropic Substances 1971, 

and the United Nations Convention Against Illicit Traffic in Narcotic Drugs and Psychotropic 

Substances 1988. Additionally, the UNODC has a global reporting system where new and 

emerging trends in controlled substances and their prevalence across the world are identified 

and reported. Most of this international legislation tends to be prohibitive and punitive in 

nature.41 Overall, these three conventions regulate the manufacture, use and distribution of 

psychotropic substances across the world, for individual as well as scientific research 

purposes.  
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In recent years, national bodies subscribing to these treaties have become more liberal in 

their attitude towards drug use and are seriously discussing more tolerant and pragmatic 

strategies for the use of controlled substances.41 Instead of introducing a blanket ban like in 

Ireland or Poland, on all substances with psychoactive properties, some countries like New 

Zealand have chosen to interpret the international documents to make up legislations that 

focus on the psychoactive properties of the substances.28,41 While these regulations are 

trying to remain relevant, the advances in modern chemistry, technology and 

communications, and scientific innovation have found more loopholes in the current 

legislation.42 In particular, national legislations that control the misuse of potentially 

hazardous chemicals on an individual drug compound basis haven’t been effective in dealing 

with NPSs that mimic traditional drugs.  

In the UK, international conventions are translated into two main acts that control drug use; 

medicines are controlled by the Medicines Act while traditional recreational drugs are 

controlled under the Misuse of Drugs Act (MDA) 1971 and the Psychoactive Substances Act 

(PSA) 2016.43, 44 The MDA 1971 restricts and prohibits the production, supply, intention to 

supply, possession with intent to supply, import and export, and the unlawful use of any 

premises for the production or supply of controlled drugs without a licence.43 The 

Psychoactive Substances Act (PSA) 2016 was created to introduce a blanket ban on the 

production, distribution, sale and supply of psychoactive substances in the UK intended for 

human consumption. The primary driving force behind the PSA was the constant struggle to 

control misuse of the novel analogues of existing controlled substances under the MDA.45 

More importantly, the PSA defined the term ‘psychoactive substance’ as any substance that 

is either stimulating or depressing to the central nervous system (CNS) of the consumer, 

whereby the person’s mental and emotional state is altered.46 However, NPSs are rarely 

tested prior to their distribution and use, which means that their ‘psychoactivity’ is either 

unknown or not scientifically proven creating difficulties for the effective execution of such 

legislation.   

Drug detection lies at the heart of all drug-related issues, policies and legislation. This is 

highlighted in the current drug policies and strategies for the future where the need for an 

evidence-based approach is stipulated.8 The ever-changing ‘market’ of drug compounds and 

their popularity in recent years has demanded the application of screening tools and 

detection capabilities to a variety of situations.37 While drug-induced fatalities get the most 
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attention in the press, they consist of only a small portion of the entire drug detection field. 

Routine drug detection is carried out in numerous situations including quality monitoring and 

assurance in pharmacovigilance studies, workplace testing,46-48 anti-doping drug test in 

sporting events,49-52 drug monitoring in the clinical setting,37, 53-55 drug testing for driving-

under-influence situations,56-58 as well as routine forensic testing of seized materials and 

post-mortem samples.59-61 These differing situations hold unique and potentially massive 

implications for developing efficient, inexpensive, accurate and high-throughput detection 

methods that can be adapted to the evolving drug market.  

1.3 Methamphetamine 

Amphetamine-type stimulants (ATS) which include methamphetamine (MA) are one of the 

six drug categories highlighted by the UNODC with a persistent prevalence of abuse and 

misuse globally.1 MA was selected as the drug of choice in this study as it is the second most-

consumed drug in the world with a plethora of legal, economic, pharmacological, analytical, 

clinical and forensic research available.62  

Figure 1-2: Images were taken from US DEA seizures for Desoxyn and the EMCDDA report for 
Captagon.63 The Desoxyn tablets on the top left are real while those in the top right are 
counterfeit. The Captagon tablets (bottom left) are real, which are visually different from the 
counterfeit versions (bottom right).  
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While MA can be extracted naturally from the Ephedra tree bark and synthesized legitimately 

as pharmaceutical preparations, most of the MA currently found on the drug market is illicitly 

manufactured either in small clandestine labs or in large-scale productions with global 

trafficking networks.62 There are various pharmaceutical preparations of ATSs such as 

‘Captagon’, ‘Adderall’ and ‘Desoxyn’, which are prescribed for attention deficit hyperactivity 

disorder (ADHD) and narcolepsy, respectively (Figure 1-2).63-65 Illicit MA is produced in many 

forms including tablets, powders and crystals which are known by various street names 

including ‘crank’, ‘crystal meth’, and ‘ice’.62 The tablet form, especially those that resemble 

pharmaceutical preparations such as Adderall is especially dangerous in that they target non-

traditional drug users and have been linked to many drug-related deaths.62, 66 Furthermore, 

mixing MA with other drugs such as fentanyls has become an increasingly common practice 

which has caused a sharp rise in MA-related deaths.62, 67-69  

The core of ATSs is best characterised by its simplest molecule, amphetamine, which contains 

all the structural elements responsible for their psychostimulant activity, this drug category 

also includes other structurally and functionally similar compounds such as methylenedioxy 

derivatives. Furthermore, synthetic cathinones such as mephedrone, 4-methylethcathinone 

(4-MEC) and 4-chloromethcathinone (4-CMC) are stimulants that are structurally similar to 

MA and form the second-largest group of NPS monitored by the UNODC.36, 38 Any subtle 

differences in the structures of these compounds creates drastic changes in their 

pharmacodynamic activity as well as the interactions with the several target proteins altering 

their abuse potential and toxicity.70 For instance, the addition of the N-methyl group on the 

side chain seen in MA increases the lipid solubility of the drug, causing rapid diffusion into 

the central nervous system.71, 72 Following its uptake, methamphetamine is readily 

distributed to various parts of the body including the lungs, liver, brain and kidneys.73 

Therefore, the toxicity associated with methamphetamine ingestion occurs not only from the 

high initial dose or its chronic use but also from the accumulation in various parts of the 

body.74-76 This means that the detection and identification of methamphetamine are not only 

important in the immediate case of drug use but also in long-term policies for chronic users.   

Methamphetamine is also a drug substance that crosses socio-economic boundaries and has 

a long history of abuse, there is longitudinal data to show that chronic use of MA causes 

neurological damage that takes a long time to revert even after discontinuing the drug use.77, 

78 A lack of Naloxone-type treatment for MA and other stimulants means that it is a difficult 
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road to recovery requiring behavioural therapy with consistent commitment from patients.79-

81 Furthermore, the use of MA is associated with a culture of needle sharing and risky sexual 

behaviour where contraction of diseases such as HIV and Hepatitis B and C is likely.82-84 This 

puts a further burden on the healthcare system not only in terms of treating misuse of MA 

but also its long-term consequences. Therefore, the need for drug detection methods for 

various biological fluids and more specifically, the adaptability of those methods to newer 

analogues of traditional drugs such as MA is persistent. The use of MA as an example target 

drug in this thesis is two-fold because it allows for the detection of MA and its distinction 

from compounds that mimic its effects on consumers. With this in mind, the following 

sections will briefly discuss the advantages and shortcomings of various biological fluids and 

detection methods used to identify drugs of abuse.  

1.4 Biological Fluids 

The term biofluid is used generally for any biological fluid obtained from the body, including 

those that are excreted such as urine or sweat; those that are secreted such as breast milk 

or bile; those that develop as a result of pathology such as cyst fluids; and those that can be 

obtained by a needle such as blood or cerebrospinal fluid. These fluids are extremely valuable 

in that they contain several biomolecules which have been in direct contact with internal 

organs throughout the human body.85-87 These biomolecules include carbohydrates, lipids, 

nucleic acids and proteins that fundamentally share a structure and function relationship 

influenced by the environment they are produced or found in.85-87 Consequently, these can 

be treated as biomarkers that can be used to not only identify and diagnose pathologies but 

also monitor the progression of diseases and treatments over time.85, 88, 89  

Whole blood, serum and urine samples remain the preferred biological matrices in 

antemortem and post-mortem detection of drugs and other foreign substances as most 

administered drugs are excreted in these biofluids.90  Furthermore, saliva, sweat and hair are 

also used for the detection of drugs as they can provide information on the timing of 

ingestion, metabolism, and chronic drug use.91-102 While these alternative matrices are much 

easier to collect, the interpretation of concentrations based on their use can be problematic.  

The reasons for choosing one matrix over another are situation-dependent - on their 

availability and ease of collection, the window of exposure represented, as well as the 

sensitivity and specificity of the parent drugs and their metabolites. The complex nature of 
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biofluids and their subsequent interactions with these compounds for example variations 

due to blood pH levels, diffusion rates and influence of interferents both inherent in the 

matrix and additives (food and body sprays) result in permutations and deviations from the 

normal matrix.37, 103, 104 Furthermore, comparative literature across biological matrices for the 

same compounds is lacking as the limits of detection (LOD) and limits of quantification (LOQ) 

are significantly different in various biological fluids. Traditionally, urine samples are 

commonly submitted in clinical toxicology, while forensic toxicological investigations usually 

focus on serum samples as only blood samples are submitted for laboratory analysis.105 In 

the case of NPS, interpretation of concentrations from any biofluid can be problematic as 

controlled preclinical studies in humans and reliable concentration data are often missing or 

yet to be established.106, 107 Human serum and urine were the matrices employed in this 

study, as such they are discussed in more detail below.  

Blood samples are difficult to collect and contain many complex proteins within them that 

complicate toxicological analyses.131 Furthermore, the stability of various drugs and their 

metabolites in the blood can be extremely variable and is affected by the time lapse between 

sample collection and actual analysis, and storage/transportation of samples, requiring 

speedy analysis for detection.108 Drugs that metabolise extensively can have a short 

detection window in blood as they are rapidly excreted in the urine. Moreover, the use of 

anticoagulants/preservatives in storing blood samples can interact with the analytes of 

interest, causing further problems during analysis. However, the main reason for using blood 

samples is that amount of drug detected in blood samples can be easily and properly 

correlated with the amount of drug consumed, thus making it a valuable matrix for drug 

detection.90, 109 While some of the complex components are removed when analysing only 

the serum component of whole blood, most analytical techniques will require a complete 

sample clean-up step to only extract the exogenous compounds for analysis.  

Urine is the preferred biological matrix of choice when analysing drugs of abuse because it is 

a compositionally simple matrix with a convenient and non-invasive collection.91, 110, 111 

Moreover, consumed drugs along with their metabolites are present in urine at much higher 

concentrations than in blood and are detectable for longer periods.111-113 However, it is also 

a matrix that can be easily tampered with before and after collection.109, 114 Furthermore, by 

the time some drugs such as synthetic cannabinoids, are excreted in the urine, the structures 

of their metabolites are so different from the parent drug that it is difficult to correlate 
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them.113 The use of real human urine in research environments is problematic because urine 

composition is dependent on gender, age, race, food intake, exercise and the presence of 

medications.115-117 In addition, urine composition significantly changes throughout the day 

even for the same individual and presents challenges for collection and storage.116 The use 

of real urine samples also comes with the risk of exposure to pathogens during collection and 

handling.  

The biological fluids mentioned above can also be collected in post-mortem situations along 

with liver, lung, kidney, spleen, muscle, brain, heart and bile tissue samples for the detection 

of foreign substances.101, 118 In toxicology samples, the issue of characterising the 

composition and concentrations of a drug and its metabolites are complicated by the effects 

of decomposition, post-mortem redistribution and lack of appropriate reference standards 

in those matrices. It is commonly known that considering the time after death, factors such 

as body positioning can redistribute fluids in the body.119 This redistribution of blood into and 

out of organs can convolute the amounts of any foreign substances present. Redistribution 

is demonstrated in heart muscle and lung tissue areas for methamphetamine, and it is fairly 

constant in peripheral blood resulting in it being the best sample for analysis.120 Similarly, this 

can apply to amphetamine as it is just as readily absorbed and distributed across the body 

antemortem.121 However, specific studies for many NPSs are lacking and can have 

implications for the interpretation of results.  

1.5 Drug Detection Methods 

Typically, drug detection is carried out as a two-step process, whether it is on suspicious 

samples or confiscated cargo, or to detect drug consumption in a person. Initial screening is 

carried out using presumptive tests to establish the presence of drugs and potentially identify 

the class of drugs. In the case of seized samples, these are mainly colour spot tests carried 

out in the field. For detecting drug consumption, for example at a roadside, or at a workplace, 

a screening test is generally carried out using biological fluids, preferably non-invasive 

biofluids such as oral fluid, urine and sweat. These tests are aimed at maximising the 

diagnostic throughput in order to identify all the presumptive positives in the sample. 

Following this, a confirmatory analysis is carried out on a sample, powder or blood/urine 

sample, at a centralised laboratory to accurately confirm the presence of drugs, and identify 

the chemical compound and its concentration.56, 122 These are focused on maximising the 

specificity, i.e. correctly identifying drugs present in all the positive presumptives.  
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The identification process will typically consist of a sequence of techniques that are most 

efficient and cost-effective to provide reliable and accurate results. The Scientific Working 

Group for the Analysis of Seized Drugs (SWGDRUG) along with UNODC has provided 

guidelines for building an analytical scheme utilising various combinations of methods that 

can be used to obtain results that are legally sound.123-126 The methods are grouped into three 

categories, A, B and C, and arranged in a hierarchy of increasing selectivity (Figure 1-3).126 

However, it is prudent to note that this list is not all-inclusive, nor is there only one correct 

analytical technique/scheme. While the choice of methods is ultimately a balance between 

the information required, cost-effectiveness, analysis time, and the situation where drug 

analysis is needed, it is possible to compile a list of desired features that might be used to 

evaluate novel methods for their application to drug detection. These include portability and 

short response time to allow rapid analysis to allow in-field analysis, high specificity in order 

to avoid social, legal and economic ramifications, multidrug detection ability in complex 

matrices, high accuracy and reproducibility of results to withstand rigorous method 

validation, user-friendly, low-cost and environmentally friendly operation, ease of data 

interpretation and finally the ability to transmit data securely to authorities.90 With this in 

mind, the following section will briefly discuss the techniques and methods used in 

presumptive, on-site screening and those employed in the lab for confirmatory drug testing.  

Category A 

Category B 

Category C 

(Selectivity through 
structural 

information) 

(Selectivity through chemical or 
physical characteristics) 

(Selectivity through general or class information) 

IR Spectroscopy, Mass Spectrometry, Nuclear 
Magnetic Resonance Spectroscopy, Raman 

Spectroscopy, X-ray Diffraction 

Gas/Liquid/Thin Layer/Supercritical Fluid 
Chromatography, Capillary electrophoresis, 

Ion mobility spectrometry, UV/visible 
spectroscopy, Microcrystalline tests 

Colour tests, Immunoassay,  
Fluorescence spectroscopy, 

Melting Point, Pharmaceutical 
Identifiers 

Figure 1-3: Schematic showing the categories of various analytical techniques employed in the 
analysis of seized drug samples. The image is adapted from SWGDRUG documentation. 
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1.5.1 Presumptive Tests 

1.5.1.1 Colour Tests 

According to the International Collaborative Exercise carried out by the UNODC involving 310 

laboratories from 86 countries in 2020-2021, colourimetric (spot) tests are one of the most 

commonly employed screening tests for analysis of seized materials.127 In these tests, 

chemical reagents are added to a small sample of seized materials where a colour change in 

specific reagents is indicative of a specific drug class present in the sample.37, 128-130 Colour 

tests are usually employed in a predetermined sequence to ascertain the type of drug class 

while using a minimum number of tests. These tests are rapid, portable, low cost and require 

no sample preparation which accounts for their prevalence in the field as well as in the 

laboratory.37, 130 While these are classed as having the least discriminating power, they are 

widely employed in the field for ruling out samples containing no drugs due to their 

operational simplicity and lack of training as a low-cost way of analysing a large number of 

samples. 

The most commonly used reagents of ATS detection are Marquis reagent (a mixture of 

formaldehyde and concentrated sulfuric acid), Mandelin reagent (a mixture of ammonium 

vanadate in sulfuric acid) and Simon’s reagent (a mixture of sodium nitroprusside, sodium 

carbonate and acetaldehyde). Marques and Mandelin reagents are broad-spectrum reagents 

that react with multiple classes of drugs including anti-depressants and opiates, while 

Simon’s reagent is used to detect secondary amines such as MA and MDMA. Samples 

containing MA produce dark yellowish green and deep reddish orange-dark reddish brown 

colours when analysed with Marques and Mandelin reagents respectively.130, 131 Simon’s 

reagent on the other hand is a functional group selective reagent for secondary amines 

producing a blue-coloured product.130  

O’Neal and colleagues carried out a detailed validation of twelve such colour tests to report 

a sensitivity of 10-100 µg for amphetamines for the three aforementioned reagents. 

However, this study highlighted that these tests are not always specific to a particular drug 

or drug class as false positives were recorded for innocuous compounds such as aspirin, salt, 

sugar and mace.131  Murray et al. showed that a combination of multiple reagents was 

insufficient to correctly identify pure MDMA tablets from those adulterated with MA, where 

the combined sensitivity, specificity, positive predictive value and negative predictive value 

were 58%, 50%, 28% and 77%, respectively.132 While this study was comprehensive enough 
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in terms of including novice and expert analysts for performing and interpreting the tests, it 

still relied on the analyst’s perception of colour.  

As of July 2022, 204 unique synthetic cathinones have been reported to the UNODC EWA by 

86 countries across the world.133 This group of structurally similar compounds is usually 

consumed to achieve the same physiological effect as MA and does not have an appropriate 

specific colour test. Recent guidance published by UNODC has suggested the use of 

Zimmerman’s reagent that produced immediate colour change for 13 out of 16 cathinone 

compounds that were tested.134 However, an earlier study of 11 cathinones by Toole and 

colleagues showed that Marques reagent was able to identify methylenedioxy substituents 

while methcathinone-type compounds were better identified by Liebermann's reagent.135 

Another more extensive study by Philp et al.136 utilised a Cu(II)-neocuproine reagent to test 

for 120 substances including cathinones and other substances regularly used as cutting 

agents. While an extensive range of compounds was included in this study, the majority of 

compounds produced the same resultant colour including some commonly used cutting 

agents such as paracetamol.136 Furthermore, this test required heating samples at 80 ºC for 

10 mins, reducing its applicability in the field.  

One of the main issues highlighted in these studies is the precise characterisation of colour 

as it is subjective to the operator’s perception. In the case of NPS commonly cut with other 

chemicals, this issue is exacerbated as these could also react with the reagents producing a 

different overall colour for the combination of reactions by the drug mixture.129 The use of a 

digital camera or a smartphone followed by analysis using an image processing software such 

as Adobe Photoshop, an image processing toolbox in Matlab or applications such as 

ColorAssist is a common solution proposed in the literature for more accurate and reliable 

characterisation of colour.128, 137-141 Another solution was the use of a UV-Vis spectrometer 

to record the absorbance spectra for the coloured products during the detection of 

amphetamines.136, 142  

In spite of the above advances in objective quantification of colour, the inherent issue of the 

lack of specificity of the colour tests still remains. In a recent street control incident run by 

the police in North-East Italy, approximately 3 kg of white powder and blue heart-shaped 

tablets were identified as ATS by both Marques and Mandelin reagents.143 However, upon 

confirmatory analysis by GC-MS, it was determined that they contained anabolic steroids 
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with no amphetamine-type substances present.143 As the mechanisms of many colour tests 

are not fully understood, their applicability to the ever-increasing number of new compounds 

needs to be tested for every individual drug. This is an enormous and cumbersome task which 

increases exponentially when drug mixtures are taken into account.  

In addition, the colour tests not only analyse extremely potent substances but also contain 

hazardous chemicals which pose safety risks for those conducting these tests in the field. 

While some of these safety concerns are mitigated with the use of commercially available 

drug testing kits, the lack of knowledge/training and adequate quality assurance can have 

potentially disastrous consequences.132, 144, 145 For some reagents such as Scott’s reagent, the 

sensitivity of the test is dependent on ambient temperature, making them unsuitable in 

hotter climates.146 In addition, the long-term stability and storage of these kits also need to 

be considered as most reagents mentioned above need fresh preparation and refrigeration 

before analysis.146  

1.5.1.2 Immunoassays 

While colour spot tests are the first screening test for seized powder samples, immunoassays 

are the primary on-site screening methods used for biological specimens.127, 147 

Immunoassays (IAs) are widely employed in clinical and toxicological screening as they are 

quick, cheap and relatively accurate in ruling out negative samples.148 IAs rely on the bonding 

of antigens (molecules of interest) and specially patterned antibodies. Numerous commercial 

IA kits exist that allow for the detection of a single class of drugs or a panel of drug classes 

that can be either predetermined or a customised set.149-153 However, one of the recurring 

issues with IAs is the cross-reactivity observed between structurally similar compounds. 

Because AM and MA are very simple molecules, developing very specific antibodies for these 

molecules is difficult. In addition, other structurally similar compounds such as ephedrine – 

one of its precursors as well as 3,3-methylenedioxymethamphetamine – an illicit street 

stimulant, show some cross-reactivities across commercial immunoassay kits.  

Dasgupta et al. and Hsu et al. demonstrated this by evaluating the efficacy of amphetamine 

IA kits. Both EMIT® d.a.u and EMIT® II monoclonal AM/MA assay gave positive results for 18 

samples, which were determined to contain no AM or MA by further GC-MS analysis in the 

Dasgupta study.151 In addition, the authors found that the GC-MS analysis of samples showed 

the presence of ephedrine, pseudoephedrine, phentermine and phenylpropanolamine 
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highlighting their cross-reactivity for these compounds.151 Hsu and colleagues expanded such 

analysis to include 8 IA kits. The authors indicated that the cross-reactivities across these four 

compounds are lower when their concentrations are higher, Synchron CX® and TDx®-Amp 

kits which are specifically designed for AM/MA showed ≧50% cross-reactivity to MDMA and 

MDA, and EMIT-Amp showed higher cross-reactivity to MDA but was not effective in the 

detection of MDMA at lower than 500 ng/mL concentration.152    

The compounds mentioned in the above studies, MDMA and MDA, have been on the drug 

market for a long time, therefore it is possible to predict and evaluate the ability of 

commercial immunoassays for their detection. However, novel stimulants have a diverse 

range of structures making it challenging to not only create new specific immunoassays but 

also to predict the suitability of current kits for their detection.154 To this effect, a study by 

Petrie and colleagues evaluated the suitability of three commercial amphetamine screening 

kits for the detection of 42 amphetamine-type substances which included numerous NPS 

drug classes.155 The authors focused on the amine functionality of these kits by including NPS 

classes such as 2,5-dimethoxyphenethylamines (2C), piperazines, 𝛽-keto amphetamines, 2,5-

dimethoxyamphetamines and 4-substituted amphetamines to show that only 14 out of 42 

compounds showed cross-reactivity for all three kits.  Another extensive study by Regester 

et al. evaluated the performance of five commercial IA screening kits for the detection of 92 

designer drugs of classes including 2,5-dimethoxyamphetamines, 2C series, tryptamines, 𝛼-

pyrrolidinopropiophenones, 𝛽-keto amphetamines, piperazines, substituted amphetamines 

and phencyclidine analogues.148 Of the 94 compounds included in this study, 80 of them 

tested positive on at least one of the kits, while none of the NPS tested in this study showed 

positive results for all the kits.148 While this study was extensive in its list of included 

compounds, the Petrie et al. study provided valuable 2D and 3D structural similarity data 

used to predict the cross-reactivities of 261 additional compounds.155 Of these 261 

compounds which included amphetamine-like substances as well as metabolites, only 4 were 

predicted to cross-react with all three immunoassay kits included in this study. Interestingly, 

mephedrone, a very popular illicit drug on the current drug market, showed no cross-

reactivity to any of the kits in the Petrie et al. study and only reacted to one of the 

amphetamine screening kits in the Regester et al. study. Furthermore, neither study 

considered the effects of adulterants, cutting agents and other diluents commonly found 

with designer drugs. Therefore, while immunoassays have certain advantages, they can not 

be relied upon for the detection of all amphetamine-type compounds found worldwide.  
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Instead of relying on the immunoassay results alone, Tupper et al. employed the use of 

Fourier transform infrared (FTIR) spectroscopy to investigate the adulteration of fentanyl in 

Canada. In light of the massive opioid crisis in North America, this combined approach was 

applied as a means of harm reduction whereby samples of illicit substances are checked and 

individualised feedback is provided to the users.156 During this six-month pilot study, the 

authors found that 907 of 1714 tested samples were expected to be “heroin” by the clients 

while only 160 samples actually contained any diacetylmorphine or 6-

monoacetylmorphine.156 Interestingly, 822 of the supposed “heroin” samples tested positive 

for the fentanyl immunoassay kit, and the FTIR results did not show the presence of 

diacetylmorphine or 6-monoacetylmorphine. Furthermore, FTIR results were able to identify 

adulterants such as caffeine, mannitol, xylitol or sorbitol which were not detected by the 

fentanyl immunoassays.156 The authors also reported that of the 256 samples that were sold 

as amphetamines or methamphetamine, 15 samples tested positive for fentanyl. Other 

unexpected compounds found instead of the drug compounds included pumice stone, 

feldspar dust, plaster, oxazepam (a benzodiazepine sedative), and N-ethylbyphedrone (a 

synthetic cathinone).156 At the end of the study, the authors concluded that the combined 

use of immunoassay and FTIR spectroscopy was reported to be valuable by the clients and 

showed much greater utilisation at the clinic. Though only powder samples were tested in 

this study and more expensive laboratory-based confirmatory techniques were not available 

due to resource constraints, this study illustrated the efficacy of FTIR spectroscopy as a 

cheap, reliable, portable and non-destructive screening technique in a point-of-care setting.   

1.5.2 Techniques Coupled to Mass Spectrometry  

Hyphenated separation methods such as gas chromatography-mass spectrometry (GC-MS) 

and liquid chromatography-(tandem) mass spectrometry (LC-MS/MS) are the gold standard 

for final confirmatory drug testing in forensic and clinical toxicology.125-127 The analytes firstly 

are separated chromatographically based on their retention times following which the 

compounds are identified based on their characteristic fragmentation patterns. In forensic 

drug analyses of powders and biofluids, these techniques can be used to screen for unknown 

compounds in an untargeted manner or they can be used in a targeted approach to identify 

commonly encountered drugs of abuse with high sensitivity.105, 157-170 For many years, GC-MS 

has been the standard for drug screening and it still remains one of the most commonly used 

methods for screening urine samples.105 However, some highly polar, non-volatile and 

thermally unstable substances are better suited to be analysed by LC-MS/MS methods. 
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Therefore, the screening strategies for drug analyses consist of a combination of these two 

techniques. For biofluid analysis, sample preparation steps such as dilution, extraction using 

solid-phase or liquid-liquid extraction (SPE and LLE) methods, derivatisation (in the case of 

GC-MS) and reconstitution into an appropriate solvent are of paramount importance for the 

recovery of analytes and increasing the sensitivity of the method.171-173 The subsequent MS 

data analysis is carried out by trained experts for compound identification either by using 

molecular formula-based on multiple reaction monitoring (MRM) transitions and their ratios 

and/or by matching the product ion spectra with reference spectra from an information-rich 

library. However, spectra matching using reference libraries remains the preferred method 

for unambiguous identification and is in association with the recent guidelines published by 

the EU.172, 174   

Alsenedi and Morrison carried out long-term stability studies in urine samples and 

demonstrated the use of GC-MS combined with the SPE method for the detection of 29  

stimulants including MA, AM and synthetic cathinones.160 A similar study by Mercieca and 

colleagues demonstrated the use of GC-MS for the detection of 25 stimulants in blood and 

urine.159 With the full-scan mode acquisition, and a total analysis time of ~22 mins, Mercieca 

et al. demonstrated a relatively high-throughput method for the separation and 

identification of compounds as well as its application to real-case samples to detect 

stimulants in whole blood. Furthermore, the use of DLLME in comparison to SPE was found 

to be more environmentally friendly and cost-effective due to the use of low volumes of 

solvents. However, both studies focused on a single class of drugs which limits their 

application to broad-spectrum screening of unknown samples in the era of poly-drug use.  

Odoardi and colleagues expanded the application of the DLLME extraction procedure 

combined with ultra high-performance LC-MS/MS to identify 70 NPS from several classes in 

whole blood with sample preparation times of 15 mins, analytical run times of ~14 mins and 

detection limits within 0.2 - 2 ng/mL ranges with acceptable recoveries and negligible 

matrix.170 Mollerup et al. proposed a combined targeted and untargeted screening approach 

using high-resolution MS instrumentation to authentic driving-under-the-influence-of-drugs 

(DUID) whole blood samples with simple acetonitrile-based protein precipitation as a sample 

preparation step.167 Both these studies incorporated necessary aspects of drug detection 

such as the inclusion of metabolites and low detection limits, their approaches were complex 
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requiring expert analysis and interpretation making their application outwith a fully equipped 

laboratory with expensive instrumentation and trained personnel difficult. 

The ambient ionisation techniques such as DESI (desorption electrospray ionisation) and 

DART (direct analysis in real-time) combined with miniature MS instruments allow the 

analysis of samples with minimal sample preparation, no chromatographic separation and 

often total analysis times of under 1 min in non-laboratory settings e.g. police stations, 

doctors’ surgeries and prisons.175-179 McCullough and colleagues demonstrated portable MS 

for the analysis of solid samples from 50 UK drug seizures, 49 of which were correctly 

identified using the NIST MS database.175 Similarly, Gomez-Rios et al. and Schepens et al. 

illustrated the applicability of ambient ionisation combined with portable MS to the analysis 

of drugs of abuse in liquid matrices such as orange juice, lemon tea and oral fluid.176, 179 

Damon and colleagues expanded this further to include more complex biofluids such as 

whole blood, serum and urine for the analysis of drugs of abuse by using specially prepared 

hydrophobic paper with handheld MS instrumentation.180 While all these studies were able 

to reach accepted limits of detection, and perform quick analysis with minimal sample 

preparation, numerous problems were identified that included missed identification due to 

an incomplete reference library for the McCullough et al. study,175 an increase in noise levels 

and a lack of specificity due to the use of a single quadrupole in the Gomez-Rios et al.176 and 

Schepens et al.179 studies as well as the extensive time required for preparation of paper 

substrates along with the dependence of detection limits on the drug-protein binding 

capacities in the Damon et al.180 study. Furthermore, the elimination of chromatography 

shifts the separation burden onto the MS which could be problematic for structurally similar 

drug compounds.181, 182 Therefore, it is prudent to note that while ambient ionisation MS 

methods have a bright future in drug screening in the field by decentralising drug analysis, 

currently they can only be classed as “category B” methods according to SWGDRUG 

guidelines.175  

Though the traditional GC-MS and LC-MS/MS methods are highly sensitive and specific, they 

require extensive sample pre-treatment, availability of reference standards, expensive 

instrumentation, constant maintenance and expert operators for analysis and interpretation 

limiting their use in the field. Though the propensity of complex biofluids to matrix effects 

can be reduced with specific sample pretreatment procedures and matrix-matched method 

validation, this is a time-consuming process that could fail to catch new compounds and 
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might exceed the lifespan of some NPS.37, 172, 183 Consequently, when NPSs are encountered 

in routine testing, they may be lost in the extraction process or go unnoticed during 

instrumental analysis due to a lack of information surrounding the NPS structure, knowledge 

of their metabolites and time required to produce reference standards for the parent drug 

and the metabolites. While some of these issues such as the removal of chromatography are 

solved by ambient ionisation portable MS instrumentation, those methods come with their 

own set of problems highlighted previously. All MS methods rely on extensive reference 

libraries which are necessary for untargeted drug screenings, the major drawback of 

transferability of MS libraries across instruments and laboratories still remains to be 

resolved.172 Therefore, the search for direct, rapid, cost-effective, and portable drug 

detection methods remains ongoing for the analysis of traditional drugs and NPSs in 

biological fluids both in the field as well as in a forensic laboratory setting.  

1.5.3 Alternative Detection Methods 

1.5.3.1 Electrochemical Methods 

Other than the primary methods of detection reviewed in the previous sections, 

electrochemical sensors are a promising tool employed for the detection of illicit substances 

in the field of drug analysis and forensic toxicology. The electrochemical techniques are 

mainly divided into voltammetry where the desired potential is applied to measure the 

current output from the oxidation-reduction of an electroactive compound and 

potentiometry where a difference in voltage between the working electrode and reference 

electrode is measured. The main advantages of these techniques include their simplicity in 

setup and sample preparation, short analysis times, good performance in a variety of 

matrices and very good analytical capabilities in terms of LODs and concentration ranges.90, 

184 With the advent of screen-printed electrodes, these sensors have not only dramatically 

reduced in cost, but are also readily customised with the inclusion of nanoparticles, 

antibodies and receptors allowing them to increase selectivity toward target analytes.  

Balbino et al.185 and Frietas et al.186 reported the use of modified platinum screen-printed 

electrodes and unmodified boron-doped diamond electrodes for the analysis of drugs and 

any adulterants present with detection limits of 0.028 µM and 0.89 µM respectively. While 

the detection limits of 0.028 µM were lower than conventional systems, Frietas et al.186 were 

able to detect a range of adulterants and provide results comparable with GC with a flame 

ionisation detector (FID). Unlike these studies that are analyte-specific, Van Echelpoel and 
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colleagues developed an electrochemical sensor for MDMA in seized tablets and evaluated 

its selectivity against 72 compounds including common drugs of abuse, licit pharmaceuticals, 

NPS and adulterants.187 Unlike the colour tests and spectroscopic techniques such as near-

infrared and Raman that are affected by the colour of tablets and the presence of other 

substances, the electrochemical sensor was able to identify all 39 MDMA tablets correctly.187 

While all of these studies showed excellent selectivity to the target analytes, portability and 

a means of rapid and reliable analysis, none of the studies are suitable for general drug 

screening and did not evaluate the efficacy of this method in the analysis of biological fluids. 

More recently, these methods were expanded to allow for the detection of drugs of abuse 

such as MA188 and MDMA189, 190 as well as NPS191 such as synthetic cathinones in biological 

fluids such as human urine and serum. Garrido et al. used glassy carbon electrodes for the 

detection of MDMA and achieved detection limits of 2.4 µM in human serum.190 Švorc and 

colleagues conducted voltammetric measurements with boron-doped diamond electrodes 

to detect MA in human urine with a detection limit of 0.05 µM.188 Another study by 

Razavipanah et al.191 reported a spiked study for the detection of mephedrone in plasma and 

urine samples with detection limits of 3 nM and no interferences from the complex biological 

matrices highlighting the ability of this sensor in future forensic applications.191 While all 

these studies showed excellent promise in targeted analyses, the authors did not evaluate 

their performance for other similar compounds, illicit drugs or adulterants. As street drugs 

frequently tend to be mixed with other compounds, the application of these methods to 

samples of unknown composition is limited. Furthermore, voltammetric analysis of biological 

matrices is rife with biofouling processes whereby components in biofluids such as proteins 

adhere to the sensors eventually leading to foreign responses.90  

1.5.3.2 Spectroscopic Techniques 

Spectroscopic techniques mainly FTIR and Raman are other types of detection methods 

employed in the forensic analysis of drugs. Raman spectroscopy is based on the inelastic 

(Raman) scattering of photons which results in the photons having lower (Stokes) or higher 

(anti-Stokes) energies than the excitation source. This difference in energy between the 

excitation source and the scattered photons provides the vibrational fingerprint for the 

sample. IR spectroscopy on the other hand is based on the measurement of the amount of 

IR radiation absorbed or emitted by a sample as a function of wavelength (for a detailed 
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explanation see Chapter 2). Both methods, therefore, are highly structurally selective and 

are included in category A of the SWGDRUG scheme (Figure 1-3).  

Both techniques are non-destructive, fast and allow for analysis of most sample types.3, 192, 

193 One distinct advantage of spectroscopic techniques over the chromatographic techniques 

described earlier is that analysis can be done directly, without the need for any sample 

pretreatment or extraction. Notwithstanding initial purchase costs, this allows for minimising 

costs and reagent used per sample for a high throughput analysis and makes these 

techniques green and sustainable in the long term. Furthermore, the miniaturisation of the 

spectrometers in the form of handheld devices has increased their portability allowing for 

on-site analysis in the field. This, paired with chemometrics and a searchable library of 

reference spectra, these instruments provide a powerful analytical methodology.  

In 2016, Moreira et al.194 demonstrated the use of Raman spectroscopy combined with 

chemometrics in the direct analysis of ecstasy tablets seized by the police in Brazil. Each 

tablet was scanned as is to identify the presence of caffeine, clobezorex, dextromethorphan 

and 𝛽-keto MDMA analogue along with some excipients such as titanium dioxide and starch 

and the absence of MDMA using FT-Raman spectral band assignments.194 Calvo-Calvo-Castro 

et al.195 demonstrated that a combination of Raman spectroscopy with chemometric models 

has the potential to be applied to ‘unknown’ NPS that continue to pop up on the drug 

markets and are likely to be absent from spectral libraries. The authors used hierarchical 

clustering to categorise 478 NPS compounds into 21 categories based on their common 

structural core, which were then further divided into 79 subcategories. The PCA model was 

able to classify MA from the test set with N-ethylamphetamine due to their structural 

similarities reflected in their similar Raman profiles and also align 𝛽k-2C-B with category 2 

representing the phenethylamine backbone and more specifically with 4-MeO-𝛼-PVP within 

category 2 as they both contain carbonyl functionality characteristic of the cathinone drug 

class.195 While the authors presented excellent results from the classification analysis of 

these pure compounds, the effects of adulterants, precursors and cutting agents commonly 

present in NPS samples were not investigated. Furthermore, the study was conducted in 

solid/powder form which meant that the predictive capabilities of this model on other 

sample types such as tablets with heterogeneous compositions and drugs in biofluids were 

not evaluated. On the whole, however, this study showed tremendous promise in addressing 
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the large structural diversity in NPS that commonly plagues most analytical techniques but it 

also presented a valuable approach for future  

The use of surface-enhanced Raman spectroscopy (SERS) has greatly enhanced the sensitivity 

of Raman spectroscopy.196-198 Nuntawong et al.197 demonstrated that specially prepared SERS 

chips with self-assembled, vertically aligned silver nanorods can be employed for the 

detection of a series of mixtures of MA and its primary metabolite AM in urine samples with 

a detection limit of 50 µg/mL which was then lowered to 5 pg/mL by pre-treating the urine 

samples with nitric acid.197 A similar study by Yang et al.198 used gold nanoparticles dotted 

magnetic nanocomposite modified with inositol hexakisphosphate as SERS substrate for the 

detection of benzoylecgonine (a metabolite of cocaine) and cotinine (a metabolite of 

nicotine) in saliva with LODs of 29 ppb and 8.8 ppb respectively, as well as nicotine (plus its 

metabolites) in eccrine sweat in latent fingerprints with LODs of 17.6 ng/mL.198 Muhamodali 

et al.199 expanded the application of the SERS protocol combined with chemometrics for the 

discrimination of four classes of NPS including methcathinones, aminoindanes, diphenidines 

and synthetic cannabinoids. Although the PCA model created for solid and aqueous samples 

showed good discrimination between the four classes, some overlap was seen across 

methcathinone and aminoindane classes due to their structural similarities.199 The LODs 

reported here (between 2 mM and 51 mM) were much higher than those achieved in the 

previously mentioned Nuntawong et al.197 study and those achieved using mass 

spectrometric methods, Muhamadali et al.199 were able to obtain them without any sample 

pretreatment demonstrating its potential applicability as a portable on-site method. 

However, all these studies required tedious preparation processes for the modification of 

SERS substrates,  required expert interpretation for manual identifications, only focused on 

a single drug compound at a time and did not investigate the presence of interfering 

compounds as is common in polydrug use. The higher detection limits meant that the 

application of this method for the detection of more potent compounds such as fentanyls 

might be limited until further sensitivity improvements can be made. The application of these 

protocols to NPS or as yet unknown compounds remains problematic because the 

pharmacokinetic data required in interpreting urinary and oral fluid concentrations based on 

the dosage is still lacking or anecdotal at best. 
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FTIR spectroscopy has been applied to direct analysis of counterfeit medicines, drugs of 

abuse and NPSs in powder form as well as in the analysis of biofluids for disease diagnosis 

and drug detection making it a powerful analytical tool when combined with chemometrics.3, 

200-202 Custers and colleagues reported an application of attenuated total reflection (ATR)-

FTIR spectroscopy combined with chemometrics for the analysis of 209 samples that included 

genuine Viagra® and Cialis®, generic products of Viagra® and counterfeit samples containing 

sildenafil, tadalafil or both or placebo samples.3 Similarly the studies conducted within the 

same research group by Pereira et al.203, 204 demonstrated that the combination of ATR-FTIR 

spectroscopy with PLS-DA can be used to analyse illicit MDMA tablets as well as a complex 

matrix represented here by the blotter paper samples containing NPS from the NBOMe 

series. These models were able to correctly classify all but one MDMA sample as well 

discriminate between the various hallucinogens categorised as the NBOMe series, 2C-H 

series and methallylescaline (MAL) and blank paper with the exception of those samples 

containing lysergic acid (LSD) which were misclassified as blank paper. Though these studies 

reported promising results, samples containing more than one illicit drug were not included 

in the analysis. Low sensitivity common to IR instruments was evident in these studies and 

spectral identification was performed by library matching limiting its use to unknown 

samples where an extensive dataset is not available. However, an approach previously 

described by Calvo-Castro et al.195 applied here with FTIR spectral data might provide a way 

to overcome this problem.   

All major biomolecular groups such as carbohydrates, lipids, nucleic acids and proteins, 

display fundamental vibrational absorptions in the mid-IR region. Upon detection, the 

differences in their concentrations observed in the IR spectrum can provide valuable 

information for disease diagnosis and clinical analysis. The deficiency of phospholipids has 

been used as a depression marker,205, 206 changes in specific proteins like immunoglobulin G 

and human serum albumin can indicate inflammation and infection,207 and variations in the 

nucleic acids have recently been linked to the early detection of cancer.85, 208 In addition, 

biofluids such as blood, urine, saliva and sweat are also analysed to detect foreign substances 

including drugs and their metabolites.169, 209-212 In cases of chronic and long-term drug use, it 

is also likely that drugs accumulate in the tissue and can potentially be observed in IR spectra.  

ATR-FTIR spectroscopic studies for the analysis of drugs have mainly focused on oral fluid as 

the biological matrix of choice for the direct detection of cocaine and MDMA.213-217 Mostly 
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carried out within the same research group, the first study by Hans et al.213 explored the IR 

spectra of cocaine in water and oral fluid as well as common interferents such as diluents, 

masking agents, common medications and soft drinks with an aim of building an easy-to-use 

test device (Figure 1-4). Using the spectral region of 1800-1710 cm-1, real saliva samples 

spiked with cocaine were analysed to achieve a LOD of 0.02 mg/mL which remained 

unaffected in the presence of interferents such as mouthwash, alcohol and caffeine/energy 

drinks.213 Although the authors acknowledged the issues arising from inconsistent drying of 

saliva samples on the ATR crystal and insufficient sensitivity in their methodology, this study 

presented a promising first step towards drug detection in biofluids using ATR-FTIR 

spectroscopy.  

Subsequent works from this research group have focused on improving the sensitivity of the 

method, firstly by developing a simple-one-step extraction protocol for isolating cocaine 

from the oral fluid into an IR-transparent solvent, tetrachloroethylene (TCE)214 and secondly 

by using quantum cascade lasers at ~1750 cm-1 (where least absorption interference was 

Figure 1-4: Uncorrected transmission spectra of pure dried saliva from a fasting person and 
saliva spiked with cocaine. The graphs show the transmission spectrum of dried saliva (grey), 
of dried saliva with cocaine (0.02 mg/mL; black dotted) and of dried saliva spiked with 
cocaine (0.4 mg/ml; black solid). The characteristic change in transmission of the cocaine is 
now clearly visible (indicated by the arrows). The resolution of the FTIR spectrometer was 
1 cm−1. Reproduced from ref. 217 with permission from Hans, Müller and Sigrist, © 2012 John 
Wiley & Sons, Inc. 
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observed for cocaine) following the extraction process.216 This process consisted of mixing 

TCE solvent with the saliva sample without the need for bulky or expensive instrumentation. 

The use of a QCL unit combined with either ATR crystal or transmission cell was employed to 

analyse these TCE-extracted, cocaine-spiked saliva samples which achieved detection limits 

of 3 µg/mL and ~10 µg/mL respectively.215 Acknowledging the semi-quantitative nature of 

ATR crystal use due to variable sample drying, the later study by Hans et al.216 applied this 

protocol to saliva samples spiked with street cocaine to achieve detection limits of ~1 µg/mL 

(Figure 1-5). Further reduction in detection limit to ~100 ng/mL was achieved by 

preconcentrating cocaine during the extraction process. However, the adulterants in street 

cocaine visible in TCE-dissolved samples were not visible in the spiked saliva samples that 

were analysed using the same process.216  

Figure 1-5: Preparation and extraction of a saliva sample: after the acquisition the saliva is 
filtered. One part of the saliva is kept for the first comparison measurements. The other part 
is mixed with cocaine dried beforehand in a test tube. This sample is again split into the 
second comparison specimen and the sample that will be extracted. The mixing of the solvent 
and saliva is done manually after the stabilization of the pH. The separation of the two liquids 
is a self-organised process. Reproduced from ref. 220 with permission from Hans, Müller, 
Petrosyan and Sigrist, © 2014 John Wiley & Sons, Inc. 
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Hans et al. emphasised that the best results were achieved when saliva samples were 

extracted immediately after collection and preparation as their previous studies noted 

spectral changes in the saliva samples from varying storage conditions.213, 214 While these 

successive studies demonstrated the power of ATR-FTIR spectroscopy for drug detection in 

biofluids, its application to other drugs remains to be evaluated. While some spectral 

processing was performed, none of the studies employed chemometrics when its usefulness 

in spectroscopic studies is well-known. Moreover, the suitability of the extraction solvent, 

TCE, needs to be investigated for a range of compounds and in a variety of biofluids. TCE is 

environmentally dangerous and is classed as a carcinogen and a CNS depressant that enters 

the body through respiratory and dermal exposure, therefore the risk associated with the 

widespread application of the proposed methodology in the field with unprotected 

personnel has to be carefully considered. Furthermore, in the case of NPS, pharmacokinetics 

and toxicology data are not available for interpretation of initial doses based on oral fluid 

concentrations which limits the application of this method. In spite of these limitations, this 

protocol shows promise in developing a rapid field testing device based on ATR-FTIR 

spectroscopy.  

 

More recently in 2020, Guleken et al.218 employed ATR-FTIR spectroscopy combined with 

chemometrics to investigate biochemical changes in the IR spectra of serum of patients with 

opioid addiction on an average daily dose of 2.95 g of opioids for 7.31 years prior to inclusion 

Figure 1-6: PCA results of the second derivation of ATR-IR spectra of 
OUD and HC serum discriminated by PCA in the region 1800 cm−1 to 
900 cm−1. Reproduced from ref. 222 with permission from Guleken, 
Ünübol, Bilici, Saribal, Toraman, Gündüz and Kuruca © 2020 Elsevier.  
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in the study. With the use of PCA and LDA, this study was able to distinguish healthy serum 

samples from those of the opioid users with 92.85% sensitivity and 100% specificity, because 

chronic long-term use of opioids alters the amounts and ratios of plasma proteins thus 

altering their serum profiles (Figure 1-6).218  While this study did not look at the detection of 

drugs in serum and only evaluated changes in relation to opioids, it was valuable in that long-

term changes in chronic users have the potential to be presented in serum spectra in 

combination with the drug spectral signatures such as those presented in the spiked studies 

by Hans and colleagues.213, 216 

Table 1-1 provides a summary of important characteristics necessary for the techniques 

covered in this chapter. On the whole, hyphenated chromatographic techniques remain the 

gold standard in terms of extremely low detection limits, these are also dependent on the 

availability of expert analysts, reference standards and extensive libraries for their 

implementation. Spectroscopic techniques offer many advantages for their application in 

routine drug detection. While Raman spectroscopy, mainly SERS, has demonstrated much 

greater sensitivity, it usually suffers from fluorescence interferences which can mask 

identifying spectral signatures.196 As shown by the SWGDRUG guidelines, FTIR spectroscopy 

is highly structurally selective in that it allows for the characterisation of compounds without 

such interferences. This is of great importance, especially when identifying closely related 

compounds such as NPS within the same class. Minimal to no sample preparation required 

in their operation means that no parts of the sample are lost during the extensive extractions 

necessary for mass spectrometric methods, making them suitable for in-field analysis. 

Numerous commercially available spectroscopic handheld instruments operate similarly to 

benchtop instruments, allowing for convenient translation of developed methodologies from 

the lab into the field. While the application of IR spectroscopy to biofluids is problematic due 

to interferences from water initially and then from the overwhelming spectral signatures 

from biomolecules, some solutions have been presented in the literature. The drying of liquid 

biological samples is able to minimise water contributions, and the development of one-step 

extraction procedures has the potential to increase the sensitivity of ATR-FTIR 

spectroscopy.214, 216 Furthermore, the use of chemometrics such as for classification purposes 

or more extensively such as that presented by Calvo-Castro et al. with the aim of including 

unknown substances reveals the real power of FTIR spectroscopy.195  
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Table 1-1: Summary of techniques and characteristics required in a drug detection method. 
(‘X’ = No, ‘ü’ = Yes, ‘«’ to ‘«««««’ indicates a relative scale from low/minimal to 
high/extensive respectively.)  

  

Technique 
Minimal 
Sample 

preparation 

Non-
destructive 

Ease of 
operation/ 

Analysis 

High Structural 
Discrimination 

Cost Portability 
Point 

of 
Care 

Colour  
Tests 

««««« ««««« ««««« « «« ««««« X 

Immuno-
assays ««« ««««« ««« «««« ««« ««« ü 

Electro-
chemical 
Methods 

« ««««« ««« ««« ««« ««« X 

MS-based 
Methods « ««««« « ««««« ««««« « X 

FTIR 
Spectroscopy ««««« « ««««« ««««« « ««««« ü 
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1.6 Aims and Objectives  

Drug detection methods remain one of the primary means of getting evidence-based 

information on the discovery of new drug compounds, drug manufacturing, consumption 

and trafficking in the licit and illicit drug markets. With over 275 million drug users and 1150 

new substances reported in 2022, a direct, rapid and inexpensive drug detection method can 

represent a solution to overburdened laboratories and provide timely intelligence in clinical 

situations and forensic investigations.1, 27  

The PhD research outlined in this thesis aims to test the hypothesis that it is possible to 

distinguish adulterated/counterfeit drugs from their pure or legitimate forms in biological 

samples. To achieve this goal, this study aims to explore the application of ATR-FTIR 

spectroscopy for direct detection, identification and quantification of drug compounds in 

biological fluids, namely urine and human pooled serum as a novel, easy and inexpensive 

alternative to the current methods of drug detection. To achieve this, this thesis will:  

• Conduct a proof-of-concept study to detect and quantify the concentration of 

methamphetamine, and its four metabolites, in urine and pooled serum without any 

sample pre-treatment (Chapter 3).  

• Investigate the ability of ATR-FTIR spectroscopy to discriminate between pure and 

illicitly adulterated methamphetamine in pooled serum and urine (Chapter 4). 

• Explore the application of ATR-FTIR spectroscopy as an alternative to immunoassays 

for the detection of methamphetamine (Chapter 5). 

• Investigate the ability of ATR-FTIR spectroscopy to discriminate between 

methamphetamine and synthetic cathinones as novel analogues of the traditional 

stimulant in pooled serum and urine (Chapter 6). 
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2.1 Vibrational Spectroscopy  

Spectroscopy is the study of the interaction of light with matter in the form of absorption, 

emission and scattering.1 Light, more appropriately labelled as electromagnetic radiation, 

consists of radio waves, microwaves, infrared, visible and ultra-violet radiation, X-rays, 

gamma rays and cosmic rays; each with increasing frequency. Electromagnetic radiation can 

be thought of as consisting of small packets of energy, or photons that behave both like 

particles and waves.2 Their wave-like behaviour shows two distinct in-phase components, 

the electric and magnetic fields, which oscillate perpendicular to each other and travel 

concurrently at the speed of light (Figure 2-1).3  

The wavelength is defined as the distance between two consecutive peaks or two 

consecutive troughs, while the frequency is the number of waves that travel past a given 

point in a unit of time.4 The frequency (𝜈) and wavelength (λ) of a wave are inversely 

proportional to each other and  can be used to calculate the energy (E) of the photon using 

an expansion of Planck’s Law as shown in the following equations:  

      𝜈 = !
"
     (2.1) 

Wavelength, 𝜆 

𝑥 

𝑦 

𝑧 

Direction of propagation → 

Figure 2-1: Perpendicular relationship between electric and magnetic fields of an 
electromagnetic wave, showing wavelength, 𝜆. 

Electric Field 

Magnetic Field 



 
 

45 

 

𝐸 = ℎ𝜈 = 	 #!
"

     (2.2) 

where c is the velocity of light and ℎ is Planck’s constant.  

From Equation (2.2), the energy of a wave is inversely proportional to the wavelength (1/ 𝜆) 

and this quantity is known as the wavenumber, �̅�. Wavenumbers can also be thought of as 

the number of cycles per unit distance and are measured in cm-1.5  

Vibrational spectroscopy is a term used to describe the optical techniques of infrared (IR) and 

Raman spectroscopy and relates to the absorption, emission or scattering of electromagnetic 

radiation.6 IR spectroscopy can be further divided into three types that include near-IR 

(12,500-4000 cm-1), mid-IR (4000-400 cm-1) and far-IR (400-30 cm-1) as defined by the 

ISO20473:2007 (E) standards.7  

The principles of IR spectroscopy rely on the characteristic behaviour of the bonds between 

atoms within molecules.5 Most compounds, including the drug and biological molecules of 

interest in this thesis, show strong absorption bands in the mid-IR region which are linked to 

the rotational and vibrational movements of atoms within those molecules.8, 9 The pattern of 

absorption created using mid-IR spectroscopy is characteristic of bonding arrangements of 

atoms known as functional groups and can be used to create a spectral fingerprint of the 

compounds in question.8 Therefore, mid-IR spectroscopy is useful in analytical investigations 

where the determination of chemical structures and identification of unknowns in a sample 

is required.8, 10 Other advantages of this method include its rapid, and non-destructive 

analysis as well as using only a small sample volume, which makes it a popular technique 

employed across a variety of fields.11-16 Each experimental chapter in this thesis utilises mid-

IR spectroscopy and therefore this chapter will focus on describing its theoretical basis, 

instrumentation and methods used for data analysis.  

2.1.1 Molecular Transitions  

The Born-Oppenheimer approximation is useful in understanding molecular transitions and 

the total energy of a molecule. It assumes that electronic and nuclear motion are separate 

and due to the large disparity in the mass of an electron in comparison with the size of the 

nucleus, nuclear motion is minimal relative to the electrons.1 Therefore, the total energy of 
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molecules can be described as the sum of its electronic (∆𝐸$), vibrational (𝐸%), rotational 

(𝐸&),, and translational (𝐸'),  energies with respect to electronic motion within the 

molecules (equation 2.3):17  

∆𝐸 = 	∆𝐸$ +	∆𝐸% +	∆𝐸& +	∆𝐸'   (2.3) 

At the molecular level, the quantised nature of electromagnetic radiation is more relevant. 

Photons of specific energy can be absorbed or emitted by a molecule which results in the 

transfer of energy. The electronic transitions occur when an electron is moved from its 

ground electronic state to its excited electronic state, while vibrational transitions occur 

between different vibrational levels of the same electronic state (Figure 2-2).17 For each 

electronic transition there are many vibrational energy levels and for each vibrational level, 

there exist many rotational levels for each molecule (Figure 2-2).17 Electronic transitions 

require higher energy radiation than vibrational transitions, which require higher energy 

incoming photons than that for rotational movements within a molecule.17  

Figure 2-2: Energy transitions with varying energy of the incident radiation (reproduced from 
Baker et al. 2016). 
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For an electronic transition, the higher energy of ultraviolet, visible or x-ray radiation is 

needed, while infrared radiation is able to excite vibrational transitions. In a molecule with 

stable bonds, there is a balance of attractive and repulsive forces between the positive 

nucleus and negative electrons allowing the molecule to settle at an equilibrium inter-nuclear 

distance and reach an energetic minimum (Figure 2-3).  

For a simple diatomic molecule, the motion of atoms along the bond length resembles the 

harmonic oscillator - the motion of two weights attached to either side of a spring and 

therefore can be modelled using Hooke’s Law (Equation 2.4):18  

𝐹 = 	−𝑘𝑥    (2.4) 

where F is the force, k is the force constant and x is the displacement from equilibrium. In 

molecular terms, the two masses are atoms, and the spring is the bond length between the 

atoms. Any displacement from the equilibrium of the molecule can be viewed as vibrations 

and the frequency with which they vibrate are vibrational modes for that molecule. The 

energy associated with these vibrations is quantised, taking only specific values illustrated by 

Figure 2-3: Morse potential energy diagram for harmonic (blue) and anharmonic 
(red) oscillation (adapted from Baker et al. 2016). 
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the discrete vibrational levels.2 For each vibrational mode, j, the energy of the molecule, 𝐸%(), 

is described by Equation 2.5:  

𝐸%() = ℎ𝜈* 3𝜐* +	
+
,
5    (2.5) 

where 𝜐*  is the quantum number for the jth mode, and the 𝜈*  is the fundamental frequency 

for that vibrational mode. However, this molecular description is oversimplified as bonds 

between atoms can be broken, which is not reflected in the harmonic potential model. 

Additionally, the anharmonicity of chemical bonds is better represented by the Morse 

potential rather than the simple harmonic description (Figure 2-3). The allowed potential 

energies of the anharmonic model are described by the Morse-type potential (Equation 2.6) 

𝐸%() = ℎ𝜈* 3𝜐* +
+
,
5 − 	ℎ𝜈*𝑥* 3𝑣* +

+
,
5
,

     (2.6) 

    

where 𝑥* 	is the anharmonicity constant.  

The vibrational frequency of these atoms depends on a variety of factors including the atomic 

mass, bond strength, bond length and the surrounding molecular environment, thus are 

characteristic of the molecule. The fundamental vibrational frequency of a diatomic molecule 

is given by following equation 2.7:2 

𝜈 = 3 +
,-
57.

/
     (2.7) 

where the quantity µ = 	 0!0"
(0!20")

 represents the reduced mass of two atoms in the diatomic 

molecule and m1 and m2 are the masses of atoms 1 and 2, respectively.2  

For anharmonic behaviour, the relationship between force and displacement is nonlinear 

leading to non-equidistant energy levels that are dependent on the amplitude of the 

displacement.2, 17 The energy levels get increasingly closer together as the vibrational 

quantum number, 𝜐, increases, forming a continuum of energy levels as shown by the red 

section of the graph in Figure 2-3. When the potential energy wavefunction reaches zero, 

known as the dissociation energy, Deq, the bond is broken, and the atoms are no longer bound 

(Figure 2-3).  
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Selection rules are used to govern the transitions from the ground state to the excited state. 

Initially, for infrared absorption to occur the vibrational excitation must induce a change in 

the transitional dipole moment, µ, these vibrations are known to be IR active.3 For vibrational 

transitions, the selection rules are stated in terms of the change in the vibrational quantum 

number, 𝜐, which must be an integer value. The fundamental transition is defined as the 

transition of the molecule from the ground vibrational state to the first excited vibrational 

state (𝜐4 → 𝜐+).17 For anharmonic vibrations, the Δυ = ±1 selection rule is no longer valid 

and 𝜐 can be any number. This gives rise to overtone and combination vibrational modes 

which result from the transition of the ground state to higher energy levels. Overtones occur 

when a vibrational mode is excited from 𝜐4 	→ 	 𝜐,, which is known as the first overtone, or 

𝜐4 	→ 	 𝜐5, the second overtone, etc. While the overtone bands tend to be multiples of 

fundamental frequencies in the harmonic oscillator, the anharmonic oscillator calculations 

indicate that overtones are usually less than the multiples of the fundamental frequency.3, 19 

As the energy levels are much closer together in the anharmonic model (red lines in Figure 

2-3), there is a higher chance of them being occupied. This is reflected in the form of weaker 

intensity bands in the IR spectra. While most overtone bands appear in the near-IR region, 

for some functional groups such as those involving aromatic rings, some appear in the mid-

IR region providing additional information about their molecular structure.20 When two 

fundamental bands appear at the same frequency, combination bands are often shown in 

the IR spectrum.  

2.1.2 Vibrational Modes  

The number of vibrational modes for a given molecule is dependent on its structure and the 

change in dipole moment due to the motion of atoms.19 For centrosymmetric molecules, 

there is no change in the transition dipole moment, and hence they are IR inactive. In 

heteronuclear molecules such as HCl and CO, the dipoles are permanent making them IR 

active with strong absorption bands, while the diatomic homonuclear molecules such as N2 

and O2 have no dipole moments and are thus IR inactive.21 The position of each atom in a 

molecule can be expressed across three axes, x, y, and z, which allows for three degrees of 

freedom for molecular motion. For a non-linear molecule with N atoms, there are 3N – 6 

vibrational modes, while there are 3N – 5 modes of vibrations in a linear molecule due to the 

loss of one of the rotational degrees of freedom.3  
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In the mid-IR region, there are usually two types of vibrations observed, vibrations along the 

bond length, also known as the stretching vibrations (ν) and vibrations involving changes in 

bond angles also known as bending vibrations (δ – in-plane; π – out of plane).22 A summary 

of these vibrations is shown in Figure 2-4. The stretching vibrations can be symmetric or 

asymmetric and alter the bond length, while the bending vibrations due to changing bond 

angles can be described as twisting, rocking, scissoring, and wagging.  

During these light-induced bond vibrations, the incident light shone upon a sample can be 

transmitted, reflected, absorbed, or scattered when it encounters the sample. The 

fundamental principle of IR spectroscopy is governed by Beer-Lambert’s Law, which relates 

the absorbance of the intensity of the incident radiation before, I0 and after, I, is passed 

through the sample.2 The absorbance of IR light, A, is directly proportional to the 

Figure 2-4: Molecular vibrations observed for non-linear molecules in mid-IR spectroscopy. 
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concentration of a given sample, c, the molar absorptivity, 𝜀, in L mol-1 cm-1 and the 

pathlength, l, in cm. 

𝐴 = 	𝜀𝑐𝑙	 = 	 𝑙𝑜𝑔+4(
6#
6
)	     (2.8) 

Therefore, IR spectroscopy can be used to quantify the concentrations of substances present 

in the sample. Various functional groups show characteristic vibrational bands across the 

mid-IR range of 4000 – 400 cm-1 and are thus used to identify compounds. This makes IR 

spectroscopy a valuable technique for the identification of a variety of molecules including 

chemicals and biomolecules such as lipids, proteins, and carbohydrates in biofluids.  

2.2 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared (FTIR) spectrometers were developed to achieve faster spectral 

collection and better spectral sensitivities in comparison to their older counterparts.23 Faster 

acquisition times achieved through the use of an interferometer in an FTIR spectrometer 

allows for multiple scans to be collected and co-added which leads to improved spectral 

quality. Furthermore, with the use of sensitive detectors, a higher signal-to-noise ratio is 

achieved using FTIR instrumentation. In this thesis, an FTIR spectrometer with an ATR 

sampling accessory was used for all analyses. The principles of these are described in more 

detail in this section.  

2.2.1 Instrumentation  

Fourier transform infrared spectrometers consist of a light source, an interferometer and a 

detector that is used to collect the spectrum. The light source generates IR radiation, which 

interacts with the sample after collimation via an interferometer and is later collected at the 

detector. This signal is amplified and converted into a digital signal which is then transferred 

to a computer. A Fourier transform is applied to the signal which converts a time-dependent 

interferogram into a frequency spectrum. Typically, it is presented as wavenumbers plotted 

against the transmission (%T) or absorbance (-log10 of the transmittance spectrum).  

2.2.1.1 Light Sources 

The most common light source used in a traditional benchtop FTIR instrument in the mid-IR 

region is a silicon carbide rod, also known as Globar, and is resistively heated by passing an 

electric current through it to produce IR radiation.19 This behaves as a blackbody source 
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where the radiance is dependent on its heating, creating IR radiation in the wavenumber 

range of 7000 – 600 cm-1.24 

2.2.1.2 Michelson Interferometer 

A Michelson interferometer is an integral part of all FTIR instruments available today. It 

consists of a beam splitter and two mirrors (one stationary and one moving) at a 

perpendicular angle to each other (Figure 2-5). The IR light is split into two paths by the beam-

splitter, one is transmitted to the moving mirror while the other is transmitted to the fixed 

mirror before being recombined at the same beam-splitter and then sent to the detector.23 

The moving mirror oscillates at a precise velocity,  and so the distance travelled by this beam 

is different to that of the stationary beam, creating a path difference between the two 

beams. Therefore, when they are recombined, the frequencies will interact either 

constructively or destructively creating an interference pattern, also known as an 

interferogram, which is the measurement of IR light intensity as a function of time. To 

correctly calculate the exact difference between the path lengths, a He:Ne laser experiencing 

the same optical path difference is used as a reference.23  

Figure 2-5: Schematic of a Michelson interferometer used to measure an FTIR 
interferogram. Figure adapted from Baker et al. 2016. 
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2.2.1.3 Detectors 

There are commonly two types of FTIR detectors, thermal and quantum. Pyroelectric 

detectors are one type of thermal detector that consists of a ferroelectric material such as 

deuterated triglycine sulfate (DTGS) and lithium tantalate (LiTaO3). The thermal detectors 

treat the IR beam as heat and detect the changes in temperature of the absorbing material. 

This change is measured by one of the physical properties of that material, such as resistivity, 

magnetisation, and pressure. Such materials exhibit a large spontaneous electrical 

polarisation at temperatures below their Curie point which is the temperature at which 

certain materials lose their permanent magnetic properties, to be replaced by induced 

magnetism.19 The degree of polarisation is dependent on the temperature. By placing this 

material between two electrodes, a temperature-dependent capacitor is created. This 

capacitance changes with the heat applied through the incident IR radiation. This change in 

the capacitance is measured as the detector response in voltage.  

While both DGTS and LiTaO3 detectors are high performance, a FTIR instrument with a LiTaO3 

detector was used in this thesis. The DGTS detector has a high signal-to-noise ratio but 

require temperature monitoring as it has a Curie point close to room temperature making its 

response very sensitive to temperature changes. LiTaO3 other the other hand, do not require 

cooling due to its higher Curie temperature allowing for simpler instrumentation and higher 

working temperatures.25, 26  

Therefore, it must be used in conjunction with a thermostat for best performance. The LiTaO3 

detector on the other hand does not require temperature control eliminating the need for a 

thermostat and simplifying the electronics in the instrumentation. Additionally, low 

manufacturing costs of the IRE material also contribute to the overall cost saving. While the 

DTGS detector tends to be more sensitive, a comparable signal-to-noise performance is 

achieved with a LiTaO3 detector by measuring sixteen scans of the sample with only a few 

extra seconds.  

2.2.2 Background Spectrum 

It is standard protocol to collect a background spectrum before sample analysis. An example 

of this is shown in Figure 2.6 where bands associated with atmospheric gases such as water 

vapour and carbon dioxide are highlighted. These two gases are commonly present in the 

ambient environment in high enough concentrations that they can result in unwanted bands. 
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In single-beam instruments, these can interfere with the spectral signatures of the sample by 

adding unwanted bands or obscuring important sample peaks. Therefore, collecting 

background spectrum removes all the environmental influences and allows for collecting a 

more accurate information about the sample.   

 

2.3 Sampling Modes  

The main sampling modes employed in FTIR spectroscopy are transmission, reflectance 

(diffuse and specular) and attenuated total reflectance (ATR).27 In transmission mode, light 

from the interferometer passes through the sample and the transmitted energy is measured 

at the detector to generate a spectrum. This mode can analyse many types of samples, but 

it can require extensive sample preparation, for example, making of KBr discs which can be 

time-consuming and may not be possible in the case of polymers. Diffuse reflectance 

measures the light that is scattered off the sample and is therefore useful in analysing rough 

samples such as powders. Specular reflectance, on the other hand, measures the light that is 

reflected off the surface of a sample and is useful in analysing flat, shiny samples or surface 

coatings. While these modes are useful in their own right, the ATR mode was used in this 

study. The principles and reasons for choosing this mode are described below.  

Figure 2-6: A background spectrum collected before sample analysis that shows atmospheric 
gases such as water vapour and carbon dioxide.  
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2.3.1 Attenuated Total Reflectance (ATR) Mode 

ATR utilises the principle of total internal reflection (TIR) without the IR beam directly passing 

through the sample. When a beam of IR radiation passes through a medium with a higher 

refractive index into a medium with a lower refractive index, total internal reflection (TIR) 

occurs at the interface provided that the angle of incidence is greater than the critical angle 

(Figure 2-7). This internal reflection creates an evanescent wave that extends beyond the 

crystal, also known as the internal reflection element (IRE) and into the sample on top of the 

IRE surface. The penetration depth of this wave into the sample is typically 0.5 – 5 µm and 

thus direct contact between the sample and the IRE is necessary. In the regions where the 

energy of the wave is absorbed by the sample, the evanescent wave is said to be attenuated 

and the resultant beam is sent to the detector. Attenuation of the evanescent wave happens 

at frequencies characteristic to the molecules being studied and creates the IR spectrum that 

is representative of the sample.  

Two important factors in choosing the IRE material are a high refractive index and the depth 

of penetration of the evanescent wave. Commonly used IREs are diamond, germanium (Ge) 

and zinc selenide (ZnSe). These are chosen so that they have a much higher refractive index 

in relation to the samples being analysed. Diamond is the gold standard because it is a 

chemically inert and robust material. However, it is also the most expensive. ZnSe is a suitable 

alternative IRE material as it is inexpensive and has a high refractive index and depth of 

Evanescent waveSample

Reflected 
Light

Incident 
Light

!

Internal 
Reflection 
Element

Figure 2-7 Schematic representation of the ATR sampling mode through a traditional 
diamond crystal (here labelled as internal reflection element), where 𝜃 represents the angle 
of incidence.  
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penetration similar to diamond. Though ZnSe is a softer material than diamond, it is suitable 

for most routine analyses in 5 to 9 pH range including liquid samples such as the biofluids 

analysed in this thesis. The depth of penetration is dependent on other factors such as angle 

of incidence and sample properties such as thickness and composition. The angle of 

incidence was fixed in the instrument employed in this thesis. While it was not possible to 

exactly control the sample thickness, all processes relating to the deposition of the sample 

on the crystal were kept constant to maintain consistency across all analyses.  

ATR mode is commonly used in routine analyses of surface studies, films and solutions 

because of non-destructive sampling with minimal to no sample preparation.28-30 It is 

versatile, easy to use, and has low running costs with rapid data acquisition. One of the main 

advantages of the ATR mode is that in the case of air-dried liquid samples, which tend to 

create dry films of variable thickness, the signal is not impacted due to the smaller pathlength 

into the sample as defined by the penetration depth of the evanescent wave (0.5 – 5 µm). 

Moreover, consistent results obtained with small sample volumes (0.5 – 3 µL) and minimal 

expertise make this mode even more attractive in routine operations.23, 31, 32 Finally, ATR-FTIR 

spectrometers are commonly found in most labs which reduces the costs associated with 

purchasing new instrumentation and makes use of already established equipment in an 

innovative approach.  

There are some limitations to this sampling mode when measuring liquid samples such as 

biofluids. These include long drying times for liquid samples, the effects of the intense water 

vibrations in the mid-IR region, surface variations introduced by air drying such as the coffee-

ring effect, cracking of dry films and the Vroman effect for serum samples.32-36 Reducing the 

sample volume (0.5 – 3 µL) has been effective in reducing the drying times.32 The spectral 

interferences from water absorption, and the Vroman effect, where low molecular weight 

proteins attach to the surface first, followed by the adsorption of larger protein molecules 

sometime after the drop is deposited on the surface, can be mitigated by allowing the sample 

to fully dry.36, 37 The impact of spectral artefacts and variations caused by the cracking can be 

minimised by employing a variety of pre-processing methods following data collection.  
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2.3.2 Spectral Signatures of Biological Materials  

The characteristic spectra for different biological materials are shown in Figure 2-8. 

Spectroscopically, the most important region in the IR spectrum is the fingerprint region 

(1800 – 900 cm-1) as it contains fundamental vibrations of most of the biomolecules such as 

proteins, lipids and carbohydrates. There are naturally occurring variations observed in the 

concentrations of these biomolecules due to variations in age, sex, ethnicity, genetics, 

differences in collection times and other environmental factors.11, 38 In the presence of 

foreign substances such as drugs, the inherent variations in biofluids are further complicated 

in their spectra. Pooled human serum purchased from a commercial tissue bank was used in 

this thesis to help mitigate some of the naturally occurring individual variations and obtain 

an average serum sample that is thoroughly tested for the presence of any other interfering 

factors.  

Figure 2-8 Stacked spectra of various biological samples including whole blood, 
plasma, serum, tissue, and artificial urine. The grey area highlights the fingerprint 
region (1800 – 900 cm-1). All spectra were collected as part of this thesis.  
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For serum, some of the most important bands in the fingerprint region are the characteristic 

amide I and amide II bands representative of the amide (peptide) bonds that link amino acids 

in proteins and polypeptides (Figure 2-9). The stretching vibrations of the C=O bond lead to 

the amide I absorption band near 1650 cm-1, with smaller contributions from CN stretching, 

and deformation of CCN and NH in-plane bending vibrations.39 While the out-of-phase 

combination of the NH in-phase bend and the CN stretching vibration with minor 

contributions from CO in-plane bending and the CC and NC stretching vibrations gives rise to 

the amide II band at ~ 1550 cm-1.39, 40 Though the changes in location and amplitude of the 

amide I band and amide II are reflective of the secondary structures of a protein.40 These are 

useful when looking at the presence of drug molecules in serum as a considerable portion of 

drug molecules are found to be protein-bound. Though it might be difficult to isolate these 

differences caused only by the protein-bound drug molecules without some prior sample 

preparation, they are still useful when identifying spectral signatures of the total amount of 

drugs present within the biofluids.  

Figure 2-9: FTIR spectrum showing the four primary types of biomolecules found in 
a biological sample. The spectrum is labelled with peaks assigned to specific 
vibrations found in each of these biomolecules. (Reproduced from Baker et al. 
2016). 
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Similarly, IR characterisation of urine is useful in identifying variations in its components 

which can not only serve as potential biomarkers for disease diagnosis, but it can also allow 

for the identification of any foreign substances present in it. In this thesis, artificial urine, 

Surine™, was used for all urine analyses and the air-dried ATR-FTIR spectrum for a blank 

sample is shown in Figure 2-10. Artificial urine is used in this study to mitigate the effects of 

individual variation, to remove the need for the lengthy process of ethical approval and to 

address safety concerns as recent research into creating artificial alternatives to urine has 

shown great promise.41 Spectroscopically, this artificial urine formulation is similar to real 

urine from healthy volunteers and other commercially available artificial urines as seen in 

the literature, though the exact peak positions vary slightly depending on the concentration 

of components.41-44 Water (95%) is the predominant component of urine with the rest 

comprising urea (~9.3 mg/mL), creatinine (~1.5 mg/mL), uric acid (~0.03-0.6 mg/mL), ions 

such as sodium (~1.17 mg/mL), potassium (~0.75 mg/mL), chloride (~1.87 mg/mL), sulphate 

(~0.04-3.5 mg/mL), ammonia (~0.6-1.2 mg/mL) and other ions and molecules in trace 

amounts.45, 46 While numerous other components have recently been identified as present 

Figure 2-10: Air dried FTIR spectrum of artificial urine (Surine™) with tentative 
vibrational mode assignments. 



 
 

60 

in urine,47 the main peaks observed in the IR spectrum are due to the components listed 

above. The high wavenumber region of the spectrum is dominated by the symmetric and 

asymmetric NH stretches of urea with and with minor contributions from CO stretches and 

NH2 deformation vibrations (Figure 2-10).48 Peaks seen in the lower wavenumber region at  

1659, 1607, 1446, 1160 and 783 cm-1 are also mainly from urea with minor contributions 

from creatinine as illustrated by the assignments in Figure 2-10.41, 48  Furthermore, the 2041 

cm-1 peak is characteristic of thiocyanate presence in the urine, while the peaks below 950 

cm-1 are a collection originating from urea, uric acid, creatinine and sodium phosphate.41  

In post-mortem toxicology, the composition of biofluids is altered due to decomposition and 

is likely to have different IR spectra.49-51 However these studies are mostly based on whole 

blood with the aim of identifying the time since death. Detailed spectroscopic investigations 

of other biofluids as well as any foreign substances found in them are lacking in the literature. 

This is an important distinction to note when comparing the results from the studies such as 

those presented in this thesis with that of post-mortem samples for interpretation.  

2.4 Spectral Pre-processing 

A raw IR spectrum of a biological sample is subject to spectral artefacts that arise from 

environmental conditions as well as instrument and sample variations. This section describes 

these artefacts and the necessary spectral pre-processing steps taken to minimise their 

effects prior to data analysis. All pre-processing was done using the PRFFECT version 2 

toolbox written in the R programming language.52 To that effect, the main aim of pre-

processing is to improve the robustness and accuracy of the data, to allow easy interpretation 

and remove irrelevant information.35 It is also customary to cut the IR spectrum to specific 

wavenumber ranges of relevance to the problem at hand, such as the ‘fingerprint region’ 

(1800 – 1000 cm-1) that is of interest when examining biomolecules for disease-specific 

information. However, in the case of drug samples, it is more likely that the drug spectral 

signatures are spread across the entirety of the mid-IR spectrum. Therefore, the entire 

recorded spectrum was typically used in this study. In some cases, where relevant spectral 

signatures were more focused in a narrower wavenumber region for example 450-2200 cm-

1 region for urine samples, the spectra were cut to this spectral region.  
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2.4.1 Baseline Correction 

As IR spectroscopy is a technique that involves the interaction of light with matter, it is prone 

to the effects of scattering as well as the absorbance of IR radiation. As samples were air-

dried it is not possible to have a perfectly flat sample surface without the presence of surface 

features, such as cracks, creating another source for scattering artefacts.53, 54 This can cause 

an offset or sloping baseline, which makes spectral comparisons difficult and even replicates 

of the same sample can appear different.  

Rubberband baseline correction was employed in this thesis which is appropriate when the 

distortions to the baseline are complex and irregular.55 In this procedure, smoothing splines 

are fitted to the spectrum through the supporting points selected by an algorithm.52, 54 The 

supporting points are chosen to find the troughs or convex hulls under the spectrum. The 

spectrum is then pulled down at these points to produce a corrected version. Noise cut-off 

levels of 0.1 were set during the application of this method to raw data in this thesis. This is 

illustrated in Figure 2-11 where the average raw spectrum of blank serum is depicted in black 

 Figure 2-11: Average raw spectra for air-dried blank serum (in black) and baseline 
corrected using rubberband correction algorithm average spectra for blank serum (in 
red). 
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showing a variable baseline and the rubberband baseline-corrected spectrum is shown in 

red.  

2.4.2 Normalisation  

Some form of normalisation is often used in IR analysis to allow an effective comparison 

across different sets of samples so that they are all scaled within a similar range.56 In the 

analysis of air-dried liquid samples it accounts for the differences in sample quantity and/or 

thickness due to air-drying. Throughout this thesis, the vector normalisation method was 

used. It contains two stages, initially by calculating the mean spectral absorbance which is 

subtracted from the spectrum, otherwise known as mean-centering, and secondly, each 

spectrum is divided by the square root of the sum of the squares of the mean-centered 

values.54 In this way, the sum of all absorbance values squared is equal to one.52, 54, 56 Figure 

2-12 (blue trace) illustrates the reduction in spectral variability across the repeats achieved 

through this process whereby normalised spectra for the same sample are virtually 

superimposed upon each other.  

Figure 2-12: Baseline corrected spectra in red show variation across repeats, which is 
significantly reduced in the vector normalised spectra shown in blue. 
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2.4.3 Smoothing  

Smoothing algorithms are often applied to IR spectra to reduce inherent noise in the dataset. 

The most common method used for smoothing is known as the Savitzky-Golay (SG) filter, 

which minimises the high-frequency noise while maintaining peak morphology.54 The SG 

filter fits a polynomial (order = 2) to a fixed number of data points within a moving window 

in order to smooth the signal.57 This is illustrated by the spectra in black in Figure 2-13 where 

smoothing is applied along with other pre-processing methods previously mentioned. 

Therefore, the value of the pre-processing methods is demonstrated when the final result of 

all pre-processing methods is compared to that of the raw spectra.  

 

2.4.4 Spectral Derivatives 

Spectral derivatisation is another way to remove baseline drifts and enhance spectral 

features.56, 58 The derivatives are obtained by differentiating the absorbance intensity with 

 

Figure 2-13: Final step of pre-processing where SG filter is applied for noise reduction 
(shown in magenta). 
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respect to wavelength and most commonly the first or second orders are used. The first-

order derivative passes through zero at the same wavelength as the peak maximum in the 

raw spectrum and has a positive and negative band on either side in which the maximum and 

minimum fall at the inflection points in the absorbance band (Figure 2-14).59 The second 

derivative displays a distinct negative peak at the same wavelength as the peak maximum on 

the original absorption spectra (Figure 2-14). Second-order derivatives are particularly useful 

in resolving overlapping broad peaks in the spectra and can lead to better classification 

models for predictive analysis.36 However, noise is inadvertently introduced using this 

process and thus should only be used on spectra with high SNR. Second-order derivatives are 

utilised in later chapters in addition to the pre-processing options previously described for 

discrimination purposes.  

 

Figure 2-14: Representation of zero-order absorption band (top) and their 
corresponding first-order (bottom left) and second-order (bottom right) derivatives.  
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2.5 Spectral Analysis  

Spectroscopic investigations of biofluids lead to very large datasets whereby visual inspection 

or single peak analysis is neither helpful nor efficient. Hence it is essential to apply 

appropriate multivariate data analysis techniques for spectral interpretation. Previous work 

has shown that multivariate data analysis methods such as random forest (RF), partial least 

squares (PLS) - discriminant analysis and support vector machine have provided promising 

results in disease diagnostics in clinical setting.60-64 This section describes two such methods 

– RF and PLS-DA that have been used in this thesis.  

2.5.1 Random Forest 

Data classification is a step-wise process which initially involves training a model on known 

data followed by testing the model on new, unseen, data. Random forest (RF) is a supervised 

machine learning method that builds a ‘forest’ or ensemble of decision trees which is used 

for classification or regression purposes. In a classification process, the observations or 

spectral features, here are represented in the branches of the tree, while the leaves 

represent the class labels (Figure 2-15). The classification predictions are made where each 

tree in the forest casts a vote for the class label of samples in the test data.65 The final 

predictions are then reported as the majority vote of all the decision trees.  

The decision trees are sensitive to the specific data they are trained on, in order to overcome 

this, data bagging is often utilised which allows RF to randomly sample the training dataset 

with replacement at each decision tree.66 This means that the samples included in the original 

training dataset may occur zero, once or multiple times in any given tree. The features, which 

refer to wavenumbers in this instance, are selected from a random subset of a 

predetermined size from the full set of possible descriptors to allow for branching at each 

node.52 This feature randomness creates distinct trees that are less correlated. In RF, the 

three main tuning parameters are the number of trees, ntree, the number of 

features/variables available at each decision tree for splitting, mtry, and the depth of trees 

which is referred to as nodesize.67 The RF method was shown to be insensitive to training 

parameters ntree,  mtry and nodesize.66 While Palmer et al66 suggested that values below 250 

for ntree should not be used to prevent deterioration of data, higher values (greater than 

500) did not show an improvement in classification but were only computationally 

cumbersome. While values lower than 40 for mtry mean that there are not enough 
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descriptors available at each split reducing the quality of the overall prediction, the values 

were obtained from the number of variables in the relevant dataset.52, 66, 68 With this in mind, 

default values of 500 and 1 for ntree and nodesize respectively, were used. The parameter 

mtry was set at 59 which was derived by taking the square root of the number of variables 

(3550).  

In order to evaluate the accuracy and reliability of the classification algorithm (defined in the 

next section 2.5.2), the classification values are reported in terms of true positives 

(sensitivity), true negatives (specificity), false positives and false negatives. Another 

important result gathered from RF analysis is the RF importance plot that shows the Gini 

coefficient with respect to wavenumbers (Figure 2-16).69  These rank the wavenumbers in 

the order of importance for that model and thus can be used to highlight spectral features 

of importance for discrimination (Figure 2-16).47  

Tree 1 Tree 2 Tree 500(. . .)

Prediction 1 Prediction 2 (. . .) Prediction 500

Average All Predictions 

Random 
Forest 

Prediction

Test Sample Input

Figure 2-15: Generic structure of a random forest ensemble model. 
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2.5.2 Partial Least Squares analysis  

The original non-linear iterative partial least squares (NIPALS) algorithm developed by 

Wold,70 has been refined and extended to classification purposes in the field of 

chemometrics.65 PLS – discriminant analysis is a variant of PLS regression (PLSR) where the Y 

variable is categorical instead of continuous as seen in the regression method.71 PLS-DA is a 

supervised machine learning method that uses linear discriminators for classification 

purposes.72 It extracts the necessary information from complex datasets with a large number 

of variables by reducing their dimensionality to understand the underlying patterns within 

the data.  

The explanatory variables represented as a matrix, X, are the absorbance values for each of 

the wavenumbers being measured, while the response variables are represented as a Y 

matrix. For regression analysis, the response variables are continuous such as the 

concentration of analytes, while for classification analysis these are categorical such as the 

group membership of the sample spectra. The algorithm creates latent variables (LVs) that 

are linear combinations of the original variables in X as well as Y datasets in an iterative 

process in such a way that maximises covariance (correlation and variance) between Y and 

X. This separates the data allowing for discrimination between groups. This PLS model can 

then be used to test new unknown samples not used during model-building for the prediction 

of class membership.  

Figure 2-16: Average mean spectrum, superimposed on Gini Importance plot for RF analysis 
of serum samples with MA (labelled here as ‘SPMA’ shown in black) and blank serum 
samples (labelled here as ‘BlankS’ shown here in red). 
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The optimal number of components is chosen to minimise the cross-validation error which 

provides the most reliable model. The results of PLS-DA analysis are scores and loadings, 

whereby the loadings explain the variance by highlighting those wavenumbers in X with the 

greatest disparities in Y and the scores allow for visual discrimination between classes. The 

prediction accuracies and model reliability are determined through sensitivity, specificity, 

kappa and balanced accuracy parameters.  

Sensitivities and specificities refer to the number of correct and incorrect predictions made 

by the model in the test set that is used for model evaluation (Equations 2.8 and 2.9). In a 

binary classification (blank serum samples versus those with drugs present), sensitivity 

denotes the ability of the model to accurately identify the samples with drugs present, while 

specificity refers to the ability of the model to correctly identify the blank samples. The values 

of true positives (TP) and true negatives (TN), as assigned by the model, were obtained when 

at least two or more spectra out of their 3 were correctly assigned to drug samples and to 

blank matrix samples respectively.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 7&8$	:;<('(%$<
7&8$	:;<('(%$<2=>?<$	@$A>'(%$<

= 7&8$	:;<('(%$<
:;<('(%$<

   (2.8) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 	 7&8$	@$A>'(%$<
7&8$	@$A>'(%$<2=>?<$	:;<('(%$<

=	 7&8$	@$A>'(%$<
@$A>'(%$<

  (2.9) 

 

In this situation the overall model performance was measured using the balanced accuracy 

which is defined as the average accuracy of each class, also known as the average of the 

sensitivity and specificity of the model (Equation 2.10):  

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (7:
:
+ 7@

@
)/2   (2.10) 

The reliability of the predictive model is determined by examining the Kappa value, κ, which 

quantifies the magnitude of agreement between the observed accuracy of prediction from 

the classification model with that of expected accuracy including that of a random chance.73 

The values of Kappa range from below zero to 1 and are reflective of the level of agreement 

between the classifiers. Values of κ ≦ 0, in general, indicate no agreement, 0.01-0.2 show 
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slight, 0.21-0.40 fair, 0.41-0.60 indicate moderate, 0.61-0.80 substantial and finally 0.81-1.00 

show almost perfect agreement.73, 74  

2.5.3 Sampling Methods  

The models generated throughout this thesis are influenced by the samples used to build the 

model as well as the number of samples within each class. More specifically for drug samples 

in biological fluids, higher drug concentrations show greater spectral variation compared to 

lower concentration samples, which tend to be more subtle in their differences. The inclusion 

or exclusion of these samples from the dataset used to build the model can create a biased 

model.65, 75 In addition, an uneven number of samples can bias the model to the class with 

the higher number of samples. In order to account for the class imbalance between the 

number of blank and drug samples, various resampling methods were employed in this 

thesis. Three sampling methods are used throughout this thesis, up-sampling, down-

sampling and synthetic minority over-sampling (SMOTE) technique. The up-sampling method 

repeatedly samples the minority class with replacement to increase the number of samples 

for that class. Conversely, the down-sampling method reduces the majority class to the same 

size as the minority class by randomly selecting a subset of the majority class.76 The SMOTE 

sampling on the other hand artificially generates ‘new’ data points to achieve a more 

balanced dataset.75  

In simplest terms, up-sampling can be thought of as oversampling where samples from a 

minority class can be present in duplicates. The main advantage of this method is that no 

data points are deleted, and no information is lost. However, as this method is duplicating 

data, it can lead to overfitting. Down-sampling on the other hand is the opposite where 

samples from the majority class are discarded so that both classes are balanced. The main 

disadvantage of this method is that some data is lost in the process. However, this might not 

be a major issue if the large datasets and the class disparity are not too large. The SMOTE 

sampling can be effective in balancing out class inequalities, but it can also over-generalise 

the data especially if the existing minority class is not representative of the true distribution 

causing the synthetic samples not to reflect the actual diversity and nuances of the minority 

class. Ling and Li however have demonstrated that under-sampling of the minority class 

tends to lead to better results than up-sampling, and a combination of the two methods 

showed no significant improvement in the results.77 With the dataset generated in this thesis, 
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all three methods were tried on all datasets where class imbalance was observed and those 

models that performed the best are reported. 
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Abstract 

Globalization, modern technology and easy access to the internet have led to an explosion 

of drug compounds available for public consumption. Methamphetamine (MA) is one such 

drug that has a long history of abuse and misuse worldwide and is consumed in licit and illicit 

forms. There are numerous state-of-the-art techniques developed for the screening of MA 

in biofluids, but these are plagued by tedious sample preparation, the need for solvents and 

expensive instrumentation. This is especially of consequence when consumption of illicit MA 

is suspected because all these methods are specifically developed for MA and will not always 

account for the presence of other impurities/substances in the sample.  

FTIR spectroscopy has been employed in the analysis of powder samples from drug seizures 

as well as for the detection of biomarkers in biofluids. However, a combined approach to 

detecting drugs in biofluids has not been extensively explored. In this chapter, it is shown 

that ATR-FTIR spectroscopy can be applied in this context allowing for drug detection without 

prior sample extraction. Using methamphetamine (MA) as an example, this chapter outlines 

the proof-of-concept study to investigate the detection of MA and its metabolites in serum 

and urine using forensically and clinically relevant concentrations. The spectral signatures of 

MA were visible above the matrix background and were used in the multivariate classification 

of MA and 4 metabolites. Moreover, discrimination of MA samples from MA samples with 

one metabolite was demonstrated in this chapter to show the suitability of this method to 

analyse more complex, real-world samples.   
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3.1 Introduction 

Recent years have seen an unprecedented increase in the use, misuse and abuse of 

traditional illicit drugs, prescription medications, as well as novel psychoactive substances 

(NPS) that mimic traditional drugs.1 The drug market is evolving by not only creating new 

varieties with diverse chemistries to produce psychoactive effects but also new pre-

precursors to mask the use of known precursors and identification of alternative routes of 

synthesis.2, 3  This expansion of the range of synthetic drug products in an effort to widen or 

change the substances being offered to consumers, while retaining their psychoactive 

effects, is reflective of the drug and precursor control legislation globally. However, the 

manufacture, trafficking and use of traditional drugs remain at an all-time high.  

Methamphetamine (MA) is one such traditional drug of abuse that is prevalent in all its forms 

amongst drug users with a long history of use, misuse and abuse.4 It is internationally 

monitored and scheduled under national legislation in most countries along with its 

precursors.2 According to the UNODC 2021 report, approximately 325 ton of MA was seized 

in 2019, and 24,000 clandestine labs were dismantled worldwide.5  However, in comparison 

to the amount of internationally controlled precursor chemicals seized in that year, this only 

accounts for approximately 3 per cent of the total MA seized (10 tons).5  This is reflective of 

the recent precursor control legislation and has created a wave of new non-controlled 

substances that are now used as precursors, also called pre-precursors, to produce common 

starting materials for MA.3-5 This shows a dynamic shift in not only the traditional drugs 

themselves but also their starting materials which also need to be identified. 

There are an estimated 27 million people who have or continue to use amphetamines in a 

variety of forms such as tablets, powders, and crystals administered via various routes 

including oral ingestion, smoking and intra-nasal/snorting, as well as intravenous injections.6-

12 While the purity and forms of MA vary across the world regions, it is a drug that permeates 

society across socio-economic boundaries with lasting effects in the community. The UNODC 

projections indicate that the number of drug users is more likely to increase in low-income 

countries over the next decade, with the production likely moving closer to the consumers.13  

The most common screening methods are presumptive colourimetric tests that indicate the 

presence of specific classes of drugs by a change in colour.14-18 While the commercial versions 

are developed for traditional drugs of abuse, these are often inadequate for NPS as the novel 
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precursors and pre-precursors can be structurally very similar and are not controlled under 

the current legislation.3 Additionally, these methods cannot easily be applied to all types of 

forensic samples encountered such as blood, urine and saliva due to high detection limits, 

complexities in colour determination, and their lack of selectivity towards a drug class.15  

Traditional methodologies such as GC-MS and LC-MS remain the gold standard for 

laboratory-based analytical techniques for the analysis of seized drugs and in forensic 

toxicology. While these methods have been employed in both targeted and untargeted 

approaches for screening and confirmatory analyses,19-24 they require elaborate and time-

consuming sample preparation steps using many solvents, particularly when analysing drugs 

of abuse in biofluids.25-27 Furthermore, these instruments are expensive to purchase and 

maintain, require experienced staff to run and interpret data and are not suitable for field 

testing.28 Therefore, it is increasingly important to develop a rapid, cost-effective and 

efficient detection method that can be deployed in the field in a decentralised manner (out 

of the lab) and that are also useful in the laboratory.  

According to SWGDRUG guidelines for the analysis of unknown compounds, FTIR 

spectroscopy belongs to the group of techniques with the highest discrimination power.29 In 

forensic science, FTIR spectroscopy has been employed in the analysis of seized powder 

drugs,30-35 counterfeit medicines,34, 36-38 explosives39-41 and body fluids.42-46 In the case of 

drugs of abuse, it is mostly used as a screening method to identify the drug compounds to 

guide more time-consuming and costly analyses such as GC-MS for confirmatory analyses. 

While it is also useful in screening for the adulterants and/or cutting agents present in seized 

drug samples, it is necessary to combine it with machine learning techniques for more 

convenient interpretation by a non-expert. It is also particularly adaptable and hence suitable 

for the constantly evolving drug markets.  

When analysing body fluids in forensic science, on the other hand, it has mainly been applied 

to identify a specific type of fluid such as blood, semen and urine, as well as determine the 

time passed since their deposition at a crime scene.46-49  More recently, Hans and colleagues 

have demonstrated the suitability of ATR-FTIR spectroscopy for the detection of cocaine in 

spoked saliva samples to obtain detection limits of 0.02 mg/mL.50 This promising study was 

further developed to lower the detection limits to 3 µg/mL with one step extraction 

procedure and the use of a QCL unit with an ATR accessory.51, 52 While these studies were the 
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first to analyse biofluids containing drugs with ATR-FTIR spectroscopy, its application to other 

drugs and biofluids remains to be evaluated. Moreover, these studies did not take advantage 

of the use of chemometrics in conjunction with FTIR spectroscopy which has been 

demonstrated in the literature.28, 34, 53 Portable ATR-FTIR devices have already been 

demonstrated to be useful in a variety of applications.54-56 Therefore, ATR-FTIR spectroscopy 

provides a unique opportunity to address the aforementioned analytical challenges by 

developing a combined approach with chemometrics for detecting drugs of abuse in 

biological fluids directly.  

MA is a synthetic phenethylamine that consists of a chiral carbon which allows it to form two 

optical isomers also known as enantiomers (Figure 3-1). The dextro-stereoisomer (also called 

(+) or d- or S-) is a stronger CNS stimulant, while the levo-stereoisomer (also called (-)- or l- 

or R-) shows less stimulant activity in biological systems.57 Psychostimulants such as 

methamphetamine affect the central nervous system usually by increasing the natural 

stimulating pathways in the brain which involves enhancing the effects of three main 

neurotransmitters; dopamine, norepinephrine and serotonin.58, 59 The abuse liability of 

methamphetamine is attributed to potent psychostimulant effects which induce euphoria, 

increased alertness and endurance, improved cognitive and sensory performance, 

intensification of emotions including general improvement of mood, appetite suppression, 

as well as increased sexual arousal.6, 12, 60-63 However, the strong abuse potential of the drug 

leads to tolerance building to the psychotropic effects mentioned above which can 

eventually lead to the consumption of toxic overdose.61 The negative effects associated with 

the drug include tachycardia, arrhythmias, stroke, myocardial ischemia, hypertension, 

paranoia, seizures and psychosis.10, 12, 62  

Figure 3-1: Structures of two optical isomers of methamphetamine – levo (on the left) and 
dextro (on the right).  
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The pharmacologically active dose for the d-isomer of methamphetamine is approximately 

0.5 mg/kg, which for a 70 kg adult is ~35 mg.64 The pharmaceutical preparation ‘Desoxyn® 

Gradumet’ is prescribed to make up an effective dose of 20 - 25 mg and 5 mg per day, for 

ADHD and obesity control, respectively.65 The self-reported illicit doses of MA range from 50 

- 500 mg totalling up to 4 g/day which lie outside the range of clinical experiments.59, 66 The 

higher doses tolerated by chronic users are reflective of the accumulation of MA in the body. 

While fatal overdoes of methamphetamine are generally rare, illicitly acquired drugs can be 

combinations of various substances leading to fatal drug-drug interactions.59 

Typically, the plasma half-life of MA is approximately 8-13 h with peak plasma concentrations 

occurring around 3-5 h after dosing,67 which mirrors the duration of its stimulant effects 

making it one of the longer-lasting stimulants available on the drug market and thus leading 

to increased use and abuse.11 The plasma-protein binding for MA is relatively low which 

implies that the majority of the drug is present in the biological fluid in free form.68  

The hepatic metabolism of methamphetamine in humans is regulated by the polymorphic 

enzyme cytochrome P450, specifically, its CYP2D6 isozyme and results in the formation of 

two main metabolites, amphetamine and p-hydroxymethamphetamine and minor 

metabolites include p-hydroxyamphetamine and norephedrine (Figures 3-2).69-71 The major 

active metabolite, amphetamine is formed through N-demethylation while p-

hydroxymethamphetamine is formed via aromatic hydroxylation (Figure 3-2).67, 72, 73 

Amphetamine is further metabolised to 4-hydroxyamphetemine via hydroxylation at the 4-

position on the benzene ring and to norephedrine, a psychoactive substance via oxidation 

(Figure 3-2).57, 67, 70 Due to the high pKa (~ 10) of methamphetamine, it is usually found in its 

ionised form.74 Reabsorption of ionised drugs in the kidneys is highly pH dependent and as 

such approximately 43% of MA is excreted unchanged.61, 69, 72, 75, 76 Consequently, resorption 

in alkaline conditions causes more degradation via the metabolic process which leads to 

changes in the metabolite concentrations found in biological fluids after initial ingestion. 
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This chapter presents a proof-of-concept study of ATR-FTIR spectroscopy as a direct drug 

detection methodology, utilising MA as a model drug compound within two biological 

matrices, human pooled serum and urine. Considering the bioavailability of MA at 70% for 

oral ingestion and an excretion rate of 43% for the unchanged drug, the concentration ranges 

of MA found in serum and urine are likely to be in the ranges of 0.006 - 0.6 mg/mL and 0.035 

- 4 mg/mL (for a 70 kg person with a total blood volume of 4.5 L and average urinary output 

of 0.5 mL/kg/hr over 12 hours) respectively. The lower end of these ranges is reflective of 

Figure 3-2: Simplified schematic of main metabolic pathways of methamphetamine in 
human. The parent drug, MA is shown in green and the metabolite structures of 
amphetamine, p-hydroxymethamphetamine, p-hydroxyamphetamine, norephedrine, are 
highlighted in red as they were chosen to be included in this study.  
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therapeutic doses while the higher end is indicative of chronic users.11, 61, 72, 77, 78 In addition, 

this is expanded to detect and quantify four metabolites of MA in two scenarios, as individual 

drugs and when combined with the parent drug in biofluids to reflect real-world samples.  

3.2 Materials and Methods 

3.2.1 Materials  

(+)-Methamphetamine hydrochloride (C10H15N • HCl, referred to as MA) and its four 

metabolites: (+)-Amphetamine hemisulfate (C9H13N • 0.5 H2SO4, referred to as AM), para-

hydroxymethamphetamine (C10H15N, referred to as p-OHMA), para-hydroxyamphetamine 

hydrobromide (C9H13NO • HBr, referred to as p-OHAM) and DL-norephedrine hydrochloride 

(C9H13NO • HCl, referred to as NOR) were purchased from Merck Chemicals Ltd. Human 

pooled serum (here referred to as serum) was purchased from TSC Life Sciences Ltd., which 

was stored at -80 °C in a freezer when not in use. For urinalysis, artificial urine, Surine™ 

Negative Urine Control was purchased from Merck Chemicals Ltd., which was stored at -4 °C 

in a refrigerator when not in use. All powder drugs were used as received. All solutions were 

prepared directly in the two matrices, pooled serum and artificial urine without any 

additional solvents or reagents.  

3.2.2 Sample Preparation  

For MA, AM, NOR and pOHAM, 10 mg/mL stock solutions were prepared in each biological 

matrix, however, due to the lower solubility of pOHMA, the maximum possible stock 

concentration of 3 mg/mL was prepared in each biofluid. These were then diluted using the 

blank matrices (serum or urine without any drug in them) to prepare a range of 

concentrations. The set of calibration standards consisted of samples in the concentration 

ranges of 0.1 - 0.9 and 1 - 10 mg/mL with an increment of 0.1 and 1, respectively, prepared 

for MA, AM, NOR and pOHAM in pooled serum and artificial urine. For pOHMA, the 

concentration ranges consisted of 0.1-0.9 and 1-3 mg/mL (in increments of 0.1 and 1, 

respectively). The higher concentrations in these ranges were greater then those typically 

found in therapeutic or chronic users. Without any previous research in this specific method 

of analysis, the higher concentrations were employed to ensure that drug spectral signatures 

were visible and then the concentration range was extended to include the relevant forensic 

and clinical range. The complete list of samples is provided in Table 3-1.  
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Table 3-1: Summary of all samples studied in this chapter.  

Table 3-2: Summary of samples with a single drug belonging to the independent test set are 
listed.  

Sample ID Drug present Concentration (mg/mL) 

9001 NOR 0.4 

9002 MA 0.3 

9003 AM 0.37 

9004 MA 0.5 

9005 MA 1 

9006 MA 4 

9007 MA 9 

9008 AM 2 

9009 AM 5 

9010 AM 7 

9011 NOR 1 

9012 NOR 3 

9013 NOR 9 

Drug Abbreviation Sample concentrations (mg/mL) No. of 
samples 

Blank 
Serum: BlankS 0 mg/mL 26 

Urine: BlankAU 0 mg/mL 17 

MA 
Serum: SPMA 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 

0.5, 0.4, 0.3, 0.2, 0.1 26 

Urine: UPMA 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 
0.5, 0.4, 0.3, 0.2, 0.1 19 

AM 
Serum: SPAM 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 

0.5, 0.4, 0.3, 0.2, 0.1 25 

Urine: UPAM 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 
0.5, 0.4, 0.3, 0.2, 0.1 20 

NOR 
Serum: SPNOR 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 

0.5, 0.4, 0.3, 0.2, 0.1 
26 
 

Urine: UPNOR 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 
0.5, 0.4, 0.3, 0.2, 0.1 19 

pOHMA 
Serum: SPpOHMA 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 

0.1 12 

Urine: UPpOHMA 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 
0.1 12 

pOHAM 
Serum: SPpOHAM 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 

0.5, 0.4, 0.3, 0.2, 0.1 19 

Urine: UPpOHAM 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 0.6, 
0.5, 0.4, 0.3, 0.2, 0.1 18 
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Table 3-3: Summary of samples with a combination of parent drug with one metabolite. 
These were included in the independent test set.  

Sample ID Actual drug combination present 

9014 0.6 mg/mL MA + 0.1 mg/mL AM 

9015 0.8 mg/mL MA + 0.12 mg/mL NOR 

9016 1 mg/mL MA + 0.17 mg/mL AM 

9017 0.3 mg/mL MA + 0.1 mg/mL NOR 

 

In order to test classification and regression models built on the data, blind samples were 

prepared independently by a colleague in the research group using the same stock solutions 

following the same method outlined above (Tables 3-2 and 3-3). A total of 16 blind samples 

were created which consisted of samples with a single drug (n = 13) and samples with drug-

metabolite mixtures (n = 4). The concentrations and combinations were recorded and 

referred to after data analysis. The purpose of these blind samples was two-fold – these were 

created to evaluate the efficacy of statistical models by (a) creating an independent test set 

and (b) to simulate a real-world situation where drug mixtures are commonplace.  

3.2.3 Spectral Collection  

A PerkinElmer UATR Two FT-IR spectrometer with the PerkinElmer ATR diamond accessory 

was used for the collection of all spectra in this analysis. Spectra were acquired in the range 

of 4000-450 cm-1, at a resolution of 4 cm-1 and averaged over 16 co-added scans. All powder 

spectra were scanned as pure drug powders without the need for milling to identify the pure 

spectral characteristics of the drug. This was carried out by depositing enough (~2 µg) drug 

powder onto the crystal surface so that the entire surface was covered. Following this, the 

sample was clamped down to ensure intimate contact between the sample and the crystal 

surface. The clamping force was maintained at approximately 70% in the Spectrum software 

provided by Perkin Elmer and the sample was scanned three times. This process was 

repeated three times per sample to acquire 9 spectra per sample.  

For biofluid samples, 3 µL of serum and 0.5 µL of AU were deposited onto the diamond crystal 

surface. A lower volume for the AU samples was selected, however, owing to the effects of 

air drying. Usually, a coffee ring or a halo effect is seen in dried liquid samples,79 but for urine 

this halo formed outside the crystal surface when 3 µL was deposited. Therefore, 0.5 µL of 
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urine samples were used to ensure that the entire dried sample was on the crystal surface. 

The samples were allowed to air dry on the surface. The drying times were between 10-15 

mins for HPS samples and 4-6 mins for AU samples. While the drying times were dependent 

on the humidity and temperature of the day in the laboratory environment, the sample 

profiles were monitored during the drying process. When the profiles were no longer 

changing and resembled those published in the literature,79-81 the dried samples were 

scanned three times. This process was repeated three times per sample which yielded a total 

of nine dried spectra per sample. Prior to the spectral collection for each spot of each sample, 

a background spectrum was taken. 

3.2.4 Spectral Pre-processing 

The PRFFECT toolbox within R statistical computing environment software was utilised to 

pre-process the spectral data.82 There are a range of pre-processing steps that can be 

employed to reduce such spectral variation and the order in which they are performed 

remains an important but contested topic in the literature.83 The optimum protocol followed 

here was developed through a trial-and-error basis to maximise the sensitivity and specificity 

of the classification without adding to the overall data analysis time. The specific pre-

processing protocol followed here included Savitzky-Golay (SG) filter for smoothing, vector 

normalisation and rubberband baseline correction in that order, following which nine spectra 

per sample were averaged to a single spectrum per sample. The second derivative is applied 

for some analyses in addition to the pre-processing steps mentioned and is specified when 

discussing those results. In addition, urine spectra were cut to 2000 – 450 cm-1 region. The 

data was mean-centred and scaled during the model construction stage. The details of these 

pre-processing steps are described in section 2.4.  

3.2.5 Spectral Analysis 

For multivariate classification analysis, two machine learning methods – partial least squares 

discriminant analysis (PLS-DA) and random forest (RF). Binary classification models were 

constructed using the PRFFECT toolbox within R statistical software. Following classification, 

partial least squares regression (PLS-R) analysis was to obtain limits of detection and 

quantification. These methods are detailed in section 2.5.  

For all classification models, the dataset was split using a 70:30 split where 70% of the dataset 

was used as a training set and 30% was used as a testing set. All samples were given a unique 



 85 

sample ID which was used to ensure that all spectra obtained from the same sample were 

either in the training or test set. Prior to classification/regression analyses, a bootstrapping 

analysis was performed on the training dataset to determine the appropriate number of 

iterations to minimise error and maximise the accuracy and efficiency of the classification 

model. To evaluate the performance of these models in a real-world environment, k-fold 

cross-validation was carried out. Once the classification/regression models were built, they 

were evaluated with the independent test sets made up of the relevant drug compound. 

For all PLS-DA models constructed in PRFFECT with all default values were used for all 

parameters except for ncomp which controlled the number of latent variables selected to 

build the analysis. It was selected to pick the best number of latent variables between 1 and 

20 for the serum and urine datasets. This number was derived from the number of samples 

in each dataset using the following formula:  

n_samples x trprop x (k-1)/k    (3.1) 

where n_samples is the number of samples in the dataset used for classification before 

being split into testing and training set, trprop is the proportion of data used as the training 

set which was 0.7, and k is the total number of folds in the cross-validation which was 5.  

For all RF models, default values of 500 and 1 were used for ntree and nodesize respectively. 

The mtry values of 59 and 39 were used for serum and urine datasets respectively, which 

were based on the number of variables in those datasets. As described in Chapter 2, the 

performance of the classification model is reported in terms of sensitivity, specificity, kappa 

and balanced accuracy. All classification models were cross-validated using the k-fold cross-

validation method where k was set to 5. For all regression models, ncomp was set to choose 

the optimum number of LVs between 1 and 20 and k was set to 10 for cross-validation. The 

limits of detection (LOD) and quantification (LOQ) were calculated using the following 

formulae:  

𝐿𝑂𝐷 = 3 × (𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆𝑙𝑜𝑝𝑒⁄ )  (3.2) 

𝐿𝑂𝑄 = 10 ×	𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑆𝑙𝑜𝑝𝑒⁄   (3.3) 
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3.3 Results and Discussion  

3.3.1 Peak Assignment  

Spectra for all five drugs (MA and its metabolites) were inspected in their powder forms for 

peak assignment prior to analysis in serum and in urine matrices (Figure 3-3 and Table 3-2). 

The IR spectra for methamphetamine can broadly be categorized into four spectral domains. 

These include the vibrations due to the aromatic ring (Region A: 3100-3000 cm-1, 1650-1400 

cm-1, 850-700 cm-1), the vibrations indicating the type of substitution present on the ring 

(Region B: 2050-1700 cm-1, 1225-950 cm-1), the aliphatic side chain vibrations (Region C: 

2932-2715 cm-1), and the vibrations reflecting the presence of amino group on the side chain 

(Region D: 3600-3300 cm-1). The electron-donating or accepting properties of the 

substituents play an important role in determining the precise position of these absorption 

bands within the range of frequencies quoted here.84 For instance, the C-H deformation 

bands represent the out-of-plane deformation vibrations of the hydrogen atoms on the 

aromatic rings, observed in region A between 1000-650 cm-1. Both these bands are seen 

Figure 3-3: Stacked spectra for pure powder parent drug and its metabolite for each drug 
molecule. The descriptions for spectral regions A-D are given in Table 3-2.  

A A A B B C D 
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between 750-695 cm-1 in MA, AM and NOR spectra due to their similar structures and the 

number of remaining hydrogens on the aromatic ring due to mono-substitution. However, 

these bands are found closer to 850-800 cm-1 in both pOHMA and pOHAM which is typical of 

para substitution of the aromatic ring with only two adjacent H’s remaining between the 

substitutions.84  

Table 3-4: Tentative spectral assignments of bond vibrations for all five drug molecules used 
in this study. Ref [84, 85] 

 

Vibrational 
regions Vibrational modes MA AM NOR pOHMA pOHAM 

Region A 

Aromatic C-H 
stretch 3021 3010 3033 3033 3010 

Ring breathing 
modes – C-C double 
degenerate modes 
for aromatic ring 

1605 1600 1609 1611 1614 

∂(C-H) aromatic, 
out-of-plane 
deformation 

748, 
700 

746, 
703 

737, 
698 

838, 
813 

843, 
807 

Region B 

Overtone and 
combination bands- 
for ring substitution 

2049, 
1954, 
1882, 
1810 

1995, 
1932, 
1892, 
1823 

1950, 
1880, 
1807, 
1741 

1884 1950 

Ring substitution 

1190, 
1101, 
1060, 
1020 

1208, 
1125, 
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While there are numerous spectral differences in the powder spectra, these are significantly 

masked by the spectral signatures of both matrices used. For instance, the ring substitution 

modes in Region B (1225 - 950 cm-1) observed in the powder spectra are masked by the serum 

background, while the overtone and combination bands are masked by the strong 

thiocyanate peak at 2041 cm-1 in the urine samples (Figures 3-5, 3-6 and 3-7). However, as 

urine is a simpler biological fluid compared to serum, it allows for a greater number of drug 

peaks to be detected over the matrix background. As an example, MA in each matrix (at a 

concentration of 10 mg/mL) is shown in Figure 3-5. The superimposed spectra for all drugs 

in biofluids with the corresponding blank matrix are included in Appendix 1 (Figures A1-1 and 

A1-2).  

 

In addition, difference spectra were calculated by subtracting blank serum/urine spectra 

from those containing drug samples in serum/urine (10 mg/mL) which were used to assess 

the spectral regions of importance. Difference spectra for all five compounds with serum and 

urine are shown in Figures 3-6 and 3-7, respectively.  

 

Figure 3-4: Blank biofluid spectra overlaid with MA in that biofluid. SPMA refers 
to MA in serum. UPMA refers to MA in urine.  



 89 

 

  

Figure 3-5: Stacked difference spectra for all five compounds where the 
blank serum spectra was subtracted from the spectra of drug samples in 
serum. All drug samples were at a concentration of 10 mg/mL except for 
pOHMA which is shown at 3 mg/mL. The regions denoted in the orange and 
purple boxes correlate with the spectral regions identified in Figure 3.4.   
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As the drug sample spectra were not normalized to any serum peaks prior to calculating 

difference spectra, the spectral differences observed are a combination of free drug and the 

protein-bound proportion of the total drug added to the sample. The spectral peaks relating 

Figure 3-6: Stacked difference spectra for all five compounds where the blank 
urine spectra was subtracted from the spectra of drug samples in urine. All drug 
samples were at a concentration of 10 mg/mL except for pOHMA which is shown 
at 3 mg/mL. The regions denoted in the orange and purple boxes correlate with 
the spectral regions identified in Figure 3.4.   
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to the free drug proportion of MA would correspond to those highlighted in the powder 

spectra, while the protein-bound proportion would likely be reflected as changes to the 

protein peaks of the matrix. The peaks at 748 and 700 cm-1 corresponding to the aromatic 

stretching modes in the MA molecule remain visible above the matrix background reflective 

of the free drug portion. These are more clearly seen in the difference spectra (Figures 3-6 

and 3-7). On the other hand, amide I and amide II bands at 1650 and 1550 cm-1 indicated in 

Figure 3-6 show conformational alterations from drug-protein interactions. This is further 

reflected in Figure 3-7 where decreasing concentration of the drug is correlated with the 

decreasing intensities of free drug-related peaks. Similarly, the changes in the amide I and II 

reflective of the drug-protein interactions are also seen to lessen (Figure 3-7). While it is 

possible to quantify drug-protein-related changes based on the protein binding percentage 

of the MA molecule, it was outwith the focus of this thesis. Furthermore, it is unlikely to 

possess such information about novel illicit drugs as there is minimal research conducted on 

elucidating their pharmacokinetic and pharmacodynamic properties.  

As the focus of this thesis was distinguishing drug samples from drug-free samples, the drug 

spectral signatures were used as a whole in the multivariate models presented in this thesis.  

  

Figure 3-7: Stacked difference spectra covering a concentration range from 
0.1 mg/mL to 10 mg/mL. Each spectrum is obtained by subtracting blank 
serum matrix spectrum from that of the drug sample spectrum of different 
concentrations.  



 92 

3.3.2 Bootstrapping Analysis   

Each PLS-DA model was performed numerous times so that the variance in the dataset was 

fully accounted for by the model. During the bootstrapping analysis, a total of 501 iterations 

were carried out on the MA samples versus blank control samples. This added significant 

time to the running of classification models making the process inefficient. The results of this 

analysis are presented in Figures 3-9 for serum and urine drug matrices respectively. At 51 

iterations, the standard error for the test set was 0.12% for sensitivity and 0.8% for 

specificity, which was deemed to be an acceptable level with reasonable analysis time. This 

was also supported by previous work in the research group.86 Therefore, all analyses from 

this point onwards were performed with 51 iterations.  

Sensitivity 

Figure 3-8: Bootstrapping analysis to determine the appropriate number of resample 
iterations required for the PLS-DA training dataset of blank serum vs MA in serum (top 
row) and blank urine vs MA in urine (bottom row). 51 iterations were chosen – indicated 
by black vertical like in all graphs.  

Sensitivity 

Specificity 

Specificity 
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3.3.3 Blank Samples versus MA Samples 

3.3.3.1 PLS-DA  

Before examining the classification results to distinguish MA spiked biofluid samples from 

blank samples, PLS-DA analysis was performed using up-sampling, down-sampling and 

SMOTE-sampling methods for the serum and urine datasets to determine the best 

resampling method. The results of this analysis are summarised in Tables 3-5 and 3-6. The 

PLS-DA model was performed 51 times as determined by the bootstrapping analysis in the 

previous section and the results were combined to give mean sensitivity and specificity 

values and the variation in the values obtained was described by the standard deviation.  

Table 3-5: Comparison of sampling techniques for PLS classification of BlankS and SPMA 
samples. BlankS refers to blank serum samples and SPMA refers to MA in serum. Pre-
processing steps included SG smoothing, vector normalisation, rubberband baseline 
correction and mean centring was performed during model construction. All values of mean 
and SD are provided for n = 51.  

 Up-Sampling Down-sampling SMOTE 

Mean SD Mean SD Mean SD 

Sensitivity (%) 90.4 11.6 91.5 9.5 82.9 14.8 

Specificity (%) 92.3 9.5 91.9 9.7 95.8 7.1 

Kappa 0.82 0.12 0.83 0.13 0.79 0.14 

Balanced Accuracy 
(%) 91.4 6.3 91.7 6.6 89.3 7.6 

 

Table 3-6: Comparison of sampling techniques for PLS classification of BlankAU and UPMA 
samples. BlankAU refers to blank urine samples and UPMA refers to MA in urine. Pre-
processing steps included SG smoothing, vector normalisation, rubberband baseline 
correction and mean centring performed during model construction. All values of mean and 
SD are provided for n = 51.  

 Up-Sampling Down-sampling SMOTE 

Mean SD Mean SD Mean SD 

Sensitivity (%) 94.1 11.8 95.1 11.2 88.7 15.2 

Specificity (%) 92.5 13.8 96.8 10.1 98.4 5.4 

Kappa 0.93 0.15 0.92 0.14 0.87 0.14 

Balanced Accuracy 
(%) 86.4 7.7 95.9 7.3 93.5 7.5 
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For the PLS-DA classifications, sensitivity and specificity values when using down-sampling 

were 91.5% and 91.9% respectively, which provided a balanced approach in comparison to 

up-sampling and SMOTE sampling (referring to samples in Table 3-5). Though up-sampling 

and SMOTE-sampling both provided higher specificities of 92.3% and 95.8%, respectively, 

(Table 3-5) than those of the down-sampling, the standard deviation associated with 

sensitivity values for both was much higher than that of down-sampling. This could have real-

world implications when analysing real samples where biofluids with drugs present in them 

would be incorrectly identified. Similarly, for urine samples, the down-sampling method 

again presented the best balance between identifying true positives (95.1% ± 11.2) and true 

negatives (96.8% ± 10.1) while maintaining the lowest standard deviation values in 

comparison with the other two methods. In addition, the down-sampling protocol showed a 

relatively high Kappa value of 0.83 for serum and 0.92 for urine samples further adding to 

the reliability of this predictive model. Therefore, the down-sampling method was 

demonstrated to be more appropriate for both biofluids.  

The sensitivities of 91.5% for serum samples and 95.1% for urine samples indicate that over 

90% of the samples that contained MA were correctly assigned by the PLS-DA classification 

model. Similarly, the specificities of 91.9 and 96.8% in serum and urine respectively indicate 

that true negative samples i.e., samples that did not have any MA were correctly assigned 

91.9 and 96.8% of the times. The high sensitivity demonstrated by this classification is 

promising as it has important implications in correctly identifying samples that need further 

confirmatory testing. The high specificity indicated by this model is particularly useful as a 

false positive screening test can have serious consequences such as unjust termination of a 

job and undue stress until confirmatory testing can be performed.  

3.3.3.2 Random Forest  

Following the same pre-processing protocol, RF classification models were built using the 

training datasets in both biofluids to evaluate the performance of the three resampling 

techniques. The bootstrapped RF model with 51 iterations was built for the dataset 

containing samples with MA and blank matrix with 5-fold cross-validation. The mean 

sensitivities and specificities along with their standard deviations are summarised in Tables 

3-7 and 3-8. 
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When compared to the PLS-DA results of the same samples in the serum dataset, errors 

associated with RF sensitivity values were 6.6% and 8.5% higher for up- and down-sampling 

respectively and only 1.2% lower for SMOTE sampling (Tables 3-5 and 3-7). The opposite 

trend was seen in the specificities whereby up-sampling provided the highest specificity of 

95.9% with the lowest error of 9.7% (Tables 3-5 and 3-7). PLS-DA was found to be a stronger 

classifier when comparing specificities which was also supported by the lower balanced 

accuracies of the RF models for all three sampling techniques in both biofluids (Tables 3-5 to 

3-8).  

Table 3-7: Summary of results showing sampling methods for MA in serum versus blank 
serum samples using RF classification. Pre-processing steps included SG smoothing, vector 
normalisation, rubberband baseline correction and mean centring was performed during 
model construction. All values of mean and SD are provided for n = 51. 

 

Table 3-8: Summary results showing sampling methods comparison for MA in urine versus 
blank urine samples using RF classification. Pre-processing steps included SG smoothing, 
vector normalisation, rubberband baseline correction and mean centring was performed 
during model construction. All values of mean and SD are provided for n = 51. 

While the PLS-DA sensitivity and specificity values were stronger in comparison to the RF 

classification results, the RF classification provided another output, the Gini importance 

 Up-Sampling Down-sampling SMOTE 

Mean SD Mean SD Mean SD 

Sensitivity (%) 67.8 18.2 73.9 18.0 75.9 16.0 

Specificity (%) 95.9 9.7 89.9 11.1 87.1 12.6 

Kappa 0.64 0.19 0.64     0.19 0.63 0.18 

Balanced Accuracy 
(%) 81.6 10.0 81.9 9.8 81.5 9.2 

 
Up-Sampling Down-sampling SMOTE 

Mean SD Mean SD Mean SD 

Sensitivity (%) 91.1 15.6 88.7 15.2 91.6 13.8 

Specificity (%) 87.8 12.1 83.5 14.8 83.1 18.9 

Kappa 0.78 0.15 0.71 0.22 0.74 0.21 
Balanced Accuracy 

(%) 89.5 7.9 86.1 11.3 87.4 10.2 
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plots, which is significantly useful (Figure 3-10). While statistical metrics are valuable for 

model accuracy and reliability, the Gini importance plot provides wavenumbers that are 

significant in achieving classification between drug samples and blank (drug-free) biofluids. 

Figure 3-9 shows the Gini importance plots for serum and urine RF classification models. The 

spectral regions of importance are shown by the orange, purple and green boxes in Figure 3-

9. As previously described in section 3.3.1, the orange boxes highlight vibrational modes 

linked to the aromatic ring including the ring breathing modes and out-of-plane C-H 

stretches. The vibrational modes due to ring substitution in the drug molecule are shown in 

the purple boxes while the green box denotes vibrational modes of the aliphatic side chain 

in the molecules. 

Figure 3-9: Random Forest Gini importance plot showing the most important features for 
classification between blank serum samples (labelled ‘BlankS’) and MA in serum (labelled 
‘SPMA’) (top) and between blank urine (labelled ‘BlankAU’) and MA in urine, (labelled 
‘UPMA’) (bottom). The orange box indicates substitution of the aromatic ring while the 
purple boxes are indicative of the overtone and combination bands.  
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The Gini importance plots determine that the most important region for discrimination in 

both matrices was the lower wavenumber end of the spectrum (850-700 cm-1) due to the 

out-of-plane C-H stretching of the aromatic ring. This is also indicated in Figure 3-10 where 

the two strong sharp peaks at 748 and 700 cm-1 overlap with the same peaks in the MA 

spectra in serum and urine. The 1225-950 cm-1 region reflective of the ring substitution 

however was found to be of more importance in the urine dataset than that in the serum 

dataset. 

 

The overtone bands in the 2050-1700 cm-1 region are much more significant for the 

classification of serum samples than for the urine dataset. In the urine dataset, this region 

has a strong thiocyanate peak at 2041 cm-1 which is part of the brand of urine matrix used in 

this thesis. This peak was seen change in absorbance when drug compounds were added to 

the sample which is reflective of a chemical reaction between the drug compound and the 

matrix. For the remaining compounds such as AM, NOR, and pOHMA, this reaction was seen 

to be stronger indicated by a greater decrease in the intensity of that peak (Figure 3.7). 

Moreover, it can be expected that the same spectral regions might be of significance in both 

Figure 3-10: The powder spectra for MA are overlaid onto the blank matrix and 
MA samples spectra for serum (top) and urine (bottom).  
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biofluids. However, it was found that this was not always the case, likely due to the 

interactions between the drug molecules and the matrix altering the spectral characteristics.  

In summary, MA can be successfully distinguished from drug-free samples in both urine and 

serum using both classification methods presented here with high sensitivity and specificity.  

In terms of sampling methods, down sampling was seen to be more promising than that of 

others for this dataset. However, this was verified by performing all three for the remainder 

of this chapter, and the best values obtained for sensitivities and specificities are presented. 

For the rest of the chapter, both classification methods are presented as PLS-DA showed 

better sensitivities and specificities, while the RF method was important for highlighting 

wavenumber regions of significance.  

The results are promising as they span a range of relevant concentrations including the upper 

limit of the clinical range as well as overdoses in a forensic toxicology situation. However, 

future experiments with lower concentrations are required for wider application. Both PLS 

and RF coupled with the advantages of IR illustrate that this method can be used to detect 

drugs in biofluids without sample extraction, it is sensitive to be applicable in both clinical 

and forensic settings and shows potential for use in the field when validated with portable 

instrumentation.  

3.3.4 MA Samples versus Individual Metabolites Samples 

As MA metabolises into many components, detection of only the consumed drug (MA) in a 

biofluid is not necessarily indicative of a true scenario as it is unlikely that the biological fluid 

being tested will contain only MA. Thus, it is imperative to consider MA along with its 

metabolites, AM, NOR, pOHMA and pOHAM, which produce their own unique spectral 

signatures, in order to distinguish MA from these similar compounds. However, it was not 

possible to access all the known metabolites of MA as individual compounds that can be 

purchased and analysed. Furthermore, there is a lack of information on the percentages of 

each of the metabolites in the samples making it difficult to create a more representative 

sample.  

3.3.4.1 PLS-DA 

Multiple binary classifications were performed by labelling the MA-only samples as the 

positive class and the metabolites were rotated in turn as the negative class, resulting in the 

production of four classification models. A summary of these results for the PLS-DA analyses 
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is provided in Tables 3-9 and 3-10 for serum and urine, respectively. In serum, mean 

sensitivities against AM, NOR and pOHAM are relatively similar however, pOHMA produced 

the lowest sensitivity. This is likely due to the lower concentration of pOHMA used due to its 

solubility (3 mg/mL) compared with the other metabolites (10 mg/mL) as well as the smaller 

number of samples belonging to that class.  

Table 3-9: PLS-DA summary table of the parent drug, MA, against each individual metabolite 
in serum. Pre-processing steps included SG smoothing, vector normalisation, rubberband 
baseline correction and mean centring was performed during model construction. 
Sensitivities, specificities, and balanced accuracies are reported as means and standard 
deviations (SD) of 51 iterations. 

 
Table 3-10: PLS-DA summary of the parent drug, MA against each of the metabolites in urine. 
Pre-processing steps included SG smoothing, vector normalisation, rubberband baseline 
correction and mean centring was performed during model construction. Sensitivities, 
specificities, and balanced accuracies are reported as means and standard deviations (SD) of 
51 iterations.  

 

However, in urine samples (Table 3-10) the lowest specificity and sensitivity values, 86.2% 

and 88.2% respectively, were observed from the classification of MA and AM. The structures 

Drug 
molecule 

against MA  
Sampling 

Sensitivity (%) Specificity (%) Balanced 
Accuracy (%) 

 
Mean SD Mean SD Mean SD  

AM       Down   96.1 8.1 93.2 8.7 94.6 5.5  

NOR  Down  96.9 5.9 92.9 9.6 94.9 5.0  

pOHMA  Down 91.3 10.3 90.1 19.1 90.7 9.7  

pOHAM  Down 96.9 7.1 95.5 9.2 96.2 6.1  

Drug 
molecule 

against MA  
Sampling 

Sensitivity (%) Specificity (%) Balanced 
Accuracy (%) 

 
Mean SD Mean SD Mean SD  

AM Down 86.2 13.6 88.2 10.4 87.2 7.7  

NOR Down 96.8 7.3 89.8 12.2 93.3 6.5  

pOHMA Down 96.8 5.4 100 0 98.4 3.6  

pOHAM Down 94.5 7.3 98.4 5.4 96.4 4.8  
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of MA and AM are almost identical except for a methyl group attached to the amine side 

chain which can be seen in the higher wavenumber region (Figure 3-2). While urine is a 

simpler matrix, the higher wavenumber region (3600 – 3000 cm-1) of urine is dominated by 

broad and strong peaks of urea which are susceptible to drying conditions. Thus, these subtle 

differences between MA and AM are difficult to identify over the urine background in this 

region. The remaining three drugs, NOR, pOHMA and pOHAM, have stronger differences in 

the lower wavenumber region (850 - 650 cm-1) allowing greater classification accuracies. 

Upon use of the second derivative in addition to the previous pre-processing steps for the 

MA and AM samples, classification model accuracies indicated some improvement as it 

allowed for peaks characteristic of the methyl side chain (Region C, illustrated in Figure 3-4) 

to be more resolved. The results of this analysis are shown in Table 3-11. For serum samples, 

the sensitivity value was seen to decrease by 0.9% while the specificity value was seen to 

improve by 1.7%. For urine samples, the sensitivity and specificity of the PLS-DA classification 

model increased by 10.5 and 6.7% respectively when the second derivative was used.  

Table 3-11: PLS-DA classification summary of MA against AM. Pre-processing steps included 
SG smoothing, vector normalisation, rubberband baseline correction and second derivative 
with mean centring being performed during model construction. Sensitivities, specificities, 
and balanced accuracies are reported as means and standard deviations (SD) of 51 iterations. 

 
3.3.4.2 Random Forest 

Multiple RF classifications were performed by labelling MA-only samples as the positive class 

and rotating metabolites in turn as the negative class. This resulted in four classification 

models which are summarised in Tables 3-12 and 3-13.  

Table 3-12: RF classification summary of parent drug MA against each of the metabolites in 
serum. Pre-processing steps included SG smoothing, vector normalisation, rubberband 
baseline correction and mean centring was performed during model construction. 

Biofluid 

Drug 
molecule 
against 

MA 

Sampling 
Sensitivity (%) Specificity (%) Balanced 

Accuracy (%) 
 

Mean SD Mean SD Mean SD  

Serum AM Down 95.2 6.8 94.9 8.4 95.1 5.6  

Urine AM Down 96.7 10.0 94.4 16.8 95.5 9.6  
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Sensitivities, specificities, and balanced accuracies are reported as means and standard 
deviations (SD) of 51 iterations. 

 

RF classification was also successful in classifying MA samples from their individual 

metabolites in both urine and serum. For NOR samples in serum, the RF sensitivity and 

specificity values were higher by 3.1 and 4.5% respectively when compared to that of the 

PLS-DA classification. In urine, however, PLS-DA classification performed better in 

distinguishing NOR samples from blank urine samples. For pOHAM samples, both 

classification models achieved similar results in both biofluids whereby the sensitivity and 

specificity values only differed by ± 1-3% and the standard errors associated with these values 

showed a similar trend. The pOHMA samples showed a similar trend for the serum dataset 

while the RF classification performed perfectly in the urine dataset with 100% sensitivity and 

specificity.  

 

 

 

 

 

Table 3-13: RF classification summary of parent drug MA against each of the metabolites in 
urine. Pre-processing steps included SG smoothing, vector normalisation, rubberband 
baseline correction and mean centring was performed during model construction. 

Drug 
molecule 

against MA  
Sampling 

Sensitivity (%) Specificity (%) Balanced 
Accuracy (%) 

 

Mean SD Mean SD Mean SD  

AM Down 91.1 11.7 90.4 11.3 90.7 8.1  

NOR Down 100 0 97.4 9.3 98.7 4.6  

pOHMA Down 92.4 11.9 92.1 17.1 92.3 10.5  

pOHAM Down 96.6 6.7 94.1 11.5 95.3 6.5  
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Sensitivities, specificities, and balanced accuracies are reported as means and standard 
deviations (SD) of 51 iterations. 

 
The spectral regions highlighted in the difference spectra of serum samples in Figure 3-5 are 

also reflected in the Gini importance plots obtained from these four RF classification models. 

These are shown in Figure 3-11 for serum samples. The overlaid spectra of the blank matrix, 

drug samples in the matrix and the powder spectra of drugs for the 4 metabolites are 

presented alongside the parent drug MA in Appendix 1 (Figures A1-1 and A1-2). These figures 

illustrate the corresponding drug peaks These plots illustrate that the differences due to 

mono- and di-substitution of the ring highlighted by the purple boxes in the 1225 - 950 cm-1 

region are significant in all four classification models MA and its metabolites, NOR, pOHMA 

and pOHAM.  

The stretching vibrations at 2460 cm-1 attributed to the hydrochloride salt present in MA 

indicated by the grey box in plot 1 in Figure 3-11 is of particular significance for the 

classification of MA against its major metabolite and structurally very similar molecule, AM. 

The differences between the aliphatic side chains between MA and AM are also emphasised 

by the Gini importance plot (Green box in plot 1 in Figure 3-11). The same region C illustrated 

by the green box in plot 3 in Figure 3-14 is significant in the classification of MA against 

pOHAM. This is due to the stretching vibrations of the aliphatic side chain with the primary 

amine group in AM and pOHAM while both MA is a secondary amine.  

For urine samples, a similar trend is observed whereby the spectral regions of importance 

highlighted in the Gini importance plot in Figure 3-12 are corroborated by those in the 

difference spectra shown in Figure 3-7. The region A (850 – 700 cm-1) indicating the out-of-

Drug 
molecule 

against MA  
Sampling 

Sensitivity (%) Specificity (%) Balanced 
Accuracy (%) 

 

Mean SD Mean SD Mean SD  

AM Down 87.0 19.1 96.0 10.3 91.5 9.6  

NOR Down 93.3 11.0 87.0 13.1 90.1 8.3  

pOHMA Down 100 0 100 0 100 0  

pOHAM Down 91.7 17.0 98.4 6.7 95.1 8.8  
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plane deformation vibration modes presented in orange boxes in Figure 3-12 is significant in 

all four classification models.  

The strong thiocyanate peak at 2041 cm-1 in the urine matrix showed a significant impact on 

the classification between MA and its metabolites owing to the reaction between the 

molecule and the matrix. The greatest example of this is seen in the classification between 

MA and pOHMA in plot 4 in Figure 3-12. While it was also of significance in the discrimination 

of MA from AM as well as MA from NOR, the 2041 cm-1 peak was relatively less significant in 

the classification of MA and pOHAM. This can likely be attributed to the varying strength of 

the reaction between the molecules and the matrix as is reflected by the varying intensities 

of the 2041 cm-1 peak in the difference spectra of the metabolites (Figure 3-7). Because the 

difference spectra for MA and pOHMA were at 10 mg/mL and 3 mg/mL, a more appropriate 

comparison of the same concentration is shown in Figure A1-3 in Appendix 1. The reaction 

between the matrix and pOHMA is stronger than that of MA indicated by the lower intensity 

of the 2041 cm-1 peak seen for pOHMA. As this reaction is an artefact of the brand of artificial 

urine employed in this study, its impact needs to be interpreted with caution on the 

classification models and its occurrence investigated should be in real urine samples.  
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Figure 3-11: Gini importance plots for RF classification of MA against AM (1), NOR (2), 
pOHAM (3) and pOHMA (4) in serum. Spectral regions of importance are indicated 
by coloured boxes where orange boxes highlight region A (1650-1400 and 950-650 
cm-1; vibrations due to the aromatic ring), purple boxes highlight region B (2000-
1650, 1225-950 cm-1; vibrations indicating substitution on the ring) and green box 
highlights region C (2932-2715 cm-1; aliphatic vibrations from the side chain). SPMA 
refers to MA samples in serum, SPAM refers to AM samples in serum, SPNOR refers 
to NOR samples in serum, SPpOHAM refers to pOHAM samples in serum and 
SPpOHMA refers to pOHMA samples in serum.  

1 

2 

3 
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Figure 3-12: Gini importance plots for RF classification of MA against AM (1), NOR (2), 
pOHAM (3) and pOHMA (4) in urine. Spectral regions of importance are indicated by 
coloured boxes where orange boxes highlight region A (1650-1400 and 950-650 cm-1; 
vibrations due to aromatic ring) and purple boxes highlight region B (2000-1650, 1225-
950 cm-1; vibrations indicating substitution on the ring). UPMA refers to MA samples in 
urine, UPAM refers to AM samples in urine, UPNOR refers to NOR samples in urine, 
UPpOHAM refers to pOHAM samples in urine and UPpOHMA refers to pOHMA samples 
in urine.  
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Upon the use of the second derivative, the RF sensitivity and specificity values improved for 

the serum dataset while the urine dataset showed a lower sensitivity by 13.1% and an 

improvement in the specificity by 6.4%. As much of the distinguishing features i.e., vibrations 

from the aliphatic side chains in the 3000-2700 cm-1 region useful in this classification are 

masked by the serum background, the use of the second derivative allows resolving these 

improving the overall sensitivity and specificity. For the urine dataset, however, the 

classification was mainly based on the features in regions A and B which meant that the key 

distinguishing structural region (region C; aliphatic side chain) was not included in the model 

due to higher variability in sample drying. Overall, RF models performed better for the serum 

dataset with lower standard deviations and higher balanced accuracies than that for PLS-DA 

classification.  

Table 3-14: RF classification summary of MA against AM with the second derivative employed 
during pre-processing. Pre-processing steps included SG smoothing, vector normalisation, 
rubberband baseline correction and second derivative with mean centring being performed 
during model construction. Sensitivities, specificities, and balanced accuracies are reported 
as means and standard deviations (SD) of 51 iterations. 

 
3.3.5 Blank Samples versus Drug Samples 

Finally, all drug compounds i.e. 1 parent drug and 4 metabolites were grouped together as a 

single class in order to distinguish between samples that contain drugs from those that do 

not. Tables 3-15 and 3-16 provide a summary of PLS and RF classification results respectively. 

The sensitivity and specificity values for this PLS classification of blank samples versus drug-

spiked samples in serum were 95.2 ± 7.4% and 80.8 ± 6.8%. This indicates that the model was 

able to correctly identify drug-negative samples 95.2% of the time and drug-positive samples 

80.8% of the time. PLS classification on the urine dataset achieved sensitivity and specificity 

of 91.6 and 91.1% which indicates that the model was able to correctly classify drug-free and 

drug-positive samples ~91% of the time. PLS classification was found to be stronger than RF 

Biofluid 

Drug 
molecule 
against 

MA 

Sampling 
Sensitivity (%) Specificity (%) Balanced 

Accuracy (%) 
 

Mean SD Mean SD Mean SD  

Serum AM Down 99.7 2.0 98.6 4.2 99.1 2.3  

Urine AM Down 83.6 27.7 100 0 91.8 13.8  
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analysis of similar samples with higher values for sensitivities and specificities for serum and 

urine with higher overall balanced accuracies. However, the Gini importance plots for serum 

and urine datasets corroborate that the features contributing to the RF classification of drug-

free samples from drug-positive samples fall in the spectral regions A to D identified in the 

powder and the difference spectra (Figures 3-4, 3-7, 3-8 and 3-13). The peak at 2460 cm-1 

reflective of the hydrochloride salt form of MA, shows high significance in the Gini 

importance plot for the serum dataset, it is only present in the MA molecule. The position, 

intensity and shape of this peak are highly dependent on the molecular environment and 

therefore were not included in the regions identified in this analysis.87  

Table 3-15: PLS-DA results of blank biofluid samples against all drug samples grouped 
together as ‘Other’, where Blank = positive class (sensitivity) and Other = negative class 
(specificity). Pre-processing steps included SG smoothing, vector normalisation, rubberband 
baseline correction and mean centring was performed during model construction. All values 
are reported as means and standard deviations (SD) of 51 iterations. 

 

Table 3-16: RF results of blank biofluid samples against all drug samples grouped together as 
‘Other’, where Blank = positive class (sensitivity) and Other = negative class (specificity). Pre-
processing steps included SG smoothing, vector normalisation, rubberband baseline 
correction and mean centring was performed during model construction. All values are 
reported as means and standard deviations (SD) of 51 iterations. 

Blank against 
“Other” 

(Positive = Blank; 
Negative = Other) 

Sampling 
Sensitivity (%) Specificity (%) Balanced 

Accuracy (%) 
 

Mean SD Mean SD Mean SD  

Serum Up 95.2 7.4 80.8 6.8 88.0 4.5  

Urine Up 91.6 12.9 91.1 4.6 91.3 6.8  

Blank against 
“Other” 

(Positive = Blank; 
Negative = Other) 

Sampling 
Sensitivity (%) Specificity (%) Balanced 

Accuracy (%) 
 

Mean SD Mean SD Mean SD  

Serum Down 74.5 14.2 90.3 5.2 82.4 7.3  

Urine Down 85.2 18.2 86.5 6.2 85.9 9.4  
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To our knowledge, there are no publications that explore the application of ATR-FTIR 

spectroscopy combined with chemometrics to unextracted biological samples to identify the 

presence of drugs of abuse with such high sensitivities and specificities. Therefore, the results 

presented here of both classification models derived from clinically and forensically relevant 

concentrations are significant to the application of this method in and out of the lab. 

 

Finally, PLS-DA was performed for the detection of MA-only samples from those that contain 

MA with its metabolites. For the classification, MA-only samples were kept as the positive 

class while the negative class was labelled as ‘Other’ which included samples containing its 

four metabolites. The classification results are summarised in Table 3-17 for both serum and 

Figure 3-13: Gini importance plots of RF classification of blank biofluid against drug samples 
in that biofluid. In the top image, BlankS refers to drug-free serum samples and Other refers 
to drug-positive serum samples. In the bottom image, BlankAU refers to blank urine or drug-
free urine samples and Other refers to urine samples with drugs in them. Orange box shows 
spectral region A (3100-3000 cm-1, 1650-1400 cm-1 and 950-650 cm-1), purple box indicates 
spectra region B (2050-1650 cm-1, 1225-950 cm-1), green box indicates spectral region C 
(2950-2700 cm-1) and blue box indicates spectral region D (3600-3300 cm-1).  
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urine datasets. When classified against all metabolites, the sensitivity and specificity values 

of 83.4 and 88.8% for MA in serum respectively and 90.9 and 86.7% for MA in urine 

respectively were lower than that observed for individual analyses (Tables 3-7 and 3-8). This 

is likely due to many overlapping features in the negative class from all the metabolites.  

For a similar analysis of the urine dataset, sensitivity improved by 7.5% which again can be 

attributed to the less complex nature of the urine matrix. However, it can be said that the 

PLS-DA model holds up well in the face of numerous spectral signatures in the negative class 

and is able to identify the presence of the parent drug in biofluids relatively well with strong 

sensitivities and specificities. This has clinical implications as the correct combination of MA 

with its major and minor metabolites could indicate time passed since the administration of 

MA.  

Table 3-17: PLS-DA results of MA samples against all metabolites grouped together as 
‘Other’, where MA = positive class(sensitivity) and Other = negative class (specificity). Pre-
processing steps included SG smoothing, vector normalisation, rubberband baseline 
correction and mean centring performed during model construction. All values are reported 
as means and standard deviations (SD) of 51 iterations. 

 

3.3.6 Blind Samples  

Finally, three binary PLS-DA models were constructed using samples listed in Table 3-1 where 

the positive class was rotated between MA, AM and NOR, while the negative class, labelled 

as ‘Other’, consisted of the remaining two drug samples. Each binary classification model (for 

example - MA vs Other, AM vs Other or NOR vs Other) was trained to predict the positive 

class and was tested using an independent test set made up of two groups of samples – single 

drug samples (n=13) listed in Table 3-2 and a mixture of MA with a metabolite (n=4) listed in 

Table 3-3. Only AM, and NOR were included in the blind dataset as these two compounds are 

drugs sold on their own as well as being metabolites of MA. Hence it is more likely that they 

are found in illicit samples as well as in conjunction with illicit MA.  

MA against 
“Other” 

(Positive = MA; 
Negative = Other) 

Sampling 
Sensitivity (%) Specificity (%) Balanced 

Accuracy (%) 
 

Mean SD Mean SD Mean SD  

Serum Up 83.4 13.5 88.8 6.8 86.1 6.3  

Urine Down 90.9 12.8 86.7 8.4 88.8 7.9  
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In Table 3-18, the cells highlighted in green indicate the correctly identified samples in 

relation to the positive class for that binary classification. The cells in red show those samples 

that were misclassified when they should have been identified as the positive class. 

Surprisingly, in the first binary classification with MA as the positive class, sample 9007 is 

misclassified as ‘Other’ even though it contains a high concentration of MA. This is likely an 

error either in the preparation of the sample or during the spectral collection and should be 

re-created and/or analysed.  

Table 3-18: Blind single drug samples were classified using PLS-DA analysis where the three 
drugs, MA, AM and NOR, were rotated to be the positive class and the rest were included in 
as ‘Other’ that formed the negative class. Pre-processing steps included SG smoothing, vector 
normalisation, and rubberband baseline correction. Mean centring was performed during 
model construction. Those highlighted in green were correctly classified and those in red 
were misclassified by the PLS-DA model.  

Sample ID Actual Drug 
present 

Concentration 
(mg/mL) 

Predicted - Positive class 

MA AM NOR 

9001 NOR 0.4 Other Other NOR 

9002 MA 0.3 MA Other Other 

9003 AM 0.37 Other Other NOR 

9004 MA 0.5 MA Other NOR 

9005 MA 1 MA Other Other 

9006 MA 4 MA Other Other 

9007 MA 9 Other Other Other 

9008 AM 2 Other AM Other 

9009 AM 5 Other AM Other 

9010 AM 7 Other AM Other 

9011 NOR 1 Other Other NOR 

9012 NOR 3 Other Other NOR 

9013 NOR 9 Other Other NOR 

 

For the second test set, that of mixed drug-metabolite samples (listed in Table 3-3), MA was 

labelled as the positive class, and the remaining drug samples as ‘Other’. Here, the models 

were trained to predict MA-only samples as the positive class – implying that all samples that 

contain MA and its metabolites should have been classified as ‘Other’. This was done to test 

the capabilities of the model built in this chapter to distinguish samples that contain MA and 
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other compounds – which can either be the metabolites of MA or any other adulterants 

present.  

Table 3-19 shows the PLS-DA results whereby one out of the four mixed blind samples was 

correctly classified as ‘Other’ (shown in green). The potential reason for this misclassification 

of the three samples is that all mixed samples contain MA in dominating concentrations 

compared to the metabolite. Furthermore, sample 9014 contained AM as the metabolite 

which is much closer in structure to MA than NOR, potentially contributing to its correct 

classification. One limitation to note here is that street samples consumed in the real world 

are not only likely to contain MA and its metabolites including those not considered in this 

study but also cutting agents and potentially their metabolites. However, with a bigger 

training dataset containing a greater range of samples and concentrations, the application of 

these classification models to real-world samples is promising. 

Table 3-19: PLS-DA classification predictions for mixed blind samples. Pre-processing steps 
included SG smoothing, vector normalisation, and rubberband baseline correction. Mean 
centring was performed during model construction. The classification was performed where 
MA was the positive class, and all others were included as ‘Other’ in the negative class.  

Sample ID Actual drug combination present Predicted 

9014 0.6 mg/mL MA + 0.1 mg/mL AM Other 

9015 0.8 mg/mL MA + 0.12 mg/mL NOR SPMA 

9016 1 mg/mL MA + 0.17 mg/mL AM SPMA 

9017 0.3 mg/mL MA + 0.1 mg/mL NOR SPMA 

 

3.3.7 PLS-R Results 

As a final step in this proof-of-concept chapter, PLS regression analysis was performed to 

determine the limits of detection (LOD) and quantification (LOQ) for the parent drug and its 

metabolites in urine and serum. The dataset was split into an 80% training set and a 20% test 

set to build a PLS model with 10-fold cross-validation. All replicates for each sample were 

kept together when splitting the dataset into training and test set. The results of this are 

collated in Table 3-18 and an example graph is shown in Figure 3-20. The remaining graphs 

are included in Appendix 1 (Figures A1-4, A1-5, A1-6 and A1-7). 

The PLS-R analysis showed good linearity across all drugs and performed well at predicting 

the limits of detection and quantification. For MA, the results are promising as the limit of 
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detection of 0.1 mg/mL and the limit of quantification of 0.3 mg/mL fall within the 

concentration range relevant to the clinical and forensic setting. Similar detection and 

quantification limits for the four metabolites of MA in both biofluids obtained without any 

sample extraction steps illustrate promising first steps of this protocol. With more samples 

per drug and a wider concentration range, it is possible to expand these detection and 

quantification limits on either end. When interpreting the concentrations from real-world 

samples using this PLS regression analysis, caution must be used in using exact numbers as 

these models are derived from single dose calculations not accounting for accumulation in 

the body. Furthermore, it is difficult to determine the effect of post-mortem redistribution 

on the antemortem and post-mortem concentrations in a forensic toxicology context as 

comparative samples from the same individuals are rarely available.88    

Table 3-20: Summary table showing PLS-Regression analysis performed on the calibration 
standards ranging in concentration from 0.1-10 mg/mL for each drug molecule with the 
exception of pOHMA. The concentration range for pOHMA was 0.1 – 3 mg/mL. Blank serum 
samples were included to represent 0 mg/mL. Pre-processing steps included SG smoothing, 
vector normalisation, and rubberband baseline correction.  

 
  

 Drug 
molecule 

Limit of 
detection 
(mg/mL) 

Limit of 
Quantification 

(mg/mL) 
R2 RMSECV 

(mg/mL) 

Serum 

MA 0.102 0.339 0.996 0.385 
AM 0.100 0.335 0.986 0.378 
NOR 0.125 0.418 0.995 0.242 

pOHAM 0.210 0.702 0.995 0.231 
pOHMA 0.076 0.255 0.994 0.068 

Urine 

MA 0.29 0.966 0.989 0.334 
AM 0.121 0.402 0.998 0.129 
NOR 0.157 0.523 0.992 0.297 

pOHAM 0.301 0.989 0.845 1.28 
pOHMA 0.29 0.92 0.820 0.40 
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Figure 3-14: Graph showing PLS-R analysis for MA samples in 
serum across the concentration range of 0.1-10 mg/mL. The 
clinically and forensically relevant concentration range from 
0.1 – 0.9 mg/mL is showed in an expanded graph at the bottom 
for clarity. 
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3.4 Conclusions  

In this chapter, the ability of ATR-FTIR spectroscopy to analyse drug powders and liquid 

biological samples was combined to demonstrate the successful detection of MA in serum 

and urine without the use of prior sample extraction methods. Furthermore, the method was 

also applied to the detection of four metabolites of MA, namely AM, NOR, pOHMA and 

pOHAM, in serum and urine. Despite the complexity of serum and urine, detection of these 

comparatively small drug and metabolite molecules was possible through the use of 

multivariate analytical techniques.   

Robust classification results were achieved through PLS-DA and were corroborated with 

visual spectral examination and random forest analysis. For the discrimination of MA-only 

samples from neat biofluids, sensitivities and specificities of ~91% in serum and ~95% in urine 

with balanced accuracies of 91.7 and 95.9% in serum and urine respectively are reported 

using PLS-DA classification. Furthermore, PLS-DA classification was able to discriminate MA 

from its metabolites, showing success even with the structurally similar AM, only differing 

from MA by a methyl group. This successful discrimination of MA from AM, with sensitivity 

and specificity values of 96.1% and 93.2% in serum and 86.2% and 88.2% in urine, illustrates 

the potential beneficial value of this method in a forensic setting. Overall, this protocol was 

able to discriminate between drug-free/blank samples from those that contained drugs in 

both biofluids with sensitivity and specificity values of 95.2 ± 7.4% and 80.8 ± 6.8% in serum 

and 91.6 ± 12.9% and 91.1 ± 4.6% in urine respectively. This is significant to clinical and 

forensic settings as the samples included here cover the upper limit of the clinical 

concentrations and overdose concentrations in forensic cases. It is also prudent to keep in 

mind that composition of real biological samples from patients are likely to show differences 

due to diet, ethnicity, gender, age, genetic differences in relevant metabolic enzymes and 

use of other medications. Therefore, it is important to view these results in light of these 

factors and make interpretations accordingly.  

In addition, the predictive capabilities of this classification methodology were successfully 

tested in this study with blind samples. Out of 17 blind samples, 12 were successfully 

classified which included individual drug compound samples as well as MA+metabolite mixed 

samples. The blind samples containing drug-metabolite mixtures were more difficult to 

discriminate as the concentration of MA was higher in comparison to the metabolite 
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compounds and the models presented here do not account for mixtures and potential 

interactions between molecules.  

In order to establish limits of detection and quantification of MA and its metabolites in both 

serum and urine, PLS-Regression was utilised and produced robust results for all 5 

compounds examined. In particular, the regression model built for MA shows excellent 

linearity in serum and urine with R2 values of 0.985 and 0.989 respectively. The limits of 

detection and quantification for MA from the PLS-R model were reported to be 0.102 and 

0.339 mg/mL in serum and 0.29 and 0.966 mg/mL in urine respectively. While the 

concentrations studied here are more reflective of single-dose levels in serum and urine, 

chronic MA users show a tendency to accumulate MA from long-term abuse.64 Moreover, 

real samples are likely to be more complex in composition and contain MA, its metabolites 

in varying concentrations and combinations as well as any cutting agents and impurities from 

illicit production. It is therefore important to exercise caution when interpreting 

concentrations of real-world samples using the regression models presented here. 

Improvements to the results presented here can be made by enriching the dataset with a 

variety of drugs, drug mixtures and concentrations. More specifically, lowering the 

concentration range to include concentrations from 0.006 -0.1 mg/mL would be beneficial 

for its application in the clinical setting. Air-drying of samples was employed in the 

development of this method. However, if a more standardised drying protocol is employed, 

it is likely to reduce spectral variation leading to improved results.  

MA remains one of the most consumed drugs of abuse globally. With the rise of novel drugs 

and their consumption in polydrug settings, it is necessary to detect and identify these 

molecules not only in their powdered form but also upon consumption in biological fluids 

such as roadside drug testing. Furthermore, the consumption of drugs in an almost 

‘fashion/trendy’ manner requires analytical methods to be quickly adaptable to be useful in 

detecting novel substances found in street drugs. The results reported here were successful 

in detecting and distinguishing MA in biological fluids from controls and other drug molecules 

without any sample extraction or use of other reagents. ATR-FTIR spectroscopy was 

demonstrated to be translatable across five drug molecules in this chapter without the need 

for altering the analytical protocol making it valuable in the analysis of novel substances. 

Additionally, once the multivariate models were trained, the results were obtained within a 

matter of minutes which is unmatched when compared to the current gold standard 
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techniques of hyphenated mass spectrometry. Therefore, the proof-of-concept work 

presented in this chapter utilising the quick, label- and reagent-free analysis afforded by ATR-

FTIR spectroscopy combined with chemometrics provides a strong basis for future work in 

developing this method for a variety of drugs, drug-metabolite and drug-cutting agent 

mixtures in varying concentrations. This aspect of sample complexity arising from the 

adulteration of pure drug samples is explored in the upcoming chapter. 
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Abstract 

Access to drugs via other than legal channels means that neither developing nor developed 

countries are immune to the issue of adulterated drugs. In the case of clinically approved 

pharmaceuticals, for example, Desoxyn®, the adulteration generally stems from impurities 

left over during illicit manufacturing practices and any adulterants added post-production. 

For drugs not approved for therapeutic use and are illicitly manufactured such as MA, the 

likelihood of purchasing a pure product is slim to none. While some substances added to MA 

as cutting agents can be harmless, others can have serious consequences. However, such a 

detailed interrogation of samples is rarely conducted in routine toxicological analysis mainly 

due to resource constraints. Building on Chapter 3, this work provides an inexpensive 

solution to this problem by applying ATR-FTIR spectroscopy combined with chemometric 

analysis to distinguish pure MA samples from adulterated MA (10 to 90% purity) in serum 

and urine. Using three commonly found cutting agents in MA, this chapter demonstrates the 

successful discrimination of pure MA samples from those adulterated with either 

paracetamol, methylsulphonylmethane (MSM) or sugar using binary PLS-DA and RF models 

as well as multiclass PLS-DA models. For the multiclass model, sensitivities of 100%, 84% and 

100% and specificities of 100%, 99% and 99% are reported for discriminating MA from MA 

mixed with MSM, paracetamol and sugar respectively. The type of analysis presented here 

demonstrates the potential of the protocol developed in this thesis, and the ATR-FTIR 

spectroscopy in general for the detection and discrimination of illicit substances of unknown 

composition in biological samples.  
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4.1 Introduction 

Globally, the manufacture of amphetamine-type-stimulants (ATS) is dominated by 

methamphetamine (MA) as more than 95 per cent of all clandestine laboratories detected 

or dismantled worldwide were reported to have been manufacturing MA.1 Historically, this 

manufacture was dependent on the precursors, ephedrine and pseudoephedrine which are 

naturally derived from the plant Ephedra, focusing its production in regions of the world 

conducive to its growth.2 However, the discovery of synthetic routes for not only MA but also 

its precursors has expanded the geographical reach of clandestine production.1 Illicitly 

produced MA is very rarely sold as a pure substance and its composition can change at any 

stage of production to consumption.3 For MA, the purity levels have fluctuated from 1% to 

44%, 3% to 83%, 7% to 44%, and 40% to 55% in Australia, Europe, the United Kingdom and 

the United States, respectively.4-7 As the manufacturing processes of MA naturally create by-

products and residues reflective of the method or precursors used, a product of less than 

100% purity does not automatically imply adulteration.8 The final product will however 

inevitably contain impurities characteristic of the route of synthesis in addition to any 

modifications made by the illicit drug vendors and/or the drug consumer. Critically, the final 

product will contain evidence to routes of production, thus potential identification of 

established users/dealers, both locally and regionally, providing forensic intelligence and aid 

towards elucidating trafficking patterns of illicit MA.9-12  

While the drugs produced in pharmaceutical laboratories with good manufacturing practices 

have stringent quality control standards, illicit production has no such oversight. Further 

dilution of the pure drug substance is carried out during various stages of distribution for a 

variety of reasons by the wholesale supplier and local drug retailers. There are numerous 

ways in which such modifications can be made to the bulk drug content, which include the 

addition of cutting agents, contaminants, diluents or adulterants.13, 14 By-products of the 

manufacturing process or unintentionally added substances, for example from cross-

contamination, are often referred to as contaminants or impurities.15 Cutting agents 

collectively include adulterants or diluents and comprise a range of substances,3, 4 diluents 

refer to any pharmacologically inert and readily available substance added to bulk out the 

drug and decrease the amount of active ingredient,3, 8, 14 and adulterants, on the other hand, 

are pharmacologically active ingredients that are added to achieve a specific physiological 

effect.8, 14, 16 Therefore, it is very likely that consumers of illicit drugs may encounter drug 

mixtures that contain one or all of these types of modifications.  
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Many substances have been used to cut MA post-manufacture including sugars, bicarbonate 

of soda, caffeine, lidocaine, dimethyl sulfone, paracetamol, and phentermine.4, 8, 13, 17-24 

Sugars, mainly sucrose, are commonly used for bulking as they are legal and readily 

available.8, 13 Dimethyl sulfone (methylsulphonylmethane (MSM)), classified as a non-

controlled psychoactive substance,  a sulphur-based dietary supplement and an industrial 

solvent, is a commonly occurring cutting agent in illicit MA seized in Korea, Japan, Australia, 

Canada and the United States.15, 19, 21, 25-28 Its white colour and crystalline appearance, similar 

to MA crystals, gives the MSM adulterated MA the illusion of high purity.8 Paracetamol, on 

the other hand, is a non-controlled analgesic medicine commonly used to relieve cold 

symptoms and has also been found in illicit MA samples as it is cheap and easy to acquire.8 

Aside from the toxicity associated with MA itself, cutting agents can also have individual as 

well as compounding toxic effects. Furthermore, all three of these compounds are usually 

orally consumed, while MA has numerous forms that can be smoked, snorted, ingested or 

injected. Therefore, MA adulterated with these compounds consumed via other than the oral 

route can alter their pharmacokinetic characteristics.4 Consequently, it is important to 

investigate the composition of illicit MA to not only estimate the percentage purity of MA 

but also to characterise the presence of other substances in the samples.  

Most forensic laboratories use hyphenated chromatographic methods such as GC-MS for the 

identification of illicit drugs and the presence of any cutting agents.23, 28, 29 However, these 

methods are expensive, time-consuming, tedious and require much longer turnaround times. 

Routine drug detection in laboratories requires extraction protocols such as acid/base 

extraction, which may result in the concurrent removal of such substances prior to analysis.4 

With numerous additions to the pure drug compounds, it is often necessary to conduct 

multiple measurements to identify various substances present in the samples. Additionally, 

only those cutting agents that are known and controlled under the local/national legislation 

are reported in such analyses and information about other adulterants and/or diluents 

remains untested and/or unreported.4  

ATR-FTIR spectroscopy is a fast, non-destructive, label-free technique that requires minimal 

to no sample preparation and provides highly structurally selective information about the 

samples in a range of physical states. The method is also particularly suitable for the 

detection and identification of adulterated samples as it is able to detect a variety of 

adulterations in a single analysis. In addition, the use of chemometrics for data analysis 
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makes this method extremely valuable in the analysis of illicit drugs. Numerous studies have 

demonstrated the use of ATR-FTIR spectroscopy combined with chemometrics for the 

analysis of adulteration in seized illicit MA.19, 20, 30, 31 Pereira et al.32 illustrated the power of 

ATR-FTIR spectroscopy in the screening of MDMA tablets while Tupper et al.33 used FTIR for 

screening a range of illicit drug samples at drug-checking centres in Vancouver. An earlier 

study by Goh and colleagues30 demonstrated the on-site applicability of ATR-FTIR 

spectroscopy to distinguish and quantify 3 adulterants including caffeine, glucose and 

paracetamol in MA, while Hughes et al.20 built on this proof-of-concept study by building 

robust chemometric models to screen 92 seized samples and determine the MA percentages 

across a range of 0.1% to 78.6%. Though these studies are valuable in establishing the use of 

this technique in the forensic investigation of illicit drugs, they were all conducted on solid 

samples such as powders and tablets.  

In this chapter, measurements of pure and adulterated MA in two biofluids, human serum 

and urine, are assessed in a bid to expand on the clinical and forensic relevance of drug 

detection. Using three common cutting agents of MA, dimethyl sulfone, sugar and 

paracetamol, as a proof-of-concept study, measurements of MA and its purity are explored 

using multivariate analysis methods. The application of ATR-FTIR spectroscopy allows the 

analysis of biofluid samples without any prior sample extraction or processing, 

demonstrating the potential of this methodology as a cheap, rapid alternative to current 

hyphenated methods for the complete characterisation of illicit samples. 

4.2 Materials and Methods 

4.2.1 Materials  

(+)-Methamphetamine hydrochloride (C10H15N · HCl, referred to as MA), paracetamol 

(CH3CONHC6H4OH, here referred to as Para) and Surine™ Negative Urine Control (AU) were 

purchased from Merck Chemicals Ltd. Dimethyl sulfone ((CH3)2SO2, here referred to as MSM) 

was purchased from Amazon UK and Icing Sugar (C12H22O11, here referred to as Sug) was 

purchased from Sainsbury’s, a local grocery store. Human pooled serum (here referred to as 

serum) was obtained from TSC Life Sciences Ltd., which was stored at -80 ℃ in a freezer when 

not in use.  
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4.2.2 Sample Preparation  

Stock solutions for each cutting agent, Para, MSM and Sug, were created by dissolving 10 mg 

of each directly into 1 mL of both serum and AU, to create six stock solutions at a 

concentration of 10 mg/mL. Using these stock solutions, sample concentrations of 10, 5, 1, 

and 0.1 mg/mL were created for all three cutting agents in both serum and urine. 

Additionally, as paracetamol has known fatal, toxic and therapeutic levels, additional samples 

with paracetamol concentrations of 0.25 mg/mL, 12.5 µg/mL and 17.5 µg/mL, were obtained 

to reflect each of these scenarios, respectively.34  

Adulterated samples were created whereby MA was mixed with one of the three cutting 

agents mentioned before, and prepared at the following purity levels: 10, 30, 50, 70 and 90%. 

For instance, 1 mg of MA and 9 mg of sugar were mixed to make up an adulterated MA 

sample of 10% purity. 10 mg of the mixed powder was then dissolved directly in serum or 

urine to create an adulterated MA sample of 10 mg/mL concentration. All the samples 

studied in this chapter are listed in Table 4-1.  

Table 4-1: Summary of all the samples studied in this chapter.  

Drug Abbreviation Set of samples 
No. of 
samples 

Blank  
Serum: BlankS  
Urine: BlankAU 

0 mg/mL 
17 
17 

MA 
Serum: SPMA  
Urine: UPMA 

10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0.9, 0.8, 0.7, 
0.6, 0.5, 0.4, 0.3, 0.2, 0.1 mg/mL 

19 
15 

Paracetamol 
Serum: SPPara 
Urine: UPPara 

10, 5, 1, 0.1, 0.25, 0.125, 0.0175 mg/mL 
21 
21 

MSM 
Serum: SPMSM 
Urine: UPMSM 

10, 5, 1, 0.1 mg/mL 
12 
12 

Sugar 
Serum: SPSug  
Urine: UPSug 

10, 5, 1, 0.1 mg/mL 
12 
12 

MA + Para 
Serum: SPMAPara 
Urine: UPMAPara 

10%, 30%, 50%, 70%, 90% purity 
15 
15 

MA + MSM 
Serum: SPMAMSM 
Urine: UPMAMSM 

10%, 30%, 50%, 70%, 90% purity 
15 
15 

MA + Sug 
Serum: SPMASug 
Urine: UPMASug 

10%, 30%, 50%, 70%, 90% purity 
15 
15 
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4.2.3 Spectral Collection  

A PerkinElmer UATR Two FTIR spectrometer with the PerkinElmer ATR accessory was used 

to collect spectra for all samples. Spectra were the result of 16 co-added scans at a resolution 

of 4 cm-1 in the spectral region of 4000-450 cm-1. More detail on the instrumentation and 

spectral collection procedure is provided in section 3.2.4. 

4.2.4 Spectral Pre-processing and Analysis 

The PRFFECT toolbox within R statistical computing environment software was utilised for 

spectral pre-processing. The pre-processing protocol followed here included a Savitzky-Golay 

(SG) filter for smoothing, vector normalisation and rubberband baseline correction in that 

order for serum and urine samples, as detailed in Chapter 2. Additionally, for urine samples, 

the spectra were cut to 2000-450 cm-1 as the higher region showed greater sensitivity to 

drying conditions. The urine spectra were cut to 2000-450 cm-1 region to exclude the 

thiocyanate peak which was seen to be variable in the presence of different drug compounds 

as previously explained in Chapter 3.   

The spectral analysis consisted of a visual examination to identify the vibrational modes of 

importance in powder and biofluid samples for all molecules. Following this, multivariate 

classification analysis was performed on biofluid samples using two machine learning 

methods – Partial Least Squares Discriminant Analysis (PLS-DA) and Random Forest (RF). The 

binary classification models were performed in PRFFECT Toolbox within R statistical software, 

and the multiclass models were performed using PLS Toolbox by Eigenvector Research Ltd. 

in MATLAB in order to distinguish: 

- Pure MA in biofluid from a pure cutting agent in biofluid. 

- Pure MA in biofluid from adulterated MA (with three cutting agents) in biofluid. 

Detailed descriptions of multivariate analysis methods are provided in Chapter 2 Section 2.5. 

For the PLS-DA models constructed in PRFFECT with 51 iterations, all default parameters 

were used with one hyperparameter (ncomp) which controlled the number of latent 

variables selected to build the analysis. It was selected to pick the best number of latent 

variables between 1 and 20 for the serum and urine datasets. This number was derived from 

the number of samples in each dataset. In this chapter, mean centering was applied to all 

models built using PRFFECT.  
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For the multiclass analysis in PLS Toolbox, partial least squares discriminant analysis (PLS-DA) 

models were trained and cross-validated using the Venetian blinds cross-validation method. 

The training and test sets were created with 5 data splits and a maximum of 20 latent 

variables. An appropriate number of latent variables were selected based on the plot of root 

mean square errors of classification (RMSEC) and cross-validation (RMSECV) for each of the 

models. The performance of these models was evaluated using sensitivity, specificity and 

accuracy (total number of samples correctly identified). False positive rates were also 

reported. Permutation tests were performed in order to detect the overfitting and examine 

the extent to which ‘chance correlation’ might exist between x- and y-blocks in current 

modelling conditions. 

4.3 Results and Discussion  

4.3.1 Peak Assignment 

IR spectra for all four compounds (MA plus three cutting agents) were obtained in their ‘pure’ 

powder forms (Figure 4-1). The vibrational bands seen here for ‘pure’ paracetamol, MSM and 
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Figure 4-1: Stacked spectra for pure powder MA and three adulterants, MSM, 
paracetamol and sugar, with vibrational modes assigned for each molecule.  
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sugar (Table 4-2, refer to Table 3-2 in Chapter 3 for band assignments for MA) are in 

agreement with those found in the literature.35-38 Of these three molecules, paracetamol is 

structurally most similar to MA with one aromatic ring and an aliphatic sidechain, while MSM, 

a white crystalline substance, is physically most similar to MA. However, there are differences 

in their IR spectra that allow for their distinction. For instance, the para-substitution and out-

of-plane ring deformation bands for the phenyl ring in paracetamol molecule are seen much 

lower in the spectrum at 838, 807 and at 517, 502 cm-1, respectively, whereas they are found 

at 1190-1020 cm-1 and 748 and 700 cm-1 in the MA spectrum (Figure 4-1).38  Additionally, the 

lack of an aromatic ring in the MSM and sugar molecules is distinctive when comparing it to 

the MA spectrum.  

Following the comparison of powder spectra, the biofluid spectra of all three cutting agents 

were compared with that of MA. To determine which spectral regions/peaks were significant 

to each cutting agent in different biofluid mixtures during this comparison, difference spectra 

were obtained by subtracting the blank biofluid from that of samples of interest (biofluid + 

cutting agent at 10 mg/mL). These are shown in Figures 4-2 and 4-3. Though numerous 

spectral features of the molecules are masked by the biofluid background, the spectral region 

between 1800 – 450 cm-1 is most useful for differentiating between the three cutting agents 

in both biofluids. It is important to note here that not all wavenumbers would exactly match 

those in pure powder spectra due to the effects of solvents and the drug-matrix interactions. 

These drug-matrix interactions are further complicated by various cutting agents and 

combinations of these interactions with the matrix. As elucidating and identifying these for 

every molecule was outwith the focus of this study, all drug-related changes are included in 

this analysis.   
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Table 4-2: Tentative peak assignments of ATR-FTIR spectra of powder paracetamol, MSM and 

sugar (𝜈 = stretching;	𝜈!	and	𝜈"! = 	symmetric	and	asymmetric	stretching; 𝛿 =

bending	and	𝛿! = symmetric	bending; 𝜏𝑤 = twisting; 𝜌 = rocking).35-39 

 

For the MA molecule, the two sharp peaks at 747 and 702 cm-1 reflecting substitution on the 

aromatic ring are visible as was seen in Chapter 3. For the remaining three compounds, peaks 

at 1049 and 992 cm-1, 1290 and 1129 cm-1 and 1506 and 832 cm-1 for sugar, MSM and 

paracetamol molecules stand out in both biofluids (Figures 4-2 and 4-3).  

An interesting point to note here is that the thiocyanate peak at 2048 cm-1 in the urine 

samples shows varying absorbance. The peak is seen to decrease in absorbance as the 

concentration of the drug compounds is increased in the samples. However, it is prudent to 

Paracetamol MSM Sugar 

Assignments 
Wavenumbers 

(cm-1) 
Assignments 

Wavenumbers 
(cm-1) 

Assignments Wavenumbers 
(cm-1) 

𝜈(OH) 3323 𝜈!"(CH#) 3026 𝜈(OH) 3560, 3384, 
3340 

𝜈(CH$) 3161 𝜈"(CH#) 2934 𝜈!"(CH#) 2993, 2983 

𝜈(C = O) 1650 δ(CH$) 1426, 1335 𝜈"(CH#) 
2943, 2929, 

2913 

ν(C = C) 1609 𝜈!"(SO) 1290 δ(CH#) 
1476, 1459, 

1440 

δ(NH) 1562 𝜈"(SO) 1129 δ(OH) 1237, 1208, 
1161 

𝛿!"(CH) 1505 ρ(S − CH$) 938 ρ(CH#) 1348, 1344 

ν(C − C) 1435 ν(S − CH$) 760, 695 ρ(CH) 1323, 1280 

𝛿"(CH) 1368   𝜈(CC) 1171, 922, 695 

ν(CN) (aryl) 1258   𝜈(CO) 

1126, 1115, 
1104, 1050, 
1038, 1014, 
1004, 998 

ν(CO) 1171   𝜏𝑤(CH#) 908, 847 

ν(CN) (amide) 968     

Para 
substitution of 
aromatic ring 

838, 800     

Ring 
deformation 

517, 502     
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keep in mind that this peak is characteristic of this brand of artificial urine and the decrease 

in absorbance is reflective of the reaction between the matrix and the drug compound that 

is added. Additionally, this reaction between the matrix and the drug compound is not 

predictable across a range of drugs as seen here from the varying peak intensities for each 

of the compounds. Therefore, it may not be present in real-world samples consisting of a 

natural urine matrix and show predictable behaviour with all compounds that might be 

encountered. While it is possible to use this relationship between the change in absorbance 

and the concentration of the added compounds to predict the concentration of the cutting 

agent in the sample, it is not sufficiently discriminating to identify the compound present in 

an unknown sample. Figure 4-3 shows the urine spectra with the thiocyanate peak for 

illustrative purposes only. However, it is excluded from the classification analyses reported 

in this chapter.  
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Figure 4-2: Stacked difference spectra for MA and three cutting agents in 
serum obtained by subtracting drug-serum samples from that of blank serum 
spectrum. (SPMA-BlankS = difference spectra for MA; SPPara-BlankS = 
difference spectra for paracetamol; SPMSM-BlankS = difference spectra for 
MSM and SPSug-BlankS = difference spectra for sugar). All drug samples were 
at concentration of 10mg/mL. 
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Figure 4-3: Stacked difference spectra for MA and three cutting agents in urine 
obtained by subtracting drug-urine samples from that of blank urine spectrum. 
(UPMA-BlankAU = difference spectra for MA; UPPara-BlankAU = difference 
spectra for paracetamol; UPMSM-BlankAU = difference spectra for MSM and 
UPSug-BlankAU = difference spectra for sugar). The black star indicates the 
thiocyanate peak. All drug samples were at concentration of 10mg/mL. 
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4.3.2 Pure MA versus Cutting Agents – Binary Models 

First, individual cutting agents were distinguished from pure MA dissolved in both serum and 

urine using PLS-DA and RF analysis. These results are summarised in Tables 4-3 and 4-4. As 

in Chapter 3, all three sampling methods were applied for each of the classification models 

and the results were validated using 5-fold cross-validation. The results with the highest 

sensitivity and specificity are presented here.  

All PLS-DA classification models showed high sensitivities and specificities across both serum 

and urine datasets (Table 4-3). When considering the serum dataset, samples containing the 

cutting agent sugar demonstrated the highest sensitivity, 99.1%, with the lowest standard 

deviation, 3.3%, associated with it. This is likely because MA and sugar are the most 

structurally distinct compounds of the four studied in this chapter and their characteristic 

vibrations visible above the biofluid do not overlap as indicated by the difference spectra in 

Figures 4-2 and 4-3. Conversely, the sensitivities and specificities for the classification MA 

against the cutting agents paracetamol and MSM in serum are comparable.  

When discriminating pure MA samples in urine, the PLS classification models revealed a trend 

of increasing sensitivity values with the lowest sensitivity observed for the most structurally 

similar compound (paracetamol) to the highest sensitivity for the least structurally similar 

compound (sugar) (Table 4-3). While the specificity values for the PLS-DA classification did 

not follow this trend exactly, the observed values were excellent in identifying samples 

without any MA in them.  

Table 4-3: Summary of results showing PLS-DA classification results for MA versus individual 
cutting agents in serum and urine. All values given are the mean of 51 iterations. 

 

 

Cutting 
agent 

against 
MA 

Sampling 
method 

Sensitivity 
(%) 

SD Specificity 
(%) SD 

Balanced 
Accuracy 

(%) 
SD 

Serum 
Para Down 95.5 6.7 99.0 4.9 97.2 4.7 

MSM Down 94.9 7.4 97.1 11.8 96.0 6.9 

Sugar Down 99.1 3.3 90.2 22.4 94.6 11.4 

Urine 
Para Down 89.7 13.3 98.0 14.0 93.8 10.4 

MSM Down 94.6 11.5 96.0 13.5 95.3 8.2 
Sugar Down 98.5 5.9 99.0 7.0 98.7 4.5 
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Table 4-4: Summary of results showing RF classification results for MA versus individual 
cutting agents in serum and urine. All values given are the mean of 51 iterations. 

 

A similar trend was seen in the sensitivities and specificities achieved by the RF classification 

models in the serum dataset, where the classification of MA samples against samples with 

sugar had the highest sensitivity and specificity values of 100% and the lowest sensitivity and 

specificity values were seen in the samples with paracetamol as it is the most structurally 

similar molecule to MA here. However, all models showed high balanced accuracy values 

indicating exceptional reliability of this model (Table 4-4).  

On the whole, however, RF classification showed lower sensitivities and specificities than the 

PLS classification model for the urine dataset. As previously noted, the peak at 2048 cm-1 can 

be very useful in discriminating between the samples with drug molecules that react with 

thiocyanate, though, this classification was carried out by only using the 2000 - 450 cm-1 

region as it is a more appropriate reflection of the real-world samples. Therefore, it is likely 

that the reduced number of variables is potentially responsible for the overall lower 

sensitivity and specificity values. Nevertheless, the trend of decreasing sensitivity and 

specificity values from samples with sugar towards samples with paracetamol is observed for 

urine samples in RF classification.  

The Gini importance plots obtained from the RF classification highlight the spectral regions 

of significance which are shown in Figures 4-4 and 4-5. The spectral region from 1500 – 700 

cm-1 is shown to be significant for classification against all cutting agents. Of note here, is the 

spectral region approximately between 2000 and 1700 cm-1 which is biologically silent 

allowing for the overtone and combination bands of the drug molecules to be visible.40 These 

are seen for all three molecules in Figure 4-4 for the serum dataset. In the urine dataset, this 

 

Cutting 
agent 

against 
MA 

Sampling 
method 

Sensitivity 
(%) 

SD Specificity 
(%) SD 

Balanced 
Accuracy 

(%) 
SD 

Serum 
Para Down 93.8 8.2 97.5 9.0 95.7 5.7 
MSM Down 96.6 6.1 98.0 9.8 97.3 6.1 
Sugar SMOTE 100 0 100 0 100 0 

Urine 
Para Up 93.1 12.3 76.5 42.8 84.8 20.3 
MSM Down 96.5 12.2 93.1 20.0 94.5 11.2 
Sugar Up 97.5 7.5 81.3 31.5 89.4 15.4 
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region appears to be of more importance in the classification between MA and Para 

molecules than that of the others (Figure 4-5). Overall, the Gini importance plots for serum 

and urine datasets are in agreement with the difference spectra shown in Figures 4-2 and 4-

3 in emphasising the wavenumbers important for discriminating MA from the cutting agents.   

 
  

Figure 4-4: Gini importance plots from three RF classifications of SPMA against SPPara 
(top), SPMSM (middle) or SPSug (bottom) in serum. SPMA refers to MA samples in 
serum, SPMSM refers to MSM in serum, SPPara refers to paracetamol in serum and 
SPSug refers to sugar in serum. 
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Figure 4-5: Gini importance plots from three RF classifications of UPMA against 
UPPara (top), UPMSM (middle) or UPSug (bottom) in urine. UPMA refers to MA 
samples in urine, UPMSM refers to MSM samples in urine, UPPara refers to 
paracetamol samples in urine and UPSug refers to sugar samples in urine.  
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4.3.3 Pure MA versus Adulterated MA – Binary Models 

A second set of binary classification models were constructed to distinguish between pure 

and adulterated MA in both serum and urine. Both PLS-DA and RF models showed excellent 

discrimination between the pure MA and MA mixed with one of the three cutting agents 

(Tables 4-5 and 4-6). For the serum dataset, the PLS classification model for MA samples 

against adulterated MA samples with MSM showed the lowest sensitivity value of 99.7 ± 2% 

in comparison to the 100% sensitivities and specificities observed for the remaining models. 

This is likely due to the fact that peaks of significance for MSM and MA molecules are in the 

same spectral region of 1500 - 750 cm-1 and the differences outwith this region are not 

prominent over the serum matrix background.  

In the urine dataset, discrimination of pure MA samples against those adulterated with 

paracetamol and MSM observed slightly lower sensitivities of 98.5 ± 5.9% and 98.0 ± 9.8%, 

respectively, for the PLS classification models. A specificity of 100% is obtained across all 

adulterated MA samples for both PLS-DA and RF models in serum and urine indicating that 

both models performed excellently in distinguishing adulterated MA with even the smallest 

amount of adulteration.  

Table 4-5: Summary of results showing PLS-DA classification of MA versus MA adulterated 
with one cutting agent. Pre-processing steps included SG smoothing, vector normalisation, 
rubberband baseline correction and mean centring was performed during model 
construction.All values given are the mean of 51 iterations.  

 

Cutting 
agent 

against 
MA 

Sampling 
method 

Sensitivity 
(%) SD Specificity 

(%) SD 
Balanced 
Accuracy 

(%) 
SD 

Serum 

Para Down 100 0 100 0 100 0 

MSM Down 99.7 2.0 100 0 99.8 1.0 

Sugar Up 100 0 100 0 100 0 

Urine  

Para Down 98.5 5.9 100 0 99.2 2.9 

MSM SMOTE 98.0 9.8 100 0 99.0 4.9 

Sugar Down 100 0 100 0 100 0 
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Table 4-6: Summary of RF classification results of MA versus MA adulterated with one cutting 
agent. Pre-processing steps included SG smoothing, vector normalisation, rubberband 
baseline correction and mean centring performed during model construction. All values are 
given as the mean of 51 iterations.  

 

The RF classification models performed better with 100% sensitivities in comparison to the 

PLS models in distinguishing pure MA samples from the adulterated samples in both 

biofluids. Another valuable output provided by the RF classification, the Gini importance 

plots highlighted the spectral regions of significance for the discrimination of pure MA 

samples from those of adulterated MA in serum and urine. These are shown in Figures 4-6 

and 4-7. The spectra regions highlighted here are in agreement with those found in the 

difference spectra and fall mostly in the 2000 – 450 cm-1 region. Interestingly, the C-N-C 

stretching mode seen at 2460 cm-1 in the MA molecule is seen to be significant for the 

discrimination of MA from MA adulterated with sugar (Bottom plot, Figure 4-6). There is a 

single line at the same position in the classification of MA against MA adulterated with MSM. 

While not seen in the same level of significance as in the classification of MA against MA 

adulterated with sugar, it remains another peak of discrimination when sugar or MSM are 

the cutting agents.  

 

Cutting 
agent 

against 
MA 

Sampling 
method 

Sensitivity 
(%) 

SD Specificity 
(%) SD 

Balanced 
Accuracy 

(%) 
SD 

Serum 

MSM Down 100 0 100 0 100 1.0 

Para Down 100 0 100 0 100 0 

Sugar Up 100 0 100 0 100 0 

Urine 

MSM SMOTE 100 0 100 0 100 0 

Para SMOTE 100 0 100 0 100 0 

Sugar SMOTE 100 0 100 0 100 0 
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Figure 4-6: Gini importance plots from three RF classifications of SPMA against SPMAPara 
(top), SPMAMSM (middle) or SPMASug (bottom) in serum. SPMA refers to MA samples in 
serum, SPMAMSM refers to MA adulterated with MSM in serum, SPMAPara refers to MA 
adulterated with paracetamol in serum and SPMASug refers to MA adulterated with sugar 
in serum.  
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Figure 4-7: Gini importance plots from three RF classifications of UPMA against UPMAPara 
(top), UPMAMSM (middle) or UPMASug (bottom) in urine. UPMA refers to MA samples in 
urine, UPMAMSM refers to MA adulterated with MSM in urine, UPMAPara refers to MA 
adulterated with paracetamol in urine and UPMASug refers to MA adulterated with sugar 
in urine.  
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4.3.4 Pure MA versus Adulterated MA – Multiclass model 

The multiclass PLS-DA model was performed for the discrimination of pure MA, MA+MSM, 

MA+Para and MA+Sug samples in both biofluids using the PLS Toolbox from Eigenvector 

Research Inc. This was performed to mimic a real-world scenario where samples from 

multiple sources with the presence of a range of cutting agents are likely to be encountered 

during analysis. The sensitivities and specificities for the 5-fold cross-validation are presented 

in Table 4-7. Overall, the sensitivity and specificity values from the multiclass model were 

within ± 1-2% of that achieved using binary classification models presented in the previous 

section. One exception here was the samples containing MA+Para in serum that showed the 

lowest sensitivity of 84.4% due to misclassification of six samples that contained MA mixed 

with paracetamol as pure MA samples. This is likely due to the higher relative percentage of 

MA in these samples in comparison to the percentage of paracetamol. Similarly, one pure 

MA sample was misclassified as MA adulterated with MSM, though the concentration of MA 

in this sample was much lower at 0.1 mg/mL.  

Table 4-7: Summary of PLS2-DA classification results of MA versus MA adulterated with one 
cutting agent. The model consisted of 4 classes. The optimum number of LVs was determined 
to be 5 for both datasets (refer to Appendix 2, Figures A2-1 and A2-2).  

Drug  
Serum Urine 

Sensitivity  
(%) 

Specificity 
 (%) 

Sensitivity 
(%) 

Specificity  
(%) 

MA 98.7 95.5 95.6 100 
MA+MSM 100 100 100 99.4 
MA+Para 84.4 99.4 100 100 
MA+Sug 100 99.2 100 99.3 

 

As the data were not mean-centred the loading plot for LV 1 resembled the blank serum 

spectra as it is the source of the most amount of variation in the dataset. The 3D scores plot 

for the above multiclass PLS-DA classification is shown in Figure 4-8, which shows LVs 2, 3 

and 4 plotted against each other. It is expected that there will be some overlap between the 

samples as they all contain MA, and the overlap is mainly found where adulterated samples 

contain a lower percentage of cutting agents.  
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When the remaining loading plots for latent variables 2, 3, 4 and 5 are inspected in relation 

to their difference spectra in serum and pure powder spectra, the characteristic vibrational 

bands for these compounds become apparent in them (Figure 4-9). When the scores plot is 

examined in relation to the loadings, each of the compounds is reflected independently by 

the separate latent variables. For instance, graph A in Figure 4-9 shows the LV2 loadings plot 

which is most influenced by the MSM molecule. Similarly, the loading plot of LV4 bears a 

resemblance to the IR spectrum of sugar molecules as seen in graph B in Figure 4-9. The LV 

3 and 5 were more difficult to unpick due to the structural similarity between MA and 

paracetamol molecules. Though most of the spectral variation due to paracetamol is 

reflected in the loading plot of LV5, the two high-intensity peaks in the 750-700 cm-1 region 

Score on LV 3 (0.37%) 
Scores on LV 2 (0.80%) 

Sc
or
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 o

n 
LV

 4
 (0
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Figure 4-8: PLS-DA scores plot showing clear discrimination between Pure MA (red diamonds, 
here labelled as SPMA), MA+MSM (blue squares, here labelled as SPMAMSM), 
MA+Paracetamol (yellow triangles, here labelled as SPMAPara) and MA+Sugar (green 
triangles, here labelled as SPMASug)  in serum using LV2 vs LV3 vs LV4 in a 3D plot created 
using PLS Toolbox.  
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characteristic of the out-of-plane deformation of C-H bands in MA, are also seen in LV3. 

Similarly, peaks relating to the paracetamol molecule are seen in both LV5 and LV3.   

Figure 4-9: Graphs showing loadings for the respective LVs plotted with difference spectra 
(in bold coloured line) and powder spectra (in dotted coloured line) for the chemical 
compound in serum. A shows LV2 plotted with serum difference spectrum and powder 
spectrum of MSM; B shows LV4 plotted with serum difference spectrum and powder 
spectrum of sugar; C shows LV3 plotted with serum difference spectrum and powder 
spectrum of MA and D shows LV5 plotted with serum difference spectrum and powder 
spectrum of paracetamol. The vibrational bands belonging to each compound identified 
from the powder and difference spectra in serum are numbered in the loading plot for the 
corresponding latent variable.  

A 

C D 

B 
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 A similar PLS-DA model was built for these compounds in urine samples. Figures 4-10 and 4-

11 show the scores and loading plots for this model. As mean centring was not applied to this 

dataset, LV 1 describes the mean spectrum – which here resembles the urine matrix spectra. 

LV1 also showed influence from MA as it was present in all samples. In comparison to the 

serum model, this plot shows much clearer discrimination between all four classes. As with 

serum samples, some overlap between adulterated MA samples the pure MA samples is 

expected as they all contain varying amounts of MA.  

When the loading plots are examined, LV4 bears a resemblance to the MSM IR spectrum as 

shown in graph A in Figure 4-11. Similarly, LV3 was seen to be influenced mostly by the 

variation from sugar molecules. However, unlike serum, there are a greater number of peaks 

visible in the urine samples due to the simplicity of the matrix. The loading plot of LV4 was 

more representative of the paracetamol molecule represented by the peaks identified in 

Scores on LV 2 (1.44%) 
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Scores on LV 3 (0.44%) 

Figure 4-10: PLS-DA 3D scores plot for classification of Pure MA (red diamonds, here 
labelled as UPMA), MA+MSM (blue squares, here labelled as UPMAMSM), 
MA+Paracetamol (yellow triangles, here labelled as UPMAPara) and MA+Sugar (green 
triangles, here labelled as UPMASug) in urine using LV2 vs LV3 vs LV4 created using PLS 
Toolbox, Eigenvector Ltd.  
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graph D in Figure 4-7. However, smaller contributions from the 745 and 703 cm-1 bands of 

MA are visible in the loading plot for LV4.  

 

 
In summary, the classification models built using two different multivariate methods, PLS-DA 

and RF analysis on two different software platforms agreed with each other to show excellent 

discrimination between pure MA and MA adulterated with these three cutting agents. The 

Figure 4-11: Graphs showing loadings for the respective LVs plotted with difference 
spectra (in bold coloured line) and powder spectra (in transparent coloured line) for the 
chemical compound in urine. A shows LV2 plotted with urine difference spectrum and 
powder spectrum of MSM; B shows LV4 plotted with urine difference spectrum and 
powder spectrum of sugar; C shows LV3 plotted with urine difference spectrum and 
powder spectrum of MA and D shows LV5 plotted with urine difference spectrum and 
powder spectrum of paracetamol. The vibrational bands belonging to each compound 
identified from the powder and difference spectra in serum are numbered in the loading 
plot for the corresponding latent variable. The black arrows in graph C indicate peaks 
characteristic of the urine matrix.  

A 

C D 

B 
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models presented here were not evaluated using an independent test set. Moreover, the 

combined interactions of the drug+cutting agent with the matrix were used in the 

classification models. Predictions of how these interactions would play out with different 

compounds and concentrations etc in classification models cannot be made based on the 

information presented here. Therefore, caution must be exercised when interpreting or 

drawing comparisons with samples that have different combinations and permutations of 

drugs with cutting agent concentrations. However, there are no other studies as per the 

author’s knowledge that are similar to that presented in this chapter to allow for a direct 

comparison.  

4.3.5 PLS-R Analysis  

As a final step, PLS regression was explored to mimic a real-world scenario whereby unknown 

adulterations are encountered which need to be investigated against reference collection of 

pure samples. Using the pure MA dataset, PLS-R models were built in serum and urine. 5 LVs 

were chosen for both datasets based on the plot of calibration error (RMSEC) and cross-

validation error (RMSECV) as a function of the number of latent variables (Appendix 2, Figure 

A2-1 and A2-2). The calibration set consisted of all pure MA samples in serum and urine, 

while an independent validation set was made up of samples that contained MA adulterated 

with MSM in the respective biofluid (Table 4-8). MSM was chosen as the cutting agent for 

this model as it is the most used substance when adulterating MA. 

Table 4-8: Summary of samples included in building PLS regression models in the calibration 
and validation sets.  

Model Calibration set Total samples Validation set Total samples 
A SPMA  19  SPMAMSM 5 

B UPMA 19  UPMAMSM 5 

  

PLS-R model A was built using a serum dataset of MA samples with known purities and was 

validated using 5-fold cross-validation (Appendix 2, Figure A4-1). The MA samples are shown 

in red diamonds, while the MA+MSM samples shown in the green squares in Figure 4-12 

range from 10% to 90% MA purity. The root mean square error of prediction (RMSEP) was 

found to be 0.86 mg/mL with an R2 value of 0.965 indicating excellent applicability of the 

model to future samples.  
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PLS-R model B was built using a urine dataset of MA samples with known MA purities and 

was validated using three latent variables and a 5-fold cross-validation (Figure A4-2). The 

scores plot for the regression model is shown in Figure 4-13 where the calibration set of pure 

MA samples in urine is shown in red diamonds and the independent validation set of 

MA+MSM samples is shown in green squares. The root mean square error of prediction 

(RMSEP) was found to be 0.70 mg/mL, lower than that of the serum dataset. Similarly, the 

observed R2 value of 0.985 was also higher than that for the serum dataset. This is likely 

because serum is a more complex matrix than urine and tends to mask the spectral signatures 

of the drug compounds in the sample.  

 

  

Figure 4-12: PLS regression model built with pure MA dataset in serum (here labelled as 
SPMA) which was then tested using samples containing MA adulterated with MSM (here 
labelled as SPMAMSM) for its predictive abilities for MA samples with unknown 
adulterations. Results using 3 latent variables: RMSEC = 0.5526 mg/mL, RMSECV = 0.5901 
mg/mL, RMSEP = 0.8620 mg/mL, R2 (Cal,CV) = 0.969 and R2 (Pred) = 0.965. 
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4.4 Conclusion 

Alternative methods for direct, quick, and accurate detection of adulteration in drugs are 

urgently needed in a clinical setting as well as in forensic investigations. This novel study 

examining the ability of the ATR-FTIR spectroscopy to distinguish pure drug samples from 

samples with no MA in them as well as adulterated MA samples in serum and urine directly 

illustrated the excellent potential of this technique by delivering promising statistical 

outputs.  

The cutting agents included in this chapter, MSM, paracetamol and sugar were investigated 

owing to their prevalence as cutting agents in today’s global drug market and additionally 

represent a group of substances that are often unreported in routine forensic analysis of illicit 

MA samples. The purity percentage of MA included in this study varied from 10% to 90% 

which is typical of the purity values found in the majority of adulterated MA samples seized 

worldwide. Initially, three cutting agents in their powder form were characterised using FTIR 

Figure 4-13: PLS regression model built with pure MA dataset in urine (here labelled as 
UPMA) which was then tested using urine samples containing MA adulterated with MSM 
(here labelled as UPMAMSM) for its predictive abilities for MA samples with unknown 
adulterations. Results using 3 latent variables: RMSEC = 0.3826 mg/mL, RMSECV = 0.4101 
mg/mL, RMSEP = 0.703 mg/mL, R2 (Cal,CV) = 0.987 and R2 (Pred) = 0.985. 
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spectroscopy to identify spectral regions of importance in discriminating them from pure MA 

powder.  

Following powder analysis, drug samples in serum and urine biofluids were analysed. Firstly, 

pure MA samples were discriminated against samples with only cutting agents using PLS-DA 

and RF classification models. Overall, both classification methods showed similar statistical 

outputs when discriminating MA from cutting agents that in physical appearance can 

resemble MA. In the serum dataset, the highest sensitivity values of 96.6 ± 6.1% and 100% 

and specificity values of 98.0 ± 9.8% and 100% were seen for discrimination against MSM and 

sugar respectively using the RF classification model. For discrimination of MA against 

paracetamol, however, the PLS-DA model performed better providing sensitivity and 

specificity values of 95.5 ± 6.7% and 99.0 ± 4.9% respectively.  

For the discrimination of pure MA from adulterated MA samples in both biofluids RF 

classification performed better than PLS-DA to provide outstanding sensitivities and 

specificities of 100% for all cutting agents. In order to simulate a real-world situation where 

samples from varying sources with a range of cutting agents could be encountered during 

analysis, a multiclass PLS classification model was performed in both biofluids. Comparable 

results were observed with 98.7% sensitivity and 95.5% specificity for the correct 

classification of pure MA samples.  

Finally, PLS regression models constructed using a training dataset of pure MA samples 

demonstrated adequate predictive power in determining the percentage of MA in 

adulterated samples from an independent validation set of MA adulterated with MSM. With 

RMSEP of 0.86 and 0.70 mg/mL for the serum and urine datasets, the regression models were 

able to show strong linearities with R2 values of ~ 0.95. Though this is lower than that found 

in the literature and the threshold recommended for an analytical method, it is an excellent 

result for a proof-of-principle study with a limited sample size. Additionally, the results 

achieved here were achieved in biofluids without any sample preparation or pre-treatment 

which is unparalleled in the literature.  

In conclusion, the use of ATR-FTIR spectroscopy combined with chemometrics has 

demonstrated successful discrimination of pure MA samples from adulterated samples 

without the need for prior time-consuming sample extractions or preparations. This study 

has significant implications when treating patients in the emergency department where 
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quick results are needed for appropriate patient care when an unknown drug, similar in 

appearance to MA, or street MA with an unknown degree of adulteration is ingested or when 

the patient is unable to communicate. In addition, the identification of cutting agents and 

their relative percentages in a timely manner could provide useful intelligence regarding 

adulteration practices and linkages with regional/local dealers which could be crucial in a 

forensic investigation.  

Improvements in the discrimination of pure MA from adulterated MA could be achieved 

using a larger dataset where a greater range of MA purity percentages is covered. Moreover, 

though the applicability of this methodology to MA samples with impurities that occurred 

from illicit production would be challenging due to their much lower concentrations, it would 

benefit from the inclusion of a greater variety of cutting agents for its wider application. 

While this study looked at the total (free and bound) drug compound portions, it is important 

to note that differences in drug-protein binding abilities of a variety of compounds is likely 

to have an impact on the results presented here. However, this was outside the scope of this 

study and requires more directed research. Therefore, though GC-MS remains the gold 

standard for confirmatory analyses, the methodology presented in this Chapter presents a 

more efficient alternative to the current methods that can be performed outwith a dedicated 

laboratory leading to significant savings in both time and expenditure as well as providing 

vital forensic intelligence in a timely manner.  
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Abstract  

Immunoassays are currently the standard screening methods used in routine toxicological 

screening of biofluids. These are employed in numerous settings including workplace drug 

testing, and therapeutic drug monitoring for verifying drug consumption and abstinence 

making them an indispensable screening tool. However, they are plagued by several issues 

relating to the cross-reactivity of antibodies employed in their operation. While some studies 

take advantage of cross-reactivities to detect drugs that otherwise go undetected, in a clinical 

setting false positives due to cross-reactivities can have serious implications. Such a problem 

is frequently encountered in immunoassay testing of MA whereby many commonly 

prescribed drugs are mistakenly identified as MA. ATR-FTIR spectroscopy in combination with 

chemometric analysis is employed as an alternative screening technique to immunoassays 

for the discrimination of MA from such prescription drugs. Six prescription drugs were chosen 

in this chapter because they are known for testing positive on commercially available 

amphetamine immunoassays. Two-step binary and single-step multiclass PLS-DA models 

provided sensitivities and specificities of 100% for the discrimination of MA samples from 

drug-free and samples containing prescription drugs. Though there are limitations to this 

analysis such as a small sample size and a lack of independent testing sets, this chapter 

provides a promising proof-of-concept work for more detailed future investigations. 
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5.1 Introduction  

Methamphetamine is one of the most abused drugs with almost 34 million users worldwide.1 

In the UK, there are an estimated 1.5 million people addicted to prescription and over-the-

counter drugs and approximately 300,000 people have accessed drug and alcohol services in 

2021.2 Approximately 6% of the emergency department presentations for seizures are drug-

related in the US, while the drug-related mortality rates have increased by 171%, 149% and 

61% in Scotland, Northern Ireland, and England and Wales between 2010 and 2019, 

respectively.3, 4 On average, a third of the UK’s prison population – approximately 82,000 

people on a given day, are incarcerated for a drug-related offence.5, 6 As a response to 

increasing drug-related crimes, mandatory drug testing upon arrest was introduced in the UK 

to monitor compliance with rehabilitation programmes to provide the necessary help to 

detainees and avoid future relapse.7, 8 In addition, between 67 and 80% of corporations have 

established workplace testing programmes in the US currently, while there has been a 470% 

increase in such testing in the UK workplaces.9, 10 Though this list of scenarios requiring drug 

testing is not comprehensive, it highlights that drug screening tests are prolific and have 

become ubiquitous in numerous situations.  

Immunoassays (IAs) are the most common first step in drug screening making them 

indispensable for evidence-based reporting and resolutions.11, 12 IAs are performed to verify 

drug abstinence, identify non-medical drug use and monitor adherence to prescribed 

controlled substances at hospitals, point-of-care locations and in dedicated laboratories for 

clinical, legal and forensic purposes.13-15 IAs typically used for urine drug screening are 

broadly categorised into two – those targeting a drug class with multiple clinically and 

forensically relevant compounds and targeting a single drug and/or its unique metabolites.16, 

17 The choice of assay used is situation-dependent with varying consequences. In a 

forensic/legal setting, identifying the presence of controlled substances is often a priority 

while in a clinical setting identification of all possible drugs present is essential for correct 

patient care.  

Though presumptive positive samples via IAs are required to be sent for confirmatory testing 

in an accredited laboratory in forensic/legal situations, confirmatory testing may not always 

be available in a timely manner for effective patient management in a clinical setting.12 With 

increasing global substance abuse leading to high volumes of routine drug screening, it is not 

always feasible to send all samples for expensive confirmatory analysis and screening 



 154 

methods such as IAs are employed in ruling out drug-free samples. IAs, therefore, remain the 

most prevalent first line of testing for drugs of abuse steadily replacing other screening 

methods such as thin layer chromatography and colourimetric tests due to their simple and 

fast operation, lower cost and high-throughput analysis of samples with the availability of 

numerous automated commercial kits.12, 18-20 The Point-of-care devices are also 

advantageous in the simultaneous testing of multiple drugs or drug classes and offer even 

faster turnaround times.21  

Despite the benefits mentioned above, IAs suffer from many important limitations. The 

primary design of an IA relies on binding specifically designed antibodies with the target 

molecules of interest and its detection using various technologies.19, 22 This makes IAs 

inherently susceptible to interferences due to the cross-reactivity profiles of the assay 

antibodies and/or cut-off concentrations of the assay leading to false positives and/or false 

negatives.13, 23 With the proliferation of commercial IAs consisting of different antibodies 

from a variety of manufacturers that target the same drug, the cross-reactivity profiles and 

range of compounds tested for interference are not standardised.13, 16 Furthermore, IAs are 

often developed with the parent drug in mind while the drug metabolites are not always 

targeted either in the assay or the list of compounds tested for interferences.16 Therefore, 

overall interpretation is complicated by the availability of a range of assays for the same drug 

compound that may not provide concordant results and lack of information on their 

susceptibility to all possible interfering compounds.16, 21, 24 

In addition, the cut-off concentrations are arbitrarily determined by government 

organisations such as the Substance Abuse and Mental Health Services Administration 

(SAMHSA) in the US which have little to no correlation with the therapeutic or toxic 

concentrations of the drug in question.16 For instance, the threshold for positive opiate drug 

screens was increased from 300 µg/L to 2000 µg/L in order to avoid false positives due to 

poppy seed ingestion in the late 1990s.25 While this solution might increase the specificity of 

assays, it can also lead to an increase in false negatives thus reducing the overall sensitivity. 

Conversely, the cut-off for marijuana metabolite was lowered in 1994 to increase the 

frequency of positive specimens reflecting advances in IA technology.25  Therefore, the 

application of such cut-off concentrations outwith the dictated settings needs to be 

situationally specific to achieve the correct balance between specificity and sensitivity.  
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Many studies have shown that amphetamine IAs are particularly susceptible to interferences 

from numerous prescribed and over-the-counter drugs.11, 12, 26-29 Methamphetamine and 

amphetamine are both structurally simple sympathomimetic compounds making it difficult 

to develop specific antibodies for their detection.27 Most commercially available IAs target 

the amine functional group in amphetamines which makes them vulnerable to interferences 

from many other compounds commonly ingested.26, 27 The most commonly mentioned drugs 

responsible for false positives due to cross-reactivities with methamphetamine IAs in the 

literature - bupropion, labetalol, metformin, ofloxacin, promethazine and trazodone are the 

focus of this chapter. These drugs are routinely prescribed to patients to treat depression 

(bupropion), high blood pressure in pregnant women (labetalol), type II diabetes 

(metformin), infections (ofloxacin), allergies (promethazine) and a combination of 

depression and anxiety (trazodone). While some of these drugs such as bupropion have 

similar 2D structures to methamphetamine, others have significantly differing structures 

(Figure 5-1).  
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Figure 5-1: Structures of the six drugs investigated in this chapter along with 
methamphetamine. 
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Some studies have attempted to predict cross-reactivities of compounds based on molecular 

similarities using chemoinformatic methods. For instance, Pope et al. calculated the 

molecular similarity scores based on 2D structures of methamphetamine and a range of 

interfering compounds as a simple means of estimating cross-reactivity whereby higher 

scores reflect a higher probability of immunoreactivity.12 However, the varying similarity 

scores of 0.69, 0.40, 0.18 and 0.19 for bupropion, labetalol, metformin and trazodone 

respectively suggest that predicting cross-reactivity is more complicated as antibody-analyte 

interactions are three-dimensional and take place in complex biological samples.12, 20, 30 

Therefore, it might be difficult to know which compounds cross-react without specific 

testing.  

In varying patient populations with prescriptions for the therapeutic use of one or more of 

these drugs, studies have reported false positive rates ranging from 3.9% - 9.9%,12 13.8%,13 

26%,31 35%32, 33 to as high as 49.5%.17 Casey et al.32 reported that 41% of the total number of 

false positives in their study were due to the therapeutic administration of bupropion in 

patients while the rest were attributed to labetalol and other antipsychotics.  Melanson et 

al.31 reported a similar false positive rate (40%) in their patient population representing a 

typical emergency department, however, promethazine and its metabolite chlorpromazine 

were identified to be responsible. These authors also examined the same samples with 5 

other immunoassays available on the market which produced varying results.31 These studies 

overall highlight three main points: first, even therapeutic concentrations of these commonly 

prescribed drugs can produce false positive drug screens for amphetamines; second, it is 

important to investigate not only such drug compounds but also their metabolites for cross-

reactivities; and third, different immunoassays will not necessarily provide concordant 

results and require careful interpretation on the clinician’s part. Finally, though some of these 

discrepancies in the false positive rates can be explained by the varying patient populations, 

the numbers highlight the need for a more effective and reliable screening method.  

Table 5-1 highlights the prevalence of these six drugs in the US and the UK by the large 

numbers of prescriptions annually dispensed to patients. Furthermore, many of the 

presenting symptoms such as altered mental state (hallucinations and seizures), 

cardiovascular toxicity (tachycardia) and gastrointestinal issues caused by the misuse of 

these six drugs in patients at emergency departments can also be present in cases of 

methamphetamine abuse.4, 32, 34 Therefore, it may not be possible to rule out such drugs 
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simply based on symptoms without a drug test. Moreover, a false positive result on a drug 

screen may require further testing and delay patient management. The number of retesting 

or confirmatory tests needed in light of the high false positive rates and high volumes of 

drugs consumed leads to additional expenditure.  

Aside from the economic and practical concerns, there can be damaging social and legal 

implications to testing positive on a Drugs of Abuse test for the patient in the short term. For 

instance, Fucci et al.35 reported a patient, who, even after showing a 10-year-long 

prescription for metformin lost his taxi permit and driving licence upon testing positive on 

the amphetamine screening test leading to loss of livelihood. Similarly, Yee et al.34 reported 

three cases where inaccurate interpretation of urine drug screen in the presence of labetalol 

could have led to mismanagement of pregnant patients and caused mental trauma with a 

wrongful diagnosis of illicit drug use. Finally, in court-ordered or work-related drug screening, 

a false positive test can lead to legal interventions, employment denials, and questions of 

honesty which can have detrimental effects on the person’s personal and professional life.  

In this chapter, the application of ATR-FTIR spectroscopy as an alternative to current 

immunoassay methods is explored. As demonstrated by the method developed in Chapters 

3 and 4, ATR-FTIR spectroscopy applied without prior sample extraction methods can reveal 

the presence of all possible drug compounds within a sample. With urine as the primary 

biological fluid of choice, this chapter aims to explore if ATR-FTIR spectroscopy along with 

chemometric analysis can produce lower rates of false positives in distinguishing 

methamphetamine from these six drugs in a given sample population. Furthermore, the 

application of this method in serum samples is also explored as these drugs are likely to be 

found in blood, i.e., serum upon consumption allowing comparison across matrices. 

Considering the pharmacokinetics of each of the drugs involved, the concentration ranges 

explored here include therapeutic, toxic and fatal-comatose levels making this study clinically 

and forensically relevant (Table 5-1).  
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       Table 5-1: Pharmacologic and usage data for the six drugs included in this chapter, data are collated from Ref36-44.  

Drug Bupropion Labetalol Metformin Ofloxacin Promethazine Trazodone 

Daily Dose Range 
(mg) 200-400 800-2400 500-2550 400-800 25-50 150-600 

Average Oral Bioavailability (%) 5-20 11-86 50-60 95 25 63-91 

Half-life 
(hrs) 24 1.7-6.1 6 9 12-15 4 

Plasma-protein binding  
(%) 84 50 Negligible 10-30 93 85-95 

Unchanged parent drug eliminated in 
urine 
(%) 

4 5 90 90 0.64 0.13 

Concentration in urine at 12 hrs 
(mg/mL) 0.013-0.026 0.067-0.2 0.75-3.825 0.6-1.2 0.0003-0.0005 0.0003-

0.001 

Concentration in Blood 
(mg/L) 

Therapeutic 0.01-1.5 0.03-0.2 0.1-2 2-5.5 0.01-0.2 0.7-2 

Toxic 1.2-2 1-2.9 5-10 39 0.1-2 1.2-4 

Comatose-Fatal 4-7.3 1.7 91-166 - 1.8-5.4 9-15 

USA  
(in 2020) 

Number of 
prescriptions 28,889,368 2,301,044 92,591,486 1,844,982 2,309,125 26,210,731 

England 
(GP prescriptions 

in 2022) 

Quantity of 
drug 3,023,368 8,149,236 1,947,931,06 1,057,396 83,518,321 48,734,235 
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5.2 Materials and Methods 

5.2.1 Materials  

Surine™ Negative Urine Control (here referred to as AU), Ofloxacin (C18H20FN3O4, here 

referred to as OF) and the hydrochloride salts of bupropion (C13H18ClNO • HCl, here referred 

to as BU), metformin (C4H11N5 • HCl, here referred as MET), labetalol (C19H24N2O4 • HCl, here 

referred as LB), promethazine (C17H20N2S • HCl, here referred as PR), and trazodone 

(C19H22ClN5O • HCl, here referred as TR) were purchased from Merck Chemicals Ltd. Human 

pooled serum was purchased from TSC Life Sciences Ltd., which was stored at -80℃ in a 

freezer when not in use. All chemicals were in powder form. All solutions were prepared 

directly in the human serum and AU, without any other solvents or reagents.  

5.2.2 Sample Preparation  

Stock solutions of the six drug molecules were created by directly dissolving powders into 

biofluids. Using these stock solutions, samples of varying concentrations reflecting 

therapeutic,  toxic and comatose-fatal levels were made up in urine and serum (Table 5-2). 

The stock solutions were made up at 10 mg/mL or at the maximum solubility of the drug 

molecule in aqueous media as indicated in Table 5-2. Details for the MA samples mentioned 

in this chapter are provided in Chapter 3 (Section 3.2.2).  

Table 5-2: Stock and sample solutions concentrations for the six drugs in urine and serum. 
The therapeutic, toxic and comatose-fatal concentrations are indicated in brackets as 
described in ref. 42, 45 

Drug Abbreviation 
Stock 

Solution 
(mg/mL) 

Sample Solutions (mg/mL) 
No. of  

samples 

Bupropion Urine: UPBU 
Serum: SPBU 10 10, 1, 0.1, 0.0073 (comatose-fatal), 

0.0012 (toxic), 0.0001 (therapeutic) 
32 

Labetalol  Urine: UPLB 
Serum: SPLB 8 8, 4, 1, 0.1, 0.01, 0.001 (comatose-

fatal/toxic) 
24 

Metformin Urine: UPMET 
Serum: SPMET 10 10, 5, 0.2 (comatose-fatal), 0.1 

(toxic), 0.004 (therapeutic) 
19 

Ofloxacin Urine: UPOF 
Serum: SPOF 6 5, 1, 0.1, 0.04 (toxic), 0.0055 

(therapeutic) 
18 

Promethazine Urine: UPPR 
Serum: SPPR 10 1, 0.1, 0.0054 (comatose-fatal), 

0.0004 (therapeutic) 
25 

Trazodone Urine: UPTR 
Serum: SPTR 2 1, 0.1, 0.015 (comatose-fatal), 0.004 

(toxic) 
15 
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5.2.3 Spectral Collection  

The instrumentation and spectral collection procedure used were previously described in 

section 3.2.3. 

5.2.4 Spectral Pre-processing and Analysis  

The PRFFECT toolbox within R statistical computing environment software was utilised for 

spectral pre-processing. The pre-processing protocol followed here included Savitzky-Golay 

(SG) filter for smoothing, vector normalisation and rubberband baseline correction in that 

order for all samples, while an additional step of picking the 2200-450 cm-1 region for urine 

samples was performed.  

The spectral analysis was performed in MATLAB (version 2018b) using the PLS Toolbox 

(version 9.6.2) add-on created by Eigenvector Research Inc. Mean centring was applied to 

the complete dataset after it was imported into PLS_Toolbox. Binary and multi-class partial 

least squares discriminant analysis (PLS-DA) models were trained and cross-validated using 

the Venetian blinds cross-validation method. The training and test sets were created with 5 

data splits and a maximum of 20 latent variables. An appropriate number of latent variables 

were selected based on the plot of root mean square errors of classification and cross-

validation for each of the models. The performance of these models was evaluated using 

sensitivity, specificity and accuracy (total number of samples correctly identified). False 

positive rates were used for comparison with those noted in section 5.1. Permutation tests 

were performed in order to detect the overfitting and examine the extent to which ‘chance 

correlation’ might exist between x- and y-blocks in current modelling conditions. 

5.3 Results and Discussion  

IR spectra for all drug powders were collected for peak assignment. These are provided in 

Appendix 3 Figures A3-1, A3-2 and A3-3. The difference spectra for all seven compounds 

were calculated by subtracting the blanks urine spectra from drug sample spectra (at a 

concentration of 10 mg/mL) shown in Figure 5-2. These were important in highlighting the 

peaks of importance for each of the drugs that stand out above the urine matrix background. 

These peaks were later used as characteristic indicators for that drug in loading plots of the 

classification models. The term ‘prescription drugs’ is used to refer to the group of six drugs 

(BU, LB, OF, MET, PR, and TR) mentioned while the term ‘all drugs’ refers to seven 

compounds which include the six prescription drugs and MA.   
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Figure 5-2: Stacked difference spectra for all seven drug compounds where blank  
urine spectra were subtracted from the spectra of the drug samples in urine. 
UPMA-BlankAU = difference spectra for MA; UPTR-BlankAU = difference spectra 
for trazodone;  UPOF-BlankAU = difference spectra for ofloxacin; UPMET-
BlankAU = difference spectra for metformin; UPBU-BlankAU = difference spectra 
for bupropion and UPLB-BlankAU = difference spectra for labetalol.  
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5.3.1 Urine Dataset 

5.3.1.1 Binary Models – PLS-DA 

The discrimination of MA samples from the prescription drugs was carried out in a two-step 

analysis. The binary PLS model was constructed first to distinguish all drug samples from the 

drug-free samples in the urine dataset. The drug-free cohort consisted of blank urine samples 

(n = 17), while the drug cohort consisted of samples spiked with bupropion, labetalol, 

metformin, ofloxacin promethazine, trazodone and methamphetamine (n = 148). The PLS-

DA model (number of LVs = 6) for discriminating between these two cohorts performed 

exceptionally well with a sensitivity and specificity of 95% and 96%, respectively. The 

accuracy of this model calculated at 95.7%. Excellent performance in the cross-validated 
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model was also indicated by the AUC 0.9635 (Figure 5-3). Overall, the false positive rate for 

drug-free samples was 4.5% while the false positive rate for drug samples was 3.9%. These 

cross-validated results suggest that this model performed remarkably well in this sample 

population in this sample population with compounds of varying structures.   

Following this, a second binary PLS model (number of LVs = 5) was constructed to specifically 

distinguish those samples with MA from the prescription drugs. This PLS-DA model 

performed exceptionally well with 100% sensitivity and specificity. This is illustrated in Figure 

5-4 where a clear distinction between the two classes is evident. Furthermore, the loading 

plots for latent variables 1, 3 and 3 (Figure 5-4, plots B, C and D) show characteristic peaks 
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for each of the drugs that were identified from the difference spectra (Figure 5-2). The 

permutation tests conducted on both models demonstrated their statistical significance at 

95% confidence interval.  

This two-step analysis consisting of two PLS-DA binary models displayed promising results in 

distinguishing firstly, drug samples from drug-free samples and then more specifically 

methamphetamine samples from the prescription drugs commonly known to give false 

positives in current IAs. Furthermore, the false positive rates reported here were found to be 

better than those reported in the literature.12, 13, 17, 32 It is likely that these cross-validated 

results presented here are overly optimistic as they were not evaluated with an independent 

dataset obtained from real-world samples. However, permutation tests conducted for both 

models highlighted indicating statistical significance of these models at a 95% confidence 

level. Therefore,  with the range of concentrations presented here covering clinical and 

forensic ranges highlight the strong potential of this method as an alternative to the 

immunoassay methods currently in use.  

5.3.1.2 Multi-class Models – PLS-DA 

Following the success of the two-step analysis, a multiclass PLS-DA model was constructed 

to combine both analyses into one step. This PLS-DA model (with optimum number of LVs = 

7) consisted of three classes – ‘Blank Urine’ referring to drug-free samples, ‘UPMA’ referring 

to urine samples containing MA and ‘Other’ refers to samples that contained one of the 

prescription drugs.  

This cross-validated multi-class PLS model performed very well in terms of total accuracy 

whereby 94.9% of the samples were correctly classified (Table 5-3). This is comparable with 

the binary models presented in the previous section and was particularly effective in 

distinguishing MA samples from the rest with 100% sensitivity and specificity. This is also 

depicted by the scores plot in Figure 5-5 where there is no overlap between MA samples and 

the remaining two classes.  
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Table 5-3: Results for cross-validated multi-class PLS-DA model where blank urine class 
consisted of drug-free samples, Other class consisted of samples with one of the prescription 
drugs and UPMA class consisted of all samples containing MA.  

Class Sensitivity 
(%) 

Specificity 
(%) 

False Positive Rate 
(%) 

Blank Urine 74.5 97.4 2.5 

Other 97.1 86.3 13.6 

UPMA 100 100 0 

 

The sensitivities of 74.5% and 97.1% for drug-free samples and ‘other’ drug class respectively 

indicated that this model was less precise than the binary classification. Upon closer 

examination of the data, the overlap between blank urine samples and the ‘Other’ drug 

samples is due to the low concentrations included in this analysis. It was, however, essential 

to include these samples as they are most likely to be encountered in a clinical setting where 

Figure 5-5: Results from PLS-DA multiclass model built using urine dataset. A: 3D scores 
plot for three classes – ‘UPMA’ shown in red diamonds consists of MA samples in urine, 
‘Other’ shown in yellow squares consists of all samples with one of the six drugs 
mentioned in this chapter and ‘Blank Urine’ shown in green squares consists of all drug-
free urine samples.  B, C and D present latent variables 1, 2 and 3 respectively which were 
used to construct the scores plot in A.  
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patients have been prescribed these drugs in therapeutic doses. This also adds to the class 

imbalance seen in this model which can also impact the model performance. In spite of this, 

97.1% of the drug samples were correctly identified in the ‘Other’ drug class and the false 

positive rate of 13.6% was comparable to those reported in the literature. Finally, the area 

under the curve (AUC) values of 0.913, 0.945 and 0.100 for the ‘Blank Urine’, ‘Other’ and 

‘UPMA’ classes respectively suggest excellent detection capability.  

To take this multi-class analysis one step further for an effective application in the field, an 

eight-class PLS model was built to attempt to classify all samples in their respective classes 

in one analysis. The results of this model (optimum number of LVs = 4) are presented in Table 

5-4 in the form of sensitivities, specificities and false positive rates for each of the classes. 

The accuracy, i.e., the total number of samples correctly assigned using this model was 

51.6%. This is significantly less than those obtained from either the two-step analysis or the 

three-class PLS model. However, this model still achieved 100% sensitivity and specificity 

classifying all the MA samples correctly. Furthermore, the second highest correct 

identification was found to be for the blank/drug-free samples with a sensitivity of 72.5%. 

While this is lower than those achieved by the two previous analyses, with a specificity of 

95.4%, it is still a significant finding as it would reduce unnecessary further testing.  

Table 5-4: Table showing results for cross-validated eight-class PLS model.  

Class Sensitivity 
(%) 

Specificity 
(%) 

False Positive Rate 
(%) 

UPMA 100 100 0 

UPTR 60 82.1 17.8 

UPPR 62.6 96.1 3.8 

UPOF 50 94.1 5.9 

UPMET 35 100 0 

UPBU 37.5 99.2 0.75 

UPLB 23.6 77.7 22.2 

Blank Urine 72.5 95.4 4.5 

 

The drug classes with two of the highest false positive rates of 22.2% and 17.8% were 

labetalol and trazodone respectively (Table 5-4). This high false positive rate is due to 
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trazodone samples being classified as labetalol and vice versa.  For trazodone, the highest 

concentration possible was 2 mg/mL due to the low solubility of the drug in aqueous media. 

This severely limited the proportion of characteristic peaks visible over the urine matrix 

background in the spectra leading to low sensitivity. For labetalol, while the solubility was 

higher than trazodone, the characteristic peaks highlighted in the difference spectra (Figure 

5-2) are in the same region of 1600 – 1400 cm-1 as those found in trazodone. This is also the 

region where major contributions from urea as part of the urine matrix are visible. The lack 

of any other distinctive spectral features in the rest of the spectrum along with this likely 

explains the difficulty in their identification.  

While the above model showed limited success in classifying all samples in one step, it 

highlighted that MA samples can be distinguished even in the presence of a structurally 

diverse sample population using this method. Therefore, for a situation where one potential 

interferant is expected i.e. when the patient is known to have a prescription for one of these 

drugs, a three-class PLS model specifically targeted towards that drug would be beneficial. 

To this effect, six three-class PLS models were constructed and their results are presented 

below (Figure 5-6). The scores and loadings plots are given in Appendix 3 (Figures A3-4 and 

A3-5). When these sensitivities and specificities are examined, all six models illustrate the 

correct classification of all MA samples. In addition, when false positive rates were examined, 

they were all below the lowest reported false positive rates i.e. 3.9% in the literature.12 In 

particular, the results for the model with bupropion samples are excellent whereby only 1.1% 

of the samples were incorrectly identified in this analysis (Table A, Figure 5-6). With the use 

of only one of the six drugs as one of the three classes, the classes become more balanced, 

thus allowing for more confidence in the results. However, the performance of these models 

was not evaluated using independent test sets in this study. Therefore, the comparisons with 

the literature values of false positives should be done cautiously and with a caveat that these 

models may be overly optimistic in their predictive performance.  
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In summary, the results of the various PLS models using the urine dataset presented here 

provide robust results in the correct identification of MA samples with low rates of false 

positives. However, some models with unbalanced classes should be interpreted with 

restraint and must be repeated with a larger dataset consisting of independent test sets from 

real patient samples.  

5.3.2 Serum Dataset 

While there are no studies on these drugs causing false positives in a serum immunoassay, 

blood samples are commonly taken in drug screening situations in a clinical setting.  

Therefore, a similar two-step analysis was performed on the serum dataset. A binary PLS 

classification model was built to distinguish drug-free samples from those containing any one 

Blank v UPMA v UPOF 
 

Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Blank 82.3 100 0 

UPMA 100 92.3 7.6 

UPOF 100 98.9 1.1 

 
Blank v UPMA v UPMET 

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Blank 98 100 0 

UPMA 100 100 0 

UPMET 100 98.9 1.1 

 
Blank v UPMA v UPLB 

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Blank 98 100 0 

UPMA 100 100 0 

UPLB 100 98.9 1.1 

 
 
 

Blank v UPMA v UPBU 
 

Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Blank 98.0 98.5 1.4 

UPMA 100 100 0 

UPBU 97.9 98.9 1.1 

 
Blank v UPMA v UPTR 

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Blank 96.1 96.5 3.4 

UPMA 100 100 0 

UPTR 93.1 97.8 2.1 

 
Blank v UPMA v UPPR 

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Blank 93.3 100 6.7 

UPMA 100 97.5 2.5 

UPPR 100 100 0 

 

A 

B 

C F 

E 

D 

Figure 5-6: Results for six multi-class PLS models constructed for the 
urine dataset including sensitivity (here referred to as Sens), 
specificity (here referred to as Spec) and false positive rates (here 
referred to as FPR). Blank = drug-free urine samples; UPBU = urine 
samples containing bupropion, UPLB = samples containing labetalol, 
UPTR = samples containing trazodone; UPPR = samples containing 
promethazine; UPOF = samples containing ofloxacin; and UPMET = 
samples containing metformin.  
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of the seven drugs. Following this, another binary PLS model was constructed to discriminate 

between samples containing MA from those containing one of the prescription drugs. These 

results are shown below (A and B in Figure 5-7).  

For discriminating drug-free samples, the cross-validated model produced sensitivity and 

specificity of 84.4% and 89.2%, respectively. Moreover, the false positive rate for drug-free 

samples incorrectly identified here was 10.7% while the false positive rate for drug samples 

was 15.5%. In the second step of the analysis, the cross-validated PLS model constructed for 

the discrimination of MA samples from those of the six drugs produced sensitivity and 

specificity of 83.5% and 96.2%, respectively. The optimum number of LVs were determined 

to be 6, 3 and 5 for plot A, B and C in Figure 5-7 respectively. The false positive rate for the 

MA sample class in this classification was higher at 16.4% than that observed from the urine 

dataset (Table 5-3). In comparison to the urine dataset, the sensitivity and specificity values 

of both of these models were lower on the serum dataset leading to higher rates of 

misclassifications. This is unsurprising as the serum is a more complex biological matrix with 

large protein molecules with strong IR absorptions which tend to mask a lot of spectral 

signatures of the drug compounds.  

Blank Serum v Other  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Blank 84.4 89.2 10.7 

Other 89.2 84.4 15.5 

 

Figure 5-7: Results of the PLS models build on the serum dataset. A and B show the results 
of two binary PLS models carried out in the two-step analysis. C shows results of multiclass 
PLS model. Blank serum class includes all drug free samples. SPMA class includes all samples 
with MA in them. Other class includes all samples containing one of the six drugs. Sens = 
sensitivity; Spec = specificity; FPR = false positive rate.   

SPMA v Other  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

SPMA 83.5 96.2 16.4 

Other 96.2 83.5 3.7 

 

A B 

C 
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Following this, a multiclass PLS model was constructed for the serum dataset similar to that 

of the urine dataset to classify drug-free, MA and prescription drug samples. in this model, 

the sensitivity for the MA class was significantly lower at 60% in comparison to the other two 

classes (C in Figure 5-7). The high false positive rate of 11.5% for the drug-free samples in 

comparison to the 5.4% false positive rate for the other two classes suggests that many of 

the samples containing drugs are being classified as drug-free by this model. Upon further 

examination, the samples with the lowest drug concentrations have been misclassified by 

this model indicating that this method might not be sensitive enough to detect drugs in low 

concentrations in serum samples. Therefore, it might be necessary to further investigate the 

application of this method to serum samples either with more balanced larger datasets or 

with some preliminary sample preparation steps such as protein precipitation performed 

prior to analysis. Moreover, it would be beneficial to investigate the detection limits for each 

of the drugs in this dataset with a full set of standards with wide concentration ranges than 

that employed in this chapter.      

5.4 Conclusion  

With the convenient availability of drugs worldwide, the need for drug testing has increased 

in a variety of situations. The most common first test conducted for drug screening is 

immunoassays. However, there are several prescription medications taken in therapeutic 

doses that cause false positives on these Drugs of Abuse immunoassays. While in 

forensic/legal cases, confirmatory testing is mandatory, clinical laboratories are often not 

equipped with the expensive instrumentation necessary for confirmatory testing. This can 

lead to significant mental trauma and damage to the patient’s personal and professional life. 

Therefore the application of ATR-FTIR spectroscopy as an alternative method for drug testing 

using immunoassays is presented in this chapter. The drugs investigated in this study were 

six compounds commonly shown to test false positives on methamphetamine IAs including 

bupropion, labetalol, ofloxacin, promethazine, metformin and trazodone. The chapter 

focused mainly on the analysis of urine samples while preliminary work on serum samples 

was also presented.  

Using binary PLS-DA classification models with Venetian blinds cross-validation, excellent 

sensitivity and specificity values of 96% and 95.4% respectively, were obtained for the 

discriminating drug-free samples from drug samples containing at least one of the drugs 

mentioned in this study. Following this, a second binary PLS-DA model was constructed to 
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discriminate MA samples from the prescription drugs with 100% sensitivity and specificity. 

The AUC-ROC values of 0.96 and 0.100 for these two binary models demonstrated good 

predictive capabilities.  

A third multiclass PLS-DA model was constructed to combine these two steps and to 

categorise drug-free, MA and prescription drug samples in one step. The results of this cross-

validated multiclass model also displayed promising results with sensitivity values of 74.5%, 

97.1% and 100% for drug-free, prescription drug and MA samples respectively. Furthermore, 

the sensitivity of 100% for MA samples obtained here illustrated that none of the prescription 

drug samples were misclassified as MA. Therefore, based on these results the method 

described here is a strong contender as an alternate screening test for the detection of MA 

in urine samples.  

The multiclass PLS classification model for the serum dataset was decidedly less accurate 

with sensitivity values of 83.3%, 90% and 60% for prescription drugs, drug-free and MA 

samples, respectively. However, the examination of class assignments for samples indicated 

that this was due to the low sensitivity of the instrument in detecting low-concentration 

samples. A false positive rate of 5.4% was obtained for MA samples, which was fairly 

respectable considering the complexity of the serum matrix. 

The results reported here are very promising, and emphasise the applicability of ATR-FTIR 

spectroscopy as an alternative method of drug screening for MA in urine. There are, however, 

some important considerations to note. The classes included in this analysis were very 

unbalanced in some instances and thus would require further samples with a wider 

concentration range for a more robust analysis. Furthermore, this chapter only included the 

parent drugs in the analysis. This was due to time and resource constraints. However, it 

would be greatly beneficial to include major metabolites of these drug compounds in the 

analysis as it is the metabolites that tend to cause false positives for some drugs. It would 

also be prudent to consider poly-drug use where an analysis that includes combinations of 

these drugs would be useful as some patients might be prescribed more than one from this 

list. Following this theme of false positives, the next chapter investigates the capability of this 

method in the detection and discrimination of a class of drugs that are specifically designed 

to mimic the effects of MA.  
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6. CHAPTER SIX 

SAME SAME BUT DIFFERENT -  

USING ATR-FTIR SPECTROSCOPY TO 

DISTINGUISH BETWEEN TRADITIONAL 

AND NOVEL STIMULANTS  

IN BIOFLUIDS  
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Abstract 

The screening of NPS in biofluids is challenging for many reasons including structural 

diversity, constantly evolving new variants, low concentrations, lack of reference materials, 

instability of compounds during extraction and analysis, as well as limited knowledge of 

metabolism and excretion parameters. Furthermore, they are very rarely included as part of 

the routine toxicological strategy. This creates a challenge for not only detecting newly 

emerging compounds but also unsuspected ones. In this chapter, ATR-FTIR spectroscopy is 

utilised to provide a solution to this problem by analysing biological samples containing drugs 

as a whole without prior sample extraction. This chapter reports a forensic application of the 

method using real drug samples from the synthetic stimulant drug class obtained from police 

seizures for the discrimination of traditional stimulant, MA, from its NPS analogues, synthetic 

cathinones, in biofluids. Using chemometric analysis, the results reported here illustrate 

respectable sensitivity and specificity values for four structurally different groups of synthetic 

stimulants. Some important considerations highlighted through this analysis are the need for 

a wider range of concentrations and drug compounds, balanced datasets, independent test 

sets with real patient samples and research into drug-protein binding abilities of these novel 

stimulants for more robust model performance and reliable application.  
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6.1 Introduction 

With increasing globalisation and new technologies, Novel psychoactive substances (NPS) 

have seen exponential growth in the last decade. Over 1150 substances are reported to the 

Early warning systems by the UNODC worldwide.1 The term NPS includes any substance, 

either in pure form or preparation that is not currently controlled under the United Nations 

Single Convention on Narcotic Drugs, 1961 or the 1971 United Nations Convention of 

Psychotropic Substances, but may pose a public health threat comparable to the substances 

listed under these.2 While some compounds were initially sold as ‘legal highs’ and ‘research 

chemicals’, NPSs are essentially legal alternatives to psychotropic substances currently 

controlled under national legislation.3-5 Small changes continuously made to NPS structures, 

ensure their psychoactivity and, more importantly, their legality. While some countries 

regulate whole classes of NPSs, others choose to invoke the principle of ‘chemical similarity’ 

to an existing controlled drug to curb the potential for harm caused by these substances.6 

Therefore, the number of compounds in each class of drugs is constantly evolving with newer 

analogues appearing on the market when older ones are being controlled by law.7 

Furthermore, the advanced chemical capabilities and adaptabilities of the drug suppliers are 

intensified with the use of the Internet making any compounds available to anyone anywhere 

in the world.8 The combination of all these issues creates the legal challenge where evidence-

based reporting of harm is necessary for these new compounds to be included in the national 

legislation.  

The capability and capacity to detect, identify and report NPS events are integral for the legal 

framework of early warning, risk assessment and control measures to be implemented 

effectively.9, 10 However, the consumers of NPS often are unaware of the substances they are 

consuming which makes understanding the emergence, patterns of use and prevalence of 

these NPSs difficult to gauge.11-14 Consequently, carrying out NPS risk assessments is difficult 

as research relating to their biological effects, bioavailability, metabolism, toxicity and long-

term health effects are limited or anecdotal at best.15-19 With the continuous growth of NPS 

structural variations, maintaining a working knowledge of their pharmacological parameters 

is almost impossible leading to under-detection and under-reporting of their use and 

prevalence.9, 10, 20, 21 Additionally, the time required to maintain this working knowledge of all 

such compounds oftentimes exceeds their lifespan on the drug markets. This evolving NPS 

market creates a challenging legal and analytical problem. 
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Synthetic cathinones, the second largest group of NPS, mimic the effects of stimulants such 

as MA and other amphetamines.2, 22, 23 Synthetic cathinones are a class of molecules derived 

from cathinone – a beta ketone amphetamine analogue which is a naturally occurring 

psychoactive compound present in the Khat plant.5 While Khat has been used for centuries 

in parts of East Africa and the Arabian peninsula, currently, bupropion is the only cathinone 

derivative that has known therapeutic uses.23 Others including 4-methylethcathinone (4-

MEC), 3-methylmethcathinone (3-MMC), N-ethylpentylone and dipentylone have been used 

for recreational purposes (Figure 6-1).15, 24, 25  

Over 130 novel cathinones have been reported to the EMCDDA in 2018 with little to no 

pharmacological information on most of them.26 While the prevalence of synthetic 

cathinones is difficult to gauge as with many other drugs of abuse, their popularity began 

partly due to the decrease in the availability and purity of the more typical drugs of abuse.15, 

27 Cathinones are consumed in numerous forms and via various routes of administration.15 

The information regarding the typical dosage of such compounds is mostly obtained from 

user surveys and case studies and can be as low as 5 mg or as high as 1g per session.15, 28 This 

is also reflected in the wide range of blood concentrations (1 to 50,000 ng/mL) of cathinones 

found in various case studies reported in the literature.19, 28-36 These case studies also 

highlight an important aspect of NPS use which is poly-drug use. Whether this is achieved 

intentionally or accidentally due to unknown contents, it makes identifying the drug 

responsible for causing harm difficult.27, 37-39 Moreover, like its traditional analogue MA, 

synthetic cathinones have adverse effects consistent with their sympathomimetic toxicity 

including flushing sweating, chills, anorexia, restlessness, hypertension and tachycardia.40, 41 

Therefore, in cases of acute intoxication, it is difficult for a clinician to ascertain the specific 

drug compound responsible. This means that forensic toxicological analyses of biological 

samples are much more important to not only gauge emergence and consumption trends 

but also to identify adverse effects. 

The two-step analytical strategy of preliminary screening followed by a confirmatory test 

commonly applied to traditional illicit drugs to maximise diagnostic sensitivity in the first step 

and to optimise diagnostic specificity amongst all the presumptive positives is also applicable 

to synthetic cathinones.42 However, the standard screening methods including 

immunoassays such as those ordered in emergency departments, will not typically detect the 

presence of cathinones.7, 40 While some case studies have reported false positives generated 
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for amphetamines and PCP, it is possible to employ this immunoassay cross-reactivity for 

toxicological screening.43-46 Such studies, however, have reported highly variable results 

depending on the structural diversity of compounds included, concentrations and 

commercial test manufacturers.47, 48 Therefore, specific testing for NPS that would allow 

3-FPM 

6-APB 

5-APB 

N-ethyl pentylone 

Dipentylone 

4-CMC 

4-MEC 
MMC 

3-MEC 

H
N

Methamphetamine  

GROUP 1 GROUP 2 

GROUP 4 

GROUP 3 

Figure 6-1: Figure shows structures for all NPS stimulants included in this chapter for 
comparison with MA (shown in red). Group 1 (Top left) includes 3-flurophenmetrazine (3-
FPM). Group 2 (Top right) includes 4-chloromethcathinone (4-CMC), 4-methylethcathinone 
(4-MEC), 3-methylethcathinone (3-MEC) and methylmethcathinone (MMC). Group 3 
(Bottom right) includes 6-(2-aminopropyl)benzofuran (6-APB) and 5-(2-
aminopropyl)benzofuran (5-APB). Group 4 (Bottom left) includes N-ethyl pentylone and 
dipentylone.  
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timely information for guided patient management in a clinical setting is still not available 

even with the most advanced instrumentations.10, 40, 49  

Furthermore, when suspected samples are sent for more specific laboratory testing using 

hyphenated mass spectrometry techniques, NPSs are not commonly included on the drug 

panels in routine toxicology unless there is a strong suspicion of NPS use.50, 51 Moreover, 

when NPS detection is requested, even the gold standard techniques such as LC-MS/MS are 

not all-inclusive leaving emerging compounds undetected.50 Such methods require reference 

samples, lengthy method development, extensive drug database, and expert evaluation of 

results making them of limited use in the clinical setting for timely patient management.40 

Such detailed investigations can’t be carried out on NPSs as they are essentially transient on 

the drug markets.  

From the above discussion, it is evident that the screening of unknown substances is the 

weak point in the analytical strategy employed in the toxicological analysis of drug samples. 

This chapter aims to provide a potential solution to this problem by using the method 

developed in this thesis. The ability of ATR-FTIR spectroscopy to distinguish between MA, a 

traditional drug of abuse from its novel analogues, a selection of synthetic cathinones, in 

biological fluids is investigated as a rapid, adaptable and single-analysis method alternative 

to current screening methods.  
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6.2 Materials and methods  

6.2.1 Materials  

The reference standards for NPSs studied here were obtained from Cambridge Biosciences 

Ltd, in Cambridgeshire, UK. The street NPS samples analysed in this study were provided by 

the Defence Science and Technology Laboratory (DSTL) in Hertfordshire, UK in line with all 

legalities associated with controlled substances under UK legislation. Detailed information 

for these samples is given in Table 6-1. Reference standards were received in sealed vials 

with reference documentation, while street NPS samples were received in a variety of 

packaging such as small ziplock bags and plastic screw-top bottles which were sealed in an 

evidence bag. Examples of these are shown in Figure 6-2. The samples were divided into four 

groups based on their structural similarities (Figure 6-1) and these were used as classes in 

the classification models presented in this chapter.  

Figure 6-2: Photographs showing example of the condition in which street NPS samples 
arrived in from DSTL. The left photo shows a zip lock bag while the right photo shows a 
screw top bottle inside the sealed evidence bag. The photographs were taken by the 
author on their personal camera. Black boxes are used to remove sensitive information 
on the evidence bags.  
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Table 6-1: Details of all samples used in this study are shown in this table. Ref refers to 
reference standards; Street NPS refers to samples donated by DSTL. Total number of samples 
indicates the number of samples in each biofluid, urine and serum. Groups 1-4 refer to classes 
created using the structural similarity of the drug molecules in the street samples.  

 

Sample 
Type Sample ID Drug/ Abbreviation  Total No of 

samples 
Allocated 

Group 

Ref CAY17208 Flurophenmetrazine 
(FPM) 15 - 

Ref CAY11222 Methylethylcathinone 
(3-MEC) 15 - 

Ref CAY9001069 Methylethylcathinone 
(4-MEC) 15 - 

Ref CAY11224 Methylmethcathinone  
(MMC) 15 - 

Ref CAY16436 4-chloromethcathinone 
(4-CMC) 15 - 

Ref CAY11079 Aminopropylbenzofuran 
(6-APB) 15 - 

Ref CAY11134 Aminopropylbenzofuran 
(5-APB) 15 - 

Ref CAY9001933 Dipentylone 15 - 

Street 
NPS E5139347 3F-phenmetrazine  

(Street3FPM) 15 1 

Street 
NPS EH662856491GB 3-methylethylcathinone 

(Street3MEC) 15 2 

Street 
NPS E5147950 (A) 

Clephedrone or 4-
chloromethcathinone 

(Street4CMC) 
15 2 

Street 
NPS E5147050 (B) Methylmethcathinone 

(StreetMMC) 15 2 

Street 
NPS E5140038 (1) 4-methylethylcathinone 

(StreetMEC) 15 2 

Street 
NPS E5110349-K03 Methylmethcathinone 

(StreetMMC2) 15 2 

Street 
NPS E5140038 (2) 6-(2-aminopropyl)benzofuran 

(Street6APB) 15 3 

Street 
NPS E5110349-K01 N-ethylpentylone  

(StreetnEP) 15 4 

Street 
NPS E5110349-K02 N-ethylpentylone  

(StreetnEP2) 15 4 

Street 
NPS E4407010129 Dipentylone  

(StreetDipentylone) 15 4 
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6.2.2 Sample Preparation  

Stock solutions of the six drug molecules were created by directly dissolving 10 mg of 

powders into 1 ml of biofluids. Using these stock solutions, samples of 10, 5, 1, 0.1 and 0.01 

mg/mL concentrations were prepared for all reference standards and street NPS samples. 

Details for the MA samples mentioned in this chapter are provided in Chapter 3 (Section 

3.2.2).  

Powder samples were analysed in the form they were received in and did not require any 

further sample preparation such as milling or grinding.  

6.2.3 Spectral Collection  

The instrumentation and spectral collection procedure used were previously described in 

section 3.2.3. 

6.2.4 Spectral Pre-processing and Analysis  

The PRFFECT toolbox within R statistical computing environment software was utilised for 

spectral pre-processing. The pre-processing protocol followed here included a Savitzky-Golay 

(SG) filter for smoothing, vector normalisation and rubberband baseline correction in that 

order for all samples, while an additional step of picking the 2200-450 cm-1 region for urine 

samples was performed.  

The spectral analysis was performed in MATLAB (version 2018b) using PLS Toolbox (version 

9.6.2) created by Eigenvector Research Ltd. The mean centre and autoscale parameters 

provided in the PLS Toolbox were employed when they enhanced the model performance. 

This was evaluated for each dataset during analysis. Binary and multi-class PLS-DA models 

were trained and cross-validated using the Venetian blinds cross-validation method. The 

training and test sets were created with 5 data splits and a maximum of 20 latent variables. 

An appropriate number of latent variables were selected based on the plot of root mean 

square errors of classification and cross-validation for each model. The performance of these 

models was evaluated using sensitivity, specificity and accuracy (total number of samples 

correctly identified) and false positive rates. Permutation tests were performed in order to 

detect the overfitting and examine the extent to which ‘chance correlation’ might exist 

between x- and y-blocks in current modelling conditions. 
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6.3 Results and Discussion  

6.3.1 Powder Spectra 

Firstly, all powder samples – reference standards and street NPSs were analysed to 

understand the composition of the street samples. The individual spectra for reference 

standards with labelled peaks are provided in Appendix 4 Figures A4-1, A4-2, A4-3 and A4-4. 

The examination of the powder spectra of groups 1 - 4 samples revealed spectral regions of 

importance that were similar to those identified in Chapter 3. These regions include 

vibrations of the aromatic ring deformation and bending modes in the 1650 – 1400 cm-1 and 

850 – 700 cm-1 regions, the type of substitution indicated by the sets of peaks in the 1225 – 

950 cm-1 region, the symmetric and asymmetric stretches of the aliphatic side chains are 

found in the 2950 – 2700 cm-1 region and the N-H stretching modes in the higher 3600 – 3300 

cm-1 region. However, some differences were also observed. For instance, the presence of 

strong C=O stretching mode at ~1685 cm-1, a characteristic of cathinones not present in MA, 

was found in all sample spectra belonging to group 2. Similarly, the strong C-O stretching 

mode at ~1250 cm-1 indicating the presence of methylenedioxy group in the samples from 

group 4 was also evident.   

The difference spectrum for each street sample powder was calculated by subtracting the 

reference standard spectrum from the corresponding street sample. These are provided in 

Figure 6-3. If these samples were pure, the difference spectra should be a flat line rather than 

showing any peaks. When these difference spectra were examined, none were found to be 

a flat line indicating the presence of impurities and/or contaminations. Of particular interest 

here, are the two different MMC samples from the street drugs cohort indicating two 

different illicitly made products whose disparities are visible in their unidentical difference 

spectra (labelled as MMC 1 and MMC 2 in Figure 6-3). This suggests that these two samples, 

though labelled and sold as MMC, are either likely to be from a different batch with unique 

adulterants or have retained different impurities from the individual illicit manufacturing 

processes. While it is highly likely that these street samples contain some cutting agents, it is 

also possible that these spectral differences are due to different salt forms of the compounds 

as well as impurities retained through the illicit manufacturing process. Though these 

differences were not investigated further in this chapter, the difference spectra were 

included here to illustrate the inconsistencies in the compositions of street drugs.  
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Difference spectra for these NPS samples calculated in serum and urine are given in Appendix 

4 Figures A4-5, A4-6, A4-7 and A4-8.  

Figure 6-3: Difference spectra for the powder samples is shown. Each were 
calculated by the substracting the powder spectra of the respective reference 
standards from that of the street versions.  
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For the remainder of this chapter, the street NPSs are categorised into four groups based on 

their structural similarities for ease of analysis. These are also shown in column 5 of Table 6-

1. Group 1 consisted of spectra from only 3-FPM samples as it was the only street sample 

with that structure. Group 2 consisted of spectra from MMC (2 samples), 4-CMC, 3-MEC and 

4-MEC. Group 3 consisted of 6-APB, a benzofuran stimulant. Finally, group 4 consisted of N-

ethyl pentylone and dipentylone samples. 

6.3.2 PLS-DA – Binary Models 

The analysis was conducted in two steps as previously shown in Chapter 5. The first PLS 

model was built using the drug-free cohort (n = 30 in serum; n = 17 in urine) and drug samples 

(here referred to as ‘Drug; n = 76 in serum; n = 50 in urine) which included all street NPSs and 

MA samples (Figure 6-4). With 5-fold cross-validation, the optimum number of LVs was found 

to be 6 for both serum (with mean centre) and urine (without mean centre) datasets. The 

accuracy of the models was found to be 84.% for the serum dataset and 78.6% for the urine 

dataset suggesting a reasonable predictive performance, especially considering the 

structural diversity represented in the drug cohort. The sensitivity and specificity values for 

the serum dataset were 92.2% and 80% with an AUC-ROC value of 0.92. Similarly, for the 

urine dataset, the sensitivity and specificity values of 92.1% and 74% were obtained with an 

AUC-ROC of 0.91. The false positive rates were found to be high for drug-free samples at 

19.2% in the serum dataset and 26% in the urine dataset suggesting that many of the drug 

samples were misclassified as drug-free samples. This issue was seen in other analyses 

presented in this thesis, where low-concentration drug samples in serum and urine were 

often misclassified. This is likely due to the strong absorptions from biological matrices in 

comparison to the low concentration of the drugs present in the samples.  

Following this, the second PLS-DA model was constructed to discriminate MA samples (here 

referred to from that of the street NPSs. With 5-fold cross-validation, the optimum number 

of LVs were found to be 6 and 4 for serum (without mean centre) and urine (with mean 

centre) datasets respectively. This model showed excellent sensitivity and specificity values 

of 98.6% and 98.1% for the serum dataset and 97.7% and 92.6% for the urine dataset (Figure 

6-4). The scores plots included in Figure 6-4 visually present the discrimination between the 

two classes with some overlap which is reflected in the sensitivity and specificity values. The 

AUC-ROC values of 0.99 and 0.98 for the serum and urine models respectively highlight good 

discriminatory capabilities.   
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Figure 6-4: Results of the two-step binary PLS-DA model for discriminating between drug (here 
referred to as ‘Other’ and drug-free samples (here referred to as ‘BlankS’ for serum and 
‘BlankAU’ for urine) are shown for serum (A1, A2, B1 and B2) and urine (C1, C2, D1 and D2) 
datasets. The scores plots for this classification in the serum dataset are shown in A and for 
the urine dataset in C. The sensitivity (here referred to as Sens) and specificity (here referred 
to as Spec) values as well as the AUC-ROC values for the serum dataset are shown in B and for 
the urine dataset in D.  

SPMA v Other  
AUC = 0.99 

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

SPMA 98.6 98.1 1.9 

Group 1 98.1 98.6 1.3 

 

UPMA v Other 
AUC = 0.98  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

UPMA 97.7 92.6 7.3 

Group 1 92.6 97.7 2.2 

 

A2 C2 

B2 D2 

BlankS v Other  
AUC = 0.92 

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

BlankS 92.2 80.8 19.2 

Other 80.8 92.2 7.7 

 

A1 

B1 

C1 

D1 
BlankAU v Other 
AUC = 0.92  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

BlankAU 92.1 74 26 

Other  74 92.1 7.8 

 

Drug Drug 

Drug Drug 

Other Other 
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The loading plots for the aforementioned two-step analysis are provided in Figure 6-5. In the 

models where mean centring was not applied (E2 and F1 in Figure 6-5), LV1 resembled the 

respective matrix. The remaining latent variables show influences from multiple functional 

groups belonging to different drugs included in the drug class. For instance, the two strong 

peaks at 748 and 700 cm -1 reflecting the presence of MA are seen to be present in multiple 

latent variables. As identified in Chapter 3, the spectra regions of 850-700 cm-1 and 1225 – 

950 cm-1 are also of significance here as they represent the aromatic ring and the types of 

substitutions present on the ring. RF analysis which was most useful in identifying the 

contributions from these two regions, was not performed here but remains a promising 

approach to explore in future studies.  

The sensitivities and specificities reported from this two-step analysis demonstrate the ability 

of this analysis to discriminate these sample classes. Interestingly, both serum and urine 

Figure 6-5: Loading plots for the two step PLS-DA classification of drug samples from drug free 
samples (E1 and F1) and MA from combined set of groups 1-4 (E2 and F2). Top row shows 
loadings from serum dataset while urine dataset is represented in the bottom row.  
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datasets provided similar values of sensitivities and specificities, unlike previous chapters 

where the results of classification models for urine datasets were decidedly better. Whether 

this is likely to occur for all NPSs or a characteristic of this set of street samples, would require 

further research. It is also important to note here that spectral signatures of the total drug in 

the sample (free drug portion and bound drug portion) were used in this analysis. As 

information such as the protein binding abilities of NPSs is rarely available in the literature, 

it is not possible to account for such interactions. However, the existence of such interactions 

is demonstrated by the changes observed in the amide I and amide II bands of the serum in 

the difference spectra as well as the loading plots from this section.  

While the false positive rates for MA were high in the first step, these were significantly 

reduced in both serum and urine datasets following the removal of drug-free samples (B2 

and D2, Figure 6-4). This indicates that these are likely related to the difficulty in the 

classification of lower-concentration samples.  

It is also prudent to note that these models were built using imbalanced classes and their 

performances were not validated using an independent set of biological samples containing 

these drugs. While powder drugs were obtained from DSTL without much hassle, obtaining 

real patient samples containing such drugs is more difficult due to legal and ethical 

considerations. This means that the CV results presented here could likely be overly 

optimistic in their sensitivity and specificity values. However, permutation tests conducted 

for both models highlighted indicated the statistical significance of these models at a 95% 

confidence level. Therefore, further analysis using a more representative dataset with 

greater sample numbers and concentration range would provide a more robust model. 

6.3.3 PLS-DA – Binary Models for Individual NPS Groups  

Following the preliminary classification of MA samples from all NPSs, a set of 4 more specific 

classifications between MA and each group of NPSs. The results of these cross-validated PLS-

DA models are presented in Figure 6.6 for serum (A1 to A4) and urine (B1 to B4). The 

optimum number of LVs was determined to be 4, 5, 4 and 5 classification of MA against 

groups 1, 2, 3 and 4 respectively, for both datasets. All binary classification models presented 

in Figure 6-6 show excellent sensitivities and specificities for both datasets. A sensitivity of 

100% was seen when discriminating MA against groups 1 and 2 in serum and groups 2 and 3 

in urine, while the remaining sensitivity values were above 96%. This is especially significant 
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for the discrimination of MA from group 2 samples as these molecules are structurally most 

similar to MA and AM differing only by the presence of a carbonyl group at the β-position of 

the side chain. The false positive rates were found to be under 5% in all models suggesting 

reasonable discrimination of MA samples in these datasets.  

The scores and loading plots for this classification are provided in Appendix 4 Figures A4-9 to 

A4-12. LV1 was influenced by the mean spectrum of the respective matrix as the data was 

Figure 6-6: Results of four sets of PLS-DA models for discrimination of MA from 
each group of the NPSs in serum (A1 – A4) and urine (B1 – B4) datasets. The 
sensitivity (here referred to as Sens) and specificity (here referred to as Spec) 
values. FPR refers to false positive rates.   

UPMA v Group 1  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

UPMA 97.7 100 0 

Group 1 100 97.7 2.2 

 
UPMA v Group 2  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

UPMA 100 97.2 2.7 

Group 2 97.2 100 0 

 
UPMA v Group 3  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

UPMA 100 96.7 3.3 

Group 3 96.7 100 0 

 
UPMA v Group 4  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

UPMA 95.5 95.4 4.5 

Group 4 95.4 95.5 4.5 

 

SPMA v Group 1  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

SPMA 100 100 0 

Group 1 100 100 0 

 
SPMA v Group 2  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

SPMA 100 98.7 1.2 

Group 2 98.7 100 0 

 
SPMA v Group 3  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

SPMA 96 96.7 3.3 

Group 3 96.7 96 4 

 
SPMA v Group 4  

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

SPMA 96 100 0 

Group 4 100 96 4 
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not mean-centred. The remaining loading plots in each of the classifications show influences 

from the drugs included in the group. For instance, loading plots of LV3 and LV4 in the 

classification of MA from group 4 samples in serum display significant influence from the 

~1246 cm-1 peak characteristic of the methylenedioxy group (Appendix 4, Figure A4-12). 

Additionally, differences in the aromatic rings from MA and 3-FPM are also reflected in these 

loading plots.  

The better performance of these models with MA samples and a single NPS group in 

comparison with all NPSs grouped suggests that it is beneficial to utilise the structural 

similarities to achieve better discrimination and class assignments in a real sample dataset 

when a certain type of NPS is suspected. Though these models, as previously noted, were 

not evaluated using independent samples and could be presenting overly optimistic results, 

the permutation tests conducted here highlight their statistical significance.  

6.3.4 Multiclass Models 

With the excellent performance of the binary models presented in the previous section, 

multi-class PLS-DA models were constructed so that MA can be distinguished from drug-free 

samples as well as samples containing NPSs in a single step. The results of the cross-validated 

PLS-DA model are included in Figure 6-7 along with the scores plot for LVs 1, 2 and 3. The 

optimum number of latent variables was determined to be 5 for both serum and urine 

datasets. The loadings for these are provided in Appendix 4, Figure A4-13.  

The sensitivity values of 63. 5%, 63. 5% and 71.7% for drug-free, MA and Street NPS samples 

respectively in the serum dataset were much lower than those observed in the binary models 

Figure 6-7). This was also observed for the urine dataset with the lowest sensitivity value of 

46% for the drug-free class. The drug-free class was also found to have a higher false positive 

rate in comparison to MA and street NPS classes in both serum and urine datasets. When the 

misclassified samples were closely examined, it was observed that they stemmed from the 

lower-concentration samples being misclassified as drug-free samples. Additionally, the 

higher AUC-ROC values of 0.95 and 0.94 in the serum dataset and 0.98 and 0.80 in the urine 

dataset for MA and street NPS suggest an excellent ability of the model to classify these two 

classes.  
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In order to make this analysis more applicable to field deployment, the 5-class PLS-DA model 

was constructed for the classification of MA and all groups of NPSs in one single step. The 

PLS model with 5-fold cross-validation and 5 latent variables, provided promising results for 

a model involving such diverse classes. The scores plots and the results of these models are 

presented in Figure 6-8. For the MA samples, the sensitivities and specificities of 84% and 

98.7% for the serum dataset and 97.7% and 94.6% for the urine dataset were observed. 

Conversely, the lowest sensitivity values of 60% were observed for group 3. However, the 

specificity values for group 3 were found to be very good (98.1% and 100% for serum and 

urine datasets respectively). This highlights a previous point regarding the difficulties 

encountered in this thesis when classifying samples with lower concentrations. However, the 

significant differences in the structures of MA and group 3 compounds are reflective of the 

high specificity values obtained here.   

Figure 6-7: Results of multiclass PLS-DA models for discriminating between MA (here 
referred to as ‘SPMA’ for serum and ‘UPMA’ for urine), combined class of all NPS groups 
(here referred to as ‘Street NPS’) and drug-free samples (here referred to as ‘BlankS’ for 
serum and ‘BlankAU’ for urine) are shown for serum (A1 and B1) and urine (A2 and B2) 
datasets. The scores plots for this classification are shown in A and results are given in B.  
The sensitivity (here referred to as Sens) and specificity (here referred to as Spec) values as 
well as the AUC-ROC values for both datasets are shown.  

 

Blank v SPMA v Street NPS 
 

Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

AUC 

Blank 63.5 93.8 28.5 0.826 

SPMA 63.5 93.8 6.1 0.954 

Street 
NPS 71.4 92.0 7.9 0.944 

 

Blank v UPMA v Street NPS 
 

Sens 
(%) 

Spec 
(%) 

FPR (%) AUC 

Blank 46 86.5 13.4 0.749 

UPMA 93.1 71.5 8.5 0.982 

Street 
NPS 75.3 86.6 25 0.804 
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The loading plots for all the latent variables selected in these models are given in Appendix 

4, Figure A4-14. The optimum number of LVs was determined to be 6 for both datasets and 

LV1 was a mean spectrum resembling the respective biofluids. The contributions from groups 

1 and 2 to the loading plots were evident due to the distinctive peaks present in the sample 

spectra. Conversely, the low sensitivities identified for group 3 are also likely explained by 

the lack of strong, distinctive peaks that stand out above the matrix background.  

These multiclass models were able to demonstrate that the discrimination of MA can be done 

in a single-step analysis of both biofluids using ATR-FTIR spectroscopy. However, it is prudent 

to note that these models were not evaluated using independent test sets or real patient 

samples containing NPSs. Furthermore, groups 1 and 3 consisted only of one street 

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Group 1 100 95.7 4.2 

Group 2 83.5 88.6 11.3 

Group 3 60 98.1 1.8 

Group 4 66.7 92.3 7.6 

SPMA 84 98.7 1.2 

 

 
Sens 
(%) 

Spec 
(%) 

FPR 
(%) 

Group 1 80 91.1 8.9 

Group 2 82.7 95.7 4.2 

Group 3 60 100 0 

Group 4 71.1 95.3 4.6 

UPMA 97.7 94.6 5.3 

 

Figure 6-8: Results of 5 class PLS-DA models for classification of MA (here referred to as ‘SPMA’ 
for serum and ‘UPMA’ for urine), group 1, group 2, group 3 and group 4 of street NPS samples 
are shown for serum (A1 and B1) and urine (A2 and B2) datasets. The scores plots for this 
classification are shown in A and results are given in B.  The sensitivity (here referred to as 
Sens) and specificity (here referred to as Spec) values as well as the false positive rates are 
shown.  
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compound making the sample size much smaller and less representative than the other 

groups of samples included here. Another important point to note here is that the drug-

matrix interactions were not investigated here and the spectral contributions from the total 

drug portions were included in the classification process. While it is inevitable in terms of 

NPSs as such data is rarely available for them, further studies exploring this could lead to 

better classification.   

6.4 Conclusion  

With the increasing use of NPSs globally, the need for good screening methods has increased 

for legal as well as public health reasons. The standard toxicological screening performed 

using immunoassays is inadequate for testing NPSs in biological fluids due to unpredictable 

cross-reactivities and variable results due to disparities in substances, concentrations and 

manufacturers. This chapter presented an alternative method for screening NPSs, more 

specifically synthetic cathinones, in biological fluids, with the use of ATR-FTIR spectroscopy.  

The drugs obtained from the DSTL laboratory consisted of a range of drug compounds from 

the synthetic stimulant NPS class. As synthetic stimulants are the most common legal 

alternatives to MA to achieve the same physiological effects, the range included in this study 

was a good representative of real-world situations.  

Using a two-step analysis consisting of binary PLS-DA classification models with Venetian 

blinds cross-validation, first, drug-free samples were distinguished from all drug samples with 

sensitivity and specificity values of ~92% and ~80% in two biofluids. Following this, 

discrimination of MA from all street NPSs was achieved with sensitivity and specificity values 

of ~98 and ~97%. This model performance was supported by high AUC-ROC values of >0.92 

in both serum and urine datasets. This two-step analysis protocol was successful in 

discriminating MA samples and achieving one of the primary aims of this chapter.  

The multiclass models were constructed here to demonstrate the applicability of this method 

as a one-step screening method to be able to distinguish MA from a range of samples 

including drug-free samples. The results of the cross-validated three-class PLS-DA model 

were promising in terms of specificity values but provided much lower sensitivities than the 

binary models. This was also reflected in the high false positives obtained for the drug-free 

class indicating that lower concentration samples were often misclassified by the models 
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presented here. This was also supported by the relatively low AUC-ROC values obtained for 

the drug-free class in both datasets.  

Finally, expanding the multivariate analysis even more, two 5-class PLD-DA models were built 

to distinguish individual groups of drugs present in this study for serum and urine datasets. 

With sensitivities and specificities of 84% and 98% in the serum dataset and 97% and 94% in 

the urine dataset for MA samples, this application of ATR-FTIR spectroscopy was shown to 

be successful in achieving the original aims. However, there are important considerations to 

note which are mentioned throughout this study. The sample set employed here was 

unbalanced and limited in number and the variety of drug compounds represented in each 

of the groups. The use of an independent test set with real patient samples would be 

invaluable in testing the efficacy and applicability of this analysis to a real-world scenario. 

Moreover, the impacts of the interactions between drugs and the matrix on the spectral 

signatures were observed but not investigated here. It would be beneficial to explore these 

in order to delineate the specific spectral features of specific drug compounds. Constructing 

such a database would allow this method to be more accurate in its discrimination and more 

versatile in its application.  
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Global drug markets and patterns of use are becoming increasingly complex with the 

emergence of new drugs and the prevalence of poly-drug habits that include both licit and 

illicit drugs. However, the constantly changing landscape of drug markets creates numerous 

challenges in monitoring and regulating drug compounds to reduce public harm. Hence, drug 

detection is of great importance as it lies at the heart of all drug-related social, economic and 

legal issues.  

Attenuated total reflectance – Fourier transform infrared spectroscopy has shown great 

promise in detecting seized drug samples and in biofluid spectroscopy mainly owing to quick, 

versatile and nondestructive analysis, minimal sample volumes required and simple 

instrumentation. Its wider application and acceptance in the forensic analytical field have 

been heightened by the commercial availability of portable instrumentations. However, a 

combined application for the detection of drugs in biological fluids using this technique needs 

further research. With this in mind, this thesis conducted a proof-of-concept study for the 

direct detection and quantification of drugs in biological samples. An important and 

distinctive aspect of the method presented throughout this thesis was the lack of tedious 

sample extraction and preparation methods. This was directly influenced by the constant 

struggle to keep up with the testing of newly emerging unknown drugs efficiently and cost-

effectively. Therefore, the preliminary study was expanded to include cutting agents and 

NPSs common in the illicit drug markets, as well as prescription drugs erroneously screened 

as controlled substances. Through this, this thesis demonstrated the adaptability of the 

method presented here and presented a potential solution for the analytical challenges 

encountered in the detection of drugs in biofluids in clinical and forensic drug analysis.   

In Chapter 3, MA is used as a target molecule to present a proof-of-concept study in detecting 

MA and its metabolites in serum and urine without prior sample extraction. Despite the 

strong absorption of biofluids, the successful detection of MA and its metabolites in clinically 

and forensically relevant concentrations was demonstrated with the help of chemometric 

multivariate analysis. Multivariate analyses presented in this chapter were able to distinguish 

MA samples in serum and urine at sensitivity and specificity values of ~91% in serum and 

~95% in urine matrices. Additionally, the high discriminatory power of this analysis was 

demonstrated by distinguishing MA from its major metabolite AM, a psychoactive drug on 

its own, with sensitivity and specificity values of 96.1% and 93.2% in serum and 86.2% and 

88.2% in urine respectively. A preliminary regression analysis was presented for the 
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quantification of MA and its metabolites with a detection limit of ~0.1 and ~0.3 mg/mL in 

serum and urine respectively.  

With the increasing consumption of illicit drugs which are rarely pure, the applicability of the 

method was successfully demonstrated for discriminating adulterated MA samples in 

Chapter 4.  MSM, paracetamol and sugar were the cutting agents included in this analysis as 

they are similar to MA in physical appearance as well as are commonly found in illicitly 

manufactured MA. Using two methods of classification, PLS-DA and RF analysis, the 

multivariate analysis was successful in discriminating pure MA samples from adulterated MA 

samples in biological fluids. The sensitivity and specificity values of ~95-100% were obtained 

for this classification using PLS-DA analyses, though RF analysis performed better with 100% 

sensitivities and specificities. Quantification attempted to determine the amount of MA in 

adulterated samples using PLS regression models demonstrated strong linearities (R2 = 0.95). 

These results highlight the promising future for this method in clinical situations for instance 

when quick analysis of body fluids is necessary following ingestion of unknown substances 

for effective patient management.  

Chapter 5 demonstrated the capability of ATR-FTIR spectroscopy as an alternative to urine 

immunoassays which are routinely performed for the screening of MA in clinical and forensic 

situations. Six drugs including bupropion, labetalol, ofloxacin, promethazine, metformin and 

trazodone commonly known to give false positive results on an MA immunoassay were 

investigated in this chapter. The binary and multiclass PLS models performed exceptionally 

well in discriminating MA samples from these prescription drugs. For the urine dataset, the 

sensitivities and specificities obtained from these analyses were in the range of 95-100% and 

the false positive rates obtained for misclassifying other samples as MA remained under 5% 

which are at least comparable to those reported in the literature making this method a strong 

alternative to the current IA-based methods.  

Following the theme of detecting imitators, this method was used to distinguish between 

traditional stimulants such as MA and NPS stimulants such as synthetic cathinones in Chapter 

6. Successful analysis was conducted on real street samples provided by DSTL, UK and 

showed promising results suggesting the abundant potential of this method. The sensitivity 

and specificity values of ~94% - 98% were reported in serum and urine datasets for 
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distinguishing MA from its NPS analogues. This has huge implications in both forensic and 

clinical applications where current screening methods are unable to detect these differences.  

Chapter 3 was also important in the development of the experimental protocol followed 

throughout this thesis. While there was previous work available in the research group to 

guide the basic protocol of biofluid spectroscopy, this was mainly developed for the 

detection of cancer biomarkers. The adaptation of this protocol for the detection of drugs 

presented a few different challenges. For instance, preliminary work was conducted to 

determine that dissolving the drug powders directly into the biofluids provided the best 

results. This also reduced the amount of biofluids and drug powders needed throughout this 

thesis. The drying protocol was kept simple by design to allow future operations by non-

experts. Based on the previous work in the research group, sample amounts and drying times 

for serum were known. Such analysis on urine samples had not been conducted previously. 

For analysis of urine samples, the sample volume had to be reduced so that the sample 

remained on the crystal surface upon drying. Much more variability was observed in the 

drying of urine samples than in the serum samples. This was mainly observed in the higher 

wavenumber end of the spectrum and led to that section being excluded from the analyses 

presented here. 

Therefore, during the method development phase of this work, some limitations of this 

method became apparent. While almost all drugs chosen in this study were adequately 

soluble in water, the application of this method to investigate drug compounds insoluble in 

water would not be possible by the protocol devised here. The air-drying employed here was 

found to be dependent on temperature and humidity in the lab and can get very time-

consuming. The analyses presented here consisted of small and in some cases, imbalanced 

datasets. Therefore it is necessary to evaluate these performance statistics with a larger 

dataset and real-world samples. Furthermore, the complex spectral signatures of the 

biological matrices tend to increase the limits of detection and are the limiting factor for the 

widespread application of this method. However, the research presented here was overall 

successful in addressing the aims and objectives set out and provides a promising future for 

using the existing FTIR instrumentations in most laboratories for developing a simple, rapid 

and highly adaptable drug screening test for biofluids.  
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Drug detection is a complex and dynamic field not only in terms of the analytes that are 

targeted but also the technologies that are utilised and developed. The use of ATR-FTIR 

instruments for characterising unknown substances is well known in many fields including 

forensic chemistry for analysing powders as previously stated in Chapter 1. The intrinsic 

benefits of this technique including simple operation and instrumentation, minimal sample 

volumes and direct analysis make it applicable in a variety of situations. Availing of all these 

benefits, this thesis has demonstrated the significant potential of ATR-FTIR spectroscopy for 

the detection of drugs in biological fluids without the need for extensive sample extraction 

and preparation steps.  

It is important to note that the method presented here is a proof-of-concept study and 

comprehensive analytical method validation is necessary prior to practical field deployment. 

The experimental protocol described here would need a thorough validation to investigate 

the effects of specific parameters and to optimise them. This is significant to preserve the 

integrity of the samples by optimising sample collection and storage protocols for the 

analysis of simulated and real-world samples. Another crucial factor to consider here is the 

effects of sample drying. The drying protocol followed in this study was kept simple by design 

to minimise the need for complex procedures and make it easy to follow by a non-expert. 

However, variables such as temperature and humidity etc. were observed to impact drying 

times during experiments. This along with the heterogeneous deposition of samples during 

the drying process and its impacts in this context need to be evaluated for reliable 

application. There are extensive studies that investigate such pre-clinical factors for biofluid 

spectroscopy in clinical diagnostics.1-5 With the help of this knowledge base, it would be 

highly beneficial to conduct such pre-clinical investigations to ensure experimental 

reproducibility across instruments and laboratories for its practical application. As more data 

is collected, it is important to optimise and validate the data processing protocols presented 

here for widespread application. The multivariate models built here will require continuous 

maintenance throughout data collection for their reliable application. Therefore, organising 

a dynamic and comprehensive reference library and developing automation for library 

matching would be beneficial for the efficient detection and identification of newly emerging 

drugs in the field.  

One time-consuming factor identified here was the drying of samples on the one ATR crystal 

which needed to be analysed and cleaned before the next sample. Sample multiplexing 
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where multiple samples are analysed sequentially on the same ATR crystal would be highly 

beneficial in reducing the analysis time and mitigating the potential for sample 

contamination. This has been demonstrated in the literature for other applications such as 

detecting COVID-positive sera using ATR-FTIR spectroscopy coupled with chemometrics. 

Investigating the application of such protocol to prepare drug samples would be a valuable 

next step to investigate for a high throughput analysis.6 Other than the aforementioned 

methodological opportunities, the work presented in this thesis can be expanded in 

numerous avenues in chemistry, pharmacology, and clinical and forensic scenarios. Some 

recommendations for future directions are presented below.  

Chapter 3 evaluated the presence of MA along with 4 of its metabolites in two biological 

matrices – urine and serum. Though this proof-of-concept study targeted MA, the method 

and the instrument are infinitely adaptable to any drug compounds, their metabolites and 

any adulterants. It is important to note here that all drug compounds included in this thesis 

displayed adequate solubility in aqueous media such as serum and urine. While this is not an 

issue when analysing real-world samples, it would be prudent to investigate and devise a 

protocol for drugs that are insoluble in aqueous media for conducting preliminary reference 

studies. Due to the adaptability of this method, it can also be applied to other NPSs than 

those covered in Chapter 6. Furthermore, it is widely recognised that testing only the parent 

compounds is not enough to understand the complete picture in clinical and forensic 

toxicology.7-10 Similarly, as explored in Chapter 5, metabolites of prescription drugs can be 

responsible for false positives on drug screens. For instance, synthetic cannabinoids are one 

such drug group that are commonly insoluble in aqueous media and are extensively 

metabolised in the body. Therefore, expanding the application of this method to other 

relevant drugs as well as their metabolites could provide valuable information allowing for 

this method to be an efficient drug screening procedure for early warning as well as routine 

toxicological testing.  

MA and other illicit drugs are rarely ever consumed in their pure form. Chapter 4  of this 

thesis explored three of the common adulterants found in illicit MA samples. In some 

instances, the compounds besides the drug itself are responsible for the adverse reactions. 

However, the common drug panels utilised in either clinical or forensic settings rarely include 

these adulterants. In addition, even when such impurity is known or detected,  only the 

percentage of relevant drug compounds is often reported. This method allows for the 
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detection of the drug and the adulterants in one test reducing the number of extra tests 

required. Therefore, the application of this method to detect other adulterants would be 

valuable for reducing harm and producing forensic intelligence.  

Both clinical and forensic situations involve the analysis of various biofluids to investigate the 

presence of drugs. The work presented here in Chapters 3 to 6 was focused on human pooled 

serum and urine. However, there is scope for expanding this work to other relevant biofluids 

for example oral fluid and sweat. Oral fluid is easy to collect and thus would be valuable in a 

roadside testing situation. Other methods tend to be weary of sweat samples for drug 

detection as this biofluid is difficult to collect in enough quantities or they are often collected 

on paper patches requiring extraction procedures. However, the ATR sampling method 

employed here only required volumes in the range of 0.5 – 3 µL and can also analyse papers 

and films. Therefore, it would be valuable to investigate the application of this method to 

sweat samples for the detection of drugs in either collection medium.  

In pharmacology, the protein binding ability of a drug compound is one of its essential 

characteristics as it determines the amount of compound that is available for therapeutic 

activity. Therefore, when detecting these compounds in biofluids, in particular blood 

products, it is necessary to know if the whole drug amount is being detected or if only the 

free drug compound is of interest. With the use of protein precipitation as a quick additional 

sample clean-up step, the method developed here would allow for isolating the free drug 

amount (in the supernatant) from the protein-bound (in the pellet) portion in the sample. 

The supernatant carrying the free-drug component could also allow for assessing the 

psychoactivity of new compounds as it would be the actual amount of the compound 

available for the psychoactive effect. Furthermore, by investigating the protein-bound 

component in the pellet, it might be possible to estimate the concentration of the drugs that 

are therapeutically relevant even when the free drug portion might have already been 

metabolised. This would be particularly of use when analysing fast-metabolising drugs such 

as synthetic cannabinoids or characterising novel compounds with unknown 

pharmacokinetics. Application of protein precipitation prior to FTIR analysis would allow for 

lowering the detection limits presented in this work as the strong IR absorbances from large 

proteins are removed from the spectrum making this method applicable to potent drugs that 

are often found in low concentrations in biofluids. 
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Another avenue for expanding this work is in the analysis of post-mortem biofluids. All work 

presented in this thesis uses antemortem biological samples. However, the human body 

undergoes numerous changes upon death which can alter the composition of biological 

fluids. Therefore, more research is needed in post-mortem toxicology to understand not only 

the composition of biofluids following death but also the interaction between the biofluid 

and the exogenous compounds. To conserve the limited resources usually available to 

forensic toxicology laboratories, it would be beneficial to expand the application of this 

method in post-mortem toxicology to test for unusual compounds as well as investigate the 

biofluids themselves.  

Finally, all experiments presented in this thesis have been spiking studies where drug 

compounds are spiked into the biofluids. However, it would be interesting to apply this 

method to samples generated by drug metabolism simulation studies using liver 

hepatocytes. These samples represent the closest analogues to real toxicology samples. 

Therefore, the application of this method to such a dataset would allow for evaluating the 

applicability and efficacy of this method in a real situation.  

In conclusion, future projects could include the expansion of this drug detection study in 

pharmacology, toxicology, clinical and forensic settings in the hope of making it a widespread 

drug screening tool. 
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1. Appendix 1  

Supplementary informa0on for Chapter 3 
 
  

Figure A1-1: Stacked IR spectra of blank serum overlapped with serum samples 
spiked with drug compounds. The concentration of all drugs in urine was 
10mg/mL except for UPpOHMA which was at 3 mg/mL. The spectra in grey 
show the IR spectra for respective powder drug compounds.SPMA refers to 
serum samples with MA, SPAM refers to serum samples with AM, SPNOR 
refers to serum samples with NOR, SPpOHAM refers to serum samples with 
pOHAM and SPpOMA refers serum samples with pOHMA.  
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Figure A1-2 Stacked IR spectra of blank urine overlapped with urine samples 
spiked with drug compounds. The concentration of all drugs in urine was 
10mg/mL except for UPpOHMA which was at 3 mg/mL. The spectra in grey show 
the IR spectra for respective powder drug compounds. UPMA refers to urine 
samples with MA, UPAM refers to urine samples with AM, UPNOR refers to urine 
samples with NOR, UPpOHAM refers to urine samples with pOHAM and 
UPpOMA refers urine samples with pOHMA.  
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Figure A1-3: Comparison of MA and pOHMA peaks at 2040 cm-1 in urine at 3 mg/mL 
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Figure A1-4: Graph showing PLS-R analysis for AM samples in 
serum across the concentration range of 0.1-10 mg/mL. The 
clinically and forensically relevant concentration range from 
0.1 – 0.9 mg/mL is showed in an expanded graph at the 
bottom for clarity. 
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Figure A1-5: Graph showing PLS-R analysis for NOR samples 
in serum across the concentration range of 0.1-10 mg/mL. 
The clinically and forensically relevant concentration range 
from 0.1 – 0.9 mg/mL is showed in an expanded graph at the 
bottom for clarity. 
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Figure A1-6: Graph showing PLS-R analysis for pOHMA samples in serum across the 
concentration range of 0.1-0.9 mg/mL which is the clinically and forensically relevant 
concentration range. Samples with higher concentration than 3 mg/mL were not possible 
due to the low solubility of pOHMA.  
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Figure A1-7: Graph showing PLS-R analysis for pOHAM 
samples in serum across the concentration range of 0.1-10 
mg/mL. The clinically and forensically relevant concentration 
range from 0.1 – 0.9 mg/mL is showed in an expanded graph 
at the bottom for clarity. 
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2. Appendix 2  

Supplementary informa0on for Chapter 4 
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Figure A2-1: The plot of calibration error (RMSEC) and cross-validation error (RMSECV) 
as a function of the number of latent variables of the PLS regression model for MA 
samples in serum. 
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Figure A2-2: The plot of calibration error (RMSEC) and cross-validation error (RMSECV) 
as a function of the number of latent variables of the PLS regression model for MA 
samples in urine. 
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3. Appendix 3 

Supplementary informa0on for Chapter 5 
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Figure A3-1: Stacked spectra of powder MA, Labetalol and Trazodone with labelled peaks.  
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Figure A3-2: Stacked spectra for powder bupropion and metformin with labelled peaks. 
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Figure A3-3: Stacked spectra for powder promethazine and ofloxacin with labelled peaks. 
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Figure A3-4: Scores (left) and loadings (right) plots for three multiclass PLS models are 
shown here. Top level shows plots for PLS classification between blank urine (BlankAU), 
MA samples in urine (UPMA) and bupropion samples in urine (UPBU). Middle level shows 
plots for classification between blank urine (BlankAU), MA samples in urine (UPMA) and 
labetalol in urine (UPLB). Bottom level shows plots from classification of blank urine 
(BlankAU), MA in urine (UPMA) and metformin in urine (UPMET). The loadings plots on the 
right are shown in colour with difference spectra for the respective drugs for comparison.  
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Figure A3-5: Scores (left) and loadings (right) plots for three multiclass PLS models are shown 
here. Top level shows plots for PLS classification between blank urine (BlankAU), MA samples in 
urine (UPMA) and trazodone samples in urine (UPTR). Middle level shows plots for classification 
between blank urine (BlankAU), MA samples in urine (UPMA) and promethazine in urine (UPPR). 
Bottom level shows plots from classification of blank urine (BlankAU), MA in urine (UPMA) and 
ofloxacin in urine (UPOF). The loadings plots on the right are shown in colour with difference 
spectra for the respective drugs for comparison. 
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4. Appendix 4 
Supplementary informa0on for Chapter 6 
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Figure A4-1: Stacked powder spectra for reference standards in Group 1 is shown here with 
methamphetamine. Group 1 only contains 3-flurophenmetrazine. 
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Figure A4-2: Stacked powder spectra for reference standards in Group 2 are shown 
here with MA in red. Group 2 contains 4-chloromethacathinone (4-CMC), 3-
methylmethcathinone (3-MMC), 4-methylethcathinone (4-MEC) and 3-
methylethcathinone (3-MEC).  
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Figure A4-3: Stacked powder spectra for reference standards in Group 3 are shown 
here with MA in red. Group 3 consists of 6-(2-aminopropyl)benzofuran (6-APB) and 
5-(2-aminopropyl)benzofuran (5-APB).  
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Figure A4-4:Figure shows stacked spectra for powder N-ethyl pentylone and dipentylone 
with MA in red. These are reference standards for Group 4.  
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Figure A4-5: Stacked difference spectra for group 1 (yellow), group 4 (Purple) and 
group 3 (blue) are shown. All drug samples were at a concentration of 10 mg/mL in 
serum. These were obtained by subtracting blank serum spectra from that of the drug 
sample spectra.  
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Figure A4-6: Stacked difference spectra for group 2 (green) are shown. All drug 
samples were at 10 mg/mL in serum. These were obtained by subtracting blank 
serum matrix spectra from that of the drug sample spectra.  
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Figure A4-7: Stacked difference spectra for group 1 (yellow), group 4 (Purple) and group 3 
(blue) are shown. All drug samples were at a concentration of 10 mg/mL in urine. These 
were obtained by subtracting blank urine spectra from that of the drug sample spectra.  
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Figure A4-8: Stacked difference spectra for group 2 (green) are shown. All drug 
samples were at a concentration of 10 mg/mL in serum. These were obtained by 
subtracting blank serum spectra from that of the drug sample spectra.  
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Figure A4-9: Scores and loading plots for PLS-DA classification of MA samples (red diamonds 
in scores plots, here denoted as ‘SPMA’ or ‘UPMA) from those in group 1 (yellow squares in 
scores plots, here denoted as ‘Other’) are shown for serum (A1 and B1) and urine (A2 and B2) 
datasets. The optimum number of LVs for both models were found to be 4 and their loadings 
are given in B1 and B2.  LV1 is not shown here as it was the mean spectrum in both datasets 
resembling the respective matrices. The yellow stars highlight the peaks from group 1 samples 
while the red stars highlight the influence of MA samples in the loading plots.  

  A1 

A2 
B2 

B1 



 

 231 

 
  

Figure A4-10: Scores and loading plots for PLS-DA classification of MA samples (red 
diamonds in scores plots, here denoted as ‘SPMA’ or ‘UPMA) from those in group 2 (green 
square in scores plots, here denoted as ‘Other’) are shown for serum (A1 and B1) and urine 
(A2 and B2) datasets. The optimum number of LVs for both models were found to be 5 and 
their loadings are given in B1 and B2.  LV1 is not shown here as it was the mean spectrum 
in both datasets resembling the respective matrices. The green stars highlight the peaks 
from group 2 samples while the red stars highlight the influence of MA samples in the 
loading plots. 
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Figure A4-11: Scores and loading plots for PLS-DA classification of MA samples (red 
diamonds in scores plots, here denoted as ‘SPMA’ or ‘UPMA) from those in group 3 (blue 
square in scores plots, here denoted as ‘Other’) are shown for serum (A1 and B1) and 
urine (A2 and B2) datasets. The optimum number of LVs for both models were found to 
be 4 and their loadings are given in B1 and B2.  LV1 is not shown here as it was the mean 
spectrum in both datasets resembling the respective matrices. The blue stars highlight 
the peaks from group 3 samples while the red stars highlight the influence of MA samples 
in the loading plots. 
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Figure A4-12: Scores and loading plots for PLS-DA classification of MA samples (red 
diamonds in scores plots, here denoted as ‘SPMA’ or ‘UPMA) from those in group 4 (purple 
square in scores plots, here denoted as ‘Other’) are shown for serum (A1 and B1) and urine 
(A2 and B2) datasets. The optimum number of LVs for both models were found to be 5 and 
their loadings are given in B1 and B2.  LV1 is not shown here as it was the mean spectrum 
in both datasets resembling the respective matrices. The purple stars highlight the peaks 
from group 4 samples while the red stars highlight the influence of MA samples in the 
loading plots. 
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Figure A4-13: Loading plots latent variables from for multiclass PLS-
DA model for classification of MA, Street NPS and drug-free samples 
are shown here for serum (top) and urine (bottom) datasets.  
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Figure A4-14: Loading plots 6 LVs from multiclass PLS-DA classification for serum (left) and 
urine (right) datasets are given here. The classes included MA, groups 1 to 4. The first LV 
(shown in black) resembles the mean spectrum of respective matrix. The contributions to the 
loading plots from MA samples are indicated by ‘MA’. Similarly, the contributions from NPS 
groups are also indicated by their group labels.  
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