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Abstract

This thesis presents the development and application of advanced computer simulation

techniques for the study of cavity-based Free-Electron Lasers (FELs). The research

integrates the unaveraged 3D FEL simulation code Puffin with the Optical Propagation

Code (OPC) to enable the modelling of broadband, high temporal-resolution cavity

FELs. This novel approach allows for the translation of radiation field formats between

Puffin and OPC, facilitating the simulation of a Regenerative Amplifier FEL operating

in the VUV range.

Traditional simulation models for cavity-based FELs have averaged the optical field

over an integer number of radiation wavelengths. This thesis, however, employs un-

averaged simulation codes to model cavity-based FELs at the sub-wavelength scale.

This enables the examination of effects such as Coherent Spontaneous Emission (CSE)

from the electron beam and sub-wavelength cavity length detuning. The simulations

reveal that for small sub-wavelength detunings, the FEL can preferentially lase at the

third harmonic of the fundamental wavelength, suggesting new operational modes and

potential applications for cavity-based FELs.

Additionally, a detailed study is conducted on the saturation mechanism of a single

superradiant spike of radiation in an FEL. Using a one-dimensional model developed

with Puffin, the thesis demonstrates the sub-wavelength evolution of spike radiation

and electron dynamics, leading to a highly non-linear saturation process. The study

provides insights into the broad spectrum and high power of the saturated spike, with a

proposed saturation mechanism validated by numerical results and simplified analysis

of the 1D FEL equations.

The combined use of Puffin and OPC codes represents a significant advancement
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Chapter 0. Abstract

in FEL simulation, enabling the exploration of unaveraged FEL and optical effects

for the first time. This research not only enhances the understanding of fundamental

FEL processes but also opens new avenues for further exploration and technological

development in the field of Free-Electron Lasers.
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Chapter 1

Introduction

In the first chapter of this thesis, a brief history of electromagnetic radiation sources is

reviewed, starting from the first-generation light sources to the most current facilities

being developed around the world, including the free-electron laser (FEL). This intro-

duction chapter covers various aspects of utilising the FEL source and briefly discusses

different types of FELs, providing a qualitative understanding of their principles of

operation. In addition, the chapter introduces the briefly FEL studies from theoretical

approaches to computer simulations.

The thesis outline is provided at the end of this chapter, followed by an overview

of the basic FEL theory chapter and three main chapters that contribute to FEL

knowledge through peer-reviewed publications.

Firstly, a method for performing unaveraged simulations of cavity-based FELs is

presented. This chapter explains how to convert the radiation field format from the

unaveraged FEL code Puffin to work in conjunction with the optics code OPC, including

an example simulation.

Secondly, the unaveraged model is applied to investigate sub-wavelength effects

in an FEL oscillator. The results suggest that by performing sub-wavelength cavity

detuning, the third harmonic can be amplified with greater gain than the fundamental

wavelength.

Finally, an extreme one-dimensional case is used to study the saturation mechanism

of the superradiant spike in an FEL. The simulation results reveal interesting electron
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Chapter 1. Introduction

behaviour as they pass through the sub-wavelength superradiant spike causing it to

saturate.

1.1 A brief history of Free-electron laser and its applica-

tion

Electromagnetic radiation such as radio waves, microwaves, infrared, visible light, ultra-

violet, x-rays, and gamma rays can be generated by accelerating a charged particle [29].

This theory is behind the making of the various radiation sources around the world in

many applications across the electromagnetic spectrum. The free-electron laser (FEL)

is one such radiation light source, which is generated from freely accelerated electrons

from the linear particle accelerator (Linac) at about the speed of light travelling within

alternating dipole magnetic fields, known as an ‘undulator’ (see figure 1.1). As the elec-

trons pass through the undulator, the magnetic field forces them to oscillate rapidly in

alternating directions along the undulator axis. With each oscillation, the electrons re-

lease their energy as electromagnetic radiation. At present, there are no other radiation

light sources that generate such ultra-bright coherent and short-pulse X-rays. A view

on X-ray free-electron lasers (XFELs) have reviewed through its radiation principle and

the typical status of the XFEL facilities around the world and also the discussion of the

new XFEL sources that are being developed worldwide [40]. This section firstly reviews

the historical background of the development of radiation light sources from the late

1950s to the upcoming future XFELs. It will outline three benefits of using XFELs

and compare these benefits with the previous existing radiation light sources namely,

synchrotron radiation, more specifically in terms of high energy, high brightness, and

extremely short pulse duration light source that can be used in frontier biological sci-

ence experiments. Finally, it will investigate example works which appear to support

its use in molecular imaging biology applications.

Nowadays, there are four generations of radiation light sources that have been used

since the 1950s. The first generation of radiation source [6] was a cyclic particle acceler-

ator in which the charged particles were accelerated in a closed-loop path. The magnetic

2



Chapter 1. Introduction

Figure 1.1: Photograph of a planar undulator from the FERMI light source at Elettra
Sincrotrone, Trieste, taken by the author. The image includes a schematic overlay illus-
trating the periodic arrangement of alternating magnetic poles (red and blue) to depict
the magnetic fields. The adjustable gap between the top and bottom plates defines the
strength of the magnetic field, which is instrumental in tuning the wavelength of the
emitted FEL radiation. As electrons travel through the vacuum channel, the magnetic
fields induce an oscillatory motion, or ‘wiggle,’ causing them to emit the FEL radiation.
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field forces the particle beam into its closed path which increases with time during the

accelerating process, being ‘synchronised’ to the increasing kinetic energy of the elec-

trons – called synchrotron radiation (SR) [17]. That SR was operated parasitically on

high energy particles accelerator. The first generation radiation sources slightly evolved

toward the second-generation SR source [68], which can be defined from its used devices

to control the propagation of electrons in the storage ring – a circular-shaped particle

accelerator that was constructed to optimise its radiation from bending magnets. Then

the electrons are forced to turn at every joint between two magnetic poles that elec-

trons may lose their energy and emit the broadband electromagnetic spectrum, which

covers the range of the electromagnetic spectrum from infrared to x-ray wavelength

that are mostly interested in radiation in the x-ray regime. In an attempt to obtain

more efficient energy and brightness of light, the new design and construction to opti-

mise the synchrotron radiation from the insertion devices that may be used to upgrade

the storage ring, which becomes the third-generation synchrotron radiation. Insertion

devices, such as undulators and wigglers [50], which are long, periodic arrays of mag-

netic dipoles that force electrons to oscillate multiple times, resulting in the emission of

more intense light. Many more of the third-generation synchrotrons have been and are

being constructed around the world in countries on every continent as the national user

facility to use in frontier scientific experiments. The main benefits of the development

of radiation source facilities are the terms of obtaining high brightness and high energy

that allow scientists to investigate in the cutting-edge fundamental research such as

material science and structural biology. The competition in a new generation of radi-

ation facilities development with enormously increased performance and efficiency has

already started, despite the third-generation sources have shown their influence, which

takes us beyond the present day to the fourth generation of radiation light sources. The

competitor with the brand-new scientific case for a fourth-generation source is the hard

x-ray, whose wavelength is less than 1 Å (Angstrom) – a sub-manometer (nm) scale e.g.

1 Å = 0.1 nm. XFELs, which are based on undulators installed in high-energy electron

accelerators, are capable of producing fully coherent x-ray beams. While some XFELs

require extensive setups spanning several kilometres, such as the European XFEL with

4
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a total length of 3.4 km [77], others achieve similar results with more compact designs.

For instance, the SPring-8 Angstrom Compact Free Electron Laser (SACLA) in Japan

operates with a significantly shorter length of approximately 700 m [74].

The three benefits of using fourth-generation technology are listed as XFEL de-

vices, which have a peak brightness far exceeding that of third-generation synchrotrons,

achieved through significantly higher orders of light intensity. In contrast to SRs, the

main advantage of XFELs is their exceptionally high-brightness x-ray source, which

is billions of times brighter than third-generation SRs. XFELs produce x-ray photon

beams from undulators that allow observation of atomic-scale structures. For example,

using x-ray diffraction techniques, XFELs can now deliver highly intense x-rays to a

sample with a sufficient number of diffraction photons. Calculations demonstrate that

XFEL beams can be perfectly focused onto single molecular samples [47, 71]. These

studies support the claim that high-energy, high-brightness x-ray FELs are promis-

ing tools for imaging at the atomic scale. Another advantage is their high energy,

related to the shorter wavelength of x-rays with full coherence, which can achieve high-

resolution x-ray imaging at the interatomic scale [18]. Compared to SRs, XFELs can

resolve complex structures with a resolution of 3.5 Å, as shown in XFEL-processed

data, outperforming synchrotron datasets that achieve only 4.1 Å resolution [37]. The

shorter wavelength (higher energy) x-rays produced by XFELs are microscopic at the

sub-nanometer scale. A review by [7] highlights the potential of XFELs for imaging

single-molecule structures, supported by simulations and theory. Another advantage of

XFELs is their extremely short pulse duration, often as brief as 100 fs or less—timescales

unattainable by SRs. This makes XFELs particularly useful for time-resolved experi-

ments to investigate ultrafast biochemical reactions [35]. Research and development of

XFEL technology are underway at many research facilities worldwide. Starting with

the world’s first XFEL in the United States, the ”Linac Coherent Light Source (LCLS)”

was developed as a collaborative, multi-institutional project. It utilizes 14-GeV elec-

trons from the Stanford Linear Accelerator Center (SLAC) Linac as the source for a

1.2-Å FEL [25]. Following the success of LCLS, the European XFEL—a collabora-

tion among several European countries—was constructed in Hamburg, Germany. The
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3.4-km-long facility uses a superconducting Linac to produce 17.5-GeV electrons with

a wavelength of 1.0-Å [3]. XFELs, such as the LCLS and European XFEL, provide

scientists with access to higher photon energies than previously available sources.

In 2014, the investigation of XFELs applications in biological imaging at the LCLS,

SLAC National Accelerator Laboratory in Stanford, USA has focused on developing

a technique called single particle imaging (SPI) [4]. The LCLS system used for the

atomic-scale imaging of biological structures, the resolution of the imaging range of

the system needs to be maximised, which has been carried out successfully to produce

the X-ray diffraction images of viruses [71], bacteriophages [33], organelles [28], and

cyanobacteria [75]. Eventually, the resolution of XFEL will be either limited by the

operating wavelength of the XFEL or the optical structure properties of the samples.

The resolution of the light beam is related to the used wavelength. The results suggest

that XFELs operating at shorter wavelengths achieve a better atomic-scale resolution

when imaging biological samples. Furthermore, XFEL can be used to identify the

structure of small biological molecules that are difficult to study with conventional X-

ray sources. One example is to study the structure of BinAB [20], which is obtained

from bacteria and is toxic to mosquitoes. Understanding the structure of BinAB can

help to develop the drug for the treatment of mosquito-borne diseases such as malaria,

dengue fever, and Zika fever. Moreover, the advantage of XFELs in terms of ultra-

fast laser pulses can be used to study the water-splitting process, which is one step

in the photosynthesis process since it can capture real-time imaging of all processes

in a short period of time when the reaction occurs suddenly [78]. Understanding the

water-splitting process might help develop techniques to create artificial photosynthesis,

which can be used to produce solar fuel and renewable energy.

In conclusion, XFEL has been reported to analyse a new approach to study biolog-

ical samples, operating at a short wavelength region that achieves its goal to determine

biological structures at atomic resolution. In addition, XFEL facilities are beginning

to operate and have a major impact on scientific investigations. The applications of

XFEL will be expanded and may provide important insight into many of the questions

encountered in structural biology. XFEL would make the frontier technology easily ac-
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cessible to other researchers in the field of biological structure research, single-particle

imaging, diffraction imaging of viruses, and other related applications.

1.2 Different types of Free-Electron Lasers

FELs can be categorised into several types on the basis of their operational principles

and configurations. These include Oscillator FELs, Self-Amplified Spontaneous Emis-

sion (SASE) FELs, Regenerative Amplifier FELs (RAFELs), and High-Gain Harmonic

Generation (HGHG) FELs. Each type has unique characteristics and applications,

which are discussed in detail below.

FEL Oscillator

FEL oscillator is one of the earliest and simplest configurations of FELs. In an FEL

oscillator, the electron beam passes through an undulator located within an optical

cavity typically formed by two mirrors. The radiation emitted by the electron beam as it

propagates through the undulator is reflected back and forth between the cavity mirrors,

repetitively interacting with subsequent electron beams. This feedback mechanism

allows radiation to build up coherently over many passes, leading to coherent lasing [22].

FEL oscillators operate effectively at lower frequencies, typically in the infrared

to visible spectrum, and are characterized by their ability to produce radiation in

continuous-wave (CW) or long-pulse modes, depending on the time scale under inves-

tigation [73]. They provide a stable, short-pulse, narrow-bandwidth radiation source

with high spectral purity, making them particularly useful for applications requiring

precise and stable light, such as spectroscopy and precision measurement. For exam-

ple, FEL oscillators are used in studying molecular vibrations and rotations, allowing

scientists to probe the fundamental properties of materials and molecules with great

accuracy [46].
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Self-Amplified Spontaneous Emission (SASE) FELs

SASE FELs are a type of free-electron laser capable of generating high-brightness,

short-wavelength radiation, including X-rays. Unlike Oscillator FELs, SASE FELs do

not rely on an optical cavity. Instead, they utilize a single pass of the electron beam

through a long undulator to achieve lasing.

In a SASE FEL, the electron beam begins to emit spontaneous radiation upon

entering the undulator. This initial radiation interacts with the electron beam, causing

microbunching of electrons at the scale of the radiation wavelength. This microbunching

amplifies the emission process, resulting in the exponential growth of radiation intensity

along the undulator. The output is a highly coherent and intense beam of light with

extremely high brightness [45].

SASE FELs are particularly well-suited for producing ultra-short, high-intensity

pulses and are widely employed in scientific research facilities. For example, the Linac

Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory in the

United States and the European XFEL in Germany are two prominent facilities [23,

25]. These sources enable researchers to perform time-resolved studies of atomic and

molecular processes, offering valuable insights into chemical reactions, phase transitions,

and other ultrafast phenomena occurring on femtosecond timescales [66].

Regenerative Amplifier FELs (RAFELs)

RAFELs combine features of both Oscillator and SASE FELs. In a RAFEL, the elec-

tron beam passes through an undulator within an optical cavity, similar to an Oscilla-

tor FEL. However, unlike traditional oscillators, RAFELs operate in a high-gain regime

with lower reflectivity mirrors, which allows for the amplification of radiation over fewer

passes [48,49].

The high-gain operation of RAFELs enables them to achieve lasing with fewer

cavity round-trips [24], making them suitable for applications requiring rapid build-up

of radiation intensity. This configuration allows RAFELs to produce coherent radiation

at shorter wavelengths compared to conventional oscillator FELs, making them useful

for various scientific and industrial applications. For example, RAFELs can be used in
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Chapter 1. Introduction

advanced materials research, medical imaging, and the study of dynamic processes in

matter [72].

High-Gain Harmonic Generation (HGHG) FELs

HGHG FELs utilise a two-stage process to generate high-brightness, short-wavelength

radiation. In the first stage, a seed laser (typically a conventional laser) is used to

modulate the energy of the electron beam as it passes through a modulator undulator.

This modulation creates a periodic energy structure in the electron beam.

In the second stage, the modulated electron beam passes through a radiator undula-

tor tuned to a harmonic of the seed laser wavelength. The microbunched electron beam

emits coherent radiation at this harmonic wavelength, resulting in high-brightness,

short-wavelength output.

HGHG FELs are advantageous for producing stable, narrow-bandwidth radiation

with high temporal coherence. They are particularly useful for applications requiring

precise control over the radiation wavelength and phase, such as in spectroscopy and

imaging. For instance, HGHG FELs enable high-resolution studies of chemical dynam-

ics and biological processes, providing detailed information about the structure and

behaviour of complex molecules [2, 79].

1.3 FEL simulation

The study of FELs can be divided into three main approaches, including theoretical

analysis, experimental investigations, and computational simulations. Each approach

offers unique insights into the complex processes that govern the operation of FEL.

Theoretical studies provide the fundamental principles and mathematical frameworks

necessary to understand the underlying physics of FELs. Experimental investigations

validate these theories and explore the practical aspects of FEL performance and opti-

misation. The scientists working in this field are focused on the hardware and devices

to help improve the quality of the light source to match the user requirements, enabling

the new techniques for experiment. However, due to the complex nature of FEL inter-
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actions and the challenges of experimental measurements, computational simulations

have become an essential tool in FEL research. FEL simulations enable researchers to

model and predict the behaviour of electron beams and the emitted radiation with high

precision, offering a detailed understanding that complements theoretical and experi-

mental approaches.

FEL simulations are based on the interaction between a relativistic electron beam

and a periodic magnetic field, typically provided by an undulator or wiggler. As the

electrons traverse the undulator, they experience a sinusoidal magnetic field that forces

them into an oscillatory motion. This motion causes the electrons to emit synchrotron

radiation, which can become coherent under the right conditions.

The primary equations governing FEL simulations include the Lorentz force equa-

tion for the electron motion and Maxwell’s equations for the electromagnetic fields. The

FEL interaction can be described by the coupled Maxwell-Lorentz equations, which ac-

count for the self-consistent evolution of the electron beam and the radiation field.

Several computational tools have been developed to simulate FELs with high preci-

sion. These tools vary in their complexity and the specific aspects of the FEL process

they model. Key simulation codes used in FEL research include the following:

• GENESIS: A widely-used 3D time-dependent simulation code that models the

interaction between the electron beam and the radiation field in an FEL. It solves

the coupled Maxwell-Lorentz equations and can simulate various FEL configura-

tions, including SASE and HGHG FELs [67].

• Ginger: A code that provides both time-dependent and steady-state simulations

of FELs. Ginger [26] is capable of modelling the detailed dynamics of the electron

beam and the radiation field, making it suitable for studying the gain process and

saturation effects in FELs.

• Puffin: An advanced 3D FEL simulation code that does not rely on the slowly

varying envelope approximation (SVEA). Puffin can model the full temporal and

spatial structure of the radiation field, providing more accurate simulations of the

interaction between the electron beam and the radiation [14,16].

10
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• OPC: The Optical Propagation Code (OPC) is used to simulate the propagation

of the radiation field within the optical cavity of an FEL oscillator [32,76]. OPC

can be coupled with other FEL codes like Puffin to model the complete FEL

oscillator system. The process of the translation between Puffin and OPC codes

will be discussed in Chapter 3.

Simulation plays an important role in the design and optimisation of FELs. By

modelling the behaviour of the electron beam and the lasing cavity, scientists can predict

the performance of different FEL configuration, and make adjustments to improve the

output power, beam quality, and other parameters. This allows researchers to explore

new designs and operating regimes that would be difficult or impossible to achieve

experimentally.

Additionally, the use of simulation can help to reduce the cost and complexity of

FEL experiments by allowing scientists to test different configurations virtually before

building and testing them in the lab. This allows researchers to focus their experimental

efforts on the most promising designs and avoid costly mistakes.

FEL simulations are a powerful tool for understanding and optimising the perfor-

mance of free-electron lasers. Using advanced simulation codes and techniques, re-

searchers can gain detailed insight into the complex interactions between the electron

beam and the radiation field. These simulations play a crucial role in the development

of next-generation FELs, enabling the exploration of new operational regimes and the

design of more efficient and versatile light sources.

1.4 Thesis Outline

This thesis aims to provide a thorough understanding of the essential tools and method-

ologies required to simulate the principles of Free-Electron Laser (FEL) science. It

incorporates detailed visual aids to facilitate comprehension of the complex physical

interactions that occur during the FEL process. The thesis is structured into six chap-

ters, each addressing a key aspect of FEL theory, simulation, and application.

Chapter 2 revisits the fundamental theory of FELs, starting with an explanation
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of radiation produced by accelerating charged particles, as described by the Liénard-

Wiechert potentials. It provides examples of radiation patterns from three types of

electron motion: simple harmonic, circular, and wiggler/undulator. Following this,

the chapter delves into the basic theory of FELs, including the fundamental equations

governing the FEL mechanism. Additionally, the basic optical theory relevant to cavity-

based FELs is discussed, covering principles of Ray Transfer Matrix, stability conditions

for optical cavities, and Gaussian beam propagation.

Chapter 3 details a method for translating between two simulation codes, Puffin

and OPC, enabling the modeling of the FEL within a cavity-based framework. This

chapter focuses on the integration and compatibility between these codes to ensure

accurate simulations.

Chapter 4 explores sub-wavelength effects by adjusting the optical cavity length

in an FEL oscillator to produce third harmonic radiation. The chapter examines how

these adjustments influence the generation and amplification of harmonics.

Chapter 5 examines the saturation of high-power superradiant spikes, an impor-

tant aspect of the FEL amplification process. This chapter delves into the dynamics of

superradiant pulse saturation and its impact on FEL performance.

Chapter 6 provides a summary of the thesis, reflecting on the findings and consid-

ering potential directions for future research. It consolidates the insights gained from

the simulations and experiments conducted throughout the study.

Appendix includes a list of publications that have contributed to this thesis and

presents useful snippets of code. The appendix serves as a resource for readers interested

in further details and practical applications related to the thesis.
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Chapter 2

Basic Theory of Free-Electron

Lasers

2.1 Radiation Mechanisms of Moving Charges

The radiation emitted by an electron in motion is a fundamental concept in under-

standing the behaviour of FELs. This section explores the classical electrodynamics

principles governing this radiation, including the concepts of retarded time and Liénard-

Wiechert potentials. It also examines radiation from different electron motions: dipole

oscillators, circular motion, and undulators. Theoretical results are complemented by

visualisations of radiation patterns.

2.1.1 Classical Electrodynamics and Retarded Time

In classical electrodynamics, the electromagnetic fields produced by a moving charge

are determined by the charge’s position and velocity at an earlier time, known as

the retarded time. The concept of retarded time is essential for understanding how

information about the electron’s motion propagates through space.

For an electron at position r0(t) at time t, the fields at a point point P in the

location r(t) are not determined by the instantaneous position S located at r0(t) and

velocity of the charge. Instead, they are influenced by the earlier electron’s position S′

at the retarded time t′, defined by:
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t′ = t− |r(t)− r0(t
′)|

c
(2.1)

Here, c is the speed of light, and |r(t)− r0(t
′)| is the distance between the observa-

tion point and the electron at the retarded time. The retarded time accounts for the

finite speed at which electromagnetic interactions propagate. It represents the time it

takes for the effects of the electron’s motion to travel outward at the speed of light,

covering the distance |r(t)− r0(t
′)| before arriving at point P . Therefore, when calcu-

lating the electromagnetic fields produced by a moving charge at a specific location, one

must consider the state of the charge at the retarded time, rather than its state at the

present moment. This approach ensures that the effects of the charge’s motion are con-

sistent with the causality principle and the finite propagation speed of electromagnetic

interactions. The concept of retarded position and time is illustrated in Figure 2.1.

Trajectory of charge

r0

Origin

Field point

Position of charge 
at time t

Position of charge 
at time t′ 

r 0(t)
r0(t′ )

r(t)

r(t)
− r 0(t′

 )
P

o

S

S′ 

Figure 2.1: Illustration of the concept of retarded time for a moving charge. The tra-
jectory of the charge is shown, with positions at the current time t and the retarded
time t′. The point P represents the field point where the electromagnetic fields are
being calculated. The distance |r(t)− r0(t

′)| between the field point and the charge at
the retarded time accounts for the time delay due to the finite speed of light, ensuring
consistency with the causality principle and the finite propagation speed of electromag-
netic interactions.
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To accurately describe the electromagnetic fields produced by a moving charge, the

Liénard-Wiechert potentials provide a precise solution to Maxwell’s equations for the

electric and magnetic potentials due to a moving point charge. The electric field E

generated by a moving point charge, observed at the position r and time t, can be

described as:

E(r, t) =
q

4πϵ0

[
1

R2

(n̂− β)(1− β2)

(1− n̂ · β)3 +
1

cR

n̂× (n̂− β)× β̇

(1− n̂ · β)3

]
tr

, (2.2)

where the vector in the bracket [...]tr is evaluated at the retarded time t′ = t−R(t′)/c.

Here, q is the charge of the particle, ϵ0 is the permittivity of free space, n̂ is the unit

vector from the charge to the observation point, β = v/c is the normalised velocity of

the charge, β̇ = dβ/dt is the acceleration, and R = |r− r0(t
′)| is the distance from the

charge to the observation point.

The first term represents the velocity field, which falls off as 1/R2, and is a rel-

ativistic generalisation of Coulomb’s law. The second term represents the radiation

field, which falls off as 1/R, and describes the electromagnetic waves emitted by the

accelerating charge. This distinction between the velocity field and the radiation field

highlights the different behaviours and influences of moving and accelerating charges.

2.1.2 Radiation from Electron Motion in a Dipole Oscillator

Consider an electron undergoing simple harmonic motion along the x-axis. This motion

can be described by the position function:

r0(t) = x0 sin

(
β̄ct

x0

)
x̂, (2.3)

where x0 is the amplitude of oscillation, β̄ = x0ω
c is the normalised relativistic

electron velocity, and ω is the angular frequency. The corresponding velocity and

acceleration in the relativistic limits are given by:

β(t) = β̄ cos

(
β̄ct

x0

)
x̂, (2.4)
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β̇(t) = − β̄2c

x0
sin

(
β̄ct

x0

)
x̂. (2.5)

Here, β(t) = v(t)
c represents the dimensionless velocity of the electron, and β̇(t) =

dβ(t)
dt is the dimensionless acceleration.

This simple harmonic motion represents the simplest form of oscillation that gen-

erates electromagnetic radiation and is also the easiest to visualise using the Liénard-

Wiechert potentials. The simulation result of the radiation field evolving from this

behaviour is shown in Figure 2.2.

Figure 2.2: Simulation result illustrating the radiation field emitted from the simple
harmonic motion of an electron in a dipole oscillator. The concentric wavefronts repre-
sent the radiated electromagnetic waves propagating outward from the electron. The
colour intensity indicates the strength of the radiation field, with warmer colours (yel-
low and red) showing higher field intensities. The symmetric pattern reflects the dipole
nature of the radiation, with the highest intensity emitted perpendicular to the direc-
tion of oscillation.
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2.1.3 Radiation from Electron Motion in Circular Paths

Electrons moving in a circular trajectory, such as those in a synchrotron, emit radiation

because of their continuous centripetal acceleration. The Lorentz force, resulting from

the magnetic field, provides the necessary centripetal force for this circular motion.

The details of the Lorentz force will be discussed later in Section 2.1.4. In this section,

the simple circular path is considered to demonstrate the radiation field emitted from

synchrotron-like motion.

The electron’s motion in a circular trajectory can be described within a two-

dimensional xz-plane, constrained by relativistic conditions. Assume that the electron

has a normalised velocity β̄ = v̄/c, where β̄ =
√
1− 1/γ2, and γ is the relativistic

Lorentz factor related to the electron’s energy E = γmec
2, with me being its rest mass.

The position of the electron in a circular path is given by:

r0(t) = R cos

(
β̄ct

R

)
x̂+R sin

(
β̄ct

R

)
ẑ, (2.6)

where R is the radius of the circular trajectory.

Differentiating the position vector with respect to time t gives the velocity:

v(t) = −β̄c sin

(
β̄ct

R

)
x̂+ β̄c cos

(
β̄ct

R

)
ẑ. (2.7)

The magnitude of the velocity is v(t) = β̄c. Dividing the equation by c gives the

normalised velocity vector as:

β(t) = −β̄ sin

(
β̄ct

R

)
x̂+ β̄ cos

(
β̄ct

R

)
ẑ. (2.8)

Differentiating the velocity vector with respect to time t gives the acceleration:

β̇(t) = −β̄2 c

R
cos

(
β̄ct

R

)
x̂− β̄2 c

R
sin

(
β̄ct

R

)
ẑ. (2.9)

The magnitude of the acceleration is a(t) = β̄2 c2

R = v2(t)
R , which is centripetal and

is directed towards the centre of the circular path.

This circular motion of electrons is significant in generating synchrotron radiation,

17



Chapter 2. Basic Theory of Free-Electron Lasers

Figure 2.3: Simulation result illustrating the radiation field emitted from the circular
motion of an electron in a synchrotron-like setup. The spiral pattern indicates the
trajectory of the electron, and the emitted radiation is visualised as the surrounding
wavefronts. The colour intensity represents the strength of the radiation field, with
brighter regions indicating higher field intensities. The arrows depict the direction and
relative magnitude of the radiation field vectors.

a key mechanism in many advanced radiation sources. The emitted radiation can

be effectively visualised using the Liénard-Wiechert potentials, which account for the

relativistic effects involved. The simulation result illustrating the radiation field from

this behaviour is shown in Figure 2.3.

2.1.4 Radiation from Electron Motion in an Undulator

A wiggler or undulator consists of a periodic arrangement of magnets that force the

electron to oscillate transversely to its motion. This periodic motion leads to the

emission of radiation at specific wavelengths, determined by the period of the magnetic

structure and the energy of the electron.
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Figure 2.4: The radiation pattern from the accelerating electron in the undulator at
the 4th magnetic period. The green dot shows the electron position. The white arrows
represent the electric field vectors.

Assuming the electron propagates along the positive z-axis and the magnetic field

from the periodic magnetic lattice points in the negative y-axis, the magnetic field of

the planar undulator can be described as follows:

Bw = −B0 sin

(
2πz

λw

)
ŷ, (2.10)

and in the case of a helical undulator:

Bw = B0

(
cos

(
2πz

λw

)
x̂− sin

(
2πz

λw

)
ŷ

)
, (2.11)

where B0 is the peak magnetic field of the undulator, and λw is the period of the

undulator.

The Lorentz force describes the force experienced by a charged particle moving

through electric and magnetic fields. For a charged particle with charge q moving with

velocity v in the presence of an electric field vector E and a magnetic field flux density

B, the Lorentz force F is given by:

F =
dp

dt
= q(E+ v ×B), (2.12)
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where p = γmev is the momentum. Considering that the magnetic field of the

undulator is dominant with a relatively weak radiation field before FEL amplification

(E ∼ 0), and assuming v = vz, the electron motion due to the Lorentz force results

from the cross product. The vector component in the x-direction gives:

γme
dvx
dt

= −e
dz

dt
B0 sin

(
2πz

λw

)
, (2.13)

for 0 ≤ z ≤ Nwλw. Solving for the transverse oscillation vx, continuing the algebra,

and integrating both sides gives:

γmevx =
eB0λw

2π
cos

(
2πz

λw

)
. (2.14)

It is suitable to rewrite Eq. 2.14 in terms of the dimensionless undulator parameter,

aw, as:

vx =
awc

γ
cos

(
2πz

λw

)
, (2.15)

where:

aw =
eB0λw

2πmec
, (2.16)

or, in bracketed units:

aw = 0.9337B0[T]λw[cm]. (2.17)

In Eq. 2.15, note that z is not a linear function of time, and vz is not constant. The

approximation z(t) ∼= ct has been made as the electron is relativistic. Recall that γ is

constant in a magnetic field. For motion in the xz-plane, where vy = 0:

γ ≡ 1√
1− v2

c2

=
1√

1− v2x+v2z
c2

. (2.18)

Substitute vx from Eq. 2.15 and solve for vz:

v2z
c2

= 1− 1

γ2
− a2w

γ2
cos2

(
2πz

λw

)
. (2.19)
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Using the first-order binomial series expansion in the small parameter aw/γ, sub-

stitute the undulator wavenumber kw = 2π/λw and cos2(kwz) =
1
2(1 + cos(2kwz)):

vz
c

= 1− 1 + a2w/2

2γ2
− a2w

4γ2
cos(2kwz). (2.20)

Therefore, the electron velocity in the z-direction includes a reduced averaged term

and an oscillating term at twice the magnet frequency. The averaged electron velocity

over an integer number of undulator periods is given by:

β̄z =
v̄z
c

= 1− 1 + a2w/2

2γ2
. (2.21)

To evaluate and visualise Eq. 2.2, the velocity in the components x and z becomes:

βx =
aw
γ

cos(kwz), (2.22)

βz = β̄z −
a2w
4γ2

cos(2kwz). (2.23)

By integrating and differentiating with respect to time, together with the approxi-

mation z ∼= β̄zct, the electron position and acceleration can also be expressed as:

r0x =
aw

γβ̄zkw
sin(kwz), (2.24)

r0z = β̄zct−
a2w

8γ2β̄zkw
sin(2kwz), (2.25)

β̇x = −awβ̄zckw
γ

sin(kwz), (2.26)

β̇z =
a2wβ̄zckw

2γ2
sin(2kwz). (2.27)

The motion of electrons within the undulator, as described by these equations, re-

sults in the emission of highly collimated and coherent radiation. This radiation, known
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as undulator radiation, has a characteristic wavelength determined by the undulator

period and the electron energy. The simulation result illustrating the radiation field

emitted from the electron motion within the undulator is shown in Figure 2.4. The

figure demonstrates the spatial distribution and intensity of the radiation field at the

fourth magnetic period, highlighting the transverse oscillations of the electron and the

resulting radiation pattern.

2.2 Fundamental Equations of FEL Dynamics

The FEL equation, which will be discussed in Section 2.2.5 is fundamental to un-

derstanding the interaction between the electron beam and the radiation field within

the undulator. This section derives the FEL equation from the principles of electro-

dynamics, building upon the concepts of electron motion and radiation discussed in

Section 2.1.4. The FEL equation is crucial for describing the dynamics of the electron

beam and the radiation field, and it provides the foundation for numerical simulations

and theoretical analyses of FEL performance.

2.2.1 Radiation Coherence in Free-Electron Lasers

Figure 2.5 illustrates the difference between incoherent and coherent radiation emission

from electrons in an FEL. Understanding this distinction is crucial for understanding

the fundamental principles of FEL operation and the generation of high-intensity, co-

herent light.

Incoherent emission occurs when electrons emit radiation independently and out

of phase with each other. This is depicted on the left side of Figure 2.5. In this

scenario, the emitted wavelets do not align in phase, leading to a random superposition

of electromagnetic waves. The resultant radiation is characterised by low intensity and

a broad spectrum because the individual contributions from each electron do not add

constructively.

In contrast, coherent emission, shown on the right side of Figure 2.5, arises when

the electrons emit radiation in phase. This phase alignment occurs when the electron
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Figure 2.5: Illustration of incoherent and coherent emission from electrons in a Free-
Electron Laser (FEL). On the left, electrons emit radiation incoherently, resulting in
a superposition of out-of-phase wavelets. On the right, electrons emit radiation coher-
ently, with wavelets in phase, forming distinct wavefronts separated by the radiation
wavelength λr. The arrows indicate the direction of the electron motion and the emit-
ted radiation. Constructive interference occurs in the coherent emission, significantly
increasing the radiation intensity.

bunching matches the periodicity of the emitted wavelets, creating synchronised wave-

fronts. In this case, the electromagnetic waves constructively interfere, meaning that

the peaks and troughs of the waves align, resulting in a significant increase in the overall

radiation intensity and a narrow spectral linewidth.

Bunching refers to the process where electrons are grouped together at regular

intervals along the undulator, synchronising their oscillations and resulting in coher-

ent radiation emission. As the electrons progress through the undulator, the positive

feedback from the radiation itself comes into play. The initial radiation emitted by

the electrons induces further oscillations in subsequent electrons, reinforcing the phase

alignment and enhancing the coherence of the emitted radiation. This feedback mech-

anism is crucial for achieving the high degree of coherence characteristic of FELs. The

interaction between the electron beam and the periodic magnetic field of the undulator

facilitates this process, leading to the generation of intense, monochromatic light.

The transition from incoherent to coherent emission in FELs is achieved through

this feedback loop, where the emitted radiation influences the motion of the electrons,

causing them to emit more radiation in phase. This self-amplifying process continues

over successive undulator periods, resulting in the high-brightness and tunable radiation
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output of FELs.

2.2.2 Radiation Wavelength Calculation

The radiation emitted by the oscillating electrons in an undulator is influenced by

relativistic effects, which cause a Doppler shift of the emitted wavelength. To derive

the radiation wavelength, the phase velocity of the radiation and the relativistic Doppler

shift must be considered.

Figure 2.6: Illustration of resonant emission from an electron in an undulator.

Figure 2.6 illustrates the concept of resonant emission from an electron moving

through an undulator. The electron follows a sinusoidal trajectory due to the periodic

magnetic field of the undulator, and emits radiation at specific wavelengths determined

by the resonance condition. The following derivation provides the mathematical foun-

dation for calculating the radiation wavelength.

The averaged time taken for the j-th electron to travel one undulator period is given

by:

tj =
λw

cβ̄z
,

where λw is the undulator period, c is the speed of light, and β̄z is the averaged

longitudinal velocity of the electron normalised by the speed of light.

A resonant radiation wavefront will have travelled:

tr =
λw cos θ + nλr

c
,

where θ is the observation angle of the radiation relative to the electron’s trajectory,

λr is the radiation wavelength, and n is the harmonic number.
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For the resonance condition, the time it takes for the electron to travel one undulator

period must match the time it takes for a radiation wavefront to propagate the same

distance. Therefore, setting tj = tr yields:

λw

cβ̄z
=

λw cos θ + nλr

c

Rearranging to solve for the radiation wavelength λr:

λr =
λw

n

(
1

β̄z
− cos θ

)

Next, β̄z needs to be expressed. The longitudinal velocity β̄z is modified by the

transverse oscillations due to the undulator magnetic field. The expression for β̄z

is (Eq.2.21):

β̄z = 1− 1

2γ2

(
1 +

a2w
2

)
Substituting this into the radiation wavelength equation results in:

λr =
λw

n

 1

1− 1
2γ2

(
1 + a2w

2

) − cos θ


Using the Taylor series approximation 1

1−x ≈ 1+x for x ≪ 1, where x = 1
2γ2

(
1 + a2w/2

)
:

1

1− 1
2γ2

(
1 + a2w

2

) ≈ 1 +
1

2γ2

(
1 +

a2w
2

)

Thus, the equation becomes:

λr =
λw

n

(
1 +

1 + a2w
2

2γ2
− cos θ

)

Using the small angle approximation for cos θ ≈ 1− θ2

2 :

λr =
λw

n

(
1 +

1 + a2w
2

2γ2
−
(
1− θ2

2

))
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Thus, the radiation wavelength equation becomes:

λr =
λw

2nγ2

(
1 +

a2w
2

+ γ2θ2
)

(2.28)

For the fundamental harmonic (n = 1) and on-axis radiation (θ = 0), the funda-

mental radiation wavelength λr simplifies to:

λr =
λw

2γ2

(
1 +

a2w
2

)
(2.29)

Note that aw is derived from the peak value of the magnetic field B0. To use the

RMS undulator parameter, where BRMS = B0/
√
2, the radiation wavelength equation

becomes:

λr =
λw

2nγ2
(
1 + ā2w + γ2θ2

)
, (2.30)

and on-axis fundamental wavelength is

λr =
λw

2γ2
(
1 + ā2w

)
. (2.31)

Here, āw is the RMS undulator parameter. This equation is also valid for helical

undulators.

The expression for the fundamental resonant wavelength (Eq. 2.31) highlights the

origin of the FEL tunability. This relationship shows that the wavelength of the emitted

radiation is inversely proportional to the square of the Lorentz factor, γ, which depends

on the energy of the electron beam. As the beam energy increases, resulting in a

higher γ, the resonant wavelength λr shifts to shorter values, allowing the FEL to

produce radiation across a wide range of wavelengths. This tunability is a key feature

of FELs, enabling them to generate coherent radiation from the infrared to the X-ray

region by simply adjusting the electron beam energy and the undulator parameters.

This relationship is fundamental to the design and optimisation of FELs for producing

radiation at specific wavelengths.
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2.2.3 Rate of Change of Electron Energy

Understanding the rate of change of the electron energy in a FEL is essential to com-

prehend the microbunching mechanism that underlies the FEL operation. As electrons

travel through the undulator, they interact with the periodic magnetic field and the co-

propagating radiation field. These interactions cause variations in the electron energy,

leading to the formation of microbunches, where electrons are grouped at intervals cor-

responding to the radiation wavelength. This microbunching enhances the coherence of

the emitted radiation, as electrons within a microbunch radiate in phase, resulting in

constructive interference and amplification of the radiation field. By analysing the rate

of change of electron energy, insights can be gained into the dynamics of this energy

exchange process, which is fundamental to achieving high-intensity, coherent radiation

in FELs. The following section derives the expression for the rate of change of elec-

tron energy and discusses its implications for the microbunching mechanism and FEL

performance.

The rate of change of an electron’s energy in the presence of a fixed radiation field

can be derived from the Lorentz force equation. Starting from the Lorentz force:

F = −e(E+ v ×B)

The rate of change of the electron energy is given by:

dW

dt
= v · F (2.32)

Substituting the Lorentz force:

dW

dt
= v · (−e(E+ v ×B))

The term v · (v × B) is zero because the dot product of any vector with a vector

perpendicular to it (resulting from a cross product) is zero. Therefore:

dW

dt
= −ev ·E
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The relativistic energy of the electron is γm0c
2, so the rate of change of energy is:

d(γm0c
2)

dt
= −ev ·E (2.33)

To find dγ
dt , we use the relationship:

d(γm0c
2)

dt
= m0c

2dγ

dt

Thus:

m0c
2dγ

dt
= −ev ·E

Now, substituting the expressions for the velocity and electric field:

v = cβxx̂+ cβz ẑ

From the provided trajectory equation (2.15):

cβx = vx =
awc

γ
cos

(
2πz

λw

)

And consider the plane-wave electric field:

E = E0 cos(krz − ωt)x̂

The dot product v ·E is:

v ·E = vxE0 cos(krz − ωt)

Substituting vx:

v ·E =

(
c
aw
γ

cos(kwz)

)
E0 cos(krz − ωt)

Therefore, the rate of change of the electron’s energy is:

m0c
2dγ

dt
= −e

(
c
awE0

γ
cos(kwz) cos(krz − ωt)

)
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Using the trigonometric identity cos(A) cos(B) = 1
2 [cos(A+B) + cos(A−B)]:

cos(kwz) cos(krz − ωt) =
1

2
[cos((kw + kr)z − ωt) + cos((kw − kr)z + ωt)]

So:

m0c
2dγ

dt
= −ec

awE0

2γ
[cos((kw + kr)z − ωt) + cos((kw − kr)z + ωt)]

The rate of change of electron energy dγ
dt becomes:

dγ

dt
= −eawE0

2m0cγ
[cos((kw + kr)z − ωt) + cos((kw − kr)z + ωt)] (2.34)

The equation for the rate of change of the relativistic factor γ includes two cosine terms,

each representing different variations in the phase velocity in z.

Introducing two phase terms:

θs = (kw + kr)z − ωt, (2.35)

First Cosine Term: θs = (kw + kr)z − ωt. The sum of the wave numbers kw + kr

indicates a slow spatial variation. This term represents slower oscillations that are

more beneficial to a maintained interaction between the electrons and the radiation

field.

θf = (kw − kr)z + ωt, (2.36)

Second Cosine Term: θf = (kw−kr)z−ωt. The difference of the wave numbers kw−kr

indicates a fast spatial variation. This term represents rapid oscillations that average

out over longer distances and do not contribute significantly to the sustained energy

exchange.

For resonance, the phase velocity of the electron’s motion must match the phase

velocity of the radiation field. The slow variation term ensures that the phases remain

matched over longer distances. The slow oscillations allow the emitted radiation to

constructively interfere over many undulator periods, leading to coherent radiation

and amplification. The slow variation enables a maintained interaction between the
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electron bunches and the radiation field, resulting in continuous energy exchange and

efficient amplification.

The following figures illustrate electron bunching and the energy exchange process

in the context of resonant emission.

Gain energy

Lose energy

radiation field+E

-E

Axial electron velocity

Figure 2.7: Illustration of energy exchange in a FEL. The electron beam travels through
the undulator, experiencing periodic regions of energy gain (blue) and energy loss (red).
The axial electron velocity and radiation field facilitate energy exchange, indicative of
the slow energy exchange process.

The rate of change of electron energy in a FEL is a fundamental concept that

explains the microbunching mechanism, which is significant for FEL operation. As

electrons travel through the undulator, they interact with the periodic magnetic field

and the co-propagating radiation field. This interaction causes periodic variations in the

electron energy, leading to the formation of microbunches, where electrons are grouped

at intervals corresponding to the radiation wavelength λr.

Fig. 2.7 illustrates how electrons experience alternating regions of energy gain (blue)

and energy loss (red) as they interact with the radiation field. The energy exchange

between the electrons and the radiation field is governed by the interaction of the

electron velocity v and the electric field E, as shown in Eq. 2.33. This continuous

modulation of electron energy results in a periodic distribution of energy states along

the electron beam’s path.

Fig. 2.8 demonstrates how these periodic energy exchanges lead to the formation of

microbunches. As electrons gain and lose energy in phase with the radiation field, they
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Gain energy

Lose energy

Axial electron velocity

radiation field+E

-E

Figure 2.8: Illustration of microbunching and energy exchange in a FEL. The equation
d(γm0c2)

dt = −ev · E shows the rate of change of electron energy as they interact with
the radiation field. Electrons in blue regions gain energy and move faster, while those
in red regions lose energy and move slower, leading to the formation of microbunches
that radiate coherently.

cluster into tight bunches at intervals of the radiation wavelength. This microbunch-

ing effect enhances the coherence of the emitted radiation because electrons within a

microbunch radiate in phase, resulting in constructive interference and amplification

of the radiation field. This process is essential for achieving high-intensity, coherent

radiation in FELs.

2.2.4 One-Dimensional FEL Equations

Recalling the fast and slow varying phase terms from Eq.2.36 and Eq.2.35.

θs = (kw + kr)z − ωt

θf = (kw − kr)z + ωt

Differentiating these phase terms with respect to time, we obtain:

dθs
dt

= (kw + kr)
dz

dt
− ω
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dθf
dt

= (kw − kr)
dz

dt
+ ω

The averaged electron velocity over an integer number of undulator periods is given by

dz
dt = v̄z = c(1− 1+a2w/2

2γ2 ), as seen in Eq.2.21. Thus,

dθs
dt

= (kw + kr)c

(
1− 1 + a2w

2

2γ2

)
− ω

Substituting ω = krc and distributing (kw + kr)c, we get:

dθs
dt

= kwc+ krc− c(kw + kr)

(
1 + a2w

2

2γ2

)
− krc

Factoring kwc out:

dθs
dt

= kwc

[
1− kw + kr

kw

(
1 + a2w

2

2γ2

)]

Assuming kr ≫ kw, thus
kw+kr
kw

≃ kr
kw

:

dθs
dt

= kwc

[
1− kr

kw

(
1 + a2w

2

2γ2

)]
. (2.37)

Introducing the normalised electron energy,

η ≡ γ − γr
γr

, (2.38)

such that γ = γr(1 + η), and γ2 ∼= γ2r (1 + 2η) for η ≪ 1. Recalling the undulator

equation (Eq.2.29) for the resonance condition:

λr =
λw

2γ2r

(
1 +

a2w
2

)

λw

λr

(
1 + a2w

2

2γ2r

)
=

kw
kr

(
1 + a2w

2

2γ2r

)
= 1

substitute this expression and γ2 into Eq.2.37:

dθs
dt

= kwc

(
1− 1

1 + 2η

)
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Using the approximation 1/(1 + 2η) ≈ 1− 2η for η ≪ 1, the equation simplifies to:

dθs
dt

= 2kwcη (2.39)

Following the same algebra the equation for the fast phase term simplifies to:

dθf
dt

= 2kwc. (2.40)

It should be noted that the fast variation occurs at twice the undulator frequency,

2kw, resulting in energy exchange in both ways, twice during each undulator period of

travel. This rapid oscillation cancels out any significant net energy exchange between

the electrons and the field. In contrast, the slow variation, dθs/dt, is reduced by the

factor η ≪ 1. This slower and more consistent energy exchange over multiple periods

can significantly contribute to the growth of the wave.

From Eq.2.38, we get:
dγ

dt
= γr

dη

dt

Substituting the rate of change of the electron energy from Eg.2.34 by considering only

the slowly varying term, so that the electron energy equation takes the form:

dη

dt
= − eawE0

2m0cγ2
cos θs (2.41)

The average axial velocity is almost equal to c, implying z ≃ ct, the equation for

electron position in relation to the wave phase θs, and normalised energy is given by:

dθ

dz
= 2kwη (2.42)

dη

dz
= − eawE0

2m0c2γ2
cos θ (2.43)

Here, θ = θs ≡ (kw+kr)z−ωt. These are the coupled equations of motion that describe

the oscillation between the electron energy (η) and position (relative phase, θ) within

the combined fields of the wave and the undulator.
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2.2.5 One-Dimensional Wave Equations

The coupled equations of motion ((2.42) and (2.43)) describe the interaction between

the electron beam and the electromagnetic wave in a FEL. These equations account for

the dynamics of electron energy and position relative to the wave phase, which are es-

sential for understanding the FEL’s operation. In a high gain FEL, the wave amplitude

grows exponentially along the undulator length, leading to significant amplification of

the emitted radiation. This process is governed by the wave equation, which describes

the evolution of the electric field.

The wave equation for an electric field polarized in the x-direction can be written

as: [
∂2

∂t2
− c2

∂2

∂z2

]
Ex(z, t) = − 1

ε0

∂Jx(z, t)

∂t
(2.44)

where c2 = 1
µ0ε0

, and the current density is given by:

Jx(z, t) = −ene(z, t)vx(z, t). (2.45)

In the previous section, a wave of constant amplitude E0 was used to consider the

equation of motion. However, now we wish to consider the growth of the wave in the

FEL amplifier. Introducing the complex electric field amplitude Ẽx, we can write the

monochromatic, one-dimensional wave as:

Ex(z, t) = Ẽx(z)e
−i(ωt−kz) (2.46)

where Ẽx(0) = E0.

The time derivative in the wave equation can be found as follows: The first derivative

with respect to t is:

∂

∂t
Ex(z, t) = Ẽx(z)

∂

∂t
e−i(ωt−kz) = −iωẼx(z)e

−i(ωt−kz),

and then, the second derivative with respect to t is:

∂2

∂t2
Ex(z, t) = −iωẼx(z)

∂

∂t
e−i(ωt−kz) = −ω2Ẽx(z)e

−i(ωt−kz).
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For the spatial derivatives, applying the product rule for two z-dependent functions

d
dz [u(z)v(z)] = u(z) d

dzv(z) + v(z) d
dzu(z):

∂

∂z
Ex(z, t) = Ẽx(z) · (ik)e−i(ωt−kz) +

∂Ẽx(z)

∂z
e−i(ωt−kz)

and then

∂2

∂z2
Ex(z, t) = −k2Ẽx(z)e

−i(ωt−kz) + 2ik
∂Ẽx(z)

∂z
e−i(ωt−kz) +

∂2Ẽx(z)

∂z2
e−i(ωt−kz)

Thus, the one-dimensional wave equation becomes:[
−ω2Ẽx(z) + k2c2Ẽx(z)− 2ikc2

∂Ẽx(z)

∂z
− c2

∂2Ẽx(z)

∂z2

]
e−i(ωt−kz) = − 1

ε0

∂Jx(z, t)

∂t

Here, the first two terms cancel by the dispersion relation ω = kc, leaving:[
2ik

∂Ẽx(z)

∂z
+

∂2Ẽx(z)

∂z2

]
e−i(ωt−kz) = µ0

∂Jx(z, t)

∂t
(2.47)

for the slowly growing field amplitude, Ẽx(z). Because the field amplitude increases

gradually over many wavelengths, the gradient with respect to z, (∂/∂z)−1, is much

larger than the wavelength λ = 2πk or equivalently, ∂/∂ ≪ k. As a result, the second

term in Eq.(2.47) becomes negligible. The one-dimensional wave equation for the slowly

growing field thus simplifies to:

2ik
∂Ẽx(z)

∂z
e−i(ωt−kz) = µ0

∂Jx(z, t)

∂t
(2.48)

Multiplying both sides by − i
2ke

i(ωt−kz), we obtain:

∂Ẽx(z)

∂z
= −i

µ0

2k
ei(ωt−kz)∂Jx(z, t)

∂t
(2.49)

To analyse the slow growth of the wave, we take an average over a small but finite

number of cycles within a time interval ∆ = 2πn/ω, where n is an integer. This

averaging process filters out the high-frequency oscillations. The gradient of the slowly
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varying electric field, averaged over time, is then expressed as:〈
dẼx

dz

〉
∆

= −i
µ0

2k

∫ t+∆
2

t−∆
2

ei(ωt
′−kz)∂Jx(z, t

′)

∂t′
dt′

Using an integration by parts,
∫
udv = uv −

∫
vdu. Here, let:

u = ei(ωt
′−kz) and dv =

∂Jx(z, t
′)

∂t′
dt′

First, we find du and v:

du = iωei(ωt
′−kz)dt′

Integrating dv to find v:

v = Jx(z, t
′)

Substituting into integration by parts formula, we obtain:

〈
dẼx

dz

〉
∆

= −i
µ0

2k


[
Jx(z, t

′)ei(ωt
′−kz)

]t+∆
2

t−∆
2︸ ︷︷ ︸

0

−iω

∫ t+∆
2

t−∆
2

Jx(z, t
′)ei(ωt

′−kz)dt′


〈
dẼx

dz

〉
∆

= −µ0c

2

〈
Jx(z, t)e

i(ωt−kz)
〉
∆

(2.50)

Recalling (2.45) and (2.15):

Jx(z, t) = −ene(z, t)vx(z, t)

vx =
awc

γ
cos

(
2πz

λw

)
Then Eq.(2.50) becomes:

〈
dẼx

dz

〉
∆

=

〈
eaw
2ϵ0γ

ne(z) cos (kwz)e
i(ωt−kz)

〉
∆

(2.51)

Expanding the exponential term into its cosine and sine components using eiθ = cos θ+

36



Chapter 2. Basic Theory of Free-Electron Lasers

i sin θ, we get:

cos (kwz)e
i(ωt−kz) = cos (kwz) (cos (ωt− kz) + i sin (ωt− kz))

Applying the trigonometric identities cos(A) cos(B) = 1
2 [cos(A+B) + cos(A−B)] and

sin(A) cos(B) = 1
2 [sin(A+B)+ sin(A−B)], and recognising the phase terms θs and θf

from Eq.(2.35) and (2.36), we obtain:

cos (kwz)e
i(ωt−kz) =

1

2
{(cos θs + cos θf )− i(sin θs − sin θf )}

The fast phase terms, θf , average to zero over the slice interval ∆. Therefore, the slowly

varying gradient simplifies to:

dẼx

dz
=

eaw
4ε0γ

ne(z)
〈
e−iθs

〉
∆

(2.52)

where the subscript ∆ denotes averaging over an integer number of cycles.

Combined with the previously derived equations of motion, Eqs. (2.42) and (2.43),

we obtain three coupled first-order equations involving the variables, Ẽx, η and θs. In

these equations, E0 has been replaced by the slowly growing field amplitude, Ẽx. For

convenience, the three first-order coupled FEL equations are restated here as follows:

dθs
dz

= 2kwη (2.53)

dη

dz
= − eK̂

2mc2γ2
Ẽx cos θs (2.54)

dẼx

dz
=

eK̂

4ε0γ
nee

−iθs (2.55)

where K̂ as the effective undulator parameter K̂ = aw[JJ ]. The multiplication factor

[JJ ] is given by the difference of Bessel function of the first kind, order zero and one,

[JJ ] = J0(ξ)− J1(ξ), and ξ = a2w/4(1 + a2w/2).
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2.2.6 Analysis of the One-Dimensional FEL Differential Equation

To gain a clearer understanding of the dynamics within the FEL system, it is benefi-

cial to combine the coupled first-order differential equations into a single higher-order

differential equation. This simplification allows for a more focused analysis on the evo-

lution of the electric field amplitude, which is essential to the operation of the FEL.

By removing intermediate variables, the growth and behaviour of the radiation field

within the undulator can be more directly assessed. This reduction not only offers

deeper insights into the amplification mechanism, but also aids in determining critical

parameters such as the power gain length and saturation power. The procedure in-

volves differentiating and substituting the coupled equations, resulting in a third-order

differential equation that encapsulates the fundamental physics of the FEL interaction.

This method highlights the inherent stability and growth characteristics of the FEL,

informing both theoretical analysis and practical design.

The three first-order coupled FEL equations [(2.53), (2.54), and (2.55)] can be

linearised and combined into a single third-order differential equation for the slowly

varying field amplitude, Ẽx by following the FEL process for a distance of only the

modest wave growth, where θs and η remain small, with only slight modulation of ne.

The linearisation process proceeds by approximating cos θs ≃ 1 in Eq.(2.54), e−iθs ≃
1− iθs in Eq. (2.55).

By differentiating Eq.(2.55) with respect to z, we can derive a second-order differen-

tial equation for Ẽx. This process involves substituting the linearised approximation of

Eq.(2.53) and Eq.(2.54) into the resulting expression. Differentiating Eq.(2.55) yields:

d2Ẽx

dz2
=

d

dz

(
eK̂

4ε0γ
ne(1− iθs)

)

d2Ẽx

dz2
=

eK̂

4ε0γ
ne

d

dz
(1− iθs) =

eK̂

4ε0γ
ne · (−i)

dθs
dz

Using Eq.(2.53), we have:

d2Ẽx

dz2
=

−i2kweK̂ne

4ε0γ
η
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Taking the third derivative:

d3Ẽx

dz3
=

−i2kweK̂ne

4ε0γ

dη

dz

Substituting linearised approximation of Eq. (2.54), we obtain:

d3Ẽx

dz3
=

ikwe
2K̂2ne

4ε0mc2γ3
Ẽx

Thus, the third-order differential equation for the evolving electric field amplitude, Ẽx

becomes:
d3Ẽx

dz3
− iΓ3Ẽx = 0 (2.56)

where

Γ =

[
K̂2e2nekw
4ε0mc2γ3

]1/3
(2.57)

This is known as the gain parameter, derived from the coefficients in Eqs.(2.53)-(2.55).

Here, ne represents the average electron density, and kw = 2π/λw denotes the wavenum-

ber related to the undulator period.

We look for solutions of the form Ẽx = E0e
µz, where µ is a constant to be deter-

mined. Substituting into Ẽx = E0e
µz the differential equation (2.56) gives:

µ3E0e
µz − iΓ3E0e

µz = 0

Factor out E0e
µz:

E0e
µz(µ3 − iΓ3) = 0

Since E0e
µz ̸= 0, we get the characteristic equation:

µ3 − iΓ3 = 0,

which is the third-order dispersion relation

µ3 = iΓ3. (2.58)
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To solve for µ, take the cube root of both sides:

µ = (iΓ3)1/3

The cube root of a complex number has three solutions. Express i in polar form:

i = eiπ/2

Thus, the three solution can be found from:

µ = Γei(π/2+2kπ)/3 for k = 0, 1, 2

For k = 0:

µ1 = Γeiπ/6 = Γ
(
cos

π

6
+ i sin

π

6

)
µ1 = (i+

√
3)Γ/2 (2.59)

For k = 1:

µ2 = Γei(5π/6) = Γ

(
cos

5π

6
+ i sin

5π

6

)
µ2 = (i−

√
3)Γ/2 (2.60)

For k = 2:

µ3 = Γei(3π/2) = Γ

(
cos

3π

2
+ i sin

3π

2

)
µ3 = −iΓ (2.61)

For the first solution (2.59), the real part,
√
3Γ/2, is positive , indicating exponen-

tial growth. This represents the amplification of the electric field as it travels through

the undulator, which is a desired effect in an FEL, where the initial small field gets am-

plified to produce significant radiation. The imaginary part, Γ/2, indicates oscillatory

behaviour. This oscillation arises from the interaction between the electron beam and

the radiation field, resulting in periodic energy exchange.

The second solution (2.60), the real part, −
√
3Γ/2, is negative, indicating expo-
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nential decay. This represents the damping or attenuation of the electric field as it

propagates. In practice, this could result from energy losses or destructive interfer-

ence. The imaginary part, Γ/2, is similar to the first solution that indicates oscillatory

behaviour. Despite the decay, the field exhibits periodic variations due to the same

interaction mechanisms.

The third solution (2.61) has no real part, indicating that it describes purely os-

cillatory behaviour without any exponential growth or decay. This solution represents

steady-state oscillations of the electric field amplitude. Such behaviour might corre-

spond to situations where the gain and loss mechanisms are balanced.

The first solution of an exponentially growing amplitude can be expressed as:

Ẽx = E0e
i(Γ/2)ze(

√
3Γ/2)z (2.62)

with a corresponding power growth

P̂ (z) ∝ |Ẽx|2 ∝ e(
√
3Γ)z

In terms of the power gain length, LG, which is defined as the distance along the

undulator (or wiggler) over which the power of the radiation increases by a factor of e

(the base of natural logarithms).

P̂

P̂0

= ez/LG (2.63)

Then,

P̂ (z) ∝ E2
0e

z/LG (2.64)

where

LG =
1√
3Γ

(2.65)

A key dimensionless parameter that arises from the mathematical analysis is the “FEL

parameter”, ρ, which was initially introduced in the work of Bonifacio, Pellegrini, and

Narducci [11].

ρ =

(
K̂2e2ne

32ε0γ3mc2k2w

)1/3

(2.66)
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where the gain parameter, Γ, is corresponding with FEL parameter, ρ via:

Γ =
4πρ

λw
(2.67)

Thus, the gain length can be written in term of FEL parameter, ρ, as

LG =
λu

4
√
3πρ

(2.68)

This equation applies to an idealised one-dimensional FEL amplifier model. How-

ever, real-world factors such as finite electron beam energy spread, σγ , and three-

dimensional effects, including the overlap between the electron beam cross-section and

the radiation beam, their alignment and co-propagation, and diffraction from the finite

size of the radiation emission area, tend to increase the power gain length beyond the

value given in (2.68).

In addition to the gain length, another critical parameter that characterises an FEL

is its saturation power, P̂sat. The saturation power represents the maximum power level

that the FEL can achieve before nonlinear effects limit further amplification. It can be

expressed as:

P̂sat ≃ ρP̂e (2.69)

where P̂e = γmc2 · Î/e is the electron beam energy, and Î/e is the number of electrons

passing per second. Understanding the saturation power is essential for optimising the

performance of FELs.

In summary, the equations derived in this section pertain to the idealised case of a

cold, mono-energetic electron beam, where two-dimensional effects are neglected. This

simplification allows for a clearer understanding of the fundamental dynamics of the

FEL interaction. The analysis focuses on the evolution of the electric field amplitude

and provides critical insights into key parameters such as the gain length, and satura-

tion power. These parameters are essential for characterising the performance of the

FEL. While real-world FELs must account for factors such as beam energy spread and

three-dimensional effects, the idealised model serves as a foundational framework for
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understanding the basic principles governing FEL operation and guides the optimisa-

tion of practical FEL systems. In experimental settings, the gain lengths are expected

to be somewhat longer due to energy spread and variations within the electron beam,

highlighting the importance of these factors in practical applications.

2.2.7 Universal Scaling

In this section, we delve into a widely adopted method to scale FEL parameters, com-

monly referred to as universal scaling, as introduced by Bonifacio et al. [11]. This

approach is particularly beneficial because it combines various properties of a high-

gain FEL into a single parameter, ρ (known as the FEL, Pierce, or ρ-parameter). This

parameter is a function of the electron beam density and energy, the undulator param-

eter, the undulator period, and several fundamental constants. Essentially, this scaling

provides a way to measure the amplification rate within the FEL, enabling rapid and

accurate predictions of FEL performance under a wide array of operational conditions.

To scale the FEL equation, dimensionless variables are introduced and normalised

to the FEL parameter, defined as:

ρ =
1

γ

(
āwωp

4ckw

) 2
3

(2.70)

where ωp is the plasma frequency, defined as

ωp =

√
e2np

ε0m
(2.71)

and np is the peak electron number density of the electron bunch.

The distance through the undulator, z, can be scaled as follow

z̄ =
4πρ

λw
z (2.72)

or,

z̄ = 2kwρz (2.73)
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To change the variable from z → z̄ in the FEL equations (2.53)-(2.55), we start by

expressing the derivative with respect to z in terms of z̄:

dθ

dz
=

dθ

dz̄

dz̄

dz
=

dθ

dz̄
2kwρ = 2kwη

The scaled rate of change of phase equation becomes,

dθ

dz̄
= p (2.74)

where we introduced p is the scaled normalised electron energy, can be expressed as:

p =
η

ρ
=

γ − γr
ργr

(2.75)

Next, the rate of change of electron energy (2.54),

dη

dz
=

dp

dz̄

dη

dp

dz̄

dz
=

dp

dz̄
2kwρ

2 = − eK̂

2mc2γ2
Ẽ cos θ

The scaled rate of change of electron energy becomes:

dp

dz̄
= −A cos θ (2.76)

where we introduced A is the complex scaled field amplitude, defined as:

A =
eK̂

4mc2kwρ2γ2
Ẽ (2.77)

The 1D-wave equation (2.55) can be now changed into the scaled variable as follow:

dẼ

dz
=

dA

dz̄
· dẼ
dA

· dz̄
dz

=
dA

dz̄
· 4mc2kwρ

2γ2

eK̂
· (2kwρ) =

eK̂

4ε0γ
nee

−iθ

dA

dz̄
=

K̂2e2ne

32ε0γ3mc2k2wρ
3
e−iθ

recognising the ρ-parameter from Eq.(2.66). Thus, the scaled 1D wave equation be-
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comes:
dA

dz̄
= e−iθ (2.78)

For convenience, the scaled three first-order coupled FEL equations are restated here

as follows:
dθ

dz̄
= p (2.79)

dp

dz̄
= −A cos θ (2.80)

dA

dz̄
= e−iθ (2.81)

Performing the linearised approximation similar to process from the previous section.

The third order differential equation for the scaled field amplitude, A, becomes:

d3A

dz̄3
− iA = 0 (2.82)

Assuming the solution of the form A = A0e
λz̄, the third-order dispersion relation

becomes:

λ3 = i (2.83)

with three solutions

λ1 = −i, λ2 =
i

2
−

√
3

2
, λ3 =

i

2
+

√
3

2
(2.84)

The first solution corresponds to an oscillatory mode with a constant amplitude, the

second to a damped oscillation, and the third to a wave with exponentially growing

amplitude, which is the key characteristic of the high-gain FEL. This can be expressed

as:

A = A0e
i(z̄/2)e

√
3z̄/2 (2.85)

with the corresponding scaled intensity growth given by:

|A(z̄)|2 ∝ e
√
3z̄ ∝ e

√
3z/lg (2.86)
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where lg =
√
3LG s the nominal gain length in the context of universal scaling. This

parameter relates to the FEL parameter, ρ, via:

lg =
λw

4πρ
(2.87)

Another important scaled parameter is lc, the cooperation length, which is defined by

the relative slippage length between radiation and electrons over one gain length:

lc = lg
λr

λw
=

λr

4πρ
(2.88)

where λr is the radiation wavelength.

The analysis of high-gain FELs involves the introduction of scaled independent vari-

ables to describe the dynamics in different reference frames. These variables facilitate

understanding the interactions between the electron beam and the radiation field within

the undulator. The scaled variables are particularly useful for describing the evolution

of the system and simplifying the equations governing FEL operation.

First, (z̄1, z̄) are the scaled distances along the undulator and within a window

travelling at the resonant electron velocity along z, representing the electron frame of

reference. This scaling captures the dynamics relative to the electron beam’s motion:

z̄1 =
z − cβ̄zt

lcβ̄z
(2.89)

where cβ̄z is the mean electron velocity in the z direction. This scaled variable is crucial

for analysing how the radiation interacts with the electron beam from the perspective

of the electrons.

Second, (z̄2, z̄) are the scaled distances along the undulator and within a window

travelling at the speed of light c along z, representing the radiation frame of reference.

This scaling focuses on the dynamics relative to the radiation field:

z̄2 =
ct− z

lc
(2.90)

These scaled variables provide insights into the behaviour of the radiation as it propa-
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gates through the undulator.

It is important to note that z̄, the total scaled distance along the undulator, is

related to the electron and radiation frames by:

z̄ = z̄1 + z̄2 (2.91)

These scaled variables, particularly (z̄2, z̄), are widely used in numerical simula-

tions such as those performed with the code Puffin and will be applied throughout

the following chapters of this thesis. By introducing these scaled parameters, complex

physical phenomena within the FEL can be expressed in a more manageable form. This

approach not only facilitates the mathematical manipulation of the equations, but also

enhances the physical intuition behind the behaviour of the system.

For instance, using the scaled parameters z̄1 and z̄2 allows for a clear distinction

between the electron and radiation reference frames, enabling a more precise analysis

of their interaction within the undulator. The scaled gain length lg and cooperation

length lc help standardise the descriptions of gain and slippage effects, respectively,

across different FEL configurations, making comparative studies more straightforward.

Furthermore, these parameters align with the universal scaling laws, providing a uni-

fied framework for understanding the scaling behaviour of FELs with respect to their

fundamental parameters such as the wavelength λ, the undulator period λw and the

FEL parameter ρ.

2.3 Basic Optics Theory for the Cavity-Based Free-Electron

Laser

2.3.1 Ray Transfer Matrix Analysis

The ray transfer matrix method is an analytical tool used to describe the propagation

of light rays through an optical system. Each optical element within the system, such as

lenses, mirrors, and free space, can be represented by a 2x2 matrix, often referred to as

the ABCD matrix. By multiplying these matrices, one can determine the overall effect
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of a series of optical elements on a light ray. In the context of a FEL optical cavity, the

ABCD matrix method is instrumental in analysing the stability of the optical cavity

and the behaviour of the optical modes.

In the paraxial approximation, when all angles are sufficiently small (sin θ ≃ θ), the

optical ray can be described by its height, y, and angle, θ, with respect to the optical

axis. The transformation of this ray through an optical element can be described by:

y1
θ1

 =

A B

C D

y0
θ0

 (2.92)

where the matrix M, with elements A,B,C, and D, represents the optical properties

of the system.

y0
θ0

 and

y1
θ1

 are the ray vectors denoting the ray’s height and angle

before and after the optical element, respectively.

The ABCD matrix for common optical elements are as follows:

• Free Space Propagation (distance d):

M =

1 d

0 1

 (2.93)

• Thin Lens (focal length f):

M =

 1 0

− 1
f 1

 (2.94)

• Mirror (radius of curvature R):

M =

 1 0

− 2
R 1

 (2.95)

The ray transfer matrix can be used in cascaded optical systems, leading to the

formation of periodic optical systems such as a cavity. By considering the combined

effect of multiple optical elements in sequence, one can analyse complex optical systems

and determine the overall transformation matrix. This approach is particularly useful
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for understanding the behaviour of optical cavities, where the periodic nature of the

system leads to the eigenvalue problem. Solving this eigenvalue problem allows for the

determination of the stability and resonance conditions of the cavity, providing insights

into the modes supported by the system and their respective properties.

Consider a periodic optical system where the light ray traverses through a sequence

of optical elements and returns to its starting point after one round trip. The overall

ray transfer matrix for one round trip in the cavity is denoted by M, and is given by:

M = Mn ·Mn−1 · . . . ·M2 ·M1

where Mi represents the ray transfer matrix of the i-th optical element in the sequence.

For the optical cavity to be stable, the eigenvalues of the round-trip matrix M must

be in the complex unit circle. The equation of eigenvalues for the matrix M is given

by:

M

y
θ

 = λ

y
θ


where λ represents the eigenvalues of the matrix M. This can also be rewritten as:

(M− λI)

y
θ

 = 0 (2.96)

where I is the identity matrix.

For the system to have a non-trivial solution (i.e.

y
θ

 ̸= 0), the determinant of

the matrix (M− λI) must be zero: To find the eigenvalues, we solve the characteristic

equation:

det(M− λI) = 0

where I is the identity matrix. For a 2x2 matrix M, this expands to:

det

A− λ B

C D − λ

 = 0
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(A− λ)(D − λ)−BC = 0

λ2 − (A+D)λ+ (AD −BC) = 0

The solutions to this quadratic equation are the eigenvalues λ1 and λ2, given by:

λ1,2 =
(A+D)±

√
(A+D)2 − 4(AD −BC)

2

For the cavity to be stable, the magnitudes of the eigenvalues must be equal to 1.

This condition can be satisfied if the trace of the matrix M, which is A+D, satisfies:

−2 ≤ A+D ≤ 2

This inequality ensures that the real part of the eigenvalues lies between -1 and 1,

corresponding to stable periodic orbits of the optical rays within the cavity. Solving the

eigenvalue problem allows us to determine the stability and resonance conditions of the

cavity, providing insights into the modes supported by the system and their respective

properties.

2.3.2 Two-mirror optical cavity stability

A straightforward cavity design for the FEL oscillator is based on the semi-concentric

configuration. In this setup, the optical waist position of the cavity is located between

the two mirrors, depending on their radii of curvature. This configuration is ideal

for maintaining the optical beam confined within the FEL undulator, enhancing the

electron/light interaction during the amplification process of FEL operation.

To analyse the stability of an optical cavity, one needs to consider the round-trip

ABCD matrix of the cavity. For a cavity consisting of two mirrors separated by a

distance L, the round-trip ABCD matrix is given by the product of the matrices rep-

resenting each segment of the optical path:
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• Propagation from mirror 1 to mirror 2 over a distance L:

M1 =

1 L

0 1


• Reflection from mirror 2 (radius of curvature R2):

M2 =

 1 0

− 2
R2

1


• Propagation from mirror 2 to mirror 1 over a distance L:

M3 =

1 L

0 1


• Reflection from mirror 1 (radius of curvature R1):

M4 =

 1 0

− 2
R1

1


The round-trip matrix Mrt is obtained by multiplying these matrices in sequence:

Mrt = M4 ·M3 ·M2 ·M1

Substituting the individual matrices, we get:

Mrt =

 1 0

− 2
R1

1

1 L

0 1

 1 0

− 2
R2

1

1 L

0 1


Performing the matrix multiplications:

Mrt =

A B

C D


rt

=

 1− 2L
R2

2L− 2L2

R2

4L
R1R2

− 2
R1

− 2
R2

1 + 4L2

R1R2
− 4L

R1
− 2L

R2


The stability of the cavity is determined by the eigenvalues of the round-trip matrix

51



Chapter 2. Basic Theory of Free-Electron Lasers

Mrt. The cavity is stable if the absolute values of the eigenvalues are less than or equal

to 1. This can be expressed in terms of the trace of the matrix:

|A+D| ≤ 2, (2.97)

which can also be expressed as:

−1 ≤ A+D

2
≤ 1. (2.98)

For convenience, it can be rewritten by adding 1 to both sides and dividing by 2,

resulting in:

0 ≤ A+D + 2

4
≤ 1 (2.99)

Substituting the elements A and D of Mrt into 2.99, the cavity will be stable if and

only if:

0 ≤
(1− 2L

R2
) + (1 + 4L2

R1R2
− 4L

R1
− 2L

R2
) + 2

4
≤ 1

When simplified, this becomes:

0 ≤
(
1− L

R1

)(
1− L

R2

)
≤ 1 (2.100)

This is the well-known stability criterion for a two-mirror optical cavity, the two terms

in the product are defined as:

g1 ≡ 1− L

R1
and g2 ≡ 1− L

R1
(2.101)

indicating that the cavity will be stable if the product of the terms g1 and g2 lies

within the range [0, 1]. This ensures that the optical beam remains confined and stable

within the FEL undulator, enhancing the overall amplification performance of the FEL

system.
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2.3.3 Gaussian beam propagation

From ray optics, we now shift our focus to Gaussian optics, which is crucial for under-

standing beam propagation in FEL cavities. The optical cavity of an FEL is a critical

component that determines the efficiency and stability of the laser. Understanding

Gaussian beam propagation principles is essential for designing these cavities to ensure

optimal interaction between the electron beam and the optical field. This section dis-

cusses the propagation of Gaussian beams in FEL cavities, addressing key parameters,

design considerations, and the challenges involved in optimising these systems.

A Gaussian beam is a specific type of beam in which the electric field distribution

follows a Gaussian function. This beam profile is characterised by several key param-

eters that define its spatial and propagation properties. The fundamental equation

describing a Gaussian beam is given by:

Ψ(x, y, z) = Ψ0
w0

w(z)
exp

(
−x2 + y2

w(z)2

)
exp

(
i

(
kz + k

x2 + y2

2R(z)
− ζ(z)

))
(2.102)

Here, Ψ(x, y, z) is the complex amplitude of the electric field, and Ψ0 is a normalisation

constant. The key characteristics of the Gaussian beam are:

• Beam Waist (w0): This is the location along the beam propagation direction

where the beam radius is at its minimum. It represents the tightest focus of the

beam.

• Beam Radius (w(z)): The radius of the beam at a distance z from the waist,

given by:

w(z) = w0

(
1 +

(
z

zR

)2
)

(2.103)

This equation shows that the beam expands as it propagates away from the waist.

• Rayleigh Range (zR): The Rayleigh range is the distance from the beam waist

to the point where the beam area has doubled. It is given by:

zR =
πw2

0

λ
(2.104)
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where λ is the wavelength of the light. Within the Rayleigh range, the beam

remains relatively collimated.

• Beam Divergence Angle (θ): Far from the waist, the beam diverges at a

constant angle. The divergence angle is:

θ =
λ

πw0
(2.105)

• Radius of Curvature (R(z)): The radius of curvature of the beam’s wavefront

at a distance z from the waist is:

R(z) = z

(
1 +

(zR
z

)2)
(2.106)

At the beam waist (z = 0), Rz → ∞, indicating a flat wavefront.

• Gouy Phase Shift (ζ(z)): The Gouy phase shift represents an additional phase

change that occurs as the beam propagates through the waist. It is given by:

ζ(z) = tan−1

(
z

zR

)
(2.107)

The schematic representation in Figure 2.9 illustrates the variation in beam size w(z)

and wavefront curvature R(z) as functions of the distance z from the beam waist,

providing a visual understanding of the beam’s propagation characteristics..

These parameters are essential for understanding and describing the behaviour of

Gaussian beams, which are fundamental to designing and optimising the optical cavities

in FELs. Properly managing these characteristics ensures that the beam remains well-

confined and interacts efficiently with the electron beam in the undulator.

When a Gaussian beam is reflected by a spherical mirror, it retraces its path if

the radius of curvature of the beam’s wavefront matches the radius of curvature of

the mirror. This principle is fundamental in designing optical cavities for FELs. The

Gaussian beam has a specific wavefront curvature that changes as it propagates. At

the beam waist, the curvature is zero. As the beam moves away from the waist, the
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Figure 2.9: Schematic representation of Gaussian beam propagation. The plot illus-
trates the variation in beam size w(z) as a function of the distance z from the beam
waist. The wavefront curvature R(z) is also depicted, showing the changing curvature
of the beam’s phase front as it propagates. The beam waist is located at z = 0, where
the beam radius is at its minimum, and the Rayleigh range zR is marked, indicating the
distance over which the beam radius increases by a factor of

√
2. The figure highlights

how the Gaussian beam expands and changes curvature as it moves away from the
waist, providing a visual understanding of the beam’s propagation characteristics.

curvature increases. By positioning spherical mirrors such that their radii of curvature

match the beam’s wavefront curvature at the points of reflection, the beam is confined

within the cavity, maintaining its path, and ensuring stability.

As we can see from Figure 2.10, the red shaded area represents the cross-sectional

profile of the beam, which narrows at the beam waist and diverges as it moves away

from this point. The blue lines indicate the wavefronts, showing how they transition

from flat at the waist to curved as the beam propagates. The optical cavity is formed

by two spherical mirrors with radii of curvature R1 and R2, positioned at distances

L1 andL2, from the beam waist, respectively. These mirrors ensure that the beam

retraces its path upon reflection, maintaining the correct radius of curvature of the

beam’s wavefront to match that of the mirrors.

In summary, the precise design of the optical cavity using spherical mirrors with

matching radii of curvature is crucial to achieve stable and efficient FEL operation. The

mirrors provide the necessary optical feedback and mode selection, ensuring high beam

quality and effective interaction with the electron beam. This configuration enhances

the amplification process, leading to a high-quality laser output.
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Figure 2.10: Propagation of a Gaussian laser beam through an FEL optical cavity
formed by two spherical mirrors with radii of curvature R1 and R2. The red area
represents the beam’s cross-sectional profile, with the beam waist at the centre and
divergence as it moves away from the waist. The blue lines depict the wavefronts of the
laser beam, showing the change in curvature during propagation. The spherical mirrors,
positioned at distances L1 and L2 from the beam waist, ensure that the reflected beam
retraces the incident path.
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Chapter 3

Unaveraged Models of a

Cavity-Based Free-Electron Laser

The simulation of a cavity-based (oscillator) free electron laser (FEL) requires the

modelling of both the interaction between electrons and light within the FEL undulator

as well as the propagation of radiation inside the optical cavity. The 3D unaveraged FEL

simulation code, Puffin, has been integrated with the Optical Propagation Code (OPC)

to enable the first time modelling of a broadband, high temporal-resolution cavity FEL.

This integration requires converting the radiation field formats between the Puffin and

OPC codes. The process of this conversion is detailed, and the combined codes are

utilised to simulate a Regenerative Amplifier FEL (RAFEL) example operating in the

VUV spectrum.

3.1 Introduction

To simulate a Free Electron Laser functioning within an optical cavity (oscillator),

it is typically necessary to use two distinct simulation codes: one for modelling the

FEL interaction in the undulator system and another for simulating the radiation

travel through the optical cavity. Different 3D FEL simulation codes, including Gen-

esis 1.3 [67], are capable of simulating the FEL interaction using the Slowly Varying

Envelope Approximation (SVEA). In contrast, Puffin [14,16] (accessible from [15]) op-
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erates as an unaveraged FEL code that neither applies the SVEA approximation nor

utilises the undulator period averaging for electron trajectories. This unaveraged ap-

proach retains the rapidly oscillating term of the radiation field, enabling the simulation

of broadband radiation fields (few-cycle) and more intricate electron dynamics. This

chapter presents a methodology for achieving such unaveraged modelling within a FEL

oscillator system.

Previously, the Genesis 1.3 FEL simulation code has been combined with the Op-

tical Propagation Code (OPC) [32, 76] (accessible from [31]), to model a cavity-based

Regenerative Amplifier FEL functioning in the VUV, by employing both codes in se-

quence within the optical cavity [44]. The OPC incorporates 3D mirror reflections and

the propagation in free space through the cavity’s optical path.

In this study, OPC is utilised to simulate the optical propagation within a cavity,

whereas the direct FEL interaction is captured using Puffin. This chapter initially

explains the process of converting the optical field between the Puffin and OPC code

formats, which is essential for connecting the radiation output from one code to the

other. The conversion code can be accessed here [55] (see also in D).

When designing an FEL oscillator intended to function at shorter wavelengths ap-

proaching the X-ray range, the optical components forming the cavity can be restrictive

due to their lower reflectivity, increased absorption, and lack of tunability, especially

when using Bragg reflectors. The Regenerative Amplifier FEL (RAFEL) employs a

high-gain FEL undulator system operating below saturation, alongside a minimised

optical feedback cavity to achieve FEL saturation within a few cavity round-trips.

RAFEL generally utilises low reflectivity mirrors for the optical cavity, enabling oper-

ation within the short wavelength domain [41]. A summary of RAFEL performance

over a broad parameter range in the 1D limit is provided in [24]. The model of a

RAFEL design that operates in the VUV at approximately 65 nm is then presented.

The optical cavity was designed to fulfil the cavity stability requirements and to align

the undulator and cavity lengths with the electron beam repetition rate.
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3.2 Field Format Conversion

The Puffin radiation field data is stored as a 4-dimensional array in an HDF5 (.h5)

file. It has dimensions of (2, nz, ny, nx) that represent two orthogonal polarised 3D

fields in the x and y directions, with nz indicating the field propagation direction.

Figure 3.1 shows a diagram for converting the format of a short Gaussian pulse. The

Puffin output field includes the ‘fast’ oscillatory components of the radiation for both x

and/or y polarisations, allowing for conversion to both planar and circular polarisations.

Unlike Puffin, which uses a single HDF5 file to store the radiation field, OPC utilises

two separate files. The first is a binary data file in the Genesis field format (.dfl) [67].

Each data point is represented as an 8-byte (64-bit) floating point number and stored

in a 1D array. The size of this array is determined by the product of the grid points in

x, y, and z, with grid size parameters and the number of slices in z stored in a second

text file with OPC parameters (.param). The transverse optical field data comprises

pairs forming complex numbers, interleaved in the array at odd and even indices. For

temporal data in the OPC files, the number of slices corresponds to the additional axis

of the array that corresponds to the z-direction of optical propagation.

The Python script for converting from the Puffin to OPC file format starts by

analysing the optical field envelope in its complex form. The conversion technique

independently handles both the x and y polarisations of the Puffin field. For a basic

plane wave, the radiation field for a single polarisation direction derived from Puffin

can be expressed in Eq. 3.1 as:

Apuffin(r, t) = A0(r, t) cos (kz − ωt+ ϕ(r, t)), (3.1)

where Apuffin is the scaled radiation field with amplitude A0, radiation wave number

k, angular frequency ω and phase ϕ. An analytic form is then used to translate the

real-value field Apuffin into the complex representation of the OPC field format by using

a Hilbert transform [36], which also has the effect of shifting the phase of the original

signal by −π/2 . The Hilbert transform, denoted by a ‘hat’, of the Puffin field can then
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be expressed as:

Âpuffin(r, t) = H[Apuffin(r, t)]

= A0(r, t) sin (kz − ωt+ ϕ(r, t))
(3.2)

The OPC envelope is then constructed from the original Puffin field via its Hilbert

transform, as:

Ãopc(r, t) = Apuffin(r, t) + iÂpuffin(r, t)

= A0(r, t) exp [i(kz − ωt+ ϕ(r, t))]
(3.3)

In this way, Apuffin(r, t) = Re(Ãopc(r, t)).

In practice, Puffin stores the radiation field data as a function of z̄2 = (ct − z)/lc,

where lc = λr/(4πρ) is the cooperation length, λr is the resonant radiation wavelength

and ρ is the FEL parameter [14]. When converting the Puffin field into the OPC format,

the negative imaginary part must therefore be used so that:

Ãopc(r, z̄2) = Apuffin(r, z̄2)− iÂpuffin(r, z̄2)

= A0(r, z̄2) exp [i(z̄2/2ρ− ϕ(r, z̄2))]
(3.4)

The parameters that define the grid size, number of grid points, and so on, for both

transverse and temporal directions, are first derived from the Puffin scaled parameters

as detailed in [14]. These are then converted into OPC scaling and documented in the

OPC parameter text file. For the reverse transformation from OPC binary format to

Puffin HDF5 format, the method extracts the real part of the OPC data file, reads the

number of grid points, grid size, etc., from the OPC parameter text file, and inputs

this information into the Puffin HDF5 file format.

3.3 Simulation parameters

In the simulation described here, a steady-state (non-pulsed) interaction is considered,

with parameters that are similar to those outlined in the 4GLS conceptual design
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Figure 3.1: The format of the Puffin output radiation field and the conversion methods
to and from the OPC radiation field format. (Top): Puffin-to-OPC and (Bottom):
OPC-to-Puffin. The field conversion scripts written in python can be seen in D.
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report [19] for a RAFEL functioning in the VUV spectrum. The simulation parameters

are detailed in Table 3.1. The electron beam energy is 600 MeV, featuring a Gaussian

energy spread of σE = 0.01% and a peak current of I = 355 A, along with a normalised

beam emittance of ϵx,y = 2 mm-mrad. The transverse electron beam size, matched in

the undulator with natural focusing, is given by:

σx,y =

√
ϵx,yλu√
2πaw

, (3.5)

where λu is the undulator period, and aw is the RMS undulator parameter.

A helical undulator that is 12 m long, and consists of 200 periods with a wavelength

of λu = 6 cm, has an undulator parameter of aw = 1.414. This configuration results in

a resonant radiation wavelength of λr = 65.28 nm and a matched transverse electron

beam size of σx,y = 138 µm. The electron beam FEL parameter is ρ = 0.002487, and

the gain length is calculated as lg = λw/4πρ = 1.92 m, which corresponds to a 1D

scaled length in the high gain regime of z̄ = 6.25 [24].

The cavity length for a round trip, Lcav, is adjusted to correspond to the electron

bunch repetition rate, frep, and is defined as:

Lcav =
c

2frep
. (3.6)

This simulation employs a stable symmetric cavity to illustrate basic RAFEL function-

ality, characterised by equal radii of curvature for the mirrors, (R1 = R2 = R). Here,

the optical waist is situated at the cavity’s centre, with the waist size defined as:

w2
0 =

λr

2π

√
Lcav(2R− Lcav). (3.7)

At a position z from the cavity centre the optical beam waist size is then:

w(z) = w0

(
1 +

(
z

zR

)2
)
, (3.8)

where zR is the Rayleigh range:
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zR =
πw2

0

λr
. (3.9)

From equations 3.7 and 3.9, the radius of curvature of both mirrors is then:

R =
2z2R
Lcav

+
1

2
Lcav. (3.10)

In the RAFEL cavity, the optical waist size is matched to the electron beam trans-

verse size to obtain optimum coupling and is given by:

w0 =
√
2σx,y (3.11)

The RAFEL requires only a small optical feedback cavity to achieve optimal per-

formance [24]. The configuration of the undulator and optical cavity utilised here is

represented in Figure 3.2. The cavity length is defined as Lcav = 34.62 m to synchronise

with the electron pulse repetition rate of 4.33 MHz. The simulation converts the output

field of Puffin from the undulator exit into its OPC format, as detailed earlier, and then

it propagates through the cavity mirrors M1 and M2 back to the undulator entrance.

There, it is reverted to the Puffin format to initiate the next incoming electron pulse.

The radiation initially reflects off mirror M1 with a curvature radius of R = 17.5 m,

as determined by Eq. 3.10, giving it a focal length of 17.5/2 = 8.75 m. This mirror

is positioned 11.31 m away from the undulator exit, featuring a 1.0 mm diameter out-

coupling hole. The second mirror, M2, located before the undulator entrance, has the

same curvature radius as M1 to create a symmetrical cavity with a concentric layout,

thereby forming a stable resonator. The mirrors’ reflectivity in these simulations varies

between r = 20% and 60%. Consequently, the RAFEL operation is expected to achieve

saturation within relatively few cavity round-trips [24,44].

The parameters utilised in this design provide a clear representation of how the

Puffin and OPC simulation codes are integrated together. The steady-state method

used for the 3D simulations incorporates periodic boundary conditions on the constant

current electron beam and radiation across an integer number of radiation wavelengths.

This implies that optical diffraction is included in the model, but pulse effects such as
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Table 3.1: Summary of RAFEL FEL parameters used in the simulations

Electron beam parameters

Electron energy (MeV) 600
Normalised emittance, σx,y (mm mrad) 2/2
Energy spread 0.01%
Peak current (A) 355
Transverse size, σx,y (µm) 138
Bunch repetition (MHz) 4.33

Undulator

Undulator type Helical
Polarisation Circular
Undulator parameter (rms) 1.414
Pitch (cm) 6.0
Number of periods 200

Oscillator

Rayleigh range (m) 1.83
Cavity length (m) 34.62
Mirror 1 radius (m) 17.5
Mirror 1 reflectivity 0.2-0.6
Out-coupling hole diameter (mm) 1.0
Mirror 2 radius (m) 17.5
Mirror 2 reflectivity 0.2-0.6
Waist position (m) 17.31

FEL

Radiation wavelength (nm) 65.28
FEL parameter (ρ) 0.002487

electron pulse length, slippage, and cavity detuning are excluded. For a deeper insight

into pulse effects, refer to [65], which details comprehensive 3D short-pulse simulations

of an Infra-Red FEL oscillator with sub-wavelength cavity detunings.

3.4 Example simulation

The Puffin-OPC radiation field conversion technique mentioned above is evaluated in

a straightforward steady-state RAFEL setup, as detailed by the specified parameters.

The simulation employs a steady-state periodic boundary window spanning 10 radiation

wavelengths and initialises from the Puffin simulation of the electron beam’s shot-

noise, serving as the spontaneous radiation source for the initial pass through the

FEL undulator. The spontaneous radiation output from the Puffin simulation is then

transformed into the OPC format as previously described. It is crucial to align the grid

sizes of both codes at the start of the simulation setup. The OPC primary input file

encompasses the entire optical path and the optical components, such as the mirrors
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Figure 3.2: Schematic of the RAFEL used in the simulation. The cavity of length Lcav

uses two spherical mirrors with the same radius of curvature R and of reflectivity r.
The optical waist is positioned at the centre of the cavity, coincident with the centre
of the FEL undulator of length Lu. The upstream mirror uses a hole for out-coupling
of the radiation.

and the output coupling hole. The converted field is subsequently propagated through

the optical cavity system using OPC, via free space propagation and the two mirrors

M1 and M2, back to the undulator entrance. At the undulator entrance, this field is

converted from OPC format back to Puffin format and utilised as the radiation seed

file in the Puffin main input file for the subsequent pass through the FEL undulator.

This process iterates sequentially, as illustrated in Figure 3.3.

Figure 3.4 presents the simulation results of a 10-wavelength periodic optical field

as a function of z̄2 along with the scaled transverse intensities at various locations

within the cavity. The use of Puffin and OPC shows that the rapid oscillations in the

radiation field in z̄2 are preserved. Additionally, the diffraction of radiation through the

cavity-undulator system and the radiation emitted from the hole out-coupling mirror

M1 are distinctly noticeable.

The RAFEL operation can be examined through the energy of the radiation pulse

out-coupled from the hole, as depicted in Figure 3.5. It should be noted that the

output accounts for all possible system losses, including cavity diffractive losses, mirror

reflectivity losses, and out-coupling losses. The findings indicate that there is adequate

optical feedback to reach saturated RAFEL operation for mirror reflectivities of r =

20%, 40%, and 60% for both mirrors M1 and M2, and for the output mirror M1’s out-

coupling hole with a diameter of 1.0 mm. The RAFEL system achieves saturation
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Figure 3.3: The schematic shows the flow chart of the RAFEL simulation. It begins
with the first pass, Puffin to OPC conversion script, and then enters the cavity loop
which is a simple Bash shell script. (1) is the radiation propagation from the undulator
exit to M1 using OPC with a hole out-coupling diagnostic point (1′). (2) The OPC
propagation of the reflected radiation at M1 to M2. (3) The OPC propagation from
M2 to the undulator entrance where the field is converted to Puffin format and is used
as the radiation seed field for the next pass through the undulator.
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M2 Undulator Entrance

(a)

Undulator ExitWaist
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M1 Hole
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Figure 3.4: The steady-state (saturated) radiation field (top sub-plots) and the optical
transverse intensity (bottom sub-plots) at different diagnostic positions for one pass
through the RAFEL. The top sub-plots show the positive (red) and negative (blue)
values of the electric field for the 10 wavelength periodic radiation field sample. The
plots start from the mirror M2 (a-left) which is propagated by OPC to the undulator
entrance (a-right) where it is translated into Puffin format as a seed field. Puffin then
models the FEL interaction through the undulator waist (b-left) and to the undulator
exit (b-right) where it is translated into OPC format. OPC then propagates it to mirror
M1. Part of the radiation is then transmitted through the output hole (c-right). The
reflected radiation (c-left) is then propagated back to M2 and the simulation process
repeats.
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after approximately 5 to 15 round-trips as mirror reflectivities decrease. The similar

saturated energy outputs for the higher reflectivities, r = 40% and 60%, compared to

the lower energy for r = 20%, align with the previous findings of [44], which did not

use the hole-output coupling in the cavity.
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Figure 3.5: The RAFEL scaled output pulse energy, as measured at the hole out-
coupling, contained within the 10 radiation wavelengths of the steady-state model, as
a function of cavity round-trip number. Mirror reflectivities of r = 20%, 40% and 60%
were used and saturation is seen to occur at around 15, 6, and 5 round-trips respectively.

3.5 Conclusion

The unaveraged FEL Puffin and OPC optical simulation codes can now be utilised

together in FEL simulations that incorporate optical components, like a cavity-based

FEL oscillator. To facilitate the transfer of the radiation field between the two simula-

tion codes, conversion scripts have been created. This was demonstrated by modelling
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a periodic mode (steady-state) model of a VUV-RAFEL design. This advancement

will allow for the development of FEL models for potential future ultra short-pulse

(few-wavelength), broadband simulations in cavity-based FEL designs. Additionally,

other methods that require the use of unaveraged FEL and optics simulations, which

have not yet been explored, should now be feasible for the first time.
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Chapter 4

Investigating Sub-Wavelength

Effects in a Free-Electron Laser

Oscillator

Previous simulation studies of cavity-based free-electron lasers (FELs) used models that

averaged the optical field in the FEL interaction over an integer number of radiation

wavelengths. In this chapter, two unaveraged simulation codes, OPC and Puffin, are

combined to enable the modelling, for the first time, of a cavity-based FEL at the sub-

wavelength scale. This allows the simulation of effects such as Coherent Spontaneous

Emission from the electron beam and sub-wavelength cavity length detuning. A mid-

infrared cavity FEL is modelled, demonstrating that, for small sub-wavelength cavity

detunings, the FEL can preferentially lase at the third harmonic of the fundamen-

tal FEL wavelength. This novel finding implies that other modes of operation might

be possible, opening up cavity-based FEL operation to the exploration of additional,

potentially advantageous modes of operation.

4.1 Introduction

FELs serve as a highly efficient, adjustable, and adaptable radiation source, covering

the spectrum from microwaves to hard X-rays, thus offering extensive current and
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potential applications in both science and industry. FELs may function as a high-gain,

single-pass amplifier or in a lower-gain oscillator mode, which necessitates placing the

FEL undulator inside a cavity to provide radiation feedback.

This study focuses on the FEL oscillator mode of operation. Several factors affect

the performance of these FELs, including the design of the cavity resonator, the prop-

erties of the electron beam, and the undulator. The length of the cavity resonator,

which is the distance between its mirrors, is a crucial parameter that must be adjusted

to ensure that the radiation emitted by one electron pulse overlaps with the next elec-

tron pulse entering the FEL undulator. When the round-trip time of a radiation pulse

within the cavity matches the difference in arrival times between electron pulses, the

cavity is considered resonant. The cavity length can be ‘detuned’ from this resonant

length to modify and enhance radiation output for specific uses.

A significant benefit of cavity detuning is that it can be integrated into current FEL

facilities without requiring major modifications. Furthermore, the cavity length can be

modified dynamically in real-time during FEL operation, offering enhanced control over

output characteristics such as intensity and efficiency, thus allowing its performance to

be fine-tuned for particular applications [81].

In this chapter, we employ unaveraged simulations to explore, for the first time,

the impacts of cavity detuning at a sub-wavelength scale in an FEL oscillator. This

study demands a sub-wavelength resolution of the radiation/electron FEL interaction,

which is beyond the capabilities of averaged computational models that average the

FEL interaction over an integer number of radiation wavelengths. When modelling

short pulses, the simulation accounts for both the coherent and shot-noise spontaneous

emission of the electron beam [38]. Coherent Spontaneous Emission (CSE) has the

potential to dominate the initial amplification in an FEL undulator, particularly in the

low-gain operating regime of FELs [43]. CSE is primarily triggered by a short electron

pulse with a fine current structure at the wavelength level, such as a rectangular beam

current with ‘sharp edges’. Thus, a more comprehensive understanding of these sub-

wavelength phenomena is essential, especially for short-pulse FEL oscillators. Here, we

present a preliminary investigation in the mid-IR wavelength region of the spectrum.
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The unaveraged FEL simulation software Puffin [14, 16] (accessible from [15]), and

the Optical Propagation Code (OPC) [32, 76] (accessible from [31]), were earlier inte-

grated to simulate a Regenerative Amplifier FEL (RAFEL) oscillator [64] within the

steady-state operational area, applying periodic boundary conditions to the electron-

radiation interaction, thus eliminating all pulse effects, including CSE. By employing

the combined Puffin-OPC simulation in pulsed mode, it is possible to model wide-

bandwidth and sub-wavelength phenomena, such as harmonic radiation generation,

CSE, and sub-wavelength cavity detuning. Consequently, it leads to a comprehensive,

3D unaveraged computational representation of a short-pulse FEL oscillator, with its

initial findings presented here for the first time.

This study explores various impacts of sub-wavelength cavity detuning on the per-

formance of FEL, with a specific focus on its influence on harmonic generation within

the FEL oscillator. The initial demonstration of generating radiation at the third har-

monic of the fundamental resonant wavelength in an FEL was achieved by inserting

a dispersive material into the FEL oscillator cavity. This modification altered the

round-trip transit times of the fundamental and third harmonic pulses in the cavity [8].

The simulation outcomes presented herein, utilising both a ‘sharp’ rectangular elec-

tron beam current profile and a ‘smooth’ Gaussian-profiled electron beam, consistently

indicate that cavity detuning on a sub-radiation wavelength scale can elevate harmonic

radiation output beyond that of the fundamental mode, thereby achieving harmonic

lasing without the necessity for any dispersive materials. These results propose that

harmonic lasing arises due to sub-wavelength cavity detuning and not solely from CSE

generated by a sharp-edged beam current. A mid-infrared FEL oscillator is simulated

to showcase this innovative mode of FEL operation.

4.2 Simulation model

4.2.1 FEL and optics code

Chapter 2 provides a summary of the unaveraged simulation approach for FEL oscilla-

tors. This approach employs two simulation codes, Puffin and OPC, which simulate the
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interaction of electrons with radiation in the FEL undulator and the transmission of

the resulting radiation field through the oscillator cavity, respectively. Puffin is an un-

averaged FEL simulation code that models the interaction between electrons and light

within an undulator. After the Puffin FEL simulation, the output field at the undula-

tor’s exit is converted into the OPC code format. OPC then simulates the propagation

of the radiation field through the optical oscillator cavity, including the mirrors and

various optical components. The two codes are executed one after the other, starting

with Puffin’s simulation of the FEL interaction. The OPC simulation of the radiation’s

propagation through the oscillator cavity then allows for adjustments in the optical

path length due to cavity detuning. After the radiation field is propagated back to

the undulator entrance via OPC, it is transformed back into a format that serves as

the input seed field for the next iteration through Puffin. This iterative process, pass-

by-pass, ensures a precise simulation of the FEL interaction and the radiation field’s

propagation through the optical components of the oscillator cavity.

4.2.2 Simulation parameters

In the demonstrated example, the parameters listed in Table 4.1 are almost identical

to those used in the one-dimensional IR-FEL simulations described in [27], with the

inclusion of additional optics and beam parameters necessary for the three-dimensional

modelling. A curved-pole undulator focussing mechanism is implemented to ensure

that the transverse electron beam size remains constant throughout the length of the

undulator [30, 70]. The undulator module, which is 1.8 m long, comprises 40 periods

with a wavelength of λu = 4.5 cm. The transverse electron beam size in the undulator

focusing is calculated as σx,y = (ϵx,yλu/(
√
2πaw))

1/2, where ϵx,y is the normalised

emittance of the beam, λu is the period of the undulator, and aw is the RMS undulator

parameter, resulting in σx,y = 311.8 µm. The temporal profile of each electron pulse’s

current in the beam is rectangular with a duration of 400 fs. The mean energy of

the electron beam is denoted by γ in units of mec
2, leading to a resonant radiation

wavelength of λr = λu(1 + a2w)/2γ
2 ≈ 6 µm in the mid-infrared range. Consequently,

each electron pulse in the beam has a length of 20λr. To satisfy the resonant cavity
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condition, the time interval between two consecutive electron pulses must align with

the cavity’s round-trip time, such that c/frep = 2Lcav, where frep is the electron pulse

repetition rate, and Lcav is the cavity length between the two mirrors.

Table 4.1: Summary of FEL oscillator parameters used in the simulations

Electron beam parameters Rectangular Gaussian

Electron energy (MeV) 50
Bunch charge (pC) 100
Normalised emittance, σx,y (mm mrad) 12/12
Energy spread 0.5%
Bunch length (fs) 400 470 (FWHM)
Peak current (A) 250 200
Transverse size, σx,y (µm) 311.8
Bunch repetition (MHz) 10

Undulator

Undulator type Curved pole
Polarisation Linear
Undulator parameter (rms) 1.25
Pitch (cm) 4.5
Number of periods 40

Oscillator

Rayleigh range (m) 0.52
Cavity length (m) 14.9896
Mirror 1 radius (m) 9.00024
Mirror 1 reflectivity 0.960
Mirror 2 radius (m) 6.064
Mirror 2 reflectivity 0.999
Waist position (m) 6.02

FEL

Radiation wavelength (µm) 6.0
FEL parameter (ρ) 0.0052

The 2-mirror optical cavity is configured as a nearly concentric resonator with a

Rayleigh range of 52 cm, as depicted in Figure (4.1). The first mirror M1, which can

be either partially transmissive or utilise a hole for out-coupling, is positioned just after

the undulator’s exit. The second mirror M2, completing the simple cavity, is positioned

just before the entrance of the undulator. When the spacing between the two mirrors

results in a round-trip propagation time that matches the electron beam’s repetition

rate, the cavity achieves zero length detuning. The optical beam waist is located at

the midpoint of the undulator, with the Rayleigh range being roughly one-third of the

undulator’s length.

The propagation of radiation within the optical cavity is simulated using the OPC

code [32, 76]. The selection of the radiation propagation method in the code, among
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other factors, critically influences the simulation’s accuracy. In OPC, three propaga-

tion methods can be implemented: the spectral method, Fresnel diffraction integrals,

and modified Fresnel integrals. Of these, the spectral method and Fresnel diffraction

integrals are numerically solvable using Fast Fourier Transforms (FFTs). On the other

hand, the modified Fresnel integral, although producing valuable results, is the least

efficient method [32]. Nevertheless, it offers a promising alternative by enabling the

propagation of an optical beam through a complex optical system in a single step. An

essential requirement for using this method is that all optical components must be pre-

cisely described by an ABCD matrix [69]. Moreover, the scaling applied to this method

permits the use of a magnification factor for the grid, allowing different transverse mesh

sizes at the Puffin input and the cavity mirror output planes.

In this research, the oscillator’s waist is positioned at the centre of the undulator,

allowing the FEL output to travel approximately 7.1 metres from the undulator exit to

the first mirror, M1, within the resonant cavity’s length. Diffraction causes considerable

variations in the size of the transverse optical beam, ranging from about 1 cm2 to

roughly 100 cm2. This is modelled using the OPC modified Fresnel integral algorithm

to expand the optical nodes’ transverse dimensions by a factor of 10. For the round-trip

OPC oscillator simulation to be completed, the reflected optical beam from M1 is then

directed to M2, and subsequently back to the undulator entrance. There, the size of the

transverse node is reduced by a factor of 10 and converted to the Puffin input format,

before proceeding with the next pass through the Puffin FEL simulation.

M1M2

out

Undulator

Lcav

δL

b

e
−

Figure 4.1: Schematic of the FEL oscillator as used in the simulation. The cavity,
formed by the two mirrors M1 and M2, can be changed in length by the cavity detuning
parameter δL. This adjusts the synchronisation between the electron pulse arrival times
and the radiation round-trip time in the cavity which are synchronous when δL = 0.
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4.3 Simulation results

4.3.1 Empty cavity
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Figure 4.2: Evolution of the beam waist size as a function of the pass number in a FEL
oscillator. The beam waist size starts from an initial value of approximately 0.4 mm
(indicated by the red arrow) and stabilises over time. The inset shows the initial beam
profile with a Gaussian fit.

The examination of an empty cavity, without an undulator, is essential to validate

the functionality of the Gaussian mode in the FEL cavity, as the beam spreads due

to diffraction. To start this procedure, the Gaussian optical beam is initialised using

Puffin with a starting beam waist of 0.4 mm and then transmitted through the OPC

for several round-trips until stability is reached. This method guarantees that the

cavity layout is suitable for containing the optical beam within the initial region of the

undulator, thus enhancing the alignment with the electron beam.

Figure 4.2 illustrates the change in waist size relative to the number of round-

trips (pass number). The waist size of the beam initially measures around 0.4 mm

(highlighted by the red arrow) and shows oscillatory behaviour before reaching a stable

state. The inset plot zooms in on the initial beam profile, featuring a Gaussian fit with

a waist size of 0.44 mm. The main plot represents the dynamics of the beam size as it
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traverses the cavity multiple times, eventually settling at the intended beam waist of

approximately 1.0 mm.

4.3.2 Gain lethargy

The simulation techniques and parameters specified in Section (4.2) are now used to

model the FEL oscillator. Figure 4.3a illustrates the initial position of the rectangular

current electron pulse at the start of the undulator, along with the development of the

radiation power and phase during the first pass through the cavity. The trailing edge

of the electron pulse produces a CSE wavefront at a temporal position of (ct− z)/λr =

20 as it passes through the undulator at a speed lower than c. The CSE generated

by the rectangular current profile electron pulse propagates vertically at a temporal

position of 20 wavelengths in the Figure 4.3a and exhibits greater power compared to

the spontaneous power resulting from shot-noise.

Near the end of the undulator, an increase in radiation is observed towards the back

of the window, where the electrons are more tightly bunched as a result of the FEL

interaction and emit more intensely. Consequently, the centroid of the optical pulse (at

(ct− z)/λr ≈ 50 and phase ≈ 0) moves slower than the speed of light. The centroid of

the optical pulse is subsequently delayed with each pass of the electron pulse through

a resonant cavity, where δL = 0, leading to a gradual decoupling of the optical pulse

from the electron beam over successive passes within the cavity.

The evolution of the FEL scaled power and phase as a function of the cavity round-

trip number, depicted in Figure 4.3b, illustrates that the peak power travels at a velocity

slower than c, known as ‘gain lethargy’. Beginning from the first passage through the

cavity, the pulse experiences amplification, attaining its maximum energy at approx-

imately the 20th pass, before gradually reducing until it separates from the electrons

around the 80th pass. This pattern of radiation pulse evolution for a zero cavity de-

tuning case, δL = 0, corresponds with the theoretical model of short pulse evolution in

a FEL oscillator [21].
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Figure 4.3: (a) Contour plot of the normalised FEL power evolution (left) and phase
(right) as the electron pulse propagates through the undulator during the first pass
through the oscillator. The plot is in a window travelling at the speed of light, so
that the electron beam of length 20λr (initially bottom left) moves left-to-right in
the radiation window frame as it propagates through the undulator, as shown by the
white dashed lines. The radiation power starts from both electron beam shot-noise and
Coherent Spontaneous Emission. (b) Contour plot of the scaled FEL power P̄ evolution
as a function of the number of round-trips within the oscillator cavity for zero cavity
detuning, δL = 0. It is seen that the radiation pulse power drifts from left to right
in the window between increasing round-trip number 10 - 50, indicating that its net
velocity is less than the speed of light. This causes a slow decoupling with the electron
pulse after each round trip and the radiation power is seen to decrease after round trip
∼ 25.
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4.3.3 Sub-wavelength cavity detuning

Cavity detuning serves to synchronise the timing between the optical pulse and the elec-

tron bunch within an undulator, mitigating the delay induced by gain lethargy in FEL

oscillators [1, 21]. By reducing the cavity length, the optical pulse reaches the electron

bunch sooner, reducing gain lethargy and enhancing the FEL interaction performance.

Furthermore, this cavity shortening offers additional control over the temporal prop-

erties of the FEL pulse. The cavity detuning diagram in the FEL oscillator is shown

in Figure 4.4, illustrating the position of the radiation feedback relative to the fresh

electron beam during the subsequent pass.

In this research, a positive cavity detuning, δL > 0, indicates a reduction in cav-

ity length, as illustrated in Figure 4.1. Consequently, the light pulse covers a shorter

distance of 2δL during each round-trip. The Puffin code, which does not average out

the FEL field, permits sub-wavelength adjustments to the cavity detuning with a mini-

mum resolution equivalent to the spacing between adjacent nodes of the radiation field

sampling. Using Puffin, 21 nodes are employed to sample each radiation wavelength,

allowing δL to be altered in steps of 0.05λr, resulting in a change of 2δL = 0.1λr for the

round-trip distance of the radiation from the cavity. Thus, the cavity detuning can be

finely tuned in small, sub-wavelength steps, facilitating the investigation of the effects

of such precise cavity detuning adjustments on the FEL output.

The oscillator model employs Puffin scaled units [14, 16], where ρ represents the

FEL parameter. The expression for the scaled pulse energy is given by:

ε̄ =

∫
P̄ dz̄2, (4.1)

where P̄ is the scaled power from Puffin (see Figure 4.3), z̄2 is the temporal scaling

parameter given by z̄2 = (ct− z)/lc, and lc = λr/(4πρ) is the cooperation length. Note

that the radiation power is related to the scaled power from Puffin via:

P = spP̄ , (4.2)

79



Chapter 4. Investigating Sub-Wavelength Effects in a Free-Electron Laser Oscillator

z

e- pulse

0

0

e- pulse

z = Lu

Slippage length

Radiation output

0

Positive detuning:
Shorter cavity length

Negative detuning:
Longer cavity length

e- pulse

Zero detuning:
Perfect synchronisation

z

Radiation input

0

e- pulse

z

2δL

0

e- pulse

z

0

2δL

Pass number = n

Pass number = n+1

Figure 4.4: The figure illustrates the effects of cavity detuning on the synchronisation
between the electron pulse and the radiation field in an FEL oscillator in the radiation
frame of reference z̄2 as the radiation propagate from left to right on z axis. Zero
detuning: This represents perfect synchronisation where the radiation cavity length
matches the electron repetition rate. Positive detuning: Here, the length of the
cavity is shorter than the ideal length, causing the radiation field to move forward
relative to the electron pulse. Negative detuning: In this scenario, the cavity length
is longer than the ideal, causing the radiation field to slide backward relative to the
electron pulse.
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where

sp = lglccϵ0

(
γmec

2

eκlg

)2

, (4.3)

κ =
aw
2ργ

, (4.4)

and lg = λw/(4πρ) is the gain length.

The pulse energy is then:

ε =
1

c
splcε̄. (4.5)

For example in Figure 4.5, a scaled pulse energy of ε̄ = 10 corresponds to a real pulse

energy of ε ∼ 0.9 mJ.

The scaled pulse energy ε̄ is plotted in Figure 4.5 against the number of cavity round-

trips, considering a range of cavity sub-wavelength detunings from resonance, δL = 0,

and an output mirror reflectivity of R = 0.96. The detuning range of 0 ≤ 2δL < 0.5 is

illustrated in Figure 4.5a), where it can be observed that, for smaller cavity detunings

2δL = 0.0 − 0.3λr, the scaled pulse energy ε̄ initially increases but then decreases for

round trips 0 − 100, influenced by the lethargy effect. For 2δL = 0.2 and 0.3λr, the

pulse energy increases again after exceeding about 200 round trips, eventually reaching

steady-state behaviour for round-trip numbers > 400. Note that steady-state behaviour

occurs for fewer round trips (< 100) with increasing cavity detuning, as depicted in

Figure 4.5b). For 2δL > 1.0λr, the steady-state is achieved in fewer round-trips (< 50)

because the FEL gain initially occurs toward the front of the electron pulse more

quickly than for smaller detunings. After saturation, the pulse energy exhibits limit-

cycle behaviour [5], with an oscillation frequency dependent on the detuning of the

cavity, as noted in [34].

The steady-state post-saturation pulse energies as a function of cavity detuning,

depicted in Figure 4.5 (a & b), are summarised in Figure 4.5c. The cases for output

mirror M1 reflectivities of R = 0.6, 0.5, and 0.4 are also illustrated, with optimal

cavity detunings occurring at 2δL ≈ 2λr, 2.5λr, and 4λr, respectively. This indicates

that as mirror reflectivity decreases, the optimal detuning of steady-state pulse energy

shifts to larger values, consistent with the analytical model of [51]. Although only

intracavity behaviour is shown here using the scaled FEL power from the undulator
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Figure 4.5: Radiation scaled pulse energy ε̄ as the function of roundtrip number for a
range of sub-wavelength cavity detunings: (a) 0.0 < 2δL < 0.5λr and (b) 0.6 < 2δL <
1.4λr for the case of cavity mirror M1 reflectivity of R = 0.96. Note different horizontal
scales. (c) Steady-state (saturated) scaled pulse energy ε̄ at the undulator exit from
Puffin-OPC simulation Vs cavity detuning 2δL in units of radiation wavelengths for
a total reflectivity R = 0.96. The additional plots are for cavity reflectivities of R =
0.6, 0.5, and 0.4.
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Figure 4.6: Evolution of the beam waist as it propagates through the undulator. The
left plot shows the beam waist size in relation to the undulator length, highlighting the
optical beam (blue) and the electron beam (orange). The right plot shows the beam
profile at the waist position, with a Gaussian fit indicating a waist size of 0.902 mm.

exit, all subsequent optical cavity effects, such as diffraction and out-coupling losses,

can be modelled.

Figure 4.6 offers an extra depiction of how the beam waist evolves as it traverses the

undulator, specifically for the optimal condition of 2δL = 0.5λr in steady state beyond

the round-trip number > 400. The graph on the left shows the relative size of the

beam waist along the undulator’s length, distinguishing the optical (blue) and electron

(orange) beams. At the centre of the undulator, the optical beam waist hits a minimum

(w0), then expands symmetrically, showcasing a Gaussian beam profile. The Rayleigh

range (zR) is marked, indicating the distance over which the waist size increases by a

factor of
√
2. The graph on the right presents the beam profile at the waist position,

with a Gaussian fit indicating a waist size of 0.902 mm. The inset graph provides a

detailed view of the beam intensity distribution along with its cross-sections, confirming

the Gaussian nature of the beam profile. Although the waist position is not centred

within the undulator as designed, this could be attributed to the FEL interaction and

the length of the cavity detuning.
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4.3.4 Steady-state gain

The steady-state gain is expressed as:

G =
PG − P0

P0
, (4.6)

where P0 is the peak radiation power measured at the entrance of the undulator, and PG

represents the peak intracavity radiation power at the undulator exit. Assuming that

the out-coupling is achieved through a partially transmissive mirror with reflectivity

R, the out-coupling power can be expressed as:

Pout = (1−R)PG. (4.7)

In this simulation, PG is derived from the Puffin output file, while P0 is calculated after

cavity propagation using OPC. Consequently, P0 integrates all cavity effects during the

propagation from the undulator exit to the cavity mirrors and back to the undulator

entrance, and can be depicted as P0 = (1 − α)PG, where α denotes the total cavity

losses. In the steady-state condition, the gain will balance these total losses. The

extraction efficiency η = Pout/Pe, where Pe = γmc2Ib/e is the peak electron beam

power approximately ∼ 12.5 GW.

In Figure 4.7, the steady-state peak power gain Gp and the mean energy gain

Gε (4.7a), the FWHM pulse duration measured in units of λr, the FEL beam waist at

the undulator exit in millimeters (4.7b), and the extraction efficiencies for the peak (ηp)

and the mean energy (ηε) (4.7c) are depicted. For a cavity detuning of 2δL/λr = 0.2,

where lasing occurs at the third harmonic, the steady-state loss is observed to balance

the gain at approximately 10%. This value exceeds the total mirror reflectivity loss

of around 4%, attributed to diffractive losses in the cavity mirrors. When the cavity

detuning 2δL/λr > 0.5, lasing occurs at the fundamental frequency. Here, diffractive

losses are larger because of the longer fundamental wavelength, resulting in an increased

beam radius at the undulator’s end, as illustrated in Figure 4.7b. However, the gain

for the fundamental is higher and compensates for these diffractive losses, as shown in

Figure 4.7a.
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Figure 4.7: The plot illustrates the results from Puffin-OPC simulations in relation to
cavity detuning 2δL for a total reflectivity of R = 0.96. The calculated values shown
include (a) peak and mean gains Gp, Gε, (b) full-width at half maximum (FWHM)
FEL pulse duration (solid line), FEL beam waist at the undulator exit (dashed blue
line), and (c) extraction efficiency. In (a & c), the peak pulse powers are represented
by the dashed line, while those for the mean pulse energy are represented by the solid
line. Note that for the gains of (a), cavity detunings 2δL = 0 and 0.1 are not plotted
due to the very limited lasing, as seen from the efficiencies plotted in (c), leading to a
noisy value.
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4.3.5 Third-harmonic generation

Figure 4.5c shows a departure in saturation energies as a function of cavity detuning

from previous studies, such as those by [34], for the R = 0.96 case and for small,

sub-wavelength cavity detunings 2δL/λr < 1. Specifically, there are two peaks in

the saturated pulse energy around 2δL/λr = 0.2 and 0.5. To better understand this

behaviour, it is beneficial to examine how the radiation field and spectral components

of the FEL output pulse power for the 2δL = 0.2 case progress with cavity pass number,

as illustrated in Figure 4.8. It demonstrates that, although the fundamental frequency

growth ω/ωr = 1 initially dominates, the third harmonic growth becomes predominant

in the steady state at higher pass numbers.

The effect of this behaviour is illustrated more clearly in Figure 4.9, which shows the

scaled spectral pulse energies for three different cavity detunings. In the 2δL = 0.2λr

case depicted in Figure 4.8, it can be seen that the pulse energy at the fundamental

frequency (solid line) initially gains more rapidly and peaks after about 40 roundtrips.

Following this, its gain gradually decreases because of gain lethargy at the fundamental

frequency, coupled with insufficient cavity detuning to offset it. Conversely, this par-

ticular cavity detuning permits the pulse energy at the third harmonic (dashed line)

to be amplified over numerous round-trips, as depicted in the contour plots of the in-

stantaneous pulse power and phase over an increasing number of cavity roundtrips.

The evolution of the pulse phase contour reveals that the amplification of the third-

harmonic pulse starts to dominate after approximately 100 passes, as the fundamental

frequency declines due to lethargy. Thereafter, the third-harmonic pulse continues its

amplification until it reaches a steady-state saturation beyond 700 passes. Figure 4.9

represents the progression of the fundamental and third-harmonic for cavity detunings

at 2δL = 0.3λr and 0.4λr. The fundamental pulse energy increases as the cavity de-

tuning becomes larger. Expanding the cavity detuning values to 2δL = 0.6λr, 0.9λr,

and 1.2λr, as illustrated in Figure 4.10, reveals that the fundamental harmonic starts

to dominate the evolution, consistent with the findings of [34].

In addition to simulations performed with a rectangular electron beam current pro-

file, which produces significant CSE powers exceeding spontaneous emission due to
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Figure 4.8: The temporal, scaled power profiles, |A|2, at the undulator exit for the
central transverse node of the Puffin output field, corresponding to the midpoint of
the 2D transverse grid along the temporal axis, and its corresponding power spectral
density (PSD), for different pass numbers through the cavity for a cavity detuning of
2δL = 0.2λr. It can be seen that, while there is initial growth of the fundamental
ω/ωr ≈ 1, the third harmonic ω/ωr ≈ 3 evolves to dominate at larger pass numbers
into the steady state.
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Figure 4.9: (Left) The fundamental (solid blue) and third harmonic (dashed orange)
spectral pulse energy evolution as the function of cavity roundtrip number for cavity
detunings of (top to bottom) 2δL = 0.2λr, 2δL = 0.3λr, and 2δL = 0.4λr. (Right)
Contour plot of the FEL pulse power and phase evolution over multiple passes for the
corresponding cavity detunings.
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Figure 4.10: (Left) The fundamental (solid blue) and third harmonic (dashed orange)
spectral pulse energy evolution as the function of cavity roundtrip number for cavity
detunings of (top to bottom) 2δL = 0.6λr, 2δL = 0.9λr, and 2δL = 1.2λr. (Right)
Contour plot of the FEL pulse power and phase evolution over multiple passes for the
corresponding cavity detunings.
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shot noise, simulations were also conducted using a ‘smooth’ Gaussian current profile

where the spontaneous shot-noise emission overcomes over any CSE during start-up.

Figure 4.11 displays the radiation-scaled power and the spectral component of the in-

tracavity FEL output for a detuning scenario of 2δL/λr = 0.4. A noisier initial power

output is noticed after the first pass through the FEL oscillator, aligning with spon-

taneous shot-noise emission rather than the CSE from the rectangular beam current

shown in Figure 4.8. Although the fundamental frequency ω/ωr = 1 is initially dom-

inant, the power growth of the third harmonic becomes more evident with increased

pass numbers, particularly in the steady-state.

The effects similar to using a rectangular beam can be observed with a Gaussian

electron beam in Figure 4.12, which depicts the scaled spectral pulse energy (Fig-

ure 4.12a) for 2δL/λr = 0.4. The fundamental (solid line) shows a higher initial gain

starting from electron shot noise. The fundamental pulse energy peaks at pass num-

bers around 190 and then decays, while the third harmonic (dashed line) continues to

amplify. The fundamental gain here is lower compared to the rectangular beam cases

(Figures 4.9 and 4.10), where the FEL initiates from coherent spontaneous emission

(CSE). Additionally, the contour plot of the instantaneous pulse power and phase (Fig-

ure 4.12b) reveals that the third harmonic starts to dominate for pass numbers greater

than 200. This third harmonic pulse continues to amplify until it reaches steady-state

saturation at pass numbers exceeding 350.

Similar to the rectangular electron beam current profile, simulations with a smooth

Gaussian current profile indicate that the significant development of the third har-

monic into a steady state is limited to cavity detunings smaller than the fundamental

wavelength scale 2δL < λr. It can be inferred that the increased pulse energies for

the sub-wavelength cavity detuning shown in Figure 4.5c result from harmonic lasing

effects. This highlights sub-wavelength cavity detuning as the key mechanism causing

the harmonic lasing effect, regardless of whether CSE or spontaneous shot-noise serves

as the dominant initial field in the cavity.
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Figure 4.11: The temporal, scaled power profiles, |A|2, at the undulator exit for the
central transverse node of the Puffin output field, corresponding to the midpoint of the
2D transverse grid along the temporal axis, and its corresponding power spectral density
(PSD), for different pass numbers through the cavity for a cavity detuning of 2δL =
0.4λr. It can be seen that, while there is initial growth of the fundamental ω/ωr ≈ 1
from spontaneous shot-noise, the third harmonic ω/ωr ≈ 3 evolves to dominate at
larger pass numbers into the steady state.
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Figure 4.12: (a) The fundamental (solid blue) and third harmonic (dashed red) spectral
pulse energy evolution as the function of cavity roundtrip number for a cavity detuning
of 2δL = 0.4λr. The process starts from Gaussian electron beam current. (b) Contour
plot of the FEL pulse power and phase evolution over multiple passes for the corre-
sponding cavity detuning.

4.4 Conclusion

The combined application of the Puffin and OPC FEL simulation codes offers a novel

method for modelling cavity-based FELs at sub-wavelength scales, taking into account

Coherent Spontaneous Emission and cavity detuning. The simulations conducted in

this study are the first to address the impacts of sub-wavelength cavity detuning, re-

vealing an unanticipated steady-state lasing at the third harmonic.

The generation of CSE, as modelled here with a rectangular electron beam current

profile, has been shown to produce higher radiation powers compared to electron beam

shot-noise [43]. This CSE could potentially be used to improve or replace external

lasers in seeded cavity FELs, as studied by [27]. Additionally, when combined with

sub-wavelength cavity detuning, CSE may help stabilise, or further enhance, the output

properties of FELs. These effects are generally observed in longer wavelength sources

where electron pulse current variations happen more swiftly than in shorter VUV to

X-ray wavelength FELs.

An electron bunch with a Gaussian current profile, in which shot-noise sponta-

neous emission was the primary factor in the CSE, highlighted the importance of sub-
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wavelength cavity detuning in the harmonic lasing observed and confirmed this effect

with various beam current shapes. These results open up new paths for further research

into the wider impacts and applications of FEL technology and development.

One area not explored in this work is the behaviour of sub-wavelength cavity detun-

ing, such as from vibrations affecting the cavity length or from active tuning to improve

output. Another area is the implementation of crystal optics, which are employed in

shorter wavelength FEL designs and are predicted to yield different outcomes com-

pared to the sub-wavelength cavity size alterations discussed here. Investigating these

phenomena, their practicality, and other related studies could reveal new possibilities

and will be the focus of future research.
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Chapter 5

Saturation of Superradiant

Pulses in Free-Electron Lasers

An investigation is conducted on the saturation mechanism of a single superradiant

‘spike’ of radiation in a Free Electron Laser. A one-dimensional (1D) computational

model is created using the unaveraged FEL simulation code, Puffin, which enables the

sub-radiation wavelength evolution of both the spike radiation field and the electron

dynamics to be simulated until the highly nonlinear saturation phase of the spike is

reached. Animations showing the entire interaction process from beginning to end are

available. The resulting saturated spike duration is at the sub-wavelength scale and

exhibits a broad spectrum. Electrons traversing the spike can experience energy losses

and gains that significantly exceed those in a ‘normal’ non-pulsed FEL interaction. A

saturation mechanism is proposed and evaluated through a straightforward analysis of

the 1D FEL equations. The scaling results of this analysis align well with the numerical

results. A simple model to account for the three-dimensional (3D) diffraction effects

of the radiation is applied to the 1D simulation results. This model greatly diminishes

the longer wavelengths of the power spectrum, which are predominantly emitted after

the electrons have passed through the spike, and is qualitatively consistent with recent

experimental findings [80].
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5.1 Introduction

Research on analytical study of FEL amplifiers has found two distinct solutions to the

equations governing the simultaneous propagation of electrons and radiation within

the FEL undulator: the Steady-State and Superradiant regimes [9,10,12,42,53]. When

averaging the equations describing the electron-radiation interaction of FEL on at least

one resonant radiation wavelength, the resultant pulsed superradiant emission, account-

ing for pulse effects, has been shown to exhibit a hyperbolic secant solution for the

emitted radiation field in this regime [52]. Additionally, a recent experiment explored

superradiant pulses produced by an FEL oscillator [80].

As a superradiant radiation pulse, or ‘spike’, propagates within an electron beam,

the averaged analytical and numerical predictions indicate that an increase in the spike’s

peak power corresponds to a decrease in its temporal length. It is evident that both

the analysis and simulations begin to fail when the spike durations approach the radi-

ation’s wavelength. Consequently, the evolution of ultra-short spikes in FELs remains

not fully explained or comprehended. Neither analytical methods nor numerical simu-

lations can ascertain whether superradiant spikes eventually reach a saturation point,

leading to a breakdown of the self-similar solution. Initial research has demonstrated

that discrepancies arise between the averaged and unaveraged numerical simulations

when sub-period effects emerge during the evolution of ultra-short superradiant FEL

spikes [13,39].

To improve our knowledge of spike evolution, the unaveraged numerical simulation

tool Puffin [14,16] was utilised to examine the growth and evolution of highly nonlinear

FEL radiation spikes as they move through a uniform, effectively infinitely long, elec-

tron beam. These simulations, performed under the 1D, cold beam conditions, have

revealed a new regime where the superradiant spike reaches saturation. This study

offers an idealised reference point and provides new insights into the behaviour of FEL

superradiant spikes and electron dynamics at sub-wavelength scales.
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5.2 Simulation model

Presented here are unaveraged numerical simulations of FEL pulse evolution using the

Puffin model in the 1D scenario. The simulation parameters are chosen not to replicate

any specific existing or proposed FEL experiment but rather to explore the fundamental

FEL interaction as it transitions into a highly nonlinear regime characterised by intense

radiation pulse evolution at sub-wavelength resolution. Previous research has shown

that Puffin simulations are in good agreement with experimental data and averaged

3D FEL simulation codes when the FEL parameters remain relatively constant over a

radiation wavelength [13].

The FEL parameter ρ, utilised to scale the parameters here, is defined as [11]:

ρ =
1

γr

(
awωp

4ckw

)2/3

, (5.1)

where γr represents the resonant electron beam’s Lorentz factor, aw denotes the undu-

lator parameter, kw = 2π/λw describes the undulator wavenumber, ωp =
√

e2np/ϵ0me

is the non-relativistic electron plasma frequency, and np indicates the electron beam’s

peak number density.

Other significant scaling parameters derived from this primary scaling parameter

are [40]: the cooperation length, lc = λr/4πρ, where λr represents the resonant radi-

ation wavelength; the gain length, lg = λw/4πρ, with λw being the undulator period;

the scaled distance through the undulator, z̄ = z/lg = 4πρNw, where Nw denotes the

number of undulator periods, and z̄2 = (ct − z)/lc, signifying the scaled length in the

radiation frame of reference.

In the Puffin simulation code, the electron beam is represented using a collection of

macroparticles. This beam is considered to be a continuous wave (CW) cold beam with

zero-energy spread, and all initial parameters are uniformly distributed. The coupled

radiation and electron equations are computed within a simulation window that moves

at the speed of light, resulting in a fixed width in z̄2. Since the electrons move at slower

speeds, macroparticles consistently move to larger values of z̄2 within this window, and

a resonant macroparticle has a propagation speed of dz̄2/dz̄ = 1. The condition that
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z̄2 = − W 24 24 + W8

(z̄2j, pj)
End  of period
Nw

e- propagation direction

Head Interaction

FEL pulse

observation

Start of period 
Nw + 1

Tail

slow electrons

infinite stream of electrons

z̄2 = 0

c

Figure 5.1: Schematic of the simulation window in the scaled radiation frame of ref-
erence z̄2 = (ct − z)/lc. It consists of three main regions, Head, Interaction and Tail.
All macroparticles propagate left-to-right as their speed is less than that of light. Top:
The macroparticles representing the electron beam have propagated one undulator pe-
riod (left-to-right) through an intense radiation pulse. The ‘slow’ macroparticles (red)
have lost energy to the radiation pulse and some have propagated into the tail window
24 < z̄2 < 24+W , as have some that have gained energy from the pulse (blue). Those
that propagate further than the Tail window, z̄2 > 24 + W , are re-assigned into the
Head window by application of periodic boundary conditions over −W < z̄2 < 24+W .
Bottom: All macroparticles in both the Head and Tail windows are then re-initialised
as shown, with equal spacing in z̄2 and a resonant, monoenergetic distribution. Here
W represents the range of the windows in z̄2 for simulating different values of ρ, e.g.
W = 238 for 1 ≤ 4πρ ≤ 1.25, and W = 488 for 0.5 ≤ 4πρ < 1.
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dz̄2/dz̄ > 0 for all macroparticles supports the simulation of an infinite electron beam.

The simulation window is divided into three specific regions: the head, interaction, and

tail windows. The interaction window holds the initial radiation pulse field, where the

radiation spike develops. At the end of each undulator period, the positions of the

macroparticles in z̄2 are checked, and those exiting the interaction window into the tail

window are reset in both position and energy to refill the head window, thus maintaining

a CW electron beam. The initial number of macroparticles per radiation wavelength is

set to 800. A diagram illustrating the simulation windows and the initialisation process

of the macroparticles from the end of Nw to the beginning of Nw+1 undulator periods

is presented in Figure 5.1.

The initial phases of the electrons in the jth macroparticle, z̄2j , are evenly dis-

tributed throughout the simulation window. All Lorentz factors are set to the resonant

energy γr = 100, ensuring that pj = (γj − γr)/ργr = 0 for all j. The undulator has a

period of λw = 4 cm and an undulator parameter of aw = 1.0.

5.3 Simulation Example

The behaviour of superradiant pulses in the highly non-linear regime and with sub-

wavelength resolution is now examined using the above simulation method and pa-

rameters in a helical undulator setup. The evolution of the radiation-electron system is

initially modelled starting from a low-power input seed pulse to a very short, high-power

superradiant spike. It is shown that, for the relatively large value of ρ = 1/4π consid-

ered, the interaction of the superradiant spike reaches saturation after a long propaga-

tion distance of approximately 400 gain lengths (z̄ ≈ 400), with a peak scaled intensity

around 4000 times the usual steady-state saturation intensity of |Asat|2 ∼ 1.4 [11]. Al-

though this type of evolution may not be feasible with current FEL systems, studying

the saturation process of the radiation spike is of general interest.

The scaling of the saturated peak spike energy values, among other parameters, is

subsequently examined for different values of ρ, and an approximation is provided on

how 3D diffraction effects could influence the characteristics of the radiation spike.
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5.3.1 Simulation of Superradiant Pulses

Given the value of ρ = 1/4π, a single radiation period corresponds to a scaled length

of ∆z̄2 = 1, and similarly, one undulator period is ∆z̄ = 1. A relatively small Gaussian

seed radiation field with a scaled intensity of |A0|2 = 0.4, a width of σ(z̄2) = 2, and

centred at z̄2 = 12, is introduced into the interaction window 0 ≤ z̄2 ≤ 24, while

it is set to zero elsewhere at the undulator entrance z̄ = 0. This seed field gives

rise to a superradiant interaction which becomes essentially independent of the initial

seed. The field is sampled uniformly at 201 points per radiation wavelength. After

travelling a scaled distance of z̄ = 4πρN for N = 1, 2, 3, ..., Nw, where Nw represents

the number of undulator periods, the macroparticles and the radiation field outside the

range 0 ≤ z̄2 ≤ 24 are reinitialised in the head and tail windows as previously described

in Figure 5.1. The number of integration steps over one undulator period is 800, with

the macroparticle and radiation data being saved every 20 steps. The sub-wavelength

radiation and electron dynamics can thus be observed with a resolution of λr/20.

The simulation results leading to a typical FEL saturation in steady-state conditions

are illustrated in Figure 5.2 at undulator positions z̄ = 9 and 10 within the observation

interval 0 ≤ z̄2 ≤ 8 in the interaction window, as depicted in Figure 5.1.

The electron phase-space (z̄2j , pj), the components of the scaled circularly polarised

radiation fields Ax and Ay, the associated scaled intensity |A|2, and the scaled power

spectrum P̃ are depicted. Additionally, the localised electron number density n̄e, which

is initially n̄e = 1 for a ‘fresh’ uniform electron beam at z̄ = 0, and the localised energy

Σpj are also plotted.

As shown in Figure 5.2a, when z̄ = 9, the interaction approaches the ‘normal’,

post-linear evolution FEL saturation phase, as outlined in [40]. The electrons are

observed to be tightly bunched around the peak of the radiation pulse, with a spacing

corresponding to the fundamental radiation wavelength (∆z̄2 ∼ 1). It should be noted

that these bunched electrons locally drive the field at a sub-wavelength scale, differing

from averaged simulations.

As shown in Figure 5.2b, the electron bunching reaches saturation and begins to

de-bunch at z̄ = 10, approximately at the peak of the radiation power around z̄2 ∼ 5.5.

99



Chapter 5. Saturation of Superradiant Pulses in Free-Electron Lasers

(a) (b)

0 1 2 3
ω/ωr

0.0

0.5

1.0

N
or

m
. P̃

(ω
)

(c)

0 1 2 3
ω/ωr

0.0

0.5

1.0
N

or
m

. P̃
(ω

)

(d)

Figure 5.2: FEL electron phase-space and radiation evolution about post-linear evo-
lution saturation of the radiation pulse. (a,c) are at z̄ = 9, and (b,d) are at z̄ = 10.
Top (a,b): The electron phase-space (z̄2j , pj) (black dotted) and localised net energy
Σpj . Middle (a,b): The radiation field components Ax, Ay (blue and red solid lines)
and localised electron number density n̄e (green bars) as normalised to 1 for a ‘fresh’
unbunched beam. The bar plots for the localised electron parameters Σpj and n̄e are
within the bins of width λr/20. Bottom (a,b): The scaled radiation power |A(z̄2)|2.
Plots (c,d) are of the scaled spectral power P̃ (ω) as a function of frequency scaled
with respect to the resonant frequency ωr. Note that as 4πρ = 1 in this simulation,
a resonant electron propagates one undulator period for a change of ∆z̄ = 1, and one
radiation period corresponds to a change of ∆z̄2 = 1. Electronic version: An anima-
tion depicting the interaction across 2 undulator periods can be found at [63], while a
complete animation showing the evolution from the beginning of the undulator to full
saturation is accessible at [56].
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For z̄2 > 5.5, the electrons that are de-bunching start to re-absorb energy from the

radiation, leading to a reduction in pulse duration post-saturation. At both values of

z̄, the power spectrum is centred around the resonance ω/ωr = 1.

As interaction proceeds to higher values of z̄ > 10, it is anticipated that this process

will continue with each successive undulator period. Maximum electron bunching and

coherent emission are expected to occur just prior to the radiation power peak, followed

by de-bunching and re-absorption. This sequence then drives the increase of the scaled

radiation peak power, while shortening its pulse duration. This behaviour is depicted

in Figure 5.3, where a breakdown of the averaged theory model is observed. Electron

bunching deviates from being aligned at the resonant wavelength, and radiation powers

remain approximately constant over a radiation wavelength.

As illustrated in Figure 5.3a, at a scaled undulator distance of z̄ = 40, the elec-

tron pulse is seen to enter the leading ‘edge’ of the radiation pulse at approximately

z̄2 ∼ 1, initiating the bunching process, which is evident from the phase-space and the

normalised electron density, n̄e (middle). It is important to note that the variations in

the electron density for z̄2 > 2 are primarily resulting from interactions during earlier

undulator periods. The electron bunching process is observed to occur within one ra-

diation period over one undulator period, centred around the peak power of the main

radiation pulse at approximately z̄2 ∼ 2.

Throughout one undulator period (∆z̄ = 1), the electrons significantly bunch within

the short radiation pulse, which is centred at z̄2 ∼ 2 and has a Full Width at Half

Maximum (FWHM) in z̄2 of τp ≈ 1. These electrons lose energy and then move out

of the main pulse, observed within the interval 2.5 < z̄2 < 3.5 for pj < 0. Conversely,

some electrons gain energy to pj > 0. These higher energy electrons do not propagate

to larger z̄2 values as rapidly as those that have lost energy with pj < 0. They also tend

to maintain their higher energy across many undulator periods. The energy gains are

considerably higher than during a typical FEL process, where the maximum gains are

about pj ∼ 1—refer to Figures 5.2a and 5.2b. As may be expected and subsequently

shown, the energy gain of these electrons increases with an increase in the spike power.

Observe that certain electrons within the range 2.7 < z̄2 < 3.5 experience a cycle of
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Figure 5.3: As Figure 5.2, but for scaled undulator distances of z̄ = 40 (left) and
z̄ = 100 (right). Electronic version: An animation depicting the interaction across
2 undulator periods can be found at [57, 60], while a complete animation showing the
evolution from the beginning of the undulator to full saturation is accessible at [56].
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energy loss and subsequent recovery during their interaction with the radiation pulse.

This phenomenon arises from their large initial energy loss from pj = 0 to pj ∼ −8,

occurring in a time frame shorter than a single undulator period (z̄ < 1), as they enter

the radiation pulse and are exposed to its rapidly increasing power. This loss of energy

results in their rapid movement in z̄2 within the high-power pulse during one undulator

period, transitioning from a radiation emission phase, where they lose energy, to a

radiation absorption phase, where they regain energy.

As the electrons travel away from the initial radiation pulse, they continually emit

and absorb radiation. This occurs with less bunching, resulting in a secondary pulse

at approximately z̄2 ∼ 3, followed by additional pulses, each with decreasing intensity.

The electrons passing through this pulse structure for z̄2 > 3 exhibit bunching pat-

terns exceeding one radiation wavelength for those with lower energies, and less than one

radiation wavelength for those with higher energies. Electrons at lower energies radiate

at longer wavelengths, whereas those at higher energies emit at shorter wavelengths.

This phenomenon is depicted in the corresponding scaled radiation power spectrum in

Figure 5.3c, showing a significant lower frequency peak (ω/ωr ∼ 0.5). Electrons that

gain energy, featuring a smaller sub-wavelength bunching structure, contribute to an

increased emission at frequencies just above resonance (ω/ωr ∼ 1). This non-linear

radiation pulse emission retains similarities to the superradiant structures as described

in [52,54,80].

As illustrated in Figure 5.3b, at a scaled undulator distance of z̄ = 100, it is ob-

servable that the process described in Figure 5.3a has progressed. The peak radiation

power of the pulse has increased and its duration has shortened. This combination

of increased power and shortened duration decreases the time electrons spend within

an undulator period that electrons experience within the first peak, now centred at

z̄2 ∼ 1.2. Consequently, electrons proceed into the subsequent radiation pulse(s), cen-

tred at higher z̄2 values, during one undulator period, resulting in a more complex

interaction between the main pulse and sub-pulses with the electrons. The main peak’s

pulse width has now reduced to slightly more than half of the radiation wavelength,

τp ∼ 0.5.
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For both the cases where z̄ = 40 and 100, the separation between the lower energy

electron bunches that have interacted with the radiation pulse (and subsequently moved

out of the observation window as shown in Figure 5.3d) is more than two fundamen-

tal wavelengths. This leads to a significant increase in emission at lower frequencies,

ω/ωr < 0.5, as observed in the spectral power in Figures (5.3c, 5.3d).

In Figure 5.3d, another feature in this regime is the rapid energy variation of elec-

trons that initially lose energy upon entering the pulse. This is partly attributed to

the rapid inter-wavelength scale motion of the electrons within one undulator period.

Electrons that initially gain energy from the radiation pulse can reach a relatively high

energy value of pj ∼ 10 during the first peak. These accelerated electrons form a more

stable, shorter period, electron bunching band after the first peak at z̄2 > 2. This

behaviour is apparent in the Σpj and n̄e plots in Figure 5.3b (top and middle). These

smaller, higher-energy electron bunches, located within the interval of 1 < z̄2 < 3,

have spacings less than the fundamental radiation wavelength, resulting in a notice-

able bandwidth broadening in the higher frequency range, as shown in Figure 5.3d, for

ω/ωr > 1.

Note that electrons accelerated by the pulse and therefore increased in energy tend

to remain within the simulation window, travelling at the speed of light for a consider-

ably longer duration than those that have lost energy due to the pulse. The electrons

with reduced energy quickly move to higher z̄2 values, as shown in the animations, and

eventually exit the simulation window. Consequently, there are more electrons at higher

energy within the simulation window because most electrons that have significantly lost

energy to the pulse are no longer visible within the window.

In Figure 5.4, the progression of the interaction is shown in z̄ = 200 (left) and

z̄ = 400 (right). The first radiation peak around z̄2 ≈ 1 has increased in power, while

its width has decreased to significantly less than one radiation wavelength. Electrons

that gain energy achieve higher levels, whereas those that lose energy reach levels similar

to those in the Figure 5.3. The increased power and decreased width of the radiation

pulse cause significant energy fluctuations in the electrons over a short propagation

interval. In this scenario, electrons can travel through a pulse width τp < 0.25 in less
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than a quarter of an undulator period, experiencing both energy loss and gain during

the process. This is illustrated by the increased spiraling in the phase space of the

lower-energy electrons that have passed through the initial pulse, compared to those in

Figure 5.3.

As z̄ increases and the peak pulse narrows, the field’s higher frequency components

with ω/ωr > 1 grow further. Electrons that have moved past the radiation peak form

bunches with a larger spacing in z̄2 > 1, leading to lower-frequency emissions. This

effect is observed in the lower frequency radiation fields at the pulse’s trailing edge,

where a noticeable correlation exists between the electron bunches and the scaled field

phase. This correlation persists to larger z̄ as the interaction continues.

In Figure 5.5, the short and intense pulse seems to have reached a highly nonlinear

saturation state. The increase in both the peak power and the width of the pulse is

almost identical at z̄ = 800 (left) and z̄ = 1100 (right). This pulse saturation process

and its scaling based on the FEL parameter ρ are now being examined.

5.3.2 Pulse saturation

As the interaction progresses to larger values of z̄, the increase of the first radiation spike

in the scaled radiation power is observed to have saturated with |Ap|2 ≈ 7000 around

z̄2 ≈ 0.8, as depicted in Figure 5.5. In Figure 5.2(a), it is evident that the average energy

loss by the electrons immediately after traversing the first spike is substantial, causing

the electron bunches to quickly travel in z̄2 and thus increase the spacing between

bunches after the spike. In contrast, in Figure 5.5(a), it can be seen that the average

energy loss decreases after saturation, resulting in slower propagation of electrons in

z̄2. Consequently, the electron bunches that have passed through the first spike exhibit

a smaller separation in z̄2. Where the separation between bunched electrons is greater,

it is noted that this leads to longer wavelength emissions. Additionally, as saturation

occurs, there are more electrons that gain energy from the spike. The relative energy

gain for the j-th electron can be estimated from the definition of its pj as (γj−γr)/γr =

ρpj , which in Figure 5.5 shows a considerable maximum relative energy gain of (γj −
γr)/γr ∼ 5.2.
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Figure 5.4: As Figure 5.2, but for scaled undulator distances of z̄ = 200 (left) and
z̄ = 400 (right). Electronic version: An animation depicting the interaction across
2 undulator periods can be found at [59, 61], while a complete animation showing the
evolution from the beginning of the undulator to full saturation is accessible at [56].
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Figure 5.5: As Figure 5.2, but for scaled undulator distances of z̄ = 800 (left) and
z̄ = 1100 (right). Electronic version: An animation depicting the interaction across
2 undulator periods can be found at [58, 62], while a complete animation showing the
evolution from the beginning of the undulator to full saturation is accessible at [56].
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In simple terms, it is proposed that the first radiation spike reaches saturation when

the energy loss of electrons traveling through it allows them to cover a considerable

distance relative to the radiation wavelength during one undulator period. In terms

of scaling, saturation is defined as the point when an electron loses sufficient energy

within one-half of an undulator period to travel an additional one-half of a resonant

radiation wavelength ∆z̄2j beyond its resonant slippage rate in the radiation reference

frame of dz̄2j/dz̄ = 1, i.e., ∆z̄2j = ∆z̄ = 2πρ. An estimate of the scaling following this

definition is provided in A.1. According to this, the scaled peak power of the spike is

|Ap|2 ≈ 1/π2ρ4, and its scaled energy is εp ≈ τp|Ap|2 ≈ 4f/πρ3. Here, τp = f × 4πρ

represents the width of the spike in z̄2, with f being the spike width as a fraction of a

single radiation wavelength.

0 250 500 750 1000 1250 1500
z̄

0

2000

4000

6000

|A
p
|2
,ε

(a)

|Ap|2

ε

0 250 500 750 1000 1250 1500
z̄

0

100

200

300

400

500
ε p

(b)

0 250 500 750 1000 1250 1500
z̄

0.8

1.0

1.2

1.4

τ(
z̄)

(c)

0 250 500 750 1000 1250 1500
z̄

0.0

0.2

0.4

0.6

0.8

1.0

τ p
(z̄

)

(d)

Figure 5.6: The FEL evolution as measured in the interval 0 ≤ z̄2 ≤ 9 as a function of
z̄ for the case of 4πρ = 1. (a) scaled peak power |Ap|2 and pulse energy ε; (b) scaled
energy within the first peak (spike) εp; (c) the scaled pulse duration τ - the vertical
dashed line shows the minimum defined as the point of saturation; and (d) the first
radiation pulse (spike) duration τp.

Through computer simulations, the term saturation is characterised by the mini-

mum value of the full duration of the pulse τ(z̄) within the simulation range 0 < z̄2 < 8.

108



Chapter 5. Saturation of Superradiant Pulses in Free-Electron Lasers

This can be determined using the formula τ(z̄) = ε(z̄)/|Ap(z̄)|2, where the scaled pulse

energy across the simulation interval is given by ε(z̄) =
∫
|A(z̄, z̄2)|2dz̄2, and the peak

scaled power in this interval is |Ap(z̄)|2, as previously described. The simulation results

in relation to z̄ for 4πρ = 1 are shown in Figure 5.6, showing an occurrence of saturation

at z̄ ≈ 419, as marked by the vertical dashed line in Figure 5.6(c). Although the peak

power |Ap(z̄)|2 and the pulse energy ε(z̄) continue to rise after saturation, as depicted

in Figure 5.6(a), the energy in the initial peak εp(z̄) (representing the radiation spike)

also saturates at z̄ ≈ 419 before decreasing with further increase in z̄, as illustrated in

Figure 5.6(b). At the saturation point, the pulse duration τ(z̄) reaches its minimum

and subsequently starts to rise with z̄ (Figure 5.6(c)). In contrast, the width of the

initial radiation spike, τp(z̄) = εp(z̄)/|Ap(z̄)|2, continues to decrease as illustrated in

Figure 5.6(d).

The above simulation was also performed in a range of 4πρ values from 0.5 to 1.25.

For γr = 100, these ρ values typically correspond to FEL operational wavelengths

that span from the far-infrared to the THz region. This facilitates a comparison of

the saturated values, when τ(z̄) reaches its minimum, with a straightforward scaling

analysis presented in A.1. These saturated values and their optimal scalings are shown

in Figure 5.7 for the peak radiation power |Ap|2 and the saturation undulator length

z̄sat; in Figure 5.8, for the radiation pulse energy ε and pulse duration τ over the

simulation period; and in Figure 5.9, for the pulse energy εp and duration τp of the first

radiation spike.

Based on the above saturation definition and the straightforward scaling analysis

in A.1, the scaled estimates for the peak radiation power and the energy of the radiation

spike were derived from A.5 and A.6, respectively. For instance, in the above simula-

tions where 4πρ = 1, the predicted saturation values are |Ap|2 ≈ 2500 and εp ≈ 300

for a fractional factor f = 0.12, as shown in Figure 5.9(b). Despite the significant

approximations made in A.1, the relatively good correlation with the highly non-linear

computational results from Figure 5.7(a) for |Ap|2 and Figure 5.9(a) for εp supports

the hypothesis regarding the radiation spike saturation process. Additionally, this is

evidenced by the strong agreement between the analysis and the best-fit scaling ob-
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tained from the simulations for both |Ap|2 ∝ ρ−4 (Figure 5.7(a) and A.5) and εp ∝ ρ−3

(Figure 5.9(a) and A.6).
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Figure 5.7: The saturated values of the simulations (dots) for (a) scaled peak power
|Ap|2, and (b) scaled saturation undulator length z̄sat , as a function of 4πρ. The solid
lines are the fitting functions as given in the box.

Figures 5.7(a), 5.8(a), and 5.9(a) clearly show that as ρ decreases, higher radiation

peak powers and pulse energies are needed to reach saturation. This occurs because

lower ρ values result in a weaker interaction between electrons and the radiation field,

necessitating increased radiation power to achieve the same energy transfer essential

for saturation. Moreover, a shorter scaled pulse duration is necessary, as depicted in

Figure 5.8(b). The first peak duration τp, in terms of the radiation wavelength λr,
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Figure 5.8: The saturated values of the simulations (dots) for (a) scaled pulse energy ε,
and (b) pulse duration τ , as a function of 4πρ. The solid lines are the fitting functions
as given in the box.
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remains approximately constant for all values of 4πρ, as illustrated in Figure 5.9(b).

This strongly indicates a single-cycle type limit where the radiation field reaches its

minimal feasible duration. The requirement for a longer undulator to achieve saturation

can also be observed in Figure 5.7(b). Therefore, modelling such saturation behaviour

at lower values of ρ becomes increasingly computationally intensive.

A complete video showing the evolution of the superradiant spike from the beginning

of the undulator to its saturated state can be found in [56].

5.3.3 Estimation of diffractive effects

The simulation and scaling results detailed above are conducted in one dimension (1D),

thereby neglecting any three-dimensional (3D) effects such as radiation diffraction. It

can be expected that the longer wavelengths of the radiation in the above simulations

would diffract away from the electron beam, which is assumed to maintain a constant

radius w0. Provided there are no optical or gain ‘guiding’ effects [40] influencing the

radiation through the electron beam, the radiation will diffract according to its Rayleigh

range, zR = πw2
0/λ ∝ ω. Consequently, this leads to a greater separation between the

electron beam and its radiation output at longer wavelengths/lower frequencies as the

interaction progresses through the undulator.

Assumed a transverse Gaussian radiation profile, the intensity I can be described

in terms of its peak power, P0, as it travels a distance z through the undulator as:

I(z) =
2P0

πw2(z)
, (5.2)

where w(z) is the transverse radiation beam size along the z axis:

w(z) = w0

√
1 +

(
z

zR

)2

. (5.3)

As the distance z increases beyond ZR, w(z) tends to be inversely proportional to

zR, and consequently to ω. Therefore, the radiation intensity I(z) described in (5.2)

and the power P (z), which is emitted and then travels a distance z with the electron

beam, tend to be directly proportional to the frequency, such that I(z) ∝ ω2.
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The current approximation is used to assess the diffraction effects on the Power

Spectral Density (PSD) of the radiation output and its impact on the temporal pulse.

This approach is implemented after the 1D simulation has finished and is not applied

during the simulation process. Although this technique is moderately basic and cannot

be relied upon to accurately represent a comprehensive 3D simulation of the FEL

interaction, it offers an initial prediction of the potential outcomes.

The frequency spectrum of the scaled electric field A(z̄2) at a specific point in the

undulator is described as Ã(ω̄) = |F [A(z̄2)], where F denotes the Fourier transform in

z̄2 with respect to ω̄ = ω/ωr. The scaled power spectral density (PSD) is defined as

P̃ (ω̄) = |Ã(ω̄)|2. The scaled PSD of the radiation, taking into account the diffractive

effects during propagation, scales with ω̄2 as mentioned in equation (5.2). The spec-

trum, including 3D diffraction effects, is estimated as P̃3D(ω̄) = |Ã3D(ω̄)|2 = |ω̄Ã(ω̄)|2.
The scaled intensity is then obtained using the inverse Fourier transform |A3D(z̄2)|2 =
|F−1[Ã3D(ω̄)]|2.

The 3D approximations are now shown as the radiation spike progresses through

saturation in Figure 5.10 (z̄ = 200 and 750) and Figure 5.11 (z̄ = 1200.5 and 2156.5),

for the scenario where 4πρ = 0.5. Due to the use of approximations, these plots cannot

be expected to provide precise numerical estimates. Therefore, they have been scaled

according to their peak values to facilitate a comparison of their temporal and spectral

characteristics.

As shown in Figure 5.10a, at z̄ = 200, the system has entered the superradiant

pulse regime, exhibiting similarities between the 3D approximation and the 1D result.

The emission of lower frequencies appears to occur after the electrons pass through

the first spike, approximately z̄2 ∼ 1.5. This can also be deduced from the PSDs of P̃

and P̃3D, as well as from the electron behaviour shown in Figure 5.4a, where electron

bunches are separated by distances greater than one radiation wavelength. Radiation

emitted following the first spike therefore has a lower frequency, which, when reduced

due to diffraction, is observed to be reduced P̃3D, compared to the 1D case. The

features of this superradiant pulse emission regime, as observed from the 3D spectrum,

resemble the experimental findings of [80], suggesting that the approach to incorporate
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Figure 5.10: Comparison of 1D simulations with the 3D approximation for diffractive
effects in the post-saturated superradiant regime for (a) z̄ = 200 and (b) z̄ = 750. (Top)
Normalised 1D scaled power |A|2 (solid blue line) and the 3D diffraction approximation
|A3D|2 (dashed red line). (Middle) Scaled 1D electric field components Ax,y (solid line)
and the 3D approximation A3Dx,y(dashed line). (Bottom) The 1D scaled Power Spectral

Density P̃ (solid line) and the 3D diffraction approximation P̃3D (dashed line).
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Figure 5.11: As figure 5.10 but for (a) z̄ = 1200.5 and (b) z̄ = 2156.5.
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3D diffractive effects discussed earlier is reasonable.

This behaviour is also demonstrated further in Figure 5.10b for z̄ = 750 which

shows that in the 3D approximation, the radiation pulse power following the first

spike is reduced, as the lower frequencies emitted by the electrons following the spike

diffract away. With a decrease in the radiation spike duration, there is an expansion of

the spectrum towards higher frequencies. Consequently, the radiation field is seen to

approach that of a single-cycle pulse.

The above diffraction behaviour extends significantly into the saturated phase of

spike evolution, as illustrated in Figure 5.11, for z̄ = 1200.5 and 2156.5. Although

there are minor variances in sub-pulse structure, the FWHM of the initial peak keeps

its sub-resonant wavelength duration, supported by the board spectral content at higher

frequencies.

5.4 Conclusion

The simulations presented in this paper have provided the first detailed study of how

high-power radiation spikes saturate in a FEL. While the simulations are in 1D, and

the radiation spikes only interact with a beam of cold electrons, they have revealed

at a fundamental level how a superradiant spike saturates, with peak powers orders of

magnitude above the normal steady-state value. The saturation process involves the

rapid loss of electron energy to the radiation field and their subsequent transit through

the spike within one undulator period. The electrons therefore lose their energy to

the spike at the sub-wavelength scale. This involves the emission of radiation across a

broad range of frequencies well above that of the fundamental. It was also seen from the

simulations that electrons that enter the spike with an absorptive phase may be rapidly

accelerated to much higher energies of ∼ 5 times their initial energy. An examination

of the simple scaling of the saturation process agreed well with the numerical results.

By applying a simplified scaling of radiation diffraction to the 1D radiation field, an

estimate of the 3D spectral power of the field was made. This showed, and as observed

from the field simulations, that the lower frequency radiation components were emitted

after the electrons had passed through the spike and lost energy to it. The spectrum
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was also similar to that observed in experiment [80].

Clearly, further research is required to model 3D effects in the unaveraged simula-

tions. This can be expected to alter the detail of how the superradiant spiking develops.

The 1D results presented, however, give a reasoned, consistent insight, analogous to

the 1D description of the basic FEL interaction itself, into how the spiking saturation

process develops.

While the above research will probably not be able to be applied at any FEL

facilities in the near future, it does provide further understanding of the fundamental

FEL process and may open up new areas of research.
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Conclusion and Future work

Several conclusions can be drawn from this work, and there are multiple steps for

potential future development.

Conclusion:

The convergence of FEL Puffin and OPC optical simulation codes marks a signifi-

cant advancement in the field of FEL simulations, particularly for designs requiring

optical components like cavity-based FEL oscillators. The development of conversion

scripts has facilitated the radiation field transfer between these codes, enabling complex

modelling of periodic modes in VUV-RAFEL designs. This innovation lays the basis

for future ultra-short pulse, broadband simulations in cavity-based FELs, and opens

the door to previously unexplored methodologies requiring unaveraged FEL and optics

simulations.

The integration of Puffin and OPC simulation codes introduces a robust tool for

examining cavity-based FELs at the sub-wavelength scale, inclusive of Coherent Spon-

taneous Emission (CSE) and cavity detuning effects. Our simulations, pioneering in

their focus on sub-wavelength cavity detuning, revealed an unexpected steady-state

lasing at the third harmonic. This finding highlights the potential of CSE, which has

been shown to generate higher radiation powers than electron beam shot-noise, to en-

hance or substitute external lasers in seeded cavity FELs. The interchange of CSE
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with sub-wavelength cavity detuning might stabilise or further enhance FEL output,

particularly in longer wavelength sources where electron pulse current variations are

more rapid.

Simulations using a Gaussian current profile electron bunch, dominated by shot-

noise spontaneous emission, highlighted the role of sub-wavelength cavity detuning

in harmonic lasing and validated its occurrence across different beam current shapes.

These results suggest numbers of future investigation, including dynamic sub-wavelength

cavity detuning via noise or adjustments, and the impact of crystal optics in shorter

wavelength FEL designs. These potential studies suggest to reveal new opportunities

and will be the focus of following research.

Our detailed study on high-power radiation spike saturation in FELs, despite being

in 1D and involving a cold electron beam, offers fundamental insights into superradiant

spike saturation. The simulations demonstrated that the saturation process involves

rapid energy loss from electrons to the radiation field within one undulator period,

leading to emission across a broad frequency range. Electrons entering the spike in

an absorptive phase were accelerated to significantly higher energies, supporting our

simplified scaling predictions of the saturation process.

By approximating radiation diffraction effects in a 1D field, we estimated the 3D

spectral power, observing that lower frequency radiation components were emitted post

energy transfer to the spike. This spectrum closely matched experimental observations,

providing a foundational understanding of superradiant spike dynamics.

Future research must extend these 1D simulations to 3D to capture the detailed

development of superradiant spiking. While instant practical applications at FEL facil-

ities may be limited, the insights gained enhance our comprehension of the fundamental

FEL process and pave the way for new research directions.

In summary, the combined utilisation of FEL Puffin and OPC codes has not only

facilitated advanced FEL simulations but also revealed significant phenomena at sub-

wavelength scales and in superradiant spike saturation. These findings contribute sig-

nificantly to the field of FEL research, suggesting new methodologies and potential

applications, and setting the stage for further explorations into the complex dynamics
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of FEL systems.

Future Development Plan

The conjunction of the FEL Puffin and OPC optical simulation codes presents several

opportunities for advancing FEL simulation methodologies. The next steps in this

development plan include:

• Ultra short-pulse simulations: Developing on the success of modelling peri-

odic modes in VUV-RAFEL designs, future work will focus on developing ultra-

short pulse (few-wavelength) broadband simulations in cavity-based FELs. This

will involve enhancing the conversion scripts and optimising the interaction be-

tween the FEL Puffin and OPC codes for these specific simulations.

• Exploring unaveraged FEL and optics simulations: With the capability

to transfer radiation fields between the simulation codes, future research should

explore other methods that require the use of unaveraged FEL and optics simu-

lations. This could involve investigating new designs and configurations for FEL

oscillators and other related systems.

• Validation and benchmarking: To ensure the accuracy and reliability of these

simulations, extensive validation and benchmarking against experimental data

and other simulation codes will be necessary. This will help in refining the models

and identifying any inconsistencies that need to be addressed.

The coupled Puffin and OPC FEL simulation codes offer a novel approach to sim-

ulating cavity-based FELs at the sub-wavelength scale. Future development plans in

this area include:

• Dynamic cavity detuning studies: Developing on the initial findings, future

research will focus on the dynamics of sub-wavelength cavity detuning. This

includes investigating the effects of cavity length noise due to vibrations and

exploring dynamic adjustments to enhance FEL output.
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• Utilisation of Coherent Spontaneous Emission (CSE): Further studies will

examine the potential of CSE to enhance or replace external lasers in seeded cavity

FELs. This will involve detailed simulations of different electron beam current

shapes and the effects of CSE in various configurations.

• Crystal optics in shorter wavelength FEL designs: Research will extend to

the use of crystal optics in shorter wavelength FEL designs, comparing the results

with those obtained from sub-wavelength changes in cavity dimensions. This will

provide insights into the feasibility and advantages of using crystal optics in these

systems.

• Experimental collaboration: Collaborating with experimentalists to test these

simulation predictions in practical settings will be crucial. This will help in val-

idating the theoretical models and understanding the practical challenges and

benefits of sub-wavelength cavity detuning and CSE in FELs.

The detailed study of high-power radiation spike saturation in FELs has opened up

several opportunities for future research. The development plan includes:

• 3D Simulations of superradiant spiking: Extending the current 1D simula-

tions to 3D will be a primary focus. This will involve developing and implement-

ing 3D models that can accurately capture the detailed dynamics of superradiant

spike saturation.

• Advanced scaling techniques: Further refining the scaling techniques used

to estimate 3D spectral power from 1D simulations will be necessary. This will

involve integrating more complex diffraction effects and validating these models

against experimental data.

• Exploration of broader frequency emission: Investigating the emission of

radiation across a broader range of frequencies, especially those well above the

fundamental, will be crucial. This will include studying the conditions under

which these emissions occur and their potential applications.
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• Collaboration and application: Collaborating with experimentalists and ap-

plying these insights to practical FEL systems will help in understanding the

feasibility and impact of these findings. This will also involve exploring potential

new areas of research that these fundamental insights might open up.

• Integration with other FEL technologies: Integrating the insights gained

from superradiant spike saturation studies with other FEL technologies and de-

signs will be important. This could lead to the development of new FEL configu-

rations that influence the unique properties of superradiant spiking for improved

performance.
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Pulse saturation scaling

A.1 Pulse saturation scaling

The equations governing the jth electron’s motion in the scaled radiation frame of

reference z̄2 may be written as [10]:

dz̄2j
dz̄

= 1− 2ρpj

dpj
dz̄

= −2A(z̄2) cos

(
z̄ − z̄2j
2ρ

)

where the field A(z̄2) is assumed constant in z̄ and describes a short, high power radia-

tion pulse (spike) of peak power Ap into which the electron will propagate. Assume that

the electron starts it interaction with the pulse at resonance, pj = 0, and at the phase

of maximum rate of energy loss where cos ((z̄ − z̄2j) /2ρ) = 1, then the incremental

change in pj for a propagation distance ∆z̄ may be written as:

∆pj ≈ −Ap

2
∆z̄, (A.1)

where it is assumed A ≈ Ap/2 over ∆z̄.

Similarly, the change in electron position ∆z̄2j due to its interaction with the radia-

tion field (i.e. not including the resonant drift of ∆z̄ in the radiation frame of reference)

may be approximated as:

∆z̄2j = −2ρpj∆z̄, (A.2)
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and assuming pj ≈ ∆pj/2 = −Ap∆z̄/4, then:

∆z̄2j =
ρAp

2
∆z̄2 (A.3)

Saturation of the electron motion in the radiation pulse is now defined as when the

electron propagates an extra half a radiation wavelength through the radiation field, in

addition to its drift in the radiation frame of z̄2, in half of a wiggler period. This may

be written as ∆z̄2j = ∆z̄ = 2πρ, so that for saturation:

2πρ ≈ ρAp

2
(2πρ)2 (A.4)

⇒ |Ap|2 ≈
1

π2ρ4
(A.5)

The pulse duration of the first peak τp, is assumed to scale as the radiation wave-

length, which in units of z̄2 is τp = f × 4πρ where f is a fractional factor. The scaled

energy in the first peak at saturation εp is then:

εp ≈ τp|Ap|2 ≈
4f

πρ3
(A.6)
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Code snippets

D.1 Puffin to OPC

1 # -*- coding: utf -8 -*-

2 """

3 Created first version on Wed May 15 10:38:37 2019

4

5 @author: Racha Pongchalee

6 """

7 # noted only x polarization of the Aperp field will be converted

to OPC format

8 import numpy as np

9 import time

10 import tables , gc

11 from scipy.signal import hilbert

12 from scipy.fftpack import next_fast_len

13 import sys

14

15 filename = sys.argv [1] # retreive the base name

16 # filename = "D:// Puffin_results // New_RAFEL // rafel_aperp_150"

17 h5name = filename + ".h5"

18 binname_x = filename + "_x.dfl"

19 paramname_x = filename + "_x.param"

20 binname_y = filename + "_y.dfl"
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21 paramname_y = filename + "_y.param"

22

23 print ("Reading aperp file ..." + h5name + "\n")

24 h5f = tables.open_file(h5name , mode=’r’)

25

26 # Read the HDF5 file (Puffin_aperp file)

27 aperps = h5f.root.aperp.read()

28 Aperp_x = np.array(aperps [0]) # x-polarised field

29 Aperp_y = np.array(aperps [1]) # y-polarised field

30 print ("Getting file attributes ... \n")

31 # Dictionary to store the attributes

32 runInfo_dict = {}

33

34 # Loop through attributes and store them in the dictionary

35 for attr in h5f.root.runInfo._v_attrs._f_list ():

36 runInfo_dict[attr] = getattr(h5f.root.runInfo._v_attrs , attr)

37

38 wavelength = runInfo_dict.get(’lambda_r ’, None)

39 nx = runInfo_dict.get(’nX’, None)

40 ny = runInfo_dict.get(’nY’, None)

41 nz = runInfo_dict.get(’nZ2’, None)

42 Lc = runInfo_dict.get(’Lc’, None)

43 Lg = runInfo_dict.get(’Lg’, None)

44 rho = runInfo_dict.get(’rho’, None)

45 meshsizeX = runInfo_dict.get(’sLengthOfElmX ’, None)

46 meshsizeY = runInfo_dict.get(’sLengthOfElmY ’, None)

47 meshsizeZ2 = runInfo_dict.get(’sLengthOfElmZ2 ’, None)

48 meshsizeXSI = meshsizeX*np.sqrt(Lc*Lg)

49 meshsizeYSI = meshsizeY*np.sqrt(Lc*Lg)

50 meshsizeZSI = meshsizeZ2*Lc

51 zsep = meshsizeZSI/wavelength

52

53 print("Getting the complex envelope from x-field ...")

54 print("Processing the Hilbert transform ..")
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55 start = time.time()

56 fast_len = next_fast_len(len(Aperp_x))

57 Aperp_x_complex = hilbert(Aperp_x , fast_len ,

0)[:len(Aperp_x) ,:,:]

58 # Aperp_x_complex = np.real(Aperp_x_complex) -

1j*np.imag(Aperp_x_complex)

59 end = time.time()

60

61 # Aperp_x_hilbert = Hilbertfromfft(Aperp_x)

62 print("Hilbert transform x ... DONE ... " + str(end - start) +

" seconds" +"\n")

63 del(Aperp_x)

64

65 start = time.time()

66 fast_len = next_fast_len(len(Aperp_y))

67 Aperp_y_complex = hilbert(Aperp_y , fast_len ,

0)[:len(Aperp_y) ,:,:]

68 # Aperp_y_complex = np.real(Aperp_y_complex) -

1j*np.imag(Aperp_y_complex)

69 end = time.time()

70

71 # Aperp_x_hilbert = Hilbertfromfft(Aperp_x)

72 print("Hilbert transform y ... DONE ... " + str(end - start) +

" seconds" +"\n")

73 del(Aperp_y)

74 h5f.close()

75 gc.collect ()

76

77 def interleave_real_imag(complex_array):

78 stacked = np.dstack (( complex_array.real ,

complex_array.imag)) # note the "negative" on imaginary

part

79 return stacked.flatten ()

80
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81 def interArray(A, B):

82 C = np.empty((A.size + B.size ,), dtype=np.float64)

83 C[0::2] = A

84 C[1::2] = B

85 return C

86

87 print("Re -ordering/correcting the phase of the complex field

into the OPC format")

88 start = time.time()

89 bin_x = np.reshape(Aperp_x_complex , nx*ny*nz)

90 bin_x = interArray(np.real(bin_x), -np.imag(bin_x)) # note: the

"negative" sign must be assigned to the imaginary part !!!

91 # bin_x = interleave_real_imag(Aperp_x_complex)

92 del(Aperp_x_complex)

93 end = time.time()

94

95 print("Re -order the complex field x ... DONE ... " + str(end -

start) + " seconds" +"\n")

96

97 start = time.time()

98 bin_y = np.reshape(Aperp_y_complex , nx*ny*nz)

99 bin_y = interArray(np.real(bin_y), -np.imag(bin_y)) # note: the

"negative" sign must be assigned to the imaginary part !!!

100 # bin_y = interleave_real_imag(Aperp_y_complex)

101 del(Aperp_y_complex)

102 end = time.time()

103 print("Re -order the complex field y ... DONE ... " + str(end -

start) + " seconds" +"\n")

104 gc.collect ()

105

106 print("Saving x-field to binary file ..." + " binary data length

= "+ str(len(bin_x)))

107 start = time.time()

108 with open(binname_x , "wb") as f:
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109 bin_x.tofile(f)

110 del(bin_x)

111 f.close ()

112 end = time.time()

113 print("Save file x ... DONE ... " + str(end - start) + "

seconds" +"\n")

114

115 gc.collect ()

116

117 print("Saving y-field to binary file ..." + " binary data length

= "+ str(len(bin_y)))

118 start = time.time()

119 with open(binname_y , "wb") as f:

120 bin_y.tofile(f)

121 del(bin_y)

122 f.close ()

123 end = time.time()

124 print("Save file y ... DONE ... " + str(end - start) + "

seconds" +"\n")

125

126 # save binary file

127 # write the parameter file for physical interpretation

128

129 optics_params = {

130 ’nslices ’: nz ,

131 ’zsep’: zsep ,

132 ’mesh_x ’: 1 if nx -1 == 0 else meshsizeXSI ,

133 ’mesh_y ’: 1 if nx -1 == 0 else meshsizeYSI ,

134 ’npoints_x ’: nx ,

135 ’npoints_y ’: ny ,

136 ’Mx’: 1,

137 ’My’: 1,

138 ’lambda ’: wavelength ,

139 ’field_next ’: ’none’
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140 }

141

142 def write_namelist_to_file(file_obj , namelist_name , params_dict):

143 file_obj.write(" $" + namelist_name + "\n")

144 for key , value in params_dict.items():

145 # Check and decode bytes to string

146 if isinstance(value , bytes):

147 value = value.decode(’utf -8’)

148

149 file_obj.write(" " + key + " = " + str(value) + "\n")

150 # print(f" {key} = {value }")

151 file_obj.write(" /\n")

152

153 print("writing OPC parameter file x ... ")

154 with open(paramname_x , ’w’) as param_x:

155 write_namelist_to_file(param_x , ’optics ’, optics_params)

156 write_namelist_to_file(param_x , ’runInfo ’, runInfo_dict)

157

158 print("writing OPC parameter file y ... ")

159 with open(paramname_y , ’w’) as param_y:

160 write_namelist_to_file(param_y , ’optics ’, optics_params)

161 write_namelist_to_file(param_y , ’runInfo ’, runInfo_dict)

162

163 print("DONE\n")

Listing D.1: Python code for Puffin to OPC field conversion.
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D.2 OPC to Puffin

1 # -*- coding: utf -8 -*-

2 """

3 Latest update on: 12/09/2024

4

5 @author: P. Pongchalee

6 """

7

8 import numpy as np

9 import sys , tables , gc

10

11 # usage: python /code -directory/OPC -to-Puffin_xy.py "fileprefix"

12

13 fx = sys.argv [1] + "_x.dfl"

14 px = sys.argv [1] + "_x.param"

15 fy = sys.argv [1] + "_y.dfl"

16 py = sys.argv [1] + "_y.param"

17 h5name = sys.argv [1] + ".h5"

18

19 def read_namelist_from_file(file_obj):

20 result = {}

21 current_section = None

22 for line in file_obj:

23 line = line.strip()

24 if line.startswith("$"):

25 current_section = line [1:]

26 result[current_section] = {}

27 elif line == "/":

28 current_section = None

29 elif current_section:

30 key , value = line.split("=", 1)

31 key = key.strip()

32 value = value.strip ()
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33 if value.startswith("’") and value.endswith("’"):

34 value = value [1:-1]

35 else:

36 try:

37 # First , try to convert the value to a float

38 value_float = float(value)

39 # If the float value is an integer , convert

it to int

40 if value_float.is_integer ():

41 value = int(value_float)

42 else:

43 value = value_float

44 except ValueError:

45 pass

46 result[current_section ][key] = value

47 return result

48

49 print ("Reading parameter from .param file ..." + px + "\n")

50 with open(px, "r") as file:

51 dictionaries = read_namelist_from_file(file)

52 optics_dict = dictionaries[’optics ’]

53 runInfo_dict = dictionaries[’runInfo ’]

54

55 Mx = optics_dict.get(’Mx’, None)

56 My = optics_dict.get(’My’, None)

57

58 mesh_x = optics_dict.get(’mesh_x ’, None)

59 mesh_y = optics_dict.get(’mesh_y ’, None)

60

61 nslices = optics_dict.get(’nslices ’, None)

62 npoints_x = optics_dict.get(’npoints_x ’, None)

63 npoints_y = optics_dict.get(’npoints_y ’, None)

64

135



Appendix D. Code snippets

65 # scalling the grid size of puffin field when running with

OPC magnification factor in Modified Fresnel Integral

66 # runInfo_dict[’sLengthOfElmX ’] = Mx *

runInfo_dict.get(’sLengthOfElmX ’, None)

67 # runInfo_dict[’sLengthOfElmY ’] = My *

runInfo_dict.get(’sLengthOfElmY ’, None)

68 SUscale = 1/np.sqrt(runInfo_dict.get(’Lg’, None) *

runInfo_dict.get(’Lc’, None))

69 runInfo_dict[’sLengthOfElmX ’] = mesh_x * SUscale

70 runInfo_dict[’sLengthOfElmY ’] = mesh_y * SUscale

71

72 print ("Reading binary file_x ..." + fx + "\n")

73 field_x = (1/np.sqrt(Mx*My))*np.fromfile(fx , dtype=’f8’) # don’t

need to open the binary file numpy will haddle this

74 print ("Reading binary file_y ..." + fy + "\n")

75 field_y = np.fromfile(fy , dtype=’f8’) # don’t need to open the

binary file numpy will haddle this

76

77 print ("Converting to Puffin format xy ...\n")

78 Aperp_x = (1/np.sqrt(Mx*My))*field_x [0:][::2] # even index

represents real number in OPC format

79 Aperp_y = (1/np.sqrt(Mx*My))*field_y [0:][::2] # even index

represents real number in OPC format

80 aperp = np.concatenate ((Aperp_x ,Aperp_y))

81 aperp = np.reshape(aperp , (2, int(nslices), int(npoints_y),

int(npoints_x)))

82

83 del(Aperp_x ,Aperp_y)

84 gc.collect ()

85

86 print ("Saving to h5 file ...\n")

87 a = tables.Float64Atom ()

88 shape = (2, nslices , npoints_y , npoints_x)

89 with tables.open_file(h5name , ’w’) as hf:
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90 saperp = hf.create_array(’/’,’aperp’, obj = aperp)

91 saperp.attrs[’iCsteps ’] = 0

92 # Create a group for runInfo

93 runInfo_group = hf.create_group(’/’, ’runInfo ’, ’Run

Information ’)

94

95 # Add each key -value pair from the runInfo dictionary as an

attribute to the runInfo group

96 for key , value in runInfo_dict.items():

97 runInfo_group._v_attrs[key] = value

98

99 print ("Saving done ...." + h5name +"\n" )

Listing D.2: Python code for OPC to Puffin field conversion.
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