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Abstract 

Offshore wind energy is progressing rapidly and playing an increasingly important role in 

electricity generation. Since the Kyoto Protocol in February 2005, Europe has been 

substantially increasing its installed wind capacity. Compared to onshore wind, offshore wind 

allows the installation of larger turbines, more extensive sites, and encounters higher wind 

speed with lower turbulence. On the other hand, harsh marine conditions and the limited access 

to the turbines are expected to increase the cost of operation and maintenance (O&M costs 

presently make up approximately 20-25% of the levelised total lifetime cost of a wind turbine). 

Efficient condition monitoring has the potential to reduce O&M costs. In the analysis of the 

cost effectiveness of condition monitoring, cost and operational data are crucial. Regrettably, 

wind farm operational data are generally kept confidential by manufacturers and wind farm 

operators, especially for the offshore ones.  

To facilitate progress, this thesis has investigated accessible SCADA and failure data from a 

large onshore wind farm and created a series of indirect analysis methods to overcome the data 

shortage including an onshore/offshore failure rate translator and a series of methods to 

distinguish yawing errors from wind turbine nacelle direction sensor errors. Wind turbine 

component reliability has been investigated by using this innovative component failure rate 

translation from onshore to offshore, and applies the translation technique to Failure Mode and 

Effect Analysis for offshore wind. An existing O&M cost model has been further developed 

and then compared to other available cost models. It is demonstrated that the improvements 

made to the model (including the data translation approach) have improved the applicability 

and reliability of the model. The extended cost model (called StraPCost+) has been used to 

establish a relationship between the effectiveness of reactive and condition-based maintenance 

strategies. The benchmarked cost model has then been applied to assess the O&M cost 

effectiveness for three offshore wind farms at different operational phases.  

Apart from the innovative methodologies developed, this thesis also provides detailed 

background and understanding of the state of the art for offshore wind technology, condition 

monitoring technology. The methodology of cost model developed in this thesis is presented 

in detail and compared with other cost models in both commercial and research domains.   
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Chapter 1 Introduction and Motivation for the Research 

It has been generally accepted that renewable energy has been taking an increasingly 

important role in energy generation worldwide, especially since the entry into force of 

the Kyoto Protocol in February 2005, when the adoption of renewable energy formally 

became governmental action. Wind energy, as an important form of renewable energy 

generation, has been taken increasingly attention all over the world, within which 

offshore wind energy is now progressing rapidly. Europe has been substantially 

increasing its installed offshore wind capacity in recent years. The offshore market in 

the UK has been enlarged rapidly during this period with large political and economic 

supported projects.  

Compared to onshore wind, offshore wind farm allows the installation of turbines of 

both larger structural size and rated capacity. It can access more extensive sites with 

higher wind speed with lower turbulence. These obvious advantages have brought a 

large amount of commercial attention. On the other hand, harsh marine conditions and 

limited access to the turbines are expected to increase the cost of operation and 

maintenance (O&M). O&M costs make up 20-25% of the total lifetime cost of an 

onshore wind turbine [1], and a typical 500MW offshore wind farm normally spends 

the order of £25-40 million on O&M annually [2]. Maintenance consists of 

preventative and corrective maintenance, and accounts for the main proportion of the 

entire O&M cost. It is therefore important to find a way to reduce O&M costs, 

especially the maintenance component.  
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For reducing the cost for maintenance, one train of thought is to improve the 

maintenance strategy. One way is to apply condition-based maintenance as a planned 

preventative method and reduce the dependence on reactive maintenance as a 

corrective method since this usually costs more. Efficient condition monitoring has the 

potential to reduce O&M costs, but it is important to make sure the investment in 

condition monitoring system is worthwhile. The indicative cost for a condition 

monitoring including Supervisory Control and Data Acquisition (SCADA) system is 

in the order of £0.4-0.8 million for a typical 500MW wind farm per year [3]. It is 

relatively cheap if compared with the overall O&M costs but still considerable for the 

entire turbine life time. A promising approach is to use information from the SCADA 

system as much as possible so as to reduce the costs of any additional condition 

monitoring hardware. 

For studying the cost effectiveness of condition monitoring, cost and operational data 

are important. However, being a new technology in energy generation, wind farm 

operational data are generally kept confidential by manufacturers and wind farm 

operators, especially for offshore ones. The lack of historical cost and operational data 

(especially the failure rate) from offshore wind farms makes it difficult to investigate 

the reliability and undertake the desired cost effectiveness analysis.  

This chapter covers the novelty of the research in Section 1.1, overview of the thesis 

in Section 1.2 with a process diagram highlighting the main research points, and 

publications in Section 1.3. 
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1.1 Novelty of the research 

In this situation, this thesis has investigated accessible SCADA and failure data from 

a large onshore wind farm and SCADA data from selected offshore wind farms, and 

innovatively created a series of indirect analysis methods to overcome the data 

shortage including an onshore/offshore failure rate translator and a series of methods 

to distinguish yawing errors from turbine nacelle direction sensor errors. Another novelty 

of his thesis is that it has creatively applied this failure rate translator to a Failure 

Modes Effect Analysis (FMEA) for ranking component risks for offshore wind 

turbines to fill this gap in research domain. This data translation approach has been 

used to improve and further develop an existing O&M cost model. The extended cost 

model (called StraPCost+) has been used to establish a relationship between the 

effectiveness of reactive and condition-based maintenance strategies. The cost model 

has also been benchmarked against a number of cost models already in the commercial 

or academic use and this has demonstrated it to be reliable and practical. The cost 

model has then been applied to assess the O&M cost effectiveness for three offshore 

wind farms at different operational phases including planning phase. 

This thesis provides detailed background to the subject including a comprehensive 

literature review. It develops and applies innovative methods to modelling O&M and 

the impact of condition monitoring. Particular highlighted topics include current 

condition of offshore wind energy, the state of art condition monitoring techniques and 

costs, a detailed introduction of the cost model developed in this thesis, and the 

methodology of other cost models in both commercial and research domains with 

detailed comparisons of model results.   
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1.2 Overview of thesis 

Chapter 2 begins this thesis with a thorough review of the relevant literature including 

a comparison of onshore and offshore wind farms and their O&M requirements. It then 

presents a technical introduction to condition monitoring (CM) including the benefits, 

performance and costs. It lists the different condition monitoring techniques in use. 

Finally, this chapter reviews the current situation as regards turbine and component 

failure rate and provides the motivation of the failure rate analysis developed in this 

thesis. 

Chapter 3 begins with a technical introduction to the actual wind farms used in this 

thesis. It then provides a detailed environmental and generational analysis of an 

offshore wind farm that is investigated in detail in this thesis. This chapter principally 

presents a series of yaw error and turbine nacelle direction sensor error identification 

methods developed in order to improve the interpretation of operational data. This 

technique filters the data with misleading failure information and improves the data 

reliability for the further failure rate analysis and cost effectiveness analysis in the next 

chapters. 

Chapter 4 investigates wind turbine component reliability. It presents a method of 

failure rate translation from onshore to offshore data that is developed and used in this 

thesis, and discusses its wider potential for application, in particular, the translation of 

an FMEA component risk ranking from onshore to offshore. It quantifies for the first 

time the risks associated with key component ranks in an offshore operational context. 

Chapter 5 comprehensively introduces the cost model developed and improved for 

offshore wind farm performance and O&M cost estimation. This chapter begins with 
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a detailed technical introduction to the existing cost model. A number of other cost 

models in the research and commercial domain are reviewed, and compared with this 

existing model. The next section presents the improvement of the original cost model, 

called StraPCost+, including the application of the onshore/offshore failure rate 

translator developed in Chapter 4. This chapter then compares the StraPCost+ with 

other accessible cost models by an offshore wind farm case study, and discusses the 

results. As an innovative function among all cost models, StraPCost+ provides 

estimation of condition-based maintenance. This chapter then presents a series detailed 

condition monitoring system detection effectiveness analyses from StraPCost+. The 

last section in this chapter presents a series of sensitivity analyses to examine the 

impact of changing key factors: the wind and wave parameters, the weather window 

threshold, overall turbine annual failure rate, condition monitoring detection statuses 

and distance to shore. 

Chapter 6 presents two real site case studies using StraPCost+, with comparison of 

other cost models. It firstly provides the analyses on an existing offshore wind farm 

and demonstrates the reliable applicability of StraPCost+. After that, it presents a case 

study aiming to provide estimates on a planned offshore wind farm, which shows the 

potential practical use of StraPCost+ in term of assisting decision making for vessel 

planning.  

Chapter 7 concludes this thesis and proposes areas of the potentially useful future work. 

Chapter 8 lists the references used in this thesis. 

A series of Appendices are presented at the end of the thesis. Appendix-A presents the 

wind farm statistics. Appendix-B presents results for the cost model analysis. In the 
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thesis content, the citation from appendix is given an indication after the table number 

of “a” for Appendix-A, and “b” for Appendix-B. 

A progress diagram for the main points in this thesis is presented in the next page for 

better understanding of the coherence of each research point. 
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Figure 1. Process diagram for the research points in each chapter in this thesis 



 

Chapter 1 Introduction and Motivation for the Research 

14 

 

1.3 Publications 

 

[1] Yu X., Martin R., Infield D., Barbouchi S. and Seraoui R., Determining the 

Applicability of Onshore Wind FMECAs to Offshore Wind Applications, EWEA 

Offshore, 20th Nov 2013 

 

[2] Yu X., Infield D., Barbouchi S. and Seraoui R., Numerical Methods for 

Applying Onshore Failure Rate to Offshore Operational Conditions and Assessing the 

Benefits of Condition Monitoring, AWEA 2015, 18th May 2015 

 

[3] Yu X., Infield D., Barbouchi S. and Seraoui R., Adjusting Onshore Failure Rate 

Data for Cost Effectiveness Analysis of Wind Turbine Condition Monitoring Offshore, 

ACSEE2015, 11th June 2015 (with Oral Presentation) 

 

[4] Yu X., Infield D., Barbouchi S. and Seraoui R., A numerical method to transfer 

an onshore wind turbine FMEA to offshore operational conditions, RENEW2014, 24th 

Nov 2014 (with Oral Presentation) 

 

[5] Yu X., Infield D. and Maguire E., Wind direction error in the Lillgrund 

offshore wind farm in Renewable Power Generation Conference (RPG 2013), 2nd IET, 

9-11 Sept. 2013 (Oral Presentation) 

 

[6] Yu X., Yue H. and Leithead W. E., Feed-forward pitch control of HAWT using 

LIDAR, EAWE 2012, 12-13 Sept. 2012  

 



 

Chapter 2 Literature review 

15 

 

Chapter 2 Literature review 

In order to have a general understanding of the motivation and the issues investigated 

in the later contents; this chapter provides a thorough literature review with topics of 

wind energy, offshore wind, condition monitoring and failure rate.  

In Section 2.1, the review of offshore wind, it lists the top ten largest operating offshore 

wind farms in the world, compares the environmental and technical difference between 

the onshore and offshore wind farm.  

In Section 2.2 of condition monitoring, it introduces the main categories of 

maintenance strategies in use, introduces the benefit of condition monitoring, and lists 

the different condition monitoring data acquisition and processing techniques in use.  

The last section in this chapter, Section 2.3, reviews the current situation of component 

failure rate which motivates the failure rate analysis undertaken in the next chapters. 



 

Chapter 2 Literature review 

16 

 

2.1. Review of Offshore Wind 

This section presents a general review of onshore and offshore wind farm, introduction 

of wind turbines, comparison between onshore and offshore wind energy, and the 

current situation of offshore wind energy development in the world and in Europe. 

2.1.1 Wind farm 

A wind farm is a site that consists of a number of wind turbines, installed onshore or 

offshore. Both onshore and offshore wind farms have been rapidly increasing their 

generating capacity in the past decade. Wind energy delivered in total 3.4% of the 

world’s electricity in the year 2014 [4]. The world’s largest onshore wind farm can 

have as many as multi-thousand turbines. For example, Gansu wind farm, China, has 

installed more than 3,500 turbines with a current capacity of over 6GW [5][6]. 

Offshore wind farms, on the other hand, seek enhancing the total capacity by not only 

increasing the total number of turbines but also having higher individual capacity of 

each turbine, e.g. 25 MHI Vestas 8MW turbine has been installed in the Burbo Bank 

offshore wind farm (DONG Energy), Liverpool Bay, UK [7].  

With the large number of turbines, an onshore wind farm can have the total capacity 

of over several thousand Mega Watts. Onshore wind farms can be built in a wide range 

of different terrains such as mountainous areas, plains, coastal areas, desserts and even 

in Polar Regions. As stated above, many of the world’s largest onshore wind farms are 

located in China and India. Led by Gansu Wind Farm, Muppandal wind farm in India 

that has 3000 turbines making up 1.5GW of installed capacity [8]. 
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Offshore wind farms, on the other hand, are constructed in bodies of water, where the 

wind resource quality is better in terms of higher wind speed and lower wind 

turbulence. Dong Energy, Vattenfall and E.ON are leading operators in the offshore 

wind industry [4]. The leading countries for offshore wind farms are UK, Germany 

and Denmark [9]. By 2015, the London Array in UK, inaugurated on 4th July 2013, 

remains the world’s largest operating offshore wind farm, with 175 Siemens SWT-

3.6-120 wind turbines and 630MW total capacity [10]. This position is followed with 

9 other top 10 operating offshore wind farms. 

Table 1 lists the top 10 largest operating offshore wind farm in the world. It provides 

a series of technical details such as distance to shore, maximum water depth, wind 

farm area, number of turbines, turbine type, installed capacity and commission year. 

The location country clearly shows that all of these largest offshore wind farms are 

located in Europe. 7 out of 10 are within the UK. In the next section, it continues 

discussing this table in the perspective of wind turbine types.   



 

Chapter 2 Literature review 

18 

 

Table 1. List of top 10 largest operating offshore wind farms in the world by 2015 

No. Wind farm 
Location 

country 

Distance to 

shore 

(Max.) 

Water depth 
Area 

No. 

turbine 
Turbine type 

Installed 

capacity 

Commission 

year 
reference 

1 London Array UK 27.6km 0-25m 100km2 175 
Siemens 

SWT-3.6-120 
630MW 4th July 2013 [10] 

2 Gwynt y Môr UK 18km 12-28m 86km2 160 
Siemens 

SWT-3.6-107 
576MW 2015 [11] 

3 Greater Gabbard UK 32.5km 20-32m 146km2 140 
Siemens 

SWT-3.6-120 
504MW 2012 [12] 

4 BARD Offshore 1 
North Sea, 

Germany 
90-101km 40m 59km2 80 BARD 5.0 400MW 2013 [12] 

5 Anholt Denmark 22.6km 15-19m 116km2 111 
Siemens 

SWT-3.6-120 
400MW 2013 [13] 

6 
West of Duddon 

Sands 
UK 20.1km 17-24m 

67km2 

 
108 

Siemens 

SWT-3.6-120 
389MW 2014 [14] 

7 Walney Cumbria, UK 
19.3km 19-28m 28km2 

102 
Siemens 

SWT-3.6-107 
367.2MW 

phase 1: 2011 
[15] 

22km 25-30m 45km2 phase 2: 2012 

8 Thorntonbank 
North Sea, 

Belgium 

27.9km 18-28m 1 km2 6 Senvion 5MW 

325MW 

phase 1: 2009 

[16][17] 28.2km 12-24m 12km2 
48 

Senvion 

6.15MW 

phase 2: 2012 

28.1km 12-26m 7km2 phase 3: 2013 

9 Sheringham Shoal 
Greater Wash, 

UK 
21.4km 15-22m 35km2 88 

Siemens 

SWT-3.6-107 
315MW 2012 [18] 

10 Thanet Kent, UK 17.7km 20-25m 35km2 100 
Vestas 

V90-3MW 
300MW 2010 [19] 
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2.1.2 Wind turbine  

A wind turbine is the device that extracts energy from the wind and converts it into 

mechanical energy, and then electrical energy. Wind turbine can rotate both 

horizontally and vertically, known as horizontal-axis wind turbines (HAWT) and 

vertical-axis wind turbines (VAWT), respectively. The power from an onshore wind 

turbine is usually less than offshore ones mainly because of the quality of wind, and it 

usually encounters more noise and visual issues. Offshore wind turbines can be over 

6MW. Vestas and Siemens are the two largest wind turbine suppliers worldwide, 

followed by GE Energy, Goldwind and Enercon [4].  From the 10 largest offshore 

wind farms, as shown in Table 1, 7 out of 10 are using Siemens wind turbines. This 

indicates that Siemens wind technology is presently favoured by European large 

offshore wind farm developers. In this thesis, the main wind farms with accessible data 

are using Siemens 2.3 MW rated wind turbines, for both onshore and offshore. This 

coincidence has proved that this type of turbine is widely utilized in Europe. The 

consistency of the turbine type for onshore and offshore has provided the possibility 

and eased the development of onshore/offshore failure rate translation introduced in 

Chapter 4.   

 
Figure 2. Typical wind turbine structure with detailed drive train system in the nacelle 

[20] 
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One example is the drive train system. The complexity of the drive train system 

increases the frequency and cost of maintenance. A conventional wind turbine drive 

train mainly consists of a low-speed shaft, gearbox, brake, high-speed shaft and 

generator, as shown in Figure 2. Alternatives to a traditional gearbox arrangement are 

direct drive and hybrid drives in which a low ratio gearbox is combined with a multi-

pole generator. One major branch in direct drive is permanent magnet generators 

(PMGs). 

Direct drive system removes the intermediate link, the gearbox, to improve the turbine 

availability, and hence to reduce the total maintenance cost. Figure 3 shows a low 

speed direct drive from an Enercon turbine, whose rotor hub is mounted on the fixed 

axle [21]. To avoid the complexity and thus the high failure rate of the gearbox, wind 

turbine manufacturers such as Siemens and GE have been devoting themselves into 

the development of direct drive turbines. The share of direct drive turbines has 

increased from around 16% in 2006 to 26% in 2013 [22]. However, since direct drive 

is still a new concept to wind turbine generation, some research shows that the 

economic benefits for direct drive turbines are unclear or even lower than the gearbox-

driven ones [23].  

 

Figure 3. Image of a direct drive of E-48 from Enercon [21] 
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The hybrid drive system is in the middle route between the conventional gearbox drive 

train and a direct drive system. It uses a gearbox with a reduced number of stages 

which improves efficiency and reliability and uses intermediate, not high speed 

generators. Companies such as Gamesa use multiple permanent magnet induction 

generators, as shown in Figure 4 [24]. 

 

Figure 4. Hybrid drive system with multiple PMGs turbine from Gamesa [24] 

The different designs of drive train outlined above provides an example of wind 

turbine component design improvement aiming to reduce the failure rate cost and 

enhance the reliability. From the trends outlined, direct drive arrangement with a large 

multi-pole (usually PMG) is steadily developing and taking over from conventional 

geared turbines for large offshore wind turbines. EDF, for example, has selected the 

Haliade® (GE-Alstom) direct drive 6MW turbine for their French offshore sites [25].  
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2.1.3 Offshore vs. onshore 

No matter from technical or cost perspective, there are significant difference between 

onshore and offshore wind farms. Over the years, the debate of installing the cheaper 

easy-maintenance onshore wind farm or the less-visual-pollution higher-output 

offshore wind farm has never stopped. Compared to onshore wind, the offshore wind 

has rather different characteristics. For example, the total electricity production is 

generally higher since wind speeds are higher, and they are also more persistent which 

adds value to the electricity generated. From the environmental perspective, offshore 

wind farms are more exposed in extreme weather conditions, waves and corrosion due 

to salt water. In addition, the marine environment makes maintenance much more 

difficult than onshore, which leads to longer down time and lower availability. In 

addition, offshore maintenance and repair is more expensive due to the cost to go 

offshore.   

Table 2, as first presented in [26], lists the benefits and disadvantages of both onshore 

and offshore wind farms, and some of the disadvantages address the issues that the 

O&M might encounter. O&M costs for offshore wind could be higher for more 

challenging offshore sites further from shore. Preventive condition based maintenance 

can help to reduce this cost by doing inspection and maintenance before the 

catastrophic failure occurs. 
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Table 2. Comparison of characteristics offshore vs. onshore [26] 

 Offshore Onshore 

Site related and technological characteristics 

Specific electricity 

production 
High (due to high average wind speeds) Generally lower than offshore 

General restrictions 
Water depth, nautical routes, nature 

reserves, distance from the coast 

Wind exposure, residential areas, 

nature reserves 

Environmental conditions 

Rather strong and steady wind speeds, 

salt water and salt spray, waves, extreme 

weather conditions 

Lower, less steady and more turbulent 

winds than offshore due to surface 

roughness 

Access conditions 

Erection only during calm wind and sea 

conditions, restricted access (e.g. for 

trouble shooting, maintenance), 

potentially long distances 

Erection at calm wind conditions, road 

access required, transport of rotor 

blades more challenging than offshore, 

but maintenance easier 

Environmental impacts 

Visual impact & noise of little relevance, 

potential impacts on sea birds and 

migrating birds, impacts due to 

foundation and grid connection 

Visual impact and noise often highly 

relevant 

Grid connection 

Long distances to coupling points, 

condition monitoring necessary, separate 

licence procedure(s), weak costal grids 

Low to medium distances, grid 

integration less problematic because 

wind farm size smaller 

Economic characteristics 

Major cost drivers 
Turbines, foundations, grid connection 

and transformer station 

Foundations and grid connection less 

costly 

Capital need High Low compared to offshore 

Risks High, lack of insurance Low compared to offshore 

Income 
Governmental support schemes, partly 

with extra incentives for offshore wind 
Limited governmental support schemes 

Organizational aspects 

Planning and licensing 

procedures 

Huge national differences, often complex 

and time consuming 

Different procedures but can also be 

time consuming 

Grid connection 

Close coordination with grid operator 

essential (especially when grid expansion 

required) 

Coordination also important but less 

critical 

Project size Large Generally smaller than offshore 

Number of different 

parties/subcontractors 

Large, more complex project 

management 
Smaller, less complex 

Further particularities 

Field work/schedules highly dependent 

on weather and sea conditions, 

availability of e.g. vessels may cause 

bottlenecks 

Lower dependencies compared to 

offshore 
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2.1.4 Offshore Wind Energy Development in Europe 

Europe, led by Asia, holds the second position in terms of installed onshore and 

offshore wind capacity, with 35.8% of the world’s wind power capacity and 23.7% of 

the 2014 global installations [4]. The trend of European wind energy installation is 

moving from onshore to offshore. By the end of 2015, a total capacity of around 

11,027MW has been installed with 3,230 offshore wind turbines in 84 offshore wind 

farms across 11 European countries. 754 new offshore wind turbines with total 

capacity of 3,019 MW in 15 wind farms were fully grid connected and 14 projects 

were completed in 2015. In addition, there were 6 projects under construction with an 

expected capacity of 1.9 GW. This will bring the cumulative capacity in Europe to 

over 12.9 GW [28][9][27]. Figure 5 shows the cumulative and annual installed 

offshore wind capacity in Europe from 1993 to 2015 [9]. 

 

Figure 5. Cumulative and annual offshore wind installation in Europe to 2015 [9] 
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The size of turbines has been increased rapidly over the last 15 years. With a slight 

drop in 2014, this figure soars to double the previous year in 2015. By the end of 2015, 

the average offshore wind turbine size became 4.2 MW, the average offshore wind 

farm size was 337.9 MW with large offshore wind farms such as Gwynt y Môr and 

Gemini of 576 to 600 MW [9]. The average water depth was 27.2 m, and the average 

distance to shore was 43.3 km [9][28].  

The UK presently has the highest installed offshore capacity with 5,060.5 MW, 

accounting for 45.9% of total offshore capacity in Europe, as shown in Figure 6. The 

offshore market in the UK has been enlarged rapidly during this period due to political 

and economic support.  

 

Figure 6. Installed capacity-cumulative share by European country 2015 [9] 
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The offshore wind industry has received dramatically increasing investment since 

2010, as shown in Figure 7 [29]. Total investments in offshore wind in 2015 were more 

than €18 billion, of which the industry raised €5 billion of non-recourse debt *, 

equivalent to 1.3 GW of gross capacity [9]. 

 

Figure 7. Estimated range of annual investments in offshore wind farms [29] 

  

* Non-Recourse Debt: A type of loan that is secured by collateral, which is usually property. If the borrower 

defaults, the issuer can seize the collateral, but cannot seek out the borrower for any further compensation; even 

the collateral does not cover the full value of the defaulted amount. 



 

Chapter 2 Literature review 

27 

 

2.2. Condition monitoring 

With the current development of offshore wind farms, especially when the distance to 

shore is getting larger, maintenance is becoming one of the key issues for offshore 

wind energy. Condition based maintenance, with its technical and economic benefits, 

has attracted an increasing number of researches in both commercial and academic 

field. 

In this section, a brief introduction of basic categories of maintenance strategies 

currently used in wind energy is presented. Condition based maintenance, as one of 

the rising maintenance strategies, is introduced here with a list of state-of-the-art data 

acquisition techniques for both SCADA based and additional sensors based techniques. 

Corresponding data processing methods for these two main acquisition types are then 

introduced.  

2.2.1 Maintenance strategy 

The aim of maintenance work is to achieve high turbine availability while at the same 

time keeping operating costs as low as possible. Unplanned outages should be avoided 

where possible. Maintenance strategies can be basically categorized into reactive and 

preventive strategy from a high level perspective.  

Figure 8 is a plot of remaining component life time against operating time showing 

different maintenance interventions. For simplicity, the life time is divided by mean 

time between failures (MTBF) of the component [30]. Here lists the definition of the 

maintenance strategies. 
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Figure 8. Comparison of different maintenance strategies with remaining life time 

against mean time between failures (MTBF) [30] 

Break down maintenance, also recognised as reactive or corrective maintenance, is the 

simplest case where the system is kept operating until a major failure of a component 

occurs that results in the turbine being shut down. Once the component is repaired or 

replaced, the remaining life time is assumed in theory to return to 100% for the 

replaced component. Even though in reality, the life time of the component can hardly 

reach 100%.  

Cyclic or periodic maintenance is a planned preventive maintenance strategy in which 

components get maintained after a fixed period of time irrespective of their actual 

condition. 

Reliability based maintenance aims to find the “right” time for maintenance by 

assessing the state of health of the turbine drawing on judgement based on past 

experience of reliability functions. Shown with vertical shading (green) in Figure 8, 

reliability based maintenance traces the MTBF and connects it with probability of 

failure occurrence. 
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Condition based maintenance aims to identify the best time point for repair by 

monitoring the real time condition of key components. Shown by horizontal shading 

(grey) in Figure 8, condition based maintenance identifies the point when the 

remaining life time of the component drops below a specified level. 

Both reliability based and condition based maintenance aim to find the optimum 

maintenance point, and have some overlap in terms of the approach taken to identify 

this. For example, in condition based maintenance analysis, reliability data is also an 

important input and reference. As shown in by Figure 9, reliability based maintenance 

is more efficient when components have frequent failures with short downtimes; 

whereas condition based maintenance is more efficient when applied to components 

that seldom fail, but which result in large downtimes. Some components with low 

failure rate and short downtimes which have little impact on the entire system can be 

ignored in the maintenance strategy making stage [30], as shown in the middle part of 

the figure. 

 

Figure 9. Wind turbine subsystem reliability share on annual downtime [30] 
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Since the reactive maintenance requires the failure occurs to shut the turbine down, the 

maintenance required is usually heavy repair or replacement. For an offshore wind 

farm, the heavy maintenance related failure not only causes high repair or replacement 

costs, but also increases the transportation cost dramatically for unscheduled vessel 

usage. In addition, because of the safety regulation, the vessel has to wait for a 

restricted weather condition which leads to longer waiting time and thus longer down 

time and higher loss of production. From the personnel point of view, because the 

reactive maintenance is unscheduled, the wind farm needs to have the number of 

technicians required stand by for heavy maintenance during normal operational days 

in case of the urgent heavy maintenance, which causes considerably more personnel 

costs. In addition, because the reactive maintenance is unscheduled, the maintenance 

action may be incomplete within one visit. This increases both the vessel cost and the 

waiting time for the next suitable weather condition. 

Preventive maintenance, on the other hand, gives the wind farm opportunity to hire the 

vessel with a much lower rate and schedule the maintenance with acceptable weather 

in advance. This largely reduces the waiting time and increases the chance to complete 

maintenance in one visit. It doesn’t need a large number of technicians always waiting 

at site, and reduces the cost for technicians. Because preventive maintenance 

undertakes the maintenance action before the failure becomes severe, the maintenance 

level can be lower than the reactive one, which largely reduces the maintenance costs.  

Periodic maintenance, undertaking maintenance no matter there is a failure or not, may 

incur cost on unnecessary inspection or maintenance in terms of vessel hire and 

personnel. Condition based maintenance, on the other hand, can avoid the cost due to 



 

Chapter 2 Literature review 

31 

 

the unnecessary planned visit by monitoring the turbine condition and only scheduling 

the maintenance when there is a need. However, most of the condition based 

maintenance requires additional sensing devices which increases the capital 

expenditures (CAPEX) and service cost. False positive is another drawback of 

condition based monitoring which causes unnecessary vessel and personnel costs. 

Therefore, the accuracy of the condition monitoring system is significant, and the cost 

effectiveness of condition monitoring requires investigation. Later chapters, especially 

Chapter 5 and Chapter 6, investigate these issues. 

2.2.2 Condition monitoring—benefit, performance and cost 

This subsection introduces the basics of condition monitoring, and lists the data 

acquisition and processing techniques for condition monitoring use. 

2.2.2.1 Condition monitoring basics 

Condition monitoring is defined as the process of detecting the condition of a machine 

or component by a number of separate or combined techniques and the resulting 

knowledge used for planning machine operation and maintenance in order to improve 

both safety and economy [31]. It is a major branch of predictive condition-based 

maintenance, which aims for maintenance to be undertaken shortly before actual 

failure occurs. More specifically, the condition monitoring system sends prompt 

feedbacks or alarms when a component is in danger of having a failure so the 

maintenance team can start to schedule the maintenance before it actually becomes 

severe. A lower-level maintenance decision can therefore be made. Compared to 

corrective maintenance and planned maintenance, condition monitoring can in 

principal prevent both the significant consequences of a major failure and also 
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unnecessary maintenance upon a component. Usually one or more indicators are used 

to show the condition of the certain component. Condition monitoring is widely used 

in conventional power generation and many other industrial processes with complex 

machinery are used. In wind energy, condition monitoring is believed to be beneficial 

from safety, economy and efficiency aspects. 

The potential benefits of condition monitoring are to reduce the number of catastrophic 

failures, prevent the number of secondary damage, and the turbine downtime. 

Therefore: 

- the turbine and turbine components’ life can be extended; 

- productivity of the turbine can be improved; 

- overhaul routines can be reduced and better scheduled; 

- maintenance time can be better scheduled; 

- secondary damage can be minimized; 

- maintenance cost and therefore productive cost can be lowered; 

- and operation safety can be enhanced. [32]-[35] 

2.2.2.2 Condition monitoring performance and cost 

Condition monitoring has great potential to detect incipient failures which incur long 

downtimes and high costs in advance. Table 3 shows the estimates of failure rates and 

corresponding availabilities for subsystems of a generic onshore 1.5-2-MW 80-metre-

rotor-diameter wind turbine [36]. This table shows that auxiliary equipment has the 

highest failure rate compared to other subsystems, whereas the rotor module has the 

lowest availability followed by the power module, the structural module, auxiliary 
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equipment and the drive train module. The condition monitoring system itself is not 

100% reliable and has also been included as a component in the table. 

Table 3. Failure rates and availabilities of sub-systems [36] 

Wind turbine Subsystems 

Mean Time 

to Repair of 

Total (%) 

Normalised 

Failure Rate 

(%) 

Normalised 

Availability 

(%) 

Wind Turbine Generator （Total） 14.83 100.0 - 

Auxiliary Equipment 1.72 35.4 99.73 

Rotor Module 42.83 26.5 95.30 

Power Module 10.83 15.2 99.29 

Nacelle Module 1.91 9.2 99.92 

Control and communication system 3.26 4.4 99.94 

Structural Module 16.80 3.9 99.72 

Drive Train module 6.89 3.4 99.90 

Wind farm System 0.49 1.7 99.99 

Condition monitoring system 0.43 0.2 99.99 

Because of the harsh environmental conditions experienced by offshore wind farms 

and high cost of the offshore O&M, as indicated in previous sections, condition 

monitoring can be specifically beneficial to offshore wind farm operators.  

Actual data describing the performance of CM systems in identifying wind turbine 

faults is difficult to find before 2013. A presentation at EWEA 2013 from GL [37]  

listed has provided some important results. 

Table 4, taken from this work, shows the results of a validation study covering different 

wind turbines. This table lists predicted failures and the CM system detection 

performance for wind farms in different countries. It indicates that the turbines located 

in A have the highest CM true alarm rate whereas Irish based case C have the lowest 

true alarm rate. The UK based installation E has the highest false alarm rate while 

those located in Italy, Ireland (case C) and UK (case D) have 0 false alarm rates during 

the period assessed.  
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Table 4. Results of validation study on condition monitoring [37] 

Site Location 
Operational 

data set years 

Predicted 

failures 

Actual 

failure 

True 

detections 

False 

detections 

Score 

True/False 

A Italy 4.8 7 8 7 0 88%/0% 

B Ireland 6.0 7 8 6 1 75%/13% 

C Ireland 6.5 1 4 1 0 25%/0% 

D UK 7.0 5 6 5 0 83%/0% 

E UK 2.5 7 10 5 2 50%/20% 

As introduced in Chapter 1, the indicative cost for condition monitoring and SCADA 

system is in the order of £400,000 to 800,000 for a typical 500MW wind farm per year 

(1% to 3% of the typical total annual O&M cost) [3]. That is to say, a wind farm with 

from 63 to 217 turbines (with turbine capacity of from 2.3MW to 8MW to share the 

500MW) spends in the order of £8 to 16 million for CM and SCADA system for 20 

years running time, and this cost is from £1,800 to 4,000 (with 2.3MW turbines) to 

£6,300 to 12,700 (with 8MW turbines) per turbine per year.  

The cost of CM systems is confidential and varies from different CM companies. The 

main commercial CM system suppliers are SKF, GE, Mita-Teknic, Brüel and Kjær 

Vibro, Gram and Juhl, and Romax. An incomplete and confidential investigation, as 

presented in Table 5. 

Table 5. Incomplete and confidential investigation on CM costs from different 

companies 

CM brand 
CM hardware 

cost 

CM service 

cost 

Service 

duration 

Number of 

turbines 

Brüel and Kjær Vibro $1,650,000 5 100 

Gram and Juhl $14,000 $37,000 20 1 

Romax (before 2012) £25,000 - 1 1 

Romax (after 2012) £5,000 - 1 1 

This table shows that Brüel and Kjær Vibro charges roughly $1,650,000 for the CM 

hardware service for 100 turbines for 5 years; Gram and Juhl provides CM hardware 

for about $14,000 with a service fee of the order of $37,000 for 1 turbine over 20 years. 
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A noticeable progress in the CM market is that Romax has claimed that it has 

dramatically reduced the CM hardware price from £25,000 to £5,000 since 2012. This 

5-times reduction in price implies a significant CM technique update. Attention needs 

to be made that these CM systems are focus the technology on the drive train.  

2.2.2.3 Condition monitoring techniques 

From the perspective of condition monitoring, data acquisition (hardware) and data 

processing (software) are equally important. This subsection lists state-of-the-art 

techniques for these two aspects, in Section 2.2.2.3.1 and 2.2.2.3.2, respectively. Even 

though this thesis places the emphasis on wind turbine reliability and CM cost 

effectiveness analysis mainly based on SCADA data, it is important to have a general 

view and understanding of the main techniques used in CM, which broadens the 

horizon when improving the wind turbine reliability and cost modelling methodology 

by considering more means of CM systems as inputs in future work.  

The basic means of data acquisition in a wind turbine system is the Supervisory 

Control and Data Acquisition (SCADA) system. The complexity and data collection 

rate vary depending on the actual hardware and operational settings, where 10 minutes 

is the most common data record interval. Standards are starting to evolve covering 

SCADA system practicability, functionality, and also interoperability. 

Commercial wind turbine condition monitoring also relies on additional sensors, such 

as vibration, lubrication oil quality, acoustic emission, shock pulse recording, 

thermography, ultrasonic testing, strain measurement and radiographic inspection 

[38]-[40]. There are a large range of data analysis and processing algorithms developed, 

in particular for vibration data analysis. 
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Data analysis and processing is the other main topic in condition monitoring, once the 

data have been acquired by the sensing systems outlined above. Data processing works 

in both slow- and fast-sampling-rate domains. SCADA systems usually have a slow-

sampling rate (e.g. 10-minute interval), and additional sensors such as vibration, fast 

power measurement, and power system harmonics, etc. usually have a fast-sampling 

rate (typically taking data at kilo-hertz). Fast data analysis techniques include Fourier 

analysis [41][42], its extensions [43], and wavelet analysis [44]-[46]. 

Because of the indispensable and relatively high accessibility of SCADA data, there is 

an increasing interest in further exploiting this resource for condition monitoring 

purposes. A number of data processing and machine health assessment techniques 

depending only on SCADA data have been published in recent years [47]-[58]. Recent 

research methodologies include Monte Carlo methods, Hidden Markov models, K-

means, NSET (Smart Signal), Kriging, Artificial neural networks, Support Vector 

Machine and Gaussian Process theory [37][59].  

The detailed introduction is presented below. 

2.2.2.3.1 Data acquisition 

This subsection lists the main data acquisition methods (hardware) of the condition 

monitoring system, in categories of SCADA system and additional sensors. 

2.2.2.3.1.1 SCADA system 

SCADA, fully named as Supervisory Control and Data Acquisition, is a type of 

industrial control system which can be applied in multiple sites and large distances. It 

consists of a series of sensors. In wind energy, SCADA system mainly acquires data 
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of wind direction, yaw direction, temperatures (including oil and key bearing 

temperatures etc), and power production. Techniques such as NSET, Neural Network, 

Support Vector Machine, Monte Carlo method, K-means, and hidden Markov etc., are 

well-developed mathematical data analysis methods in signal processing and machine 

learning area. They have been applied to the analysis of wind turbine SCADA data 

[37][59]. Techniques will be presented in the Section 2.2.2.3.2 in details. 

2.2.2.3.1.2 Additional sensor systems 

Different from SCADA system, additional sensor systems normally require additional 

hardware installed for specific wind turbine components, and require specific data 

processing for the corresponding hardware. 

Vibration sensing system 

The technique of vibration sensing in conventional rotating mechanical system has 

already been well developed and widely used. In wind energy, vibration sensors have 

also been introduced and employed for condition monitoring since the early days. 

The main application of vibration sensors is in the gearbox and bearings (including 

bearings for the generator and the main bearing) [38][59][60]. Other devices, such as 

rotor [60][61], tower [62] and blades [63]-[65] have also been reported to be applied 

with vibration sensors.  

Vibration sensing signals are mainly used in the frequency domain. For different 

frequency ranges there are different types of sensors [40]:  
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- Position transducers are working in the low-frequency range, few Hz 

- Velocity sensors are in the middle-frequency range, order of 0.1kHz 

- Accelerometers are in the high-frequency range, ≥kHz  

- and Spectral Emitted Energy (SEE) sensors are for the very high frequencies, 

which are normally considered as acoustic vibrations. 

Acoustic emission 

Acoustic emission (AE) is the wave produced when an external stress applies on a 

material. AE sensors track the elastic waves which are transferred and analysed for 

early faults detection [66]. AE sensors are widely used for turbine blades [38][63][67], 

bearings [68][69], and gearbox [68][69]. The processing methods for AE is similar to 

the very high frequency vibration monitoring. Both of the systems can be solidly 

attached to the object to be monitored and settled with flexible glue [38][59]. Acoustic 

emission is specifically suitable for low-speed operation [68], therefore suitable for 

direct drive and hybrid drive systems.  

Oil analysis 

In both lubrication and hydraulic oil system, the chemical and physical conditions, 

which mainly are the wear particles, moisture, viscosity, oxidation level, acidity and 

temperature of the oil, are essential of the health of wind turbine components [39]. Oil 

analysis is suitable for the oil system in the gearbox, generator and bearing system [70]. 

The oil analysis can not only monitor the quality of the oil itself, but also monitor the 

health state of the turbine components that it contacts, by analysing the wear particles 

in the oil [40]. Oil analysis is mainly applied offline, where samples and lab equipment 

are required. However, online and inline oil systems are increasingly developed [70]. 
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Both online and inline systems are continuous monitoring systems. The difference is 

the volume of the oil sample. Online system extracts a small amount of the circulated 

oil, whereas inline system samples the entire amount [71][72]. 

For the oil quality itself, the techniques are mainly applied offline, such as Karl Fischer 

water test [73], Capillary tube viscometer [74], rotary viscometer [75], and 

fluorescence spectroscopy [76] etc.. However, there is still potential for online 

application for some methods, such as Calcium hydride water test [77], photoacoustic 

spectroscopy (PAS) [78][79], and solid state viscometer [80]. 

For particulate analysis, on the other hand, it is more likely to be applied as online 

sensing methods, among which some have already been used as online sensors. The 

sensing parameters are source and composition, type of wear, and number of particles 

[70]. Inductively coupled plasma optical emission spectroscopy (OES) has been 

declared being used as an online system with detection limits of 10 µm [81]. 

Electromagnetic detection (EMD) is an in-use online/inline lubrication condition 

monitoring in conventional industries [70]. There are a number of techniques that have 

high potential to be used online: ferrography [82][83], fluorescence spectroscopy [84], 

particle counters [85], and radioactive tagging [86] etc.. However, the main in-use 

particulate analyses are still offline, such as scanning electron microscope (SEM) [87], 

atomic spectroscopy (AS) [70], inductively coupled plasma mass spectroscopy 

(ICPMS) [88][89], flame atomic absorption spectroscopy (FAAS) [90], and laser-

induced breakdown spectroscopy (LIBS) [91] etc.. Microfluidics Lab-on-a-chip 

technique also has a potential use in oil particulate analysis.   
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Shock pulse method 

Shock pulse method (SPM) as a condition monitoring method for rolling bearings has 

existed since 1966. The principal of shock pulse method is that when a roller in a 

bearing contacts a damaged area or debris, mechanical shocks are then generated [92]. 

The SPM takes the normalized maximum shock value as the only simple measurement. 

This eliminates the data interpretation required in many other methods [93]. These 

shocks have a frequency in range of 35-40 kHz, which avoids the machine component 

resonances [92]. This technique is implemented on a periodic basis. 

Thermography 

Thermography is often used for electronic and electrical condition monitoring; while 

one particular branch, the infrared camera, is also frequently used for blade crack 

visualization. Traditional thermography operates offline, but the recent imaging 

technique allows the system operating online. The thermography is categorized as 

passive and active methods. The passive thermography compares the temperature of 

the investigated object and the ambient; whereas the active method applies external 

stimulus to receive the thermal reflection [38][40][94][95].  

Ultrasonic testing 

Ultrasonic testing (UT) are based on Doppler Effect, where an ultrasonic wave is 

emitted to the investigated object, shifted and reflected by the defect. The transmit time 

and the amplitude of the ultrasound is measured. The former is used to determine the 

distance between the defect and the transducer, while the latter determines the severity 

of the defect. The ultrasonic testing is usually applied to the wind turbine blades and 
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tower for surface and subsurface structural defects [59][96][98], while some research 

also shows a use of ultrasonic for electronic convertors [97] and rotors [39].   

Strain measurement 

Strain gauges are suitable for wind turbine components under high stress level, such 

as blades and rotors [40]. The techniques in use are Fibre-optic Bragg Grating (FBG); 

however optical fibre sensors are still very expensive. The drawback of the strain 

measurement is that the strain gauges are not robust, therefore it is usually used for 

assessing wind turbine lifetime prediction and blades stress level [40][99].  

Radiographic inspection 

Radiography is a non-destructive method usually by using Gamma radiation. There 

are also reports indicating using neutron radiography for defect analysis. Both methods 

can be used in 2D mode or 3D mode. Radiographic inspections are undertaken offline 

by a portable unit. The device measures the defect by the different levels of absorption 

of the X-ray photons applied on the surface of the material. Radiography is used for 

blades in wind turbine technology, however is not often used [100][101]. 

2.2.2.3.2 Data analysis and processing algorithm 

Once the data have been acquired by sensing system indicated above, analyses and 

processing algorithms are applied to these data. Data processing covers both slow and 

fast sampling rate. Slow sampling rate is usually for SCADA (e.g. 10-minute interval), 

and fast sampling rate which refers to sensors such as vibration in kilo-hertz is usually 

used for fast power measurement, power system harmonics etc.. In this subsection, fast 

sampling processing is presented first, followed by SCADA analysis.   
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2.2.2.3.2.1 Fast data analysis 

Standard Fourier analysis and extensions 

Standard Fourier analysis and its extensions have played an important role in 

frequency domain analysis. The benefit of using Fourier analysis is that the certain 

frequencies of interest can easily be identified and have their amplitude tracked. The 

fast-Fourier transform (FFT), for example, has been applied in gearbox and bearing 

monitoring [99][102], and to constant speed wind turbines where turbine vibrational 

modes are easier to identify [40]. 

There are mathematical extensions of the Fourier transform known as higher order 

spectra that can be applied. For example, the bispectrum is a statistic tool for measuring 

nonlinear phases coupled interactions [103], and it is promising in wind data 

processing. 

Enveloping spectra are also frequently used in addition of Fourier analysis. In 

enveloping spectra signal processing, harmonics and fundamental frequency are added 

up inside a given filter range and enhance the information in the selected FFT range. 

This is the method to make the signals which are buried in noises shown. Enveloping 

is often used in bearing analysis [104]-[106]. The drawback of the enveloping 

spectrum method is the shape of the window will lead to Gibbs Phenomenon, where 

oscillations are generated when the log amplitude spectrum changes rapidly [107]. 

Wavelet analysis 

Wavelet analysis provides an alternative to Fourier analysis. It is a time-frequency 

technique suitable to non-stationary signals. Wavelet analysis can be seen very close 
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to short time Fourier transform (STFT), but can provide more localized temporal, 

spatial and frequency information [108]. Wavelet analysis is widely used in diagnosis 

in wind turbine gears, bearings, and rotors [45][102]. This data processing method has 

been successfully applied to vibration and acoustic signals [46], and also power signals 

[102]. 

2.2.2.3.2.2 SCADA data analysis 

Monte Carlo method 

The Monte Carlo method is a probabilistically computational algorithm that relies on 

random sampling to obtain numerical solutions for complicated systems [109].  This 

method is usually used to investigate what the condition monitoring system fitted to a 

turbine might do in practice [54]. It is also used in analysis of wind hazard assessment, 

as in [110], for example. Monte Carlo method, as a mainstream of method used for 

wind farm cost estimation, is introduced in detail in Chapter 5 Section 2.     

Hidden Markov models 

Hidden Markov models (HMM) are statistical Markov models which are applied to a 

Markov process with unobserved states.  It is a branch of dynamic Bayesian network. 

HMM has been applied for the wind dynamics prediction, bearing fault detection [56], 

power prediction [57], and wind farm residual variability [58]. Similar to Monte Carlo 

method, Hidden Markov model is also a mainstream method of wind farm cost 

estimation, and detailed introduction can be found in Chapter 5 Section 2. The two 

methods sometimes are combined for wind farm cost estimation [111].    
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Gaussian Process theory 

The Gaussian process is a stochastic process in probability theory. It is an infinite-

dimensional generalization of the multivariate normal (Gaussian) distribution [112]. 

The Gaussian process is widely used in conventionally industrial signal processing. It 

has been used as wind power forecasting method [113]. 

NSET (Smart Signal®--General Electric) 

Nonlinear state estimation technique (NSET)—as Smart Signal in commercial 

application—is used to construct the normal operating model of the wind turbine 

generator bearing temperature. An estimate temperature at each time step is generated, 

and compared with the real measured temperature. When the residual between the 

estimate and the real data is different (usually larger) from the normal operating state, 

the assumption of a generator fault can be made. The non-linear operator used in 

modelling the data set can be as simple as the Euclidean distance between the 

temperature vectors [47][48].  

Kriging 

Kriging is an optimal two-dimensional interpolation based on regression of a random 

field. The Kriging method gives estimation error as Kriging variance. It has been 

applied to estimate power production [49]. Estimating power production of a turbine 

from surrounding turbines in this manner can give a reference against which 

performance should be assessed. 
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Artificial Neural Network  

Artificial Neural Network (ANN) is —often called neural network for short—the data 

processing method which imitates biological nervous systems such as human brain. It 

requires a large data set for training process. The neural network connects artificial 

neurons by connectionist approach to computation. In wind energy, the ANN is usually 

applied in wind speed forecasting [114][115], and wind power prediction [116][117]. 

Estimating power production of a turbine in this manner can give a reference against 

which performance should be assessed. 

Support Vector Machine 

A support vector machine (SVM) is a supervised learning model which often used for 

classification and regression analysis. It is a useful model for wind speed [118]-[120] 

and wind power [53] forecasting sometimes combined with other algorithm such as 

Markov model [121]. These forecasts can be compared with actual operation to assess 

turbine health. 

K-means 

K-means clustering is a data mining method which partitions observations into the 

nearest mean (clusters). This clustering approach is applied for short-term wind power 

prediction [55]. 

2.2.2.3.2.3 Analysis of combination of SCADA and fast data  

To obtain both the advantages of SCADA and fast data analysis, a new data processing 

technique combines these two data acquisitions. This combination can compensate the 
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shortage of data from the limited individual frequency range. For example, the 

investigated offshore wind farm T in this thesis is constructing Siemens SCADA 

systems combining with Gram and Juhl vibration sensors. General Electric (GE) has 

also developed a SCADA system with vibration data. The Flow project also has a 

research orientation of the combination of SCADA and vibration [122]. 

2.2.2.3.3 Conclusion  

This subsection has reviewed the main techniques used in the area of condition 

monitoring in categories of data acquisition which requires the hardware and data 

processing which reflects the software. It shows that various additional sensing 

systems can provide more specific and more precise measurements for specific wind 

turbine components, but the additional hardware increases the cost of the turbine. 

Therefore, more recent research show interests in exploring additional information 

from SCADA data for CM use. Among the SCADA data processing methods, the 

time-based simulation Monte Carlo method and Hidden Markov models are most 

researched. These two methods are further introduced in Chapter 5 Section 2 for a 

better understanding in terms of the main-stream wind farm cost modelling in 

comparison of the analytical cost modelling used and improved in this thesis. To have 

both the benefit from the precise measurement of the additional sensing system and 

the wide accessibility of SCADA system, more recent work has paid attention on the 

analysis of a combination of the two systems.
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2.3 Failure Rates 

Component failure rate is highly relevant to any analysis of condition monitoring 

systems, and in particular for an assessment of the cost effectiveness of such systems; 

it is therefore a key research focuses of this thesis. There is regrettably limited access 

in the public domain to failure rate data for wind turbines, especially for those 

operating offshore. Even though such data is important for improving wind turbine 

technology, actual failure rate for offshore wind is almost completely unavailable to 

researchers.  

 

Figure 10. Failure rate and downtime of onshore wind turbines [123] 

In this situation, a possible solution is to use the onshore information as a reference for 

the offshore wind turbine operation with an empirically based statistical analysis to 

compensate for the difference between onshore and offshore operational conditions. 

Some onshore wind turbine subsystem/component breakdown failure rate is available. 

Figure 10 shows the quantified failure rate and downtime of wind turbines from 

European onshore wind farms, taken from the European ReliaWind project [123]. 

From this result, the electrical system seems to have the highest failure rate over the 
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year, while the gearbox failure seems to cause the longest downtime. For offshore wind 

turbines, this downtime will be extended because of the marine conditions and the time 

taken for transportation of the maintenance crews. 

Failure rate is not the only significant factor when considering condition monitoring. 

Electronic power converters have a high failure rate, for example, but they have a 

relatively low impact on turbine downtime thanks to straightforward repair and 

replacement, requiring no heavy lifting. In fact, at this time, there is no commercial 

condition monitoring systems for electronic components in wind turbines, due to the 

rapidity with which faults develop and the difficulty of failure prediction. 

 
Figure 11. Normalised failure rate of sub-systems and assemblies for onshore turbines 

[123] 

 
Figure 12. Normalised downtime of sub-system and assemblies for onshore turbines 

[123] 
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A further detailed contribution to total failure rate and downtime for a list of onshore 

wind turbine subsystems and assemblies is shown in Figure 11 and Figure 12 [123].  

From these figures, the pitch system, frequency converter, yaw system, gearbox 

assembly and sensors are the components that fail the most, and they are more or less 

the same components which result in the longest downtime. 

Unlike onshore wind farms, the offshore wind farm has higher installation costs and 

higher O&M costs due to the marine environment. Condition monitoring system hence 

should play a more important role in the offshore wind industry. As failure rate is an 

important input element for offshore wind cost analysis, considerable effort has been 

taken to understand the failure process for this thesis.  

The high preliminary cost input of the condition monitoring system, together with 

recurrent costs for support of such systems, underpins the need for research to assess 

the cost effectiveness of the whole system that is the main research focus of this thesis. 

A statistical cost model is used and improved in this research [124]. The detailed 

introduction can be found in Chapter 5. As mentioned, O&M cost data are still 

protected by the wind industry, especially for the offshore. Failure rate is the key for 

modelling wind turbine conditions and costs, although limited failure rate data is 

available in the public domain. With indirect cooperation from the operators of the 

largest onshore wind farm in the UK, a three-year-period operational data record is 

accessible for this research, and translated for the offshore condition. Wind and wave 

parameters are calculated from the accessible offshore data and set as inputs of the cost 

model, the cost model compares the O&M cost of reactive maintenance and condition 

based maintenance. The original cost model available in [124] uses empirical failure 

rates based on onshore data and so cannot fully represent the offshore situation as 
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failure rates are expected to be affected by offshore operational conditions. To 

overcome this limitation, a mathematical translation of failure rate from onshore to 

offshore is applied to the operational data. The way this translation is calculated is 

sensitive to the way the relevant probability distributions are represented, and 

improved curve fitting approaches have been explored.  

2.4 Conclusion 

This chapter has reviewed in detail the current status of wind energy, the comparison 

of the advantages and disadvantages of onshore and offshore, and the condition 

monitoring system in terms of data acquisition and data processing techniques. It has 

addressed the operational challenges of offshore wind and listed the various 

approaches available for condition monitoring. It has highlighted the lack of data in 

quantifying the benefit of condition based maintenance for offshore wind, which calls 

for the development of the onshore/offshore failure rate translation method in Chapter 

4.  

The next Chapter investigates the wind farms with accessible data, and a data purifying 

process developed in this thesis will be introduced.   
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Chapter 3 Investigation of selected existing and planned wind farms 

Before carrying out the analysis on no matter wind turbine reliability or cost 

effectiveness, it is important to have a close insight on the wind farms being 

investigated and to make sure the failure data used as inputs reflect real failures that 

cause production loss.  

Power production loss, which is directly linked to revenue loss, is therefore one of the 

research concerns and can be used as a measure of system effectiveness. A detailed 

wind farm statistically based investigation for the main offshore wind farms analysed 

all through this thesis is presented. In SCADA, the “yaw direction” data are often 

recorded by a nacelle angle sensor which is not involved in the actual yaw control. The 

turbine nacelle direction sensor error therefore is shown to be often misleading and 

incurring the overestimation of the yaw error and even false positive of the yaw system 

which might cause unnecessary and expensive maintenance activities.  

A methodology is introduced here to identify the turbine nacelle direction sensor error 

from actual yaw error in order to make sure the failure data fed to further analyses are 

the ones that actually caused production loss. This methodology is applied to wind 

farm T and wind farm L, in Section 3.2 and Section 3.3, respectively. 

Section 3.1 introduces the technical data of all wind farms investigated in this thesis 

and presents a closer statistical analysis for wind farm T.  
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3.1. Wind farms in research 

In this section, one onshore and three offshore wind farms have been investigated in 

some detail to provide an understanding of operational issues.   

3.1.1 Wind farm general statistics 

The onshore wind farm W, commissioned in 2009, is the largest onshore wind farm in 

the UK. It is located 15 km outside Glasgow and has a site area of 55 km2. The wind 

farm has a total installed capacity of 539 MW and comprises 215 Siemens SWT-2.3-

93 wind turbines.  

The offshore wind farm T, commissioned in 2013, is located 1.5 km north off the coast 

in the north-east of England with site area of 10 km2. The maximum water depth is up 

to 16 m. The wind farm has 27 Siemens SWT-2.3-93 in 3 rows with total installed 

capacity of 62MW.  

The offshore wind farm L, commissioned in 2008, is the largest Swedish offshore wind 

farm and is located 10 km off the coast of southern Sweden. The maximum water depth 

is 4-8 m and the average annual wind speed is in the range 8-10 m/s. The wind farm 

has 48 Siemens SWT-2.3-93 wind turbines in 8 rows with a total installed capacity of 

110 MW.  

The large offshore wind farm N was in its planning process to be located 14.3 km from 

shore in the south of England. The maximum water depth was 32-53 m. The planned 

site area was 155 km2. The project was awarded by the Crown Estate in 2010. The 

preferred wind turbine was the V164-8MW from Vestas. However, by the date this 
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thesis was editing, it was announced that the planning had been refused. Detailed 

analyses and estimation of this planned wind farm are in Chapter 6 Section 2. 

3.1.2 Statistics of wind farm T 

In this section, wind turbine environmental and wind farm operational statistics of 

wind farm T are presented. It can be seen as a typical procedure of the wind farm 

environmental investigation.  

3.1.2.1 Wind Rose 

The wind rose is a statistical tool to show the distribution of the wind incoming 

direction and wind speed at the wind farm location for a selected period of time. 

Because of the lack of met mast data, wind roses for individual turbines have been 

calculated using nacelle directions, and compared to present a general view of the wind 

quality over the wind farm. Figure 13 shows one typical wind rose of each row in wind 

farm T. The results are from a full 6-month SCADA data set dating from 1st October 

2013 to 1st June 2014. Southwest is the clear prevailing wind direction as would be 

expected at this UK location, with the range of 185-260 degrees accounting for most 

of the data.  

The first/front row of this wind farm is the nearest row to the shore, and comprises 

turbines WTG19 to WTG27. From the wind rose, the first row shows a stronger wind 

cluster coming around 185 degrees, and less strong but more distributed wind cluster 

coming from 210-240 degrees.   
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The second row has stronger wind coming from the direction sector 210-240 degrees. 

It still has the strongest wind cluster from around 185 degree, but it has less strength 

than in the first row. 

The third row changes the highest wind strength to 240 degrees and has generally 

stronger wind than the first and second row.  It is hard to perceive any significant wake 

effect in these results and the differences are most likely related to distance from the 

shore. 

 

 

Figure 13.Typical wind rose from first row (upper left: WTG 26), second row (upper 

right: WTG16) and third row (lower: WTG9) of wind farm T
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3.1.2.2 Wind speed distribution 

Wind speed distribution is based on the wind speed data of the selected period taken 

from the nacelle anemometers. It summarises the wind exposure of the wind farm. 

Figure 14 shows the frequency distribution and the Weibull distribution fitted to the 

wind speed data taken from a typical wind turbine in the front row (WTG26). The 

fitted Weibull scale parameter, C, is 10.13, and the shape parameter, k, is 2.34.  It 

shows the highest probability of wind speed occurs at around 8-9m/s, with a 

probability of approximately 1.8%. The wind speed concentrates mainly in the range 

of 5-12m/s. The detailed wind parameters at different location in this wind farm can 

be found in Chapter 6 Section 1.  

 

Figure 14. Histogram and Weibull distribution of wind speed from a typical wind 

turbine (WTG26) of wind farm T 

3.1.2.3 Turbine availability 

Turbine availability is an important parameter indicating the turbine operational 

condition. It is here calculated on the basis of the proportion of “Faultless” entries in 

“WpsStatus” record in the selected SCADA data. As indicated by the turbine status 
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flag instruction, “Faultless” condition is assumed to be the normal operational 

condition. As shown in Table 6, WTG3 has the highest availability, with 85.9%. 

WTG18 and the potential problematic WTG8 have the lowest availabilities, with 8.4% 

and 10.1%, respectively. 

Table 6. Wind turbine availability calculated by the “Faultless” in “WpsStatus” for 

wind farm T  

Ranking Turbine Availability 

1 3 85.9% 

2 16 83.2% 

3 12 73.8% 

4 13 73.5% 

5 26 69.8% 

6 21 68.2% 

7 7 65.5% 

8 5 64.1% 

9 23 63.4% 

10 2 62.2% 

11 25 60.7% 

12 15 54.2% 

13 9 52.5% 

14 24 50.1% 

15 6 49.5% 

16 20 48.3% 

17 11 39.2% 

18 22 38.9% 

19 17 37.8% 

20 4 37.6% 

21 19 36.5% 

22 27 27.6% 

23 10 25.4% 

24 14 25.1% 

25 1 15.4% 

26 8 10.1% 

27 18 8.4% 

3.1.2.4 Turbine Capacity Factor 

The capacity factor is a further indication of turbine availability and operational 

performance. It is defined in Equation 1 below.  

 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝐹𝑎𝑐𝑡𝑜𝑟 =
∑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑌𝑖𝑒𝑙𝑑

∑ 𝑇𝑖𝑚𝑒 ∙ 𝑅𝑎𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟
  (1) 
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In contrast to the “WpsStatus” calculation for turbine availability, the capacity factor 

integrates the actual power generated by the individual wind turbine. It divides the 

results by the rated power output (2300 kW, and multiplies the time, as shown in 

Equation 1. Since under certain circumstances, turbine active power can be negative 

(i.e. it is drawing power from the grid), ∑ 𝐸𝑛𝑒𝑟𝑔𝑦 𝑌𝑖𝑒𝑙𝑑 calculates the total amount 

of positive power generated during the selected period of time. Invalid values are all 

removed. 

The total number of the entire SCADA time stamps indicating the total generation time 

is used in this calculation. This sets every turbine on the same basis. 

Table 7.Wind Turbine capacity factors and ranking for wind farm T 

Rank Turbine Capacity factor 

1 3 43.6% 

2 16 41.4% 

3 26 39.0% 

4 25 36.7% 

5 9 36.7% 

6 11 36.5% 

7 21 34.7% 

8 23 34.7% 

9 13 33.7% 

10 7 33.3% 

11 5 30.2% 

12 2 30.1% 

13 15 29.6% 

14 24 28.5% 

15 6 25.9% 

16 12 24.5% 

17 17 24.1% 

18 22 24.0% 

19 19 22.5% 

20 4 21.1% 

21 20 20.5% 

22 10 18.3% 

23 14 17.5% 

24 18 16.5% 

25 27 14.8% 

26 1 14.0% 

27 8 6.3% 
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From Table 7, it can be seen that WTG3 has the highest capacity factor, with 43.6%, 

whereas the majority of the turbines in this wind farm have a capacity factor of around 

30%. The problematic turbine WTG8 has only 6.3% during the selected period of time. 

WTG18 which has the lowest availability also has a low capacity, with 16.5%. 

This result shows that less than half of the turbines in wind farm T are within the range 

of annual capacity factors expected for large European offshore wind farms such as 

Horns Rev 2 and wind farm L which comprise the same turbine type (Siemens-2.3-

93), with capacity factors of 46.7% and 35.1%, respectively, [125]-[127]. Apart from 

the fact that it is the first year of operation which normally have a much lower 

availability than the average; it can also be accounted for by the fact that wind farm T 

is very close to the shoreline. 

3.1.2.5 Array efficiency 

Array efficiency, as a preparatory indicator for wake effect analysis, is a further step 

of the wind farm investigation. According to the wind rose, the major effective wind 

direction is in a range of 185-260 degrees. The front row in this case is the row of 

WTG19-27. The array efficiency is calculated within this direction range. Because of 

its poor behaviour, WTG8 is not considered in the calculation. The period selected is 

when all turbines are in full operation, which means this is when they are not being 

curtailed, shut-down or having invalid values in the SCADA set.  

The calculation is shown in Equation 2 [128].  
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𝐴𝑟𝑟𝑎𝑦 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

=
𝑚𝑒𝑎𝑛 𝑝𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑟𝑜𝑤(𝑠)𝑖𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

𝑚𝑒𝑎𝑛 𝑝𝑜𝑤𝑒𝑟 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑟𝑜𝑛𝑡 𝑟𝑜𝑤 𝑖𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

=
𝑚𝑒𝑎𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑟𝑜𝑤(𝑠)  𝑖𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑

𝑚𝑒𝑎𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑟𝑜𝑛𝑡 𝑟𝑜𝑤 𝑖𝑛 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑝𝑒𝑟𝑖𝑜𝑑
  

(2) 

Table 8 shows the array efficiency of each row compared with the front row. The array 

efficiency of the second and third rows (Rest Total) relative to the front row is 86.62%. 

This result is between the reference wind farms Horns Rev (87.6%) and wind farm L 

(77 %) [125][129][130]. A simple estimation of the overall array efficiency can be 

made since the named first row is almost always the first to see the wind with the 

directions indicated by the wind rose. In this case the overall efficiency can be 

estimated from (100%+91.12%+81.56%)/3 = 90.9%. 

Table 8. Array efficiency when compared with selected row groups for wind farm T 

Compared row Array efficiency 

Second row 91.12% 

Third row 81.56% 

Rest Total 86.62% 
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3.2 Yawing error and turbine nacelle direction sensor error identification for 

offshore wind farm T 

Operation of the wind turbine yaw system can directly affect power generation. 

Moreover, persistent operation with a large yaw error increases the fatigue loads and 

can lead to premature failure of the turbine. However, the existence of measurement 

error by the turbine nacelle direction sensor (which turns out to be quite common) can 

create the illusion that the turbine yaw system is not operating properly. SCADA data 

often does not include the yaw error signal generated by the wind vane located on the 

turbine nacelle that is used for yaw control, so it is not easy to check for correct yaw 

operation. Often, a turbine with turbine nacelle direction sensor error shows 

misalignment of the yaw system with the wind incoming direction, but in fact the yaw 

system is functioning well. This generates potential problems of not only false alarm 

signals but also can result in inappropriate maintenance. Therefore, to distinguish 

turbine nacelle direction sensor error from actual yaw problem is an initial step for the 

research in this thesis. 

Wind farm T, with the most accessible data and thus as the main wind farm under 

analysis, is investigated thoroughly in this section. The SCADA data used was 

recorded every three seconds and averaged over ten minutes for the 6-month period 

introduced in the previous section. This section provided the first methodology 

innovatively developed in this thesis which filters the failure data fed to the wind 

turbine reliability analysis in Chapter 4 and cost effectiveness analysis in Chapter 5 

and 6.  
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3.2.1 Methodology 

In order to investigate and distinguish the turbine with a yaw problem and/or with a 

turbine nacelle direction sensor error, a multi-tier analysis approach is created 

comprising four main methods: animation, time series analyses, power curve and 

overall diagnosis. 

A visual tool has been created that presents the SCADA apparent yaw direction from 

each turbine and shows them continuously in an animated wind farm map [131]. This 

helps not only engineers but also non-technical employees to easily read and initially 

identify the potentially problematic turbines by comparing their directions with the 

alignment of nearby turbines. Therefore, attention can be concentrated on specific 

turbines for further analyses. This technique has practical value, especially for wind 

farm with large number of wind turbines. 

After the general view of the wind farm has been gained, time series of local wind 

speed, yaw angle and active power are generated and compared with emphasis on the 

identified time period with potentially problematic turbines. 

A power curve is generated for each wind turbine using the selected SCADA data for 

comparison with the nominal power curve from the manufacturer.  

The overall diagnosis compares and considers all the results comprehensively and 

presents the conclusion of the investigation. This result is relatively reliable and can 

be used as basis for planning wind turbine inspection by the wind farm operator.  
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3.2.2 Animation 

The animation is a visualization tool designed to check the wind turbine apparent yaw 

directions and their evolution in time. In this animation method, each frame indicates 

the apparent yaw direction of each turbine at the given time stamp.  The time stamp 

number is shown at the top of the frame. Each turbine is represented by a black dot 

placed at the turbine location in the wind farm map. Blue arrows indicate the real-time 

apparent yaw direction of each turbine with written angle in degrees shown above each 

black dot. Figure 15 shows example snapshots of the animation interface. To assist 

interpretation of the animation statistical tables, bar charts and graphs are also 

presented.  

  
Figure 15. Snapshots of yaw angle animation with regular running mode (left), and 

with invalid value mode (right) of wind farm T 

In theory, because of the small size of the wind farm and the fact that turbines are 

located relatively close to each other, the yaw directions at any time should be similar 

for the normal operational wind speed. The yaw effect should only cause slight 

differences between rows, depending on changes in wind direction and the dynamics 

of the yaw controllers. 
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For this particular wind farm, met mast data are not available from the operator. 

However, met mast data can be important as it provides a relatively reliable reference 

for wind speed and direction that can be used to characterise the performance of the 

wind farm.  

Invalid values shown as “Intf shut” and “I/O Timeout” appear in the SCADA data for 

every turbine with different frequencies and at different times. They provide important 

information and can make the identification of problematic turbines difficult. Their 

statistics are calculated, listed and compared in this section. It is observed that for 

certain period of time, some turbines have no yaw angle value displayed, and for other 

periods of time, some turbines show a persistent value of “0”. From this initial 

observation, the shown value”0” is suspected to be another form of SCADA error such 

as “Intf shut” or “I/O Timeout”. More investigations have been undertaken later. 

The selected SCADA data provides a useful picture of the wind farm operational 

condition. The total numbers of 34993 data records contain around 3% invalid values 

(“Intf shut” or “I/O Timeout”). These “Intf shut” or “I/O Timeout” can be simply 

planned outage or loss of communication, and have been removed for later analyses. 

In the initial investigation, for better understanding of the wind farm operation, they 

were kept for the animation. Figure 15 (left) shows a snapshot of the animation with 

normal data values, compared with a snapshot of invalid values (denoted in the figure 

as NaN) on the right. 

Statistics show that every turbine has a total invalid value period of approximately 

1076 time stamps. Combined with the animation, it shows that the majority of the 

invalid numbers begins at the earliest 100 time stamps. All turbines show high 
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synchronization indicating a SCADA system-wide problem. Figure 16 (upper) 

provides a bar chart showing the number of invalid values of each turbine. 

 

 

Figure 16. Bar charts of invalid value (upper) and “0” value (lower) of each turbine 

yaw direction with selected 6-month SCADA from wind farm T 

Consistent with the animation, apart from the invalid values, some of the turbines also 

show a high frequency of “0” values. As shown in Table 9, WTG 4, 5, 6, 7, 8 and 26 

have “0” values at more than 100 time stamps, among which turbine WTG 8 shows 

16539 time-stamp “0”s. This accounts for over 48% of the total operation time of WTG 

8. Figure 16 (lower) provides a bar chart showing how much “0” entries make up of 

each turbine’s operational time.  

Table 9. Number of “0” degree of each turbine yaw direction with selected 6-month 

SCADA from wind farm T 

No. Turbine 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

No. 0 2 4 4 409 529 525 528 16539 3 4 6 2 3 4 
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Instead of being the actual geographic direction, the “0” value is suggested to be a 

form of wind turbine stoppage or yaw system fault signal (similar to “Intf shut” and 

“I/O Timeout”). The SCADA report shows that when the “0” value occurs at 

“YawDirection”, it also occurs for other variables including the “ActivePower”. 

Table 10. Longest stoppage yaw direction angle (°) and percentage of time of each 

turbine with selected 6-month SCADA from wind farm T 

Turbine No. Direction (º) Stoppage (stamps) Percentage (%) 

1 213.3 9473 27.93 

2 103.9 3030 8.93 

3 146.7 1887 5.56 

4 199.7 2875 8.48 

5 228.4 3530 10.41 

6 271.4 3530 10.41 

7 273.9 3530 10.41 

8 0 16539 48.76 

9 187.5 1331 3.92 

10 230.1 3463 10.21 

11 224.9 4606 13.58 

12 23.7 3403 10.03 

13 167.7 854 2.52 

14 199.1 2728 8.04 

15 156 1512 4.46 

16 190.2 1742 5.14 

17 222.8 6968 20.54 

18 180.5 6454 19.03 

19 190 7899 23.29 

20 319.7 4679 13.79 

21 168.1 4439 13.09 

22 173.1 3744 11.04 

23 143.5 853 2.51 

24 285.7 5593 16.49 

25 194.3 3023 8.91 

26 185.2 2172 6.40 

27 286.9 2516 7.42 

Table 10 shows the longest stoppage of the yaw direction signal (i.e. a fixed and 

constant yaw angle), the length of the stoppage and the percentage of the total 

operational time. From this table, it can be seen that turbines have a longest stoppage 

ranging from 2.5% (WTG13) to 48.7% (WTG8) of the respective entire operational 

time. More detailed results of each turbine are listed in Table 1a in Appendix-A 

showing stoppages that are longer than 10 time stamps. The longest stoppage can 
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reflect turbine nacelle direction sensor or yaw errors at certain angle, e.g. the “0” 

degree for WTG8, and therefore should be investigated in the actual site by the wind 

farm operator. 

Generally, from the animation, as the example snapshot in Figure 15 (left) shown, 

WTG 8, 12, 17, 19 indicate a constant direction difference with the neighbouring 

turbine and turbines in the same row. Other turbines such as WTG 2, 15 and 24 have 

occasional apparent yaw angle difference compared with others in the same row. These 

turbines are suggested to have direction or yaw errors, and they are going to be 

analysed with emphasis in the further process, e.g. time series and power curve, in this 

chapter. 

3.2.3 Time series of local wind speed, yaw angle and active power 

The time series of local wind speed (measured by the nacelle anemometer), yaw angle 

and active power provide further important information on turbine operation, as shown 

in Figure 17 to Figure 19. The colour code is shown in Figure 17. These figures show 

an initial high level impression on the wind turbine performance in this wind farm, and 

more detailed analyses on individual turbines have been undertaken from here. Some 

turbines show abnormal records of local wind speed (most apparent as constant values 

over several days), but on the whole there is a high degree of correlation between 

turbines.  
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Figure 17. Time series of local wind speed with selected SCADA from wind farm T 

The time series of yaw angle sees a range of angles for certain turbines, and also 

prolonged constant values.  It is also clear that some wind turbine yaw angles are 

significantly offset from the whole group but follow the same broad temporal changes, 

suggesting possible wrong calibrations of the yaw sensors.  

 
Figure 18. Time series of yaw angle with selected SCADA from wind farm T 

Without curtailment flag available in the SCADA data, the time series of active power 

shows fluctuations with prolonged periods at rated power output that might be 

expected during high winds, but also extended periods of curtailment and also 
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stoppage (or loss of data). Separate time series graphs are shown in the later content 

and Figure 1a in Appendix-A. 

 
Figure 19. Time series of active power with selected SCADA from wind farm T 

Figure 20 compares time series of local wind speed (top row), yaw angle (middle row) 

and active power (bottom row) of the selected WTG 8, 12, 17 and 19 (left to right 

column) which have been found with potential problems from the initial animation 

view. It indicates that WTG 8 has serious abnormal performance recorded in terms of 

both local wind speed and yaw direction. Its active power time series shows it 

experiences a long period of stoppage. It might have encountered a long period of shut 

down or loss of communication, which requires further investigation by the wind farm 

operator. WTG 12, 17 and 19, on the other hand, have relatively healthy records of 

local wind speed. WTG 12 has a relatively healthy yaw angle record and two levels of 

extensive curtailment and stoppage in power time series. As circled in red in Figure 

20, the yaw time series shows WTG12 had yaw activity around mid of October 2013, 

whereas the power time series shows no power production during that period. Similar 

situation occurred at the end of January 2014 for WTG17. WTG 19 has abnormal 

records at the latter half of the yaw angle time series, one level of curtailment and 
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extensive stoppage in the power time series, but the consistency of yaw activity and 

power production suggests the health of its yaw and direction sensing systems.  

Figure 1a in the Appendix-A shows the comparison graphs of WTG 2, 15, 20 and 24, 

where partially abnormal behaviour in the animation is shown. As circled in red, 

WTG2 shows yaw activity but no power production at the end of January 2014. 

WTG15 has three suspicious periods: from the end of December 2013 to beginning of 

January 2014, the end of January 2014 and the end of April 2014. WTG24 also shows 

this behaviour at the end of April 2014. These phenomena show that these turbines 

might have suffered yaw problem or turbine nacelle direction sensor errors, and need 

to be investigated in reality by the wind farm operator and be paid attention when 

applied with further methods presented in the later sections. 
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Figure 20. time series of local wind speed (top), yaw angle (middle) and active power (bottom) of WTG 8, 12, 17 and 19 (Left to right) in 

wind farm T 
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3.2.4 Power curve  

The power curve shows the relationship between the local ten-minute averaged wind 

speed and the turbine power output. Figure 21 shows the nominal power curve of the 

turbine in use: the offshore wind turbine Siemens SWT-2.3 93, [132]. The cut-in wind 

speed is 4m/s, the rated wind speed is 14m/s, and the cut-out wind speed is 25m/s.  

 

Figure 21. Nominal power curve of the Siemens SWT-2.3 93 turbine [132] 

Within the wind farm, turbines in line with the wind direction encounter wakes. These 

wakes change the local wind speed to a certain extent. However, the correlation 

between local wind speeds measured by the nacelle anemometer and the power output 

of this individual turbine do not change, assuming the turbine is otherwise unhealthy. 

Therefore, even though the wind speed measured from nacelle anemometer is only a 

reference for starting and shutting down the turbine in the control system, the local 

wind speed used to plot the power curve of the individual turbine for comparison 

purposes should be the one measured from the wind anemometer set on the nacelle, 

rather than measured from the wind mast. Since met mast data are not available in this 

wind farm, an example of comparison of scatter plots of speed-power relationship 

using wind speed from turbine anemometer and wind mast from the wind farm L are 
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shown in Figure 22 [131]. In both diagrams, a red curve representing the nominal 

power curve is plotted. The left diagram is the plot using local wind speed measured 

from the anemometer on the nacelle, and the one on the right uses wind speed from a 

wind mast. The points in the plot using local wind speed are more concentrated and fit 

better to the nominal power curve when compared to the other plot.  

 

Figure 22. Example of comparison of scatter plots of speed-power relationship using 

wind speed from turbine anemometer (left) and wind mast (right) ( Wind farm L, 

WTG17)[131]. 

As shown in Figure 2a in the Appendix-A, the selected SCADA data sees some 

stoppage of every turbine during the 6 month period. WTG 2, 3, 4, 5, 7, 15, 16, 19, 20 

and 27 have obvious curtailment at one power level (mostly at just below 2000kW and 

others at around 1000kW and 1500kW). WTG 6, 10, 11, 12, 13, 14, 18, 21, 22, 23, 24, 

25 and 26 have obvious curtailment at two different power levels (mostly one at 

2000kW and the other at 1500kW or 1000kW). WTG 1, 8, 9 and 17 don’t have any 

obvious periods of curtailment. Attention is paid to WTG8 whose power curve fits 

well with the nominal power curve. This result is in contrast to the abnormal 

performance apparent of WTG 8 in time series analysis. 
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3.2.5 Overall diagnosis 

The overall diagnosis combines the above methods to identify turbines with anomalous 

performance. In general, if a turbine shows abnormal behaviour in animation and the 

calculated time series for yaw, but has a normal power curve, the turbine is diagnosed 

as having a turbine nacelle direction sensor error. In contrast, if a turbine shows abnormal 

behaviour in animation and time series, and has a significantly reduced power curve, 

the turbine is not considered to have a turbine nacelle direction sensor error, but rather, 

to be suffering from some form of yaw control problem. 

Table 11 shows a comparison of the results from the statistical analyses of the time 

series and results from the calculated power curves. As stated above, every turbine has 

periods with invalid value (NaN) errors indicated (“Intf shut” and “I/O Timeout”) 

taking around 1075 time stamps (approximately 3% of entire operation time). For easy 

reading, the column under “No.NaN” shows the number of invalid values in 

comparison of 1075. WTG 8, 7, 5, 6, 4 and 26 have “0” degree of direction for over 

200 time stamps, which can also mean invalid values, as already discussed in previous 

section. Therefore, recommendations have been made to the maintenance team to 

check and confirm the “0” degree which is largely suspected to be a state of shut down 

(planned or unplanned) or loss of communications for WTG 8, 7, 5, 6, 4 and 26, and 

to investigate any extensive occurrence of invalid values. 

Every turbine shows yawing stoppage at different times in the animation. As listed in 

Table 11, WTG8 has the longest stoppage at “0” degree taking 48.8% of the entire 

time period. WTG 1 has the 2nd longest stoppage taking around 28% time at the 
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nacelle yaw position of 213.3 degree. Even the shortest stoppage takes 2.5% of time 

(WTGs 23 and 13). 

Table 11. The comparison of the potential problematic turbines from animation, time 

series and power curve with 6-month SCADA from wind farm T 

Turbine 

No. 

No. NaN 

(±1075) 
No. 0 

No. Yaw Activity Curtailment 

Levels Direction(°) Stamps Percentage (%) 

1 4 2 213.3 9473 27.9 0 

2 1 4 103.9 3030 8.9 1 

3 0 4 146.7 1887 5.6 1 

4 -1 409 199.7 2875 8.5 1 

5 0 529 228.4 3530 10.4 1 

6 -1 525 271.4 3530 10.4 2 

7 0 528 273.9 3530 10.4 1 

8 2 16539 0 16539 48.8 0 

9 1 3 187.5 1331 3.9 0 

10 4 4 230.1 3463 10.2 2 

11 0 6 224. 9 4606 13.6 2 

12 2 2 23.7 3403 10.0 2 

13 -1 3 167.7 854 2.5 2 

14 0 4 199.1 2728 8.0 2 

15 1 3 156 1512 4.5 1 

16 0 4 190.2 1742 5.1 1 

17 2 3 222.8 6968 20.5 0 

18 1 5 180.5 6454 19.0 2 

19 1 3 190 7899 23.3 1 

20 -1 4 319.7 4679 13.8 1 

21 0 3 168.1 4439 13.1 2 

22 1 4 173.1 3744 11.0 2 

23 -1 5 143.5 853 2.5 2 

24 0 4 285.7 5593 16.5 2 

25 0 6 194.3 3023 8.9 2 

26 0 265 185.2 2172 6.4 2 

27 0 20 286. 9 2516 7.4 1 

Without curtailment flag available in the SCADA data provided, it can be observed 

from the time series that most of the turbines have 2 curtailment levels apparent from 

the power curve analysis, whereas WTG 1, 8, 9 and 17 have no curtailment. WTG 2, 

3, 4, 5, 7, 15, 16, 20 and 27 have 1 level of curtailment. This curtailment is understood 

to be for operational reasons rather than power system constraints. 

WTG8 seems to have been out of operation for most of the time, and this is reflected 

in its low availability and capacity factor. However, it has a reasonable power curve 
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when it is in operation. From the power time series, it finishes its shut-down and 

operates well at the end of the selected investigation period. It is not known what the 

operational fault was but clearly it has been fixed and no further attention is required. 

With all the information combined, WTG 1, 17 and 19 show a significant mismatch of 

the animation/time series and the power curve, where the former shows abnormal yaw 

performance but the latter shows reasonable power curves. WTG 2, 12 and 20 also 

show not so dramatic but still visible mismatch of the two. Therefore, these turbines 

have been recommended to have their turbine nacelle direction sensor errors checked. 

3.2.6 Conclusion 

Since the “yaw angle” in the SCADA data is sensed by the wind turbine nacelle 

direction sensor rather than the actual yaw direction fed in the control system, some of 

the apparent yaw errors are actually nacelle direction sensor errors without power 

production loss. These false yaw errors confuse the failure rate recording, and therefore 

are needed to be filtered out before the analyses undertaken in Chapter 4, 5 and 6. This 

section has provided a methodology of identification of yaw and nacelle direction 

sensor errors in comparison of power production. It draws on the results of animation 

of the yaw direction, time series of yaw angle, time series of power output and the 

power curve analysis. It provides methods useful for both engineers and non-technical 

staffs to recognize and diagnose nacelle direction sensor (or display) errors and other 

issues within wind farm T. 

For having a general understanding of this main offshore wind farm investigated in 

this thesis, turbine environment statistics such as a wind rose and the Weibull 

distribution of local wind speed have been presented. Wind farm operational statistics 
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such as turbine availability, capacity factor, array efficiency and turbine operational 

rate are also calculated. These statistics not only present the basic operational status, 

but also provide basis for future wake analyses. 

Specific turbines have been suggested to be inspected with particular attention to the 

nacelle direction sensors. The displayed “0” degree values should be investigated to 

assess whether this is a further sensor, data collection or communication issue.   

The met mast data is important for the research and is not provided by the operator for 

this wind farm. In the future, the met mast data is expected to be provided and analysed 

with turbine data. Data with higher frequency (i.e. shorter record interval) is also 

expected to be helpful for accurate analysis and diagnosis. It is a beneficial basis for 

further study of wake losses. It would also be most useful to have data on the yaw error 

as measured by the nacelle wind vanes.  
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3.3 Yawing error and turbine nacelle direction sensor error identification for 

offshore wind farm L 

Wind farm L is an established operational offshore wind farm that uses the same type 

of wind turbines as in wind farm T. It has the advantage, from an analysis point of 

view, of a longer operational time (3 years) and a more comprehensive data set, 

including met mast data, than the newly commissioned wind farm T. This makes it 

useful to investigate wind farm L with regard to yaw and turbine nacelle direction 

sensor errors. This section enriches the main methodologies outlined in section 3.2, 

with additional approach that applies correlation analyses and examines wake losses 

which helps to identify nacelle direction sensor errors by using turbulence information. 

In this section, 10 minute SCADA data are used for the entire wind farm of 48 turbines, 

covering at total of 69115 time stamps. To maintain data confidentiality, the actual 

time period covered by the data is not disclosed. All time series are plotted in terms of 

the time stamp number. Over 80% of the time stamps show at least one error code -

999. These data are removed. The data is further filtered to remove all those data points 

with wind speed lower than 6m/s (slightly higher than the cut-in wind speed) to ensure 

that the wind turbines are generating meaningful power. After this process, the total 

length of data remaining is 10543. Even though in theory the removal of this amount 

of data may incur large steps of data value changes, the result from later analysis shows 

a rather smooth data trend (can be observed from Figure 27 in Section 3.3.5). 

3.3.1 Animation of wind farm L 

Following the time series animation method described in Section 3.2, static angle 

investigation in this section makes use of animations showing apparent yaw direction 
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dependent on wind direction. This provides a general view of the manner in which the 

turbines respond to wind direction changes.  

In the static angle analysis animation, the basic layout of the whole wind farm is kept 

and all the filtered SCADA data are sorted into 1 degree bins as given by the met mast 

wind vane.  For each wind direction bin, the mean turbine directions and their standard 

deviations are calculated. The total achievable direction range is from 20 to 339 degree; 

however, considering the prevailing wind direction of this area, the analysed direction 

range focuses on the range from 190 to 330 degrees.  

Figure 23 is a snapshot of the animation when the wind direction is 257 degrees. The 

turbines and the wind mast are represented by black dots. The arrow in red at the left 

bottom corner dot representing the wind mast is considered as the wind incoming 

direction, and the blue arrows of each turbine represent the turbine facing directions—

ideally opposite to the wind incoming direction.  

 
Figure 23. Snapshot of animation for nacelle direction dependent on wind direction in 

1 degree steps with SCADA from wind farm L 
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The green number shown on the right bottom of each dot (each turbine) is the turbine 

serial number. The black number on the right top of each dot is the number of SCADA 

invalid values (-999) of each turbine that have been removed in the stated general data 

removal stage at each wind incoming direction. These removed time stamps are not 

taken into account in the calculations but it is useful to be aware of them. The error bar 

of each dot indicates the standard deviation of the mean direction of each turbine at 

each wind incoming direction.   

For the wind mast, the number of data points used in calculation of the mean wind 

direction value for each direction step is shown in words under the wind farm map (33 

in this case). Since the number of SCADA invalid values and the data sorted in each 

direction bin are different, the number of data for each direction bin is usually different.  

As a result, the static angle analysis animation sees some turbines having abnormal 

average yaw performance, and most turbines show a significant standard deviation, 

particularly for certain wind directions, suggesting appreciable average yaw errors. 

WTG42 and WTG45 show very different average yawing directions compared to other 

turbines and the wind direction at the met mast constantly. This result is confirmed by 

the time series animation, where WTG45 shows poor direction match almost all the 

time, while WTG42 behaves normally most of the time but abnormally for 

approximately the last 10% of the time.  

3.3.2 Basic analysis tools and theory 

In addition to the methodology introduced in Section 3.2, two further mathematical 

tools are introduced here. These tools support investigation from a more analytical 

perspective.  
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3.3.2.1 Cosine-cubed law 

Cosine-cubed law [133] provides a reasonably accurate and simple analysis of wind 

turbine yaw performance. It describes the relationship between the yaw angle and the 

power output: 

 𝑃𝑦𝑎𝑤 =  𝑐𝑜𝑠3(𝛿) ∙ 𝑃 (3) 

where δ is the yaw angle and P is the wind turbine power with flow perpendicular to 

the rotor.  

This expression provides a reasonable estimation of how yaw error affects the power 

output. If there is a large difference between the nacelle yaw direction and the wind 

incoming direction measured at the met mast, according to this equation, the power 

output should be correspondingly high; if the power output measured from the turbine 

tends to be close to the nominal power output, it is then suspected that there is a nacelle 

direction sensor error rather than an actual yaw problem. 

3.3.2.2 Correlation analysis of direction time series 

Correlation analysis makes use of the cross-correlation and auto-correlation functions. 

This method provides a statistical view of the time series characteristics that proves to 

be useful in the study of turbine yawing performance. Cross-correlation describes the 

correlation between wind turbine yaw direction and wind incoming direction measured 

from the met mast and indicates the extent to which the turbine follows wind direction 

changes and any significant time delays in the response. The auto-correlation 

investigates the correlation of the turbine direction with itself as a function of time lag 

and provides an indication of how dynamically active the turbine yawing is.  
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The expression of cross-correlation coefficient [134] can be considered as a general 

correlation function. With different input vectors, this equation can generate the cross-

correlation or the auto-correlation function.  

 𝑐𝑜𝑟𝑟(𝑥, 𝑦) =
1

𝑁 − 1
∑

(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝜎𝑥𝜎𝑦

𝑁

𝑖=1

 (4) 

where N is the total vector length. (x and y must have the same length).  

When x and y are the same vector input, this equation becomes the auto-correlation 

function. The auto-correlation of yaw direction describes how quickly the yaw 

direction changes with time. If for a short time lag, the coefficient drops dramatically, 

this means there is no longer any significant temporal correlation and the yaw direction 

is then considered to have changed significantly over this time scale. Comparing the 

auto-correlation of yaw direction for each turbine and of wind direction from the met 

mast gives an indication of the turbine yawing speed in response to changes in wind 

direction. Excessively fast yawing could indicate a potentially faulty yaw control.  

The cross-correlation function for each turbine has a same vector input—the wind 

incoming direction measured by the met mast. Considering the wake effect, turbines 

in each row and at different positions have a certain time lag between each other, but 

the general shape of the correlation function curve should be similar. If some particular 

turbines have very different curve shapes from the remainder, they are considered to 

have potential yaw problems or nacelle direction sensor errors. To avoid the impact of 

the rotational wind direction on data analysis, i.e. from 359° to 0° (360°), a de-trending 

process has been applied to the wind direction data before the correlation analyses in 

this section, presented in Section 3.3.5. 
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The potentially problematic turbines can then be investigated in term of power output. 

If the power output is close to the nominal expected value, this turbine is considered 

to have turbine nacelle direction sensor error. 

3.3.3 Turbine time series 

Time series analyses are undertaken for suspected turbines identified by the animations. 

From the animations, WTG45 and WTG42 show abnormal performance; thus in this 

section, emphases are made on these two turbines with a selected reference group of 

WTG43 and WTG44. 

Figure 24 shows the direction time series of WTG42, 43, 44 and 45, and the wind 

measured from the met mast. The legend on the right applies to both graphs. From the 

figure, WTG43 and 44 show a good agreement with the wind direction from the met 

mast. WTG45 shows a consistent direction offset for all time stamps. WTG42 shows 

a direction offset at the last 7% of the time stamps. As shown in Figure 24 (right), 

WTG42 (in green) shows a higher direction range after 0.98×104 time points and wider 

direction range with lower direction reaching 200 degree after 1.04×104 time points.  

  

Figure 24. Direction time series of WTG42 to 45 and the wind at the met mast using 3-

year 10-min SCADA from wind farm L with full length (left) and last 7% time series 

(right) 
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The relevant mean direction values are listed in Table 12. It shows that WTG45 has an 

offset of -53 degrees, and WTG42 has an offset of 31 degrees for the last 7% of the 

time, compared with the wind direction. WTG43 and WTG44 display a similar yaw 

direction to the wind, thus if WTG42 and WTG45 have yaw problems, they will show 

different power output from WTG43 and WTG44. This is investigated in Figure 25, 

which shows the power time series of WTG42 to WTG45 and indicates that all 4 

turbines have similar power outputs. The legend on the right applies to both graphs. 

The last 7% time series on the right of Figure 25 clearly shows the consistency of the 

trends of all 4 turbines. 

Table 12. Mean direction of WTG 42-45 and wind in whole time stamps and of WTG42 

in last 7% time stamps from wind farm L 

Device 
WTG42 

WTG43 WTG44 WTG45 Wind 
Entire time last 7% time 

Direction(°) 270 305 279 261 221 274 

 

  

Figure 25. Power time series of WTG42 to 45 using 3-year 10-min SCADA from wind 

farm L with full length (left) and last 7% time series (right) 

 

It can be concluded that WTG42 and WTG45 suffer from poorly aligned nacelle 

direction sensors, for all or part of the time period examined.  
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3.3.4 Wake losses alignment test 

Wind can come from different directions depending on the prevailing weather systems 

and perhaps terrain features. In theory, when wind blows along the line of two turbines, 

the one behind suffers a wake loss in that it is operating in the reduced velocity wake 

of the first turbine, and thus has the lower power output. One way to identify a potential 

yaw problem or sensor error is to compare the measured wind incoming direction when 

the highest wake loss occurs with the theoretical geometric alignment of the two 

turbines. If the two angles match within a sensible resolution, the turbine of study is 

regarded as healthy; otherwise the turbine is suspected to have yaw problem or turbine 

nacelle direction sensor errors [135]. The wind incoming direction is measured from 

the turbine nacelle direction sensor at the nacelle of each turbine, so there is still a 

potential nacelle direction sensor error occur when theoretical and geometric direction 

do not agree. It needs further investigation such as power output time series. This 

analysis is practical not only to identify a potentially problematic turbine, but also to 

obtain the misalignment angle.  

In this analysis, WTG43, 44 and 45 are located directly next to WTG48 but at different 

angles and without any other turbine in between. This does not apply to WTG42. 

Therefore this analysis only investigates WTG43, 44 and 45 with WTG48 as the 

reference turbine, as shown in Figure 26. 

The relative power outputs of WTG43, 44 and 45 are plotted against wind direction 

measured at each turbine, so the curves present actual relative power with the same 

basis of WTG48. Figure 26 marks the measured wind direction of each turbine at 

which the largest power loss occur. In theory, when wind comes in the line of WTG48 
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and the turbine of study, the power loss should be maximum, thus it should show a 

point with minimum value in the power output plot as a function of wind direction.  

 
Figure 26. Relative power output of WTG43 to 45 compared with WTG48 against wind 

direction using 3-year SCADA from wind farm L 

The theoretical geometric and measured alignment directions are listed in Table 13. 

WTG44 and WTG43 show fair agreements with the theoretical direction listed in the 

table, with offsets of 2˚ and 17˚ (this can be the product of the wake effect), 

respectively. WTG45 shows a deviation of 68˚, and this indicates a significant yawing 

problem or sensor error. 

Table 13.  The wind direction when the highest relative power losses occur in theory 

and reality in wind farm L 

Turbine WTG43 WTG44 WTG45 

Theoretical geometric wind direction(˚) 256 301 181 

Power output measured wind direction (˚) 272 302 249 

Offset (˚) 17 2 68 

3.3.5 Correlation analyses 

The correlation analysis aims to investigate how quickly the yaw direction responds to 

changes in wind direction. In a wind direction time series, environmental conditions 

such as passing weather systems can result in a long term trend of direction increase 
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or decrease. This low frequency (seasonal) fluctuation of the direction time series is 

not of interest for the short term (up to an hour) correlation analysis, but has the 

negative influence that this common trend increases the correlation and lowers the 

resolution of this research.  

To eliminate the impact of this low frequency trend of the direction change and remove 

the problems caused by repeated rotations, the data has been de-trended as follows. 

Taking points in time order, the second time when 0 degrees occurs, it and all angles 

after it have 360 added; the third time when 360 degrees occurs, it and all angles after 

have a further 360 added, and so on. The resulting direction time series is shown as 

the upper plot in Figure 27. A process of de-trending is then applied to it by deducting 

a least squares linear fit, with the result as shown in the lower plot of Figure 27.  

After this angular pre-processing, the long term trend has been removed. The direction 

data can then be used to calculate the short term correlations.  

 
Figure 27. Example of direction time series pre-processing using SCADA from wind 

farm L: circularly adding-up for direction angles (upper), and de-trended angles 

processed from the circularly added directions (lower) 
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3.3.5.1 Autocorrelation 

The autocorrelation function has been calculated for the de-trended direction time 

series for selected wind turbines WTG42 to 45 and the wind measured by the met mast. 

It indicates how quickly the direction changes in time with high values indicating high 

persistence, i.e. slow changes.  As shown in Figure 28 where the first 700 lags are 

presented, the yaw direction of WTG45 (blue solid curve) decreases much more 

dramatically than the others and even more rapidly than the wind (red dashed line) 

over all time lags from the time lag around 460 onwards. Other turbines show 

smoother/slower trends for yaw angle than the wind as would be expected as most yaw 

controllers are design to respond to time averaged wind direction signals to reduce the 

amount of yaw activity. The suggestion is that turbine WTG45 is yawing excessively, 

perhaps due to noise in the yaw error signal (regrettably not available in the SCADA 

data set), or noisy turbine nacelle direction sensor. 

 
Figure 28. Autocorrelation of time series of WTG42 to 45, and wind measured from 

the met mast using 3-year SCADA from wind farm L 
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3.3.5.2 Cross-correlation 

The cross-correlation shows how quickly the yaw direction of selected wind turbine 

changes relative to the wind direction measured at the met mast, as shown in Figure 

29 where the first 500 time lags are presented. Because of the different location of each 

turbine in the wind farm and the wake effect, the turbine yaw responding time to the 

wind at the met mast is not the same. This explains the different cross-correlation 

coefficient ranges of these turbines. All turbines are in the same cross-correlation curve 

range except WTG45 which shows obviously lower coefficient than others at all time 

lags selected.  

 
Figure 29. Cross-correlation diagram of WTG42 to 45 dependent on wind measured 

from the met mast using SCADA from wind farm L 
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the met mast. A nominal power curve from the manufacturer for this type of turbine is 

also plotted.  

As shown in Figure 30, all four turbines show fair agreement with the nominal power 

curve from the manufacturer (red curve). Between the cut-in speed and the rated speed, 

all four curves have high correlations to the manufacturer’s curve. After the rated speed, 

potentially because of the de-rated operation, there are drops of the power output at 

certain wind speed. Despite of this, all four turbines show a high similarity of the power 

drop and this similarity also shows on the standard deviation. Furthermore, the 

standard deviation shows high values just above the rated wind speed and at very high 

wind speed where mostly the power drops occur. These high standard deviation values 

might suggest insufficient data in the bins. This indicates that WTG42 and WTG45 

have normal power output dependent on local wind speed. Since turbine WTG45 has 

a respectable power curve, the earlier indications of yaw performance problems most 

likely indicate a noisy nacelle direction sensor, although excessive yaw activity cannot 

be ruled out as this could be consistent with good power production. 

 
Figure 30. Power curve of WTG42 to 45 and nominal power curve from the 

manufacturer in wind farm L 
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3.3.7 Conclusion  

Yaw effectiveness is an important consideration for good wind turbine operation; large 

yaw errors lead to power loss and higher fatigue loads, impacting both reliability and 

cost effectiveness. Further steps such as the maximisation of power output and the 

reduction of the wake effects are also of research interest in the context of improving 

wind farm operation. This study has shown that it is important to distinguish turbine 

nacelle direction sensor error from actual yaw problems that degrade power production, 

and methods to do this have been proposed.  

In this section, the relatively long operational record for offshore wind farm L provides 

the opportunity of using additional mathematical techniques to those presented in 

section 3.2. To identify the potential problematic turbines in this wind farm, two types 

of animations are made. The animations are the tools that enable rapid focus on the 

potentially problematic turbine(s), even for a large wind farm. From these animations, 

WTG42 and WTG45 are found to have abnormal performance. Detailed time series 

analyses are then applied to these two turbines and compared with a reference group. 

The wake loss alignment test is an indirect method to explore direction measurement 

issues and provide misalignment angles. 

The correlation analyses investigate the dynamics of turbine yawing. An angular pre-

processing method is applied to the original direction data in order to remove the effect 

of long term trend.  
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A comparison of power curves is then made from data of WTG42 to 45 and the 

nominal power curve from the manufacturer. From this comparison, WTG42 and 

WTG43 show normal power outputs along with the local wind speed.  

From these technical analyses, a conclusion can be provisionally drawn that WTG42 

and WTG45 have turbine nacelle direction sensor errors and actually behave normally 

in terms of yawing and power generation. The analyses suggest that WTG45 is 

regarded to have a mean bias of -53.7 degree of all time and also has a noisy sensor as 

indicated by the low correlations and WTG42 is regarded to have a mean bias of 30.6 

degree for the last 7% time. 

The techniques in this section taken together enable yawing problems and sensor errors 

to be distinguished. The failure data used in next chapters are therefore filtered in this 

manner.  
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Chapter 4 Offshore wind turbine component reliability 

After having the wind farm operating status investigated and the failure data filtered 

with the methodology developed in Chapter 3, this chapter starts the wind turbine 

reliability analysis based on these failure data. The failure rate of a wind turbine 

subsystem or component is key to any wind turbine reliability analysis, and to the 

assessment of the cost effectiveness of condition monitoring in Chapter 5 and 6.  

The only failure data for wind turbines accessible in this thesis is from onshore, not 

offshore. Under this situation, this chapter introduces an innovative methodology 

applied to an onshore/offshore failure rate translation. This methodology has avoided 

the unreliable direct Kernel fitting used by other research, but developed a cumulative 

probability distribution (CPD) method with more credible fittings. Fitting functions 

have been compared in goodness, and one function with best fit has been chosen. The 

methodology has a wide potential of applications, among which an offshore wind 

turbine subsystem risk priority number (RPN) has been calculated from accessible 

onshore rankings. Even though the CPD method has largely improved the credibility 

of the translation, the limited length of the onshore failure rate has affected the 

accuracy of the translation results. Therefore, the methodology developed in this 

chapter has rather provided a train of thought in failure data translation and can be 

assessed and improved when more data are available. 

This translation has also been applied to the cost modelling with condition monitoring 

in Chapter 5 and Chapter 6. Again, although not all subsystem failure rates have an 

accurate translated value; it has provided a train of thought of improving the failure 
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rate input from purely assumption or direct use of onshore data to offshore ones. 

Detailed description can be found in Chapter 5 and 6.          

4.1. Component failure rate translation from onshore to offshore  

The concept of translating the failure rate from onshore to offshore has been initially 

developed in the Wind CDT in University of Strathclyde by directly fitting a Kernel 

function to the failure rate likelihood in format of probability distribution function 

(PDF) and calculated the failure rate probability by dividing it with the probability of 

the environmental factor [136]. Because of the limited length of onshore failure rate 

data, the direct Kernel fitted PDF can hardly represent the generic onshore failure rate. 

It therefore results in limited the accuracy of the translation.  

The failure rate translation developed in this chapter has followed this concept and 

applied a CPD method with a standard Bayes theorem to improve the genericity of the 

failure rate probability distribution. The core calculation is of the ratio of the 

expectation of the failure rate, offshore to onshore. The expectation of the failure rate 

is dependent on the prevailing environment.  

Research into wind turbine reliability provides evidence of the effect of a maritime 

environment on failure modes and highlights the importance of undertaking further 

research in this field. [137] provides an overview of the available databases from 

German and Scandinavian wind farm projects. From this data, information on the most 

critical components and subassemblies, i.e. the ones that fail most frequently and/or 

cause the most downtime, can be established. A number of factors have been identified 

that could influence the failure frequency, modes, causes and cascading effects of the 

turbines. These are: 
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- Weather 

- Coupled wind and wave loading 

- Turbulence and wake effects  

- Maritime atmosphere 

- Marine bio-fouling 

- Ice flows 

A link has been established between wind speeds and the level of failure experienced 

of wind farms. The most recent series of analyses into this phenomenon [138], used 

the Scientific Measurement and Evaluation Programme (WMEP in German) of failure 

from three onshore sites with homogenous turbine types and weather data from those 

locations. The study extends previous investigations which use the database and finds 

a significant level of dependence of failure rates on weather patterns using cross-

correlation methods. The study was able, to some extent, to identify the root causes of 

failure for both electrical and mechanical systems and considered wind speeds, 

humidity and turbulence. The study fell short of establishing a strong link other than a 

connection between one site’s electrical failures and temperature; both mechanical and 

electrical failure was related to turbulence at another site, and electrical failure to 

humidity. None of these correlations were based on the data detected at more than one 

site. With reference of this study, this thesis considers onshore wind turbine failure 

rate for an extensive wind farm to explore the change in risk to wind turbine 

components. 

Offshore turbine structures are subjected to loading from both wind and wave. The 

coupled wind and wave cyclical loadings on structures that support wind turbines are 

higher than on similar structures for traditional oil and gas installations [139]. In order 

to predict the largest waves for the design loads, a return period of 50 years is assumed. 
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However, loads on the turbine structures can increase beyond the 50 return period 

design load when in the wave breaking zone as noted by [140], in their demonstration 

of a solver to replicate the loads of offshore wind structures due to breaking waves for 

shallow water sites.  

Failure of the structure can occur if the single extreme event loading exceeds the design 

loads or if a series of events induce fatigue loading. Failures that could occur from 

extreme overturning moments are deformation or collapse of the structure, causing 

complete and catastrophic loss of function and turbine. 

Turbulence of the site is a key parameter in the fatigue loadings of wind turbine 

particularly for offshore wind farms where the majority of turbulent air flow originates 

from the wakes of other turbines. One of the studies of the effects of wakes on fatigue 

loading at the Vindeby wind farm, [141] explores the relationship between loading on 

components in the turbine, turbulence intensity brought on from other turbines and the 

ambient turbulence intensity. An aero elastic model was used to estimate the wind 

loads and it was found that fatigue loads increase 5% and 15% for a wind turbine 

within an array and a complete wind farm, respectfully, from a base line (a turbine in 

non-wake low turbulence free flow). Despite the importance, in this thesis, however, 

wind speed standard deviation is not available for the turbulence study.  

In a more recent study by the National Renewable Energy Laboratory (NREL) an aero-

elastic code FAST was used to model two 5MW turbines seven rotor diameters apart. 

Both the structural response and the blade bending moment were calculated. It was 

found that for the in-plane blade moment, there was a reduction in the damage 

equivalent loads in the downstream turbine due to reduction in wind speed for both 
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onshore and offshore wind cases. In the out-plane blade moment however, with 

onshore there is a reduction in damage equivalent loading and offshore there is an 

increase. This anomaly is also seen in the low speed shaft torque [142]. 

With cooperation of the operator of the large onshore wind farm W, fault reports 

covering a 3-year period have finally been made available and investigated in this 

thesis. The only accessible environmental time series data for both onshore and 

offshore sites, wind speed and temperature, are taken from the SCADA of onshore 

wind farm W and from offshore wind farm L. 

This is not to say that there are no other factors that influence failure rate, but if that 

data was available, it could be included in a similar manner, e.g. wind turbulence 

(significant but not available for this thesis).  

This method can be expanded to wind farms using the same type of wind turbine, 

amended and supplemented by different turbine types in future work. 

4.1.1 Calculating the ratio of the expectation of the failure rate 

The core calculation in the failure rate translation is the failure rate expectation 

dependent on the selected environmental factor, denoted 𝐸[𝐹𝐸]. The environmental 

factor subscript E represents both the wind speed U and temperature T for the 

corresponding separate calculations. The failure rate probability given the 

environmental factor, P(F|E), is derived per turbine per year. This failure rate 

probability is multiplied by the environmental factor probability distribution p(E). The 

equation is shown below. 
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𝐸[𝐹𝐸] = ∫ 𝑃(𝐹|𝐸) ∙ 𝑝(𝐸)𝑑𝐸

+∞

−∞

 
(5) 

Assuming that the probability distributions of the environmental factors (wind speed 

and temperature is this case) are available both on and offshore, the ratio of expected 

failure rates can be expressed as: 

 
𝑅𝑎𝑡𝑖𝑜𝐸 =

𝐸𝑜𝑓𝑓𝑠ℎ𝑜𝑟𝑒[𝐹𝐸]

𝐸𝑜𝑛𝑠ℎ𝑜𝑟𝑒[𝐹𝐸]
 

(6) 

This assumes the expectations are linear and the ratio calculated is a single value, 

which is not the case in reality. This simplified mathematical model has provided an 

initial attempt of translating failure rate from onshore to offshore by expectations, and 

needs to be improved into a more complicated model.  

4.1.2 Failure rate probability distribution 

The wind turbine component failure rate probability is one of the core elements in the 

expectation calculation. According to Bayes’ rule [143], shown in Eq.7, the probability 

of failure rate dependent on the environmental factor P(F|E), considered as the 

posterior probability in Bayes’ rule, is calculated from the product of the probability 

of the environmental factor given failure rate (the likelihood), P(E|F), multiplied by 

the annual mean failure rate of the selected turbine component, 𝑃(𝐹)̅̅ ̅̅ ̅̅ ̅ , which is 

considered as the prior probability in Bayes’ rule for simplicity (which was neglected 

in [136]), and divided by the environmental factor distribution, P(E).  

 𝑃(𝐹|𝐸) =
𝑃(𝐸|𝐹) ∙ 𝑃(𝐹)̅̅ ̅̅ ̅̅ ̅

𝑃(𝐸)
 (7) 
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The probability of environmental factor given failure rate is the information which can 

be directly obtained from failure record of the wind turbine operational data, where the 

failure type, location, date and the corresponding daily averaged weather statistics are 

recorded. It is important to note that the value used for wind speed and ambient 

temperature is the daily mean value since it is accepted that the impact of the 

environment on failure is not instantaneous. One-day averaging may well be 

insufficient and in future work, longer averaging periods should be investigated. 

4.1.2.1 Fitting a suitable function to the failure probability distribution 

The probability of the environmental factor given failure rate P(E|F) is one of the core 

variables in the failure rate probability dependent on the environmental factor P(F|E) 

calculation. The fitting of the data set for P(E|F) directly affects the accuracy of P(F|E) 

calculation. As introduced in previous chapters, the length of actual failure data is 

limited. This fact lowers the applicability of the estimated P(E|F). In order to obtain a 

reasonable failure rate probability dependent on the environmental factor P(F|E), a 

fitting process is developed and studied here to obtain a generic probability of the 

environmental factor given failure rate P(E|F).  

The common approach to estimate curves for the probability density function (PDF) 

is by using a non-parametric estimate of the density function, such as the Kernel 

function [144]. Although these fitted distributions look reasonable, as an example 

shown in Figure 31, for the limited size of the raw data, the records cannot cover all 

wind speed values. For some wind speed bins, high fault rates are apparent. These 

unexpected spikes most likely only reflect the limited data available, and are not 
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generic. This limitation lowers the precision of the distribution Kernel fit. It is difficult 

to derive smooth and reliable probability distributions through this method.    

 
Figure 31. Failure rate histogram (left axis) and normalized probability (right axis) 

Kernel fitted distribution of drive train system in the onshore wind turbine from wind 

farm W 

In order to obtain a smoother and more reliable distribution curve, a procedure related 

to cumulative probability distribution (CPD) has been applied in this research. This 

procedure finds a fit to the cumulative probability distribution of P(E|F) and then 

differentiates the result to regain the desired probability distribution function.  

The first attempt of the fitting function of the CPD in this example is a 2nd order 

polynomial function, as shown in Eq.8, where a and b are the parameters required for 

the derivation of the function. The derivative of the fitted CPD function is the P(E|F), 

as shown in Eq.9. The CPD fitting function is derived from the actual data, and the 

differentiation function is the standard function substituted for the parameters obtained 

from the fitting function. 

 
𝑓𝑝𝑜𝑙𝑦2 = 𝑎 ∙ 𝐸2 + 𝑏 ∙ 𝐸 + 𝑐 (8) 
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 𝑃(𝐸|𝐹) =
𝑑𝑓𝑝𝑜𝑙𝑦2(𝐸)

𝑑𝐸
= 2 ∙ 𝑎 ∙ 𝐸 + 𝑏 

(9) 

The 2nd order polynomial function has suitable characteristics for the ascending curve 

with a flexible tangent.  It provides reasonable fitting to the data and is easy to 

differentiate. However, the disadvantage is that the curve extends (extrapolates) at the 

two ends with high-value tangents, which creates significant error in the fitting of the 

tails to the original curve. This error will have exaggerated impact when differentiation 

is applied. 

An alternative fitting function is a variation of exponential, as shown in Eq.10. In this 

equation, a, C and k are the parameters required for differentiation, as shown in Eq.11. 

The fitted exponential has well defined asymptotic behavior towards 0 and 1. The 

variation of exponential function can be derived to reflect this behavior and this makes 

the fitting of the tails much more reliable. The disadvantage of exponential fitting is 

the complexity of the function itself, which increases the difficulty of parameter 

estimation. The goodness of the two fitting functions is further investigated in Table 

16 in Section 4.2.3.   

 𝑓𝑒𝑥(𝐸) = 1 − 𝑎 ∙ 𝑒−(
𝐸
𝐶

)
𝑘

  
(10) 

 𝑃(𝐸|𝐹) =
𝑑𝑓𝑒𝑥(𝐸)

𝑑𝐸
= 𝑎 ∙

𝑘

𝐶
∙ (

𝐸

𝐶
)𝑘−1 ∙ 𝑒−(𝐸)𝑘

 
(11) 

Once obtained from the fitting function, the parameters allow algebraic differentiation 

of the CPD function to give the required PDF function.  

4.1.2.2 Fitting of failure probability distribution dependent on wind speed 

distribution  

Figure 32 shows the staircase curve of the CPD dependent on wind speed (blue) with 

the fitting curves (red and green). The red line shows the exponential function fit, and 
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green dashed line represents the 2nd order polynomial fit. In this figure, the two fitted 

functions show good agreement with the main body of the staircase CPD curve. 

 
Figure 32. Staircase plot of failure CPD fitted by 2nd polynomial and exponential 

function of rotor system in the onshore wind turbine dependent on wind speed from 

wind farm W 

The parameters obtained from the fitting functions are substituted into the expressions 

for P(E|F). The failure rate probability function P(F|E) can then be calculated based 

on Bayes’ rule (Eq. 7). Figure 33 shows the direct Kernel function obtained failure rate 

probability function curve, where a lump at the high wind speed is shown. This lump 

is likely the result of the limited data record and does not reflect an actual functional 

relationship.  

Figure 34 shows the P(F|E) calculated from the exponential fitted P(E|F). It retains 

the basic shape of the long term distribution but avoids the fluctuations in short term. 

Figure 35 (upper) presents the P(F|E) calculated from the 2nd polynomial fitted P(E|F). 

Because of the issues concerned with extrapolation using the 2nd polynomial function, 

as stated above, a further process is applied on the curve which restricts the curve shape 
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within the two vertical bars, as shown in the lower figure in Figure 35. In the absence 

of any other indication, constant value extrapolation has been used outside these limits.  

 
Figure 33. Failure rate PDF with non-fitted (Kernel function) method of rotor system 

in the onshore wind turbine dependent on wind speed from wind farm W 

 

 
Figure 34. Failure rate PDF with exponential fitting function method of rotor system 

in the onshore wind turbine dependent on wind speed from wind farm W   
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Figure 35. Failure rate PDF with 2nd order polynomial fitting function (upper) and 

processed function (lower) of rotor system in the onshore wind turbine dependent on 

wind speed from wind farm W 

4.1.2.3 Fitting of failure probability distribution dependent on temperature 

distribution 

The situation for temperature is slightly different. Unlike wind speed, temperature can 

have a negative value. This is an obstacle to fitting an exponential function to the 

temperature distribution because of the non-negative-x-value nature of the exponential 

function. The curves are offset to the right-hand side of the y axis, fit with exponential 

functions, and shifted back. In this way, the parameters are obtained in the offset stage 

and put in the PDF calculation after the restoration.  

0 2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

wind speed(m/s)

P
ro

b
a
b
ili

ty
 D

e
n
s
it
y

0 2 4 6 8 10 12 14 16
0

0.005

0.01

0.015

0.02

0.025

0.03

Failure probability

Rotor

order

2

wind speed(m/s)

P
ro

b
a
b
il
it
y
 D

e
n
s
it
y



 

Chapter 4 Offshore wind turbine component reliability 

104 

 

Figure 36 shows an example of the staircase curve of the CPD dependent on 

temperature (blue) with the fitting curves (red and green). In this figure, the 2nd order 

polynomial (green dashed) shows a high-value tangent at the high temperature values, 

which reflects its disadvantage stated above. This can be observed at the right hand 

side of the curve. 

 
Figure 36. Staircase plot of failure CPD fitted by 2nd polynomial and exponential 

function for blade system dependent on temperature in the onshore wind turbine from 

wind farm W 

Figure 37 (upper) shows the failure rate probability function P(F|E) based on the 

Bayes’ rule. This figure clearly shows the high-tangent nature of the 2nd polynomial 

function (green dashed line). The high-temperature tail expands far above 1, which is 

not allowed for a probability function plot. Ignoring the illogical tails and zooming in 

on the middle range of temperatures (around 2-15°C), as shown in the lower figure, 

the three methods can be observed agreeing each other to a certain extent. The non-

fitted method shows a peak in failure PDF at around -4 degree, in some agreement 

with the 2nd order polynomial method but with a much higher fluctuation; whereas 

the exponential method shows a peak at around 5-10 degrees.  
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Figure 37. Failure rate PDF with non-fitted, exponential fitting function and 2nd order 

polynomial fitting functions for blade system dependent on temperature (upper) and 

zoomed-in figure (lower) in the onshore wind turbine from wind farm W 

4.1.3 Environmental factor distribution 

The environmental factor distribution is the other core element not only in the 

expectation calculation but also in the Bayes’ rule equation for failure rate probability. 

For maximizing the accuracy with the limited accessible data, some environmental 

factor distributions are from the standard equation, others are elicited from the actual 

data.   
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4.1.3.1 Wind speed distribution 

The wind speed distribution from both on and offshore sites conforms to the Weibull 

distribution. In the Bayes’ rule, the environmental factor distribution P(E), in this case 

the wind speed distribution P(U), is calculated from real onshore data at the selected 

site, to be consistent with and cancel out the effect of the numerator P(U|F) which is 

calculated from real onshore data; whereas in the higher level expectation equation, 

the wind speed probability density distribution p(U) is derived from a standard Weibull 

probability density function for better flexibility and genericity.   

The Weibull probability density function is shown in Eq.12. The shape parameter, k, 

has been assumed to be 2. Since this gives k ∈ [1.6, 3.0] for both onshore and offshore 

sites, according to the standard of the Weibull distribution equation, the scale 

parameter, C, is given by Eq.13 to be within 1%.  
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  (12) 
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

U
C


  (13) 

It is generally understood that offshore wind speeds are higher than those in onshore 

in comparable locations. For simplicity an empirical annual mean wind speed 𝑈̅= 7m/s 

has been assumed to be typical of onshore sites and a mean value of 𝑈=10m/s has been 

set to represent a typical offshore site. Figure 38 shows the Weibull distribution from 

the standard equation of wind speeds for both onshore (black line) and offshore (red 

dashed line). Note that since this is based purely on k and the annual mean wind speed, 

and not data, the probabilities can be interpreted as being for daily mean wind speeds 

and are thus consistent with the conditional distributions derived from operational data.  
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Figure 38. Standard Weibull probability distribution for 7m/s (onshore) and 

10m/s(offshore) annual mean wind speed. 

The wind speed distribution has a general shape of Weibull distribution, and thus a 

Weibull distribution function should be fitted to the data for the site in question 

(presented as a histogram). An example is shown in Figure 39. Histograms are plotted 

from wind speed data from onshore (wind farm W) and offshore (wind farm L). Both 

of them are fitted by the Weibull distribution with the same size of the bins, which 

gives good shaped probability distribution function curves. Compared to the standard 

Weibull distribution function derived from Eq. 12, whose curve shapes are shown in 

Figure 38, the distributions with real onshore and offshore data provide slightly 

different probability range and shapes, as shown in Figure 40. Therefore, it is 

meaningful to offset this difference in the Bayes’ rule by using wind speed probability 

distribution from real onshore data for both the probability of the environmental factor 

given failure rate P(E|F) and the environmental factor distribution P(E).  

Because of the different recording format and therefore different length of the 
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the offshore frequency reaches about 1500. For this reason, the distribution is 

calculated in the probability density function, so it will not be affected by the total size 

of the data. Figure 40 shows a typical relationship between actual onshore and offshore 

wind speed distribution.  

  
Figure 39. Example of wind speed histograms and Weibull distribution fits of data 

from onshore wind farm W (left) and offshore wind farm L (right). 

 

 

Figure 40. Wind speed Weibull distribution function extracted from real data from 

onshore wind farm W (black line) and offshore wind farm L (red dashed line). 
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4.1.3.2 Temperature distribution 

Not like wind speed, the temperature distribution does not follow a specific standard 

distribution function such as Weibull distribution function. In this situation, a Kernel 

function, as used above, is applied to the histogram to obtain the temperature 

distribution; and not like the application of the standard wind speed Weibull 

distribution function for genericity reason, both the Bayes’ rule and the expectation 

function are using real data temperature distribution.  

  
Figure 41. Examples of temperature distribution histograms and Kernel function fits 

of onshore wind farm W (left) and offshore wind farm L (right).  

 
Figure 42. Temperature distribution function by Kernel function extracted from real 

data from onshore wind farm W (black line) and offshore wind farm L (red dashed 

line). 
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Figure 41 shows the temperature histograms from onshore wind farm W (left) and 

offshore wind farm L (right). The probability distributions derived from the histograms 

by Kernel function are shown in Figure 42. Same as wind speed, the lengths of 

recording data of onshore and offshore are not in the same range of magnitude; 

therefore Figure 42 is plotted to compare the probability density of temperature of the 

two wind sites. 

4.1.4 Conclusion 

This section presents an initial analysis that attempts to estimate failure rate 

probabilities for offshore wind turbines based on the onshore values. Even though it 

shows in practice wind speed, turbulence, moisture and corrosive air have the most 

impact on the reliability of offshore wind turbine components, for the limited data 

access, this chapter only applies correction factors dependent on wind speed and 

temperature to the failure rate probability distribution. The correction factors are 

calculated by comparing the failure rate expectations from on and offshore wind farms. 

The failure rate probabilities obey Bayes’ rule. A range of fitting functions are applied 

from the failure rate probability distribution to environmental factor distributions in an 

attempt to obtain the more generic function to make up the limitation of the data 

available.  

A method of using CPD to derive the failure rate probability distribution is developed 

in order to get more generic results. 2nd order polynomial and exponential function 

are proved to fit the failure rate function in order to give a smoother and more generic 

function. Environmental factor distributions are used from both the actual data and 

standard distribution equations for maximizing the precision with the limited data. This 
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method can be packaged and extended to wind farms using same type of wind turbine, 

amended and supplemented by different turbine types in future work. A wide range of 

applications such as FMEA and O&M cost modelling are discussed in the later content. 
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4.2 Translation of onshore FMEA to offshore operational conditions 

It has been increasingly accepted in the industrial field that Failure Modes Effect 

Analysis (FMEA), or a step further, Failure Modes Effect and Criticality Analysis 

(FMECA) is an effective tool for assisting in the identification, evaluation and 

reporting of component failure modes and their severity and impact on systems. FMEA 

has been applied to onshore wind turbines [146]-[150], but fewer has been published 

on offshore wind turbine applications [152][153]. FMEA is generally based on expert 

assessment; however, a metric is in common use known as the Risk Priority Number 

(RPN) that quantifies the risk.  

One of the few existing FMEA applications for onshore wind turbines is available in 

[146]. It provides a list of RPNs for selected onshore wind turbine components and 

applies these RPN values to an offshore setting by estimating correction factors 

calculated from the onshore data. The research behind this research can be traced back 

to [154]. It is an important application and extension of the offshore/onshore failure 

rate translation. 

As stated in Section 4.1, the large onshore wind farm W has been used as the reference 

onshore wind farm, and environmental data from offshore wind farm L has been used 

as the offshore reference site. Although both the wind farms use similar Siemens 2.3 

MW rated wind turbines, it is accepted that turbines for offshore operation are often 

configured differently and may use different components (for example to resist 

corrosion better offshore).  Nevertheless, in the absence of actual offshore component 

failure data, it is considered that a first attempt of offshore rates can be estimated in 

the manner proposed here in which the differences between onshore and offshore 
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operational conditions can be to an extent captured by the differences in ambient 

temperature and wind speed.    

4.2.1 FMEA and FMECA for wind turbine systems in general 

FMEA is driven by the failure mode of the components and then mapping the effects 

throughout the system in tabular form. It is normally used as one of a number of steps 

towards producing an informed maintenance plan. For each component, the functions 

are identified and listed. The FMEA process used here follows the hardware approach 

of the MIL-STD-1629A (1980) standard [151] and scaling tables have been adapted 

for wind turbines.  

The criticality part of the FMECA is introduced through adding a metrics to the FMEA 

with a quantifiable ranking structure to identify the critical failures. A common method 

is through determining levels of severity, occurrence frequency and detectability [S, O, 

D] and multiplying these to establish a risk priority number (RPN). These factors are 

individually rated using numerical scales ranging from 1 to 10. Alternatively, other 

criticality parameters are costs, environment or safety. An example of cost priority 

number (CPN) is given in the last column in Table 14. Once a ranking has been 

established, maintenance and mitigating activities can be added to form part of 

reliability centred maintenance (RCM) schemes. In this research, RPN calculation 

follows the [S, O, D] criteria, as shown in Eq.14.  

 𝑅𝑃𝑁 [𝑆, 𝑂, 𝐷]  = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ×  𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 ×  𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (14) 

In this equation, severity (S) expresses the consequences of component failure, 

occurrence (O) indicates the component failure rate, and detection (D) represents the 
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likelihood of early fault identification.  In this provisional analysis, adjustment of RPN 

values from onshore to offshore conditions is undertaken only with regard to the 

occurrence of faults for a selection of key components.  

Even though RPN is the numerical tool in FMEA, the initial value for S, O and D is 

still based on the expert evaluation. In order to reduce the “subjectivity” of the FMEA 

system, an additional parameter is introduced in [147] to the calculation of the severity, 

occurrence and detectability scale, where a weighting based on expert opinion is 

considered and the values of S, O and D are given as: 

   iii WxWDOS /)(,,  (15) 

In this expression, W is the weight value of the experts, x is the rank and i is the number 

of experts. In order to identify the most significant risks to the turbine, an arbitrary 

threshold value is decided on to identify the failure modes which should receive 

additional improvements.  

It has been found in the research domain that, in most cases, an FMECA is conducted 

and a ranking procedure used, but often referred to as an FMEA. The ranking of 

onshore wind turbine subcomponents for the FMECAs reviewed here are shown in 

Table 14. The RPN numbers cannot be directly compared as the criticality criteria are 

different but the resulting ranks are shown in Table 14. The classification of what 

component fitting into which subsystem is often not fully defined in the journal articles 

and conference proceedings. For example, it is unknown how much overlap there may 

be between the “electrical system” and “electrical controllers.” Generators appear as 

the number one or two most at risk components of the list in most cases. Not all of the 

sources have published the individual severity, occurrence and detection values, but 
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the ones that have, [149] and [152], show that the values found for the generator are 

high in all respects. The blade assembly, electrical and control systems also feature in 

the most critical subsystems but they are interchangeable within the different cases. 

Table 14. Critical ranking for onshore wind turbine components for different research 

criteria 

Evaluation RPN [146] RPN[149] RPN[147] RPN[152] CPN[149] 

Turbine Type 

Rank 

R80 2MW pitch 

controlled  geared drive 
Direct Drive 

2MW variable 

speed geared drive 

2 MW 

geared drive 
Direct Drive 

1 Rotor and Blade 

Assembly 
Generator 

Crowbar 

Protection 
Generator Generator 

2 
Generator 

Control 

System 
Gearbox 

Hydraulic 

System 

Electrical 

System 

3 
Electrical Controls 

Mechanical 

Brake 
Low Speed Shaft Gearbox Blades 

4 
Hydraulics 

Electrical 

System 
Pitch Controller 

Mechanical 

Brake 
Converter 

5 
Gearbox Converter Current Controller  

Control 

System 

6 Grid and Electrical 

Systems 

Tower and 

Structure 
High Speed Shaft  

Mechanical 

Brake 

7 
Yaw System Blades Utility Grid  

Hydraulic 

System 

8 
Pitch Control System 

Pitch 

Mechanism 
Generator  

Yaw 

System 

9 Tower, Foundations, 

Nacelle 
Main Shaft Turbine Rotor  

Tower and 

Structure 

10 
Mechanical Brake Other Parts Blade Assembly  

Pitch 

Mechanism 

11 
Main Shaft 

Hydraulic 

System 
Transformer  Main Shaft 

12 
 Yaw System 

Frequency 

Controller 
 Other Parts 

Among all the references listed, the ReliaWind project in [146] was a Framework 

Program 7 funded EU project that was run between component manufacturers, 

research institutions, wind turbine manufacturers and operators in order to increase the 

reliability of wind turbines. Work Package 2 was to develop a complete reliability 

model of a generic wind turbine using information from the project partners. The 

Whole System Reliability Model was constructed from a reliability block diagram 

(RBD) and FMECA. The reliability information was sourced from common reliability 

references and information from project partners. This thesis mainly follows the 
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onshore RPN results from the ReliaWind project, not only because the turbine type 

and list of components are close to the turbine in this research; but also because the 

ranking evaluation in the project comes from prestigious experienced experts in this 

research area. 

4.2.2 FMEA and FMECA for offshore wind application 

As stated above, a few publications are available with the topic of the application of 

FMEA or FMECA for offshore wind farms [152]-[154], and this field is still to be 

explored. As an attempt of applying FMEA to the offshore application from the 

published onshore RPN with onshore/offshore failure rate translation developed in this 

chapter, a number of assumptions have been made here to adjust the RPN values in 

the way expressed in Eq. 14. The onshore RPN values are multiplied by the ratios of 

expected offshore failure rates to the corresponding onshore rates in the previous 

section for the selected components to give values appropriate to offshore conditions, 

and these ratios are considered as linear. The severity and detection indices are 

unaffected at this stage, but results in Chapter 5 Section 5.5 and Chapter 6 Section 

6.1.3.2 provide the potential of having these two aspects considered. In particular 

differences in turbine downtime as a result of specific component failures onshore and 

offshore are ignored. In addition, as mentioned at the beginning of this section, wind 

speed and ambient temperature only are considered as the environmental factors 

influencing failure rate with the current data availability in this research. Finally, the 

offshore RPN can be derived from the onshore RPN as: 

 RPNoffshore=RPNonshore∙Ratiowindspeed∙ Ratiotemperature (16) 
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The derivation of the ratio of the two environmental factors follows the technique 

introduces in Section 4.1. This also assumes the factors are uncorrelated. The RPN, as 

seen by Eq.14, is an aggregate of severity, occurrence and detection of a failure mode. 

Therefore, as mentioned above, in this adjustment, severity and detection are regarded 

as unchanged. The ratio of failure rate expectations dependent on temperature and 

wind speed are multiplied directly to give the onshore RPN. It is assumed that wind 

speed and temperature have equal weighting although this is an area requiring further 

investigation.  

This attempt of offshore RNP calculation is still rather simple and to be upgraded. In 

future work, apart from the additional environmental factors that could be incorporated 

in failure rate translation stated in previous section, e.g. wind and wave turbulence, 

and application of weights on the ratios; the RPN simplification will be examined in 

more detail, in which for example, suitable proxies for the severity could be the 

downtime and for detection could be the condition monitoring detection effectiveness 

associated with a failure. 

4.2.3 Results and Discussion 

Table 15 shows the RPN translation from onshore to offshore. Because of few 

unmatched component names from the publications and the actual data from the wind 

farms, components are processed separately in the middle stage and averaged at the 

end. Take rotor and blade assembly in the onshore RPN publication as an example, the 

actual record system in wind farm W records them as rotor system and blades system 

respectively. Thus the ratios dependent on wind speed and temperature using the 

different translation methods in previous section are calculated separately. The two 
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translated offshore RPN are finally averaged as the weighting of the two 

subcomponents is regarded as the same. The same strategy is applied to the assembly 

of tower, foundations and nacelle.  

It can be seen that the non-fitted method of translation shows that the riskiest 

component is rotor and blades assemblies which stays the same as the onshore ranking. 

The exponential fitting method shows that the onshore 3rd riskiest component control 

system becomes to the 1st riskiest offshore. The 2nd polynomial fitting method indicates 

the largest difference between onshore and offshore: the high voltage system which is 

the 6th riskiest component jumps to the 1st position in the offshore system. 

With the RPN ranking, the wind farm operator can have a quantified reference of the 

risky components for operation and maintenance resources allocation, in both 

personnel and budget. The accuracy of the ranking therefore directly affects the O&M 

planning and decision making. Theoretically, the exponential function has well 

defined asymptotic behavior towards 0 and 1 on each end which meets the general 

shape of the CPD curve; whereas the polynomial function has both ends toward 

infinity which could not fit the tails of CPD curve. The goodness of the fits is therefore 

discussed later.    



 

Chapter 4 Offshore wind turbine component reliability 

119 

 

 

 

 

 

Table 15. Ratios of selected wind turbine subcomponents with normalised onshore RPNs and rank and adjusted offshore RPNs 

 

Onshore RatioWindSpeed RatioTemperature Offshore RPN 

Order code 
Normalised 

RPN 

Non 

Fitted 

Poly2 

Fitted 

Exp 

Fitted 

Non 

fitted 

Poly2 

Fitted 

Exp 

Fitted 

Non 

fitted 

Poly2 

Fitted 

ExpFitted 

RPN order 

1 
Rotor  

1609 
0.9408 0.8350 0.7889 1.2460 0.6929 1.1853 

1926.4 1329.7 1270.0 2 
Blades  0.9994 1.0148 0.82 1.2231 1.0586 0.7811 

2 Main Generator  1204 0.9189 0.7391 0.6336 1.6859 0.7357 0.5164 1865.2 654.7 393.9 9 

3 Control system  925 1.2632 1.1809 1.1716 0.9459 1.7393 1.2113 1105.2 1899.9 1312.7 1 

4 Hydraulic system  921 1.0869 0.8418 0.8702 1.4600 0.9324 0.5887 1461.5 722.9 471.8 6 

5 Main Gearbox  909 0.9968 1.3303 0.9396 1.0383 1.8378 1.3969 940.8 2222.3 1193.1 3 

6 High voltage system  872 1.0405 1.2974 0.8136 0.8506 2.5943 1.1702 771.7 2935.0 830.2 4 

7 Yaw system  813 1.2682 0.9197 1.0447 1.0368 2.3428 0.8838 1069.0 1751.7 750.6 5 

8 Blade Pitch system  692 0.8701 0.7938 0.6893 1.2635 1.5275 0.8911 760.8 839.1 425.1 8 

9 
Tower  

508 
1.0990 1.2823 0.9621 0.8224 1.3407 0.8911 

637.9 623.1 469.8 7 
Nacelle 1.6958 1.1514 0.8431 0.9480 0.6376 1.1768 

10 Mechanical brake system  336 0.9592 0.6049 0.7437 0.7665 3.4995 1.1819 247.1 711.3 295.3 10 

11 Main shaft assembly  246 0.8993 0.7007 0.6929 1.2622 0.7702 1.4381 279.2 132.8 245.1 11 
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Table 16 shows the goodness of the fits from 2nd polynomial and exponential functions 

using R-squared and root-mean-square error (RMSE). R-squared is a statistical 

measure of how close the data are to the mean. Between 0% - 100%, the higher the 

value is, the better the fit is. The RMSE is another frequently used measure of the 

goodness of fit. The lower the value is, the better the fit is. In this table, for simplicity 

of comparison between the two fits, it calculates the difference from the exponential 

to the 2nd polynomial function for both goodness assessment tools, under the named 

column “Exp-Poly2”. The positive value of the difference indicates the exponential 

function has a higher value of goodness-of-fit, and vice versa. For convenience of 

reading, the positive values of the difference for R-squared are highlighted in light 

green and the negative values of the difference for RMSE are highlighted in light blue. 

Table 16. Goodness of the exponential and 2nd polynomial fit using R-Squared and 

RMSE 

 R-squared RMSE 

component Exp Poly2 Exp-Poly2 Exp Poly2 Exp-Poly2 

Rotor 8 0.928 0.972 -0.044 0.058 0.058 0.000 

Blades 9 0.969 0.985 -0.015 0.072 0.079 -0.007 

Main Generator 27 0.940 0.899 0.042 0.091 0.140 -0.049 

Control system 24 0.998 0.970 0.028 0.013 0.020 -0.006 

Hydraulic system 23 0.966 0.975 -0.009 0.025 0.038 -0.012 

Main Gearbox 14 0.989 0.966 0.023 0.032 0.045 -0.013 

High voltage system 1 0.979 0.966 0.013 0.063 0.114 -0.050 

Yaw system 18 0.994 0.972 0.022 0.021 0.025 -0.003 

Blade Pitch system 11 0.969 0.994 -0.025 0.036 0.039 -0.003 

Tower 33 0.975 0.929 0.046 0.041 0.053 -0.012 

Nacelle 32 0.842 0.906 -0.064 0.063 0.104 -0.041 

Mechanical brake system 15 0.500 0.750 -0.250 0.354 0.280 0.073 

Main shaft assembly 13 0.939 0.963 -0.024 0.135 0.136 -0.001 

high speed shaft transmission 17 0.950 0.915 0.035 0.131 0.128 0.003 

It can be clearly seen that with R-square, exponential function fits better in half of the 

subsystems (7 out of 14), and with RMSE, exponential function fits better in almost 

all the subsystems (11 out of 14). Therefore, it can be concluded that in general 

exponential function fits better to the CPD curve.  
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This suggests the result of RPN ranking from exponential fitted method is more 

convincible to be treated as the final result for the failure rate onshore to offshore 

translation method, where control system overrides rotor and blades assemblies 

becoming the highest risky wind turbine subsystem in the offshore context. The rotor 

and blades assemblies become the second highest risky subsystem followed by the 

main gearbox. The least risky subsystems the mechanical brake and the main shaft 

assembly remain the same from onshore to offshore. It suggests the wind farm operator 

can have a more convincing reference of the risky component ranking by the 

exponential fitted translation method, and therefore can pay more attention and 

allocate the most important maintenance resources towards the riskiest components in 

wind turbine O&M.  

4.2.4 Conclusion 

Failure Modes Effect Analysis (FMEA) or Failure Modes Effect and Criticality 

Analysis (FMECA), an effective tool of reliability analysis, assists to identify, evaluate 

and report component failure modes and the severity of potential impacts on the system 

so that fault tolerance mechanisms can be designed and trained to control the failure 

impact on operational availability. It has been applied in industries including onshore 

wind turbines successfully but as yet it is still a new topic and to be explored in an 

offshore wind context.  

Different from a few published literatures working on the failure modes in the research 

domain, this thesis focus on the only numerical method in FMEA, the Risk Priority 

Number (RPN). It uses two of the possible failure root causes that change for offshore 

wind; increase in wind speed and temperature, to demonstrate the effect on the 
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outcome of an FMECA for offshore wind projects. It provides a novel way of assessing 

the risk ranking of offshore wind turbine components.  

In order to obtain a more reliable failure rate of each wind turbine subsystem, an 

innovative method has been applied to the limited length of failure data. This method 

calculates the cumulative probability distribution function of the failure rate, fits a 

smooth function curve, and differentiates it. The core step is finding a proper fit to the 

CPD. In this thesis the CPD has been fit and compared with 2nd polynomial and a 

variation of exponential function. It can be concluded that exponential function is a 

more reliable method to fit the CPD curve theoretically and actually fits the curve 

better. Therefore, exponential function is chosen to be the fitting function and the 

results from the exponential fitting will be applied to the analyses in next chapters.  

This chapter focuses on the failure occurrence in the RPN translation, however the 

failure severity and detection are also key inputs. The simple sole consideration in this 

chapter has led limited creditability of the translated offshore RPN results. Some side 

results in Chapter 5 and Chapter 6 provide potential train of thought of having these 

two aspects considered.   

In conclusion, as an important application of the onshore/offshore failure rate CPD 

translation method, the RPN translation using exponential fitted CPD method shows 

that control system becomes the highest risky wind turbine subsystem in the offshore 

context. The rotor and blades assemblies become the second highest risky subsystem 

followed by the main gearbox. The least risky subsystems the mechanical brake and 

the main shaft assembly remain the same from onshore to offshore. The 

onshore/offshore failure rate CPD translation method is further used in the cost 
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modelling in Chapter 5 and Chapter 6, aiming to help improve the credibility of the 

failure rate input for the offshore wind farm O&M estimations.  
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Chapter 5 Strathclyde Probabilistic Cost Model (Plus) for offshore 

wind farm 

Compared to onshore, offshore wind has the advantage of generally higher mean wind 

speed, less temporal variation and lower turbulence. In addition, negative impact on 

the landscape is reduced and noise is a less critical issue. On the other hand, some of 

these advantages come at a cost. The low disturbance to human population is the result 

of a substantial distance between the offshore wind farm and shoreline where the port 

where the operation and maintenance (O&M) centre is located. Moreover, marine 

conditions restrict access for maintenance which depends on the prevailing wind and 

wave conditions. The result is that O&M accounts for a much larger proportion of total 

costs than for onshore wind farms. A NREL cost of wind energy review shows that 

typical OPEX for a 1.94MW onshore wind turbine is $51/kW/yr or $15/MWh, and 

$138/kW/yr or $37/MWh for a 3.39MW offshore wind turbine [155]. This 

characteristic of offshore wind farm operations motivates the interest in condition 

monitoring. 

Compared to reactive maintenance, as already discussed in Chapter 2, condition based 

maintenance is based on data providing an indication of the real time condition of 

certain turbine subsystems or components. The O&M team can arrange the 

maintenance considering both component condition and vessel access. In this way, 

major failures of the turbine can often be circumvented; at the same time, the cost of 

maintenance should be reduced due to a more effective maintenance regime.  
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For quantifying the cost effectiveness of O&M, and condition monitoring in particular, 

failure rate is a key input. The accuracy of the failure rate directly affects the accuracy 

of any O&M cost estimation. However, as stated in the previous chapter, offshore 

component failure rate data is not publically available as it has been commercially 

protected by manufacturers and operators. This results in failure rate data in the public 

domain being very limited, especially for offshore. The translation of component 

failure rates from onshore to offshore developed and explained in Chapter 4 can be 

used to fill this gap.  

A cost effectiveness analysis between reactive and condition-based maintenance is 

presented in this chapter and next chapter to quantify the benefit and discuss the 

drawbacks of condition monitoring for offshore wind farms. As another important 

application of the onshore/offshore CPD translation method developed in Chapter 4 

apart from the RPN calculation, the research presented in this chapter has applied the 

translation method to an existing cost model and improved the credibility of the cost 

model results.  

In this chapter, the existing cost model is introduced comprehensively with 

mathematical methodology in Section 5.1. A wide literature review of other offshore 

wind farm O&M cost models with comparison discussion of the existing model is then 

presented in Section 5.2. After gaining the knowledge of the advantages and 

disadvantages of the existing cost model from the first two steps, a series of 

improvements have then been undertaken and resulted in the upgraded model. The 

improvements are presented in Section 5.3. In order to investigate the performance of 

the improved model, a benchmark against a number of accessible other cost models 
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introduced in Section 5.2 has been undertaken and is discussed in Section 5.4. Since 

condition based maintenance is an innovative highlight of this cost model and the core 

research concern of this thesis, a condition monitoring system detection effectiveness 

analysis is presented in Section 5.5. Section 5.6 provides a detailed sensitivity analysis 

against eight key parameters of the improved cost model.  

This improved cost model has been used for two real site case studies presented in 

Chapter 6. 

5.1 Strathclyde probabilistic cost model (StraPCost) 

The existing cost model adapted and used in this research was initially developed for 

an Energy Technologies Institute (ETI) condition monitoring project undertaken by 

the University of Strathclyde, [124][156]. The purpose of the development of this cost 

model is to assess the maintenance of offshore wind turbines, and the impact of 

condition monitoring. Access probabilities, expected delays and the associated costs 

are all calculated using a probabilistic approach. 

Unlike onshore, offshore O&M costs are largely due to the vessel usage. For the safety 

and legal reasons, vessel accessibility relies strictly on the sea state (e.g. wave 

conditions) and wind conditions. Delays will happen if the sea state does not allow the 

vessel to approach the turbine and offload maintenance staff, and there will be a 

considerable amount of revenue loss due to the stoppage of the turbine and extra rental 

fees if the delay is not predicted. The delay for different types of vessels is therefore 

significant for the cost effectiveness of the wind farm operation. 
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In the Strathclyde probabilistic cost model (StraPCost), expected delay time to the 

turbine repairs due to the sea state and/or wind condition is estimated, together with 

the costs associated with the repairs and delays. Sensitivities to key factors, e.g. vessel 

access limits and time required, can be estimated as well. 

This cost model is still in its development stage. This provides the opportunity to look 

into each calculation step and the correlation of different parameters. The cost model 

consists of two main parts using Matlab codes and Excel spreadsheets, respectively. 

Outputs from Matlab are manually extracted and set as input of the Excel spreadsheet 

with additional pre-processing.  

5.1.1 Statistical Output 

An example of the final output interface of the entire cost model (Excel Spreadsheet) 

is shown in Table 17. It lists the calculated total downtime (in days), together with the 

availability, capacity factor, energy lost, mean power generated over a year, total 

annual energy generated, annual revenue. It calculates revenue lost and annual 

maintenance cost for an individual wind turbine and for the entire wind farm. It also 

provides the vessel cost, wage cost, component costs, and the total O&M cost (with 

and without revenue loss) for an individual wind turbine and the entire wind farm. 

A strength of this model is that it allows comparison of results for reactive maintenance 

and condition based maintenance in neighbouring columns, and lists the difference 

between the results from these two maintenance strategies together with the percentage 

change relative to the baseline. 
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Table 17. StraPCost final output with example statistics 

WITH DOWNTIME based on 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due to 

CM 

downtime 26.5 days 24.3 days -2.1 days 

availability 92.7  % 93.3 %  0.6 %  

capacity factor with downtime 36.3  % 36.6 % 0.4 % 

energy lost 845.1 MWh 752.3 MWh -92.8 MWh 

mean power generated over year with downtime 1.09 MW 1.10 MW 0.01 MW 

total annual energy generated with downtime 9527.2 MWh 9620.0 MWh 92.8 MWh 

annual revenue with downtime 857.4 £k 865.8 £k 8.4 £k 

revenue lost 76.1 £k 67.7 £k -8.4 £k 

annual maintenance cost 329.9 £k 295.8 £k -34.1 £k 

vessel cost £0.021 /kWh £0.018 /kWh -£0.003 /kWh 

wage cost  £0.0016 /kWh £0.0020 /kWh £0.0004 /kWh 

component cost  £0.0121 /kWh £0.0111 /kWh -£0.0010 /kWh 

Total O&M cost  (w/o revenue loss) £0.0346 /kWh £0.0310 /kWh -£0.0036 /kWh 

revenue lost  £0.0080 /kWh £0.0071 /kWh -£0.0009 /kWh 

Total O&M cost  (with revenue loss) £0.0426 /kWh £0.0382 /kWh -£0.0045 /kWh 

5.1.2 Requirements of input and middle stage function spreadsheets 

As the cost model puts emphasis on the vessel characteristics and in particular the sea 

states in which the vessel can access the turbines, the input requires wave and vessel 

information. Considering the sometimes limited accessibility of the actual sea state 

data, alternative methods are provided in the cost model. Inputs covering four main 

aspects are: wave statistics of the given site; the vessel operational limits mainly in 

terms of the threshold of the wave height and required access time which comprises 

vessel waiting time; travel time; and repair time. Through appropriate probability 

distributions, the expected maintenance delay time can be estimated, and thus the 

turbine operational downtime and the related cost of lost generation can be calculated. 

A comprehensive list of model inputs is given below: 
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From met mast, wave sensing device and turbine: 

- Actual wind speed time series from the met mast, or alternatively the calculated 

wind Weibull parameters. 

- Actual significant wave height time series; alternatively, significant wave 

height duration characteristics in term of graphs/tables/statistics, in terms of wave 

location parameter, wave shape parameter, wave scale parameter. 

- Wind turbine power curve—nominal. 

From wind farm operator: 

- Personnel total hourly rate (including salary, tax, holiday cost etc.). 

- Electricity sale price per unit. 

- Renewables Obligation Certificate (ROC) price per unit. 

- Shift length. 

- Delay charge for unscheduled vessel. 

- Delay charge for scheduled vessel. 

- The types of vessels required for each category of repairs. 

- How many people required for each category of repairs. 

- Day rate for each type of vessels. 

- Component replacing/repairing cost. 

- Vessel waiting/travel time. 

- Repair time for each turbine component. 

- Component failure rates 

- Condition monitoring successful fault identification and advance warning time.  

- Condition monitoring false-positive rate. 

The analysis process begins with the Matlab programme. The inputs for the Matlab 

codes are the wind speed and significant wave height time series and the corresponding 

time stamps for the selected wind farm sites. Outputs from the Matlab calculations are 

shown in Table 18. They provide a statistical characterisation of the wave climate for 

use by the Excel spreadsheet.  
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Table 18. Statistical output table from Matlab part of the cost model 

wave location parameter (m) Ho 

wave shape parameter Kh 

wave scale parameter (m) Hc 

characteristic wave duration (hrs) Ah 

wave duration exponent bh 

duration parameter scaling acgh 

wave exponent akh 

The remaining inputs to the Excel spreadsheet were detailed below. Examples of input 

sheets are given in Table 19 and Table 20. Other input sheets cover “Vessels” and 

“Sites”. The “Vessels” sheet covers vessel type, maximum wave height, maximum 

wind speed, vessel speed, positioning time, day rate, etc. Once the list of vessel 

information by types is set, it can be called directly from the “Input & Output” sheet. 

Wind and wave accessibility, accessible days per year and day rate (£) are then 

calculated. 

Table 19. Site metocean characteristics input table in StraPCost  

 

 

 

 

 

 

Similarly, the “Sites” sheet takes the wind farm information, with geographical data 

such as location, source of database, grid point, latitude, longitude and distance from 

shore; basic wind statistics of mean and standard deviation of wind speed; wind speed 

Weibull parameters in terms of location, shape and scale parameters, which are 

  SITE METOCEAN CHARACTERISTICS 

  Site name (Windsite) Land 0% 

distance to shore ds 1 km 

Wave Weibull Parameters (3 para) (read from sheet 'Sites') 

wave location parameter Ho 0.000 m 

wave shape parameter kh 2.000  

wave scale parameter Hc 0.001 m 

mean wave height Hbar  (derived) 0.00 m 

  Site name (Windsite) Land 0% 

Wind Weibull Parameters (2 or 3 para) (read from sheet 'Sites') 

wind location parameter U0 0.000 m/s 

wind shape parameter kU 2.000  

wind scale parameter Uc 7.899 m/s 

mean wind speed Um   (derived) 7.00 m/s 
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required to be calculated from the wind farm time series data outside the Excel 

spreadsheet; similarly with the wave statistics and wave height Weibull parameters; 

Kuwashima-Hogben parameters for wave height duration calculation can be estimated 

when the duration statistics is unknown. Once the wind farm site information is set in 

the “Sites” sheet, it can be called directly by the site name, as shown in Table 19. 

With the input of access limits, required access times and the site wind and wave data, 

the expected delay time can be estimated, and thus the cost due to this delay can be 

calculated and added to the O&M cost in the final output.  

In order to do this, another important input information is required from the wind farm 

operators. Table 20 shows the turbine basic information inputs, in terms of rated power, 

rated wind speed, cut-in wind speed, cut-out wind speed, and drive train efficiency. 

The financial inputs are also listed in terms of personnel hourly rate (salary and all the 

other costs for the personnel), electricity sale price per unit, ROC price per unit, year 

length, and shift length. Delay charges for unscheduled and scheduled vessel usage is 

also required to be taken into account in the vessel cost calculations.  

Table 20.Turbine characteristics and financial assumptions input table in StraPCost  

   TURBINE CHARACTERISTICS       

  rated power Prate 2.3 MW    
  rated wind speed Urate 12 m/s    

  cut-in wind speed Uci 4 m/s    

  cut-out wind speed Uco 25 m/s    

  drive train efficiency eff 96.5%      

  FINANCIAL ASSUMPTIONS     

  personnel hourly rate rh 25 £/hr    

  electricity sale price per unit pe 40 £/MWh    

  ROC price per unit pr 45 £/MWh    

  year length yr 8760 hr    

  shift length tshift 12 hr    

  delay charge for unscheduled vessel puves 25%      

  delay charge for scheduled vessel psves 0%       

Assumes 

£45 / ROC, 
2 ROC / MWh 

offshore 
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5.1.3 Methodology for delay time calculation 

Many of the wind turbine maintenance cost models in the research domain make use 

of Monte Carlo simulation [157]-[160], where repeated long runs are required and 

continuous time-series data are essential for the full length of each run. Considering 

this, StraPCost just as its name implies, uses a more direct probabilistic approach 

instead to undertake the modelling. This much enhances the speed and simplicity of 

the computation and the transparency for exploring trends and sensitivity by adjusting 

input parameters. An event tree is constructed in this approach, as shown in Figure 43. 

Conceivable events and alternatives are joined in a branched sequence (event tree).  

5.1.3.1 The Event tree 

Since this model is in its initial development stage, the event tree only captures the 

main variables of interests and relies on a number of assumptions. A fault is considered 

to occur randomly in time, governed by the appropriate failure rate. All operations are 

carried out once for one operation, avoiding multiple trips. At this stage, only a single 

condition applies to the timing of the repair: significant wave height. Wind speed could 

provide a further restriction on access, however, since studies show a good correlation 

between significant wave height and wind speed, only significant wave height is 

considered at this stage. This correlation and related process will be presented in detail 

later. Accurate short term forecasts of sea state are assumed to be available with 

enough look-ahead time to complete the required operation; in the model as in reality, 

an operation would only be initiated when the sea state is forecasted to be suitable for 

a sufficient period of time. For simplicity, the term “storm” is used in this model to 

represent any period when waves are too high for the vessel to access the turbine and 
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undertake the repair. In a similar manner, “calm” is used to represent the period when 

the wave height is low enough for the purpose of repair. 

 
Figure 43. Model of the event tree in the StraPCost algorithm, with modification from 

[156] 

5.1.3.2 Modelling definitions  

As shown in Figure 43, sea states are categorised into delay types when a fault occurs. 

Sea state type 0 represents the situation when the sea state is low enough, which is a 

“calm” duration, and there is sufficient time for the maintenance operation to be 

completed. First order delay (Delay type 1) is when the sea state is too high to access, 

which is a “storm” period, and the operation needs to wait for the next “calm” duration. 

Second order delay type “a” (Delay type 2a) is when the sea state is low enough but 

the prediction shows there is too short a time available to affect repair, and the 

operation still needs to wait for the sufficient “calm” duration. Second order delay type 

“b” (Delay type 2b) represents the situation when the sea state is low enough and the 

predicted duration is long enough, but the fault occurs too late in the weather window, 

and in this case the operation still needs to wait for the next Sea state 0. These four 

states are enough for a simplified event tree model, and are illustrated in a fictional 
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example in Figure 44. Delay type 4 is derived after Delay type 1 occurs, which 

represents when the sea state finally “calm” following a “storm” state, but there is not 

enough time for the repair to be undertaken. This type of delay looks similar to Delay 

type 2 but has a different calculation. Similarly, after suffering Delay type 2 or 4, there 

is still a period of “storm” and this derives Delay type 3. Again, even though it is 

similar to Delay type 1, the calculation is different.  

 
Figure 44. Example of 4 types of delay dependent on significant wave height time 

series as used by the StraPCost model algorithm [156] 

5.1.3.3 Wave and wind correlation  

Wind speed and significant wave height are found to be well correlated at most sites, 

both temporally and spatially. As shown in Figure 45, from [161], the strong wind is 

over 15 m/s, which is shown in the left graph, can be found in the region near the South 

Pole. This region also has an extreme wave climate with an average significant wave 

height of over 5 m, shown in the right graph. Similarly, around the equator, where the 

wind is the lowest (lower than 5m/s) can be found the lowest significant wave height 

at less than 2 m. Other less extreme values also show a highly correlated spatial 

distribution. 
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Figure 45. Global distribution of wind speed (left) and significant wave height (right) 

recorded by NASA [161] 

A time series record comparison also shows that wave height and wind speed are 

highly correlated temporally at the same location, as shown in Figure 46 [162]. Even 

though the wind speed time series exhibits higher frequencies of fluctuation, the two 

time series have highly correlated trends. When the first peak occurs in the significant 

wave height, the wind speed time series also shows a peak at time stamp of around 

151. Similarly, when the second peak in the significant wave height occurs at the time 

stamp around 155, it also shows a peak in the wind speed time series.  

 

Figure 46. Time sequence of the wave height (top) and wind speed (bottom) from 

ASIAEX, East China Sea [162] 
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Statistically, a correlation analysis has been done on the NEXT database grid point 

15631. The Pearson correlation** coefficient for annual figures is 0.88, [163]. 

A translation calculation of significant wave height and wind speed is built in the 

Matlab part of the cost model. It is used to transfer the significant wave height 

threshold into the corresponding wind speed threshold for use in generation loss 

calculation. The average power can be calculated from above and below the translated 

wind speed threshold, as shown in equations below.   

 𝑃𝑏𝑒𝑙𝑜𝑤
̅̅ ̅̅ ̅̅ ̅̅ = ∫ 𝑝(𝑈) ∙ 𝑃(𝑈)𝑑𝑈

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑈=0

 (17) 

 𝑃𝑎𝑏𝑜𝑣𝑒
̅̅ ̅̅ ̅̅ ̅̅ = ∫ 𝑝(𝑈) ∙ 𝑃(𝑈)𝑑𝑈

∞

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (18) 

It shows the Weibull distribution of the wind speed and the idealised power curve as 

an example. As shown in Figure 47, the translated wind speed threshold from the 

significant wave height is set as red line at approximately 9m/s.  Both curves are cut 

into two parts: below threshold (left) and above threshold (right). The capacity factors 

can then be calculated in equations below, respectively. These give the threshold 

turbine capacity factor of 44.5% and mean power of 2.22MW, as shown in Figure 48. 

 𝐶𝐹𝑏𝑒𝑙𝑜𝑤 =
∫ 𝑝(𝑈) ∙ 𝑃(𝑈)𝑑𝑈

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑈=0

𝑃(𝑈) ∙ ∫ 𝑝(𝑈)𝑑𝑈
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑈=0

  (19) 

 𝐶𝐹𝑎𝑏𝑜𝑣𝑒 =
∫ 𝑝(𝑈) ∙ 𝑃(𝑈)𝑑𝑈

∞

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑃(𝑈) ∙ ∫ 𝑝(𝑈)𝑑𝑈
∞

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 (20) 

 

**The Pearson product-moment correlation coefficient is a measure of the linear correlation (dependence) between 

two variables X and Y, giving a value between +1 and −1 inclusive, where 1 is total positive correlation, 0 is no 

correlation, and −1 is total negative correlation. 
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Figure 47. Idealised wind turbine power curve with Weibull probability density 

function curve in [156] 

 

 
Figure 48. Variation of effective capacity factor with threshold wind speed for above 

and below threshold generation [156] 

5.1.3.4 Basic mathematical tool 

As a probability based statistical cost model, the core calculations are for the 

probability distribution and the expected values of the corresponding delay. 

The calculation starts from the significant wave height exceedance probability, PH. 

The distribution fitting function is chosen from the standard three-parameter Weibull 

distribution, as shown in Eq. 21, where Hth represents the significant wave height for 

a given threshold; H0, HC and kH are the location, scale and shape parameter of the 

three-parameter Weibull distribution, respectively.  
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In a similar manner, the calm state can be expressed by the Weibull distribution for 

the probability of occurrence of the required time: 
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The corresponding probability density function is the differentiation of Qn in Eq.22: 

  











































 nn

n

req

n

n

req

n

nn

reqth

t
g

tg
tHq






exp,

1

n

 

(23) 

where 𝛼𝑛is the shape parameter of the Weibull distribution for calm duration and is a 

function of Hth; treq is the required duration for an operation to be completed; and gn is 

the normalization factor: 

 𝑔𝑛 = 𝛤(1 +
1

𝛼𝑛
)𝛼𝑛 (24) 

For this calm duration, a definition of partial first moment of the distribution with 

normalization to the mean is given: 

    dttttH n

t

n

reqth

req

q
1

,M
0

qn  


 

(25) 

When the storm duration is given as t, a fault can occur at any instant during t with 

equal probability, thus a delay of t/2 is expected. This can be seen in Delay type 1. The 

normalized complete second moment of the storm duration is given: 

    dtttH x

x

th q
2

1
M

0

2

2qqx 





 

(26) 

When a calm duration is shorter than the required repair time, delay is still expected 

(can be seen in Delay type 2a).  
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The probability for a fault occurring is given by the normalized partial first moment: 
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(27) 

An important example of the application of this algorithm is the expression of the Sea 

state type 0. The probability P0 expresses the state when the wave height is predicted 

to be below the set threshold and remain so for a long enough window of time, as 

shown in the equation below, where τn(Hth) is the mean calm duration. Similarly, τx(Hth) 

is the mean storm duration. 

 P0(Hth,treq) = [1–P(Hth)] · [1–Mqn(Hth,treq)–Qn(Hth,treq) · treq/τn(Hth)] (28) 

For the Delay type 1, the significant wave height is above the set threshold. The 

probability of this type is the same as Eq.21. 
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(29) 

When the wave height is below the set threshold (calm) but for an insufficient duration, 

the probability of Type 2a delay is given: 

 P2a(Hth,treq) = [1–P(Hth)] · Mqn(Hth,treq) (30) 

For the Delay type 2b, where sea sees a calm duration with enough long time t, 

however the fault occurs too late in this calm window. The probability of the 

occurrence of the enough long calm duration is Qn (Eq. 22). The probability of the 

occurrence of this type of delay is given: 

P2b(Hth,treq) = [1–P(Hth)] · Qn· treq/τn = P(Hth) · Qn(Hth,treq) · treq/τx(Hth) (31) 

For higher order delays, Delay type 3 has two possible occurrences.  
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When it occurs after Delay type 2a, Delay type 3 is similar to this second order delay, 

with probability of: 

 P3’(Hth,treq) = P2a(Hth,treq) = [1–P(Hth)] · Mqn(Hth,treq) (32) 

Similarly, when Delay type 3 occurs after Delay type 2b, this additional delay has 

probability of: 

 P3”(Hth,treq) = P2b(Hth,treq) =  [1–P(Hth)] · Qn· treq/τn (33) 

After Delay type 1 and 3 following type 2a or 2b, there is still certain possibility that 

the calm duration is not long enough. Delay type 4 or higher thus is simply calculated 

as the probability of a calm insufficient duration, given as: 

 P4=1- Qn  (34) 

In this type of delay, two additional delays in terms of waiting out the insufficient calm 

duration and waiting out the subsequent storm are considered in the expected delay 

time. 

With all the types of delays, Eq.35 gives the general simplified expression of the 

expected delay. The stated algorithm gives the routine calculation for given probability 

distribution. More detailed calculation can be found in [124]. 
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5.1.4 Assumptions 

At its initial development stage, this cost model estimates the output based on a series 

of assumptions, from the failure rate setting to the maintenance categories.  

5.1.4.1 Reliability and failure rate allocation 

As mentioned, there is almost no accessible data for offshore failure rates or down 

times and very limited onshore data in the public domain. The accessible reliability 

data are relatively old and mainly reflect smaller onshore wind turbines. It is certainly 

not ideal for the cost model for offshore O&M.  

Another problem with the published data is the lack of consistent 

subsystem/component categories. Studies based on data collected by the Land 

Wirtschafts Kammer Schleswig-Holstein (LWK) show a general relationship of the 

failure rate dependent on turbine size, however these failure rates are based on the 

whole turbine with no detailed subsystem breakdown at all, [164]. It can be observed 

from the scatter graph of the turbine failure rate with size, that a power law trend can 

be fitted with reasonable correlation, as shown in Figure 49. The power law trend fit 

derivation is as shown in Eq.36. This enables the estimation of failure rate for turbine 

sizes of e.g. 2.75MW and 5MW, at 5.4 and 7.9 failures per turbine per year, 

respectively. 

 
𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 = 0.0395 ∙ (

𝑃𝑜𝑤𝑒𝑟

𝑘𝑊
)

0.621

⋅
𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠

𝑦𝑟
 

𝑅2 = 0.735 

(36) 
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Figure 49. Power law trend of turbine failure rate with turbine nominal size [156] 

When it comes to a more detailed breakdown of failure rates and down time, the 

ReliaWind project study comprised 290 wind turbines for varying operating time over 

240 wind-farm months, [165]. Results from this study have been presented in Chapter 

2, Section 2.3. Leaving aside the fact the analysed turbines are for onshore application 

and the question whether the types are up to date, what is noticeable is that the data 

presented are normalised relative to the overall failure rate or down time, which shows 

the percentage contribution to the overall failure rate or down time and gives the 

cumulative contribution 100% in total. This means the results do not give actual failure 

rates and cannot be used as direct input in the cost model. 

For the allocation of the failure rate, the cost model in this thesis uses the power law 

trend gained from the failure rate with turbine size in [164] as the total failure rate, and 

takes the breakdown of failure rate for different components and subsystems from the 

percentage in [165], shown in Table 21. Thus total failure rate changes automatically 

with the size of the turbine used. The division of failure rate contribution based on 

component/subsystem from [165] is set as the percentage of all faults for each 
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component/subsystem. The percentage of detailed failure rate is then multiplied by the 

total failure rate in order to give the assumed failure rate of each component/subsystem. 

As highlighted in colour in the table, components with different condition monitoring 

(CM) types are calculated only once, as one general value. 

 
𝑆𝑢𝑏𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒

= 𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 ∙  𝐹𝑎𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 
 

(37) 

Table 21. Example of failure rate allocation in StraPCost, first row given the total 

value of failure rate and its total percentage (close but not equal to 100%) 

CM error margins CMtype % fail.rate fail. /yr /turbine 

Total  99.5% 3.479 

Gearbox Assembly  5.1% 0.179 

Gearbox Assembly Vibration     

Gearbox Assembly Particles     

Gearbox Assembly Strain     

Gearbox Assembly SCADA     

Generator Assembly  7.2% 0.250 

Generator Assembly Vibration     

Generator Assembly Current     

Generator Assembly SCADA     

Blades Strain 1.5% 0.051 

Pitch System SCADA 21.3% 0.745 

Yaw System SCADA 11.3% 0.394 

Frequency Converter  13.0% 0.453 

5.1.4.2 Maintenance categories 

Division on failures dependent on repair categories was undertaken by study on the 

WMEP programme, [166]. The relevant graph is shown in Figure 10 in Chapter 2, 

Section 2.3. In the programme in [166], the failures are categorised into two schemes 

considering the down times with actual failure rate values. Failures with downtimes 

less than a day are assumed to be minor, and of those with down time of more than a 

day are assumed to be major. Even though this categorization is fairly simple and 

rough, it contains actual failure rate values and provides a train of thought of dividing 

failures with economic impact and reflects the nature of the repair required.  
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The maintenance categories are further split into four schemes in the DOWEC project 

and applied in the ECN O&M cost model [167]. As shown in Table 22, in this model, 

Category 1 is when replacing core components up to 300 tonne (t) requiring heavy lift, 

external crane; Category 2 is when replacing large parts over 50t where a built up 

internal crane is sufficient; Category 3 is when replacing small parts less than 1t and 

where a permanent internal crane is sufficient, with repair time no more than 48 hours; 

and Category 4 is when replacing small or no parts, repair time no more than 24 hours, 

including inspection or cleaning inside (A) or outside (B).  

Table 22. Division of maintenance categories and their definition in DOWEC project 

and ECN O&M cost model [167] 

 

Referring to the categorizations stated above, StraPCost mainly allocates three 

maintenance categories for the unscheduled (reactive) and scheduled (condition-based) 

maintenance, together with one remote reset scheme, as shown in Table 23. 
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Table 23. Example of maintenance categories in StraPCost 

 reactive maintenance condition-based maintenance  

Procedure Category Heavy 

components, 

external 

crane 

Small parts, 

permanent 

internal 

crane 

Inspection 

and repair 

(outside) 

Heavy 

components, 

external 

crane 

Small parts, 

permanent 

internal 

crane 

Annual 

service 

Manual 

reset 

 unscheduled scheduled  

Repair type Au Cu Du As Cs Ds E 

weight limit 500 10 10 500 10 10 10 

repair time 52 22 7.5 52 22 60 3 

lead time 1440 0 0 48 24 1440 0 

people reqd 5 3 3 5 3 3 2 

vessel HLV1 CTV1 CTV1 HLV1 CTV1 CTV1 CTV1 

subsystem    

Generator Assembly 10% 26% 64% 0% 0% 0% 0% 

Gearbox Assembly 10% 26% 64% 0% 0% 0% 0% 

Blades 5% 13% 82% 0% 0% 0% 0% 

Pitch System 0% 32% 68% 0% 0% 0% 0% 

Yaw System 0.5% 27.5% 72% 0% 0% 0% 0% 

Comparing to the ECN model, some categories are omitted. The maintenance category 

A is equivalent to Category 1 in the ECN model, with heavy components replacement 

and external crane hire; the maintenance category C can be referred to Category 3 in 

the ECN model, with small parts replacement and permanent internal crane use; the 

maintenance category D can be referred to Category 4B in the ECN model, with 

inspection and minor repair outside. The subscript u represents unscheduled which 

refers to the assumption that the vessel usage in the reactive maintenance is always 

unscheduled, as opposed to the s in scheduled in condition based maintenance. The 

value of each turbine component under each maintenance category under the 

unscheduled maintenance category is assumed based on empirical knowledge to 

expand the minor-major categorization in the WMEP programme [166] into three 

categories. The value under scheduled maintenance category is assumed based on the 

condition monitoring effect indicators adjusting scheduled values. 
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5.1.4.3 Condition monitoring effect 

An important innovation of StraPCost is that its takes into account of the effect of 

condition monitoring. The application of condition monitoring is categorized in terms 

of three possibilities: general detection (Detectability) is where a fault is detected 

before failure occurs; early detection (Pre-Empt) is where a fault is detected early 

enough allowing suitable advance planning and maintenance to degrade the fault level; 

and false alarm (False-Positive) is where the condition monitoring indicates a fault 

where none exists. An example of condition monitoring performance for selected 

systems is given in Table 24. It is important to note that these numbers are estimates 

rather than actual data. Despite model assumptions, these numbers can be varied to 

explore the way that the performance of the condition monitoring affects the economic 

value. 

Table 24. Example of assumptions of condition monitoring effect in StraPCost 

Subsystem CM type detectability Pre-empt falsepos 

Generator Assembly  40% 20% 10% 

Generator Assembly Vibration 25% 12% 4% 

Generator Assembly Current 10% 8% 4% 

Generator Assembly SCADA 5% 0% 2% 

Gearbox Assembly  50% 25% 10% 

Gearbox Assembly Vibration 30% 14% 4% 

Gearbox Assembly Particles 10% 6% 2% 

Gearbox Assembly Strain 5% 3% 2% 

Gearbox Assembly SCADA 5% 2% 2% 

Blades Strain 20% 10% 5% 

Pitch System SCADA 35% 10% 5% 

Yaw System SCADA 35% 10% 5% 

Detectability describes the general state that a fault is detected before it runs to 

complete failure. This excludes the early detection presented by Pre-empt, which is 

when a fault is detected before it escalates in severity so the maintenance can be 

scheduled with enough time and the repair category can be downgraded. For example, 



 

Chapter 5 Strathclyde Probabilistic Cost Model (Plus) for offshore wind farm 

147 

 

the failure rate from the unscheduled heavy repair category can be transfer to the 

scheduled light repair category. False-Positive represents a negative effect by the 

condition monitoring system, which is when a non-existent fault is detected and that 

results in an unnecessary scheduled repair visit which increases the O&M cost.  

It needs to be noted that the overall condition monitoring detection value of each 

subsystem is simply assumed to be added from each CM type without interconnections. 

This means it assumes different CM systems have independent detection effect to the 

subsystem, and the more types of CM systems are used in the subsystem, the higher 

the detection effect the subsystem has. In the case of generator assembly in Table 24, 

for example, the overall detection state = vibration + current + SCADA. The 

detectability value, for example, is 25%+10%+5%=40%. This simple assumption 

could be improved in future work.  

When it comes to the impact of condition monitoring system, the affected unscheduled 

maintenance categorized failure rate of each turbine component is transferred from its 

corresponding original unscheduled value input without consideration of the CM 

detection effectiveness in Table 23, denoted as Au, Bu and Du, by the suitable 

condition monitoring detection parameters. Again Au stands for unscheduled heavy 

components requiring external crane, Bu stands for unscheduled small parts with 

permanent internal crane, and Du stands for unscheduled inspection and small outside 

repair. These inputs are used in the calculation of the unscheduled categorized failure 

rate Au’, Cu’ and Du’ with consideration of the CM detection characteristics, 

detectability and pre-empt in this case, and scheduled categorized failure rate, As, Cs 
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and Ds with consideration of the CM detection characteristics, detectability, pre-empt 

and falsepos.  

In this existing cost setting, simple assumptions are made for the unscheduled 

maintenance with consideration of CM detection where only the heavy components 

replacement Au’ is affected by both the condition monitoring system general detection 

(detectability) and early detection (pre-empt), while small parts repair Bu’ and 

inspections Du’ are only affected by the detectability, as listed below: 

 A𝑈
′ = 𝐴𝑈 ∙ (1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 − 𝑝𝑟𝑒𝑒𝑚𝑝𝑡) (38) 

 C𝑈
′ = 𝐶𝑈 ∙ (1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) (39) 

 D𝑈
′ = 𝐷𝑈 ∙ (1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦) (40) 

The scheduled maintenance categorized failure rate values of each turbine component, 

As, Cs and Ds, are transferred from their corresponding original unscheduled values, 

Au, Bu and Du, by the suited CM effect indicators, where As is only affected by the 

detectability, Cs is affected by both detectability and pre-empt, and Ds is affected by 

detectability and falsepos, as shown below: 

 𝐴𝑆 = 𝐴𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (41) 

 𝐶𝑆 = 𝐶𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐴𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 (42) 

 𝐷𝑆 = 𝐷𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + (𝐴𝑈 + 𝐶𝑈 + 𝐷𝑈) ∙ 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠 (43) 

5.1.4.4 Component costs 

The component costs are assumed based on two sources. The first breakdown into 

individual components is from a confidential source. Since this source is quite recent, 

its cost values are maximally used. Where this source does not cover the particular 

components, a second source is used, taken from the WindPACT study hosted by 
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NREL [168]. This study reports a broad breakdown by subsystem including a scaling 

study where a scaling of component cost with turbine size is presented, as shown in 

Table 25. The turbine size is limited to 750kW, 1.5MW, 3.0WM and 5.0MW. This 

limitation is fitted and extended by a power scaling law. The convergence gives the 

closest value of index by the scaling value, as shown in Eq.44, where a, b and index 

are coefficients to be obtained. However, the component names in StraPCost cannot 

always match with [168], which often happens among different study authorities. If 

the scaling value is not listed, the index value will be set as 0.7. 

  𝐶𝑜𝑠𝑡 = 𝑎 + 𝑏 ∙ (𝑅𝑎𝑡𝑒𝑑 𝑃𝑜𝑤𝑒𝑟)𝑖𝑛𝑑𝑒𝑥 (44) 

Table 25. Costs of all wind turbine components for baseline case [168] 
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5.1.4.5 Vessel costs 

As stated earlier, vessel usage is a major contribution to cost. At this stage of the 

development of the cost model, vessel costs are calculated on a per day basis and 

assumed to be charged during unscheduled delays but not scheduled ones. The cost 

starts to be counted from travelling, positioning and carrying out repair operations. The 

assumption of vessel hire is based on the DOWEC project [167] and the project of 

Cost Modelling of Lightning Damage for Offshore Wind Farms [169], as shown in 

Table 26 and Table 27.  

Table 26. Breakdown on vessel usage information [167] 

Table 27. Vessel usage information [169] 
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Take all references into account; StraPCost makes assumptions of vessels as in Table 

28. It should be noted that vessels are assumed to be always available when required. 

Some studies include waiting time for suitable vessels to become available and this 

will be examined in later sections to the cost models. 

Table 28. Example of StraPCost vessel assumptions, with modification from [156] 
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5.2 Review of cost models in the research domain, analyses and comparison 

with StraPCost 

Even though wind energy is a relatively new source of power production, Operation 

and Maintenance (O&M) cost effectiveness is of concern to the wind farm owner and 

operator. This urges the development of cost estimation models in the research domain. 

There are a few developed commercially packaged cost models in the industry. The 

best know ones are ECN O&M [170], OMCE [171], ECUME [158] and NOWIcob 

[160]. The cost model developed in this thesis, StraPCost, as in traduced in Section 

5.1, has used these commercial cost models as references. Other models are still under 

development and have different methodologies and emphases, such as UiS Offshore 

[179], Strathclyde OPEX [159] and Strathclyde Structural Health Monitoring model 

[178]. The emphases can be, for example, the vessel costs and approachability, 

maintenance strategy (or wind turbine components repair categories), and structure 

health assessment etc. The main techniques used by the cost models are discrete-event, 

time-sequential modelling and Monte Carlo simulation. Since wind farm data are still 

not quite transparent, especially when the offshore wind energy is still in its developing 

stage, real operation data are not easily accessible in the public domain. Therefore, the 

validation and verification of these simulation-based models is limited, and a 

comparison among the simulation models is necessary.  

For a better understanding of the main cost models, Section 5.2.1 introduces the basic 

mathematical theories used in these cost models in detail, and Section 5.2.2 presents a 

review of main cost models in the research domain, with theoretical comparison of 

StraPCost used in this thesis. 
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5.2.1 Basic mathematical tools and theory 

The cost models developed by each group of researchers are based on different 

algorithms as outlined above. The majority of the mathematical tools used are Monte 

Carlo methods, Hidden Markov Model (HMM) and Bayesian network (BN). These 

mathematical tools are introduced here for a better understanding of the methodology 

applied within the cost models under consideration. 

5.2.1.1 Monte Carlo methods 

In scientific computation Monte Carlo methods play an important role. As a 

computational algorithm, it relies on repeated random samplings from probability 

distributions to obtain numerical results. It is especially useful when modelling large -

dimensional phase space and phenomena with significant uncertainty regarding inputs 

such as the likelihood of failures, costs, and external constraints etc. When it is used 

for solving complex probability distributions representing multiple random variables, 

advanced techniques such as Marko Chain modelling, can be used. 

Monte Carlo methods require the generation of large quantities of random numbers in 

order to provide a good representation of the relevant probability distributions. This 

procedure generally makes use of pseudorandom number generators.  

Monte Carlo methods start from defining a domain of possible inputs and generating 

random inputs conforming to a given probability distribution, the target density 

function, P(x), over the domain, where x is an N-dimensional vector with real 

components 𝑥𝑖. The expectation estimator is given by [172] : 
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 𝛷̂ =
1

𝑅
∑ 𝛷(𝑥(𝑟))

𝑟

 (45) 

where R is the number of samples r = {1, 2, … , R}, and {𝑥(𝑟)}𝑟=1
𝑅  is the sample group 

to be generated. 

In order to solve the target density P(x), a function of P*(x) is introduced: 

 𝑃(𝑥) =
𝑃∗(𝑥)

𝑍
 (46) 

 where Z, the normalizing constant, is given by: 

 𝑍 = ∫ 𝑑𝑁𝑥𝑃∗(𝑥) (47) 

One example of P*(x) is given for the Ising model (other called Boltzmann machine, 

or Markov field [173]), whose probability distribution is proportional to: 

 𝑃∗(𝑥) = 𝑒𝑥𝑝 [−𝛽𝐸(𝑥)] (48) 

where 𝑥𝑛 ∈ {±1} and the Boltzmann energy function [173]: 

 𝐸(𝑥) = −[
1

2
∑ 𝐽𝑚𝑛

𝑥𝑚𝑥𝑛

𝑚,𝑛

+ ∑ 𝐻𝑛𝑥𝑛

𝑛

] (49) 

where 𝐽𝑚𝑛
 is the connection strength between unit m and unit n, and 𝐻𝑛 is the bias of 

unit n in the global energy function. However, this simple model requires extensive 

computation. 

A sequence of Monte Carlo method sampling models is established for more efficient 

sampling such as: importance sampling, rejection sampling, the Metropolis method 

and Gibbs sampling. 

In these samplings, a simpler density function including a multiplication constant, the 

sampler density, Q(x), is assumed, with Q*(x) in the same manner: 
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 𝑄(𝑥) =
𝑄∗(𝑥)

𝑍
 (50) 

Importance sampling and rejection sampling only work well when the assumed Q(x) 

is similar to P(x). In large complex situations, Metropolis algorithm is more efficient.  

A further assumption of 𝑥 ,  which can be derived from the proposed density 

function 𝑄(𝑥 ,; 𝑥(𝑡)) is made. In addition, a state indicator is computed: 

 𝑎 =
𝑃∗(𝑥 ,)

𝑃∗(𝑥(𝑡))

𝑄(𝑥(𝑡); 𝑥 ,)

𝑄(𝑥 ,; 𝑥(𝑡))
 (51) 

if 𝑎 ≥ 1 then the new state is accepted, and 𝑥(𝑡+1) = 𝑥 , is set;  

otherwise the new state is accepted with probability a, and 𝑥(𝑡+1) = 𝑥(𝑡). 

The Metropolis method is an example of a Markov chain Monte Carlo (MCMC) 

method for which the time development is represented by a Markov process. In this 

model, each sample 𝑥(𝑡) is dependent on the previous value 𝑥(𝑡−1). Because of this 

correlation of the successive samples, the Markov chain may have to run for a 

considerable time. 

In general, Monte Carlo methods can generally solve any problem related to P(x). 

High-dimensional problems can be successfully solved by MCMC method: in 

particular, using the Metropolis method and Gibbs sampling. The Metropolis method 

is widely used for high-dimensional sampling. However, the “random walk” 

probability distribution makes this method quite time consuming. 

5.2.1.2 Hidden Markov Model (HMM) 

An HMM is a doubly stochastic process with unobservable (hidden) stochastic process, 

that can only be observed using another stochastic method which produces the 
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sequence of observable symbols [173][174]. A typical probabilistic parameter 

structure diagram is given in Figure 50. 

In a HMM, there are a series of model parameters as given below: 

- T = length of the observation sequence; 

- N = number of states; 

- M = number of observation symbols; 

- I = {𝑖1, 𝑖2, … , 𝑖𝑁}, the state sequence; 

- Q = {𝑞1, 𝑞2, … , 𝑞𝑁}, states; 

- V = {𝑉1, 𝑉2, … , 𝑉𝑁}, discrete set of possible symbol observations; 

- A = {𝑎𝑖𝑗}, transition probability distribution of state j at t+1 following state I 

at t; 

- B = {𝑏𝑗(𝑘)}, observation symbol probability distribution k in state j; 

- π = {𝜋𝑖}, initial state distribution; 

- λ = (A, B, π), the compact notation for the three parameters are the core of the 

algorithm. 

 
Figure 50. Example of typical probabilistic parameters of a HMM [173] 

When an HMM is being established, it starts by choosing the following parameters: an 

initial state 𝑖1, according to the initial state distribution π at t=1; 𝑂𝑡 according to 𝑏𝑖𝑡
(𝑘), 
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the symbol probability distribution at state 𝑖𝑡;  𝑖𝑡+1 according to {𝑎𝑖𝑡𝑖𝑡+1
}. Once the 

initial parameters are set, it can be iterated from t=t+1until T.  

The probability of the observation sequence O given the model λ is obtained by the 

following equation over all possible state sequences: 

 

𝑃(𝑂|𝜆) = ∑ 𝑃(𝑂|𝐼, 𝜆) 𝑃(𝐼|𝜆)

𝐼

= ∑ 𝜋𝑖1
𝑏𝑖1

(𝑂1) ∙

𝑖1,𝑖2,…,𝑖𝑇

𝑎𝑖1𝑖2
𝑏𝑖2

(𝑂2) ∙ ⋯ ∙ 𝑎𝑖𝑇−1𝑖𝑇
𝑏𝑖𝑇

(𝑂𝑇) 

(52) 

Since this contains numerous items and calculation, a more efficient computational 

procedure is used: the Forward-backward procedure, where the following variables are 

defined. 

For the forward procedure, the forward variable is given by:  

 𝛼𝑡+1(𝑗) = [∑ 𝛼𝑡(𝑖)𝑎𝑖𝑗

𝑁

𝑖=1

]𝑏𝑗(𝑂𝑡+1) (53) 

where t=1, 2, … , T-1 and initial setting 𝛼1(𝑖) = 𝜋1𝑏𝑗(𝑂1). 

For the backward procedure, the backward variable is given with t= T-1, T-2, …, 1, 

and initial setting 𝛽𝑇(𝑖) = 1: 

 𝛽𝑡(𝑖) = ∑ 𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)

𝑁

𝑗=1

 (54) 

Once the probability of the observation sequence is defined, the associated optimal 

state sequence can be determined using different criteria. The probability of being in 

state 𝑞𝑖 at time t, given the observation sequence O and the model λ can be expressed 

as: 
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 𝛾𝑡(𝑖) = 𝑃(𝑖𝑡 = 𝑞𝑖|𝑂, 𝜆) =
𝛼𝑡(𝑖)𝛽𝑡(𝑖)

𝑃 (𝑂|𝜆)
 (55) 

The individually most likely state at t ∈ [1, 𝑇]  can be obtained by finding the argument 

of the maximum: 

 𝑖𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥
1≤𝑖≤𝑁

[𝛾𝑡(𝑖)]  (56) 

A mature technique of finding the single best state sequence is the Viterbi algorithm. 

After the most likely state has been found, the model parameter λ = (A, B, π) can be 

adjusted to maximize the probability of the observation sequence given the model. The 

probability of a path being in state 𝑞𝑖 at time t making a transition to state 𝑞𝑗 at time 

t+1 can be express as: 

 𝜉𝑡(𝑖, 𝑗) = 𝑃(𝑖1 = 𝑞𝑖 , 𝑖𝑡+1 = 𝑞𝑗|𝑂, 𝜆) =
𝛼𝑡(𝑖)𝑎𝑖𝑗𝑏𝑗(𝑂𝑡+1)𝛽𝑡+1(𝑖)

𝑃 (𝑂|𝜆)
 (57) 

Since there is no known way to solve the maximum likelihood model analytically, an 

iterative procedure, usually the Baum-Welch algorithm or gradient techniques, have 

to be used, and the HMM parameters can be estimated. 

The HMM is a useful tool for estimation with unobservable conditions. It is of such 

importance that many practical transformations are derived to solve the problem and 

simplified from it, such as dynamic Bayesian network (DBN) and simpler Markov 

models like the Markov chain. 

5.2.1.3 Bayesian belief network (BBN) and Dynamic Bayesian network (DBN) 

A Bayesian network (BN), or Bayesian belief network (BBN), is a discrete or 

continuous probability model joining sets of variables with mutually exclusive states. 

The directed nature of the variables ensures no feedback cycles exist. A conditional 
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probability table (CPT) is required for each variable state. Figure 51 shows an example 

structure of a Bayesian network.  

As stated in the above subsection, the BN is a simplified version of the HMM, and the 

calculation follows a similar approach. The joint probability distribution (JPD) can be 

expressed as below [175]:  

 𝑃(𝑋1, 𝑋2, ⋯ , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝜋𝑖) = ∏ 𝜃𝑋𝑖|𝜋𝑖

𝑛

𝑖=1

𝑛

𝑖=1

  (58) 

where 𝑋1, 𝑋2, ⋯ , 𝑋𝑛 denote the random variables; 𝜃 represents the set of parameters 

of the network; 𝜋𝑖 is the set of parents of 𝑋𝑖 for the directed acyclic graph (DAG). 

 

Figure 51. Example of Bayesian network [176] 

The Dynamic Bayesian network (DBN) is a Bayesian network where the variables are 

linked over adjacent time slices. An example of two variables is shown in Figure 52. 

The two variables A and B each contain i states. At each time slice, the two variables 

are connected with solid lines. There is also a connection of A at each time slices with 

dashed lines [177]. 
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Figure 52. Example DBN with two variables [178] 

Since a DBN is a BN with additional time slices, the expression is similar but with an 

additional parameter t: 

 𝑃(𝑈𝑡|𝑈𝑡−1) = ∏ 𝑃(𝑋𝑖
𝑡|𝜃𝑋𝑖|𝜋𝑖

𝑡−1 )

𝑛

𝑖=1

 (59) 

Its straightforward concept and accuracy makes Bayesian network (both BBN and 

DBN) increasingly of interest for wind farm O&M cost modelling, for recent research 

see [178]. 

5.2.2 Existing cost models 

After gaining the knowledge of the basic mathematical tools and theory used in the 

main cost models in the public domain, this subsection presents a detailed review of 

these cost models. The cost models reviewed are ECN cost models, ECUME Model, 

NOWIcob, UiS Offshore wind logistics decision support model, Strathclyde OPEX 

model and Strathclyde Structural Health Monitoring model. While reviewed, these 

models are compared with StraPCost from all aspects. 

5.2.2.1 ECN cost models 

The cost models developed by Energy research Centre of the Netherlands (ECN) are 

treated as the standard by the European industry. The best known ones are the ECN 

O&M tool and the ECN OMCE, as introduced in Section 5.2.2.1.1 and Section 

5.2.2.1.2, respectively. 
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5.2.2.1.1 ECN O&M tool 

The ECN O&M tool is a relatively well developed cost model. It has been in used by 

more than 20 leading project developers and manufacturers. Due to its success, this 

model is also considered as an industry model for O&M analysis for offshore wind 

farms in the early planning phase [173]. This model, from the main concept, the 

category settings to the form of presentation of results have influenced the 

development of the cost model StraPCost in this thesis.  

The ECN O&M tool mainly focuses on reactive maintenance with little considering 

condition based maintenance and is largely based on the repair process, as shown in 

Figure 53. 

 

Figure 53. Repair process in ECN O&M tool [170] 

In contrast to the waiting, travel and repair time categories in StraPCost, the Time to 

Repair (TTR) in the ECN O&M tool is split up into 4 stages. T_logistics represents 

the period after the wind turbine is shut down and while repair crew is assigned and 

ready to travel to the turbine. T_wait is triggered if the weather is not suitable, 
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according to the weather forecast, for the vessel to depart. This period is followed by 

the T_travel and T_repair when the repair process can finally proceed.  

Apart from the mean and standard deviation of the failures, the ECN O&M tool 

determines the statistical uncertainty of the failures using a Poisson process and 

determines the results through convergence of the Monte Carlo method. This is 

different from the probabilistic analysis applied by StraPCost. 

The ECN O&M tool is developed in two MS-Excel sheets. The first Excel sheet 

WaitingTime.xls determines the suitable time for the repair operation and estimates 

the average waiting time before a suitable weather window occurs. The program uses 

time series with three hourly wind and wave data as input. In contrast to the power law 

in StraPCost, the ECN method fits the original scatter data with second or third order 

polynomials to estimate the mean value and standard deviation of waiting time as a 

function of the duration of the maintenance activity [170]. 

The second Excel sheet CostCal.xls determines the long term annual or seasonal O&M 

costs and the associated downtime. Apart from the weather window and waiting time 

polynomial fitted function from the WaitingTime.xls and a series of basic wind farm 

information, this program requires failure occurrence rates and the associated repair 

actions as input. As stated repeatedly, such data are rarely available. An alternative 

approach available with this model is to use data from similar turbine type, or from 

generic databases. 

The maintenance categories were defined in Section 5.1.4.2 while introducing 

StraPCost. As a mature commercial model, it also gives step-by-step instructions 

regarding each maintenance category. In addition, the maintenance class is split up 
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into Fault Type Classes (FTC’s) which provide the detailed costs: labour costs, costs 

of spare parts and consumables, cost of equipment and revenue losses. 

In contrast to the StraPCost, as shown in Table 29, the output of the ECN O&M tool 

divides the downtime into 4 stages: logistics, waiting, travel and repair. It splits the 

equipment cost into MOB/DEMOB, waiting and repair. It also lists the cost for each 

season as well as an annual total. In the same way as StraPCost, the ECN O&M model 

provides a pie chart of the cost drivers with downtime. StraPCost provides a bar chart 

of cost drivers divided into scheduled and unscheduled O&M, while the ECN O&M 

presents the turbine availability per season.  

Table 29. Example of ECN O&M tool output [170] 

 

5.2.2.1.2 ECN OMCE 

The ECN Operation and Maintenance Cost Estimator (OMCE) consists of two main 

modules: the OMCE Building Blocks and the OMCE-Calculator, in order to monitor 

O&M actions and to control and optimise the future costs, as shown in Figure 54. In 
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the first module (the red dashed rectangle in the middle of the figure), Four OMCE 

Building Blocks (BB) are established in order to process operational data. The 

outcomes of these blocks are for monitoring as well as the input for the next module. 

The OMCE-Calculator (the red dashed rectangle on the right hand side of the figure) 

synthesizes the information from the previous blocks to exam the existing O&M action 

and associate costs. The OMCE-Calculator is largely based on the ECN O&M tool and 

is a Matlab based time-domain simulation program.  

 
Figure 54. OMCE concept with two major modules: Building Blocks and OMCE-

Calculator [171] 

Similar to StraPCost, OMCE has an additional module to process the time domain 

operational data and provide the calculated parameters as input to the cost and effects 

estimation module. As a more mature model, OMCE also provides split blocks in the 

module for monitoring purposes. The simulation process of OMCE-Calculator is 

shown in Figure 55.  
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Figure 55. Simulation process of OMCE-Calculator [171] 

The weather window of the OMCE-Calculator is similar to StraPCost; however, 

instead of having one threshold for significant wave height, the OMCE-Calculator 

splits the threshold into different levels as well as considering wind speed. It also 

accepts repairs that do not need to be completed in one operational visit. Figure 56 

shows the weather window with both wind speed and significant wave height. In this 

example, the maintenance can be carried out when significant wave height is no more 

than 1.5m and wind speed no more than 12m/s and the duration is 20hr (left box) and 

40hr (right box).   

 

Figure 56. Example of determination of waiting time for a maintenance action to be 

carried out [171] 

In general, ECN models are quite mature packaged commercial cost models. The core 

algorithm synthesizes weather conditions and has multi-levels of thresholds for repair 

operations that can be completed in more than one visit. It provides the model output 
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for different seasons and a breakdown of the downtime. It determines the statistical 

uncertainty of the failures using a Poisson process and determines the results through 

convergence of the Monte Carlo method. It provides more detailed and accurate 

estimation when it comes to the reactive maintenance, whereas StraPCost allows 

assessment of condition based maintenance. 

5.2.2.2 ECUME Model 

The ECUME model is developed by and used within EDF in recent years supporting 

the group company in making investment decisions, turbine selection, life cycle 

logistics and O&M strategies for its growing portfolio of offshore wind farms [158]. 

The model evaluates the total mean cost of the operation of an offshore wind farm 

project at the design phase. This model adapts a cost estimator which has been used in 

EDF to help investment decision making for traditional power plants. It also makes 

use of inputs used by the ECN O&M tool [170][171]. 

Capital operational costs, including fixed costs, preventive periodical maintenance 

costs, standard costs for condition based maintenance are input. Deterministic cash 

flows are set by the user. The probabilistic cash flows, which are due to corrective 

maintenance after the occurrence of a failure and condition based maintenance after 

the detection of component degradation, are estimated by the model.  

ECUME used to largely depend on another combined EDF model, AMER. With set 

thresholds of wind speed and significant wave height, AMER calculates the mean 

waiting time per season for the appropriate meteorological window for the selected 

maintenance. The improvement in ECUME is based on a Monte-Carlo-based event 

model for the modelling of failure risk, and a Hidden Markov Model (HMM) is used 
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for obtaining and the evaluation of the risk of accessibility dependent on 

meteorological and marine parameter, as shown in Figure 57.  

The hidden states in the HMM model are considered to be temperature, sun position, 

etc., as established by Baum-Welch algorithm [173][174].  

 

Figure 57. ECUME event model structure [158] 

The failure rate evolution follows the bathtub curve, as shown in Figure 58, where the 

failure rate is decreasing during the infant mortality period; the failure rate is constant 

during the useful life period; and the failure rate towards end of life period is increasing 

reflecting cumulative damage to components. Each of the three failure rate periods is 

represented by a two parameter Weibull distribution, where 𝛽𝑖is the shape parameter 

and 𝜂𝑖is the scale parameter: 

  𝐹𝑖(𝑡) = 𝛽𝑖 ∙
𝑡𝛽𝑖−1

𝜂𝑖
𝛽𝑖

 (60) 

These two parameters are determined by an inbuilt questionnaire covering the 

component failure mechanism, component minimal life duration, and mean failure 

over the life of the wind farm operation. The parameters are then calculated according 
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to three constraints: continuity, mean value and the upper and lower limit of the failure 

starting and ending dates.  

 

Figure 58. Evolution of failure rate Bathtub curve [158]  

With the failure distribution function determined by fixing the two Weibull parameters, 

the Monte Carlo event model simulation is then applied to each maintenance strategy. 

The failure times are estimated by inverse transformation sampling, which is another 

of EDF’s internal tools for asset management.  

Generally speaking, this model uses a Hidden Markov model to estimate the 

environmental inputs for the waiting time of each maintenance action, and the Monte 

Carlo method to estimate the failure risk for each maintenance strategy simulation. 

The failure rate estimation is based on Bathtub curve and Weibull distribution function 

fit. Compared to the developer’s purely empirical assumption on the failure rate in the 

original StraPCost, this failure rate estimation is supported by evidence to a certain 

extent. This model considers multiple risk indicators, which makes this O&M cost 

estimator more realistic. On the other hand, this model contains a number of 

parameters requiring calculation. In addition, the complex combination of two 

methodologies increases the modelling time and the chance of the error in the 

computation procedure as well as increasing the cost of the modelling.    
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5.2.2.3 NOWIcob 

The Norwegian offshore wind cost and benefit (NOWIcob) model is another 

commercially developed cost estimator for offshore wind farms. This decision support 

tool is developed and owned by SINTEF providing sensitivity analysis of the O&M 

costs mainly due to the maintenance and logistic strategy, and thus assists optimal 

strategy choice [160].  

This model is also based on the Monte Carlo method with Markov chain process in the 

time sequence for weather and relevant uncertainty. The highlight of the model is the 

vessel selection concept based on simulation of time-based, condition-based and 

corrective maintenance. The results from the model include availability, life cycle 

profit, O&M cost, electricity produced etc. 

 

Figure 59. General structure of the NOWIcob model with controllable and 

uncontrollable factors [160] 

This model categorizes the input data for the Monte Carlo estimator into controllable 

and uncontrollable factors, as shown in Figure 59. The controllable factors are basic 

O&M choices, and uncontrollable factors reflect by external conditions. What is 



 

Chapter 5 Strathclyde Probabilistic Cost Model (Plus) for offshore wind farm 

170 

 

noticeable is that failure rates are treated as uncontrollable factors and it is assumed 

that maintenance actions do not affect the failure rates.   

For condition based maintenance, similar to StraPCost, this model also breaks down 

condition based fault diagnosis into three categories, with a slight difference in names 

rather than the concepts: detectability, efficiency and false alarm, equivalent to 

Detectability, Pre-Empt and Falsepos in StraPCost, respectively.  

The simulation of this model makes a few assumptions. The Markov chain process 

used in this model assumes that future weather is only dependent on the current 

weather situation and isolated from historical weather. The transition matrices are 

based on both significant wave height and wind speed. Similar to every cost model, 

this model assumes perfect weather forecasting. 

As stated, this model places emphasis vessel selection. From a stoppage perspective, 

among the three maintenance types, time-based and condition-based maintenance only 

lead to turbine stoppage for the time when transporting starts, in contrast to the 

immediate stop at the moment the failure results in corrective maintenance. This 

provides more detailed stoppage dependent on the maintenance strategies than 

StraPCost. In NOWIcob, motherships are considered for locating personnel.  

Similar to some of other cost models, NOWIcob allows multiple visits for one 

maintenance task, as shown in Figure 60 [160]. In addition, access vessels can serve 

several maintenance operations in parallel, as well as the sequential maintenance by 

other vessels. This model defines different routes for these two types of vessel tasks. 
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Figure 60. Travel strategies for multiple tasks in the wind farm in NOWIcob [160] 

In terms of maintenance tasks in parallel requiring vessel and personnel resources at 

the same time, this model also determines priorities. The highest priority goes to the 

ongoing maintenance, followed by maintenance that can be undertaken by an already 

ordered vessel. Corrective maintenance is given the highest priority among the three 

strategies, followed by condition-based maintenance and finally time-based 

maintenance. The vessel cost comprises yearly fixed costs and variable costs for usage. 

The estimation of the availability in this model also takes a fairly comprehensive 

approach to internal and external factors. It takes account of the downtime of the wind 

turbine, as well as the downtime of the electrical infrastructures such as inner cables, 

substations and export cables. 

Since this model considers both the wind speed and significant wave height in the 

weather condition simulation, power production is based on the simulated wind speed 

in the time domain and the power curve. It also considers the wake loss from the wind 

farm perspective as well as the electrical losses in the electrical infrastructure.  
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In general, this model can be considered a fairly mature packaged commercial model. 

It uses Monte Carlo methods with Marko chain process for weather simulation. It has 

put considerable emphases into vessel conditions and choices. It considers multiple 

tasks for one vessel seagoing, which is useful and realistic for light maintenance, but 

for heavy maintenance, the weather window is usually only enough for one task. Even 

though it does not output results for condition based maintenance as in StraPCost, this 

model does consider condition based maintenance with regard to vessel use, and 

categorizes the condition monitoring performance into three similar categories.   

5.2.2.4 UiS Offshore wind marine logistics decision support model 

The UiS Marine logistics decision support model developed by researchers at the 

University of Stavanger (UiS) is a simulation-based O&M strategy making tool for 

offshore wind farm operators. It absorbs the core concept from the ECN O&M tool, 

which is as stated, treated as the standard by the European industry. However, unlike 

the above cost models; this simulation model has its own development environment 

using Java programming language and the commercial simulation software AnyLogic, 

as shown in Figure 61 [179].  

This model has a combination of agent-based and discrete event modelling, for 

modelling operation actions and working processes, respectively. This model only 

considers 19 wind turbine components which covers the main body of the turbine, but 

are less detailed than StraPCost. 
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Figure 61. Simulation statechart of the UiS Offshore wind marine logistics decision 

support model [179] 

Similar to ECN O&M tool, this model processes the probability of failure occurrence 

dependent on time P(N(t)) through a non-homogenous Poisson process where the 

failure intensity λ(t) is represented by a Power law process following a Weibull-

function, as shown in the equations below.  

 𝑃(𝑁(𝑡) = 𝑖) =
(𝜆(𝑡) ∙ 𝑡)𝑖

𝑖!
𝑒−𝜆(𝑡)∙𝑡, 𝑖 = 0,1,2, ⋯ (61) 

 𝜆(𝑡) = 𝜆𝛽𝑡𝛽−1  (62) 
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where λ is the annual failure intensity, β is the Weibull distribution shape parameter. 

The simulation module takes into consideration preventive maintenance and corrective 

maintenance, but not condition based maintenance. This is its major shortcoming when 

compared with other cost models, especially the StraPCost.  

On the other hand, this model considers failure severity more comprehensively. It 

classifies the severity with the failure type classification (FTC) scale, with indexes 

from 1 to 20, where 1-16 represents severity low to high, and 17-20 denotes service, 

inspection and routine preventive maintenance tasks. When carrying out maintenance 

actions, the AnyLogic model enables agent-to-agent communication, where a message 

from the vessel to a technician is added to a Java file on the vessel and initiates a 

transition in the technician’s statechart. 

An innovative assumption in this model is that the technicians are assumed to require 

less time for a given repair with accumulation of the experience, and of course, the 

increase of the gain in experience diminishes with times. The assumption treats all 

technicians, e.g. electrical and mechanical technicians, in the same manner, although 

it is already more detailed in this aspect than all other cost models. 

From a vessel chartering perspective, this simulation-based model allows various 

strategies for different wind farms or projects. It is possible to choose the contract type, 

e.g. spot or long term, contract duration and if the charter rate is fixed or variable; 

whereas in StraPCost the vessel charter only considers extra costs for unscheduled 

maintenance in contrast to scheduled maintenance. However, the vessel classification 

in this model is less comprehensive than StraPCost, with only heavy lift vessels (HLV), 

crew transfer vessels (CTV) and service operation vessels (SOV). 
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The simulation and decision making progress in this model has four main steps. The 

first step is to define all the possible decisions and scenarios. The second step is to 

define output metrics which are to be used for evaluating the decision alternatives. The 

next step is to repeat n simulation runs. Finally, the most advantageous decision is 

selected according to the output metrics. Since StraPCost does not provide a decision 

making function, when compared with other cost models, this model’s simultaneous 

metrics of decisions improves simulation efficiency and its multiple runs provide a 

certain level of accuracy. 

In common with most other cost models, this model treats both significant wave height 

and mean wind speed at hub height as two weather parameters. This model also uses 

Markov chain Monte Carlo approach for processing weather data. 

In the way as StraPCost, this model refers to the NREL Wind Pact project for the 

default cost of spare parts. It also assumes that the electricity price is constant with a 

government supplement such as the Renewable Obligation Certificate (ROC) [180] or 

Contract for Differences (CfD) [181]. 

As in StraPCost, the decision maker is expected to input the preferred number of 

technicians and vessels, the type of vessels, and in what situation a certain type of 

vessel should be used. What is noticeable, in the UiS Marine logistics decision support 

model the location of the onshore supply base is specified by longitude and latitude, 

rather than distance to the wind farm. 

In common with some other cost models but not StraPCost, the outputs of this model 

distinguish availability into time-based and energy-based. It also provides the technical 

availability which states the available time as a fraction of the theoretical available 
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time. It lists the marine logistics cost and vessel utilization which represents the days 

used as a proportion of the days actually chartered. 

In general, this model is a simulation based decision support cost model with Markov 

chain Monte Carlo approach for the weather data processing. This model is a 

combination of agent based and discrete event modelling. It treats marine logistics as 

critical. Its use of metrics for possible decision scenarios and multiple runs provides a 

relatively efficient and accurate algorithm. Its critical shortcoming is that it considers 

only preventive and corrective maintenance.  

5.2.2.5 Strathclyde OPEX model 

The Strathclyde OPEX model has been developed in the University of Strathclyde for 

operational and strategic decision support for offshore operation. It is a Matlab based 

model with Bayesian Belief Networks and decision trees for the decision making 

algorithm [159]. This model relies on expert knowledge to a certain degree, as inputs 

to the operational module. The output from the operational model is then fed into a 

decision support module for the final analyses. 

One of the strengths of this model is that it is based on a comprehensive study of 

offshore jack-up vessels for different maintenance strategies. Being developed within 

the same university, the author of OPEX model had the benefit of being able to access 

the vessel database, including the capital expenditures (CAPEX), from the University 

of Strathclyde department of Naval Architecture, Ocean & Marine Engineering (NAO-

ME).  

It lists the available jack-up vessels and established a methodology for the estimation 

of the charter rates dependent on different charter periods from the spot market to up 
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to a 20-year charter. However, as stated, this charter rate estimation is generally based 

on judgment of the vessel market and the offshore wind operators. This highlights the 

lack of available charter rates for specific charter periods due to the opaque negotiation 

between the vessel owner and the charterer, and the excessive protection of 

information within the immature offshore wind market. These limited data are 

processed through a ready-made regression analysis model, and vessel charter rates 

are plotted against CAPEX for different charter durations and fitted with a polynomial 

function, as shown in Figure 62. Another important assumption in this model is that a 

mean value of £400,000 mobilization cost is assumed for every vessel commissioned 

regardless of the actual cost, taken from [159]. 

 

Figure 62. Vessel charter rates under different operational scenarios in the 

Strathclyde OPEX cost model [159] 

In common with the UiS Marine logistics decision support model, the failure 

behaviour in this model uses Weibull probability density function, and each subsystem 

is described by a binary state value of operating or failed. The transition probability is 

compared with a random number R in the interval [0,1]. If for one case the condition 

in Eq.63 is satisfied, the repair times are considered to be deterministic and are further 

used in the weather model. 
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 𝑅 < 𝜆(𝑡) ∙
∆𝑡

8760
 (63) 

In the weather parameter simulation, this model uses a correlated Multivariate Auto-

Regressive (AR) approach to process wind speed and significant wave height. Since 

the standard AR model contains a Gaussian noise term, which means the standard AR 

equation is only suitable for process including a Normal (Gaussian) distribution. 

However, neither wind speed nor significant wave height follows such distribution. 

The Box-Cox transformation [182] is used to remove the non-stationary trends and 

transform the distribution to Gaussian form. The correlation is captured by substituting 

a Gaussian pseudorandom vector. The final de-trended and transformed expression for 

significant wave height Hst, with the transform coefficient Λ, is shown below. 

 𝑌𝑡 =
𝐻𝑠𝑡

𝛬−1

𝛬
− 𝜇̂𝐻𝑠𝑡

𝛬−1

𝛬

 (64) 

The determination of the AR coefficients and modelling is implemented using the 

“arfit” algorithm [183] in Matlab with order chosen by optimizing Schwarz’s Bayesian 

Criterion and coefficients identified by stepwise least squares estimation. This pre-

processing of the weather time series data provided is closer to reality to a certain 

extent than StraPCost but requires more calculation space and is more time consuming. 

 

Figure 63. BBN modelling and decision tree for an example site in OPEX model [159] 



 

Chapter 5 Strathclyde Probabilistic Cost Model (Plus) for offshore wind farm 

179 

 

In this model, Bayesian Belief Networks and decision trees are used as decision 

making algorithm, as shown in Figure 63. As introduced in 5.2.1.3, a Bayesian network 

is a variant of HHM and suitable for high-dimensional probability distributions. To 

evaluate BBN, a decision tree is constructed and solved by dynamic programming. 

One advantage of BBN is that it gives the decision maker a framework to update their 

beliefs based on new evidence as it appears. 

In general, the OPEX model is an offshore wind farm decision support model using a 

Multivariate Auto Regressive weather model with a Markov chain Monte Carlo failure 

simulation repair process for the cost estimation. The decision making algorithm is a 

conjunction of BBNs and decision trees. This model accurately represents jack-up 

vessel usage and provides a more realistic way to process environmental data, when 

compared with StraPCost and other cost models. 

5.2.2.6 Strathclyde Structural Health Monitoring model 

The Strathclyde Structural Health Monitoring model is another model developed at the 

University of Strathclyde. As suggested by its name, this model aims to investigate the 

benefit of using structural health monitoring as a complement to condition monitoring 

system. Similar to the OPEX model, this model is based on Dynamic Bayesian 

networks (DBN) with Monte Carlo simulation [178].  

Structural health monitoring (SHM) is a process involving observation of a structure 

or mechanical system over time using periodic measurements, elicitation of the 

damage features from the measurements, and statistical analysis of these features. With 

these three steps, the current state of the system can be assessed [184].   
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The deterioration of mechanical components is used to determine failure rates. In this 

model, failure rates are calculated as a simple mean value from 3-year operational data 

from the Efmond aan Zee offshore wind farm, with 36 Vestas V90 3MW wind turbines. 

Even though this wind turbine sample group is fairly limited in size, it still provides 

statistical evidence to a certain level, rather than the purely assumption used in 

StraPCost.  

As introduced in 5.2.1.3, a DBN is a BN with time slices. With failure rate defined as 

the number of failures expected to occur over a given time period: 

 𝜆 =
𝑓

𝑁
 (65) 

The deterioration which is assumed to follow an exponential function can be expressed 

as the probability function below. A simple 2 × 2 CPT is given referring the “Major” 

and “Minor” failure mode categories, as introduced in Section 5.1. 

 𝑃𝑡 = 1 − 𝑒−𝜆𝑡 (66) 

 𝐶𝑃𝑇 = (
1 − 𝑃𝑡 𝑃𝑡

0 1
) (67) 

The structural components are modelled with fatigue limit state equations and solved 

by Monte Carlo sampling, which is previously done by one of the authors and his team 

[185]. As expressed below, the fatigue limit state g is a function defined as the 

difference between the structural resistance Δ, and the fatigue loading which consists 

of the annual number of stress cycles v, the year of service t and the expected value of 

stress cycles 𝐸[∆𝜎𝑚], where m and K are the relevant S-N curve constants. 

 𝑔 = ∆ − 𝑣 ∙ 𝑡 ∙
𝐸[∆𝜎𝑚]

𝐾
 (68) 
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In the cost modelling perspective, this model considers the costs as a Net Present Value 

(NPV), as with the ECN O&M tool and the majority of the commercial cost models. 

A discount rate of 4% is applied in this model.  

 𝑁𝑃𝑉 = ∑
𝐶(𝑖)

(1 + 𝑟)𝑖

𝑦

𝑖=1

 (69) 

where C(i) is the cost of year i within the number of years y.  

One strength of this model is the evaluation of the benefit of the SHM system, as 

expressed of the structure costs expectation 𝐸[𝐶𝑅], and the expected benefit from risk 

reduction E[B].  

 𝐸[𝐶𝑅] = 𝑃𝐹𝐶𝐹 (70) 

 𝐸[𝐵] = 𝐸[𝐶𝑅] − 𝐸[𝐶𝑀𝑅] (71) 

The cost caused by failure is taken as £3,780,000 based on the generic costs of 

£1,260,000 per MW converted from the original currency Euros [186]. Again this 

value has a certain meaning in the barren environment of the cost research field, but 

only to a level. This model finally gives an evaluation of 6% of levelised costs 

reduction due to the SHM system application with the case study of the stated wind 

farm [186]. 

In general, this model is based on Dynamic Bayesian networks (DBN) with Monte 

Carlo simulation. It emphasizes the fatigue on the structure of the turbine and estimates 

the structure costs. It suggests a final 6% of cost reduction due to the SHM system in 

addition to the condition monitoring system. However, compared to StraPCost, this 

model only investigates the cost at a turbine level rather than a subsystem or 
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component level. It only considers the failure rate of the turbine as a whole, whereas 

in reality the failure rate in each subsystem can vary dramatically.   

5.2.3 Conclusion 

This section has reviewed the state-of-the-art cost models for offshore wind farms, 

introduced the mathematical tools and theories behind them, analysed their strength 

and shortcoming, and compared them with StraPCost. 

This research area is still at a development stage reflecting the immaturity of the 

industry itself. There are no cost models at this time able to investigate any 

environmental factors other than significant wave height and wind speed. The majority 

of the cost models use Markov methods or a simplified derivative in a Monte Carlo 

simulation. The regression manner of these algorithms provides higher accuracy but 

requires a fairly long calculation time. Among these models, some are quite mature 

commercially packaged models, where others are still in their development or 

improvement stage. Each model has its own strengths and emphases, and this 

somehow enriches the understanding in this newly rising and data-protected research 

area. This review section provides a close view of other cost models for comparison 

with StraPCost. This gives an important train of thought of improving the existing 

StraPCost which will be discussed in the next section. 

Currently, none of the existing offshore O&M cost models uses actual offshore failure 

rates as estimation inputs, and these inputs are purely assumptions mainly from 

onshore wind farms. Since Chapter 4 in this thesis has developed an onshore to 

offshore translator, it provides a train of thought of applying this translator to 
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StraPCost for an attempt to fill this gap of having translated offshore failure rates as 

inputs.  

From this review and comparison, it can be seen that the majority of the cost models 

have at least four levels of maintenance categories which describe the maintenance 

activity in more detail. This urges the extension of the original three maintenance-

category setting in StraPCost. The extension also eases the benchmark study in Section 

5.4. 

Currently wind and wave are equally important concerns of all the existing cost models. 

However, in StraPCost, there is only a wave parameter calculator set. This urges the 

installation of the wind parameter calculator which derives the parameters from the 

wind speed time series in StraPCost.  

As wind farm O&M cost estimators, the majority of the models provide estimations 

based on the entire wind farm level, whereas the original StraPCost provides 

estimations on averaged wind turbine level without considering the number of wind 

turbines installed in the wind farm. The urges the improvement of adding an input 

window for the number of wind turbines. Cost models such as NOWIcob consider 

multiple visits with one vessel seagoing. This can be useful and realistic for small 

maintenance but not heavy maintenance which usually requires long weather window 

for its own, therefore at this stage this multi-visit function will not be considered for 

StraPCost.   

It can be seen that all existing cost models considers technician basic cost including 

salary, utilities, taxes and well-beings, while StraPCost only counts individual 

technician cost when the maintenance is undertaken which is not realistic. The single 
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technician estimation of StraPCost also unrealistic while other cost models considers 

the number of technicians available per working shift and the cost per technician per 

day. These two technician inputs are urged to be installed in StraPCost. 

It can be seen that all of the reviewed cost models are simulation-based models with 

no more than two modelling software, and all functions are packaged which enables 

the modelling on one go. This urges the packaging of the original StraPCost with more 

user friendly functions and the correction of some uncorrelated inputs through all 

calculations within StraPCost.  

Currently none of the existing cost models provides easy sensitivity analysis access, 

which is important for understanding of the impact of the key parameters for a wind 

farm. This provides a train of thought of installing sensitivity analysis percentage 

adjustment coefficients for the key parameters in StraPCost. 

Based on this conclusion, a series of improvements are done to StraPCost and 

upgraded into StraPCost+ in Section 5.3. 
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5.3 Improvements and updated model StraPCost+ 

This section presents the improvements to the existing cost model StraPCost based on 

the research and comparison results with other cost models explored in the previous 

sections in this chapter. Here calls the updated model StraPCost+. 

The improvements made are the application of the failure rate translation developed in 

Chapter 4, expending maintenance categories, application of wind speed Weibull 

distribution parameter calculator, expending the cost estimation to the wind farm level, 

consideration of the technician cost, correlation of the delay information, and 

application of sensitivity analysis percentage adjustment coefficients.  

5.3.1 Failure rate translation application to StraPCost+  

The accuracy of failure rate data directly affects the accuracy of the cost estimation. 

As already mentioned, failure rate data are not available to researchers from offshore 

wind farms and data from onshore wind plant is limited. As discussed in 5.1, the 

breakdown failure rate of individual wind turbine components is an important input to 

StraPCost, and as it pointed out, this part in the original model uses empirical data for 

a number of onshore wind turbines, albeit with relatively low ratings. Even though this 

classic onshore failure rate breakdown still has meaning, as an offshore wind cost 

model it is important to use as much offshore data as possible. Therefore, one 

meaningful application of the failure rate translation procedure introduced in Chapter 

4 is to generate “offshore” subsystem failure rates for input to the updated model.  

There are still problems to be solved in making this application, among which is the 

naming of the wind turbine subsystems and components. Since there is no standard for 
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naming the wind turbine subsystems or components, each manufacturer, operator and 

research authority has its own way approach to naming. This often results in a 

mismatch of the names of some subsystems. One subsystem might have different 

names in different recording systems, be assembled with different other subsystems, 

or might not be recorded at all in some of the recording systems. Because of this, there 

is not always a value available for each subsystem in this research, and some pre-

processing is required. When introducing the failure translation method in Chapter 4, 

the rotor and blades are treated as separate components in the onshore and offshore 

real data recorded from Siemens wind turbines, but are recorded as just one subsystem 

in the existing onshore RPN publication [146]. This mismatch results in a certain loss 

of accuracy.  

Before applying the methodology to the failure rate data, it takes a step to correlate the 

failure rate for the input page of the entire model, as presented in subsection 5.3.1.1. 

The methodology of the application of the failure rate translator is presented in 

subsection 5.3.1.2. Results and discussion can be found in subsection 5.3.1.3. 

5.3.1.1 Pre-processing: failure rate correlation within StraPCost+ 

In the original model, when the failure rate data is to be changed, it has to be changed 

on every related sheet. This is not only inconvenient but also risks leaving out some of 

the subsystems on some sheets. Once this step is completed, the failure rate needs only 

be set once in the Input&Result sheet.  
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5.3.1.2 Methodology 

In the original model StraPCost, the failure rate breakdown is taken from two different 

references, [164] and [165], and the compromise formed by mixing the two data sets 

makes the naming of the subsystem more difficult to match up with the real data 

recorded by the wind farms investigated in this thesis. What is worse, because of the 

complicated model structure, the failure rate module is highly used and closely related 

to the maintenance category in most of the sheets in the model. The subsystems used 

cannot be easily removed or changed.  

In this situation, a remedy is to, as far as possible, apply the failure rate translation 

technique for subsystems which are in both the original cost model and the real data 

recorded from the wind farms, and calculate failure rates for the remaining subsystems 

by multiplying the percentage failures of the subsystem taken from [165] and the total 

failure rate of the entire turbine. The total failure rate can be a set to a default value for 

a specific application or a mean value determined from the breakdown failure rate by 

subsystem. The subsystem specifications common to both sources constitute the main 

parts of a turbine and cover the majority of failures, while the rest of the subsystems 

account for only a small part of the total failures. This approach is not perfect but it 

provided an acceptable estimate of the offshore failure rate breakdown by component 

and subsystem for application to cost modelling. 

To implement the offshore translation in the cost model, three middle-stage calculation 

columns are used instead of the original failure rate column in Input&Result sheet: the 

original onshore failure rate, onshore to offshore ratio for wind speed and temperature. 
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The updated subsystem failure rate equals the original onshore failure rate multiply the 

two ratios (assuming statistical independence), as shown in the equation below.  

 
𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑

= 𝐹𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑜𝑛𝑠ℎ𝑜𝑟𝑒 ∙ 𝑅𝑎𝑡𝑖𝑜𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑 ∙ 𝑅𝑎𝑡𝑖𝑜𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 
(72) 

If the subsystem does not have a matched translation, the ratios are set to be 1. An 

example of the updated settings of StraPCost+ is shown in Table 30. Compare to Table 

15, it can be seen that different naming systems are adopted from different companies. 

Table 30. Example snapshot of the updated failure rate allocation in StraPCost+, first 

row given total failure rate and its percentage (close but not 100%) 

Subsystem 
%  

fail. rate 

Fail./yr/ 

turbine 
Failure rate processing 

Total failure rate 99.5% 10.461 
Onshore 

Original 

 Ratio 

WindSpeed 

Ratio 

Temperature 

Gearbox Assembly 5.1% 0.801 0.610 0.9396 1.3969 

Blades 1.5% 0.111 0.172 0.8239 0.7811 

Pitch System 21.3% 1.556 2.532 0.6893 0.8911 

Yaw System 11.3% 1.239 1.342 1.0447 0.8838 

Transformer 1.7% 0.194 0.203 0.8136 1.1702 

Generator Assembly 7.2% 0.279 0.852 0.6336 0.5164 

Frequency Converter 13.0% 1.542 1.542 1 1 

L.V. Switchgear 5.9% 0.699 0.699 1 1 

M.V. Switchgear 3.3% 0.395 0.395 1 1 

Power Module Other 1.6% 0.194 0.194 1 1 

5.3.1.3 Results and Discussion 

Table 31 shows the failure rate translation from onshore to offshore for the subsystems 

shown in both data sources with a set default total failure rate of 11.895. As concluded 

in Chapter 4, the exponential fitting method is used in the translation. The second and 

third columns in the table show the original onshore failure rate percentage from [165] 

and the corresponding onshore failure rate derived from multiplying the set total failure 

rate with the system failure rate percentage, as the failure rate input used in the original 

version of the cost model, StraPCost. The rightmost column lists the translated 
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offshore failure rate derived using exponential fitting method. This table lists different 

subsystems in the order that suits the StraPCost+ failure rate module. The middle 

stages—the ratio of the wind speeds and the ratio of the temperatures— are also shown 

in the table separately.  

Table 31. Failure rate translation from onshore to offshore for the matched subsystems 

for StraPCost+ 

Subsystem 

Original 

Onshore 

failure 

rate% 

Original 

Onshore 

failure rate 

Ratio 

WindSpeed 

Ratio 

Temperature 

Translated 

Offshore 

failure rate 

Gearbox Assembly14 5.10% 0.610 0.9396 1.3969 0.801 

High Speed Shaft transmi 0.40% 0.049 0.9531 2.4941 0.116 

Controller H/W 2.40% 0.289 1.1716 1.2113 0.410 

Controller S/W 1.40% 0.169 1.1716 1.2113 0.240 

Control & Comms Other 0.50% 0.056 1.1716 1.2113 0.079 

Main Shaft13 0.30% 0.034 0.6929 1.4381 0.034 

Rotor Other8 0.10% 0.007 0.7889 1.1853 0.007 

Mechanical Brake15 0.50% 0.056 0.7437 1.1819 0.049 

Blades9 1.50% 0.172 0.8239 0.7811 0.111 

Yaw System18 11.30% 1.342 1.0447 0.8838 1.239 

Transformer(HighV)1 1.70% 0.203 0.8136 1.1702 0.193 

Generator Assembly27 7.20% 0.852 0.6336 0.5164 0.279 

Pitch System11 21.30% 2.532 0.6893 0.8911 1.555 

Hydraulic System23 1.20% 0.142 0.8702 0.5887 0.073 

Tower33 2.70% 0.316 0.9621 0.8911 0.271 

What is worth to be noticed is that the total percentage of all subsystems listed is only 

99.5% rather than 100% from the best match between the subsystem failure reference 

[165] and the maintenance categorized failure rate reference [166], as introduced in 

Section 5.1.4. As the mismatch between the references, the dermatology used in the 

translation method also has unmatched subsystems with the original onshore failure 

rate values from the reference [165] in Table 31. Therefore, in StraPCost+, the matched 

subsystems are set to the translated offshore failure rates, and the unmatched 

subsystems are set to be the original onshore failure rate values (with environmental 

ratios equal to 1).  



 

Chapter 5 Strathclyde Probabilistic Cost Model (Plus) for offshore wind farm 

190 

 

Higher wind speed in the marine condition can incur more loads and fatigue to a wind 

turbine, whereas the higher temperature offshore reduces the ice damage. Under the 

circumstance that these are the only two environmental factors considered and treated 

with equal weight, it is unsure whether the failure rate goes up with the translation to 

offshore. In general, the translated offshore failure rates dependent on the main 

subsystems are higher than the onshore original failure rate, but there are still 

exceptions. As already discussed in Chapter 4, apart from the mismatch of the 

subsystem terminology, the unexpected results can also come from the inaccurate (or 

can be wrong) shape derived from the limited length of the only accessible real failure 

rate data, and the simple assumptions that only wind speed and temperature are 

considered as the environmental factors with equal weight, etc.. Because of these 

limitations, the results from the translator cannot at this stage be assumed to be as 

reliable as would be wished. The translation method can be treated rather to provide a 

train of thought at this stage. The method can be expected to be improved when more 

real failure rate data available. On the other hand, it cannot be affirmed that the original 

onshore failure rates from reference [165] used in the original cost model are absolute 

accurate and the generic values for all onshore wind farms. The failure rate of some 

subsystems can be unrealistically high which show higher values than the offshore 

ones in this table.  

Despite the limitations, in this way, the failure rate input of this cost model is made for 

the offshore application rather than the original onshore assumptions. It can be treated 

as a step closer to the realistic modelling. This improved failure rate setting algorithm 

is applied and further compared in the next sections. Because of the uncertainty, the 

benchmark in Section 5.3.4 uses both onshore original failure rates and the translated 
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offshore ones, with an additional comparison of a one value setting which applies only 

one general failure rate for the entire wind turbine and neglects the breakdown 

subsystem failure rate. 

5.3.2 Expanding maintenance categories within StraPCost+ 

The maintenance category is an important aspect of cost modelling. Proper categorized 

maintenance groups provide suitable maintenance data for the corresponding cost 

calculation for the wind turbine and the entire wind farm level. As introduced in 

Section 5.1, the original StraPCost model selected three categories from the ECN 

O&M tool settings for unscheduled (denoted Au, Cu and Du) and scheduled 

maintenance (denoted As, Cs and Ds), and one separate category E for “remote reset”. 

Even though it satisfies the requirements of basic estimation, it can be improved by 

adding more categories for more detailed estimation and with uniformity of other cost 

models benchmarked in Section 5.4. 

The updated maintenance category in StraPCost+ is extended to five groups (A, B, C, 

D and E) for unscheduled (u) and scheduled (s) maintenance separately and F for 

“annual service”. An example is given in Table 32. The parameters in this table are 

also used for the comparison with other cost models in the next section. The level of 

maintenance is listed in descending order. The updated A stands for “major 

replacement”, B represents “major repair”, C represents “medium repair”, D stands for 

“minor repair”, and E stands for “manual reset”—the original separate state “manual 

reset” is now listed as one of the categories under both maintenance strategies, and the 

separate state now becomes filled by “annual service”. As shown in this table, the 

percentage value under each maintenance category shows the percentage of failure 
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occurrence associated with the maintenance activity. Thus the total percentage of every 

row in the table remains 100%. 

Table 32. Example of extended maintenance categories in StraPCost+ input setting 

 Reactive maintenance Condition-based maintenance 

Annual 

service 

Procedure 

Category 

Major 

Replacement 

Major 

Repair 

Medium 

Repair 

Minor 

Repair 

Manual 

Reset 

Major 

Replacement 

Major 

Repair 

Medium 

Repair 

Minor 

Repair 

Manual 

Reset 

  unscheduled scheduled   

Repair type Au Bu Cu Du Eu As Bs Cs Ds Es F 

weight limit 500 50 10 10 10 500 50 10 10 10 10 

repair time 52 26 22 7.5 3 52 26 22 7.5 3 60 

lead time 1440 504 0 0 0 1440 504 0 0 0 1440 

people reqd 5 4 3 3 2 5 4 3 3 2 3 

vessel HLV1 FSV1 CTV1 CTV1 CTV1 HLV1 FSV1 CTV1 CTV1 CTV1 CTV1 

Subsystem            

Generator 

Assembly 0.67% 0.34% 2.31% 25.22% 63.05% 0% 0% 0% 0% 0% 8.41% 

Gearbox 

Assembly 0.67% 0.34% 2.31% 25.22% 63.05% 0.00% 0.00% 0.00% 0.00% 0.00% 8.41% 

Blades 0.67% 0.34% 2.31% 25.22% 63.05% 0.00% 0.00% 0.00% 0.00% 0.00% 8.41% 

Pitch System 0.67% 0.34% 2.31% 25.22% 63.05% 0.00% 0.00% 0.00% 0.00% 0.00% 8.41% 

Yaw System 0.67% 0.34% 2.31% 25.22% 63.05% 0.00% 0.00% 0.00% 0.00% 0.00% 8.41% 

Similar to 5.3.1.1, it is significant for this sheet to correlate the data with the relevant 

internal calculation sheets of the model. The values of breakdown failure rates under 

maintenance categories in the sheet Difference has been correlated to the sheet 

Input&Result. The information table in this window has also been expanded to cover 

the five maintenance categories. 

With this extension of the categories, StraPCost+ can provide a more detailed 

estimation with respect to different maintenance operations.  

The extension of the maintenance categories also affects the condition monitoring 

system detection effectiveness. Originally, the formula of each condition based 

maintenance category is shown as in Section 5.1.4.3. It is often interesting to 

investigate the effectiveness of condition monitoring systems at the entire wind turbine 

level. Normally, this investigation can only be realised by setting the condition 
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monitoring system effectiveness percentage one by one of each subsystem. For the 

convenience of condition monitoring system detection sensitivity analysis, the existing 

but not well functioning window of total detection effectiveness adjustment 

coefficients in the Input&Result sheet is correlated to the maintenance category tables 

in each relevant sheet, as shown in Table 33. In addition to Section 5.1.4.3, the 

coefficients are noted as: edet for detectability, epre for pre-empt and efalse for false 

positive. The percentages of this table show the additional percentages added to the 

detection effectiveness of every subsystem, e.g. 10% detectability means the 

detectability of the condition monitoring systems of every subsystem with condition 

monitoring systems becomes 110% of their original settings. In this way, it is 

straightforward to adjust each of the three detection effectiveness parameters for the 

entire wind turbine system in one go. The formulae are applied with the CM detection 

sensitivity coefficients edet, epre and efalse, as shown from Eq.73 to 82.  

Table 33. Snapshot of the window of detection effectiveness adjustment coefficients in 

Input&Result in StraPCost+ 

detectability Pre-empt falsepos 

10% 0% 0% 

This condition monitoring system detection effectiveness sensitivity adjustment 

window is effectively connected to every variable in the cost model. The formula for 

each category is also adjusted and expanded to suit the new settings. Apart from the 

sensitivity coefficients, for unscheduled maintenance, Cu’ is extended to be affected 

with not only detectability of Cu, but also pre-empt, same with Bu’ and Du’. For 

scheduled maintenance, Cs is no longer over-optimistically estimated to be reduced to 

the two-level-lower Au due to pre-empt, but to be reduced to the next lower scheduled 

category Bu, and same concept has been applied to Bs and Ds. 
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When it comes to the false positive (falsepos), as introduced in Section 5.1.4.3, the 

original StraPCost version on its early stage assumes that when an alarm occurs, the 

maintenance team immediately sends out the corresponding level of vessel and 

technicians and stop the turbine when the level of failure requires, and this incurs the 

false positive having a severe impact on the loss of revenue and wind turbine 

availability. The published paper of this version of StraPCost [156] shows that falsepos 

has high sensitivity with results including revenue lost and O&M cost. This 

assumption over-estimates the negative economic impact of falsepos. 

After consulting with the wind farm reliability engineers, the falsepos should have 

much less impact on the entire system. In reality, with current technology, the response 

to alarm is much less impetuous. When an alarm occurs, the maintenance centre will 

send the size of vessel and the number of technicians in the lower level category to 

check the turbine before the relatively heavier vessels and certain size of maintenance 

team. In some wind farm, the maintenance team would rather reduce the sensitivity of 

the condition monitoring system to avoid false positive. In some extreme examples, 

the maintenance team tend to only react when more than one alarm occurs at the same 

time, rather than immediately send out the checking team with one single alarm. 

However, for remote offshore wind farm, it is impossible to send small vessel to check 

the validity of the alarm. Therefore, improvement of the reliability of condition 

monitoring system is under the call for the development of the remote offshore wind 

farm.  

With the sensitivity analysis of the condition monitoring system detection 

effectiveness including falsepos which is further discussed in Section 5.5, the final 
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regime is selected between two attempts. The first attempt assumes the impact of false 

positive of all levels from Au to Eu are all added to the manual reset E in the scheduled 

maintenance category. This makes Es in the scheduled maintenance consists of the 

detectability failure rate impact from Eu, the pre-empt failure rate impact from Du and 

the false positive failure rate impacts from Au to Eu. This regime incurs an under-

estimation impact on falsepos, where the results such as loss of revenue do almost no 

change with the adjustment of falsepos. The formulae of regime1 are shown in 

Appendix-B Equation 1b and 2b. 

Regarding to the further consulting with the engineers, in reality, when a major fault 

occurs and with decision to react, the maintenance team will send enough number of 

technicians with relatively long checking time, which matches the maintenance 

category D in this case. Therefore the regime is modified with having the impact of 

falsepos from Au and Bu (rather than the original Au, Cu and Du in Eq. 43) into Ds, as 

shown in Eq. 81, and the impact of falsepos from Cu, Du and Eu into Es, as shown in 

Eq.82. The formulae of unscheduled maintenance categories with the adjustment 

coefficients are listed as below.  

 A𝑈
′ = 𝐴𝑈 ∙ (1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) − 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒)) (73) 

 B𝑈
′ = 𝐵𝑈 ∙ (1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) − 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒)) (74) 

 C𝑈
′ = 𝐶𝑈 ∙ (1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) − 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒)) (75) 

 D𝑈
′ = 𝐷𝑈 ∙ (1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) − 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒)) (76) 

 E𝑈
′ = 𝐸𝑈 ∙ (1 − 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡)) (77) 

The scheduled maintenance categorized failure rate formulae are listed as: 

 𝐴𝑆 = 𝐴𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) (78) 

 𝐵𝑆 = 𝐵𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) + 𝐴𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒) (79) 

 𝐶𝑆 = 𝐶𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) + 𝐵𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒) (80) 

 
𝐷𝑆 = 𝐷𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) + 𝐶𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒)

+ (𝐴𝑈 + 𝐵𝑈) ∙ 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠 ∙ (1 + 𝑒𝑓𝑎𝑙𝑠𝑒) 
(81) 
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𝐸𝑆 = 𝐸𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) + 𝐷𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒)

+ (𝐶𝑈 + 𝐷𝑈 + 𝐸𝑈) ∙ 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠 ∙ (1 + 𝑒𝑓𝑎𝑙𝑠𝑒) 
(82) 

where Au, Bu, Cu, Du and Eu are the maintenance categorized failure rate input setting 

under unscheduled maintenance category scenarios without consideration the CM 

detection; Au’, Bu’, Cu’, Du’ and Eu’ are the estimated failure rate under unscheduled 

maintenance category scenarios with consideration of CM detection and As, Bs, Cs, 

Ds and Es are the estimated failure rate under scheduled maintenance category 

scenarios with consideration of CM detection. 

5.3.3 Wind speed Weibull distribution parameter calculator 

As described in the previous sections, wind speed parameters are significant initial 

inputs for the cost model since they are used to estimate lost generation due to turbine 

downtime. Pre-processing to obtain the wind speed parameters is not part of the 

original model, and this is inconvenient when the input data are in the form of a raw 

time series. This section improves the Matlab module by adding the wind Weibull 

distribution parameter calculation in StraPCost+. 

5.3.3.1 Methodology 

A linear fitting based calculation is an effective method to obtain the parameters in a 

way that is accurate as well as computationally efficient. Even though with a time 

series simulation, it can have a better precision with consideration of both mean value 

and the standard deviation (whereas the linear analytical method only considers the 

mean), the time- and computational-space-consuming characteristics are the main 

drawbacks of time series simulation, and the linear fitting method is finally chosen for 

the additional wind speed parameter calculator.  
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To linearize the Weibull distribution function, a log-log plot of the wind speed 

exceedance probabilities is used. The methodology starts from the calculation of the 

natural logarithm value of wind speed U, lnU, as shown below.  

 𝑙𝑛𝑈 = 𝑙𝑛(𝑈) (83) 

The occurrence frequency at each wind speed bin is obtained. The summation of 

frequencies at each wind speed bin, totalfreq, is then calculated, as shown below.  

 𝑡𝑜𝑡𝑎𝑙𝑓𝑟𝑒𝑞 = ∑(𝑓𝑟𝑒𝑞) (84) 

The exceedance of the frequency, exfreq, is then obtained by subtracting the frequency 

value of the wind speed less than or equal to the calculated wind speed from the total 

frequency value, as shown below.  

 𝑒𝑥𝑓𝑟𝑒𝑞(𝑈) = 𝑡𝑜𝑡𝑎𝑙𝑓𝑟𝑒𝑞 − 𝑓𝑟𝑒𝑞(≤ 𝑈) (85) 

The log-log value of the frequency at each wind speed bin is obtained in below, and 

this gives the first part of the entire method: 

 𝑙𝑜𝑔𝑙𝑜𝑔𝑓𝑟 = 𝑙𝑛(𝑙𝑛(𝑡𝑜𝑡𝑎𝑙𝑓𝑟𝑒𝑞) − 𝑙𝑛(𝑒𝑥𝑓𝑟𝑒𝑞)) (86) 

After obtaining the log-log values as above, the best linear fit can be calculated by 

least squares. The log-log graph of frequency against each natural logarithm value of 

wind speed is plotted as the red curve in Figure 64. A linear fitting with parameters of 

a and b is applied to the original curve, as shown below.  

 𝑦(𝑙𝑛𝑈) = 𝑎 ∙ 𝑙𝑛𝑈 + 𝑏 (87) 

where a represents 𝑘𝑒𝑠𝑡 and b is equal to 𝑙𝑛( √𝐶𝑒𝑠𝑡
𝑘𝑒𝑠𝑡 ). Solving these equations gives 

the initial values of 𝑘𝑒𝑠𝑡 and 𝐶𝑒𝑠𝑡
𝑘𝑒𝑠𝑡 .   
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A convergence process is then done based on the equation below in the programme, 

where 𝑘𝑒𝑠𝑡  and 𝐶𝑒𝑠𝑡
𝑘𝑒𝑠𝑡  are obtained as the wind shape parameter and wind scale 

parameter, respectively.  

 𝑙𝑛𝑙𝑛𝑓𝑟(𝑙𝑛𝑈) = 𝑘𝑒𝑠𝑡 ∙ 𝑙𝑛𝑈 + 𝑙𝑛( √𝐶𝑒𝑠𝑡
𝑘𝑒𝑠𝑡 ) (88) 

5.3.3.2 Case study and Results 

This case study uses 10-year hourly wind data from FINO [187], which is also the 

environmental data used in the cost model comparison of the next section. The wind 

Weibull parameter calculator is realised in Matlab. It processes the wind speed time 

series data, produces its Weibull distribution, fits the middle stage log-log linearization, 

and calculates the shape parameter k and scale parameter C. As shown in Figure 64, 

even though the actual log-log value of the frequency (red) shows anomalous shaped 

tail at low lnU values (this relates to the extremely low wind speeds, below 1m/s) 

below the fitted curve (blue), the majority of the data is well fitted. 

 
Figure 64. Wind speed Weibull distribution parameter k and C calculation from fitting 

to log-log linearized format 
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The wind Weibull parameters are then computed. For this data set, the shape parameter 

is 2.30 and the scale parameter is 10.63. 

These results are also used as the pre-processed wind speed parameter input in 

StraPCost+ for the comparison analyses in Section 5.4.  

5.3.4 Wind farm level cost estimation 

One of the most significant limitations of the original model is that even though the 

cost model requires inputs of wind farm information such as wind and wave data, 

distance to shore, and financial and personnel characteristics, StraPCost only provides 

the cost estimation for O&M on an individual wind turbine level, which cannot 

represent that for the whole wind farm.  

In StraPCost+, the improvement adds an input for the “number of wind turbines” in 

the wind farm basic characteristics setting in the Input&Result sheet, and uses this with 

other input data in order to provide a wind farm level estimation. Items of “entire wind 

farm annual maintenance cost”, “Entire wind farm total O&M cost (with revenue loss) 

per unit” and “Entire wind farm total O&M cost (without revenue loss) per unit” are 

also added in the result table. It clearly shows the annual maintenance cost and the 

total O&M cost at a wind farm level, compares the results between reactive and 

condition based maintenance, and provides the result differences between the two 

types of maintenance. 

This is the first attempt of extending the cost estimation of StraPCost+ into a wind 

farm level under the current model algorithm and structure. The model estimation is 

based on the individual turbine reliability, and it assumes linear relationship for all 
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turbines in the wind farm, which is simply the multiplication of the individual turbine 

estimation and the number of turbines. This simple assumption also causes linear 

relationship for wind farm availability estimation. It assumes the maintenance proceed 

for one failure per turbine per visit. However as stated in the previous sections, in 

reality the wind farm operator would integrate the maintenance requirement and deal 

with multiple failures and turbines in one visit to maximize the vessel usage with minor 

maintenances, which would need modifications further made to the internal 

calculations, in this example, the vessel cost. In future work, the algorithm can be 

further improved so that the estimation can be done at wind farm level as an entirety. 

For example, a vessel travel strategy for multiple tasks similar to NOWIcob [160] can 

be added to StraPCost+.  

Another issue for the wind farm level cost estimation that can be addressed in future 

work is seasonality, i.e. the significant differences between summer and winter. The 

sea-state parameters, the numbers of hours of operation, the corresponding failure rates 

and the unavailable hours can be treated separately for these two main seasonal states 

(or more seasons of required). Thus the overall availability can be calculated in 

summer and winter separately and this will add accuracy. Alternatively, if sufficient 

data is available the analysis could be undertaken month by month.  

5.3.5 Technician cost 

In the original model, it is assumed that the number of technicians depends on the 

maintenance category, and that the estimated cost of technician only considers the time 

required for the maintenance operation itself. However, in reality, the wind farm 

operator has to employ and ensure a certain number of permanent technicians available 
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every day during the year preparing for the daily operation, reactive, preventative, 

condition-based and emergency maintenance. The cost of the technicians from the 

operator point of view includes not only wages but also training, national insurance 

contribution (NIC), pension, life assurance, etc. Company cars, software licences, IT 

support and all other general overheads are also relevant. 

Therefore, the improved cost model adds the technician inputs of “the number of 

technicians available per working shift” and “the cost per technician per day”. The cost 

of permanent available technicians required, as an elementary expenditure from the 

wind farm perspective, is in addition to the wage calculation during the actual 

maintenance working time in StraPCost+. This first attempt provides linear 

relationship that affects the cost related estimations in StraPCost+ but not the wind 

farm performance estimation such as availability and capacity factor. The linear 

relationship between the number of technician and the wind turbine availability causes 

the unchanged results for StraPCost+ with the sensitivity benchmark in Section 

5.4.1.2.1. 

5.3.6 Delay information correlation 

As in its original form, the StraPCost model has some correlation problems. One 

example is given in the failure rate correlation discussed above in Section 5.3.1.1. 

There is additional information that is not correlated between sheets in the Excel 

document in the original model. One significant correlation omission is in the sheet 

Delay. The information window “SITE METOCEAN CHARACTERISTICS” which 

is supposed to have the same values in the window under the same name in the sheet 

Input&Result did not show the information correctly. This severely affected 
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calculations in every step dependent on this information, and the accuracy of the 

estimation of the final results. In StraPCost+, the information correlation omission has 

been corrected. 

5.3.7 Sensitivity analysis percentage adjustment coefficient 

Similar to the CM detection percentage adjustment coefficients, edet, epre and efalse, 

for detectability, pre-empt and falsepos respectively, as shown in Table 33 in Section 

5.3.2, more sensitivity percentage adjustment coefficients are set correlated in the 

entire StraPCost+. Some of the coefficients were already set in an embryonic form in 

the old version StraPCost, and this section improves the correlations of them to allow 

more comprehensive applications in StraPCost+ for the ease of the sensitivity analysis 

as discussed in Section 5.6.  

The coefficients are set for distance to shore, default total turbine annual failure rate, 

wind and wave parameters, and weather window threshold for heavy maintenance (A 

and B) and light maintenance (C, D and E). 

Table 34 shows the percentage adjustment coefficient added for distance to shore. It 

adjusts the base value with the additional percentage in the rightmost yellow cell and 

shows the adjusted exact value in the orange cell on the left hand side. In this case, the 

base value is 50km, and the adjusted value is: 50 × (1+200%) = 150 km. 

Table 34. Snapshot of the percentage adjustment coefficient for distance to shore 

Distance to shore(km) ds 150 200% 

A similar concept is applied to the default total turbine annual failure rate. The 

adjustment affects the related calculations that use this value including breakdown 
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subsystem failure rates and the corresponding maintenance category failure rate 

calculations. As shown in Table 35, the example base case of the default total turbine 

annual failure rate is 11.895, and the adjusted value is: 11.895 × (1+10%) = 13.085. 

Table 35. Snapshot of the percentage adjustment coefficient for default total turbine 

annual failure rate 

Total turbine annual failure rate 13.085 10% 

Since the wind and wave conditions are highly correlated, the wind and wave 

parameter percentage coefficients in Table 19 in Section 5.1.2 are here set to be 

adjusted at the same time. In order to keep the basic shape of the wave distribution, 

the wave Weibull parameters adjusted are only the wave location and scale parameter; 

and since the wind location parameter is set to be 0 all the time, the adjustment only 

applies to the wind scale parameter.  

The weather window threshold is as introduced in Figure 44 in Section 5.1.3.2. 

Adjustment of the threshold affects the corresponding “storm” and “calm” period 

definitions, and thus affects the vessel usage estimation. This group of adjustments are 

highly affected by the weather window threshold. The adjustments are divided into 

two parts: heavy maintenance related (maintenance category A and B, with use of 

heavy lift vessels and the longer “calm” period required) and light maintenance related 

(maintenance category C, D and E, with use of light vessels and shorter associated 

“calm” periods). Table 36 shows the snapshot of the percentage adjustment 

coefficients for these two maintenance category groups. In this example, it shows that 

the adjustment for repair time, krep, is set to be 10% more of the original setting for 

heavy maintenance A and B; the on land lead time per failure, klead, is set to be 10% 

more of the original setting for light maintenance C, D and E; the weather window 
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threshold (both wind and wave), kthr, is set to be 20% less of the original setting for 

heavy maintenance A and B; and the vessel travel speed, kspd, is set to be 10% less of 

the original setting for light maintenance C, D and E. Each percentage adjustment 

coefficient is applied to all StraPCost+ calculations on one go. 

Table 36. Snapshot of the interface of the percentage adjustment coefficient for heavy 

maintenance (A and B) and light maintenance (C, D and E) 

 A & B C, D & E 

krep 10% 0% 

klead 0% 10% 

kthr -20% 0% 

kspd 0% -10% 

5.3.8 Conclusion 

This section has outlined the improvements made to the original model that result in 

the updated version, StraPCost+. It discusses the possibility of enhancing the reliability 

of failure rate breakdown value of each wind turbine subsystem by applying the failure 

rate on/offshore translation procedure developed in Chapter 4. 

Before doing so, the failure rate data have been internally correlated within the cost 

model in order to provide more developer-friendly interface in StraPCost+. This 

enhances the convenience of changing the failure rate data and reduces the risk of 

leaving out of any item in any of the Excel sheets. 

Following Chapter 4, the exponential function is used as the fitting function in the 

onshore/offshore translation method. Even though the translation method does not 

provide lower failure rate values to all subsystem components compared with the 

default onshore failure rate, it cannot be concluded that the translation method has 

lower reliability than the onshore default setting which is taken from empirical onshore 
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data. For the cost model’s offshore scope, it is theoretically closer to the reality to use 

the translated offshore data. A further comparison of different sources of failure rate 

data with other cost models will be undertaken in the Section 5.4.   

The maintenance categories in the original model covered three situations that 

determine vessel type and usage. This has been refined with five categories for both 

unscheduled and scheduled maintenance and one separate category of annual service 

in StraPCost+. 

A wind Weibull parameter calculator is also built into the StraPCost+ model package. 

The analytical wind parameter calculator is realised by using a log-log linear fitting 

algorithm which provides the accuracy as well as simplicity of calculation. 

One significant disadvantage of the original model is that it only provides the cost 

estimation in an individual wind turbine level. An initial attempt in the improvement 

makes up for this disadvantage by adding as an input the number of wind turbines in 

the wind farm which complements the wind-turbine-level calculations to provide an 

analysis at wind farm level in StraPCost+. This function affects the cost related cost 

model results and does not affect the wind farm performance results such as 

availability and capacity factor, as discussed in Section 5.4. 

Another unrealistic assumption of the original model is that it only calculates staff 

wages during the maintenance activity. The improvement adds technician inputs into 

the financial assumptions window for the estimation of the cost due to the daily 

available permanent technicians in StraPCost+. Again, the number of technician’s only 

affects the cost related results but not the wind arm performance results, as discussed 

in Section 5.4. 
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More percentage adjustment coefficients are set in StraPCost+ for easier sensitivity 

analysis as presented in Section 5.5 and Section 5.6. 

With the stated improvements, StraPCost+ presents a theoretically more accurate and 

realistic estimation of O&M cost and is to be assessed by real data. Before further 

analyses and applications to the real wind farm case studies, StraPCost+ is compared 

in the Section 5.4 with a selection of available other cost models introduced in the 

previous section. In theory, StraPCost+ is expected to present similar estimation results 

with other cost models to a certain extent. Since all other cost models are time-series 

simulation based while StraPCost+ is an analytical model, it can also be expected 

differences in estimated results, especially the time based ones such as wind farm 

availability. Cost models such as NOWIcob which put emphasis on the vessel travel 

conditions (both wind and wave) are expected to have higher cost related estimation. 

StraPCost+, on contrast, which is a relatively simple model in terms of e.g. the 

assumption of one visit per vessel task, dispersed event assumption, linear impact of 

the technician settings on the model results, linear impact of the number of turbines to 

the entire wind farm estimation, is expected to have quite optimistic estimations among 

all the cost models compared in terms of both wind farm availability and the O&M 

cost. These predictions are assessed and discussed in Section 5.4.        
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5.4 Comparison of StraPCost+ with other O&M cost models  

This section presents the result comparison between StraPCost+, the updated cost 

model, with other cost models introduced in Section 5.2. It is important to cross-check 

the cost model performance in this way. Because of the lack of offshore wind farm 

operational data, one approach is to compare the results among the existing cost 

models. The mean results of the other cost models will be used as the performance 

indicator against StraPCost+ in this Section.  

This investigation is based on the results from the comparison of ECUME, NOWIcob, 

the UiS cost model and Strathclyde OPEX model as documented in [188]. As 

introduced in Section 5.2, not all cost models consider condition based maintenance 

and every few lists specific results under this maintenance strategy. Therefore, the 

comparison is concerned only with reactive maintenance. 

According to [188], the entire wind farm time-based availability and annual 

maintenance cost are the parameters compared for baseline reactive maintenance 

strategy with uniform settings also applied to all cost models as far as possible. This 

investigation also compares the results from different failure rate scenarios including 

the aggregated total failure rate, the default onshore failure rate and translated offshore 

failure rate. In the future, when more actual data are available, the results can be 

inspected more comprehensively. 

This section begins with the introduction of the comparison scenarios, which consist 

with the baseline analysis and the sensitivity analyses in Section 5.4.1. In baseline 

analysis, because the other cost models only consider the overall failure rate on the 

wind turbine level, three methods modifying StraPCost+ failure rate settings are 
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applied, with Method 1 of one value, Method 2 of the same values for original onshore 

subsystem failure rate setting, and Method 3 of the same values for translated failure 

rate setting. In the sensitivity analyses, the number of technicians, failure rates, vessel 

usage and maintenance categories are adjusted and the corresponding modelling 

results are cross-checked. The results are discussed in detail in Section 5.4.2.   

5.4.1 Comparison scenarios 

The comparison scenarios consist of the baseline analysis and the sensitivity analyses. 

Both analyses only compare the reactive maintenance. 

5.4.1.1 Baseline analysis 

The baseline comparison is for a fictitious offshore wind farm consisting of 80 Vestas 

V90 3.0MW wind turbines with a hub height of 90m. Instead of the actual wind farm 

layout and other logistic details, it sets the distance from the closest turbine to the 

onshore maintenance base at 50km. The environmental data is dependent on the FINO 

1 offshore research platform [187] which is located approximately 45km off the coast 

of Germany in the German development zone for offshore wind farms. The site 

provides the representative environment for the Central North Sea nearby to the 

existing Alpha Ventus wind farm. The wind and wave data are pre-processed in the 

updated cost model built-in parameter calculator, in which the wind speed Weibull 

parameters are calculated according to method introduced in Section 5.3.3. 

The original comparison was done by [188] without StraPCost+. In the virtual wind 

farm, the wind speeds were recorded at 90m, as a typical hub height for an offshore 

wind turbine. The significant wave heights were measured by a wave buoy. The data 
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covers 8 years from 2004 to 2012 whereas the simulated time duration is 10 years for 

the purpose of model comparison. Thus a pre-processing including division of hourly 

resolution and a time extension has been done to the data by filling gaps with the 

average values of data over other months and keeping the basic fluctuations with time. 

The vessel types in use are set as: Crew Transfer Vessels (CTV), Field Support Vessels 

(FSV) and Heavy-Lift Vessels (HLV).  They are defined with specific operational and 

environmental criteria, as shown in Table 37. 

Table 37. Vessel inputs for the FINO virtual wind farm comparison in [188] 

 

As stated, the comparison only concentrates on reactive maintenance. Failure data in 

[188] are empirically provided from a group of experts from wind farm developers at 

a wind farm level, i.e. there are only five failure rate values for the five maintenance 

categories and one value for the annual service, as shown in Table 38. The data is 

considered to represent the current generation of offshore wind turbines. The failure 

rate is calculated in a summation value and percentage for the format of StraPCost+ 

input. The summed value for the six categories gives an overall failure rate of 11.895 

in this case. 
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Table 38. Failure input for the five maintenance categories and the annual service, 

with modification from [188] 

FAILURE 

INPUT 

Major 

replacement 

Major 

repair 

Medium 

repair 

Minor 

repair 

Manual 

reset 

Annual 

service 
SUM 

Repair time 52 hours 26 hours 22 hours 7.5 hours 3 hours 60 hours  

Required 

technicians 
5 4 3 2 2 3  

Vessel type HLV FSV CTV CTV CTV CTV  

Repair cost £334,500 £73,500 £18,500 £1,000 0 £18,500  

Failure rate 0.08 0.04 0.275 3.0 7.5 1.0 11.895 

Failure rate % 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 100% 

In contrast to models that only use an overall failure rate, StraPCost+ has an innovative 

subsystem level structure of the failure rate input. For consistency of the one value 

overall failure rate setting, there are two modified ways of setting in StraPCost+.  

Method 1 is to set the overall failure rate in one of the subsystems for the maintenance 

categories, set the percentage of the breakdown failure rate of this subsystem 100%, 

and set 0% for the rest subsystems, as shown in Table 39 (partially). This method 

bypasses the subsystem breakdown failure rate of StraPCost+ and is useful for 

inspecting performance of the entire model except for the breakdown failure rate 

window comparing with other models.  

Table 39. Snapshot of part of comparison setting Method 1: Overall failure rate value 

for the entire turbine system set in subsystem failure rate input and maintenance 

categories in StraPCost+ 

Failure rate reactive maintenance 
Annual 

service     
Major 

Replacement 

Major 

Repair 

Medium 

Repair 

Minor 

Repair 

Manual 

Reset 

Failure rate database used Reliawind Unscheduled  

    failure 

rate/yr 

Au Bu Cu Du Eu F 

     500 50 10 10 10 10 

Defaults total turbine annual failure rate 11.895 52 26 22 7.5 3 60 

Subsystem 
CM 

type 

Subsystem% 

failure rates  

Subsystem 

failure rates 

1440 504 0 0 0 1440 

5 4 3 3 2 3 

Total 100.0% 11.895 HLV1 FSV1 CTV1 CTV1 CTV1 CTV1 

Generator Assembly  100.0% 11.895 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Gearbox Assembly  0.0% 0.000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Blades Strain 0.0% 0.000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Pitch System SCADA 0.0% 0.000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Yaw System SCADA 0.0% 0.000 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 
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The other way is to set the same maintenance categorized failure rate values for every 

listed turbine subsystem, and apply the failure rate breakdown to each subsystem. 

Practically, in the cost model, all maintenance categorized failure rate percentages are 

set equal to the first line for the convenience of changing the values. The failure rate 

breakdown of each subsystem follows the stated two streams: Method 2 uses the 

original onshore failure rate shown in Table 40 (partially), and Method 3 uses the 

translated offshore failure rate shown in Table 41 (partially).  

Table 40. Selection of failure rates comparison setting Method 2 with original onshore 

subsystem failure rate (shown partially) 

Failure rate reactive maintenance 
Annual 

service     
Major 

Replacement 

Major 

Repair 

Medium 

Repair 

Minor 

Repair 

Manual 

Reset 

Failure rate database used Reliawind Unscheduled  

   failure 

rate/yr 

Au Bu Cu Du Eu F 

   500 50 10 10 10 10 

Defaults total turbine annual failure rate 11.895 52 26 22 7.5 3 60 

Subsystem CM type 
Subsystem% 

failure rates 

Subsystem 

failure rates 

1440 504 0 0 0 1440 

5 4 3 3 2 3 

Total 99.5% 11.833 HLV1 FSV1 CTV1 CTV1 CTV1 CTV1 

Generator Assembly  7.2% 0.852 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Gearbox Assembly  5.1% 0.610 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Blades Strain 1.5% 0.172 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Pitch System SCADA 21.3% 2.532 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Yaw System SCADA 11.3% 1.342 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Table 41. Selection of failure rates comparison setting Method 3 with exponential 

translated offshore data (shown partially) 

Failure rate reactive maintenance 

Annual 

service     

Major 

Replacement 

Major 

Repair 

Medium 

Repair 

Minor 

Repair 

Manual 

Reset 

Failure rate database used Reliawind Unscheduled  

   failure 

rate/yr 

Au Bu Cu Du Eu F 

   500 50 10 10 10 10 

Defaults total turbine annual failure rate 11.895 52 26 22 7.5 3 60 

Subsystem 

CM 

type 

Subsystem% 

failure rates 

Subsystem 

failure rates 

1440 504 0 0 0 1440 

5 4 3 3 2 3 

Total 99.5% 10.460 HLV1 FSV1 CTV1 CTV1 CTV1 CTV1 

Generator Assembly  7.2% 0.279 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Gearbox Assembly  5.1% 0.801 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Blades Strain 1.5% 0.111 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Pitch System SCADA 21.3% 1.555 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 

Yaw System SCADA 11.3% 1.239 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 
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The complete original onshore failure rate values follow the settings in Section 5.1, 

and the full length translated offshore failure rate values are obtained in Section 5.3.1. 

These three methods provide a good opportunity to check the performance of the 

onshore/offshore failure rate translator installed in StraPCost+. Results are discussed 

in the later content. 

The technician cost settings filled in StraPCost+ are £80,000 per technician per year, 

20 technicians required per shift, and 12 hours per shift. At the same time, for the 

additional StraPCost+ maintenance task wage calculation, an hourly rate of £80,000 / 

(12*365) = £18.26 is also set as input.  

Other detailed settings can be found in [188].  

5.4.1.2 Sensitivity analyses 

In order to further investigate and compare all three failure setting methods for 

StraPCost+ and the selected other cost models, a series of sensitivity analyses are 

applied based on the baseline case in terms of adjusting the number of technicians, 

failure rates and maintenance category settings, as initially proposed in [188]. The 

sensitivity analyses are following the control variable scientific method, i.e. when 

comparing one aspect; other settings remain the same as in the baseline. 

5.4.1.2.1 Number of Technicians 

The sensitivity of the number of technicians is inspected on both sides of the baseline 

assumption: increase and decrease the number from the baseline of 20 by 10, i.e. for 

the more technicians case set the number of technicians to 30 and the fewer technicians’ 

case set the number of technicians to 10 [188].   
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5.4.1.2.2 Failure rates 

The sensitivity of the failure rates is inspected in a similar manner: a decrease to 50% 

of all maintenance categorized failure rates in the corrective maintenance, and an 

increase to 200% of the original maintenance categorized failure rate values. The 

failure rate value of annual services remains the same as the baseline. These analysis 

settings affect the total turbine failure rate which is the summation of the six failure 

rate values as well as the maintenance categorized failure rate percentage which is 

calculated by the exact value and the summation [188]. Table 42 shows the calculated 

exact values, the percentage and the summation of the failure rate under the three 

scenarios. 

Table 42. Overall maintenance categorized failure rates and percentages for failure 

rate sensitivity scenarios, with modification from [188] 

Failure Rate 
Major 

replacement 

Major 

repair 

Medium 

repair 

Minor 

repair 

Manual 

reset 

Annual 

service 
SUM 

Baseline  0.08 0.04 0.275 3 7.5 1 11.895 

Baseline % 0.67% 0.34% 2.31% 25.22% 63.05% 8.41% 100% 

Failure down  0.04 0.02 0.1375 1.5 3.75 1 6.4475 

Failure down % 0.62% 0.31% 2.13% 23.26% 58.16% 15.51% 100% 

Failure up  0.16 0.08 0.55 6 15 1 22.79 

Failure up % 0.70% 0.35% 2.41% 26.33% 65.82% 4.39% 100% 

5.4.1.2.3 Vessel usage 

Among the three vessels used in this investigation setting, the heavy-lift vessel (HLV) 

takes the longest mobilisation time, and has the highest day rate and mobilisation cost. 

It is important to investigate the impact of the HLV on the entire cost model. The 

sensitivity analysis sets the HLV-related maintenance category, i.e. major replacement 

Au, to zero influence on the entire model in order to compare the results with and 

without the heavy-lift vessel influence. In practise, it sets all failure rates under this 
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maintenance category into zero, which changes the overall maintenance categorized 

failure rates and percentages, as shown in Table 43 [188]. 

Table 43. Overall maintenance categorized failure rates and percentages for vessel 

usage sensitivity scenario, with modification from [188] 

5.4.1.2.4 Maintenance categories 

To investigate the impact of each maintenance category on the entire cost model, the 

sensitivity analysis sets the cost model into the “selected maintenance category only” 

mode. In practice, the failure rates under all maintenance categories except the selected 

maintenance category are set to zero, as shown in Table 44 [188]. 

Table 44. Overall maintenance categorized failure rates and percentages for 

maintenance categories sensitivity scenarios, with modification from [188] 

Failure Rate 
Major 

replacement 

Major 

repair 

Medium 

repair 

Minor 

repair 

Manual 

reset 

Annual 

service 
SUM 

Major replacement only 0.08 0 0 0 0 0 0.08 

Major replacement only% 100% 0% 0% 0% 0% 0% 100% 

Major repair only 0 0.04 0 0 0 0 0.04 

Major repair only% 0% 100% 0% 0% 0% 0% 100% 

Medium repair only 0 0 0.275 0 0 0 0.275 

Medium repair only% 0% 0% 100% 0% 0% 0% 100% 

Minor repair only 0 0 0 3 0 0 3 

Minor repair only% 0% 0% 0% 100% 0% 0% 100% 

Manual reset only 0 0 0 0 7.5 0 7.5 

Manual reset only% 0% 0% 0% 0% 100% 0% 100% 

Annual service only 0 0 0 0 0 1 1 

Annual service only% 0% 0% 0% 0% 0% 100% 100% 

5.4.2 Results 

The results from StraPCost+ with the overall failure rate, original onshore failure rate, 

and the translated failure rate are shown in Table 45. The red edged boxes highlight 

the two main objects of comparison.  

Table 45. Comparison of the reactive outputs with different failure rate inputs for 

StraPCost+ 

Failure Rate 
Major 

replacement 

Major 

repair 

Medium 

repair 

Minor 

repair 

Manual 

reset 

Annual 

service 
SUM 

No HLV  0 0.04 0.275 3 7.5 1 11.815 

No HLV % 0.00% 0.34% 2.33% 25.39% 63.48% 8.46% 100% 
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WITH DOWNTIME based on  Overall one value Original Onshore Exp-translated 

downtime 26.8 days 26.7 days 23.6 days 

Time-based availability 92.6  % 92.7  % 93.5 %  

capacity factor  45.1  % 45.2 %  45.8  % 

energy lost 1389.4 MWh 1382.2 MWh 1221.8 MWh 

mean power generated over year  1.35 MW 1.35 MW 1.37 MW 

total annual energy generated  11860.8 MWh 11868.1 MWh 12028.5 MWh 

annual revenue  1067.5 £k 1068.1 £k 1082.6 £k 

revenue lost 125.0 £k 124.4 £k 110.0 £k 

annual maintenance cost 226.1 £k 187.7 £k 165.7 £k 

entire wind farm annual maintenance cost 19.7 £m 16.6 £m 14.9 £m 

vessel cost per unit £0.012 /kWh £0.012 /kWh £0.010 /kWh 

wage cost per unit  £0.0021 /kWh £0.0021 /kWh £0.0018 /kWh 

component cost per unit  £0.0052 /kWh £0.0020 /kWh £0.0017 /kWh 

Total O&M cost  (w/o revenue loss) per unit £0.0191 /kWh £0.0158 /kWh £0.0138 /kWh 

revenue lost per unit  £0.0105 /kWh £0.0105 /kWh £0.0091 /kWh 

Total O&M cost  (with revenue loss) per unit £0.0296 /kWh £0.0263 /kWh £0.0229 /kWh 

The annual O&M cost and time-based availability comparison of all three failure rate 

setting methods using StraPCost+ and ECUME, NOWIcob, UiS and OPEX, which are 

grouped as the other cost models in the later context, with both baseline and all 

sensitivity analyses are shown in Figure 65 and Figure 66. With data protection, the 

exact values are not available directly from the cost model owners; therefore extraction 

from the publication [188] has been done for the other four cost models. 

 
Figure 65. Annual O&M cost baseline and sensitivity analyses for all cost models in 

the comparison study 
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Figure 66. Time-based availability baseline and sensitivity analyses for all cost models 

in the comparison study 

5.4.3 Discussion 

The discussion is given in baseline and sensitivity analyses, in Section 5.4.3.1 and 

Section 5.4.3.2 respectively. 

5.4.3.1 Baseline comparison 

Table 45 shows that the overall one value approach gives a time-based availability of 

92.6%; the original onshore data in method 2 gives an availability of 92.7%; and the 

translated offshore data in method 2 gives an availability of 93.5%. From the entire 

wind farm annual maintenance cost perspective, the overall one value method gives 

£19.7m; the original onshore failure rate gives £16.6m; and the translated offshore data 

gives £14.9m. It can be seen that the translated subsystem failure rate settings result in 

generally optimistic estimations in both availability and annual O&M cost. As stated 

repeatedly, this translator is very limited with lack of reasonable length of real data for 

its training process which might have led to incorrect failure rate distribution functions 
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and result in the underestimation of the annual O&M cost and the overestimation of 

the availability. The compromised translated environmental factor ratio setting of “1” 

for unmatched subsystems also reduces the differences among the three methods 

especially in the availability estimation results.  

The results of these three failure rate assumptions using StraPCost+ compared with 

the other cost models are at the leftmost marked as baseline in Figure 65 and Figure 

66. It can be seen that even the one overall value method gives a quite high availability 

estimation. It can be initially deduced that the original StraPCost algorithm is more 

optimistic than other cost models in this aspect and to be assessed when more real data 

are available. Since this wind farm setting is from a virtual wind farm and the lack of 

real operational data to prove the estimation, even though all other cost models give 

the availability estimation at the same rage, it cannot be concluded that those are the 

correct results for the fact that they all apply the Monte Carlo method while StraPCost+ 

uses analytical method. For better assessment of the validation of the estimation, these 

StraPCost+ results from this virtual wind farm are compared with two real offshore 

wind farms with ECUME in Chapter 6. 

The annual O&M cost results from StraPCost+ in Figure 65 locate at the lower range 

among all the cost models, but higher than the lowest one from ECUME. The average 

value of results from all methods using StraPCost+ is £17.07m, with a -£2.98m 

difference from the average value of £20.05m using the other four cost models. This 

difference is even smaller than the difference of the average value with the other cost 

models ECUME (-£5.55m) and NOWIcob (£5.05m), both of which are developed 

commercially packaged cost models.  
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The annual O&M cost from the four other cost models are fairly scattered. A surprising 

result from ECUME is that even with its low availability estimation (as shown in 

Figure 66), it provides the lowest estimation of cost, with £14.5m annually. NOWIcob 

presents the highest estimated annual O&M cost, with £25.1m. The difference between 

the lowest and highest estimation is as much as £10.6m. UiS and OPEX give values in 

between, with £22.6m and £18m, respectively. The lowest deviation among other cost 

models comes from the Strathclyde OPEX model, with -£2.05m. This deviation is not 

far from the second lowest, UiS, with £2.55m.  

Among the three StraPCost+ results, the closest to the average value of the four other 

cost models is from the overall one value method, with -£0.35m difference. The 

original onshore data gives a difference of -£3.45m, and the translated offshore failure 

rate gives a difference of -£5.15m. The translated offshore failure rate presents a 

similar result to the commercial model ECUME, with only £0.4m difference. Because 

of the failure rate in the one overall value method is set regardless of the breakdown 

into subsystem values, which is the closest setting to that used in the other cost models, 

the one overall value implementation of StraPCost+ can be viewed as closest in its 

representation to the other four cost models. The implementation using the translated 

offshore failure rate data has a difference from the one overall value method of £4.8m, 

and this difference is still in a reasonable range (smaller than the ECUME difference 

with the other cost model mean value of £5.55m). 

Similarly, the baseline comparison of the time-based availability values are at the 

leftmost of Figure 66. It can be seen that all three StraPCost+ results are at the higher 

range among all the cost models. The difference between the average of StraPCost+ 

results and the other cost models is 9.77%. The fact that StraPCost+ with all three 
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failure rate resources are close with each other but relatively far from the other methods 

highlights the difference of cost model algorithms between StraPCost+ (using 

analytical method) and the other cost models (using Monte Carlo Markov methods). 

In addition, as stated, the fact that StraPCost+ does not consider multiple tasks in one 

vessel visit and the seasonality could also increase the difference (e.g. the wind and 

wave condition are dramatically different in summer and winter season, thus the wind 

turbine failure rates and vessel usage are affected). 

The deviation between the three StraPCost+ results and their average value is within 

0.57%, much lower than the highest deviation between the other cost models and their 

average value 2.35% (ECUME). It shows ECUME gives a clearly lower value than 

the other three, with 81%. The other three are in a closer range, with 83.74%, 84.40% 

and 83.70% in the stated order. Even though ECUME gives estimation results with 

high deviation from the mean of the four other cost models, it is a commercial-trusted 

cost model, and with real operational data training from EDF, its results are highly 

valued. It shows from another angle that it cannot be concluded the estimation from 

one cost model is not accurate when it is not the same with the other cost models. More 

estimation comparisons between StraPCost+ and ECUME for real offshore wind farms 

are shown in Chapter 6 with assessment of empirical operational result range.      

It is not possible to judge which group of methods has the higher accuracy and is closer 

to the reality, but the gap in the calculated time-based availability cannot be ignored.  

In general, from the results of annual O&M costs comparison, it is shown that the 

differences among the three failure rate sources using StraPCost+ are not large 

compared with the differences among the other cost models. The translated offshore 
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failure rate provides the closest O&M cost estimation with the commercial cost model 

ECUME. For its theoretically preferable algorithm discussed in Chapter 4, the 

exponential translated failure rate is further inspected as the failure rate input of 

StraPCost+ in later analyses.  

The performance of the time-based availability of StraPCost+ for the three sources of 

failure rate are quite close and but higher than the other cost models, which highlights 

essentially different basic algorithms used by StraPCost+. It cannot be concluded 

which group is closer to reality because of lack of actual data as a reference. However, 

the range of the availability shown by StraPCost+ is rather high. The fact that the 

current StraPCost+ model does not consider multiple tasks in one maintenance visit or 

seasonality may explain some of the difference. These aspects could be explored in 

future work. 

5.4.3.2 Sensitivity analyses of the comparison 

The results from the sensitivity analyses are shown from the second column in Figure 

65 and Figure 66, for annual O&M cost and time-based availability, respectively. As 

stated the results from other cost models are extracted from the figures in [188], and 

these are brought together with the direct statistical results from StraPCost+, as shown 

in Table 46 and Table 47. The original figures of each cost model in these tables have 

already been presented in the graphic manner in Figure 65 and Figure 66, and are 

presented here with clear mean value and difference calculation. 

Generally, from these figures and tables, the time-based availability results from 

StraPCost+ are quite uniform and higher than those from the rest of the cost models 

for sensitivity analyses with number of technicians, failure rate and heavy-lift vessel 
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usage, but the sensitivity adjustments of the maintenance categories see uniformity 

across all the models. In the annual O&M cost estimations, the results from StraPCost+ 

are generally within the range of the results from the other cost models. On the other 

hand, the other cost models show rather scattered results for both aspects, especially 

for fewer technicians and failure rate up in time-based availability sensitivity analyses 

and more and fewer technicians, failure rate up and down and major replacement only 

in annual O&M cost sensitivity analyses.   

For clear expression of the comparisons, average values of the group of StraPCost+ 

analyses using the different failure rate sources and average values of the group of all 

other cost models are listed in Table 46 and Table 47. Also presented are the maximum 

differences between the highest and the lowest values from the different cost models 

for each scenario, as shown below:  

 𝑀𝑎𝑥 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 − 𝑙𝑜𝑤𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 (89) 

This difference is equivalent to the value range for each scenario setting in Figure 65 

and Figure 66. It helps to assess the degree of dispersion of all results from the cost 

models. The results from these tables are used in every specific sensitivity analysis, 

from Section 5.4.3.2.1 to Section 5.4.3.2.4.   
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Table 46. Time-based availability with all sensitivity scenarios in comparison of the baseline 

Time-based availability baseline 
more  

tech 

fewer 

tech 

failure 

rate 

down 

failure 

rate up 
no HLV 

major 

replace

ment 

only 

major 

repair 

only 

medium 

repair 

only 

minor 

repair 

only 

manual 

reset 

only 

annual 

service 

only 

ECUME 81.0% 84.2% 59.5% 88.0% 69.2% 81.9% 98.5% 99.5% 99.0% 97.0% 93.0% 95.5% 

NOWIcob 83.7% 88.5% 66.5% 93.5% 54.4% 88.8% 97.0% 99.5% 99.0% 97.5% 96.0% 99.0% 

UiS 84.4% 83.7% 79.0% 92.0% 62.5% 86.5% 96.0% 99.0% 98.5% 97.0% 96.0% 98.5% 

OPEX 83.7% 88.4% 34.5% 94.0% 37.5% 86.3% 98.0% 99.0% 98.5% 98.0% 95.0% 98.5% 

StraPCost+ OneOverallValue 92.6% 92.6% 92.6% 96.0% 86.0% 94.3% 98.3% 99.7% 99.7% 98.5% 97.1% 99.3% 

StraPCost+ Onshore data 92.7% 92.7% 92.7% 96.0% 86.1% 94.4% 98.3% 99.7% 99.7% 98.5% 97.1% 99.3% 

StraPCost+ Exp-translated 93.5% 93.5% 93.5% 96.5% 87.7% 95.0% 98.5% 99.8% 99.8% 98.7% 97.5% 99.4% 

average of four other model 83.2% 86.2% 59.9% 91.9% 55.9% 85.9% 97.4% 99.3% 98.8% 97.4% 95.0% 97.9% 

average of StraPCost+ 92.9% 92.9% 92.9% 96.2% 86.6% 94.6% 98.4% 99.7% 99.7% 98.6% 97.2% 99.3% 

Max difference 12.5% 9.8% 59.0% 8.5% 50.2% 13.1% 2.5% 0.8% 1.3% 1.7% 4.5% 3.9% 

 

Table 47. Annual O&M cost with all sensitivity scenarios in comparison of the baseline 

 

Annual O&M cost (£m) 
base

line 

more  

tech 

fewer 

tech 

failure 

rate 

down 

failure 

rate up 

no 

HL

V 

major 

replaceme

nt only 

major 

repair 

only 

medium 

repair 

only 

minor 

repair 

only 

manua

l reset 

only 

annual 

service 

only 

ECUME 14.5 15.8 11.1 10.6 19.9 5.2 14.4 4.1 4.2 4.0 3.7 4.9 

NOWIcob 25.1 28.5 23.6 18.3 29.9 5.3 22.0 4.2 3.9 3.7 3.5 4.8 

UiS 22.6 18.7 18.5 11.9 22.9 5.2 4.1 2.0 2.4 2.6 3.0 4.1 

OPEX 18.0 23.5 20.5 16.0 28.1 4.0 21.5 4.0 3.8 3.6 3.5 3.4 

StraPCost+ OneOverallValue 19.7 20.5 18.9 11.8 35.4 7.9 13.4 2.0 2.2 3.0 3.3 3.9 

StraPCost+ Onshore data 16.6 17.4 15.8 9.5 30.8 6.5 11.7 1.7 2.2 2.7 3.9 2.4 

StraPCost+ Exp-translated 14.9 15.7 14.1 8.5 27.5 5.9 10.5 1.7 2.1 2.6 3.7 2.2 

Average of four other model 20.1 21.6 18.4 14.2 25.2 4.9 15.5 3.6 3.6 3.5 3.4 4.3 

Average of StraPCost+ 17.1 17.9 16.3 9.9 31.2 6.8 11.9 1.8 2.2 2.8 3.6 2.8 

Max difference 10.6 12.8 9.4 7.5 15.5 3.9 17.9 2.5 2.1 1.4 0.9 2.7 
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Table 48 and Table 49 show the percentage change of each sensitivity scenario for 

time-based availability and annual O&M cost, respectively. The calculation for each 

cost model result is shown below: 

The percentage change shows the degree of the change of the sensitivity adjustment 

from the baseline value. The results from these tables are used in every specific 

sensitivity analysis, from Section 5.4.3.2.1 to Section 5.4.3.2.4.    

Table 48. Time-based availability percentage change to baseline of each sensitivity 

scenario 

Time-based 

availability 

more  

tech 

fewer 

tech 

failure 

rate 
down 

failure 

rate up 

no 

HLV 

major 

replacement 
only 

major 

repair 
only 

medium 

repair 
only 

minor 

repair 
only 

manual 

reset 
only 

annual 

service 
only 

ECUME 4% -27% 9% -15% 1% 22% 23% 22% 20% 15% 18% 

NOWIcob 6% -21% 12% -35% 6% 16% 19% 18% 16% 15% 18% 

UiS -1% -6% 9% -26% 2% 14% 17% 17% 15% 14% 17% 

OPEX 6% -59% 12% -55% 3% 17% 18% 18% 17% 14% 18% 

StraPCost+ 

OneOverallValue 
0% 0% 4% -7% 2% 6% 8% 8% 6% 5% 7% 

StraPCost+ 

Onshore data 
0% 0% 4% -7% 2% 6% 8% 8% 6% 5% 7% 

StraPCost+  

Exp-translated 
0% 0% 3% -6% 2% 5% 7% 7% 6% 4% 6% 

Table 49. Annual O&M cost percentage change to baseline of each sensitivity scenario 

Time-based 

availability 

more  

tech 

fewer 

tech 

failure 

rate 
down 

failure 

rate up 

no 

HLV 

major 

replacement 
only 

major 

repair 
only 

medium 

repair 
only 

minor 

repair 
only 

manual 

reset 
only 

annual 

service 
only 

ECUME -9% 23% 27% -37% 64% 1% 72% 71% 72% 74% 66% 

NOWIcob -14% 6% 27% -19% 79% 12% 83% 84% 85% 86% 81% 

UiS 17% 18% 47% -1% 77% 82% 91% 89% 88% 87% 82% 

OPEX -31% -14% 11% -56% 78% -19% 78% 79% 80% 81% 81% 

StraPCost+ 

OneOverallValue 
-4% 4% 40% -80% 60% 32% 90% 89% 85% 83% 80% 

StraPCost+ 

Onshore data 
-5% 5% 43% -86% 61% 30% 90% 87% 84% 77% 86% 

StraPCost+  

Exp-translated 
-5% 5% 43% -85% 60% 30% 89% 86% 83% 75% 85% 

Table 50 and Table 51 show the impact of the result for each sensitivity scenario setting 

from the baseline value for time-based availability and annual O&M cost, respectively. 

This calculation is especially useful for analysing the sensitivity to the different 

maintenance categories, where only one maintenance category is set for each scenario. 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100% (90) 
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The calculation for each cost model result is shown below. Again, the results from 

these tables are used in every specific sensitivity analysis, from Section 5.4.3.2.1 to 

Section 5.4.3.2.4.   

 𝐼𝑚𝑝𝑎𝑐𝑡 =
𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 𝑣𝑎𝑙𝑢𝑒

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
× 100% 

 

(91) 

Table 50. Time-based availability impact of each sensitivity scenario 

Time-based 

availability 

more  

tech 

fewer 

tech 

failure 
rate 

down 

failure 

rate up 
no HLV 

major 
replacement 

only 

major 
repair 

only 

medium 
repair 

only 

minor 
repair 

only 

manual 
reset 

only 

annual 
service 

only 

ECUME 104.0% 73.5% 108.6% 85.4% 101.1% 121.6% 122.8% 122.2% 119.8% 114.8% 117.9% 

NOWIcob 105.7% 79.4% 111.7% 65.0% 106.0% 115.8% 118.8% 118.2% 116.4% 114.6% 118.2% 

UiS 99.2% 93.6% 109.0% 74.1% 102.5% 113.7% 117.3% 116.7% 114.9% 113.7% 116.7% 

OPEX 105.6% 41.2% 112.3% 44.8% 103.1% 117.1% 118.3% 117.7% 117.1% 113.5% 117.7% 

StraPCost+ 

OneOverallValue 
100% 100% 103.7% 92.9% 101.8% 106.2% 107.7% 107.7% 106.4% 104.9% 107.2% 

StraPCost+  

Onshore data 
100% 100% 103.6% 92.9% 101.8% 106.0% 107.6% 107.6% 106.3% 104.7% 107.1% 

StraPCost+  

Exp-translated 
100% 100% 103.2% 93.8% 101.6% 105.3% 106.7% 106.7% 105.6% 104.3% 106.3% 

 

Table 51. Annual O&M cost impact of each sensitivity scenario 

Annual O&M cost (£m) 
more  

tech 

fewer 

tech 

failure 
rate 

down 

failure 

rate up 

no 

HLV 

major 
replacement 

only 

major 
repair 

only 

medium 
repair 

only 

minor 
repair 

only 

manual 
reset 

only 

annual 
service 

only 

ECUME 109% 77% 73% 137% 36% 99% 28% 29% 28% 26% 34% 

NOWIcob 114% 94% 73% 119% 21% 88% 17% 16% 15% 14% 19% 

UiS 83% 82% 53% 101% 23% 18% 9% 11% 12% 13% 18% 

OPEX 131% 114% 89% 156% 22% 119% 22% 21% 20% 19% 19% 

StraPCost+ OneOverallValue 104% 96% 60% 180% 40% 68% 10% 11% 15% 17% 20% 

StraPCost+ Onshore data 105% 95% 57% 186% 39% 70% 10% 13% 16% 23% 14% 

StraPCost+ Exp-translated 105% 95% 57% 185% 40% 70% 11% 14% 17% 25% 15% 

5.4.3.2.1 Number of Technicians 

As shown in Figure 66, Table 46 and Table 48, it can be seen that at current stage, 

StraPCost+ does not correlate the number of technicians with the time-based 

availability, while as shown Figure 65, Table 47 and Table 49, the three failure rate 

input methods have different sensitivity reactions to the annual O&M cost estimation.  

The setting of more technicians brings the results from all cost models closer compared 

to the baseline. Since StraPCost+ has no time-based availability sensitivity with the 

number of technicians, here compares the results from other cost models relative to 
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StraPCost+. From Figure 66 and Table 46, the results from other cost models are 

divided into two groups with a small distance: the results of NOWIcob and OPEX are 

close to 89%, and the results of ECUME and UiS are close to 84%. The group of results 

from NOWIcob and OPEX are closer to model results from StraPCost+ with average 

of 93%. In this sensitivity setting, as shown in Table 46, the difference between the 

highest value (StraPCost+ exponential translated) and the lowest value (UiS) reduces 

to 9.8% from the maximum difference of 12.5% in baseline. 

In contrast, setting fewer technicians results in a scatter in time-based availability. 

From Figure 66 and Table 46, UiS shows the highest and the closest value to the results 

from StraPCost+, with around 79%. The lowest value comes from OPEX, with around 

35%. The commercial cost models NOWIcob and ECUME scatter in the middle, 

relatively closer to the UiS value. In this sensitivity setting, as shown in Table 46, the 

difference between the highest value (StraPCost+ group) and the lowest value (OPEX) 

is as large as 59%, 5 times the baseline difference value. 

In the annual O&M cost comparison, as shown in Figure 65, Table 47 and Table 49, 

the degree of dispersion does not change as much as with setting fewer technicians for 

the time-based availability. In the more technicians setting, the exponential translated 

StraPCost+ value shows good agreement with the result from ECUME, with around 

£16m. The onshore original StraPCost+ is slightly higher than the exponential 

translated, with £17.4m, and lies below the UiS value. The one overall value is just 

above £20m, and locates below the OPEX value. The maximum difference (NOWIcob, 

exponential translated StraPCost+) is around £13m. This difference is £2.2m larger 

than the baseline maximum difference (NOWIcob, ECUME) of just over £10m.  
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In the fewer technicians setting, all the results from StraPCost+ locate between OPEX 

and ECUME, with the one overall value result slightly exceeding the UiS result. The 

maximum difference (NOWIcob, ECUME) is just over £9m. While the degree of 

fluctuation of StraPCost+ remains the same (£0.8m), the degree of fluctuation of 

ECUME is around £3m. 

Generally speaking, the sensitivity analysis on the number of technicians highlights 

the different internal calculation algorithms used for each of the cost models. The 

algorithms tend to provide more uniform time-based availability estimations when 

there are more technicians, while more scattered estimation results with the decrease 

of the number of technicians. StraPCost+ shows no sensitivity of time-based 

availability to the number of technicians which is because calculation of the cost of 

technicians is simply the multiplication of the single technician results, and the 

improvement of the interconnection can be put on the agenda in the future work.  

In the annual O&M cost perspective, StraPCost+ shows a linear fluctuation along with 

the adjustment of the number of technicians. This is again because of the simple 

multiplication calculation of the cost of technicians. Nevertheless, the results from 

StraPCost+ agree closely with the commercial cost model ECUME and academic 

model UiS. The cost estimation from the commercial cost models ECUME and 

NOWIcob drops more dramatically when decreasing than increasing the number of 

technicians by the same proportion (10), and OPEX has a converse performance 

pattern. In contrast to a proportional relationship between annual O&M cost estimate 

and the number of technicians in almost all the cost models, UiS shows insensitivity 

to the number of technicians.  
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These sensitivity analyses show that the time-based availability and annual O&M cost 

estimation of ECUME, NOWIcob and OPEX are various non-linearly interconnected 

with the number of technicians. However, it is not obvious in real wind farm operation 

how the number of technicians directly affects the time-based availability and annual 

O&M cost. This could indicate a further investigation when more real data available. 

5.4.3.2.2 Failure rates 

From Figure 66, Table 46 and Table 48, it can be seen that the time-based availability 

estimations from all cost models are quite sensitive to the failure rate. All cost models 

show an increase of the availability when the failure rates are set lower, and decrease 

when the failure rates are increased. The changes are not linear.  

From Figure 66, all the cost models align quite closely with the maximum difference 

(StraPCost+ exponential translated, ECUME) of around 8.5% (exact value of 

availability). This is smaller than the 12.5% maximum difference from the baseline. It 

shows that when the failure rates decrease, the time-based availability estimations from 

StraPCost+ are closer to the other cost models, simply because the range is compressed.  

When the failure rates are increased, the estimations of all cost models are more 

scattered. The maximum difference (StraPCost+ exponential translated, OPEX) is over 

50% (exact value of availability). OPEX has the highest percentage change of over 55% 

of the baseline value, which is almost inversely proportional to the doubly increased 

failure rates. NOWIcob has the second highest increase rate of around 35%, followed 

by UiS of around 26%. ECUME has the lowest increase rate among the four other cost 

models, with nearly 15%, which is still higher than the 7.13% from StraPCost+ with 

one overall value. 
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As shown in Table 48, among all the cost models, StraPCost+ has relatively low time-

based availability sensitivity to failure rates. For StraPCost+ with all failure rate 

sources, the percentage changes are within 4% for setting the failure rate 50% down, 

and 7.13% for setting failure rate 100% up (i.e. 200% of the original value). All 

StraPCost+ results are located closely together in this sensitivity analysis. Other cost 

models show higher sensitivities. When the failure rates are reduced, the group of 

NOWIcob and OPEX increase more than 10% from the baseline value, and the group 

of ECUME and UiS present an increase of just below 10% of the baseline value. 

From an annual O&M cost perspective, as shown in Figure 65, Table 47 and Table 49, 

all cost models present decreased results of different degrees with reduced failure rate. 

StraPCost+ presents relatively low estimations among all the cost models and the 

results locate closely around ECUME and UiS. The exponential translated StraPCost+ 

replaces ECUME presenting the lowest value with £8.5m, followed by the onshore 

original StraPCost+ with £9.5m. ECUME has the third lowest value with just above 

£10m. StraPCost+ one overall value method result is £11.8m, which is just below the 

UiS result value. NOWIcob and OPEX give higher estimations. NOWIcob result 

remains the highest value among all cost models, with £18.3m, followed by OPEX 

with £16m.   

From the annual O&M cost estimation sensitivity aspect, as shown in Table 49, all 

StraPCost+ estimations have decreased 40% or more compared with the baseline 

results, among which the onshore original and exponential translated methods have 43% 

decrease, and the one overall value has a 40% decrease. This decrease rate can be 

compared by UiS, which has the largest decrease among all the cost models with over 
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47%. ECUME and NOWIcob have almost the same decrease of around 27%. OPEX 

has the lowest decrease of just 11%.  

When the failure rates are increased by 100%, StraPCost+ shows dramatic increases 

in cost of 80% or more. The results from one overall value and onshore original 

StraPCost+ exceed NOWIcob presenting the highest values, with £35.4m and £30.8m, 

respectively. The increase rates of the StraPCost+ results are 80% and 86% compared 

to the baseline, whereas the increase rate of NOWIcob is less than 20%. Even though, 

as shown in Table 47, NOWIcob still presents the third highest estimation among all 

cost models, with almost £30m. The results from the exponential translated StraPCost+ 

and OPEX are similar in this analysis, with around £28m. However, the increase rates 

are different, with 85% and less than 60%, separately. Different from its dramatic 

percentage change in the failure rate down case, UiS almost stays the same in the 

failure rate up case. ECUME remains the lowest estimation of near £20m, with 37% 

increase.   

Generally speaking, the sensitivity analysis for failure rate percentage change 

highlights the different algorithms related to the failure rates of all cost models. When 

the failure rates are reduced, the time-based availability estimations from all other cost 

models tend to be uniform and closer to the results from StraPCost+ than the baseline. 

This suggests that StraPCost+ has a closer estimation of time-based availability along 

with the decrease of the failure rates if the four other cost models are treated as the 

reference. However, when the failure rates are increased, the estimates are scattered. 

This phenomenon suggests the uncertainty of the time-based availability estimation of 

all cost models when the failure rates increase.   
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The sensitivity analysis shows that the annual O&M cost estimations from all 

StraPCost+ methods are sensitive to the failure rate changing both up and down, and 

the other cost models show various degree of sensitivity to these changes. More 

specifically, UiS is sensitive to reducing failure rate, and has no sensitivity to an 

increased failure rate. OPEX has a low sensitivity to failure rate reduction, and is quite 

sensitive to increasing failure rate.  

5.4.3.2.3 Vessel usage 

The results of the sensitivity to vessel use shows closer agreement between StraPCost+ 

and some of the other cost models in both the time-based availability and annual O&M 

cost perspectives.  

For the time-based availability perspective, as shown in Figure 66 and Table 46, the 

results from StraPCost+ with all failure rate resources remain close, with an average 

value of 94.57%. This value is closer to the results from NOWIcob, UiS and OPEX, 

and slightly further to ECUME than the baseline. The maximum difference 

(Exponential translated StraPCost+, ECUME) is about 13%.  

For all cost models the increase rates for this change are not significant. As shown in 

Table 48, all StraPCost+ results have around a 2% increases. This rate is similar to the 

increased rates from UiS and OPEX. ECUME has the lowest increase, with only 

around 1%. NOWIcob has the highest increase at around 6%.  

For the annual O&M cost perspective, as shown in Figure 65 and Table 47, results 

from StraPCost+ with an average value of £6.77m locate much closer to each other 

and other cost models than the baseline. In contrast to the relatively low estimations in 
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the baseline, results from StraPCost+ show higher estimations than other cost models. 

The highest estimation comes from StraPCost+ (using one overall failure rate value) 

with £7.9m, and the maximum difference with the lowest estimation model OPEX is 

£3.9m. This value is much smaller than the £10m maximum difference from the 

baseline. The differences between the other cost models and the average value from 

StraPCost+ are less than £3m.  

All cost models show a high sensitivity to this adjustment, as shown in Table 49, with 

an over 60% decrease compared to the baseline. The decreased values from 

StraPCost+ for all three failure rate sources are between 60% and 61%. This decrease 

degree is similar to ECUME. NOWIcob, UiS and OPEX have decrease degree around 

78%. 

This sensitivity analysis shows that all cost models have similar sensitivity to the HLV 

usage for both time-based availability and annual O&M cost estimations, and it shows 

that all the cost models tend to have close estimates, especially on the annual O&M 

cost without HLV usage. 

5.4.3.2.4 Maintenance categories 

Time-based availability sees high uniform from all cost models in this analysis. As 

shown in Figure 66 and Table 46, the highest maximum difference of 4.5% comes 

from the manual reset only, for the translated failure rate version of StraPCost+ and 

ECUME presenting the highest and lowest estimates respectively. Annual service has 

the second highest maximum difference (translated StraPCost+, ECUME) of near 4%. 

This difference value is followed by major replacement of 2.5%, with the translated 

StraPCost+ and ECUME presenting the equally highest values and UiS presenting the 
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lowest estimate. The remaining three give less than 2%, among which major repair 

only has less than 1%, with translated StraPCost+ presenting the highest and UiS and 

OPEX equally the lowest. The differences are much smaller than for the baseline 

which has a maximum difference of 12.5%. 

All of the settings see the average time-based availability estimates over 95%, among 

which major repair and medium repair are over 99% and 98.5%, respectively. These 

results suggest that requirements for major repair and medium repair have the least 

impact on dragging down the wind farm time-based availability, followed by annual 

service (except ECUME). As shown in Table 50, manual reset seems to have the 

lowest impact among the 6 maintenance adjustments on increasing the overall 

availability for all cost models.  

The maintenance category sensitivity rates of all the other cost models are higher than 

the rates from StraPCost+. StraPCost+, as shown in Table 48, with all three failure rate 

sources shows similar increase degrees with an average of 6%; whereas other models 

show an average increase degree of around 17%.  

From the cost perspective, as shown in Figure 65 and Table 47, all maintenance 

category adjustments bring the annual O&M cost estimates from all cost models much 

closer together than the baseline except for major replacement. Compared to the 

baseline, major replacement only has a distinctly different impact on each of the cost 

models: all cost models show decreased costs except for OPEX. The results from 

StraPCost+ are closely grouped (with £13.4m, £11.7m and £10.5m for one overall 

value, onshore original and translated methods, respectively). The degrees of decrease 

are close as well, as shown in Table 49, with 32%, 30% and 30% in the stated order. 
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This group of results is located in between of ECUME and UiS. ECUME stays at 

almost the same value as for the baseline, with the lowest rate responding to this setting; 

whereas UiS has a dramatic 82% decrease from its baseline value, which brings the 

estimate below £5m. NOWIcob has a moderate decrease of around 12% to £22m. In 

contrast to all the other models, OPEX has a noticeable increase of almost 20% which 

brings the estimation up to around £22m, close to NOWIcob. This result is not 

logically correct, and thus OPEX, which is still at the development stage, cannot be 

fully trusted in this particular regard.  

All other maintenance categories have lower impact on the overall annual O&M costs. 

As shown in Table 51, the highest impact comes from the translated StraPCost+ with 

manual reset, at 25% of the baseline cost. The average result from the last five 

scenarios is 15.6% for StraPCost+ using all failure rate sources. All StraPCost+ results 

are highly uniform, especially for major repair only, medium repair only and minor 

repair only.  

The results from StraPCost+ are much closer to the other cost models. The highest 

difference between the average value of StraPCost+ and the average value of the other 

four cost model results is £1.8m which is for major repair only. Manual reset only has 

the lowest difference value, with only £0.2m between the two groups. 

This sensitivity analysis shows that for one single maintenance category taken on its 

own; all cost models tend to present high degree of agreement regarding the time-

based availability estimation. All maintenance categories show little impact on 

lowering the time-based availability for all cost models. This demonstrates that major 

replacement is the main cause of the annual O&M cost for the majority of the cost 



 

Chapter 5 Strathclyde Probabilistic Cost Model (Plus) for offshore wind farm 

234 

 

models in this thesis (as might be expected), especially for ECUME, whose major 

replacement cost accounts for almost all the overall annual O&M cost. UiS model, 

however, shows only around 18% impact with a dramatic 82% drop of the value on 

the major replacement only assumption. This shows that the sensitivity to major 

replacement costs for all StraPCost+ methods are reasonably consistent with the range 

for the other cost models except OPEX which is not reliable in this instance. 

5.4.4  Conclusion 

This section has presented sensitivity comparisons between the improved model, 

StraPCost+, with three failure rate input assumptions and the other cost models mainly 

reviewed in Section 5.2. This section not only compares the baseline setting for all cost 

models selected, but also presents the sensitivity to: number of technicians; failure rate 

assumption; vessel usage and maintenance categories. Because of lack of data, this 

section mainly focuses on the analyses of the time-based availability and annual O&M 

cost from an existing cross-check literature. Since there is no actual O&M data 

available, analyses were undertaken to identify for which scenarios the results from 

specific cost models can be treated as a reference, and the cases for which particular 

other cost models are not reliable.  

The analyses on the time-based availability show that the results from StraPCost+ with 

all failure rate resources closely locate with each other and generally higher than the 

results from other cost models. Specifically, more number of technicians brings the 

availability estimation from other cost models closer to that of StraPCost+, and fewer 

number of technicians changes the estimation of other cost models dramatically. 

Decreasing the failure rate brings the results from all cost models together and higher 
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than their baseline values, whereas increasing the failure rate lowers and separates the 

results. For the most important vessel usage of HLV, the time-based availability shows 

little impact from all cost models. All maintenance category settings have little impact 

on bringing the availability down, especially for major repair and medium repair. 

The analyses on the annual O&M cost show that the results from StraPCost+ with all 

failure rate resources generally locate in the lower range of the results from other cost 

models. For adjusting the number of technicians and the failure rate each cost model 

has different sensitivity reflected on the cost estimation. Generally, the estimation from 

StraPCost+ are close to the commercial cost model ECUME, except the increase of 

failure rate makes the results from StraPCost+ closer to the results from the other 

commercial cost model NOWIcob which constantly shows a relatively high estimation 

on the annual O&M cost. The sensitivity analysis on HLV reveals the low impact for 

HLV on the O&M cost estimation of all cost models. Apart from major replacement, 

all maintenance categories show low impact on the O&M cost estimation. For the 

major replacement only setting, except UiS, all cost models present high result values 

which suggest the major replacement takes account the majority of the entire annual 

O&M cost.  

From the annual O&M cost baseline and sensitivity analyses, the exponential 

translated method tends to produce the lowest value among the three different method 

of StraPCost+ which is closer to the results from ECUME. The results meet the 

expectation of improving the accuracy of StraPCost+ by using the exponential 

translated failure rate. 
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This section shows that StraPCost+ produces reasonable estimations compared with 

other cost models for O&M cost, but further improvement including better 

interconnection of the number of technicians with the entire model is expected to be 

done in future work.  

For further investigation of the validation of the translation improved StraPCost+, 

condition monitoring system detection effectiveness analyses are presented in Section 

5.5 and a series of sensitivity analyses are presented in Section 5.6.  
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5.5 Condition monitoring system detection effectiveness analyses on 

StraPCost+ 

As stated in previous sections, one of the innovations of StraPCost+ is its emphasis on 

condition monitoring (CM) system effectiveness, not only in the module of condition-

based maintenance categories, but also through an assessment of the dependency of 

O&M performance on the detection effectiveness of the CM system. 

In this section, analyses are focused on condition based maintenance based on the same 

settings introduced in Section 5.4, i.e. the FINO virtual wind farm settings, using the 

translation improved StraPCost+, i.e. Method 3 in Section 5.4. To establish more 

generic results and minimise the impact of one specific wind farm, this analysis 

compares the levelised cost model outputs at wind turbine level. Outputs selected from 

StraPCost+ to be compared in this section are wind turbine availability, capacity factor 

with downtime, annual maintenance cost per turbine, total O&M cost (without revenue 

loss) per kWh per turbine and revenue loss per kWh per turbine. As improvements, 

the expansion of maintenance categories and the corresponding formulae of 

StraPCost+ follow the discussion in Section 5.3.  

Further sensitivity analyses focusing the changes due to condition-based maintenance 

in comparison of reactive maintenance with eight sensitivity aspects have been 

undertaken and are presented in Section 5.6.  

5.5.1 Comparison scenarios 

Since CM detection sensitivity adjustment has been effectively integrated in 

StraPCost+, as discussed in Section 5.3.2, the comparison at the wind turbine level can 
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be realised by adjusting the total percentages of each of the three CM detection 

coefficients, edet, epre and efalse, for CM detection parameters, detectability, pre-

empt (i.e. advance warning of failure) and falsepos (i.e. false positive) respectively, as 

shown in Table 33 in Section 5.3.2. 

At this stage, the scientific control variable method is applied to derive the sensitivity. 

The coefficient adjustment of detectability, pre-empt and false-positive are set 

separately from -50% to 50% in steps of 10%. While adjusting one effectiveness 

coefficient, the others remain constant at the base case values (i.e. 0% adjustment).  

This analysis starts with the attempt of using regime 1 which is modified from Eq. 43 

as described in Section 5.3.2, where the assumed false positive rate only affects the 

lightest maintenance category Es (was Ds in Eq. 43) transferred from the heavier 

reactive maintenance categories, Au (major replacement), Cu (major repair), Du 

(medium repair) and Eu (manual reset), as shown below:  

 𝐸𝑆 = 𝐸𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐷𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 + (𝐴𝑈 + 𝐶𝑈 + 𝐷𝑈 + 𝐸𝑈) ∙ 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠 (92) 

The results are shown in Appendix-B Table 2b and Figure 3b. With this attempt of 

regime 1, the number of decimal places used in Table 2b are limited for easily-reading: 

1 decimal place for availability, capacity factor and annual maintenance cost, and 4 

decimal places for total O&M cost and revenue loss for the fact that the significant 

figures from those two columns start from the second or third decimal places. However, 

even with 4-decimal-place resolution, the graphs in Table 3b which are plot based on 

Table 2b show rough steps in the curve, and in almost every graph, the value of falsepos 

stays unchanged, which indicates insufficient accuracy with the resolution in the 

corresponding columns in Table 2b.  
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As stated in Section 5.3.2, this regime cannot reasonably describe the reality where the 

falsepos has at least two levels of impacts. According to the actual operational 

experience from the offshore wind farm R&D team, when a major fault (mainly the 

major replacement Au and major repair Bu) alarm is triggered, the maintenance team 

will send enough number of technicians with relatively long checking time (longer 

than the manual reset Eu), which matches the maintenance category Du; and the lighter 

fault alarm only results in the level of technician and vessel usage equivalent to the 

manual reset Eu. The finally selected maintenance category regime shows impact of 

falsepos for both Ds and Es, with Ds transferred from Au and Bu, and Es transferred 

from Cu, Du and Eu.  

The formulae of this regime are shown in Eq. 81 and Eq. 82 in Section 5.3.2, and are 

extracted with modification as below:  

𝐷𝑆 = 𝐷𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐶𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 + (𝐴𝑈 + 𝐵𝑈) ∙ 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠 (81) 

𝐸𝑆 = 𝐸𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐷𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 + (𝐶𝑈 + 𝐷𝑈 + 𝐸𝑈) ∙ 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠 (82) 

For enhancing the accuracy and smoothing the curves, more decimal places are taken 

for these values until there are no unchanged values between the neighbour 

adjustments. To make values with less decimal places, the unit of total O&M cost and 

revenue loss are also changed from pound (£) to pence (p). This change results in 3 

decimal places for all 3 types of CM detection adjustments with availability and annual 

maintenance cost, and the adjustment of detectability and pre-empt with capacity 

factor and total O&M cost. It takes 4 decimal places for capacity factor and total O&M 

cost to see the results for the adjustment of the false positive sensitivity analysis. The 

revenue loss values have lower order of magnitude; therefore, more decimal places are 
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building during the test in order to avoid repeating values between neighbour 

adjustments: 4 significant figures are taken for the adjustments of detectability and 

pre-empt, with 7 decimal places, and 5 significant figures are taken for the adjustments 

of falsepos, with 8 decimal places in presentation. 

Along with the analysis of the exact value, it is more important to compare the 

percentage changes in comparison of the 0% adjustment value. In this way, it enables 

the comparison not only within one selected cost model parameter, but also 

comparison between different factors. The equation is shown below: 

Since CM detections only affect the results in the condition-based maintenance, this 

section compares the percentage change of the condition-based maintenance values; 

whereas in the next section, wider sensitivity analyses are undertaken for the result 

changes due to the application of condition-based maintenance in comparison of the 

reactive maintenance. 

5.5.2 Results and discussion 

Table 52 shows the percentage change to each value to the selected cost model results 

in comparison of the baseline (i.e. 0% adjustment) of the CM detection effectiveness 

with the stated three comparison adjustment scenarios. The exact values are shown in 

Appendix-B Table 3b and Table 4b. 

 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =
𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 (𝑥%) − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒(0%)

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 (0%)
× 100% (93) 
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Table 52. Percentage changes in comparison of 0% adjustment (baseline) of CM 

detection effectiveness sensitivity analysis with regime transferring falsepos from 

maintenance category A to E into D and E in condition-based maintenance; baseline 

figures given in the top row. 

Detectability 
Pre-

empt 
Falsepos Availability 

Capacity factor 

with downtime 

Annual 

maintenance cost 

per turbine 

Total O&M cost 

(without revenue 

loss) per kwh per 

turbine 

Revenue loss 

per kwh per 

turbine 

0% 0% 0% 94.43% 46.51% 144.90(£k) 1.21(p) 0.77(p) 

-50% 0% 0% -0.40% -0.67% 5.02% 5.01% 7.94% 

-40% 0% 0% -0.32% -0.54% 4.01% 4.02% 6.36% 

-30% 0% 0% -0.24% -0.40% 3.01% 3.02% 4.77% 

-20% 0% 0% -0.16% -0.27% 2.01% 2.03% 3.17% 

-10% 0% 0% -0.08% -0.13% 1.00% 1.03% 1.59% 

0% 0% 0% 0.00% 0.00% 0.00% 0.03% 0.00% 

10% 0% 0% 0.08% 0.13% -1.00% -0.96% -1.58% 

20% 0% 0% 0.16% 0.27% -2.01% -2.04% -3.18% 

30% 0% 0% 0.24% 0.40% -3.01% -3.04% -4.77% 

40% 0% 0% 0.32% 0.53% -4.01% -4.03% -6.35% 

50% 0% 0% 0.40% 0.67% -5.02% -5.03% -7.95% 

0% -50% 0% -0.09% -0.13% 2.43% 2.44% 1.48% 

0% -40% 0% -0.07% -0.10% 1.95% 1.94% 1.18% 

0% -30% 0% -0.05% -0.08% 1.46% 1.44% 0.89% 

0% -20% 0% -0.03% -0.05% 0.97% 0.95% 0.60% 

0% -10% 0% -0.02% -0.02% 0.49% 0.53% 0.30% 

0% 0% 0% 0.00% 0.00% 0.00% 0.03% 0.00% 

0% 10% 0% 0.02% 0.03% -0.49% -0.46% -0.30% 

0% 20% 0% 0.03% 0.05% -0.97% -0.96% -0.60% 

0% 30% 0% 0.05% 0.07% -1.46% -1.46% -0.89% 

0% 40% 0% 0.07% 0.10% -1.95% -1.96% -1.19% 

0% 50% 0% 0.09% 0.12% -2.43% -2.46% -1.48% 

0% 0% -50% 0.0064% 0.0032% -0.252% -0.25% -0.0364% 

0% 0% -40% 0.0053% 0.0026% -0.202% -0.20% -0.0299% 

0% 0% -30% 0.0032% 0.0019% -0.151% -0.15% -0.0221% 

0% 0% -20% 0.0021% 0.0013% -0.101% -0.10% -0.0143% 

0% 0% -10% 0.0011% 0.0006% -0.050% -0.05% -0.0065% 

0% 0% 0% 0.0000% 0.0000% 0.000% 0.00% 0.0000% 

0% 0% 10% -0.0011% -0.0006% 0.050% 0.06% 0.0078% 

0% 0% 20% -0.0021% -0.0013% 0.101% 0.11% 0.0156% 

0% 0% 30% -0.0032% -0.0019% 0.151% 0.16% 0.0234% 

0% 0% 40% -0.0042% -0.0026% 0.202% 0.21% 0.0299% 

0% 0% 50% -0.0053% -0.0032% 0.252% 0.26% 0.0377% 

For better comparison, figures presenting each result item with the three CM detection 

adjustments are shown from Figure 67 to Figure 71. The legends are the same as in 

Figure 67. 

After the enhancement of the resolution as discussed above and the re-setting of the 

scheduled maintenance regime, it can be seen that all selected comparison items 

present smooth curves. These figures indicate small sensitivity to falsepos rate in 
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comparison of detectability and pre-empt. The small sensitivity to falsepos rate is 

improved from the maintenance category regime 1 but still seems too optimistic, 

considering falsepos has a negative impact on CM system performance and should be 

minimised.  

The curves in Figure 67 to Figure 71 show almost linear changes of the selected 

parameter as a function of the percentage variation of CM detection. In order to show 

a straightforward view of the gradient comparison, all figures from Figure 67 to Figure 

71 have a zoomed-in graph showing ±0.5% around the 0% adjustment points, with 

vertical axis resolution in step of 0.1%, presented at the right-hand side next to the full 

scale graphs. Since the functions are considered linear, they have been fitted by least 

squares in order to calculate the gradient. Table 53 lists the calculated gradient for each 

parameter. Because of the small-value nature of the figures and their different order of 

magnitudes, all the gradient values are given to 3 significant figures. 

Figure 4b follows the linear pattern and is magnified in a similar manner with 

resolution of step of 0.02 (for whatever unit) in exact value. Table 4b lists the gradients 

calculated from Table 4b. 

The absolute value of the gradient shows positive correlation of the selected result 

sensitivity to the corresponding CM detection effectiveness, i.e. the higher the absolute 

gradient value is, the more sensitive the result is towards the corresponding CM 

detection effectiveness. From Figure 67 to Figure 71, all selected results show steadily 

increasing gradients and the highest sensitivity with detectability.  
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Figure 67. CM detection effectiveness sensitivity in percentage change of condition-based 

maintenance on availability with full scale in step of 0.1% 

  
Figure 68. CM detection effectiveness sensitivity in percentage change of condition-

based maintenance on capacity factor with full scale and zoom-in in step of 0.1% (left) 

(right) 

  
Figure 69. CM detection effectiveness sensitivity in percentage change of condition-based 

maintenance on annual maintenance cost per turbine with full scale (left) and zoom-in in 

step of 0.1% (right) 
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Figure 70. CM detection effectiveness sensitivity in percentage change of condition-based 

maintenance on total O&M cost (without revenue loss) per kWh  per turbine with full scale 

(left) and zoom-in in step of 0.1% (right) 

  

Figure 71. CM detection effectiveness sensitivity in percentage change of condition-based 

maintenance on revenue loss per kWh per turbine with full scale (left) and zoom-in in step 

of 0.1% (right) 

All the selected results show the lowest sensitivity to the falsepos rate variation. The 

trends of sensitivity to detectability and pre-empt are in the same direction, while the 

trends of falsepos are in the opposite direction. As mentioned, this phenomenon can 

be easily understood as the detectability and pre-empt having a positive impact on the 

wind turbine system and thus are expected to be enhanced, while falsepos have a 

negative impact on the system and should be minimised.  

Among the sensitivity of the five results, availability and capacity factor show positive 

correlation with detectability and pre-empt adjustment and negative correlation with 
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falsepos variation, while the remaining three selected cost model results show negative 

correlation with detectability and pre-empt adjustment and the positive correlation 

with the falsepos adjustment. This phenomenon can be understood as the availability 

and capacity factor show wind turbine operational performance and are expected to be 

maximized, while the remaining three selected results show cost performance which 

are expected to be minimized. The CM detectability and pre-empt are designed to 

improve the wind turbine performance that are expected to be maximized, while 

falsepos has the opposite effect.    

It can be seen that the same detection sensitivity fits in Figure 69 and Figure 70 have 

very similar trends. Table 53 confirms the values of the gradients are very close 

(differences only shown after the second or third decimal places). Even though there 

are significant differences between the two selected cost model results in their exact 

values in Figure 4b, it shows that the algorithm in StraPCost+ highly correlates the 

change of the annual maintenance cost and the total O&M cost. Although among the 

exact value figures in Figure 4b the annual maintenance cost has the steepest curves, 

and revenue loss has the most gradual curves for all three detection adjustments, the 

corresponding parameters do not have the steepest and most gradual curves in the 

percentage change figures in Figure 69 and Figure 70. In fact, revenue loss is the most 

sensitive to detectability among all the sensitivity curves.  

According to Table 53, among all the absolute values of the gradients, the impact of 

falsepos on capacity factor shows the lowest gradient with 0.0000745, and 

detectability impact on revenue loss shows the highest gradient with -0.159. The 

steepest trends for the sensitivity to pre-empt and falsepos both occur in total O&M 
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cost, with –0.0488 and 0.00509, respectively. The most gradual trends of detectability 

and pre-empt both occur for availability, with 0.00793 and 0.00173, separately.  

The orders of the magnitudes of the gradient values vary across a wide range. The 

values of the gradients of detectability and pre-empt can have difference of less than 

10 times with the same sign, while those between detectability and falsepos can be in 

hundreds of times with opposite signs. The multiples between pre-empt and falsepos 

can be tens also with opposite signs. More specifically, detectability can have a 

sensitivity from 2.07 (total O&M cost) to 5.36 (capacity factor) times the number of 

pre-empt and from -19.8 (total O&M cost) to -213.2 (revenue loss) times the number 

of falsepos. The multiples between pre-empt and falsepos vary from -9.57 (total O&M 

cost) to -39.83 (revenue loss). This phenomenon shows the close value difference and 

positive correlation between the sensitivity of the selected cost model results to 

detectability and to pre-empt, and the large value difference and negative correlation 

between that to detectability (and pre-empt) and to falsepos. 

Since availability and capacity factor have the same nature of showing the wind turbine 

operational performance and have the same trend orientation with the same CM 

detection adjustments, and the remaining three selected cost model results have the 

same nature of showing the cost performance with same trend orientation, they can be 

divided and compared in two groups. The gradient values in capacity factor are 1.69, 

1.44 and 0.56 times for availability, with detectability, pre-empt and falsepos, 

respectively.  

While having comparison of each parameter in Table 53, revenue loss which has the 

highest absolute gradient value (-0.159) against detectability adjustment is around 1.58 
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times the number of both annual maintenance cost (-0.100) and total O&M cost (-

0.101). Total O&M cost which has the highest absolute gradient value (-0.0488) for 

pre-empt adjustment is almost as same as annual maintenance cost (-0.0486) and 1.64 

times the number of revenue loss (-0.0297). Total O&M cost which has the highest 

gradient value against falsepos (0.00509) is almost as same as annual maintenance cost 

(0.00504) and 6.83 times the number of revenue loss (0.000745). From these figures, 

the percentage changes are quite similar with the same CM detection adjustment 

among the selected cost model results with the same trend group (horizontal in the 

table), different from the wide range of the three CM detection variables with the same 

cost model parameters (vertical in the table). 

Table 53. Curve gradients of the selected cost model results with detectability, pre-

empt and falsepos in percentage changes (%) from Figure 67 to Figure 71. 

Adjustment Availability  

Capacity 

factor with 

downtime  

Annual 

maintenance 

cost per 

turbine 

Total O&M cost 

(without revenue 

loss) per kWh per 

turbine 

Revenue 

loss per 

kWh per 

turbine 
Detectability 0.00793 0.013 -0.100 -0.101 -0.159 

Pre-empt 0.00173 0.00250 -0.0486 -0.0488 -0.0297 

Falsepos -0.000115 -0.0000645 0.00504 0.00509 0.000745 

5.5.3 Conclusion 

This section has presented CM detection effectiveness sensitivity analyses for 

StraPCost+ at the wind turbine level. It gives a high level view of the impact of the 

CM system detection effectiveness. It lists the corresponding values of five selected 

main results for StraPCost+ covering the three CM detection variables This section 

has compared the percentage changes for the five selected cost model results with 

zoomed-in graphs.  
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The analyses show that the cost model results are the most sensitive to detectability 

and least sensitive to the false positive rates. Among the five selected cost model 

results, the availability and capacity factor have a positive correlation, while the 

remainder of the three cost model results have negative correlation.  

Annual maintenance cost and total O&M cost have been shown to be highly correlated 

according to the StraPCost+ algorithm. According to these analyses, the influence of 

the false positive rate in the current cost model is quite low, and this is perhaps too 

optimistic. In the future, detailed analyses applying to each subsystem and each type 

of CM system might be undertaken, and a further improvement of the algorithm 

including having more realistic false-positive effectiveness to the system might also 

be undertaken.  

This condition monitoring detection effectiveness analysis methodology has also 

provided an indicative train of thought to complete the FMEA RPN calculation as the 

detectability in RPN [O,S,D] method. This requires more accessible condition 

monitoring data for each component in the future. 

For a deeper validation of StraPCost+, a series of sensitivity analyses in addition to the 

CM detection effectiveness have been undertaken and presented in Section 5.6.    
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5.6 StraPCost+ Sensitivity analyses 

This section follows Section 5.5 and expands the sensitivity analysis of StraPCost+ 

with the exponential translation method using the same wind farm (FINO) input 

settings. In this section, eight sensitivity parameters are analysed and compared 

including the three CM detection parameters introduced in Section 5.5. The parameters 

added in this section are the wind and wave parameters, the weather window threshold 

for heavy maintenance (A and B), the weather window threshold for light maintenance 

(C, D and E), overall turbine annual failure rate and distance to shore. The first four 

key model parameters are varied from their base case values from -50% to 50% in 

steps of 10%. Distance to shore is varied from 10km up to 150km, which is from -80% 

to 200% from its base case (50km) in step of 20% (10km) reflecting the diversity of 

this parameter for proposed offshore wind farms. The different scales make the 

comparison figures difficult to read. To solve this problem, a zoomed-in scheme is 

applied for both x and y axis.  

In the previous section, since CM detection parameters only affect the condition-based 

maintenance, the results compared in section 5.5 are only from the condition-based 

maintenance; while in this section, the expanded parameters affect both reactive and 

condition-based maintenance, and the results compared are the percentage difference 

due to the application of condition-based maintenance in comparison of reactive 

maintenance, as shown below: 

 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑑𝑢𝑒 𝑡𝑜 𝐶𝑀

=
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑏𝑎𝑠𝑒𝑑 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 −  𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒

𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 
× 100% 

 

(94) 
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5.6.1 Parameters assessed for sensitivity 

This section uses the entire wind turbine level sensitivity percentage adjustment 

coefficients in StraPCost+ that have been introduced in Section 5.3.7. Scientific 

control variable method is applied to the adjustments and the comparisons are 

presented for the percentage changes calculated in the way stated in the previous 

section. That is to say, this section compares the percentage changes (in comparison 

of 0% adjustment) of the percentage difference due to the application of condition-

based maintenance, i.e. the percentage of the percentage, as shown is listed below: 

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =

𝑐ℎ𝑎𝑛𝑔𝑒 𝑑𝑢𝑒 𝑡𝑜 𝐶𝑀 (𝑥%) − 𝑐ℎ𝑎𝑛𝑔𝑒 𝑑𝑢𝑒 𝑡𝑜 𝐶𝑀 (0%)

𝑐ℎ𝑎𝑛𝑔𝑒 𝑑𝑢𝑒 𝑡𝑜 𝐶𝑀 (0%)
× 100% 

 

(95) 

As discussed in Section 5.3.7, the wind and wave parameter percentage adjustment 

coefficients are linked. The wave Weibull parameters adjusted are only the wave 

location and scale parameter; and since the wind location parameter is set to be 0 all 

the time, the adjustment only applies to the wind scale parameter. The maintenance 

category adjustments focus on the weather window threshold, kthr, for the heavy and 

light maintenances. The coefficient for the total turbine annual failure rate percentage 

adjustment is in reference to the default overall failure rate value. The percentage 

adjustment is also applied to distance to shore from base case values.  

5.6.2 Results and discussion 

Selected results in percentage changes are shown in Table 54, and the original 

percentage difference values due to condition-based maintenance are shown in Table 

5b in the Appendix-B. For its particularity, distance to shore is listed after the first 

seven parameters. 
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Table 54. Percentage change in comparison of 0% adjustment of StraPCost+ 

sensitivity analysis for the ratio of difference due to condition-based maintenance to 

reactive maintenance; baseline figures given in the top row.  

Adjustment  Availability 

Capacity 

factor 

with 

downtime 

Annual 

maintenance 

cost per 

turbine 

Total O&M 

cost (without 

revenue loss) 

per kWh per 

turbine 

Revenue 

loss per 

kWh per 

turbine 

Baseline value 0% 0.96% 1.61% -12.58% -12.58% -15.81% 

Wind and 

wave 

parameters 

-50% -63.54% -65.22% -71.78% -71.78% -14.55% 

-40% -57.29% -52.80% -60.41% -60.41% -7.91% 

-30% -46.88% -40.37% -45.23% -45.23% -4.11% 

-20% -34.38% -27.33% -29.09% -29.09% -2.02% 

-10% -18.75% -14.29% -13.75% -13.75% -0.76% 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

10% 22.92% 14.91% 12.00% 12.00% 0.63% 

20% 48.96% 31.68% 22.18% 22.18% 1.14% 

30% 80.21% 50.93% 30.52% 30.52% 1.71% 

40% 118.75% 73.91% 37.28% 37.28% 2.40% 

50% 166.67% 103.73% 42.53% 42.53% 3.29% 

Weather 

window 

threshold for 

heavy 

maintenance 

(A and B) 

-50% 691.67% 560.87% 54.69% 54.69% 18.53% 

-40% 163.54% 135.40% 49.44% 49.44% 12.21% 

-30% 67.71% 59.01% 39.67% 39.67% 7.78% 

-20% 31.25% 28.57% 26.87% 26.87% 4.62% 

-10% 12.50% 11.18% 13.12% 13.12% 2.15% 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

10% -7.29% -8.70% -11.69% -11.69% -1.90% 

20% -12.50% -15.53% -21.70% -21.70% -3.67% 

30% -16.67% -20.50% -30.13% -30.13% -5.06% 

40% -19.79% -24.22% -37.04% -37.04% -6.26% 

50% -22.92% -26.71% -42.61% -42.61% -7.21% 

Weather 

window 

threshold for 

light 

maintenance 

(C, D and E) 

-50% 175.00% 147.20% 4.69% 4.69% -2.78% 

-40% 102.08% 90.68% 3.18% 3.18% -2.09% 

-30% 59.38% 55.28% 2.07% 2.07% -1.45% 

-20% 32.29% 31.68% 1.19% 1.19% -0.89% 

-10% 13.54% 13.66% 0.56% 0.56% -0.38% 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

10% -9.38% -11.18% -0.40% -0.40% 0.32% 

20% -15.63% -19.88% -0.72% -0.72% 0.57% 

30% -21.88% -26.71% -0.95% -0.95% 0.76% 

40% -25.00% -31.68% -1.11% -1.11% 0.95% 

50% -28.13% -35.40% -1.27% -1.27% 1.08% 

Default 

overall 

failure rate 

-50% -51.04% -52.80% 0.00% 0.00% 0.00% 

-40% -41.67% -42.24% 0.00% 0.00% 0.00% 

-30% -31.25% -32.30% 0.00% 0.00% 0.00% 

-20% -20.83% -21.74% 0.00% 0.00% 0.00% 

-10% -10.42% -11.18% 0.00% 0.00% 0.00% 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

10% 11.46% 10.56% 0.00% 0.00% 0.00% 

20% 21.88% 22.36% 0.00% 0.00% 0.00% 

30% 33.33% 33.54% 0.00% 0.00% 0.00% 

40% 44.79% 45.34% 0.00% 0.00% 0.00% 

50% 56.25% 57.76% 0.00% 0.00% 0.00% 

CM 

Detectability 

-50% -41.46% -42.33% -34.85% -34.83% -42.28% 

-40% -33.15% -33.90% -27.88% -27.91% -33.84% 

-30% -24.83% -25.33% -20.91% -20.99% -25.40% 

-20% -16.63% -16.89% -13.94% -14.07% -16.89% 

-10% -8.31% -8.46% -6.97% -7.15% -8.45% 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

10% 8.31% 8.41% 6.97% 6.69% 8.43% 

20% 16.63% 16.97% 13.94% 14.18% 16.93% 
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30% 24.94% 25.41% 20.91% 21.10% 25.37% 

40% 33.26% 33.84% 27.88% 28.02% 33.81% 

50% 41.57% 42.27% 34.85% 34.94% 42.32% 

CM 

Pre-empt 

-50% -9.09% -7.92% -16.90% -16.95% -7.90% 

-40% -7.21% -6.28% -13.52% -13.49% -6.31% 

-30% -5.43% -4.79% -10.14% -10.03% -4.72% 

-20% -3.55% -3.16% -6.76% -6.57% -3.20% 

-10% -1.77% -1.52% -3.38% -3.69% -1.60% 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

10% 1.88% 1.61% 3.38% 3.23% 1.58% 

20% 3.66% 3.10% 6.76% 6.69% 3.17% 

30% 5.43% 4.73% 10.14% 10.15% 4.76% 

40% 7.32% 6.37% 13.52% 13.61% 6.35% 

50% 9.09% 7.86% 16.90% 17.07% 7.87% 

CM 

Falsepos 

 

-50% 0.67% 0.20% 1.75% 1.73% 0.19% 

-40% 0.55% 0.16% 1.40% 1.38% 0.16% 

-30% 0.33% 0.12% 1.05% 1.04% 0.12% 

-20% 0.22% 0.08% 0.70% 0.69% 0.08% 

-10% 0.11% 0.04% 0.35% 0.35% 0.03% 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

10% -0.11% -0.04% -0.35% -0.40% -0.04% 

20% -0.22% -0.08% -0.70% -0.75% -0.08% 

30% -0.33% -0.12% -1.05% -1.10% -0.12% 

40% -0.44% -0.16% -1.40% -1.44% -0.16% 

50% -0.55% -0.20% -1.75% -1.79% -0.20% 

Distance 

to 

Shore 

-80% -9.34% -9.53% -1.65% -1.65% -0.40% 

-60% -7.05% -7.16% -1.24% -1.24% -0.30% 

-40% -4.67% -4.79% -0.83% -0.83% -0.20% 

-20% -2.39% -2.43% -0.41% -0.41% -0.09% 

0% 0.00% 0.00% 0.00% 0.00% 0.00% 

20% 2.49% 2.49% 0.42% 0.42% 0.09% 

40% 4.88% 4.98% 0.84% 0.84% 0.18% 

60% 7.37% 7.53% 1.27% 1.27% 0.27% 

80% 9.85% 10.15% 1.70% 1.70% 0.36% 

100% 12.34% 12.76% 2.14% 2.14% 0.45% 

120% 14.94% 15.44% 2.57% 2.57% 0.53% 

140% 17.53% 18.18% 3.00% 3.00% 0.61% 

160% 20.12% 20.92% 3.44% 3.44% 0.70% 

180% 22.82% 23.72% 3.89% 3.89% 0.78% 

200% 25.52% 26.59% 4.32% 4.32% 0.85% 

The cost model results with the eight sensitivity parameters in Table 54 are shown in 

curves in Figure 72 to Figure 76. The legends are as same as in Figure 72. As stated 

above, because of the different span of each factor in the full scale graph, zoomed-in 

graphs are shown at the right-hand side of the full scale graph for each selected cost 

model result. In the zoomed-in graphs, the x axis is shown from -50% to 50% in step 

of 10%. For the y axis, the same zoomed-in span of from -80% to 200% with resolution 

of step of 20% is taken for Figure 72 and Figure 73; the same zoomed-in span of from 

-80% to 60% with resolution of step of 10% is chosen for Figure 74 and Figure 75; 
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and the zoomed-in span of from -50% to 50% with resolution of step of 10% is chosen 

for Figure 76. To emphasize again, these figures are the percentage change of the result 

difference due to condition based maintenance. Take the availability as an example, as 

the wind and wave parameter percentage adjustment increases, the percentage change 

of the result difference due to condition based maintenance (CBM) from reactive 

maintenance also increases. This means the condition based maintenance has more 

impact on the availability result when the wind and wave parameters increase (can be 

generally understood as the wind and wave become stronger).  

  

Figure 72. Eight sensitivity analyses in percentage changes of difference due to 

condition based maintenance on availability with full scale (left) and zoomed-in scale 

of [-50%, 50%, -80%, 200%] for x and y axis (right) 

  

Figure 73. Eight sensitivity analyses in percentage changes of difference due to 

condition based maintenance on capacity factor with full scale (left) and zoomed-in 

scale of [-50%, 50%, -80%, 200%] for x and y axis (right) 
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Figure 74. Eight sensitivity analyses in percentage changes of difference due to 

condition based maintenance on annual maintenance cost per turbine with full scale 

(left) and zoomed-in scale of [-50%, 50%, -80%, 60%] for x and y axis (right) 

  
Figure 75. Eight sensitivity analyses in percentage changes of difference due to 

condition based maintenance on total O&M cost (without revenue loss) per kWh per 

turbine with full scale (left) and zoomed-in scale of [-50%, 50%, -80%, 60%] (right) 

 

  
Figure 76. Eight sensitivity analyses in percentage changes of difference due to 

condition based maintenance on revenue loss per kWh per turbine with full scale (left) 

and zoomed-in scale of [-50%, 50%, -50%, 50%] for x and y axis (right) 
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Unlike the almost linear reactive maintenance sensitivity curves with CM detections 

discussed in the previous section, some of the results show non-linear relationships. 

The wind and wave parameters, the weather window threshold for heavy maintenance 

(A and B) and the weather window threshold for light maintenance (C, D and E) show 

exponential shaped curves for the selected cost model results.  

Table 55 lists the calculated gradient of each curve around 0% adjustment (treated as 

tangents at 0% adjustment) in the figures. Because of the different order of magnitudes, 

in this table, the gradient values from first three rows are given to 2 decimal places, 

and the row of overall turbine annual failure rate is given 3 decimal places. As in the 

previous section, those from the three CM detection sensitivity factors and distance to 

shore use 3 significant figures.  

Table 55. Curve gradients around 0% of the selected of StraPCost+ results with all 

seven sensitivity items in percentage changed values from Figure 72 to Figure 76. 

Adjustment Availability  

Capacity 

factor with 

downtime  

Annual 

maintenance 

cost per turbine 

Total O&M 

cost (without 

revenue loss) 

per kWh per 

turbine  

Revenue 

loss per 

kWh per 

turbine 

Wind and wave parameters 

weather window 
2.08 1.46 1.29 1.29 0.07 

Threshold for heavy maintenance 

(A and i) 
-0.99 -0.99 -1.24 -1.24 -0.20 

Weather window threshold for 

light maintenance (C, D and E) 
-1.15 -1.24 -0.05 -0.05 0.03 

Overall turbine annual failure rate 1.094 1.087 0.00 0.00 0.00 

Detectability 0.831 0.843 0.697 0.692 0.844 

Pre-empt 0.183 0.156 0.338 0.346 0.159 

Falsepos -0.0111 -0.00408 -0.0350 -0.0375 -0.00380 

Distance to shore 0.122 0.123 0.0209 0.0209 0.00474 

The weather window threshold for heavy maintenance (A and B) shows fairly high 

sensitivity (and negative relationship) to all selected cost model results, especially for 

the adjustment below -30%; whereas distance to shore shows low sensitivity (and 

linear relationship) to all selected cost model results. The wind and wave parameter 
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shows high sensitivity to the first four cost model results. The weather window 

threshold for light maintenance (C, D and E) shows significant sensitivity to the first 

two cost model results and quite low sensitivity to the rest three cost model results, 

and it has negative relationship to the first four cost model results. CM detectability 

shows observable sensitivity for all cost model results and presents the highest 

sensitivity to the last cost model result, the revenue loss. CM falsepos shows negative 

and the lowest sensitivity to most of the cost model results. What is noticeable is that, 

the cost related results show no sensitivity to the default overall failure rate. The 

unexpected results highlight imperfections within the algorithm used in StraPCost+, 

and would be an interesting topic to be explored in future studies. 

More specifically, Figure 72 and Figure 73 show similarity of the trends. The 

availability and capacity factor show a descending exponential type relation along with 

the increase of the adjustment of the weather window threshold for heavy maintenance 

(A and B) and light maintenance (C, D and E). The rest sensitivity parameters show 

positive impact along with the increase of the adjustment on these two selected cost 

model results, among which the wind and wave parameter shows an exponential-like 

relation and others show a roughly linear relation.  

The stated three sensitivity curves newly investigated in this section have much steeper 

curves than the CM detection sensitivity curves in these two figures. The wind and 

wave parameters show the highest tangents at 0% adjustment in both figures. As shown 

in Table 55, the tangents at the 0% adjustment for both figures with the wind and wave 

parameters are 2.08 and 1.46, respectively. Despite of the relatively lower absolute 

values of the tangents at the 0% adjustment point (-0.99 for both figures), the weather 
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window threshold for heavy maintenance (A and B) shows dramatic increases with 

adjustment below -30%. The overall turbine annual failure rate also shows a slightly 

higher tangent (and thus higher sensitivity) than the CM detectability which is the most 

sensitive parameters among the three CM detection factors for all cost model results. 

Distance to shore, on the other hand, shows little sensitivity to the wind turbine 

availability and capacity factor, with tangent lower than CM pre-empt. CM falsepos 

shows the lowest sensitivity to the selected two cost model results. 

Figure 74 and Figure 75 show very similar (and for some parameters are the same) 

trends for the sensitivity curves analysed in this section. This could be because that the 

in-built algorithm in StraPCost+ considers the percentage change of annual 

maintenance cost equals to that of the total O&M cost without revenue loss, and would 

be an interesting aspect to be explored.  

Apart from the discussed 0% sensitivity impact on the failure rate adjustment, the 

weather window threshold for light maintenance (C, D and E), CM falsepos and 

distance to shore also show little sensitivity to the selected cost model results. Distance 

to shore has the lowest impact on these two selected cost model results.  

The weather window threshold for heavy maintenance (A and B) and wind and wave 

parameters show variations of the exponential-like curves with the highest gradients 

in both figures around the 0% adjustment. The order of magnitude for these two types 

of sensitivity curves are up to 62 times the other sensitivity curves (the highest 

magnification is the wind and wave parameters to distance to shore). The weather 

window threshold for light maintenance (C, D and E) also shows a decreasing 

exponential-like curve, but with much lower gradient (thus low sensitivity). 
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The annual maintenance cost and the total O&M cost show more obvious sensitivity 

to CM detectability and CM pre-empt than wind turbine availability and capacity 

factor. These two parameters are among the four highest sensitive parameters 

following the weather window threshold for heavy maintenance (A and B) and wind 

and wave parameters. 

Figure 76 shows different trends of the selected cost model parameters for revenue 

loss from those in the other figures. In this figure, CM detectability becomes the most 

sensitive parameters. The absolute gradient value for CM detectability is up to 222 

times the other sensitivity parameters (in this extreme case, CM falsepos). The second 

most sensitive parameter, weather window threshold for heavy maintenance (A and B), 

has a negative relation and shows a descending exponential-like relation curve. CM 

pre-empt also has a negative relation and shows the third most sensitive to revenue 

loss. Unlike in the above four cost model results, wind and wave parameters show 

quite low sensitivity, with gradient slightly higher than the weather window threshold 

for light maintenance (C, D and E). CM falsepos has the lowest sensitivity, and its 

gradient value is close to distance to shore.  

When compared from the angle of each parameter, the five selected cost model results 

show variable sensitivity towards the sensitivity parameters covered in this section.  

The wind and wave parameters show always positive impacts on the cost model results, 

among which its highest impact happens on the availability, lowest impact on the 

revenue loss, and similar intermediate impact on the remaining three cost model results. 

It has simple exponential shaped relation to the availability, capacity factor, a variation 



 

Chapter 5 Strathclyde Probabilistic Cost Model (Plus) for offshore wind farm 

259 

 

of exponential shaped relation to annual maintenance cost and total O&M cost, and a 

3rd order polynomial shaped relation to revenue loss. 

The weather window threshold for heavy maintenance (A and B) shows always 

negative impacts on the five selected cost model results. It has high impact on the first 

four cost model results along with the entire adjustment scale and shows the 

dramatically highest impact on the availability and capacity factor for adjustment of 

lower than -30%. When compared with the impact around 0% adjustment, its highest 

impact happens on the annual maintenance cost and the total O&M cost, followed by 

on the availability and capacity factor, and the lowest impact on the revenue loss. The 

tangent of the highest impact is 6 times as much as the lowest one. It has simple 

exponential shaped relation to the availability and capacity factor, a variation of 

exponential shaped relation to annual maintenance cost and total O&M cost, and 

shows a trend of a 3rd order polynomial shaped relation to revenue loss. 

The weather window threshold for light maintenance (C, D and E) has a negative 

impact on the first four cost model results and positive impact on the revenue loss 

(which needs to be investigated in the future work). Among the first four cost model 

results, capacity factor shows the highest sensitivity, followed by availability. The 

remaining three results have similar low sensitivities. The tangent of the highest impact 

is more than 41 times as much as the lowest one. The weather window threshold for 

light maintenance (C, D and E) has simple exponential shaped relation for all five 

selected cost model results. 

The failure rate only has similar positive impact at around 1% for availability and 

capacity factor and as stated already, no impact on the others.  
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The three CM detection parameters show similar linear impact as discussed in Section 

5.5 with different magnitudes. 

Distance to shore shows always positive, low and linear impact on all five cost model 

results. Among the five cost model results, distance to shore shows its highest 

sensitivity to availability and capacity factor, and the lowest sensitivity to revenue loss. 

The highest tangent value is 26 times the lowest. 

5.6.3 Conclusion 

This section presents further sensitivity analyses for percentage changes due to 

condition based maintenance from reactive maintenance with wind and wave 

parameters, weather window threshold for heavy maintenance (A and B), weather 

window threshold for light maintenance (C, D and E), overall turbine annual failure 

rate and distance to shore, together with the CM detection parameters, detectability, 

pre-empt and falsepos, initially analysed in Section 5.5.  

This series of sensitivity analyses is not only meaningful for testing the estimation 

performance of StraPCost+ as an improved cost model, but also for finding out the key 

parameters that have high impact on a wind turbine and the entire wind farm. The eight 

key cost model parameters show different impact on StraPCost+, among which wind 

and wave show clear sensitivity impact on all cost model results, followed by failure 

rate. What is noticeable, StraPCost+ cost related estimations have high positive 

sensitivity to the CM detectability, which reveals the positive impact of CM systems 

on the offshore wind turbine. These three parameters have shown their importance for 

the offshore wind turbine system, and need to be considered with emphasis while at 
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the wind farm installation planning stage and making the operation and maintenance 

plan. 

More specifically, the wind and wave parameters show the highest impact on the first 

four selected cost model results, and CM detectability shows the highest impact on the 

revenue loss. CM falsepos and distance to shore show generally less sensitivity to all 

cost model results. Wind turbine availability and capacity factor show the most 

dramatic decreases along with the increase of the weather window threshold for heavy 

maintenance (A and B) for the adjustment below -30%. What is noticeable, although 

all other sensitivity items show constant positive or negative impact on all five selected 

cost model results, the weather window threshold for light maintenance (C, D and E) 

shows negative impact on the first four cost model results and positive impact on the 

revenue loss, which might be investigated in the future work. The future work might 

also be undertaken on the investigation of the lack of sensitivity of the annual 

maintenance cost, total O&M cost and revenue loss to the failure rate. 
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Chapter 6 Cost model applications: cost effectiveness of condition 

monitoring 

Following on from the introduction, improvement and analyses of the cost model in 

this thesis, this section gives applications based on actual data for existing and planned 

offshore wind farms. For the two case studies considered here, the data and 

information are from the existing offshore wind farm W and the planned offshore wind 

farm N, as introduced in Chapter 3. The wind farm N was planned to be a multi-

hundred-MW offshore wind farm located 14.3 km from the shore in the south of 

England. However, it has recently announced that the wind farm has been refused 

planning approval.  

Even so, it does not affect the wind and wave data collected from the planned area, 

and this application of the cost model is still meaningful. It demonstrates that as well 

as assessing the operation and performance of an existing wind farm, the cost model 

can also be used in wind farm planning. Compared to the virtual data applied in the 

previous section, this thesis studies examine how the cost model can be used to support 

decision making in the real world.  

With the analyses on the different measure points in wind farm T, it also, to some 

extent, shows the effect to the cost model on the distance to shore, which is also a 

special concern for wind farm study in general.  

The results for wind farms T and wind farm N in this chapter are compared with the 

results from previous chapter and ECUME, the commercial cost model, respectively. 
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6.1 Cost model application on offshore wind farm T 

This section presents the case study on wind farm T and compares with the FINO 

virtual wind farm studied in Section 5.4.  As introduced in Section 3.1, the offshore 

wind farm T is located 1.5 km north from the coast in the north-east of England with 

site area of 10 km2. The wind farm uses 27 Siemens SWT-2.3-93 in 3 rows with total 

installed capacity of 62MW. The wind turbine hub height is 80m with total turbine 

height of 126.5m, and rotor diameter is 93m. The turbine capacity is 2.3MW, with a 

cut in wind speed of 4 m/s, rated wind speed of 12 m/s, and cut out wind speed of 25 

m/s.   

6.1.1 Cost model inputs and middle stage parameter calculations 

6.1.1.1 Cost model inputs 

Apart from the basic information stated above, based on consultation with a number 

of experts, a series of financial assumptions as used in Chapter 5 Section 4, are used 

to overcome the lack of real data. The personnel hourly rate is assumed to be £25/h. 

The electricity sale price and ROC price are assumed to be £40/MWh and £45/MWh. 

The year length is 8760 hours and the shift length of technicians is 12 hours. The 

number of technicians is assumed to be 20. The delay charge for unscheduled and 

scheduled vessel usage is assumed to be 47% and 0% of their original rental price, 

separately. 

The subsystem level failure rate breakdown follows the improved cost model with 

onshore/offshore translation, as introduced in Section 5.3.1, and the default overall 

turbine annual failure rate stays at 11.895, as introduced in Section 5.4.  
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According to the wind farm operator, there are two main types of vessels in use at wind 

farm T: the heavy-lift vessel for heavy maintenance and a windcat for personnel 

transfer and other lighter maintenance tasks. The light task vessel windcat B1 data is 

summarised in Table 56. Due to lack of real information, the initially assumed heavy-

lift vessel usage here follows the virtual vessel HLV1 introduced in Table 37 in Section 

5.4 as a generic type input for the cost model. However, the results shown in Appendix-

B from Table 6b to Table 9 suggest this heavy-lift vessel assumption is unrealistically 

too expensive, which gives the final annual maintenance cost estimation in the range 

from £2033.5k to £4551.8k per turbine. Compared to the £165k-226k annual 

maintenance cost of the virtual wind farm in the previous section, and also considering 

that the size of the virtual wind farm is much larger, this cost estimation range is 

unrealistically high. The reason of this is somehow understandable: in the virtual wind 

farm operational settings in Section 5.4, there are three levels of vessel application, 

and the HLV1 is only applied in major replacement (repair type A), and the field 

support vessel FSV1 for major repair (repair type B) is 15 times cheaper; while in this 

section, for wind farm T, there are only two types of vessel in use, and for both major 

replacement (repair type A) and major repair (repair type B) the application of HLV1 

shows uneconomically overused. Therefore, after consulting with the operator of wind 

farm N analysed in Section 6.2, the final heavy-lift vessel assumed here is the same 

jack up barge JUB1 originally planned for use in wind farm N. The vessel usage 

assumption is shown below.    

Table 56. Vessels statistics input in the cost model StraPCost+ for wind farm T 

Vessel Code 
Max wave 

height (m) 

Max wind speed 

(m/s) 

Speed 

(knots) 

Positioning time 

(hrs) 

Day rate 

(£) 

Windcat B1 1.5 15 6 1 1,500 

Jack up barge JUB1 1.83 30 12.9 3 33,300 
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Table 57. Maintenance category settings for study of wind farm T 

 reactive maintenance  

 Major 

Replacement 

Major 

Repair 

Medium 

Repair 

Minor 

Repair 

Manual 

Reset 

Annual 

service 

 Au Bu Cu Du Eu F 

weight limit 500 500 10 10 10 10 

repair time 168 120 48 8 3 60 

lead time 168 168 48 1 1 1 

people reqd 7 7 4 2 2 4 

vessel JUB1 JUB1 B1 B1 B1 B1 

Generator Assembly 6.00% 4.00% 12.00% 14.00% 55.59% 8.41% 

Gearbox Assembly 6.00% 4.00% 12.00% 14.00% 55.59% 8.41% 

Blades 3.00% 2.00% 6.00% 7.00% 73.59% 8.41% 

Pitch System 0.00% 0.00% 20.00% 12.00% 59.59% 8.41% 

Yaw System 0.50% 0.00% 17.50% 10.00% 63.59% 8.41% 

Frequency Converter 2.00% 2.00% 10.00% 8.00% 69.59% 8.41% 

L.V. Switchgear 0.00% 0.00% 10.00% 10.00% 71.59% 8.41% 

M.V. Switchgear 2.00% 1.00% 10.00% 7.00% 71.59% 8.41% 

Transformer 2.00% 2.00% 10.00% 6.00% 71.59% 8.41% 

Power Module Other 0.00% 0.00% 10.00% 10.00% 71.59% 8.41% 

Hub 2.00% 1.00% 18.00% 12.00% 58.59% 8.41% 

Sliprings 3.00% 2.00% 8.00% 7.00% 71.59% 8.41% 

Blade Bearings 15.00% 8.00% 16.00% 11.00% 41.59% 8.41% 

Rotor Other 2.00% 0.00% 10.00% 8.00% 71.59% 8.41% 

Safety Chain 0.00% 0.00% 12.00% 8.00% 71.59% 8.41% 

Sensors 2.00% 1.00% 10.00% 7.00% 71.59% 8.41% 

Communications 2.00% 0.00% 10.00% 8.00% 71.59% 8.41% 

Controller H/W 0.00% 0.00% 12.00% 8.00% 71.59% 8.41% 

Controller S/W 0.00% 0.00% 0.00% 0.00% 91.59% 8.41% 

Control & Comms Other 3.00% 2.00% 8.00% 7.00% 71.59% 8.41% 

Mechanical Brake 1.00% 0.00% 12.00% 8.00% 70.59% 8.41% 

High Speed Shaft transmission 2.00% 0.00% 20.00% 18.00% 51.59% 8.41% 

Main Shaft 15.00% 10.00% 8.00% 7.00% 51.59% 8.41% 

Generator Silent Blocks 16.00% 9.00% 7.00% 8.00% 51.59% 8.41% 

Hydraulic System 2.00% 1.00% 15.00% 14.00% 59.59% 8.41% 

Cooling System 0.00% 0.00% 12.00% 8.00% 71.59% 8.41% 

Meteorological Station 0.00% 0.00% 11.00% 9.00% 71.59% 8.41% 

Auxiliary Equipment Other 0.00% 0.00% 12.00% 8.00% 71.59% 8.41% 

Tower 0.50% 0.00% 10.00% 9.50% 71.59% 8.41% 

Foundation 0.50% 0.00% 11.00% 8.50% 71.59% 8.41% 

Wind Farm System 0.00% 0.00% 12.00% 8.00% 71.59% 8.41% 

Condition Monitoring System 1.00% 1.00% 10.00% 8.00% 71.59% 8.41% 

The maintenance category follows the settings shown in Table 57. The assumption of 

the maintenance failure rate for each category no longer follows the one value setting 

used for all turbine components in Section 5.4 where uniform failure rate values are 

set for the comparison of other cost models without breakdown categorized failure rate 

shown. In this section, the maintenance categorized failure rates are assumed based on 

the empirical settings and the only publication which includes the major/minor split 

subsystem level failure rate [166]. As introduced in Section 5.3.2, the raw input 
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categorized failure rate values under the reactive maintenance categories shown in 

Table 57 are not the final values. The final estimated failure rate values are processed 

by the calculation listed in the formulae at the end of Section 5.3.2.  

In wind farm T, there are 6 met ocean points spread in the area of the wind farm 

measuring the wave height and current velocity, and the data from 4 of them are 

accessible for this thesis. Since the significant weather variables, wind speed and 

direction are recorded by the SCADA systems of each wind turbine, for matching of 

the location of both the measured wind and wave data, this thesis selects the closest 

wind turbine to match each met ocean point, and processes the wind data from these 

selected wind turbines in order to get the wind Weibull parameters required as inputs 

of the cost model. From the wind farm plan introduced in Section 3.2.1, the matched 

wind turbines are shown in Table 58.  

Table 58. Matched wind turbines and the wave metocean points for wind farm T 

Wave metocean point Wind turbine Distance to shore (km) 

Point01 WTG04 3.3 

Point02 WTG09 2.7 

Point05 WTG22 1.5 

Point06 WTG27 1.5 

This table also shows the distance to shore of each matched point. Since there is only 

information of the distance to shore of the entire wind farm in the public domain, the 

distance to shore value of the wind turbine at the nearest row of the wind farm is 

considered to be the distance of the nearest row to shore (Point05 and Point06), and 

other points (Point01 and Point02) are calculated by adding the distance between rows 

to this value.  
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6.1.1.2   Wind parameters 

By using the wind Weibull parameter calculator introduced in Section 5.3.3, the wind 

shape parameter k and the wind scale parameter C from the selected wind turbine 6-

month long 10-min interval SCADA data are listed in Table 59, and the wind Weibull 

location parameter is fixed at 0. Because of the fact that the wind turbines are located 

closely together, in order to highlight any differences in the final results, the calculated 

parameters are given to 2 decimal places. Some of these differences are likely to be 

due to wake effects.  

Table 59. Wind Weibull parameters for selected wind turbines for wind farm T 

Parameter WTG04 WTG09 WTG22 WTG27 

Shape parameter k 2.19 2.39 2.38 2.34 

Scale parameter C 10.00 10.47 10.05 10.13 

6.1.1.3   Wave parameters 

By using the wave parameter calculator introduced in Section 5.1.2, the wave 

parameters calculated from the 20-year long 3-hourly interval wave and current 

records of the four selected metocean points are listed below. For the best comparison, 

the decimal places of each parameter are kept until there are no repeated values among 

all four points unless the values are really the same. 

Table 60. Wave parameters for the selected metocean points for wind farm T 

 Point01 Point02 Point05 Point06 

Wave location parameter (m) 0.01 0.01 0.01 0.01 

Wave shape parameter 0.925 0.924 0.915 0.912 

Wave scale parameter (m) 0.63 0.62 0.60 0.59 

Characteristic wave duration (hrs) 41.72 41.62 41.93 41.71 

Wave duration exponent 0.6886 0.6878 0.6826 0.6883 

Duration parameter scaling 0.8921 0.8923 0.8868 0.8972 

Wave exponent 0.056 0.047 0.062 0.097 
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6.1.2 Results 

Table 61 to Table 64 show the results from the StraPCost+ model. For easier reading 

and comparison, the cost per unit in this chapter is multiplied by the annual energy 

generated and shows the wind turbine level annual value. From the listed tables, even 

though all distances to shore are quite close due to the size of the wind farm, it still can 

be seen that inputs from different measure points vary the results slightly, which also 

shows the sensitivity of the cost model. 

Table 61. Cost model results for wind farm T Point01 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due to 

CM 

Change/ 

Baseline 

downtime 17.7 days  15.3 days  -2.4 days  -13.71% 

availability 95.1 % 95.8 % 0.7 % 0.70% 

capacity factor  42.8 % 43.3 %  0.4 % 1.04% 

energy lost 553.4 MWh 464.1 MWh -89.3 MWh -16.14% 

mean power generated over year  0.99 MW 1.00 MW 0.01 MW 1.04% 

total annual energy generated  8631.5 MWh 8720.8 MWh 89.3 MWh 1.04% 

annual revenue  733.7 £k 741.3 £k 7.6 £k 1.04% 

annual maintenance cost 167.9 £k 151.4 £k -16.6 £k -9.86% 

entire wind farm annual maintenance cost 22.5 £m 18.3 £m -2.0 £m -8.90% 

vessel cost  79.96 £k 72.80 £k -7.16 £k -8.96% 

wage cost  31.63 £k 28.55 £k -3.08 £k -9.72% 

component cost  56.35 £k 50.02 £k -6.33 £k -11.23% 

Total O&M cost  (w/o revenue loss)  167.94  £k 151.37 £k -16.57 £k -9.86% 

revenue lost   47.04 £k 39.45 £k -7.59 £k -16.14% 

Total O&M cost  (with revenue loss)  214.98 £k 190.82 £k -24.16 £k -11.24% 

Entire wind farm revenue loss  5,692.01 £k 4,773.17 £k -918.84 £k -16.14% 

 

Table 62. Cost model results for wind farm T Point02 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due to 

CM 

Change/ 

Baseline 

downtime 17.6 days  15.2 days  -2.4 days  -13.67% 

availability 95.2 % 95.8 % 0.7 % 0.69% 

capacity factor  46.7 % 47.2 %  0.5 % 0.97% 

energy lost 580.3 MWh 488.6 MWh -91.7 MWh -15.80% 

mean power generated over year  1.07 MW 1.08 MW 0.01 MW 0.97% 

total annual energy generated  9412.1 MWh 9503.8 MWh 91.7 MWh 0.97% 

annual revenue  800.0 £k 807.8 £k 7.8 £k 0.97% 

annual maintenance cost 167.4 £k 150.9 £k -16.4 £k -9.83% 

entire wind farm annual maintenance cost 22.4 £m 18.3 £m -2.0 £m -8.87% 

vessel cost  79.63 £k 72.54 £k -7.09 £k -8.90% 

wage cost  31.38 £k 28.35 £k -3.03 £k -9.67% 

component cost  56.35 £k 50.02 £k -6.33 £k -11.23% 

Total O&M cost  (w/o revenue loss)  167.36 £k 150.91 £k -16.45 £k -9.83% 

revenue lost   49.33 £k 41.53 £k -7.79 £k -15.80% 

Total O&M cost  (with revenue loss)  216.69 £k 192.44 £k -24.24 £k -11.19% 

Entire wind farm revenue loss  5,968.72 £k 5,025.55 £k -943.17 £k -15.80% 
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Table 63. Cost model results for wind farm T Point05 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due to 

CM 

Change/ 

Baseline 

downtime 17.3 days  14.9 days  -2.3 days  -13.52% 

availability 95.3 % 95.9 % 0.6 % 0.67% 

capacity factor  43.8 % 44.3 %  0.4 % 0.97% 

energy lost 540.2 MWh 454.7 MWh -85.5 MWh -15.82% 

mean power generated over year  1.01 MW 1.02 MW 0.01 MW 0.97% 

total annual energy generated  8834.0 MWh 8919.5 MWh 85.5 MWh 0.97% 

annual revenue  750.9 £k 758.2 £k 7.3 £k 0.97% 

annual maintenance cost 165.2 £k 149.3 £k -15.9 £k -9.64% 

entire wind farm annual maintenance cost 22.2 £m 18.1 £m -1.9 £m -8.69% 

vessel cost  78.31 £k 71.57 £k -6.74 £k -8.60% 

wage cost  30.55 £k 27.69 £k -2.86 £k -9.36% 

component cost  56.35 £k 50.02 £k -6.33 £k -11.23% 

Total O&M cost  (w/o revenue loss)  165.20 £k 149.28 £k -15.92 £k -9.64% 

revenue lost   45.92 £k 38.65 £k -7.27 £k -15.82% 

Total O&M cost  (with revenue loss)  211.12 £k 187.94 £k -23.19 £k -10.98% 

Entire wind farm revenue loss  5,556.17 £k 4,677.09 £k -879.08 £k -15.82% 

 

Table 64.Cost model results for wind farm T Point06 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due to 

CM 

Change/ 

Baseline 

downtime 17.1 days  14.8 days  -2.3 days  -13.49% 

availability 95.3 % 95.9 % 0.6 % 0.66% 

capacity factor  44.4 % 44.8 %  0.4 % 0.95% 

energy lost 537.0 MWh 452.5 MWh -84.5 MWh -15.74% 

mean power generated over year  1.02 MW 1.03 MW 0.01 MW 0.95% 

total annual energy generated  8935.8 MWh 9020.3 MWh 84.5 MWh 0.95% 

annual revenue  759.5 £k 766.7 £k 7.2 £k 0.95% 

annual maintenance cost 164.7 £k 148.9 £k -15.8 £k -9.59% 

entire wind farm annual maintenance cost 22.1 £m 18.0 £m -1.9 £m -8.64% 

vessel cost  78.04 £k 71.38 £k -6.66 £k -8.54% 

wage cost  30.32 £k 27.51 £k -2.81 £k -9.27% 

component cost  56.35 £k 50.02 £k -6.33 £k -11.23% 

Total O&M cost  (w/o revenue loss)  164.71 £k 148.91 £k -15.80 £k -9.59% 

revenue lost   45.65 £k 38.47 £k -7.18 £k -15.74% 

Total O&M cost  (with revenue loss)  210.36 £k 187.38 £k -22.98 £k -10.92% 

Entire wind farm revenue loss  5,523.41 £k 4,654.29 £k -869.12 £k -15.74% 
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6.1.3 Discussion 

The discussion is addressed to three aspects: comparing the reactive maintenance with 

the FINO virtual wind farm in Section 5.4, subsystem contribution to the reactive 

maintenance cost, and effect of the condition-based maintenance.  

According to actual experience with wind farm T, the total O&M cost (without revenue 

loss) is in the range from £150k to £250k. The fact that all four points (from Table 61 

to Table 64) present around £210k for the reactive maintenance and £190k for 

condition-based maintenance shows that StraPCost+ gives a relatively reliable 

estimate.  

6.1.3.1 Comparison of wind farm T with FINO virtual wind farm 

The same wind farm operational assumptions with regard to costs, technicians, default 

overall failure rate setting and the turbine subsystem breakdown failure rates allows 

the rough comparison in reactive maintenance baseline with the values obtained in 

Section 5.4 (shown in Table 45 in Section 5.4.2.1). Here for easier comparison, the 

cost results are all transferred from per unit values into the wind turbine level, as shown 

in Table 65. Despite this, the two wind farms have significant differences, such as the 

turbine size, number of turbines, distance to shore, wind and wave conditions, and 

importantly, the vessel usage. Take heavy-lift vessel usage as an example, the HLV1 

used in Section 5.4 (with day rate of £150,000) is 450% of the JUB1 used in this section 

(with day rate of £33,300). These differences show their impact in many results, 

especially the cost related results. 
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Table 65. Mirrored table of comparison of StraPCost+ reactive maintenance outputs 

with different failure rate inputs for FINO virtual wind farm in Section 5.4.2 

WITH DOWNTIME based on  
Overall one 

value 

Original 

Onshore 
Exp-translated 

downtime 26.8 days 26.7 days 23.6 days 

time-based availability 92.6  % 92.7 % 93.5 %  

capacity factor  45.1  % 45.2 %  45.8 %  

energy lost 1389.4 MWh 1382.2 MWh 1221.8 MWh 

mean power generated over year 1.35 MW 1.35 MW 1.37 MW 

total annual energy generated 11860.8 MWh 11868.1 MWh 12028.5 MWh 

annual revenue 1067.5 £k 1068.1 £k 1082.6 £k 

annual maintenance cost 226.1 £k 187.7 £k 165.7 £k 

entire wind farm annual maintenance cost 19.7 £m 16.6 £m 14.9 £m 

vessel cost 142.33 £k 142.42 £k 120.29 £k  

wage cost 24.91 £k 24.92 £k 21.65 £k 

component cost 61.68 £k 23.74 £k 20.45 £k 

Total O&M cost  (w/o revenue loss) 226.54 £k 187.52 £k 165.99 £k 

revenue lost 124.54 £k 124.62 £k 109.46 £k 

Total O&M cost  (with revenue loss) 351.08 £k 312.13 £k  275.45 £k 

Reactive maintenance is taken as the baseline. Take downtime as the first example, 

from Table 61 to Table 64, Point01, with distance to shore of 3.3 km, shows 17.7 days 

for reactive maintenance, 15.3 days for condition-based maintenance, and the change 

due to condition monitoring system is -13.71%; Point02, with distance to shore of 2.7 

km, shows 17.6 days for reactive maintenance, 15.2 days for condition-based 

maintenance, and the change due to condition monitoring system is -13.67%; Point05, 

with distance to shore of 1.5 km, shows 17.3 days for reactive maintenance, 14.9 days 

for condition-based maintenance, and the change is -13.52%; and Point06, also with 

distance to shore of 1.5 km, shows 17.1 days for reactive maintenance, 14.8 days for 

condition-based maintenance, and the change is -13.49%.  

From the distance to shore aspect, the results of the reactive maintenance show the 

downtime difference between Point01 and Point05 is 0.4 days with 1.8 km difference 

of the distance to shore; whereas Point05 and Point06 which are in the same row in 

the wind farm and considered to have the same distance to shore show only 0.2 days’ 

difference. Similarly, the results of the condition-based maintenance show the 

downtime difference between Point01 and Point05 is 0.4 days; whereas Point05 and 
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Point06 show only 0.1 days’ difference. The average downtime of 17.4 days calculated 

from all four points in this section is 32.2% lower than what is shown in the FINO 

virtual wind farm analysis, where the average downtime from StraPCost+ of all three 

methods is 25.7 days. 

When it comes to availability, all measure points show values around 95%. It shows 

the availability obtained from StraPCost+ in this section (an average of 95.2%) is 2.3% 

higher than the ones obtained from the same cost model in Section 5.4 (an average of 

92.9%), and 14.5% higher than other cost models (an average of 83.2%).  

However, as stated at the beginning, the significant differences between the two wind 

farms show their impact on many other results.   

Firstly, even though downtime is lower and availability is higher, the baseline capacity 

factor in this section is not higher than that in the Section 5.4. The range of 42.8% - 

46.7% in this section is a bit wider than those around 45% in Section 5.4, and the 

average value of 44.4% in this section is even 2.1% lower than that of 45.4% in Section 

5.4. Even though this difference is quite small and can be ignored when compared with 

the rest estimation items, this phenomenon can be explained by the different wind and 

wave conditions at the two wind farms, especially when the virtual wind farm in 

Section 5.4 is much further to shore. The wind and wave conditions are normally 

steadier with the increase of the distance to shore and the capacity factor can thereby 

be higher. However, when the distance to shore is further, the required maintenance 

weather window is longer, and this can cause the longer downtime for the wind turbine 

waiting for the vessel bringing maintenances and therefore results in lower availability.  
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Similarly, the average value of mean power generated over the year, total annual 

energy generated, and energy lost are 24.6%, 24.9% and 58.5% lower than the ones in 

Section 5.4. This suggests that even though the power and energy generated at wind 

farm T is lower than the virtual wind farm in Section 5.4, the energy lost is much lower 

than the one in Section 5.4. Apart from the stated reason, this phenomenon can also be 

affected by the lower turbine rated power (2.3MW) than in Section 5.4 (3MW). 

On the other hand, the cost related results show various differences between the two 

wind farms, basically in three groups. In the first group, annual maintenance cost, 

whose value is considered roughly the same as the total O&M cost without revenue 

loss here, has a relatively small difference among the three groups, with 13.9% lower 

than the average counterpart in Section 5.4. In the second group, the mean difference 

is around 30%. Annual revenue, entire wind farm annual maintenance cost, wage cost 

and total O&M cost with revenue loss are 29.1% lower, 30.7% higher, 30% higher, 

and 31.8% lower than the ones in Section 5.4, separately. The third group shows a 

relatively high difference. Vessel cost, component cost and revenue lost are 41.5% 

lower, 59.7% higher and 60.7% lower than the ones in Section 5.4. As stated earlier, 

this section applies a much cheaper heavy lift vessel for heavy maintenance, and this 

assumption makes it reasonable that the vessel cost is much lower than the ones in 

Section 5.4. Apart from the main reason of the different wind and wave conditions and 

distance to shore, this might also due to the properly assumed detailed maintenance 

categorized failure rate on each subsystem in this section, as discussed next.  
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6.1.3.2 Subsystem contribution to maintenance cost  

Figure 77 shows the typical subsystem contribution to the reactive maintenance cost 

with measure point01. The distribution does not change very much from point to point. 

The subtle difference only starts to display on the second decimal place. This can be 

understood as wind farm T is a small-sized wind farm with relatively similar distance 

to shore for each turbine. 

 

Figure 77. Baseline major contributions to maintenance cost by subsystem for wind 

farm T (from top to bottom: Point01) 

Since with each subsystem, each point has no more than 0.04% deviation with the 

average value, here it discusses with the average values. From the pie chart, it can be 

seen that gearbox assembly takes the largest share from the entire maintenance cost 

which is considered as the O&M cost without revenue loss in this cost model. The 

contribution is 39.98% in average. The frequency converter makes the second largest 

contribution, with 23.10% in average. The third largest contribution is taken by 

generator assembly, with 12.07% in average. Apart from these three subsystems, all 

other subsystems take up no more than 7% of entire annual maintenance cost. Table 

66 lists the detailed contribution in the sequence of the subsystem with from the largest 

to the smallest share.  
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This subsystem contribution of the total annual maintenance cost investigation 

provides a certain level of evidence to rank of consequences (S for severity in the RPN 

[S,O,D] criteria) for the maintenance of each subsystem, which is another RPN 

calculation concern other than failure occurrence in the FMEA analyses introduced in 

Chapter 4 Section 2 (all three elements in RPN [S,O,D] criteria are severity, occurrence 

and detection). It highlights the subsystems where improvement effort should be 

directed to make most impact on maintenance cost. In this way it gives support to the 

condition monitoring subsystem analysis, and can be applied to FMEA study in future 

work. 

Table 66. Annual maintenance cost contribution, average value and deviations in 

StraPCost+ for reactive maintenance of wind farm T in the sequence of from the 

largest to the smallest share; total cost given at the first row and highlighted 

 Contribution Average Deviation 

 Point01 Point02 Point05 Point06  Point01 Point02 Point05 Point06 

total cost 167.9 167.4 165.2 164.7      

gearbox 39.79% 39.83% 39.94% 39.98% 39.89% -0.10% -0.05% 0.05% 0.10% 

frequency converter 23.14% 23.13% 23.07% 23.06% 23.10% 0.04% 0.03% -0.03% 0.01% 

generator 12.05% 12.06% 12.07% 12.08% 12.07% -0.02% -0.01% 0.00% 0.00% 

pitch system 6.92% 6.90% 6.88% 6.87% 6.89% 0.03% 0.01% -0.01% -0.01% 

yaw system 6.39% 6.37% 6.34% 6.33% 6.36% 0.03% 0.01% -0.02% 0.01% 

M.V.Switchgear 5.16% 5.16% 5.15% 5.15% 5.16% 0.01% 0.01% -0.01% -0.04% 

L. V. Switchgear 4.14% 4.14% 4.15% 4.15% 4.15% -0.01% -0.01% 0.01% -0.03% 

blades 1.91% 1.91% 1.90% 1.90% 1.91% 0.00% 0.00% -0.01% -0.02% 

power module 0.50% 0.50% 0.49% 0.49% 0.50% 0.01% 0.01% 0.00% -0.01% 

6.1.3.3 Effect of Condition-based maintenance  

Figure 78 shows the typical comparison of reactive maintenance (unscheduled) and 

condition-based (scheduled) maintenance impact on the total O&M cost with and 

without revenue loss, together with the selected main breakdown costs from 

StraPCost+. This figure shows the absolute annual cost values at the wind turbine level. 

The “total cost” is the summation of the total O&M cost without revenue loss (“total 
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cost (w/o rev)”) at the turbine level and revenue loss. This figure illustrates the benefits 

of condition-based maintenance. 

All four measure points have close distribution on the vessel cost, wage cost, 

component cost and revenue loss mostly due to their close location in the relatively 

small-sized wind farm, therefore Figure 78 only shows the results from measure 

point01. 

The total cost comparison shows clearly and aggregate benefit from condition-based 

maintenance amounting to roughly £210k - £190k = £20k per annum. If considering 

the annually £1.8-4k CM device and service cost with 2.3MW turbines as introduced 

in Chapter 2, (since the CM is charged annually, it is treated as OPEX rather than 

CAPEX), the net cost reduction is in the order of £16-18k per annum per turbine.  

Among all cost items, the reduction of wage cost seems to have the smallest impact on 

the total costs due to the condition monitoring system. 

 

Figure 78. Expected annual contributions to O&M cost in unscheduled and scheduled 

maintenance (from top to bottom: Point01) for wind farm T 
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Figure 79. StraPCost+ break down annual O&M cost per turbine with revenue loss 

and availability for wind farm T with reactive maintenance (left columns) and 

condition-based maintenance (right columns) 

Figure 79 composes all breakdown costs and revenue lost in stacked columns in order 

to compare the cost effectiveness of condition monitoring system with all four measure 

points in one chart. It can be seen that with the shortening of the distance to shore 

(from Point01 to Point 06 from left to right), the annual O&M cost per turbine with 

revenue loss reduces in a reasonably small amount.  

This figure also compares the availability respectively from the reactive maintenance 

and the condition-based maintenance. It can be seen a clear around 0.6% improvement 

of availability of condition-based maintenance (orange long dashed curve) from the 

reactive maintenance (black short dashed curve).  

This result supports the discussion earlier. From the distance to shore aspect, it can be 

seen that both reactive and condition-base maintenance show increase of availability 

from Point01 to Point06, which suggests with closer distance to shore, the wind turbine 

shows higher availability. As discussed, longer distance to shore can cause longer 
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travel and weather waiting time for the wind turbine and therefore cause longer 

downtime and lower availability.   

Table 67 lists the percentage changes due to condition-based maintenance from Table 

61 to Table 64, and calculates the average values. All points show similar reduction in 

downtime, energy lost and costs and increases in availability, capacity factor, and 

power and energy generated. 

Table 67. Percentage changes due to condition-based maintenance in StraPCost+ for 

wind farm T 

 Point01 Point02 Point05 Point06 Average 

downtime -13.71% -13.67% -13.52% -13.49% -13.60% 

availability 0.70% 0.69% 0.67% 0.66% 0.68% 

capacity factor  1.04% 0.97% 0.97% 0.95% 0.98% 

energy lost -16.14% -15.80% -15.82% -15.74% -15.88% 

mean power generated over year  1.04% 0.97% 0.97% 0.95% 0.98% 

total annual energy generated  1.04% 0.97% 0.97% 0.95% 0.98% 

annual revenue  1.04% 0.97% 0.97% 0.95% 0.98% 

annual maintenance cost -9.86% -9.83% -9.64% -9.59% -9.73% 

entire wind farm annual maintenance cost -8.90% -8.87% -8.69% -8.64% -8.78% 

vessel cost  -8.96% -8.90% -8.60% -8.54% -8.75% 

wage cost  -9.72% -9.67% -9.36% -9.27% -9.51% 

component cost  -11.23% -11.23% -11.23% -11.23% -11.23% 

total O&M cost  (w/o revenue loss)  -9.86% -9.83% -9.64% -9.59% -9.73% 

revenue lost   -16.14% -15.80% -15.82% -15.74% -15.88% 

total O&M cost  (with revenue loss)  -11.24% -11.19% -10.98% -10.92% -11.08% 

entire wind farm revenue loss  -16.14% -15.80% -15.82% -15.74% -15.88% 

It shows that the degree of reduction for the appropriate factors is mostly over 10%, 

with the highest reduction of 15.88% in average. The absolute values of deviations 

between the average value and values for each measure point are no more than 0.26% 

confirming the similarity that follows from the almost identical distances to shore. The 

wind turbine operational results and revenue loss show modest increases below 1%. 

Capacity factor, mean power generated over year, total annual energy generated and 

annual revenue show the same average increased percentage of 0.98% with the 

maximum deviation of 0.06% from measure point01. The availability has a relatively 

smaller increase of 0.68% with absolute values of deviations no more than 0.02%.  
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Interestingly, some factors show the same percentage changes for all four measure 

points. It can be seen that the items with the same percentage changes have certain 

relations, but it is hard to say whether this is because of the inner algorithm of the cost 

model, or just coincidence since the absolute values are different. The high degree of 

uniformity exhibited can be used in future to explore the cost model with a view to 

improvement. 

From this table, it can be observed that Point01 has the highest degree of change due 

to the condition-based maintenance, and this degree of change decrease from Point 01 

to Point06, where the measure points are closer to shore. This phenomenon shows that 

with the increase of distance to shore, the benefit of condition monitoring system and 

condition-based maintenance are more obvious.  

6.1.4 Conclusion 

In this section, estimations using StraPCost+ at four different measure points in 

offshore wind farm T have been undertaken. The results for reactive and condition-

based maintenance are compared for the different subsystems and for the four measure 

points. They are also compared externally with the reactive maintenance results 

obtained in Section 5.4. This section examined the breakdown of values at subsystem 

level instead of assuming the same value for all wind turbine subsystems as used in 

the previous section. This is considered to provide more realistic estimates. 

This section also provides a more detailed investigation of the subsystem contributions 

to the annual maintenance cost. It shows that among all wind turbine subsystems, 

gearbox assembly makes the largest contribution with almost 40% of the total annual 

maintenance cost, and power module accounts for only 0.5% of the cost, as the least. 
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The subsystem contribution to total annual maintenance cost provides a useful ranking 

of the consequence, an initial RPN calculation element, which can be used in future to 

refine the application of FMEA on offshore wind farms.  

The effect of the application of condition-based maintenance is another analysis 

concern. This section shows the points that closely located positions give rise to similar 

results for both condition-based and reactive maintenance, in summary at least £20k 

reduction in annual O&M cost (with revenue loss) due to the application of the 

condition-based maintenance and in the order of £16-18k deducting the CM device 

and service costs. There is also a clear availability improvement due to the application 

of the condition-based maintenance. It can be seen that with the shortening of the 

distance to shore, the availability increases. This phenomenon supports the earlier 

discussion on the effect of distance to shore to the downtime and availability.   

Apart from the lower vessel costs with condition-based maintenance, the noticeable 

cost reduction is also benefit from the increase of the turbine operational results. It can 

be seen that the degree of change due to the condition-based maintenance decrease 

with the shortening of the distance to shore. This phenomenon suggests the benefit of 

condition monitoring system is more obvious with the increase of the distance to shore, 

as with the planned UK round 3 wind farms.  
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6.2 Cost model application to planned offshore wind farm N 

This section presents the case study on wind farm N and the results are compared with 

those from ECUME. Since wind farm N was in its planning stage, there wasn’t a clear 

decision on most of detailed technical information excluding the size of the turbine 

and the site location. The turbine was awarded to MHI Vestas with V164-8MW model, 

with hub height of 112m and rotor diameter of 164m. The total planned area of the 

wind farm is 153km2. The detailed plan for the wind farm kept changing. The latest 

plans were to install 121 of the Vestas turbines generating in total up to 968MW.  

6.2.1 Cost model inputs and middle stage parameter calculations 

6.2.1.1 Cost model inputs 

The stated wind turbine has a rated power of 8MW, rated wind speed of 11m/s, cut-in 

wind speed of 4m/s and cut-out wind speed of 25m/s. As stated, the number of turbines 

input to the cost model is 121. 

Since wind farm N was planned to be operated by the same company as wind farm T, 

for a close set-up, the number of technicians and the personnel hourly rate remain the 

same. This has ignored the difference in size of the two wind farms. The electricity 

sale price per unit in this section is higher to make it consistent with the ECUME 

setting at £140/MWh. 

The default overall turbine annual failure rate is set the same value as for ECUME 

(7.83), and the subsystem level maintenance categorized failure rates are set the same 

as for wind farm T in Section 6.1. 
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The maintenance category settings are generally the same as with wind farm T. It 

applies the jack-up barge as the heavy-lift vessel for maintenance categories A and B, 

but for light maintenance, it uses a series of non-heavy-lift transport to replace the 

windcat in categories C, D and E. There are three strategies for the non-heavy-lift 

vessels, and the methods involved are crew boats, a helicopter and a mother ship. Since 

it involves helicopters, the term “transportation” is used from now on in place of 

“vessel”. Table 68 lists the detailed transportation information. 

For better comparison with the results from ECUME, the non-heavy-lift transportation 

covers the same three scenarios assumed in ECUME: with strategy 1 there are crew 

boats only, strategy 2 there are crew boats and helicopters, and strategy 3 there is the 

mother ship only.  

As shown in Table 68, from strategy 1 to 3 the transportation hire rates increase. The 

equivalent hire day rate for a helicopter is about 7 times that for a crew boat. The 

mother ship equivalent day rate is about 30 times that of a crew boat and 4 times that 

for a helicopter. Since strategy 2 is a combination of crew boat and helicopter, the hire 

rate for this strategy is between 1 and 7 times costlier than strategy 1, and strategy 3 is 

between 4 and 30 times that of strategy 2. The exact transportation costs can differ 

significantly and will affect the modelling results. 

Table 68. Transportation (vessel) data input to StraPCost+ for wind farm N 

Vessel Code 
Max wave 

height (m) 

Max wind 

speed(m/s) 

Speed 

(knots) 

Positioning 

time (hrs) 

Day rate 

(£) 

Jack up barge JUB1 1.83 30 12.9 3 33,333.3 

Crew boat CB1 1.5 20 20 0.083 1,111.1 

Helicopter H1 50 27 137 0.083 8,219.2 

Mother ship MS1 6 30 12 0.25 20,000 
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6.2.1.2 Wind and wave parameters 

Wind and wave data at a single measurement point has been made available for the 

planned wind farm N. The distance to shore is 14.3km but to the onshore service base 

is 59km. Since StraPCost+ only considers the distance for the vessel transit, the input 

distance is 59km. The wind and wave parameters, as presented in Table 69 and Table 

70, are calculated from 12 months of hourly wind and wave records. 

Table 69. Wind Weibull parameters for wind farm N 

Parameter WTG04 

Shape parameter k 2.26 

Scale parameter C 8.07 

Table 70. Wave parameters for the wind farm N 

Wave location parameter (m) 0.13 

Wave shape parameter 1.03 

Wave scale parameter (m) 0.74 

Characteristic wave duration (hrs) 20.24 

Wave duration exponent 0.62 

Duration parameter scaling 0.56 

Wave exponent 0.29 

6.2.2 ECUME results 

Table 71 shows the results from the ECUME cost model for wind farm N with the 

stated three transportation options. The model assessment period is 20 years. As 

introduced in Section 5.2, ECUME is a mature commercial cost model that considers 

optimal multiple turbine visits for a single transportation operation. This algorithm is 

more realistic and to some extent reduces the estimation of vessel waiting time and 

thus the cost. In the table, all cost related results are the cost for a single turbine per 

year, except the “Annual O&M costs” which is the average annual cost for all 121 

turbines during the 20 years’ operational period. The “Total Annual Cost” in this table 
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refers to the total annual maintenance cost. Even though the itemed costs considered 

are slightly different from those for StraPCost+, the corresponding items will be 

compared. What should be noticed here is that the terminology “loss of production” in 

Table 71 is in unit of £, so in fact this term has the same meaning of “loss of revenue” 

in StraPCost+. Apart from this, different terminologies apply: “Technicians” in 

ECUME reflects “Wage cost” in StraPCost+; “logistics” in ECUME represents 

“Vessel cost” in StraPCost+; and “wind turbine spare parts” means “component cost” 

in StraPCost+. 

Table 71. ECUME estimation for wind farm N with 121 wind turbines for 20 years 

running (supplied by EDF) 

Number of Turbines: 121     

  
Crew 

Boats Only 

Crew Boats 

and Helicopters 

Mother 

Ship  

Wind Turbine Spare Parts (£/turbine/year) 18,767 19,253 19,577 

Logistics (£/turbine/year) 90,696 116,327 149,350 

Technicians (£/turbine/year) 11,020 13,013 12,779 

Onshore and Overheads (£/turbine/year) 36,776 36,776 36,775 

Total per turbine per year (£/turbine/year) 157,259 185,369 218,481 

Annual O&M Costs (£) 19,028,365 22,429,650 26,436,225 

Availability (%) 89.1 92.4 94.5 

Total Loss of Production (£/turbine/year) 493,165 356,399 262,680 

Total Annual Cost (£/turbine/year) 157,827 185,369 218,481 

Figure 80 shows the annual O&M cost per turbine breakdown costs (without loss of 

production) and how this relates to turbine availability. It can be seen that from strategy 

1 (crew boats only) to strategy 2 (crew boats and helicopters) to strategy 3 (mother 

ship only), the total annual O&M cost increases steadily, whereas onshore costs and 

overheads, wind turbine spare parts and technician costs do not change significantly. 

The key factor which changes is logistics (vessel costs), and this is also the dominant 

contribution to overall operational costs. 
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Figure 81 shows the annual O&M cost per turbine breakdown, this time also including 

loss of production together with turbine availability. Since onshore costs and 

overheads are not related to transportation strategies, they have been omitted in this 

figure. It can be observed that loss of production accounts for the bulk of the entire 

annual O&M costs. With reference to Table 71, for strategy 1 with crew boats only, 

the loss of production value is about 5 times the logistics cost. The significant decrease 

in lost production with the costlier O&M options results in an overall annual O&M 

cost decrease from strategy 1 to 3. 

 
Figure 80. ECUME break down of annual O&M cost per turbine without loss of 

production and availability for wind farm N 

 
Figure 81. ECUME break down of annual O&M cost per turbine with loss of 

production and availability included for wind farm N 
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6.2.3 StraPCost+ Results 

Table 72 to Table 74 show the results from StraPCost+ with the stated input settings 

for the three transportation strategies. As in Section 6.1, the costs are shown at wind 

turbine level for better comparison with ECUME.  

Table 72. StraPCost+ results for wind farm N for transportation strategy 1: crew boats 

only 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due 

to CM 

Change/ 

Baseline 

downtime 13.6 days  11.5 days  -2.1 days  -15.40% 

availability 96.3 % 96.9 % 0.6 % 0.60% 

capacity factor  34.5 % 34.9 %  0.4 % 1.12% 

energy lost 1421.2 MWh 1149.2 MWh -272.0 MWh -19.14% 

mean power generated over year  2.76 MW 2.79 MW 0.03 MW 1.12% 

total annual energy generated  24184.6 MWh 24456.6 MWh 272.0 MWh 1.12% 

annual revenue  4474.2 £k 4524.5 £k 50.3 £k 1.12% 

revenue lost 262.9 £k 212.6 £k -50.3 £k -19.14% 

annual maintenance cost 288.7 £k 253.2 £k -35.5 £k -12.30% 

entire wind farm annual maintenance cost 37.1 £m 30.6 £m -4.3 £m -11.58% 

vessel cost  111.637  £k 98.438  £k -13.199 £k -11.82% 

wage cost  26.1733  £k 22.9444 £k -3.2289 £k -12.34% 

component cost  150.8695  £k 131.7845 £k -19.0850 £k -12.65% 

Total O&M cost  (w/o revenue loss)  288.680  £k 253.167 £k -35.513 £k -12.30% 

revenue lost   262.920  £k 212.596 £k -50.323 £k -19.14% 

Total O&M cost  (with revenue loss)  551.60  £k 465.76 £k -85.837 £k -15.56% 

Entire wind farm revenue loss  31,813.28  £k 25,724.16 £k -6,089.13 £k -19.14% 

Entire wind farm total O&M cost (w/o revenue loss)  34,930.25  £k 30,633.16 £k -4,297.09 £k -12.30% 

Table 73. StraPCost+ results for wind farm N for transportation strategy 2: crew boat 

and helicopter 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due 

to CM 

Change/ 

Baseline 

downtime 11.6 days  9.7 days  -1.8 days  -15.84% 

availability 96.8 % 97.3 % 0.5 % 0.52% 

capacity factor  34.9 % 35.3 %  0.3 % 0.93% 

energy lost 1119.7 MWh 892.8 MWh -226.9 MWh -20.26% 

mean power generated over year  2.80 MW 2.82 MW 0.03 MW 0.93% 

total annual energy generated  24486.1 MWh 24713.0 MWh 226.9 MWh 0.93% 

annual revenue  4529.9 £k 4571.9 £k 42.0 £k 0.93% 

revenue lost 207.1 £k 165.2 £k -42.0 £k -20.26% 

annual maintenance cost 309.0 £k 274.3 £k -34.8 £k -11.25% 

entire wind farm annual maintenance cost 39.6 £m 33.2 £m -4.2 £m -10.63% 

vessel cost  134.891 £k 122.191 £k -13.199 £k -9.42% 

wage cost  23.2886 £k 20.3049 £k -3.2289 £k -12.81% 

component cost  150.8695 £k 131.7845 £k -19.0850 £k -12.65% 

Total O&M cost  (w/o revenue loss)  309.049 £k 274.280 £k -35.513 £k -11.25% 

revenue lost   207.143 £k 165.170 £k -50.323 £k -20.26% 

Total O&M cost  (with revenue loss)  516.19 £k 439.45 £k -85.837 £k -14.87% 

Entire wind farm revenue loss  25,064.32 £k 19,985.56 £k -6,089.13 £k -20.26% 

Entire wind farm total O&M cost (w/o revenue loss)  37,394.92 £k 33,187.87 £k -4,297.09 £k -11.25% 
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Table 74. StraPCost+ results for wind farm N for transportation strategy 3: mother 

ship only 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due 

to CM 

Change/ 

Baseline 

downtime 10.2 days  8.8 days  -1.4 days  -14.01% 

availability 97.2 % 97.6 % 0.4 % 0.40% 

capacity factor  35.3 % 35.5 %  0.2 % 0.58% 

energy lost 840.6 MWh 696.4 MWh -144.2 MWh -17.16% 

mean power generated over year  2.83 MW 2.84 MW 0.02 MW 0.58% 

total annual energy generated  24765.2 MWh 24909.4 MWh 144.2 MWh 0.58% 

annual revenue  4581.6 £k 4608.2 £k 26.7 £k 0.58% 

revenue lost 155.5 £k 128.8 £k -26.7 £k -17.16% 

annual maintenance cost 456.2 £k 421.6 £k -34.5 £k -7.57% 

entire wind farm annual maintenance cost 57.4 £m 51.0 £m -4.2 £m -7.28% 

vessel cost  284.51 £k 270.97 £k -13.54 £k -4.76% 

wage cost  20.80 £k 18.90 £k -1.90 £k -9.15% 

component cost  150.87 £k 131.78 £k -19.09 £k -12.65% 

Total O&M cost  (w/o revenue loss)  456.18 £k 421.65 £k -34.53 £k -7.57% 

revenue lost   155.52 £k 128.83 £k -26.68 £k -17.16% 

Total O&M cost  (with revenue loss)  611.70 £k 550.48 £k -61.21 £k -10.01% 

Entire wind farm revenue loss  18,817.56 £k 15,588.91 £k -3,228.65 £k -17.16% 

Entire wind farm total O&M cost (w/o revenue loss)  55,197.73 £k 51,316.74 £k -4,178.12 £k -7.57% 

6.2.4 Discussion 

The discussion focus on the results from the three transportation strategies, the 

subsystem contribution to the reactive maintenance costs, the comparison of reactive 

maintenance costs calculated by ECUME, and effect of the condition-based 

maintenance. 

6.2.4.1 Comparison among the transportation strategies within StraPCost+ 

The comparison of the transportation strategies covers two main aspects: the wind 

turbine operation and the costs. From the wind turbine operational perspective, Table 

72 to Table 74 show that a higher cost transportation strategy results in reduced 

downtime for both reactive and condition-based maintenance. There is also a small 

increase in availability, capacity factor, mean power generated and total annual energy 

generated. Energy lost, on the other hand, shows a dramatic decrease with more 

expensive transportation strategies. With more expensive transportation strategies, 
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annual revenue, annual maintenance cost and thus the entire wind farm annual 

maintenance cost increases. 

Table 75 shows the percentage change between different transportation strategies. The 

changes are small for most of the cost model results; the exceptions are the annual 

maintenance cost (per turbine) and the entire wind farm annual maintenance cost. Take 

reactive maintenance as an example, the annual maintenance cost percentage increase 

from strategy 1 (£288.7k) to strategy 2 ((£309.0k) is 7%; while the percentage increase 

from strategy 2 to strategy 3 (£456.2) is 47%. Similarly, for condition-based 

maintenance, the annual maintenance cost at both turbine level and entire wind farm 

level sees around an 8% increase from strategy 1 to 2, and 53% increase from strategy 

2 to 3. These trends also apply to the total O&M cost per turbine without revenue loss. 

Most costs items change by similar amounts, except vessel cost which shows a 20.8% 

increase from strategy 1 to strategy 2 and a 110.9% increase from strategy 2 to strategy 

3 for reactive maintenance, and 24.1% and 121.8% respectively for condition-based 

maintenance. Wage cost shows for both cases an 11% decrease with reactive 

maintenance with 11.5% and 6.9% for condition-based maintenance. Component costs 

are unaffected by operational maintenance strategy. Revenue lost shows a 21.2% 

decrease from transportation strategy 1 to strategy 2 and a 24.9% increase from 

strategy 2 to strategy 3 for reactive maintenance, and both around 22% for condition-

based maintenance.  

From the comparison of transportation strategies, it can be seen that the benefits and 

costs steadily increase with application of more expensive transportation strategies. 

The vessel costs are the only drawback for upgrading to strategy 3, where vessel cost 
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increases by over 110% for both reactive and condition-based maintenance and results 

in a 50% increase in O&M costs. In this circumstance, upgrade to strategy 2 seems to 

be a more economic choice with a 7% to 8% increase in total O&M costs. Further 

discussion that supports of reactive maintenance can be found in Figure 83 and Figure 

84 in Section 6.2.4.3. 

Table 75．Cost changes for transportation strategies relative to the lower-cost 

strategy for wind farm N 

 Reactive maintenance Maintenance-based 

maintenance 

 Strategy 1 

to 

Strategy 2 

Strategy 2 

to 

Strategy 3 

Strategy 1 

to 

Strategy 2 

Strategy 2 

to 

Strategy 3 

downtime -14.8% -11.5% -15.7% -9.3% 

availability 0.6% 0.4% 0.4% 0.3% 

capacity factor with downtime 1.2% 1.1% 1.1% 0.6% 

energy lost -21.2% -24.9% -22.3% -22.0% 

mean power generated over year with downtime 1.2% 1.1% 1.1% 0.7% 

total annual energy generated with downtime 1.2% 1.1% 1.0% 0.8% 

annual revenue with downtime 1.2% 1.1% 1.0% 0.8% 

revenue lost -21.2% -24.9% -22.3% -22.0% 

annual maintenance cost 7.1% 47.6% 8.3% 53.7% 

entire wind farm annual maintenance cost 6.6% 45.0% 8.5% 53.6% 

vessel cost 20.8% 110.9% 24.1% 121.8% 

wage cost  -11.0% -10.7% -11.5% -6.9% 

component cost  0.0% 0.0% 0.0% 0.0% 

Total O&M cost  (w/o revenue loss) 7.1% 47.6% 8.3% 53.7% 

revenue lost  -21.2% -24.9% -22.3% -22.0% 

Total O&M cost  (with revenue loss) -6.4% 18.5% -5.6% 25.3% 

Entire wind farm revenue loss -21.2% -24.9% -22.3% -22.0% 

Entire wind farm total O&M cost  (w/o revenue loss) 7.1% 47.6% 8.3% 54.6% 

6.2.4.2 Subsystem contribution to maintenance cost  

Figure 82 shows the contributions to maintenance cost by subsystem for the three 

transportation strategies. To assist the analysis, Table 76 lists the contribution in order 

from the largest to smallest in reactive maintenance. It shows absolute costs depending 

on the percentage contribution and the absolute total annual maintenance cost of each 

strategy.  

 



 

Chapter 6 Cost model applications: cost effectiveness of condition monitoring 

290 

 

 

 
 

 
 

 

Figure 82. StraPCost+ baseline contributions to maintenance cost by subsystem for 

wind farm N with transportation strategy 1(upper), 2(middle) and 3(lower) 
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According to the results in Table 72 to Table 74, the annual maintenance costs at wind 

turbine level are £288.7k, £309.0k and £456.2k for the three transportation options. By 

combining the absolute wind turbine level cost with the percentage contribution, a 

quantitative view of the cost contribution based on subsystems for the baseline reactive 

maintenance is provided. 

Interestingly, the ranking of the subsystem maintenance cost contribution remains the 

same but the contributions vary with different transportation strategies. As shown in 

Figure 82, for all transportation strategies, the gearbox assembly has the highest 

proportion of the entire turbine level maintenance cost. With more expensive 

transportation strategies, this portion becomes smaller. The gearbox assembly with the 

cheapest strategy 1 takes almost half (47.6%) of the total cost. This proportion reduces 

to 45.7% for strategy 2 and 36% for the most expensive strategy 3. However, even 

though the percentage proportion reduces, the absolute cost values increase with more 

expensive transportation strategies: £137.4k, £141.2k and £164.2k, as shown in Table 

76. This also applies to generator assembly with 11.3%, 10.9% and 8.9% for the three 

strategies, with the corresponding absolute values being £32.6k, £33.7k and £40.6k. 

Table 76. Annual maintenance cost contribution by subsystem in StraPCost+ for 

reactive maintenance of wind farm N ordered by share of total cost; total cost 

highlighted in the top row 

 Contribution Absolute costs (£k) 

 strategy1 strategy2 strategy3 strategy1 strategy2 strategy3 

total cost    288.7 309 456.2 

Gearbox assembly 47.60% 45.70% 36.00% 137.42 141.21 164.23 

frequency converter 19.20% 19.40% 19.60% 55.43 59.95 89.42 

generator 11.30% 10.90% 8.90% 32.62 33.68 40.6 

yaw system 6.70% 7.30% 10.90% 19.34 22.56 49.73 

pitch system 6.10% 6.90% 12.50% 17.61 21.32 57.03 

M. V. Switchgear 3.80% 4.00% 4.30% 10.97 12.36 19.62 

L. V. Switchgear 3.10% 3.40% 5.10% 8.95 10.51 23.27 

blades 1.90% 1.90% 1.70% 5.49 5.87 7.76 

power module 0.30% 0.40% 1.00% 0.87 1.24 4.56 
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On the other hand, it can be observed that the contribution of frequency converter does 

not change much with transportation strategies. This is because, although this 

electronic subsystem fails frequently, maintenance can be undertaken relatively easily, 

using the cheapest transportation such as crew boat for strategy 1 and 2. However, 

when it comes to strategy 3, the cheapest option is the mother ship which is much more 

expensive than a crew boat, so the cost contribution is slightly higher. This effect can 

be seen more clearly with other electronic subsystems such as M.V. Switchgear, L.V. 

Switchgear and the power module. 

This jump change with strategy 3 can be also observed clearly in mechanical 

subsystems. Pitch system shows the most dramatic increase with the upgrade of the 

transportation strategies. It doubles the proportions in strategy 1 (6.1%) and 2 (6.9%), 

and takes 12.5% with strategy 3. For yaw system, the jump can also be seen clearly as 

6.7%, 7.3% and 10.9%.  

Another reason for this step change is the different vessel weather tolerance. The 

waiting time for the turbine subsystems is also different. The effect of waiting time is 

more obvious with unscheduled vessel usage as in reactive maintenance. For heavy 

subsystems, weather waiting time is markedly longer for vessels that have low weather 

tolerance, and where the vessel schedule time requirement is longer. Moreover, longer 

waiting time can also cause consequential subsystem failure. With the current settings, 

more expensive transportation has higher weather tolerance, and the maintenance 

waiting time is shorter. There is therefore a trade-off between vessel cost and the 

economic benefit resulting from higher weather tolerance. 
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One more interesting point to be noticed is that compared with wind farm T in Section 

6.1, the order of the contribution for each subsystem is almost the same. The only 

difference is the sequence of pitch system and yaw system. Since the wind farms in 

the two case studies are quite different, it seems that the cost ranking of subsystem 

maintenance reflects their respective failure rates, even where the weather statistics of 

the sites are different. 

6.2.4.3 Baseline comparison with ECUME for the three transportation strategies 

Table 77 compares selected significant turbine level results at wind farm level from 

ECUME and StraPCost+. 

StraPCost+ presents higher availability than ECUME, but this difference decreases 

with the application of more expensive transportation strategies. At the same time, 

StraPCost+ shows around 60% lower energy lost than ECUME, and the difference 

decreases with the application of more expensive transportation, and this is reflected 

in revenue loss, for example £230.1k (47%) less with crew boats strategy, and £148.9k 

(41%) with the mother ship.  

For annual O&M cost, StraPCost+ estimates £130.9k (83%) more with crew boats 

only, £123.6k (67%) more with boats and helicopters and £237.7k (109%) more with 

mother ship only strategy than ECUME. For the entire wind farm annual maintenance 

cost, StraPCost+ presents £18.1m (95%) more for crew boats only, £17.2m (77%) for 

crew boats with helicopter and £31.0m (117%) for mother ship only.  
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There is no simple relationship between results from StraPCost+ for wind turbine level 

annual O&M cost and the entire wind farm maintenance cost and those from ECUME. 

This is most likely due to different approaches to whole wind farm cost calculation. 

Table 77. Comparison of results from ECUME and StraPCost+ 

 

 

Crew boats only Crew boats with helicopter Mother ship only 

StraPCost+ ECUME Diff StraPCost+ ECUME Diff StraPCost+ ECUME Diff 

Availability (%) 96.3 89.1 7.2 96.8 92.4 4.4 97.2 94.5 2.7 

Energy lost (MWh) 1421.2 3586.7 -2165.5 1119.7 2592.0 -1472.3 840.6 1910.4 -1069.8 

Revenue lost (£k) 262.9 493 -230.1 207.1 356 -148.9 155.5 263 -107.5 

Annual O&M cost (£k) 288.7 157.8 130.9 309.0 185.4 123.6 456.2 218.5 237.7 

Entire wind farm annual 

maintenance cost (£m) 
37.1 19.0 18.1 39.6 22.4 17.2 57.4 26.4 31.0 

The comparison of annual O&M cost with reactive maintenance can usefully be split 

into two groups: one with onshore costs and overheads alone (i.e. without revenue 

loss), as in Figure 80 and Figure 83; the other with revenue loss only, as shown in 

Figure 81 and Figure 84. Since onshore costs and overheads are not calculated in 

StraPCost+, here for comparison integrity it uses the same assumption from ECUME 

for each transportation strategy in Figure 83. 

 

Figure 83. StraPCost+ break down of annual O&M cost per turbine without revenue 

loss and availability in wind farm N 
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Compared to Figure 80, supported by results in Table 71 and Table 72 to Table 74, the 

overall annual O&M costs per turbine in StraPCost+ as in Figure 83 are generally 

much higher than those from ECUME for all transportation strategies. The overall 

annual O&M costs per turbine in ECUME are in the range from £150k to £250k for 

all three strategies, while in StraPCost+, this range is £300k to £500k.  

Actual experience from wind farm T indicates the annual O&M cost per turbine to be 

in the range of £150k to £250k. Since wind farm T is located much closer to its vessel 

base (1.5km) than wind farm N (59km) considerably higher O&M costs would be 

expected for wind farm N, suggesting that ECUME projections are too low and those 

from StraPCost+ is more reasonable. 

As already explored choice of transportation option can significantly affect the costs. 

The overall annual O&M costs without loss of production from ECUME in Figure 80 

show a steady increase from the cheapest to the most expensive transportation strategy, 

whereas the corresponding values from StraPCost+ in Figure 83 are more sensitive to 

the mother ship option than the other two strategies. Since the cost items onshore and 

overheads, wage cost and component cost do not change much with the three 

transportation strategies; the overall annual O&M costs without loss of production are 

generally in proportion to the vessel costs.  

When considering the O&M cost with revenue loss, the result from ECUME in Figure 

81 shows rigid decrease with the upgrade of the transportation strategy, and the 

breakdown of the cost shows loss of production (revenue loss) and logistics (vessel 

cost) take the majority of the cost where loss of production can be almost 5/6 of the 

total cost and as almost 5 times high as logistics, which can hardly be the real case; 
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while StraPCost+ shows a more reliable result. With more realistic breakdown of the 

sub-costs, Figure 84 shows that although strategy 1 shows the lowest O&M cost 

without revenue loss, strategy 2 shows the lowest with revenue loss.   

 
Figure 84. StraPCost+ break down of annual O&M cost per turbine with revenue loss 

and availability for wind farm N 

More specifically, logistics (vessel cost) make a greater contribution to the annual 
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respectively. On the other hand, StraPCost+ sees dramatically more proportion in 

component cost than ECUME. ECUME only sees 3.1%, 3.8% and 4.4% out of total 

cost, while StraPCost+ shows 27.4%, 29.2% and 24.7%, separately.     

In contrast to the reduction of annual O&M cost and revenue loss resulting from the 

upgrade of the transportation strategy as calculated by ECUME, StraPCost+ indicates 

that strategy 2 with crew boat and helicopter presents the lowest annual O&M cost 

(with revenue loss). The most expensive strategy 3 (mother ship only) presents the 

highest corresponding annual O&M cost. The reason of this is the high sensitivity to 

the mother ship only strategy to vessel cost and the overall O&M cost in StraPCost+, 

whilst the decrease of revenue loss with the three strategies is not as dramatic. 

From this comparison, it can be seen that StraPCost+ suggests that strategy 2 is the 

most cost effective way when considering the revenue loss, while ECUME suggests 

that strategy 3 is best. 

Table 78. Breakdown of overall annual O&M cost with StraPCost+ for wind farm N 

StraPCost+ 

proportion to O&M cost w/o 

revenue loss 

proportion to O&M cost with revenue 

loss without onshore and overheads 

Crew 

Boats 

Only 

Crew Boats 

and 

Helicopters 

Mother 

Ship 

Crew 

Boats 

Only 

Crew Boats 

and 

Helicopters 

Mother 

Ship 

vessel cost 34.3% 39.0% 57.7% 20.2% 26.1% 46.5% 

wage cost 8.0% 6.7% 4.2% 4.7% 4.5% 3.4% 

component cost 46.4% 43.6% 30.6% 27.4% 29.2% 24.7% 

revenue lost - - - 47.7% 40.1% 25.4% 

onshore and overheads 11.3% 10.6% 7.5% - - - 

 

Table 79. Breakdown of overall annual O&M cost with ECUME for wind farm N 

ECUME 

 

proportion to O&M cost w/o 

revenue loss 

proportion to O&M cost with revenue 

loss without onshore and overheads 

Crew 

Boats 

Only 

Crew Boats 

and 

Helicopters 

Mother 

Ship 

Crew 

Boats 

Only 

Crew Boats 

and 

Helicopters 

Mother 

Ship 

vessel cost 57.5% 62.8% 68.4% 14.8% 23.0% 33.6% 

wage cost 7.0% 7.0% 5.8% 1.8% 2.6% 2.9% 

component cost 11.9% 10.4% 9.0% 3.1% 3.8% 4.4% 

revenue lost - - - 80.4% 70.6% 59.1% 

onshore and overheads 23.3% 19.8% 16.8% - - - 
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6.2.4.4 Effect of condition-based maintenance 

Figure 85 shows the comparison of reactive maintenance and condition-based 

maintenance results from StraPCost+. As in Section 6.1, the “total cost” is the total 

O&M cost per turbine. Table 80 lists the percentage changes that result from condition-

based maintenance. 

From all three graphs in Figure 85, it can be seen that condition monitoring reduces 

costs and revenue losses irrespective of the transportation strategy used. The graphs 

and table shows that the cheaper the transportation strategy, more costs are reduced 

due to the condition monitoring in comparison with reactive maintenance. It also 

seems that the reduction in total component cost is not affected by the choice of 

transportation strategy. 

More expensive transportation strategies reduce the impact of condition based 

maintenance. This is because the cheaper transportation strategy requires a longer 

waiting time for the unscheduled vessel usage due to its relatively low weather 

tolerance. In this situation, scheduled maintenance underpinned by condition 

monitoring can improve the timing of maintenance and thereby reduce the waiting 

time. More expensive transportation strategies, on the other hand, have higher weather 

tolerance and thus reduce the cost difference. Even here condition monitoring is clearly 

beneficial.    

It suggests that the condition monitoring system can reduce the overall O&M cost from 

10% to 15.6%, with exact reduction values from £34,500 to £35,500 for this wind farm 

per turbine per year. Considering the cost for CM and SCADA device of generally 
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£6,300-12,700 with 8MW turbines as introduced in Chapter 2, the CM system has 

shown the net reduced cost of £21,800-29,200 per annum per turbine. 

 

 

 
Figure 85. StraPCost+ expected annual contributions to O&M cost in unscheduled 

and scheduled maintenance for transportation strategy 1(upper), 2(middle) and 

3(lower) for wind farm N 
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Table 80. The percentage changes due to condition monitoring as calculated with 

StraPCost+ for wind farm N 

 Strategy1 Strategy2 Strategy3 

vessel cost -11.8% -9.4% -4.8% 

wage cost -12.3% -12.8% -9.2% 

component cost -12.7% -12.7% -12.7% 

Total O&M cost  (w/o revenue loss) -12.3% -11.3% -7.6% 

revenue lost -19.1% -20.3% -17.2% 

Total O&M cost  (with revenue loss) -15.6% -14.9% -10.0% 

6.2.5 Conclusion 

This section has examined operational costs for a large planned wind farm. Different 

transportation strategies have been assessed and the results from StraPCost+ and the 

commercial model ECUME are compared and discussed. This impact of condition 

monitoring has been analysed using both models and for a range of transportation 

strategies. 

Both cost models agree that turbine availability increases with the cost of the 

transportation strategy, whilst energy loss decreases. Comparison with the results for 

wind farm T together with actual operational experience suggests that StraPCost+ is 

more reliable than ECUME for wind farm N.  

Overall, StraPCost+ suggests the application of crew boats and helicopters is the most 

economic transportation strategy for both reactive and condition-based maintenance, 

whilst the most expensive strategy with mother ship is the least attractive. ECUME, 

on the other hand, shows proportionate decrease of the overall O&M cost with revenue 

loss, and it suggests that the most expensive strategy with mother ship is the most cost 

effective strategy, whilst the cheapest strategy results in the highest overall operational 

costs.  
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The models differ in other regards. With StraPCost+ component costs contribute 

significantly to the overall O&M cost, whilst for ECUME revenue loss is much more 

important. ECUME also shows higher proportion of vessel cost in the total O&M cost 

than StraPCost+. 

With its innovative capability to investigate condition-based maintenance, StraPCost+ 

suggests that the condition monitoring system can reduce the overall O&M cost from 

10% to 16%, with exact reduction values from £21,800-29,200 after deducting the 

annual cost of CM device and service for this wind farm per turbine per year.  

StraPCost+ also calculates the component and subsystem contributions to maintenance 

cost for wind farm N to rank in a similar way of wind farm T, although the actual 

values are of course different. Both wind farms see gearbox assembly, frequency 

converter and generator account for highest costs.   
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Chapter 7 Conclusion and Future work 

This thesis has developed a series of methods that together provide a methodical 

approach to assessing the capability of wind turbine condition monitoring to reduce 

the cost of offshore windfarm operations and maintenance. Specifically, it has created 

a methodology to investigate the reliability of offshore wind turbines based on a failure 

rate translator from onshore to offshore, improved a cost model with real case 

comparison to other cost models, and finally applied this improved cost model to 

provide a cost effectiveness analysis for a number of offshore wind farms. One of the 

highlights in the cost effectiveness analysis is the attention given to condition-based 

maintenance.  

Chapter 2 presented the relevant literature reviews. It firstly reviewed wind energy 

development, compared onshore and offshore wind farms, and discussed offshore 

wind energy development in Europe and the UK.  

This chapter then introduced the supplication of condition monitoring to wind energy 

generation, and discussed the benefits, performance and costs of such systems. It 

shows a general trend that the cost of condition monitoring system is gradually 

decreasing. The chapter has thoroughly listed the condition monitoring techniques 

from both data acquisition and data processing algorithm perspectives. It was 

concluded that there was a lack of data demonstrating the performance of these 

condition monitoring approaches. 

This chapter also reviewed wind turbine component failure rate data and contrasted 

onshore and offshore operation. It was noted that the failure rate data are rarely 
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accessible, especially for the offshore ones, and this motivates the creation of an 

approach to compensate for this using onshore data.  

Chapter 3 introduced specific onshore and offshore wind farms for which data was 

available. An investigation including a wind resource assessment (wind rose and wind 

speed distribution), turbine availability, capacity factor, array efficiency and 

operational characteristics was undertaken. It has showed that the array efficiency of 

the investigated wind farm is higher or equal to other large existing offshore wind 

farms in Europe.  

This chapter also developed a methodology of yaw and turbine nacelle direction sensor 

error identification using SCADA data, and applied it to two offshore wind farms. For 

wind farm T, with the results from the time-based animation of the yaw direction, time 

series of yaw angle, time series of power output, and the power curve-cosine-cubed 

law analysis, it has suggested that a number of turbines are having turbine nacelle 

direction sensor error rather than actual yaw problems. For wind farm L, additional 

mathematical techniques have been applied, in terms of a direction-based animations, 

wake loss alignment test and correlation analyses. It highlighted potential turbine 

nacelle direction sensor problems, and also gave the bias angles for specific time 

ranges. 

In future work, met mast data of wind farm T and yaw error measured by nacelle wind 

vanes which were not available for analysis are expected to be provided and analysed. 

Data of higher sampling frequency is also expected to be helpful for accurate analysis 

and diagnosis, and would be beneficial for further wake losses studies. 
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Chapter 4 investigated offshore wind turbine component reliability. In this chapter, an 

innovative failure rate translator from onshore to offshore has been created to 

overcome the lack of offshore failure rate data. The translator calculates the 

environmental factors from onshore to offshore by using a cumulative probability 

density (CPD) function method aiming to provide a reasonably generic onshore failure 

rate trend for key turbine components and subsystems. This chapter has compared 

different fitting functions to the staircase-shaped CPD, and finally selected a variation 

of exponential as the fitting function. This translation method, as a train of thought, 

has a wide potential and has been applied in the later research. However, at this stage, 

the only accessible failure data used for the translation procedure have limited the 

accuracy of the results. Some of the results seem counter-intuitive and should be 

checked when more extensive data becomes available.  

An offshore Failure Modes Effect Analysis (FMEA) translation process is presented, 

based on the developed reliability data translation method. Even though FMEA has 

been applied to many traditional industries, it has not been used for offshore wind 

energy. This chapter calculated the Risk Priority Number (RPN) of each offshore 

turbine component or subsystem by translating the accessible onshore RPN in the 

public domain. It is the first time that a quantification of the risk ranking for offshore 

wind has been listed. From the results obtained in this chapter, control system becomes 

the highest risk element for an offshore wind turbine, followed by the rotor and blades 

(which is the highest risk subsystem onshore), and the main gearbox. The lowest risk 

subsystems are the mechanical brake and the main shaft assembly for both onshore 

and offshore wind. The risk ranking has an indicative meaning for offshore wind farm 

O&M strategy development.  
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In the future, the translator could consider more factors that influence failure rate in 

addition to wind speed and temperature, e.g. wind and wave turbulence. The database 

should be expanded to cover more wind farms and different turbine types. When 

available, longer averaging periods of environmental factor data should be investigated 

and used in addition to the daily mean values. In addition to the translation algorithm 

improvement stated above, from the FMEA and RPN perspective, future work should 

consider upgrading the simple multiplication calculation of the individual 

environmental factor translation ratios to provide a more sophisticated algorithm. The 

first step could be the application of weights to the ratios. With the results from Chapter 

6, the RPN calculation which currently only considers the failure occurrence can be 

expanded into the failure severity. The condition monitoring detection effectiveness 

analyses in Chapter 5 also has an indicative meaning to the RPN calculation expansion 

into the failure detectability. This requires more accessible condition monitoring data 

from different devices for each component in the future.   

Chapter 5 has introduced a probabilistic O&M cost model which innovatively contains 

the comparison of the effect of condition-based maintenance with the reactive 

maintenance. The chapter presents the methodology used by the cost model and its 

interfaces. The cost model provides a number of estimates covering wind turbine 

performance and wind farm O&M cost.  

This chapter thoroughly reviewed other O&M cost models from the research and 

commercial domains, and compared these with the cost model developed in this thesis 

from the methodology perspective. This review and comparison has given an 
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important hint to improving the existing cost model. The improved model that has 

resulted is called StraPCost+.  

The two most important improvements to StraPCost+ are the application of the failure 

rate translator developed in Chapter 4 and the expansion of the maintenance categories 

for both reactive and condition-based maintenance. With these improvements, 

StraPCost+ is expected to provide more credible and realistic estimates.  

In order to test and verify the improved model, this chapter has also undertaken a case 

study comparison with other accessible cost models for a baseline case and also 

sensitivity to key parameters. It is concluded that shown that StraPCost+ provides 

reasonable and believable estimates. 

Further verification analyses and applications have been undertaken with StraPCost+, 

with focus on the condition monitoring (CM) system detection effectiveness. This 

section has undertaken CM sensitivity analysis on how the condition monitoring 

system detectability, pre-empt (advance warning of failure) and falsepos (false positive) 

statuses affect the cost model results. It has shown that the cost models results are the 

most sensitive to detectability and least sensitive to the false positive rates. From the 

cost model result perspective, the availability and capacity factors have a positive 

correlation, while the remainder of the three cost model results have negative 

correlation to CM detection characteristics. This CM detection analysis has shown an 

indicative way of complete the RPN calculation in FMEA discussed in Chapter 4 by 

verification one of the three parameters: detectability. Of course, more accessible data 

on individual CM device are expected for the actual application in the future. 
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Wider sensitivity analyses have been undertaken with StraPCost+ including wind and 

wave parameters, weather window threshold for heavy (A and B) and light 

maintenance (C, D and E), overall turbine annual failure rate and distance to shore, 

together with the CM detection parameters analysed in the previous section. Among 

the five selected cost model results with eight sensitivity parameters, wind turbine 

availability and capacity factor show the most dramatic decreases along with the 

increase of the weather window threshold for heavy maintenance (A and B) for the 

adjustment below -30%. The wind and wave parameters show the highest impact on 

the first four selected cost model results, and CM detectability shows the highest 

impact on the revenue loss. Distance to shore and CM falsepos show low impact on 

all the five cost model results. 

In the future, the cost model condition monitoring system detection rates from different 

CM devices can be improved from the simple addition calculation into a more 

sophisticated and realistic relationship. The false positive effectiveness can be 

improved with an advanced algorithm for more realistic condition-based maintenance 

estimation. The CM detection effectiveness analysis can be extended to subsystem 

level with different types of CM system. From the entire cost model perspective, the 

cost model can also consider the estimation on a wind farm level rather than a simple 

multiplication of the individual wind turbine estimations, and allow the vessel usage 

with multiple tasks at individual maintenance visit. Effects due to different seasons 

can also be considered by showing results on a seasonal basis.  

The case studies in this chapter suggested that the time-based availability estimation 

of StraPCost+ is too optimistic and this needs to be investigated in the future work. 
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The current calculation related to the number of technicians in StraPCost+ is too 

simple which results in no interconnection with some of the cost model results, e.g. 

the time-based availability, and this can be improved in future. Some of the cost model 

results are currently having the same sensitivity with the CM detection, and some do 

not show any sensitivity to the default overall failure rate. The weather window 

threshold for light maintenance (C, D and E) shows inconsistent cost model results 

while other parameters show constant positive or negative impacts on all selected cost 

model results. These issues need to be investigated in the future work. In the future, 

more sensitivity parameters such as repair time and on land lead time etc. can be 

investigated. In addition, this model considers the percentage change of annual 

maintenance cost is equal to the O&M cost without revenue loss. This algorithm 

assumption works for rough estimation, but needs to be refined. 

Chapter 6 presented case studies of StraPCost+ applications for an existing offshore 

wind farm, and also a wind farm in its planning phase. In the first wind farm case, data 

measured from different distances to shore are investigated and compared with the 

reactive maintenance results obtained in Chapter 5. This section has also provided a 

detailed investigation of the subsystem contribution to annual maintenance cost. It has 

shown that among all wind turbine subsystems, the gearbox assembly makes the 

largest contribution and power module makes the least. This subsystem contribution 

to total annual maintenance cost provides a useful ranking of the consequence of faults, 

another initial RPN calculation element as discussed in Chapter 4. The effect of the 

condition-based maintenance is another emphasis in this chapter section. It has shown 

a remarkable reduction in O&M cost and availability improvement due to the 

application of the condition-based maintenance. Deducting the annual CM device and 
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service costs, the reduction of O&M cost is in the order of £16,000-18,000 per annum 

per turbine. 

The other case study in this chapter applied StraPCost+ to a planned large offshore 

wind farm. It proved the reliability of using StraPCost+ for helping decision making, 

in this case, for transportation strategy. With comparison of the commercial trusted 

O&M cost model, ECUME, it has suggested that StraPCost+ has provided more 

credible estimates. This chapter section confirmed the significant reduction of O&M 

cost due to condition monitoring system. With the same calculation of the component 

and subsystem contribution to maintenance cost as the previous case study, it has 

shown that even though the actual contribution values are different, both wind farms 

show gearbox assembly, frequency converter and generator account for highest costs. 

It has shown the O&M cost reduction due to the CM system is in the order of £20,000 

per turbine per year deducting the annual cost of CM device and service (equivalent to 

6.5% of the annual reactive maintenance cost per turbine per year). 

In future work, as mentioned in Chapter 4, the results which support the subsystem 

failure severity can be added in the FMEA RPN calculation. It also needs to be 

investigated the phenomenon that the percentage change due to the application of 

condition based maintenance for wind farm T are the same for some of the cost model 

results in the sensitivity analyses, even though the absolute values are different. In the 

future, when more cost information of CM devices is available, the cost effectiveness 

of condition monitoring can be assessed in a more accurate manner. It is also worth 

investigating the impact and effectiveness of different types of condition monitoring 

systems.
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APPENDIX-A 

Table 1a. High frequent value (>10 times) of Yaw direction (stoppage) and 

percentage of each turbine in Descending order 

WTG1     

direction 
stoppage 

(stamps) 
percentage 

 213.3 9473 27.9324 

109.6 4175 12.3106 

213.4 1628 4.80038 

272.7 1398 4.12219 

183.4 1164 3.43221 

268 1085 3.19927 

183.3 873 2.57416 

245.4 171 0.50422 

129.3 144 0.4246 

243.5 121 0.35679 

 

WTG3     

direction 
stoppage 

(stamps) 
percentage 

146.7 1887 5.56342 

143.9 146 0.43045 

67.7 144 0.42455 

167.4 38 0.11204 

180.5 16 0.04717 

328.3 16 0.04717 

 

WTG5     

direction 
stoppage 

(stamps) 
percentage 

228.4 3530 10.4075 

194.3 1457 4.29565 

226 550 1.62156 

0 529 1.55964 

85 269 0.79309 

45.7 143 0.42161 

155.4 15 0.04422 

164.3 11 0.03243 

 

WTG7     

direction 
stoppage 

(stamps) 
percentage 

273.9 3530 10.4075 

167.8 1721 5.074 

227.7 753 2.22006 

227.5 691 2.03727 

0 528 1.5567 

265.1 430 1.26776 

118.6 269 0.79309 

61.1 144 0.42455 

356.4 19 0.05602 

WTG2     

direction 
stoppage 

(stamps) 
percentage 

103.9 3030 8.93357 

186.9 2725 8.03432 

103.8 1037 3.05746 

108.8 269 0.79311 

143.5 160 0.47174 

186.8 141 0.41572 

148 16 0.04717 

234.1 14 0.04128 

222.8 13 0.03833 

 

WTG4     

direction 
stoppage 

(stamps) 
percentage 

199.7 2875 8.47608 

151.5 1929 5.68708 

219.4 1387 4.08915 

189.9 851 2.50892 

199.5 841 2.47944 

23.2 535 1.57729 

320.2 440 1.29721 

0 409 1.20581 

121.5 272 0.80191 

336 144 0.42454 

219.8 37 0.10908 

24.2 23 0.06781 

31.7 15 0.04422 

241.9 13 0.03833 

 

WTG6     

direction 
stoppage 

(stamps) 
percentage 

271.4 3530 10.4072 

186.5 2599 7.66237 

88.1 704 2.07553 

269.7 554 1.6333 

0 525 1.54781 

111.8 144 0.42454 

181.1 138 0.40685 

155.4 48 0.14151 

67 41 0.12088 

231 21 0.06191 

175.9 17 0.05012 

204 16 0.04717 

195.3 13 0.03833 

236.8 13 0.03833 
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WTG9     

direction 
stoppage 

(stamps) 
percentage 

243.5 1048 3.0899 

95.7 270 0.79606 

70.1 146 0.43046 

172.7 21 0.06192 

231.5 11 0.03243 

 

WTG11     

direction 
stoppage 

(stamps) 
percentage 

224.9 4606 13.5798 

232.2 733 2.16109 

216.9 144 0.42455 

 

WTG13     

direction 
stoppage 

(stamps) 
percentage 

167.7 854 2.51776 

167.6 285 0.84024 

163.6 265 0.78127 

161.4 155 0.45697 

218.3 12 0.03538 

 

WTG15     

direction 
stoppage 

(stamps) 
percentage 

156 1512 4.45794 

129.2 1018 3.00145 

139.4 806 2.37639 

155.9 286 0.84324 

103.3 270 0.79606 

139.6 165 0.48648 

138.2 144 0.42457 

201.5 107 0.31548 

191.2 30 0.08845 

 

WTG17     

direction 
stoppage 

(stamps) 
percentage 

222.8 6968 20.5449 

257.3 5248 15.4735 

162.8 1853 5.4635 

170.1 1507 4.44333 

174.5 588 1.7337 

257.4 564 1.66293 

170.2 210 0.61918 

 

 

 

 

WTG8     

direction 
stoppage 

(stamps) 
percentage 

0 16539 48.7646 

225 4330 12.7668 

80.5 3237 9.54417 

253.2 1787 5.2689 

191.7 1096 3.23151 

147.2 604 1.78087 

1.7 481 1.41821 

191.4 378 1.11452 

64.2 321 0.94646 

191.8 285 0.84031 

 

WTG10     

direction 
stoppage 

(stamps) 
percentage 

230.1 3463 10.2111 

228.5 3228 9.51819 

230.2 2573 7.58684 

234 2060 6.07419 

228.6 1526 4.49962 

234.3 1230 3.62682 

254.9 426 1.25612 

143.8 322 0.94946 

223.9 30 0.08846 

 

WTG12     

direction 
stoppage 

(stamps) 
percentage 

23.7 3403 10.0336 

25.7 1580 4.65857 

21.5 445 1.31207 

21.6 275 0.81083 

103.1 119 0.35087 

74.2 94 0.27716 

333 94 0.27716 

54.9 20 0.05897 

 

WTG14     

direction 
stoppage 

(stamps) 
percentage 

199.1 2728 8.04293 

198.9 2614 7.70682 

80 1154 3.40232 

243.1 603 1.77782 

214.6 433 1.27661 

199 426 1.25597 

92.5 260 0.76656 

223.1 147 0.4334 

249.7 41 0.12088 

5.6 26 0.07666 

262.2 12 0.03538 
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WTG19     

direction 
stoppage 

(stamps) 
percentage 

190 7899 23.2892 

40.9 5943 17.5222 

201.3 3457 10.1925 

199.3 1015 2.9926 

190.1 319 0.94053 

 

WTG21     

direction 
stoppage 

(stamps) 
percentage 

168.1 4439 13.0875 

168 1890 5.57226 

182.4 1322 3.89764 

332.1 402 1.18521 

167.9 144 0.42455 

332 141 0.41571 

 

WTG23     

direction 
stoppage 

(stamps) 
percentage 

143.5 853 2.51482 

199.3 707 2.08438 

199.4 590 1.73944 

204.5 570 1.68047 

204.4 429 1.26478 

52.1 382 1.12621 

187.3 153 0.45108 

52.2 141 0.4157 

185.1 141 0.4157 

175.3 29 0.0855 

342.9 19 0.05602 

176.6 16 0.04717 

150.4 12 0.03538 

 

WTG25     

direction 
stoppage 

(stamps) 
percentage 

194.3 3023 8.91267 

108.4 1615 4.76148 

257.3 1209 3.56448 

108.5 1150 3.39053 

226.8 12 0.03538 

136.4 11 0.03243 

 

 

 

 

 

 

WTG16     

direction 
stoppage 

(stamps) 
percentage 

190.2 1742 5.13592 

178.5 576 1.69821 

174 414 1.22059 

112.9 269 0.79309 

242.2 22 0.06486 

86.3 11 0.03243 

 

WTG18     

direction 
stoppage 

(stamps) 
percentage 

180.5 6454 19.0288 

80.3 2023 5.96456 

180.4 999 2.94543 

187.7 877 2.58572 

237 877 2.58572 

245.6 354 1.04372 

85.3 307 0.90515 

94 270 0.79606 

187.5 263 0.77542 

196.2 157 0.4629 

229.6 142 0.41867 

85.4 31 0.0914 

187.6 21 0.06192 

244.3 20 0.05897 

 

WTG20     

direction 
stoppage 

(stamps) 
percentage 

319.7 4679 13.7946 

250.6 2753 8.1164 

319 1419 4.1835 

305.7 1188 3.50246 

331.3 895 2.63864 

283 858 2.52956 

26.8 737 2.17282 

218.5 429 1.26478 

305.8 426 1.25593 

306.8 285 0.84024 

305.9 282 0.83139 

307.4 282 0.83139 

318.8 282 0.83139 

186.4 17 0.05012 

95.7 15 0.04422 
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WTG27     

direction 
stoppage 

(stamps) percentage 

286.9 2516 7.41789 

220.5 2363 6.9668 

220.7 855 2.52079 

51.3 846 2.49425 

231.9 693 2.04316 

25.3 682 2.01073 

300.7 426 1.25597 

45.1 419 1.23533 

87.2 269 0.79309 

219.9 158 0.46583 

220 143 0.42161 

265.1 141 0.41571 

0 20 0.05897 

203.5 12 0.03538 

 

 

WTG22     

direction 
stoppage 

(stamps) percentage 

173.1 3744 11.0387 

226.3 3610 10.6436 

181.6 3002 8.85102 

99.9 1765 5.20388 

226.1 852 2.51202 

202.3 753 2.22013 

181.8 300 0.88451 

173.9 204 0.60147 

313.2 22 0.06486 

 

WTG24     

direction 
stoppage 

(stamps) percentage 

285.7 5593 16.4898 

181.1 1845 5.43959 

109.6 1126 3.31977 

85 1063 3.13403 

81.6 843 2.48541 

269 391 1.15278 

254.3 345 1.01716 

244.1 342 1.00831 

281.3 30 0.08845 

108.5 21 0.06191 

261.8 17 0.05012 

236 11 0.03243 
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Figure 1a. time series of local wind speed (top), yaw angle (middle) and active power (bottom) of WTG 2, 15, 20 and 24 (Left to right) 
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Figure 2a. Power curves of each turbine from 6-month SCADA in wind farm T with nominal power curve from the manufacturer 

(WTG1-4 from left to right on the first row, the same to the rest) 
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APPENDIX-B 

Equation 1b and 2b: Maintenance category formulae Ds1 and Es1 in condition 

monitoring system detection effectiveness sensitivity analyses with regime1 

transferring falsepos from maintenance category Au to Eu into Es in scheduled 

maintenance. 

 

Table 2b. Condition monitoring system detection effectiveness sensitivity analyses with regime 

transferring falsepos from maintenance category A to E into E in scheduled maintenance; 

baseline values given in the top row 

Detectability Pre-empt Falsepos Availability 

Capacity 

factor with 

downtime 

Annual 

maintenance 

cost per 

turbine(£k) 

Total o&m cost 

(without revenue 

loss) per kwh per 

turbine(£) 

Revenue 

loss per 

kwh per 

turbine(£) 

0% 0% 0% 94.4% 46.5% 144.9 0.0120 0.0077 

-50% 0% 0% 94.1% 46.2% 152.2 0.0127 0.0083 

-40% 0% 0% 94.1% 46.3% 150.7 0.0125 0.0082 

-30% 0% 0% 94.2% 46.3% 149.3 0.0124 0.0081 

-20% 0% 0% 94.3% 46.4% 147.8 0.0123 0.0079 

-10% 0% 0% 94.4% 46.4% 146.4 0.0122 0.0078 

0% 0% 0% 94.4% 46.5% 144.9 0.0120 0.0077 

10% 0% 0% 94.5% 46.6% 143.4 0.0119 0.0076 

20% 0% 0% 94.6% 46.6% 142.0 0.0118 0.0075 

30% 0% 0% 94.7% 46.7% 140.5 0.0117 0.0073 

40% 0% 0% 94.7% 46.8% 139.1 0.0116 0.0072 

50% 0% 0% 94.8% 46.8% 137.6 0.0114 0.0071 

0% -50% 0% 94.4% 46.4% 148.4 0.0123 0.0078 

0% -40% 0% 94.4% 46.5% 147.7 0.0123 0.0078 

0% -30% 0% 94.4% 46.5% 147.0 0.0122 0.0078 

0% -20% 0% 94.4% 46.5% 146.3 0.0122 0.0077 

0% -10% 0% 94.4% 46.5% 145.6 0.0121 0.0077 

0% 0% 0% 94.4% 46.5% 144.9 0.0120 0.0077 

0% 10% 0% 94.4% 46.5% 144.2 0.0120 0.0077 

0% 20% 0% 94.5% 46.5% 143.5 0.0119 0.0077 

0% 30% 0% 94.5% 46.5% 142.8 0.0119 0.0076 

0% 40% 0% 94.5% 46.6% 142.1 0.0118 0.0076 

0% 50% 0% 94.5% 46.6% 141.4 0.0118 0.0076 

0% 0% -50% 94.4% 46.5% 144.5 0.0120 0.0077 

0% 0% -40% 94.4% 46.5% 144.6 0.0120 0.0077 

0% 0% -30% 94.4% 46.5% 144.7 0.0120 0.0077 

0% 0% -20% 94.4% 46.5% 144.8 0.0120 0.0077 

0% 0% -10% 94.4% 46.5% 144.8 0.0120 0.0077 

0% 0% 0% 94.4% 46.5% 144.9 0.0120 0.0077 

0% 0% 10% 94.4% 46.5% 145.0 0.0121 0.0077 

0% 0% 20% 94.4% 46.5% 145.0 0.0121 0.0077 

0% 0% 30% 94.4% 46.5% 145.1 0.0121 0.0077 

0% 0% 40% 94.4% 46.5% 145.2 0.0121 0.0077 

0% 0% 50% 94.4% 46.5% 145.3 0.0121 0.0077 

 

 
𝐷𝑆1 = 𝐷𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) + 𝐶𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒) (96a) 

 

𝐸𝑆1 = 𝐸𝑈 ∙ 𝑑𝑒𝑡𝑒𝑐𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∙ (1 + 𝑒𝑑𝑒𝑡) + 𝐷𝑈 ∙ 𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ∙ (1 + 𝑒𝑝𝑟𝑒)
+ (𝐴𝑈 + 𝐵𝑈 + 𝐶𝑈 + 𝐷𝑈 + 𝐸𝑈) ∙ 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠 ∙ (1
+ 𝑒𝑓𝑎𝑙𝑠𝑒) 

(97a) 
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Figure 3b. Condition monitoring detection effectiveness sensitivity analysis with regime 

transferring falsepos from maintenance category A to E into only E in scheduled 

maintenance 
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Table 3b. Exact values in comparison of 0 adjustment of CM detection effectiveness 

sensitivity analysis with regime transferring falsepos from maintenance category A 

to E into D and E in scheduled (condition-based) maintenance; baseline values given 

in top row 

Detectability Pre-empt Falsepos 
Availability 

(%) 

Capacity 

factor with 

downtime 

(%) 

Annual 

maintenance 

cost per 

turbine(£k) 

Total o&m 

cost (without 

revenue loss) 

per kwh per 

turbine(p) 

Revenue 

loss per 

kwh per 

turbine 

(p) 

0% 0% 0% 94.43 46.51 144.899 1.205 0.7697 

-50% 0% 0% 94.06 46.19 152.168 1.265 0.8308 

-40% 0% 0% 94.13 46.26 150.714 1.253 0.8186 

-30% 0% 0% 94.21 46.32 149.26 1.241 0.8064 

-20% 0% 0% 94.28 46.38 147.806 1.229 0.7941 

-10% 0% 0% 94.36 46.44 146.353 1.217 0.7819 

0% 0% 0% 94.43 46.51 144.899 1.205 0.7697 

10% 0% 0% 94.51 46.57 143.445 1.193 0.7575 

20% 0% 0% 94.58 46.63 141.992 1.180 0.7452 

30% 0% 0% 94.66 46.69 140.538 1.168 0.7330 

40% 0% 0% 94.73 46.75 139.084 1.156 0.7208 

50% 0% 0% 94.81 46.82 137.63 1.144 0.7085 

0% -50% 0% 94.35 46.45 148.423 1.234 0.7811 

0% -40% 0% 94.37 46.46 147.718 1.228 0.7788 

0% -30% 0% 94.38 46.47 147.013 1.222 0.7765 

0% -20% 0% 94.40 46.48 146.309 1.216 0.7743 

0% -10% 0% 94.42 46.49 145.604 1.211 0.7720 

0% 0% 0% 94.43 46.51 144.899 1.205 0.7697 

0% 10% 0% 94.45 46.52 144.194 1.199 0.7674 

0% 20% 0% 94.47 46.53 143.489 1.193 0.7651 

0% 30% 0% 94.48 46.54 142.785 1.187 0.7628 

0% 40% 0% 94.50 46.55 142.08 1.181 0.7605 

0% 50% 0% 94.52 46.56 141.375 1.175 0.7583 

0% 0% -50% 94.44 46.51 144.534 1.2016 0.76940 

0% 0% -40% 94.44 46.51 144.607 1.2022 0.76945 

0% 0% -30% 94.44 46.51 144.68 1.2028 0.76951 

0% 0% -20% 94.44 46.51 144.753 1.2034 0.76957 

0% 0% -10% 94.43 46.51 144.826 1.2040 0.76963 

0% 0% 0% 94.43 46.51 144.899 1.2046 0.76968 

0% 0% 10% 94.43 46.50 144.972 1.2053 0.76974 

0% 0% 20% 94.43 46.50 145.045 1.2059 0.76980 

0% 0% 30% 94.43 46.50 145.118 1.2065 0.76986 

0% 0% 40% 94.43 46.50 145.191 1.2071 0.76991 

0% 0% 50% 94.43 46.50 145.264 1.2077 0.76997 
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Figure 4b. CM detection effectiveness sensitivity in exact value with regime transferring 

falsepos from maintenance category A to E into D and E in scheduled maintenance with 

zoom-in figures in step of 0.02 (left) and full scale (right) 

 

 

Table 4b. Curve gradients of exact value against detectability, pre-empt and falsepos 

in figures from Figure 4a. 

Adjustment Availability  

Capacity 

factor with 

downtime  

Annual 

maintenan

ce cost per 

turbine  

Total O&M 

cost (without 

revenue loss) 

per kWh per 

turbine  

Revenue 

loss per 

kWh per 

turbine 

Detectability 0.75 0.62 -14.5 -0.12 -0.12 

Pre-empt 0.16 0.12 -7.05 -0.059 -0.023 

Falsepos -0.011 -0.003 0.73 0.006 0.00057 
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Table 5b.  Value change in percentage due to condition-based maintenance in 

StraPCost+ sensitivity analysis: (condition based maintenance – reactive 

maintenance)/ reactive maintenance; baseline figures given in the top row. 

Adjustment   
Availability 

(%) 

Capacity 

factor 

with 

downtime 

(%) 

Annual 

maintenance 

cost per 

turbine (%) 

Total O&M 

cost (without 

revenue loss) 

per kWh per 

turbine (%) 

Revenue 

loss per 

kWh per 

turbine 

(%) 

Baseline value 0% 0.96 1.61 -12.58 -12.58 -15.81 

Wind and 

wave 

parameters 

-50% 0.35 0.56 -3.55 -3.55 -13.51 

-40% 0.41 0.76 -4.98 -4.98 -14.56 

-30% 0.51 0.96 -6.89 -6.89 -15.16 

-20% 0.63 1.17 -8.92 -8.92 -15.49 

-10% 0.78 1.38 -10.85 -10.85 -15.69 

0% 0.96 1.61 -12.58 -12.58 -15.81 

10% 1.18 1.85 -14.09 -14.09 -15.91 

20% 1.43 2.12 -15.37 -15.37 -15.99 

30% 1.73 2.43 -16.42 -16.42 -16.08 

40% 2.1 2.8 -17.27 -17.27 -16.19 

50% 2.56 3.28 -17.93 -17.93 -16.33 

 

 

Weather 

window 

threshold for 

heavy 

maintenance 

(A and B) 

-50% 7.6 10.64 -19.46 -19.46 -18.74 

-40% 2.53 3.79 -18.8 -18.8 -17.74 

-30% 1.61 2.56 -17.57 -17.57 -17.04 

-20% 1.26 2.07 -15.96 -15.96 -16.54 

-10% 1.08 1.79 -14.23 -14.23 -16.15 

0% 0.96 1.61 -12.58 -12.58 -15.81 

10% 0.89 1.47 -11.11 -11.11 -15.51 

20% 0.84 1.36 -9.85 -9.85 -15.23 

30% 0.8 1.28 -8.79 -8.79 -15.01 

40% 0.77 1.22 -7.92 -7.92 -14.82 

50% 0.74 1.18 -7.22 -7.22 -14.67 

Weather 

window 

threshold for 

light 

maintenance 

(C, D and E) 

-50% 2.64 3.98 -13.17 -13.17 -15.37 

-40% 1.94 3.07 -12.98 -12.98 -15.48 

-30% 1.53 2.5 -12.84 -12.84 -15.58 

-20% 1.27 2.12 -12.73 -12.73 -15.67 

-10% 1.09 1.83 -12.65 -12.65 -15.75 

0% 0.96 1.61 -12.58 -12.58 -15.81 

10% 0.87 1.43 -12.53 -12.53 -15.86 

20% 0.81 1.29 -12.49 -12.49 -15.9 

30% 0.75 1.18 -12.46 -12.46 -15.93 

40% 0.72 1.1 -12.44 -12.44 -15.96 

50% 0.69 1.04 -12.42 -12.42 -15.98 

Default 

overall 

failure rate 

-50% 0.47 0.76 -12.58 -12.58 -15.81 

-40% 0.56 0.93 -12.58 -12.58 -15.81 

-30% 0.66 1.09 -12.58 -12.58 -15.81 

-20% 0.76 1.26 -12.58 -12.58 -15.81 

-10% 0.86 1.43 -12.58 -12.58 -15.81 

0% 0.96 1.61 -12.58 -12.58 -15.81 

10% 1.07 1.78 -12.58 -12.58 -15.81 

20% 1.17 1.97 -12.58 -12.58 -15.81 

30% 1.28 2.15 -12.58 -12.58 -15.81 

40% 1.39 2.34 -12.58 -12.58 -15.81 

50% 1.5 2.54 -12.58 -12.58 -15.81 
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CM 

Detectability 

-50% 0.56 0.93 -8.20 -8.20 -9.13 

-40% 0.64 1.06 -9.07 -9.07 -10.46 

-30% 0.72 1.20 -9.95 -9.94 -11.80 

-20% 0.80 1.33 -10.83 -10.81 -13.14 

-10% 0.88 1.47 -11.70 -11.69 -14.48 

0% 0.96 1.61 -12.58 -12.59 -15.81 

10% 1.04 1.74 -13.46 -13.43 -17.14 

20% 1.12 1.88 -14.34 -14.37 -18.49 

30% 1.20 2.01 -15.21 -15.24 -19.82 

40% 1.29 2.15 -16.09 -16.11 -21.16 

50% 1.37 2.29 -16.97 -16.98 -22.50 

CM  

Pre-empt 

-50% 0.88 1.48 -10.46 -10.45 -14.56 

-40% 0.89 1.51 -10.88 -10.89 -14.81 

-30% 0.91 1.53 -11.31 -11.32 -15.07 

-20% 0.93 1.56 -11.73 -11.76 -15.31 

-10% 0.95 1.58 -12.16 -12.12 -15.56 

0% 0.96 1.61 -12.58 -12.59 -15.81 

10% 0.98 1.63 -13.01 -12.99 -16.06 

20% 1.00 1.66 -13.43 -13.43 -16.31 

30% 1.02 1.68 -13.86 -13.86 -16.56 

40% 1.03 1.71 -14.28 -14.30 -16.82 

50% 1.05 1.73 -14.71 -14.73 -17.06 

CM 

Falsepos 

 

-50% 0.971 1.610 -12.802 -12.803 -15.843 

-40% 0.970 1.609 -12.758 -12.760 -15.837 

-30% 0.968 1.608 -12.714 -12.716 -15.831 

-20% 0.967 1.608 -12.670 -12.672 -15.824 

-10% 0.965 1.607 -12.626 -12.629 -15.818 

0% 0.964 1.606 -12.582 -12.585 -15.812 

10% 0.963 1.606 -12.538 -12.535 -15.805 

20% 0.962 1.605 -12.494 -12.491 -15.799 

30% 0.961 1.604 -12.450 -12.447 -15.792 

40% 0.960 1.604 -12.406 -12.404 -15.787 

50% 0.959 1.603 -12.362 -12.360 -15.780 

Distance 

to 

Shore 

-80% 0.874 1.453 -12.375 -12.375 -15.749 

-60% 0.896 1.491 -12.426 -12.426 -15.765 

-40% 0.919 1.529 -12.478 -12.478 -15.781 

-20% 0.941 1.567 -12.530 -12.530 -15.797 

0% 0.964 1.606 -12.582 -12.582 -15.812 

20% 0.988 1.646 -12.635 -12.635 -15.827 

40% 1.011 1.686 -12.688 -12.688 -15.841 

60% 1.035 1.727 -12.742 -12.742 -15.855 

80% 1.059 1.769 -12.796 -12.796 -15.869 

100% 1.083 1.811 -12.851 -12.851 -15.883 

120% 1.108 1.854 -12.905 -12.905 -15.896 

140% 1.133 1.898 -12.960 -12.960 -15.909 

160% 1.158 1.942 -13.015 -13.015 -15.922 

180% 1.184 1.987 -13.071 -13.071 -15.935 

200% 1.210 2.033 -13.126 -13.126 -15.947 
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Table 6b. Cost model results for Point01 using HLV1 for repair type A and B for wind 

farm T 

 
Reactive 

Maintenance 

Condition-

based 

Maintenance 

Change due to 

Condition 

monitoring 

Change/ 

Baseline 

(%) 

downtime 41.8 days 31.6 days -10.3 days -24.53% 

availability 88.5  % 91.4 %  2.8 %  3.17% 

capacity factor  36.9  % 39.3 %  2.4 %  6.43% 

energy lost 1741.8 MWh 1262.9 MWh -478.8 MWh -27.49% 

mean power generated over year  0.85 MW 0.90 MW 0.05 MW 6.43% 

total annual energy generated  7443.1 MWh 7921.9 MWh 478.8 MWh 6.43% 

annual revenue  632.7 £k 673.4 £k 40.7 £k 6.43% 

revenue lost 148.0 £k 107.3 £k -40.7 £k -27.49% 

annual maintenance cost 2033.5 £k 1459.2 £k -574.3 £k -28.24% 

entire wind farm annual maintenance cost 57.1 £m 39.40 £m -15.5 £m -27.16% 

vessel cost per unit £0.25 /kWh £0.18 /kWh -£0.07 /kWh -28.85% 

wage cost per unit  £0.0178 /kWh £0.0130 /kWh -£0.005 /kWh -27.08% 

component cost per unit  £0.0076 /kWh £0.0067 /kWh -£0.0008 /kWh -11.23% 

Total O&M cost  (w/o revenue loss) per unit £0.27 /kWh 0.20 /kWh -£0.08 /kWh -28.24% 

revenue lost  per unit  £0.02 /kWh 0.01 /kWh -£0.01 /kWh -27.49% 

Total O&M cost  (with revenue loss) per unit £0.29 /kWh £0.21 /kWh -£0.08 /kWh -28.19% 

Entire wind farm revenue loss per unit £0.54 /kWh £0.39 /kWh -£0.15 /kWh -27.49% 

Entire wind farm total O&M cost   

(w/o revenue loss) per unit 
£7.38 /kWh £5.29 /kWh -£2.08 /kWh -28.24% 

Table 7b. Cost model results for Point02 using HLV1 for repair type A and B for wind 

farm T 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due to 

Condition 

monitoring 

Change/ 

Baseline 

(%) 

downtime 78.6 days 56.5 days -22.1 days -28.13% 

availability 78.5  % 84.5 %  6.1 %  7.73% 

capacity factor  31.6  % 37.0 %  5.4 %  16.93% 

energy lost 3622.7 MWh 2544.0 MWh -1078.7 MWh -29.78% 

mean power generated over year  0.73 MW 0.85 MW 0.12 MW 16.93% 

total annual energy generated  6369.7 MWh 7448.4 MWh 1078.7 MWh 16.93% 

annual revenue  541.4 £k 633.1 £k 91.7 £k 16.93% 

revenue lost 307.9 £k 216.2 £k -91.7 £k -29.78% 

annual maintenance cost 4551.8 £k 3166.9 £k -1384.9 £k -30.43% 

entire wind farm annual maintenance cost 125.1 £m 85.51 £m -37.4 £m -29.89% 

vessel cost per unit £0.66 /kWh £0.46 /kWh -£0.20 /kWh -30.72% 

wage cost per unit  £0.0451 /kWh £0.0317 /kWh -£0.013 /kWh -29.84% 

component cost per unit  £0.0088 /kWh £0.0079 /kWh -£0.0010 /kWh -11.23% 

Total O&M cost  (w/o revenue loss) per unit £0.71 /kWh 0.50 /kWh -£0.22 /kWh -30.43% 

revenue lost per unit  £0.05 /kWh 0.03 /kWh -£0.01 /kWh -29.78% 

Total O&M cost  (with revenue loss) per unit £0.76 /kWh £0.53 /kWh -£0.23 /kWh -30.38% 

Entire wind farm revenue loss per unit £1.31 /kWh £0.92 /kWh -£0.39 /kWh -29.78% 

Entire wind farm total O&M cost   

(w/o revenue loss) per unit 
£19.29 /kWh £13.42 /kWh -£5.87 /kWh -30.43% 
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Table 8b. Cost model results for Point05 using HLV1 for repair type A and B for wind 

farm T 

 
Reactive 

Maintenance 

Condition-based 

Maintenance 

Change due to 

Condition 

monitoring 

Change / 

Baseline 

(%) 

downtime 59.0 days 43.1 days -15.8 days -26.85% 

availability 83.8  % 88.2 %  4.3 %  5.17% 

capacity factor  33.6  % 37.4 %  3.7 %  11.14% 

energy lost 2598.6 MWh 1843.6 MWh -755.0 MWh -29.06% 

mean power generated over year  0.77 MW 0.86 MW 0.09 MW 11.14% 

total annual energy generated  6775.6 MWh 7530.6 MWh 755.0 MWh 11.14% 

annual revenue  575.9 £k 640.1 £k 64.2 £k 11.14% 

revenue lost 220.9 £k 156.7 £k -64.2 £k -29.06% 

annual maintenance cost 3228.2 £k 2269.1 £k -959.1 £k -29.71% 

entire wind farm annual maintenance cost 89.4 £m 61.26 £m -25.9 £m -28.98% 

vessel cost per unit £0.44 /kWh £0.31 /kWh -£0.13 /kWh -30.11% 

wage cost per unit  £0.0303 /kWh £0.0216 /kWh -£0.009 /kWh -28.96% 

component cost per unit  £0.0083 /kWh £0.0074 /kWh -£0.0009 /kWh -11.23% 

Total O&M cost  (w/o revenue loss) per unit £0.48 /kWh 0.33 /kWh -£0.14 /kWh -29.71% 

revenue lost per unit  £0.03 /kWh 0.02 /kWh -£0.01 /kWh -29.06% 

Total O&M cost  (with revenue loss) per unit £0.51 /kWh £0.36 /kWh -£0.15 /kWh -29.67% 

Entire wind farm revenue loss per unit £0.88 /kWh £0.62 /kWh -£0.26 /kWh -29.06% 

Entire wind farm total O&M cost  

 (w/o revenue loss) per unit 
£12.86 /kWh £9.04 /kWh -£3.82 /kWh -29.71% 

Table 9b. Cost model results for Point06 using HLV1 for repair type A and B for wind 

farm T 

 
Reactive 

Maintenance 

Condition-

based 

Maintenance 

Change due to 

Condition 

monitoring 

Change / 

Baseline 

(%) 

downtime 57.3 days 42.0 days -15.3 days -26.72% 

availability 84.3  % 88.5 %  4.2 %  4.97% 

capacity factor  34.5  % 38.1 %  3.6 %  10.51% 

energy lost 2522.4 MWh 1791.6 MWh -730.7 MWh -28.97% 

mean power generated over year  0.79 MW 0.88 MW 0.08 MW 10.51% 

total annual energy generated  6950.5 MWh 7681.2 MWh 730.7 MWh 10.51% 

annual revenue  590.8 £k 652.9 £k 62.1 £k 10.51% 

revenue lost 214.4 £k 152.3 £k -62.1 £k -28.97% 

annual maintenance cost 3119.3 £k 2195.2 £k -924.1 £k -29.63% 

entire wind farm annual maintenance cost 86.4 £m 59.27 £m -25.0 £m -28.87% 

vessel cost per unit £0.41 /kWh £0.29 /kWh -£0.12 /kWh -30.04% 

wage cost per unit  £0.029 /kWh £0.020 /kWh -£0.008 /kWh -28.86% 

component cost per unit  £0.0081 /kWh £0.0072 /kWh -£0.0009 /kWh -11.23% 

Total O&M cost  (w/o revenue loss) per unit £0.45 /kWh 0.32 /kWh -£0.13 /kWh -29.63% 

revenue lost per unit  £0.03 /kWh £0.02 /kWh -£0.01 /kWh -28.97% 

Total O&M cost  (with revenue loss) per unit £0.48 /kWh £0.34 /kWh -£0.14 /kWh -29.58% 

Entire wind farm revenue loss per unit £0.83 /kWh £0.59 /kWh -£0.24 /kWh -28.97% 

Entire wind farm total O&M cost  

 (w/o revenue loss) per unit 
£12.12 /kWh £8.53 /kWh -£3.59 /kWh -29.63% 

 


