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Abstract 

Vortex-induced vibration (VIV) is a fundamental phenomenon commonly 

encountered in various practical engineering. Owing to the complexities associated with 

this phenomenon, modelling and prediction of VIV is a challenging task. In this 

research, a new predictive phenomenological model is developed for VIV of an 

elastically mounted rigid cylinder subjected to a fluid flow and free to vibrate in both 

cross-flow (CF) and in-line (IL) directions. The ensuing dynamical system is based on 

double Duffing-van der Pol (structural-wake) oscillators with the two structural 

equations containing both cubic and quadratic nonlinear terms. The cubic nonlinearities 

capture the geometrical coupling of CF/IL displacements excited by hydrodynamic 

lift/drag forces whereas the quadratic nonlinearities allow the fluid-structure interactions. 

The model predictions are extensively compared with published and in-house 

experimental results. Experiments are carried out at the Department’s towing tank to 

calibrate and validate numerical prediction results. Comparisons illustrate the qualitative 

resemblance between experimental and prediction results, highlighting how the new 

model can capture several important VIV characteristics including a two-dimensional 

lock-in, jump and hysteresis phenomenon, and figure-of-eight trajectory tracing the 

periodically coupled CF/IL oscillations. Moreover, the parametric studies reveal the 

important effect of geometrical nonlinearities, mass ratio, damping ratio and natural 

frequency ratio. Insights into hydrodynamic properties such as VIV-induced mean drag, 

added mass and damping are drawn based on the newly proposed model via analytical-

numerical approaches and comparisons with published literature.  

Consequently, the new prediction model is applied to the VIV analysis of flexible 

circular cylinders subjected to uniform and linearly sheared currents. To capture a three-

dimensional aspect of the flexible cylinder experiencing VIV, nonlinear equations of CF, 

IL and axial structural oscillations are considered to be coupled with the distributed van 

der Pol wake-oscillators. Governing equations are numerically solved via a space-time 

finite difference scheme, and the obtained numerical results highlight several aspects of 

VIV of elastic cylinders along with the axial motion effects. Apart from the validation of 

the numerical model with published experimental results, this study reveals how the 

effect of axial motion and its nonlinear coupling with the two transverse CF/IL motions 

can be very important. These depend on the reduced velocity, the fluid-structure 

parameters, the single or multi-mode lock-in condition, and the standing-wave versus 

travelling-wave features. 
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Chapter 1 

Introduction 

Many engineering mechanical, civil and offshore structures such as thermo 

wells, heat exchangers, suspended bridges, skyscrapers, pipelines, risers and mooring 

cables are subjected to fluid flows (which is usually water or air) and may experience 

phenomena pertaining to the interaction between the structure and the fluid. One of 

the most important and most probable side effects of these fluid-structure interaction 

(FSI) phenomena is the structural vibrations induced by fluid flow which can be 

either useful or damaging.  Either way, flow-induced oscillations have two main 

components, (i) the fluid flow and (ii) the structure. These components are coupled 

through the forces which are exerted from fluid to the structure and from the 

structure to the fluid. A schematic representation of this mechanism is depicted in 

Figure 1.1. Moreover, the two main components of this mechanism (the fluid and the 

structure) can have different variables which result in different fluid/structural 

dynamics. For instance, the fluid flow can be steady, unsteady, uniform, laminar, 

turbulent or etc. and the structure can be rigid or elastic, or have different cross-

sections. Hence, based on the type of fluid flow or structure, different categorisation 

of flow-induced vibrations is achievable. Pertaining to steady fluid flow, a 

classification of these is illustrated in Figure 1.2. 

As it is shown in Figure 1.2, when a structure is subjected to an external steady 

fluid flow, it may undertake vibrations which are caused by the vortices shedding 

from the structure or so-called vortex-induced vibrations (VIV). VIV is the common 

type of flow-induced vibration of cylindrical bluff structures which is the case for 

many offshore structures. Generally speaking, pertaining to the type of the structure 

undergoing these vibrations, VIV can be categorised into two main groups of (i) VIV 

of rigid structures and (ii) VIV of flexible structures. Moreover, these structures can 

experience VIV in direction transverse to the fluid flow [1], in the streamwise 
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direction [2] and (when the structure is flexible) in the longitudinal direction [3]. 

Each of these categories has been studied over the past decades. However, prediction 

of VIV, due to intrinsic complications of this fluid-structure interaction phenomenon, 

is still a challenging theme. Since the basic mechanism governing these cases are 

very similar, and for sake of simplicity, the majority of experimental VIV studies, 

over the past decades, were performed on an elastically mounted rigid cylinders 

constrained to oscillate only transverse to the fluid flow direction. Following this 

trend, the efforts for developing predictive VIV models as well, were focused on 

cross-flow-only VIV in which it was supposed that the structure undergoes simple 

harmonic oscillations. The inclusive summary of these VIV studies can be found in 

the comprehensive critical reviews by [4-6]. 

 

Figure 1.1: Schematic representation of the mechanism of fluid-structure interaction phenomena. 
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Figure 1.2: A classification of flow-induced oscillations caused by steady fluid flows, adopted from 

[7, 8]. 

Due to combined lift/drag forces associated with the shedding vortices and the 

fact that actual underwater structures possess multiple natural frequencies in different 

directions, a condition of coupled cross-flow/in-line VIV is certainly achievable in 

most practical situations. Recent experimental studies on both rigid and elastic 

cylinders revealed that under some circumstances such as those in VIV of offshore 

structures, the knowledge obtained from transverse-only VIV studies cannot explain 

vibrations of a cylinder free to oscillate in both CF and in-line (IL) directions [9-13]. 

These studies show that adding a degree-of-freedom (DOF) to the system results in 
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higher oscillation amplitudes accompanied with jump and hysteresis phenomenon, 

new vortex-shedding modes and more significant higher harmonic components of 

fluid forces and structural responses. Furthermore, these studies illustrated that IL 

oscillations might cause fatigue damages similar to CF oscillation and should be 

considered in the design process. Moreover, when it comes to elastic cylinders, in 

addition to CF and IL VIV, they can undertake longitudinal oscillations as well. The 

recent studies showed that, as the aspect ratio increases (the ratio of cylinder length 

to its diameter), the axial oscillations which are excited by lateral vibrations (CF and 

IL vibrations) of the cylinder become more significant [14].  

Although the aforementioned experimental observations illustrate the 

importance of considering IL/axial VIV in offshore applications and significant 

contribution of these oscillations on the whole behavior of an offshore structure 

undergoing VIV, almost no predictive model which can efficiently and accurately 

predict and explain coupled CF/IL/axial VIV has been developed. The very few 

computational fluid dynamics (CFD) studies performed are time-consuming and 

limited to VIV of rigid cylinders at low Reynolds numbers. Also, the semi-empirical 

models, which usually are appropriate alternatives for uneconomic CFD numerical 

simulations, are focused and stagnated on CF-only VIV of rigid and elastic cylinders. 

Furthermore, in majority of these predictive models the nonlinearities which are 

inherently involved in VIV phenomenon are neglected.   

This thesis will mainly focus on developing an advanced fully-nonlinear 

phenomenological VIV model accounting for coupled structural motions, i.e. 

CF/IL/axial motions, structural and geometric nonlinearities and nonlinearities 

associated with the hydrodynamic forces caused by uniform and linearly sheared 

flows. The model will be utilised to replicate, predict and explain experimental 

results and observations. To this end, the model will be solved, numerically (via 

standard finite difference and Runge-Kutta methods) and analytically (via harmonic 

balance method), validated and calibrated with published experimental results. The 

phenomenological models usually contain empirical coefficients which are 

considered constant, have no physical meaning and are evaluated via calibrations 

with experimental results. Herein, an attempt will be made to identify and define 
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empirical coefficients of the model as functions of physical parameters. It has been 

just in recent years that the importance of IL VIV has been notified, some aspects of 

combined CF-IL VIV (e.g. the effect of structural natural frequency ratio on system 

behavior) require further experimental investigations. Under these circumstances, the 

predictions of the model will be calibrated and validated via in-house experiments. 

Furthermore, significance of structural and hydrodynamic nonlinearities will be 

examined numerically and analytically and the results of these analyses will be 

applied for extracting two-dimensional hydrodynamic force coefficients. 

To fulfil these aims, this dissertation is structured as follows: 

 First in Chapter 2 the basic mechanism of VIV is explained and the research 

studies performed on VIV over past years (particularly over past decade) are 

reviewed.  

 In Chapter 3, a low-order predictive model for a circular cylinder undergoing 

2DOF VIV is proposed based on two sets of nonlinear structure-wake 

equations, new generic analytical functions of empirical wake coefficients are 

identified, fundamental 2DOF VIV behaviors and good comparisons with 

literature experimental results is systematically performed.  

 Chapter 4 presents the details of the new experimental arrangement used for 

the 2DOF VIV study of a flexibly mounted circular cylinder, comparisons of 

experimental and numerical prediction results of six measurement datasets 

and comparisons of various new and published experimental results. 

 In Chapter 5, analytical closed-form expressions are derived for the extraction 

of hydrodynamic coefficients and maximum responses from the 2DOF VIV, 

the system phase relationships of wake and cylinder motions and various 

maps of hydrodynamic coefficients are presented, the analytically-obtained 

contour plots of maximum cross-flow/in-line responses are highlighted and a 

shortcoming of using a linear structural oscillator and applying a constant 

empirical coefficient to the wake oscillator is underlined. 

 In Chapter 6, based on the results obtained in previous chapters, a 

mathematical model of three-dimensional VIV of an elastic cylinder 

subjected to uniform current is presented and solved numerically, the 
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capabilities of the model in replicating experimentally-observed phenomena 

are demonstrated, the importance of the axial oscillations and the geometric 

nonlinearities are examined and discussed and the model is validated with 

available experimental results. 

 In Chapter 7, VIV of a flexible cylinder caused by a linearly sheared flow is 

investigated through numerical predictions of the new model, time and 

frequency domain, modal and stress analyses are performed and model is 

validated with available experimental results. 

 Finally the concluding remarks of the present study are summarised in 

Chapter 8 and suggestions for future research are given. 

The model developed during this thesis, can provide accurate, reliable and 

economic VIV predictions which, in particular, will be beneficial for offshore 

engineers during early stages of design process. It can also be utilised for extensive 

parametric studies to investigate and elucidate the effects of influential physical 

parameters on VIV of circular cylinders. The numerical and analytical analyses 

performed in this thesis will illustrate the importance of structural and hydrodynamic 

nonlinearities for accurate VIV predictions and will open a new chapter in the field 

of phenomenological VIV models. 
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Chapter 2 

VIV: An Introductory Review 

This chapter provides an introduction to the vortex-induced vibrations (VIV) 

and reviews the research which studied this phenomenon. To manage the numerous 

and divers VIV studies and to fill within the scope of this thesis, these studies are 

reviewed through a systematic approach. The chapter is divided into four main 

sections. The first section explains the process of vortex-shedding from a circular 

cylinder. The next three sections are devoted to transverse-only VIV, combined 

transverse and streamwise VIV and VIV of flexible cylinders. In each of these 

sections, first the important physical parameters involved in the phenomenon and the 

characteristics of the phenomenon are explained through the experimental results. 

Then the phenomenological models, developed to predict and explain the 

experimental observations, are reviewed. 
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2.1. Vortex-Shedding from a Fixed 2D Circular Cylinder 

2.1.1 Flow separation and vortex-shedding mechanism 

When a particle of the fluid, through its path, encounters a bluff body like a 

cylinder, owing to the high stagnation pressure at the leading edge of the cylinder, it 

is forced to go around the cylinder. As the particle travels over either side of the 

cylinder, due to the adverse pressure gradient imposed by the geometry of the 

cylinder, it loses its momentum till all its kinetic energy dissipates and the particle 

stalls. At this moment, the boundary layer that has been developed over the cylinder 

surface separates and forms a shear layer in the wake region. In Figure 2.1 (a) the 

separation point, the boundary layer, the shear layer and the wake region are 

illustrated. It also shows the velocity gradient in the boundary layer which results in a 

significant vorticity. After separation, this vorticity is fed to the shear layers making 

them fold on each other and create a bigger vortex. The same course of events occurs 

on the other side of the cylinder as well. For a smooth cylinder, these events are 

controlled and described by a dimensionless quantity, so-called Reynolds number 

Re, which is defined as [7]: 

Re =
𝑉𝐷

ν
 

(2.1) 

where D is the diameter of the cylinder, V the velocity of the free stream and ν the 

kinematic viscosity of the fluid. When the Re<5 the flow attaches to the cylinder and 

there is no separation of the boundary layer. It is worth mentioning that, in order to 

have figures with higher resolution and better quality, the results presented in Figure 

2.1 and also the following figures of this chapter are mostly reproductions and 

adaptations of published results which are available on public domain. To this end, 

the Demo version of a graph digitizer named “GetData” along with Matlab software 

have been utilised. It is worth mentioning that GetData software is highly accurate 

(with less than 0.1% error) and double and triple checks have been done to avoid any 

discrepancies compared to the original results. In circumstances where comparison 

with published results are required, e.g. for validations and calibration of 

mathematical models, such process will be applied in future chapters as well. 
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Figure 2.1: An illustration of the boundary layer, wake region (grey shadow) and pressure field 

distribution over the surface of a cylinder (purple vectors) along with the sequences of vortex-

shedding process, the vortex-streets and pressure fields are adopted from [15] and the boundary layer 

representation is adopted from [16]. 

For higher Re (5<Re<45) separation occurs and forms a pair of symmetric 

vortices in the near wake and attached to the cylinder. As the Re is further increased, 

the wake becomes unstable and with small disturbances and perturbations the flow 

loses its symmetry and one vortex grows before another, e.g. consider vortices A 

(larger) and B (smaller) in Figure 2.1 (a). The greater vortex A, which is supposedly 

stronger, pulls the countra-rotating smaller vortex B downstream. As the vortex B is 

pulled, it grows and gains more vorticity till it gets strong enough to detach the 

vortex A from its boundary layer and cut off its supply of vorticity, Figure 2.1 (b). At 

this moment, the vortex A is shed and the flow take this discrete vortex downstream. 

When the vortex A is shed, a new vortex with similar sign of vorticity emerges at the 

same side of the cylinder, shown as vortex C in Figure 2.1 (b). The interaction of this 

new vortex with the vortex B, through similar steps as vortices A and B, results in 

detachment of vortex B and development of a new vortex D on that side of the 

cylinder, Figure 2.1 (c). Via continuation of this process, the vortices shed 
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alternatively from both sides of the cylinder and form an ordered pattern in the wake 

called the vortex street [16]. The frequency of this alternation and shedding of 

vortices, fs, is expressed in dimensionless form, the so-called Strouhal number, as  

St =
𝑓𝑠𝐷

𝑉
 

(2.2) 

2.1.2. Vortex-shedding frequency and Strouhal number  

Since the flow around a smooth cylinder is controlled by Re, it is deduced that 

St of such a cylinder would be a function of Re, as well. The variation of St with 

respect to Re is depicted in Figure 2.2 [17]. Furthermore, the flow pattern and the 

vortex street in the wake of the cylinder at different ranges of Re are illustrated in 

this figure and the laminar and turbulent vortex streets are distinguished through 

colour codes of blue and purple vortices, respectively. As it is illustrated in this 

figure, for low Reynolds numbers, Re<40, where the vortices are attached to the 

cylinder and no vortex is shed, no St is reported. When 40<Re<150 a laminar vortex 

street is formed in the wake of the cylinder and St linearly increases with the increase 

of Re.The transition of the vortex street from laminar to fully turbulent occurs when 

150<Re<300. At this range, increasing Re first decreases St and then increases it. 

The Reynolds number range 300<Re<1.5×10
5
 is called subcritical in which the 

vortex street is fully turbulent while the boundary layers are laminar. In the 

subcritical range, the vortex street is well-organised and the vortices are shed orderly 

and periodically at an approximately constant Strouhal number of St≈0.2. With 

further increase of Re, the flow enters the transitional range (1.5×10
5
<Re<3.5×10

6
) 

in which St increases with the increase of Re. However, since in the transitional 

range the boundary layers become turbulent, the vortex shedding process is disrupted 

which leads to less structured, strong and periodic vortex shedding. In the transitional 

range, as Re increases, the Strouhal number can increase as high as 0.5 [7, 16]. 

2.1.3. Fluctuating and mean hydrodynamic coefficients 

The process of flow separation from the surface of a cylinder and its 

consequent vortex-shedding and formation of vortex street were explained through 

Figure 2.1. In this figure, also, the pressure distribution around the cylinder is 
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illustrated by the purple arrows perpendicular to the surface of the cylinder [15]. The 

uneven and asymmetric (considering the front and the back side of the cylinder) 

pressure distribution, along with the friction effects of viscosity, results in a mean 

drag force which is constantly exerted to the cylinder. Moreover, due to the periodic 

and alternative vortex-shedding, the pressure field around the cylinder alternatively 

changes and causes fluctuating and oscillating drag and lift forces exerted to the 

cylinder.  

 

Figure 2.2: Variations of Strouhal number with Re adopted from [17]. Status of the wake of a circular 

cylinder at different ranges of Re is illustrated. The colours represent turbulence of boundary layer 

blue standing for laminar and purple standing for turbulent. 

Figure 2.3 shows the mean drag coefficient, 𝐶�̅�, and the root mean square 

values of fluctuating drag and lift coefficients, Cd0 and Cl0, of a smooth cylinder at 

different Re [18, 19]. Furthermore, to draw a clearer picture of the flow behaviour, 

the regimes of the fluid flow in different ranges of Reynolds number are presented in 

this figure as well. When the flow is laminar, Re<50, 𝐶�̅� linearly decreases with the 

increase of Reynolds number. Increasing Re decreases the mean drag coefficient, 

until the flow enters the subcritical range where the wake becomes fully turbulent 

(Re>5000) and 𝐶�̅� reaches a constant value of approximately 1.2. In the transitional 
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region, all the coefficients dramatically drop (for 𝐶�̅� this sharp drop is called the drag 

crisis) which is caused due to a narrow and disorganized wake and its consequent 

reduction of pressure gradient. In the supercritical range where the vortex street is re-

established, the mean drag coefficient gradually increases till at very high Re 

(Re>3×10
6
) where less dramatic changes occur in the boundary layer, 𝐶�̅� becomes 

steady again. Moreover, in the supercritical range, the fluctuating drag and lift 

coefficients are very low, which is mainly due to flow separation at large angular 

positions that results in weaker vortices [7].  

 

Figure 2.3: Mean drag coefficient (blue line), oscillatory drag coefficient (green dash line) and RMS 

of fluctuating lift coefficient (purple dash line) of a circular cylinder as a function of Re along with the 

status of its boundary layer and wake region at corresponding Re. The coefficients are extracted from 

[16] and the status of boundary layer is adopted from [18].  

Highlighting the subcritical region of Figure 2.3 emphasizes the fact that strong 

and periodic vortex-shedding occurs in this range. The interaction of the shed 

vortices with the free-to-vibrate bluff body results in a phenomenon known as 
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vortex-induced vibrations or briefly VIV. In the following sections, the research that 

over the past decades was performed for better understanding of this complicated 

fluid-structure interaction (FIV) phenomenon is briefly reviewed. 

2.2. One-DOF VIV of an Elastically-Mounted Cylinder 

2.2.1 Key aspects and governing parameters 

2.2.1.1 Reduced velocity and lock-in phenomenon 

Figures 2.4 (a) and (b) show the circular cylinders which are subjected to a 

fluid flow, elastically mounted and free to vibrate in the streamwise and cross-flow 

(CF) directions, respectively. It was explained that the flow separation in such bluff 

bodies results in vortices which shed alternatively from two sides of the cylinders 

and create variable pressure fields around these cylinders.  

The variable pressure distribution leads to fluctuating lift and drag forces. Due 

to the geometry of the vortex shedding, the frequency of the lift force fluctuations is 

fs and the drag force oscillates with a frequency of 2fs [7]. When these periodic drag 

and lift forces are exerted to the cylinders of Figures 2.4 (a) and (b), they will lead to 

in-line (IL) and CF structural oscillations or so-called IL and CF VIV, respectively. 

Inspired by the normalisation of the vortex-shedding frequency and its ensuing 

Strouhal number, the natural frequencies of the VIV systems of Figures 2.4 (a) and 

(b), fn, can be nondimensionalized to develop a new parameter for expressing VIV. 

This parameter is known as the reduced velocity and is defined as: 

𝑉𝑟 =
𝑉

𝑓𝑛𝐷
 

(2.3) 

The frequency used in Eq. (2.3) can be the natural frequency either in vacuum (or air, 

when the medium is water) or in the fluid medium [4, 20]. The difference between 

these two fns is mainly due to the fact that when a structure oscillates in a fluid 

medium it must move the fluid particles as well and hence feels some extra inertia 

which can virtually be added to the mass of the system. This virtual mass is known as 

the “added mass” and defined as: 
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𝑚𝑓 =
𝜋

4
𝐶𝑎𝜌𝐷2 (2.4) 

 

Figure 2.4: (a) and (b), schematic representation of an elastically mounted circular cylinder subjected 

to a uniform flow of velocity V which is free to vibrate in streamwise and transverse directions, 

respectively. (c), typical amplitude of streamwise (blue dash line) and transverse (green line) 

oscillations vs. reduced velocity. The wake condition during IL and CF lock-in is illustrated. (d) 

Variations if vortex-shedding frequency (normalised with the natural frequency of structure) with Vr 

during IL (blue dash line) and CF (green line) VIV. 

where ρ is the fluid density, Ca is the added mass coefficient which can be obtained 

through experimental studies or potential flow calculations, namely for a circular 

cylinder gives Ca=1 [7]. In the present work and throughout this dissertation, the 
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natural frequency of the structure in a fluid medium (which is water) is used for 

obtaining and calculating Vr [21]. 

Figure 2.4 (c) shows typical amplitude responses of the IL and CF oscillations of the 

cylinders shown in Figures 2.4 (a) and (b) along with the schematic illustrations of 

their corresponding vortex streets which are plotted with respect to Vr. As it can be 

seen in Figure 2.4 (c), at low Vr the wake behind the cylinder is symmetric and the 

vortices shed simultaneously from the top and bottom sides of the cylinder. This 

symmetric vortex-shedding causes oscillatory drag forces exerted to the cylinder 

while the lift force is approximately zero. Thus, at low reduced velocities 

(1.5<Vr<2.5) the cylinder undergoes IL oscillations [22] while there will be almost 

no CF oscillations. As the reduced velocity increases, the wake becomes unstable 

and the vortices start to shed alternatively and produce fluctuating lift and drag 

forces. Normalising the vortex-shedding frequency by the natural frequency of the 

cylinders, the corresponding frequency response of the amplitude responses of Figure 

2.4 (c) is depicted in Figure 2.4 (d). The frequency response illustrates that, 

following the Strouhal law, the vortex shedding frequency linearly increases with the 

increase of Vr till it reaches the natural frequency of the structure. At this point, fs 

deviates from the Strouhal law and locks onto the natural frequency of the cylinder 

which results in the insensibility of fs to the variations of Vr. This phenomenon, 

known as the “lock-in” or “synchronization” phenomenon, can cause high amplitude 

oscillations [23]. At the end of the lock-in range, with further increase of Vr, the 

vortex-shedding frequency goes back to the Strouhal law and the amplitude of 

oscillations drops.  

Since the excitation frequency in the IL direction is twice of that in the CF 

direction, the lock-in for the cylinder of Figure 2.4 (a) is prior to that of Figure 2.4 

(b). The typical lock-in ranges of the IL and CF oscillations are shown in Figure 2.4 

(c). For the IL oscillations the lock-in range is 2.7<Vr<3.8 [22] and the lock-in range 

of the CF oscillations is 4.5<Vr<8 [24]. However, for system such as those depicted 

in Figures 2.4 (a) and (b) which have one degree-of-freedom (1DOF) and undergo 

1DOF VIV, the lock-in ranges are not always like these and there are other physical 

parameters which can widen or narrow down these ranges. Mass ratio is one of these 
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parameters which plays a crucial role not only in the determination of the lock-in 

range, but in whole behaviour of the VIV system. The definition and effects of this 

parameter are discussed in the next section.      

2.2.1.2 Mass ratio and extension of lock-in range 

Mass ratio is usually defined as the ratio of the structural dry mass per unit 

length of the cylinder, ms, to the mass of the displaced water per unit length of the 

cylinder [1], that is 

𝑚∗ =
𝑚𝑠

𝜋
4 𝜌𝐷2

 
(2.5) 

However, in some literatures (mostly does dealing with mathematical modelling of 

VIV), mass ratio is defined based on the wet mass of the structure (i.e. ms+mf) as [25]  

𝜇 =
𝑚𝑠 + 𝑚𝑓

𝜌𝐷2
 

(2.6) 

These two definitions of mass ratio are related to each other as: 

𝑚∗ =
4

𝜋
𝜇 − 𝐶𝑀 

(2.7) 

Mass ratio is one of the most influential parameters of a VIV system and its 

variations affect different aspects of VIV phenomenon. For a 1DOF VIV system with 

low m*, compared to a high mass ratio case [23]: 

 Lock-in phenomenon occurs at frequency ratios different from unity. Hence, 

for low mass ratio system, lock-in phenomenon can be defined as matching of 

vortex-shedding frequency with the frequency of structural oscillations. 

 The characteristic amplitude response has a distinct new branch so-called 

upper branch. Figure 2.5 (a) shows the comparison between the CF amplitude 

responses of two 1DOF VIV systems with high and low mass ratios. The 

figure shows the branches of these amplitude responses and illustrates that 

decreasing mass ratio results in the new high amplitude upper branch. 
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 The tendency for VIV is higher. In other word, as the mass ratio decreases it 

becomes more prone to VIV. This can be seen in Figure 2.5 (b) where the 

system with low mass ratio has a wider range of lock-in. 

 

Figure 2.5: (a) Amplitude responses of CF VIV for high (m*=248) and low 

(m*=10.1) ratios and the response branches. (b) lock-in range as a function of m* 

and existence of a critical mass ratio. In (a) the experimental results are taken 

from [26] and in (b) the experimental curve and the data are adopted from [27]. 
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The last aforementioned point on the effect of mass ratio on the extent of lock-

in infers that decreasing m* down to zero results in an infinitely wide lock-in range 

or, as it is called in literature, lock-in forever [28]. However, the experimental results 

show that each VIV system has a generic “critical mass ratio” different from zero 

which below that the lock-in condition lasts forever [27]. Figure 2.5 (b) shows the 

effect of m* on the lock-in range of CF VIV of an elastically mounted rigid cylinder. 

In this figure, Govardhan and Williamson [27] showed that, the upper bound of the 

lock-in range for such a VIV system can accurately fit into a single and simple curve 

of 

𝑉𝑟end of lock−in
= 9.25√

𝑚∗ + 1

𝑚∗ − 0.54
 

(2.8) 

The simple formula of Eq. (2.8) indicates the existence of a critical mass ratio 

of 0.54 which is in the range of the mass ratio of many engineering structures and 

illustrates the significant importance of m* parameter on the behaviour of the system. 

However, the validity of this suggested value depends on some circumstances which 

are determined by another influential physical parameter; the damping ratio. In the 

next section, the definition, types and significance of this parameter will be 

discussed. 

2.2.1.3 Damping parameter, VIV amplitude and mean drag amplification 

The energy dissipation from a vibrating structure is interpreted as damping which in 

classic vibration analysis is considered to be a force proportional to velocity that 

opposes structural motion. Generally speaking, in VIV systems such as those shown 

in Figures 2.4 (a) and (b), the oscillations are damped through two main mechanisms: 

(i) structural viscous dissipations and (ii) fluid-added damping [7]. The structural 

viscous damping is usually denoted by c and compared with the system value 2√𝑘𝑚  

(where k is the spring stiffness or equivalent stiffness of the system) known as the 

critical damping cr, to specify the system type of being under/critically/over-damped 

(c<cr, c=cr and c>cr, respectively). Normalization of damping coefficient with 

2√𝑘𝑚, results in a new parameter, ξ, called damping ratio or reduced damping, that 

is: 
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𝜉 =
𝑐

𝑐𝑟
=

𝑐

2√𝑘𝑚
 (2.9) 

This parameter, in VIV studies, is usually reported as the damping of the system. 

However, as it was mentioned before, when a cylinder oscillates in CF or IL 

directions, a hydrodynamic damping is added to the system. This fluid-added 

damping is caused by the mean drag force and, as it is derived by Blevins [7], is 

expressed as: 

𝜉𝑓 =
1

𝐾

𝑉𝑟

𝜇
𝐶𝐷 

(2.10) 

In which K is a constant value and, depending on the direction of the vortex-induced 

oscillations, can be equal to 4π or 8π for CF and IL oscillations, respectively. 

Since the damping parameter is one of the basic parameters of any vibrating 

system, the effects of this parameter on flow-induced vibrations have been 

extensively investigated over the past decades, a of these studies can be found in [23, 

29]. In one of the most recent studies on an elastically mounted cylinder which was 

free to vibrate in CF direction, Blevins [30] checked the effect of damping ratio on 

amplitude response, frequency responses (oscillation frequency, fo, normalised by 

natural frequency vs. Vr) and the mean drag coefficient, Figures 2.6 (a-c) 

respectively. This study, while being consistent with previous studies, had the 

advantage of (i) covering a large range of damping ratios 0.2%<ξ<40%, and (ii) 

reporting drag coefficient. The figures show that increasing damping ratio, as it can 

be expected, results in lower oscillation amplitudes. However, this is not the only 

effect of increasing ξ. As it is illustrated in Figure 2.6 (a), ξ variations result in 

alternation from three-branched amplitude responses to two-branched responses. 

Moreover, the figure shows that the mean drag coefficient follows the same trend as 

the amplitude response. In other words, as the amplitude of VIV oscillations 

increases the mean drag coefficient amplifies. The mean drag amplification is one of 

the VIV side effects which is generally accepted to be a linear function of the 

amplitude of CF oscillations and is defined as [31]: 
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Figure 2.6: (a), amplitude response; (b), frequency response; (c), mean drag coefficient of a rigid 

cylinder (with m*=5.4), undergoing CF-only VIV at six different damping ratios. This figure is a 

reproduction of the experimental results of [30]. 

𝐶𝐷𝑇 = 𝐶𝐷0 + 2
𝐴𝑦

𝐷
 

(2.11) 

The results depicted in Figure 2.6 (a) are consistent with Eq. (2.11), for instance, at 

ξ=2%, the maximum amplitude is Ay/D=1 which its corresponding mean drag 

coefficient is 3. 

2.2.1.4. Combined mass-damping parameter and maximum VIV amplitude 

The observations made here on the effect of damping ratio variations on the 

alternation between characteristic branches of amplitude responses were also made in 

the previous section when explaining the effect of m*. Therefore, it can be inferred 

that this alteration is a function of both of these parameters whether separately or as a 

combined mass-damping parameter. Since 1964 when [32] for the first time used a 
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combined mass-damping parameter for plotting the maximum amplitude of their 

study, it has been a long-run debate that if the mass and damping parameters affect 

the VIV amplitude response individually or collectively. A comprehensive summary 

of these debates can be found in [6, 33]. Over these years, different research groups 

have developed different mass-damping parameters [23]. In one of the most 

recognised works of its kind, Skop and Griffin [34] compiled several experimental 

results and claimed that a mass-damping “response parameter” can reasonably 

collapse the peak amplitude of CF VIV, AyM/D. This parameter which afterwards was 

called as Skop-Griffin parameter SG, is defined as 

SG = 2𝜋3St2𝑚∗𝜉 (2.12) 

In recent years the works of Klamo [29, 35] showed that  

 The maximum amplitude of CF VIV is not solely a function of SG and the 

Reynolds number also has significant effect. In other words, they showed that 

developing a “universal curve” which collapses all the peak amplitude data is 

not possible and rather it should be done through “constant-Reynolds number 

curves”. 

 They also showed that to determine the characteristic amplitude response of a 

VIV system of being “two-branched” or “three-branched” both mass-

damping and Reynolds number should be taken into account. In other words, 

the upper branch appears in the amplitude response when the system has low 

mass-damping and high Reynolds number. 

In agreement with these results, Blevins [30] showed that at similar Re, VIV 

systems undergoing CF oscillations experience similar peak amplitudes, these results 

are depicted in Figure 2.7 (a). As this figure illustrates, although the experiments has 

been conducted with different mass ratio, since the SG and Re are constant, their 

maximum amplitude are the same. However, as m* decreases, he effect of m* on the 

lock-in range and tendency towards a critical mass ratio and lock-in forever 

condition can be recognised. Govardhan and Williamson [36],also, in a precise and 

more extensive experiment, studied the effect of m* and mass-damping parameter 

and showed that at fixed Re and mass-dampings and in a wide range of mass ratios, 
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1<m*<20, the maximum amplitude of the CF VIV is independent of m*. They also 

introduced a modified mass-damping parameter in which the effect of added mass is 

taken into account and is defined as 

𝛼′ = (𝑚∗ + 𝐶𝑀)𝜉 (2.13) 

 

Figure 2.7: (a) Amplitude responses of CF oscillations of rigid cylinders with different mass ratios 

and similar α=0.126. (b) maximum attainable amplitude of CF VIV as a function of α and Re. In (a) 

the results are extracted from adopted from [30] and in (b) the curves are produced via empirical 

relation developed by [36]. 
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Using this new parameter and considering the effect of Re, they developed an 

empirical relation to evaluate the peak amplitude of CF vortex-induced oscillation, 

that is  

𝐴𝑦𝑀

𝐷
= (1 − 1.12𝛼′ + 0.30𝛼′2) log(0.41Re0.36) 

(2.14) 

Using this relation, the effect of α’ and Re on AyM/D is illustrated in Figure 2.7 (b). 

2.2.2. Free and forced 1DOF VIV experiments 

The parameters introduced and the discussions made in the previous sections 

reflect just part of the outcomes of some of the fundamental VIV studies. Over the 

past decades, several research studies have been conducted to provide better 

understanding and knowledge of VIV mechanism and physics. Some of these 

investigations are summarised in Table 2.1 which includes both free and forced 

vibration studies. In the framework of forced oscillations where the cylinder 

amplitudes and frequencies are prescribed a priori, attempts have been made by 

several authors– mostly in the CF-only VIV case – to evaluate the fluid lift force and 

its phase relative to the CF motion. The phase difference between lift force and CF 

motion is a key parameter to determine whether the fluid adds energy to or removes 

it from the dynamic system and, therefore, whether the free vibration prediction is 

feasible. This phase difference, through evaluation of the lift force which is in phase 

with the structural acceleration, also helps to obtain the effective added mass. In 

addition, when a jump in the fluid force and phase associated with the upper-to-lower 

branch response occurs, the vortex wake formation pattern may change from being 

the 2P (two pairs of vortices) to 2S (two single vortices) mode. This is in accordance 

with the free vibration result of, e.g., [37], highlighting the possible association 

between forced and free vibration results. Hence, as it is indicated in Table 2.1, 

numbers of research campaigns have been conducted to compare forced and free-

vibration tests and determine the circumstances where controlled vibrations are 

applicable for free vibration predictions.  
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Table 2.1: A summary of the main findings of the free and forced CF and IL-only VIV experiments on rigid circular cylinders. 

The experiment 

type 

Relevant research 

studies 

Main findings 

Free CF VIV [26, 27, 36, 38-41]  Lock-in phenomenon. Jump and hysteresis in amplitude and is due to a jump in vortex-

shedding timing and jump in the phase angle during lock-in 

 High Re causes very high oscillation amplitudes 

Forced CF VIV [31, 42-50]  Big difference between the lift force phase angle of large and small amplitude oscillations. 

 The added mass obtained via classic methods, is applicable in VIV 

 Forced vibration tests can be applied for prediction of VIV 

 Fluid forces can be decomposed into two potential and vortex force components and this 

decomposition is valid for general viscous flows 

 Energy transfer is very sensitive to the cylinder motion 

Free IL VIV [22, 51, 52]  IL lock-in ranges due to symmetric and asymmetric vortex-shedding 

Forced IL VIV [2, 53-55]  Observation of P+S vortex-shedding modes 

 Inertia coefficient at high reduced velocities could be determined from the Morison’s equation 

 Two IL excitation regions correspond with two ranges of Vr with negative added fluid 

damping. 
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Table 2.1 clearly shows that the majority of these studies were focused on the 

problem of CF-only VIV while IL VIV is less studied. This is mainly due to the fact 

that the amplitude of vortex-induced oscillations in IL direction is much lower than 

CF oscillations which made it less important and interesting. Moreover, it was 

supposed that the knowledge obtained from studying VIV systems with 1DOF would 

be beneficial and enough for prediction of IL oscillations of such systems.  

2.2.3. Semi-empirical modelling of CF-only VIV 

Owing to the complexity of the vortex hydrodynamics, the intrinsic mechanism 

of the structure, the overall elasto-hydro nonlinearities, the influence of several 

mechanical/physical parameters, and the necessity to calibrate and validate the 

simulation model with substantial experimental data, modelling of VIV remains a 

challenging theme [56]. The information provided by the experimental studies 

summarised in Table 2.1 (and those not listed in that table), also, have been utilised 

for development of semi-empirical or phenomenological VIV models. These models 

can replicate the experimentally observed behaviours of a VIV system and are used 

for VIV predictions in engineering applications.  

2.2.3.1 Wake-oscillator models: general features  

A classification of these models is provided by [4] which is associated with a 

comprehensive review of each type of these models. Among the models explained by 

them, wake oscillator is more popular than the other models, e.g. force 

decomposition models and SDOF models. The background of wake oscillator models 

stems back to the idea that the self-limiting and self-exciting nature of time-varying 

fluid forces induced by vortex shedding can be represented by van der Pol/Rayleigh-

type equations [57, 58]. This wake oscillator model then is coupled to a simple 

harmonic equation which represents the structural oscillations. A timeline of the 

activities performed for development and improvement of these semi-empirical 

models is shown in Figure 2.8. Similar to the experimental studies summarised in 

Table 2.1 and for the same reasons, most of the wake oscillator models were 

primarily developed for prediction of CF-only flow-induced oscillations. The 

distinction between the models developed over these years mostly is due to:
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Figure 2.8: A timeline of the major activities in developing CF/IL wake-structure oscillator models [34, 52, 57-68].
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 Different types of strategies which have been used to couple wake and 

structure oscillators. 

 Different types of equations (i.e. van der Pol-type or Rayleigh-type) applied 

for modelling of lift and drag forces. 

 Different empirical coefficients which usually have no actual physical 

interpretation and are evaluated by calibration of the wake oscillator with 

experimental results. 

2.2.3.2 Wake oscillator models: the model by Facchinetti et al. [66] 

In one of the most influential studies on semi-empirical models, [66] showed 

that fluctuating lift force exerted to an elastically mounted circular cylinder by 

vortex-shedding can be modelled via a van der Pol equation as: 

�̈� + 2𝜋𝜀𝑓𝑠(𝑞2 − 1)�̇� + 4𝜋2𝑓𝑠
2𝑞 = 𝐹 (2.15) 

in which overdots mean derivatives with respect to dimensional time t and q=2Cl/Cl0 

where Cl is the time-varying lift coefficient and ε is one of the empirical coefficients 

of this wake oscillator model. The other coefficient of this wake oscillator comes 

from the right-hand-side forcing term F that couples the wake oscillator to the 

structural oscillator which were supposed to undergo simple harmonic motion as 

𝑚�̈� + 𝑐�̇� + 𝑘𝑌 = 𝑆 (2.16) 

in which Y is the CF displacement of the cylinder and S is the fluid forcing term 

which comes from the wake oscillator. To select the best strategy to couple their 

wake oscillator to the structural oscillators, they examined three scenarios for F to be 

proportional to (i) the structural displacement Y, (ii) the structural velocity Ẏ and (iii) 

structural acceleration Ÿ. Through analytical investigation of their model and 

comparison of its outcomes with the experimental results, their suggested 

acceleration coupling and concluded that the acceleration coupling results in 

predictions with more qualitative resemblance to the experimental results. For 

example, Figures 2.9, similar to Figure 2.5 (b), depicts the effect of mass ratio on the 

lock-in range and the corresponding predictions of this semi-empirical model for 

three aforementioned coupling scenarios. These figures clearly illustrate that while 

the displacement coupling fails to predict the lock-in range of high mass ratios  
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Figure 2.9: Predictions of lock-in domain and critical mass ratio via the semi-empirical model of [66] 

for different coupling terms. (a), displacement coupling; (b), velocity coupling; (c) acceleration 

coupling. This figure is a reproduction of the results by [66]. 

(m*> 𝑚𝑐
∗) and the velocity coupling fails to capture lock-in forever phenomenon, the 

results of the acceleration couplings are quite consistent with the experimental 

results.  

2.2.3.3 Wake oscillator models: recent studies and required modifications 

Since 2004, the model by [66] has been the backbone of the models which has been 

developed afterwards. Some general aspects of these models should be summarised: 

 A standard linear mass-spring-damper system is used to describe the 

cylinder oscillation. The effect of structurally geometrical nonlinearities 

has often been disregarded. 

 The coupling of wake and cylinder motions is recognized through a linear 

term in the wake equation depending on the cylinder acceleration. 



 

52 
 

 Empirical coefficients in the wake oscillator rely upon the calibration 

with experimental amplitude data; however, the former are typically 

assumed as a constant 

The above-summarised aspects of wake oscillator models infer that, in these 

models, the structural and hydrodynamic nonlinearities are neglected. Therefore, it is 

of great interest to study and investigate the significance and influences of these 

nonlinearities. Moreover, finding the connection and relation between empirical 

coefficients of these models and physical parameters can provide more insight into 

the behavior of such models. This can be done through extensive calibrations, 

validations and parametric studies. Finally, the results presented in Section 2.2 were 

based on the assumption that the cylinder can only oscillate in one of the CF or IL 

directions. However, in real situations and real engineering applications, usually 

there are no such constraints and the structures are free to vibrate in both directions. 

The research conducted for investigating simultaneous CF and IL flow-induced 

oscillations are reviewed in following section. These studies will provide more 

evidences on the importance of aforementioned required modifications.  

2.3 Simultaneous CF/IL VIV of an Elastically-Mounted Cylinder  

2.3.1. Early experimental studies: is IL VIV influential? 

In spite of many published studies, the vast majority of the research literature 

has focused on the modelling of pure CF VIV excited by the lift force because of its 

usually observed largest response [5]. Very little is indeed known about the effect of 

oscillating drag force, the ensuing IL VIV, the coupling of CF/IL VIV, the 

dependence on system parameters and how to realistically model these features. 

Figure 2.10 shows a typical two-dimensional cylinder subjected to a fluid flow of 

velocity V and is free to vibrate in both CF (Y) and IL (X) directions. Some early 

research investigations on such structures have evidenced the significant effect of IL 

VIV [69-71] and have highlighted some interesting features of 2DOF VIV of circular 

cylinders and meaningful contributions from the IL VIV to the overall dynamics, 

depending on several control parameters. [70] and [71] observed that the freedom of 

the system to oscillate in the IL direction can cause an increase of the CF response 
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amplitude and widen the lock-in range. It has been suggested that these effects may 

result from an enhanced correlation of the transverse force along the cylinder span. 

Moreover, [69] reported strong quadratic relationship between IL and CF oscillations 

and concluded that these motions are not independent.  Due to combined lift/drag 

forces associated with the shedding vortices and the fact that actual underwater 

structures possess multiple natural frequencies in different directions, a condition of 

coupled cross-flow/in-line VIV is certainly achievable in most practical situations 

which can be responsible for the dangerously-amplified dynamics.  

 

Figure 2.10: A schematic model of a spring-mounted circular cylinder undergoing 2DOF VIV. 

One of the primary observations of the early 2DOF VIV experiments which 

drew the attentions was the prominently periodic Lissajous orbits of the structural 

displacements with figure-of-8 shapes [72]. Such trajectories require that the ratio of 

the IL to CF oscillation frequencies be 2:1.  When these circumstances are provided, 

the shape of Fo8 is determined by the phase difference between the two oscillations. 

For instance, the typical CF and IL vortex-induced displacements of a rigid cylinder, 

such as that shown in Figure 2.10, can be represented by the equations: 

𝑦(𝑡) = 𝐴𝑦 sin(𝜔𝑡) (2.17) 
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𝑥(𝑡) = 𝐴𝑥 sin(2𝜔𝑡 + 𝜃𝑥𝑦) (2.18) 

in which x (y) is the IL (CF) displacement and Ax and Ay are the oscillation 

amplitudes in IL and CF directions, respectively. θxy is the phase difference between 

IL and CF oscillations and, as it is shown in Figure 2.11, controls the shape of the 

Fo8 orbits. 

 

Figure 2.11: Typical Fo8 trajectories as a function of θxy. 

In one of the few forced 2DOF VIV experiments, Jeon and Gharib [73] forced 

a rigid cylinder to oscillate under Eqs. (2.17) and (2.18). Following the results of free 

vibration investigations, they chose θxy to be 0° and 45°.  They studied the effects of 

2DOF motion on vortex-shedding modes, hydrodynamic coefficients and the energy 

balance of the system. The comparison of 2DOF results with transverse-only 

experiments showed, while the vortex-shedding frequency is determined by the 

frequency of CF oscillations, the addition of the streamwise oscillations to the 
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motions of the cylinder changes the relative phase of the vortex-shedding and θxy can 

control the energy transfer between the wake and the cylinder. They also showed 

that, even for small Ax, the IL motion delays the transition from 2S to 2P vortex-

shedding mode.  

The results of Joen and Gharib raised these questions that whether the 

knowledge obtained over the past decades from transverse-only VIV studies can 

explain and define the simultaneous CF/IL VIV or not, and what circumstances and 

factors lead to possible diversions of 2D VIV systems from previously seen 

behaviours. To provide reliable answers to these questions, over the past decade, 

more research campaigns have focused on the problem of coupled CF/IL flow-

induced oscillations. In this section, a critical review of these studies and their 

consequent results is presented.  

2.3.2 Studies on physical parameters influencing combined CF/IL VIV 

Since the fundamental mechanism of two-dimensional VIV is same as that of 

CF or IL-only VIV described in Section 1, the same parameters must control coupled 

CF/IL vortex-induced oscillations. However the values of some of these parameters 

might be different in two directions, that is, CF and IL directions might have 

different m*, ξ and fn. In this thesis, to distinguish between these parameters, they are 

accompanied with co-subscripts x and y which indicate IL and CF directions, 

respectively. In addition to the parameters mentioned in Sections 2.1 and 2.2, having 

different natural frequencies in CF and IL directions results in a new controlling 

parameter known as the natural frequency ratio f* which is defined as f*=fnx/fny. The 

importance of f* is more understood if one recall that (i) the excitation frequencies in 

CF and IL directions are not the same and therefore having different natural 

frequencies might lead to simultaneous or non-simultaneous CF and IL resonance 

conditions, and (ii) the real engineering structures can possess multiple frequency 

ratios. In the next section, the effects of mass ratio, damping ratio and reduced 

velocity along with this new parameter f* are studied on two-dimensional VIV of a 

circular cylinder. Before going any further, it is worth mentioning that, for such a 

system shown in Figure 2.10, Vr is defined based on fny.  
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2.3.2.1 Effects of mass ratio and significance of IL oscillations 

In one of the most influential and pioneering studies on combined CF/IL 

vortex-induced oscillations, Jauvtis and Williamson [9, 74] and Williamson and 

Jauvtis [75] investigated the significance of the IL oscillations and their effects on 

the dynamics of an elastically mounted rigid cylinder. Since, in practice, most of the 

structures have the same mass ratio and natural frequency in both streamwise and 

transverse directions, they employed a pendulum setup which provided such 

conditions. They varied the mass ratio of this setup, while m*ξ was low and almost 

constant, and compared different aspects of its 1DOF and 2DOF VIV. Figure 2.12 

depicts an adaptation of some of their results comparing the amplitude responses of 

transverse-only and combined transverse/streamwise oscillations at low and high 

mass ratios, m*=2.6 and m*=7, respectively. These results illustrate that: 

1. for higher mass ratio, m*=7 

 both 1DOF and 2DOF elastically mounted rigid cylinders have 

comparable CF amplitude responses 

 IL oscillations resemble 1DOF streamwise vibrations and have two 

lock-in ranges corresponding to symmetric and asymmetric vortex-

shedding explained in the previous section   

2. and when the mass ratio is reduced to m*=2.6 

 a new response branch with peak-to-peak amplitude of 3D appears in 

the CF amplitude response which they called it “super-upper branch” 

 the maximum CF amplitude of 2DOF cylinder occurs at higher 

reduced velocities and is accompanied with jump and hysteresis 

phenomena 

 in addition to the first and second IL lock-in ranges, a third one 

appears in the IL amplitude response which coincide with the CF 

lock-in range 

Their investigations, also, revealed that the new high amplitude super-upper 

branch corresponds to a new vortex-shedding mode in which 2 triplets of vortices 

shed from cylinder at each cycle of oscillations. They called this new mode 2T and 

showed that it is accompanied with a considerable third harmonic component in the 
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lift force [75]. In section 2.3.1 the effects of the phase difference between IL and CF 

oscillations on the hydrodynamic forces and the energy transfer in the VIV system 

were discussed; the studies of Jauvtis and Williamson [9] showed that strong third 

harmonic components occur when the structural displacement trajectories have a 

crescent shape or there is a phase difference of 270° between CF and IL oscillations. 

Figure 2.12 also depicts the Fo8 trajectories of the low mass ratio cylinder at 

different Vr. These highly repetitive trajectories affirm a 2:1 oscillation frequency 

ratio and illustrate how the shape of these trajectories varies from perfect Fo8 at 

lower branch to a crescent shape at super upper branch which is associated with 2T 

vortex modes and strong lift force third harmonic components. 

 

Figure 2.12: CF (a, d) and IL (c, d) amplitude responses for the systems with moderate mass ratio 

(a,c) m*=7 and low mass ratio (b, d) m*=2.6, undergoing 1DOF and 2DOF VIV. The mass-damping 

parameters of two systems are α=0.0117 for the system with moderate mass ratio and α=0.013 for low 

mass ratio system. 1DOF results are extracted from [26] and 2DOF results along with the response 

branch information are taken from [9]. 
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Analogous to the 1DOF VIV discussed in Section 2.2, Jauvits and Williamson 

checked the existence of critical mass ratio for their experimental setup. They 

showed that for an elastically mounted rigid cylinder which is free to vibrate in CF 

and IL directions, the critical mass ratio is equal to 0.52 which is comparable to 0.54 

[27] of a 1DOF spring-cylinder system. Moreover, their experimental investigations 

clarified the circumstances under which IL oscillations become influential. They 

illustrated that for high and moderate mass ratios (m*>6 as they suggested) the 

effects of streamwise oscillations are negligible and adding this degree-of-freedom to 

a spring-cylinder VIV system does not influence its behaviour. However, when 

m*<6, this extra degree-of-freedom plays a crucial role and dramatically changes the 

dynamics of the VIV system. The results of Jauvtis and Williamson [9] were, later 

on, observed in similar studies by [76] which was performed at constant damping 

and frequency ratios of ξ=0.006 and f*=1, respectively. In this experimental study, 

both CF and IL directions had equal mass ratio which were varied between 

2<m*<13. However, in addition to the amplitude responses and oscillatory 

hydrodynamic forces, they reported mean drag coefficients as well.  

Figure 2.13 depicts an adaptation of their results showing the comparison 

between maximum mean drag coefficients of elastically mounted rigid cylinders 

undergoing transverse-only and combined CF/IL oscillations. In section 2.2.1.3 it 

was explained that vortex-induced oscillations amplify CDT and this amplification is 

a linear function of CF oscillation amplitude. The results shown in Figure 2.13 

illustrate that as m* decreases the maximum mean drag of cylinder with two degrees-

of-freedom deviates from its one degree-of-freedom counterpart. Following the 

discussions made in Section 2.2.1.3 and present section, this divergence is the 

outcome of adding extra DOF to the VIV model which leads to the appearance of the 

super-upper branch and higher oscillation amplitudes. Although the results of [76] 

affirms the observations made by [9], there is still a question that whether knowing 

the mass ratio of a 2DOF system is enough for judging about the significance of IL 

oscillations. In other words, whether other parameters can affect the importance of IL 

oscillations or it is just the mass ratio that influences it. The following subsections 

deal with this question. 
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Figure 2.13: Maximum mean drag coefficients of 1DOF and 2DOF VIV systems for different m*. 

The experimental results are adopted from [76]. 

2.3.2.2 Effects of damping ratio: should it be combined with m*? 

Through the experimental results of [30], the effects of damping parameter on 

1DOF VIV of an elastically mounted cylinder were explained in Section 2.2.1.3. In 

this study, in addition to the aforementioned results, they also let the cylinder move 

in the streamwise direction and investigated the effects of ξ on 2DOF VIV. An 

adaptation of their experimental results is depicted in Figure 2.14. The comparison 

between 1DOF and 2DOF VIV results presented in Figures 2.6 and 2.14, 

respectively, shows that 

 the 2DOF VIV results have higher CF amplitudes than their 1DOF results 

showing that letting the cylinder oscillate in two directions results in 

higher transverse oscillation amplitudes 

 similar to m*, reducing damping ratio increases the importance of IL 

oscillations  

 at low ξ (ξ<0.02) the third IL lock-in range, coinciding with CF lock-in 

range, is excited 

 at low very ξ, the amplitude response has a new super-upper branch 

accompanied with jump and hysteresis phenomenon 
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Figure 2.14: (a) CF amplitude response; (b), mean drag coefficient; (c), IL frequency 

response; (d), frequency response of a rigid cylinder (with m*=5.4), undergoing combined 

CF/IL VIV at six different damping ratios. This figure is a reproduction of the experimental 

results of [30]. 

These observations suggest that, despite the fact that the experiment is carried 

out at a constant mass ratio close to 6 (m*=5.4), the reduction of damping ratio still 

can increase the significance of the IL oscillations which, similar to the results 

presented in the Section 2.2.1.2, results in higher maximum attainable CF 

amplitudes. Hence, for a proper judgment about the effect of the IL motion on the CF 

oscillations, both m* and ξ should be taken into account. However, one may ask that 

whether these two parameters act independently or, similar to transverse-only VIV, it 

is a combined mass-damping parameter which controls the maximum attainable 

amplitude of 2DOF VIV. To answer this question, Figure 2.15 depicts the 

experimental results of [30], obtained at constant m*ξ and different m*. The 

comparison between this figure and Figure 2.7 (a) illustrates that while the maximum 

amplitude of transverse-only VIV is a function of combined mass-damping 

parameter, such a parameter does not control the maximum attainable amplitude of 
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2DOF VIV. Moreover, the results depicted in Figure 2.15 show that reducing m* 

causes global effects similar to those observed in transverse-only VIV experiments, 

e.g. widening of the lock-in range.  

2.3.2.3 Effects of frequency ratio and dual resonance 

For VIV of an elastically mounted rigid cylinder the frequency ratio is one of 

the influential physical parameters. However, over the past decades, in few 

experimental studies, performed at MIT [10, 11, 77], the effect of f* on 2DOF 

vortex-induced oscillations have been investigated. In these studies, in contrary to the 

other experimental results discussed in previous sections, the experimental setup had 

different mass ratios in streamwise and transverse directions and the values of 𝑚𝑥
∗  

and 𝑚𝑦
∗  were changed as the f* varied. 

 

Figure 2.15: Amplitude responses of CF oscillations of rigid cylinders with different mass ratios and 

similar α’=0.126. This figure is a reproduction of the experimental results of [30]. 

 The experiments by [10] (alongside with the observations such as multiple 

vortex-shedding modes accompanied with large third harmonics in the lift force 

which were observed in other experiments) showed that the peak-to-peak amplitude 

of IL oscillations can reach 1.2D. They also showed that by increasing f* from 1 to 2 
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a second peak is excited in the CF amplitude response which was noticed by [71] as 

well. Moreover, these studies showed that f* can have interesting effects on Fo8 

trajectories. Figure 2.16 depicts these trajectories at different Vr when f*=1, 1.2, 1.3, 

1.5, 1.7 and 1.9 [11]. This figure shows that, while for f*<1.5 all of the Fo8 

trajectories are bent towards downstream, higher frequency ratios contain trajectories 

which face opposite direction and number of these flipped trajectories increases as f* 

increases to 1.9. Knowing that the shape of this Fo8s is determined by the phase 

difference between CF and IL motions, and remembering this phase difference can 

have significant effects on the responses of the fluid-structure dynamical system, this 

figure illustrates the importance of f*. 

 

Figure 2.16: Fo8 trajectories of a circular cylinder at different f*and Vr. Adopted from [11]. 

Dahl et al. [77] further highlighted various figure-of-eight patterns in different 

subcritical and supercritical Reynolds number (Re) ranges (1.5x10
4 

< Re < 6x10
4
 and 

3.2x10
5 

< Re < 7.1x10
5
) and described a figure-eight occurrence as a representation 

of “dual resonance”. Under this dual resonance, the frequencies of the unsteady drag 

and lift forces are resonantly tuned with the oscillation frequencies (fox and foy) of the 
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cylinder, respectively, such that fox/foy  2. In addition, a large third harmonic 

component of the lift force was observed although the main cross-flow response was 

primarily associated with the first-harmonic lift force. 

2.3.2.4 Less-studied parameters and required future experimental studies 

Natural frequency ratios different from one can be commonly observed in VIV 

of slender offshore structures which possess infinite natural frequencies. The mass 

ratios of such structures in both IL and CF directions are usually equal. However, in 

spite of the above-mentioned studies, the most practical case of 𝑚𝑥
∗ = 𝑚𝑦

∗  and 

variable f * has not been thoroughly investigated.  For a particular flow with very 

low Re = 150 and zero structural damping, Bao et al. [78] recently have performed 

direct numerical simulations of a circular cylinder with f* = 1, 1.25, 1.5, 1.75 and 2. 

They showed dual resonances in all f* cases and illustrated how the oscillating drag 

component is maximized when f* = 2 with the appearance of the P+S vortex wake 

mode associated with the maximum in-line response. Nevertheless, apart from this 

CFD analysis, no other basic studies have been conducted to investigate the effects 

of f* variations while m* is fixed and equal in all directions, and more experimental 

and numerical investigations in a higher Re range are still needed. 

 

2.3.3 Semi-empirical modelling of combined CF/IL VIV 

The experimental and numerical studies discussed in the previous sections 

showed that how combined transverse/streamwise vortex-induced oscillations of an 

elastically mounted rigid cylinder can be different from 1DOF VIV. However, 

despite several wake-oscillator models developed for prediction of CF or IL-only 

oscillations, a complete set of wake-structure oscillators for simulating the coupling 

of cylinder CF/IL motions excited by the hydrodynamic lift/drag forces is lacking 

and is needed. This model, in addition to classic common VIV characteristics and 

phenomena, such as being self-exciting and self-limiting and lock-in phenomenon, 

should be able to capture the parameters such as f* (and behaviours such as Fo8 

trajectories, 2:1 oscillation frequency ratio and dual-resonance) which belong to (and 

are caused by) simultaneous  CF/IL oscillations. Moreover, compared to 1DOF VIV, 

higher oscillation amplitudes accompanied with nonlinear behaviours such as jump 
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and hysteresis, suggest that linear mass-spring-damper system might no longer be 

realistic and the effect of structural nonlinearities should be taken into account. 

2.4 VIV of Straight Flexible Circular Cylinders 

Almost all the engineering structures such as risers, mooring cables and 

pipelines which are subjected to a fluid flow and may experience vortex-induced 

oscillations are not rigid and under internal/external loads can deflect and deform. As 

it was extensively discussed in previous sections, most of the research carried out on 

VIV has considered rigid structures. This is mostly due to the fact that doing 

experimental and DNS studies on elastic structures are associated with more practical 

difficulties such as limitations of test facilities (e.g. limited sizes of towing tanks and 

water channels and requirement of complicated and expensive measurement systems) 

and high computational capacities required for 3DOF VIV numerical simulations. 

Nevertheless, whenever it has been possible, researchers have tried to overcome 

these limitations and investigate VIV of elastic structures as well [79]. A review of 

the research studies conducted in this context comes in the following sections. 

2.4.1 Influential parameters: elastic vs. rigid cylinder VIV 

Many of the behaviours observed in rigid cylinder experiments have been 

repeated in elastic cylinder tests, as well. For example, Huarte and Bearman [80] in 

their experiment on a flexible cylinder with aspect ratio of 93.75 (L/D=93.75 where L 

is the length of the cylinder) which was partially submerged in a water channel and 

was subjected to a uniform flow, observed dual resonance and 2:1 oscillation 

frequency ratio accompanied with Fo8 trajectories which their shapes varied along 

the span of the cylinder. Also, Vandiver et al. [81] in their in situ tests on a long riser 

model observed third harmonic lift force components. However, due to intrinsic 

characteristics of elastic cylinders, VIV in such structures is associated with some 

new behaviour. The main feature which distinguishes a flexible cylinder from a rigid 

one is the fact that it possesses infinite number of natural frequencies and vibration 

modes [82]. For instance, while the natural frequency of an elastically mounted rigid 

cylinder is 𝑓𝑛 = √𝑘/𝑚, for an elastic cylinder which is under tension T, fn can be 

estimated as [83]: 
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where i is the mode number, E is the Young’s modulus of elasticity and I is the 

area moment of inertia. The first consequence of having numerous natural 

frequencies is that the cylinder might experience multiple lock-in conditions [12, 84, 

85]. That is, for a rigid cylinder the lock-in condition ends after certain reduced 

velocity, while for an elastic cylinder when fs desynchronizes with one natural 

frequency (e.g. fn,1), it might lock onto another one (e.g. fn,2). This circumstances in 

which just one mode is resonating is called “single-mode” lock-in [85]. On the other 

hand, since the interval between successive natural frequencies of a flexible cylinder 

is usually small, it is plausible that the oscillating hydrodynamic forces excite more 

than one mode at a time and cause multi-mode structural vibrations. For example, 

Figure 2.17 shows the vibrating modes participated in the CF responses of a bare 

flexible cylinder of L/D=481 subjected to uniform flow. In this figure, the colours 

represent the normalised power of modes and illustrate that the structure experiences 

multi-mode oscillations. For such circumstances that more than one mode is excited, 

lock-in is defined as one mode dominating the other modes [85]; e.g. in Figure 2.17 

the modes with dark red colours are dominant. In flexible cylinder VIV studies, 

despite VIV studies on rigid cylinders in which just uniform flow velocities are 

applied, the structure can be subjected to spatially variable flow velocities. 

Therefore, one can categorise these investigations as (i) studies performed at 

spatially-uniform flow velocities [86] and (ii) experiments performed at spatially-

variable flow velocities [87]. The other feature that distinguishes VIV of elastic 

structures from that of elastically mounted rigid cylinders is that different geometric 

layouts and installation configurations of a flexible cylinder, (such as straight, 

catenary [88], lazy/steep S and lazy/steep wave layouts [89]) lead to different 

dynamic responses. To be within the scope of this thesis, in the following section, 

experimental investigations on VIV of straight flexible cylinders, conducted over the 

past decade, are reviewed. 
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Figure 2.17: Modes contributing in the CF motions of a flexible cylinder subjected to uniform flow of 

velocity V. Adopted from [12]. 

2.4.2 Experimental studies on VIV of straight flexible cylinders 

Table 2.2 shows a chronological summary of some empirical studies on VIV of 

flexible cylinders which have been accomplished over the past decade. These 

experiments are chosen in a way to cover a wide range of aspect ratios (i.e. from 30 

to 4600) and be performed with both uniform and non-uniform flow velocity profiles 

at subcritical Reynolds numbers. As it can be seen in Table 2.2, the importance of 

considering IL oscillations is one of the main findings of most of these studies. 

Therefore, similar to rigid cylinder studies, these they show that, for a realistic 

prediction and modelling of VIV of marine risers, combined transverse/streamwise 

oscillations should be taken into account. The experimental studies also showed that, 

while the responses of an elastic cylinder subjected to a uniform flow under lock-in 

condition is dominated by standing waves, sheared flow causes responses dominated 

by travelling waves.  
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Table 2.2: A summary of the experimental studies conducted over the past decade on VIV of straight flexible cylinders. The colours represent the applied flow 

profiles; uniform flow (green), sheared flow (blue) and stepped flow (purple). 

Experimental 

Studies 

Flow 

velocity 

profile 

Test specifications Main findings 

Re Aspect 

ratio 

Pretension 

(N) 

[12, 87] ●●○ 4000-

46000 

481.5 700  Linear increase of oscillation frequencies with the increase of 

current speed 

 Multi-mode vibrations; All excited modes oscillate at the same 

frequency (Strouhal frequency) 

 Importance of IL oscillations with fatigue damages comparable to 

CF oscillations 

 In lock-in condition the responses are dominated by standing waves 

 Sheared flow causes responses dominated with travelling waves 

[90] ●●○ 
70000 1400 4000-6000  CF and IL have fatigue damages of the same order of magnitude 

 Mode numbers up to 12 in transverse and 25 in streamwise 

directions are excited 

 Sheared flow causes lower oscillation amplitudes 
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[84] ○○● 
2500-

25000 

468.6 500-2000  Multi-mode VIV 

 Monotonically increase of oscillation amplitude during the lock-in 

of each mode  

 Transition from one locked-in mode to the other is accompanied by 

a drop in oscillation amplitude 

 Significant amplification of mean drag coefficient 

[83] ○●○ 
36000 3000 3700  IL mode numbers up to 50; Importance of considering IL 

oscillations 

 Non-lock-in VIV 

 Travelling waves dominate the responses 

[91] ○●○ 
8000-

40000 

90   Single-mode lock-in; Transition from lock-in to non-lock-in multi-

mode oscillations 

 Importance of considering IL oscillations 

[81, 92] ●○○ 
 4198.3 3225  Third, fourth and fifth harmonic responses are observed 

considerable fatigue damage due to higher harmonic responses 

[80, 93] ○○● 
1200-

12000 

93.75 <110  Dual resonance with Highly repetitive Fo8 trajectories 

 Significant effect of tension on VIV response branches 

 Vortex modes depend on the amplitude distribution along  the span 

of the cylinder 
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[86] ●○○ 
245000, 

106000 

32, 59 222.4  Linearly increase of the frequency response of a tension-dominated 

cylinder with the increase of flow velocity 

 Stepped increase of the frequency response of a bending stiffness-

dominated cylinder with the increase of flow velocity 

[94] ●○○ 
3000-

10000 

1750 600-800  Importance of IL oscillations 

 Multi-mode vortex-induced oscillations, all mode vibrating at the 

Strouhal frequency 

 Asymmetric structural response due to multi-modal VIV and phase 

lag between involved modes 

 Higher harmonic components in the VIV response 

[95] ●○○ 
2000-

20000 

162 73-294  Increasing pretension lead to: lower oscillation amplitudes, higher 

lift force, higher mean and dynamic tension 

[13] ○○● 
<37400, 

<28000 

158, 

187 

200-800  Importance of IL oscillations 

 High IL and CF oscillation amplitudes up to 1D and 3D 

respectively 

 Large mean drag coefficient up to 4.5 



 

70 
 

Table 2.2 also infers that pretension force is an influential parameter. the 

importance of pretension can be inferred from Eq. (2.19) as well. Tension determines 

the behaviour of the cylinder to be like a cable or like a beam. When the system is 

tension-dominated, the cylinder behaves like a cable which causes monotonical 

increase of oscillation frequency and higher modes as the flow velocity increases. On 

the other hand, when the system is dominated by the bending stiffness, the cylinder 

behaves like a beam which results in stepped increase of oscillation frequencies and 

lower excited modes as the flow velocity increases. Along with the experimental 

studies, computational fluid dynamic studies and direct numerical VIV simulations 

have been carried out for these years. These studies can provide better understanding 

of FSI phenomena taking place during VIV and realistically predict VIV [96-104]. 

However, doing such studies on a high aspect ratio flexible cylinder is very 

expensive and requires extensive computational capacities. Hence, it is necessary to 

think of an alternative method that can provide reliable VIV predictions. Similar to 

rigid cylinders, semi-empirical models such as wake-oscillator models can be the 

alternative solution. A review of the semi-empirical models applied for prediction of 

vortex-induced oscillations of elastic cylinders is presented in the following section.    

2.4.3 Semi-empirical modelling of VIV of flexible cylinders   

The background and features of semi-empirical models were explained in 

section 2.2.3. Following the scope of this thesis, in this section the wake-oscillator 

models that over the past decade has been utilised for investigating VIV in elastic 

structures are reviewed. Generally speaking, these models are similar to the wake-

structure oscillator models used for prediction of 1DOF vortex-induced oscillations 

of an elastically mounted rigid cylinder, except that the equation of simple harmonic 

motion is replaced with the equation of cable, beam or cable-beam oscillations. 

These phenomenological models, based on the DOF(s) considered for the structure 

and the type of the structural equation(s) can be categorised into four groups of 

wake-structure oscillator models in which (i) linear transverse-only, (ii) nonlinear 

transverse-only, (iii) combined linear IL/CF oscillations and (iv) coupled axial/CF 

vortex induced oscillations of an elastic cylinder are modelled. 
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2.4.3.1 Modelling of linear CF-only VIV 

Vortex-induced oscillations and vortex-induced waves of a very slender 

cylinder subjected to uniform flow were modelled by [105]. In this study, they 

coupled the phenomenological near-wake model with a cable equation and compared 

the results of their analysis with DNS and experimental results. The comparison 

showed that such a model can capture many of important features of VIV and VIW 

of such structures. For example, Figure 2.18 depicts a comparison between the semi-

empirical model and DNS [106] predictions of transverse VIV response of a cable 

and illustrates that the wake-structure oscillator model can describe the numerical 

observations such as standing, transient and travelling waves. Using the same system 

of equations, Mathelin and de Langre [107] considered VIV and VIW a caused by 

sheared flow and found that, due to a local lock-in, wave packets distribute along the 

span of the riser. Violette and de Langre [108] added a bending term to the model 

used in the aforementioned models. They considered an infinite cable subjected to 

uniform and non-uniform flows and a finite beam subjected to linearly sheared flow.  

 

Figure 2.18: Spatio-temporal plot of CF oscillations of a cable undergoing VIV predicted via: (a), 

semi-empirical model; (b), DNS. Figure (a) is adopted from [105] and figure (b) is taken from [106]. 
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Through comparisons with DNS and experimental results, they showed that their 

simple model can capture key response characteristics of an elastic cylinder 

undergoing VIV such as modal content and standing and travelling nature of waves. 

They also showed that the travelling waves propagate in arbitrary directions along 

the span of the cylinder. In a latter study [109] they linearized this model to perform 

a linear stability analysis and using this approach could capture “range of unstable 

wavenumbers, mode transition or mode switching with flow velocity, time sharing 

and space sharing”. However, due to this simplification and linearization the model 

couldn’t estimate maximum oscillation amplitudes and couldn’t capture VIV 

behaviours caused by nonlinearities.  

The importance of tension in determining the behaviour of a flexible cylinder 

experiencing VIV was discussed in the previous sections. In real engineering 

practice, the tension along the span of the cylinder may vary due to its weight or the 

buoyancy force. Srinil [110], using a classic wake oscillator model proposed by [63], 

investigated the VIV of a vertical riser with variable tension. He could capture multi-

mode standing and hybrid standing-travelling waves and observed dominant mode 

switching in time. In his study, to relate the empirical coefficients of the wake 

oscillator to physical VIV parameters, using rigid cylinder experimental results, he 

defined variable wake-oscillator coefficients as a function of Re. The comparison of 

the model predictions with some experimental results showed qualitative agreement.   

2.4.3.2 Modelling of nonlinear CF-only VIV  

Although the aforementioned models can model many of experimentally 

observed behaviours, they do not provide any insight into the nonlinear multi-mode 

dynamics and interactions of flexible cylinder VIV. To obtain such information, a 

model should consider both geometric and wake nonlinearities. Srinil [111] 

developed such a semi-empirical model for a sagged cable and straight cylinder 

subjected to uniform flow. Similar to his previous study [110], in here as well, he 

defined the wake coefficients of his model in terms of physical parameters. Through 

this study, he could model some of the key features of VIV of flexible cylinders such 

as multi-mode lock-in, mode switching, mode sharing, mode-dependent lock-in 

bandwidth and added mass. This study also revealed the significant importance of the 
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geometric nonlinearities for realistic VIV predictions and capturing multi-mode 

interactions. 

Figure 2.19 depicts spatial variation of the root-mean-square (RMS) amplitudes 

of a flexible cylinder when the geometric nonlinearities are considered (Figure 2.19 

(a)) and when these nonlinearities are neglected (Figure 2.19 (b)). The figure 

illustrates that two models lead to both qualitatively and quantitatively different 

responses. It can be seen that with the nonlinear model, lower amplitudes are 

obtained, and due to high multi-mode contributions, a dominant mode cannot be 

distinguished. On the other hand, the linear model predicts higher oscillation 

amplitudes and distinguishable dominant modes.  

 

Figure 2.19: Spatial variations of the RMS amplitude of CF oscillations of a flexible cylinder with V 

predicted via (a) a semi-empirical model in which structural geometric nonlinearities are taken into 

account and (b) a semi-empirical model with linear structure-oscillator. Adopted from [111]. 

2.4.3.3 Modelling of combined linear CF/IL VIV  

The experimental studies reviewed in the previous sections revealed that for a 

realistic prediction of VIV in flexible cylinders both of the streamwise and transverse 

oscillations of the cylinder should be taken into account. Following these results, 

[112] and [113] developed a semi-empirical wake-structure model to study coupled 

CF/IL oscillations. They considered the structural oscillators of cable-beams which 

were coupled to wake oscillators. In their model there was no direct coupling 

between CF and IL structural oscillators and these oscillators were coupled indirectly 
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through quadratic nonlinear fluid forcing terms [114]. Utilising this model for a 

cylinder subjected to a uniform flow and comparison between the numerical and 

experimental results showed that the model could capture similar frequency 

responses, vibrating modes and standing/travelling wave responses. Changing the 

flow velocity profile to sheared flow showed significant changes in the 

characteristics of the VIV response. They also could capture the transitions between 

multi- and single-mode oscillations. 

2.4.3.4 Modelling of coupled axial/CF VIV 

For a rigid cylinder which can only oscillate in streamwise and CF directions, it 

was shown that considering both of these degrees of freedom leads to results 

different from transverse-only oscillations. When it comes to the elastic cylinders, 

the structure can take longitudinal oscillations as well. Therefore, this new DOF 

might have significant effects on the behaviour of the VIV system. The recent studies 

showed that, as the aspect ratio increases, the axial oscillations which are excited by 

lateral vibrations (CF and IL vibrations) of the cylinder become more significant 

[115]. Hence, to study the vortex-induced oscillations of a high aspect ratio riser, 

[14] used a wake-structure oscillator model in which the structural nonlinearities and 

the coupling between CF and axial oscillations of the riser were taken into account. 

They used the classic wake oscillator developed by [66] to model near wake 

dynamics and utilised this model to study the effect of uniform and sheared flows. 

Although in this study they considered the axial oscillations of the cylinder, they just 

reported the CF responses of the structure and did not discuss the axial oscillations. 

Overall, while the significance of IL and axial VIV of flexible structures has 

been proven experimentally and numerically, the majority of semi-empirical models 

have been focusing on prediction of CF-only VIV of these structures. A few 

aforementioned coupled models for flexible cylinders are limited to coupled CF-IL 

or CF-axial VIV in which the interconnection of structural oscillations and geometric 

nonlinearities are neglected. Moreover, the hydrodynamic nonlinearities of these 

models are limited to cubic nonlinear terms of wake oscillators, which represent self-

exciting and self-limiting nature of VIV, and almost none of these models account 
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for nonlinear hydrodynamic coupling of wake oscillators and structural equations of 

motions. 

2.5 Conclusions 

The extensive and comprehensive review of VIV studies, performed in this 

chapter, shows the need for a predictive model to analyse the coupled CF/IL VIV of 

rigid and flexible circular cylinders subjected to uniform and linearly sheared flows. 

Hence, this study is mainly devoted to developing such fully-nonlinear predictive 

VIV models. Via such models, it is aimed to capture and explain the aforementioned 

experimentally observed behaviours, such as dual resonances, higher harmonics, 

jump and hysteresis, transition between travelling and standing waves, multi and 

single-mode lock-in conditions, mean drag amplifications and influential 

hydrodynamic coefficients, as much and accurate as possible. Moreover, the 

importance of IL and axial oscillations along with the significance of hydrodynamic 

and geometric nonlinearities are examined to justify the complexity added to the 

proposed models.  

To achieve these objectives, once the mathematical model is developed, 

appropriate numerical and analytical methods such as Runge-Kutta, finite difference 

and harmonic balance methods are applied to solve the model. Verification, 

calibration and examination of the model are achieved via extensive comparisons 

with experimental results from literature and in-house tests conducted in the towing 

tank of the Department of Naval architecture, Ocean and Marine Engineering, 

University of Strathclyde. The in-house experiments are mainly conducted to fulfil 

the gaps in the literature, explained in Section 2.2.3.4, and will provide new 

information and observations onto less-studied aspects of VIV whilst being utilised 

for further calibration and verification of the proposed model.   
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Chapter 3  

Modelling of Coupled CF/IL VIV of 

Rigid Cylinders 

Many studies have typically applied a linear structural spring-mass-damper 

oscillator and a van der Pol wake oscillator to model a one-dimensional CF vortex-

induced vibration. In this chapter, an advanced model for predicting a two-

dimensional coupled CF/IL VIV of a flexibly-mounted circular cylinder in a uniform 

flow is proposed and validated. The ensuing dynamical system is based on double 

Duffing-van der Pol (structural-wake) oscillators with the two structural equations 

containing both cubic and quadratic nonlinear terms. The cubic nonlinearities capture 

the geometrical coupling of CF/IL displacements excited by hydrodynamic lift/drag 

forces whereas the quadratic nonlinearities allow the wake-cylinder interactions. 

Some empirical coefficients are calibrated against published experimental results to 

establish a new generic analytical function accounting for the dependence of VIV on 

a physical mass and/or damping parameter. By varying flow velocities in the 

numerical simulations, the derived low-order model is utilised for predicting 

important VIV characteristics. Using the newly-derived empirical formula, the 

predicted maximum CF/IL VIV amplitudes and associated lock-in ranges are 

compared with several experimental results for cylinders with low/high mass or 

damping ratios. Moreover, the parametric studies are performed to investigate the 

importance of geometrical nonlinearities through new displacement coupling terms 

and the ratio of IL to CF natural frequencies of the freely-vibrating cylinder. 
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3.1 Model with Combined Structural/Hydrodynamic Nonlinearities 

A low-order mathematical model simulating the nonlinear 2DOF free vibration 

of an elastically-supported circular cylinder in a uniform steady flow with a velocity 

V is developed. The cylinder is assumed to be infinitely long such that a mechanical 

spring-mass-damper system (i.e. the structural oscillator) can be used to model the 

cylinder dynamic response. As displayed in Figure 3.1 (a), the cylinder of diameter D 

is constrained by a two-directional four-spring system, freely oscillating in both IL 

(streamwise) X and CF (transverse) Y directions with O at the cylinder centre being 

the origin of the co-ordinates. In contrast to several existing VIV models which 

typically consider a linear structural oscillator to describe the cylinder (mostly Y) 

displacement [4], the effect of geometric nonlinearities (i.e. spring nonlinear stiffness 

or restoring force) of the oscillating cylinder is herein accounted for alongside the 

hydrodynamic nonlinearities governing the fluctuation of the vortex-induced lift/drag 

forces.  

 

Figure 3.1: A schematic model of a spring-mounted circular cylinder undergoing two-dimensional 

VIV (a) and associated hydrodynamic force components (b). 
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By permitting the cylinder to oscillate in both CF/IL directions, experimental 

results [70, 71] showed that the associated cylinder amplitudes noticeably increase in 

comparison with the pure CF VIV, owing to the greater influence of fluid-structure 

interaction. Depending on system parameters, the CF maximum amplitudes in the 

2DOF VIV case may achieve such high values as 1.5D [11] or even 2D [116], being 

much greater than typical values of about 1D observed in the CF-only VIV [26, 117]. 

According to the large-amplitude response, the axial stretching of the springs may 

become intrinsically nonlinear, being amplitude-dependent and bi-directionally 

coupled. Recently, the applied VIV analysis of flexible curved/straight structures has 

highlighted how the multi-mode interactions in conjunction with structural 

nonlinearities play a crucial role in both the numerical VIV prediction and 

comparison with experimental results [111]. Based on these findings, two 

nonlinearly-coupled structural oscillators in conjunction with two wake oscillators 

are proposed for the advanced 2DOF VIV modelling and simulation. 

3.1.1 Geometrically-nonlinear structural oscillators 

The nonlinear equations of motion of the 2DOF freely-oscillating cylinder are 

derived based on the actual physics of the moving springs, similar to the formulation 

described by Bellman [118] in a one-directional spring case. By considering four 

coupled springs as in Figure 3.1 (a), the geometrically-nonlinear structural oscillators 

governing the IL and CF vibrations of the cylinder may be expressed as 

(𝑚𝑠𝑥 + 𝑚𝑓𝑥)�̈� + (𝑐𝑠𝑥 + 𝑐𝑓𝑥)�̇� + 𝑘𝑥(𝑋 + 𝛼𝑥
∗𝑋3 + 𝛽𝑥

∗𝑋𝑌2) = 𝐹𝑥 (3.1)  

(𝑚𝑠𝑦 + 𝑚𝑓𝑦)�̈� + (𝑐𝑠𝑦 + 𝑐𝑓𝑦)�̇� + 𝑘𝑦(𝑌 + 𝛼𝑦
∗ 𝑌3 + 𝛽𝑦

∗𝑌𝑋2) = 𝐹𝑦 (3.2) 

where a dot denotes differentiation with respect to the dimensional time t, X 

and Y are dimensional IL and CF displacements, ms, mf, cs, cf and k the associated 

cylinder mass, fluid added mass, viscous damping, hydrodynamic damping and 

spring stiffness coefficients, respectively, with co-subscripts x and y identifying 

properties in these directions. Herein, we assume mfx = mfy = mf and cfx = cfy = cf, with 

mf = πρD
2
Ca/4 and cf = (2πStV/D)γρD

2
 [66]. γ is the stall parameter which is directly 

related to the sectional mean drag coefficient and assumed to be a constant equal to 

0.8 [66]. α*x, α*y, β*x, and β*y are geometrical coefficients pertaining to the moving 
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spring-mass system. Note that Eqs. (3.1) and (3.2) are so-called Duffing oscillators 

[119] whose cubic-type nonlinear terms capture the axial stretching feature (X
3
, Y

3
) 

and physical coupling of CF/IL motions (XY
2
, YX

2
). The use of two coupled Duffing 

oscillators can also be found in some other scientific applications [120, 121].  

The key aspect in the formulation of system equations of motions is to capture 

the quadratic relationship between in-line and cross-flow displacements [69]. 

Following Wang et al. [114], the two-directional unsteady fluid forces are exerted on 

the oscillating cylinder as opposed to the stationary one, by also accounting for the 

relative velocities between the incoming flow and the cylinder in-line motion. As a 

result, the instantaneous lift (FL) and drag (FD) forces coincide with an arbitrary 

plane making up an angle of θ with respect to the Y and X axes, respectively. Two 

cases can be realized depending on whether θ is counterclockwise (Figure 3.1 (b)) or 

clockwise (Figure 3.1 (c)). From our numerical simulation experience, it has been 

discovered that such θ direction plays a key role in the ensuing phase difference 

between cross-flow and in-line oscillations and, correspondingly, the Fo8 appearing 

shape. In general, the orbital plot exhibits a figure-eight trajectory with tips pointing 

upstream with a counterclockwise θ model or downstream with a clockwise θ model. 

As both cases have been experimentally observed in the literature depending on the 

system parameters, they are herein accounted for in the improved model formulation. 

Consequently, by assuming a small θ [7] and omitting the mean drag 

component, Fx and Fy may be given by [114] 

𝐹𝑥 = 𝐹𝐷 cos 𝜃 ± 𝐹𝐿 sin 𝜃 ≈ 𝐹𝐷 ± 𝐹𝐿

�̇�

𝑉
 

(3.3) 

𝐹𝑦 = 𝐹𝐿 cos 𝜃 ∓ 𝐹𝐷 sin 𝜃 ≈ 𝐹𝐿 ∓ 𝐹𝐷

�̇�

𝑉
 

(3.4) 

3.1.2 Phenomenological wake oscillators 

Accordingly, the unsteady drag and lift force components are given by  

𝐹𝐷 =
1

2
𝜌𝐷𝑉2𝐶𝑑,     𝐹𝐿 =

1

2
𝜌𝐷𝑉2𝐶𝑙 

(3.5) 
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where Cd and Cl are the time-varying drag and lift coefficients, respectively. By 

introducing the reduced vortex lift coefficients as p = 2Cd/Cd0 and q = 2Cl/Cl0 [66] in 

which CD0 and CL0 are the associated drag and lift coefficients of a stationary 

cylinder (assumed as CD0=0.2 [52] and CL0=0.3 [7]), the time variation of the fluid 

vortex variables p and q may follow the self-excitation nature of the van der Pol-

based wake oscillators described by 

�̈� + 2𝜀𝑥𝜔𝑓(𝑝2 − 1)�̇� + 4𝜔𝑓
2𝑝 = 𝑆𝑥 (3.6) 

�̈� + 𝜀𝑦𝜔𝑓(𝑞2 − 1)�̇� + 𝜔𝑓
2𝑞 = 𝑆𝑦 (3.7) 

herein, f = 2πStV/D is the vortex-shedding angular frequency, Sx and Sy the 

excitation terms simulating the effect of cylinder motion on the near wake, εx and εy 

the wake empirical coefficients. To possibly capture the second and third instability 

ranges of the stream-wise oscillation [52], the frequency of the wake oscillation in 

the IL direction (Eq. 3.6) is taken to be twice that in the CF direction (Eq. 3.7). The 

coupling and interaction between the fluid and the structure is captured through the 

excitation terms Fx (Eq. 3.1), Fy (Eq. 3.2), Sx (Eq. 3.6) and Sy (Eq. 3.7). Whilst Fx and 

Fy depend on the projection of oscillating drag/lift forces through Eqs. (3.3-5) 

accounting for the reduced vortex coefficients p and q, the influence of Sx and Sy may 

be assumed to be linearly proportional to the displacement [122], velocity [63] or 

acceleration [66] of the cylinder. Based on 1DOF VIV studies, Facchinetti et al. [66] 

have examined the effect of the coupling Sy term on the VIV modelling and finally 

suggested the use of acceleration model. Similarly, we assume in the 2DOF VIV 

modelling that 

𝑆𝑥 = 𝛬𝑥

�̈�

𝐷
,      𝑆𝑦 = 𝛬𝑦

�̈�

𝐷
 

(3.8) 

where x and y are the empirical coupling parameters adopted equally as x=y=12 

based on the suggested y=12 in Facchinetti et al. [66]. This assumption would allow 

us to focus on the scaling and calibration of other control parameters (ε, α, β), see 

Sections 3.2, 3.3.1 and 3.3.2. 



 

81 
 

3.1.3 Dimensionless coupled structural-wake oscillators 

By introducing the dimensionless time t’ = ωnyT, x = X/D and y = Y/D, the 

nonlinearly-coupled Eqs. (3.1), (3.6), (3.2) and (3.7) with four unknown variables (X, 

p, Y, q) – simulating coupled IL and CF VIV due to fluctuating drag and lift fluid 

forces – become 

�̈� + 𝜆𝑥�̇� + 𝑓∗2
(𝑥 + 𝛼𝑥𝑥3 + 𝛽𝑥𝑥𝑦2) = 𝑀𝐷𝛺2𝑝 ± 2𝜋𝑀𝐿𝛺2𝑞

�̇�

𝑉𝑟
 

(3.9) 

�̈� + 2𝜀𝑥𝛺(𝑝2 − 1)�̇� + 4𝛺2𝑝 = 𝛬𝑥�̈� (3.10) 

�̈� + 𝜆𝑦�̇� + 𝑦 + 𝛼𝑦𝑦3 + 𝛽𝑦𝑦𝑥2 = 𝑀𝐿𝛺2𝑞 ∓ 2𝜋𝑀𝐷𝛺2𝑝
�̇�

𝑉𝑟
 

(3.11) 

�̈� + 𝜀𝑦𝛺(𝑞2 − 1)�̇� + 𝛺2𝑞 = 𝛬𝑦�̈� (3.12) 

where Ω = StVr is equivalent to ωf/ωny, being the ratio of vortex-shedding frequency 

to the cylinder CF natural frequency in still water. The ratio of structural natural 

frequencies in X and Y directions is given by f* = ωnx/ωny whose 

𝜔𝑛𝑥 = √
𝑘𝑥

𝑚𝑠𝑥 + 𝑚𝑓
,       𝜔𝑛𝑦 = √

𝑘𝑦

𝑚𝑠𝑦 + 𝑚𝑓
 

(3.13) 

MD and ML are the system mass parameters defined as  

𝑀𝐷 =
𝐶𝑑0

2

1

8𝜋2St2𝜇𝑥
,       𝑀𝐿 =

𝐶𝑙0

2

1

8𝜋2St2𝜇𝑦
 

(3.14) 

in which the mass ratios μx and μy are expressed as [66] 

𝜇𝑥 =
𝑚𝑠𝑥 + 𝑚𝑓

𝜌𝐷2
,       𝜇𝑦 =

𝑚𝑠𝑦 + 𝑚𝑓

𝜌𝐷2
 

(3.15) 

The damping terms λx and λy, accounting for the effects of structural viscous damping 

and fluid added damping (stall term), read 

𝜆𝑥 = 2𝜉𝑥𝑓∗ +
𝛾𝛺

𝜇𝑥
,      𝜆𝑦 = 2𝜉𝑦 +

𝛾𝛺

𝜇𝑦
 

(3.16) 



 

82 
 

where x and y are the structural reduced damping coefficients [66]. As it was 

explained in Chapter 2, the mass ratio definition in the literature is variable but it is 

widely recognized by the notation m* [6]. In the parametric study, the mass ratio is 

referred to as m*; the condition of m*x = m*y = m* is applied since practical offshore 

cylindrical structures generally have a circumferentially-uniform mass. Yet, some 

experimental studies have considered unequal m*x and m*y [11, 70] which would 

make the calibration task more complicated. With the same reason, x = y =  is 

assumed. αx, αy, βx, and βy are the dimensionless counterparts of geometrical 

parameters α*x, α*y, β*x, and β*y, respectively, whose effects will be investigated in 

Section 4.1. 

It is worth emphasizing that Eqs. (3.9) and (3.11) contain cubic (x
3
, xy

2
, y

3
, x

2
y) 

and quadratic (𝑝�̇�, 𝑞�̇�) nonlinearities, with the former capturing the axial 

stretching/structural coupling of x-y displacements whereas the fluid-structure 

interaction effect is captured through all linear and nonlinear terms in the right-hand 

side of Eqs. (3.9-12). The maximum cross-flow/in-line amplitudes are unaffected by 

the choice of θ since the associated velocities are trivial, making 𝑝�̇�/𝑉𝑟 ≈ 𝑞�̇�/𝑉𝑟 ≈ 0 

Eqs. (3.10) and (3.12). The cylinder natural frequency ratio f* is also a key physical 

parameter apart from m* and  which are embedded in MD, ML, x and y (Eqs. 3.13-

16). The non-linearly coupled Eqs.(3.9-12), based on clockwise θ, are numerically 

and simultaneously solved using a fourth-order Runge-Kutta scheme with an 

adaptive time step enabling the solution convergence and stability, and with assigned 

initial conditions at t = 0 of x = y = 0, p = q = 2 and zero velocities. The numerical 

results are obtained via standard ODE algorithms of Matlab. On a Dell Optiplex 

7010  PC with Intel® Core-i7 3.4 GHz processors and  16 GB of RAM, it takes 

about 0.3 s for each second VIV simulation with a time step of 10
-2

 s. The case of 

increasing reduced flow velocity Vr is generally considered. However, if there is a 

sudden jump of response amplitude, Vr may also be decreasingly varied to capture a 

possible hysteresis. In all simulation cases, a varying Vr step is sufficiently small 

being equal to 0.1. 
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3.2 Identification of Empirical Coefficients  

The analysis and prediction of coupled CF/IL VIV of circular cylinders based 

on Eqs. (3.9-12) depend on several empirical coefficients (εx, εy, x, y) and 

geometrically-nonlinear parameters (αx, αy, βx, βy). Fixed values of εy and y have 

recently been proposed for a 1DOF VIV [66] whereas a new set of εx, εy, x, y, αx, 

αy, βx and βy is herein proposed for a 2DOF VIV. For a given m*,  and f*, these 

coefficients and parameters can be identified by calibrating the numerically-obtained 

IL and CF amplitudes (Ax/D and Ay/D) with experimental results and by accounting 

for some qualitative VIV behaviors. Owing to a large set of variables, it is 

impractical in a parametric study to capture the system dependence on all of these 

variables. Accordingly, εx = 0.3, x = y = 12 [66], and αx = αy = βx = βy = 0.7 are 

preliminarily fixed whereas the εy-function is determined through the best fits with 

the 2DOF VIV experiment results in the case of varying (i)  [30], (ii) m* [76] and 

(iii) m* [30, 76]. After identifying the εy-functions, the sensitivity analysis of other 

coefficients/parameters will be carried out as in Sections 3.3.1 and 3.3.2.  

For a specific f* = 1, Tables 3.1 and 3.2 summarise the test matrix from the two 

experiments [30, 76] by reporting the assigned  (Table 3.1) or m* (Table 3.2), and 

the associated m*, along with the tuned εy deduced from relevant numerical-

experimental calibrations. In the following, only Ay/D are plotted whereas combined 

Ax/D and Ay/D will be presented in Section 3.3. 

3.2.1 Model calibration through experimental results with variable ξ 

By first considering the case of varying  with a fixed low mass m*= 5.4 [30], 

Figure 3.2 illustrates a comparison of numerically-predicted (lines) and 

experimentally-obtained (squares) CF amplitudes for  = 0.002 (Figure 3.2 (a)), 0.02, 

0.05, 0.1, 0.2 and 0.4 (Figure 3.2 (b)). With the lowest  = 0.002, results with 

increasing () and decreasing () Vr are plotted in Figure 3.2 (a) which reveals the 

jump-up and -down response (denoted by dashed lines) and hysteresis of amplitudes 

around Vr = 8. The experimental and numerical maximum Ay/D  1.5 and the 

associated lock-in ranges (4 < Vr < 8 or 10) are qualitatively and quantitatively 

comparable, although the numerical model underestimates the lower-amplitude 
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branch (Vr > 8). Similar large maximum Ay/D values (1.5 and above) have also been 

reported by some other experiments, e.g. in Dahl et al. [11]. When  is increased by 

one (=0.02, 0.05) or two (=0.1, 0.2, 0.4) order of magnitude, both numerical and 

experimental results in Figure 3.2 (b) show decreasing Ay/D as expected, being as 

small as Ay/D  0.1 for  = 0.4. The numerical model also predicts the disappearing 

jump for high  = 0.05, 0.1, 0.2, 0.4.  

Table 3.1 shows, except  = 0.002 and 0.4, the increment of εy with increasing 

. From a dynamical viewpoint, the decreasing Ay/D is feasible as εy mainly governs 

the nonlinear damping term (Eq. 3.12) regulating the self-excited and -limiting 

character of the VIV response [4]; thus, as εy increases, the damping effect increases 

too while keeping other variables unchanged.  

Table 3.1: Considered various damping ratios based on experimental input data of [30] for a given m* 

= 5.4, along with the numerically-tuned εy deduced from associated model simulations. 

 m* εy 

0.002 0.0108 0.0055 

0.02 0.1080 0.0053 

0.05 0.2700 0.0067 

0.1 0.5400 0.015 

0.2 1.0800 0.027 

0.4 2.1600 0.02 

 

Table 3.2: Considered various mass ratios based on experimental input data of  [76] for a given  = 

0.006, along with the numerically-tuned εy deduced from associated model simulations. 

m* m* εy 

2.36 0.0142 0.0044 

3.68 0.0221 0.0062 

5.19 0.0311 0.0078 

6.54 0.0392 0.0095 

7.91 0.0457 0.014 

8.76 0.0526 0.017 

10.63 0.0638 0.027 

12.96 0.0778 0.045 
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Figure 3.2: Comparison of numerical and experimental [30] cross-flow amplitudes with m*=5.4 and 

f*=1: (a)  = 0.002 with increasing () and decreasing () Vr; (b) varied ; squares denote 

experimental results associated with numerical results (lines) by same colors; dashed lines denote 

response jumps. 

3.2.2 Model calibration through experimental results with variable m* 

For a given low =0.006 [76], Figure 3.3 compares the numerically- (lines) and 

experimentally-obtained (squares) Ay/D for various m* = 2.36 (Figure 3.3 (a)), 3.68, 

5.19, 6.54, 7.91, 8.76, 10.63 and 12.96 (Figure 3.3 (b)). It is seen that the predicted 
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jump-up and –down responses occur almost the same Vr in Figure 3.3 (a); 

nevertheless, the jump disappears in Figure 3.3 (b) for higher m* = 7.91, 8.76, 10.63 

and 12.96, similar to higher  cases in Figure 3.2 (b). The maximum Ay/D as well as 

the associated lock-in ranges decrease as m* increases, in qualitative agreement with 

general experimental results [9]. The model predicts a slightly shift in Vr at the jump 

for high m* values (Figure 3.3 (b)) but this is considered of secondary importance as 

far as the primary attention is placed on calibrating maximum amplitudes. By 

comparing between the case with m* = 5.4 and  = 0.002 in Figure 3.2 (a) and the 

case with m* = 5.19 and  = 0.006 in Figure 3.3 (b), the former shows a greater 

maximum Ay/D by about 25 % due to a lower  by about 66.7 %. Although both 

cases have comparable m*, such comparison emphasizes a role of damping in the 

VIV as suggested by Klamo et al. [29]. Similar to the increasing  case in Table 3.1, 

Table 3.2 shows the increment of tuned εy with increasing m*; i.e. both cases yield 

the decreasing Ay/D (Figures 3.2 and 3.3). 

By plotting and applying a variable curve fitting to the relationship of  and εy 

in Table 3.1, a cubic polynomial-based function is chosen as the best-fit εy() 

function. The fitted curves are calculated via Curve Fitting toolbox of Matlab this 

toolbox provides a wide range of pre-defined and user-defined curve types, such as 

exponential, Sine waves and polynomials, which can be fitted to the desired data. Via 

this tool, the user is able to view the statistics of each fitting and check the quality of 

fitting. Using this toolbox εy() is given by 

𝜀𝑦 = 𝑎3𝜉3 + 𝑎2𝜉2 + 𝑎1𝜉 + 𝑎0 (3.17) 

where a0, a1, a2, and a3 are polynomial coefficients approximately equal to 0.0048, 

0.0274, 0.8266 and -2, respectively. In the same way, the curve fitting to the 

relationship of m* and εy in Table 3.2 entails the best-fit exponential εy(m*) function 

as  

𝜀𝑦 = 𝑏1𝑒[𝑏2𝑚∗] (3.18) 

where b1=0.00234 and b2=0.228.  
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Figure 3.3: Comparison of numerical and experimental [76] cross-flow amplitudes with  = 0.006 

and f*=1: (a) m*=2.36 with increasing () and decreasing () Vr; (b) varied m*; squares denote 

experimental results associated with numerical results (lines) by same colors; dashed lines denote 

response jumps. 
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3.2.3 Model calibration through experimental results with variable m*ξ 

In the third scenario, both m* and  are simply combined as m* and the 

relationship of m* and εy taking into account the information from both Tables 3.1 

and 3.2 can be described by the best-fit Gaussian εy(m*) function expressed as  

𝜀𝑦 = 𝑐1𝑒
−[

𝑚∗𝜉−𝑐2
𝑐3

]
2

+ 𝑐4𝑒
−[

𝑚∗𝜉−𝑐5
𝑐6

]
2

 
(3.19) 

where c1=0.0366, c2=0.0762, c3=0.02046, c4=0.02995, c5=1.464 and c6=1.103. 

The above nonlinear functions enable us to capture the dependence of VIV on m* 

(Eq. 3.17),  (Eq. 3.18) and m* (Eq. 3.19) through the wake empirical coefficient εy.  

 

3.2.4 Identification of the empirical relation proposed for εy 

To validate the above functions and identify which of them will be utilised in 

the subsequent studies, we next apply Eqs. (3.17-19) along with Eqs. (3.9-12) to 

simulate 2DOF VIV responses of a recent experimental model [9] which considered 

f* = 1 with two measurement sets: (i) m* = 2.6 and  = 0.0025, (ii) m* = 7 and  = 

0.0007. The obtained experimental Ay/D (squares) are plotted against the numerically 

predicted ones (lines) in Figures 3.4 (a) (case i) and 3.4 (b) (case ii). The 

corresponding values of εy(), εy(m*) and εy(m*) are 0.0048, 0.0042 and 0.0052 in 

Figure 3.4 (a), whereas they are 0.0048, 0.0116 and 0.0052 in Figure 3.4 (b), 

respectively. Note that these εy values are much smaller than 0.3 given in Facchinetti 

et al. [66]. Overall, a good agreement between experimental results and numerical 

predictions based on three different functions is found in the higher mass-damping 

(m* = 0.0064) case (Figure 3.4 (a)), showing both the response jumps and overall 

amplitude (initial, upper and lower) branches [9]. However, in the lower mass-

damping (m* = 0.0048) case (Figure 3.4 (b)), discrepancies in maximum Ay/D 

between experimental and numerical results are remarkable when the latter are based 

on εy() and εy(m*) functions owing to their relevant εy values being comparable to 

0.0048 and 0.0052, respectively. Based on these observations, the εy(m*) function 

based on Eq. (3.18) is preferably used in the following parametric investigations. 
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Figure 3.4: Comparison of numerical (lines) and experimental [9] (squares) cross-flow amplitudes by 

using the derived εy functions depending on mass εy(m*), damping εy(ξ) and mass-damping εy(m*ξ): 

(a) m*=2.6, ξ = 0.0025, f*=1; and (b) m*=7,  = 0.0007, f*=1; dashed lines denote response jumps. 
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3.3 Sensitivity Analysis on Coefficients of the Model 

Coupled CF/IL VIV responses of circular cylinders with different m*,  and f* 

are now parametrically investigated to highlight the effect of key parameters and 

several VIV features. By way of examples, experimental input data [9, 11, 30, 76] 

whose Reynolds numbers are within the sub-critical flow regimes are considered. A 

reference set of coefficients and parameters in the computation is based on εx = 0.3, 

x = y = 12, αx = αy = βx = βy = 0.7, and the εy(m*) function deduced from the 

calibration in Section 3.2. 

 

3.3.1 Influence of geometrical nonlinearities and f* 

The influence of cylinder geometrical nonlinearities is first discussed based on 

the experimental input data of Stappenbelt et al. [76] with low m* = 2.36 and  = 

0.006 (Figure 3.3 (a)). The cubic nonlinearities in Eqs. (3.9) and (3.11) are due to the 

axial stretching (xx
3
, yy

3
) and displacement coupling (xxy

2
, yyx

2
). Numerical 

Ax/D and Ay/D results are plotted in Figures 3.5 and 3.6 for f*=1 and 2, respectively. 

In each f*case, four simulation cases are performed with (i) neglected IL 

nonlinearities x=x=0 (red lines), (ii) neglected CF nonlinearities y = y = 0 (green 

lines), and (iii) neglected IL/CF nonlinearities x = x = y = y = 0 (pink lines), in 

comparison with the full coupling benchmark case (iv) with x = x = y = y = 0.7 

(blue lines) and experimental results (squares). Note that experimental results in the 

f*=2 case are unavailable [76].  

Overall, simulation results reveal how omitting CF and/or IL nonlinearities can 

significantly affect the prediction of Ax/D and Ay/D, depending also on the specified 

f*. With f*=1 and x = x = 0 (red vs. blue lines), the IL nonlinearities have a greater 

effect on Ax/D (Figure 3.5 (a)) than Ay/D (Figure 3.5 (b)). Nevertheless, both bent-to-

right responses still qualitatively exhibit the hardening-spring and jump (dashed 

lines) behaviors as in the full-coupling and experimental cases. When y = y = 0 

(green vs. blue lines), it is worth remarking some quantitative as well as qualitative 

changes. Both Ax/D and Ay/D responses increase and appear nearly vertical with a 

vanishing jump, similar to a typical linear resonant damped response. As a result, the 
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maximum amplitudes (especially Ax/D) shift towards Vr = 5 lower than Vr = 9 in the 

benchmark case. By further imposing x=x=y=y=0 and comparing with the 

previous y=y=0 case (pink vs. green lines), Ay/D appear unchanged whereas Ax/D 

noticeably drop. These highlight how the CF (IL) geometric nonlinearities have a 

significant impact on both x and y (solely x) responses. Overall, the αx = αy = βx = βy = 

0.7 case provides the best fit to experimental results (squares) [76]. 

With f*=2, both IL/CF geometrical nonlinearities now play a significant role in 

both Ax/D (Figure 3.6 (a)) and Ay/D (Figure 3.6 (b)) diagrams which display 

distinctive dynamic scenarios amongst all the compared four cases, quantitatively 

and qualitatively. The maximum Ay/D occurs with the y = y = 0 case whereas the 

maximum Ax/D occurs with the x = x = y = y = 0 case. The combined y- and y-

based terms are found to be solely responsible for a response jump as in Figure 3.5 

(see blue vs. red lines). With respect to the benchmark case, Ax/D (Ay/D) amplitudes 

increase (slightly decrease) when varying the cylinder frequency ratio from f*=1 

(Figure 3.5) to f* = 2 (Figure 3.6), with Ax/D diagram in the f*=1 case displaying an 

emergence of a small first resonant peak around Vr = 2.5 (Figure 3.5 (a)). This is 

possibly due to a primary resonance between the wake and cylinder IL frequencies. 

Overall, the increasing f* enhances the coupling and interaction of Ax/D and Ay/D 

amplitudes through system cubic/quadratic nonlinearities.  

 

3.3.2 Influence of wake-cylinder coupling and IL wake coefficient 

The influence of the acceleration coupling terms (x, y) and the IL wake 

coefficient (εx) (Eqs. 3.10 and 3.12) on the prediction of 2-D VIV response is next 

discussed, again based on the experimental input data of Stappenbelt et al. [76] with 

low m* = 2.36 and  = 0.006. By individually varying (i) y, (ii) x and (iii) εx, a 

comparison of Ax/D and Ay/D with respect to the benchmark case (y = x = 12 and 

εx = 0.3) is displayed in Figures 3.7 (a) and 3.7 (b) (i), Figures 3.7 (c) and 3.7 (d) (ii), 

and Figures 3.7 (e) and 7 (f) (iii), respectively.  
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Figure 3.5: Comparison of numerical (lines) and experimental [76] (squares) amplitudes with 

m*=2.36,  = 0.006 and f*=1, by considering the effect of geometrical nonlinear terms: (a) Ax/D and 

(b) Ay/D; dashed lines denote response jumps. 
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Figure 3.6: Effect of geometrical nonlinear terms based on experimental input data of [76] with 

m*=2.36,  = 0.006 and f*=2: (a) Ax/D and (b) Ay/D; dashed lines denote response jumps. 

As y increases, it can be seen in Figures 3.7 (a) and 3.7 (b) that overall 

amplitudes become greater, widening the associated lock-in ranges. This highlights a 

role played by the CF acceleration coupling term in Eq. (3.12). On the contrary, the 

variation of x has a negligible effect on 2DOF amplitudes as shown in Figures 3.7 

(c) and 3.7 (d). This may be attributed to the small Ax/D and, correspondingly, the 

negligible contribution of cylinder IL accelerations through Eq. (3.10).  
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Figure 3.7: Comparison of numerical (lines) and experimental [76] (squares) amplitudes with 

m*=2.36,  = 0.006 and f*=1, by considering the effect of wake-cylinder coupling terms and in-line 

wake coefficient: (a) Ax/D and (b) Ay/D for varied y, (c) Ax/D and (d) Ay/D for varied x, (e) Ax/D and 

(f) Ay/D for varied x; dashed lines denote response jumps. 
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With regard to the varying εx, a noticeable feature should be mentioned via 

Figure 3.7 (e). In particular, the numerical model predicts two resonant peaks in the 

IL amplitude diagram (Figure 3.7 (e)) as in Figures 3.5 (a), 3.7 (a) and 3.7 (c), with 

the first resonant peak occurring at a low reduced velocity range (2 < Vr < 4) and 

increasing with decreasing εx. The first and second peaks in Figure 3.7 (e) are 

reminiscent of the second and third lock-in ranges of IL oscillations, respectively, 

with the asymmetric vortex shedding in the cylinder wake [9, 52]. As it can be seen 

in this figure, variations of εx influence the behaviour of the system while the 

cylinder oscillates in the second IL lock-in range. Figure 3.7(e) also illustrates that εx 

with highest order of magnitude (εx=3) results in irregularities in the amplitude 

response in second IL lock-in range. This is mainly due to the fact that such vigorous 

increase of εx makes the dynamical system of Eqs. (3.9-3.12) disordered. And, since 

εx is mainly influential when 2<Vr<4, such perturbation appears in the second IL 

lock-in range. Based on some other trial simulations (not shown herein), it has been 

found that such first peak would disappear if the IL wake frequency in Eq. (3.10) was 

set equal to the CF wake frequency in Eq. (3.12). As for the main 2DOF lock-in 

range (4 < Vr < 10) [9], numerical results in Figures 3.7 (e) and 3.7 (f) show a small 

εx effect on Ax/D and Ay/D. By comparing overall numerical and experimental results 

in Figures 3.5-7, the reference set of coefficients x = y = 12, εx = 0.3 and 

parameters x=x=y=y=0.7 is the preferred option to be assumed in subsequent 

studies. 

Table 3.2 summarises the potential effect of x, y, x and y appearing in the 

wake Eqs. (3.10 and 3.12). It can be seen that both y and y have a high impact on 

CF/IL VIV predictions, possibly owing to the associated stronger wake strength and 

higher amplitude in the CF direction. In contrast, both main CF/IL responses are 

marginally influenced by a variation of x and x (Figures 3.7 (c-f)). Nevertheless, 

the tuning of x could have a high impact on IL VIV with respect to its first-peak 

resonance (Figures 3.7 (e)). Empirical functions for y have been established (Eqs. 

3.17-19) depending on m* and/or , and it is herein recommended to vary y in the 

numerical prediction and perform a sensitivity analysis when using the proposed 

nonlinear wake-structure oscillators. Of course, new experimental tests, calibrations 
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and validations are needed in order to improve Eqs. (3.17-19) and capture the 

influence of other important parameters such as f* and Reynolds number, in terms of 

both quantitative and qualitative aspects of coupled CF/IL VIV. 

Table 3.3: Potential effect of empirical coefficients on 2DOF VIV response prediction. 

Coefficients Potential Effect 

Cross-flow VIV In-line VIV 

x Low High 

y High High 

x Low Low 

y High High 

 

3.4 Prediction of IL Oscillations 

The proposed wake-structure oscillator model is now used to predict and 

investigate the effect of m* and  on the IL response. In accordance with CF 

responses shown in Figures 3.2 (a) and 3.2 (b) (with varying ), Figures 3.3 (a) and 

3.3 (b) (with varying m*), Figures 3.4 (a) and 3.4 (b) (with varying m*), the 

predicted IL responses in the f*= 1 case are now displayed against experimental 

results of [30], [76] and [9] in Figures 3.8 (a) (= 0.002, 0.02), 3.8 (b) (m* = 2.36, 

3.68) and 3.8 (c) (m*  0.0064, 0.0048), respectively.  

Overall, there is a good agreement between numerical and experimental results 

which display two coexisting resonant peaks and maximum Ax/D values about 0.2-

0.3 being much smaller than the maximum Ay/D in the range of 1.2-1.5. However, 

for system with low = 0.002, the numerical model in Figure 3.8 (a) further reveals a 

third intermediate peak with the highest amplitude (Vr = 6) (see also the 

corresponding orbital motion in Figure 3.16 (b)). The IL amplitudes as well as 

associated lock-in ranges are seen to decrease with increasing  (Figure 3.8 (a)), m* 

(Figure 3.8 (b)) and m* (Figure 3.8 (c)), in the same way as the CF amplitudes 

(Figures 3.2-4). 
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Figure 3.8: Comparison of numerical (lines) and experimental (symbols) in-line amplitudes with (a) 

m*=5.4 and f*=1 [30], (b)  = 0.006 and f*=1 [76], (c) varied m* and f*=1 [9]: experimental results 

associated with numerical results by same colors; dashed lines denote response jumps. 

3.5 Influence of Fluid-Structure Parameters 

In this section, through numerical predictions of the semi-empirical model of 

Eqs. (3.9-12), the effects of influential physical parameters, including m*, ξ and m*ξ, 

at different Vr and f* are studied and discussed. 

3.5.1 Effects of m*ξ parameter and discussion 

The influence of mass-damping on the 2DOF VIV response is demonstrated 

via the so-called Griffin plots. As it was explained in Chapter 2, over the last three 

decades, researchers had a discussion on whether the combined mass-damping, viz. 



 

98 
 

the Skop–Griffin parameter SG=2π
3
St

2
m* [6] could reasonably collapse different 

peak (typically CF) amplitude data of different cylinders in the Griffin plots [36]. For 

the 2DOF VIV study, observations in [9, 30] and Section 3.3 reveal the response 

dependence on both m* and . To further justify this, experimental input data of [30], 

[76] and [11] are considered; the associated maximum attainable (Aym/D) and IL 

(Axm/D) amplitudes numerically (solid lines) and experimentally (symbols) obtained 

are compared in Figures 3.9 (a) and 3.9 (b), respectively. In addition, the associated 

reduced velocities at which Aym/D and Axm/D take place (Vrym, Vrxm) are also drawn 

vs. SG in Figures 3.9 (c) and 3.9 (d), respectively. Note that, for each given m* = 2.5 

and 7, SG is varied by altering , and both f* =1 and 2 are considered. Experimental 

results of [11] were based on mx*  my* (in the range of 3.3-5.7) and x
  y (in the 

range of 1.1-6.2 %), with f* ranging from 1 to 1.90, those of [30] were based on m* 

= 5.4 (varying ) and f* = 1, and those of [76] were based on  = 0.006 (varying m*) 

and f* = 1. 

It can be seen in Figures 3.9 (a) and 3.9 (b) that, for a specific SG, numerical 

results based on different fixed m* and corresponding  are different. Both Aym/D and 

Axm/D decrease with increasing SG (or ), with f* = 2 (f* = 1) case entailing greater 

IL (CF) responses for both assigned m*. The difference in Axm/D results between f* = 

1 and 2 cases is quite outstanding particularly for the lower m*=2.5: these emphasize 

a combined role played by both f* and m* captured by the simulation model. The 

predicted Axm/D may reach a large value of 0.7 for a low SG with f* = 2. Apart from 

Aym/D and Axm/D, f* also does affect their corresponding Vrym and Vrxm as shown in 

Figures 3.9 (c) and 3.9 (d), respectively. While Vrym of Aym/D and Vrxm of Axm/D in the 

case of m* = 2.5 and f* = 1 are comparable, those in other cases appear significantly 

different. The increasing f* tends to reduce Vrym for both m*. However, Vrxm increases 

(decreases) as f* increases for m* = 7 (2.5) due to the greater first-peak (second-

peak) Axm/D, see, e.g., in the case of m* = 7 vs. 2.6 Figure 3.8 (c). As for the 

experimental comparison, the associated Aym/D and Axm/D, as well as Vrym and Vrxm, 

also decrease with increasing SG either due to the increasing  [30] or m* [76], 

except some cases in Figures 3.9 (b), 3.9 (c) and 3.9 (d) where mx*  my* and x
  

y [11].   
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Figure 3.9: Comparison of numerical (lines) and experimental (symbols) maximum attainable 

amplitudes (a, b) and corresponding reduced velocities (c, d) versus SG for given m*=2.5 and 7, f*=1 

and 2: (a) and (b) are so-called Griffin plots. 

3.5.2 Effects of mass ratio 

3.5.2.1 Maximum attainable amplitudes at constant SG 

By paying attention to the effect of m*, a different scenario to show the 

capability of the proposed model in the 2DOF VIV prediction is illustrated in Figure 

3.10 (f*=1) based on two experimental input data of [9] with fixed SG = 0.0064 and 

[76] with variable SG. Experimental results in [9] indicated that, at m* higher than 6, 

the variation of m* does not affect the peak amplitudes in both directions. Our 

numerical results agree with this but only for the IL response shown in Figure 3.10 

(b). For the CF response shown in Figure 3.10 (a), numerical and experimental [9] 

results are in good agreement within the range 2 < m* < 6 showing the decreasing 
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Aym/D with increasing m*; for m* > 6, the former yet continues predicting the 

decreasing Aym/D, instead of a nearly-constant Aym/D by [9]. Although such 

difference occurs at high m*, both numerical Aym/D and experimental results of [76] 

are in good quantitative agreement throughout the considered m* range. As for 

Axm/D, Figure 3.10 (b) shows a good correspondence of overall numerical-

experimental comparisons. 

 

Figure 3.10: Comparison of numerical and experimental maximum attainable (a) cross-flow and (b) 

in-line amplitudes with varying m*. 

3.5.2.2 Combined effects of m* and f*  

To further appreciate the combined effect of m* and f* on the 2DOF VIV, 

Figure 3.11 portrays the amplitudes (Ay/D and Ax/D) vs. varying Vr and m* for a 

given f* = 1 (Figures 3.11 (a) and 3.11(c)) and f* = 2 (Figures 3.11 (b) and 3.11 (d)), 

respectively. The fixed low  = 0.001 is exemplified. It can be summarised that, by 
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decreasing m*, overall Ay/D and Ax/D and associated lock-in ranges increase whereby 

Aym/D and Axm/D occur at higher Vr. With f* = 2, very large Ax/D amplitudes of 

nearly 1.2 are found in a low m* range. This is a precarious circumstance since 

typical marine cylindrical structures have a low mass-damping and their natural 

frequencies could be tuned such that f* = 2 [111]. In essence, as for a very low m* ≈ 

0.5, the model with f* = 1 predicts the unbounded lock-in domain whose Ay/D and 

Ax/D persist throughout the considered Vr range (Figures 3.11 (a) and 3.11 (c)). This 

occurrence of “resonance forever” [27] is in good qualitative agreement with recent 

experimental results [9]. However, Ay/D and Ax/D tend to decline at higher Vr in the 

f*=2 case as shown in Figures 3.11 (b) and 3.11 (d).  

 

Figure 3.11: Three-dimensional plots of (a, b) cross-flow and (c, d) in-line amplitudes with varied m* 

and Vr for given ξ=0.001:  f*=1 (a, c) and f*=2 (b, d). 
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3.5.2.3 Lock-in forever and oscillation frequency function 

In previous section it was shown that when f*=1 the model predicts unbounded 

lock-in ranges at low mass ratios. This lock-in-forever phenomenon is further 

discussed in this section. In so doing, the contour plots of obtained Ay/D and Ax/D are 

displayed as a function of both Vr and m* in Figure 3.12 (a) and 3.12 (b), 

respectively, with the assigned ξx=ξy = 0.001 and f*=1. The onset and the end of the 

synchronization based on the available Y-only VIV experimental data [117] is also 

given in Figure 3.12 with circle symbols. This synchronization boundary corresponds 

to the lower-branch amplitude response: it becomes narrower as m* increases but 

extends to infinity as m* decreasingly approaches the critical value of about 0.54 in 

the case of Y-only VIV [117] and 0.52 in the case of 2DOF VIV [9]. Numerical 

prediction results reveal their good qualitative agreement with experimental results 

since the lower branches of both Ay/D and Ax/D cease to exist at a very low m* (< 

0.5), thereby resulting in an unbound lock-in domain with their extended upper-

branch responses beyond Vr  25. Below the critical mass, the predicted Ay/D and 

Ax/D may achieve a high value greater than 1.8 and 0.75, respectively. On the 

contrary, for high m* > 6, the contribution from Ax/D response is seen to be 

negligible as in, e.g., [76].  

An analytical function to describe the dominant oscillation frequency () at the 

maximum response is now derived by also accounting for the m* effect. To this end, 

first the oscillation frequencies at maximum attainable amplitudes are evaluated via 

Matlab FFT algorithm which performs Discrete Fourier Transformation on the time 

histories of the numerical results. The same algorithm will be utilised in next 

chapters to evaluate dominant frequencies, frequency responses and higher harmonic 

components of the responses. When both Aym/D and Axm/D are simultaneously 

attained, the corresponding values of  and Ω (i.e. Ω=StVr) can be evaluated and 

plotted versus m* as shown by the sub-figure embedded in Figure 3.12 (a). From 

these plots, it can be seen that   Ω, thus such an assumption (i.e. ω=Ω) can be 

made when analytical solutions at the lock-in condition are of interest (e.g. see 

Section 5.2). Consequently, a best-fit function – describing the oscillation frequency 
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at the maximum response of the upper or super-upper branch – may be derived, as a 

function of m*, as 

𝜔 ≈ 1.25√
𝑚∗ + 1

𝑚∗ − 0.52
  

(3.20) 

 

Figure 3.12: Contour plots of (a) Ay/D and (b) Ax/D as functions of m* and Vr compared 

with experimental lock-in ranges (circles); plots of  and  as a function of m* is also 

depicted in (a). 
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The above equation is proposed by taking a form similar to the function given by 

Govardhan and Williamson [117] which described the lower-branch response.  

3.5.2.4 Prediction of wake mode regimes 

Possible description of the vortex shedding modes in the wake of the 

oscillating cylinder is now discussed through the numerically obtained transverse 

responses with varying m*. The contour plots of Ay/D with specified ξx = ξy = 0.001 

and f*=1 (Figure 3.13 (a)) or f*=2 (Figure 3.13 (b)) are drawn as a function of Vr. 

The associated Ax/D plots can be found in Figure 3.11. In Figure 3.13 (a), the free-

vibration Ay/D results are overlaid onto the map of vortex mode regimes produced by 

Morse and Williamson [123] based on a Y-only forced vibration study with a fixed 

Re = 4000. This map has a higher resolution than the pioneering work of Williamson 

and Roshko [45], with 2S denoting “two single vortices” and 2P denoting “two 

vortex pairs”. Note that a small region of the overlapping 2S and 2P modes found in 

[123] is not herein considered. 

In Figure 3.13 (a), it is seen that Ay/D and the associated synchronization 

ranges increase as m* decreases, with a clear vertical jump from the upper (m*>6 and 

Ay/D  1) or super-upper (m*<6 and Ay/D>1) branch to the lower branch when 

increasing Vr. These features are in good qualitative agreement with recent 2DOF 

VIV experimental results [9, 76]. A critical line [123] which divides between the 2S 

and 2P mode regimes passes through the free-vibration response, revealing a reduced 

Vr range of the 2S mode as m* (Ay/D) is decreased (increased). For Ay/D  1, the 

vortex mode of the upper branch may be 2P and, for Ay/D>1, the vortex mode of the 

supper-upper branch may be either 2P or 2T (two of vortex triplets) [9]. On the other 

hand, the P+S mode – which has been defined from the forced-vibration tests [23] – 

does not correspond to any of the predicted free-vibration amplitudes. 

With respect to the jump phenomenon, two new critical (dotted blue) lines are 

herein proposed in Figure 3.13 (a) (f*=1) and 3.13 (b) (f*=2), one corresponding to 

the amplitude response just before the jump and the other joining the onset of the 

lower-branch response, in all m* cases. The region between these two curves which 

have no VIV responses is herein suggested to be a non-synchronized wake mode 

pattern in the case of 2DOF free vibration. As f* is increased, it is demonstrated in 
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Figure 3.13 that the no-synchronization region becomes narrower as m* is decreased. 

This highlights the coalescence of the super-upper and lower branches towards the 

critical m* where the jump disappears, leading to the so-called ‘resonance forever’ 

defined in [27]. Nevertheless, more relevant experimental and flow visualization 

studies are needed to be carried out and confirm this observation. 

 

Figure 3.13: Contour plots of Ay/D as functions of m* and Vr representing the no-

synchronisation regions in the case of (a) f*=1 and (b) f*=2; maps of vortex-shedding 

patterns of Morse and Williamson [123] are also overlaid in (a). 
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3.5.3 Effects of damping ratio 

It is now interesting to highlight the combined effect of damping and frequency 

ratio through Figure 3.14 which plots Ax/D based on m*=2.5 (3.14 (a), 3.14 (c)) and 7 

(3.14 (b), 3.14 (d)), and f*=1 (3.14 (a), 3.14 (b)) and 2 (3.14 (c), 3.14 (d)).  

It is well known that, for f*=1, CF VIV response (Ay/D) decreases as m* or  

increases. This is in agreement with Figures 3.14 (a) and 3.14 (b) for Ax/D. This 

effect seems to be more evident in the second-peak (or main lock-in) range than in 

the first-peak range. For f*=2, overall Ax/D amplitudes in Figures 3.14 (c) and 3.14 

(d) become larger than those in Figures 3.14 (a) and 3.14 (b), respectively, in 

agreement with results presented in section 3.5.2 with varying m* for a given . As 

for Ay/D, results are found to be less influenced by the increasing f*. 

 

Figure 3.14: Effect of mass ratio (m*), damping ratio () and natural frequency ratio (f*). 
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3.6 2-D Trajectories and Figures-of-eight 

It is now of theoretical and practical importance to construct a 2-D (x-y) 

trajectory describing the relationship of cylinder IL/CF oscillations based on the 

proposed numerical model. In so doing, VIV simulations within the last ten cycles 

yielding steady Aym/D and Axm/D amplitudes are considered for specific Vr values in 

the neighborhood of hysteresis.  

3.6.1 Numerical terms influencing Fo8 trajectories 

Corresponding to Figures 3.3 (a) and 3.8 (b) based on the input data of [76] 

with m* = 2.36,  = 0.006 and f* = 1, the 2-D orbital motions in the cases of 

increasing (blue lines) and decreasing (red lines) flow velocities are drawn in Figures 

3.15 (a), 3.15 (b) and 3.15 (c) for Vr = 8, 9.25 and 9.45, respectively. Overall, the 

trajectories exhibit the so-called figures of eight highlighting a tuned 2:1 resonance 

condition of IL/CF oscillating frequencies although inputting f* = 1. For a specific 

Vr, depending on the initial conditions, identical (Figure 3.15 (a)) or two (Figures 

3.15 (b) and 3.15 (c)) figures of eight may coexist in different increasing/decreasing 

Vr cases and with phase differences.It is now worth investigating which numerical 

terms play an influential role in the figure-8 appearance. Two cases are considered 

for Vr = 9.45 in comparison with the increasing flow case in Figure 3.15 (c): firstly, 

the lift and drag wake frequencies in Eqs. (3.10) and (3.12) are assumed to be equal 

depending on the Strouhal frequency; secondly, the relative velocities between the 

flow and the cylinder are discarded thereby neglecting the quadratic nonlinear terms 

in the right-hand side of Eqs. (3.9) and (3.11). The associated simulation results are 

plotted with solid and dotted lines in Figure 3.15 (d), respectively. It can be seen that 

both quantitative and qualitative discrepancies occur when neglecting the quadratic 

nonlinearities: the IL (CF) amplitudes considerably diminish (slightly increase) 

without showing the Fo8 feature. On the other hand, a similar Fo8 remains even 

though the wake IL frequency has been altered. Other simulation Vr cases also agree 

with these observations. This highlights that as the 2:1 resonance and thus the figure 

of eight is generally associated with quadratic nonlinearities, neglecting the latter 

(𝑝�̇�, 𝑞�̇�) – which capture the wake-cylinder interactions – can lead to the uncoupled 

IL/CF VIV result. 
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Figure 3.15: 2-D trajectories based on experimental input data of [76] with m* = 2.36,  = 0.006 and 

f* = 1: (a) Vr = 8, (b) Vr = 9.25, (c) Vr =9.45, with blue (red) lines denoting increasing (decreasing) Vr 

case; (d) Vr = 9.45 with assumed equal cross-flow/in-line wake frequencies (blue lines) and neglected 

quadratic nonlinear terms (dotted lines). 

3.6.2 Orbital motion with f* effect 

The influence of f* on the x-y trajectories is illustrated in Figure 3.16 based on 

the experimental input data of [30] with m* = 5.4 and  = 0.002 (Figures 3.2 (a) and 

3.8 (a)). Simulation results with Vr = 4.5, 6, 7 and 7.6 are visualized in Figure 3.16 

(a-d), respectively, with six successive f* = 1, 1.2, 1.4, 1.6, 1.8 and 2. It can be seen 

that, regardless of f*, most of the x-y trajectories entail figure-8 orbits. They 

distinguish themselves depending on the corresponding IL/CF amplitudes, initial 
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conditions, relative phases and the nearness or tuning of 2:1 resonant oscillating 

frequencies. These dual resonances confirm some recent experimental 2-D VIV 

results in [11, 77]. The non-figure-8 trajectories are also found in some cases, for 

instance in Figure 3.16 (b) with Vr = 6 and f* = 1 or Figure 3.16 (d) with Vr = 7.6 and 

f* = 1.2. Recently in [124], elliptic x-y trajectories have been found and explained to 

be subject to a strong structural coupling. 

 

Figure 3.16: 2-D trajectories based on experimental input data of [30] with m* = 5.4,  = 0.002 and 

various f*: (a) Vr = 4.5, (b) Vr = 6, (c) Vr =7; (d) Vr =7.6. 

The Fo8 trajectory of x-y motion takes place as a result of a dual 2:1 resonance 

and its pattern may change with a variable x-y phase difference as Vr is varied. This 

implies a differing fluid-structure interaction or energy transfer mechanism between 

the oscillating cylinder and the hydrodynamic forces. Figure 3.17 illustrates the 
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normalized x-y phase difference xy = (x-2y)/ with 0 ≤ xy < 2 – as well as the 

corresponding Fo8 – as a function of Vr. To also highlight the effect of f*, numerical 

and experimental [10] results with f* = 1 and f*  2 are compared. Note that the 

associated m* and  values are different: numerical results are based on mx*=my* = 

1.4, ξx = 0.010 and ξy=0.016 (for both f* = 1 and 2) whereas experimental results are 

based on mx*= 3.3, my* = 3.8, and ξx=ξy=0.022 (for f* = 1), and mx*= 5, my* = 5.7, 

ξx=0.025 and ξy=0.062 (for f*2). To distinguish different orbital motions, the 

acronym CCW or CW is also given within 3 regions in Figure 3.17 to specify the 

counterclockwise or clockwise Fo8 path, respectively, following the motion of the 

top part of the figure of eight [10].  

 

Figure 3.17: Comparison of numerical and experimental [10] x-y phase differences θxy 

with f*=1 and 2 and associated figures of eight: CCW (CW) denotes counter-clockwise 

(clockwise) orbit. 
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 With increasing Vr, Figure 3.17 exhibits a good qualitative agreement 

between numerical (lines with symbols) and experimental (symbols) xy results, by 

also showing the influence of f*. In the f*=1 case, there is a smooth transition from a 

CW figure of eight (1 < xy < 1.5) to a CCW one (xy > 1.5) around Vr  7 (see the 

line with squares) although the tips of all the Fo8 trajectories face towards 

downstream throughout the Vr range. A crescent-shaped orbit with xy = 1.5 occurs at 

Vr  7. On the other hand, in the f*=2 case, a sudden jump of xy (see the line with 

circles) occurs numerically at Vr  6.5 or experimentally at Vr 7.2 while maintaining 

the CCW pattern (xy < 0.5 or xy > 1.5). Such jump of xy leads to a change in the 

Fo8 lobes from pointing upstream (xy < 0.5) to downstream (xy > 1.5). Overall, the 

comparisons shown in Figure 3.17 highlight the capability of the numerical model in 

qualitatively predicting the variable CW/CCW Fo8 patterns and their transitions with 

varying Vr and f* along with the validation of obtained x and y to be used in the 

subsequent studies in following chapters. 

3.7 Conclusions 

An advanced model for predicting a 2DOF coupled CF/IL VIV of a flexibly-

mounted circular cylinder in a uniform steady flow has been developed, calibrated 

and validated. The ensuing dynamical system is based on double Duffing-van der Pol 

(structural-wake) oscillators with the two structural equations containing 

cubic/quadratic nonlinear terms. The cubic nonlinearities describe the geometrical 

coupling of CF/IL displacements excited by hydrodynamic lift/drag forces whereas 

the quadratic nonlinearities allow the wake-cylinder interactions resulting from the 

relative velocities of the incoming flow and the oscillating cylinder. Some wake 

empirical coefficients have been identified based on calibration with experimental 

results in the literature, and new analytical functions accounting for the dependence 

of VIV on a physical mass and/or damping parameter have been established. These 

relationships would be useful for a future numerical implementation and 

experimental VIV analysis. The derived low-order model captures several 

fundamental VIV characteristics including 2DOF lock-in, hysteresis phenomena and 

Fo8 trajectories tracing the periodically coupled IL/CF oscillations with their tuned 

two-to-one resonant frequencies. These figures of eight appear regardless of the 
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specified ratio of cylinder IL to CF natural frequencies. By making use of a newly-

derived empirical formula, the predicted CF/IL VIV amplitudes and associated lock-

in ranges compare well with several experiment results for cylinders with low/high 

mass or damping ratios, by also revealing the occurrence of critical mass whereby 

maximum amplitudes exhibit the unbounded lock-in scenario. Overall, the 

parametric investigations highlight the important effect of structural geometrical 

nonlinearities through new displacement coupling terms and the IL-to-CF natural 

frequency ratio of the freely-oscillating cylinder.  
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Chapter 4 

Experimental Investigations of Coupled 

CF/IL VIV of Rigid Cylinders 

Slender offshore structures possess multiple natural frequencies in different 

directions which can lead to different resonance conditions when undergoing vortex-

induced vibration (VIV). This chapter presents an experimental and numerical 

investigation of a two-degree-of-freedom VIV of a flexibly mounted circular 

cylinder with variable IL-to-CF natural frequency ratio. A mechanical spring-

cylinder system, achieving a low equivalent mass ratio in both IL and CF directions, 

is tested in a water towing tank and subject to a uniform steady flow in a sub-critical 

Reynolds number range of about 2×10
3
-5×10

4
. Experimental results for six 

measurement datasets are compared with numerical results in terms of response 

amplitudes, lock-in ranges, oscillation frequencies, time-varying trajectories and 

phase differences of CF/IL motions. Moreover, comparisons of the newly-obtained 

and published experimental results are carried out and discussed. Various patterns of 

figure-of-eight orbital motions associated with dual two-to-one resonances are 

observed experimentally as well as numerically. 
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4.1 Experimental Arrangement and Test Facility 

For further validation of the model proposed in Chapter 3 and more 

investigations on less-studied aspects of combined CF/IL VIV of rigid cylinders, e.g. 

the effects of f*, a set of experimental studies are conducted. These experiments are 

performed in the towing tank at the Kelvin Hydrodynamics Laboratory (KHL) of the 

University of Strathclyde, Glasgow, UK. The characteristics of this experimental 

facility are explained as follows. 

4.1.1 Towing tank and its components 

As it was mentioned before, the experiment is conducted in a towing tank 

which simulates the effects of approaching fluid flow via towing the structure of 

interest in a tank filled with water. The towing tank of the University of Strathclyde 

is one of the leading facilities of its kind in the UK with a rich history of performing 

accurate industrial and academic experimental investigations. A schematic 

representation of the tank is illustrated in Figure 4.1(a). As it can be seen in this 

figure, the towing tank consists of four major parts of the (i) water tank (ii) carriage, 

(iii) wavemaker and (iv) beach.  

The water tank has a length of 76 m and is 4.6 m wide. The depth of water, 

depending on the test requirements can vary from 0.5-2.3 m. The tank is filled with 

water with a normal temperature of 20⁰C. Figure 4.1(b) shows a wide view of the 

water tank. As shown in Figure 4.1(c), the carriage is mounted on the water tank. 

This self-propelled carriage can provide towing speeds up to 4 m/s and its 

acceleration can be increased up to 1 m/s
2
. To simulate unsteady hydrodynamic 

loadings, high-acceleration oscillatory movements or complex flow velocity profiles, 

a sub-carriage is mounted and implemented onto the carriage which provides such 

condition. In this experimental study, carriage velocities up to 0.6 m/s are 

considered.  

The KHL is equipped with a state-of-art wavemaker which consists of four 

paddles which can be adjusted vertically. The wavemaker can generate regular and 

random waves of up to 0.6m height. Since this thesis deals with VIV of circular 

cylinders subjected to uniform flows, the wavemaker is not applied in this test. 
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Figure 4.1(d) shows four paddles of the wavemaker. The beach is primarily designed 

to absorb and prevent reflections of generated waves. To allow conducting 

experiments in different water depths, the beach is vertically moveable. Figure 4.1(e) 

shows the wave-absorbing beach of the KHL. 

 

Figure 4.1: Towing tank of the Kelvin Hydrodynamic Laboratory (a) schematic representation, (b) 

water tank, (c) carriage, (d) wavemaker and (e) beach of the towing tank. 



 

116 
 

4.1.2 Experimental test rig 

A new experimental test rig for the study of 2DOF VIV of a flexibly mounted, 

smooth and rigid circular cylinder subject to a uniform steady flow has been 

developed for use in the KHL towing tank. The design of this rig was motivated by a 

recent collaborative work conducted at the University of Sao Paulo, Brazil [125]. As 

the schematic drawing of Figure 4.2 shows, the rig consists of a long pendulum 

which via a low-friction universal joint is suspended from a stiff metal frame and a 

rigid cylinder is attached to its other end. Furthermore, four linear springs (two in IL 

and two in CF direction) connect the pendulum to the frame and provide restoring 

forces for the system. More detailed specification of each of these parts is described 

in following. 

4.1.2.1 Test cylinder 

Figure 4.3 shows the test cylinder adopted in the present study. This cylinder is 

made of thick-walled cast nylon tube, having an outer diameter (D) of 114 mm, a 

fully submerged length (Lc) of 1.037 m and a dry weight of 10.85 kg. Commonly, to 

prevent the effects of end conditions and maintain the two-dimensionality of vortex-

shedding, end-plates are attached to test cylinders. However, for configurations such 

as the one used in this study, the bottom of the tank can be considered as a very long 

end-plate and no end-plates are attached to the test cylinder [30, 76, 125]. Moreover, 

in this experiment, the lower end of the cylinder is located 50 mm from the bottom of 

the tank, and the upper end is located 50 mm beneath the static free surface. Such 

lower end condition was deemed to produce a negligible effect on the peak 

amplitudes [126]. Finally, the aspect ratio (Lc/D) of the cylinder is about 9 being 

comparable to Lc/D in some recent studies [9, 76, 127]. 

4.1.2.2 Long aluminium pendulum 

The upper end of the test cylinder is connected to a long aluminium pendulum 

with the total length of about 4.1 m (Lp) and weight of 13.25 kg. The total length of 

the system (Lp+Lc) is chosen to minimize the pendulum motion effects. In other 

words, the pendulum effect on the uniformity of the local flow field is believed to be 

insignificant since the maximum roll and pitch angles of the cylinder about the 

universal joint were found to be only about 2 degrees in all tests. Figures 4.4(a-d) 



 

117 
 

depict the aluminium pendulum used in this experimental study and its lower and 

upper ends connected to the test cylinder and the universal joint, respectively. The 

universal joint will allow the pendulum to undertake low-damping combined CF/IL 

oscillations. 

 

Figure 4.2: Schematic representation of the test rig. 
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4.1.2.3 Extra masses 

To change the mass ratio of the model, lumped masses are attached to the 

pendulum. These masses are mounted on the pendulum close to the test cylinder to 

produce maximum moment of inertia and above the water surface to avoid 

unexpected contact with water. Figure 4.5 shows how these masses are installed. In 

this study, lumped masses of the total weight of 30kg are added to the system whose 

mass ratio along with those of other tests will be shown in next Sections. 

 

Figure 4.3: Test cylinder from different angles. 
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Figure 4.4: Aluminium pendulum; (a) panoramic photo of the aluminium pendulum hanged from the 

supporting frame; (b) aluminium pendulum (horizontal) compared to the test cylinder (vertical); (c) 

bottom end of the pendulum; (d) top end of the pendulum. 
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Figure 4.5: (a) Extra masses; (b) attaching extra masses to the pendulum. 

4.1.2.4. Linear tensile coil springs 

The main objective of this experimental study is to study the effects of f* 

variations on 2DOF VIV of an elastically mounted rigid cylinder. Variations of f* are 

achieved through the utilisation of different sets of spring. Figure 4.6 shows the 

springs used in this study and their position on the test rig. These springs are selected 

in a way that their stiffness satisfies the desired f*. To this end, first, using Newton’s 

second law of motion and after basic calculations [128], the natural frequency of a 

system similar to the one depicted in Figure 4.2 is analytically obtained as: 
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Figure 4.6: (a) Tensile springs; (b) springs attached to the pendulum. 
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(4.2) 

where Ls, measured from the universal joint, is the location in which springs are 

attached to the pendulum, mp the total mass of the pendulum, mc the mass of the test 

cylinder, Lx and Ly the free length of the springs, and Hx and Hy are the distances 

between centre of vertical pendulum and the wall where the springs are attached to. 

Then, knowing the desired range of the reduced velocity and f*, and via Eqs. (4.1) 

and (4.2), the stiffness of the springs are calculated. The mechanical system is 

restrained to allow the cylinder to oscillate freely with arbitrary amplitudes in both IL 

(X) and CF (Y) directions by using two pairs of coil springs (with lengths of about 50 

cm) rearranged perpendicularly in the horizontal X-Y plane. Each spring obeys 

Hooke’s law (i.e. with a linear constant stiffness); nevertheless, as the cylinder 

oscillates two-directionally due to VIV, the assembly creates the geometrically 

nonlinear coupling of CF/IL displacements. These non-linear effects were accounted 

for in the numerical prediction model presented in Chapter 3 and Eq. (1) and (2).  

To verify Eq. (4.1) and (4.2) sets of free-decay tests are conducted in air while 

different sets of springs are utilised. Figure 4.16 shows the time histories of these test 

with kx=ky=74 N/m (Figures 4.7(a) and (b)), kx=ky=352 N/m (Figures 4.7(c) and (d)) 

and kx=352, ky=74 N/m (Figures 4.7(e) and (f)) and the measured and calculated 

natural frequencies are reported in each figure. As these figures illustrate, in all cases 

the natural frequency is predicted with less than 3.5% error.  

4.1.2.5 Mean IL position-adjusting mechanism 

When the cylinder is towed, the mean drag causes a mean IL displacement of the 

cylinder in the flow direction; however, only the fluctuating displacements are of 

main interest. In order that the mean position of the cylinder for the measurements is 

vertical in the IL direction to avoid the possible cylinder inclination effect on VIV, 

this displacement was initially adjusted by pre-tensioning the upstream IL spring, 

such that the cylinder mean position, remains nearly vertical during the VIV test. 

Figure 4.8 shows the mechanism used for adjusting mean IL position of the 

pendulum. 
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Figure 4.7: Time histories of free decay tests in air when (a) and (b) kx=ky=74 N/m, (c) and (d) 

kx=ky=352 N/m, (e) and (f) kx=352, ky=74 N/m. 

4.1.3 Data acquisition  

Measurement of cylinder motions was carried out using a Qualisys optical 

motion capture system with a fixed sampling frequency of 137 Hz. Four infrared 

cameras were used to identify and optimize the three-dimensional positions of four 

reflective markers mounted on the pendulum, and calibration was performed with an 

average residual across all cameras of less than 0.3 mm. Key outputs were the roll 

and pitch angles with a degree resolution of 0.001. Figure 4.9 shows the location of 

these cameras on the rig and also the reflective balls which are used for motion 

tracking. In contrast with traditional displacement measurement instruments, the non-

contact nature of this system ensures that no unwanted additional damping or 

restoring forces are applied to the pendulum. Note that establishing the systematic 

uncertainty of measurements of the optical motion-tracking systems is more 

challenging than the contact-based measurements since this uncertainty depends 

upon the position and orientation of both the cameras and the reflective markers.  
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Figure 4.8: Mean IL position adjustment mechanism. 
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Figure 4.9: The Qualisys optical motion capture system; one of the cameras and the reflective balls 

can be seen in the photo. 

4.1.4 Free-decay tests in water 

Each VIV test was initiated with a series of free decay tests in calm water were 

performed to identify fnx, fny and the associated damping ratios (x, y) in both X and 

Y directions. Small initial displacements were assigned independently in each X or Y 

direction to ensure that no geometric nonlinear coupling took place. Moreover, each 

test was repeated three times to ensure repeatability and reliability of measured 

signals.  fnx and fny were obtained from the free damped responses whose maximum 

amplitudes were about 0.1 of the diameter in all datasets. The damping obtained from 
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free-decay test is the total damping of the system which contains both structural and 

fluid added damping.  The representative x and y values have been evaluated by 

subtracting the fluid damping component ξf from the total damping of the system. To 

evaluate fluid added damping in still water, Eq. (8.69) of [16] is applied: 

𝜉𝑓 =
𝜌𝐷2

4𝜋(𝑚 + 𝑚𝑓)

8

3
𝐶𝐷

𝐴

𝐷
 

(4.3) 

 The results of these tests (labeled as KHL1-KHL6) are summarised in Table 

4.1. The average value of the results presented in Table 4.1 will be used as the 

structural damping in numerical modelling which will be explained in following 

Sections.  

Table 4.1: Data from KHL free-decay tests in still water. 

Dataset fny and fnx Total damping in water fy and fx y and x 

Y X Y X Y X Y X 

 

KHL1 

 

0.31 

 

0.31 

0.009 0.045 0.003 0.003 0.006 0.042 

0.012 0.050 0.003 0.003 0.010 0.047 

0.012 0.033 0.003 0.003 0.010 0.029 

 

KHL2 

 

0.218 

 

0.291 

0.016 0.014 0.003 0.003 0.013 0.011 

0.018 0.013 0.003 0.003 0.015 0.010 

0.018 0.013 0.003 0.003 0.015 0.010 

 

KHL3 

 

0.262 

 

0.419 

0.017 0.015 0.003 0.003 0.014 0.013 

0.019 0.013 0.003 0.003 0.016 0.010 

0.019 0.013 0.003 0.003 0.016 0.010 

 

KHL4 

 

0.203 

 

0.376 

0.018 0.016 0.003 0.003 0.016 0.013 

0.020 0.015 0.003 0.003 0.018 0.012 

0.020 0.015 0.003 0.003 0.018 0.012 

 

KHL5 

 

0.192 

 

0.192 

0.039 0.029 0.002 0.002 0.036 0.027 

0.022 0.033 0.002 0.002 0.020 0.031 

0.022 0.033 0.002 0.002 0.020 0.031 

 

KHL6 

 

0.223 

 

0.223 

0.018 0.037 0.005 0.006 0.013 0.031 

0.020 0.029 0.005 0.006 0.015 0.023 

0.020 0.024 0.005 0.006 0.015 0.018 

In addition to free decay tests in water, as it was mentioned earlier in this 

chapter, free decay tests in air were conducted on the experimental apparatus with 

and without the cylinder-spring system and it was found to be lightly damped at 

around 0.5 % and 0.2 % of the critical damping, respectively. 
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4.1.5 VIV tests investigating effects of f* 

Following the preliminary free decay tests which provided natural frequencies 

and damping of the system in air and water, self-excited VIV experiments were 

conducted for different f* and m*. Table 4.2 summarises test matrix of these 

experiments in which two mass ratios (𝑚𝑥
∗ = 𝑚𝑦

∗ = 𝑚∗=1.4 and 3.5) of the cylinder 

are considered. These m* were considered to be low, being less than 6 [9], to 

encourage the effect of IL VIV and the overall large-amplitude responses. Due to the 

amplitude-dependence nature of the structural and fluid-added damping in water, 

variable x and y values (between 1-5 %) are reported. The combined mass-damping 

values are in the range of 0.014 < m* < 0.081. The m* = 1.4 case (KHL1-KHL5) 

corresponds to the initial apparatus setup, whilst in later tests m* was increased by 

adding lump masses to the rig system such that m* = 3.5 (KHL6). Such an increased 

m* case allows us to evaluate the prediction model (Chapter 3) whose empirical 

coefficients have been calibrated based on the experiments with varying m* [76]. For 

m* = 1.4, five tests with different f*  1.0, 1.3, 1.6 and 1.9 were performed to justify 

the occurrence of a dual 2:1 resonance regardless of f* and as the drag fluctuation has 

double the frequency of the lift fluctuation. In all datasets, the reduced velocity Vr 

range in which Vr = V/fnyD was about 0 < Vr < 20, corresponding to 2×10
3
 < Re < 

5×10
4
 of the sub-critical flows and the flow speed V of 0.02-0.6 m/s. This considered 

range encompassed a Vr value at which the peak amplitude occurred. The acquisition 

time for each steady-state response was about 2 minutes and the waiting time 

between each two consecutive measurements was about 5 minutes. A trailing wheel 

of very accurately defined circumference was attached to the carriage, and the 

angular velocity of the wheel was determined using a high-precision magnetic 

encoder and a counter-time which outputs the velocity signal representing the 

carriage speed. 

With the aim of comparing our experimental results with other published 

studies by also focusing on the variation of f*, the experimental model performed at 

the MIT towing tank [11] is herein considered. Their test matrix, comprising 6 

datasets (labeled as MIT1-MIT6) with Lc/D of 26, 0.041 < m* < 0.353, and 11×10
3 

< Re < 6×10
4
, is given in Table 4.3 in comparison with KHL datasets in Table 4.2. It 
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is worth noting that both experiments have similar x and y values in the range of 

about 1-6 %. Apart from being different in the experimental arrangement and 

procedure, in Lc/D, and variable  and f* values, the main distinction between KHL 

and MIT datasets is due to the specified mass ratios: 𝑚𝑥
∗ = 𝑚𝑦

∗  in this study whereas 

𝑚𝑥
∗ ≠ 𝑚𝑦

∗  in Dahl et al. [11]. This aspect along with other observations will be taken 

into account in the comparison of results in Section 4.3. 

Table 4.2: KHL experimental data with variable m*,  and f*. 

Dataset fny (Hz) fnx (Hz) y (%) x (%) 𝒎𝒚
∗  𝒎𝒙

∗  f* 

KHL1 0.312 0.316 1.0 4.7 1.4 1.4 1.01 

KHL2 0.218 0.281 1.5 1.0 1.4 1.4 1.29 

KHL3 0.262 0.419 1.6 1.0 1.4 1.4 1.60 

KHL4 0.203 0.376 1.8 1.2 1.4 1.4 1.85 

KHL5 0.192 0.192 2.0 3.1 1.4 1.4 1.00 

KHL6 0.223 0.223 1.5 2.3 3.5 3.5 1.00 

 

Table 4.3: MIT experimental data with variable m*,  and f*. 

Dataset fny (Hz) fnx (Hz) y (%) x (%) 𝒎𝒚
∗  𝒎𝒙

∗  f* 

MIT1 0.715 0.715 2.2 2.2 3.8 3.3 1.00 

MIT2 0.799 0.975 1.3 1.7 3.9 3.8 1.22 

MIT3 0.894 1.225 1.1 2.5 3.9 3.7 1.37 

MIT4 0.977 1.485 1.6 3.2 4.0 3.6 1.52 

MIT5 0.698 1.166 2.6 2.9 5.5 5.3 1.67 

MIT6 0.704 1.338 6.2 2.5 5.7 5.0 1.90 

 

4.1.6 Post-processing of experimental results 

The data acquisition system installed on the carriage provided text file for each 

test run containing measured signals of the test including carriage velocity and pitch 

and roll motions of the pendulum. The whole processes of analysing these signals 

were performed by Matlab software and its toolboxes. In the first stage, the signals 

were filtered to remove any noises which might appear in the signals and could have 

influenced the accuracy of the results. To this end, using the Fast Fourier Transform 

(FFT) and Inverse Fast Fourier Transform (IFFT) algorithms of Matlab, the signals 
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first were transferred to frequency domain and then were brought back into the time 

domain. Such consecutive transformations result in smooth signals while no phase 

difference, between original and filtered signals, was imposed to resultant time 

histories. Figure 4.10 exemplifies the time histories of CF and IL oscillations of the 

pendulum system at Vr =8.6 and their corresponding filtered signals. 

In the next stage of processing the test signals, the desired quantities such as 

amplitude and frequency responses and Fo8 trajectories are extracted from filtered 

signals. The reported experimental CF (Ay/D) and IL (Ax/D) amplitudes normalized 

by the cylinder diameter are referred to as the displacements at the bottom tip of the 

cylinder and include both maximum and RMS of the displacement signals. These 

quantities are extracted from steady state part of each time history. It is worth noting 

that, to evaluate such quantities in IL direction, the drift which appears in the signals 

due to mean drag, was subtracted. The frequency response of each dataset is obtained 

via FFT algorithm of Matlab. Finally, to produce the plots of Fo8 trajectories, filtered 

time histories of CF oscillations are plotted against IL motions. When Fo8 orbits of 

tests at different Vr plotted in a single figure are of interest, the value of the 

magnitude of Vr is added to its corresponding IL signal. 

 

Figure 4.10: Original (blue) and filtered (red) signals of (a) and (c) roll (CF) and (b) and (d) pitch (IL) 

oscillations of system for KHL1 dataset at Vr=8.6. 
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4.1.7 Limitations, uncertainties and repeatability of tests 

As 2DOF VIV of a flexibly mounted circular cylinder depends on several 

system fluid-structure parameters in both CF and IL directions, it is a very 

challenging task to keep all of these parameters under control. Hence, to assure the 

reliability of the measurements, for each datasets repeatability tests were performed 

and some tests were repeated in the neighbourhood of peaks and response jumps. 

Figure 4.11 depicts the time histories of repeatability tests for KHL1 and 3 conducted 

at Vr=8.6 and Vr=7.2, respectively. As it can be seen, in terms of flow velocity, 

maximum amplitudes and oscillation frequency and periodicity of the signals, time 

histories are highly comparable. Despite all the attention paid to the accuracy and 

precision of the measurements, yet there are aspects of uncertainties which, in 

particular, can affect quantitative match between numerical prediction results and 

experimental measurements. One of these aspects deals with the difference between 

the numerical model idealization and the real experimental setup. For the sake of 

generality, the cylinder is theoretically postulated to be infinitely long such that the 

flow field might be approximated to be two-dimensional. However, during the 

experiment, the three-dimensional flow field along with the free surface around the 

oscillating cylinder with a finite length could play an influential role.   

One of the main reasons suggested is that some of the key variables were not 

assessed with sufficient confidence during the testing campaign. In particular, values 

of the structural damping in water – used as one of the inputs in the numerical model 

– were found to be sensitive to the initial displacement condition, the change of 

springs’ stiffness and the apparatus arrangement leading to some repeatability issues 

in determining total and fluid-added damping from the free decay tests in water. This 

observation was in contrast to the measurements made in air for which the estimated 

damping was highly repeatable. As a consequence, the damping ratios x and y 

appeared variable and x  y when comparing and calibrating all datasets with 

different f*. To overcome this constraint, an improved means to assess and control 

equivalent damping values in both directions [129] or a systematic approach to 

measure system uncertainties [130, 131] should be implemented. 
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Figure 4.11: Repeatability tests for (a-d) KHL1 dataset at Vr=8.6 and (e-h) KHL3 dataset at Vr=7.2. 

As a final remark, due to a finite length of the tank, it is presently unfeasible to 

perform a perfect sweeping test where a towing speed (i.e. V) is altered during a 

single run of the carriage. As this change (whether increasing or decreasing V) would 

require the time for the transient dynamics to die out in order to achieve steady-state 

responses (especially for large-amplitude 2DOF vibrations in the neighbourhood of 

the hysteresis), the carriage would reach the end and be terminated before the 

cylinder steady-state response takes place. Hence, possible coexisting responses 

associated with the jump and hysteresis – as usually observed in a water flume 

facility [9] – were not ascertained in our towing tank tests although the proposed 

numerical model can capture such important behaviours. Depending on system 

parameters and initial conditions, the jump and hysteresis phenomena should be 

further experimentally investigated in the framework of a 2DOF VIV of a circular 

cylinder with variable f* and in a higher Re range. 
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4.2 Comparisons of Experimental and Numerical Results 

Experimental and numerical prediction results are now compared based on 

KHL data in Table 4.2. To facilitate the comparison and discussion, two sets of 

results are classified depending on f*: (i) f*=1 (KHL1, KHL5, KHL6) and (ii) 

variable f* with f*=1.29 (KHL2), 1.60 (KHL3) and 1.85 (KHL4). Both maximum 

and root-mean-squared (RMS) values of CF (Ay/D) and IL (Ax/D) amplitudes are 

evaluated. 

4.2.1 Amplitude responses and time histories 

Results in the f*=1 cases are plotted in Figure 4.12 which illustrates a fairly 

good qualitative comparison of numerical (lines) and experimental (symbols) 

responses. From the experiments, pure IL responses are observed in a marginal range 

of about 2 < Vr < 4 (Figure 4.12 (b), (d) and (f)) whereas coexisting CF/IL VIV 

responses take place in the range of about 4 < Vr < 17.5 (Figure 4.12 (a) and (c)) or 4 

< Vr < 12.5 (Figure 4.12 (e)), depending on m*. As expected from both a numerical 

and experimental viewpoint, both KHL1 and KHL5 datasets with the lower m*=1.4 

exhibit a wider synchronization region. With increasing Vr, some jumps of peak 

amplitudes from upper to lower branches (Figures 4.12 (c-f)) are experimentally as 

well as numerically (denoted by vertical dashed lines) observed. These jumps are in 

agreement with several recently published experimental results of 2DOF VIV with 

f*=1 [9, 30, 76].  

In view of quantitative comparisons, the highest values of experimental and 

numerical RMS amplitudes are found to be comparable in the range of about 0.9-

1.25 for Ay/D (Figures 4.12 (a), (c) and (e)) and 0.1-0.3 for Ax/D (Figures 4.12 (b), 

(d) and (f)), depending on the system mass and damping. As regards the maximum 

attainable responses (Aym/D, Axm/D), Figure 4.12 shows a better comparison in the CF 

VIV than in the IL VIV, with both experimental and numerical responses providing 

1.4 < Aym/D < 1.75. The numerical model apparently underestimates Axm/D although 

it predicts well the associated RMS values. These outcomes could be influenced by 

the temporal modulation of Ay/D and Ax/D. To exemplify this aspect, experimental 

(dashed blue lines) and numerical (solid pink lines) time histories of y and x 
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responses of KHL1 data with Vr = 10.9 (Figure 4.12 (a) and (b)) and KHL5 data with 

Vr = 11.7 (Figure 4.12 (c) and (d)) are plotted in Figure 4.13 (a-b) and 4.13 (c-d), 

respectively. It is found that, in spite of the nearly-zero mean values of the time-

varying x (about 0.046 in Figure 4.13 (b) and 0.013 in Figure 4.13 (d)), experimental 

IL responses are seen to have a higher modulation when compared to the associated 

numerical ones. In contrast, both experimental and numerical y responses (Figure 

4.13 (a) and (c)) are comparable, exhibiting a much less fluctuating signal. 

 

Figure 4.12: Comparison of numerical (lines) and experimental (symbols) cross-flow and in-line 

amplitude responses based on KHL data with f*=1: blue lines and squares (pink lines and circles) 

denote maximum (RMS) values; dashed lines denote numerical response jumps. 
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Figure 4.13: Comparison of numerical (pink solid lines) and experimental (blue dashed lines) cross-

flow (a, c) and in-line (b, d) time histories: KHL1 data with Vr = 10.9 (a, b) and KHL5 data with Vr = 

11.7 (c, d). 

In the case of f*1, experimental and numerical comparisons of Ay/D and Ax/D 

are shown in Figure 4.14. To also demonstrate the effect of empirical coefficients, 

two sets of numerical results are plotted: one based on x = y = 12 (solid lines) and 

the other based on x = y = 15 (dashed lines), while keeping other parameters 

unchanged. This change in x and y has been motivated by a possible variation of 

both lock-in ranges and ensuing amplitudes. With increasing f*, some VIV behaviors 

are noticed experimentally. First, the IL-only responses seem to disappear with 

increasing f* = 1.6 (Figure 4.14(d)) and f* = 1.85 (Figure 4.14(f)). This is in 
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agreement with the numerical prediction. Secondly, both CF and IL responses in 

Figure 4.14(c) and 4.14(d) (f* = 1.6) and Figure 4.14(e) and 4.14(f) (f* = 1.85) reveal 

the flattening slopes of their upper branches with amplitudes starting from Vr  2.5 

and ending at Vr  12.5. These amplitude profiles are qualitatively similar to the 

experimental results of Assi et al. [132] with f* = 1.93. 

 

Figure 4.14: Comparison of numerical (lines) and experimental (symbols) cross-flow and in-line 

amplitude responses based on KHL data with f*1: blue lines and squares (pink lines and circles) 

denote maximum (RMS) values; dashed (solid) lines with x=y=15 (12). 
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Nevertheless, overall experimental results show Aym/D  1.5 and Axm/D  0.5, 

and the associated excitation ranges are quite comparable, in all f* cases. Given the 

similar values of m*, these imply the negligible effect of varying f* on the 

maximum response outcomes based on this pendulum-spring-cylinder system. With 

respect to numerical comparisons, the predicted Aym/D and Axm/D are found to be 

overestimated and the associated upper branches show higher slopes being typical for 

resonance diagrams. These reflect the difficulty in matching numerical and 

experimental results in which several coefficients control the dynamic responses and 

some of the influential parameters are variable, i.e. x  y. However, with a 

demonstrated small increment of x and y, the qualitative prediction of lock-in 

ranges appears to be satisfactorily improved. Hence, values of x = y = 15 are 

hereafter considered. 

4.2.2 Sensitivity analysis on geometric coefficients 

Next, it is of practical importance to carry out a sensitivity study on the 

numerical model in order to understand the influence of varying parameters on the 

2DOF VIV prediction and the dependence of the latter on f*. To also capture 

possible qualitative and quantitative changes, as it was shown in Chapter 3, the 

sensitivity analysis should be performed with respect to the parameters related to the 

greater y response. By ways of examples, the geometrical coefficient y or y is 

varied in the numerical simulations with f* = 1.3, 1.6 and 2. In each f* case, 𝑚𝑥
∗ =

𝑚𝑦
∗ = 1.4 and the averaged x = 1.6 % and y = 1 % (based on KHL2-4 datasets) are 

assigned. Contour plots of Ay/D and Ax/D are displayed in Figures 4.15 and 4.16 in 

the varying y and y cases, respectively. 

For each f*, it is seen in Figure 4.15 that Aym/D increases (Figure 4.15 (a-c)) 

whilst Axm/D decreases (Figure 4.15 (d-f)) as y increases, with the associated peaks 

locating at higher Vr values. These reflect both the quantitative and qualitative 

influence of the cubic nonlinear stretching term which results in the bent-to-right 

response as yy
3
 becomes greater. On the other hand, it is found in Figure 4.16 that, 

as y increases, both Aym/D (Figure 4.16 (a-c)) and Axm/D (Figure 4.16 (d-f)) 

decrease; the associated peaks are slightly bent for lower f* (Figure 4.16 (a) and (d)) 
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or nearly vertical for higher f* (Figure 4.16 (b-c) and 4.16 (e-f)). These show the 

mostly quantitative effect of the geometric coupling yyx
2
 term. Based on the above 

observations, the similar experimental response patterns with comparable y and x in 

Figure 4.14 might be more influenced by the displacement coupling terms than the 

stretching nonlinearities. For this reason, a suitable new fixed y value (e.g. 1.5) 

based on Figure 4.16 may be suggested to improve the numerical quantitative 

comparison with experimental results in Figure 4.14 whose Aym/D  1.5 and Axm/D  

0.5 in all f* cases. These sample contour plots might be applicable to a future 

prediction analysis once exact geometrical parameters are practically known. 

 

Figure 4.15: Sensitivity analysis showing the influence of geometrical parameter y on cross-flow (a-

c) and in-line (d-f) amplitude responses: f*=1.3 (a, d), f*=1.6 (b, e), f*=2 (c, f). 
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Figure 4.16: Sensitivity analysis showing the influence of geometrical parameter y on cross-flow (a-

c) and in-line (d-f) amplitude responses: f*=1.3 (a, d), f*=1.6 (b, e), f*=2 (c, f). 

4.2.3 Figure-of-eight trajectories with effect of frequency ratio 

Now, it is interesting to perform numerical and experimental comparisons of 

the time-varying orbital x-y motions as well as phase angles because this information 

could shed some light on how the fluid-cylinder interaction affects the resulting 

vortex-shedding modes. Corresponding to KHL1-6 results in Figures 4.12 and 4.14, 

the x-y trajectory plots within several cycles of the oscillation are displayed in Figure 

4.17 (a) with some chosen Vr. The normalized x-y phase differences (x-2y)/ of 

KHL3 and KHL4 datasets are also exemplified in Figure 4.17 (b). Depending on f*, 

m* and  (Table 4.2) and initial conditions in both numerical simulations and 

experiments, various characteristics of figure-of-eight trajectories appear with 
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variable phase differences between x and y motions. In particular, the crescent shapes 

are evidenced in the experiments (see blue lines in Figure 4.17 (a)) with their tips 

pointing mostly downstream (all KHL datasets) and occasionally upstream (KHL3 

and KHL4 for Vr < 10). Similar orbital motions have been found in recent 2DOF 

VIV experiments of rigid circular cylinders [9, 11, 30, 77, 133], and the present study 

confirms these studies with both experimental and numerical results.  

 

Figure 4.17: (a) Comparison of numerical (red lines) and experimental (blue lines) x-y trajectories 

based on KHL datasets with variable f*; (b) comparison of numerical (circles) and experimental 

(squares) x-y phase differences for KHL3 (filled symbols) and KHL4 (open symbols) dataset. 

It is worth noting that experimental orbital motions exhibit a high modulation 

feature of amplitudes whereby the oscillating cylinder does not follow the same path 
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from cycle to cycle. This suggests a strong fluid-structure interaction effect 

associated with a 2:1 resonance during the test. On the contrary, numerical orbital 

motions are perfectly repeatable which justify the limit cycle character of the two 

pairs of coupled Duffing and van der Pol oscillators for which stable periodic 

solutions are attained. The numerical model is found to predict quite well overall 

qualitative behaviors of the figure-eight appearance which, as it was discussed in 

Chapter 2, is due to the associated quadratic nonlinearities [69]. The experimental 

(squares) and numerical (circles) comparisons of phase differences in Figure 4.17 (b) 

also reveal their good agreement in the range of about 8<Vr<14 where response 

amplitudes are maximized (Figure 4.14). By following the cylinder movement at the 

top of the Fo8 [134], several figures of eight of KHL3 and KHL4 datasets can be 

defined as counterclockwise (0 < x-2y < /2 and 3/2 < x-2y< 2) or clockwise 

(/2<x-2y<3/2) paths.  

Experimental results in Figure 4.17 (a) suggest similar vortex formation 

patterns for KHL1, KHL5 and KHL6 with f* = 1 since the associated Fo8 are 

qualitatively similar in all Vr cases. When increasing f* to be about 1.3 (KHL2), 1.6 

(KHL3) and 1.9 (KHL4), the Fo8 orbits corresponding to some particular Vr cases 

are noticed to be modified and these imply the possible change in the vortex 

formation patterns [78].  

4.2.4 Comparisons of experimental and numerical frequency responses 

A comparison of experimental and numerical oscillation frequencies (foy, fox) 

obtained from the amplitude responses within the main excitation ranges (Figures 

4.12 and 4.14) and normalized by the associated fny is exemplified in Figure 4.18 

based on the selected KHL1 (f*  1), KHL3 (f* = 1.6) and KHL4 (f*  1.9) data. 

Overall good qualitative agreement is appreciated, with x (Figure 4.18 (b), (d) and 

(f)) and y (Figure 4.18 (a), (c) and (e)) frequency responses exhibiting their dual 2:1 

resonances irrespective of the specified f*. For the tested cylinder with low m*=1.4, 

the oscillation frequencies of all dataset increase with increasing Vr due to the 

decreasing value of the hydrodynamic added mass. This justifies the fundamental 

mechanism of 2DOF VIV [23, 33].  
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Figure 4.18: Comparison of experimental (circles) and numerical (squares) cross-flow/in-line 

oscillation frequencies as function of Vr for selected KHL datasets with variable f*. 

4.3 Experimental Comparisons with Other Studies 

It is of considerable theoretical and practical importance to understand the 

extent to which 2DOF VIV results are sensitive to the various arrangements of test 

rigs and measurement procedures. A comparison is now presented between the 

results of the present study and those obtained by Dahl et al. [11] at MIT using a 

very different test rig. The comparison between KHL (Table 4.2) and MIT (Table 
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4.3) experimental data are considered by categorizing the results into four groups 

depending on the comparable values of f* as follows: 

a) KHL1, KHL5, KHL6 vs. MIT1, all with f*  1, 

b) KHL2 vs. MIT2 and MIT3, all with the averaged f* 1.3,  

c) KHL3 vs. MIT4 and MIT5, all with the averaged f* 1.6,  

d) KHL4 vs. MIT6, all with f* 1.9.  

Comparisons are made in terms of Ay/D and Ax/D diagrams (Figure 4.19), the 

associated oscillation-to-natural frequency ratios foy/fny and fox/fny (Figure 4.20) and 

the Griffin plots (Figure 4.21) of peak amplitudes vs. the Skop-Griffin parameter 

SGX = 2𝜋3St2𝑚𝑥
∗ 𝜉𝑥 and SGY = 2𝜋3St2𝑚𝑦

∗ 𝜉𝑦 [63]. Note that the value of Aym/D with 

MIT apparatus was limited to 1.35 [11]. fox and foy are the dominant oscillation 

frequencies obtained from the fast Fourier transform analysis of relevant response 

time histories. 

4.3.1 Comparisons of experimental amplitude responses 

With f*  1, overall response amplitudes of KHL1, KHL5, KHL6 and MIT1 

data show a variation of Aym/D in the range of about 1.35-1.75 (Figure 4.19 (a)) and 

Axm/D in the range of about 0.4-0.8 (Figure 4.19 (b)). This disparity of peak 

responses may in part be due to the influence of variable y and x whose values are 

mostly y  x (except MIT1). The KHL6 and MIT1 results with comparable m* 

(3.3-3.8) provide a good qualitative agreement with a similar lock-in range of 4 < Vr 

< 12 in which both Ay/D and Ax/D are simultaneously excited. Good qualitative 

agreements are also appreciated by the comparison of KHL1 and KHL5 data. 

In the lower m* = 1.4 cases, the lock-in range is noticed to be broader (4 < Vr < 

18). This influence of varying m* on the 2DOF lock-in range has recently been 

highlighted by the experiments of Stappenbelt et al. [76]. With the averaged f* 1.3 

and f* 1.6, the comparison of KHL2, MIT2 and MIT3 data (Figure 4.19 (c) and (d)) 

and that of KHL3, MIT4 and MIT5 data (Figure 4.19 (e) and (f)) reveal their good 

qualitative agreement of Aym/D and Axm/D in a small range of about 1.35-1.5 and 0.4-
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0.6, respectively. As previously mentioned, a difference in the lock-in range between 

KHL and MIT results is possibly due to their different m* values, apart from 

assigning whether 𝑚𝑥
∗ = 𝑚𝑦

∗  (KHL) or 𝑚𝑥
∗ ≠ 𝑚𝑦

∗  (MIT). The effect of variable 

damping – which has been found to control the response amplitude rather than the 

lock-in range [30] – might in part again be responsible for the difference in response 

peaks as in the previous case of f* = 1.  

 

Figure 4.19: Experimental comparisons of cross-flow and in-line amplitudes between KHL and MIT 

data with variable f*. 
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Both qualitative and quantitative differences are now realized when 

considering the results with the averaged f*1.9. For the MIT6 data with 𝑚𝑥
∗ ≠ 𝑚𝑦

∗  

and y  x, results reveal a two-peak CF response (Figure 4.19 (g)) – similar to those 

reported in Sarpkaya [71] with f* = 2 (although therein m* and  were not reported) 

– with the two Aym/D1 and 1.1 taking place at Vr  5 and 8, respectively. Note that 

the MIT6 IL response still exhibits a single peak of Ax/D  0.3 at Vr  8 (Figure 4.19 

(h)). These observations are in contrast with KHL4 results with 𝑚𝑥
∗ = 𝑚𝑦

∗   and y  

x which show single-peak responses in both CF and IL responses. Recent numerical 

studies by Lucor and Triantafyllou [101] have also found only single-peak responses 

with 𝑚𝑥
∗ = 𝑚𝑦

∗  and y = x. Owing to the lower m* and  of KHL4 data, the 

associated Aym/D  1.3 (Figure 4.19 (g)) and Axm/D  0.5 (Figure 4.19 (h)) are greater 

and the associated lock-in range is wider of about 4 <Vr < 18. These qualitatively 

justify the present experimental results. 

4.3.2 Comparisons of experimental frequency responses 

In Figure 4.20, overall comparisons of foy/fny (a, c, e and g) and fox/fny (b, d, f 

and h) plots highlight good correspondence between KHL and MIT results. In 

general, foy/fny values vary from 0.5 to 2 and fox/fny values vary from 1 to 3, with 

increasing Vr. These imply the variation of hydrodynamic added mass caused by 

VIV; that is, its value is first positive when foy/fny < 1 and fox/fny < 2, being zero at 

foy/fny  1 and fox/fny  2, and then becoming negative when foy/fny > 1 and fox/fny > 2. 

Regardless of the assigned f*, the fox/foy values in Figure 4.20 are nearly 

commensurable to 2:1 ratios in various Vr cases. These confirm the existence of dual 

resonance conditions [11, 77, 78] and demonstrate the intrinsic quadratic 

relationships between IL and CF responses [69] corresponding to the various Fo8 

orbital motions traced out in Figure 4.17 (a) in comparison with numerical prediction 

results. These outcomes also confirm other recent experimental results of circular 

cylinders undergoing 2DOF VIV with f* = 1 [9, 30, 127].  

4.3.3 Maximum CF/IL amplitudes and the Griffin plots 

Comparisons of various experimental 2DOF VIV results [11, 30, 76, 77] with 

Aym/D vs. SGY and Axm/D vs. SGX are now discussed through the Griffin plots in  
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Figure 4.20: Experimental comparisons of normalized cross-flow and in-line oscillation frequencies 

between KHL and MIT data with variable f*. 

Figure 4.21. Numerical prediction results with specified 𝑚𝑥
∗ = 𝑚𝑦

∗ = 𝑚∗ = 1.4 

(lowest value from KHL data) and 5.7 (highest value from MIT data), and f* = 1 and 

2 in each of these cases are also given. The numerical variation of SGY and SGX 

values (from 0.01 to 1) is performed by varying y and x, respectively, with a small 

increment. A general qualitative agreement can be seen in Figure 4.21 where both 

Aym/D and Axm/D decrease as SGY and SGX increase. However, for a specific SGY =  
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Figure 4.21: Griffin plots of maximum attainable cross-flow and in-line amplitudes 

based on several 2DOF VIV experimental (symbols) and numerical prediction (lines) 

results. 

SGX, experimental results with different values of m*,  and f* are scattered. The Re 

range might also play a role [36] although the majority of the experimental results in 

Figure 4.21 were based on the subcritical Re flows, except for some results in a 

supercritical Re range of Dahl et al. [77]. These imply how the combined mass-

damping parameter fails to collapse different experimental 2DOF VIV data. 
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Numerical results also capture these quantitative effects, by also providing the 

approximate ranges of peak amplitudes and highlighting a possibly influential role of 

f*. From a prediction viewpoint, both Aym/D and Axm/D increase as m* decreases; 

however, for a higher m*= 5.7 value, the variation of Aym/D is slightly influenced by 

the varying f*. This observation is reminiscent of the experimental study of Jauvtis 

and Williamson [9] where there was a slight influence on the CF response with m* > 

6 when comparing the results obtained between 1 and 2DOF models. In contrast, 

numerical Axm/D values are found to be susceptible to any change of system m*,  

and f* parameters. The above-mentioned discussion and comparisons deserve further 

experimental explorations before we could draw a firm conclusion on whether and 

how each – or the combination – of these parameters actually governs the 2DOF VIV 

of circular cylinders. 

4.4 Conclusions 

Experimental investigations of 2DOF VIV of a flexibly mounted circular cylinder 

with a low equivalent mass ratio (m*=1.4 and 3.5) and variable IL-to-CF natural 

frequency ratio (f*  1, 1.3, 1.6, 1.9) have been performed in a water towing tank. 

The VIV experiments cover a sub-critical Re range of about 2×10
3
-5×10

4
. The 

results of this experimental study have been compared with the numerical results of 

the semi-empirical model presented in Chapter 3 and have been utilised for 

calibration of the model empirical coefficients. Some important aspects in the 2DOF 

VIV have been numerically captured which are in good qualitative agreement with 

experimental observations. With low values of m*=1.4 equally in both directions, the 

two-dimensional VIV excitation ranges have been experimentally found to be in a 

broad range of the reduced velocity parameter, 4<Vr<17.5, with maximum attainable 

CF and IL amplitudes achieving high values of about 1.25-1.6 and 0.5-0.7, 

respectively, depending on the level and combination of the x-y structural damping 

ratios in all f* cases. This damping parameter along with the two-directionally 

geometrical coupling coefficients might in part be responsible for the disparity of 

response amplitudes and the quantitative differences between experimental and 

numerical results, apart from the fact that actual three-dimensional features of the 

flow around the finite cylinder cannot be presently captured by the numerical model. 
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As regards experimental comparisons, the present measurement results and MIT 

published data based on similar Re and mass-damping ratio ranges exhibit fairly 

good agreement with comparable response amplitudes, lock-in ranges and oscillation 

frequencies. However, there is no appearance of two-peak CF response found in the 

present testing campaign as a result of the equivalent m* in the two motion 

directions. Regardless of the specified f* and overall hydro-geometric nonlinearities, 

various features of Fo8 orbital motions have been experimentally as well as 

numerically observed in a wide Vr range. These evidence the fundamental 

characteristics of dual 2:1 resonances of coupled IL/CF VIV responses. The 

proposed numerical model of Chapter 3 is able to capture these dual resonances 

associated with quadratic nonlinearities in addition to the reasonable estimation of 

response amplitudes, lock-in ranges and oscillation frequencies.  
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Chapter 5 

Characterisation of Two-Dimensional 

Hydrodynamic Coefficients 

Hydrodynamic forces and maximum amplitudes in the vortex-induced 

vibration (VIV) of circular cylinders can be practically useful in the analysis and 

design of underwater flexible structures subject to current flows. This study presents 

a combined analytical and numerical approach to systematically characterise the 

hydrodynamic coefficients and maximum achievable responses of a flexibly mounted 

circular cylinder undergoing a two-dimensional coupled cross-flow/in-line VIV with 

a dual two-to-one resonance. Depending on oscillation amplitudes, frequencies and 

phase relationships, analytical closed-form expressions governing the dual-resonant 

harmonic responses are derived and applied to parametrically evaluate key 

coefficients of the unsteady hydrodynamic forces including the fluid excitation, 

damping, inertia and added mass components in both cross-flow and in-line 

directions. The amplification of the mean drag coefficient caused by VIV is also 

ascertained. Numerical results are compared and discussed against available 

published experimental data. Moreover, new contour plots which relate the 

maximum dual-resonant responses to the independent mass and damping ratios are 

constructed. Various parametric investigations are performed in the case of varying 

flow velocities, highlighting the important effects of system geometric coupling 

nonlinearities, mass, damping and in-line-to-cross-flow natural frequency ratios. 

Several maps of fluid force coefficients can be beneficial to a practical analysis tool 

and provide new benchmarks for comparisons with other experimental and 

computational studies. 
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5.1 Analytical Solution for Hydrodynamic Coefficients 

Several analytical expressions for estimating hydrodynamic coefficients have 

been proposed in the literature but most of them have mainly focused on the CF-only 

VIV [23, 33]. A few recent studies have dealt with both CF/IL VIV [9, 77]; however, 

the potential nonlinear effects of geometrical and wake-cylinder couplings were 

disregarded from their formulations. In this study, these effects are herein accounted 

for in the derivation of analytical closed-form solution applicable to the extraction of 

hydrodynamic properties from the two-dimensional VIV.  

In a wide range of Vr, several experimental VIV tests have shown how the x-y 

response trajectories of the oscillating cylinder exhibit the Fo8 periodic motions 

owing to the two-dimensional lock-in conditions and dual 2:1 resonances [30, 77]. 

To assess the hydrodynamic coefficients of such dynamic system, both the cylinder 

CF motion (y) and the associated force (q) may be approximated to be sinusoidal at a 

resonant oscillation frequency  whereas both the cylinder IL motion (x) and the 

associated force (p) may be approximately sinusoidal at 2. By considering a 

primary harmonic function, the steady-state solutions for x, p, y and q in Eqs. (3.9)-

(3.12) are postulated as  

𝑥 = 𝑥0 sin(2𝜔𝑡′ + 𝜃𝑥) ,       𝑝 = 𝑝0 sin(2𝜔𝑡′ + 𝜃𝑝) (5.1) 

𝑦 = 𝑦0 sin(𝜔𝑡′ + 𝜃𝑦) ,       𝑞 = 𝑞0 sin(𝜔𝑡′ + 𝜃𝑞) (5.2) 

in which x0, p0, y0 and q0 are the dimensionless amplitudes and θx, θp, θy and θq are 

the associated phase angles. Note that the higher harmonics of the lift and drag forces 

could be important in some Vr cases but these are herein neglected since attention is 

given to a dual resonant motion responding periodically at a fundamental frequency 

[9].  

By substituting Eqs. (5.1) and (5.2) into Eqs. (3.9)-(3.12), applying the 

harmonic balance method and decomposing both linear and nonlinear forcing terms 

in Eqs. (3.9) and (3.11) into their excitation and inertia force counterparts, the system 

nonlinear equations governing the time-dependent variables can be rewritten as  
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�̈� + 𝜆𝑥�̇� + 𝑓∗2𝑥 + 𝑓∗2  (
3

4
𝛼𝑥0

2 +
1

2
𝛽𝑦0

2) 𝑥 −
𝑓∗2

4
 𝛽𝑥0𝑦0

2 sin(𝜃𝑥 − 2𝜃𝑦)

= (−
𝑀𝐷𝛺2𝑝0 cos(𝜃𝑝 − 𝜃𝑥)

4𝜔2𝑥0

− 𝜋St𝑀𝐿𝛺
𝑞0𝑦0 cos(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥)

4𝜔𝑥0
) �̈�

+ (
𝑀𝐷𝛺2𝑝0 sin(𝜃𝑝 − 𝜃𝑥)

2𝜔𝑥0

+ 𝜋St𝑀𝐿𝛺
𝑞0𝑦0 sin(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥)

2𝑥0
) �̇�

+ 𝜋St𝑀𝐿𝛺𝑞0𝑦0𝜔 sin(𝜃𝑞 − 𝜃𝑦) 

 

 

 

(5.3) 

�̈� + 2𝜀𝑥𝛺 (
𝑝0

2

4
− 1) �̇� + 4𝛺2𝑝 = 𝛬𝑥�̈� 

      

(5.4) 

�̈� + 𝜆𝑦�̇� + 𝑦 + (
3

4
𝛼𝑦0

2 +
1

2
𝛽𝑥0

2) 𝑦

= (−
𝑀𝐿𝛺2𝑞0 cos(𝜃𝑞 − 𝜃𝑦)

𝜔2𝑦0

+ 𝜋St𝑀𝐷𝛺
𝑝0 cos(𝜃𝑝 − 2𝜃𝑦)

𝜔
) �̈�

+ (
𝑀𝐿𝛺2𝑞0 sin(𝜃𝑞 − 𝜃𝑦)

𝜔𝑦0
− 𝜋St𝑀𝐷𝛺𝑝0 sin(𝜃𝑝 − 2𝜃𝑦)) �̇� 

 

 

(5.5) 

�̈� + 𝜀𝑦𝛺 (
𝑞0

2

4
− 1) �̇� + 𝛺2𝑞 = 𝛬𝑦�̈� 

  

(5.6) 

It is worth remarking a key ability of the presented nonlinear structural model 

in explicitly capturing an IL drift leading to a new equilibrium of the cylinder as 

opposed to the traditional linear structural model. This is highlighted through Eq. 

(5.3) where two new time-independent drift terms appear. The drift term in the left-

hand side is seen to be solely dependent on the structural cubic nonlinearities (𝑥0𝑦0
2) 

whereas the drift term in the right-hand side is subjected to the cylinder-wake 

quadratic nonlinear coupling (q0y0). Both terms should be recognized in the post-

processing analysis of numerical and experimental results based on a two-directional 

spring-cylinder system. However, from a modeling viewpoint, only the cylinder-
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wake interaction term is accounted for in the evaluation of VIV-induced mean drag 

force (see Eq. (5.9)). This is feasible since experimental studies reported the 

dependence of mean drag on the CF response [31, 135]. As shown in Section 5.3.2, 

the q0y0–based term entails a positive drag coefficient which is realistically relevant 

to the physical downstream translation of the cylinder in a uniform steady flow. 

To obtain hydrodynamic coefficients, the vortex-induced forces exerted on the 

oscillating cylinder in CF (fx) and IL (fy) directions, normalized by (ms+ mf)
2

nyD, 

may be described and decomposed into the time-varying (x and y) and mean-valued 

(x) components as 

𝑓𝑥 =
1

2
𝜌𝐷𝑉2 [

𝐶𝑥 sin(2𝜔𝑡 + 𝜃𝑥 − 𝛿) + 𝐶𝑑𝑣

(𝑚𝑠 + 𝑚𝑓)𝜔𝑛𝑦
2 𝐷

]

= −
𝑉𝑟

2

8𝜋2𝜇
 (

𝐶𝑎𝑥

4𝜔2𝑥0
) �̈� −

𝑉𝑟
2

8𝜋2𝜇
(

𝐶𝑣𝑥

2𝜔𝑥0
) �̇� +

𝑉𝑟
2𝐶𝑑𝑣

8𝜋2𝜇
 

 

 

(5.7) 

𝑓𝑦 =
1

2
𝜌𝐷𝑉2 [

𝐶𝑦 sin(𝜔𝑡 + 𝜃𝑦 − 𝜑)

(𝑚𝑠 + 𝑚𝑓)𝜔𝑛𝑦
2 𝐷

] = −
𝑉𝑟

2

8𝜋2𝜇
( 

𝐶𝑎𝑦

𝜔2𝑦0
) �̈� −

𝑉𝑟
2

8𝜋2𝜇
(

𝐶𝑣𝑦

𝜔𝑦0
) �̇� 

(5.8) 

where Cdv is the coefficient of the mean drag induced by VIV, Cx and Cy are the 

oscillatory force coefficients in the IL and CF directions,  and  are the associated 

phase angles between the forces and the displacements, and Ca and Cv (with x or y 

subscript) are the corresponding components of forces in-phase with the cylinder 

acceleration and velocity, respectively. These time domain equations, along with 

Eqs. (5.3) and (5.5) can be utilised to derive closed-form expressions for the 

hydrodynamic coefficients. To this end, the right-hand-side terms in Eq. (5.3) are 

equated with Eq. (5.7) and those in Eq. (5.5) with Eq. (5.8) which yield: 

𝐶𝑑𝑣 =
8𝜋2𝜇

𝑉𝑟
2

[𝜋St𝑀𝐿𝛺𝑞0𝑦0𝜔 sin(𝜃𝑞 − 𝜃𝑦)] 
 (5.9) 

𝐶𝑎𝑥 =
8𝜋2𝜇

𝑉𝑟
2

[𝑀𝐷𝛺2𝑝0 cos(𝜃𝑝 − 𝜃𝑥)

+ 𝜋St𝑀𝐿𝛺𝑞0𝑦0𝜔 cos(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥)] 

(5.10) 
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𝐶𝑣𝑥 =
8𝜋2𝜇

𝑉𝑟
2

[−𝑀𝐷𝛺2𝑝0 sin(𝜃𝑝 − 𝜃𝑥)

− 𝜋St𝑀𝐿𝛺𝑞0𝑦0𝜔 sin(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥)] 

(5.11) 

𝐶𝑎𝑦 =
8𝜋2𝜇

𝑉𝑟
2

[𝑀𝐿𝛺2𝑞0 cos(𝜃𝑞 − 𝜃𝑦) − 𝜋St𝑀𝐷𝛺𝑝0𝑦0𝜔 cos(𝜃𝑝 − 2𝜃𝑦)] 
(5.12) 

𝐶𝑣𝑦 =
8𝜋2𝜇

𝑉𝑟
2

[−𝑀𝐿𝛺2𝑞0 sin(𝜃𝑞 − 𝜃𝑦) + 𝜋St𝑀𝐷𝛺𝑝0𝑦0𝜔 sin(𝜃𝑝 − 2𝜃𝑦)] 
(5.13) 

If the inertia force is scaled based on the cylinder acceleration, in place of the 

dynamic pressure (V
2
/2) in Eqs. (5.7) and (5.8), see, e.g., [136], the added mass 

coefficients due to VIV in the IL (CAx) and CF (CAy) directions may be obtained from 

𝐶𝐴𝑥 =
4𝜇

𝜋
[
𝑀𝐷𝛺2𝑝0 cos(𝜃𝑝 − 𝜃𝑥)

4𝜔2𝑥0
+ 𝜋St𝑀𝐿𝛺

𝑞0𝑦0 cos(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥)

4𝜔𝑥0
] 

(5.14) 

𝐶𝐴𝑦 =
4𝜇

𝜋
[
𝑀𝐿𝛺2𝑞0 cos(𝜃𝑞 − 𝜃𝑦)

𝜔2𝑦0
− 𝜋St𝑀𝐷𝛺

𝑝0 cos(𝜃𝑝 − 2𝜃𝑦)

𝜔
] 

(5.15) 

Overall, Eqs. (5.9)-(5.15) highlight (i) the important effect of quadratic 

nonlinear coupling (q0y0, p0y0) and (ii) the dependence of hydrodynamic coefficients 

on the system amplitudes (x0, y0, p0, q0), phases (θx, θy, θp, θq), oscillation frequency 

() and parameters (St, , MD, ML, Vr). Their positive or negative signs which imply 

the excitation or damping mechanism depend on the phase angles relationships. All 

the numerical amplitudes and phases can be obtained a priori from numerical results 

of Eqs. (3.9)-(3.12), by applying a spectral approach to the steady-state dynamic 

responses. In Section 5.3, understanding of the contributions from each linear and 

nonlinear forcing term and key insights into the hydrodynamic excitation mechanism 

will be discussed.  

5.2 Analytical Solution for Maximum Dual-Resonant Responses  

It is of theoretical and practical importance to develop an efficient analytical 

solution for estimating the maximum achievable amplitudes of the cylinder 

undergoing combined CF/IL VIV with dual resonances. By way of examples, the 

f*=1 case which has some experimental data available for comparisons is considered. 
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By substituting Eqs. (5.1) and (5.2) into Eqs. (3.9)-(3.12), expanding the relevant 

trigonometric terms and equating the coefficients of sint (sin2t) and cost 

(cos2t) separately, the ensuing coupled equations governing the fluid-structure 

interaction system with four unknown amplitudes (x0, p0, y0, q0) and phases (θx, θp, 

θy, θq) can now be expressed as 

2𝜆𝑥𝜔𝑥0 = 𝑀𝐷𝛺2𝑝0 sin(𝜃𝑝 − 𝜃𝑥) − 𝜋St𝑀𝐿𝛺𝑞0𝑦0𝜔 sin(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥), (5.16) 

(1 +
3

4
𝛼𝑥0

2 +
1

2
𝛽𝑦0

2 − 4𝜔2) 𝑥0

= 𝑀𝐷𝛺2𝑝0 cos(𝜃𝑝 − 𝜃𝑥)

− 𝜋St𝑀𝐿𝛺𝑞0𝑦0𝜔 cos(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥) 

(5.17) 

𝜀𝑥𝛺 (
𝑝0

2

4
− 1) 𝑝0 = 𝛬𝑥𝜔𝑥0 sin(𝜃𝑝 − 𝜃𝑥) 

(5.18) 

(𝜔2 − 𝛺2)𝑝0 = 𝛬𝑥𝜔2𝑥0 cos(𝜃𝑝 − 𝜃𝑥) (5.19) 

𝜆𝑦𝜔𝑦0 = 𝑀𝐿𝛺2𝑞0 sin(𝜃𝑞 − 𝜃𝑦) + 𝜋St𝑀𝐷𝛺𝑝0𝑦0𝜔 sin(𝜃𝑝 − 2𝜃𝑦) (5.20) 

(1 +
3

4
𝛼𝑦0

2 +
1

2
𝛽𝑥0

2 − 𝜔2) 𝑦0

= 𝑀𝐿𝛺2𝑞0 cos(𝜃𝑞 − 𝜃𝑦) + 𝜋St𝑀𝐷𝛺𝑝0𝑦0𝜔 cos(𝜃𝑝 − 2𝜃𝑦), 

(5.21) 

𝜀𝑦𝛺 (
𝑞0

2

4
− 1) 𝑞0 = 𝛬𝑦𝜔𝑦0 sin(𝜃𝑞 − 𝜃𝑦) 

(5.22) 

(𝜔2 − 𝛺2)𝑞0 = 𝛬𝑦𝜔2𝑦0 cos(𝜃𝑞 − 𝜃𝑦)  (5.23) 

Within the lock-in or resonance range where a maximum amplitude is attained, 

it can be realized that ω  Ω: this resonant frequency of the wake and the cylinder is 

variable, being different from the assumed ω = 1 in [66] pertaining to the Strouhal 

law. Consequently, the linear terms in Eqs. (5.18), (5.19), (5.22) and (5.23) entail 

that θp-θx = θq-θy = π/2. These phase relations are equivalent to the obtained 

numerical results which will be shown in Section 5.3.1 (see Fig. 5.3 (a) and (c)) 

where maximum attainable amplitudes take place. Apart from validating the 
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numerical solution, the condition of θp-θx = θq-θy = π/2 entails the reduced system of 

equations which read 

𝑥0 =
𝜀𝑥

𝛬𝑥
(

𝑝0
2

4
− 1) 𝑝0, 

(5.24) 

𝑦0 =
𝜀𝑦

𝛬𝑦
(

𝑞0
2

4
− 1) 𝑞0, 

(5.25) 

(1 +
1

tan2(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥)
) (2𝜆𝑥𝜔𝑥0 − 𝑀𝐷𝜔2𝑝0)2 = (𝜋St𝑀𝐿𝑞0𝑦0𝜔2)2, 

(5.26) 

(1 +
1

tan2(𝜃𝑝 − 2𝜃𝑦)
) (𝜆𝑦𝜔𝑦0 − 𝑀𝐿𝜔2𝑞0)

2
= (𝜋St𝑀𝐷𝑝0𝑦0𝜔2)2. 

(5.27) 

By substituting Eqs. (5.24) and (5.25) into Eq. (5.26), solving the latter for p0 

and substituting overall results of x0, y0 and p0 into Eq. (5.27), a highly-nonlinear 

equation describing the variation of  – which is now solely dependent on the 

transverse wake force q0 (viz., 𝜎 = (𝑞0
2/4) − 1) – can be derived as 

      
2

2 2 22 2 8

1 2 3 4 5 2 3 6 1 ,pqk a a a a a a a a          
 

  (5.28) 

in which the system coefficients (a1- a6, kpq and kq) are given, respectively, by 

𝑎1 = 2𝜆𝑥𝜔
𝜀𝑥

𝛬𝑥
𝑘𝑞 , 𝑎2 = 𝜆𝑦𝜔

𝜀𝑦

𝛬𝑦
,   𝑎3 = 𝑀𝐿𝜔2 

 𝑎4 = 2𝜆𝑥𝜔
𝜀𝑥

𝛬𝑥
(2𝜋St𝑀𝐷𝜔2

𝜀𝑦

𝛬𝑦
)

2

,      𝑎5 = 𝑀𝐷𝜔2 (2𝜋St𝑀𝐷𝜔2
𝜀𝑦

𝛬𝑦
)

2

   

𝑎6 = 𝜆𝑦𝜔
𝜀𝑦

𝛬𝑦
,   𝑎7 = 𝑀𝐿𝜔2,     𝑎8

= 256 (𝜋St𝑀𝐷𝜔2
𝜀𝑦

𝛬𝑦
)

6

(𝜋St𝑀𝐿𝜔2
𝜀𝑦

𝛬𝑦
)

2

 

𝑘𝑝𝑞 = (1 +
1

tan2(𝜃𝑞 + 𝜃𝑦 − 𝜃𝑥)
) 𝑘𝑞 ,    𝑘𝑞 = (1 +

1

tan2(𝜃𝑝 − 2𝜃𝑦)
) 

(5.29) 

Depending on the assigned system parameters and empirical coefficients 

summarised in Eq. (5.29), Eq. (5.28) can be iteratively solved for several real and 
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complex numbers of q0. However, only a positive real-valued q0 – which entails a 

unique set of positive real p0, x0 and y0 – is selected. If the system nonlinearities are 

omitted from the structural equations of motions (Eqs. (3.9) and (3.11)), a4, a5 and a6 

are trivial and kpq becomes kq. As a result, the linearlized closed-form solutions for 

p0, q0, x0 and y0 can be readily derived, respectively, as  

𝑝0 = 2√1 +
𝛬𝑥

𝜀𝑥

𝑀𝐷𝜔

2𝜆𝑥
 

(5.30) 

𝑞0 = 2√1 +
𝛬𝑦

𝜀𝑦

𝑀𝐿𝜔

𝜆𝑦
 

(5.31) 

𝑥0 =
𝑀𝐷𝜔

𝜆𝑥

√1 +
𝛬𝑥

𝜀𝑥

𝑀𝐷𝜔

2𝜆𝑥
 

(5.32) 

𝑦0 =
2𝑀𝐿𝜔

𝜆𝑦
√1 +

𝛬𝑦

𝜀𝑦

𝑀𝐿𝜔

𝜆𝑦
 

(5.33) 

Moreover, if the accerelation coupling terms in Eqs. (3.10) and (3.12) are 

neglected, both Eqs. (5.30) and (5.31) give rise to a limit cycle with a finite (p0, q0) 

amplitude of 2, guaranteeing a generic feature of the self-excited oscillators [119].  

By introducing the so-called Skop-Griffin parameter [63] SG=8
2
St

2, which 

is equivalent to Cl0/2ML [66], Eq. (5.33) can be rewritten as 

𝑦0 =

𝐶𝑙0𝜔
2

SG + 4𝜋2St2𝛾𝜔
√1 +

𝛬𝑦

𝜀𝑦

𝐶𝑙0𝜔
4

SG + 4𝜋2St2𝛾𝜔
 

(5.34) 

If the Strouhal condition with  = 1 is further applied, Eq. (5.34) becomes 

identical to Eq. (35) in [66] regarding the CF-only VIV (y    and y  A in 

[66]). This validates the present analytical formulation when omitting system 

nonlinearities and IL motion effect. In Section 5.4, illustrative examples comparing 

between linear (Eqs. (5.30)-(5.33)) and nonlinear (Eqs. (5.24)-(5.29)) structural 

models will be discussed along with the contour plots of maximum attainable 

responses (Axm/D and Aym/D) as functions of m* and . Moreover, Eq. (3.18), 

together with Eq. (3.20), enable one to incorporate the key effect of m* into the 
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analytical expressions of Eqs. (5.28)-(5.29) and explore parametrically the peak 

responses and associated hydrodynamic coefficients as in Section 5.4. 

5.3 Two-Dimensional Hydrodynamic Coefficients 

Variable hydrodynamic forces exerted on an elastically-mounted circular 

cylinder experiencing two-dimensional VIV are composed of (i) the oscillatory 

components in CF/IL directions (Cvx, Cvy, Cax, Cay, CAx, CAy) and (ii) the mean 

component in the IL direction (Cdv). Based on the derived closed-form expressions in 

Eqs. (5.9)-(5.15), coefficients of the hydrodynamic forces in phase with the cylinder 

velocities and accelerations are now systematically investigated and compared with 

relevant experimental results. By assigning ξx=ξy=ξ, attention is paid to the effect of 

varying Vr, m* and f*. For given input parameters (, MD, ML, St), overall 

coefficients depend on the maximum amplitudes (x0, p0, y0, q0), oscillation 

frequencies (), phase angles (θx, θp, θy, θq) and wake-structure coupling terms (p0y0, 

q0y0). To validate prediction results, the numerical predictions are compared with 

available experimental measurements of two-dimensional hydrodynamic 

coefficients. However, as it was explained in Chapter 2, few experimental studies are 

performed on combined CF/IL VIV and not all of them have reported the desired 

hydrodynamic coefficients. Hence, in cases where the values of hydrodynamic 

coefficients have not been explicitly reported, e.g. for Cvx, Cvy, Cax and Cay, these 

values are extracted from experimental results via post-processing approach 

suggested by [9, 135]. 

5.3.1 Phase relationships of wake and cylinder motions 

Prior to evaluating the hydrodynamic coefficients, it is worthwhile to 

qualitatively understand how each linear and nonlinear forcing term plays a role in 

the IL and CF VIV response, as well as to analytically describe the fluid excitation 

and damping mechanism, through the phase relationships of the fluid-structure 

interaction system. In accordance with Eqs. (5.9)-(5.13), plots of the normalized 

phase differences including (i) (p-x)/, (ii) (q+y-x)/, (iii) (q-y)/ and (iv) (p-

2y)/ are displayed (with regard to the left axis) vs. Vr in Figure 5.1 (a), (b), (c) and 

(d) (circles), respectively, based on the assigned m*=1.5, ξ = 0.001 and f*=1. Note 
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that the (i) (Figure 5.1 (a)) and (iii) (Figure 5.1 (c)) relations govern the linear terms 

– as commonly considered in the literature – whereas the (ii) (Figure 5.1 (b)) and (iv) 

(Figure 5.1 (d)) relations govern the newly-introduced nonlinear terms. In the 

background of Figure 5.1, the associated Ax/D and Ay/D are also displayed by dashed 

lines (with regard to the right axis) to describe relevant x and y response branches 

and excitation ranges. Moreover, by recognizing the signs in the force decomposition 

of Eqs. (5.7) and (5.8), the ensuing sign of each velocity-based (acceleration-based) 

force is visualized by the left (right) color bands, with the pink and green color 

representing the positive and negative output, respectively.  

 

Figure 5.1: Plots of system phase differences (circulars) governing hydrodynamic 

coefficients as functions of Ax/D or Ay/D (dashed lines) and Vr: (a) and (c) ((b) and (d)) 

correspond to linear (nonlinear) fluid forces; pink (green) denotes positive (negative) 

output through Eqs. (5.7) and (5.8). 
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For purely IL VIV which occurs in a very small region of about 2.5 < Vr < 3 

(Axm/D  0.05), it can be seen that the relative phases are about 0.5 < (p-x)/ < 1 in 

Figure 5.1 (a) and mostly 0.5< (q+y-x)/ < 1 in Figure 5.1 (b). These results in 

both linear and nonlinear excitation forces through Cvx in Eq. (5.11). However, as the 

CF VIV and thus the associated q0y0-based nonlinear term are negligible in this 

range, the coefficient Cvx responsible for the peak Ax/D is mainly due to the 

oscillating drag p0-based linear term. As regards the relative phase which influences 

Cax, Figure 5.1 (a) reveals a sign change at (p-x)/  0.5 associated with the linear 

term in Eq. (5.10). This change of added mass sign across a resonance justifies the 

occurrence of peak IL VIV in the so-called second instability range involving 

asymmetric vortices [52].  

For coexisting CF/IL VIV in the lock-in range of about 4<Vr<12 (Axm/D  0.38, 

Aym/D  1.8), the quadratic nonlinearities now play an influential role. For IL 

oscillation, both (p-x)/ (Figure 5.1 (a)) and (q+y-x)/ (Figure 5.1 (b)) terms 

guarantee how the energy is transferred from the fluid flow to the cylinder system 

through both p0-based linear and q0y0-based nonlinear terms in Eq. (5.11) for Cvx. For 

CF oscillation, the linear q0- and (q-y)/-based term in Eq. (5.13) for Cvy is seen to 

be responsible for the excitation throughout the 4<Vr<12 range (Figure 5.1 (c)). 

Nevertheless, there are two consecutive regimes (centered around Vr  9) where the 

associated p0y0- and (p-2y)/-based nonlinear force changes its sign (Figure 5.1 (d)) 

from being positive (4<Vr<9) to negative (9<Vr<12). In the 4<Vr<9 range, Ay/D 

grows due to the combined linear and nonlinear excitation forces (i.e. leading to a 

definite negative Cvy, see, e.g., Figure 5.4 (a)). In the 9 < Vr < 12 range, the quadratic 

nonlinearities contribute such that the effective transverse force produces a damping 

effect and, hence, controls the self-limiting character of VIV whereby the peak Ay/D 

is achieved at about Vr  10.5.  

 As regards the relative phases which influence Cax and Cay, Figure 5.1 (a) and 

(c) show a sign change from being negative to positive of the (p-x)/ and (q-y)/ -

based linear terms across the resonance or peak at Vr  10.5. Thereafter, these forces 

remain positive throughout the remaining Vr range. On the contrary, while the 
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(q+y-x)/-based nonlinear force in Figure 5.1 (b) is in general positive for Cax, the 

(p-2y)/-based nonlinear force in Figure 5.1 (d) changes its sign for Cay from being 

positive to negative when a response jump is experienced at Vr13. Depending on 

oscillation amplitudes, these distinctive phase relations show how the quadratic 

nonlinearities can affect the resulting added mass coefficients and their signs for 

achieving dual resonances (Section 5.3.4). As a final remark, prior to the jump 

occurrence of x-y responses, θp-θx and θq+θy-θx values at the peak Ax/D are 

approximated to be equal to π/2 (Figure 5.1 (a)) and 9π/10 (Figure 5.1 (b)) whereas 

θq-θy and θp-2θy values at the peak Ay/D are approximated to be equal to π/2 (Figure 

5.1 (c)) and π/10 (Figure 5.1 (d)), respectively. Since these numerically-obtained 

phase differences are found to be valid in a wide m* range, θp-θx =   θq-θy  π/2, 

θq+θy-θx  9π/10 and θp-2θy  π/10 will be again utilised in Section 5.4 for obtaining 

maximum responses and associated hydrodynamic coefficients based on closed-form 

expressions.  

5.3.2 Mean hydrodynamic drag coefficients  

Coefficients of the amplified mean drag in the IL direction are now evaluated 

by considering the case of f*=1. Previous experiments [31, 135] introduced an 

empirical relationship between the total mean drag coefficient (CDT) and Ay/D of the 

form 𝐶𝐷𝑇 ≈ 𝐶�̅�(1 + 𝑘′𝐴𝑦/𝐷) where k’ is a curve fitting parameter. In this study, 

through the use of wake oscillators, 𝐶𝐷𝑇 ≈ 𝐶�̅� + 𝐶𝑑𝑣 is purposed where the mean 

drag coefficient of a stationary cylinder 𝐶�̅� is assumed as 1.2 for sub-critical flows 

[7], and Cdv is based on Eq. (5.9) depending on the transverse wake-cylinder (q0y0) 

coupling. To obtain a realistic mean drift downstream (Eq. (5.7)), Cdv should be 

positive according to the sine term; this is justified by the numerical results of 0 < θq-

θy < π displayed in Figure 5.1 (c).  

 Figure 5.2 (a) compares experimental and numerical CDT as a function of Vr 

based on the experimental models with m*=5.4 and  =0.002 [30], and m* = 2.6 and 

 = 0.007 [137]. Overall comparisons reveal their agreement in a similar lock-in 

range of about 4<Vr<9. The numerical model overestimates the maximum CDT in the 

lower m* = 2.6 case. Similar to the Ay/D response (e.g. Figure 5.1 (c)), a jump in the  
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Figure 5.2: Comparison of numerical and experimental ([30], m*=5.4 and [137], m*=2.6) mean drag 

coefficients as function of (a) Vr and (b) Ay/D in which the black line represents the empirical relation 

by [31]. 

CDT plot is noticed both numerically and experimentally. Outside the lock-in 

range where Ay/D is diminished, CDT is comparable to 𝐶�̅� of the non-oscillating 

cylinder. As it was explained in Chapter 3, under the discussion of Figures 3.2 and 

3.3, in some cases the proposed model of Eqs. (3.9-3.12) underestimates the 

amplitude responses in “lower branch”. This is mainly due to the fact that this model 

is calibrated in comparison with upper and super-upper branches of amplitude 



 

162 
 

response. Consequently, the predicted hydrodynamic coefficients may be 

underestimated. Such circumstances occur in Figure 5.2 where the magnitudes of 

mean drag coefficients at lower branch are lower than their experimental 

counterparts. Corresponding to Figure 5.2 (a), Figure 5.2 (b) shows the CDT/𝐶�̅�  plots 

as a function of Ay/D, illustrating how numerical and experimental results follow the 

well-known empirical formula with k’ = 2 [31].  With varying Vr, Figure 5.3 

displays the contour plots of numerical CDT as a function of m* (Figure 5.3 (a)) and 

associated Ay/D (Figure 5.3 (b)), in the case of f* = 1 and  = 0.001. As expected, 

numerical results highlight a strong dependence of  

 

Figure 5.3: Contour plots of CDT as functions of (a) m* and (b) Ay/D with varying Vr: plots of Cdv,max 

as function of m* is also depicted in (a). 
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CDT on Ay/D; generally speaking, the lower the m*, the greater the Ay/D and, thus, the 

CDT. For m* > 6 and Ay/D < 1.1, CDT slightly changes with varying Vr. Therefore, in 

this high m* range, a nearly constant CDT may be uniquely identified. On the 

contrary, when m* < 6 towards a critical value of 0.52 [9] and Ay/D > 1.1, there is a 

greater variation in CDT when varying Vr. In this higher-amplitude range, CDT is 

dependent exclusively on both m* and Vr, and the overall maximum CDT does not 

necessarily correspond to the maximum Ay/D at the lowest m*. For a fixed 𝐶�̅�, the 

best-fit function for the maximum Cdv suggests, based on results in Figure 5.3 (a) and 

using “curve fitting” toolbox of Matlab, that 

𝐶𝑑𝑣,𝑚𝑎𝑥 = 5.14𝑒−0.19𝑚∗
− 2.54𝑒−0.64𝑚∗

 (5.35) 

5.3.3 Hydrodynamic forces in phase with cylinder velocities 

Coefficients of the hydrodynamic forces in phase with the cylinder velocities 

(Cvx, Cvy) are now discussed. For a given m* = 2.6, ξ = 0.007 and f*=1, results of Cvy 

and Cvx with varying Vr are plotted in Figure 5.4 (a) and (b), respectively. To validate 

prediction results, Cvy and Cvx plots based on the 2DOF VIV experiments [137] and a 

post-processing approach in [9] are compared. In Figure 5.4, experimental and 

numerical results reveal similar qualitative behaviors: both Cvx and Cvy are negative 

with their minimum values corresponding to the upper-branch range. There is also a 

discontinuity in Cvx and Cvy plots with a jump phenomenon as observed in the 2DOF 

amplitude diagrams [9]. Following the numerical sign convention imposed, the range 

with Cvx < 0 and Cvy < 0, with the former being greater than the latter, is referred to 

as an excitation region which indicates how the energy is transferred from the fluid 

to the structure, rendering the growing response as Vr is increased towards a location 

of peak amplitudes where Cvx and Cvy achieve their minimum values.  

For a given ξ = 0.001, Figure 5.5 illustrates the influence of varying m* and Vr 

on both Cvy and Cvx in the case of f*=1 (Figure 5.5 (a) and (b)) and f*=2 (Figure 5.5 

(c) and (d)). With f* = 1, Cvy in Figure 5.5 (a) and Cvx in Figure 5.5 (b) are seen to 

increase as m* increases. These are valid since VIV responses of a high-mass 

cylinder (m* > 6) are generally small for Ay/D or even negligible for Ax/D [9]. On the 

contrary, as m* is decreased towards a critical value of about 0.52 [9], both Cvx and 

Cvy become persistently negative throughout the considered Vr range. This justifies 
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the so-called ‘resonance forever’ occurrence [27] where the lower-branch CF/IL 

responses disappear and the lock-in ranges of the upper-branch amplitudes are 

considerably extended. The influence of f* on the Cvy and Cvx prediction is discussed 

by comparing the results with f* = 2 (Figure 5.5 (c) and (d)) to those with f* = 1 

(Figure 5.5 (a) and (b)). It is seen that the excitation range for the IL response is 

increased when f* = 2 since the overall area of negative Cvx is grown (Figure 5.5 (d) 

vs. (b)), spanning across the whole m* range. With Figure 5.5 (c) vs. (d), Cvy values 

and their isoline patterns are seen to be slightly influenced by the increased f*. These 

entail comparable Ay/D responses with f*=1 and 2. 

 

Figure 5.4: Plots of (a) Cvy and (b) Cvx as function of Vr with experimental comparisons. 
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Figure 5.5: Maps of (a, c) Cvy and (b, d) Cvx as functions of m* and Vr: (a, b) f*=1 and (c, d) f*=2. 

5.3.4 Hydrodynamic forces in phase with cylinder accelerations 

Coefficients of the hydrodynamic forces in phase with the cylinder acceleration 

(Cax, Cay) as well as the corresponding effective added mass coefficients (CMx, CMy) 

where CMx = CAx+Ca and CMy = CAy+Ca (Ca  1 for a circular cylinder [7] having 

been incorporated into Eqs. (3.9) and (3.11)) are now evaluated based on Eqs. (5.10), 

(5.12) and (5.14)-(5.15). Throughout the lock-in range, these amplitude-dependent 

coefficients are variable, thereby influencing the dual-resonant x-y oscillation 

frequencies. 
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Figure 5.6: Plots of (a) Cay, (b) CMy, (c) Cax and (d) CMx as function of Vr with experimental 

comparisons. 

By assigning the same m* and  as in Figure 5.4, numerical results of Cay, CMy, 

Cax and CMx are plotted  as a function of Vr in Figure 5.6 (a-d), respectively. 

Experimental results of [137] based on the post-processing approach in [9] are also 

compared in Figure 5.6. In the CF direction, a qualitative agreement between 

numerical and experimental results can be noticed with, approximately, -2 < Cay < 2 

and -2 < CMy < 3, revealing a transition from a positive to negative Cay and CMy as Vr 

is increased. When the associated Cvy in Figure 5.4 (a) achieves its minimum value 

(Vr  7 experimentally and Vr  8 numerically), the inertia component Cay in Figure 

5.6 (a) becomes zero and changes its sign across the resonance. This indicates the 

decreasing effective added mass CMy as shown in Figure 5.6 (b) and confirms an 

increment in the effective oscillation frequency of a low mass-damping cylinder as Vr 
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is increased [9, 76]. In the IL direction, Cax plots in Figure 5.6 (c) reveal their 

negative values throughout the considered Vr range. This results in a lower effective 

added mass CMx in Figure 5.6 (d) than CMy in Figure 5.6 (c): this seems feasible since 

dual 2:1 resonances require a considerable augmentation in the IL oscillation 

frequencies in the case of f*=1. Recent computational fluid dynamics study also 

revealed negative effective added masses whose values are as low as nearly -2, 

depending on f* [78]. For a given ξ = 0.001 as in Figure 5.5, the influence of varying 

m* and Vr on both Cay and Cax is now illustrated in Figure 5.7 with f* =1 and 2. For 

f* =1, Cay plots throughout the considered range of m* display a typical transition 

from being positive to negative when increasing Vr (Figure 5.7 (a)). As m* is 

increased, such transition regime becomes apparently limited with decreasing 

absolute Cay values, owing to the reduced Ay/D response and its synchronization 

range. These overall observations also hold in the case of f* = 2 (Figure 5.7 (c)). On 

the contrary, the isolines of Cax reveal both quantitative and qualitative differences 

between the cases of f* = 1 and 2. In the f* = 1 case (Figure 5.7 (b)), Cax are overall 

negative, as discussed above, and the absolute values of Cax are greater than those of 

Cay as m* decreases towards the resonance forever regime (m*  0.52). In the f* = 2 

case, the Cax isolines in Figure 5.7 (d) now reveal the patterns similar to those of Cay 

in Figure 5.7 (a) and (c) with positive (low Vr), zero and negative (high Vr) 

coefficients. This is in qualitative agreement with the recent study of Bao et al. [78]. 

It is also worth remarking that the zero Cay and Cax lines suggest the reduced 

velocities at maximum attainable responses depending on m*. As m* is decreased, 

Aym/D and Axm/D occur at higher Vr due to the increased lock-in range. 

5.4 Maximum Dual-Resonant Responses  

It is well known that the maximum amplitude of CF-only VIV (Aym/D) is a 

function of the combined m* parameter [23, 33]. However, this is no longer valid in 

the case of CF/IL VIV where maximum amplitudes (Aym/D, Axm/D) are functions of 

m* and  [30]. In this study, a new alternative way of representing Aym/D and Axm/D 

versus varying m* and  is presented through the analytical solution derived in 

Section 5.2 (Eqs. (5.24-29)).  
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Figure 5.7: Maps of (a, c) Cay and (b, d) Cax as functions of m* and Vr: (a, b) f*=1 and (c, d) f*=2. 

5.4.1 Maximum attainable amplitudes and hydrodynamic coefficients 

Based on the deduced oscillation frequency function (Eq. (3.20)) and phase 

relations (θp-θx = θq-θy  π/2, θq+θy-θx  9π/10 and θp-2θy  π/10) from Section 5.3.1 

(Figure 5.1), contour plots of Aym/D and Axm/D in the f* = 1 case are illustrated in 

Figure 5.8. At maximum responses, contour plots of the unsteady lift (Cl = Cl0q/2), 

unsteady drag (Cd = Cd0p/2) and amplified mean drag (Cdv) coefficients are illustrated 

in Figure 5.9.  
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Figure 5.8: Contour plots of maximum dual-resonant responses as functions of m* and ξ: (a) Aym/D 

and (b) Axm/D. 

Figures 5.8 and 5.9 highlight how the variation of m* and ξ has a significant 

effect on Aym/D (Figure 5.8 (a)) and Axm/D (Figure 5.8 (b)) as well as on CL (Figure 

5.9 (a)) and Cd (Figure 5.9 (b)). In general, Aym/D, Axm/D, Cl and Cd values increase 

as m* or ξ decreases. The variation of m* for a given ξ is seen to have a greater 

influence – as exhibited by the multi-colour response when noticing vertically – on 

the maximum responses and hydrodynamic coefficients than the variation of ξ for a 

given m*. For the considered 1 ≤ m* ≤ 6 (where the effect of IL response is 

meaningful [9]) and 0.001 ≤ ξ ≤ 0.07, the estimated ranges of analytically-obtained 
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values are as follows: 0.5 < Aym/D < 2, 0 < Axm/D < 0.5, 2 < Cl < 5 and 0.3 < Cd < 0.5. 

Hence, there is a considerable magnification of the unsteady lift and drag coefficients 

of the oscillating cylinder at the maximum response when compared to those (e.g. Cl0 

= 0.3 [7], Cd0 = 0.2 [52]) of the stationary cylinder. This is in qualitative agreement 

with what have recently been experimentally [77] and numerically [78] observed. 

 

Figure 5.9: Contour plots of (a) Cl, (b) Cd and (c) Cdv as functions of m* and ξ, associated with Figure 

5.8. 

With regard to the VIV-induced mean drag, the features of Cdv contours in 

Figure 5.9 (c) are generally similar to those in Figure 5.8 (a) due to the dependence 

of Cdv on Ay/D. The position of the peak Cdv  2.7 is found to appear at m*  1.8 and 

ξ  0.001. This analytically-obtained Cdv (2.7) is found to be comparable to that (2.8) 
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numerically obtained from Eq. (5.35). In practice, the design near such a low m*ξ 

should be avoided since the associated peak Cdv could render a large downstream 

equilibrium of the structure, the associated bending or axial stress due to the 

additional displacement and a possible collision or wake interference with the 

adjacent structural system. 

5.4.2 Effects of structural nonlinearities and empirical coefficients 

Next, a shortcoming of using the linear structural oscillators in the 2DOF VIV 

prediction is underlined through Figure 5.10 in comparison with Figure 5.8, by 

accounting for the effect of m* and ξ. When system nonlinearities are omitted from 

Eqs. (3.9) and (3.11), analytical results of Aym/D and Axm/D in Figure 5.10 are 

obtained based on Eqs. (5.30)-(5.33). To also appreciate the effect of a model 

empirical coefficient, two cases are analysed: (i) y is based on the calibrated function 

in Eq. (3.18) depending on m* (Figure 5.10 (a) and (c)) and (ii) y = 0.3 [66] is fixed 

(Figure 3.10 (b) and (d)). In the first case, both quantitative and qualitative 

discrepancies in the IL response are evident when comparing Figure 5.10 (c) (linear 

model) to Figure 5.8 (b) (nonlinear model). Due to the lack of CF/IL coupling terms, 

the predicted Axm/D values are very low. On the contrary, the effect of CF 

nonlinearities on Aym/D is seen to be negligible (Figure 5.10 (a) vs. 5.8 (a)) when 

applying Eq. (3.18) to the analysis case of f*=1. Nevertheless, this would not hold 

when f*1 . In the second case, by specifying y = 0.3, both quantitative and 

qualitative differences in both CF and IL responses are remarkable when comparing 

Figure 5.10 (b) and (d) (linear model) to Figure 5.8 (a) and (b) (nonlinear model). 

Since x = y = 0.3 and the linear y and x structural oscillators are identical, contour 

plots in Figure 5.10 (b) and (d) appear qualitatively similar with highly 

underestimated Aym/D and Axm/D. These results emphasize the importance of 

accounting for the system coupling nonlinearities and the dependence of empirical 

coefficients on a system parameter (e.g., m*) in the modelling and prediction of 

combined CF/IL VIV. 
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Figure 5.10: Contour plots of (a, b) Aym/D and (c, d) Axm/D as functions of m* and ξ: (a, c) models 

with neglected nonlinearities and variable y depending on m* (Eq. 3.18); (b, d) model with neglected 

nonlinearities and fixed y. 

5.5 Conclusions 

By accounting for cubic and quadratic nonlinearities of the proposed semi-

empirical model, analytical closed-form expressions have been derived to 

parametrically characterize key coefficients of the unsteady hydrodynamic forces 

comprising the fluid excitation, inertia and added mass components and the 

amplification of the mean drag. The dependence of hydrodynamic properties on the 

quadratic coupling of transverse amplitude and fluid wake motion is underlined. 

Some numerical comparisons with available experimental results have been 

discussed.  
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Overall two-dimensional hydrodynamic coefficients of the oscillatory forces in 

phase with the cylinder velocities and accelerations depend on the system fluid-

structure parameters, oscillation amplitudes, frequencies and phase relationships. The 

natural frequency ratio influences on the IL hydrodynamic mechanism. This is quite 

noticeable with respect to the force in phase with the cylinder acceleration and 

associated added mass, justifying a greater modification of the IL oscillation 

frequency during the lock-in or dual resonance exhibiting a variable figure-of-eight 

pattern. The mass ratio plays a significant role in both CF and IL hydrodynamics. 

The fluid excitation ranges are increased with decreasing mass ratio, becoming 

unbounded when approaching the very low-mass region. Some useful best-fit 

formulae as a function of mass ratio have been introduced to describe the maximum 

VIV-induced mean drag coefficient. New analytical contour plots of maximum dual-

resonant responses and associated lift/drag force coefficients as functions of mass 

and damping ratios have been constructed. A shortcoming of using a linear structural 

oscillator model or a fixed empirical coefficient in the wake oscillator model for the 

2DOF VIV prediction is highlighted. 

 

 

 



 

174 
 

 

Chapter 6 

Three-dimensional VIV of Flexible 

Cylinders Subjected to Uniform Flow 

In this chapter, a semi-empirical predictive model for vortex-induced vibrations 

(VIV) of a flexible cylinder subjected to a uniform flow is developed. The model 

consists of nonlinear equations of CF, IL and axial structural oscillations which, 

through fully-nonlinear lift/drag forces, are coupled to van der Pol-type wake-

oscillators modelling fluctuating fluid forces. The geometric nonlinearities of the 

equations of the motions let the model capture interconnected structural vibrations 

and axial oscillations induced by lateral VIV of the cylinder. Solving the model via a 

finite difference numerical scheme, three-dimensional VIV responses of the cylinder 

are predicted. The model predictions are analysed through time and frequency 

domain, modal and stress analyses. Furthermore, the importance of considering the 

geometric and hydrodynamic nonlinearities is studied. Finally, a quantitative 

validation of the numerical results is performed as well.  
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6.1 Description of the Model and Evaluation of System Parameters 

Deepwater explorations require risers with higher aspect ratios (length-to-

diameter ratio, L/D) which are VIV-prone and can experience very high amplitude 

oscillations owing to vortex shedding. Figure 6.1 (a) shows a schematic 

representation of such a riser subjected to a uniform and unidirectional flow. The 

riser is supposed to have spatially uniform properties including mass/length (m), 

damping (c), diameter (D), bending stiffness (EI) and axial stiffness (EAr). For the 

VIV system of a slender cylinder like this, structural geometric nonlinearities, 

including nonlinear coupling between lateral (CF and IL) and axial motions, and the 

impact of longitudinal oscillations become important [14]. Also, for a reliable and 

realistic prediction of VIV in offshore applications, both of IL and CF vibrations 

must be considered simultaneously [9]. That is, for an accurate and dependable 

prediction of slender marine risers’ behaviours, a three-dimensional nonlinear 

structural model is required.  

6.1.1 Structural equations of motions 

The dimensional nonlinear partial-differential equations of the three-

dimensional coupled lateral and axial motions of a flexible cylinder can be expressed 

as [138]: 

(𝑚 + 𝑚𝑎)�̈� + 𝑐�̇� + 𝐸𝐼𝑢(𝐼𝑉) − (𝑇𝑢′)′

= 𝐸𝐴𝑟(𝑣′′𝑢′ + 𝑣′𝑢′′)

+
1

2
𝐸𝐴𝑟(3𝑢′′𝑢′2

+ 𝑢′′𝑣′2
+ 2𝑣′′𝑣′𝑢′ + 𝑢′′𝑤′2

+ 2𝑤′′𝑤′𝑢′) + 𝐹𝑥 

(6.1) 

(𝑚 + 𝑚𝑎)�̈� + 𝑐�̇� + 𝐸𝐼𝑣(𝐼𝑉) − (𝑇𝑣′)′

= 𝐸𝐴𝑟𝑣′′ + 2𝐸𝐴𝑟𝑣′′𝑣′ + 𝐸𝐴𝑟(𝑢′′𝑢′ + 𝑣′′𝑣′ + 𝑤′′𝑤′)

+
1

2
𝐸𝐴𝑟(𝑣′′𝑢′2

+ 2𝑢′′𝑢′𝑣′ + 3𝑣′′𝑣′2
+ 𝑣′′𝑤′2

+ 2𝑤′′𝑤′𝑣′) 

(6.2) 



 

176 
 

(𝑚 + 𝑚𝑎)�̈� + 𝑐�̇� + 𝐸𝐼𝑤(𝐼𝑉) − (𝑇𝑤′)′

= 𝐸𝐴𝑟(𝑣′′𝑤′ + 𝑣′𝑤′′)

+
1

2
𝐸𝐴𝑟(𝑤′′𝑢′2

+ 2𝑢′′𝑢′𝑤′ + 𝑤′′𝑣′2
+ 2𝑣′′𝑣′𝑤′

+ 3𝑤′′𝑤′2
) + 𝐹𝑧 

(6.3) 

where u, v and w denote dynamic displacement in IL (X), axial (Y), and CF (Z) 

directions. The overdot and prime symbols show derivatives with respect to time t 

and space Y, respectively. m is the structural mass per unit length and ma is the fluid 

added mass per unit length defined. E is the modulus of elasticity, I the area moment 

of inertia, Ar the cross-sectional area and T the space-related tension. Despite other 

physical parameters which are supposed to be spatially constant, T is considered to 

be variable. For a vertical riser with a top tension of Ttop, variation of the tension 

along the span of the riser can be expressed as [110] T=Ttop-g(m-b)(L-Y)  

where g is the gravitational acceleration and b= π/4gρD
2
 is the buoyancy force. For a 

horizontal riser, as it is the case for the experimental results of [94] and [139] which 

will be used in this paper, there is no tension variation due to weight of the riser and 

the buoyancy force. Hence, for a horizontal riser T= Ttop. 

6.1.2 Fluid forces, wake oscillators and empirical coefficients 

Axial oscillations of the Eq. (6.2), through geometric nonlinear coupling terms, 

are induced by the IL and CF lateral motions of the slender cylinder which are 

excited by the unsteady fluid forces, caused by vortex shedding, denoted as Fx and Fz 

in Eqs. (6.1) and (6.3), respectively. These forces can be expressed as: 

𝐹𝑥 =
1

2
𝜌𝐷𝑉2𝐶𝑥 

(6.4) 

𝐹𝑧 =
1

2
𝜌𝐷𝑉2 𝐶𝑧 

(6.5) 

where Cx and Cz are the force coefficients in IL and CF directions, respectively. For a 

stationary cylinder, Figure 6.1 (b), these coefficients are corresponding to the drag 

and lift coefficients, respectively. When the cylinder oscillates, Figure 6.1 (c), due to 

its relative motion, the drag and lift forces are no longer in X and Z directions. In this 

case, as it is explained in previous chapters, these coefficients can be obtained in 

terms of lift and drag coefficients as: 
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Figure 6.1: (a) Schematic of a riser at rest (hollow cylinder) and during VIV (filled grey cylinder); (b) 

fluid forces on an arbitrary section of the stationary riser; (c) fluid forces on an arbitrary section of the 

oscillating riser. 

𝐶𝑥 = (𝐶𝐷 cos 𝜃 + 𝐶𝑙 sin 𝜃) (
𝑉𝑟𝑒𝑙

2

𝑉2
) 

(6.6) 

𝐶𝑧 = (𝐶𝑙 cos 𝜃 − 𝐶𝐷 sin 𝜃) (
𝑉𝑟𝑒𝑙

2

𝑉2
) 

(6.7) 
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in which 

sin 𝜃 =

�̇�
𝑉

√(1 −
�̇�
𝑉)

2

+ (
�̇�
𝑉)

2
 

(6.8) 

cos 𝜃 =
1 −

�̇�
𝑉

√(1 −
�̇�
𝑉)

2

+ (
�̇�
𝑉)

2
 

(6.9) 

where Cl is the time-dependent lift coefficient and 𝐶𝐷 = 𝐶�̅� + 𝐶𝑑 is the drag 

coefficient in which 𝐶�̅� = 1.2 [7] is the mean drag coefficient of a stationary cylinder 

and Cd is the oscillatory drag coefficient. Substituting Eqs. (6.6)-(6.9) into Eqs. (6.4) 

and (6.5) yields 

𝐹𝑥 =
1

4
𝜌𝐷𝑉𝑟𝑒𝑙𝐶𝑑0𝑝(𝑉 − �̇�) +

1

2
𝜌𝐷𝑉𝑟𝑒𝑙𝐶�̅�(𝑉 − �̇�) +

1

4
𝜌𝐷𝑉𝑟𝑒𝑙𝐶𝑙0𝑞�̇� 

(6.10) 

𝐹𝑧 =
1

4
𝜌𝐷𝑉𝑟𝑒𝑙𝐶𝑙0𝑞(𝑉 − �̇�) −

1

4
𝜌𝐷𝑉𝑟𝑒𝑙𝐶𝑑0𝑝�̇� −

1

2
𝜌𝐷𝑉𝑟𝑒𝑙𝐶�̅��̇� 

(6.11) 

where Vrel is the relative velocity and is defined as: 

𝑉𝑟𝑒𝑙 = 𝑉√(1 −
�̇�

𝑉
)

2

+ (
�̇�

𝑉
)

2

 

(6.12)  

In the literature, for the sake of simplicity and deriving analytical solutions, it 

is usually supposed that the structural velocities compared to flow velocity are small 

which leads to the linearization and simplification of these nonlinear forcing terms 

[114]. Moreover, as it has been shown previous chapters, the models with such 

forcing terms are capable of explaining and predicting some of the important 

experimentally observed phenomena, for example, higher harmonics, dual resonance 

and mean drag amplification due to VIV [79]. In this chapter to keep the generality 

of the model, the fully nonlinear versions of these fluid forces are utilised.  

The fluctuating time-dependent nature of the oscillatory lift and drag 

coefficients, as it was done for the rigid cylinder model, can be replicated by van der 

Pol equations which through acceleration terms are coupled to the equations of 

structural oscillations [66, 105, 112]: 
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�̈� + 2𝜀𝑢𝜔𝑓(𝑝2 − 1)�̇� + 4𝛺𝑓
2𝑝 =

𝛬𝑢

𝐷
�̈�, 

(6.13) 

�̈� + 𝜀𝑤𝜔𝑓(𝑞2 − 1)�̇� + 𝛺𝑓
2𝑞 =

𝛬𝑤

𝐷
�̈�, 

(6.14) 

where St=0.18 is the Strouhal number and εu, εw, Λu and Λw are empirical coefficients 

which can be obtained through calibration of the model with the experimental results. 

As it is explained in Chapters 2 and 3, there is no clear physical interpretation of 

these coefficients; however, to make the comparison with the previous results 

possible, following the rigid cylinder model presented in previous chapters, here 

εu=0.3, Λu=12 and Λw=12. Also, to relate one of these coefficients to the important 

physical parameters of the VIV system, using the Eq. (35) of [66] and Eq. (6.2) of 

[36], εw can be expressed as: 

𝜀𝑤 =
𝛬𝑤

4
SG + 1.3

𝐶𝑙0
(2

SG + 1.3
𝐶𝑙0

(1 + 1.12𝛼 + 0.3𝛼2) log 0.41Re0.36)
2

− 1

 
(6.15) 

6.1.3 Coupled wake-structural oscillators and numerical scheme 

Substituting the nonlinear fluid forcing terms of Eqs. (6.10) and (6.11) into the 

Eqs. (6.1) and (6.3), respectively, and utilising the empirical coefficients introduced 

in previous section in the wake oscillator equations, a system of nonlinear partial 

differential equations is formed which is employed for prediction and description of 

the behaviour of a tensioned marine riser undergoing VIV. To this end, similar to 

[105], [108] and [14], these equations are solved via a stable centred finite difference 

scheme in both space and time domains for a beam-cable with pinned-pinned 

boundary conditions which initially is at rest; and wake oscillators with initial 

conditions of p=2 and q=2. This numerical solution is developed via Matlab 

programming language. To assure that the numerical results are accurate, 

convergence tests are done. Using this code, on a Dell Optiplex 7010  PC with Intel® 

Core-i7 3.4 GHz processors and  16 GB of RAM, each second of the numerical VIV 

simulations, wit a time step of 10
-4

 s, takes 23 and 76 s long for cases considered in 

Chapters 6 and 7, respectively. In next sections, the results of the numerical solution 

of the model are qualitatively and quantitatively compared with experimental results. 

These comparisons, apart from validating the model predictions, investigate that 
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whether the values and relations suggested for the empirical coefficients of the model 

are correct. This is important because all the phenomenological models have 

empirical coefficients which are used for calibration of the model with the 

experimental results. However, in this chapter, to make it possible to compare the 

results with the other similar models, the values of these parameters are chosen from 

the literature and for one parameter, εw, a relation is introduced, Eq. (6.15). Hence, 

the capability of the model in replication of the experimental results would validate 

the suggested values and relations. 

6.2 Model Predictions and Discussion  

The semi-empirical model presented in the previous section is solved 

numerically based on the experimental riser model of [94, 140]. The properties and 

given parameters of this experiment are summarised in Table 6.1. The model 

predictions are discussed and are qualitatively compared with experimental 

observations. Moreover, in the cases where the comparison are made between 

numerical predictions at different flow velocities, the velocities are chosen to be 

V=0.3, 0.4, 0.8, 1 m/s to capture more aspects of three-dimensional VIV of elastic 

cylinders. 

Table 6.1: Parameters of the riser models used for validation of the semi-empirical model. 

Parameters Experiment by [94, 140] 

Length, m 28 

Inner diameter, m 0.016 

Outer diameter, m 0.015 

Mass ratio 1.0 

Bending stiffness, N.m
2
 153.7 

Axial stiffness, N 5.11×10
6
 

Pretension, N 700 

Range of Reynolds number 3000-10000 

6.2.1 Space-time variations of structural oscillations 

Figure 6.2 shows the model predictions of normalised three-dimensional 

displacements of the riser model in the space-time domain. Moreover, these results 

illustrate that the frequency of oscillations in the IL and axial directions are almost 
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twice of that in the CF direction, e.g. see section AA of Figure 6.2 (a), (e) and (i). 

These higher oscillation frequencies caused by higher excitation frequencies infer 

that the structure might undergo higher vibration modes in the IL and axial 

directions. The spatio-temporal plots of structural oscillations at V=0.3 m/s and 

V=0.4 m/s clearly confirm this. The comparison between the results at these 

moderate velocities, also, suggest that in the CF direction the riser undergoes single-

mode oscillations while in the IL and axial directions more than one mode 

contributes to the responses. To investigate which modes contribute to the structural 

responses, a proper modal analysis is required which will be performed and 

presented in the following sections. However, as it was mentioned earlier, the results 

of Figure 6.2 can provide some visual information such as higher vibrating mode of 

IL and axial oscillations.  

 

Figure 6.2: Spatio-temporal plot of: (a-d) CF oscillations; (e-h) IL oscillations; (i-l) axial oscillations. 

Experimental studies have shown that the higher the oscillation mode be, the 

more probable the travelling waves are [141]. This deduces that travelling waves 

appear in the IL direction prior to CF direction. In the present results of Figure 6.2, at 
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V=0.3 m/s the responses are heavily dominated by the standing waves. As the flow 

velocity increases to V=0.4 m/s, while the standing waves still dominate the 

responses, transition to travelling wave starts in the IL response. For example, by 

following the variation of colours along the section A-A (dashed line) in Figure 6.2 

(f), this transitional response can be distinguished. At higher velocities, higher 

vibrating modes are excited which consequently make the occurrence of travelling 

waves more probable. Therefore, at V=0.8 and 1 m/s which the excitation frequency 

is high enough, the responses are dominated by the travelling waves.  In Figure 6.2 

(c), (g) and (k) these travelling waves propagate towards the bottom end boundary of 

the riser model and in Figure 6.2 (d), (h) and (l) they propagate in the other direction. 

This is consistent with the results of [108] in which they reported arbitrary 

propagation directions.  

The overall comparison between the spatio-temporal plots of Figure 6.2, also, 

demonstrates that the amplitudes of oscillations increase as V increases. However, 

while this increase in the CF and IL directions is gradual, in the axial direction it 

happens with a higher rate and results in considerable longitudinal oscillations at 

high flow velocities (Figure 6.2 (k) and (l)). Hence, the importance of axial motions 

is fortified at higher flow velocities. Moreover, at moderate velocities where the 

standing waves dominate the responses, maximum axial displacement occurs near 

two ends of the riser and the midsection of the riser has no longitudinal 

displacements. On the other hand, at high V that travelling waves are dominating, the 

amplitude of longitudinal oscillations increases monotonically towards the direction 

of wave propagation. Further investigation of the results depicted in Figure 6.2, will 

draw a clearer picture of the observations made in here. The frequency domain 

analysis of these results is presented in the next section. 

6.2.2 Frequency domain analysis and higher harmonics 

The results presented in the previous section suggested that the frequencies of 

IL and axial oscillations are almost twice of that in the CF directions. The frequency 

domain analysis of those spatio-temporal results is depicted in Figure 6.3. This figure 

shows the power spectrum of the structural oscillations along the span of the cylinder 

and confirms that the structure in the IL and axial directions vibrates at frequencies 
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twice of the frequency of CF oscillations. Moreover, these figures show that the 

dominant frequency of the three-dimensional structural oscillations increases as the 

flow velocity increases. However, the most important observations which can be 

made in these figures are the appearance of higher harmonics in the structural 

responses. These higher harmonics are specified and highlighted by rectangles 

surrounding them. Figure 6.3 (a-d) illustrates that in the transverse direction the 

structure oscillates under one dominating strong basic frequency and a third 

harmonic component which is identified by a black square. In the IL direction, 

Figure 6.3 (e-h), the frequency domain analysis confirms the existence of fourth 

higher harmonics. These results, also, illustrate that the contribution of the fourth 

higher harmonics to the IL oscillations is more than that of third harmonics to the CF 

oscillations. For example, the colour intensities of the higher harmonics in Figure 6.3 

(a) and (e) shows that higher harmonics have more contributions to the IL 

oscillations than the CF motions.  

 

Figure 6.3: Frequency domain analysis of the numerical predictions of the structural oscillations in 

(a-d) CF direction; (e-h) IL direction and (i-l) axial direction. 
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The analysis of the axial oscillations, Figure 6.3 (i-l), shows that at the 

moderate flow velocities of V=0.3 and 0.4 m/s the cylinder experiences axial 

oscillations with fourth higher harmonics involved. At higher flow velocities, V=0.8 

and 1 m/s, in addition to the fourth higher harmonics, the sixth higher harmonics are 

involved as well. Moreover, the results suggest that the importance of this sixth 

harmonic component is fortified as the flow velocity increases. For instance, the 

comparison between sixth harmonic components of Figure 6.3 (k) and (l) shows that 

at V=1 m/s this harmonic component is more significant. Likewise, the comparison 

between second and sixth harmonic components of Figure 6.3 (l) shows that at some 

sections along the span of the cylinder the higher harmonics dominate the response. 

These findings along with the results shown in previous section and the experimental 

results suggesting considerable contribution of the higher harmonics to the fatigue 

damage of an elastic cylinder [81, 142], show the importance of considering axial 

oscillations. 

It is worth mentioning that in the experimental results, the higher harmonics 

are observed in both forces and structural responses. However, since in semi-

empirical models both of the wake oscillator and the structure oscillate at the same 

frequencies; here just the frequency domain analyses of the structural responses are 

presented. Development of higher harmonics in the fluid forces can be explained, as 

it is proven by [79], through nonlinear fluid forcing terms of Eqs. (6.10) and (6.11). 

These nonlinear forcing terms, apart from higher harmonics, make the prediction of 

amplification of mean drag caused by VIV and the dual resonance and 2:1 oscillation 

frequency ratios possible, as well (see Chapter 5). These 2:1 oscillation frequency 

ratios result in highly repetitive Fo8 trajectories which have been experimentally 

observed and proven to be controlling the appearance of higher harmonics [9, 77]. 

Therefore, to predict the interconnection of higher harmonics and Fo8 trajectories, 

the nonlinear fluid forcing terms applied in the present model should be considered. 

In the next Section, the variation of the Fo8 orbits along the span of the riser and 

variations of mean IL displacements due to VIV are presented.  
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6.2.3 Fo8 orbits, dual resonance and mean drag amplification 

Figure 6.4 show the mean position of the riser model at different flow 

velocities and depicts the Fo8 trajectories at different elevations along the span of the 

riser. Due to existence of dual resonance response, all of the trajectories are highly 

repetitive and similar to experimental and numerical results from rigid cylinder VIV 

studies (see Chapter 4), almost all of them are towards downstream (the direction of 

incoming flow is shown with an arrow) . It, also, can be observed that the trajectories 

at different locations on the riser model have different shapes. In some cases, such as 

the one specified by blue colour in Figure 6.4 (d), the shapes are affected by the 

higher harmonics frequencies involved in the responses. The shape of these 

trajectories is controlled by the phase difference between IL and CF oscillations 

which controls the higher harmonics in the structural responses [79]. Therefore, 

appearance of higher harmonic responses at some sections of the riser does not 

necessarily mean that all the sections along the span of the cylinder have higher 

harmonic responses. This is important when it is known that the contribution of these 

higher harmonics in the fatigue damage can be quite considerable [142] and 

consequently the overestimation of damages might lead to over-conservative costly 

riser designs. Apart from the variation of Fo8 trajectories, Figure 6.4 illustrates that 

mean IL deflection of the riser model increases with the increase of flow velocity, 

Figure 6.4 (e). This increase is due to mean drag amplification which in here 

displaces the riser model in IL direction up to 30 diameter [143]. The mean drag 

coefficient for a cylindrical structure undergoing VIV, compared to a stationary 

cylinder at similar flow velocity, is amplified. It is proven that this amplification can 

be expressed in terms of CF vibration amplitude [7, 135]. Moreover, in Chapter 5 it 

was shown that the IL nonlinear fluid forcing terms, under periodic assumed 

solutions, produce a constant forcing term which is a function of CF amplitude and 

can be interpreted as VIV-induced drag force. Therefore, as the flow velocity 

increases the structure oscillates at higher CF amplitudes which in turn amplifies the 

mean drag coefficient and increases the mean IL displacement of the structure. The 

present model, through the nonlinear forcing terms, is able to capture these 

interrelated and interactive behaviours. 
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Figure 6.4: (a-d), Variation of Fo8 trajectories along the span of the riser; (e), mean IL displacement 

at different flow velocities. 

6.2.4 Modal decomposition: multi-mode vibrations and mode switching 

For a pined-pined riser model, the time-varying shape of the model can be 

defined as a summation of sinusoidal mode shapes [83]: 

[

𝑢(𝑡, 𝑌)

𝑣(𝑡, 𝑌)

𝑤(𝑡, 𝑌)
] = ∑ [

𝑊𝑢𝑛(𝑡)𝜑𝑛(𝑌)

𝑊𝑣𝑛(𝑡)𝜑𝑛(𝑌)

𝑊𝑤𝑛(𝑡)𝜑𝑛(𝑌)
]

∞

𝑛=1

,   𝑌 ∈ [0, 𝐿] 

(6.16) 

where n is the mode number, W the modal weight and 𝜑n(Y)=Sin(nπY/L) the mode 

shape. Via this assumption, the mode/modes which are involved in the structural 

oscillations in all directions can be extracted. 

Figure 6.5 shows the first five dominant vibration modes which are involved in 

the structural responses of the semi-empirical model. In each figure, the horizontal 

axis is the mode number and the vertical axis shows the power of vibration modes 

which are normalized with the power of first dominant mode in the corresponding 
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direction and flow velocity (each figure also shows the magnitude of maximum 

power in dB/Hz). The analysis of the responses at moderate flow velocities, as it 

could be deduced from the time histories of Figure 6.2, shows that the CF motions 

are single-mode oscillations while in the IL and axial directions the cylinder 

undergoes multi-mode VIV which was observed in many experimental studies [12, 

81, 83]. These results also suggest that at V=0.3 m/s, where the responses are 

dominated by standing waves, in the IL direction only the symmetric modes 

(1,3,5,…) are excited and only even modes are involved in the axial motion. The 

analytical explanation of such behaviour can be found in the literature of cable 

dynamics which is out of the scope of the present paper [144]. However, in the 

following sections, where the effects of the geometric and hydrodynamic 

nonlinearities are studied, it will be explained that which terms are responsible for 

this behaviour. With the increase of flow velocity to V=0.4 m/s and transition of 

responses to travelling waves, the vibrating modes other than symmetric 

(antisymmetric) can involve in IL (axial) oscillations, as well. Following this trend, 

at high flow velocities of V=0.8 and 1 m/s, in which the travelling waves dominate 

the responses in all CF, IL and axial directions, multi-mode VIV with symmetric and 

antisymmetric modes contributing collectively occurs in all these three directions. 

The experimental studies have shown that when a structure undergoes multi-mode 

VIV, the dominant mode of oscillations can momentarily switch from one mode to 

another [84]. Figure 6.6 depicts the time variation of modal weights of first five 

dominant modes of structural oscillations presented in Figure 6.5. As these plots 

illustrate, most of the time, one particular mode which is presented with blue colour 

dominates the response. However, there are some special moments in which other 

modal weights overtake the blue line. For instance, in Figure 6.6 (e), the colourful 

dashed lines indicate the moments when the mode with the corresponding colour 

temporarily becomes dominant. Moreover, these time histories infer that almost all of 

the vibrating modes contributing to the structural responses oscillate with first and 

second harmonic frequencies in the CF and IL/axial directions, respectively. 

However, in some cases, the excited mode oscillates at higher frequency equal to the 

frequency of the higher harmonics involved in the structural responses. For example, 

in Figure 6.6 (a), (e) and (i), the modes represented with purple colour oscillate with 
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the frequency of third, fourth and fourth harmonics, respectively. Furthermore, at 

V=1 m/s the dominant mode of axial oscillations clearly vibrates at three frequencies 

which, based on the results presented in the previous section, are the second, fourth 

and sixth harmonics.  

 

Figure 6.5: Modal decomposition of structural responses in (a-d) CF direction; (e-h) IL direction; (i-l) 

axial direction. 

6.2.5 Stress analysis: bending, axial stresses and dynamic tension 

The numerical predictions of the structural responses can be utilised for stress 

analysis and finding space-time variation of dynamic stresses. To this end, 

approximations of bending stresses induced by CF and IL oscillations, σw and σu, 

respectively, are [142]: 
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Figure 6.6: Modal weights of the first four dominant modes involved in the responses of: (a-d) CF 

oscillations; (e-h) IL oscillations; (i-l) axial oscillations. 

𝜎𝑤(𝑌, 𝑡) ≈
𝐷

2
𝐸𝑤′′(𝑌, 𝑡) 

(6.17) 

𝜎𝑢(𝑌, 𝑡) ≈
𝐷

2
𝐸𝑢′′(𝑌, 𝑡) 

(6.18) 

and the axial stress σv, can be accurately approximated as [145]: 

𝜎𝑢(𝑌, 𝑡) ≈ 𝐸
1

1 + 𝑥′2
(𝑣′ + 𝑢′𝑥′ +

1

2
(𝑢′2 + 𝑣′2 + 𝑤′2)) 

(6.19) 

in which x(Y) is the mean in-line position of the riser under VIV. Figure 6.7 shows 

the spatio-temporal plots of each of these bending and axial stresses.  

An alongside comparison of CF bending stresses at moderate flow velocities 

with Figure 6.2 (a) and (b) illustrates that maximum stresses occur in the peaks while 

in nodes the bending stress is zero. To draw a clearer picture of the system 

behaviour, the variation of dynamic CF bending stresses, in Figure 6.7 (a), along the 

specified sections of A-A, B-B, and C-C is described. In section A-A stress 

variations along the span of the riser model in a certain moment of time is seen and it 

can be observed that the structure is vibrating in symmetric modes. The time 
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variations of σw in one of the modal peaks are followed in section B-B which shows 

how it interchanges from tensile to compressive stress. And section C-C illustrates 

that dynamic tension in the modal node constantly remains zero. However, in Figure 

6.7 (a) and (b) new patterns can be distinguished which were not observed in Figure 

6.2 (a) and (b). For instance, following the variation of σw along the D-D section 

shows that even though the cylinder vibrates in the third mode, in this particular 

moment of time, a 6
th

-mode-like behaviour can be observed [143]. Moreover, a 

comparison between time variations of stresses at sections B-B and E-E shows that in 

each period of oscillation the modal peak three times goes through maximum 

absolute stresses while at section E-E the structure for six times experiences the 

maximum stress corresponding to that section. Although the maximum stress at 

section E-E is lower than section B-B, since it occurs in higher frequency it may 

cause more severe fatigue damages. The same analysis of CF bending stresses at 

high flow velocities, Figure 6.2 (c) and (d), shows that some of the aforementioned 

observations can be made in here as well. For example, although at V=0.8 m/s the 

fifth mode dominates the responses, following the fluctuations of σw  along the 

section A-A of Figure 6.7 (c), a 10
th

-mode-like behaviour can be identified. 

However, despite moderate flow velocities in which some sections of the cylinder 

experience stress fluctuations with frequencies twice of the structural oscillations, 

e.g. section E-E of Figure 6.7 (a), at high flow velocities no such section can be 

distinguished. This is due to the fact that at high flow velocities travelling waves 

dominate the CF structural responses. Moreover, owing to the same reason, no 

unstressed sections similar to section C-C of Figure 6.7 (a) can be found at high flow 

velocities.   

Figure 6.7 (e-h) depicts the bending stresses in the IL direction. In this 

direction and at moderate V, despite CF bending stresses, there is no section on the 

riser which constantly undertakes zero stresses, and the maximum stresses do not 

necessarily occur at the modal peak. This may be due to the fact that CF oscillations 

are single-mode vibrations while in the IL direction multi-mode VIV happens. Figure 

6.7 (e) and (f) together with Figure 6.2 (e) and (f)  show that spatio-temporal 

variations of the IL bending stresses at moderate velocities resemble oscillations at 

the highest excited mode. For instance, at V=0.3 m/s, Figure 6.2 (e) and Figure 6.7 
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(e), 1
st
, 3

rd
 , 5

th
 and 7

th
 vibration modes are excited and the bending stresses vary in a 

7
th

 -mode-like manner. Also, Figure 6.7 (e) and (f) compared with Figure 6.6 (e) and 

(f) show that the maximum IL bending stresses occur when two of these dominant 

vibration modes have equal modal weights. For example, in Figure 6.7 (e), sections 

A-A and B-B indicate the moments when the maximum compressive and tensile 

stresses occur, and Figure 6.6 (e) shows that at these moments two of dominant 

modes have similar modal weights. The analysis of IL bending stresses at V=0.8 and 

1m/s shows that the same trends can be distinguished at higher flow velocities as 

well. 

 

Figure 6.7: Spatio-temporal plots of (a-d) CF bending stress; (e-h) IL bending stress; (i-l) axial stress. 

The time variations of axial stresses along the span of the riser model are 

plotted in Figure 6.7 (i-l). The figures show that in all velocities there is a mean axial 

stress which escalates as the flow velocity increases and can be interpreted as the 

effect of mean drag force and its consequent mean IL displacement.  Previously in 

Eq. (6.2) it was shown that the axial motion is induced by CF and IL oscillations, 

hence the effect of these oscillations can be seen in axial stresses, as well. The 
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comparison of Figure 6.7 (i-j) with Figure 6.2 shows that the maximum compressive 

axial stresses occur at the location of CF modal peaks when in this direction the 

structure is at rest and in the IL direction has its maximum deflection, e.g. see section 

A-A of Figure 6.7 (i). Moreover, the maximum tensile axial stresses occur at CF 

modal nodes when the structure in both CF and IL directions has maximum 

deflection, e.g. see section B-B of Figure 6.7 (i). The results depicted in Figure 6.7 

(k) and (l) confirms that the same behaviour occurs at high velocities as well, for 

instance, see sections A-A and B-B of Figure 6.7 (k). Moreover at high flow 

velocities in which the travelling waves are dominating, the axial stress increases in 

the direction of wave propagation. In other words, the areas of the cylinder with 

small oscillation amplitudes mostly experience compressive stresses while the 

sections undergoing larger oscillation amplitudes, where the wave propagates 

towards them, are mostly under tensile stresses. For instance, see the sections of the 

axial stresses above and below the section C-C of Figure 6.7 (k). Finally, the overall 

comparison between stresses in CF, IL and axial directions illustrates that although 

the oscillation amplitudes in these directions are not the same, the stresses in all 

directions have the same order of magnitude. Moreover, while the increase in CF and 

IL bending stresses with the increase of V is gradual, the axial stress grows rapidly 

and at V=1 m/s it reaches a maximum value similar to its corresponding CF bending 

stress. These results indicate the importance of axial oscillations and infer that their 

corresponding fatigue damages might be very similar [143].   

The axial stresses shown in Figure 6.7 (i-l) can be expressed as dynamic 

tensions, Td=σvA, as well. Analytical investigation of cable dynamics demonstrated 

that increase of the amplitude of CF and IL oscillations can cause outstanding 

increases in the dynamic compressive/tensile tensions. That is, the model riser might 

momentarily experience negative total tension, Tt=T0+Td, which results in impulsive 

motions, snapping and buckling responses. Hence, it is important to monitor the 

spatio-temporal variations of total tension. Figure 6.8 depict these variations and 

illustrate that in all velocities the mean total tension, �̅�𝑡, is more than the pretension 

at the end and grows as the flow velocity increases. This increase of �̅�𝑡 caused by the 

mean drag forces, in the experimental results, appears as mean end tension 

amplification [94]. Moreover, Figure 6.8 show that the amplitude of dynamic tension 
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fluctuations increases with the increase of flow velocity. As it can be seen, for the 

present cases, this amplitude is always less than T0. However, it can be predicted that 

for lower pretensions or for vertical risers with variable pretensions, at similar flow 

velocities, the amplitude of compressive dynamic tensions may reach T0 and cause 

negative total tensions. Therefore, choosing a proper pretension through checking �̅�𝑡 

would be of substantial importance. 

 

Figure 6.8: Spatio-temporal plots of the total tension, Tt=T0+Td. 

6.3 Importance of Nonlinearities and Axial Motions 

The results discussed in previous sections showed that increasing flow velocity 

fortifies the significance of the axial motions such that they can become as damaging 

to a slender structure as the CF motions. Moreover, the results illustrated the model 

capabilities in capturing number of experimentally observed phenomena such as 

multi-mode structural oscillations, dual resonance, variations of Fo8 trajectories 

along the span of the cylinder, mean drag amplification due to VIV, higher 

harmonics of the responses and transition from standing-wave-dominated to 

travelling-wave-dominated responses. Some of these phenomena, e.g. dual resonance 

and VIV-induced mean drag amplification, have been observed in experiments 

performed on elastically mounted rigid cylinders as well. In Chapter 5 it was shown 



 

194 
 

that, to capture these behaviours for a rigid cylinder undergoing VIV, the quadratic 

nonlinear fluid forcing terms of Eqs. (6.10) and (6.11) should be taken into account. 

In this section, the importance of considering geometric and hydrodynamic 

nonlinearities and axial oscillations, for predicting the aforementioned behaviours, is 

studied. 

Figure 6.9 show the root mean square (RMS) amplitude of CF and IL 

vibrations and the mean IL deflection of the riser in three cases of fully nonlinear 

model (blue circles), neglecting the axial oscillations (purple squares) and neglecting 

geometric nonlinear terms (black diamonds). Since the importance of considering 

longitudinal oscillations and structural/hydrodynamic nonlinearities at high flow 

velocities was illustrated in the previous sections, the results in Figure 6.9 are 

obtained at low and moderate flow velocities of V=0.1, 0.15, 0.3 and 0.4 m/s. The 

comparison of the results illustrates that when the flow velocity is low, V=0.1 and 

0.2, all three cases end up with similar predictions of the structural responses. At 

V=0.3, the axial oscillations yet have no considerable effect on the results whereas 

neglecting geometric nonlinearities results in the prediction of higher dominant 

modes for CF and IL oscillations and excessively high mean IL deflection. As the 

flow velocity increases to V=0.4, the previously seen effects of the geometric 

nonlinearities are fortified and axial oscillations become more influential. For 

example at this velocity neglecting the axial motions considerably affects the 

amplitudes of the IL oscillations. Hence, following the trends observed in Figure 6.9 

and as it was shown in the previous sections, both of axial motions and geometric 

nonlinearities become more influential at higher velocities.  

The effect of geometric nonlinearities at low and high flow velocities along 

with the influence of nonlinear forcing terms are further studied in Figure 6.10. To 

obtain these results, in Figure 6.10 (a-c), (e-g), (i-k) and (m-o) a model with 

nonlinear equations of motions and linear fluid forcing terms at V=0.25, 0.3 and 0.8 

m/s, and in Figure 6.10 (d), (h), (l) and (p) a model with linear equations of motions 

and linear fluid forcing terms at V=0.8 m/s, are considered, respectively. Figure 6.10 

(a-b), (e-f), (i-j) and (m-n) illustrates that when the quadratic nonlinear forcing terms 

are neglected, the structure in both CF and IL directions undergoes single-mode 
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oscillations which can be either a symmetric or antisymmetric mode and are 

dominated by standing waves. Such a model at V=0.8 m/s, Figure 6.10 (e), (g), (k) 

and (o), which higher modes are excited and travelling waves are more probable, 

predicts IL and CF responses which are dominated by travelling waves. Hence, it can 

be concluded that the quadratic hydrodynamic forcing terms in addition to the mean 

drag amplification, 2:1 oscillation frequency ratio and dual resonance are the causes 

of the symmetric-mode-only IL VIV and asymmetric-modes-only longitudinal 

oscillations at moderate flow velocities which were observed in Figure 6.2 and 5. 

Moreover, these results infer that the transition to travelling-wave-dominated 

responses is modelled through the geometric nonlinear terms. Further linearization of 

the model and neglecting geometric nonlinearities, Figure 6.10 (d), (h), (l) and (p), 

result in predicting dominating standing waves which contradict experimental 

observations. Thus, considering geometric nonlinearities for capturing transition to 

travelling waves at high flow velocities is necessary. 

 

Figure 6.9: Effect of geometric nonlinearities and axial motions on the predictions of the model, (a-d) 

RMS value of the amplitude of CF oscillations along the span of the riser model;  (e-h) RMS value of 

the amplitude of IL oscillations along the span of the riser model; (a-d) Mean IL displacement along 

the span of the riser. 
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Figure 6.10: Effect of geometric/hydrodynamic nonlinearities on the model predictions. (a-d), CF 

oscillations; (e-h), IL oscillations; (i-l), modal decomposition of CF structural responses; (m-p), modal 

decomposition of IL structural responses. 

6.4 Validation of The Proposed Model 

The results presented in previous sections illustrated the qualitative agreement 

of the model predictions with the experimental observations. In the following 

sections, the numerical predictions of the amplitude and frequency responses and the 

dominant vibrating modes are quantitatively compared with the experimental results 

of [94, 140]. 

6.4.1 Amplitude responses 

Figure 6.11 (a) and (b) shows the comparison between the maximum amplitude 

of CF and IL oscillations (AwM/D, AuM/D) of the experimental set of Table 6.1 and 

their corresponding numerical predictions. In both of experimental and numerical 

results, overall, the maximum amplitude increases with the increase of fellow 

velocity. This amplitude augmentation, as it is explained in [36], can be interpreted 

as the effect of the Reynolds number. However, with taking a closer look at both of 

the experimental and numerical results, a sawtooth behaviour can be distinguished 
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which in Figure 6.11 (a) is shown with the dashed lines (for the numerical results) 

and colours (for the experimental results). In other words, although the general trend 

of the amplitude response is to increase with the increase of flow velocity, when the 

response switches from one branch (dashed line or colour) to the other, first the 

amplitude drops and then continues to grow. The results which will be presented and 

discussed in the following sections will provide more explanation for this behaviour. 

 

Figure 6.11: Comparison of numerical amplitude responses with their corresponding experimental 

results;  (a) CF maximum amplitude responses; (b) IL maximum amplitude responses; (c) CF root 

mean square amplitude response; (d) IL root mean square amplitude response. 

 The comparison between numerical and experimental results depicted in 

Figure 6.11 (a) and (b) shows that experimental (numerical) results predict maximum 

amplitude responses up to 1.6D (1.7D) for the CF oscillations and 0.7D (0.5D) in the 

IL direction, respectively. Experimental evaluation of maximum VIV amplitudes of 

an elastic cylinder is usually involved with “large statistical uncertainties” [139]. 

These uncertainties, which are boosted at higher flow velocities, along with 

inevitable practical imperfections, such as the deviation from the presumed perfectly 

uniform flow, result in the values at high velocity cases which might be “a little 

overestimated”[94]. Hence, usually the RMS value of the oscillation amplitude is 
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reported. The corresponding RMS values of the numerical and experimental results 

of Figure 6.11 (a) and (b) (Awrms/D, Aurms/D) are shown in Figure 6.2 (c) and (d), 

respectively. These figures depict less-scattered experimental results and more-

quantitatively-comparable numerical results. Overall, the model provides predictions 

which both qualitatively and quantitatively resemble the experimental results.  For a 

more in-depth investigation on the validity of the semi-empirical model predictions, 

beside the amplitude responses, the frequency response and dominating vibrating 

modes are checked, as well. 

6.4.2 Frequency responses and dominant vibrating modes 

Figure 6.12 depict the comparison between the experimental CF and IL 

oscillation frequencies of with their corresponding numerical predictions, 

respectively. In both of the experimental and numerical results, and in both CF and 

IL directions, the oscillation frequency linearly increases with the increase of flow 

velocity. The comparison of Figure 6.12 (a) and (b) show that the frequency of the IL 

oscillations is twice of the frequency of the CF motion. In other words, while the 

structure undergoes resonance CF motions with frequency of fs (vortex-shedding 

frequency), in the IL direction the resonance motions occur at the frequency of 2fs. 

This phenomenon is known as the “dual resonance”, observed in the VIV 

experiments on elastically-mounted rigid cylinders with two degrees of freedom [77], 

and infers that the dominant mode of the IL oscillations of the riser must be higher 

than that of the CF oscillations; and can be checked through modal analysis of the 

numerical predictions. 

The dominant mode of CF and IL vibrations from the experimental set of Table 

6.1 along with the numerical results of the semi-empirical model are depicted in 

Figure 6.12 (b). This figure, as it was deduced from the analysis of the frequency 

responses in Figure 6.12 (a), illustrate that IL oscillations are dominated by modes 

almost twice of the dominating mode of CF oscillations. Moreover, it can be seen 

that the dominant mode gradually increases with the increase of the flow velocity. 

The numerical results, as well, resemble this qualitative behaviour. However, the 

comparison shows that the dwell of the semi-empirical model in some dominant 

modes is longer than experimental results. For instance, based on the experimental 
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results of [94], the third mode dominates CF oscillations just when 0.2<V<0.25 m/s, 

while for the numerical results it happens when 0.2<V<0.35 m/s. Similar statements 

can be made for the IL oscillations, as well. These differences might be due to the 

fact that in the semi-empirical model all of the parameters which can influence the 

natural frequencies of the riser model, such as pretension and fluid added mass, are 

fixed and equal to the theoretical values, while in the experimental results some of 

these parameters are difficult to be kept constant and some are different from their 

theoretical values. 

 

Figure 6.12: Comparison between numerical predictions of (a) CF/IL dominant oscillation 

frequencies; (b) CF/IL dominant vibration modes and their corresponding experimental results. 

6.4.3 CF and IL amplitudes vs. reduced velocity 

Hitherto, the experimental data and numerical predictions have been presented 

with respect to the flow velocity, V. In the literature, particularly for VIV of rigid 

cylinders, instead of V, results are expressed with respect to reduced velocity, 

Vr=V/(fnD) in which fn is the natural frequency of the structure in CF direction. For 
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an elastic cylinder, the structure has infinite natural frequencies; therefore different 

definitions of reduced velocity can be adopted. Two of these possible definitions are 

Vr1=V/(f1D) and Vri=V/(fiD) where f1 is the first natural frequency of the structure and 

fi is the natural frequency of the dominant mode of CF oscillations at corresponding 

current velocity.  Figure 6.13 depict the experimental CF and IL amplitude responses 

and their numerical counterparts with respect to Vri, Figure 6.13 (a) and (b), 

respectively. To evaluate the reduced velocities, the experimental value of natural 

frequencies reported in Table 2 of [94] are utilised.  

 

Figure 6.13: Numerical and experimental amplitude responses presented vs. reduced velocities 

defined based on the natural frequency of the dominant mode of the CF oscillations, Vri,; (a) CF 

amplitude vs. Vri; (b) IL amplitude vs. Vri. 

Figure 6.13 illustrate that, although the results are obtained in different 

velocities, all collapse in a confined range of reduced velocity. For the present 

results, this range is 3<Vri<7 which is comparable to the ranges reported by [12, 

143]. That is, when the structure vibrates in a particular mode, the increase of flow 
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velocity increases Vri, which means higher oscillation amplitudes. And when the 

structure switches to higher oscillation modes, although the flow velocity is 

increased, the reduced velocity corresponding to the new mode decreases which 

means lower oscillation amplitudes and produces the sawtooth trends observed in 

Figure 6.11 (a). While all of the results can collapse in a narrow range of Vri, the 

overall maximum amplitude of oscillations at each dominant mode increases as the 

dominant mode increases. This is due to the fact that higher modes occur at higher 

Reynolds numbers and higher Reynolds numbers cause higher amplitudes [36]. 

Structural oscillations at higher Reynolds numbers, and consequently at higher 

modes, are accompanied with the appearance of higher harmonics in the structural 

responses [79] which were discussed in previous sections. 

6.5 Conclusions 

Three-dimensional coupled CF/IL/axial VIV of an elastic cylinder subjected to 

uniform fluid flow is modelled via a semi-empirical model in which structural 

geometric nonlinearities are taken into account and fully-nonlinear fluid forcing 

terms have been applied. Having solved the model via a finite difference method, 

numerical results were compared with experimental results which showed qualitative 

and quantitative resemblance of the model predictions with the empirical 

observations. The numerical analyses illustrated model capabilities in capturing dual 

resonance accompanied with highly repetitive Fo8 trajectories and higher harmonic 

components of structural responses. Single-mode and multi-mode VIV oscillations 

and transitions from standing-wave-dominated responses to travelling-wave-

dominated responses were predicted. The modal and stress analyses performed on 

the numerical results provided more insight into VIV mechanism of slender cylinders 

and significance of IL and axial oscillations. Moreover, the sensitivity analyses 

performed revealed that the importance of geometric nonlinearities and axial 

oscillations increases as the flow velocity increases. Finally, interconnection between 

rigid and elastic VIV models was discussed. The presented semi-empirical model, 

with the less possible simplifications and manipulations of the empirical parameters, 

can provide the designers with practical predictions of VIV in offshore risers and 

mooring cables which would be beneficial for early stages of the design process. 
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Chapter 7 

Three-dimensional VIV of Flexible 

Cylinders Subjected to Linearly 

Sheared Flow 

Figure 7.1 shows a flexible cylinder which is subjected to a linearly sheared 

flow and undergoes vortex-induced oscillations. In this Chapter, three-dimensional 

laterals and axial VIV of such fluid-structure system is studied. To this end, the 

equations of structural motions and fluctuating hydrodynamic forces introduced in 

previous Chapter, when the flow velocity linearly varies along the span of the 

cylinder, are solved through a finite difference scheme. Then the numerical results 

obtained in different flow velocities are investigated via time/frequency domain, 

modal and stress analyses and are qualitatively and quantitatively compared with 

experimental results. 
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Figure 7.1: Schematic representation of a riser at rest (hollow cylinder) and during VIV (filled grey 

cylinder) subjected to a linearly sheared flow. 

7.1 Model Predictions and Discussion 

The numerical predictions of the semi-empirical model presented in Chapter 6 

are discussed in this section. To this end, the model riser of the experimental study 

by [83] is used for computing the numerical results. The properties and given 
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parameters of this experimental riser model are presented in Table 7.1. The table 

shows that the riser model has a high aspect ratio of 3000 which makes oscillations at 

high vibrating modes possible. Moreover, it has a moderate mass ratio, m*=3.13, 

which is below the value of m*=6 suggested by [9] and infers that for such a 

structure, the IL oscillations will be considerable. To study and capture different 

aspects of VIV of flexible marine structures under linearly sheared flows, the 

numerical results presented in this section are obtained at low (V=0.3 and 0.4 m/s) 

and high (V=0.8 and 1 m/s) flow velocities. It is worth mentioning that these 

velocities refer to the maximum flow velocity at the top of the riser model, while the 

flow velocity along the span of the riser, and from bottom to the top of the riser, 

linearly increases from zero to V. 

Table 7.1: Parameters of the riser models used for validation of the semi-empirical model. 

Parameters Experiment by [83] 

Length, m 90 

Inner diameter, m 0.026 

Outer diameter, m 0.03 

Mass ratio 3.13 

Bending stiffness, N.m
2
 3.64×10

3
 

Axial stiffness, N 3.69×10
7
 

Pretension, N 3700 

 

7.1.1 Space-time variations of structural oscillations 

The spatio-temporal plots of the lateral (CF/IL) and axial structural responses 

of the riser model of Table 7.1, at different flow velocities, are plotted in Figures 7.2. 

These results can be discussed in two levels of (i) collective overall trends and (ii) 

behaviours in each direction separately. These results illustrate that, at all velocities, 

travelling waves dominate the responses and propagate towards the bottom of the 

riser model where the flow velocity is lower. However, in some portions of the riser, 

standing waves can be distinguished as well. For instance, while above the section A-

A of Figure 7.2 (b) a travelling wave dominates the response, below this section, the 
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structure shows a standing-wave-like behaviour. Such behaviour can be 

distinguished in other figures as well. Moreover, towards the direction of wave 

propagation, the oscillation amplitudes first increase and then decrease, e.g. compare 

the oscillation amplitudes at sections A-A, B-B and C-C of Figure 7.2 (d). This can 

be due to the fact that, as the wave travels along the span of this high aspect ratio 

riser mode, it loses its energy and since the flow velocity at the bottom parts is lower, 

this dissipation is not compensated. The figures also suggest that the higher the flow 

velocity is, the more dominating the travelling waves and the higher the oscillation 

frequencies are. Looking at just the CF oscillations, the responses show comparably 

similar maximum oscillation amplitudes. This behaviour is different from what it 

was observed in Section 6.2.1 for a riser model subjected to uniform flow. It, also, 

has been observed in the experimental investigations of [83] performed with a well-

defined sheared flow and no reason were given for that. However, further analyses 

which will be performed in following sections will provide some explanations for 

this behaviour. 

The amplitudes of IL oscillations gradually increase as the flow velocity 

increases. Moreover, looking at IL responses it is inferred that these oscillations 

occur at frequencies and vibrating modes twice those of CF oscillations. 

Furthermore, as the flow velocity increases, in addition to aforementioned high-

frequency/high-mode vibrations, the structure undergoes low-frequency/low-mode 

oscillations as well. For example, the boxes in Figure 7.2 (g) specify one cycle of 

these oscillations which also can be found in the numerical results of [113]. Such 

behaviour, also, can be recognised in the axial oscillations, except that the low-mode 

axial oscillations occur at a frequency almost twice that of CF oscillations (which is 

much higher than the frequency of low-mode IL oscillations). The low-mode axial 

oscillation means that, at each moment of time, e.g. sections A-A and B-B of Figure 

7.2 (i), the whole span of the riser is under tensile or compressive motion, 

respectively. At the same time that the structure undergoes low-mode axial motions, 

the longitudinal displacement along the span of the riser varies at a high-mode-

manner. For example, at section A-A of Figure 7.2 (i) where the whole span of the 

cylinder has positive axial displacement, its magnitude varies along the span of the 

riser. Moreover, similar to IL responses, the amplitude of axial oscillations increases 
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with the increase of flow velocity. These amplitude amplifications along with high-

frequency/high-mode oscillations infer that the IL and longitudinal oscillations 

become more significant at higher flow velocities 

 

Figure 7.2: Spatio-temporal plot of: (a-d) CF oscillations; (e-h) IL oscillations; (i-l) axial 

oscillations. 

7.1.2 Frequency domain analysis and higher harmonics 

The results presented in Figures 7.2 showed the structural responses in the 

space-time domain. Figure 7.3 shows the space-frequency domain counterparts of 

these results. In this figure, the colours represent the power spectrum densities (PSD) 

normalised by maximum PSD at the corresponding V and riser section. These results 

illustrate that as the flow velocity increases the dominating oscillation frequency 

increases as well. Such increase was observed in Section 6.2.2 and it was shown that, 

following the Strouhal law, the oscillation frequency increases linearly. In the 

upcoming sections, it will be investigated if such trend occurs in here. The frequency 

domain analysis of the uniform flow results, also, showed that 3
rd

, 4
th

 and 6
th

 

harmonic components appeared in the structural responses. However, for sheared 
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flow results presented in Figure 2, except for axial oscillations at high flow velocity 

V=1 m/s where 4
th

 higher harmonics appear, the responses have no higher harmonic 

components. This might be due to the fact that the amplitudes of structural 

oscillations of a riser, when it is subjected to a sheared flow, are smaller than 

amplitudes caused by uniform flows. Therefore, the contribution of nonlinearities 

(particularly quadratic nonlinear fluid forces) in the structural responses becomes 

less important. In other words, as the flow velocity increases to V=1 m/s and the 

amplitude of axial oscillations amplifies enough, 4
th

 harmonic components appear in 

the axial responses; while in the CF (IL) responses where the amplitude does not 

change (the increase of oscillation amplitudes occurs gradually) there are no higher 

harmonics.  

 

Figure 7.3: Frequency domain analysis of the numerical predictions of the structural oscillations in 

(a-d) CF direction; (e-h) IL direction and (i-l) axial direction. 

The results depicted in Figures 7.3, also, illustrate that the dominant frequency 

of IL and axial oscillations is twice that of CF oscillations. This 2:1 frequency ratio 
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was inferred from the time histories depicted in Figure 7.2 as well. Moreover, those 

time histories suggested low-frequency/low-mode IL and axial oscillations. The 

frequency domain results of Figure 7.3 clearly reflect low-frequency components of 

the IL and axial responses. For instance, at V=0.8 m/s, while the riser parts above the 

section A-A of Figure 7.3 (g) are experiencing IL oscillations at a 2:1 frequency 

ratio, the riser parts below this section has a low dominant frequency. As it was 

explained in Section 6.2.2, the appearance of higher harmonics in the structural 

responses and 2:1 oscillation frequency ratios are interconnected with Fo8 

trajectories of CF/IL oscillations. Analysis of these trajectories will provide more 

explanations about the behaviour of the VIV system of Figure 7.1. Variations of Fo8 

trajectories along the span of the riser, along with the variation of mean IL 

displacement of the riser at different V, are studied in the following section.  

7.1.3 Fo8 orbits and mean drag amplification 

The Fo8 trajectories depicted in Figures 7.4 show that the shape of these 

trajectories along the span of the riser varies. However, when these variations are 

compared with those presented in the previous chapter, the trajectories shown in 

Figure 7.4 show less variety. As it was explained in Chapters 2 and 6, the shape of 

these trajectories controls the existence of higher harmonic frequencies. Since the 

trajectories shown in Figure 7.4 are not similar to those which facilitate occurrence 

of higher harmonics, hence this observation is consistent with the results discussed in 

Figure 7.3. The Trajectories also illustrate that, apart from Figure 7.4 (a) in which 

repetitive Fo8 orbits occur, in other cases, the trajectories are not repetitive. 

Moreover, in some cases such as the one highlighted with red colour in Figure 7.4 

(c), it seems that the structure undergoes orbital motion with approximately 1:1 

frequency ratio. Referring to the corresponding frequency domain analyses of these 

cases in Figure 7.3 shows that these are the cases with dominating low-frequency 

components. However, as it was illustrated in Figure 7.3 (g) as well, in the sections 

where the higher frequency dominates the IL response the structure oscillates under 

Fo8-like orbitals, e.g. see the trajectory highlighted with blue colour in Figure 7.4 

(c).  
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Figure 7.4: (a-d), Variation of Fo8 trajectories along the span of the riser; (e), mean IL displacement 

at different flow velocities. 

Since just at V=0.3 m/s the trajectories are highly repetitive, the results 

depicted in Figure 7.4 also suggest that it might be just at this velocity that the 

structure oscillates under lock-in and dual resonance circumstances and at other flow 

velocities it is experiencing non-lock-in VIV. Though, further investigations through 

modal analysis are required to study lock-in and ono-lock-in VIV conditions. The 

modal analysis of the results presented in Figures 7.2-4 is performed in the next 

section. Before that, Figure 7.4 also depicts the mean IL displacements of the riser at 

different flow velocity. In Section 6.2.3, it was explained that the capabilities of the 

model for capturing this mean displacement is due to nonlinear fluid forcing terms 

which are responsible for the prediction of higher harmonics and Fo8 trajectories as 

well. This figure illustrates that, as the flow velocity increases, the riser has higher 

mean displacements and this displacement is bigger at top sections of the riser where 

the flow velocity is higher.  
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7.1.4 Modal decomposition: multi-mode vibrations and mode switching 

The theoretical background and formulations for modal analysis of an elastic 

cylinder subjected to fluid flow were explained in Section 6.2.4. Now, a modal 

decomposition of the results presented in previous sections is performed. Figure 7.5 

shows the first five vibrating modes which dominate the structural responses of the 

riser model of Figure 7.1. As these figures show, at all velocities and in all directions 

the structure undergoes multi-mode oscillations. This is due to the fact that, in all of 

these cases, the travelling waves dominate the structural responses. For instance, in 

here at V=0.3 m/s the CF oscillations are multi-modal, while in Section 6.2.4, for a 

riser model subjected to the same V, the CF response was standing-wave-dominated 

and single modal.  

 

Figure 7.5: Modal decomposition of structural responses in (a-d) CF direction; (e-h) IL direction; (i-l) 

axial direction. 
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Figure 7.5 illustrates that as the flow velocity increases, there is less difference 

between the power of the first and the second dominating CF vibrating modes. In 

other words, apart from CF responses at V=0.3 m/s, in other velocities there are no 

absolute dominance of the first dominating mode. This observation infers non-lock-

in conditions. Similar observations can be made for the IL oscillations as well. 

Hence, this modal analysis clarifies the reason for repetitive Fo8 trajectories at V=0.3 

m/s and non-repetitive orbits at other flow velocities. Based on this analysis, at low 

flow velocity the dominating modes in both CF and IL oscillations are much stronger 

than other modes and provide circumstances suitable for lock-in conditions which 

lead to dual resonance. However, at other flow velocities such circumstances are not 

met.  

The results depicted in Figures 7.5 (e-g), confirm the contribution of low 

vibrating modes in the IL responses. They also, illustrate how these modes get 

stronger with the increase of V and can dominate IL responses. It worth mentioning 

that for having lock-in condition, the mode possessing natural frequency close to the 

vortex-shedding frequency should be dominating the response. Hence, although in 

Figure 7.5 (g) the first mode clearly dominates the IL motion, since its corresponding 

natural frequency is far from fv, it does not provide the system with lock-in condition 

and dual resonance. Similarly, the axial responses, in all flow velocities (Figures 7.5 

(i-l)), are dominated by the first vibrating mode. However, as it was explained in 

sections 7.1.1 and 7.1.2, in spite of the IL responses in which low modes oscillate at 

low frequencies, the axial low-modes oscillate at frequencies twice that of CF 

dominating frequency. 

To draw a clearer picture of the contributions of low and high modes in the 

structural responses, time histories of the modal weights of the first five dominating 

modes of CF, IL and axial vibrations reported in Figures 7.5, are depicted in Figures 

7.6. This figure illustrates that the dominant CF and IL vibration modes momentarily 

switches from one mode to the other. In other words, while most of the times one 

mode dominates the CF and IL responses, there are some moments when another 

mode takes the lead. For instance, the colourful dashed lines in Figures 7.6 (a) and 

(e) represent the moments when the mode with the corresponding colour is 
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dominating. On the other hand, the axial motions are dominated by one single mode. 

Moreover, to clearly see the aforementioned low-frequency/low-modes of IL 

oscillations, in Figure 7.6 (g) the modal weights are plotted for a longer time. As it 

can be seen in this figure, two dominant modes oscillate at low frequencies and there 

are momentary interchanges between these modes (the colourful dashed lines 

represent these moments). Furthermore, Figure 7.6 (g) shows that, although in most 

of the times the two low-frequency modes dominate the response, there are switching 

to the high-frequency modes as well. For instance, the red dashed line shows one of 

these moments.  

 

Figure 7.6: Modal weights of the first four dominant modes involved in the responses of: (a-d) CF 

oscillations; (e-h) IL oscillations; (i-l) axial oscillations. 

7.1.5 Stress analysis: bending, axial stresses and dynamic tension 

Doing stress analyses on the results discussed in the previous sections, along 

with more clarification of the riser behaviours, will provide more evidences of the 

importance of IL and axial oscillations. The theoretical formulations for such 

analysis were explained in Section 6.2.5. Using those formulas, Figure 7.7 shows the 
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axial and CF/IL bending stresses. These results illustrate that the stresses increase as 

the flow velocity increases. They also show that the magnitude of axial stresses can 

exceed IL stresses. Recalling the experimental results reporting the importance of 

considering IL oscillations [12, 84, 87], these results suggest that the axial 

oscillations can be as important as IL oscillations. And, since these oscillations 

compared to CF oscillations occur at higher frequency, their fatigue damages can be 

as significant as CF motions. Furthermore, the fluctuations of IL and axial stresses 

occur around a mean value stress which is due to mean IL displacement caused by 

mean drag. A comparison between the results depicted in Figures 7.7 (a-h) with their 

counterparts for a riser subjected to uniform flow, shows that in here the space-time 

distribution of CF/IL bending stresses resemble their corresponding responses, while 

for uniform flow cases with standing-wave-dominated responses there were not such 

resemblance and new trends were observed. 

 

Figure 7.7: Spatio-temporal plots of (a-d) CF bending stress; (e-h) IL bending stress; (i-l) axial stress. 
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Regarding the axial stresses, it can be seen that at low flow velocities, V=0.3 

and 0.4 m/s, the whole span of the riser periodically experiences tensile  and 

compressive stresses, e.g. see the sections A-A and B-B of Figure 7.7 (i). At high 

flow velocities, V=0.8 and 1 m/s, the mid-sections of the riser, e.g. the riser sections 

between Sections A-A and B-B of Figure 7.7 (k), are constantly under tensile 

stresses, while other sections periodically experience compressive and tensile axial 

stresses. The maxima of these compressive stresses occur near top and bottom 

boundaries of the riser. These axial stresses also can be utilised for investigating 

variations of dynamic tension along the span of the riser. The spatio-temporal plots 

of dynamic tensions corresponding to the results discussed in previous sections are 

depicted in Figures 7.8. These results illustrate that the mean tension of the riser 

increases as the flow velocity increases. Moreover, the amplitude of tension 

fluctuations along the span of the riser increases with the increase of V. However, 

under the present circumstances, no section of the riser mode experiences negative 

tension. Therefore, no buckling or snapping occurs for these cases, however if lower 

pretensions are applied to the riser model such phenomenon become more probable. 

 

Figure 7.8: Spatio-temporal plots of the total tension, Tt=T0+Td. 
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7.2 Validation of the Proposed Model 

In the previous sections, the numerical predictions of VIV behaviours and 

responses of a flexible circular cylinder subjected to linearly sheared flow were 

investigated and qualitatively compared with available results in the literature. In this 

section, these results are validated through quantitative comparisons with their 

corresponding experimental results. 

7.2.1 Amplitude responses 

Figure 7.9 shows the experimental and numerical results of average CF/IL 

RMS amplitudes at different flow velocities. The experimental results show that 

increasing flow velocity does not affect the average CF amplitudes. Such a trend is 

observed in the numerical predictions as well. This constant CF amplitude can be due 

to the fact that the lock-in condition does not occur and hence the “sawtooth” 

behaviour explained in Section 6.4.1 does not occur in here. Moreover, the numerical 

results quantitatively resemble the experimental CF amplitudes. The IL amplitudes, 

Figure 7.9 (b), show similar trends as well, and its quantitative agreement improves 

as the flow velocity increases. It is worth mentioning, both experimental and 

numerical CF/IL amplitudes presented in this section are much lower than the results 

presented in Section 6.4.1 or the results reported in other experimental results. The 

corresponding experimental study of [83] does not provide any reasons or 

explanations for this. However, the analyses performed in this Chapter suggest that 

low CF/IL oscillation amplitude can be due to non-lock-in conditions which prohibit 

high amplitude oscillations.       

7.2.2 Frequency responses and dominant vibrating modes 

The corresponding dominant frequency and vibrating mods of the results 

shown in Figure 7.9 are depicted in Figures 7.10 (a) and (b), respectively. The results 

illustrate that both experimental and numerical dominant frequencies linearly 

increase as the flow velocity increases. Moreover, this linear increase follows the 

Strouhal law. This comparison, also illustrate the quantitative agreement between 

numerical predictions and their corresponding experimental results. Such a 

quantitative resemblance can be observed in Figure 7.10 (b) between numerical and 
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experimental dominant vibrating modes. As it was discussed in previous sections, 

since in some velocities (V=0.6 and 0.8 m/s in this case) low/frequency/low-mode 

vibration trends appear in the IL responses, in these velocities the semi-empirical 

model predicts 1
st
 mode to be dominating. However, the higher mode which 

(following the trend of the graph) is expected to be dominating is excited but 

overshadowed by the 1
st
 mode. For instance, at V=0.8 m/s, the first mode is 

dominating while it is expected that the 26
th

 or 27
th

 mode be dominating. The modal 

decomposition of the IL responses at this flow velocity (Figure 7.5 (g)) shows that 

these modes are excited as well. 

 

Figure 7.9: Comparison of numerical amplitude responses with their corresponding experimental 

results;  (a) CF maximum amplitude responses; (b) IL maximum amplitude responses; (c) CF root 

mean square amplitude response; (d) IL root mean square amplitude response. 
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Figure 7.10: Comparison between numerical predictions of (a) CF/IL dominant oscillation 

frequencies; (b) CF/IL dominant vibration modes and their corresponding experimental results. 

7.3 Conclusions 

Vortex-induced oscillations of a flexible circular cylinder subjected to a 

linearly sheared flow were studied via the model proposed in the previous Chapter. 

The model was solved via a finite difference numerical scheme and the numerical 

results of different flow velocities were post-processed through time/frequency 

domain, modal and stress analyses. Through these analyses, the importance of 

considering IL and axial oscillations was confirmed and both lock-in and non-lock-in 

VIV conditions were captured which the former provided explanations for 

experimentally-observed low-amplitude oscillations. The numerical predictions of 

the model, also, were compared with their experimental counterparts. These 

comparisons showed qualitative and quantitative agreements between numerical and 

experimental results.  
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Chapter 8  

Conclusions and Future Work 

Novel fully-nonlinear phenomenological models for two/three-dimensional 

vortex-induced oscillations of rigid/flexible circular cylinders have been developed 

and different aspects of VIV phenomena have been tackled. In these models, the 

structural oscillations were modelled with nonlinear equations of motions which, 

through nonlinear hydrodynamic forces, were coupled to van der Pol-type wake 

oscillators representing time-dependent lift and drag forces. These models were then 

solved via analytical and numerical schemes and compared with in-house and 

published experimental studies. 
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8.1 Conclusions 

The main outcomes of the present study are summarised as follows: 

8.1.1 Combined CF/IL VIV of an elastically mounted rigid cylinder 

 A model accounting for structural and geometric coupling nonlinearities has 

been developed. Owing to these cubic nonlinear terms, the model was 

capable of capturing jump and hysteresis phenomena observed in 

experimental results. Moreover, the hydrodynamic nonlinearities were taken 

into account. Through these quadratic nonlinearities, the model could capture 

some qualitative aspects of 2DOF VIV such as dual resonance, 2:1 

oscillation frequency ratio, VIV-induced mean drag amplification and 

repetitive Fo8 trajectories. The parametric studies performed showed that 

neglecting quadratic hydrodynamic nonlinearities and considering classical 

linear hydrodynamic forcing terms would lead to a model failure in 

predicting the aforesaid phenomena. 

 Empirical coefficients of the new model were defined as a function of 

physical parameters such as mass, damping and frequency ratio. Moreover, 

the sensitivity analysis was carried out to study the effects of these empirical 

coefficients on model predictions which could provide insights for further 

calibration of the model. 

 The model was utilised for predicting and explaining the influence of 

important physical parameters such as mass ratio, damping ratio, mass 

damping parameter, frequency ratio and reduced velocity on the cylinder 

response. These results were then compared with available experimental 

results. These comparisons revealed that the new model can predict the high-

amplitude super-upper branch amplitude responses, critical mass ratio and 

unbounded lock-in ranges at low mass ratios, the individual effect of mass 

and damping ratios on the determination of maximum attainable amplitudes 

of 2DOF VIV.  
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 Due to lack of experimental results studying on the effect of frequency ratio 

for cylinders with equal mass ratios in CF and IL directions, new in-house 

experiments were carried out. The outcomes of these experiments were then 

compared with the new prediction model and other available experimental 

results. These comparisons showed that, while the frequency ratio does not 

affect the maximum CF/IL amplitudes, it can influence the VIV mechanism 

by varying the relative phase difference between CF and IL oscillations. 

Such influence of the natural frequency ratio could be predicted by the 

numerical model.  

 Analytical closed-form solutions for key hydrodynamic coefficients were 

derived. Comparing these solutions with experimental results illustrated 

some qualitative as well as quantitative agreements. Through these new 

formulations, practical graphs of hydrodynamic coefficients (with regard to 

important physical parameters) were provided. Furthermore, analytical 

closed-form solutions for evaluation of maximum attainable CF/IL 

amplitudes and hydrodynamic coefficients as functions of mass and damping 

parameters were developed. Using these solutions, the importance of 

structural geometric nonlinearities and variable empirical coefficients were 

highlighted. 

8.1.2 Three-dimensional VIV of a flexible cylinder 

 Experiences gained from the VIV study of rigid cylinders helped us develop a 

fully-nonlinear predictive VIV model for a straight flexible cylinder. In 

addition to CF and IL motions of the cylinder, its longitudinal oscillations 

were taken into account with the new model. In this model the CF/IL 

oscillations were excited through nonlinear hydrodynamic forcing terms 

while the lateral vibrations of the cylinder excited axial oscillations through 

geometrical nonlinear coupling terms. 

 VIV responses of a flexible cylinder subjected to uniform and linearly 

sheared flows at moderate and high current velocities were obtained and 

analysed. At moderate uniform flow velocities, lower vibration modes were 

excited and the responses were dominated by standing waves. In uniform 
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flow cases, increasing flow velocity excited higher vibrating modes, caused a 

transition to travelling waves and led to the dominance of travelling waves at 

high flow velocities. These travelling waves propagated in arbitrary 

directions. When the flow was linearly sheared, at all velocities the travelling 

waves dominated responses. 

 When standing waves dominated the structural response, in CF direction the 

structure undertake single-mode VIV whereas in IL and axial directions 

multi-mode vibrations occurred. When the responses were dominated by 

travelling waves, multi-mode VIV occurred in all directions. In the case of 

multi-mode oscillations, the model predictions showed that the dominating 

mode can vary momentarily. 

 With uniform flows, the structural responses contained higher-harmonic 

frequency components. The contributions of these 3
rd

 (CF), 4
th

 (IL/axial) and 

6
th

 (axial) higher harmonics to the CF, IL and axial responses fortified with 

increasing flow velocity. With sheared and high-velocity flow, higher 

harmonics appeared in axial responses.  

 Model predictions showed that axial oscillations can cause fatigue damages 

comparable to CF and IL oscillations and their importance increases with 

increasing flow velocity. Moreover, the parametric studies highlighted the 

importance of considering geometrical and hydrodynamic nonlinearities. 

Through these nonlinearities, the model could predict axial oscillations and 

the aforementioned (and experimentally-observed) behaviours. 

 The model could capture both lock-in and non-lock-in VIV conditions and 

showed that non-lock-in circumstances, caused by the sheared flow, result in 

lower amplitude responses compared to lock-in VIV conditions. The model 

can also predict dual resonance (and non-dual resonance) situations which 

were accompanied by repetitive (non-repetitive) Fo8 trajectories. It also 

showed that the shape of these trajectories changes along the span of the 

cylinder due to variable x-y phase differences.  

 Comparisons between numerical predictions and experimental results showed 

how numerical results qualitatively resembled experimental results. These 

showed that the dominant frequencies (and vibrating modes) of structural 
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oscillations linearly (gradually) increase with increasing flow velocity. The 

comparisons also illustrated that when the cylinder undergoes lock-in VIV, its 

maximum oscillation amplitudes gradually increase with increasing flow 

velocity while at non-lock-in VIV conditions the maximum amplitudes do not 

vary. 

8.2 Suggestions for Future Research 

The proposed predictive models provided encouraging results; however, to the 

author’s knowledge, they are the first of their kind to consider fully nonlinear two 

and multi-DOF VIV. There are number of research topics which can be performed 

and are suggested as follows: 

i. Experimental results reporting the hydrodynamic coefficients of a circular 

cylinder undergoing combined CF/IL VIV is lacking in the literature. Hence, 

it is suggested to perform sets of well-designed forced and free 2DOF 

experiments to study the effect of frequency ratio on hydrodynamic 

coefficients and compare with the practical graphs provided in this thesis. 

Such a study, also, will be beneficial for further calibration and validation of 

the proposed model. 

ii. A few Direct Numerical Simulations studies investigating 2DOF VIV assume 

structural oscillations to be linear. To check the significance of geometrical 

nonlinearities, it is recommended to carry out CFD simulations of 

simultaneous transverse/streamwise VIV by accounting for structural 

nonlinearities and make comparisons with linear model simulations. 

iii. In the present study, vortex-induced oscillations of a flexible cylinder due to 

uniform and linearly sheared flows were investigated. Other current velocity 

profiles such as random flow can also be studied and be compared with the 

results presented. 

iv.  Numerical results presented in this thesis highlighted the significance of IL 

and longitudinal oscillations of a top tensioned marine riser. Some of the 

experimental results have also highlighted the importance of IL oscillations; 

however the axial oscillations have not been measured yet. Experimental 

studies measuring axial VIV of flexible cylinders and investigating the 
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importance of these oscillations with regards to CF and IL oscillations are 

suggested  

v. The results presented in this thesis highlighted the significance of IL and 

longitudinal oscillations of a top tensioned marine riser. Such a model can be 

developed and applied to a steel catenary riser. Using this model, in addition 

to the analyses performed for the straight lay-out, the influence of changing 

flow direction and its effect on in-plane and out-of-plane oscillations of the 

riser should be investigated. 

vi. The proposed model of this thesis provides reliable and accurate predictions 

of VIV of rigid and elastic circular cylinders subjected to uniform and 

linearly sheared flows. The offshore structures are usually subjected to ocean 

waves as well. Hence, further modification of the model can be achieved via 

accounting for wave forces and implementing wave effects into the proposed 

model. This modification will result in more realistic replication of 

environmental conditions and has a great practical importance.   
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