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Abstract

Wind energy capacity is growing rapidly and in addition, there are several wind turbines

approaching their end of life. Once wind turbines reach this stage, there are typically

three options available: decommissioning, re-powering and lifetime extension. This

research investigates lifetime extension, specifically of drivetrains, which has not been

extensively studied, as opposed to the supporting structures. Therefore, the aim of this

work was to develop a methodology for determining lifetime extension of wind turbine

drivetrains. Initially, existing research and industrial guidelines were reviewed to en-

hance understanding for application in the wind industry. Based upon these findings

and a systematic approach, a methodology for wind turbine drivetrain life extension

was developed. This proposed method required identifying the most vulnerable com-

ponents, to which the methodology could be applied. It was realized that vulnerability

maps of mechanical drivetrain components already exist, so this work used a data-

driven approach to produce a vulnerability map for a power converter. Next, the pro-

posed methodology was tested using data from an onshore wind farm, focusing on the

rear generator bearings, which were identified as problematic. SCADA data, particu-

larly temperature readings, were utilised due to their wide availability. Seven years of
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Chapter 0. Abstract

SCADA data were analysed using machine learning models to predict remaining use-

ful life (RUL) and failure metrics. Two approaches were implemented: deterministic

and probabilistic, using Monte Carlo simulations to improve accuracy. The probabilis-

tic approach employed two methods: discrete confidence interval-based and continu-

ous probability distribution-based, to characterize model errors. Results indicated that

while SCADA data can inform predictive maintenance by identifying failure thresholds,

its reliability for long-term RUL prediction is limited. This research concludes that com-

bining SCADA data with more detailed condition monitoring methods, such as vibration

analysis, is essential for robust drivetrain lifetime extension assessment. Future work

will focus on validating these findings through integration and analysis.
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Chapter 1

Introduction

1.1 Introduction

“Net zero emissions by 2050" [1], “cut greenhouse gas emissions by at least 55% by

2030" [2], “limit global warming to below 2 degrees Celsius" [3]. These are all targets

set by various agreements and countries around the world and one way to assist with

achieving these targets, is by increasing the extraction of power from renewable energy

sources, including wind.

The first modern wind farm was installed in the 1980s and since then the require-

ment to move away from using fossil fuels, towards renewable resources to produce

electricity, has continued to grow at a remarkable rate. The Global Wind Energy Coun-

cil (GWEC) states that 117 GW [4] of wind capacity was installed in 2023, bringing the

total amount of wind power capacity installed to 1 TW and in order to meet the targets,

GWEC explains that they need to triple annual wind installations by 2030. This means

that more and more wind turbines are going to be installed, both onshore and offshore.
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Along with the large increase in the number of wind turbines being and due to be

installed, there are also a number of wind turbines that are due to reach the end of their

designed service life, which is typically between twenty and twenty-five (20-25) years.

WindEurope [5] states that wind farms totalling 78 GW will have been operational for

more than twenty (20) years by 2030. Upon reaching this milestone, there are typically

three options that the owner/operator can consider. The first is lifetime extension,

which involves assessing the wind turbine to determine if the turbine can continue to

operate in an efficient and safe manner, for an extended period, without the need for

replacement or modification. The second is re-powering, which comprises of replacing

or modifying certain components, to maintain or improve the required power output.

The final and third option is decommissioning, which involves dismantling, removing

the wind turbine and returning the site back to it’s original condition.

The option chosen by the owner/operator is typically dependent on which option

is economically beneficial to them, therefore a thorough investigation is carried out to

assist with their final decision.

Re-powering is considered to be the preferred option, due to a variety of reasons,

including increasing the wind farms output with less turbines. To date, one hundred

and seventy (170) wind farms have been re-powered in Europe [5], with numbers ex-

pected to increase over the next ten (10) years. Topham and McMillan [6] describes

two re-powering options, the first being a partial re-powering or refurbishment and the

second being a full re-powering. Partial re-powering involves replacing minor compo-

nents, whereas, full re-powering involves replacing the existing turbines (excluding the

tower) with new larger units.
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Even though re-powering is presently the favoured option, according to WindEu-

rope some form of lifetime extension is currently being opted for in the majority of wind

farms, due to re-powering legislative frameworks not being in place, [5]. Lifetime ex-

tension may allow an extra five (5), ten (10) or X number of years of operation, with

little or no modifications.

If neither re-powering nor lifetime extension is an option, decommissioning will be

carried out. WindEurope states that 736 MW of wind capacity was decommissioned

in Europe in 2023, with approximately 27 GW due to be decommissioned over the

next six (6) years. With decommissioning costs estimated at approximately 2 - 3% of

the total capital cost [6], this cost can be partially compensated by recycling, where

85-90% of the components can be recycled [7].

A wind turbine can be segregated into three main groups: the tower/supporting

structure, the rotor (including blades) and the nacelle. The nacelle houses the drive-

train, which is classed as the “heart" or core of the wind turbine because this is where

mechanical energy from the rotor, is turned into electrical energy, which is supplied to

the grid.

In order to determine if the wind turbine can operate longer than it’s designed

service life, all of the main groups need to be assessed because each group is crucial

in the operation of the wind turbine. If the assessment at the end of the designed

service life (i.e. 20 years), shows that one of the groups is coming to the end of it’s life,

then lifetime extension may not be a possibility. On the other hand, if the assessment

shows that all groups have life left in them, i.e. can still operate in a safe and efficient

manner, then lifetime extension is an option.
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To date, a large amount of research has been carried out on the tower/supporting

structure and the blades, as detailed in [8], [9], [10] and [11] to name a few but not as

much has been done on the nacelle/drivetrain.

The analyses carried out on the tower/supporting structure and drivetrains are fun-

damentally different, due to the fact the drivetrain contains both mechanical and elec-

trical equipment, such as: the main bearing, gearbox, brake, generator and power

converter, whereas the tower/supporting structure is purely structural.

Investigating the drivetrain is crucial because the failure mechanisms and damage

rates of the components within the drivetrain, differ significantly from those of structural

members. Electro-mechanical components have a much shorter time frame between

initiation of the damage and eventual failure, compared to structural members. Addi-

tionally, the drivetrain’s inherently complex components are subject to uncertainties,

associated with both their manufacturing and operation [12]. In reality, the majority of

the primary load bearing components located within the drivetrain will not survive the

full designed service life of the turbine, i.e. 20 years, they are typically replaced at

between twelve and fifteen (12 - 15) years but an assessment can still be carried out

at the twenty (20) year mark to determine how much longer they can operate.

Considering all the points discussed above, there appears to be a clear research

gap in establishing a comprehensive methodology for determining if lifetime extension

is a possibility, for wind turbine drivetrains. Given the drivetrain’s critical role in the

operation of the wind turbine, developing a systematic approach to determine remain-

ing useful life and in turn the feasibility of lifetime extension potential, would be highly

beneficial and valuable.
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1.2 Research Questions

1. Lifetime extension has been implemented on structural components such as the

tower, but how can it be applied on the drivetrain? What can be learnt from other

industries?

2. What approach should be taken to evaluate potential lifetime extension of wind

turbine drivetrains, when:

a. Only Supervisory Control and Data Acquisition (SCADA) data is available?

b. SCADA and vibration data are available?

1.3 Aim and Scope

Once wind turbines reach the end of their service life, there are typically three options

available: decommissioning, re-powering and lifetime extension. The main aim of this

thesis is to evaluate the feasibility of lifetime extension potential for the drivetrain, which

is not only a critical element but is also typically replaced at the end of the turbine’s

service life. This has been carried out by learning from oil and gas, as well as marine

structures, where the lifetime extension of offshore structures has been practiced over

the last twenty (20) years. Based on the amount and type of input data, different

approaches have been recommended to assess the possibility of lifetime extension.

Mapping of critical components inside the drivetrain has been carried out, to focus

on those that are more prone to failure. A state-of-the-art methodology, e.g. data-

driven, has then been utilised to evaluate how much longer they can be in service. To
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ensure accurate predictions, this methodology has then been enhanced by applying a

probabilistic approach, in order to incorporate any model errors and uncertainties.

1.4 Contribution

This work develops a data-driven methodology, in terms of a novel process or pro-

cedure that identifies the most suitable well-established machine learning methods,

that are best suited to predict the operating temperature of drivetrain components.

The merits are the applicability of this procedure to the low resolution (sampling rate-

wise) SCADA data, which is more common to be accessible in practice within industry,

rather than the more sophisticated methods, that cannot be vastly applied in reality,

due to the lack of access to a specific type of monitoring data. More importantly, the

developed methodology proposes tracking/monitoring metrics that can detect abnor-

mal components that deviate from their normal operating temperatures. With a priori

knowledge obtained of the metrics at the failure time retrieved from a failed component,

these proposed metrics can provide an estimate of remaining useful life (RUL) of the

problematic components by extrapolation. This is indeed important, as the RUL esti-

mation is a key stage in determination of life extension potential, which is indeed more

complicated within mechanical sub-systems of turbines compared to the structural

components, due to various reasons, including the higher frequency of load cycles

(mechanical, thermal, electrical) leading to a more limited action window. In addition

to providing the deterministic representation of those metrics, this work also presents

two probabilistic measures of them, to cope with the uncertainties in the temperature

6



Chapter 1. Introduction

model predictors. Due to the generality of the underlying Monte-Carlo approach, the

method can be extended to take account of other uncertainties e.g., from the sensors.

1.5 Layout of Thesis

The chapters are structured in the same sequence the work was carried out. Fig-

ure 1.1 shows the connection between each chapter and a brief description of each

chapter is as follows:

Chapter 2:

Chapter 2 of this thesis delves into the background of wind turbine drivetrains. It dis-

cusses the evolution of wind turbines, along with their design and analysis. It explains

the loads/forces/dynamics acting on the turbine, hub and drivetrain, their effects on

the equipment/components and how any damage is typically calculated, which may

reduce their operational life. It then investigates the different drivetrain topologies and

the typical components that make up the drivetrain.

Chapter 3:

Chapter 3 explores existing research related to the selection of critical components,

how component failures have been detected by utilising SCADA data, as well as model

uncertainty and error assessment methods.
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Chapter 4:

Chapter 4 reviews the existing remaining useful life and lifetime extension practices

currently used in the wind industry, as well as in other industries, such as: oil and

gas, marine vessels, electrical machines and nuclear power plants. It summarizes the

methods used within each industry and then determines which key points may be ap-

plicable or transferable to the analysis of wind turbines drivetrains.

Chapter 5:

Based upon the literature review conducted in the previous chapter, a methodology for

determining lifetime extension is proposed in Chapter 5, along with the theory used.

Chapter 6:

Due to the fact the drivetrain is made up of both mechanical and electrical equipment,

Chapter 6 explores the development of a vulnerability map for a power converter. This

has been researched in order to determine if it is possible to rank the components,

within electrical equipment the same as in mechanical equipment, according to their

risk of failure, from high to low.

Chapter 7:

Chapter 7 investigates implementing the method proposed in Chapter 5 on real-life

data. SCADA data has been obtained from an onshore wind farm located in the UK.

Based upon the type and amount of data collected, a model/process/method has been

presented for the assessment stage of the overall process, with the aim of determining
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whether useful and reliable results regarding remaining useful life and lifetime exten-

sion can be achieved.

Chapter 8:

In Chapter 8, the model/process/method that has been proposed in the previous chap-

ter, is explored for uncertainties and errors, in order to ensure accurate and reliable

results.

Chapter 9:

The final chapter, Chapter 9 summarizes all the findings, continues any discussions,

answers the research questions and draws conclusions from all the work completed

within this thesis. Future work is also discussed.
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Figure 1.1: Chart showing the Chapters making up the Thesis and the Connections
between them
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1.6 List of Papers

The following papers have been published over the course of the PhD:

Paper 1:

On Lifetime Extension of Wind Turbine Drivetrains.

Authors: Kelly Tartt, Amir R. Nejad, Abbas Kazemi-Amiri, Alasdair McDonald

Published in ASME 2021 40th International Conference on Ocean, Offshore and Arc-

tic Engineering, 2021, DOI: 10.1115/OMAE2021-62516.

Paper 2:

Development of a Vulnerability Map of Wind Turbine Power Converters.

Authors: Kelly Tartt, Abbas Kazemi-Amiri, Amir R. Nejad, Alasdair McDonald

Published in Journal of Physics: Conference Series (Torque 2022), 2022, DOI: 10.1088/1742-
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The following paper has been approved and will be published shortly:

Paper 4:
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Authors: Kelly Tartt, Abbas Kazemi-Amiri, Amir R. Nejad, James Carroll

Approved by Engineering Research - Forschung im Ingenieurwesen.

The following papers have been published in addition to the above, although not
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Paper 5:

Structural Optimisation of Offshore Direct-Drive Wind Turbine Generators Including
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Authors: Kelly Tartt, Abbas Kazemi-Amiri, Alasdair McDonald, Pablo Jaen-Sola

Published in Journal of Physics: Conference Series (DeepWind 2021), 2021, DOI:
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Paper 6:
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Authors: Abbas Kazemi-Amiri, Kelly Tartt, Alasdair McDonald

Published in Forsch Ingenieurwes 89, 52, 2025, DOI: 10.1007/s10010-025-00792-4.
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Chapter 2

Background of Wind Turbine

Drivetrains

2.1 Introduction

A wind turbine can be defined as a machine or device that changes kinetic energy

from the wind into electrical energy or electricity [1].

They typically consist of three main sub-systems: the tower/supporting structure,

rotor including blades and nacelle. The tower is the structural component that supports

the turbine and can be designed and manufactured in many forms, such as monopiles

and three or four legged jacket types, to name just a few. The blades are aerofoils that

are located at the top of the tower and which rotate when the wind blows, converting

the kinetic energy from the wind into mechanical energy. Finally, there is the nacelle,

in which the blades are attached to the front of via a rotor and which houses the

drivetrain, also known as the “heart" of the turbine [2], as this is where the mechanical
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energy is converted into electrical energy.

In general, modern wind turbines (Figure 2.1) are:

1. Three-bladed.

2. Horizontal axis.

3. Variable Speed.

4. Pitch Regulated.

5. Located upwind.

Figure 2.1: Typical Wind Turbine. Courtesy of Wikipedia.
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Wind turbines can also be either:

1. Land-based.

2. Offshore based.

(a) Fixed-bottom.

(b) Floating.

i. Semi-submersible.

ii. Spar.

iii. Tension Leg Platform.

2.2 Evolution of Wind Turbines

Over the last century the wind energy sector has exploded. To date the global wind

power capacity has reached 1 TW, [3]. Figure 2.2 shows the exponential increase in

both onshore and offshore wind capacity over just the last 10 years [4].

The graph shows that although the biggest wind sector at the moment is still on-

shore wind, that offshore is starting to increase. This is mainly due to the fact that the

wind turbines installed offshore can be much larger, as there is a lot more space and

noise is not a problem offshore. The downsides though, are that the CapEx and OpEx

costs are much more expensive. These are summarised in [5] and show that for a 3.3

MW land based turbine the CapEx and OpEx costs are $1,968/kW and $43/kW/yr

respectively, whereas for a 12 MW fixed bottom offshore turbine, the CapEx and

OpEx costs are $5,411/kW and $135/kW/yr respectively, so more than double, with
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Figure 2.2: Graph Showing Growth of the Wind Industry. Courtesy of IRENA.

the CapEx costs for a 12 MW floating offshore turbine being even higher, $7,349/kW

and $108/kW/yr for CapEx and OpEx respectively. This is mainly due to the fact ac-

cessibility is an issue and the turbines are located in a much harsher environment, but

if the targets that are being set by multiple governments and institutions are to be met,

then many more offshore wind turbines need to be installed over the coming decades.

Figure 2.3 shows how the power and size of the wind turbines have evolved over

the years.

It is important to note that not only do the structural components, such as the tower

and blades increase, the mechanical and electrical components also have to evolve to

support the increased power output and size.
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Figure 2.3: Evolution of Wind Turbines. Courtesy of Department of Energy.

2.3 Design and Analysis of Wind Turbines

As discussed, wind turbines are large structures situated outdoors in harsh environ-

ments, therefore they are subjected to environmental loads, as well as other loads

(which are discussed more in Section 2.3.3) and because they are dynamic systems,

they respond to all the applied varying loads, all of which they need to survive for the

duration of their designed life, which is typically between 20-25 years.

2.3.1 Design Standards

During the design of wind turbines, technical standards are consulted. Technical stan-

dards are defined as documented rules or guidelines for carrying out a task or process

and they are important in ensuring that a process or item meets a set specification,

as well as standardising the methods used, which ensures a consistent approach [6].
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For wind turbines, the International Electrotechnical Commission (IEC) 61400-1 (land-

based), 61400-3-1 (offshore fixed) and 61400-3-2 (offshore floating) standards explain

how to determine the loads, both fatigue and extreme, in which the wind turbines need

to survive. Extreme loads can be defined as loads that may rarely occur but if or when

they do could cause catastrophic damage, whilst fatigue loads are defined as loads

which occur almost continuously and are constantly varied, causing "wear and tear"

on the system [7].

The above mentioned standards contain a large number of design load cases,

which are divided into a number of scenarios [8], including:

1. Power production.

2. Power production with fault.

3. Start up.

4. Emergency shut down.

5. Parked.

6. Parked with fault conditions.

7. Transporting, assembling, maintenance and repair.

All of these scenarios need to be taken into account when designing the turbines,

as they are all likely to occur during the wind turbine’s life.

In addition to the standards described above, there are a number of standards that

are used for specific components, such as IS0 6336 for gears, ISO 281 for bearings

and DIN 743 for shafts.
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2.3.2 Global Modelling

To assist with the design and analysis of wind turbines, typically a global model is

developed. FAST and HAWC2 are just a few examples of aero-hydro-servo-elastic

dynamic software that can be used to construct the global model. All the various types

and sources of loads, discussed in the next section, are applied to the model and the

response including forces, moments and motions obtained [9].

2.3.3 Description of the Loads Acting on a Wind Turbine

This section begins with a brief high-level summary of the wind turbine process, before

delving deeper into all the various loads that the turbines are subjected too. When the

flow of wind hits the turbine blades it exerts a force, due to the shape of the blades a

lift and drag force is produced, as per Figure 2.4. The lift force is due to the pressure

difference above and below the blade and acts perpendicularly to the direction of wind

flow, whereas the drag force acts in parallel to the direction of wind flow. The resultant

or total force from both these forces (lift and drag), produces a turning force or torque

and a thrust force. The turning force or torque, which is a tangential force, rotates

the blades and the thrust force, which is a perpendicular force, bends the blades and

tower, [10]. This is due to the fact that wind turbines are flexible, not rigid, so the

components that make up the turbine, including the tower and blades bend when they

are subjected to loads induced by the wind. As the blades are attached to the rotor hub,

which is in turn attached to the main shaft, which is located in the nacelle, the loads

experienced by the hub are transferred to the main shaft through to the drivetrain.
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Figure 2.4: Forces Acting on Wind Turbine Blades

2.3.3.1 Loads/Forces/Dynamics Acting on Wind Turbine

Whether the wind turbines are installed onshore or offshore, they are subjected to a

number of varying loads and due to the fact that wind turbines are dynamic systems,

they are constantly responding to the continuously changing load conditions [8], all of

which they should be designed to withstand, as discussed in Section 2.3. The sources

of these applied loads include:

1. Environmental i.e. Aerodynamics, Hydrodynamics (if offshore-based).

2. Operational.

3. Inertial.

4. Gravitational.

These loads can be classed as either external or internal loads, as well as ex-

treme/ultimate or fatigue loads, [7]. The effects of these applied loads are ultimate

limit states and/or fatigue and are discussed in more detail in Section 2.3.5. Figure 2.5
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shows the type of loads that fall under these categories, including: steady-state, tran-

sient, cyclic and stochastic load types.

Figure 2.5: Different Types of Loads ([10])

One of the main sources of applied loads for wind turbines is from environmental

conditions, which includes aerodynamics. Aerodynamics can be defined as the study

of moving air and it’s interaction with solid bodies, either stationary or moving, that are

located within the air flow. Therefore, in the case of wind turbines, the moving air is

the wind and the solid body is the wind turbine, specifically the blades and tower.

Wind can be complex and is made up of different components that vary in size and

frequency [13], so the loads and forces acting on the wind turbine vary accordingly but
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Figure 2.6: Van der Hoven Spectrum [11], [12]

all the aspects have to be taken into account when designing or calculating the loads

acting on a turbine. Figure 2.6 displays the Van der Hoven graph, which shows the

different components.

Phenomena that either effect and/or contribute to aerodynamic loading include:

1. Mean wind.

2. Wind Shear.

3. Tower Shadow.

4. Turbulence.

5. Yaw Error.

6. Tilt.

Mean wind is classed as a steady-state load. These are loads that stay pretty

consistent over long periods of time [8].
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Wind shear is defined as the speed of the wind increasing with height, due to the

effects of obstacles on the ground affecting the flow of the wind (Figure 2.7). Therefore,

the wind speeds that each blade sees varies as it rotates, this can be referred to as

1P loading, where P is the rotational speed. Other causes of 1P loading can include:

imbalance of masses, misalignment of the main shaft to the rotor, gyroscopic forces

etc. ([10]).

Figure 2.7: Wind Shear Effect

Tower shadow can be defined as the phenomena where the flow of wind is dis-

rupted/blocked by the tower structure (Figure 2.8), i.e. the wind is forced to go around,

this causes an effect on the flow i.e. it slows it down, which in turn causes thrust vari-

ations when each blade passes through the disrupted flow, [14]. This is referred to as

3P loading because each blade i.e. three, experiences this during one full rotation.

Turbulence can be defined as short bursts or gusts, typically of less than 10 min-
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Figure 2.8: Tower Shadow Effect

utes, of varied wind speeds. For large turbines, as the blades sweep in and out of the

gust, ‘clumping’ of loading at multiples of blade passing frequency occurs, whereas for

smaller turbines all the blades “experience changes in the wind speed as they occur,

spread across the whole turbulence spectrum" [10].

Yaw error and tilt are similar in the fact that the cyclic loading varies the steady

in-plane wind, which in turn changes both the resultant wind speed and lift coefficient

[10].

The wind speed variation over the blades for wind shear, tower shadow, yaw error

and tilt are classed as deterministic/cyclic, whereas turbulence is classed as stochas-

tic. Cyclic loads are repetitive, in that they repeat as the rotor or cycle rotates, whereas

stochastic loads change randomly and there is no pattern [8].

Offshore wind turbines have additional loading specifically on the tower due to the

waves i.e. hydrodynamic loading.

Inertia is another source of loading on the wind turbine. Inertial loads are caused
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when starting or stopping the wind turbine and they are classed as transient loads.

Transient loads occur for very short time periods. Additional transient loads also in-

clude gusts and pitch motion [8].

Another source of loads that the turbine is subjected to is gravity. Gravitational

loads due to the weight of the blades produce an “in plane root bending moment" [10],

which naturally increases with blade/turbine size. This is a cyclic load, as it repeats as

the rotor spins.

Another type of cyclic load is resonance load, this occurs when the unbalanced

rotor blades “rotational frequency matches with the structural components" natural

frequency [8].

2.3.3.2 Loads/Forces/Dynamics Acting on the Hub

As discussed, the blades are attached to the rotor hub. Therefore, the hub is subjected

to the aerodynamic, inertial and gravitational loads as discussed above. The dominant

loads on the hub come from the loading of the blades, i.e. thrust force, which acts

downwards, the weight of the rotor, which acts in a vertical direction and blade root

moments from the in- and out-of- plane blade loading, [13]. Figure 2.9 and Figure 2.10

are taken from [13] and shows the power spectra for both the forces and out-of-plane

loading on the hub. The graphs show obvious peaks at 3ω, which is the number of

blades multiplied by the rotational speed and it’s multiples. This is due to the fact

that in both the deterministic and stochastic aerodynamic loads, which contribute to

the hub moment, the hub experiences all the blades passing through the same wind

phenomena at a rotational speed, hence the obvious peaks in the graphs at 3ω, 6ω,
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9ω etc.

Figure 2.9: Power Spectra of Forces on Hub [13]

Figure 2.10: Power Spectra of Out-of-Plane on Hub [13]
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2.3.3.3 Loads/Forces/Dynamics Acting on the Drivetrain

Loads on the drivetrain can come from both external and internal sources. The exter-

nal sources include both aerodynamic and grid loads, whereas the internal sources

include gear meshing caused by the interaction of mating gears and bearing roller

contact [15].

The flow of the loading from the wind through the rotor to the drivetrain is shown in

Figure 2.11.

Figure 2.11: Flow of Loads throughout the Wind Turbine ([10])

With the dynamics throughout the wind turbine, including the drivetrain, shown in

Figure 2.12.

The torque and non-torque loads from the hub are transferred to the main shaft.

The non-torque loads are caused by gravitational loads, wind shear and tower shadow,

[16].
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Figure 2.12: Dynamics on Wind Turbine ([10])

2.3.4 Local Modelling

Typically after developing a global model, a decoupled analysis or local modelling/simulation

is constructed, particularly for the drivetrain, in order to get more accurate response

results. The following software tools may be used, this list is not exhaustive but just

highlights the most common:

1. Multi-body software packages.

2. High fidelity finite element analysis models.

3. Dynamic analytical models.

From both the global and the decoupled/local models/simulations, useful informa-

tion with regards to specific forces on particular components can be extracted. Deter-

mining the magnitude of these forces is important because as mentioned earlier, all
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wind turbines are subjected to loading, which in turn causes forces and stress on the

components, which needs to be calculated so that the amount of damage particularly

fatigue, on each component can be determined. Calculating the fatigue damage is

explained more in Section 2.3.5.

2.3.5 Effects of Loading - Fatigue Damage

As mentioned previously, all the various loads acting on the wind turbine have an effect,

with the most common effect being fatigue, which causes up to 90% of mechanical

failures, [17]. Fatigue impacts both the structural and mechanical components.

Continuous cyclic loading causes stress on the system, which in turn causes fa-

tigue. Stress can be defined as an “external force acting over a cross-sectional area of

an object" and fatigue can be defined as the reduction of strength of the object/system,

which can lead to damage and/or failure.

2.3.5.1 Calculating Structural Fatigue

S-N curves can be used to determine fatigue, where S refers to the stress and N refers

to the number of cycles. A typical S-N curve is shown in Figure 2.13, where both the

y and x axis are the log values for S and N, respectively. From the S-N curve, the

number of cycles to failure for a specific applied stress can be determined.

The S-N curve can be used for a consistent applied stress but in real life for wind

turbines the loading is varied, hence the stress acting on the components also varies,

therefore a method called rainflow counting can be used. Rainflow counting uses a

load vs. time graph, which has been rotated clockwise by 90 degrees, to determine
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Figure 2.13: Typical S-N Curve (Figure adapted from [18])

the number of cycles for each stress range. The stress cycles need to be treated

individually, so the time series is split into single stress cycles. Upon completion of the

counting method, the results are put into bins, to show the stress ranges in histogram

form. An example of rainflow counting is shown in Figure 2.14.

Whether the S-N curve or rainflow counting method is utilised to determine the

number of cycles, the Miner’s Rule can then be used to calculate the fatigue dam-

age/life. Following the rainflow counting method, the total damage is determined by

adding up the damage done by each individual stress cycle. Miner’s Rule states that

when fatigue damage, D, equals to 1, then failure will occur. Equation 2.1 can be used

to calculate fatigue damage:
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Figure 2.14: Rainflow Counting Method [19])

k∑
i=1

ni/Ni = D (2.1)

Where D is the fatigue damage, k is the number of stress ranges, ni is the number

of cycles at each stress range, i and Ni is the number of fatigue life cycles at each

stress range, i.

2.3.5.2 Calculating Mechanical Fatigue

The Miner’s Rule described above can also be used to determine the damage for

mechanical components but the stresses are calculated differently.
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2.3.5.3 Bearing Fatigue

The fatigue life of bearings, including the main bearings, are calculated using the axial

and radial loads that are exerted on the bearing, along with the rotational speed. The

hub loads that have been taken from the aeroelastic model are used on a beam model,

in order to calculate the axial and radial loads exerted on the bearings at each oper-

ating point and across all time-steps, [20]. The hub’s loads are required because the

hub is attached to the main shaft, which is where the bearings are located, so the hub

loads are transferred to the main shaft, which in turn are transferred to the bearings.

These axial and radial loads at each operating point are then used to determine the

dynamic equivalent radial load at each time step, which is then averaged at each oper-

ating point. Miner’s rule is then used to calculate the one equivalent load for the whole

loading history, as a load value is required, Pr, that accurately represents the loading

that the bearing sees over it’s lifetime. This value can then be used in Equation 2.2 to

calculate the basic life rating for roller bearings.

L10 = (Cr/Pr)
(10/3) (2.2)

Where L10 is the life rating or the number of revolutions that 90% of bearings are

expected to not experience any fatigue damage [13], Cr is the dynamic load rating

(from manufacturer) and Pr is the dynamic equivalent radial load of the bearing.

Damage equivalent loads (DEL) can be defined as one single load that will create

the same fatigue damage as all the loads over a time period. Damage equivalent loads

use the Palmgren-Miner linear cumulative damage theory [21]. This theory assumes
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that there is a linear relationship between fatigue damage and the number of cycles,

up until a certain ”prescribed life exhausted of material" and that only cycle load range,

not the cycles mean value, promotes fatigue damage, [8].

2.3.5.4 Gear Fatigue

Fatigue damage on gears can occur in the form of pitting and/or root bending dam-

age. The fatigue damage for gears is calculated in a similar method to the bearings.

From the models/simulations, the “time-varying gear transmitted loads" [9] are used to

calculate the bending stresses and tooth contact. The stress cycle counting method

is then used to determine bins. Fatigue damage for each wind speed over a short

term of 1 hour, is calculated using the “Palmgren-Miner linear accumulative damage

hypothesis" using Equation 2.3, where k and m are S-N curve parameters, u is wind

speed, D(u) is the 1-hour fatigue damage at wind speed u, [9].

D(u) = 1/k
∑
i

ni(u).s
m
i (2.3)

The long-term damage is then calculated using Equation 2.4, where cut − in and

cut − out are wind speeds in m/s, T is the design life, e.g. 20 years and f(u) is the

probability density function of the mean wind speed, [9].

DLT =

∫ cut−out

cut−in
T.D(u).f(u).du (2.4)
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2.4 Types of Drivetrains

A wind turbine’s drivetrain can be either geared or direct-drive (gearless), as shown

in Figure 2.15. [22] and [23] state that fourteen (14) years ago, 83% of wind turbines

were geared, while 17% were direct-drive.

Figure 2.15: Different Types of Drivetrains - Geared (top) and Direct-drive (bottom)
[24]

Typically modern wind turbines contain a gearbox to increase the rotational speed

and reduce the torque of the main shaft to the generator but recently direct-drive or

gearless turbines are becoming more popular. This is mainly due to the fact that not
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only is the gearbox one of the main components in the drivetrain that fails but also

once it fails it causes the most downtime for the wind turbine and is extremely costly

[25]. Therefore, by eliminating the gearbox, the number of moving parts within the

drivetrain is reduced, which in turn will reduce maintenance costs and increase the

reliability.

Geared drivetrains can be classed as either medium speed or high speed systems,

depending upon the gearbox installed and come in a number of different topologies,

as shown in Figure 2.16. More specific information on the gearbox can be found in the

next section.

Figure 2.16: Different Types of Geared Drivetrains - 1 (Single main bearing), 2 (Dou-
ble main bearing), 3 (Gearbox-integrated main bearing) and 4 ("Floating drivetrain"
design) [13]

Although there are many benefits to eliminating the gearbox, there can also be

some issues, such as the size and weight of the generator having to increase. Direct-

drive generators are called low-speed generators because they are directly connected

to the rotor hub via the main shaft, which is rotating at a low speed. Therefore, in order
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for the generator to produce the required power output the torque needs to increase,

which can be seen in Equation 2.5, where P corresponds to the power output, T is the

required torque and ω is the rotational speed.

P (↑) = T (↑)ω(↓) (2.5)

Torque can be calculated from Equation 2.6, where R is the radius, σ is the shear

stress and l is the axial length of the machine.

T (↑) = 2πR2(↑)σl(↑) (2.6)

So in order to meet the required torque, the dimensions of the generator such as

radius, and/or length, needs to increase, thus increasing the size and weight of the

generator.

There are also a number of different topologies for direct-drive drivetrains as shown

in Figure 2.17. All topologies show the main shaft connected directly to the generator,

with the main difference being the number of main bearings on the shaft - single,

double or triple.

The components most likely to fail in a direct-drive drivetrain include: the electrical

sub-assemblies and the generator, [26] and [27], compared to the: electrical sub-

assemblies, gearbox and generator, in the geared drivetrains.

Tables A.1 - A.7, show the various drivetrain layouts of turbines from Siemens

Gamesa, Vestas, GE and Goldwind. They show that for Siemens Gamesa, GE and

Vestas the majority of the models are geared drivetrains, for example 63% for Siemens
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Figure 2.17: Different Types of Direct-Drive Drivetrains - 1 (Single main bearing), 2
(Double main bearing) and 3 (Triple main bearing) [13]

Gamesa and approximately 90% for GE but this is the opposite case in Goldwind, with

the majority of their models being direct-drive.

Articles recently published by the Global Wind Energy Council (GWEC) [28] and

Blackridge [29] both state that Vestas and Siemens Gamesa were the top two turbine

manufacturers in Europe, in 2023.
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2.5 Drivetrain Components

Both types of drivetrains contain a main shaft, main bearing, brake, generator and

power converter, with a gearbox included in the geared drivetrains.

2.5.1 Main Shaft

The main shaft connects the rotor hub, in which the blades are attached, to the gearbox

or generator depending upon the drivetrain type (geared or direct-drive), so it carries

both torque and non-torque loads from the hub. It rotates at a low speed, typically 15

rpm but is subjected to large dynamic and stochastic loads i.e. torque [30], thrust and

bending moments.

2.5.2 Main Bearing

The next component in the drivetrain is the main bearing (Figure 2.18). Within a

geared drivetrain, there can be either single or double main bearings depending on

the suspension (3 or 4 point) and single, double or triple main bearings in direct-drive

drivetrains. Their main purpose in the drivetrain is to support “the rotor while react-

ing non-torque loads either independently, preventing them being transmitted further

down the drivetrain, or in combination with the gearbox and mounts" [13]. They do

this by being placed on the main shaft, that connects the rotor hub to either the gear-

box or generator because this shaft is subjected to large torque and non-torque loads,

such as bending moments. With regards to the direct-drive drivetrains, the role of

the main bearing can also be to both support the rotor of the generator and keep the
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recommended air gap [24].

Figure 2.18: Main Bearing. Courtesy of SKF.

The main types of bearings are: spherical roller bearings, tapered roller bearings,

cylindrical roller bearings and toroidal roller bearings. Spherical roller bearings are the

most common for 3-point suspension, as they react to both axial and radial loads but

they don’t react to moments, so there is a trend moving towards using tapered roller

bearings, as these do react to moments.

The main causes of failure include: fatigue, micro-pitting, spalling, smearing, abra-

sive wear and debris damage and fretting [13].

The design life is twenty (20) years but it is a common fact that the main bearing

does not reach this target [31], it is lucky if it reaches ten (10) years, [32] and [33].

It has been reported that single main bearing failure rates can reach up to 30% [32]

over the typical twenty (20) year life of the turbine. Typically, upon failure they require

complete removal and replacement [13].

Hertzian elastic contact theory, multibody models and finite-element models are all

the modelling tools that can be used for modelling the main bearings [13].
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2.5.3 Gearbox

The next component within a geared drivetrain is a gearbox (Figure 2.19).

Figure 2.19: Gearbox. Courtesy of Romax/NKE.

The main purpose of the gearbox is to connect the low-speed shaft/main shaft to

the high-speed shaft, to increase the speed and reduce the torque from the rotor to

the generator. The gearbox is made up of a variety of gears, bearings and shafts.

Gearboxes typically consist of three gear stages and there are different gearbox

layouts, [34], the most common are: one planetary and two parallel gear stages, two

planetary and one parallel gear stages and even just two planetary gear stages (Fig-

ure 2.20). A planetary gear stage consists of a sun at the centre, which is where

the shaft is connected, with ’planets’ connected to/in between the sun and the planet

carrier. Planetary gears are used as they are believed to be able to withstand harsh

loading [35].

Along with the main bearing, the gearbox is also a component that does not meet

it’s twenty (20) year design life [31]. Gearboxes are one of the pieces of equipment
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Figure 2.20: Different Gearbox Layouts - X (Two planetary gear stages), Y (Two plane-
tary and one parallel gear stages) and Z (One planetary and two parallel gear stages)
[34]

in the drivetrain with high failure rates [36] and [37], with the bearings on the high

speed and intermediate shafts having the highest probability of fatigue damage [38].

If they fail then the downtime and cost are both high, due to the fact that in order to
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carry out any repairs, then they need to be removed and sent back to the workshop

for dismantling.

A similar process to the one used for the main bearings (Section 2.3.5.3) is used

to calculate the fatigue damage of the gearbox.

2.5.4 Generator

The generator converts mechanical energy to electrical energy. There are a number

of different types, including:

1. Induction Generators (IG).

2. Doubly-Fed Induction Generators (DFIG).

3. Permanent-Magnet Synchronous Generators (PMSG).

4. Electrically Excited Synchronous Generators (EESG).

5. Superconducting Generators.

Induction or asynchronous generators (IG) are the simplest type of generators.

They have a fixed stator winding and either a rotating squirrel cage or wound rotor.

They start up once connected to a live AC system, the three phase current flowing in

the stator produces a magnetic field, which induces a current in the rotor. This current

also produces a magnetic field, which interacts with the magnetic field in the stator

producing a torque, [39] The speed of the generator varies with the torque, resulting

in less “wear and tear" on the gearbox, [40].
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Doubly-Fed Induction Generators (DFIG) have a wound rotor that is connected

to slip rings, in order to take current in and out. “The rotor winding is fed through

a variable frequency power converter. The power converter decouples the network

electrical frequency from the rotor mechanical frequency enabling the variable-speed

operation of the wind turbine", [39]. DFIG have been a popular choice of generator for

3–6 MW medium-sized turbines [24].

Figure 2.21: Synchronous Generator.
Courtesy of ABB.

Figure 2.22: Direct Drive Generator.
Courtesy of NREL.

The main difference between an asynchronous generator and synchronous gen-

erator is that an asynchronous generator takes reactive power from the grid for exci-

tation, whereas in synchronous generators the voltage generated is directly related to

the speed of the rotor [41]. The rotor can consist of either permanent magnets or be

field wound (electrically excited). Direct-drive (DD) drivetrains (Figure 2.22) typically

use permanent magnet synchronous machines, as they do not require an external

power source for magnetization, so this decreases the heat produced by the system

and increases the efficiency and energy yield. Permanent magnet synchronous gen-

erators (PMSG) (Figure 2.21) are becoming more popular than DFIGs [24], although
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the cost associated with PMSGs are higher than DFIGs, due to the use of rare earth

materials (e.g. NdFeB magnets) and manufacturing complexity.

2.5.5 Power Converter

The power converters (Figure 2.23) are electrical sub-assemblies. They take the out-

put from the generator and convert the signal to match the grid requirements.

Figure 2.23: Power Converter. Courtesy of ABB.

Their first step is to convert the AC signal from the generator to a DC signal, this

DC signal is then passed through a DC link, before being converted back to an AC

signal matching the grid signal. Depending on the generator type, power converters

can be either partially rated or fully rated (Figure 2.24). They consist of a number of

switches and capacitors.

Power converters have one of the highest failure rates [43], out of all the other
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Figure 2.24: Types of Power Converter (Partially rated (top) and fully rated (bottom))
[42]

pieces of equipment within the drivetrain. Unlike the mechanical components within

the drivetrain, power converters are fully electrical, so thermal expansion and contrac-

tion of the different layers in semiconductors can be a fatigue issue. Research has

shown that the main cause of failure is the environment [43] and that failure can hap-

pen at anytime without warning. Phase modules are found to be the components with

the highest failure rates [43].
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2.6 Summary

A wind turbine’s drivetrain is made up of a number of pieces of equipment, which are in

turn made up of a number of components. Due to the dynamic nature of the complete

system (drivetrain), each component undergoes various loads and forces throughout

it’s lifetime, which gradually reduces it’s remaining useful life. Considering the inter-

connections between equipment within the drivetrain, if any piece of equipment or

component within a piece of equipment fails, the entire drivetrain can be affected,

which in turn affects the wind turbine. So in the case of evaluating lifetime extension, it

is important to not only investigate all the components, it is also beneficial to determine

or rank the ‘weakest links‘ or components most likely to fail.
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Chapter 3

Literature Review

A literature review has been conducted, covering the main topics including: current ap-

proaches to lifetime extension, ways of selecting critical components, utilising SCADA

data for predicting component failures and model uncertainty and errors.

Current approaches to lifetime extension are covered in Chapter 4.

3.1 Selection of Critical Components

A vulnerability map for the components within a 750 kW wind turbine gearbox was

established by Nejad et al. [1]. This vulnerability map (Figure 3.1) was used to de-

termine a suitable inspection and maintenance plan. It used fatigue damage of the

components, i.e. bearings and gears, to establish the map, ranking the components

between the lowest and highest.

Wang et al. [2] also developed a vulnerability map for the components of a wind

turbine gearbox, as well as for the main bearings, all within the same map, but the
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Figure 3.1: Vulnerability Map of 750 kW Gearbox [1]

size of this turbine was a 10 MW medium speed offshore turbine. The fatigue damage

was calculated using four methods, which were the “stress or equivalent load duration

distribution, the Palmgren-Miner linear accumulative damage hypothesis, and long-

term environmental condition distributions". Again, the components were ranked from

lowest to highest with regards to fatigue damage.

According to Zhu and Li [3], the gearbox, generator and blades have the highest

failure rates. They mention how the main root causes of failure include: design and

operational issues, environmental conditions and maintenance practices. They list the

typical failure modes as: faults, overheating, overspeed, seizure of the bearings and

jammed bearings. The associated causes include: environmental conditions, fatigue,

mechanical failure, misalignment, overload, loss of control and zero excitation.

Applying the failure, modes, effects and criticality analysis (FMECA) to a number
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of wind turbines in different climates and identifying any gaps, was a method used

by Ozturk et al. [4]. They found that the typical generator failures were wear on the

bearings and miscellaneous items. Typical electric system failures were wear on the

switches, miscellaneous items, cables/connections, fuses and converter. There were

higher failure rates and downtime per failure for direct-drive turbines, as opposed to

geared-drive. In both turbine types, the generators showed the highest downtime

criticality.

The faults of a number of components within the drivetrain were highlighted by

Qiao and Lu [5]. Faults in the hydraulic system can include: oil leakage and sliding

valve blockage. The mechanical brake is made up of a disc, calipers and hydraulic

mechanism. Failures can include: cracking in the disc and over-wearing of both the

disc and calipers, which are typically caused by overheating. Faults in the generator

can be split into either electrical or mechanical faults. Where electrical faults can

include: “stator or rotor insulation damage or open circuit and electrical imbalance" and

the mechanical faults can include: "broken rotor bar, bearing failure, bent shaft, air gap

eccentricity, and rotor mass imbalance". They also state that the most common faults

occur with the electronic subsystem and that power converters have a high failure rate.

A comparison was carried out by Carroll et al. [6], between the reliability of doubly

fed induction generator (DFIG) and permanent magnet generator (PMG) drivetrains

within wind turbines, with regards to generators and converters. Their results show

that DFIG drivetrains have more generator failures but PMG drivetrains have more

converter failures. The largest contributor to generator failure in DFIG drivetrains is

with the slip ring/brush, followed by the bearing, cooling system, insulation, encoder
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and alignment. Whereas the largest contributor to generator failure in PMG drive-

trains is with the lubrication system, followed by the cooling system and alignment.

The largest contributor to partial rated converter failure, which is located in the DFIG

drivetrains, is the control modules, followed by connection issues, cooling system and

protection. The largest contributor to fully rated converter failure is the cooling system,

then the control module, connection issues, protection issues and converter replace-

ment.

In a separate paper, Carroll et al. [7] investigated the failure rates of offshore wind

turbines. With regards to generator failure modes, the highest number of failures were

with the slip ring, followed by the generator bearing, grease pipes, rotor issues and

fan. They also mention that the generator has a higher failure rate onshore.

Electrical winding failures within generators in wind turbines was discussed by

Alewine and Chen [8]. They determined that out of all the 1200 turbines reviewed,

“fewer than half of the failures were electrical in nature and most of those were due to

mechanical failures of the insulation support structure". They discussed typical electri-

cal failures including: rotor banding, conductive wedges, cooling system failures, rotor

lead failures, under-designed materials and systems, surges, contamination issues

and lubrication.

Due to their frequent failures, the investigation of power converter failures within

the wind turbine are an important area to research. Along with their high frequency of

failure, they are also one of the main causes of fire. Fischer et al. [9] explain that fail-

ures can include electrical overstress. Some of the causes of failures include: lightning

strikes, thermal cycling, condensation build up after standstill and salt ingress.
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Another paper written by Fischer et al. [10] looked at the root cause of power con-

verter failures using a field experience based analysis. They mention some common

causes of failure, which may include: temperature, humidity, vibration, cleanliness,

electrical, components and test and qualification. The analysis method they used to

identify the failure modes and causes, were the failure-data analysis, the operating

conditions of the field and “postoperational analysis of converter hardware/modules".

They concluded that the thermal cycling, which occurs in the generator-side converter

was not a predominant factor in causing failure because failures occurred in both the

grid-side and generator-side converters. In addition, bond-wire damage and solder

cracking, which are both classed as fatigue-related effects were also not a predomi-

nant cause of failure. Whereas, inadequate protection of the converter’s components

from the environment were present within the converters. Corrosion and salt traces

may have caused conductive paths, which were unwanted. Insects were also found

within the device, which may have reduced the insulation-relevant air gaps thus caus-

ing flashover. After standing still for long periods of time the condensation build up

could cause overheating, due to inadequate heat dissipation. Finally, electrical over-

stress caused by lightning strikes was found in the samples, supporting what was

discussed in [9].

Analysing worldwide operating field data provided by project partners, was another

method used by Fischer et al. [11], to look at power converter failures. They reviewed

the differences between different generator-converter combinations, different manu-

facturers and turbine generations. Their conclusions were similar to the conclusions of

their other papers, with regards to thermal cycling not inducing fatigue and that envi-
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ronmental factors played a part in the failures. They reviewed all the components within

the power converter system and concluded that the “phase-module" components had

the highest number of failures. Induction generators with full scale converters had the

lowest phase-module reliability. Reliability of the phase-modules were pretty consis-

tent across all ages of fleets, young and old. Results also suggest that humidity and/or

condensation play a part in the high failure rate of phase-modules. Failure is also

highest when the turbine was operating very close and above rated power.

A large consortium, consisting of three research organisations and sixteen com-

panies has been established, lead by the Fraunhofer Innovation Cluster on Power

Electronics for Renewables, to determine the main causes of power converter failures

in wind turbines. This confirms how important it is to identify these causes of failure,

to try and reduce the amount of failures that occur, as these failures can have huge

economic impacts on the wind turbine industry. Their results from Fischer et al. [12]

confirmed the results and conclusions described in [9] and [10], where one of the ma-

jor causes of failure appear to be related to the environmental conditions, as opposed

to fatigue caused by thermal cycling. Other factors contributing to failure were: con-

tamination, overheating, design issues, quality issues and human error. The method

of analysis they used included: field measurements, evaluation of both failure and

operating data, specifically for power converters and “post-mortem investigation".

An alternative method to determine the remaining useful life of converters was

used by Alsaadi [13] when conducting a comparison between a three level neutral

point clamped (3L-NPC) converter and two level voltage source converter (2L-VSC).

They used wind speed samples, SIMULINK models, thermal cycles and Weibull dis-
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tribution in order to determine the expected remaining useful life. This research by

Alsaadi which was presented at the Wind Energy Science Conference (WESC) 2021,

concluded that the 3L-NPC has the higher reliability.

3.2 Utilising SCADA Data for Detecting Component Failure

Typical indicators of component failure include: elevated temperature and increased

vibration. Temperature data is readily available through SCADA systems, while vibra-

tion data is typically obtained from condition monitoring systems.

A vast amount of research has been conducted, investigating the use of vibration

data to predict component failures in a wind turbine drivetrain, due to the fact changes

in vibration provide more accurate and reliable information. Turnbull et al. [14, 15],

Gómez et al. [16], Joshuva and Sugumaran [17], Igba et al. [18], Hussain and Gabbar

[19], Teng et al. [20], Zhang et al. [21] have all carried out research, to name a few.

The dataset which will be used for this work is from SCADA data, therefore changes

in temperatures will be investigated. Utilizing temperature data for fault detection or

remaining useful life estimation of drivetrain components or the entire system would be

highly beneficial, as temperature data is typically readily available in SCADA systems.

Considering this, extensive research has been conducted to explore various methods.

Carroll et al. [22] found that simple trending using temperature rarely highlighted

potential failures. Yang et al. [23] also mentions that because SCADA data varies “over

wide ranges under varying operational conditions", then without “an appropriate data

analysis tool" it is difficult to detect faults from raw SCADA data. A condition monitoring
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technique based upon certain SCADA data correlations was proposed, in which it was

concluded by Yang et al. [23] worked well in detecting faults within the drivetrain.

The suitability of using SCADA-based condition monitoring, in order to diagnose

faults within a wind turbine, by analysing temperature data, was investigated by Murgia

et al. [24]. They used normal-behaviour modelling and identification of a threshold

value and concluded that drivetrain faults could be identified months in advance, as

long as “qualifying points are addressed".

In another example, a normal behaviour model based upon an artificial neural

network (ANN), using SCADA data has been proposed and tested on twelve wind tur-

bines by Encalada-Dávila et al. [25] and it showed that main bearing faults could be

detected several months in advance. A “state prediction approach" was used by Herp

et al. [26], which was based on “bearing temperature residuals" along with Gaussian

processes. This method was able to predict a failure approximately one month before

failure. In addition, Dai et al. [27] looked at four different assessment criteria for as-

sessing the performance of an ageing asset. One of the assessment criteria used the

main bearing temperature data, it looked for changes and processed this data using

Kernel Density Estimation.

The most commonly used data-driven models include: support vector machines,

neural networks, probabilistic models and decision trees according to Pandit et al.

[28]. They explain that condition monitoring based on SCADA data “targets secondary

effects of the fault". They discuss that the model’s accuracy can be increased with

feature selection and extraction but that it is a fine line to avoid over-fitting.

With regards to gearbox failures, a gearbox planetary stage failure was detected by
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monitoring gearbox oil temperature, power output and rotational speed in Feng et al.

[29]. Whereas based on the first law of thermodynamics, a relationship between tem-

perature, efficiency, and either the power output or rotational speed was established

by Feng et al. [30]. A new algorithm was then developed to detect gearbox failures

based on both oil and bearing temperature measurements. It was concluded that the

simple algorithms worked well in providing early warnings of gearbox failures. A Mul-

tivariate State Estimation Technique (MSET) was used by Yongjie et al. [31], along

with the Moving Window Calculation (MWC). Where the MSET was used to estimate

the gearbox temperature and the MWC used to get the dynamic trend of the average

value of the differences between the estimated and real values. This paper concluded

that the method was effective in detecting any anomalies. Moreover, thermal mod-

elling, as well as thermal modelling combined with machine learning was investigated

by Corley et al. [32] and Corley et al. [33] respectively, where it was found that thermal

modelling of the gearbox detected a fault, whereas nothing was obvious with just the

temperature differences. Zhao and Zhang [34] used a prediction method, using tem-

perature to detect faults by comparing the actual running condition of the gearbox, with

the predicted condition and flagging any deviation. Gearbox oil temperature was used

by Zeng et al. [35] in an anomaly detection method, based on the Sparse Bayesian

Learning and hypothesis testing. A Support Vector Machine (SVM) regression model,

along with SCADA parameters was used to model the gearbox oil temperature by

Zhang and Qian [36] and it was concluded that a warning approximately ten days be-

fore the fault was achieved. A deep neural network algorithm was “applied to model

the lubricant pressure" by Wang et al. [37] and it was found that gearbox failures could
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be predicted approximately two to three days in advance. They also concluded that

monitoring lubricant pressure provided more accurate results than monitoring gearbox

oil temperature.

Specifically tested on a generator rear bearing, Hu et al. [38] established a per-

formance degradation model using the Wiener process, with the maximum likelihood

estimation method used for the model parameters. The “temperature trend data" was

determined from the “relative temperature data" using the moving average method. It

also established a remaining useful life prediction model, based on the inverse Gaus-

sian distribution. It was concluded that both the degradation model and prediction

method were very effective with calculating remaining useful life.

Sudden fault detection of generator bearings was investigated by Velásquez [39].

They firstly used a multi-stage approach consisting of multiple regression models, then

probability scores, a search grid validation and then the validated results were ran

through “finite element modelling, boroscopy, and vibration analysis". They concluded

that failures could be detected five days prior to vibration analysis, with a high accu-

racy.

Although not related to wind turbines, Apribowo et al. [40] used machine learning

models such as an extreme gradient boosting algorithm, along with a temperature

variable to predict the RUL of battery energy storage systems. It was concluded that

this method provided accurate results.

Most of the existing research reviewed above, employs quite complex data-driven

techniques, offering more accurate RUL predictions. However, it was determined that

relying solely on temperature data allows for failures to be predicted, only a few months
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in advance, at best. In contrast, using vibration data, or combining both temperature

and vibration data, could enable failure detection much earlier.

3.3 Model Uncertainty and Error Assessment

Model validation is important and this can be achieved by using measurement chains,

to ensure the processes are reproducible, thorough and traceable, as described by

Hall and White [41]. A typical measurement chain can consist of: data collection,

preprocessing, feature extraction, model prediction, error analysis, feedback.

Four types of uncertainty are described by Bai and Jin [42], including: inherent,

measurement, statistical and model. The authors define model uncertainty as “uncer-

tainty due to imperfections and idealizations made in physical model formulations for

load and resistance, as well as in the choices of probability distribution types for the

representation of uncertainties".

With regards to wind energy and wind turbines, models can serve various pur-

poses, including: predicting wind direction for yaw control, Ouyang et al. [43], mod-

elling of wind speeds to forecast power production, De Giorgi et al. [44], predicting

wind speed, Knudsen et al. [45], modelling component failures based upon weather

conditions, Reder and Melero [46] and identifying anomalies, Sun et al. [47].

Various types of models are utilised and Barboza et al. [48] found that random

forest machine learning models, deliver the highest accuracy. They also concluded

that the accuracy increased, with the inclusion of additional variables.

Model uncertainties have been investigated by Jiang et al. [49], Nejad et al. [50],
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Tarp-Johansen [51] and Dong et al. [52], amongst others. These studies define model

uncertainty as the ratio of the actual or real value of a variable to the predicted value.

Bai and Jin [42] explains that bias arises when the mean value does not equal one.

They explain that in the absence of detailed information, either lognormal or normal

distributions are commonly used. Lognormal distributions for load variables and nor-

mal distribution for resistance variables. Dong et al. [52] further emphasizes that log-

normal distribution is preferred over Gaussian distribution. Tarp-Johansen [51] high-

lights that by dividing the standard deviation by the mean, the coefficient of variation

can be determined, which is a “convenient measure of the relative error that the model

uncertainty represents". Researchers, including Nejad et al. [50], typically use a mul-

tiplicative model to account for combined uncertainties, although Tarp-Johansen [51]

suggests considering additive errors.

Three different approaches to determine uncertainty in machine learning predic-

tions were investigated by Tavazza et al. [53]. They included the Gaussian process

and the quantile approach, which used both the absolute difference and square of the

difference, where the difference is defined as the difference between the predicted and

observed values. They concluded that whilst the quartile approach was the easiest

approach, the Gaussian process provided a reliable estimate. They also determined

that the best approach was achieved by using the absolute difference between the

predicted and expected values.

An error compensation prediction method was proposed by Jiao et al. [54], based

upon an extreme learning machine. This extreme learning machine was designed to

predict the error, which is defined as the difference between the predicted and actual
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value. This predicted error is derived from a time lag correction model and is then

added to the “raw wind speed prediction result", to produce the “final wind speed

prediction result".

Confidence intervals can be used for quantifying uncertainty in data-driven models.

Pandit and Kolios [55] proposed two approaches incorporating confidence intervals -

pointwise and simultaneous - to “measure the uncertainty associated with an SVM-

based power curve model". They concluded that pointwise confidence intervals pro-

vided the most accurate results, when measuring the uncertainty of the power curve.

Several researchers have utilised Monte Carlo simulations and methods, to ac-

count for uncertainties and errors in models. Cao et al. [56] proposed an “uncertainty

quantification approach" for determining remaining useful life predictions, which con-

sists of kernel density estimation and Monte Carlo dropout. They concluded a high ac-

curacy based upon this proposed method. Afanasyeva et al. [57] proposed a method

combining both a sensitivity analysis and Monte Carlo simulations, in order to try and

evaluate how uncertainties may influence the financial risks of wind projects. Gonzaga

et al. [58] investigated modelling the effects of both aerodynamic and structural uncer-

tainties on wind turbine blades. They used the Monte Carlo method to characterise

the uncertainties in the material properties in a structural model of the blade. Addi-

tionally, Liu et al. [59] applied a Monte Carlo simulation to estimate the “annual energy

production and its uncertainty for the wind farm".
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Chapter 4

State-of-the-Art Approaches to

Lifetime Extension in Wind and

Other Industries

After researching all the various equipment/components that are located within the

nacelle and that form the drivetrain, along with their layouts and the loads/forces that

they are subjected to, the next step is to review all existing literature, which is in the

public domain and establish what are the current processes of determining lifetime

extension. The wind industry, as well as other industries, such as: oil and gas, ves-

sels etc. are reviewed within this chapter. Other industries are investigated because

they have been in operation a long time, most of them much longer than the modern

wind industry, so have tried and tested techniques in place with regards to determin-

ing lifetime extension. Therefore, it is extremely useful and important to learn from

other industries, to identify their transferable knowledge, when trying to establish a
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methodology.

4.1 Lifetime Extension Methods in the Wind Industry

Classification societies such as DNV and Bureau Veritas, have both issued guidelines

related to lifetime extension of wind turbines as a whole.

Bureau Veritas issued the “Guidelines for Wind Turbines Lifetime Extension" [1] in

2017, which recommends carrying out inspections on the components of the turbine

to determine the quantitative lifetime extension (LTE). For the structural components

which include: the tower, blades and main shaft, lifetime extension calculations are

also required to be carried out. With regards to the drivetrain, the gearbox, shrink

disk, torque arms, rotor locking system, brake disc and caliper, high speed coupling,

hoses and oil ancillaries and the generator mount are listed along with the inspection

requirements.

DNV-GL issued both the “Lifetime Extension of Wind Turbines (DNVGL-ST-0262)"

[2] and the “Certification of Lifetime Extension of Wind Turbines (DNVGL-SE-0263)"

[3], in 2016, with an amendment in 2021. Document DNVGL-ST-0262 recommends

four methods for determining if the wind turbine is suitable for lifetime extension. The

first method is called the lifetime extension inspection (LEI). For this method, a vi-

sual inspection is carried out on all load-transferring or safety-relevant components.

Maintenance and inspection reports are reviewed, along with some simple tests and

consideration of both SCADA data and type related field experience. The next three

methods, which are the Simplified, Detailed and Probabilistic Approach, are all carried
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out to determine proof of strength and stability. Each approach consists of an analyt-

ical and practical part. The analytical part involves new and/or additional calculations

to assess the lifetime extension of the wind turbine. The calculations should take into

consideration the location of the wind turbine, including the site-specific installation,

local conditions and the field experience related to the type of turbine. The practical

part involves wind turbine inspections, which should include all components that are

load transferring and the control and protection system. In addition to the inspections,

the maintenance/operational history and field experience related to the type of tur-

bine, should also be taken into account. The Simplified Approach is typically carried

out when the original design documentation is not readily available. The Detailed Ap-

proach uses a deterministic approach and requires the original design documentation.

Finally, the Probabilistic Approach uses stochastic methods to determine the structural

integrity of the wind turbine. The practical parts for each method are very similar but

the analytical part varies depending on which method is chosen. With regards to the

drivetrain, it has been broken down into eleven components, including: the hub, main

shaft, coupling, main shaft bearings, gearbox, torque support, high speed shaft, gener-

ator, cooling system/circuit, bolted connection and protective covers. Each component

has its individual test that should be conducted. Document DNVGL-SE-0263 explains

the main deliverables including: a report, statement of compliance and/or certificate,

obtained from carrying out one of the methods for lifetime extension described in doc-

ument DNVGL-ST-0262. The document confirms that the possible lifetime extension

is determined from load calculations and inspections. Each wind turbine should be

inspected and the scope of the inspection will depend on the results obtained from
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the analytical part. Results obtained from both the analytical and practical parts, will

determine whether the wind turbine is suitable for lifetime extension. These DNV-

GL guidelines list components associated with the whole wind turbine but appears

mainly focused on the structural elements. TUV Nord [4] recommends the use of

both the DNV-GL guidelines discussed above, for assessing the lifetime extension of

wind turbines. In addition, they provide an expert analysis service, which includes: an

inspection, examination and evaluation of the wind turbine, load determination over

their lifetime, analysis and calculations, concluding with determining the period of life

remaining.

DNV also provides a service to estimate the lifetime of a wind turbine and wind

farm. Their lifetime assessment of the asset can include: “wind turbine fatigue life,

asset economic lifetime, wind farm asset integrity and wind farm asset depreciation".

MegaVind issued a report called “Strategy for Extending the Useful Lifetime of a

Wind Turbine" [5] in 2016. They have described four different scenarios based upon

the amount of data available, from no design basis and operational measurements

being available (Scenario 1), to having access to a full range of information including

the design basis, the history of load measurements, wind speed details and condi-

tion monitoring measurements (Scenario 4). The accuracy of the lifetime extension

assessment increases from Scenario 1 through to Scenario 4. This report also men-

tions that it is important to have information on the environmental conditions that the

wind turbine has been operating in, in order to more accurately determine the remain-

ing useful life (RUL) of the turbine. They also discuss conducting a component-by-

component analysis, which explains the requirements for the lifetime extension calcu-
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lations, the various failure modes and ways to improve both the inspection and con-

dition monitoring. The nacelle section is split into the shaft and main bearing, frame,

electrical components and yaw systems.

The “Basic Principles for Performing an Assessment and Verification of the Lifetime

Extension of Onshore Wind Energy Converters (BPW)" [6] was issued by BWE. They

state that the stability of the tower, foundations and load-transferring components and

functionality of the safety, control and brake systems all need to be assessed in order to

determine the lifetime extension. They also state that in order to determine the lifetime

extension of a wind turbine, then both an analytical part and practical part needs to be

carried out. Where the analytical part is determined using the available documentation

and practical part involves an inspection. All of the above standards/guidelines [1], [2],

[5] and [6] are useful for recommending both the proposed methods in determining

lifetime extension i.e. analytical and practical and the components that the process

should be applied to.

Performing fatigue assessments on a select number of wind turbines in a wind

farm, using site specific environmental data during the design phase and then com-

paring them with fatigue reassessments carried out on the turbines at the end of the

designed service life when the environmental conditions were known, was investigated

by Bouty et al. [7]. Differences in the aero- and hydro- dynamic loading, which were

caused by certain environmental parameters were adjusted. The fatigue reassess-

ment results were then extrapolated to the entire wind farm. Extrapolation could not

be applied to every parameter such as corrosion. Safety factors were also applied to

compensate for uncertainties in the model. They concluded that this is an efficient
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method for determining lifetime extension of offshore wind turbines.

Splitting the lifetime extension approach into two was suggested by Rubert et al.

[8]. The first being data evaluation using SCADA data, maintenance reports, survey

reports, wind history and CMS. The second is inspections of the drivetrain, NDI of

any connections that are bolted and welded, corrosion areas, blades and electrical

components.

Specifically looking at structures and particularly offshore platforms, Pérez et al.

[9] discuss a methodology for damage detection. They used the Submatrices Dam-

age Method to establish damage indicators in terms of stiffness degradation. It works

by comparing the structural stiffness of the baseline conditions with the damaged con-

ditions. To detect the location of the damage, limited modal information was used.

They concluded that the proposed methodology identifies and locates the damage in

terms of stiffness degradation. Both the Baruch and Bar Itzhack [10] and the Berman

and Nagy [11] methodologies were used and both enabled the Submatrices Damage

Method to accurately locate the damage.

Lifetime extension for onshore wind turbines across various countries in Europe, by

carrying out a thorough literature review and interviewing a number of operators was

carried out by Ziegler et al. [12]. They looked at conducting load simulations along

with technical assessments and concluded that the analytical part of the assessment

is conducted by using both structural models and actual site conditions. Obtaining the

actual site conditions at present is costly, so this needs to be reviewed further to es-

tablish a more cost-effective method. The practical part of the assessment determines

the current condition but doesn’t determine the structural safety level.
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A methodology for determining the lifetime extension of onshore wind turbine tow-

ers was developed by Amiri et al. [13]. The tower was assumed to be the key structural

component. They used a joint aeroelastic-finite element analysis, ensuring that they

took into consideration the wind direction, operational history and stress magnification

present around the door of the tower.

Data collected from structural health monitoring (SHM) to establish a lifetime ex-

tension strategy was used by Rubert et al. [14]. They explain that data analysis, in-

spections, aero-elastic simulations and data from SHM systems can all be used to

determine the lifetime extension of the turbine. The first three methods can be lacking

in information or costly, which can be avoided by using data from SHM. They con-

cluded that determining the lifetime extension of a turbine depends highly on it’s loca-

tion and thus the site specific conditions, and that it is extremely important to establish

an appropriate strategy for lifetime extension.

Using the measured strain data to link measured oceanographic data to fatigue

damage was investigated by Mai et al. [15], as well as using the Bayesian approach to

“update the joint distribution of the oceanographic data". By carrying out the process

each year, the remaining fatigue life that has been calculated can be updated in order

to “adapt the operation to real loading conditions". They concluded that the proposed

methodology worked well in predicting the remaining fatigue life of the support struc-

tures. The size of the stress-ranges at the “hot-spots" is the main component that

affects the remaining fatigue life.

A geographic information system to assist the operators in deciding on the best

course of action for wind turbines nearing the end of their design operational life,
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was proposed by Piel et al. [16]. This system will process “topographic, wind, turbine

and finance data within an integrated system of resource simulations, spatial planning

analyses and economic viability assessments". The results of the spatial analysis will

provide the operators with the most economic solution.

A method proposed by Saathoff and Rosemeier [17], compared damage equivalent

loads (DEL) of site conditions, against the design conditions to predict the lifetime

extension. They compared the DEL-based approach to a stress-based approach.

They focused on the blade bolts, blade root laminate and main shaft. They concluded

that there was a difference between both approaches, with the stress-based approach

providing a more reliable model for lifetime assessments.

Bolts, blade erosion and the effective repair of faults were identified by Natarajan

et al. [18], as the main inspection points, from which the results can determine the

lifetime extension. They confirm that the standards issued focus on fatigue limit states.

They are proposing to use SCADA data and aeroelastic design basis to estimate the

shaft torsional load, using the collage method and Tikhonov method. Once the shaft

torsional load has been determined, the damage equivalent loads (DEL) can then

be calculated on all major structural components. They mention that the DEL values

calculated from measurements are much more accurate, so provide a more accurate

estimate of fatigue life, which in turn will be more efficient for estimating the lifetime

extension of older turbines. They also conducted interviews with owners and they

confirmed that critical components include the tower and drivetrain, which is classed

as the most critical component.

Attempts have been made to particularly study the wind turbine’s drivetrain dam-
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age and it’s lifetime extension potential, by studying the internal loads on the drivetrain,

which are caused by “excitations from both the wind and generator". Girsang et al. [19]

discusses the use of a modelling tool that can model the impacts of electrical tran-

sients, wind turbulence and shear on the wind turbine’s drivetrain. They recommend

using the FAST [20] CAE tool along with Simscape to model the drivetrain, to look at

ways of extending the life of the gearbox by testing advanced control schemes.

Dvorak [21] has discussed how turbulent winds, effect the wind turbine’s drive-

trains. The author experiences a wide range of dynamic loads, which may reduce the

predicted life of the components in the drivetrain. Transient torque reversals cause

strong oscillations, so need to be taken into account, as they affect the bearings and

gears in the gearbox, especially in transient or fault events [22].

Combining physics-based and data-driven models to estimate the RUL of the driv-

etrain was recommended by Keller et al. [23].

A Reliability Block Diagram (RBD) model was proposed by Eriksson [24], in order to

determine wind turbine failures and predict their future behaviour along with the cost.

They looked at failure rates, failure types, repair times, cost of spare parts, labour

costs etc. They concluded that while lifetime extension is beneficial, it is difficult to

pinpoint an ideal length of extension because factors such as: wind resource, turbine

availability and the increasing operating and maintenance costs, all have an effect.
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4.2 Lifetime Extension Methods in Other Industries

4.2.1 Oil and Gas

According to Sintef [25], a number of activities should be conducted in order to make

sure that the technical, operational and organisational integrity of the asset is main-

tained throughout the lifetime extension period. The main activities include: updating

procedures as per the latest regulations, collecting data and information on the asset

to determine the current condition and how the level of integrity has been affected

during the operational life, establish a lifetime extension management plan which will

detail how to maintain the asset during the additional operational lifetime, to keep the

integrity level of the asset at an acceptable level.

As per Palkar and Markeset [26], certain guidelines may be followed to assess the

lifetime extension and to maintain both the technical and operational integrity of the as-

set. They identify key aspects of ageing such as material degradation, obsolescence

and organizational issues. They state that the main objective is to confirm whether

the equipment is still fully functional and fit-for-purpose. In order to do this, it is im-

portant to have both past and present information. These tasks include: collection of

data, breakdown of the system, screening, monitoring and testing, detailed analysis,

evaluation of risks, outline of challenges and a lifetime extension management plan.

They concluded that the lifetime extension process should not compromise on safety

standards, that regular inspections with thorough documentation will keep the opera-

tors informed of the condition of the equipment and that communication is extremely

important, along with lessons learned and sharing knowledge. Finally, they state that
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a software system is useful with analysing data and detecting changes.

The age of the equipment is not the only factor for ageing according to Ratnayake

[27], it is also important to know how the equipment changes over time in its condition.

They state that performing efficient inspections is a key component in lifetime exten-

sion. Inspection methodologies are determined based upon the applications, as well

as the input and output data.

It is important to develop an efficient asset integrity management (AIM) approach,

which will not compromise on safety, integrity or the environment but achieve the re-

quired reliability and availability, as per Hudson [28]. They mention that the approach

needs to include AIM on all components and systems within the asset, which affect

the operation. The aim of the asset life extension study is to determine the loca-

tion and reason of any deterioration, as well as developing a plan that details how

the equipment’s integrity can be maintained. The method proposed, begins with the

normal design life, which is determined from the original design standards and best

practices. Maintenance practices, inspection methods and history, operating practices

and environmental conditions then aid in the determination of the impact of deteriora-

tion mechanisms. From these two assessments, the assessed asset life can then be

determined.

Lifetime extension studies were carried out by Abu Dhabi National Oil Company

(ADNOC) liquefied natural gas (LNG) team. Sabry [29] explains how they initially split

the asset into five sections, which were: static equipment, safety critical equipment,

rotating equipment, civil and structures and electrical and instrumentation. Then data

was collected for the static equipment from a variety of systems, such as: risk based
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inspection, risk based assessment, focused integrity reviews, computerized mainte-

nance management system (CMMS), root cause analysis, fitness for service exercise

and major turn around reports. From here the inspection and failure history, degra-

dation rates, probability of failure and fitness for service results were all analysed, to

determine if the static equipment would continue to operate until a set date.

For assessing the structural integrity of offshore oil and gas structures Aeran et al.

[30], have proposed a framework for estimating the remaining life. The framework con-

sists of four blocks, the first being “Data Collection, Screening and Selection of Fatigue

Assessment Approach", the second is “Simulation of Degradation and Development

of Degraded FE Models", third is “Simulation of Loading and Analysis" and the final

block “Stress Evaluation and Estimation of Remaining Fatigue Life".

DNV-GL codes along with other relevant codes, specifically related to degradation

caused by internal corrosion have been used in a risk-based approach to determine

the remaining life and life extension of gas pipelines. Tronskar [31] carried out a case

study by conducting leak and burst assessments of a gas pipeline, along with “a struc-

tural reliability assessment method".

There are many challenges with regards to maintaining the reliability and integrity

of ageing equipment. In order to assess the lifetime extension, Khan et al. [32] ex-

plains that there are many factors that need to be taken into account, such as: ero-

sion, corrosion, fatigue, obsolescence and change in standards, to name a few. The

method they have described to assess suitability of the asset for lifetime extension first

begins with data and information, then criticality screening, analysis of failures and

challenges, risk reducing measures, overall risk picture and finally lifetime extension
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management. They describe that at each stage, the asset must prove that they are

fit-for-purpose and meet the As Low As Reasonably Practicable (ALARP) criteria.

4.2.2 Marine Vessels and Floating Production Installations

Marine vessels operate in harsh and challenging environments, so it is important that

they are designed, constructed, maintained and operated according to strict stan-

dards, in order to operate safely and efficiently, as well as to protect the environment.

Classification societies including: Bureau Veritas (BV), Lloyds Register (LR) and the

American Bureau of Shipping (ABS), issue regulations and standards that the marine

vessel owner’s must comply with, in order for their vessels to be classed. Therefore, if

they are to operate beyond their designed service life then reviews, surveys and struc-

tural analyses are required, in order to prove that they can continue to operate safely

and efficiently.

ABS issued regulations for lifetime extension of floating production installations

(FPI) [33], in 2017. They state that the lifetime extension process consists of three

phases. The first being the investigation phase, which involves data collection, engi-

neering assessments and a baseline survey. The second phase is the determination

phase, which involves reassessment and provision of conditions for lifetime extension

and the third phase is the implementation phase, which is where the conditions are

implemented.

A reliability-based approach consisting of a structural assessment, met-ocean as-

sessment, vessel hydrodynamic modelling and reliability calculation, have been used

to determine lifetime extension of floating production unit moorings. Rosen et al. [34]
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concluded that there were many benefits to using this type of approach, which in-

cluded quick implementation, provided the vessel data and environmental conditions

are known. Compared to typical “deterministic design event approaches", there is a

more in-depth understanding of the system. Finally, it is of high fidelity, selecting the

“most likely failure scenario".

4.2.3 Electrical Machines

The use of condition monitoring of the stator insulation system via on-line partial dis-

charge analysis (PDA) systems is discussed by Zhu et al. [35]. Insulation degradation

of the stator can cause failures and reduce the life of the equipment. They looked at

two case studies, a generator and a motor with degraded insulation, where both had

an on-line partial discharge (PD) testing system applied. They concluded that using

on-line partial discharge testing as a condition monitoring tool was extremely useful

in determining the condition of the winding insulation of the stator. It gave the oper-

ators confidence in using the equipment and allowed lifetime extension of the stator

winding insulation in both motors and generators. By monitoring the deterioration of

the insulation by a condition monitoring system, extends the service lifetime of the

machine.

Temperature affects the insulation material in transformers and induction machines,

by ageing the insulation, which in turn affects the life, according to Fuchs and Masoum

[36]. For magnetic devices, they explain the three phases that can be used to esti-

mate the lifetime. The first being modelling of additional losses caused by harmonics

of either voltage or current. The second phase is to establish the rises in temperature
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and the third phase is to determine the lifetime reduction as a percentage against the

rated lifetime.

Nonlinear models are recommended by Huger and Gerling [37] for dynamic electric

and thermal machine behaviour. They simulated certain behaviour over the life of the

machine, such as winding resistance and magnet temperatures. They concluded that

the end windings were the most critical part of the winding insulation and that the most

likely component to fail was the bearings.

4.2.4 Mechanical Rotating Equipment

Analytical modelling is one way of determining the lifetime extension of ageing equip-

ment. Sire and Hopkins [38] state that it is important to select the most appropriate

usage parameter for use in damage modelling. Damage parameters can come in

many forms, such as crack length and structural wall thickness for structures. Loading

can be defined as either cyclic or constant. Fatigue is an example of cyclic load-

ing and creep or stress corrosion are examples of constant loading. Exposure time

and/or loading cycles are examples of usage parameters. Upon selecting compo-

nents for lifetime extension, “materials data characterizing damage progression as a

function of usage" should be taken from either testing in a laboratory or from a ma-

terials database. Validation of the lifetime prediction model should be carried out by

field experience. They concluded that suitable candidates for lifetime extension should

be the components that have extensive remaining life, which have been determined

from reliable detection of damage. In order to carry out accurate predictions of the

component’s life, multiple tools exist.
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There are various methods of assessing the remaining useful life (RUL) of age-

ing mechanical equipment, which were investigated by Hu et al. [39]. They looked

at three methods, the first being a physics-based model, the second a data-driven

based model and the third a hybrid model of both methods. As the name suggests,

the physics-based model is built upon engineering principles and/or physics dynamics.

This model can easily adapt to new or unexpected operations. The data-driven based

model operates by comparing the “status assessments of the system during testing

with all other learned occurrences", therefore historical data must be used to train the

model. They concluded that modelling and assessment of RUL is becoming more

important and that the decreasing RUL of all equipment is caused by physics per-

formance degradation. It is difficult to see physics degradation, so RUL evaluation is

recommended for determining the degradation process, by using physics performance

data that is available. Typically, the two processes that are used in the RUL evaluation

are, “the hidden degradation process and observation of measurable processes". The

observation process and data are used to determine the degradation process, as well

as converting the degradation state into a probability density distribution. This then

produces the hidden Markov model (HMM) mechanism and Bayesian recursive esti-

mation, which is conveyed in a state space model. Modelling of both the system and

observation equation of the state space model is best achieved by using a mixture of

“the physics model based method and historical data fitting for parameter initiation-a

data driven hybrid method."
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4.2.5 Bearings and Gears

A data-driven approach based on E-Support Vector Regression can be used to esti-

mate the remaining useful life of rolling element bearings. Loutas et al. [40] concluded,

that the methodology that they proposed can be used for any task for predicting prob-

abilistic RUL.

Another method for determining the remaining useful life of bearings is by using the

extended Kalman filtering method, as described by Singleton et al. [41]. It is difficult

to predict the RUL of bearings because accurate physical degradation models are

lacking. They propose using a data-driven methodology, which will use both time

and time-frequency domain features to monitor any bearing faults. After the features

are extracted, an analytical function is developed and then used to learn the extended

Kalman filter parameters. This is then used on test data to predict faults under different

operating conditions.

NREL have recently joined forces with a number of operators to investigate both the

causes and solutions of gearbox failures. The outcome of their research will provide

valuable assistance in the lifetime extension of wind turbine gearboxes.

4.2.6 Nuclear Power Plants

The Economic and Social Council issued a “Progress Report on the Development of

Guidance on the Application of the Convention to the Lifetime Extension of Nuclear

Power Plants" [42] in 2019. The report explains that for nuclear power plants, the

lifetime extension not only needs to look at nuclear safety, which is extremely impor-
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tant but also about any effects on the surrounding environment. Safety reviews and

environment impact assessments both need to be carried out.

The Nuclear Energy Agency [43] discusses that prior to applying to extend the

operating license of nuclear power plants, the operators typically plan to make tech-

nical improvements, upgrade the safety systems and modify the fuel characteristics,

performance and refuelling timetables.

It is not practical to shut down nuclear power plants to carry out tests and inspec-

tions to determine whether their lifetime can be extended, according to Bellona [44], so

instead a number of programs can be implemented. One such program recommended

is called an ageing management program, which should aim to identify any deterio-

ration related to the age of the equipment. Another method of assessing the plant’s

suitability for lifetime extension is by research, modelling and simulations of different

scenarios related to degradation. They also emphasize how important it is to collect

and monitor information on accidents and incidents, by installing a monitoring system

to gather all this information.

Mitigation strategies for nuclear power plants lifetime extension are discussed by

Thevenet [45]. The strategies include: a theoretical approach, potential solutions,

mitigation techniques acting on tensile stress level and isolating processes.

4.3 Remaining Useful Life Methods

In order to determine lifetime extension, it is essential to establish the analysis of

remaining useful life (RUL) of the components, which make up the system, including:
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bearings, gearbox, generators and power converters. Therefore, the existing RUL

determination methods used for various components situated within the drivetrain has

been studied in the following Subsections. Perception of RUL estimation varies among

different studies. Depending on the methods used, RUL can refer to the detection of

state of damage or an expected time for failure, which are in some cases irrespective

of the specific operational conditions.

In general, the various RUL methods used data from either SCADA data or condi-

tion monitoring and the modelling methods were either physics-based or data-driven

and in rare cases a hybrid approach.

In order to determine the remaining useful life of a component, like all calculations,

requires both data as well as a method/process. With regards to data, either SCADA

and/or condition monitoring (CM) data can be used. Out of all the literature consulted

the majority used a combination of both, with the common parameters being vibration

from the CM data and wind speed, power and rotor speed from the SCADA data. With

regards to the method/process, either a physics-based or data-driven approach are

used, with a data-driven approach the most popular approach used.

4.3.1 Bearings

For the main bearing, a physics-based model has been used for determining remain-

ing useful life, [46], taking inputs from blade root bending moments and rotor speed.

While data-driven models such as a stochastic method including: the moving average

method, a performance degradation model established with the Wiener process, the

maximum likelihood estimation method and inverse Gaussian distribution, [47] and a
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method combining the interval whitenization method with a Gaussian process (GP)

algorithm, [48] have been employed for generator bearings. The input parameters

included temperature [47] and vibration [48].

A data-driven method, involving spectral Kurtosis-derived indices and support vec-

tor regression (SVR) based on the vibrations taken from the condition monitoring, have

also been used for determining the RUL of high speed stage bearings within the gear-

box [49].

For determining the RUL of bearings in general, a data-driven approach involving

a Principal Component Analysis (PCA) technique, regression models such as Support

Vector Regressor (SVR) and Random Forest (RF) and Weibull Hazard Rate Function

[50] have been employed, taking vibration as the input. Another approach/method

that can be used which also takes vibration as the input, is a hybrid approach involv-

ing monotonicity, Spearman rank correlation analysis, hierarchical clustering, fusion,

principal component analysis and T-test [51].

4.3.2 Gearbox

The remaining useful life of bearings, gears and high speed shafts within the gearbox

have all been investigated.

For determining the bearing forces in the intermediate-speed shaft of a three-stage

WT gearbox, a physics-based approach, using both SCADA data and design data as

the inputs for the rigid beam models, have been used [52]. Whereas data-driven ap-

proaches have been employed for determining the remaining useful life of the gearbox

bearings. Normal behaviour modelling, pattern recognition models, classification and
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degradation models were all used to determine the RUL of the planet bearing [53].

A Generalized Cauchy Process to establish a degradation model has also been used

[54]. Another data-driven approach using the vibration data as the input, is an artificial

neural network to train models and predict the RUL [55]. As an alternative, physics-

based calculations, i.e torque, axial and angular misalignment, pinion loads, coupling

hub loads, bearing loads, can be employed using SCADA, CM data, as well as high-

speed stage (HSS) component dimensions as their input [56]. Both physics-based

and data-driven models can be used for determining the RUL of the helical gear within

the gearbox, using a combination of SCADA and CM data. “The loads were computed

by means of physical relations, damage sensitive parameter (feature extractor) and

the transformation of this parameter to the size of misalignment (classification)" [57].

For determining the RUL of the gearbox in general, data-driven approaches using

both SCADA and CM data as the inputs dominate. One method is a particle-filtering

model [58]. A statistical approach including the Miner’s Rule, cumulative damage cal-

culation and RUL estimation using regression model is another method that has been

employed [59]. Machine learning algorithms have also been used [60]. A slightly

different method which just uses SCADA data is the particle filtering (PF) method (re-

cursive Bayesian algorithm based on the concept of sequential importance sampling

and Bayesian theory), [61].

4.3.3 Generator

Calculating the remaining useful life of the generator by using SCADA and design data

can be achieved by using thermal, electrical and mechanical models [52].
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SCADA data such as rotor speed, wind speed and output power, along with a data-

driven approach using a time-based sliding window/Bin method and state model have

also been used to determine RUL [62].

Another data-driven approach used to determine the RUL specifically of the gen-

erator bearings, involves the Empirical Mode Decomposition and Support Vector Re-

gression Prediction Model using vibration data from condition monitoring as the input

[63].

4.3.4 Power Converter

In all the literature reviewed, the insulated-gate bipolar transistors (IGBT’s) were iden-

tified as having the highest failure rate within the power converter.

Physics-based approaches have been used for calculating the remaining useful

life of power converters. Methods include: mathematical models along with a fail-

ure modes and effects analysis (FMEA) [64], as well as a risk assessment from the

FMEA, wind profile, integrated aero elastic servo control code, Miners rule, induction

generator model, thermal model for junction and case temperature prediction, rain flow

counting method and digital twin [65].

A data-driven approach, which included computation of the time-domain features

to extract the degradation behaviour of the IGBT device and the Gaussian process

regression technique have been used [66].
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4.4 Key Steps/Take-Away Points for Determining Lifetime

Extension

From the literature presented in the previous subsections, the key steps in lifetime ex-

tension and comparison across different industries can be summarised in Figures B.1

and B.2 and further condensed in Table 4.1.

Table 4.1: Condensed Summary of Lifetime Extension in Industries.

Title Description Oil &
Gas

Marine
Vessels

Nuclear Wind

LTE Objec-
tives

Maintain reliability, integrity
and operational safety

X X X X

Economically beneficial X X X X
Environmental impacts X

RUL Physic-based modelling X X
Approaches Data-driven modelling X X

Hybrid modelling X
Survey-based practical X

Methodology Data collection X X X X
Risk assessment X X X X
System breakdown X X X
Aging management plan X X
Environmental re-
assessment

X

Simulation of degradation
scenarios

X

These key take-away points are items that have been identified as being applica-

ble/transferable for use in determining the lifetime extension process, specifically for

wind turbine drivetrains.

The lifetime extension process can be split into a number of stages. The first stage

of the process is data collection. The more data available and collected, then the more

accurate the final results will be, was a common conclusion throughout. Typically, the

data comes from SCADA data, condition monitoring system, design drawings, man-
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ufacturing drawings, installation reports, maintenance reports, failure records, opera-

tional history etc.

The next stage is to establish the type of assessment. Analytical and/or prac-

tical assessments appear to be the most common assessments used across many

industries. Utilising both seems to provide the most accurate results. Analytical as-

sessments can include: modelling, simulations, calculations etc., whereas practical

assessments refer to surveys and inspections of the assets.

Based upon the methods determined from the equipment/system/plant type and

data available, the assessments are then carried out, which is the next stage. The

depth of each type of assessment will vary, depending on the industry and the amount

of data collected. It is important to consider environmental conditions within this stage,

as well as the conditions that the components have been operating in throughout their

lifetime.

Regarding the analytical assessments, a number of approaches/methods were

mentioned, including:

1. Physics-Based.

2. Data-Driven.

3. Hybrid.

A physics-based approach uses fundamental principles to model the behaviours

and operation of the wind turbine, such as aerodynamics, mechanics etc. The data-

driven approach uses historical data and real-time data, along with statistical tech-

niques to predict the future behaviour of wind turbines. They aim to determine any pat-
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terns and/or anomalies. Typical machine learning models include: regression models,

support vector machine models, decision trees etc. Whilst the hybrid approach uses

a combination of both physics-based and data-driven approaches, [39].

The outcome from the assessments will then determine the remaining useful life,

whether the operational life of the equipment/plant/system can be extended and by

how long. It will also establish whether any additional operating and maintenance

practices (e.g. additional oil checks, additional measurements, applying protective

coating, etc.) will need to be implemented and the frequency of them.
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Chapter 5

Developing a Methodology for

Determining Lifetime Extension

In the previous chapter, lifetime extension and remaining useful life assessment prac-

tices executed within a variety of industries have been investigated. Aspects that have

been identified as being easily adoptable, have been noted and taken into considera-

tion when constructing the methodology proposed within this chapter, to again ensure

a comprehensive approach and accurate outcome.

5.1 Methodology

Based on the findings from Chapter 4 and a systematic approach, a methodology

to determine the feasibility of wind turbine drivetrain lifetime extension has been pro-

posed and summarized in Figure 5.1.
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Figure 5.1: Flowchart of Proposed Methodology for Lifetime Extension of Wind Turbine
Drivetrains.
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5.1.1 Stage 1: Data Collection

Figure 5.2: Data Collection

Data that can be used to assist with determining the remaining useful life/lifetime

extension of the wind turbine drivetrains are listed in Table 5.1. As discussed earlier,

in theory the more data available then the more accurate the results will be. All the

documents listed, aid in the assessment in some way or another.

Table 5.1: Breakdown of Data Collection Documents

ORIGINAL OPERATIONAL MAINTENANCE ENVIRONMENT LOCATION

Manufacturing
Documents /

As-Built
Drawings

Operational
Conditions

Maintenance
Logs

Environmental
Conditions

Number of
Wind

Turbines in
Wind Farm

Design
Calculation

SCADA Data Failure
Reports

Layout of the
Wind Farm

Design
Drawings

Condition
Monitoring

Data

Details of
Repair

Installation
Docs

OEM Manuals
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The recommended minimum data required includes: the original manufacturing

documents/as-built drawings, operational conditions, maintenance logs, failure reports

and SCADA data including power, generator speed and temperature measurements.

Some older turbines may only have SCADA data available, so it is important to be

able to determine if an accurate assessment can be carried out using only SCADA

data.

5.1.2 Stage 2: System Breakdown

Figure 5.3: System Breakdown

The drivetrain system will then be divided into individual components or groups, as

shown in Table 5.2.

The brake disk, rotor locking system and shrink disk have been placed in a sep-

arate column, labelled "Safety" because even though they can be classed as "Me-

chanical" components, their primarily function is related to safety, as opposed to just

mechanical power transmission. They are typically used to protect the wind turbine

and maintenance personnel from various risks, including excessive motion or uncon-
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Table 5.2: Breakdown of Drivetrain Components

STRUCTURAL MECHANICAL ELECTRICAL HYDRAULICS &
COOLING

SAFETY

Bedplates /
Mounts

Gearbox Generator
Components

Hoses Brake
Disk

Bolted
Connections

Bearings Power
Converter

Components

Cooling
System

Components

Rotor
Locking
System

Housing /
Protective

Casing

Shafts (HSS,
LSS, Output)

Oil Ancillaries Shrink
Disk

Torque Arms /
Supports

Couplings

trolled rotation.

This stage is carried out in order to assist with the ranking of equipment and in turn

it’s components, starting with those more prone to failure.

5.1.3 Stage 3: Assessment Type

The type and amount of data collected in Stage 1, will determine the type and level of

assessment carried out. For example, if either no or only minimum data is available a

simplified approach will be implemented, with a more detailed approach implemented

when more data is available.

The recommended assessment type will consist of:

1. Analytical/Modelling/Calculations.

2. Practical/Surveys/Inspections.

3. Overall Assessment.
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The main objective of the assessment process is to determine the remaining useful

life of the components, as discussed in Chapter 4.

5.1.4 Stage 4: Assessment

5.1.4.1 Stage 4a: Analytical Assessment

Figure 5.4: Analytical Assessment

As discussed in the previous chapter, the methods used for analytical assessment

can include: physics-based, data-driven or hybrid approaches.

Based on these approaches, the recommended analytical assessment will include

but not be limited to the following:

1. Calculation of loads that each component has been subjected to throughout its

life to date, based upon the operational and environmental conditions (physics-

based).

2. Modelling of each component and the system as a whole (e.g. multi-body). This

can help identify the interdependencies, by observing how the different compo-

nents interact and affect each other (physics-based).

119



Chapter 5. Developing a Methodology for Determining Lifetime Extension

3. Determination of the damage/degradation for each component using both the

loads calculated and modelling simulations (physics-based).

4. Calculation of failure rates based upon failure reports, in order to identify com-

ponents more vulnerable to fail (data-driven).

5. Identification of any parameter anomalies, which may signal issues with the com-

ponents. Monitoring and identifying any variations could indicate that something

is wrong (data-driven).

Lifetime extension assessments are typically conducted near the end of an asset’s

operational design life, requiring the storage of large amounts of SCADA and/or con-

dition monitoring data, which is impractical. Therefore, it is proposed that a smaller

analysis be performed annually to assess any deterioration of components from the

previous year, with only this information being stored. This approach will also allow

for the early detection and resolution of unexpected issues, helping to preserve the

components’ operational life.

5.1.4.2 Stage 4b: Practical Assessment

The recommended practical assessment will include but not be limited to the following:

1. Visual inspection of the components including: the shaft, coupling, bolted con-

nections, cooling system, protective covers, safety system, etc.

2. Alignment checks of the system including the gearbox and generator.
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Figure 5.5: Practical Assessment

3. Material thickness measurements on components including: the mechanical

brake (e.g. brake disk, brake pad), sliding contacts, gearbox (e.g. gear teeth,

casing wall, bearing races and rollers), shrink disk, shaft (e.g. wall), etc.

4. Confirm oil checks have been conducted as part of the maintenance procedures,

including: level checks, cleanliness and contamination, viscosity, additive condi-

tion check, oxidation and acidity, etc.

5. Check that the temperature and vibration measurements are corresponding with

the SCADA data.

The survey or inspection results can be compared with those from the analytical

assessment. If significant discrepancies are found, with components in a worse condi-

tion than expected, the model can then be updated accordingly. Conducting a practical

assessment is crucial to accurately evaluate the system’s current condition and ensure

the model remains accurate and up to date.
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5.1.4.3 Stage 4c: Overall Assessment

After completing both the analytical and practical assessments, the remaining useful

life of each component can be determined. A conservative approach is to consider the

drivetrain lifetime extension equal to the lowest RUL. In other words, the lowest RUL

will determine the possible lifetime extension of the wind turbine drivetrain.

To move from the turbine to the farm level will also be a challenge. In some in-

stances, it may not be possible or practical to analyse and inspect each individual

wind turbine. Therefore, a process to assess a certain number of turbines and then

use those results to estimate the other turbines is extremely beneficial and will be de-

termined and investigated in future work. Inspections will be one method that will be

used to help with uncertainties.

5.1.4.4 Stage 4d: Accounting for Uncertainties and Errors

Uncertainties can be defined as something that is not known or something that is

unsure, whereas errors are defined as the difference between the actual and predicted

measurements.

With regards to this process, there are a number of uncertainties and errors within

the system, including but not limited to the following:

1. Manufacturing and/or installation tolerances.

2. Signal issues or malfunctions.

3. Equipment calibration issues.
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4. Calculations.

5. Modelling methods.

6. Environment and/or atmospheric conditions.

Therefore, in order to obtain an accurate outcome, these uncertainties and/or er-

rors need to be taken into account and processes put in place to accommodate these.

One method that can be used to take into account certain uncertainties/errors, such

as manufacturing and installation tolerances is, inspection. By carrying out thorough

inspections of the drivetrain, measurements can be taken to determine the required

parameters.

5.1.5 Stage 5: Recommended Changes

Figure 5.6: Recommended Actions/Changes

Once it has been decided that lifetime extension is applicable, then any necessary

conditions, such as additional operational and maintenance procedures to ensure the

expected lifetime extension, should be documented. Recommended changes can

include:

1. Adjusting the frequency of the maintenance inspections.
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2. Modifying the maintenance checklist.

3. Revising the operating procedures.

4. Minor modifications, which may include: upgrading the oil filtration system, in-

stalling more temperature and/or vibration sensors, fine-tuning any alarm thresh-

olds, applying protective coating, installing additional dampers, upgrading the

cooling system, etc.

5. Change in operation in terms of maximum wind speed, which may include: re-

ducing the cut-out speed, derating the turbine, implementing active load control,

adjusting pitch control, etc.

5.2 Theory

As discussed, the ideal situation (Case 1) would be to carry out both practical and an-

alytical assessments, with data from the SCADA system, condition monitoring system

and failure/maintenance reports, ideally using a hybrid approach for lifetime extension

assessment. However, in some cases, routine practical assessments may not be fea-

sible due to location, hostile environment, cost etc. and the addition of extra sensors

required as part of the condition monitoring system are not considered viable due to

additional costs, but in all wind turbines, SCADA data is recorded, so the minimum

amount of data obtained is SCADA data (Case 2). In this case, it has been assumed

that a data-driven approach is ideal, using a readily available machine learning regres-

sion model. A data-driven approach has been selected because it is assumed that a
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practical, straight-forward method would be more beneficial to owner/operators.

A number of machine learning regression models are available, including but not

limited to the following:

1. Linear Regression Model.

2. Polynomial Regression Model.

3. Support Vector Machine (SVM) Regression Model.

4. Regression Tree Ensemble Model.

5. Neural Networks.

6. K-Nearest Neighbours Regression

5.3 Summary

The objective of this chapter was to propose a methodology for determining the fea-

sibility of lifetime extension for wind turbine drivetrains, drawing on key practices from

various industries and structuring them into a cohesive process.

The proposed methodology was developed based upon various factors, including:

1. Any recommendations mentioned within the standards.

2. Any processes that were common across various industries (e.g. data collection,

system breakdown etc.).

3. The processes implemented in the oil and gas industry. The oil and gas in-

dustry has a lot of similarities with the wind industry, particularly their location.
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Both are situated in harsh offshore environments, making access for repairs and

maintenance more difficult and costly. They are also typically unmanned and

whilst oil and gas platforms do not have large moving parts, such as blades,

they do contain a variety of mechanical and electrical equipment (e.g. well-

heads, pumps, compressors, separators, generators, hydraulic systems, bear-

ings, cranes, switchgear, instrumentation, communication systems, etc.). Plus,

their lifetime extension practices have been used for years, so are tried and

tested.
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Selection of Critical Components

It was briefly mentioned at the end of Chapter 2, how beneficial it would be to be able

to prioritise the drivetrain equipment, as well as the components within the drivetrain’s

equipment, that are more prone to failure.

One way to do this, is by calculating either the components’ failure rates, historical

performance or damage and then developing a vulnerability map, as shown in Fig-

ure 3.1. A vulnerability map outlines the layout of all sub-assemblies and/or compo-

nents within a piece of equipment or assembly, indicating the varying levels of damage

for each, ranging from low to high [1]. This vulnerability map can then be used during

inspections to identify parts at risk of failure, such as in a lifetime extension evaluation.

In addition to assisting with lifetime extension evaluation, the added advantage of a

vulnerability map is that the owner/operators can prepare more relevant maintenance

plans and adequate spare parts.

Whilst vulnerability maps have been developed for the mechanical equipment lo-

cated within the drivetrain, they have not yet been created for its electrical equipment.
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Therefore, this chapter focuses on developing a vulnerability map specifically for a

power converter.

6.1 Method

It is clear from the existing literature, that along with gearboxes and generators, power

converters have one of the highest failure rates within the wind turbine drivetrain.

Therefore, failure reports/maintenance logs regarding power converters have been

obtained. The dataset has data for approximately seven hundred (700) mainly on-

shore wind turbines, located in various countries and this data will be used to produce

a vulnerability map.

The first step is to establish the topology of the power converter. Due to the fact

that specific details on the type and layout of the power converters are not available,

the Reliawind taxonomy standardisation structure [2] and manufacturer diagrams (Fig-

ure 6.1) are used as a starting point.

The relevant components extracted from the “Detailed wind turbine taxonomy" are

shown in Table 6.1.

After establishing the layout, the next step is to analyse the dataset. The data is

first filtered to include only events caused by unexpected power converter component

failures, reducing the list by 47%. From this reduced dataset, failed or malfunction-

ing components are sorted and grouped, excluding items like oil, cooling liquid, and

other consumables, which account for 14% of the total. The number of failures per

component are then calculated and ranked from highest to lowest.
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Table 6.1: Power Converter Components Selected from “Detailed Wind Turbine Tax-
onomy" corresponding to Electrical Module a Sub-System of Wind Turbine System [2]

ASSEMBLY SUB-ASSEMBLY COMPONENT

Frequency Converter Converter Auxiliaries 1 Control Board
Converter Power Bus 2 Branching Unit

3 Capacitor
4 Contactor
5 Generator Side Converter
6 Generator Side Power Module
7 Grid Side Converter
8 Grid Side Power Module
9 Inductor
10 Load Switch
11 Pre-Charge Unit

Power Conditioning 12 Common Mode Filter
13 Crowbar
14 DC Chopper
15 Generator Side Filter
16 Line Filter Assembly
17 Voltage Limiter Unit

Power Electrical System Power Circuit 18 Cables
19 Machine Contactor
20 Machine Transformer
21 MV Busbar/Isolator
22 MV Switchgear
23 Soft Start Electronics

The vulnerability map is then created by colouring the relevant components on the

previously established layout, based on the failure rates calculated from the dataset.

Since the dataset descriptions are highly specific (e.g., model, part number), assump-

tions are made about the locations of certain components. Components with the high-

est failure rates (over 25%) are marked in red, medium/high rates (15%-25%) in or-

ange, low/medium rates (5%-15%) in yellow, and the lowest rates (0%-5%) in green.

The map is presented in the following section.

The next analysis examines whether the vulnerability map varies based upon the

wind turbine’s location.
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Figure 6.1: ABB’s PCS6000 Power Converter Layout [3]

To achieve this, the original list of unexpected failures is sorted and grouped by

location, before grouping the failed or malfunctioning components. Six out of the fifteen

countries are analysed, chosen for having failures in multiple turbines across over

more than ten different wind farms.

Next, the number of failures per component are calculated and ranked from highest

to lowest. The results are then compared and analysed by location.
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6.2 Results and Discussion

The power converter components that failed or malfunctioned are displayed in the bar

chart in Figure 6.2.

Figure 6.2: Chart Showing Power Converter Failure Rates For All The Data From All
Locations

The chart clearly highlights three components with higher failure rates than the

others. They are:

1. Converter Control Units (30%).

2. Grid-Side Power Module (25%).

3. Generator-Side Power Module (21%).

During the early design life of nearly four hundred (400) turbines, one hundred

and eighty five (185) required converter control unit replacements. Grid-side power

modules failed in ninety six (96) turbines and generator-side power modules failed in

eighty three (83), with 45% and 43% respectively, of these turbines needing two or
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more replacements. Additionally, forty eight (48) turbines had both grid and generator-

side power modules replaced.

Data from Figure 6.2 is used to colour the components according to their failure

rates. Figure 6.3 presents the vulnerability map created using data from all locations.

Figure 6.3: Vulnerability Map Built Based On All The Data From All The Locations
(NOTE: Numbering refers to components listed in Table 6.1)

To address the question as to whether turbine location affects the vulnerability

map, Table 6.2 lists six of the fifteen countries alphabetically and highlights the most

frequently failed components in each location.

In all locations, the same three components had the highest failure rates: converter

control units, generator-side power modules, and grid-side power modules. However,

their ranking varied by location. The grid-side power modules failed most in France,
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Table 6.2: Highest Power Converter Component Failures per Location

LOCATION 1st HIGHEST
COMPONENT

FAILURE

2nd HIGHEST
COMPONENT

FAILURE

3rd HIGHEST
COMPONENT

FAILURE
China Converter Control

Units (33.79%)
Generator Side
Power Module

(29.66%)

Grid Side
Power Module

(28.97%)
France Grid Side

Power Module
(28.00%)

Generator Side
Power Module

(24.00%)

Converter Control
Units (21.71%)

Germany Converter Control
Units (38.46%)

Grid Side
Power Module

(23.08%)

Generator Side
Power Module

(15.38%)
Italy Grid Side

Power Module
(31.43%)

Generator Side
Power Module

(22.86%)

Converter Control
Units (17.14%)

Poland Grid Side
Power Module

(27.91%)

Converter Control
Units (27.91%)

Generator Side
Power Module

(25.58%)
Sweden Converter Control

Units (41.57%)
Grid Side
Power Module

(18.67%)

Generator Side
Power Module

(6.63%)

Italy and Poland, while the converter control units had the highest failure rates in China,

Germany, and Sweden.

In China and Poland, the failure rates of the top three components: converter

control units, generator-side power modules and grid-side power modules, are similar.

However, in Germany and Sweden, converter control units have a much higher failure

rate than grid-side power modules, which rank second. In Sweden, there is also a

significant gap between the failure rates of the second-place grid-side power modules

and the third-place generator-side power modules.

Figures 6.4 - 6.9, show the vulnerability maps of the components in each of the six

locations.
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Figure 6.4: Power Converter Vulnerability Map for China

Figure 6.5: Power Converter Vulnerability Map for France
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Figure 6.6: Power Converter Vulnerability Map for Germany

Figure 6.7: Power Converter Vulnerability Map for Italy
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Figure 6.8: Power Converter Vulnerability Map for Poland

Figure 6.9: Power Converter Vulnerability Map for Sweden
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6.3 Summary

This analysis was conducted for a single turbine type, so the vulnerability maps pro-

duced cannot be generalized for all turbines because different turbines may contain

different types of power converters. However, the results align with multiple stud-

ies conducted by Fischer et al., confirming that power modules are among the most

failure-prone components. In this study, three components — converter control units,

grid-side power modules, and generator-side power modules — consistently had the

highest failure rates, regardless of the wind farm location. The only variation was their

ranking based upon their failure rates.

By creating a topology of the power converter and calculating the failure rates for

each subsystem or component housed within the power converter, they can then be

ranked from highest to lowest. Each subsystem or component is then assigned a

colour: red for high, yellow for medium and green for low failure rates.

The vulnerability map is easy to interpret and provides sufficient information to

clearly identify, which subsystems or components to focus on when determining life-

time extension, by helping to establish an efficient inspection and maintenance strat-

egy.

In the context of lifetime extension assessment, the remaining useful life of these

three components, would be critical in determining whether the power converter can

continue to operate beyond it’s designed service life.
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Chapter 7

Implementation of Method for

Determining Lifetime Extension:

Utilizing SCADA Data

A methodology for determining lifetime extension has been proposed in Chapter 5, so

the next step is to implement this proposed method, using real-life data. Obtaining

real-life wind turbine or wind farm data is challenging due to owner/operator confiden-

tiality. However, Charlie Plumley and Cubico Sustainable Investments have released

some wind farm supervisory control and data acquisition (SCADA) data, along with

event status files, which can be used. Therefore, in this case study, “Stage 1 - Data

Collection" (Figure 5.2), specifically refers to SCADA data, including temperature mea-

surements and event reports/status logs/data logs.

Wind turbines are equipped with multiple sensors located throughout the turbine,

recording data at regular intervals — typically every ten minutes, with some modern
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turbines recording every second. SCADA data captures a range of critical parameters,

including: wind speed, wind direction, power output and temperature. Temperature

measurements may include: ambient, nacelle, main bearing, gearbox and generator

temperatures, amongst others.

The work presented within this chapter aligns with “Stage 4 - Assessment" of the

proposed methodology. Where it will be investigated whether, by using SCADA data,

which is typically the minimum amount of data that is obtained from a wind turbine,

useful results regarding determining a component’s end of life can still be obtained.

The primary objective of this chapter is to develop a method or process, that utilises

a readily available machine learning model, combined with specific SCADA input pa-

rameters, to evaluate a component’s health. This approach aims to identify key indica-

tors, that can help track the condition of components and provide early warnings when

a component is approaching the end of it’s operational life. Ideally, these indicators can

then be used to compare components across multiple turbines. The advantage of this

approach is that it offers a comprehensive yet straightforward process, for determining

a component’s end of life based on SCADA temperature data.

7.1 Method

The methods outlined in the following sections (7.1.1 and 7.1.2) fall within the Assess-

ment Stage (Stage 4) depicted in Figure 5.1. They have been developed/proposed

based upon the data available, with the aim of providing accurate and useful results

regarding determining a component’s end of operational life.
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7.1.1 Selecting a Suitable Model Predictor

This initial process is to identify a reliable and user-friendly predictive model. The

method of determining a suitable model predictor is shown in a flowchart, in Figure 7.1.

Three models have been selected for evaluation of their suitability and they are:

1. Polynomial Regression Model.

2. Support Vector Machine (SVM) Model.

3. Regression Tree Ensemble Model.

The simplest regression model, which is the linear regression model, was deemed

not to be suitable due to the fact that the correlation between power and temperature

is not linear.

Labelled data is required for this process, meaning that “healthy" data is needed to

identify a suitable model and optimal SCADA input parameters. “Healthy" data in this

case is assumed to be all data recorded in 2016, which is when the wind farm began

operating.

The first step, as outlined in Step 1 on the flowchart, is to filter the data. This

includes: removing any missing data values and replacing any negative power values

with the previous or nearest positive value.

Next, Step 2 involves subtracting the nacelle ambient temperature, Tna, from the

selected component temperature, Tc, in order to normalize the component’s tempera-

ture values, Tnorm, as per Equation 7.1.
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Figure 7.1: Flow Chart Showing How To Select A Suitable Model Predictor
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Tnorm = Tc − Tna (7.1)

In Step 3, input parameters are selected based upon the chosen model. For in-

stance, linear regression and polynomial regression models typically accept only one

input parameter along with the component temperature values, whilst support vector

machine models and regression tree ensemble models can handle multiple input pa-

rameters. After selecting the parameters, any data points that are found to exceed

three standard deviations from the mean are removed, as part of the final filtering pro-

cess. The “healthy" data is then randomly split into 70% training data and 30% test

data.

The filtered data is then passed through the model, in order to generate predicted

component temperatures as the output.

Based on the results/model output, the correlation coefficient between the actual

and predicted temperature values are calculated. If the correlation coefficient is low,

the process is repeated using different input parameters and/or models, until a satis-

factory correlation coefficient is achieved. A correlation coefficient of 0.8, as shown in

Step 3 of Figure 7.1, has been selected because values of 0.8 or higher are considered

to indicate strong correlation, [1].

Graphs are also generated to visualize the correlation, including: temperature ver-

sus power, actual versus predicted temperature and temperature versus time.

Due to the large volume of data, daily mean values are calculated for each parame-

ter, i.e. power, actual component temperature and predicted component temperature.

These averaged values are then used to generate additional graphs to analyse the
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correlation, to assess the suitability of the model.

The process is then repeated using the entire filtered “healthy" dataset, for both

training and testing the model. The results are plotted to assess the model’s sensitivity.

As previously mentioned, the first model selected is the polynomial regression

model to the eighth order. Power, along with the component temperature values from

the training dataset, are used as the input parameters to train the model. Then power

values from the test dataset are used to predict the component temperature values.

This is then repeated using torque in place of power, which is calculated by dividing

power by the rotor speed.

The support vector machine model is the next model investigated, chosen for its

ability to accept multiple inputs. The same process is followed as described previously,

first using power as the sole input parameter, followed by power and rotor speed as

the input parameters.

Finally, the regression tree ensemble model is used, again chosen for its ability to

accept multiple inputs. Initially, seven different parameters are selected alongside the

component temperature, these include: power, rotor speed, generator RPM, gearbox

speed, nacelle temperature, hub temperature and wind speed. Various combinations

of these parameters are tested with the model, to identify which parameters give the

best fit.

After completing the process of selecting a suitable model predictor, the next step

is to apply the model to help identify components approaching the end of their opera-

tional life, which is described in Section 7.1.2.

144



Chapter 7. Implementation of Method for Determining Lifetime Extension: Utilizing
SCADA Data

7.1.2 Identifying Critical Components in the Drivetrain

Identifying critical components within the drivetrain which are prone to fail earlier, is

essential. One approach is to analyse the failure data; however, if this data is not

available, then vulnerability maps, like those developed by Nejad et al. [2], Nejad et al.

[3], and as described in Chapter 6, may be utilised.

The proposed method for identifying components nearing the end of their life, is

summarized in the flowchart shown in Figure 7.2.

The first step involves collecting all the SCADA data from the first turbine. The

pre-processing of the data, as outlined in Section 7.1.1 and as shown in Steps 1 and

2 in the flowchart (Figure 7.2), is applied to both the training and test datasets. In

this method, the training dataset consists of all of the “healthy" data, which is typically

from the turbine’s first year of operation, while the test dataset includes all data from a

subsequent year. The pre-processing for both the training and test datasets includes:

removing any missing data, replacing any negative power values with either the pre-

vious or the nearest positive value and subtracting the nacelle ambient temperature

from the component temperature to normalize the temperature values. Additionally,

for the training dataset, any outliers beyond three standard deviations from the mean

are removed.

After pre-processing the SCADA data, the selected input parameters are then

passed into the model (Step 3). As determined in Section 7.1.1, the regression tree

ensemble model, using three input parameters from the SCADA data — power, rotor

speed and nacelle temperature — along with the component temperature, have been
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Figure 7.2: Flow Chart Showing Method Used for Identifying Critical Components in
the Drivetrain (Flow Chart 2)
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identified as being the most effective predictor.

Based on the results, the daily mean values of power, actual component tempera-

ture, Tadj and predicted component temperature, Tpdj , for each day, j, are calculated

from the instantaneous values of actual and predicted temperature, Tai and Tpi , re-

spectively, as shown in Equations 7.2 and 7.3 (Step 4). In this case, n represents the

number of ten minute intervals per day (i.e. 6 intervals per hour, 24 hours per day,

therefore n = 6x24=144).

Tadj =

∑x+(n−1)
i=x Tai

n
(7.2)

Tpdj =

∑x+(n−1)
i=x Tpi

n
(7.3)

The daily temperature difference, δTdj , is then calculated as shown in Equation 7.4.

δTdj = Tadj − Tpdj (7.4)

After determining the temperature difference, the cumulative sum of the temper-

ature differences, δT c
dM

, is calculated using Equation 7.5, where M represents the

corresponding time, in this case, the day. Calculating the cumulative sum of the tem-

perature differences between the actual and predicted temperatures, provides a sim-

ple yet effective method for identifying anomalies or shifts in trends, which may warrant

further investigation.
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δT c
dM

=
M∑
j=1

δTdj (7.5)

An effective evaluation method involves plotting various graphs using both the tem-

perature difference and cumulative sum values, against the time in days. These graphs

are then analysed for any anomalies and/or trends, which could assist in identifying

the end of life of the component (Step 5).

The subsequent analysis involves calculating the gradient of the temperature dif-

ference, gtd, graphs, for all turbines, to assess whether the gradient increases as the

component approaches failure.

gtd =
(δTdj+1 − δTdj )

(tj+1 − tj)
(7.6)

Initially, the gradient over each day is determined, i.e. tj+1 − tj = 1, as shown in

Equation 7.6, then the average over five, ten and thirty days are calculated.

The moving average method, is an approach which can be used to identify short-

term trends/changes. Therefore, the moving average of the temperature differences,

δTdM , are calculated as shown in Equation 7.7, where x is the size of the window,

which in this case is 3.

δTdM =

∑M+x−1
i=M δTdj

x
(7.7)

Another approach used for identifying trends, typically long-term trends/changes,

is the cumulative average method, [4]. This is a straightforward and robust method,

which smooths out short-term fluctuations. Therefore, this is the final analysis to be
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carried out, where the cumulative average, δT c
dM

, is calculated by dividing the cumula-

tive sum on any given day, δT c
dM

, by the number of days up to that point, tM , as shown

in Equation 7.8.

δT c
dM

=
δT c

dM

tM
(7.8)

It is to be noted that the cumulative sum is reset following a repair. This analysis

aims to determine whether a threshold value can be identified, indicating that if any

turbine exceeds this threshold, then a drivetrain component may be nearing the end

of its operational life. This could potentially be defined as the average accumulation of

temperature difference.

This model/process is then repeated for all subsequent years, using each new year

as the test dataset, while maintaining the "healthy" year as the training dataset. The

same procedure is also repeated for all the remaining turbines.

7.1.3 Case Study

7.1.3.1 Data Set

The Kelmarsh wind farm is located in Northamptonshire and consists of six (6) onshore

2.05MW Senvion MM92 wind turbines, as shown in Figure 7.3. SCADA data and event

reports/status logs/data logs were collected over a seven (7) year period, from 2016

to the end of 2022.

The event reports/status logs/data logs indicate two faults occurred within the gen-

erator in 2022, one in Turbine 2 and one in Turbine 4. Identifying the occurrence and
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Figure 7.3: Location of Kelmarsh Wind Farm

location of these faults is crucial for evaluating the proposed life extension approach.

7.1.3.2 Implementation

The methods described in Sections 7.1.1 and 7.1.2, are implemented using the dataset

described in Section 7.1.3. The SCADA data from the year 2016 is used as the training

dataset and the test dataset are each of the subsequent years, i.e. 2017 - 2022.

Initially, the method/model is run on each component, including the generator rear

bearing, generator front bearing, front bearing, rear bearing and gear oil inlet, for each

year and each turbine. This is to see if any one component is following a different

trend, which may indicate that it may be approaching it’s end of life.

Due to the fact that the event reports/status logs/data logs record failures in the

generator non-drive end (NDE) bearing, it would be expected for the generator rear

bearing to follow a different trend to the rest.
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7.2 Results

All the results obtained by applying the dataset from Section 7.1.3 using the methods

outlined in Sections 7.1.1 and 7.1.2, are displayed in this Section.

7.2.1 Selecting a Suitable Model Predictor

All the results within this sub-section are produced when using the entire 2016 dataset

from one turbine, for both training and testing the model.

The first model that was investigated was the polynomial regression model. Fig-

ures 7.4 and 7.5 show the fit/correlation. Figure 7.4 shows the actual and predicted

temperatures against power, which was the input parameter and Figure 7.5 displays

the actual temperature against the predicted temperature. These graphs show that

the correlation is not ideal for this situation.

Figure 7.4: Testing the Model - Tempera-
ture vs. Power - Polynomial

Figure 7.5: Testing the Model - Compar-
ing the Actual vs Predicted Temperature
- Polynomial

The next model implemented was the support vector machine (SVM) model. Fig-

ures 7.6 - 7.8 illustrate the degree of correlation. Figures 7.6 and 7.7 show the rela-
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tionship between the actual and predicted temperatures against both power and rotor

speed, respectively, whereas Figure 7.8 displays the actual temperature against pre-

dicted temperature.

Figure 7.6: Testing the Model - Tempera-
ture vs. Power - SVM

Figure 7.7: Testing the Model - Tempera-
ture vs. Rotor Speed - SVM

Figure 7.8: Testing the Model - Comparing the Actual vs Predicted Temperature - SVM

These graphs show that this model does not provide a good fit or correlation, so

similar to the first model, this model is not a good predictor in this case.
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The final model explored is the regression tree ensemble model. Figures 7.9 - 7.13,

demonstrate the fit or correlation of the applied regression tree ensemble model. Fig-

ure 7.9 shows both the actual and predicted temperatures against power, which is one

of the input parameters used. Figure 7.10 illustrates both the actual and predicted tem-

peratures against rotor speed and Figure 7.11 displays the temperatures against the

nacelle temperature, which are the other two input parameters. Figure 7.12 presents

the actual temperature against the predicted temperature and Figure 7.13 shows both

the actual and predicted temperatures per day. All graphs show a good correlation.

Figure 7.9: Testing the Model - Tempera-
ture vs. Power

Figure 7.10: Testing the Model - Temper-
ature vs. Rotor Speed

Figure 7.11: Testing the Model - Temperature vs. Nacelle Temperature
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Figure 7.12: Testing the Model - Actual
vs Predicted Temperature

Figure 7.13: Testing the Model - Compar-
ing the Actual vs Predicted Temperature

Based upon these graphs the regression tree ensemble model, using three input

parameters: power, rotor speed and nacelle temperature has been selected as a suit-

able model predictor.

7.2.2 Identifying Critical Components in the Drivetrain

As outlined earlier, the method described in Section 7.1.2 has been applied to a

dataset comprising of six wind turbines over a seven-year period. The results of this

analysis are discussed below.

Section 7.1.3 discussed implementing the method on a variety of components

within the drivetrain, including: the rear generator bearing, front generator bearing,

front bearing, rear bearing and gear oil inlet within each turbine and Figures 7.14 -

7.25 show the results for all turbines. Figures 7.14, 7.16, 7.18, 7.20, 7.22 and 7.24

show the temperature differences of the various components in each turbine, while

Figures 7.15, 7.17, 7.19, 7.21, 7.23 and 7.25 show the cumulative sum of the

temperature differences of the various components in each turbine.
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Figure 7.14: Temperature Differences for
Various Components in Turbine 1

Figure 7.15: Cumulative Sum of the Tem-
perature Differences for Various Compo-
nents in Turbine 1

Figure 7.16: Temperature Differences for
Various Components in Turbine 2

Figure 7.17: Cumulative Sum of the Tem-
perature Differences for Various Compo-
nents in Turbine 2
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Figure 7.18: Temperature Differences for
Various Components in Turbine 3

Figure 7.19: Cumulative Sum of the Tem-
perature Differences for Various Compo-
nents in Turbine 3

Figure 7.20: Temperature Differences for
Various Components in Turbine 4

Figure 7.21: Cumulative Sum of the Tem-
perature Differences for Various Compo-
nents in Turbine 4
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Figure 7.22: Temperature Differences for
Various Components in Turbine 5

Figure 7.23: Cumulative Sum of the Tem-
perature Differences for Various Compo-
nents in Turbine 5

Figure 7.24: Temperature Differences for
Various Components in Turbine 6

Figure 7.25: Cumulative Sum of the Tem-
perature Differences for Various Compo-
nents in Turbine 6

All the cumulative sum graphs show that the rear generator bearing appears to

follow a different trend to the other components, which corresponds well with the event

reports/status logs/data logs indicating failure of these components later on. There-

fore, the rear generator bearing has been determined to be the weakest component,

so will be investigated further.

Tables 7.1 and 7.2 represent a summary of the scheduled maintenance for each
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turbine over the last three years and a summary of the forced outage for each turbine

over the last three years, respectively. This data was extracted from the event re-

ports/status logs/data logs included with the turbine data files. The tables display the

total downtime hours per turbine over the year, the maximum downtime for a single

event and the corresponding month, for instances where the total number of downtime

hours exceeded fifty hours.

Table 7.1: Summary of the Scheduled Downtime for each Turbine

2020 - Downtime Hours 2021 - Downtime Hours 2022 - Downtime Hours
Turbine Total Max Total Max Total Max

1 30 29 101 25 (June)
2 62 49 (Dec) 26 218 165 (Nov)
3 20 122 77 (Nov) 40
4 21 36 710 673 (Feb-Mar)
5 14 309 260 (Nov) 58 27 (Oct)
6 23 642 600 (Feb-Mar) 32

Table 7.2: Summary of the Forced Outage for each Turbine

2020 - Downtime Hours 2021 - Downtime Hours 2022 - Downtime Hours
Turbine Total Max Total Max Total Max

1 57 28 (Mar) 118 92 (July) 31
2 41 3 66 48 (Nov)
3 76 51 (Oct) 21 3
4 72 48 (Aug) 12 61 60 (Feb)
5 30 300 240 (Nov) 32
6 45 118 77 (Feb) 605 221 (Mar)

With regards to the rear generator bearing, the graphs shown in Figures 7.26

and 7.27, present both the temperature difference and cumulative sum of the temper-

ature difference respectively, for all six turbines between the years 2016 and 2022.

Figure 7.26 illustrates that the largest temperature differences were observed in
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Figure 7.26: Temperature Differences for
All Turbines Over All Years

Figure 7.27: Cumulative Sum of the Tem-
perature Differences for All Turbines Over
All Years

Turbines 1 (red), 2 (cyan), 4 (green) and 6 (black). The status reports confirm that

in 2022, the generator NDE bearing failed in Turbines 2 and 4, so it is expected that

the actual component temperature would be higher than the predicted temperature in

these turbines. Figure 7.27 shows that the six turbines appear to form two distinct

groups, the first group consists of Turbines 1, 4 and 6 and the second group consists

of Turbines 2, 3 and 5. The first group has a much higher cumulative sum than the

second group and they appear to split into the separate groups around day 1000,

which corresponds to the first quarter of 2019. Turbines 1 and 6 follow a similar pattern

to Turbine 4, which had a generator NDE bearing failure, indicating that these two

turbines also had possible issues, which will be discussed further.

The results for each turbine are now plotted separately to identify any additional

trends.

The graphs in Figures 7.28, 7.30, 7.32, 7.34, 7.36 and 7.38 show the cumulative

sum of the temperature difference between the actual and predicted rear generator

bearing temperature values for all turbines, starting from zero at the start of every year,
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whereas Figures 7.29, 7.31, 7.33, 7.35, 7.37 and 7.39 show the cumulative sum of

the difference in actual and predicted temperatures, that are a continuation from the

previous year. Both graph styles are presented to demonstrate that, regardless of the

amount of data available — whether it spans only a few years and starts from zero, or

covers many years allowing for a continuous plot — anomalies or trends can still be

identified.

Figure 7.28: Turbine 2 - Cumulative Sum
of the Temperature Differences

Figure 7.29: Turbine 2 - Cumulative Sum
of the Temperature Differences Continu-
ing from Previous Year

Starting with Turbine 2, where a generator NDE bearing failure is known to have

occurred, both Figures 7.28 and 7.29, clearly show a noticeable change in trend in

2022. While this was not as apparent in Figure 7.27, a significant change in temper-

ature is observed in Figure 7.26 towards the end of 2022. According to Table 7.1, the

scheduled downtime occurred in the second half of November 2022, aligning with the

observations in the graphs. The trend appears to initially shift around day 120 in the

year 2022, which is roughly 200 days before the failure occurred, followed by another

change around day 300.

The next turbine which also experienced a generator NDE bearing failure is Turbine
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Figure 7.30: Turbine 4 - Cumulative Sum
of the Temperature Differences

Figure 7.31: Turbine 4 - Cumulative Sum
of the Temperature Differences Continu-
ing from Previous Year

4. There is a distinct upward trend for Turbine 4 in year 2021 (Figure 7.30). The

cumulative sum for this year is noticeably different and higher than in the other years,

with the trend continuing to rise into early 2022 (Figure 7.31), aligning with the timing

of the failure and as recorded in the event reports/status logs/data logs. Table 7.1

shows that the downtime occurred in February 2022, with the bearing replacement

taking place in March 2022.

Figure 7.32: Turbine 1 - Cumulative Sum
of the Temperature Differences

Figure 7.33: Turbine 1 - Cumulative Sum
of the Temperature Differences Continu-
ing from Previous Year

Figures 7.32 and 7.33 illustrate the results for Turbine 1, which shows a trend
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comparable to Turbine 4 in Figure 7.27, where a bearing failure was confirmed. The

abnormal higher operating temperatures of the rear generator bearing in this turbine,

begins to emerge towards the end of 2019 (Figure 7.32). This becomes more pro-

nounced in 2020 (Figure 7.32), as indicated by the steep increase in cumulative sum

in the same figure. This rise in operating temperature continues in year 2021, which is

more obvious in Figure 7.33, with the cumulative sum continuing to climb beyond the

previous year’s levels. This is followed by a sharp rise in year 2022, starting around

day 120, marking a significant shift in the trend, ultimately leading to the scheduled

downtime as reported in the event reports/status logs/data logs. According to the

event reports/status logs/data logs, Turbine 1 underwent scheduled downtime in June

2022 for the proactive replacement of the NDE bearing. This is the same bearing that

failed in Turbines 2 and 4.

Figure 7.34: Turbine 6 - Cumulative Sum
of the Temperature Differences

Figure 7.35: Turbine 6 - Cumulative Sum
of the Temperature Differences Continu-
ing from Previous Year

The other turbine which exhibits a similar trend to Turbines 1 and 4, is Turbine 6.

Figures 7.34 and 7.35 show noticeable anomalies occurring at the beginning of 2021

and 2022. According to Table 7.1, 600 hours of scheduled maintenance took place
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in February and March 2021, after which the temperature difference decreased once

the turbine was operational again. Additionally, Table 7.2 shows 221 hours of forced

outage in March 2022, due to a pitch motor failure and a pitch fault.

Figure 7.27 reveals that the remaining two (2) turbines, Turbine 3 and 5, exhibit

a similar trend to Turbine 2. A closer examination, as shown in Figures 7.36 - 7.39

highlights some anomalies in both turbines.

Figure 7.36: Turbine 3 - Cumulative Sum
of the Temperature Differences

Figure 7.37: Turbine 3 - Cumulative Sum
of the Temperature Differences Continu-
ing from Previous Year

Turbine 3 displays an anomaly towards the end of 2020, with decreasing cumu-

lative sum trend (colder temperatures). The cumulative sum trends across the years

appear relatively consistent in Figures 7.36 and 7.37. Aligned with this observation,

no failures were reported for this turbine.

Regarding Turbine 5, while some anomalies emerge in 2021 characterized by a

rising trend, the cumulative sum values are relatively insignificant when comparing

Figure 7.39 with Figure 7.35.
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Figure 7.38: Turbine 5 - Cumulative Sum
of the Temperature Differences

Figure 7.39: Turbine 5 - Cumulative Sum
of the Temperature Differences Continu-
ing from Previous Year

Figures 7.40 - 7.45, show plots of the annual cumulative sum values, reset to zero

and continued, across six separate figures, for years 2020, 2021 and 2022, respec-

tively. Each figure corresponds to a single year but includes data for all turbines. These

comparisons illustrate that turbines with higher cumulative sum values of temperature,

are more susceptible to failure.

Figure 7.40: All Turbines - Cumulative
Sum of the Temperature Differences for
Year 2020

Figure 7.41: All Turbines - Cumula-
tive Sum of the Temperature Differences
Continuing from Previous Year for Year
2020
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Figure 7.42: All Turbines - Cumulative
Sum of the Temperature Differences for
Year 2021

Figure 7.43: All Turbines - Cumula-
tive Sum of the Temperature Differences
Continuing from Previous Year for Year
2021

Figure 7.44: All Turbines - Cumulative
Sum of the Temperature Differences for
Year 2022

Figure 7.45: All Turbines - Cumula-
tive Sum of the Temperature Differences
Continuing from Previous Year for Year
2022

An additional analysis involves calculating the gradient of the temperature differ-

ence for all turbines, as shown in Figures 7.26 and 7.27. This analysis aims to deter-

mine if the gradient increases the closer you get to the failure.

Figure 7.46 displays the gradient calculated over a single day, while Figure 7.47

uses the gradient value calculated per day, to average the value over thirty days. The

graphs indicate that averaging over thirty days smooths out the temperature trends.
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Figure 7.46: Gradient of Temperature Dif-
ference for All Turbines Per Day

Figure 7.47: Gradient of Temperature Dif-
ference for All Turbines As Per Every 30
Days

Figure 7.46 reveals a significant temperature spike in the rear generator bearing of

Turbine 2 within a short time-frame, suggesting a different failure mode than those

observed in the other turbines; this component failed on day 2370. In Figure 7.47,

Turbine 2 failed in November (day 79), Turbine 4 failed in February (day 69) and Turbine

1 had a proactive replacement in June (day 73).

7.2.3 Component Life Predictions

The aim of these final analyses, as outlined in Section 7.1.2, is to calculate both the

moving average and cumulative average, in order to identify any potential threshold

values, in which if a turbine exceeds this threshold, then it may indicate that a compo-

nent is nearing the end of its operational life and whether it can be predicted.

Figure 7.48 shows the moving average of the temperature differences. Turbines 1,

2 and 4 all show high values towards the latter half of the graph. These correspond

to the two turbines (2 and 4) that had generator NDE bearing failures and Turbine

1, which had a proactive replacement. Their highest values reached 22, 78 and 19
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Figure 7.48: Moving Average of Temperature Difference

respectively.

As previously mentioned, Turbines 1, 4 and 6 exhibit similar trends, with two of the

Turbines, both 1 and 4, confirmed to have required replacement of the generator NDE

bearing. From Figure 7.49, it can be observed that on the day Turbine 4 failed, the

cumulative average reached a value of 1.2.

Turbine 1 also crosses this threshold value, around the same time Turbine 4 failed

and subsequently had the same component replaced approximately four months later,

although the reasons for this proactive replacement are unclear. Turbine 6 surpasses

this threshold value much earlier in March 2020 and underwent scheduled mainte-

nance about eleven months later, in early February 2021, although detailed informa-
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Figure 7.49: Cumulative Average

tion regarding this maintenance is also lacking. Therefore, it can be inferred that a

threshold value of approximately 1.2, may indicate that a component is approaching

the end of it’s operational life within this wind farm. The advantage of employing the

proposed cumulative average, over the cumulative sum, is that the values of the lat-

ter are influenced by the duration of monitoring up to any given point. In contrast,

the former provides a real-time assessment of the rate of accumulated temperature

differences. As such, by extrapolating the trend of the cumulative average, it will be

feasible to predict when the cumulative average will exceed the threshold, indicating

the end of the component’s life. It is important to note that this method requires mon-

itoring to commence when the specific components are in a healthy state. Proposing

this indicator and discussing its implications aims to offer turbine operators a means
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of predicting end-of-life scenarios, as well as highlighting the necessity for additional

condition monitoring, to potentially extend the service life of drivetrain components.

7.3 Summary

In conclusion, the methodology that was proposed in Chapter 5 was used to develop

a method, which specifically utilised large amounts of annual SCADA temperature

data, to assess possible lifetime extension of the drivetrain. This approach focused on

identifying any growing trends in temperature difference, which could indicate that a

component is reaching the end of it’s operational life. By applying a regression tree en-

semble model, using three SCADA input parameters: power, rotor speed and nacelle

temperature, along with a component temperature, it was possible to predict compo-

nent temperatures. These predicted component temperatures were then compared

to the actual temperatures, providing a way to monitor and evaluate the health of the

component over multiple years of wind farm data.

From the dataset which was used to test the proposed method, the rear generator

bearing was identified as the most vulnerable component to fail. The results com-

prising of - the temperature difference between the actual and predicted temperature

values and the cumulative sum of these temperature differences - were inconclusive

for rear generator bearings that failed due to operating at higher temperatures (e.g.

Turbine 4). This may be due to noise or short-term fluctuations (e.g. environmental

conditions) in the data, accumulating over time, which obscured any useful trends.

However, the method can be useful for identifying components that experience sud-
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den, sharp temperature increases, such as Turbine 2, which failed shortly after such

an incident. The final analysis, based on the cumulative average, established a thresh-

old value of 1.2. The threshold value was captured at this point because prior to that

point, the cumulative average had been increasing but it was only once it reached

that point, that the rear generator bearing failed, resulting in turbine downtime. While

three turbines exceeded this threshold value and subsequently either failed or un-

derwent maintenance/downtime, the time between crossing the threshold and failure

varied significantly. Therefore, an accurate lifetime extension prediction could not be

provided. However, each rear generator bearing could be treated individually, which

may provide more accurate or useful results because - each turbine may be subjected

to slightly different operating conditions, there may be differences in the manufacture

and installation, they may have different maintenance histories, etc. - or even a hybrid

approach, looking at them both individually and farm wide.
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Chapter 8

Model Uncertainty and Error

Assessment

Due to the importance of reliable and operational wind turbines, any models, pro-

cesses or methods that are used to predict outcomes, which in turn are used to make

important decisions regarding the future of the turbines, must be as accurate as pos-

sible. Inaccurate predictions can lead to serious consequences, such as unnecessary

shutdowns and replacement of functional components, or unexpected failures that re-

sult in unforeseen downtime.

In the previous chapter, a model/process/method has been proposed and imple-

mented on real-life data, in order to predict a threshold value, which may indicate when

a component is coming the end of its operational life, as part of lifetime extension eval-

uation. Therefore, it is crucial to determine any errors and/or uncertainties within the

model and incorporate these, to improve the accuracy of the predicted outcomes.

Model uncertainties can be classed as epistemic or subjective uncertainties, along
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with measurement and statistical uncertainties, [1]. These uncertainties stem from a

lack of knowledge. Therefore, additional information, data and improved models can

all help reduce these types of uncertainties.

Errors in the model refers to the difference between the actual and predicted val-

ues, while model uncertainty is the ratio between the actual and predicted values.

Errors in the model may be caused by factors such as: model bias, variance, noisy

data and model limitations. Model uncertainty may be caused by factors such as: in-

sufficient information, complex models, data variability and inherently ambiguous data

patterns. Therefore, model errors refer to specific discrepancies between the actual

and predicted values, whereas model uncertainty refers to confidence or lack of within

the model and acknowledges that discrepancies may stem from fundamental issues.

In this chapter, both the model errors and uncertainties will be investigated. The

main sources of errors/uncertainties in this case, may come from the machine learning

model and the measurements recorded in the SCADA data, which are used for the

model’s input parameters. Errors in the measurements may be caused by sensor

failures, malfunction and/or noise.

A method to predict and incorporate these errors has then been proposed, in or-

der to try and obtain a more reliable and accurate predicted value i.e. component

temperature and in turn threshold value.
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8.1 Method

Depending upon whether the focus is on investigating errors within the model or de-

termining model uncertainty, different methods are applied.

8.1.1 Model Uncertainty

Model uncertainty can be used in stochastic analyses, such as reliability analysis, [2],

[3] to represent a probabilistic model of the uncertainty associated with the data-driven

model.

The initial step in determining model uncertainty, specifically uses the first year of

SCADA data, which in this case is all the data from 2016 because this data is assumed

to be “healthy" data. The dataset is randomly split into 70% training data and 30% test

data and applied to the previously developed regression tree ensemble model. The

model is trained and tested on separate data, to ensure an unbiased view of the model.

The input parameters for the training dataset include: power, rotor speed, nacelle

temperature and rear generator bearing temperature, whilst the test dataset only uses

the first three parameters. The model output is the predicted rear generator bearing

temperature. To account for the data split being randomly generated, the process

is repeated a total of ten (10) times, generating a range of predicted rear generator

bearing temperatures for the test dataset. The predicted temperature values for each

10-minute interval, along with the daily averages, are recorded and stored for all ten

runs.

After completing the initial step, the next step is to calculate model uncertainty,
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χ, which as defined in Section 3.3, is the ratio of the actual rear generator bearing

temperature, Xtrue, to predicted rear generator bearing temperature, XPredicted, [2],

as shown below.

χ =
Xtrue

XPredicted
(8.1)

The model uncertainty is calculated for each 10-minute averaged data point, as

well as for the daily averaged value. The uncertainty is then modelled using a lognor-

mal distribution, to determine the mean and standard deviation. Lognormal distribution

is typically used because it only allows the use of positive values, effectively narrowing

the range of random variables, [4].

The cumulative distribution function (CDF) of a lognormal distribution can be de-

fined as:

Fx(x) = ϕ(
lnx− a

c
) (8.2)

Where ϕ() is the standard Gaussian CDF, lnx is natural logarithm, a is the mean

and c is the standard deviation of lnx.

The next step is to calculate the 95% confidence interval, which is a range of values

in which there is a 95% certainty, that the predictions are expected to fall between the

upper and lower limits.

This process is then repeated with different dataset splits - 60% training/40% test-

ing and 80% training/20% testing - to assess any potential impact on the predicted

values.
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If the first year of SCADA data is not available or if after reviewing the data it

does not look "healthy", then an alternative could be to try and find a period within

the data that is stable and which could be used to calculate the model uncertainty.

Another alternative could be to use "healthy" data from a similar turbine or maybe

even generate data from a physics-based model.

8.1.2 Errors in Model

8.1.2.1 Error Metrics

The model error can be defined as the difference between the actual and predicted

rear generator bearing temperatures, which were determined in the previous section.

Once the error has been calculated, key performance indicators such as the Mean

Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE)

and Mean Absolute Percentage Error (MAPE) can then be determined, as these are

all valuable for assessing the regression model’s performance.

The Mean Absolute Error (MAE) calculates the average absolute difference or error

between the actual and predicted values, [5], so obviously the smaller the value the

better.

MAE =
1

n

n∑
i=1

|Xtrue −XPredicted| (8.3)

The Mean Squared Error (MSE) squares the average absolute difference or error

between the actual and predicted values.
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MSE =
1

n

n∑
i=1

(Xtrue −XPredicted)
2 (8.4)

The Root Mean Squared Error (RMSE) calculates the root of the mean of the

differences between the actual and predicted values squared, [6].

RMSE =

√√√√ 1

n

n∑
i=1

(Xtrue −XPredicted)2 (8.5)

The Mean Absolute Percentage Error (MAPE) calculates the average magnitude

of the difference or error between the actual and predicted values. It is the percentage

version of MAE, [7].

MAPE =
1

n

n∑
i=1

|Xtrue −XPredicted

Xtrue
|x100 (8.6)

These error metrics are calculated in order to assess how the model is performing,

for example, to identify if there is any bias.

8.1.3 Monte Carlo Anomaly Detection Approaches and Metrics

The subsequent step is to apply the Monte Carlo method to incorporate an ’error’ value

into any future predictions. This error value is derived from the values of mean and

standard deviation, extracted from the calculated error’s probability distribution, based

on the “healthy" data and detailed later in this Section. The following process is run

separately for each turbine.

The data preparation process described previously and which is illustrated in Fig-

ure 8.1 is applied to all data from year 2016. For all data from years 2017 to 2022, the

177



Chapter 8. Model Uncertainty and Error Assessment

same process is followed, except for the final stage.

Figure 8.1: Flow Chart Showing the Data Preparation
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Figure 8.2: Flow Chart Showing the Monte Carlo Method used to Determine Predicted
Values 179
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The next step is to set up the Monte Carlo simulation, detailed in a flowchart shown

in Figure 8.2. This process is ran separately for each turbine, with the number of

simulations set to one thousand (1000). The “healthy" data, which in this case is the

2016 data is randomly split into 70% training data and 30% test data and the model

ran. The differences between actual and predicted component temperatures are then

calculated and a Matlab tool is used to fit a probability distribution to these errors. From

this normal probability distribution, the mean and standard deviation are determined,

which are then used to randomly generate an ’error’.

The model is then ran on a new dataset, which consists of the future years data, to

predict the component’s temperature, in which the randomly generated ’error’ is added

too.

8.1.3.1 Discrete Confidence Interval-Based:

After all the simulations are complete, both the 95% and 99% confidence intervals

are calculated from these simulated predictions and the post-processing process is

carried out, which is detailed in a flowchart in Figure 8.3. The daily values are then

calculated, along with the temperature difference of any actual temperatures which fall

outside of the confidence intervals, the cumulative sum of these temperature differ-

ences, cumulative average and moving average.

The above process is then repeated with “healthy" training/test data splits of 80%/20%

and 60%/40%, to assess if varying the amount of training data impacts the accuracy

of the predicted component temperature. Additionally, it is repeated using different

amounts of future data, i.e. 1 year - 6 years, to examine if data quantity affects the
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reliability and accuracy of the output.

Figure 8.3: Flow Chart Showing the Post-Processing Process Using Discrete Confi-
dence Interval-Based Approach

181



Chapter 8. Model Uncertainty and Error Assessment

8.1.3.2 Continuous Probability Distribution-Based:

The next analysis that is carried out is based upon continuous probability distribution,

which is detailed in a flowchart in Figure 8.4. After each run, the difference between the

actual and predicted temperatures are calculated. Once all the runs are complete, the

table that is produced contains the temperature difference for each 10-minute interval,

for each of the thousand (1000) runs.

The normal probability distribution is then fit for each row and the mean, along with

standard deviation and the 95% confidence intervals are then determined.

The cumulative sum of the temperature differences, along with the cumulative av-

erage and moving average of the temperature differences, are then calculated and all

the necessary graphs plotted.

The process is then repeated, including: the 2016 data, as well as removing the

noise and converting the 10-min data values to daily averages. This was done, so that

a direct comparison can be made.
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Figure 8.4: Flow Chart Showing the Post-Processing Process Using Continuous Prob-
ability Distribution-Based Approach
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8.2 Results

8.2.1 Model Uncertainty

Figures 8.5 - 8.10 show the lognormal probability distribution graphs for all wind tur-

bines and they all show similar results.

Figure 8.5: Probability Distribution for
Turbine 1

Figure 8.6: Probability Distribution for
Turbine 2

Figure 8.7: Probability Distribution for
Turbine 3

Figure 8.8: Probability Distribution for
Turbine 4
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Figure 8.9: Probability Distribution for
Turbine 5

Figure 8.10: Probability Distribution for
Turbine 6

The average mean and standard deviation for each 10-minute SCADA data value,

which will be referred to as ’all data’ going forth and the daily averages of the model

uncertainty are shown in Tables 8.1 and 8.2, respectively. They show the mean to

be around 1 and standard deviation to be around 0.09 for all data values and 0.03

for the daily average values. All the mean values are slightly above 1, indicating that

the model is fairly accurate, although a little conservative. The standard deviation of

around 0.09 reflects minimal variability, demonstrating the model’s consistency. Con-

verting the 10-minute averages to daily averages, reduces the standard deviation, thus

decreasing variability because it smooths out any short-term fluctuations.

Table 8.1: Average Values for All Turbines Using Model Uncertainty

Turbine Mean Standard
Deviation

1 1.0011 0.0918
2 1.0010 0.0899
3 1.0012 0.0951
4 1.0012 0.0933
5 1.0012 0.0936
6 1.0018 0.0997
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Table 8.2: Average Values for All Turbines Using Model Uncertainty (Daily Values)

Turbine Mean Standard
Deviation

1 1.0010 0.0358
2 1.0005 0.0334
3 1.0017 0.0369
4 1.0010 0.0359
5 1.0014 0.0343
6 1.0017 0.0381

The mean and standard deviation of the model uncertainty when using different

training/test data splits, are shown in Tables 8.3 and 8.4. Table 8.3 shows that the

standard deviation values are slightly lower when using an 80%/20% split, whereas

this is the opposite in Table 8.4, where the average daily values are used. Although

in general, changing the percentage split of training/test data, does not change the

values significantly.

Table 8.3: Average Mean and Standard Deviation Values for All Turbines Using Differ-
ent Training/Test Data Split

Training/Test : 60%/40% Training/Test : 80%/20%
Turbine Mean Standard

Deviation
Mean Standard

Deviation
1 1.0010 0.0929 1.0011 0.0908
2 1.0017 0.0913 1.0012 0.0893
3 1.0014 0.0960 1.0008 0.0940
4 1.0013 0.0941 1.0005 0.0924
5 1.0014 0.0945 1.0011 0.0926
6 1.0017 0.1004 1.0018 0.0978
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Table 8.4: Average Mean and Standard Deviation Values for All Turbines Using Differ-
ent Training/Test Data Split (Daily Values)

Training/Test : 60%/40% Training/Test : 80%/20%
Turbine Mean Standard

Deviation
Mean Standard

Deviation
1 1.0010 0.0348 1.0012 0.0364
2 1.0014 0.0330 1.0006 0.0352
3 1.0018 0.0369 1.0011 0.0384
4 1.0009 0.0350 1.0005 0.0373
5 1.0017 0.0333 1.0015 0.0366
6 1.0013 0.0371 1.0015 0.0391

8.2.2 Errors in Model

8.2.2.1 Error Metrics

Tables 8.5 and 8.6 show the average error metrics for all data and the average daily

values for the ”healthy" (2016) data, respectively.

Table 8.5: Average Error Metrics for All Turbines

Turbine MAE MSE RMSE MAPE
1 1.8321 5.5723 2.3605 7.0493
2 1.8376 5.4687 2.3385 7.0438
3 1.9485 6.2626 2.5025 7.3174
4 1.9355 6.0592 2.4615 7.2834
5 1.9341 5.9778 2.4449 7.3240
6 1.9411 6.3569 2.5211 7.5029

All the error metrics: MAE, MSE, RMSE and MAPE are reduced when each 10-

min data value is transformed into the daily average, which is constructive because

obviously the closer each value is to zero the better. This transformation is beneficial

because it smooths out any short-term fluctuations, which reduces the error metric
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Table 8.6: Average Error Metrics for All Turbines (Daily Values)

Turbine MAE MSE RMSE MAPE
1 0.7735 0.9453 0.9720 2.9141
2 0.7204 0.8252 0.9082 2.7076
3 0.8035 1.0944 1.0460 2.9460
4 0.7950 0.9927 0.9960 2.9230
5 0.7436 0.9000 0.9483 2.7284
6 0.7982 1.0413 1.0202 2.9999

values, thus indicating a better correlation between the actual and predicted values.

Lower error metrics signify improved model accuracy and performance. Therefore,

with regards to model evaluation, minimizing these errors is a key objective.

In order to carry out a sensitivity analysis, the training/test data split is adjusted

and the process repeated. Tables 8.7 and 8.8 show the error metrics for the “healthy"

data only i.e. 2016 data, for the 70%/30%, 60%/40% and 80%/20% data splits, for all

data and the average daily values, respectively. Table 8.8 shows that MAE and MSE

increases as the training dataset increases from 60% to 80%, but RMSE and MAPE

reduce in value as the training dataset increases. Whereas for all the data (Table 8.7),

all the error metrics, i.e. MAE, MSE, RMSE and MAPE, reduce in value as the size of

the training dataset increases. Again, varying the training/test data split does not alter

the results significantly.
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Table 8.7: Error Metrics for Different Data Splits for 2016 Data - All Values

Turbine Error
Metric

60%/40% 70%/30% 80%/20%

1 MAE 1.847 1.832 1.817
1 MSE 5.694 5.575 5.460
1 RMSE 2.386 2.361 2.337
1 MAPE 7.126 7.060 7.002
2 MAE 1.854 1.829 1.817
2 MSE 5.560 5.403 5.345
2 RMSE 2.358 2.324 2.312
2 MAPE 7.113 7.022 6.968
3 MAE 1.972 1.946 1.931
3 MSE 6.427 6.282 6.176
3 RMSE 2.535 2.506 2.485
3 MAPE 7.404 7.316 7.254
4 MAE 1.950 1.933 1.920
4 MSE 6.168 6.051 5.948
4 RMSE 2.483 2.460 2.439
4 MAPE 7.340 7.275 7.239
5 MAE 1.951 1.935 1.917
5 MSE 6.107 5.998 5.883
5 RMSE 2.471 2.449 2.425
5 MAPE 7.396 7.339 7.265
6 MAE 1.962 1.949 1.920
6 MSE 6.487 6.423 6.214
6 RMSE 2.547 2.534 2.493
6 MAPE 7.592 7.541 7.414
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Table 8.8: Error Metrics for Different Data Splits for 2016 Data - Daily Values

Turbine Error
Metric

60%/40% 70%/30% 80%/20%

1 MAE 0.747 0.770 0.775
1 MSE 0.885 0.935 0.968
1 RMSE 2.386 2.361 2.337
1 MAPE 7.126 7.060 7.002
2 MAE 0.706 0.715 0.751
2 MSE 0.784 0.808 0.890
2 RMSE 2.358 2.324 2.312
2 MAPE 7.113 7.022 6.968
3 MAE 0.791 0.794 0.829
3 MSE 1.052 1.049 1.140
3 RMSE 2.535 2.506 2.485
3 MAPE 7.404 7.316 7.254
4 MAE 0.773 0.796 0.820
4 MSE 0.950 0.994 1.058
4 RMSE 2.483 2.460 2.439
4 MAPE 7.340 7.275 7.239
5 MAE 0.731 0.748 0.781
5 MSE 0.855 0.897 1.014
5 RMSE 2.471 2.449 2.425
5 MAPE 7.396 7.339 7.265
6 MAE 0.782 0.803 0.816
6 MSE 1.009 1.053 1.106
6 RMSE 2.547 2.534 2.493
6 MAPE 7.592 7.541 7.414
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8.2.3 Monte Carlo Anomaly Detection Approaches and Metrics

The original graphs of the cumulative sum of the temperature differences and the cal-

culated cumulative average, that were determined in Chapter 7, prior to investigating

the model errors and uncertainty, are shown in Figures 8.11 and 8.12.

Figure 8.11 shows the cumulative sum of the temperature differences between the

actual and predicted rear generator bearing temperatures, for all turbines, across all

years.

Figure 8.11: Cumulative Sum of the Tem-
perature Differences for All Turbines Over
All Years

Figure 8.12: Cumulative Average

Figure 8.12 displays the cumulative average, which has been calculated in order

to see if there is an obvious threshold value, in which if the turbine crosses then it is

reaching its end of life. A suitable threshold value was deemed to be 1.2.

8.2.3.1 Discrete Confidence Interval-Based:

As described in Section 8.1, the proposed Monte Carlo process/method was originally

carried out on all turbines, using a training/test data split of 70%/30%. The 95% and
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99% prediction or confidence intervals of the predicted component temperatures were

then calculated. Figures 8.13, 8.15, 8.17, 8.19, 8.21 and 8.23, show the actual rear

generator bearing temperatures, along with the 95% confidence upper and lower limits

for the daily values, for all turbines. Figures 8.14, 8.16, 8.18, 8.20, 8.22 and 8.24

show the corresponding confidence bands. It can be seen from the graphs that some

actual component temperatures exceed either the upper or lower limits, which may be

due to excessive noise, a temporary sensor issue or component failure, especially in

the case of Turbine 4, where there are many more values exceeding the upper limit.

The number of daily average data values, that fall outside the upper and lower

limits, are shown in Table 8.9, for both 95% and 99% confidence intervals. It shows

that for the 95% confidence interval, between 5% to 11% of the total dataset values

fall outside the limits, whereas between 2% to 6% fall outside the limits when using the

99% confidence interval.

Figure 8.13: Turbine 1 - Actual Tempera-
ture and Confidence Limits (95%)

Figure 8.14: Turbine 1 - Actual Tempera-
ture and Confidence Bands (95%)
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Figure 8.15: Turbine 2 - Actual Tempera-
ture and Confidence Limits (95%)

Figure 8.16: Turbine 2 - Actual Tempera-
ture and Confidence Bands (95%)

Figure 8.17: Turbine 3 - Actual Tempera-
ture and Confidence Limits (95%)

Figure 8.18: Turbine 3 - Actual Tempera-
ture and Confidence Bands (95%)

Figure 8.19: Turbine 4 - Actual Tempera-
ture and Confidence Limits (95%)

Figure 8.20: Turbine 4 - Actual Tempera-
ture and Confidence Bands (95%)
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Figure 8.21: Turbine 5 - Actual Tempera-
ture and Confidence Limits (95%)

Figure 8.22: Turbine 5 - Actual Tempera-
ture and Confidence Bands (95%)

Figure 8.23: Turbine 6 - Actual Tempera-
ture and Confidence Limits (95%)

Figure 8.24: Turbine 6 - Actual Tempera-
ture and Confidence Bands (95%)

Table 8.9: Number of Data Points that fall outside the Lower and Upper Limits for both
95% and 99% Confidence Intervals

No. of Values Outside Limits
Turbine 95% 99%

1 171 (8%) 108 (5%)
2 123 (6%) 73 (3%)
3 108 (5%) 58 (3%)
4 202 (9%) 131 (6%)
5 119 (6%) 52 (2%)
6 236 (11%) 132 (6%)
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The new graphs of the cumulative sum of the temperature differences and the

cumulative average, for all turbines are displayed in Figures 8.25 - 8.28.

Figure 8.25: Cumulative Sum of the Tem-
perature Differences for All Turbines Over
All Years Using the New Process (95%
Prediction Level)

Figure 8.26: Cumulative Average us-
ing Discrete Confidence Interval Method
(95% Prediction Level)

Figure 8.27: Cumulative Sum of the Tem-
perature Differences for All Turbines Over
All Years Using the New Process (99%
Prediction Level)

Figure 8.28: Cumulative Average us-
ing Discrete Confidence Interval Method
(99% Prediction Level)

The graphs appear different to the original because only actual temperatures that

do not fall within the prediction/confidence limits for each daily average value, are

recorded as having a temperature difference. Any values that fall within the limits, are

recorded as having zero temperature difference, which means that the cumulative sum
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can stay at the same value for a period of time, until an actual temperature outside the

limits is recorded. This explains why there are more horizontal and vertical lines on

the new graphs.

From these graphs, it can be seen that by using the same technique that was

used to determine the threshold value in Figure 8.12, that the threshold value is ap-

proximately 0.15 for 95% confidence interval and 0.1 for 99% confidence interval, as

opposed to 1.2 in the original results. They also show that only Turbines 1 and 4 cross

the threshold value, which matches the information recorded in the data logs. The

data logs recorded generator NDE bearing failures in Turbines 2 and 4, as well as the

proactive replacement of the component in Turbine 1. Turbine 6 does not cross the

threshold value in this case, even though it gets close. This may be due to the fact that

the issues it had were not related to the rear generator bearing, or that maintenance

was carried out before it failed.

Some of the error metrics, specifically the mean absolute error (MAE) and mean

squared error (MSE), are calculated for the results obtained via the new process and

compared with the results from the original method. The results are displayed in Ta-

ble 8.10. It shows that the proposed discrete confidence interval-based method re-

duces both the MAE and MSE, in all turbines, which is advantageous.

It can also be seen from the table, that the MSE values for Turbines 2 and 4 are

higher than the others, in the new discrete confidence interval-based method, probably

due to the fact that failures occurred in both these turbines.

A sensitivity analysis is performed, which involves repeating the process using a

different training/test data split for the “healthy" data, a split of both 80%/20% and
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Table 8.10: Error Metrics for Original vs. New Process

Turbine Error
Metric

Original
Method

New MC
Method

1 MAE 2.16 0.37
1 MSE 12.69 3.59
2 MAE 1.90 0.37
2 MSE 23.19 15.43
3 MAE 1.84 0.22
3 MSE 9.81 2.36
4 MAE 2.30 0.50
4 MSE 15.61 5.17
5 MAE 1.71 0.17
5 MSE 7.46 1.34
6 MAE 2.79 0.49
6 MSE 20.88 4.68

60%/40% is applied and the results are shown in Figures 8.29 - 8.32. The tabular

results from the sensitivity analysis are shown in Table 8.11.

Figure 8.29: Cumulative Sum of the
Temperature Differences for Turbine 3
Over All Years: Comparison Using Train-
ing/Test Split of 60%/40% vs. 70%/30%
vs. 80%/20% (99% Prediction Level)

Figure 8.30: Cumulative Average for Tur-
bine 3 Over All Years: Comparison Us-
ing Training/Test Split of 60%/40% vs.
70%/30% vs. 80%/20% (99% Prediction
Level)
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Figure 8.31: Cumulative Sum of the
Temperature Differences for Turbine 4
Over All Years: Comparison Using Train-
ing/Test Split of 60%/40% vs. 70%/30%
vs. 80%/20% (99% Prediction Level)

Figure 8.32: Cumulative Average for Tur-
bine 4 Over All Years: Comparison Us-
ing Training/Test Split of 60%/40% vs.
70%/30% vs. 80%/20% (99% Prediction
Level)

Table 8.11: Error Metrics for Different Data Splits - Daily Values for All Years

Turbine Error
Metric

60%/40% 70%/30% 80%/20%

1 MAE 0.36 0.37 0.38
1 MSE 3.50 3.59 3.67
2 MAE 0.36 0.37 0.38
2 MSE 15.32 15.43 15.63
3 MAE 0.21 0.22 0.23
3 MSE 2.24 2.36 2.40
4 MAE 0.49 0.50 0.52
4 MSE 5.08 5.17 5.36
5 MAE 0.17 0.17 0.19
5 MSE 1.27 1.34 1.48
6 MAE 0.47 0.49 0.49
6 MSE 4.47 4.68 4.76

The error metrics for the complete process, i.e. the error calculated from applying

the proposed discrete confidence interval-based method to years 2017 - 2022, using

the different “healthy" dataset splits are calculated and are shown in Table 8.11. The

table shows that both the MAE and MSE increase as the training dataset increases
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from 60% to 80% and testing dataset reduces from 40% to 20%.

With regards to the amount of data required to obtain accurate results, the process

is repeated and the model applied to different durations, i.e. 1-6 years, to Turbine 4.

The results for years 1, 3 and 5 are shown in Figures 8.33 - 8.38.

Figure 8.33: Actual Temperature and
Confidence Intervals for 1 Year Data for
Turbine 4

Figure 8.34: Actual Temperature and
Confidence Bands for 1 Year Data for Tur-
bine 4

Figure 8.35: Actual Temperature and
Confidence Intervals for 3 Years of Data
for Turbine 4

Figure 8.36: Actual Temperature and
Confidence Bands for 3 Years of Data for
Turbine 4
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Figure 8.37: Actual Temperature and
Confidence Intervals for 5 Year Data for
Turbine 4

Figure 8.38: Actual Temperature and
Confidence Bands for 5 Year Data for Tur-
bine 4

8.2.3.2 Continuous Probability Distribution-Based:

Figures 8.39 - 8.41 show the temperature difference, cumulative sum of the tempera-

ture difference and cumulative average, respectively, based upon the continuous prob-

ability distribution-based method.

Figure 8.39: All Turbines - Temperature
Difference Using Continuous Probability
Distribution Method

Figure 8.40: All Turbines - Cumulative
Sum of the Temperature Difference Us-
ing Continuous Probability Distribution
Method
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Figure 8.41: All Turbines - Cumulative Average Using Continuous Probability Distribu-
tion Method

The revised threshold value using this method is 1.34, this is an 11.7% increase

from the value obtained when a random error was not included, in Chapter 7. In this

scenario, all turbines cross this threshold at some point. This may be due to the fact

that data from 2016 has not been included this time, as the 2016 data was used purely

to determine any errors that were present within the model.
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The probability distribution related to the temperature differences for Turbine 4 just

prior to failure and Turbine 3, which had no notable failures, were plotted to make a

comparison and are shown in Figures 8.42 and 8.43.

Figure 8.42: Turbine 4 - Probability Dis-
tribution Graph Two Days Prior to Failure

Figure 8.43: Turbine 3 - Probability Distri-
bution Graph

Figure 8.42 shows a range of temperature difference values from 30◦C to 48◦C for

Turbine 4, compared to a range of values from -8◦C to 12◦C for Turbine 3 (Figure 8.43),

which is a noticeable difference between a turbine that failed and one that did not.

Repeating the process but this time including the 2016 data, produced the results

shown in Figures 8.44 - 8.46.

Figure 8.44: All Turbines - Temperature
Difference - All Values - With Added Error

Figure 8.45: All Turbines - Cumulative
Sum - All Values - With No Error
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Figure 8.46: All Turbines - Cumulative Average (2016-2022) Using Continuous Proba-
bility Distribution Method

The revised threshold value in this scenario is 1.17, which is a 2.5% reduction from

the original results. The same pattern is observed, with regards to the six turbines

separating into two groups. The first group consisting of Turbines 1, 4 and 6, with the

remaining three in the second group. As before, all turbines in the first group exceed

the threshold value. Focusing on the points where the turbines cross the threshold, it

can be seen that in the original results, Turbine 1 crosses the threshold initially, before

dropping back below it and then crosses a second time simultaneously with Turbine

4 (Figure 8.47). However, when an error is taken into account, the second crossing

of Turbine 1 occurs later than Turbine 4 (Figure 8.48), indicating a shorter interval
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between the threshold crossing and the proactive replacement of the component, in

this case.

Figure 8.47: Zoomed in Graph where Tur-
bines Cross the Threshold - Original

Figure 8.48: Zoomed in Graph where Tur-
bines Cross the Threshold - Revised

Figures 8.49 and 8.50 show the cumulative average plots from repeating the pro-

cess but this time including the 2016 data within the testing data, converting each

10-minute data value to the daily mean, as well as recording the predicted tempera-

ture values both with and without the added ’error’, respectively.

Figure 8.49: All Turbines - Cumulative Av-
erage - Daily Values - With Added Error

Figure 8.50: All Turbines - Cumulative Av-
erage - Daily Values - With No Error

Figure 8.49 shows a threshold value of 1.17, whereas Figure 8.50 shows a thresh-

old value of 1.165. Therefore, by adding an ’error’ to the predicted temperature values
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to compensate for the model error, the threshold value increases slightly. However,

this value is again lower than the original results documented in Chapter 7.

Figures 8.51 - 8.56 show the results obtained by determining the 95% confidence

interval from the normal probability distribution for each 10-minute interval.

Figure 8.51: All Turbines - Cumulative Av-
erage - All Values - Upper Limits

Figure 8.52: All Turbines - Cumulative Av-
erage - All Values - Lower Limits

Figure 8.53: All Turbines - Cumulative Average - All Values - Upper Limits -Zoomed In
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Figure 8.54: All Turbines - Cumulative Average - All Values - Lower Limits -Zoomed In

It can be seen from Figure 8.56, that the upper and lower limits of the threshold

value are 1.32 and 0.99 respectively.

Figure 8.55: Turbine 4 - Cumulative Aver-
age - All Values - Upper and Lower Limits

Figure 8.56: Turbine 4 - Cumulative Aver-
age - All Values - Upper and Lower Limits
- Zoomed In
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A graph combining the upper and lower limits, along with the threshold values, is

shown in Figures 8.57 and 8.58.

Figure 8.57: All Turbines - Cumulative Average - Upper and Lower Limits

Figure 8.58: All Turbines - Cumulative Average - Upper and Lower Limits - Zoomed In
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8.3 Summary

It has been mentioned numerous times throughout this thesis, how important obtaining

an accurate and reliable prediction is, so this chapter looked at investigating the model

errors and accounting for them.

Two approaches were investigated in this chapter, using the Monte Carlo method/simulation

- the discrete confidence interval-based approach and a continuous probability distribution-

based approach. Both approaches started the same, the ”healthy" data or data col-

lected during the first year of the turbine operating, was split into 70% training and 30%

test data. The temperature differences between the actual and predicted component

temperatures of the test data were determined and fit with a normal probability distri-

bution. From this, the mean and standard deviation were obtained and these values

were then used to generate a random ’error’. The model was then applied to a new

dataset, which consisted of data from years 2016 to 2022 and this random ’error’ was

added to the predicted component temperatures. The number of runs was set to a

thousand.

These results were then used to carry out the discrete confidence interval-based

approach first, where both the 95% and 99% confidence intervals were established

from the predicted temperature values. Then any actual temperature values that fell

outside these intervals were noted and documented, as temperature differences. The

same post-processing method was carried out, including calculating the cumulative

sum of the temperature differences, cumulative average and moving average of the

temperature differences.
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The second approach carried out was based on the continuous probability distribution-

based approach. For this approach, the temperature difference for each 10-minute

interval and run, was calculated. The normal probability distribution was then fit for

each 10-minute interval, across all runs. The mean, as well as the 95% confidence

interval were then obtained. The same post-processing method was then carried out.

A revised threshold value of 1.17 was obtained and whilst the values are very similar,

the time the turbines exceeded this value varied.
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Chapter 9

Conclusion

9.1 Conclusion

As discussed in the Introduction, the main aim of this work, was to develop a methodol-

ogy that could be used to determine whether lifetime extension of a wind turbines’ driv-

etrain was a possibility. Lifetime extension is one of the three options that owner/operators

have when their turbines are reaching the end of their operational life. The main ben-

efit to lifetime extension, is that the turbine is able to operate safely for an additional X

number of years with minimum cost. The method is specifically focused on the drive-

train because the drivetrain is where the kinetic energy from the wind is converted to

electrical energy, which is supplied to the grid, so if the drivetrain fails, then the wind

turbine is not operational. It is the “heart" of the wind turbine.

The first stage, which is documented in Chapter 2, was to study the wind turbine,

the various equipment/components that make-up the drivetrain, the typical topologies

and the loads/forces that they are subjected too. The main components include: the
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main bearing, gearbox, generator and power converter, with the latter three having

notably higher failure rates, making them the primary focus during lifetime extension

assessments. This is due to the fact that lifetime extension is dependent upon the

remaining useful life of the components, so the component with the shortest remaining

useful life, dictates whether lifetime extension is a possibility and if so, the duration.

The next stage was to explore current methodologies for evaluating lifetime ex-

tension, both within the wind industry and in other industries. The wind industry was

investigated to identify the current state-of-the-art processes and any potential gaps,

whilst other industries, such as: oil and gas, vessels, nuclear, mechanical compo-

nents, etc. were explored because they have been around much longer than the wind

industry, so may have tried, tested and established methods. Chapter 4 highlights the

key points and techniques that may be transferable to the wind industry.

Taking into account all the current state-of-the-art processes for determining life-

time extension reviewed in Chapter 4, a methodology was proposed in Chapter 5. The

proposed methodology was broken down into a number of stages. The first stage

was data collection, in which in theory it was determined that the more data collected,

the more accurate and reliable the results but in reality there may be some situations

where different data types could give conflicting recommendations. The second stage

involved breaking down the drivetrain into equipment/components, so that they can be

prioritised according to their failure rates, from highest to lowest, or remaining useful

life, from lowest to highest. The next stages involved the assessments: practical, ana-

lytical or both. Ideally both should be carried out, in order to get an accurate prediction

but in theory practical assessments may not be possible due to a variety of reasons, so
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analytical assessments must be relied upon. Analytical assessments can be physics-

based, data-driven or hybrid. Once the assessments have been carried out, typically

the outcome is the components remaining useful life, which then determines whether

lifetime extension is a possibility. In addition, establishing any errors or uncertainties

within the method/model/process is an important stage to consider, due to the fact that

accurate, reliable results are required, in order to make an important decision regard-

ing lifetime extension, which may have safety and financial implications. Finally, any

changes to support the final decision are noted, regarding operations, maintenance

etc.

Chapter 6 investigated the selection of critical components, which is required in

order to rank the components, so that analysis of these components are prioritised

because as mentioned previously, their remaining useful life determines whether life-

time extension is a possibility. Previous work has been carried out on determining the

critical components in mechanical equipment, via vulnerability mapping but to date a

vulnerability map of electrical equipment had not been produced. Therefore, in this

chapter, some failure data specifically related to power converters, was acquired for

a number of turbines in a variety of countries. The power converter’s topology was

firstly assumed, then the failure data was used to determine which components had

the highest failure rates and the vulnerability map produced. The converter control

units, grid-side power modules, and generator-side power modules were the three

components with the highest failure rates. This backs-up research done by other re-

searchers. The work carried out in the chapter confirmed that a vulnerability map is a

simple but effective tool for selecting and highlighting critical components.
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SCADA data for an onshore wind farm was obtained and used in Chapter 7, to

implement the method proposed in Chapter 5. The method had to be adapted to the

amount of data available. Since SCADA data is the minimum amount of data that can

be obtained from a wind turbine, it was assumed that documenting and implementing

a method to use this data, to see if useful results could be obtained, would be highly

beneficial. Firstly, selection of a suitable model predictor was required and after testing

a number of regression models, it was determined that the regression tree ensemble

model, using three SCADA input parameters: power, rotor speed and nacelle temper-

ature, along with component temperature, was the most suitable predictor. Next, the

most vulnerable component was determined, which was found to be the rear genera-

tor bearing and this was confirmed within the status reports. Once the model was run

on all the data, the predicted component temperatures were compared to the actual

component temperatures. The temperature differences, cumulative sum and cumula-

tive averages were all determined. A threshold value of 1.2 was determined from the

cumulative averages. Three turbines exceeded this threshold value, leading to failure

or maintenance/downtime. However, the time between surpassing the threshold and

the subsequent failure varied, making it impossible to provide an accurate prediction

for lifetime extension. Therefore, it can be concluded, that consistent with previous

research on SCADA data [1, 2], the results suggest that relying solely on SCADA tem-

perature data, may not be a reliable indicator for estimating remaining useful life far

in advance. However, the method presented could be used to help operators identify

problematic components from historical data, or those needing replacement, enabling

extended drivetrain usage over time.

215



Chapter 9. Conclusion

The penultimate chapter, Chapter 8, explored two approaches for addressing er-

rors, using a Monte Carlo method/simulation, in order to improve the accuracy of

the method proposed in Chapter 7. Both approaches used the mean and standard

deviation values, acquired from the probability distribution of the temperature differ-

ences from the “healthy" data to generate a random ’error’, which was added to a

new dataset. The first approach employed a discrete confidence interval-based ap-

proach, while the second approach utilised a continuous probability distribution-based

approach. With the discrete confidence interval-based approach, confidence intervals

were established, where only actual component temperatures that exceeded these in-

tervals were flagged and acknowledged. Whilst the approach based on continuous

probability distribution, calculated the mean, standard deviation and 95% confidence

intervals for each 10-minute interval, after the normal probability distribution was ap-

plied to the row. The post-processing for both included: cumulative sum and cumu-

lative average. From the second approach, a threshold value of 1.17 was obtained.

The threshold values were closely aligned, with values of 1.2 (original value), 1.17

(mean value with error accounted for) and a range from 0.99 to 1.32 (when an error

was accounted for and confidence intervals used), but the time the turbines exceeded

the threshold values varied. This means that whilst an accurate lifetime extension pre-

diction can not still be made using solely SCADA temperature data, there has been a

slight improvement when accounting for model errors.

The primary impact of this work was the development of a methodology that is

applicable to various components within a drivetrain. To test and validate the method-

ology, a dataset with a decent amount of data over a number of years was required,
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which also included the logs of the repair and failure of the components. Due to com-

mercial sensitivity, obtaining many datasets with the mentioned layers of information

is not so straightforward, but fortunately the authors were able to find a multi-year data

set. This available dataset, which was used to validate the methodology, includes the

failure data indicating that the rear generator bearing is the most vulnerable compo-

nent, specific to that type of drivetrain used in the farm. However, within various drive-

train configurations, different turbines and farms depending on the specific loading pat-

terns and varied components manufacturers and the operating regime of the turbines,

some other components may be more vulnerable, where the developed methodology

will still be applicable. An additional application of this methodology is with regards to

predictive maintenance, by providing information to assist with scheduling repairs.

9.2 Contributions

The main contributions of this work include:

1. Development of a systematic methodology for determining the feasibility of life-

time extension, focusing on wind turbine drivetrains (Chapter 5).

2. Extending the concept of vulnerability maps to power converters, using a data-

driven approach (Chapter 6).

3. Implementation of the data-driven methodology, utilising real-life SCADA data

from a wind farm containing six (6) wind turbines, spanning seven (7) years

(Chapter 7). This includes:
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(a) Determining which well-established machine learning regression model was

the most suitable model to predict component operating temperatures.

(b) Identifying tracking/monitoring metrics, that highlight trends and detect com-

ponents that deviate from their normal operating temperatures, which may

indicate that a component is reaching the end of it’s operational life.

4. Development of probabilistic approaches, using Monte Carlo simulations along

with confidence intervals, to incorporate model errors and uncertainties, with

the aim of improving the accuracy and robustness of the previous deterministic

approach. The approaches include:

(a) Discrete confidence interval-based approach.

(b) Continuous probability distribution-based approach.

The threshold values were then updated accordingly (Chapter 8).

9.3 Revisiting the Research Questions

Research question 1 was:

1. Lifetime extension has been implemented on structural components such as the

tower, but how can it be applied on the drivetrain? What can be learnt from other

industries?

Addressing the second part of the question first, valuable insights can be drawn

from practices in other industries. A common approach observed across various in-

dustries involves three key stages: data collection, system breakdown and assess-
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ment. The assessment stage typically combines both a practical and analytical ap-

proach, with the analytical approach utilising either physics-based, data-driven, or hy-

brid techniques. Further details are provided in Chapter 4.

Returning to the first part of the question, a methodology was proposed in Chap-

ter 5, incorporating key principles and best practices identified from these other indus-

tries.

Research question 2 was:

2. What approach should be taken to evaluate potential lifetime extension of wind

turbine drivetrains, when:

a. Only Supervisory Control and Data Acquisition (SCADA) data is available?

b. SCADA and vibration data are available?

In response to this question, an approach was presented in Chapter 7 for scenar-

ios where only supervisory control and data acquisition (SCADA) data is available.

The results revealed that while an accurate lifetime extension prediction could not be

achieved, it was possible to establish a threshold value derived from the cumulative

average of temperature differences. Crossing this threshold could indicate that a com-

ponent is approaching the end of its operational life, providing owner/operators with

an early warning of potential issues with critical components. Furthermore, the ap-

proach proposed in Chapter 8, which investigated and accounted for model errors,

demonstrated a slight improvement in the model’s accuracy.

Unfortunately, implementing an approach that combines both SCADA and vibration

data was not possible due to the unavailability of vibration data. However, based on
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the findings obtained from using SCADA data alone, it is anticipated that integrating

vibration data would yield a more accurate prediction of the remaining useful life of

wind turbine components within the drivetrain.

9.4 Future Work

Future work will look at implementing the proposed methodology, using a combination

of SCADA and condition monitoring (e.g. vibration) data, to see if a more accurate pre-

diction can be achieved, when determining whether lifetime extension of the drivetrain

is a possibility.

Implementation of the proposed methodology on electrical equipment (e.g. power

converters) will also be investigated, to see if the same methodology is applicable for

both mechanical and electrical equipment.

With regards to the power converter, more research will be carried out on the se-

lection of critical components (vulnerability maps) for different power converter topolo-

gies, as well as for fully rated and partially rated power converters. This will be useful

because fully rated and partially rated power converters are subjected to different load-

ings, so the ranking of critical components may vary accordingly.

Identification of more monitoring/tracking metrics will also be studied, in order to

see if different metrics produce more useful methods of monitoring trends and anoma-

lies.

Creating a health indicator will also be explored. Determining an indicator that will

represent the current health of a component will be useful. A health indicator could
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integrate a number of data sources, so should be more effective, than relying solely

on temperature data.
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A.1 Siemens Gamesa

Table A.1: Summary of Manufacturers Drivetrain Layouts (Siemens Gamesa).

Model Power Geared Direct-
Drive

Generator / Converter

SG 2.1-114 2.1 MW 3-stage DFIG
SG 2.1-122 2.1 MW 3-stage DFIG
SG 2.2-122 2.2 MW 3-stage DFIG
SG 2.6-114 2.625 MW 3-stage DFIG
SG 2.6-126 2.6 MW 3-stage DFIG
SG 2.7-129 2.7 MW 3-stage Full Scale Converter
SG 2.9-129 2.9 MW 3-stage Full Scale Converter
SG 3.4-132 3.465 MW 3-stage DFIG
SG 3.4-145 3.465 MW 3-stage DFIG
SG 4.2-145 4.2 MW 3-stage DFIG
SG 4.5-145 4.5 MW 3-stage DFIG
SG 4.7-155 4.7 MW 3-stage DFIG
SG 5.0-132 5.0 MW 3-stage DFIG
SG 5.0-145 5.0 MW 3-stage DFIG
SG 5.8-155 5.8 MW 3-stage DFIG
SG 5.8-170 5.8 MW 3-stage DFIG
SG 6.6-155 6.6 MW Geared
SG 6.6-170 6.6 MW Geared
SG 7.0-170 7.0 MW Geared

SG 11.0-200 11 MW DD
SWT-DD-120 4.3 MW DD Sync PM
SWT-DD-130 4.3 MW DD Sync PM
SWT-DD-142 4.1 MW DD Sync PM
SWT-6.0-154 6.0 MW DD Sync PM
SWT-6.6-155 6.6 MW Geared DFIG
SWT-6.6-170 6.6 MW Geared DFIG
SWT-7.0-154 7.0 MW DD Sync PM
SWT-7.0-170 7.0 MW Geared DFIG

SG 8.0-167 DD 8.0 MW DD Sync PM
SG 8.0-167 DD Flex 8.6 MW DD

SG 10.0-193 DD 10.0 MW DD Sync
SG 11.0-193 DD Flex 11.0 MW DD

SG 11.0-200 DD 11.0 MW DD
SG 14-222 DD 14.0 MW DD
SG 14-236 DD 14.0 MW DD

225



Appendix A. Summary of Manufacturers Drivetrain Layouts

A.2 GE

Table A.2: Summary of Manufacturers Drivetrain Layouts (GE)

Model Power Geared Direct-
Drive

Generator /
Converter

1.5s 1.5 MW 3-stage DFIG
1.5se 1.5 MW 3-stage DFIG
1.5sl 1.5 MW 3-stage DFIG

1.5sle 1.5 MW 3-stage DFIG
1.5xle 1.5 MW 3-stage DFIG
1.6sle 1.5 MW 3-stage DFIG

1.6-100 1.6 MW 3-stage Async DF
1.6-82.5 1.6 MW 3-stage DFIG
1.6xle 1.6 MW Geared

1.62-87 1.62 MW Geared
1.7-100 1.7 MW Geared DFIG
1.7-103 1.7 MW Geared DFIG

1.85-82.5 1.85 MW Geared Async DF
1.85-87 1.85 MW Geared Async DF
2.0-116 2.0 MW Geared DFIG
2.0-127 2.0 MW Geared DFIG
2.2-107 2.2 MW Geared DFIG

2.3 2.3 MW Geared
2.3-107 2.3 MW Geared DFIG
2.3-116 2.3 MW Geared DFIG
2.3-127 2.3 MW Geared DFIG
2.4-107 2.4 MW Geared DFIG
2.5-100 2.5 MW 3-stage DFIG
2.5-103 2.5 MW Geared Sync PM
2.5-116 2.5 MW Geared DFIG
2.5-120 2.5 MW Geared DFIG
2.5-127 2.5 MW Geared DFIG
2.5-132 2.5 MW Geared DFIG
2.5-88 2.5 MW 3-stage Async DF
2.5xl 2.5 MW 3-stage DFIG

2.75-100 2.75 MW Geared Async DF
2.75-103 2.75 MW Geared Async DF
2.75-120 2.75 MW Geared DFIG
2.8-127 2.8 MW Geared DFIG
2.8-132 2.8 MW Geared DFIG

2.85-100 2.85 MW Geared Async DF
2.85-103 2.85 MW Geared Async DF

3.0s 3.0 MW 3-stage DFIG
3.0sl 3.0 MW 3-stage DFIG

GE 3000 3.0 MW Geared
3.2-103 3.2 MW Geared DFIG
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Table A.3: Summary of Manufacturers Drivetrain Layouts (GE) Contd.

Model Power Geared Direct-
Drive

Generator /
Converter

3.2-130 3.2 MW Geared DFIG
3.2-137 3.2 MW Geared Async DF
3.4-130 3.4 MW Geared DFIG
3.4-137 3.4 MW Geared DFIG
3.6-130 3.6 MW Geared Async DF
3.6-137 3.6 MW Geared DFIG

3.6s 3.6 MW 3-stage Async DF
3.6sl 3.6 MW 3-stage Async

3.8-117 3.8 MW Geared Async DF
3.8-130 3.8 MW Geared DFIG
3.8-137 3.8 MW Geared Async DF
4.0-110 4.0 MW DD Sync PM
4.1-113 4.1 MW DD Sync PM
4.2-117 4.2 MW Geared Async DF
4.8-158 4.8 MW Geared DFIG
4.9-158 4.9 MW Geared DFIG
5.3-158 5.3 MW Geared DFIG
5.5-158 5.5 MW Geared DFIG
5.8-158 5.8 MW Geared DFIG
6.0-164 6.0 MW Geared DFIG

Haliade 150 6.0 MW DD Sync PM
6.1-158 6.1 MW Geared DFIG

Haliade-X 12 MW 12.0 MW DD Sync PM
Haliade-X 13 MW 13.0 MW DD Sync PM
Haliade-X 14 MW 14.0 MW DD Sync PM

Haliade-X 250 15.5 MW DD Sync PM
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A.3 Goldwind

Table A.4: Summary of Manufacturers Drivetrain Layouts (Goldwind).

Model Power Geared Direct-
Drive

Generator /
Converter

S43/600 0.6 MW 3-stage Induction
S43/750 0.75 MW 3-stage Induction
S48/750 0.75 MW 2-stage Induction
S50/750 0.75 MW 3-stage DFIG

GW62/1200 1.2 MW DD Sync PM
GW70/1500 1.5 MW DD Sync PM
GW77/1500 1.5 MW DD Sync PM
GW82/1500 1.5 MW DD Sync PM
GW87/1500 1.5 MW DD Sync PM
GW93/1500 1.5 MW DD Sync PM
GW108/2000 2.0 MW DD Sync PM
GW115/2000 2.0 MW DD Sync PM
GW131/2000 2.0 MW DD Sync PM
GW100/2500 2.5 MW DD Sync PM
GW103/2500 2.5 MW DD Sync PM
GW106/2500 2.5 MW DD Sync PM
GW109/2500 2.5 MW DD Sync PM
GW121/2500 2.5 MW DD Sync PM
GW130/2500 2.5 MW 5-stage
GW90/2500 2.5 MW DD Sync PM
GW136/3000 3.0 MW DD Sync PM
GW140/3000 3.0 MW DD Sync PM
GW140/3300 3.3 MW DD Sync PM
GW155/3300 3.3 MW DD Sync PM
GW140/3400 3.4 MW DD Sync PM
GW140/3570 3.57 MW DD Sync PM
GW136/4000 4.0 MW DD Sync PM
GWH171-4.X 4.0 MW Geared
GWH191-4.X 4.0 MW Geared
GW136/4200 4.2 MW DD Sync PM
GW155/4500 4.5 MW DD Sync PM
GW136/4800 4.8 MW DD Sync PM
GW165/5200 5.2 MW DD
GWH171-5.3 5.3 MW
GW165/5600 5.6 MW DD
GWH171-5.6 5.6 MW
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Table A.5: Summary of Manufacturers Drivetrain Layouts (Goldwind) Contd.

Model Power Geared Direct-
Drive

Generator /
Converter

GW165/6000 6.0 MW DD
GWH171-6.0 6.0 MW
GWH191-6.X 6.0 MW
GWH171-6.25 6.25 MW
GW164/6450 6.45 MW DD Sync PM
GW168/6450 6.45 MW
GW171/6450 6.45 MW DD Sync PM
GW154/6700 6.7 MW DD Sync PM
GWH182-7.X 7.0 MW
GW175/8000 8.0 MW
GW184/8000 8.0 M

GW252/16000 16.0 MW
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Table A.6: Summary of Manufacturers Drivetrain Layouts (Vestas)

Model Power Geared Direct-
Drive

Generator /
Converter

V20/100 0.1 MW 1-Stage Async
V23/150 0.15 MW
V23/200 0.2 MW
V25/200 0.2 MW 2-Stage Async
V27/225 0.225 MW 2-Stage Async
V29/225 0.225 MW 2-Stage Async
V27/270 0.27 MW
V34/400 0.4 MW
V39/500 0.5 MW 3-Stage Async
V42/500 0.5 MW
V39/600 0.6 MW
V42/600 0.6 MW 3-Stage Async
V44/600 0.6 MW 2-Stage Async
V47/660 0.66 MW 3-Stage Async
V52/850 0.85 MW 3-Stage Async
V60/850 0.85 MW Async

V63/1500 1.5 MW 3-Stage Async
V82/1500 1.5 MW 2-Stage Sync
V66/1650 1.65 MW 3-Stage Async
V70/1650 1.65 MW
V82/1650 1.65 MW 2-Stage Async
V66/1750 1.75 MW 3-Stage Induction
V100/1800 1.8 MW 3-Stage Async DF
V80/1800 1.8 MW Induction
V90/1800 1.8 MW 3-Stage Async
V100/2000 2.0 MW 3-Stage DFIG
V110/2000 2.0 MW 3-Stage DFIG
V116/2000 2.0 MW 3-Stage
V120/2000 2.0 MW DFIG
V66/2000 2.0 MW Induction
V80/2000 2.0 MW 3-Stage Async
V90/2000 2.0 MW 3-Stage Async
V116/2100 2.1 MW 3-Stage
V100/2200 2.2 MW 3-Stage DF
V110/2200 2.2 MW 3-Stage DF
V120/2200 2.2 MW 3-Stage DFIG
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Table A.7: Summary of Manufacturers Drivetrain Layouts (Vestas) Contd.

Model Power Geared Direct-
Drive

Generator /
Converter

V100/2600 2.6 MW 3-Stage Async DF
V100/2750 2.75 MW 3-Stage Async
V112/3000 3.0 MW 4-Stage Sync PM

V112/3000 Offshore 3.0 MW 4-Stage Sync PM
V126/3000 3.0 MW 4-Stage Async

V138/3.0 MW 3.0 MW 2-Stage
V90/3000 3.0 MW 3-Stage Async

V90/3000 Offshore 3.0 MW 3-Stage Async
V112/3075 3.075 MW 4-Stage Sync PM
V105/3300 3.3 MW 3-Stage
V112/3300 3.3 MW 3-Stage
V117/3300 3.3 MW 3-Stage
V126/3300 3.3 MW 3-Stage
V155/3300 3.3 MW
V105/3450 3.45 MW 3-Stage
V112/3450 3.45 MW 3-Stage
V117/3450 3.45 MW 3-Stage
V126/3450 3.45 MW 3-Stage
V136/3450 3.45 MW 3-Stage
V105/3600 3.6 MW
V112/3600 3.6 MW
V117/3600 3.6 MW 3-Stage

V155/3.6MW 3.6 MW 3-Stage
V117/4000-4200 4.0 MW 3-Stage
V136/4000-4200 4.0 MW 3-Stage
V150/4000-4200 4.0 MW 3-Stage

V136/4.5MW 4.5 MW 3-Stage
V150/4.5MW 4.5 MW 3-Stage
V163/4.5MW 4.5 MW 3-Stage
V150/5.6MW 5.6 MW 2-Stage
V162/5.6MW 5.6 MW 2-Stage
V150/6.0MW 6.0 MW 2-Stage
V162/6.0MW 6.0 MW 2-Stage
V162/6.2MW 6.2 MW 2-Stage
V162/6.8MW 6.8 MW 2-Stage
V164/7000 7.0 MW PM

V162/7.2MW 7.2 MW 2-Stage
V172/7.2MW 7.2 MW 2-Stage
V164/8000 8.0 MW PM
V164/9500 9.5 MW PM

V174/9.5MW 9.5 MW Geared PM
V164/10MW 10.0 MW PM

V236/15.0 MW 15.0 MW 3-Stage
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Figure B.1: Summary of Lifetime Extension Process in All Industries.
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Risk Assessment

Identification and Evaluation of Risk Reducing Measures / Risk 
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Assessment of the Overall Risk Picture.

System Breakdown.
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Development of a Lifetime Extension Management Plan.
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Conduct safety reviews.

Conduct environmental impact assessments.

Conduct technical reviews.

Carry out research, modelling and simulations of degradation 
scenarios.

Collect data of previous incidents and accidents.

Utilise reactor ageing management programs.

Use SCADA data and aeroelastic design basis to estimate the shaft 
torsional load, using the collage method and Tikhonov method. 
Once the shaft torsional load has been determined the damage 
equivalent loads (DEL) can then be calculated on all major 
structural components. DEL values are then used to estimate 
fatigue life.

Model impacts of electrical transients, wind turbulence and shear 
on wind turbine drivetrains. (FAST CAE Tool and Simscape).

Consider transient torque reversals.
Use the measured strain data to link measured oceanographic 
data to fatigue damage as well as using the Bayesian approach.
Determine the actual loads and stresses that the wind turbine has 
been exposed to and by computer simulations. The simulations 
must reproduce the design conditions after type testing and the 
actual operating conditions.

Data analysis, inspections, aero-elastic simulations and data from 
SHM systems can all be used to determine the LTE of the turbine.

Use a joint aeroelastic-finite element analysis, taking into 
consideration the wind direction, operational history and stress 
magnification present around the door of the tower. 
Use the Submatrices Damage Method to establish damage 
indicators in terms of stiffness degradation.
Data evaluation using SCADA data, maintenance reports, survey 
reports, wind history and CMS. Inspections of the drivetrain, NDI 
of any connections that are bolted and welded, corrosion areas, 
blades and electrical components.
Perform fatigue assessments on a select number of wind turbines 
in a wind farm, using site specific environmental data during the 
design phase and then comparing them with fatigue 
reassessments carried out on the turbines at the end of the 
designed service life when the environmental conditions were 
known.

Conduct load simulations along with technical assessments. 
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Figure B.2: Summary of Lifetime Extension Process in All Industries
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