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The behaviour of symmetrical single and double storey frameworks, constructed
with cold-formed thin-walled plain channel members and semi-rigid connections,

is investigated both analytically and experimentally in this thesis.

A method of analysis, which 1s based on the matrix stiffness method, is developed
and written into a computer programme. Generalized relationships between forces

and displacements at the ends of an element with semi-rigid connections are denived

and presented in a matrix form. The analysis takes account of local and torsional
flexural buckling, connection strength and full moment-rotation behaviour, axial
load effects, member plasticity, initial imperfection and shortening due to flexure.
Using the theoretical analysis, the full loading history of the framework can be
traced up to the final failure load. Results are finally presented graphically and in

tabulated form.

Details of an experimental investigation, which was undertaken to obtain the
moment-rotation relationship of connections of various stiffnesses, are given. From
the experimental data, a standardized theoretical model capable of representing the
full moment-rotation behaviour of the connections 1s developed. Results from the
model are compared with the experimental data and the agreementis generally very
good. The theoretical model is incorporated into the theoretical analysis to account

for the change in stiffness of the connection during loading.

For the frameworks, an extensive experimental investigation was undertaken to
ascertain the accuracy of the theoretical analysis. Details of the fabrication of the
specimens, construction of the frameworks, testing equipment and procedures are

also presented.
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Results of the framework experimental investigation are compared with the
theoretical predictions. The agreement between theory and experiment is shown to

be very close in general. Some wholly theoretical numerical results are also

presented and discussed.

The findings of the investigation are summarized and the main conclusions are

listed.
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CHAPTER 1

INTRODUCTION
AND
REVIEW OF RELEVANT LITERATURE



1.1 INTRODUCTION

The determination of the actual behaviour of even a simple structure is extremely
complex and also ime consuming even in this modern age of computerization. This
1s due to the complex interaction of loading on the actual structure. There will also
be interaction between individual members of the structure. The actual loading on
individual members will always be highly variable and difficult to predict in

advance.

For analysis purposes, the actual structure will in most cases be idealized as a two
dimensional framework structure. The members of the structure are furthermore
assumed to be connected either by frictionless pins or by fully rigid connections.
Such framed structures are usually known as plane trusses and plane or rigid

frameworks respectively.

Like plane trusses, rigid frameworks are loaded only in their own plane and are
extensively used in the civil industry. Examples include storage racks, offshore
structures and all types of building frameworks. For a framework where the
members are assumed to be rigidly connected at the joints, the angles between
members meeting at a joint remain unchanged as the framework deforms under
loading. Consequently, the members of rigid frameworks transmit load, not only
axially, but also by bending and shear. Rigid frameworks are also often designed

to carry loads both at the joints and along the lengths of the members.

Although the above two idealized models corresponding to the two extreme cases
are simple to use and easy to implement in analysis and design, their validities are
not corroborated by experiments. Experiments carried out over the past decades
have shown convincingly that actual joint behaviour generally falls between the
two extremes of perfectly pinned and fully rigid. In addition, the moment-rotational
deformation behaviour of the connections is usually non-linear and always

irreversible almost for the entire range of rotations. This effect will alter the internal
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force distribution in the members of the framework and ‘the framework overall
behaviour. The above type of joint is known as semi-rigid connection and

frameworks having such connections are known as semi-rigid frameworks.

In the elastic-linear analysis of plane frameworks, both rigid and semi-rigid, the
material properties are assumed to be constant and disp]acéments are assumed to
be small. This type of analysis is usually straightforward and quite simple. However,
when non-linear effects are present, the analysis can be very complex. Non-linearity
1s caused by geometrical and material effects. The main factor that contributes to
the former effect is the influence of axial force on member flexural stiffness.
Another major cause is the horizontal displacements, commonly known as the
P-belta effect. Changes in members chord lengthvand initial imperfections also
cause non-linearity. The non-linear stress-strain relationship of the matcrialhand

residual stresses present in members prior to loading are the main causes of material

effects.

As n%cﬁtioncd above, the most significant non-linear influence in the clastic
behaviour of frameworks is the influence of the axial forces on the flexural stiffness
of the members. Tensile forces can be considered as increasing the flexural stiffness
while compressive forces decrease the flexural stiffness. If a set of compressive
forces is increased to the extent that the bending stiffness of the framework as a

whole reduces to zero, the framework becomes unstable. This is known as the elastic

critical load.

When the maternial of the framework is stressed beyond the limit of proportionality,
the elastic critical load does not give an accurate representation of the actual failure
load. Atcollapse, large regions of the framework may be inelastic. Hence, a collapse
load analysis 1s required, i.e., plastic hinges can developed wherever the bending

moment 1s sufficiently large. In a collapse load analysis, the load may be obtained

through rigid - plastic, elastic - perfectly - plastic or elasto - plastic analysis.

3



With the widespread and increasing use of cold-formed, thin-walled structures as.

main components of plane frameworks, the tendency for local buckling to occur is
Inevitable, especially when the walls of the section are very thin compared with

their widths.

Local buckling is characterised by distortion of the shape of the cross'section. The
walls depart from their original plane and form waves, or buckles, along the length
of the member. After local buckling, there is a radical alteration of the stress system
within the section, causing a reduction in the stiffness of the member and a

subsequent lowering of the ultimate moment carrying capacity.

The problem of local buckling, coupled with the non-linear behaviour of the
connections and other non-linear effects lead to a rather complex but nevertheless
much required analysis. In the investigation of the behaviour of such frameworks,

a knowledge of several relevant topics are essential.

The following review of the literature, therefore consists of the following sections:

1.2 Rigid frameworks
1.3 Connections

1.4 Semi-rigid framcworks

Dueto the wealth of literature, Espccially on the first subjéct mentioned above, only

those papers considered by the authorto be most reievant are reviewed in this thesis
and are listed in part one of the bibliography. Part two of the bibliograpﬁy contains

references which have not been mentioned in the review but are nevertheless

informative 1n this and allied field.
1.2 RIGID FRAMEWORKS

In a survey conducted by Lu (1), it was mentioned that the first systematic method

of analysis of plane frameworks was presented by Bleich (2,3). Although further
4



investigations followed, it was not until in the mid fifties that Merchant and his
associates (4,5,6,7) made a significant contribution. They proposed an analytical

method of stability analysis suitable for the examination of tall buildings.

Lundquist (8) applied the principles of the moment distribution method to stability
computations and devised the fundamental stiffness criteria for structures. A
rigorous proof of the uniqueness of the results was given by Hoff (9,10,11).
Modifications of the basic moment distribution method have been proposed by
Masur and Cukurs (12) and Livesley and Chandler (13). The modifications included

the use of stability functions as illustrated in figure 1.2.1.,

The above mentioned methods involved the setting up of a system of simultaneous
equations and solving them manually. For complex structures the numerical
computations required in the analysis is sometimes prohibitive. However, with the

advent of computers, more factors affecting the stability of frameworks could be

added.

Zweig (14) écncrdimd the SIOpc-dcﬂcétion method used by Bléich (3). He applied
the method to multi-storey frameworks. A design method and tables were also

presented permitting a simplified solution for some intricate framework problems.

The moment distribution method of solution was further developed by Porter (15)
in 1970. His modification involved the introduction of the successive over-re-
laxation method whereby convergence is never a problem. Limiting conditions for

the critical load of a framework with identical storeys were obtained and shown in

figure 1.2.2.

The displacement matrix method of analysing the stability of frameworks has

received attention in recent years. This method involves the solving of the equation

K D =0 (1.2.1)



Numerically, this requires the detcnninagion of the load, such that K becomes

singular. Using this principle, Korn (16) devised amethod forconverting framework
stability calculations into a form of a low order, non-linear eigenvalue problem.
The solution to this problem was obtained by repetitive solutions of tentatively

linearized eigenvalue problems.

In 1984, Zweig (17) presented the force matrix method for stability analysis, which
was not very popular among researchers. He outlined the advantages and
disadvantages of both the displacement and force matrix methods. A detailed design
procedure was included to facilitate the practical application of this method.
Numerical examples also showed that the results agreed very well with those

obtained using the displacement method.

The finite element approach became very popular due to the advance in computer
technology. It was proposed by Gallagher and Padlog (18) 1n 1963. Beskos (19)
analysed various framework stability problems using the above method. He pointed
out that the error of the critical load computed may be greater than about 80% if
each member of the framework is taken as a single element. In 1986, Long (20)
used a high precision element to analyse various framework stability problems,
including those analysed by Beskos (19). It was found that the accuracy obtained
was very much higher when compared with those obtained from conventional finite

element method.

The theoretical developments in the stability analysis outlined above are limited to
frameworks whose members are stressed primarily by axial forces at the instant of

instability. Several investigators have studied the effects of primary bending

moment in the members on the instability of rigid frameworks.

Chwalla (21) was the first researcher to investigate the effects of primary bending

moment on framework stability, He considered a portal framework with



symmetrical loads applied transversely on the beam and used the classical approach
of integrating a system of differential equations which defined the equilibrium of
various membersin the buckled state. The bending moments present in the members
and theirincrements after buckling were taken into account in establishing the basic
equations. From the results, he showed theoretically the existence of the point of
bifurcation on the load- deformation curve of the framework. He also determined
the exact buckling load of several frameworks with uniform member sizes and

subjected to two concentrated loads at various points on the beam. His results
indicated that the presence of bending deformation causes only a small reduction

of the elastic bucklin g loads and for simple frameworks the deformation effect may

be disregarded.

Masur et al (22) succeeded in modifying Bleich’s slope deflection and moment
distribution methods (3) so as to include the effects of bending moment and the
associated deformations. By using this modification, various instability problems
of this type could be investigated in a systematic manner. A limited number of
experiments on model frameworks have been conducted by Lu (23) for the

verification of the theoretical solutions mentioned above.

In late 1964, Moses (24) modified the method used by Lu' (23). He applied an
iterative numerical procedure to find the load verses deflection curve, and hence,
the bucklin ghload of inelastic framcwbrks subject to primary bending moments and
lateral forces. To use this procedure, it is necessary to have experimental or
analytical expressions for the curvature of the cross section of the framework

members as a function of bending moment and axial force.

The displacement matrix method of solving a series of equations became very
popular and received plenty of attention since the early sixties because of the rapid
formulation of stiffness matrices using computers. Hartz (25) applied this method

to perform elastic analysis on various frameworks. Krueger et al (26) proposed a

1



design programme for multi-storey frameworks whereby member sizes can be
computed. Connor et al (27) presented a non-linear analysis of elastic frameworks.
They employed the Newton-Raphson iteration process for convergence. This
method can df_:tcct the equilibrium position in very few cycles of iterations. The
matrix mctth leading to an eigenvalue problem of solption was employed by
Awadalla (28) to study multi-storey frameworks. Numerical results obtained were

found to be very close to those obtained from stability function solutions.

Chu and Rampetsreiter (29) used the matrix method to take into account large
deflection. Toridis and Khozeimeh (30) and Mahendra (31) developed a general
method of inelastic analysis of plane and space frameworks. The method employed

by the former investigators could also cater for dynamic analysis.

In 1986, Rankovic and Kanjeric (32) presented a non-linear stability analysis of
frameworks, taking into account the non-linear stress-strain relationship of the
material. The flexibility method of solution was used in place of the displacement

matrix method. The criterion used in establishing the critical load was by equating
the determinant of the structure stiffness matrix to zero. Only theoretical results for

a portal framework loaded by uniform distributed load on the beam and a horizontal

concentrated load on the side were obtained.

Simitses and his assc;ciatcs (33,34) invcstigﬁted stability problems of
asymmetrically loaded portal framework and syn:lrnctrically loaded multi-storey
framework. The former study was a non-linear analysis taking into account the
effects of member slenderness ratio, load eccentricities and the support rotational
restraint stiffness. It was established that the effect of member slendemess ratio on
the load verses displacement characteristic was negligible. The -portal framework

is not imperfection-sensitive for the load eccentricity type of imperfection.



Rotational restraint at the support increases the buckling load. In the latter
Investigation, the parameters considered were similar to the former except that

loading was symmetrical. Rather similar findings were established.

Again, because of the rapid computation of solutions by computers, the finite

element method of approach was prc;poscd by sﬁvcral investigators. Akkoush et al’
(35) included incremental numerical solution techniques to analyse the non-linear
behaviour of plane and space frameworks. Remseth (36) also studied the non-linear
behaviour of space frameworks but he included initial imperfections and dynamic
effects. Wen and Rahimzadeh (37) also studied plane and space frameworks. They

took into account the effects of large translation and rotation of the chord. In all the
above investigations, it was concluded that the accuracy of the results increases as
the number of elements was increased. Large errors may occur if a one element

one member analysis is adopted.

The P-Delta effect, which reduces the load carrying capacity of sway frameworks,

have received a great deal of attention. In 1986, Scholz (38) presented .an

approximate method to account for the P-Delta effect coupled with the Load and
Resistance Factor Design of various frameworks in general. He proposed that the
method be used as a check against the other conventional designs. In the same year,
Kanchanalai (39) made a theoretical investigation to determine the strength of
columns in symmetrical portal framéworks and frameworks with some columns
having pinned connections. Besides the P-Delta effect, he also considered the
slenderness ratio and relative column to beam stiffnesses. He proposed a

modification to the column design according to the allowable stress. The

applicability of the modification was verified by experimenté.

Gaiott1 and Smith (40) investigated the P-Delta effect on multi-storey frameworks

using a new method which was rather similar to the iterative method, but based on

analyses using the actual gravity loading applied to successive deflected shapes.
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They also compared the results with several other methods used by previous
researchers. It was found that the results obtained were identical to those given by

the iterative method but the new analysis took only about one third of the time.

In 1989, Ekhande et al (41) applied the stability functions type of solution to derive
the stiffness matrix of three dimensional element. Although several numerical

examples were presented, no experimental verification were undertaken.

Inrecent years, the plastic method of structural analysis has been rapidly developed
and extensive applications have been made in the design of building frameworks.
Much of design was based on the major contribution made by Merchant (42) as
early as 1954. In that year, he pointed out the effects of overall instability on the
load-carrying capacity of rigid frameworks. Although his paper dealt only with
some fundamental concepts of instability, it has stimulated many investigators to
study various plastic instability problems, particularly those related to multi-storey
building frameworks. Among his findings, 1t was shown that for columns of

intermediate length, the failure load may be expressed empirically in terms of the
Euler load, the yield load and some arbitrary parameters representing the initial
imperfections. He also suggested that it might be possible to consider the elastic
critical load and the simple plastic load of a framework as the basic parameters for

the determination of its true ultimate load.

A few years later, Merchant et al (43) presented a 'summary of the results obtained
from a large number of experiments conducted on model triangular trusses and
rigid portal frameworks. The tests were performed for obtaining experimental
evidence of the empirical approach proposed by Merchant (42). The investigators
made statistical analyses on the test results with the hope that some simple
relationship might be obtained for expressing the observed ultimate load in terms
of a few theoretical parameters mentioned above. Unfortunately, after testing

numerous combinations of the parameters in the regression analyses, it was not

10



possible to find a definite relationship which might be used to compute the inelastic
instability load with a known degree of accuracy. The authors also presented
statistical correlations of a large number of theoretically calculated instability loads
with some selected parameters. The theoretical loads were determined for one and
two storey frameworks using the idealized elastic-plastic moment-curvature
relations so that all yielding was concentrated at the hinges. It was found that pcarlf

all the theoretical points fell within the bounds established by the analysis of the

experimental results.

Low (44) tested several series of model steel frameworks to investigate the
magnitude of the framework instability effect on the load-carrying capacity. The
results obtained from the experiments were plotted non-dimensionally in the form
suggested by Merchant (42). The plots seem to indicate that, for most cases,

Merchant’s simple formula
(1.2.2)

for estimating the inelastic instability load of frameworks is rather conservative.
The above equation is known as the Merchant-Rankine formula. The tests also
indicated that the reduction of the ultimate load due to instability was higher for
taller frameworks. The average reductions for three, five and seven storeys

frameworks were found to be around 10%, 30% and 35% of the simple load

respectively.

In 1958, Salem (45) carried out experimental test forone and two storey frameworks.
One of his objectives was to verify the Merchant-Rankine formula. The results

obtained were plotted as points as illustrated in figure 1.2.3. Lines corresponding
to various ratios of A,/A, have been drawn, and it can readily be seen that the

Merchant-Rankine formula is most successful when A /A, is small and the collapse
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load is close to the rigid-plastic collapsc value."When AP/AC > (.3, the scattening of
the points away from the Merchant-Rankine formula is considerable. Merchant

suggested the formula as a safe limit for the collapse load as pointed out by Low

(44)

In 1960, Lu (23) presented an analytical solution to the buckfing‘ of portal
frameworks in the plastic range. The method takes into account the effects of axial
force, yielding, deformation and residual stresses. Tests conducted by Yen et al

(46) have verified the theoretical solution.

Morris and Fenves (47) used an elastic-plastic analysis to study the load verses
displacement behaviour of a fixed base symrﬁctrically portal framework loaded
beyond the elastic range up to the ultimate load. An incremental analysis procedure
was employed and structural forces, displacement and reactions were determined
at various load levels. The concept of the classical yield hinge was extended to
included cross sections deforming plastically under combinations of flexural and

torsional moment and axial force.

Due to the great demand and popularity of high-rise buildings, the period beginning
from the sixties saw arapid increase in the investigation into this class of buildings.
Korn and Galambos (48) investigated the full load verses displacement path of
several multi-storey frameworks *by means of first order and second order
elastic-plastic theory. They concluded that frameworks lackin g sufficient working
load deflection and stability controls are subjcét to a catas&ophic early instability
at large losses in potc'n[tial load-carrying capacity. Such frameworks are also highly
non-linear at working loads due to the second order tampliﬁcation of sway. For
frameworks having reasonably linear behaviour at working loads, at least 86% of

the first order load-carrying capacity was obtained.
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About two years later in England, Wood (49) made an important contribution to
the design of framework. He suggested a modification of the Merchant-Rankine
load to allow for the minimum beneficial effects that must always be present from

strain-hardening and restraint provided by cladding. He suggested that provided

¥

w0 > 10
x'JF’
then
?L, = lp (1.2.3)
and when
A
10>—2>4
P
then
A

When expressed graphically, these proposals are represented by the lines ACD of
figure 1.2.4, and may be compared with the Merchant-Rankine formula given by

the straight line AB. When applying condition (1.2.3) to derive the design
requirements, it can be seen that the required minimum value of A, is that
corresponding to the required factored loading. A,can be derived by using the design
strength, P,, of the steel. Supposing the required minimum final load factor of the
structure, A, is expressed as 'a plastic load factor, using, instead of the specified

design strength, P,, an effective design strength P’,, so that

A, P
A, P,

P
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whence

A P’,
—_ = O —
)LP P?
where
A,
o0 =
As
On substituting the above value of
Mo _ A
A, A,

where A is A, of equation (1.2.2), and A,/A, into equation (1.2.3), it is found that,

in design, it can be assumed that

P, = P,
when
A /A, > 10
and
P’ = P (ﬁ_‘_’_l) (1.2.5)
d 7\ 0.9a
when
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This proposal is the basis for the adoption of plastic design for continuous low-rise
framework in the BS 5950: Part 1. When A /A,<4.6, it is recommended that, if
elastic- plastic methods of ultimate load design are to be employed, then a special

analysis allowing for elastic-plastic behaviour and change of geometry effects
should be undertaken. It will, of course, also be necessary to satisf;/ the deflection
limits imposed by the provisions of the appropriate clauses 1n the standard. It should
be noted that, if the more conservative modified Merchant-Rankine load, equation
(1.2.2), is used in design rather than equations (1.2.3) and (1.2.4), th=n a modified

yield stress must always be used, 1.e.,
0y pfo=1 - o
P’, = P|— (172'6)

Chi and Lin (50) presented a paper on the elastic-plastic analysis of multi-storey
frameworks. The elastic slope defection method was modified and gcnerﬁlizcd. The
plastic strain was treated as a set of additional moments. The method was af)plicablc
to frameworks of work hardenin g as well as ideally plastic matenals. The mcthbd
employed reduces the problem to the solution of a system of simultaneous equations

and no iteration was required. PR 4 .

A numerncal procccrirflre forllérgc dcfoﬁnation analysis of élastic-plastic frmnc\;/brks
was presented by Kﬁssiﬁﬂali (51). The procedure utilised an incremental load
approach with Newton-Raphson 1teration toﬁsatiéfy joint equilibrium equations.
Changes in member chord length due to axial strains and flexural bowing was
considered. Analysis was performed on the frameworks used by Korn and Galambos
(48) whereby bowing effect was neglected. The results obtained were very similar
and thus it was concluded that the consideration of large deformation and flexural

bowing effects complicates the problem of non-linear analysis of frameworks

considerably.
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With the recent introduction of cold-formed thin-walled structures, more building
frameworks are using these members as main components. The following reviews

are on frameworks composed of thin-walled members.

In 1977, Mclvor et al (52) presented a structural theory for the large plastic
deformation of space frameworks composed of thin-walled members. The
framework, which was composed of several square tubings, was considered to
consist of an arbitrary number of beam elements connected at node points. The
analysis assumed that plastic deformation is confined to idealized hinges located
at node points. To generalize:) the analysis for computer programming, the
equations of a beam element were dcﬁvcd as a relationship between generalized
force and deformation rates. The structural theory employed for the plastic hinges
included bi-axial bending, torsion and axial extension. Reduction in the load
carrying capacity of the hinge due to local deformation was accounted for. An
experiment was carried outon a space framework which was constructed by welding
thin square tubings together. The predicted force-deformation curve was found to

be in good agreement with the experimental results.

The effects on the member end moment of a framework due to local buckling was
investigated by Wang (53). In the analysis, the matrix stiffness method was adopted.

The effective width concept was used to account for local buckling. The expression,

which was introduced by Winter (54), is as follows:

When

then
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T R

When

172
b < 1.288(-5-)
Gﬂll!

then

b = b o (1.2.8)

As the compressive edge stress, O, 1s not uniform along the member, application

of equation (1.2.7) will result in a non-prismatic member. This was accounted for

by dividing individual member into several segments.

As a follow-up, Wang and Blandford (55) proposed a method of stability analysis
of locally buckled frameworks. The procedure was based on the finite element
approach and the method of solution was by equating the stiffness matrix of the

framework to zero. To take into the account of local buckling, the following

expression (56) was used :

When
b5 0.4
then
D, t
—= 0.95A[1 -0.954 C(—EJJ (1.2.9)
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where A = 'JKE/GM and C is a modification factor based on experimental

evidence and engineering judgement.

When
— < (.64A

then

b = b - (1.2.10)

Theoretical analyses, with and without local buckling, were performed on various
frameworks and it was found that the cnitical load with local buckling taken into
consideration was always lower than if local buckling 1s neglected. Unfortunately,

no experimental verification was undertaken.

Baigent and Hancock (57,58,59,60) and Hancock (61) investigated the behaviour
of low-rise portal frameworks composed of cold-formed members extensively used
in the recent years. The analysis method was based on the matrix stiffness approach.
Effects suchas warping torsion, cross section monosymmetry, progressive yielding,
inelastic local buckling in the thin-walled sections and cross section distortion were*
considered. The collapse load was predicted usir?g an 1inelastic finite strip local
buckling analysis. Experimental investigations were carried out on several
pitched-roof portal frameworks constructed from cold-formed channels. The
frameworks were loaded to failure in three different patterns as shown in figure

1.2.5. Although the theoretical and experimental failure loads were in good
agreement, it was found that all the experimental apex deflection indicated a more
flexible rcspon’se from the frameworks as shown in ﬁghre 1.2.6. The explanation

given was that the greater flexibility could lie in the behaviour of the joint, which
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was assumed to be rigid. Another conclusion drawn was that all the frameworks
have a considerable inelastic reserve capacity as the collapse load was about twenty

percent higher than the load at first yield.

The torsional flexural buckiing of rigid‘ plane frameworks composed of I section
members and subjected to planar loading was investigated theoretically by
Vacharajittiphan and Trahair (62). The generalized method, which can be used for
planar rigid frameworks with various planar loading, was based on the formation
of differential equations for bending and torsional flexural buckling. These
equations were solved using the finite integral method with the aid of computers.
The accuracy of the method was studied by comparing the results for beams and
simple portal frameworks with known solutions. It was established that to achieve
accuracy sufficient for engineering purposes, nine nodes were required for each

member. Solutions for various low-rise frameworks were also obtained but no

comparison of results were made.

In 198r5, Nethercot (63) presented a paper on the analysis of portal frameworks with
the effects of torsional flexural buckling. The method comprised of the formulation
of stiffness matrices, the coefficients of which were obtained using the energy
method proposed by Barsoum and Gallagher (64). In the analysis, the element ends
were assumed to be restrainted from warping. The ei gcnvaliuc of solition was used
to obtain the critical load of isolated members. Two numerical examples on portal

frameworks were given. It was concluded that careful use of the results of isolated
members will lead to acceptable estimate of the framework critical load. In cases
where published results of isolated members are inadequate, it was suggested that

a finite element programme be used.

Alwis and Usami (65) proposed a finite element method of analysis to determine
the elastic lateral torsional buckling of rigid frameworks. The effects of in-plane

deformations on lateral torsional buckling were included in the analysis, where
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in-plane and out of plane deformations were treated scparatcfy. The critical load
was obtained by equating the determinant of the overall stiffness matrix to zero.
Numerous examples were performed on simple frameworks and from the results
obtained, it was shown that the number of elements needed to produce a desired

accuracy increases with increasing length of the members.

1.3 CONNECTIONS

Research into the behaviour of connections and their moment-rotation
characteristics was first carried out in 1917 by Wilson and Moore (66). Although
some interesting results were obtained, the paper only touched on the fringes of the

subject.

In 1929, the Steel Structures Committee of Great Britain initiated a programme of
theoretical and extensive experimental research (67) in various aspects of building
behaviourthat had a great influence on later studies. Under the combined leadership
of J. F. Baker and C. Batho, the committee advanced understanding as to how
building frameworks actually behave under load and it set forth principles whereby
the influence of connection flexibility and framework behaviour could be studied
and analysed. After various tests on riveted connections, a linear expression was
proposed to model the connection behaviour. The connection factor, Z, which is
the inverse of the initial tangent of the connection _momcnt-rotation plot, takes the

form:

Z = (1.3.1)

9
M

The above expression was also employed to model the connection behaviour by

Rathbun (68) about the same period in America.
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In 1951, Lothers (69) proposed a method of representing the moment-rotation
relationship of angle-plate connection, which was very popular during that period,
in a linear form. The stiffness was expressed in terms of the connection critical
bending moment and rotation, which through elastic analysis, could be computed
using size parameters of the angle-plate connection. From tables provided, the

- approximate linear stiffness of various sizes of angle-plate connections investigated

could be established.

Munse et al (70) studied the behaviour of standard double web angle flexible

connection which was very popular during that period. The connections were
assembled with rivets and high strength bolts and completely with rivets in order
to study the behaviour of the effect of the type of fasteners upon the behaviour of
the connections. The main findings arrived at were that although assumed for design
purposes to behave as simple supports, the connections provided some end restraint.

This restraint increases when high strength bolts were used.

To further improve the representation of the connection behaviour, Sommer (71)
fitted experimental moment-rotation data to standardized moment-rotation curves

in the form of non dimensional polynomial series. The form of the polynomial

function is

b= C,(KM)+C,(KMY +CyKM) (132)

where K 1s the standardization factor dependent on the connection type and

geometry, and C,,C,and C, are curve fitting constants. The standardized
moment-rotation function is applicable to all connections of the same type, the
influence of different sizes and dimensions is accounted for by the factors. The

above model can only be used provided sufficient cxberimcntal data are available.
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To improve the model used by previous investigators, Romstad and Subramanian
(72) developed a method of representing the moment-rotation curve of double-
angle connections. Using this method, the actual curve is bi-linearised as shown in
figure 1.3.1. By using the connection size parameters, the slopes of the bi-linear
approximation could be obtained as illustrated in figure 1.3.2. This information

could then be used to account for semi-rigid joints.

Frye and Morris (73) extended Sommer’s method (72) to seven different connection
types shown in figure 1.3.3. The standardized polynomial expression of these
connections are tabulated and shown in table 1.3.1 and typical moment-rotation
curves are illustrated in figure 1.3.4. The accuracy of the standardization procedure
can be seen in figure 1.3.5, which shows the moment-rotation curves generated by
the standardized equation and the corresponding experimentally obtained curves
for two double web angle connections. The main drawback of this method is that
the nature of a polynomial is to peak and trough within a certain range. The
connection stiffness, which is represented by the slope of the moment-rotation
curve, may become negative at some values of moment and this is physically

unacceptable.

To overcome this, Jones et al (74,75,76,77) developed a method of representing
the actual moment-rotation curves of'conncctions more accurately. This method is
known as the B-spline method. The method requires the division of the range of
connection rotations into a finite number of smaller ranges. Within each range, a
cubic function is fitted in turn with the first and second derivatives, continuity being
maintained between adjacent ranges. Numerical description resulting from the
curve fitting can then be used directly within numerical differentiation proccdurcs

This method has been found to produce close and smooth representation of
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experimental results as illustrated in figure 1.3.6, which also shows the comparison
of the polynomial fit. The disadvantage of the B-spline model is the large number

of data required for the curve fitting process.

Richard et al (78) presented a method of modelling the moment-rotation
characteristics of single plate connections. This method involves the experimental
determination of the load-displacement relationship for a single bolt connecting
two plates in shear. In this manner, all linear and non-linear deformations occurring
in the bolt and the connected plates were lumped together. The connection was then
analysed using finite element method whereby the non-linear behaviour of the bolts
and connected plates was modelled as a shear connector with load-deformation
properties obtained previously. The moment-rotation curves obtained were then

compared with experimental data and reasonable agreements were achieved.

In the early seventies, a series of tests on various beam-to-column connections were

carried out by Chen and his associates (79,80,81). The connections consisted of
various commonly used type and were either welded or bolted with high strength
bolts. The results obtained were intended to be used as a basis for the design of

beam-to-column connections for multi-storey buildings.

In order to enable the designer to anticipate the connection stiffness during the
designing phase, Ackroyd and Gerstle (82) proposed a method of relating the
connection stiffness to the required connection strength. This relation takes the
form:

M,d

R e T (1.3.3)
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This relationship between the strength and stiffness, as inferred from available
experimental results for several connection types, 1s shown in figure 1.3.7, which

allows estimation of connection stiffness once the required moment and girder

depth, d, are known.

In the year 1983, Colson and Louveau (83) presented a model which uses a power

function of the form :

| M |

o =W (1.3.4)

The curvature of the moment-rotation relationship is accounted for by the parameter -
n. Since the model has only three parameters R,, M, and n, as illustrated in figure
1.3.8, it is not as accurate as the B-spline model. However, the number of data

required is drastically reduced.

Ang and Morris (84) replaced the polynomial function by a form of the function
given by Ramberg and Osgood (85) in the development of standardized
moment-rotation expression for connection types shown in figure 1.3.9. The latter

function, which is illustrated in figure 1.3.10, has the form :

o KM KM Y™
E"(KM);{H((KM)J : (1:3

where ¢,, (KM), and n are coefficients evaluated in the curve fitting process and

K is defined in equation (1.3.2). Depending on the value of the coefficient n,
equation (1.3.5) can represent any of a family of curves passing through point 1 of
figure 1.3.10. Thus, it can model a moment-rotation curve with a sharp "knee”, or

one with a long gradual decrease in slope. Standardized expression of the
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connections can be found in table 1.3.2. The Ramberg-Osgood function has the
advantage that its derivative, hence the slope of the moment-rotation curve, does

not fluctuate.

In order to reduce the costs of carrying out experiments to determine the
mément-rotation characteristics of connections, Yee (86) developed a new
approximate method to model the connection behaviour. The expression used in
the method, which is known as the exponential and correction model, is expressed

in terms of certain functions as shown in equation (1.3.6).

M=M_{1 —exp[—-(fK-i-:-I-;-;-*——C-?l?]}+Kp¢ J (1.3.6)

where K; and K, are constants dependent on the connection stiffening and failure

mode as can be seen from tables 1.3.3 and 1.3.4. The value of C is obtained
empirically from the test data. It should be noted that the model is valid only for

bolted extended end-plate eave connection as shown in figure 1.3.11. When
compared with available experimental results, the model predicted the curves within

acceptable limits. Some of the comparisons are shown in figures 1.3.12 and 1.3.13.

In 1985, Nethercot (87) discussed the various connection moment-rotation curves

obtained by previous investigators using experimental rigs as shown in figure

1.3.14. After careful examination, he commented that only about 50% of the 700
individual test were considered to be useful. Comments were also made on the
various models used to represent the connection moment-rotation curve. A
summary of the comments is listed in table 1.3.5. The feasibility of organising the
available moment-rotation curves of various connections into a computerized data

bank system was also demonstrated and found to be encouraging.
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Due to the advancement in computer technology, the finite-element apprbach of
analysis became very popular with researchers. Among them, Krishnamurthy and
Battles (88), Krishnamurthy (89), Maxwell et al (90), Jenkins et al (91) and Kukreti
et al (92) employed the method to study the behaviour of connections. 'fhc
connections studied by them included top-angle, tee-stub and end-plate

- connectaons.

To overcome the disadvantage of requiring large amount of data as in the B-spline
model, Lui and Chen (93) presented a method to model the non-linear
moment-rotation relationship of connections. The model 1s expressed in an

exponential function of the form :

M= '):le[l—exp(—|¢|/2ja)]+RH|¢|+Mo (1.3.7)
J=
where

R, is the strain hardening stiffness of the connection.
M, is the initial moment at which the curve is fitted.
o is a scaling factor.

C; 1s a curve fitting constant.

The model, which is known as the exponential model, is a multi-parameter model.
The number of parameter required is (m + 3), where m is the number of curve fitting
constants, C;. The above model has been shown to represent the non-linear
behaviour of connections very well. The limitation of this model is that it may not
completely represent the moment-rotation curve that consists of a few linear .

components.

Kishi and Chen (94,95) refined the exponential model to accomodate linear

components of moment-rotation curves of connections. This model is represented

by the form :
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M=M,+3 Cll-exp(-|9|2jo)] +
2

3 D,061-16.DHI61-10,1] (1338)

where
D, is a curve fitting constant,

¢, is the starting rotation of kth linear component taken from experimental
moment-rotation curve.

H[ ]is the Heaviside’s step function given by :

H{o]=1 for 620 (1.3.9)

H[0]=0 for ¢<O0 (1.3.10)

Like the exponential model, also known as the Chen-Lui model, this modified
exponential model deals with connection loading and unloading for the full range
of rotation in a second order analysis. The comparison between the Chen-Lui
exponential model and th(?: modified exponential model for numerical example test

data including a linear component is shown in figure 1.3.15.

While the modified exponential model is a curve fitting eqﬁation obtained by using
the least.mean square technique for the test data, Kishni and Chen (96,97) and -
Kishni et al (98) developed the power model from a different point of view. In this
procedure, the initial elastic stiffness and ultimate moment capacity of the
connection are determined by a simple analytical model. Using those values so
obtained, a three parameter power model given by Richard and Abbot (99) was
adopted to represent the connection behaviour. The generalized form of this model

18 ¢
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M= (1.3.11)

where
¢, 1s a reference plastic rotation =M, /R,

n 1s the shape parametcr.'

Figure 1.3.16 shows the comparison of the power model with various values of

to the experimental data. A comparison of the Chen-Lui model and the power

model can be seen in figure 1.3.17.

Morris and Packer (100) presented a paper which described the factors influencing
the force-deformation behaviour of various connections. Procedures for modelling
various connection moment-rotation characteristics were discussed, a summary of

which 1s tabulated and shown in table 1.3.6. The effects of connections were also

described generally and illustrated with examples.

The normal approach 1n static calculation and analysis 1s to assume that the joint,
which has defined dimensions, of a structure is contracted to a point at the

intersection of the member lines. Tschemmemegg and Hunter (101) proposed a
new method of representing ihe moment-rotation curve of connection, whereby the
jointis looked at in a macroscopic view and a distinction is made between the panel
zone and the conncétion as 1illustrated in figure 1.5.18. In this approach, the panel
zone is modelled as a load introduction spring and a shear sprin g, which accounts
for the panel shear deformation. The connection itself is represented by the
connection spring. The final connection moment-rotation curve is obtained by
totalling the individual spring model mome:nt. This 1s illustrated in figure 1.3.19,

which also shows the schematic diagram of the spring models.
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1.4 SEMI-RIGID FRAMEWOQORKS

Modifications to the slope deflection and moment distribution methods were both
applied to frameworks with semi-rigid connections in the 1930’s by Baker (67,103)
and Pippard and Baker (102) in England and Rathbun (68) in United States. In their
analysis, the linear connection factor, Z, was employed. According to the final

- report (67), savings as much as 20% could be achieved on the design of beams in
frameworks by taking advantage of end restraints, which could be predicted by the
beam-line method proposed by Batho and Rowan (67) and later develcped by Batho

(67).

To increase the accuracy of the analysis, Johnston and Mount (104) refined Baker’s
method by considering the effect due to the widths of the members. The various
joint moments computed were found to be in good agreement with results from

experimental tests.

In 1947, Stewart (105) applied the traverse method to analyse frameworks with
semi-rigid connections. The traverse, which expresses the joint rotation and the
flexure angle due to the moment at each end of a member, is basically a
representation of the deflected framework. In the analysis, the rotation of a joint

due to a moment was expressed as a percentage of the elastic curvature caused by

the same moment in a connecting member. The disadvantage of this method lies

in the fact that numerous traverse lines are required to be drawn when a complex

framework 1s to be analysed.

Instead of using the connection factor, Maugh (106) represented the stiffness of the

connection by the initial slope of the moment-rotation curve in his analysis of
semi-rigid frameworks. Using this approach, analyses were performed on

frameworks studied by previous researchers. Comparison of the results showed

very little difference in solutions.
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In 1961, Lightfoot and Baker (107) refined the method of analysis crﬁploycd by
Johnston and Mount (104). The refinement came in the form of a computer solution
to the problem of plane frameworks with elastic connections, using the generalized
slope deflection equations in matrix form. The semi-rigid connection restraint was
incorporated into the analysis by the use of correction matrices to amend the initial

assumption of fully rigid connections.

Monforton and Wu (108) incorporated the effects of semi-rigid connections 1nto
the matrix stiffness analysis in a general manner in 1963. Similar procedures were

proposed by Livesley (109) and Gere and Weaver (110) at about the same time.

The linear semi-rigid connection factor was used to modify the member stiffness |
matrices and the fixed end force vector. The stiffness matrices were modified by
correction matrices and the resulting linear equations were solved as in normal
stiffness method. The advantages of this method are thatrelatively large frameworks
can be analysed with ease and the interactive techniques employed would permit

the inclusion of improvements in the end restraint representation.

Although the twisting degree of freedom was introduced into Monforton and Wu's
analysis (108), alinear torque-twist relationship was assumed and axial deformation
was neglected. These were taken into account by Lightfoot and Le Messurner
(111).Several numerical examples were performed on three dimensional problems.
However, due to the lack of experilinental results available, no comparison was

carried out.

Frye and Morris (73) presented an iterative analysis procedure for planar rectangular
steel frameworks incorporating the non-linear behaviour of any of the seven
beam-to-column connection types shown in figure 1.3.3. The analysis procedure
involved repeated cycles of analysis to determine a set of connection secant stiffness

that could then be used to predict the displacements and internal forces in the real
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non-linear structure. In a numerical example, it was found that using an analysis
which assumed pinned beam-to-column connections, a reduction of up to 20% in

the column axial load capacity would be ignored.

To shed more light on the subject, Moncarz and Gerstle (112) employed the matrix
displacement method of analysis to several semi-rigid frameworks. To represent
the connection moment-rotation behaviour, a tri-linearized model was used. In their
investigation, it was established that the assumption of fully rigid joints is
inadvisable for frameworks with field-bolted or lightly welded connections. It will
result in an under estimation of the bare-frame drift and may lead to inaccurate

prediction of critical member forces.

With rather similar objectives, especially on the design aspects, Ackroyd and
Gerstle (82) used a purely elastic analysis to study semi-rigid frameworks. The
connection was modelled using the expression shown in equation (1.3.3). Several
frameworks were analysed numerically and general outlines pertaining to design

procedures were suggested.

Ang and Morris (84) generalized the Frye and Morris procedure (73) to permit the
analysis of three dimensional rectangular frameworks with non-linear connections.
They assumed all floors to act as rigid in-plane diaphragms, thus eliminating the

in-plane degrees of freedom at all columns. Accordingly, they considered only one

non-linear connection moment-rotation relationship which took the form of
equation (1.3.5). Examples carried out demonstrated that connection deformation
sometimes has a very significant effect on the internal force distribution in, or the

deflection of, a structure.

Employing the tri-linearized connection model of Moncarz and Gerstle (112),

Stelmack et al (113) provided an analysis which also included the connection
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stiffness during unloading. From the verifications through experimental works, the
shakedown of the connections to their elastic state was evident and a linear analysis

was sufficient to predict framework behaviour under service conditions.

The papers reviewed above dealt mainly with the analysing of semi-nigid
frameworks for displacement and member internal forces only. In 1970, Romstad
and Subramanian (72) assumed a bi-linearmodel of the connection moment-rotation
curve (figure 1.3.1) in their elastic critical load analysis, which used computational
procedures for locating eigenvalues and eigenvectors. They analysed the stability
problem using a bifurcation approach and so were unable to find the effect of a

non-linear moment-rotation curve on the buckling capacity of frames.

In a paper by Gerstle (114), detailed descriptions and discussions on connection
behaviour, linear and non-linear approach to semi-rnigid framework analysis were
presented. The elastic stability analysis, which assumed linear connection
behaviour, was employed by Ackroyd and Gerstle (115). Modified slope deflection
equations were used to account for the effects of the flexible end connections on
girders. From numeral examples on a simple portal framework, 1t was found that
as the connection stiffness increases, the drift decreases for a given load, and the
buckling capacity of the framework is increased. Furthermore, a small increase in
connection stiffness results in a substantial increase 1n framework capacity, while
forvery stiff connections, extra conne;:tion stiffness results inonly nominal increase

in framework capacity.

The non-linear approach was employed by Ackroyd and Gerstle (116). Material
effects such as residual stress and elasto-plastic member behaviour were accounted
for. Geometric non-linearities of members and connections were also included in
their analysis. The Frye and Morris polynomial function of equation (1.3.2) was
used to represent connections non-linear behaviour. A number of subassemblages

representing existing portions of typical multi-storey frameworks, each with three
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different flexible connections, were analysed. Results showed that in most cases,
increased connection stiffness leads to an increase of framework strength, but in
exceptional cases of low-nise buildings, it may result in a slight loss of strength.
This finding removed the usual assumption or expectation that increase in stiffness

of connections in a framework always lead to an increase in the framework strength.

In 1983, Melchers and Yee (117) studied the effects of connection behaviour on
the deflections of practical frameworks. Numerical analysis of rigid and near-rigid
(assumed to be rigid in design) portal frameworks were carried out, the connection
behaviour of the latter being modelled by a quad-linear curve. It was established
that the maximum increase in deflection due to connection flexibility was of the .

order of 20% at service load. The amount of increase was proportional to the degree

of flexibility of the connections.

Numerous numerical studies on semi-rigid frameworks were conducted very
recently by Simitses and his associates (118,119,120,121). The types of framework

studied were two-bar, simple portal and gabled frameworks. The non-linear analysis
involved the formation of equilibrium and buckling equations and satisfaction of
boundary and joint conditions. Both linear and non-linear connection behaviour
were considered , the former being represented by the connection factor and the
"latter by polynomial function. Included in the intensive study were parameters such
as slenderness ratio and effects of loaci eccentricities. With the intention of shedding

more light into the subject, many general conclusions were drawn.,

In 1985, Poggi and Zandonini (122) presented a non-linear analysis which
accounted for geometrical changes and spreading of plastic zones in members.
Connectionnon-linearrelationship was tri-linearized and stiffness during unloading
was also considered. To account for the finite dimensions of the joints, the normal

beam element was considered to be composed of three sub- elements. Various

33



parameters, including mod'ellin'g 'the connection behaviour by bi-linear and
piecewise linear models, were employed in several analyses carried out. The

findings were to be used as preliminary studies for a major research.

Yu and Shanmugam (123) proposed a modified stiffness matrix method for finding
the elastic critical load of simple semi-rigid frameworks. Besides accounting for
the partial rigidity of the joints, the method also considered the effects of flexure
on axial stiffness and geometric changes. A linear connection behaviour was
assumed. Including the computation of the elastic critical load, a parametric study
was also undertaken to study the effects of rigidity of various joints on single bay

double storey frameworks.

In very recent years, intensive investigations on the behaviour of semi-rigid
frameworks were performed in the United States by Chen and his associates
(93,124,125,126,127). Their studies covered T and I shaped assemblage, two-bar,
simple portal and multi-storey frameworks. In all the cases, the analysis employed
was non-linear and except for the investigation by (127), the true non-linear
connection behaviour modelled in the form of equation (1.3.7) was employed. This
model can cater for the connection stiffness during its unloading. The formation of
plastic hinges in the member was included in the analysis by both (126) and (127).

The effects of loading pattern was also accounted for by the latter. The extensive

resecarch was undertaken in view of the AISC/LRFD Specification (128), which
specifically identifies the need for the inclusion of connection behaviour in the

analysis and design procedures.

Driscoll (129) presented an elastic-plastic analysis of frameworks with seat and
top-angle semi-rigid connections. In this method, the connection was modelled as
a series of fictitious rigid beam elements. The whole framework was then analysed

as a rigid framework. An elastic analysis identifies the locations where stress is

greatest and therefore plastic hinges may form. After changes in boundary
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conditions, additional steps of elastic analysis can give increments in the

elastic-plastic load-deformation curve of the entire framework up to the point where

a mechanism defining ultimate load is defined.

Most non-linear analysis of semi-rigid frameworks are either too complex or
time-consuming to be considered for design use. With the aim of providinﬁg a {00!
for designers, Goto and Chen (130) presented a computer-based method that can
be easily applied to design practice for steel building frameworks with flexible
connections using computers. Real connection behaviour along with various types
of available analytical curves or simplifications were included in the analysis. In
thedevelopment, special attention was paid to the efficient use of computer capacity,
and to the simplicity in formulation of the analyt:ical procedures without losing the

numerical stability and accuracy of a rigorous solution.

After thoroughly evaluating the normal procedures used in the design of semi-rigid

frameworks, Ackroyd (131) suggested modification to the limit of drift of buildings.
A modified design procedure was included in his proposal. This procedure
approximates the influence of connection flexibility on force distributions within
the framewbrk, so that girders size could be reduced at the expense of increases in

the exterior columns. It was demonstrated that the net effect 1s an overall reduction

In steel tonnage for members on the order of 4% to 11%.

In 1988, Jaspart (132) proposed a hand calculation procedure for the evaluation of
the collapsc‘ ioad of semi-rigid frameworks based on the generalizatioﬁ of the
modified Merchant-Rankine formula (42). Numerical examples were performed
and the results compared with those from a conventional non-linear analysis. The
agreement was found to be excellent. At the time of writing, further calculations
and comparisons were being made at the main research centre to verify the validity

of the proposed method.
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Conventional structural analysis of frameworks are usually carried out with the
postulation that the joint panel zone deformation is negligible. In actual structures,
the joint panel may deform to such an extent as to affect the overall behaviour of
a framework. This effect has received attention only very recently by Lui and Chen
(93), Kato et al (133) and Tschemmernegg and Hunter (101). The effects of joint
panel deformation on the seismic response were investigated by Popov (134) and

Krawinkler and Mohasseb (135)

1.5 SUMMARY

The literature showed that there is an immense wealth of information available and
a great deal of work. has been done concerning the analysis of ;igid frameworks. A
great amount of effort has also been concentrated on the inclusion of the various
non-linear effects. The introduction of the limit state design saw a sudden*risc in

the plastic analysis of rigid frameworks.

Realising the non-linear connection stiffness effects on the behaviour of
frameworks, numerous experimental investigations were carried out on commonly
used connections. Both linear and non-linear models of the connection

moment-rotation characteristics were obtained. These models were then
incorporated into the analysis of frameworks with the objective of obtaining more

information as to the effects of semi-rigid connections.

Before the development of the computer-based stiffness matrix method of analysis
, designers would not even consider the use of semi-rigid connections due to the
tedious and complex analysis involved, not to mention the insufficient
investigations and validified data on conncctions:. Intensive studicé; both theoretical
and experimental, were undertaken only rather recently, especially in the United

States, in order to arrive at expressions simple and yet safe enough for design use.

36



In the design of cold-formed thin-walled structures, the behaviour of the individual
members under load has been the subject of much research. The overall structural
behaviour depends not only on the member behaviour in isolation, but also on how
the members interact. Although some work has been carried out on frameworks
composed of cold-formed thin-walled members, the study of the combined effects
of semi-rigid connections and the problems associated with thin-walled members
ontheir behaviouris relatively very little compared to frameworks constructed from
hot-rolled members. Hence, it is felt that there is a need to provide farther insight
into the study of cold-formed thin-walled framework with semi-rigid connections.

The work carried out and compiled in this thesis has been performed to fulfil this

need.

In this thesis the behaviour of symmetrical single and double storey frameworks,
constructed with cold-formed thin-walled plain channel members and semi-rigid
connections, as shown in general form in figure 1.5.1, is investigated both

analytically and experimentally.
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Fig. 1.2.3 The Merchant-Rankine Load compared with the Theoretical Load.

Fig. 1.2.4 Modified Merchant-Rankine Formula.
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~ Fig. 1.3.8 Parameters of the Colson’s Power Model.
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U S
Equation for:

Connection Ed4 EA, | Edu
type F F F
(1) (3) (4) (5)
Stiffened (28)S or (32)P (20)S -—
(43)
Unstiffened (28)S or (32)P 29)S (44)

(39)

Note (34); (35) and (37) Note (34); (51)
and (37)

Note: S = Snug tightened bolts; P = Pretensioned boits.

Table 1.3.3 Expressions for K.

Equaton for;

Eldp Eiy Edue Edp Educy
Failure mode F F F F F
(1) (3) (4) {5) (6) (7)

Shear yielding R S . (28)S or (32)P (47) -
Note (34); (35)
Note (34); {35) and (37) ,
Web buchling (in ._M — (47) (31)
compression .
flange level)

Note: § = Snug tightened bolts; P = Pretensioned bolts.

Table 1,3.4 Expressions for K, for Unstiffened Connections.
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Type of Model References Year Advantaqges Disadvantanes

W

1. Linear
Simple to use Inaccurate at high
Baker 1913 rotation values
Stiffness
Rathbun matrix only
tejuices
initial

modification

m

. Bilinear

Lionberqer 1969 Simple to use Inaccurate at
£ Weaver some rtotation

Curve follows values
Romstad & 1970 M=9 curve more

closely than
Linear moddel

i - i il aplenilly Sl S

J. Polyncmial Can produce
Sommery 1970 Produces a close fnaccurate (eaven
arproximation to nrgative)
the shaoe of the connecticsn tangenr

Frye o 1975 M-4 rdata stiffness values
Morris

. Nonlinear
Radziminsk] 1982 tequires {terative
et al evaluation

m

4. Cubic B-Spline Produces a Nonlinrar .'.
very clone requices
approximation iterative
to any M-¢ evaluation
data 3set

Jnnes, Kirtby 1910 Prtowluces Reqquites

& Nethercot accurate . special
values of numet ical
connection procedures
stiffness for

esvaluation

-m

S. Exponential Produces a qood Nonlinear
fit to the test requires
data for single iterative
angle connecec= evaluation
tions;

Richard et al 1980 untried for other
Requires
types but should weight ed
be suitable

least squares

evaluation
_________l“—-—_____—__—-___—-_

6. Ramperrg-Os-jood Producrs a nood tionl jnear
(»xponential) fit to 3 variety grquires

of tesat data, {terrative
evaluation.
Similar to type Requires

Ang & Morris 1984

veighted
"'ﬂ"t arvyreq
. evaluation,
A e mmmamme
7. Exponential ¢ Yre 1904 Produces 3 qocd Honl ineyy
correction it to Authnr's reepiires {terative
own data evaluation
Has a semi- Untried cutside range
analytical of original data

Table 1.3.5 Representation of Connection Moment-Rotation Curves.
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Connection Reterence Description of model M —d curve

Single web
angle —_ - —

Web side Richard er al. Dimensionless.

angle (1980) equation based upon
nonlinear finite- -
element analysis of
several connections

Double Lothers (1951) Linear equations for
web initial stiffness and
angle connection moment r
capacity, based upon -
elastic analysis of
web angles

Lewitt er al.  Two equations based
(1969) upon elastic and
plastic analyses.
with intermediate
transttion. Equations
contain factor evalu-
ated emptricaily

\

Header — — —
plate
End plate  Tarpv and Equations for initial
Cardinal - - M~=d curve (almost
(1981) linear) and ultimate

moment capacity.
‘based on para-
metric study using
finite-efement
program

|

Krishnamurthy Equation for initial
etal. (1979) M- curve (almost

linear), based on
parametric study
using two-
dimensional elastic-
plastic finite-element
program

Johnson and  Linear equations for
Law (1981) initial stiffness and
plastic moment capa-
city, based upon
elastic and yield line
analyses, respectively

Top and Lothers (1951) Linear equations for
seat initial stiffness and
angle connection moment

capacity, based on
elastic analysis

Maxwell Linear equations for
et al. (1981) tnitial stiffness and
ultimate moment.
based on finite-
element analysis of
several connections

Table 1.3.6 Mathematical Modelling of Connection Moment-Rotation

N il

Behaviour.
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2.1 INTRODUCTION

The advent of electronic computer has removed the problem of forming and solving
large sets of equations. In the stiffness matrix method of analysis, which is solely
a computer based method, the structure 1s represented as an assemblage of discrete
elements interconnected at joints or nodes i.e., points at which two or more members

meet. The relaxation of this definition will be discussed later.

In the stiffness matrix method, the nodal displacements are selected as unknowns.
The elements are represented by stiffness matrices that relate the element end
displacements to element end forces. The element models ar; assembled into a
system model by imposing conditions of compatibility and cquiliErium. The systém
model relates the nodal displacements to applied nodal forces through the system
stiffness matrix. Once the system model 1s solved for the nodal displacements, any
measure of response can be dctcrmincd: In this study, the structure is idealized as

a two dimensional or plane framework.

2.2 NOTATION AND AXES

A typical element is shown in figure 2.2.1. Associated with the element is a set of

element axes, which will not, in general, coincide with the axes of other elements

of the structure. The right-handed element axis system is adopted and the x -y

plane coincides with the plane of the structure.

There is a possibility of two linear displacements and one rotation at the each end
of the element as illustrated in figure 2.2.1. Associated with each displacement there
is a corresponding force or moment and these are shown in figure 2.2.2. The above

mentioned figures also show the positive sense of displacements and forces.

The forces and associated displacements at the ends of the element, 1n the element

axes system, are related by the well known element stiffness matrix equation
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k d (2.2.1)

o
]

where

P= [p.ri’py”mzl’px?’pyl”mz.?]r

d= [d.xl ’ dy! ) 9:! ) dﬂ’ d)'z’ 612]T

and Kk 1s a six by six element stiffness matrix.

2.3 COORDINATE TRANSFORMATION

Equation (2.2.1) shows how the element end forces are related to the end
displacements, both in the element axes system. Elements meeting at a node will
In general lie at different angles. Consequently, the element axes will be
inconveniently oriented, which precludes their use when considering equilibrium
and compatibility. This can be overcome by transforming the element force and
displacement vectors to the structure or global axes system using the transformation

matrix,

R 0
T = [0 R:l (2.3.1)

where the rotation matrix is

cos@ sin® O
R=] —sin® cos® O (2.3.2)

0 0 1

where 0 is the clockwise rotation of the element about node 1 that will make the

element axes coincide with the structure axes.

By expressing the force and displacement vectors in the structure axes system,

equation (2.2.1) becomes

T d

-
-cu
I
=
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The prime denotes reference to the structure axes system. Premultiplying both sides

by T' gives

pP = (T" kK T) d
or

pP = k' d (2.3.3)

k is the element stiffness matrix in the structure axes system, and

k! = TT k T (2.3.4)

2.4 LOAD BETWEEN JOINTS OR NODES.

When an element carries load along its span, the forces developed must be taken
into account. Such forces can be dealt with using the concept of fixed end forces,
equivalent joint forces and superposition. As the name implies, fixed end forces
are forces developed at the ends of the element when fully fixed. Equivalent joint
forces are the negative of the fixed end forces. The fixed end forces are an artificial
system of applied loads that serve to hold the nodal displacements to zero. To return
to the true structural behaviour, it is necessary to superimpose the equivalent joint
forces. The element end forces and the structural displacements are obtained by the

superposition of the effects of the fixed end forces and the final nodal forces, which

will include any nodal loads.

For an element carrying point loads along its span, the fixed end forces concept can
be discarded by putting nodes at the loading points. Hence, the fixed end forces are

. only required when the element is carrying distributed loading.
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2.5 STRUCTURE STIFFNESS MATRIX

Once the individual element stiffness matrix in the structure axes system of a
structure has been formed according to equation (2.3.4), the stiffness matrix of the

* structure, K, can be obtained by assembling of the element stiffness matrices in the

conventional manner. The structure nodal load vector, P, consists of the nodal

applied forces and equivalent joint forces, if any. ﬁénce, the final form of equation

o

(2.3.3)1s - .

o
4"#‘:

P = K D (2.5.1)

To solve for the structure nodal displacements, there are several standardized
procedures available. The procedure employed here is the Choleski Triangular

Decomposition method of solution. A detailed description can be found in Appendix
1.

Once the structural displacements are known, as stated before, the element end

forces can be determined from

p = k" d + p/ (2.5.2)

where p,’ is the element fixed end force vector in the structure axes system.
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Fig. 2.2.1

General Element Axes System ond Associated Displacements.
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ELEMENT STIFFNESS MATRIX
AND
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3.1 INTRODUCTION

It has been shown in the previous chapter that once the individual element stiffness
matrix is known, the structure stiffness matrix can be formed. This chapter deals
with the derivation of the element stiffness matrix and fixed end forces for both the
rigid jointed and semi-rigid jointed element. In the derivation, the following

assumptions are made.

1) Displacements are small.

2) Plane cross sections remain plane after bending.

3) The element material behaves in a linear elastic manner.

4) The element is straight and prismatic.

5) All loads act in the plane of the structure i.e. planar loading.
6) Shear deformation 1s neglected.

7) Effects of axial load are neglected.

3.2 RIGID JOINTED ELEMENT

3.2.1 ELEMENT STIFFNESS MATRIX

The element stiffness matrix consists of stiffness influence coefficients. These are
the actions imposed by the supporting medium wheﬁ unit displacements occur In
isolation at each end of the element in turn. These unit displacements are assumed
to occur one ata time, while all other displacements are held zero. They are indicated
in figure 3.2.1. The resulting forces are always in equilibrium, and therefore three

general equations may be drawn up :

Px +p12 = (3-2-10)
pyl+py2= (3.2.1b)
my, +m,=p,L (3.2.1c)



Consider displacement d,; of figure 3.2.1a,

EA
P = Td‘d (3.2.2)
From equation (3.2.1a),
EA
P = A d,

By treating in a similar manncf for displacement d,, of figure 3.2.1b,

EA

Px = """Z'"dxz
and
EA
Pa= T4z

The influence coefficients involving 6, and d, will be determined using the strain

energy method according to Castigliano’s Theorem which is detailed in Appendix
I1.

Considering the rotation 6, of figure 3.2.2, the element is given an end rotation 6,,.

The moment at a section of distance x fromend 11s

M = '-'mu +py1x (3-2.3)

The strain energy due to bending is

L M2
3.24
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Substituting equation (3.2.1c) into equation (3.2.3) and then into equation (3.2.4)

and using Castigliano’s theorem

—=d,=0
ap yl 4
yields
3m,2
Py =31
Again using Castigliano’s theorem,
oSE
== _0
amzz 32
yields
4
my; = _EE‘i 9:2 (3 .25)
and
6E]
Py =77 0,=-p, (3.2.6)
From equation (3.2.1¢),
2E] m,
my = T 9:2 = -_2-3 (3 .2.7)

Similar expressions to equations (3.2.5) to (3.2.7) can be set up for rotation 6,, by

careful transposition of the suffices.

Now, considering displacement d,; of figure 3.2.3, the bending moment at x 1s

M=- 2l +py!x
— -m:, — pyzx (3.2-8)

Substituting into equation (3.2.4) and using
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BsE _

am“ ezl =
yields
2m,,
Pa="p
and
oSE
apy2 - dy2
yields
6E]
m,, = __Ei-dﬂ (3.2.9)
From equation (3.2.1 ¢),
6E]
m.,= —F r:i),2 (3.2.10)
hence,
12E]
py2= L3 dyz (3.2.1 1)
and
12E]T
pyl - = L3 dyz (3-2.12)

Again, similar expressions to cquations (3.2.9) to (3.2.12) can be set up for a

displacement d,, by careful transposition of the suffices.

From the above, the full element stiffness matrix can be set up as shown in equation

(3.2.13) below :
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T 0 0 -—-L 4, 0
12EI  6EI -12EI  6EI
T = ' T T
ig. 0 ___GE] .2_.1.:“_{.

= L 1,2 L

- EA
— 0 0
12EI —6EI|

i L
4El

L

....... vee(3.2.13)

Note that the matrix is symmetric as required by the Betti-Maxwell’s Theorem, a
detail of which is given in Appendix III. Equation (3.2.13) can be expressed in a
more general form which will be used later in the derivation of the stiffness matrnix

of a semi-rigid jointed element.

Figure 3.2.4 shows the independent bending displacements at the ends of an element
and the associated forces. S,,, Sy, and S,, are pure rotation coefficients, Ty,, Ty, and
T,, are pure translation coefficients and Q;,, @, O, and (,, are cross

rotation-translation coefficients.

The generized element stiffness matrix expressed in terms of the above coetficients

is shown in equation (3.2.14).
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z v T
ThElI  QyEl
L’ L? 0
S,LEI )
k =
EA
L
sym

From figure 3.2.4, equilibrium gives

Oh=0y=5,+38),

Qrn=0,=5,+5,

Iw=T,=0,+0,

TIZ Q22 + Q12

(O El

S.,El

—0El

S,,El

veene(3.2.14)

(3.2.15a)

(3.2.15b)

(3.2.15¢)

(3.2.15d)

For a rigid jointed element, because of "symmetry” of the two ends, the properties

at the two ends must be the same. Therefore

and

Hence, from equation (3.2.15),
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Qu=Q12=Q21=Q22=S11+512=Q (3.2.16a)
T,=T,=T, =20 (3.2.16b)

Thus, it can be seen that the stiffness influence coefficients can be expressed in

terms of S;, and §,,, which are given by :

Substitution into equation (3.2.14) will produce a matrix similar to that of equation

(3.2.13), i.e., for a ngid jointed element.

The element stiffness matnx in the structure axes system can easily be obtained by

using equation (2.3.4) of Chapter 2.The final result is as shownin equation (3.2.17).

Ay A A Ay A Ag
Azz Ay Ay Ay Aze
A A A A
K’ = 33 34 35 36 (3.2.17)
Sym Ay Ass Ay
Ass  Agg
Ags
where
m =cos© n=sn6
TllEInz EAm ‘ TllEI EA
A"= L3 -+ 7 A12=[_ L3 +"L- n
Q“EIH TnE[nz EAm2
Al3 == 2 14— 3 +
L L L
T\,EI EA 0,,Eln
AIS_(T_T n A= [E
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TuEIm® EAn? ' OnElm

A22 = L3 + I A23 = L2
. szEI EA TnE[ m2 EAnz
#»=7y L™ A= T
OnElm S EI
Ay = IL; Ay = _%'"'
A = OnEIn A = Q,,EIm
ST 5 12
SLEl TnEIn* EAm?
A36 = L A“ -_— = 3 +-""'""'m'—'
L L
T.,EI EA 0,,EIn
— TEIm* EAn? A = _szElm
Ags= I3 T 2 56 L2
S,EI
A= T

3.2.2 ELEMENT FIXED END FORCES

Figure 3.2.5 shows a typical rigid jointed element with both ends fully fixed and
the span subjected to distributed loading W, at node 1 and increasing proportionally

to W, at node 2. At the section of distance x from the origin, the bending moment

18

Wix® (W= W
2 6L

M=Vx-M,—
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Applying simple bending theory and integration gives

dy _ V,x? Wx? (W,-Ww,x*
El === ———+ Mx +——+——m——+A
Integrating again results in
o Vx® Mx? wx? (Wz—W)x5+Ax+B
Y=TT6 T2 T 24 120L
Applying the boundary conditions
=0 and Q—O at x=0 and x=L
= dx -
yields
V=L w, LW, (3.2.18)
' 20 20 -
From equilibrium,
V,= 3L,W+--7—L,w (3.2.19)
2720 20 -
W, W,
=LY 1 2 3.2.20
! [20+30) (.2.20)
W, W,
M,=-L —= 3.2.21
2 (30+20) G221

Equations (3.2.18)to(3.2.21) are also valid when W, is greater than W, . Expressions

for cases when W,

=0 or W,=0 or W,

= W, can easily be obtained by substitution

into the above equations and these are tabulated and shown 1n table 3.2.1.
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3.3 SEMI-RIGID JOINTED ELEMENT

3.3.1 ELEMENT STIFFNESS MATRIX

This type of element is often used to simulate the deformations at the joints in bolted

steel structures. The flexibility of joints is modelled by including rotational springs -
at the ends of the element. In addition to the general assumptions mentioned earlier,
1t is also assumed that the joint is contracted to a point at the intersection of the

clement centre lines and panel zone deformation 1s neglected.

The sﬁffness coefficients relationships from equation (3.2.15) are still applicable
to the stiffness matrix in the structure axés system (equation 3.2.17). Because the
springs at the two ends of the semi-rigid jointed element may not be the same, the
element lacks "symmetry, i.e., S, is not equal to S.,. It can be seen from equation
(3.2.15) that once the coefficients S,,,5;, and §,, are determined, all the stiffness

influence coefficients can be obtained.

Consider the semi-rigid jointed element shown in figure 3.3.1. When moments M,

and M, are applied atthe twoends, the joint at 1 and 2rotate by 0, and 6, respectively.

For the element, the moments at ends 1 and 2 respectively are

El
M, =T(S1171+Su'¥2) (3.3.1)

El
where S,,=Szz=4 and §,,=2.

If the rotational stiffness at the ends 1 and 2 are R, and R, respectively, and assuming

that they behave in a linear elastic manner, then
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M, =R,©0,-7)

M,=R,)(0,-7,)

(3.3.3)

(3.3.4)

By eliminatingy, and ¥, from the above equations, the stiffness relationship between

M, and M, and the joint rotations 0, and 0, are

where

where

El —

M, ="£"(31161+-§1262)

El —

M, ="'E'(S 1261 +-§2292)

F=1+4(a,+ o)+ 120,00,

15

(3.3.5)

(3.3.6)



Hence, by treating S,,, S, and S, of equation (3.2.15) as S, 5 y,and S ,, respectively,

and then substituting into equation (3.2.17), the element stiffness matrix of the

semi-rigid jointed element in the structure axes system can be determined.

3.3.2 ELEMENT FIXED END FORCES

Consider the element shown in figure 3.3.2. The span is subjected to distributed
loading W, at joint 1 and increasing proportionally to W, at joint 2. The stiffness of
the springs are R, and R, as before. Because of the action of the distributed loading
and the end moments, the net rotation of the beam are v, and v, at ends 1 and 2
respectively. For the element, using the slope and deflection expressions from

Section 3.2.2 and applying the boundary conditions
y=0 at x=0' and x=L

results in

L{ M, M, 8W,\L* 7TW,L?
=] 1 72 3.3.7
h Ef(3+6+360+360 N

LM, M, TW,L?* 8W,L?
= —_— 3.3.8
b E!( 6 3 360 360 (3-3.8)

For the two springs, the moment-rotation relationship is given by

M, =Ry, (3.3.9)

Eliminating 7y, and %, from the above equations, the expressions for M, and M, are

of the form :
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L2

M, =€6;{W1(3+1602)+2W2(1+7(17)} (3.3.11)
L2
M2=—W; 2w,(1+7a,)+W,(3+160,)} (3.3.12)
From equilibrium,

L M,+M,
1='g(2W1 +W,)+ 7 (3.3.13)

L M,+ M,
V, =E(Wl +2W,) - T (3.3.14)

Expressions for various cases of W value can easily be obtained by substitution and

these are shown in table 3.3.1. By substituting o, = o, =0, 1.e., R, = R, = o0, Which
is the case of a rigid jointed element, expressions for the fixed end forces will be

similar to those as shown in table 3.2.1.
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Fig. 3.2.3
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W2L sz 3W,L TW,L

20 20

W,L2 W, L2 7 L 3W,L

20

Wl wop o owe WL’ WL WL
12 12 2 2

Table 3.2.1 Fixed End Forces of a Rigid Jointed Element

due to Distributed Loading

4 WL2(1+60c2) WL*(1+60)|WL M +M,|WL M,+M,
A e - ——+ AN S—
12F 2 L 2 L

Table 3.3.1 Fixed End Forces of a Semi-Rigid Jointed Element
due to Distributed Loading
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CHAPTER 4

ELEMENT STIFFNESS MATRIX
AND
FIXED END FORCES

(WITH AXIAL LOAD EFFECT)
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4.1 INTRODUCTION

The derivations of the element stiffness matrix and fixed end forces performed in
Chapter 3 were based on the assumption of no axial force acting on the element.

As such, they are only applicable in analysis where axial loading is very small or

negligible. In the study of stability, the axial loading plays an important role.

This chapter deals with the derivation of the element stiffness matrix and fixed end
forces of both the rigid and semi-rigid jointed element taking into account axial
loading on the element. The assumptions are similar to those mentioned in the

previous chapter, except for the axial loading.

4.2 RIGID JOINTED ELEMENT

4.2.1 ELEMENT STIFFNESS MATRIX

Figure 4.2.1 shows a prismatic element 1-2 of constant flexural rigidity EJ and of

span L. End 1 is acted upon by moment M, and rotates through an angle 6,, while
end 2 1s rigidly held in position and direction. The restraining moment at end 2 is

M,. The element carries an axial compressive load P. When the influence of axial

load is considered,
EI
Ml =Y "r 91
and
M, B
M,

Substituting the first equation into the second gives

M,=scC %91 4.2.1)
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s 1s a factor modifying stiffness EI/L while ¢ is a carry-over factor. s and ¢ are

called stability functions and depend on the axial load. Taking moment about end

2,

___(M1+M2)

V, T

(4.2.2)

At the section of distance x from the origin, the bending moment is

Using simple bending theory and substitution of the bending moment equation

result in the differential equation of the form :
— Py == (Vx-M,)=0 (4.2.3)

The solution of the above equation 1s

y =A sinux +B cospx +

1 {M—M,} 4.2.)

W El L

Applying the boundary conditions

y=0 aa x=0 and x=L

the integration constants obtained are

1
A= _p.zEI (M, cotyL +M,cosecpL)
M,
B=—
WEI
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Differentiating equation (4.2.4) gives the slope

dy (M, +M,)
WEIL

E;=Aucosp.x—Bpsinux+

Applying the boundary condition
% = () at x=L

results in

Mz |JL'-SinlJ.L

I!
-

— =0, aa X

and using

M,L
EI®,

from equation (4.2.1) results in

s ~ uL(1—pL cotpyl)
- pL
2tan> —pL

L
F

From equations (4.2.1) and (4.2.2),

86

M,=sian—uLcosp.L

(4.2.5)

(4.2.6)

(4.2.7)



V, =-E-12-s(l +¢)8, (4.2.8)

Expressions equivalent to the above can be set up for the moments and shears arising

when end 1 1s held and end 2 rotates.

Now, considering the displacement d,, figure 4.2.2 shows the element 1-2 initially

carrying end loads P, deflected to position 1°-2° without end rotations. The

deflections can be conveniently thought of as having taken place in two stages:

a) A rigid body movement of 1-2 to the position 1°-2’ indicated by the thinner
line. No end moments result from this movement.

b) Equal rotations through angles —0 at each end to bring 1-2 to its final

configuration.

Provided that P is constant during the two stages, the final result can be obtained

by superposition. Hence,

El El
M1=M2=—S—L—9—S C'Z'B
or
=M, =—2 d 4.2.9
Ml-Mz__Z;S(l-*-C) (dyz_ yl) ( odoo )
Taking moments about 2°,
M,+M, P
Vl = lL +Z(dy2 —dy})
or
V, ={—2%S(1 +C) +P} { dﬂ;dﬂ} (4.2.10)
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When P =0thenM,=M,=V,L/2.
Considering the axial displacement, d_,

p _5’_‘.( —d,) (4.2.11)

The element stiffness matrix in the element axes system (equation (3.2.14)) and in
the structure axes system ( equation (3.2.17)) are still valid except that the

coefficients §;;, T;; and Q,; must be redcﬁnfcd.

Figure 3.2.4 of Chapter 3 shows the independent displacements at the ends of the

rigid jointed element and the associated forces at the ends (neglecting axial effect).

Figure 3.2.4a is substituted by figure 4.2.3 when axial effect is considered. From

figures 3.2.4b and 4.2.3,

0,,=0,,=S,+5,, (4.2.12a)

Q. =0,y =515+ S (4.2.12b)
PL?

Ty =T, =04y + 0y — =7 (4.2.12¢)
PL’

=T, =0+ 0, — EI (4.2.12d)

Again, for a ngid jointed element, because of "symmetry" of the two ends, the

properties at the two ends must be the same. Therefore

and

Hence, equation (4.2.12) becomes
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On=01=0,3=0yp=5,+5,=0 (4.2.13a)

Ty, =T, =T, =20 —p’L> (4.2.13b)

where

S,=8¢C

If the axial load is tensile, the term y in equation (4.2.3) becomes negative. This

leads to a solution in terms of hyperbolic functions, i.e.

¢ = HL( —pL cothpl)

= (4.2.14a)
2tanh TR e

and

UL -=sinhpuL
~ sinhpL —pL coshplL

C (4.2.14H)

4.2.2 ELEMENT FIXED END FORCES

Figure 4.2.4 shows an element with both ends fully fixed and the span subjected to
uniform distributed loading W. The bending moment at the section of distance x

from the origin is

W 2
M. =Vx+Py —Ml——-:-z'—r-

Using simple bending tileory and substitution of the moment gives

=( (4.2.15)



The solution 18

y =Asinjx + B cos pux +

] Wx: Wix W
M, +
2 2 P

o —-—--——---) (4.2.16)

Applying the boundary conditions

. dy . :
y=0 and dx_o at x=0 gives

Applying the boundary condition y =0 at x =L gives

M, =-W—-(1 —E-L—cotE-L—) =-M, (4.2.17)

Tk 2 2

If the axial load is tensile, the trigonometry function of equation (4.2.17) should be

replaced by the hyperbolic function.

4.3 SEMI-RIGID JOINTED ELEMENT

4.3.1 ELEMENT STIFFNESS MATRIX

The approach used in deriving the element stiffness matrix 1s similar to the case
without axial load. From figure 3.3.1 of the previous chapter, the moments for the

element at ends 1 and 2 respectively are

El
M, ="Z"(Su% +512Y2) (4.3.1)
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where
and

For the springs,

M,=R,0,-7)

M,=R,(0,-v,)

Eliminating %; and ¥, from the above equations results in

El —

M, ='Z"(Suel +§1262)

El —

My =—(51,8, +5,6))

where

—  s+s5(1-cHa,
Su=T—=

— s+52(1_02)a1
2 T
— S C

S, ==
12 F

F =145, + o) +5%(1 - cHo,0,

91

(4.3.2)

(4.3.3)

4.3.4)

(4.3.5)

(4.3.6)

(4.3.7a)

(4.3.7D)

(4.3.7¢c)

(4.3.7d)



Hence, by treating S,;, 5,2 and S, of equation (4.2.12) as -S-,,,_S_u and S, respectively,

and then substituting into equation (3.2.17), the element stiffness matrix of a

semi-rigid jointed element in the structure axes system can be established.

It is worth mentioning that when bothd,; and ¢, tend to zero, i.e., a rigid jointed

element, then

|
I

From equations ( 4.3.7 a,b,c),

and

These are exactly similar to the pure rotation coefficients for arigid jointed element

with axial loading.

Furthermore, when the axial effect is neglected, i.e., P =0, then figure 1.2.1 of

Chapter 1 gives s =4 and ¢ =0.5. These are in fact the values similar to, and for

determining, the coefficients of the rigid jointed element without axial effect.

If only P =0 and then the pure rotation coefficients of equations (4.3.7 a,b,c) will

be similar to those of the semi-rigid jointed element without axial loading.

4.3.2 ELEMENT FIXED END FORCES

Figure 4.3.1 shows a semi-rigid jointed element subjected to an uniform distributed

load W. The stiffness of the springs at ends 1 and 2 are R, and R, respectively.
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