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Abstract 

As offshore wind farms grow there is a continued demand for reduced costs. Maintenance costs 
and downtime can be reduced through greater information on the asset in relation to its 
operational loads and structural resistance to damage and so there is an increasing interest in 
digital twin technologies. Through digital twins, an operational asset can be replicated 
computationally, thus providing more information. Modelling these aspects requires a wide variety 
of models in different fields. To advance the feasibility of digital twin technology this thesis aims 
to develop the multi-disciplinary set of modelling domains which help form the basis of future 
digital twins. Throughout this work, results have been validated against operational data recorded 
from sensors on offshore structures. This has provided value and confidence to the results as it 
shows how well the mix of state-of-the art models compare to real world engineering systems. 

 This research presents a portfolio of five research areas which have been published in a 
mix of peer-reviewed journal articles and conference papers. These areas are: 1) A computational 
fluid dynamics (CFD) model of an offshore wind farm conducted using a modified solver in the 
opensource software. This work implements actuator disk turbine models and uses Reynolds 
averaged Naiver Stokes approaches to represent the turbulence. This investigates the impact of 
modelling choices and demonstrates the impact of varied model parameters. The results are 
compared to operational site data and the modelling errors are quantified. There is good 
agreement between the models and site data. 2) An expansion on traditional CFD approaches 
through incorporating machine learning (ML). These ML models are used to approximate the 
results of the CFD and thereby allow for further analysis which retains the fidelity of CFD at 
comparatively negligible computational cost. The results are compared to operational site data 
and the errors at each step are quantified for validation. 3) A time-series forecasting of weather 
variables based on past measured data. A novel approach for forecasting time-series is 
developed and compared to two existing methods: Markov-Chains and Gradient Boosting. While 
this new method is more complex and requires more time to train, it has the desirable feature of 
incorporating seasonality at multiple timescales and thus providing a more representative time-
series. 4) An investigation of the change in modal parameters in an offshore wind jacket structure 
from damages or from changing operational conditions. In this work the detailed design model of 
the structure from Ramboll is used. This section relates the measurable modal parameters to the 
operational condition through a modelling approach. 5) A study conducted using accelerometer 
data from an Offshore Substation located in a wind farm site. Operational data from 12 
accelerometers is used to investigate the efficacy of several potential sensor layouts and therefore 
to quantify the consequence of placement decisions. 

 The results of these developments are an overall improvement in the modelling 
approaches necessary towards the realisation of digital twins as well as useful development in 
each of the component areas. Both areas related to wind loading as well as structural dynamics 
have been related to operational data. The validation of this link between the measured and the 
modelled domains facilitates operators and those in maintenance in gaining more information and 
greater insights into the conditions of their assets.  
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Chapter 1 

1. Introduction 

1.1. Background 

Offshore wind is a rapidly growing industry and has established itself as a leading source of 

renewable energy [1]. Not only is this the case in Europe where the industry first emerged [2,3], 

but also now in other markets including the United States [4,5] as well as Asian markets such as 

Taiwan [6,7], Japan [8] and others [9]. Current projections show global offshore wind capacity to 

reach 130-140 GW by 2030 and as much as 1500 GW by 2050 [10]. The offshore wind industry 

is rapidly growing, but to achieve the upper limits of these projections it is vital to further reduce 

the cost so that it becomes more competitive in both current and developing markets. 

The levelized cost of energy (LCOE) arises from a combination of capital expense to build and 

install the energy assets (CAPEX) as well as operational expense in running and maintaining the 

assets (OPEX). The balance of these costs varies between projects and depends as much on 

conscious choices from the designers as it does on circumstances of the project. A prevalent idea 

in offshore wind is that of ‘conservativism’ where designs are made stronger, or inspection is 

conducted more often than it must be. Conservativism is important for ensuring the asset achieves 

its intended design life, but it increases both CAPEX and OPEX. Conservativism, and hence 

LCOE, can be reduced by improving confidence in assessments of the wind farm. Improved 

confidence can come from either confidence in the design and its future loads or from the current 

state of the wind farm and this can come from improved models and data. 

There has typically been a strong motivation towards measuring structures as well as their 

environments. These data are vital for either operational monitoring or for building and validating 

models and analytical approaches. Many organisations, research groups or classification 

societies, now give recommendations for what sensors to use and how to use them [11,12]. This 

data can be an incredibly valuable resource and as more data is collected and stored, more ways 

need to be researched for how to get even more value from it. 

The concept of a digital twin is to replicate the operational asset as much as possible within a 

digital environment. This can be accomplished through a combination of data acquisition from the 

operational asset as well as a modelling framework. Models are constructed of the asset and its 

operational environment, which are then updated through sensor data, such as accelerometers, 

inclinometers or strain gauges [13]. Provided that the models behave sufficiently closely to the 

real asset, they can then give a valuable insight into its current and future state. 
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1.2. Problem statement 

The offshore wind-energy research and industry space is filled with models designed for a 

plethora of applications. These models, which relate to the structural health, include models of 

wind, wave and other loading, models of the structure itself and aero-elastic models. Using these 

models can lead to computational requirement challenges. Generally, as model fidelity is 

increased, the computational requirements rapidly increase. Additionally, offshore wind farm 

analysis requires the consideration of multiple interdependent physical phenomena which are 

challenging to model – particularly in modelling wind farm level aerodynamic wake interactions. 

Hopes for developing digital twin approaches can be greatly improved by reducing computational 

demand for models used. Additionally, behaviour of the structural response due to changing 

parameters is important for damage detection and assessing asset life. This requires a detailed 

model approach of the support structure itself. 

Many analytical offshore wind energy purposes should not be considered as deterministic but 

rather as subject to significant uncertainty [14]. Any analysis of the loads should consider that 

uncertainty, which is present in both the loading on the structure as well as the structural 

resistance. From a reliability perspective these two items are key in that the probability of failure 

of the structure can be considered as the overlap between the distributions of loading and 

resistance where the loading is the greater of the two. Therefore, research which works towards 

reducing the cost of offshore wind energy through lowering the uncertainty in the analysis should 

consider the modelling of both the load variation as well as structural variation, and should do so 

in such a way as to allow for uncertainty. 

1.3. Aim and objectives 

This research aims to develop modelling approaches related to offshore wind loading as well as 

to bridge the gap between structural sensor data and structural models by modelling structural 

response and studying accelerometer capabilities.  

The contribution to knowledge is investigating the effectiveness of computational fluid dynamics 

(CFD) models for modelling offshore wind farms in comparison to operational data. This is 

developed further through a framework for extending CFD models using machine learning 

approaches. A new weather time-series model is introduced which outperforms existing models 

in some ways. The contribution from the structural part is a sensitivity study of an offshore jacket 

structure which uncovers new considerations and challenges to vibration-based damage 

detection. Additionally, a study of accelerometer placement, using measured data, gives new 

insights into the impact of sensor layout on real measurements. 

The thesis aims to deliver the following objectives: 

1. Conduct a comprehensive literature review of offshore wind farm modelling approaches 

in order to map current state of the art as well as provide a reference. This includes wind 

farm wake models, hydrodynamic models, geotechnical models and structural modelling 

which relate to this thesis’s aim. 
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2. Model a reference offshore wind farm using CFD to evaluate the wake flow within the wind 

farm and the impact of changing parameters. 

3. Expand the CFD model using machine learning so that further results can be gained 

rapidly without significant loss of accuracy. Compare several models and evaluate 

performance compared to measured data. 

4. Investigate the effectiveness of weather time-series forecasting methods to determine the 

most suitable model for wind farm load estimation. 

5. Conduct sensitivity study of a reference offshore wind jacket structure to determine the 

change in dynamics as a result of changed parameters. 

6. Investigate sensor layout impact on the ability to extract modal parameters from 

accelerometers.   

1.4. Structure 

Due to the importance of modelling both wind farm load as well as structural resistance, this thesis 

approaches both challenges and does so structured as two parts. The first part comprises the 

wind load variation, modelling wake flow through a wind farm using computational dynamics, 

which is then approximated using machine learning to allow for rapid results while retaining 

fidelity. Additionally, weather time-series modelling is covered. The second part comprises the 

structural modelling aspect of the thesis. This includes sensitivity of the structural dynamics in 

response to changes in parameters and damage cases. There are also studies on accelerometer 

sensor layout using measured data. Finally, the project presents a coupled dynamic modelling 

analysis of the structure for crack growth estimation.   

This thesis is composed of portfolio of work which has been published in peer-reviewed journals. 

Each of the two parts in this thesis are composed of the following publications: 

 Literature review – offshore wind farm modelling approaches 

1. M. Richmond, D. Cevasco, A. Kolios “A review of modelling methods for arrays of offshore 

wind turbines” – Submitted  

 

• Part 1: 

➢ Offshore wind turbine wind wake modelling 

2. M. Richmond, A. Kolios, V. S. Pillai, T. Nishino, and L. Wang, “Development of a stochastic 

computational fluid dynamics approach for offshore wind farms” J. Phys. Conf. Ser., 

2018. [15] 

3. M. Richmond, A. Antoniadis, L. Wang, A. Kolios, S. Al-Sanad, J. Parol, “Evaluation of an 

Offshore Wind Farm Computational Fluid Dynamics Model Against Operational Site 

Data” Ocean Engineering 2019;193. https://doi.org/10.1016/j.oceaneng.2019.106579 

[16] 

 

➢ Machine learning expansion of wind turbine wakes 
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4. M. Richmond, R. Pandit, A. Sobey, A. Kolios, “Stochastic assessment of aerodynamics 

within offshore wind farms based on machine-learning” – Renewable Energy, 

2020;161:650-61. https://doi.org/10.1016/j.renene.2020.07.083  [17] 

➢ Time series weather forecasting 

5. M. Richmond, R. Pandit, S. Koukoura, A. Kolios “Effect of weather forecast modelling 

uncertainty to the availability assessment of offshore wind farms” – In revision pending 

final decision 

 

• Part 2 

➢ Offshore jacket foundation structural variation 

6. M. Richmond, U. Smolka, A. Kolios, “Feasibility for Damage Identification in Offshore Wind 

Jacket Structures through monitoring of global structural dynamics” – energies, 

2020;13:5791. https://doi.org/10.3390/en13215791 [18] 

➢ Sensor layout study 

7. M. Richmond, S. Siedler, M. Häckell, U. Smolka, A. Kolios, “19052 Impact of 

Accelerometer Placement on Modal Extraction of Offshore Wind Structures” – Ocean Mar. 

Arct. Eng. 2020, 2020. [19] 
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Chapter 2 

2. Literature review 

Paper: 

1. M. Richmond, D. Cevasco, A. Kolios “A review of modelling methods for arrays of offshore 

wind turbines” – In progress  

2.1. Introduction 

The European Union is well on its way to achieving its objective of 20% total energy consumption 

from renewable energy by the year 2020 [20] and a revised target of 32% by 2030 [21]. Two 

important aspects to be improved upon in achieving these targets from wind energy are reducing 

the cost of operational expenditure (OPEX), which can range from 25% – 30% of overall energy 

generation cost [22]; and increasing availability, which is presently around 97% [23,24]. To 

achieve higher performance, the research effort to numerically model offshore wind farms has 

been performed for two primary reasons: 1) increasing energy revenue at the design stage via 

optimizing the layout of wind turbine generators (WTG) throughout the site [25] and 2) determining 

load and resistance variation for individual WTG support structures throughout the wind farm 

[26][27]. These two points can also be used together for enhancing the control strategies and 

finding the best compromise between the farm power output and the loading on the downwind 

structures [28].  

The grouping of turbines into an array leads to a reduction in the power production and increased 

dynamic loading of the downstream turbines, due to the introduction of velocity deficits and higher 

turbulence levels in the wake aerodynamics [29]. Additionally, uncertainties on the estimation of 

soil characteristics at the farm level, and the hydrodynamic loads on individual structures [30], 

can have a considerable impact on structural fatigue life estimation. Therefore, when aiming to 

forecast numerically the performance and loads on the turbines in a farm the key areas to be 

modelled are:  

1) the physical and stochastic aspects of the environmental conditions; 

2) the structure-environment interaction, in terms of the aerodynamic loads – for estimation 

of both performance and excitation on the structures, hydrodynamic loads – for wave and 

current excitations, and the soil-structure interactions.  

The target audience of this chapter is wind farm developers or wind energy consultants that are 

looking for which model to use for a future offshore wind farm. The purpose of such a broad 

approach, rather than a more targeted chapter on one of the topics covered, is to show the 

interrelation and the commonality between the modelling domains. This chapter aims to review 
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the modelling approaches which can be applied to offshore wind farms at an array level as well 

as give a list of numerical tools which employ these models. By ‘array level’ it is meant that the 

variation between multiple turbines is modelled, for example the wake within a wind farm or the 

geotechnical variation within the farm site. Models related to individual wind turbines or 

foundations are only covered in how they form part of ‘array level’ models. This chapter can help 

guide wind farm modelling activities at either a design stage or an operation and maintenance 

stage. It is found that many of the areas covered are well developed and have a broad range of 

available numerical tools to implement them. Wind farm aerodynamics can be modelled in a wide 

variety of ways which have been tested and compared to each other. However, as computational 

capabilities improve, the balance between resources and requirements can lead to the use of 

more high-fidelity models. There are numerous well-established methods for wind, wave and 

current models, mostly based on statistical approaches. However, machine learning is an active 

area of research yielding new approaches which can be used here. Wave loading can be 

modelled analytically through linear or non-linear wave theory as well as computationally, 

however there is very little research on the difference in wave loads within wind farms for different 

support structures. 

Statistical weather forecasting methods are presented because they can be used as direct 

parameter inputs to the wind farm variation models. More advanced mesoscale resource models 

are not presented because this would comprise a very large section without adding to the focus 

of the chapter. Weather forecasting models which can be used to predict wind and wave 

conditions are presented in section 2.2 beginning with statistical methods followed by machine 

learning approaches for time series forecasting. The wind and wave conditions vary in time and 

between the sites. These variations can be monitored by buoys and met masts by taking 

measurements at predetermined intervals. Once these data are gathered, they can be converted 

into models such as probability density functions which can be used as inputs for further analysis. 

Some commonly used functions in offshore wind are Weibull [31], Rayleigh [32] and lognormal 

[33], among others [34]. Spatial variation models are presented at the end of this section, 

discussing how surrogate modelling approaches can be used for predicting soil parameters. 

Section 2.3 presents the loads and soil structure interaction in the offshore environment. This 

section starts presenting the commonly used wave theories, for estimating the wave patterns of 

a specific site and on a time-variant basis. Then the main approaches to calculate the 

hydrodynamics loads on the wind turbine structure are briefly introduced. While models exist for 

determining the wave field and load variation in arrays of wave energy converters and tidal 

turbines, there appears to be a gap in research on wave load within the wind farm; the wave load 

approaches tend to assume a single structure with no array level effects. The soil dynamics are 

also presented in this section where the modelling of soil-structure interaction is discussed, as 

well the phenomenon of scour. 

The aerodynamic principles and models are presented in section 2.4, starting with models to 

determine the impact of the turbine on the flow field. These models include generalised actuator 

methods, blade element momentum theory, and direct computational fluid dynamics (CFD) 

modelling. This is followed by methods for evaluating the variation of the wind field within a wind 

farm through modelling the downstream flow field.  
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A review of performance requirements of an individual turbine which may support the Digital Twin 

Model is given in section 2.5, followed by a review of damage detection approaches, given in section 

2.6 

A comprehensive list of numerical tools which use the modelling methods discussed in this 

chapter are listed in section 2.7. This list includes applicable machine learning models as well as 

a list of wind flow modelling numerical tools. 

The application and importance of these methods are discussed in section 2.8 and a conclusion 

is given in section 2.9.   

2.2. Data-driven forecasting of wind and wave parameters 

When modelling the loading on turbines in a farm, the variations in the wind, wave and soil 

parameters may be considered temporally and spatially. For instance, the wind loads can vary 

temporally due to seasonal and diurnal phenomena, and in the short term for the presence of 

turbulence and gusts, while spatial variations include the shear effect of the boundary layer and 

layout-dependent effects of the wake generated from the other turbines in the farm. In this section, 

an overview of traditional statistical methods as well as alternative methods for the time and 

spatial forecast of the environmental conditions is given for the inflow wind, wave field and soil 

characteristics. 

2.2.1. Wind-wave-current data 

The characteristic environmental conditions for wind, wave, and current are typically defined in 

terms of: 

• Mean wind speed, wind direction and turbulence intensity, as well as a spectrum or 

turbulence modelling parameters, for the wind flow. 

• Significant wave height (Hs) – as the average of the highest one-third among the waves, 

peak period time (Tp), direction, depth averaged current velocity and other spectrum 

parameters, for describing the sea state. 

• Velocity, direction and depth profile, for representing the ocean currents. 

• Joint correlations between separate, but interdependent, variables. 

The wind and wave spectra provide an expression of their dynamic properties and fluctuations 

within a short‐term stationary state. In other words, a spectrum describes the statistical properties 

of wind and waves over a time period (typically, of about an hour for wind fluctuation and of 3 

hours for the sea state), covering all the energy distributions along a frequency range. [35]. 

2.2.1.1. Traditional statistical methods 

Some common probability distribution functions used for modelling wind velocity at the hub height 

include: Weibull [31], Rayleigh [32], lognormal [33] and Poisson [34] distributions, however 

several others have been suggested [32]. The Weibull distribution, shown in equation  (1) where 
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k is the shape parameter, c is the scale parameter and v is the velocity [31], is the most prominent 

distribution for wind energy use because it fits most wind regimes quite accurately [36]. This 

distribution is recommended by International standards, IEC 61400-12 [37] as well as the 

American Bureau of Shipping [38]. It is however not well suited to regimes with significant null 

wind periods [32]. The 2 parameter Weibull probability density function is as follows: 

 
𝑓(𝑣) =

𝑘

𝑐
∗ (

𝑣

𝑐
)
𝑘−1

∗ 𝑒−(
𝑣
𝑐
)𝑘

  (1) 

The Rayleigh distribution, where the k parameter is set equal to 2 [39], is a special case of the 

two-parameter Weibull and it gives a good general estimate where there is a lack of data available 

[32]. Despite the widespread use of the Weibull distribution, sometimes it is outperformed, for 

example, by the Lognormal and Gamma functions [40], so it is worth investigating different 

distributions for each site. The time series of turbulent wind can then be generated either 

statistically, via the use of stochastic inflow turbulence codes such as the one of TurbSim [41] or 

by physics‐based models, such as the Mann approach [42]. The implementation of the first 

became of common use in some of the most well-known aero-elastic solvers for wind turbine 

aerodynamics (i.e. in the AeroDyn of FAST [43] and the aerodynamics module of BLADED [44]), 

while the second is developed as a spectral tensor turbulence model and it is used in the 

generation of the inflow turbulence for wake modelling tools of the Dynamic Wake Meandering 

(DWM) model and EllipSys3D (later discussed in Section 2.7.2) [29].  

In the design phase, the wave parameters of Hs and Tz are commonly modelled with the following 

distributions: Lognormal [45,46], Weibull [47,48], Gumbel [49,50] among others. For the 

description of the short-term waves, if the spectrum data cannot be obtained from measurements, 

numerical approximations are used as common practise, such as the Pierson-Moskowitz and 

JONSWAP spectra for wind sea, or the Torsethaugen and Gaussian swell spectra suitable for 

swell sea and implemented in [51]. The spectrum needs to be carefully chosen to correctly 

represent the local sea conditions and the frequency distribution depending on the wave 

spreading. The realization of irregular waves in the time domain is then obtained using inverse 

fast Fourier transforms based on the spectrum.  

The long-term environmental conditions can be formulated as a site‐specific joint probability 

distribution of the given parameters (as waves are generally a wind driven phenomenon) [33], or 

can be modelled independently. It is vital to account for the spatial heterogeneity within a wind 

farm as use of only a single wind speed distribution for an entire wind farm site can lead to 

significant error. Yang et. al. found that spatial heterogeneity can account for 24.3% error between 

predicted and measured power for total installed capacity [52]. 

As regards to the ocean currents, driven by wind, tides and geostrophic phenomena, they do not 

only contribute to the static loads on the substructure of the offshore wind turbine, but can also 

be responsible to modification in the amplitude and frequency of the wave loads (see Section 

2.3.1) and/or affect the scour formation (see Section 2.3.2.2).  According to standards, the velocity 

and directional characteristics of the sea current should be evaluated together and the extreme 

sea surface current velocities assessed via site-specific assessment and/or metocean database. 

Nonetheless, no requirements are given for determination of the current velocity with depth, thus 



24 
 

the standard profiles can be applied for evaluating the effect of sub- and near-surface and 

breaking wave induced currents [53].    

Extreme values can be estimated from these statistical models and these extreme values can be 

an important part of offshore wind structural design. Examples of these extreme values are 50-

year or 100-year wave, which is the largest wave likely to be encountered once within a given 

return period. A recommendation is given in IEC-61400-3 [54]. This commonly accepted design 

consideration has been used in many offshore wind design studies [55–57]. 

2.2.1.2. Regression methods for forecasting and simulation 

In addition to traditional statistical methods, regression models exist which can either forecast or 

simulate the wind and wave time-series. Regression models fundamentally make predictions by 

modelling the relation between the independent and the dependant variables. Although the 

approaches can have a statistical basis, the application is done algorithmically. In the case of time 

series, the prediction is a combination of trend, seasonality, and noise. These can be modelled 

as dependant on time and so can be reproduced into the future.  

A clear distinction needs to be made between time-series forecasting, where there is some 

expectation of relatively high accuracy, and time-series simulation, where the result behaves in a 

representative manner. In highly stochastic variables such as wind and waves, it can be difficult 

to accurately predict individual observations, particularly over longer time spans. In this regard, 

the time spans can be divided into very short term of a few seconds to 30 minutes, to long-term 

of between 1 day and 1 week [58]. For other applications such as micro-siting and lifelong O&M 

models, longer time spans of simulation are required, sometimes years ahead [59]. Very long-

term models need to only replicate the mean and level of deviation, but can have high errors for 

individual observations, and can generally be extended for a much longer period. This distinction 

is important because it has a high influence on both the choice of model and the training approach. 

As an example, in forecasting one might take only the newest data, expecting it to have a greater 

correlation to near-future values. For many approaches, the training data needs to be made 

stationary, meaning that the trend and seasonality need to be removed, which can then be 

reintroduced into the prediction. 

In terms of time series forecasting methods, recurrent neural networks are a popular method, 

particularly Long-Short Term Memory LSTM approaches [60,61], these methods are 

computationally heavy and can make predictions within a future timeframe of a few hours. ARIMA 

(Auto-Regressive Integrated Moving Average) [62] models are highly effective for short term 

forecasting but are limited in long-term predictions due to the tendency for the autoregressive part 

to converge towards the mean. Ensemble methods can be used as well, which combine a series 

of weak learners to form a strong learner. Methods such as random forest [63,64], which works 

by dividing the training data through hyperplanes and then giving predictions based on which 

section a new observation occurs. Another example is gradient boosting [65–67] which iteratively 

adds new learners to correct the residual from previous weak learners. These methods can be 

very fast to train relative to the others, making them efficient with large data sets. 
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For time series simulation, Markov-chains are a common method and have been employed 

successfully for wind modelling [68–71]. Markov-chains work well for long term simulation and 

can be constructed with a separate model trained on each month to capture annual seasonality. 

A hybrid statistical regression method for wind and wave time-series simulation is proposed by 

Richmond et. al [59]. In this approach a series of regressive models are used to predict time-

dependant statistical parameters including mean, standard deviation and covariance matrixes. 

These statistical parameters are then used to randomly sample from a distribution, giving a likely 

simulated value. For simulating both wind and wave values together, a multi-variate distribution 

is used. 

2.2.2. Soil characteristics 

The way in which the soil supports the structure is not only vital for all life-cycle phases of a wind 

farm but also subject to considerable uncertainty. This uncertainty can result from many factors, 

including limited measurement data or from time dependant phenomena. Some of the modelling 

approaches aimed at addressing this uncertainty are now presented. First, stochastic spatial 

models are presented, which address improving site knowledge based on limited data.  

Typically, there are in-situ soil tests conducted at the locations of each turbine before the turbines 

are installed [72]. However, this might not always be the case, particularly in the site layout 

planning stage before the layout is decided, so stochastic spatial variation models are required to 

model how the soil is likely to vary, based on known data points. A widely used stochastic spatial 

soil surrogate model is ‘Kriging’, which was first proposed by Krige [73] in 1951 for use in mining. 

Kriging is a geo-statistics method belonging to the ‘maximum likelihood’ family where there is 

assumed to be a spatial correlation between data points [74–76]. In the Kriging model, the output 

function is derived from a polynomial global approximation, vector of regression coefficient and a 

random process function [77]. A number of algorithms can be used to implement Kriging, 

including: turning bands method, fast Fourier transforms and discrete Fourier transforms [79, 80]. 

Kriging not only produces a response surface, which crosses through the data points, but also 

provides some estimate for the uncertainty [75]. 

However, throughout the wind farm there is some lack of certainty in the soil constitution and 

stratification. Vahdatirad et al. [72] investigated random field theory to create a stochastic model 

of the undrained strength and Mohr-Coulomb model for the constitutive behaviour then applied 

this to a limit state model to assess uncertainty in structural resistance. Carswell et al. [80] 

discussed how probability distribution functions such as Gaussian, log-normal and Beta 

distributions can be used to model uncertainty in soil variability. Andersen et al. [81] proposed a 

method for combining the random models of the soil strength with deterministic structural models 

and a Monte-Carlo approach to determine natural frequencies of a monopile foundation. The 

geotechnical parameters play a key role in modelling the dynamics of offshore wind turbine 

support structures and their uncertainty can account for a significant deviation between a 

modelled structure and measured dynamics [82]. 
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2.3. Loads in the offshore environment 

The hydrodynamic loads result from the waves and current. The importance of wave loads tends 

to increase as water depth increases, and the modelling of non-linearities could be essential for 

certain types of structures and/or site conditions. The modelling of soil-structure interaction is 

another driving criterion in both the design and operating phases as this can be a high-sensitivity 

factor in the structural response. 

2.3.1. Hydrodynamic loads 

The selection of the most suitable numerical model for the representation of the wave pattern and 

the calculation of the hydrodynamic loads on an offshore structure depends on its geometries 

(shape and size as well as fixed or floating body) and the site characteristics (i.e. sea level and 

wave conditions) [83]. The hydrodynamic pressure loads on slender structures – which can be 

assumed to have a little effect on the wave field – can be estimated by solving the undisturbed 

potential flow. If the body has a larger volume, the diffraction effect should be considered, and 

thus the solution of the velocity potential should account for the presence of the body. Finally, 

considering the motion of the structure, radiation loads should be considered by including the 

contribution of the added mass and linear damping. 

2.3.1.1. Wave loads modelling 

One of the most employed and well-known methods for the calculation of the loads on the 

structure is the Morison’s equation [84,85]. This semi-empirical approach assumes hydrodynamic 

transparency of the structure, and it is thus suitable when the body diameter (D), for a vertical 

cylinder body, is small with respect to the wavelength (L). Morison’s equation considers the 

contribution of two forces (integrated along strips of the length of the structure): the inertial force 

and nonlinear drag force. For non-slender bodies (for D < 0.2 L), the MacCamy and Fuchs 

equation [86], which reformulates the inertia term of Morison’s equation to consider diffraction 

effects, can be used in the case of simple shapes [83].   

However, neither of these equations are suitable for accurately capturing higher-order effects, 

both neglecting the loads from nonlinear potentials. The consideration of nonlinear effects due to 

diffraction and nonlinear waves might be important in certain cases. For instance, Peeringa [37] 

and Henderson et al. [55, 56], among other authors [87], argued that linear wave theory is 

inadequate for wind turbines that are in shallow water and non-linear wave models should be 

used. Nonlinear wave models range from higher order Stokes, cnoidal wave, solitary wave and 

stream function wave theories [88]. Additionally, the high frequency loads related to steep, 

nonlinear waves might be better captured by the employment of the Rainey equation [89,90] and 

the FNV (Faltinsen, Newman, and Vinje [91,92]) theory. The comparison of these methods for the 

calculation of the loads on a monopile structure for steep nonlinear wave conditions was proposed 

by Ristić’s thesis [93]. Chen [94] investigated the pros and cons of the application of Rainey 

equation and FNV method for the loads on a spar-type floating structure. Regarding the loads 

from breaking waves, the modelling of this complicated physics is an active area of several 

researchers [95–97], and has been summarised for offshore wind structure in the review of Chella 

et al [98].  
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Table 1. Hydrodynamic model overview, adapted from [83]  

 Morrison  

equation 

Diffraction 
theory 

CFD 

Time 
domain 

Freq. 
domain 

Freq. domain 
Time 

domain 

Force 

Transverse  

inertia ✓ ✓ ✓ ✓ 

drag ✓ ✓3 ✗1 ✓ 

Lateral (drag) ✓ ✓3 ✗1 ✓ 

Pressure ✗1 ✗1 ✓ ✓ 

Geometry 

Diffraction  ✗2 ✗2 ✓ ✓ 

Surface 
effect 

1D ✓ ✓ ✗ ✓ 

3D ✗ ✗ ✗ ✓ 

Big structure ✗ ✗ ✓ ✓ 

Wave 
model 

Linear - Stochastic ✓ ✓ ✓ ✗4 

Nonlinear - Wave 
extrapol. 

✓ ✗ ✗4 ✓ 

Applicability 

poor * 

okay ** 

good *** 

Ease of use *** ** ** * 

Calculation speed ** *** *** * 

Commercial availability *** *** *** ** 

1 can be modelled by adding an extra term 

2 can be modelled by MacCamy-Fuchs correction 

3 linearised 

4 high computation power 
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In Table 1 an overview of the main approaches for the derivation of wave loads is given. This is 

adapted from the review work of [83]. More recently, and extensively, the OC5 (offshore code 

comparison collaboration continuation with correlation) research project investigated and 

compared the load prediction from several open access and commercial tools. For tank testing 

and load estimation on a scaled model of the OC3 monopile structure [99], most of the OC5 

participants employed the Morison equation in its relative-motion form. A few others opted for a 

potential flow theory solved via a panel method approach and only one applied a CFD approach 

[100]. One of the major drawbacks of these latter approaches is the impossibility to and/or the 

high computation effort required in accounting for the deflection of the structure. A CFD approach 

is thus generally pursued if the interest is the detailed and local modelling of loads on secondary 

structures (e.g. turbine access ladder) [101], and for the study of floating structures, where 

capturing the fully coupled fluid-structure interaction is of greater concern than modelling the 

structure flexibility [102]. 

There are then a number of other approaches for modelling the hydrodynamic loads and 

behaviour of floating offshore wind turbines [103]. For instance, Zhang [104] developed a 

numerical model to implement a ‘Fluid Impulse Theory’, calculating, in the time domain,  the 

nonlinear hydrodynamic wave loads and the resulting nonlinear responses of a floating wind 

turbine for various wave conditions. In [105] Leble et al, instead, calculated loads using smoothed 

particle hydrodynamics (SPH) method where particles represent a fluid volume and its motion 

and is calculated by solving Lagrangian Navier-Stokes equations. They then applied the SPH in 

a coupled floating offshore wind turbine model, noting the advantage of such a model in that the 

free-surface requires no special treatment [106]. 

Finally, to summarise the result from the OC5, during the first phase of the project (tank testing of 

pile structure), it was concluded that: 

- All the models used for analysis were good at capturing the first order component of the 

force and sufficient for deep water application. In contrast, in shallower water the higher 

order components of the force are important to be captured to accurately describe the 

overall force on the structure and the potential increase in fatigue damage.  

- In shallow water, the approaches which were able to model the seabed slope and 

nonlinear wave transformation were more accurate in representing the distribution of 

forces and acceleration. These are the ones deriving the wave kinematics from either CFD 

or the fully nonlinear potential-flow solvers, as opposed to standard wave theories, 

including those using direct measurement of the wave elevation. Nonetheless, it is also 

acknowledged that such approaches are computationally impractical for the load analysis 

of a wind turbine and should rather be employed for an in-depth analysis of particular 

conditions. 

Although the highly nonlinear nature of the waves for shallow water conditions can be well 

approximated, additional effort and research is necessary to integrate the contribution from wave 

breaking loads. 
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2.3.1.2. Impact of the turbine array on the wave field 

It also must be mentioned that the presence of marine and offshore structures can have an impact 

on the surrounding wave field. This aspect has mainly been of concern to researchers 

investigating wave energy converters. Although not designed for this purpose, large offshore 

jacket structures and turbine piles can affect the propagation of the wave fields with diffraction, 

reflection and blocking effects. These phenomena can influence the hydrodynamic loads for the 

array of structures in the farm, as well can have an impact on sediment transport [107] (discussed 

further in section 2.3.2.2), on the shoreline [108] and on the marine ecosystem [109]. 

Spectral models, such as the SWAN wave model developed at TU Delft [110], were employed to 

investigate the transformation of irregular waves inside an offshore wind farm. These models aim 

to predict the far field effect and were used by [109] to derive the wave field characteristics 

downwind of an offshore wind farm. Nonetheless, they cannot cope with the hydrodynamically 

accurate, and computational expensive solution, of the structure-fluid interactions, and thus have 

been mainly employed to quantify the potential environmental impact of offshore wind farm 

[111,112]. 

As regards to more advanced models for the derivation of the structure-fluid interaction, Sismani 

et al. [113] applied the NEMOH, an open-source boundary-element-method-based numerical 

model [114], for estimating the impact of an array of offshore monopiles, with a kilometre spacing. 

They noticed that an increased hydrodynamic interaction and loads on the structures are obtained 

for increasing wave period and specific incident wave direction, especially affecting the turbines 

positioned in the middle rows, due to the scattering effect in the offshore wind farm. From literature 

it was then found that several authors are currently applying and developing new numerical 

models for the solution of the water wave interaction with multiple-cylinder-array structures. In 

[115], Jia Fu et al. offer a good review of these models, suggesting on the other hand a quicker 

meshless approach as an alternative to the more popular finite element [116] and boundary 

element [117] numerical methods. Nonetheless, no further application and validation studies for 

offshore wind farms were found in the literature. 

2.3.2. Bottom-fixed foundation loadings 

This section gives an overview of soil-structure interaction (SSI) modelling approaches which 

relate directly to the modelling of offshore wind farms. Although this is used for modelling 

individual structures, it is useful to discuss this topic as these models are affected by spatial and 

temporal phenomena discussed in other sections. Therefore, when conducting spatial soil 

parameter modelling, it can be useful to bear in mind the individual structural models which might 

use those values. A good review of SSI analysis related to offshore wind support structures can 

be found at [118]. 

2.3.2.1. Models for soil interaction 

Generally, the strength of the soil-structure interaction can be modelled to a high fidelity with finite 

element analysis (FEA) models [119]. However, quicker ‘engineering’ models have been 

developed and employed in offshore wind [120]. Among these are the widely used ‘p-y’ models, 
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based on Winkler foundation theory [80]. A quasi-static p-y degradation model can be used which 

accounts for the change in parameters resulting from cyclic loads [121]. 

As the monopiles have much larger diameter to length ratios than the p-y method was intended 

for, the PISA project (Pile Soil Analysis) was conducted at Oxford University - applying largescale, 

onshore, cyclic, lateral load tests. These tests resulted in a greatly improved p-y design method 

which would allow for building in deeper waters and lower conservativism [122–124].  

Constitutive models are needed to model the stress-strain behaviour of soils and to translate the 

soil parameters to values used in SSI modelling methods [125]. There are a wide range of 

constitutive models and no one model fits all soils. As an example Whyte et al. developed a 

constitutive model for suction bucket designs which can be integrated into an FEA model without 

excessive computational demand [126]. 

2.3.2.2. Sediment transport and scour development modelling 

Scour is a time varying phenomenon which can have a significant impact on the structural health 

of a wind turbine. The scour and its development need to be monitored and/or predicted 

throughout the life of the wind farm. There are two types of scour: local scour, which is a conical 

pit around the monopile created by the erosion of the soil; and global scour which is the erosion 

of the entire top layer of soil [127]. Scour directly impacts the structural dynamics and has been 

the subject of much research within offshore wind structures [128–130]. 

Whitehouse et al. [131],[132] developed a conceptual scour model which illustrates how scour 

depth varies with different sediment types as well as whether scour tends to increase or decrease 

in extreme wave conditions for that sediment type. Further work from Harris et al. [133] developed 

the ‘Scour Time Evolution Predictor’ (STEP) model, an engineering model where scour 

development is modelled as an exponential function. Due to the fact that scour is significant from 

a design perspective, there are a number of numerical models which predict the evolution of scour 

throughout a wind farm [134]. Numerical scour models tend to have three parts: a hydrodynamic 

part; a wave part; and a sediment transport part. Some examples of this are work from Van den 

Eynde et al. [135,136] where they used the hydrodynamic models MU-BCZ, based on shallow 

water equation and TELEMAC-2D. They used the MU-SEDIM, which uses the Nikuradse bottom 

roughness model, and MU-STM for soil transport models, modelling advection and diffusion, and 

they used the MU-WAVE model. The models of MU-BCZ, MU-WAVE and MU-STM were also 

used by Fettweis et al. [137]. Developing these models together can be useful as the 

hydrodynamic and sediment transport models can share the same grid [135]. Vera et al [138] 

used a suite of numerical models to model the scour in the Hinder Bank region, they used OPTOS-

BCZ, HYPAS, MU-SEDIM and MU-STM. 

2.4. Aerodynamic models for wind farm simulations 

Often to model the wind farm, the wind turbine and wind farm are modelled separately, feeding 

values such as velocity, turbulence, energy, and so on, between models. In this section, an 

overview on the approaches and level of fidelity for the modelling of wind turbines and farm 

aerodynamics is given. First, an overview of the physics involved and the level of fidelity of the 
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models is discussed. Leading on from this, the turbulence models and governing equations are 

presented. This gives the link between the physics being modelled and the numerical approaches 

used in the models. Wind turbine models are presented in section 4.3; it is useful to understand 

what these are as well as their influence on the larger flow stream. The wide range of array models 

are presented in section 4.4, from very fundamental models such as roughness models, up to 

high-fidelity computational fluid dynamics. 

CFD modelling of wind turbines and wind-farm levels are discussed, and finally some existing 

CFD numerical tools used for offshore wind farm applications are presented. A list of specific 

numerical tools is presented in section 2.5. 

2.4.1. Physics and level of fidelity of the models 

A fundamental understanding of how wind turbines affect wind flow can come from one-

dimensional actuator disk theory. In this theory, the turbine disk acts as an infinitely thin 

momentum sink, causing a discontinuity in flow energy and momentum, as well as a jump in 

pressure, as flow passes the disk [139,140]. Given the assumptions that there is a well-defined 

stream tube and that flow is entirely axial, homogeneous and steady, then the maximum power 

efficiency, the Betz limit, can be determined as 16/27 [141]. Additionally to the drop in momentum 

across the turbine, there is also vorticity introduced to the flow, which occurs from blade circulation 

and is shed at the blade tips [142]. According to the Kutta-Joukowski law, the lift force on the 

blades can be attributed to this vorticity [139]. The shed vortices then form a cylinder in the wake 

of the turbine separating the ambient flow from the wake in the near region. The flow is considered 

to be incompressible, given a Mach value below 0.3, and turbulent, given a high Reynolds number 

[143]. 

 The wake behind the turbine can be classified as being near or far wake, with an 

intermediate phase between the two [139,144]. The near wake is directly affected by the geometry 

of the rotor and the tower and is typically considered to extend 1 – 2 rotor diameter distance 

downstream [140], but depending on definition, can be between 2 – 5 diameters [142]. It has been 

shown that the length is a function of thrust, tip speed ratio and turbulence intensity [145]. The far 

wake region is defined as when the profile of the wake has fully developed into a roughly Gaussian 

profile, in this region the geometry of the rotor has only an indirect impact [140]. The far wake is 

assumed to be roughly axisymmetric and self-similar [146]. 

 Wind farm flow is of high Reynolds number, dominated by the kinetic, rather than viscous 

forces [16], and therefore has significant turbulence. Within the far wake, turbulence is the result 

of atmospheric turbulence, mechanical turbulence from blades and tower, and wake turbulence 

from the shed vortexes [140]. Turbulence is important in the far wake because it determines the 

level of mixing and hence the wake recovery [140]. Due to the complexity and importance of 

turbulence, it has been the subject of much research on approaches to model it. Models used 

resolve turbulence in a varying degree, from Reynolds averaging to direct numerical simulation 

[143].  

 From this discussion it can be seen that the real situation of wind turbine flow is very 

complex. In wind turbine aerodynamics there are multiple phenomena occurring together and 
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separate regions of airflow which behave quite differently from each other. In deciding which 

models to use for a wind farm, it is useful to consider what the aim is, what data is available and 

what physical behaviours should be included. For example, the self-similarity of the far wake is 

the basis for kinematic models [140,142]. The near wake is directly impacted by turbine geometry, 

and so data on that geometry is required, such as needing air foil data for blade-element-

momentum models [147]. If one is interested in modelling the wind farm as a whole, with an 

interest more in the far wake, then a simpler actuator-disk model can be used [16]. Models 

typically employed for wind farm aerodynamics are presented in the following sections. 

2.4.2. Turbulence models and governing equations 

The turbulence characteristics in a wind farm are part of estimating the power production and the 

loads on the wind turbines. As the wind farms increase in size, which is happening particularly 

offshore, a good description of the wakes becomes crucial for an accurate performance prediction 

of the wind farm. The atmospheric turbulence enhances the wake recovery while together with 

the wake induced turbulence, they are the major source of fatigue loading on the wind turbines 

[1]. Both the atmospheric and the wake added turbulence are parametrised in various wake 

models in terms of Turbulence Intensity (TI) which is defined by  𝑇𝑖 =  𝜎𝑢/𝑈  where 𝜎𝑢 is  the 

standard deviation of the velocity and 𝑈 is mean wind speed [148]. Modelling small turbulence 

length scales is prohibitively computationally expensive and so turbulence models are used [139]. 

The two most widely used types of models in wind energy are Reynolds Averaged Navier-Stokes 

(RANS) models and Large Eddy Simulation (LES) models. Detached Eddy simulation (DES) 

models are sometimes used, however they are in their infancy [143]. RANS and LES models are 

now discussed in sections 2.4.2.1 and 2.4.2.2 respectively. 

2.4.2.1. Reynolds Averaged Navier-Stokes (RANS) 

Reynolds Averaged Navier-Stokes (RANS) models are among the most widely used models for 

turbulence in wind energy. RANS models present a time-averaged solution to the Navier-Stokes 

equations to average the turbulent fluctuations [149][139].  

The most commonly used RANS-based models, which contain the Reynolds stress terms, are k-

ε and k-ω models (RSM) [143]. This method was used by Porté-Agel et al to validate LES, 

compare turbine models and evaluate the effects of layout [150] and by Kalvig et al [151] in 

comparing actuator disk, actuator line and full rotor simulation against wind tunnel measurements. 

k-ε, proposed by Launder and Spalding [152], is one of the most widely used turbulence models 

[153]. In this two-equation model the turbulent kinetic energy, k, and the dissipation rate, ε, are 

calculated in order to determine the turbulent viscosity [154]. The method employs the Boussinesq 

approximation which assumes that the turbulence is isotropic, which is inaccurate for large-scale, 

atmospheric turbulence [139][153]. However, there have been a number of modifications to the 

standard k-ε model which have shown to improve results, the most common example is the 

Renormalized Group Method (RNG) k-ε model [143]. Based on a number of studies [155],[156], 

the RNG model has shown significant improvements over the standard k-ε, particularly for near 

wake. The standard k-ε model is given by the following equations: 
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 Where 𝑥𝑖,𝑗 are Cartesian space coordinates, 𝑢𝑖,𝑗,𝑘 are mean stream-wise velocity in the 

denoted Cartesian coordinate, 𝜈 is the kinematic viscosity and 𝐶𝜇, 𝐶1, 𝐶2, 𝜎𝑘 and 𝜎𝜖 are constants. 

The k-ω method is another widely used eddy viscosity method which uses the specific dissipation 

rate, ω. This method uses a wall function close to the surface of objects [157]. Like with k-ε, the 

k-ω model has had several modifications proposed. It has been found that the k-ω Shear Stress 

Transport (SST) model is the most successful for 2D and 3D modelling [149] and combines aspect 

of both k-ω and k-ε [143]. The standard k-ω model is given by the following equations: 
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 Where 𝑥𝑗 is Cartesian space coordinate, 𝜈 is kinematic viscosity, F1, is a blending function, 

Pk is a production limiter, and 𝜎𝑘,𝜔,𝜔2 , 𝛽, and 𝛼 are closure coefficients. 

The Reynolds Stress Model (RSM) is a second order closure model for resolving turbulence which 

is rarely used in wind energy [139]. This method works by introducing 7 new equations to the 

transport equations for all components of the stress tensor [143][154]. 

2.4.2.2. Large Eddy Simulation (LES) 

Wind flow within an offshore wind farm contains turbulence at multiple scales, there is smaller 

scale turbulence resulting from interaction with the structures, but also large-scale turbulence 

associated with atmospheric fluctuations. Large Eddy Simulations (LES) differ from RANS models 

in that they directly resolve the unsteady flow properties above a filtered scale, turbulence below 

this level is parameterized through a sub-grid-scale (SGS) model [158],[150]. Turbulence can be 

divided into three main regions based on the scale: large scale, which contains most of the energy 

and is unaffected by viscosity; intermediate scale, which is unaffected by viscosity; and small 

scale which is viscosity dependant. LES, directly calculates large scale turbulence and averages 

the small scale turbulence [159]. The differentiation is based on specific requirements and 

computational capabilities and is applied through a filter. The small-scale turbulence is modelled 

with a sub-grid scale model, usually based on eddy viscosity [143]. LES was used by Churchfield 

et al [160] to model the 48 wind turbine array, Lillgrund in OpenFOAM. LES has been used with 
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an actuator line representation of turbines in several studies [158,161,162], and actuator disk 

representation by Yang & Sotiropoulos [163]. The method is reviewed by Mehta et al [159]. 

In modelling of offshore wind farms using an LES approach, typically a set of filtered, 

incompressible Naiver-Stokes equations are solved [161]:  
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Where the filtered velocity,  𝑢�̃�, is in the 𝑖 direction, 𝑝∗̃ is the modified kinematic pressure, is the 

𝜏𝑖𝑗, SGS stress tensor. 𝜈 is the kinematic pressure, 𝑓𝑖 is the body forcing from the wind turbines, 

𝜌 is the air density, and 𝐹𝑃 is the imposed pressure gradient. 

2.4.2.3. The Dynamic Wake Meandering (DWM) 

Dynamic Wake Meandering (DWM) is a wake model where the wake is modelled as a passive 

tracer driven by large-scale turbulence structures [164]. The velocity profile behind the turbine 

takes the assumption of being Gaussian, axisymmetric and self-similar, with lateral and vertical 

displacement dependant only on large-scale turbulence. The model is calculated as three parts 

[29]: 1) Velocity deficit, solved through parabolised Naiver-stokes equations, 2) Wake meandering 

of the horizontal, 𝑣, and vertical, 𝑤, velocities and 3) rotor added turbulence, which is assumed to 

be rotationally symmetric. 

This model has been validated by a number of authors in the offshore wind environment who 

have found it to have very good agreement with measurement [165,166]. One limitation that was 

found was that model error could occur as a result of not predicting the non-linear interaction due 

to controller strategy [165]. The model has been compared to higher fidelity models and found to 

have better agreement with each of these models at different parts of the downstream wake, 

which is due to the different physical reason for wake recovery [166]. However, the model was 

assessed from a certification perspective by DNV-GL who identify some basic requirements for 

the model’s use in site suitability studies [167]. 

The model is often coupled with fluid-structure-interaction models. For example, HAWC2 couples 

the model with the HAWC environment a single wind turbine. The simulated data were shown  in 

good agreement with load measurements [165]. 

2.4.3. Wind turbine models 

The following sections present methods used to represent wind turbines. These are models which 

have been used to influence the wake effects within a wind farm and so can be used to model the 

entire wind farm. While direct numerical simulation of the wind farm is possible, and this is 

presented in section 2.4.3.3, this approach becomes almost impossible with current hardware for 
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wind farm simulations due to computational cost. Therefore, simplifications are typically used for 

this approach. These simplified models include actuator disk, actuator line and surface methods. 

The more advanced methods are used when a more high-fidelity view of wake effects is required, 

such as dynamic modelling of turbulent fluctuations. 

2.4.3.1. Actuator disk, line and surface models 

The most common methods for modelling the turbine is the actuator disk (AD)[141]. AD is a low 

to medium fidelity approach where the turbine is modelled as a permeable disk whose loading 

influences the flow field [168]. The load can be evaluated in a number of ways, either through 

looking up aerodynamic values for the blade or through solving Euler or Naiver-Stokes equations 

over a discretised field [149]. The advantage of AD is its relative simplicity and reduced 

computational cost due to not having to resolve the boundary layer around the blade [150]. 

However, due to the inviscid assumption of the model it is inaccurate in predicting downstream 

wake because it under-predicts the turbulence required for wake dissipation [168,169].  

A distinction of different turbine representations within CFD models is given in Table 2. This table 

gives the model names as well as the distinction between them and the data required to 

parameterise the models. 

Table 2. Turbine numerical model representations for computational fluid dynamics. 

Model Fully 
resolved 

Actuator disk 
[141] 

Actuator line 
[170] 

Actuator surface 
[171] 

Rotor 
model 
description 

Blades are 
modelled as a 
boundary 
within the 
CFD domain. 

Swept area of the 
blades are 
modelled. Uses 
fundamental 
momentum theory.  

Turbine blades 
are simplified to 
a line with the 
aerodynamic 
forces along it. 

Turbine blade 
modelled as a 
surface with the 
aerodynamic forces 
imposed on the 
surface. 

Data 
required 

Surface 
geometry 

Coefficient of 
thrust, CT, for the 
whole turbine. 

Coefficients of lift 
and drag, cl and 
cd, for blade 
sections. 

Coefficients of 
pressure and force, 
Cp and Cf, for the 
blade. 

 

The actuator disk model was used by Annoni et al. [168] for the purpose of controlling two 

turbines, by Castellania et al. [172] in investigating a method which reduces computational effort 

and Cabezón et al. [155] in evaluating a semi-parabolic wind farm model. Additionally, the method 

was compared to the methods of actuator line and full CFD. While Stergiannis et al. [169] found 

the method underpredicted wake effects downstream and was more sensitive to turbulence 

models than CFD, Kalvig et al. [151] agreed that CFD was the most accurate method but 

concluded also that AD performs well on far wake and gave magnitude values that were in-line 
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with measurements. It was also noted that AD has a much lower computational time than full 

CFD. 

To conclude, a hierarchy of actuator models has emerged, from ‘simple’ actuator disks to more 

advanced actuator line and surface models. Gaining accuracy is accompanied by higher 

computational cost and the need for more detailed airfoil data: from an overall coefficient of thrust 

(uniform actuator disk) to section wise coefficients of lift and drag (non-uniform actuator disk, 

actuator line) to coefficients of pressure and force (actuator surface). The unsteady nature of 

actuator line and surface methods makes them most suitable for LES simulations and that the 

steady nature of actuator disk methods limits their application to mostly RANS simulations. 

However, the computational cost limits the use of the actuator line technique most often to single-

wake investigations, and most LES simulations of wind farms are being performed with actuator 

disks. 

2.4.3.2. Blade Element Momentum  

A very common way of applying the AD model [150] is through Blade Element Momentum model 

(BEM), which is used to parameterise the turbine loading in most aeroelastic models [149]. 

Although this can be considered as a form of AD, its implementation is more complicated and 

requires more knowledge about the turbine blades profile geometries and performances.  

To apply this model, which was first proposed by Glauert [173], the blade is first discretised into 

a series of elements along the blade’s length. The local induction factor, combined with knowledge 

of the local velocity and pitch angle, is used to determine the local angle of attack. The lift and 

drag coefficients can be evaluated from tabulated values and combined with the local velocity and 

geometric values to determine lift and drag which can be transposed into a thrust value parallel 

to the free stream. Momentum theory is then used to determine a new estimate for radial and 

axial induction factors. This process is iterated until the induction factor values converge within 

an accepted residual [139]. 

The model assumes the flow is inviscid and so does not need to resolve the boundary layer near 

the blade [150]. There are a number of limitations to the model, it ignores vortex shedding [149], 

and the model fails after an axial induction factor larger than 0.4, however there are various 

corrections proposed for these [139],[149]. 

BEM was used by Wang [149] to develop an aeroelastic model for large wind turbine blades and 

was used by Eliassen [174] to investigate time-dependant aerodynamic loads on wind turbines in 

comparison with numerical methods. Engelen [175] used the method for frequency-domain 

calculation for offshore wind turbines in the TURBU offshore code. Mahmuddin used the method 

with the aim of optimizing wind turbine blade designs and validated the code developed against 

Qblade [176]. 

2.4.3.3. Fully resolved rotating blade 

Computational fluid dynamics (CFD) approaches based on solving discretised Navier-Stokes 

(NS) or Euler equations are rarely used in commercial software for parameterising the individual 
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turbines, however research shows that the method is much more accurate than other turbine 

parameterisation approaches [151,169]. In this approach, the area around the turbine is 

discretised using a finite volume or finite element method and the fluid flow equations are solved 

across this domain. 

Despite the rotation of the rotor, the flow can be solved in a steady-state manner, simplifying the 

model, if the reference frame is rotating, fixed to the rotor. Stergiannis [169] et al. used a multiple 

reference frame approach, using a rotating inner, ADM, frame and a stationary outer, CFD, frame 

to solve for two generators with the geometry of their blades. Dehrt et al. [177] presented their 

approach for using a rotating reference frame and its mathematical formulation. 

Réthoré et al. [178] compared a direct CFD approach with an actuator disk approach and found 

that the increased computational expense did not justify the increased accuracy while Stergiannis 

et al [169] found in their comparison between CFD and ADM that ADM under-predicted wake 

effects and recommended using more advanced CFD methods for wind farm modelling. The 

results from Kalvig et al. [151] agrees with both of these findings, concluding that a fully resolved 

model provided ‘superior’ velocity results but at a computational expense. A direct CFD model 

can be used to support a comparatively simplified model, for example Lanzafame et. al. used a 

fully resolved CFD model to support a BEM model and compared results with experiments, finding 

the approach to give very accurate results [179].  

Fully resolved, CFD solvers for wind turbines usually consider the air incompressible as the 

velocity generally has a low Mach number [139]. These codes solve the Navier-Stokes equations 

of fluid motion, incorporating the conservation of mass, momentum and energy, across a 

discretised domain [143]. These methods can be used to handle turbulence in a variety of ways 

including Reynolds Averaged Navier-Stokes and Large Eddy Viscosity, which was discussed 

further in section 2.4.2.  

CFD was used in recent literature to evaluate the turbine in a paper by Stergiannis et al [169] to 

compare this method to an actuator disk. Similar comparisons between CFD and other methods 

were also made in a number of other papers [151,178]. This method was also used by L. Wang 

et all [180] for use in fluid structure interaction. 

2.4.4. Methods of representing fluid flow in the domain 

There are a wide range of wind farm wake models which can be used to evaluate site layouts 

depending on power production and/or loads on the structures. As anticipated in section 2.4.1, 

these models range in fidelity and in complexity, dealing with simple and two-dimensional 

problems, to complex three-dimensional models. Following an introduction of some of the most 

basic models including roughness, kinematicand progressively more advanced models is 

presented. 

2.4.4.1. Roughness models 

Wake models discussed by Crespo et al. [142] and Sanderse [139] consider the wind shear profile 

along the path of the wind, where the ground roughness influences the profile and the turbines 
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themselves act as added roughness elements. The wind shear is modelled as a logarithmic profile 

up to the wind turbine and then a second logarithmic profile is modelled above the turbine. 

2.4.4.2. Kinematic models 

Kinematic models are more complex than roughness models as they consider each turbine 

individually. An overview of kinematic modelling is presented by L. Simeng [181] and B. Sanderse 

[139]. Kinematic models consider the wake as a velocity profile and wake growth as a function of 

distance from the turbine, with wake interaction modelled through superposition. These models 

generally need to include a turbulence model (see Section 2.4.2) to accurately model wake 

closure. 

As described in the literature [181,182], the Jensen wake model assumes linear wake expansion 

downstream and that when wakes overlap, their total kinetic energy deficit is equal to the sum of 

energy deficits. The Larsen model is based on turbulent boundary layer and a self-similar velocity 

profile. The Fuga model is a linearized CFD model for turbine wakes [29].  

Gaumond et al. [182] compare the Jensen, Larsen and Fuga [183] models in evaluating the Horns 

Rev and Lillgrund offshore wind farms. In a study by Borràs et al. [184], validating three wind 

farms against data from Horns Rev, It was found that all three models, Jensen, Larsen and 

Ishihara, provide accurate predictions with the error in predicted power production around 1.5% 

over a large variation in incident wind direction of 30°. It was found that the models, particularly 

Larsen, performed well, especially when using a slightly higher wake decay constant, but that 

CFD models provide more accurate results. Johnson et al. [185] developed a model based on a 

modification of the analytical expressions used in the PARK wake model for wind farm control. 

Their stated motivation for this was feedback from industry suggesting that even CFD models 

didn’t always accurately predict performance so a quicker model was desired. 

2.4.4.3. Large wind farm models 

An emerging field of research is large scale wind farms, which is becoming significant as wind 

farms grow. It has been found that conventional models underestimate the levels of drag in large 

scale wind farms and so overestimate power production, consequentially authors have revisited 

the Betz limit regarding turbines in these farms [186]. To this end, Ma et. al. proposed a two-scale 

coupled momentum balance method which better predicts large wind farm aerodynamics. A 

principle component of this extension is the incorporation of a support-structure drag term. This 

was validated using Wall-Modelled Large-Eddy Simulation in a periodic boundary condition 

[187,188]. 

2.4.4.4. Field models 

Field models have been developed with the aim of efficiently estimating the effect of wake decay 

while also providing physical insight into the behaviour. These linearized models treat the wind 

turbine wake as only a small perturbance in the flow field and so in solving the Navier-Stokes 

equations of fluid motion for wind turbine wakes, several assumptions can be made to simplify 

the process. These assumptions are a steady state model where the wake is axisymmetric with 

no radial velocity, pressure gradients outside the wake are considered negligible. An early model 
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proposed by Sforza et. al. used only a simplified momentum equation assuming constant viscosity 

and compared it to experimentation finding good agreement given the simplicity [189]. Ainslie 

then expanded on this by including an eddy viscosity equation [190] – this model described eddy 

viscosity differently for near and far wake, using a filter function in near wake. Presenting a matrix 

inversion which was still quick to solve while providing more accurate estimates. Ainslie stated 

that such a model could be conducted ‘speedily’ on a personal computer.  

 Field models have seen some use in research, for example Kim et. al. [191] used an 

Ainslie model in comparison to wind tunnel experiments, scaled to have tip-speed ratios 

comparable to modern megawatt turbines finding that the Ainslie model was among the most 

accurate of similar models tested. Field models are also used for wake meandering, for example 

Larsen et. al. [192] used a formulation heavily influenced by Ainslie to implement wake 

meandering, finding satisfactory agreement in both statistics of the flow field and the response of 

the coupled structural model. 

2.4.4.5. Computational Fluid Dynamics models 

CFD models of wind farms require the fluid flow to be discretised into a series of two or three-

dimensional sections across which Navier-Stokes equations can be solved [143]. Generally, the 

wind turbines themselves are parameterised using a representative model [139]. These models, 

as discussed in section 2.4.2, can either be another CFD model or, more commonly, can be an 

actuator disk or blade element momentum model. Additionally, to model wake dissipation, these 

models also require a turbulence model, turbulence models are discussed in section 2.4.2.  

Castellani et al. [172] investigated a CFD model using an actuator disk model and RANS. Porté-

Agel et al. [150] investigated a CFD model where the turbines were parameterised using both an 

actuator disk and actuator line model with turbulence modelled with large eddy simulation (LES). 

The open source solver OpenFOAM was used by Cabezón et al. [155] where the domain is split 

into sub-domains of actuator disk models and Reynolds Stress model; these sub-domains allowed 

for parallel processing.  

There is considerable variation between models based on how the turbines are parameterised, 

discussed in section 2.4.2, as well as a significant difference based on the turbulence model 

employed. There are many existing models developed by different projects and organisations – 

these models are presented in section 2.7. 

2.5. Foundation performance requirements for Digital Twins 

The purpose of a digital twin in offshore wind is to replicate the condition of an asset to better 

facilitate risk-based operation and maintenance strategies and potentially exploit the potential for 

lifetime extension. With this goal in mind, it can be helpful to examine the performance 

requirements for individual offshore wind turbines and contextualise the work in this thesis. The 

key limit states can be taken as those given in DNVGL-ST-0126 [193] and summarized below: 

• ULS – Ultimate Limit State, which results in the loss of the structure of component due to 

reaching the maximum load capacity. 
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• FLS – Fatigue Limit State, which corresponds to the cumulative damage of the structure 

over time resulting from dynamic loading. 

• ALS – Accidental Limit State, which results from rare, accidental loading situations. 

• SLS – Serviceability limit state, which is the tolerance criteria of the structure or component 

in normal use. 

All these limit states must be considered within the digital twin modelling framework. Both ULS 

and FLS can be important for lifetime extension and ALS can be an important consideration to 

assess the structural capacity after an accident, however it is SLS which can present a more 

immediate concern. For fixed bottom foundations the primary limit can be quantified as the 

allowable rotation at the mudline as well as tilt and deflection [194]. For floating foundations, the 

limits can be much more complex, as is outlined by Bhattacharya et al. [195]. Serviceability limit 

states are often approached by the structure gradually throughout its life in iterative load cycles, 

so it is important that they are defined clearly and that an appropriate method is used to assess 

whether the limit is reached [196]. 

With limit states established, the reliability of the structure is then a combination of both the 

structural resistance as well as the loads applied. In conducting this analysis, methods such as 

FORM (first order reliability method) or SORM (second order reliability method) have been 

employed, depending on whether the response is linear or of higher order [197]. 

 

2.6. Damage detection approaches 

The idea of modal analysis is that a damage or some other change to the structure causes a 

measurable change in the modal parameters. An example of where it can be particularly important 

to detect damage is after a seismic event, which can cause significant change in the structure’s 

dynamic response. This is a problem facing offshore wind as it expands to locations with seismic 

activity [198,199]. While a single earthquake can cause notable damage, there is often repeated, 

sequential incidents which are even more impactful [200]. The action of earthquakes on offshore 

structures is also very complex, involving seismic waves and non-linear structural responses 

[201], so using measured data can provide valuable insights into these situations [202]. Damage 

detection of structures can either be in an experimental modal analysis, where a load is applied, 

or operational modal analysis (OMA) where operational loads provide excitation to the structure 

[203]. In OMA, the excitation energy comes from operational loads. The operational excitation 

should be uniform in terms of frequency domain, and therefore any non-uniformity in the 

measured response is due to the structure itself. This assumption of frequency domain uniformity 

is generally not consistent with wind energy but can be approximately satisfied enough to discern 

structural modes [204].  

Vibration based damage detection has been developed since the 1970s and a broad range of 

detection methods have been derived, however, choosing a method for offshore wind structures 

should be done with the limitations in mind. With many newer constructions, ‘virgin state’ modal 

data is collected, so there is an ‘intact’ condition to compare to. This comparison can be done 

either on derived modal parameters [205–207] or directly on the measured signal [208,209], 
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although the latter is challenging due to the signal’s direct dependence on environmental 

conditions.  

A limitation however is that, due to the expense and challenge of recording data from offshore 

wind turbines, usually only a handful of sensors are placed. For vibration approaches these 

sensors are usually accelerometers [210,211] but can sometimes be Fibre-Bragg Grating 

[212,213]. This small number of sensors makes methods such as curvature-based methods [214], 

or the Rayleigh quotient-based methods [215] impractical, despite their promise. Thus, any 

method used must work with only a few sensors. There have been studies aimed at using a 

combination of data sources to assist in damage detection; an example is Cevasco et.al. 

investigated the potential for damage detection using typical SCADA data and found that the 

approach showed promise given the right machine learning models were used [216]. Additionally 

a data fusion approach was proposed in another paper which combined accelerometer with 

inclinometers and found that doing so greatly improved the effectiveness in damage detection 

[217]. 

 However, if only a few accelerometer signals are recorded then damage detection can be 

dependent on the ability to discern certain modes of the structure and hence calculate mode-

based metrics. Some suitable approaches include eigenfrequencies, modal assurance criterion 

(MAC) and modal flexibility. Some methods, such as multiple damage location assurance criteria 

(MDLAC) [218] compare numerically calculated modes to measured modes, to identify a damage, 

one would then take the case which maximized the MDLAC value. Following such an approach, 

of comparing to a numerical model, necessitates a good numerical model. The modal parameters 

can be attained with solving the eigenvalue problem. 

Although real data can be used for lifetime extension [219], there is very limited data on already 

failed structures. The lifetime of the structure is dependent on complex, stochastic loading [220] 

and there is also significant interdependence between failure modes, for example corrosion, in 

particular pitting corrosion, plays a role in both the initiation and propagation of cracks [221]. To 

overcome the lack of existing cases of identified structural damage, in exploring damage detection 

approaches, researchers have used numerical models of offshore jacket structures with a 

simulated damage and calculated damage metrics. These structures have predominantly been 

oil and gas platforms, but some include wind energy structures. The aims have typically been 

evaluation of the metric and its suitability for a generic structure. Some researchers did so with 

the aim of evaluating effectiveness given measurement noise; for example, Malekzehtab et. al. 

used mode shapes and natural frequency in an objective function, combined with a penalty term 

to avoid false positives [222]. Liu et. al found, in a Monte-Carlo simulation, that using modal 

flexibility in a damage detection problem could still be successful with 3% randomness added to 

the samples [223]. Other researchers aimed for a method robust to environmental factors. Wang 

et. al. used Modal Strain Energy Decomposition to detect damage with temperature variations 

[224] while others used a residual strain energy-based approach [206], [207].  Neural networks 

have also been employed for damage detection, for example [209,225], both of which found this 

to achieve even higher accuracy than other methods.  

This chapter can be of significant value for those looking to conduct modal-analysis based work 

on offshore wind jacket structures as it gives a detailed view of the response of these structures 
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to several potential damages and changes in parameters. By having several damage effects 

presented in this chapter, this can act as a reference for either mode-based damage detection or 

further study. This work differs from other studies in this area in four ways. 1) This chapter uses 

a more detailed model to investigate damages which can not only capture their effects in a more 

realistic way but also allows for the investigation of other aspects. 2) Other works have typically 

not included the mass and moment of inertia for the Rotor Nacelle Assembly (RNA), however this 

aspect is important for wind turbines as it makes the modal properties not rotationally symmetric 

around the tower and makes a substantial difference to the mode shapes – it is found that for 

jacket structure, the orientation of RNA must be considered. 3) A broader range of ‘damages’ are 

simulated including global scour, corrosion and marine growth, as well as a sensitivity study to 

various soil parameters. By having this broad range applied to the same structure and in one 

chapter allows for a clear reference. 4) Mode switching is a known and troublesome phenomenon 

in mode-based damage detection of pseudo-symmetrical structures, this chapter explores ways 

of overcoming it.  

In terms of damage identification, there are four levels: damage detection, damage localization, 

damage severity assessment and damage consequence/ progression [226]. Simply knowing that 

a damage has occurred, damage detection, can be of great benefit for an offshore wind jacket 

structure as inspection teams can be sent to investigate. Further benefit can be gained through 

knowing where damage has occurred, as time and resources can be saved in planning the repair 

of the damage. Damage quantification can provide more benefit still, allowing judgements to be 

made about the criticality of the damage and how it affects future operation. To achieve all four 

levels, it is required to have both direct sensing and dedicated models [227], this can be very 

expensive. A more cost-effective approach is to use virtual sensing, along with pre-existing 

detailed design models. Operational modal analysis (OMA) can provide information about the 

structure, and numerically solving the eigenvalue problem can provide information on how the 

structure responds to damage cases. 

2.7. Modelling tools 

2.7.1. Machine learning modelling tools 

A wide range of tools and packages exist to implement machine learning time-series prediction, 

and they can be applied for estimation of wind and wave conditions. These provide application 

programming interfaces (APIs) for a range of programming languages. There are a wide range of 

machine learning packages which implement ML models, and it is a rapidly changing field, so it 

would be inappropriate to compile an ‘exhaustive’ list here. However, a list of packages and APIs 

particularly suitable to wind and wave time-series forecasting and simulation are given in Table 

3. 

Table 3. Machine learning packages which can be used for wind farm wind and wave forecasting and simulation 

Package name Base model Details API 
programming 
language 
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TensorFlow LSTM and other 
RNNs 

TensorFlow [228] is a neural 
network package from Google 
which can be used to 
implement a range of models. 
This is typically applied though 
packages such as Keras.  

Python 

MATLAB toolbox LSTM and other 
RNNs, tree-based 
approaches and more. 

MATLAB offers packages for 
applying machine learning 
approaches including LSTM. 
MATLAB is widely used in 
forecasting research [68,229]. 

MATLAB 

LightGBM Gradient boosting 
trees. 

LightGBM [230,231] employs a 
tree-based, gradient boosting 
approach. It can train on 
hundreds of thousands of 
samples in less than a minute. 

Python, C and R 

AWS Deep AR RNN Amazon Web Services. A 
cloud-based implementation of 
RNN.  

Python 

Forecasting 
package by 
Hyndman 

ARIMA Hyndman provides an entire 
forecasting package as well as 
a free online text-book on 
forecasting [232]. This package 
includes a range of forecasting 
methods, including ARIMA. 

R 

Python 
statsmodels 

ARIMA Statsmodels [233] is a python 
library which has several 
statistical models, including 
ARIMA. 

Python 

 

2.7.2. Turbine array modelling tools 

A comprehensive list of all notable offshore wind-farm numerical modelling tools is presented in 

this section. The list includes only models which have some utility in offshore applications, and 

which can model at a farm level. These are tools used in both industry and academia. Some 

additional tools which model individual turbines are also included at the end because they can 

play an important part if used in conjunction with farm level models. 

Table 4 presents tools which use or are derived from the OpenFOAM computational fluid 

dynamics solver. OpenFOAM is a versatile and powerful opensource solver with a considerable 

community of contributors and so is an obvious choice for basing a wind farm tool. A benefit for 
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users, but a limitation for commercial use, is that OpenFOAM operates under a GNU General 

Public Licence, GPL v3. This means that not only is OpenFOAM free and open, but if a derivative 

of the code is shared, then the derived code must be freely available. ‘In-house’ means that the 

software is used by the developing organisation but not necessarily publicly available. 
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Table 4. Wind Farm models based on, or derived from, the OpenFOAM fluid solver. 

Solver Model Name Model details Availability 

OpenFOAM OpenFOAM Generic CFD solver, based on C++. OpenFOAM is 
widely used in offshore wind research to implement 
Navier–Stokes based models. 
[16,160,169,234,235] 

Free and 
open 
source 

FlapFOAM FlapFOAM is an in-house extension of OpenFOAM 
from Fraunhofer IWES. It uses CFD simulations, 
with an AD turbine, to define a numerical wake 
model. [236–239] 

In-house 

Semi-
Parabollic 
FOAM 

This semi-parabolic model was developed by 
Cabezón et. al. and uses multiple sub-domains, 
modelling the turbines with an AD approach within 
a parabolic model. [155] 

In-house 

VestasFOAM VestasFOAM was developed by Vestas in order to 
automate the CFD analysis of wind farms, such that 
a non-expert can do it. The model includes RANS, 
DES and LES turbulence models and models the 
turbines as actuator disks or actuator lines. 
[240,241] 

In-house 

SOWFA Developed by NREL, SOWFA (Simulation fOr Wind 
Farm Applications) is a package which allows for 
wind plant investigation [242]. The software can be 
coupled with the FSI software FAST. The package 
is well supported by NREL and a considerable 
amount of research has been conducted using this 
tool [243–246].  

Free and 
open 
source 

SimScale SimScale is a cloud-based computational 
modelling platform which integrates opensource 
software. It can be used in much the same way as 
one would use OpenFOAM, however SimScale 
provide the computational resources [247]. 
Although it appears to be used in many applications 
in industry, it does not appear to have been used 
for much wind turbine academic research. 
[248,249] 

Commercial 

Both PARK, an analytical module in WindPro, and UPMWAKE, a parabolised solver, are two of 

the most widely used wind farm wake modelling tools. These models, as well as their derived 

tools, are presented in Table 5.  
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Table 5. Tools which use or are based on the PARK/ UPMWAKE model 

Wind flow 
component 

Model 
Name 

Model details Availability 

PARK PARK PARK in a module in WindPro which implements the 
Jensen model [250] and Katíc [251]. 

The code 
can easily 
be written 
[252] 

Modified 
PARK 

Modified PARK is a MATLAB implementation which 
takes into account the wakes of upstream turbines. 
[253] 

In-house 

UPMWAKE/ 

UPMPARK 

UPMWAKE UPMWAKE is a 3D model which uses a 
parabolisation of the Navier-Stokes equations and 
uses a standard k-ε turbulence model. [254,255] 

 

WAKEFARM Developed from a modified UPMWAKE model. 
Fortan code from ECN. [256] 

In-house 

FarmFlow A software tool developed by ECN. [257] In-house 

Table 6 lists other solvers which have been used as the basis for wind farm tools. In general, 

although certainly not always, the fact that further models are derived from these solvers typically 

indicates that they have a level of industry acceptance and/or technical versatility greater than 

other models.  
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Table 6. Other solvers used as the basis for wind farm tools and the derived tools 

Solver Model Name Model details Availability 

Ansys 
Fluent 

Ansys 
workbench 

Generic, commercial solver in Ansys workbench. 
Both Ansys Fluent [258] and CFX [259] are 
commonly used for wind turbine CFD because 
they are very capable solvers, universities often 
already have Ansys licenses and Ansys is 
comparatively easy to use. They also allow extra 
flexibility through user-defined functions. 
[143,151,180] 

Commercial  

Ansys CFX Commercial 

WindModeller WindModeller is an Ansys package which 
steamlines CFX for wind use. This is sometimes 
used in both academia and industry [260–262] 

Commercial 

Fuga WAsP Fuga is the turbine wake model employed in 
WAsP, but WAsP is a separate package which 
combines meteorological data to calculate power 
predictions. [263,264] 

Commercial 

WindFarmer WindFarmer WindFarmer is a software package for resource 
assessment and farm layout optimisation 
developed by DNV-GL. [265] 

Commercial 

PHOENICS PHOENICS PHOENICS is a generic CFD solver which aims at 
being reliable and cost-effective. [266] Some wind 
energy research has been conducted with 
PHOENICS [267,268], but researchers are more 
likely to use WindSim when applying PHOENICS.  

Commercial 

WindSim WindSim uses the RANS turbulence model in 
PHOENICS and is tailored to wind energy [269]. It 
does not seem to be as popular as OpenFOAM in 
terms of academic research, but some researchers 
have used it. [270–272] 

Commercial 

Other models which can be used for wind farms, and employ their own solver, are listed in Table 

7. 
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Table 7.  Other models which can be used for wind farm level CFD 

Model Name Model details Availability 

CRES-flowNS CRES-flowNS is an NS solver which uses the k-ω model and is 
3D, although a 2d version exists [273]. It is designed for wind 
turbines and uses an elliptic approach. [274–276] 

In-house 

PALM PALM (PArallelized large-eddy simulation model) is a 
meteorological model which employs an LES turbulence 
approach. Turbines can be modelled in this software as actuator 
disks or AD with rotation. [277–279] 

Open 
source 

OpenWind Designed for wind farm layout optimization by AWS, this 
software uses a Deep Array Wake Model (DAWM). [280–282]  

Commercial 

FITNAH-3D FITNAH is a non-hydrostatic mesoscale model. [283]  

EPFL-WIRE 
LES 

This is an in-house, LES solver from École Polytechnique 
Fédérale de Lausanne (EPFL) which solves a filtered NS 
equation. [284] 

In-house 

ORFEUS ORFEUS solves linearized NS equations for wind turbine farm 
wakes. [285,286]  

In-house 

EllipSys3D EllipSys3D has been used to implement both actuator disk and 
actuator line methods and the turbulence models used include 
RANS models such as k-ε, k-ω, LES and DES models. 
[235,287–289] 

In-house 

RIAM - 
COMPACT 

Developed at Kyushu University, RIAM-COMPACT is an LES, 
code which implements turbines in an actuator line approach. 
[290,291] 

commercial 

WFSim 
A wind farm model designed to be used in closed loop wind 
farm control. [292] 

Free and 
open 
source 

There are tools which, rather than having a single solver, use a suite of methods to model wind 

farm aerodynamics. These are typically for wind farm layout and/or control. These use less 

computationally intensive methods of wake models. These modelling suites are presented in 

Table 8. 
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Table 8. Modelling suites for farm layout and control 

Wind flow 
component 

Model 
Name 

Model details Availability 

PARK, 
WAsP 

WindPRO WindPRO is a wind farm design tool which utilizes 
a suite of tools such as PARK and WAsP to make 
predictions. [293,294]  

Commercial 

Dynamic 
Wake 
Meandering 

FAST.Farm FAST.Farm [295] is an aero-hydro-servo-elastic 
dynamics tool developed by NREL to determine 
turbine loads within a wind farm. [296,297] 

Free and 
open source 

(yet to be 
released) 

Wind Farm 
Modeling 
Program 
(WFMP) 

Precursor of FAST.Farm, it was developed by Hao 
[298] based on the work of [164,299]. The module 
runs the FAST model of the wind turbine serially 
by interacting with the input file to the AeroDyn 
[43] module of the downwind turbines.  

Free and 
open source 

 

Bladed Bladed is a multi-body dynamics software from 
DNV-GL which utilizes DWM as part of its solver 
[44]. and application by [300] 

Commercial 

FLaP FLaP Wake modelling utility which uses a ‘field model’ 
eddy-viscosity approach. [301] 

n/a 

Jensen, 
Jimenez and 
others 

Floris Developed by NREL and Delft University for wind 
farm control, Floris utilizes a number of wake 
models including Jensen, Jimenez and others. 
[246,302,303] 

Free and 
open source 

WakeBlaster WakeBlaster WakeBlaster is a purpose-built solver which 
models the windflow over the entire wind farm and 
then inserts the turbines as momentum sinks. 
Very low computational power requirement. [304] 

Commercial 

Aeolus Aeolus Aeolus is a dynamic wind farm simulation toolbox 
from Aalborg University. It uses a combination of 
ambient field model with a turbine wake model. 
[305] 

Free 
(requires 
MATLAB and 
Simulink) 

UPMORO, 
modified 
UPMPARK 

Furow Furow is a commercial wind farm siting tool which 
includes 8 wake models, one of which is a 
modified UPMPARK wake model called Furowake 
[306] but also includes a CFD model based on 
OpenFOAM [307]. 

Commercial 
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2.8. Discussion 

The chapter has presented an overview of a broad range of topics regarding modelling 

approaches for offshore wind farms. Additionally, a list of modelling tools used in industry and 

academia was presented. In this section these topics are discussed critically to give the 

perspective modeller some guidance on which models and features to choose for a given task as 

well as gaps for future research. 

Some of the gaps in research are as follows. Aerodynamic modelling is computationally a very 

intensive and there is a compromise drawn between requirements and resources, however as 

computational capabilities increase this line is shifting. In terms of weather modelling, new 

approaches which can be used here are being developed from machine learning, and specifically 

regression modelling. There is very little research on wave load variation within wind farms for 

different support structures. 

For modelling wind flow within a wind farm, there are several key questions to ask which guide 

model selection. The first two questions are 1) What is the level of fidelity and accuracy required? 

2) How quickly does the solution need to be found and what hardware will be used? Upon 

answering these questions, one can immediately narrow the choices from a very broad range to 

a much narrower subset. Further details about the model can be decided by the following 

questions: 3) Does the model need to be transient or steady state? 4) Is the interest in the near 

wake or the far wake? 5) How complex should the turbine model be and how much information 

required for modelling is available? Answering these final three questions should narrow down 

the selection to something specific. This process is shown diagrammatically in Figure 1. 

 

Figure 1. Diagram of model selection process 

Answering questions 1 and 2 leads to a choice of whether a full CFD domain should be used or 

if a more simplified model with assumptions should be used such as parabolic models, field 

models or analytical models. If a high-fidelity approach is required and the choice is a CFD 

domain, this can be conducted using a generic Navier-Stokes solver such as OpenFOAM, Ansys 

Fluent or any of the other CFD modelling packages. A CFD model of an entire wind farm typically 

requires considerable processing power. If results need to be obtained rapidly, for example if 

many results need to be obtained, and processing power is limited, then field models or analytical 
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models are a better choice. In which case tools such as PARK or WAsP or others may be more 

appropriate.  

The question of needing the model to be transient or steady state is also a consideration for CPU 

capabilities as a transient model will generally require more power than for a comparable steady-

state model. Questions 3 and 4 can also influence the type of turbulence model required as in 

transient analysis LES may be preferable to RANS since RANS uses a turbulence averaging 

approach while LES can capture some of the stochastic nature of fluid flow. Questions 4 and 5 

are both important to the choice of turbine model as a more detailed turbine model can predict 

near wakes better but more knowledge of the turbine performance is required for a more detailed 

turbine model. 

Calculating hydrodynamics load can be conducted through understanding the behaviour of waves 

and how the structure interacts with the waves. The waves can be modelled using one of several 

wave theories such as Airy linear waves or Stokes non-linear wave theories. The load on the 

structure are generally calculated by using some implementation of Morrison’s equation, which 

relatively easy and quick to implement. If a higher-fidelity approach is required, even a Navier-

Stokes computational fluid dynamics approach can be used to model the waves interaction with 

particular details of the structure. 

Modelling variation across a wind farm, did not raise much research interest in literature yet. 

However, some studies on water wave interaction with multiple-cylinder-array structures have 

already shown the potential high impact of the array organisation on the load distribution, due to 

the diffraction phenomenon. Thus, this effect could become of concern of designers for the next 

generation of offshore wind turbines, with bigger support structures. 

Geotechnical variation within wind farms can be looked at in either a time variant or spatially 

variant perspective, and both ultimately impact soil-structure interaction. From a time-varying 

approach scour should be modelled which includes both local scour, removal of soil around the 

turbine, and global scour where soil is removed from the entire area. Scour models be based on 

conceptual studies resulting in engineering models or they can be higher fidelity where the water 

flow which drives the scour is modelled as well as the soil’s structural resistance to scour.  

As regards spatial variations, if in-situ soil tests are not present for each turbine location, such as 

in early planning phases, then stochastic spatial variation models are needed to extrapolate 

knowledge between sample locations. Kriging is a popular method for this, as well as other 

surrogate models such as radial basis function. The model needs to be able to make use of a 

limited number of data samples. These geotechnical variation models for the wind farm can then 

be used to inform structural models, which can be high-fidelity finite element models, or simpler 

engineering or analytical models such as the p-y design model. 

Modelling of stochastic wind and wave variation requires statistical models and specifically 

statistical distributions and their fitting methods. For wind modelling, Weibull, Rayleigh, Lognormal 

and Poisson are commonly used while for waves Lognormal, Weibull, and Gumbel are used. The 

findings from research are that the best choice of distribution is dependent on the site and so it is 

important to conduct fit testing. 
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Machine learning approaches can also be used to model wind and wave time-series data. These 

models take statistical ideas and apply them in an algorithmic way. Regarding model choice and 

training approach, the time-horizon desired from the prediction should be considered. These 

approaches can either result in short-term forecasting or long-term simulation. Markov-chains are 

the most prominent method, however recurrent neural networks, auto-regression and tree-based 

approaches can also be suitable, depending on the problem. 

2.9 Conclusion 

In this chapter, modelling approaches for offshore wind arrays in the area of Aerodynamics, 

hydrodynamics, geotechnical structure and stochastic models have been presented. Although 

these topics are very expansive in their own rights, this chapter has attempted to concisely 

summarize them into pertinent findings. The main conclusions from each section are summarized 

as follows: 

• Aerodynamics: A significant number of codes have been developed to explore the 

aerodynamics. These codes can follow one of essentially three approaches: 1) employ 

CFD solvers using either a RANS or LES turbulence method and parameterise turbines 

using an AD approach, although other methods exist. 2) Make assumptions specific to 

wind turbine aerodynamics leading to parabolised and other models, using field or wake 

models or 3) Base the solution on analytical expressions. 

• Hydrodynamics: Wave theories and hydrodynamic models are the general approaches 

adopted for evaluating the hydrodynamic loads on and individual structure of an offshore 

wind turbine. Variation in loading from one turbine to the next can potentially have an 

impact on the structures fatigue life. However, it is typically not implemented in numerical 

models for the wind farms, as the modelling of this variation requires the use of high 

computation cost models difficult then to couple with the other important turbine dynamics. 

• Geotechnical: Variation in soil structure can be modelled as a function of space in spatial 

variation using surrogate models such as Kriging or they can be a function of time 

modelling phenomenon of scour. Scour, being a physical process, can either be modelled 

through theoretical models or through modelling the physical processes themselves. 

• Stochastic wind and wave models: Wind and wave loading are modelled stochastically, 

usually with probability distribution functions. They can either be modelled independently 

or correlation can be modelled but the ideal distribution is site dependant. Machine 

learning based approaches can also be used for time series prediction either for short-

term forecasting or long-term simulation. 

This chapter can be meaningful to anyone aiming to model some aspect of a wind farm at an 

array level. This covers not only the main modelling concepts but also relevant turbine specific 

modelling approaches which can lead to a more useful model. Most of this chapter covers 

aerodynamic modelling since this is where the majority of research interest in literature has been 

focused. Wind farm level models can be very complicated and consist of multiple smaller parts; 

this chapter discusses these smaller parts and how they fit together as well as consolidating a list 

of the numerical tools which implement these models. 
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Chapter 3 

3. Computational Fluid Dynamics model 

of a reference offshore wind farm 

3.1. Introduction 

Offshore wind power is growing rapidly, not only within the UK and EU but is beginning to gain 

traction around the world in other markets including Taiwan [6], China [308,309] and the United 

States [4,310–313]. To capture the maximum energy from an offshore wind farm, the most reliable 

assessment needs to be made of the potential wind farm before it is constructed. The models 

need to be able to assess the wind behaviour for the entire wind farm, rather than for a single 

turbine, to be able to get the most accurate picture of how the wakes interact within the wind farm 

and conduct further analysis such as structural modelling [314–319].  

A variety of methods exist and have been used in literature for modelling the wake of turbines 

within a wind farm for horizontal or vertical axis turbines. These methods include Navier-Stokes 

Computational Fluid Dynamics (CFD) solvers where the turbine is modelled as an Actuator Disk 

(AD) [15,150,169] to more computationally intensive models of fully resolved wind turbines 

[25,169,316,320]. At the most computationally intensive end of the methods are fully resolved 

wind turbine. These can provide accurate answers and predict the flow realistically relative to less 

detailed methods but are limited to modelling only short time intervals, relative to the lifetime of 

the wind farm, of a few seconds due to their computationally intensive nature. There are a wide 

range of Navier-Stokes (NS) based approaches to choose from, actuator line is a common 

approach for representing the turbines which takes the idea of an actuator disk but applies it to a 

rotating line in a transient analysis [150,151,159]. The simplest NS based models are porous 

disks or momentum sinks which can provide good estimates but lack detail in their assessments 

[143,153]. AD is a low to medium fidelity approach where the turbine is modelled as a permeable 

disk whose loading influences the flow field [168]. The load can be evaluated either through 

looking up aerodynamic values for the blade or through solving Euler or Navier-Stokes equations 

over a discretised field [149]. The advantage of AD is its relative simplicity and reduced 

computational cost due to not having to resolve the boundary layer around the blade [150]. 

However, due to the inviscid assumption of the model it is inaccurate in predicting downstream 

wake because it under-predicts the turbulence required for wake dissipation [168,169]. For 

evaluating wind load variation within a wind farm, AD appears to be a good compromise method 

between engineering, or analytical, models and fully resolved rotors. The method is mature, at 

least 30 years old, with a variety of implementations. Researchers can either be interested in near 

wake or in the wake deficit and  studies have shown that AD produces good agreement with 

measurements regarding wake deficit [143,151].  
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The turbulence model used can have a significant impact on both the accuracy and stability of 

the solution and can be either steady-state or unsteady. Comparisons of these have been made 

by other researchers [151,154,172]. Different levels of turbulence lengths scales might be 

modelled, for example many researchers have used Large Eddy Viscosity (LES) to model 

turbulence which models large turbulence length scales while averaging smaller length scales 

[150,159,289]. However, a less computationally expensive option is to model the turbulence using 

Reynolds averaged Navier-Stokes (RANS) approaches based on eddy viscosity turbulence 

models including different implementations of k-ε [153,321,322] and k-ω[143,323] turbulence 

models. As these researchers have found, using the right turbulence model can have a large 

impact and it’s not always clear from the start which model is a better choice. 

 Comparisons have been conducted in wind tunnel conditions [151,169,324],[162] because 

those are easier to measure and compare to than full wind farms, however real wind farms have 

much more complex flow conditions. Some authors have modelled full wind farms but they’ve 

done so only at a very limited range of wind directions and speeds if there is any range at all – for 

example [289] was conducted at 7 directions but appears to have only been modelled at one far-

field velocity while [160] was only conducted at one direction. To accurately assess the wind 

resource, it is not enough to simply assess wind flow at one input condition but rather over a range 

of conditions. These conditions can include inflow velocity and direction, because even a small 

change in either of these can have large implications for the wind farm. Some researchers have 

conducted wind farm level research at multiple inflow directions [156]. However, when a 

turbulence model is assessed it is usually assessed only at a limited range of inputs and not over 

a broad range [151]. Very few papers combine a range of directions necessary to evaluate a wind 

farm model and use wind turbine SCADA data, for example in  [325] they did this but used 

engineering wake models and not CFD-AD models. The work presented here uses an NS based, 

giving the reader more knowledge of the performance of such models in this case, so that the 

reader can decide which type of model to use for their own purposes as well as better 

understanding what impact modelling choices make in this application. 

 The main contribution of this chapter is that a CFD simulation of an entire wind farm is 

conducted at multiple free-stream directions and speeds which is then compared to SCADA and 

met-mast data held for that wind farm, thus evaluating the approach in a real case. These 

simulations are conducted for two different steady-state RANS turbulence models, allowing a 

direct comparison. An additional contribution of this chapter is that it demonstrates a 

modification to an open source actuator disk code in OpenFOAM [326] which expands the code’s 

capabilities by incorporating individual turbine performance. Methods for evaluating the model 

against real site data, by approximating the measurement data with regression models, is 

presented. The work not only demonstrates best practice which has been shown in other 

research, but also builds on it.  

 This work expands on a previous conference paper [15] with a strong focus on the CFD 

aspect. Specifically, much more is done to evaluate the results against the wind farm data, the 

construction of the model is much more detailed and twice as many CFD cases are used. 

 In section 2, the reference offshore wind farm and the reference data available are 

presented. In section 3 the CFD model is discussed in detail including the boundary conditions, 
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meshing strategy and the turbulence models. Section 4 presents the actuator disk model used 

and the modifications to it, section 5 outlines the validation approach including modelling of 

SCADA data for comparison, section 6 presents the results in comparison to the real data from 

the wind farm and discusses the findings. Finally, a conclusion is given in section 7. 

3.2. Reference offshore wind farm 

In this work, an offshore wind farm containing 25 turbines is modelled using actuator disks in a 

CFD domain. The comparisons are made to data obtained from a meteorological mast (met-mast, 

MM). This mast is permanently positioned on site roughly between two turbines on an outer 

corner. The MM has sensors which can record wind speed and direction at five elevations up to 

a maximum of the hub height of the turbines. These data are recorded as averages in 10-minute 

intervals. A map of the reference wind farm is shown in Figure 2, in this figure ‘turbine 16’ is circled 

in red. The figure shows that the reference zero direction for the CFD model is normal to the 

turbine rows. This orientation puts the MM in the wake of two turbines at the reference zero, but 

also shows some interesting behaviour at the two extremes because the met mast starts being in 

the wake of the turbines next to it which causes a large velocity deficit which allows for 

investigation of the edge of the wake. There are 25 turbines in the wind farm, but Figure 2 shows 

30 to protect confidentiality of the company who provided data. 

 Although the orientation of the direction values was not given, it is possible to determine 

this out from comparison of the MM data to the map. The typical convention is wind coming from 

the north, going south, is zero and then the value goes up clockwise [327]. However, that 

assumption doesn’t fit the MM data. The correct orientation for this wind farm is rotated 25 degrees 

counter-clockwise from a north zero. This type of sensor calibration issue is not uncommon [12]. 

 

Figure 2. A map of the wind farm, turbines in red and met mast in green, ‘turbine 16’ circled in red, blue arrow 
show wind directions for reference. 
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3.3. Methodology 

3.3.1. Governing equations and numerical discretisation. 

Within this section the CFD framework is detailed. The governing equations, physics models and 

numerical schemes are presented. A computational aerodynamic database is constructed within 

a parameterization process.  

 Within the CFD simulation framework the governing equations of fluid dynamics are 

numerically solved. The Navier-Stokes equations for incompressible fluids encompass the 

principles of continuum mechanics and conservation laws which, along with more details on the 

solver used, can be found in [328] and are also given here:  

 𝜕𝑢𝑖
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(9) 

Where 𝑢𝑖 is the cartesian velocity vector with components in three spatial dimensions �⃗� =

[𝑢1,𝑢2,𝑢3,]
𝑇, 𝑥𝑖 the spatial coordinate direction vector, respectively; where ρ is the fluid’s density, 

𝑝 the pressure and 𝜇 the dynamic viscosity.  

 As the flow of wind turbines is turbulent of high-Reynolds number, Reynolds averaging is 

applied thus the final equations solved are the Reynolds Averaged Navier-Stokes (RANS). 

Reynolds averaging decomposes the mean flow variables to mean and fluctuating terms, where 

temporal and spatial ensemble averaging ensures steady state solutions are obtained. To close 

the set of equations Boussinesq approximation of the eddy-viscosity hypothesis is set where 

turbulence modelling mathematically describes the eddy viscosity 𝜇𝑡. 

 The governing equations are formulated within the finite volume numerical framework and 

discretized in three space dimensions, where the SIMPLE algorithm is employed to obtain 

numerical solutions  [329,330]. This is a widely used solver algorithm which has been used by 

other researchers in modelling wind turbines, including in OpenFOAM’s simpleFoam [331]  solver, 

which is for incompressible, steady flow without changes in temperature [169,332,333]. The 

SIMPLE algorithm solves the governing equations in a sequential approach, iteratively until 

convergence is reached.  

The governing equations are discretised in time and the time derivatives are set to zero; the 

gradient scheme is the standard Gaussian finite volume discretisation, where the scalar gradient 

is computed using Green-Gauss theorem [334] and the values at the cell faces are linearly 

interpolated from the cell centre values. The divergence schemes are the second order Gauss for 

the velocity field and bounded Gauss for k, 𝜀 and ω. More on the OpenFOAM numerical schemes 

can be found on the OpenFOAM user guide [335].    

The convergence criteria were set to 10-8 for difference in turbulence kinetic energy, k, and each 

velocity component and was set to 10-7 for the difference in pressure. These convergence criteria 

were reached after around 5000 iterations, with some variation of +/- 1000 for all case set-ups. 
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Tracking values for velocity and turbulence kinetic energy at the met-mast during solving, the 

values used were appropriate as the physical values converged in around as many iterations. 

3.3.2. Turbulence models 

Several published works compare turbulence models used with AD models for wind turbines wake 

models, for example some researchers have found that standard k-𝜀 under predicts wind speed 

deficit [151,154]. Some researchers, comparing k-𝜀 and k-ω models recommend k-𝜀 because the 

high level of turbulence in k-ω leads to quick wake recovery and hence less accurate predictions 

in mid and far wakes regions [332]. Although modified versions of the k-𝜀 and k-ω models can be 

less robust, they generally perform better than the standard models [154,169]. Therefore, to use 

the most suitable model for this work, a comparison of several RANS turbulence models was 

conducted. The three turbulence models compared are standard k-𝜀, Realizable k-𝜀 and k-ω SST. 

 Standard k-𝜀 turbulence model 

 The standard k-𝜀 model is a widely used turbulence model developed by Launder et al. 

[152]. This model calculates a turbulence kinematic viscosity, 𝜈𝑡, based on the turbulence kinetic 

energy, k, and dissipation rate, 𝜀. The standard transport equations are: 
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(11) 

Where 𝑥𝑖,𝑗 are Cartesian space coordinates, 𝑢𝑖,𝑗,𝑘 are mean stream-wise velocity in the denoted 

Cartesian coordinate. 𝜈 is the kinematic viscosity and 𝐶𝜇, 𝐶1, 𝐶2, 𝜎𝑘 and 𝜎𝜖 are standard constants 

given in the original publication from Launder et al. [152] these values have been used by other 

authors in modelling wind turbines [151,169], [332], however some authors have shown that 

different choices of constant values are more appropriate for atmospheric flow [336]. 

From which the turbulence kinematic viscosity can be calculated using: 

 
𝜈𝑡 = 𝐶𝜇

𝑘2

𝜀
 

(12) 

Realizable k-𝜀 turbulence model 

 The realizable eddy viscosity model was developed by Shih et al. [337] and implements a 

realizable eddy viscosity formulation through modified dissipation rate equation. This modified 

dissipation rate equation is [338]: 
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Where S𝜀 is the mean strain rate and ν is the kinematic viscosity. The difference being that the 

Reynolds stresses do not appear in this equation. The standard model constants are given in the 

original publication [337]. 

K-ω shear stress transport 

 The k-ω shear stress transport (SST) model was introduced by Mentor el al [339]. This 

model uses k-ω from Wilcox [340] to calculate the inner boundary layer flow and a k-𝜀 model in 

the free-shear flow.  

The k-ω equations for turbulent kinetic energy, k and specific rate of dissipation, ω are: 
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(15) 

 

Where 𝑥𝑗 is Cartesian space coordinate, 𝜈 is kinematic viscosity, F1, is a blending function, Pk is 

a production limiter, and 𝜎𝑘,𝜔,𝜔2 , 𝛽, and 𝛼 are closure coefficients given in the original k-ω 

formulation from Wilcox [340]. 

3.3.3. Model set-up  

The velocity inlet uses a fully developed wind shear profile. The logarithmic profile was fitted to 

an averaged set of met mast wind velocity samples, which records velocities at different heights. 

Only samples for which the met mast was in the free stream, and not in the wake of the wind farm, 

were used. There are some potential limitations to this, for example that this is the opposite to the 

direction at which the CFD cases used to build training data were conducted at; however, it gives 

the most accurate assessment of the local wind shear profile possible. Figure 3 gives an example 

of what the samples are like, each dot represents an individual value and the five lines each link 

points from the same sample for the sake of representation. The velocity at 58 m was limited to 

7.5 m/s +/- 0.1 m/s in this plot.  

The velocity profile used is of the form in (16) which comes from the OpenFOAM API guide [341]. 

 
𝑈 = 

𝑢∗

𝐾
ln (

𝑧 − 𝑧𝑔 + 𝑧0

𝑧0
) 

(16) 
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Where K is the von Karmen constant, zg is the ground surface height, z0 is the roughness height 

and 𝑢∗ is given by (17). From this study, it was found that the most suitable value for roughness 

height for this location was z0 = 0.015. Although since waves are predominantly wind driven, z0 

would change for a given wind speed. 

 
𝑢∗ = 𝐾

𝑈𝑟𝑒𝑓

ln (
𝑧𝑟𝑒𝑓 + 𝑧0

𝑧0
)
 

(17) 

 

Figure 3. Met-Mast samples of wind velocity (m/s) against measurement height (m).  Lines are drawn between points 
which come from the same sample for 5 randomly chosen samples. Green, purple, blue and red dots indicate samples 
from different heights; the colors of the lines are only to differentiate the lines. 

The atmospheric boundary layer model used is the standard atmospheric boundary layer in 

OpenFOAM which is the model presented by Richards et. al [342]. In all of turbulence models a 

turbulence kinetic energy value of 1.3 was used. Wall functions were used for the sea surface 

using the inlet values. The top wall uses a slip condition; however, it is 2 km above the turbine 

hubs so should have no noticeable impact on the wind turbines. 

3.3.4. Meshing strategy 

The grid used is a structured grid with over 63 million cells. To construct such a large grid, 

OpenFOAM’s blockMesh utility is used on an academic high-performance computer cluster which 

has 118 compute nodes, each node having 16 CPU cores with a base frequency of 2.10 GHz and 

128 GB of shared memory. The domain is much larger than the area of the wind farm to avoid 

the influence of the walls on the turbines; the domain is 16 km wide, 6.8 km long and 2 km tall. 

The grid is refined in such a way to have smaller cells around where the turbines are located and 

larger cells further away from the turbines.  
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 Despite being such a large grid with over 63 million cells, there are roughly 12 cells across 

the diameter of the turbines. This is a consequence of having a structured grid with such a large 

domain. The advantage of a structured mesh however is that it ensures a high-quality mesh. 

A grid sensitivity study is conducted to determine suitable cell sizes with a base set of values 

used being taken from a paper on validating OpenFOAM’s actuator disk model [156], though a 

more fine, structured grid is used in the end. The domain used for the work is shown in Figure 4 

the grid used is demonstrated in Figure 5. 

 

Figure 4. Domain map. Red dots represent turbine locations, green dot represents MM location. D is the turbine 
diameter. Blue lines represent domain partitions. The domain was also partitioned horizontally for a total of 32 partitions. 
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Figure 5. Demonstration of grid cut away vertically through the centre and horizontally at 80 m. Turbines represented 
as cylinders and a wireframe of the surrounding grid shown in white. 

3.4. Actuator disk model 

3.4.1. Original actuator disk code 

The simpleFoam code is modified to implement an actuator disk model, with tangential force 

momentum source, to represent the turbines. The code used for the study is based upon 

Svenning’s actuator disk model [326] which represents the turbine not as an infinitely thin disk but 

as a three dimensional region where cell centres within the region are assigned new momentum 

terms. This gives more flexibility in changing the direction of the turbines. 

3.4.2. Modifications to actuator disk code 

 To implement turbine performance it is necessary to determine thrust and torque curves for a 

given wind speed, such as the curves which can be found for the NREL 5-MW turbine as shown 

in [343]. This was done by first filtering out data not representative of general turbine performance, 

e.g. speed below cut-in and pitch higher than usual values. Then generator power was converted 

to rotor power through an efficiency curve. Rotor speed was used to convert rotor power to rotor 

torque and finally velocity at the disk was used to convert rotor power to rotor thrust. This is 

resulted in clear performance curves which are very similar to the NREL curves in general shape. 

Scatter plots of the turbine performance are shown in Figure 6.  

To automate selection performance for each turbine, that is the perpendicular and tangential 

components of velocity, this performance needed to be modelled and the curve-fitted 

approximation model needed to be integrated into the AD code. Polynomial functions were then 
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fitted to this data using the method of least squares, two polynomials for each value with the 

change occurring at rated power. From cut-in speed to 10.85 m/s a fourth order polynomial was 

used for both thrust and torque, after 10.85 m/s, a third order polynomial was used for thrust and 

a straight line for torque. These shapes were chosen after comparison to other shapes, they fit 

this particular data set the best. The use of a polynomial model was chosen because it fit the data 

very well, as can be seen in Figure 6, and also it could easily and efficiently be integrated into the 

OpenFOAM code. 

 

Figure 6. Plot showing rotor thrust (blue scatter) and torque (red scatter) as well as fitted torque (black solid line) and 
fitted thrust (black dashed line)  

These performance curves were based on inflow velocity, however this isn’t what is observed 

by the turbines within the wind farm, so instead it was necessary to determine a theoretical 

upstream velocity based on the velocity at the disk and AD theory. The theoretical upstream 

velocity was used instead by the code to determine the thrust and torque values for each given 

turbine. Fundamental AD equations were used for this which come from [344]. These equations 

are:  

 𝑈𝐷 = 𝑈∞(1 − 𝑎) 
(18) 

 
𝐶𝑇 = 

𝑇ℎ𝑟𝑢𝑠𝑡

1
2𝜌𝑈∞

2𝐴𝐷

 

(19) 

 𝐶𝑇 = 4𝑎(1 − 𝑎) 
(20) 
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Where 𝑈𝐷 is the velocity at the disk, in the CFD code this is velocity averaged over the disk 

volume and in the SCADA data this is velocity measured by the anemometer on the nacelle, this 

is a source of some minor discrepancy. 𝑈∞ is the far-field velocity, 𝐶𝑇 is the coefficient of thrust, 

𝐴𝐷 is the area of the disk and 𝑎 is the axial induction factor. Equations (18 - (20 were used to 

derive the following equation for axial induction factor in terms of thrust and velocity at the disk: 

 
𝑎 =  

𝐵

4 + 𝐵
 (21) 

Where: 

 
𝐵 =  

𝑇ℎ𝑟𝑢𝑠𝑡

1
2
𝜌𝑈𝐷

2𝐴𝐷

 
(22) 

This equation is solved iteratively within the AD code, for each turbine at each solver iteration, 

as thrust is dependent on axial induction. Finally, the original code used two point values (x,y,z) 

to define the ‘start’ and ‘end’ points which define the yaw of the turbine; all turbines set to a single 

direction. The same direction assumption is not necessarily true and the difference in mean 

direction between two turbines is an average of around 9% for this SCADA data, however this 

assumption was made for simplification. The process followed by the code is shown in Figure 7. 

  

Figure 7. Flowchart showing modified AD code process 
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3.5. Validation approach 

Samples in the MM data occur at random input conditions. To overcome this, samples close to 

the CFD input conditions were taken, put into bins and averaged. The bins are made as small as 

possible to only take representative samples but still be able to determine an average, their size 

were chosen in order to have between 8 and 10 data points in each. Additionally, there are very 

few samples around 15 m/s inflow velocity but a very large amount around 7.5 m/s. Even with 

thousands of samples, some of the limits had to be large to ensure there were enough samples 

in each bin. Different limits were chosen for each inflow velocity with the aim of having good 

representation for each point, between roughly 3 to 10 samples each. The bin sizes as well as 

the MAE for each inflow velocity is presented in Table 9. 

Table 9. Bin sizes for each inflow velocity 

Parameter 5.0 m/s 7.5 m/s 10.0 m/s 12.5 m/s 15.0 m/s 

Velocity limit +/-(m/s) 0.7 0.2 0.2 0.6 1 

Direction limit +/- (degrees) 0.5 1.0 3.0 8.0 15 

MAE (%) 11.77 9.06 7.03 10.27 7.98 

 The values compared for the CFD are Root Mean Squared Error (RMSE) and Mean 

Absolute Error both as a value and a percentage of the value being predicted and are calculated 

using standard equations. The error is determined in comparing the CFD results to the real data 

from the wind farm. 

With so much scatter in the met-mast and SCADA data, it is difficult to discern the general 

behaviour in the data from a scatter or other types of plots.  

Although putting the data into averaged bins is a commonly used and straight forward 

approach, the resulting bins can be relatively large in some places, as shown previously in Table 

9. Additionally, the observations within each bin are not weighted, therefore observations far from 

the bin centre have as much impact on the average as those far away. Regression models have 

the potential to be more representative of the data. Therefore, to determine the behaviour of the 

data as well as for comparison to the CFD values, regression models were applied to the 

SCADA/MM data. There are two independent variables, inflow velocity and inflow direction, which 

were used to predict the one independent variable, met-mast velocity. After restricting the 

direction to +/- 35 degrees from the zero-reference direction, data set was reduced to 5,046 

samples. 

 For the regression modelling, the ‘regression learner’ app in Matlab’s ‘Statistics and 

machine learning toolbox’ was used which has a wide selection of regression methods. All of the 

models available in the app were tested and the ones which fit the data best, based on their RMSE 

values, were Gaussian Process Regression using an exponential kernel function and an 

ensemble of trees using bagged trees with a minimum leaf size of 25 and 2000 learners.  
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 Gaussian process regression employs a Bayesian approach where a prior, which is a 

Gaussian distribution based on a ‘noise’ parameter for each point, is combined with observations 

to form a posterior [345–347].  In Gaussian process regression the prediction is given by[348]: 

 𝑃(𝑓|𝑋)~𝑁(𝑓|0, 𝐾(𝑋, 𝑋)) (23) 

Where f|X is the mean function and K(X,X) is the covariance matrix. K(X,X) is determined using 

the exponential kernel which defines it as [349]: 

 𝑘(𝑥𝑖 , 𝑥𝑗|𝜃) =  𝜎2
𝑓 exp(−

𝑟

𝜎𝑙
) 

(24) 

Where 𝜎𝑓 and 𝜎𝑙 are signal standard deviation and characteristic length scale respectively. The 

Euclidian distance between points xi and xj is defined as: 

 
𝑟 =  √(𝑥𝑖 − 𝑥𝑗)

𝑇
(𝑥𝑖 − 𝑥𝑗) 

(25) 

An ensemble of trees approach combines the predictions of multiple decision tree models, with 

their segregation of the variable space randomly determined. The use of multiple trees can reduce 

the level of overfitting to the data compared to a single tree [63,64]. For a regression problem, the 

prediction value is the weighted average using selected trees [350]. 

 
�̂�𝑏𝑎𝑔 =

1

∑ 𝛼𝑡𝐼(𝑡 𝜖 𝑆)
𝑇
𝑡=1

∑𝛼𝑡�̂�𝑡𝐼(𝑡 𝜖 𝑆)

𝑇

𝑡=1

 

(26) 

 Where 𝛼𝑡 is the weight of the tree, �̂�𝑡 is the prediction from tree t, and S is the set of trees 

used in the prediction. 

The goodness of fit parameters for these two models in predicting the data are given in Table 

10. These values are limited by the scatter in the data. These two independent variables can 

predict a significant amount of the variation in the results, but do not completely account for the 

variation. However, for determining the general trend in the data and in comparison to the CFD 

results, which used the same independent variables, the results from these models are suitable 

based on their goodness-of-fit parameters. 

For calculating the comparison values of RMSE and MAE, only the results from the ensemble 

method are used, not the GPR method. This is because ensemble is a simpler but more robust 

method, as the ensemble method takes averages from within multiple partitions, the result is more 

constrained to where the data points are, rather than GPR which is also somewhat constrained 

to forming a continuous function, which is not necessarily representative of the data. However, 

GPR is used for representation as it provides a smooth function which shows the behaviour well. 
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Table 10. Goodness-of-fit values for regression models to site data 

Model RMSE R2 MSE MAE 

GPR 1.06 0.89 1.11 0.74 

Ensemble 1.09 0.89 1.18 0.76 

 

3.6. Results and discussion 

3.6.1. Grid sensitivity study 

The discretisation error of the spatial numerical scheme can be assessed and evaluated with a 

grid sensitivity analysis. The grid sensitivity analysis entails the consistent generation of 

consecutively refined grids, at least three, simulations with the same numerical setup and 

evaluation of representative quantities [351]. Four grids are constructed, the flow conditions are 

set as follows: velocity magnitude measured at 80 meters above sea-level was used as a 

comparative value since much of the future comparisons are made from this. The simulations are 

performed at 0 degree inflow direction at 10 m/s. Grids specifications are shown in Table 11 and 

solver times are using 2 nodes, with 16 cores each on the high-performance computer described 

in section 3.4.  

Table 11. Grid statistics and solver time for grid sensitivity study including for each grid the number of cells, points 
and time taken for the solver to finish. 

Grid reference 1 2 3 4 

Cells (e+8) 17.49 36.48 63.30 124.17 

Points (e+8) 18.07 37.30 64.39 125.87 

Time (hours) 7.15 12.73 21.47 48.03 

For comparison, the velocity at the met-mast at 80 m was used. The results from this are shown 

in Figure 8.  
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Figure 8. Results from grid convergence analysis. Velocity magnitude at the met-mast, 80 m above sea level along the 
y-axis, against the number of cells in millions. 

The grids were increased by increasing the number of cells along all directions by a certain, 

consistent amount and resulted in a grid refinement ratio of around 2 (+/-0.1). Given that a second 

order scheme is used, the Richardson extrapolation can be used to determine an estimate for the 

continuum value [352]. 

 
𝑓ℎ=0 ≅ 𝑓1 +

𝑓1 − 𝑓2
𝑟𝑝 − 1

 
(27) 

Where 𝑓ℎ=0 is the estimated value, 𝑓1 and 𝑓2 are the results from the first and second finest grids 

respectively, r is the refinement ratio and p is the model order. 

 Using the results obtained gives an estimated continuum value of 8.70 m/s, this is 0.5% 

higher than the value in grid 4 and 2.2% higher than the value for grid 3. The grid 3 level of 

refinement was used for the studies, this is due to resource constraints, given the number of cases 

to run it wasn’t possible to use the highest refinement. 

3.6.2. Turbulence model sensitivity study 

The initial turbulence comparison was done at 0 degrees free stream velocity (normal to the 

rows along which the turbines are aligned) and at 15 degrees clockwise from this. The data 

compared is the velocity at the met mast. 
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The results from this comparison are in line with literature which states that the k-𝜀 model is 

more accurate for this case and that the k-ω SST model over predicts the intensity of the wake 

[151]. The results from this comparison are shown in Figure 9 along with predictions from the two 

regression models which were trained on the SCADA data. As can be seen in the figures, the k-

ω SST model in this case consistently shows much lower values than is observed by the real met-

mast, while k-𝜀 generally performs more in line with the real data, as is consistent with the findings 

of other researchers [332]. At higher velocities, around 15 m/s, and at 0 degrees, all models predict 

velocities that are too low. This under prediction by the models is partially due to having so few 

data points at higher velocities for comparison, and so these points come from slightly further 

away from the centre, where the wake is less prominent.  

It is still possible that k-ω as implemented performs better than k-𝜀 for some combinations of 

initial conditions, as is observed in both 0 and 15 degrees for 5 m/s, therefore the 35 cases are 

conducted with both a k-ω model and a k-𝜀 model. The k-𝜀 model chosen for this is standard k-𝜀. 

This is because standard k-𝜀 is shown to predict closer to the MM data.  

 

(a) 

 

(b) 

Figure 9. Met mast velocity comparison for the turbulence models investigated at inflow directions (a) 0 degrees 
and (b) 15 degrees. 

 

3.6.3. Case set-up 

A wide range of cases were conducted to evaluate the model over a spectrum of conditions. The 

wind farm is modelled at a range of incoming wind angles between 35 degrees and -35 degrees 

and the freestream velocity is modelled between 5 m/s and 15 m/s. All combinations of direction 

including 0 degrees as well as plus and minus 10, 20 and 35 degrees are modelled with 

freestream velocities of 5, 7.5, 10, 12.5 and 15 m/s, resulting in 35 cases. The limit of incoming 

wind direction is chosen to capture a board range of inflow directions while still capturing a 

relatively high resolution in terms of angular variation. 
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3.6.4. Comparison to site data approximation 

The numerical solutions are compared with real data to identify potential discrepancies and 

evaluate the levels of computational uncertainty. Therefore, data was extracted along a vertical 

line where the met mast is located to make predictions of local wind velocities. 

 Once the extracted data are generated from the CFD model, they are compared to the 

wind farm data samples to determine their accuracy. From each of the 35 CFD cases, local 

velocity values at the met-mast were sampled at hub height, the same as one of the sensors on 

the met-mast. The results from this comparison are shown in Table 12. The mean absolute error 

for the k-𝜀 is 0.761 m/s, approximately 8 % relative to the comparison values and k-ω SST is 

0.932 m/s approximately 10.5%, using the binning approach. This is roughly in line with the error 

values achieved in CFD-AD by other authors comparing to wind tunnel measurements [151,169] 

as well as for wind far measurements [156].   

Table 12. Metrics for computational fluid dynamics results 

Error Measure  

Binning Ensemble 

K-Epsilon K-Omega K-Epsilon K-Omega 

RMSE 0.96 1.34 1.17 1.32 

MAE (m/s) 0.76 0.93 0.89 0.96 

MAE (%) 8.06 9.87 9.88 10.69 

 The results from the CFD analysis are compared to the regression model and binning 

approaches for each individual data point in Figure 10, which is a prediction against true plot 

where a 45-degree line indicates zero error between the two values. For both the binning and 

ensemble approaches there is good agreement to the CFD results, however the values are 

generally closer for the binning approach. This increased accuracy of the binning approach is 

partially due to an averaging of the result; the ensemble approach can show sharp fluctuations 

as the data fluctuates which would be averaged out in the binning approach. This is can be a 

desirable behaviour to some extent, but if there is too much averaging than it ceases to capture 

the behaviour of the real situation. 

 Figure 10 also shows larger deviations from the zero-error line in both approaches at 

higher wind speeds. This is at least partially due to a lower amount of data present at these higher 

values and so both approaches become less reliable. Additionally, this could be due to higher 

unsteadiness at higher velocities, if standard deviation values were present in the SCADA and 

met-mast data, this could be investigated.  
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(a) 

 

(b) 

Figure 10. Approximation method to measured data against prediction plots comparing the MM velocity values 

for CFD results to (a) ensemble regression (b) binning 

Figure 11 shows the CFD predictions compared to the measured data from the SCADA/MM 

for 7.5 m/s free-stream condition. This figure shows the level of scatter present in the measured 

data and necessitates the use of the regression models. This also shows that a significant portion 

of the difference between CFD prediction and data comes from the difficulty in getting a reliable 

representation of the measurement data. As can be seen from other researchers [156,353] 

measured data is typically not as smooth and determinate as steady-state CFD results.  

Figure 12 shows the results for the CFD model and the regression models, normalised by 

inflow velocity and averaged for inflow direction. At 0 degrees the MM is in the direct wake of two 

turbines, as seen in Figure 13, which causes a minor dip in the wind flow velocity; this dip is much 

higher for the k-ω SST model than for the k-𝜀 model. There are numerous things which can affect 

turbulence kinetic energy including calibration of constants, initialisation, boundary conditions and 

so on. In this case, the k-ω SST model predicts lower turbulence viscosity than the k-𝜀, and 

researchers have found that a lower turbulence viscosity results in less wake recovery [169].  

Towards -35-degree inflow direction there is a significant drop in the MM velocity shown by the 

regression models which is captured more closely by this k-ω SST turbulence model. The results 

from this direction are shown in Figure 14. Although the met mast is roughly equidistant between 

the nearest two turbines, this significant drop is not observed in the +35-degree direction. The 

drop at -35 degrees appears to be an interaction of both the near wind turbine and two upstream 

turbines. 
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Figure 11. CFD predictions compared to measured data values by direction for 7.5 m/s free-stream condition. 

 

Figure 12. Averaged by wind direction and normalised MM velocity values against inflow direction. Showing the CFD 
compared to both of the regression methods. 

A typical result from the simulation in shown in Figure 13 and Figure 14 which show a two-

dimensional cross section of the flow field through the turbine centres. This image shows the 
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velocity magnitude field. The case is set up as described in the methodology section and the 

inputs for this particular case are inflow velocity of 10 m/s and an inflow direction of 0 degrees 

(normal to the three rows). Several observations can be made from this plot. This plot shows how, 

at this direction, the met-mast is in the wake of two turbines, and hence there is a velocity 

reduction at the MM. Another observation is that there is more of a velocity deficit on the right of 

the wake, when viewed in the direction of wind flow, than on the left. This is due to how the 

turbines interact with the wakes from upstream turbines. The third observation is that there 

appears to be a global reduction in velocity – even where there is no immediate wake, the velocity 

is nearly one m/s lower on the left side of the figure compared to the right of the figure. 

  

Figure 13. Velocity-magnitude field from steady state actuator disk model at hub height.  k-𝜀 model left and k-ω 

SST right. Met-mast location denoted by a black plus. 0-degree inflow, 10 m/s. 
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Figure 14. Velocity-magnitude field from steady state actuator disk model at hub height. k-𝜀 model left and k-ω 

SST right. Met-mast location denoted by a black plus. 35-degree inflow at 10 m/s. 

The turbulence viscosity for k-𝜀, where the freestream direction is 35 degrees with a free-stream 

velocity of 10 m/s, is shown in Figure 15. Throughout the chapter, the k-𝜀 model is mainly 

assessed due to it performing better for this model set up.  This shows that the air downstream of 

the wind farm is still turbulent for a large distance. Additionally, the turbulence is not so high until 

after the third row. This figure shows that the wake of the turbine is much broader than it appears 

in the velocity plot. Just by looking at velocity it might appear there are times when the MM is not 

in a turbine wake, but from the turbulence plot one would conclude that this is never the case for 

the directions modelled. 

 

Figure 15. Turbulence viscosity for k-𝜀 where the freestream direction is 35 degrees and the freestream velocity is 10 

m/s. 

Table 12 shows the metrics for comparison of the two turbulence models against the binning and 

regression approaches. This shows that for conducting all cases k-𝜀 outperforms k-ω for how 

these models were set up, however the difference is not as significant as it might be for a more 

limited range of inflow directions. 
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3.7. Conclusions 

In this study a computational fluid dynamics analysis of an existing wind farm is conducted using 

the actuator disk method. Not only are the cases conducted at multiple wind directions and 

velocities, but the results are also compared to real recorded data from the wind farm. The 

opensource code OpenFOAM is used and modifications to the code are presented so that the 

process followed is reproducible. Additionally, methods for processing the wind farm data are 

presented. 

 The two turbulence models of standard k-𝜀 and k-ω SST were compared and used for all 

simulations. It was found that both perform generally well but for this model setup k-𝜀 performs 

better, with a mean absolute error of 8% for all cases compared to 10% for k-ω SST when binning 

is used to compare to the met-mast data. In the case where the met-mast is in the direct wake of 

two turbines up stream, k-𝜀 shows good agreement with the recorded data. However, at 35 

degrees, when the met-mast is on the edge of a very close turbine, k-𝜀 underpredicts wake deficit. 

Therefore, an overall error value calculated for one direction only quantifies the error for that 

direction and not others. 

 New methods for the use of SCADA data in both the construction and evaluation of the 

wind farm models are shown. Two approaches of approximating the SCADA data to more readily 

compare it to the CFD predictions are shown and compared. These approaches are binning the 

SCADA data and constructing regression models from the data. To compare the deterministic 

CFD results to the scattered measurement data, regression methods are used to approximate 

the MM data. The methods chosen are Gaussian Process Regression and Ensemble bagging, 

with mean absolute errors of 0.74 and 0.76 respectively. Both provide a suitable means of 

comparison however it is not determined which one is better. 

 The current practices for actuator disk method are well suited to modelling wake deficit for 

an entire wind farm at a range of inflow conditions. However, some care must be taken when 

inflow direction is varied as the error is not consistent.  

In terms of potential future work, with the growth in computational capabilities, CFD can more be 

applied in a way that expands the compromise between capturing flow complexity and 

computational time. By also combining machine learning approaches, using the CFD results as 

training data, this opens the possibility to use CFD for evaluating the wind farm in ways that were 

previously not possible. 
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Chapter 4 

4. A stochastic expansion of CFD results  

4.1. Requirement for stochastic analysis 

To continue its growth and expansion into other markets the cost needs to be reduced, particularly 

operational expense which can range from 13.1% to 56.5% of the levelized cost of the electricity 

[354]. Offshore wind turbines have grown significantly in size over the past few decades, while 

the average offshore wind turbine installed in 2017 was 5.9 MW there are currently concepts from 

manufacturers that will generate around 12 MW. Additionally, the size of the offshore wind farms 

are growing, with more turbines on new sites and expansions of existing sites. This brings new 

challenges, including in assessing the loads on turbines; but it also brings new opportunities to 

reduce costs through effective strategies. To aid in this area, new methods need to be developed 

to more effectively predict the loads on turbines not only at discrete points in time, but over the 

entire 25-30 year life span of a project.  

A wide range of methods exist for modelling the wake of turbines within a wind farm, from simple 

engineering approximations to full computational fluid dynamics (CFD). The Navier-Stokes CFD 

solvers range from models where the turbine is treated simply as an actuator disk (AD) [150,169], 

to more computationally intensive models of fully resolved wind turbines [169,323]. The fully 

resolved methods can provide accurate answers and predict the flow to a relatively high accuracy 

but are limited to modelling only relatively short time intervals due to their computationally 

intensive nature [317]. For evaluating wind load variation within a wind farm, the actuator disk 

approach is a good compromise between engineering models and fully resolved rotors. The 

method is mature, at least 30 years old, with a variety of implementations. Studies have shown 

that actuator disk produces good agreement with measurements regarding wake deficits, 

[143,151] and that turbulence approaches, such as Reynolds Averaging, perform well at 

reproducing experimental results [355–357].  However, it is hard to cover the wide range of 

variables experienced by a wind farm through CFD; the wind speed can range from a turbine’s 

cut-in speed of around 3-4 m/s to its cut-out speed at around 24-25 m/s and can flow from all 

directions. The pitching strategy employed results in a non-linear response and there are a 

number of parameters that must be accounted for as they affect turbulence intensity, yaw 

misalignment, blade rotational speeds, wind shear and temperature gradients, which creates a 

stochastic environment. 

Monte-Carlo simulations can be used to account for this stochastic environment to generate a 

frequency-based probabilistic view [358][359]. However, these simulations require rapid 

modelling techniques such as the engineering wake models [182] but these are limited and cannot 

be used to evaluate time-variant phenomena and are inaccurate when modelling wake redirecting 

or meandering. Therefore, a more adaptable stochastic method is needed which can not only 

predict simple cases but also which can be adapted to transient and less conventional problems.  
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This chapter develops a method which combines CFD model results with approximation models 

in order to build a computationally efficient model of wind velocity values at turbine locations [15]. 

The purpose of this is that the model could then be used with stochastic inputs to build a 

probabilistic model of the wind farm. To accomplish this, several CFD cases are run across the 

range of variables of interest, information of interest is extracted from these cases and used to 

train supervised machine learning models. From the resulting machine learning models, any 

combination of the previously varied input variables can be explored, with accurate replication of 

the CFD model but with significantly lower computational cost; facilitating probabilistic methods. 

The challenge in applying the machine learning model is to build a suitable approximation model 

for interpolating between training data points, which are individual numerical values in this case. 

There are a wide range of potentially suitable models for this task which can be used in a 

regression or surrogate approach; five state-of-the-art methods are chosen for this study: Artificial 

Neural Networks (ANN), Gaussian Process (GP) with a Radial Basis Function kernel, Radial 

Basis Function (RBF), Random Forest (RF) and Support Vector Regression (SVR). These 

methods are compared in both their ability to replicate CFD data after training, as well as the 

overall accuracy in predicting the wind flow values within a reference wind farm. In addition, 

several different methods of generating the training data from the CFD data are also compared. 

This results in a novel method for stochastic analysis of wind turbine loading within a wind farm, 

as it is now possible to produce results which account for three-dimensional effects in a 

computationally rapid manner. This approach combines the ability to capture the physics of the 

problem to a suitable level using CFD analysis, combined with the computational efficiency of 

machine learning methods to be able to conduct a stochastic analysis. 

 In section 2, the reference offshore wind farm and the reference data available are 

presented. In section 3 the CFD model, previously verified in [16], is summarised. Section 4 

presents the machine learning methods that are benchmarked. Results are presented in sections 

5. A discussion of the findings is given in section 6 and finally, conclusions are given in section 7. 

4.2. Description of the reference offshore wind farm 

A series of CFD analyses are conducted for a discrete set of variables, in this case different wind 

directions and freestream velocities. The results from these analyses are then used to train 

machine learning models, from which predictions for other values can be generated. The trained 

approximation models can then be used to replicate the CFD, especially useful in computationally 

expensive simulation methods like Monte Carlo Simulations, Particle Swarm Optimisation and 

Genetic Algorithms.  

 A real offshore wind farm is simulated using actuator disks in a CFD domain based on 

weather data collected from the farm and the SCADA data collected at four turbine locations. The 

turbines have a hub height of 80 m. A meteorological mast (met mast) is permanently positioned 

on the edge of the site, shown on the reference map of the wind farm in Figure 1. The met mast 

has various sensors which can record wind speed and directions at heights of 25, 30, 58, 72 and 

82 m. There are also sensors that record barometric pressure and temperature at 20 m as well 

as relative humidity and temperature at 82 m. These data are recorded as averages over 10-

minute intervals, along with a time-stamp for each sample. 
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Figure 16. Map of the modelled wind farm, turbine 16 is circled in red, velocities at Turbine 16 are predicted in 

later sections. Blue arrow shows wind directions at 16 degrees and -25 degrees for reference. 

 

4.3. CFD simulation of the wind farm 

The purpose of the CFD model is to generate training data for the machine learning techniques, 

replicating the real turbines on the farm. The results of the predictions from the CFD-ML approach 

are compared to real data to evaluate the predictive capabilities.  

 The CFD model used is a steady-state, Reynolds Averaged Navier-Stokes (RANS) model 

in the opensource solver OpenFOAM using the SIMPLE solver algorithm. In this approach the 

three-dimensional wind farm domain is divided into roughly 60 million cells and discretised form 

of the Navier-Stokes equations are solved iteratively across the domain. The turbines are 

modelled using actuator-disks which impart a momentum loss, both axially and tangentially, to 

the fluid flow. The performance of each turbine is controlled individually within the solution 

process. The CFD results used in this chapter were from the k-𝜀 turbulence model. The k-𝜀 model 

averages the turbulence fluctuations and solves the quantities of k, turbulence kinetic energy, and 

𝜀, turbulence dissipation rate. Full details about the CFD model, how it is constructed and an 

accuracy comparison to real data, can be found at [16].  

 The wind farm is modelled at a range of incoming wind angles between 35° and -35°, 

shown in Table 13, and the freestream velocity is modelled between 5 m/s and 15 m/s in steps of 

2.5 m/s; all combinations of these velocities and angles are modelled with the CFD analysis, 

resulting in 65 cases. These 65 cases comprise the full dataset. A reduced dataset of only 35 

samples was also used to investigate the suitable number of samples. 13 additional points are 

also included at zero wind speed and power, to reduce the region of extrapolation for the models 

and ensure a good fit at lower wind speeds. There are 13 points as they are one for each wind 

direction. 

The values for the incoming wind angle are chosen as the accuracy is compared with values 

from the met mast and this range includes several different wake behaviours: including the met 
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mast being directly behind two turbines and being partially in the wake of close neighbouring 

turbines. These differences should result in variability in the real values and in the model’s ability 

to predict them. 

Table 13. Independent variable values from which all CFD cases were based. 

List of Directions 

(degrees) 

-35 -27.5 -20 -15 -10 -5 0 5 10 15 20 27.5 35 

  

 The training samples from the CFD model are compared to the wind farm data samples 

to determine their accuracy by comparing predicted velocity values to those at the met mast, 

shown in Figure 2. The values compared, due to the availability of the data, are the mean velocity 

deficit value at 10 minute intervals. The mean absolute error is 0.85 m/s, or 8.94% relative to the 

comparison values. This accuracy should be kept in mind when evaluating the accuracy of the 

ML predictions. Conducting the CFD analysis is also computationally demanding, even for a 

steady state analysis. Each of these cases required around 22 hours using 32 CPU cores at a 

time. On this system, 128 cores can be used simultaneously, so 4 cases can be solved at once. 

This CFD-ML approach is then only feasibly if there is access to large computational capabilities. 

4.4 Stochastic Inputs 

As an additional study, a stochastic analysis was performed on turbine 16 to predict the probability 

of the power production being at the rated power of 3.6 MW. Turbine 16 was chosen because it 

is inside the wind farm, not at the freestream side, and SCADA data is present for this turbine. 

Based on the SCADA data, this turbine is at rated power 10.1 % of the time. 

For comparison, 10000 predictions are made based on random sampling of the independent 

variables for the wind speed at turbine 16. The distributions from which samples were taken are 

a triangular distribution for direction and a Weibull distribution for freestream velocity. These 

distributions were fitted to filtered data using Palisade @RISK software [32]. The values for the 

distributions are given in Table 14. The assumption is made that if the velocity is at or above 

nominal velocity then the turbine is at rated power. The nominal velocity is between 13-14 m/s so 

13.5 m/s was used. An axial induction factor of 0.3 is used to convert turbine velocity to upstream 

velocity.  

Table 14. Distributions used for the Monte-Carlo analysis 

 Minimum  Most likely Maximum 

Direction (Triangular distribution) -25.104 296.8 368.04 

 Shape α Scale β Shift 

Freestream Velocity (Weibull distribution) 1.486 5.8776 1.4761 
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4.4. Machine learning methods 

Several approximation methods are tested to evaluate their applicability as rapid surrogates for 

the CFD. The effectiveness of these predictions is compared with additional CFD test cases. The 

models compared are: Artificial Neural Networks (ANN), Gaussian Process (GP), Radial Basis 

Function (RBF), Random Forest Regression (RF) and Support Vector Regression (SVR).  These 

models were selected because they are in common use within wind energy [227,348].  

Due to the CFD cases requiring so much computational resource, only a few cases can be run 

and so only a small number of samples can be generated. The model is steady state and the site 

data available is mean velocity values at 10-minute intervals, and so each case relates to one 

value. The number of samples used to train the approximation method is an important 

consideration and so it should be determined how much data is required. While regression 

methods typically perform better with hundreds or even thousands of data samples [219], 

surrogate models can perform well with far fewer, but tend to overfit with too many sample points. 

For example, Queipo et al. [360] performed a case study using 54 designs to optimise 4 

parameters using a surrogate model based on radial basis function (RBF). In another example 

using RBF [361], 200 samples were used to estimate soil parameters in a 400 km by 700 km 

area, finding this number of training samples suitable. For the response surface method, for a full 

factorial design of experiments, it is recommended to have a minimum of either 2N samples or 3N 

samples including center points, where N is the number of variables [362], this is more of an 

absolute minimum. Realistically, this depends on the situation and often 10N is more suitable. The 

following study uses 65 training sample points to model the 2 variables. 

4.4.1. Artificial Neural Networks 

Artificial Neural Networks (ANN) were first coded by Rosenblatt as a ‘perceptron’ in 1957 [363], 

although the idea had been considered in physical models earlier than this [364]. Neural networks 

are widely used in wide range of applications including wind energy in both condition monitoring, 

[365,366], for damage detection [367–369], load forecasting [370], to infer loads from standard 

signals including yaw misalignment, generator speed and electrical power [371] and in power 

production and resource estimation [58,372–374]. Due to the power and versatility of ANNs, they 

have found wide spread use [227].  

Multi-Layer Perceptron Neural Networks employ several layers of neurons: an input layer, one 

or more hidden layers and an output layer, as shown in Figure 17. The neurons have activation 

functions to relate the input they receive to the output they send to the next layer. In addition, 

there are weights between different neurons and biases which are trained iteratively, traditionally 

using reinforcement learning through back-propagation where the weights are adjusted between 

each neuron based on how accurate the prediction is to the required result. The model can be 

used in an approximation problem by using an appropriate output layer function and minimizing 

a cost function.  
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Figure 17. Architecture of the implemented ANN  

Results were obtained using Keras with a TensorFlow backend. This model requires a large 

number of epochs to acheice suitable convergence, and hence a long training time. A minimum 

of 25,000 epochs are required with the best results at 60,000. After hyperparameter tuning the 

best results were obtained using: 10 nodes for the hidden layers, ‘elu’ activation for the hidden 

layer and ‘linear’ activation for the output node. Only one hidden layer was used as more were 

not necessary to capture the features.  The system was trained using the ‘adam’ optimizer and 

the ‘mean_square_error’ loss parameter. 

4.4.2. Gaussian Process Regression 

Gaussian process regression, or kriging, is a stochastic process where a distribution is defined 

over a basis function which can take any form, in this case a squared exponent function. One of 

the earliest instances of a Gaussian process being used for curve fitting is from O’Hagan [375]. 

The methodology is as follows: after obtaining a predictive distribution, the regression is then 

applied over a basis function which projects the input onto the feature space, using a Bayesian 

approach to take a prior distribution and updating it to form a posterior distribution [17-19]. The 

output of the Gaussian Process is defined as the mean and covariance matrix, the covariance 

matrix defining the smoothness and can be represented by the kernel function. Given a set of 

independent variables, x, Gaussian process can be fully defined with a mean, m(x), and a 

covariance, k(x, x’), as given in equation (28) [347]; 
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 Ƒ(𝑥) ~ 𝐺𝑃(𝑚(𝑥), 𝑘(𝑥, 𝑥′)). 
(28) 

Gaussian Process has been used in wind energy for wind power forecasts [62,376–378] as 

well as determining wind turbine performance and efficiency [379] and condition monitoring 

through SCADA signal assessment [348,380–382] where the ability to determine confidence 

bounds in the prediction has been useful. 

In the results presented below the algorithm is implemented in python using the Scikit learn 

library, sklearn.gaussian_process.GaussianProcessRegression using a radial basis function 

kernel [383]. This implements a GP model using algorithm 2.1 by Rasmussen and Williams [347]. 

A useful feature here is that it allows a prediction without requiring a fit for the prior. In this study, 

a squared exponential kernel is used which is parameterised by a length scale, 𝑙, which in this 

case was set at 0.1. This kernel is given in equation (29) [384]; 

 
𝑘(𝑥𝑖 , 𝑥𝑗) = exp(−

1

2
𝑑 (

𝑥𝑖

𝑙
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𝑥𝑗
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)
2
). 

(29) 

 

4.4.3. Radial Basis Function 

A typical Radial Basis Function (RBF) model, originally derived by Broomhead and Lowe [385], 

is a form of feed-forward neural network composed of single neurons using radial basis function 

transfer functions [386–388]. The result of this approach is that a radial basis function fits a surface 

through the measured sample points. The values between the sample points are determined from 

functions based on the radial distance from the original point. The method has been used in soil 

strength parameter estimation [22, 23] and recently in wind energy to create a wind turbine 

controller which can deal with system nonlinearities [391] as well as in a LIDAR (Light Detection 

and Ranging) based controllers [392].  

The equation for a multi-quadratic basis function is given in (30) [393], 

 𝜙(𝑟) = √1 + (𝜀𝑟)2 (30) 

where 𝜀 is the shape parameter and r is the radius. The output from the entire model can then 

be given in equation 5, where the basis-function is here shown as a function of the Euclidian norm 

which is effectively the radius shown previously. 

 
𝑠(𝑥) =  ∑𝜆𝑖𝜙(‖𝑥 − 𝑥𝑖‖)

𝑛

𝑖=1

 

(31) 

where s(x) is the output of the model and 𝜆𝑖 is is the weight of the i-th node. 
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RBF nodes can be applied in a variety of models, however they are traditionally applied in a 

single-layer model with a single node for each sample point in the training set, the structure of 

which is shown diagrammatically in Figure 18. 

 

Figure 18. RBF schematic diagram 

The code was developed in MATLAB to apply a multi-quadratic radial basis function. The code 

iteratively optimises the shape parameter, ε. As the RBF method forces the interpolation at the 

sample points, a least-squares method is not applicable and therefore LOO cross-validation is 

used to assess accuracy. 

4.4.4. Random Forest Regression 

This method is more recent and was first proposed by Ho [63] in 2001 and improved by Breiman 

[64]. Random forest regression is an ensemble method based on Decision Tree Analysis where 

the results of multiple Decision Tree models are averaged to produce a prediction. The key idea 

is that for multiple noisy, but mostly unbiased models, accuracy can be improved by reducing 

variance. The forest of trees is as accurate as the trees from which it is made, but the combination 

can reduce variance. To best accomplish this, trees must be generated in such a way as to 

minimise the correlation between trees while maintaining low variance of individual trees. The 

variance of the forest of B identically distributed trees can be shown in equation (32) [394], 

 𝜌𝜎2 +
1−𝜌

𝐵
𝜎2, (32) 

where 𝜎2 is the variance of the trees and 𝜌 is the correlation between individual trees. To 

accomplish this low correlation and low variance of trees, the random forest process randomly 

selects variables, or sets of variables, to use to form the splits at nodes. The distinction between 

RF classification and RF regression is simply that for classification the trees cast votes for the 

prediction while in regression an average is taken. 

The method is widely used in some software applications because it is fast and robust, for 

example it was used by Microsoft for pose recognition in their Xbox Connect [395]. However the 
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method has seen only limited use in wind energy; RF classifiers have been used to predict blade 

icing [396] and wind turbine stoppages [397] but so far have received limited attention in wind 

energy applications.  

 The algorithm is implemented in python using the Scikit learn library, 

sklearn.ensemble.RandomForestRegression [398]. Implementing this algorithm, the parameter 

changed is the number of trees, which in this case was set at 10,000. The criteria for the quality 

of split was mean-squared error. There are other parameters which can be set in order to avoid 

‘fully-grown’ and ‘unpruned’ trees to save on memory, however with the size of the dataset this 

wasn’t an issue and these parameters were set at their default as defined in the documentation. 

4.4.5. Support Vector Regression 

Support vector machines (SVM) can be used for regression and when doing so are called Support 

Vector Regression (SVR). SVMs, first identified by Vapnik [399], work through linear domain 

division where the division is made to be as large as possible. This can also be extended to higher 

order domains and be used for regression through the use of kernels [19, 20]. In this method, a 

support vector is drawn such that the error is minimized by selecting a hyperplane which 

maximises the margin. For linear SVR, an approximation can be derived from equation (33) [402]; 

 𝑦 = ∑ (𝛼𝑖 − 𝛼𝑖
∗) ∗ 〈𝑥𝑖, 𝑥〉 + 𝑏𝑁

𝑖=1 , (33) 

where 𝛼𝑖 and 𝛼𝑖
∗ are Lagrange multipliers, there are N training variables and b is a real number 

constant. For non-linear SVR, a kernel is applied to 〈𝑥𝑖 , 𝑥〉. For a Gaussian radial basis function 

kernel this becomes equation (34), where σ is a free parameter, 

 𝐾(𝑥𝑖, 𝑥𝑗) = exp (−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 ). (34) 

 

Support vector machines can be applied in either regression or classification form and have been 

used in power forecasting for wind energy [403–405], where it was found that accurate predictions 

can be made and that hybrid methods can improve predictions. SVM has also been used in fault-

detection [406,407] with good performance, but also relatively quick training times compared to 

other methods tested due to their simplicity. 

 The algorithm is implemented in python using the Scikit learn library, sklearn.svm.SVR 

using a radial basis function kernel [408]. An RBF kernel was used in this case. The two tuneable 

parameters for this SVR implementation with RBF kernel are the penalty parameter, C, and 

epsilon-tube where no penalty is associated, ε, which were optimized for this data with values of 

7 and 0.05 respectively. 
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4.5. Results  

The predictions from the approximation models, trained to the CFD data, are compared against 

measured wind speed values from the real wind farm. A total number of 2016 data samples 

recorded from the met mast recorded data are taken and predicted by the CFD-approximation 

process. These samples are 10-minute average velocity values. The met mast values are 

measured at 82 m above sea level and the CFD results for comparison are extracted at this same 

coordinate in the model. 

For each of the 2016 met mast recorded samples, there are corresponding free-stream 

conditions which were recorded at the same time; these free-stream conditions are used as 

independent variables in the approximation models to predict the values at the met mast. 

However, there is a slight mismatch between the free-stream conditions recorded at the time and 

the values recorded at the met mast as they are from different sources and matched by their 

timestamps. In addition, large scale turbulence makes the data stochastic, resulting in variations 

of the flow. Therefore, a second comparison is made between the already trained approximation 

model and the CFD results at the met mast for seven new free-stream conditions. These new 

CFD cases are modelled with free-stream conditions shown in Table 15 and were chosen with a 

strategy to position them roughly midway between free-stream conditions previously used to 

generate training data. The ‘free-stream’ values are measured at 80 m and the met mast values 

are measured at 82 m, however this difference in height is consistent for both the CFD model as 

well as the measured data and so should not lead to a difference in this comparison. 

Table 15. Independent variables for the three CFD comparison cases 

 1 2 3 4 5 6 7 

Wind Direction (degrees) 0.00 12.50 12.50 7.00 18.75 6.25 18.75 

Freestream Velocity (m/s) 8.25 10.00 8.25 6.50 11.75 13.50 6.50 

 

4.5.1. Artificial Neural Networks 

Figure 19 shows a Y-Y plot of recorded met mast velocities against predictions from the combined 

CFD-ANN approach, for 100 randomly selected cases to predict, with the metrics calculated for 

2016 total number of samples. The figure shows points for when both the 35 training samples and 

65 training samples are used as well as when a 0 free-stream velocity case is used to reduce 

extrapolation. Additionally, the mean absolute errors are shown in the legend. The 45° line 

represents the points where the x-axis values are equal to the y-axis values, that the error is 0. 

Including the zero reduces the deviation from the real values at lower velocities slightly. This 

is reflected in the mean absolute error (MAE) values which are slightly lower for the ‘with 0’ cases 

than without. Although this changes the mean bias error (MBE), it’s not consistently one way or 

the other. Using 65 training samples rather than 35 also improves the MAE, although this can’t 
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be seen in the scatter plot because the difference is minimal. The CFD predictions are, 

erroneously, a little lower than the met mast values at 12.5 m/s. These MAE values are 

consistently the second lowest of the approximation methods, very closely behind SVR. 

 

Figure 19. ANN, plotted 100 predicted cases, real velocity (m/s) against predicted velocity (m/s). The legend shows the 
training dataset used for the predictions as well as error metric calculated using 2016 total samples, including the mean 
absolute error, MAE, and mean bias error, MBE, achieved by that model. 

4.5.2. Gaussian Process Regression 

Figure 20 shows a Y-Y plot of recorded met mast velocities against predictions from the combined 

CFD-GP approach, for 100 randomly selected cases to predict, with the metrics calculated for 

2016 total number of samples. The figure shows points for when both the 35 training samples and 

65 training samples are used as well as when a 0 free-stream velocity case is used to reduce 

extrapolation. Additionally, the mean absolute errors are shown in the legend. The 45° line 

represents the points where the x-axis values are equal to the y-axis values, that the error is 0. 

 At the lower values, where the met mast value is less than 4 m/s, the predicted values are 

all too high, despite otherwise being close to the 45° line. When training sets which include 0 

values are used, then this behaviour is less of an issue, however it is still present. This is reflected 

in the MBE values which reduce when training sets including the 0 values are used. Surrogate 

models predict values which pass through the training points and so they are effectively pinned 

at those points. If values being predicted are outside of the training set, then they are not bound 

by training values and are free to fluctuate. By adding the 0 values into the training set, this helps 

pin the surrogate model, extending its applicability. 

 This model makes predictions which pass through the training set; however, it is free to 

fluctuate away from the training data. Above 5 m/s the training data is spaced by 2.5 m/s intervals, 

however there is a 5 m/s gap to 0 m/s, this is apparently too large. 
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 The decrease in MAE from the 35 samples training set to the 65 samples training set is 

the largest of any model. This is hard to tell from the scatter plot, there’s nowhere that the larger 

training set results in significantly better results, so the improvement is throughout a lot of 

prediction points. The added 0 values make a large improvement in the MAE for reasons already 

discussed.  

 

Figure 20. GP 100 plotted cases, real velocity (m/s) against predicted velocity (m/s). The legend shows the training 
dataset used for the predictions as well as error metric calculated using 2016 total samples, including the mean absolute 
error, MAE, and mean bias error, MBE, achieved by that model. 

4.5.3. Radial Basis Function 

Figure 21 Shows a Y-Y plot of recorded met mast velocities against predictions from the combined 

CFD-GP approach, for 100 randomly selected cases to predict, with the metrics calculated for 

2016 total number of samples. The figure shows points for when both the 35 training samples and 

65 training samples are used as well as when a 0 free-stream velocity case is used to reduce 

extrapolation. Additionally, the mean absolute errors are shown in the legend. The 45° line 

represents the points where the x-axis values are equal to the y-axis values, that the error is 0. 

 Although there are a few more points for the 35 training samples model which appear far 

away from the line, there isn’t any significant difference in model accuracy with different training 

sets, the MAE is consistently close to 13%. As will be shown in section 4.5.7, there is a large 

difference in accuracy compared to further CFD cases when the RBF model is trained with more 

training data, which is not observed in comparison to the met mast. There appears to be a lower 

limit of MAE which is limited by the accuracy of the CFD to the met mast, rather than by the 

approximation method to the CFD, and that is just under 12%. 
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Figure 21. RBF 100 plotted cases, real velocity (m/s) against predicted velocity (m/s). The legend shows the training 
dataset used for the predictions as well as error metric calculated using 2016 total samples, including the mean absolute 

error, MAE, and mean bias error, MBE, achieved by that model. 

4.5.4. Random Forest Regression 

Figure 22 shows a Y-Y plot of recorded met mast velocities against predictions from the combined 

CFD-RF approach, for 100 randomly selected cases to predict, with the metrics calculated for 

2016 total number of samples. The figure shows points for when both the 35 training samples and 

65 training samples are used as well as when a 0 free-stream velocity case is used to reduce 

extrapolation. Additionally, the mean absolute errors are shown in the legend. The 45° line 

represents the points where the x-axis values are equal to the y-axis values, that the error is 0. 

 The MAE values for the RF model is high compared to other models, at around 14.7%, 

and this is due to the overfitting displayed as clusters are formed around the training data. 

Because of this overfitting, there is almost no difference between the main four training sets. By 

using the ‘artificial samples’ training set the MAE is reduced by nearly two percentage points and 

becomes in line with the other models. From the scatter plot the overfitting is resolved with the 

‘artificial samples’ training set as the points now no longer form discrete clusters. The mean bias 

error of RF is the lowest of any of the models. 
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Figure 22. RF 100 plotted cases, real velocity (m/s) against predicted velocity (m/s). The legend shows the training 
dataset used for the predictions as well as error metric calculated using 2016 total samples, including the mean absolute 
error, MAE, and mean bias error, MBE, achieved by that model. 

4.5.5. Support Vector Regression 

Figure 23 shows a Y-Y plot of recorded met mast velocities against predictions from the combined 

CFD-SVR approach, for 100 randomly selected cases to predict, with the metrics calculated for 

2016 total number of samples. The figure shows points for when both the 35 training samples and 

65 training samples are used as well as when a 0 free-stream velocity case is used to reduce 

extrapolation. Additionally, the mean absolute errors are shown in the legend. The 45° line 

represents the points where the x-axis values are equal to the y-axis values, that the error is 0. 

 As can be seen from the MAE values, there’s not much difference between the training 

data sets, except that the training data which included the 0 values are 0.5% points lower than 

without. The reason can be seen at the lower end of the plot where the points marked with an ‘x’ 

are closer to the 45° line than the other points. Without the 0 points the model is extrapolating. 

Between the 35 training data points to 65 training points, there is only a very minor improvement 

in MAE. There’s so little difference in the 35 training and 65 training models that the predictions 

are on top of each other and the green triangles are not visible. 
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Figure 23. SVR 100 plotted cases, real velocity (m/s) against predicted velocity (m/s). The legend shows the training 
dataset used for the predictions as well as error metric calculated using 2016 total samples, including the mean absolute 
error, MAE, and mean bias error, MBE, achieved by that model. 

4.5.6. Model results with direction 

Figure 24 and Figure 25 show the model behaviour along the range of directions for a given free-

stream velocity for the 35 training sample dataset and the 65 training sample dataset respectively. 

In the physical system being modelled, there is a relation between wake deficit at the met mast 

and the inflow direction because the wakes of the turbine follow wind direction and so the MM will 

move in and out of turbine wakes. This physical behaviour is captured in the CFD and hence the 

blue dots in the following figures, indicating CFD result values, are not all at the same value. The 

purpose of the machine learning approaches trained on the CFD results is to approximate this 

behaviour in values between the CFD values. 

 The predictions for Radial Basis Function and Gaussian Process, which uses a Radial 

Basis Function kernel, both pass through all the CFD sample points as they utilise these points 

within their prediction. Support vector regression complies loosely with the training sample points, 

although the prediction dips slightly around 0 degrees, it doesn’t dip as much as low as the CFD 

prediction. The Artificial Neural Network model performs very well based on these figures, the 

predictions pass closely to the CFD training points and does not show any strange or excessive 

behaviour. Of the regression models, RF appears to perform the best; RF captures the general 

behaviour of the direction change relatively well however it does not reach the lowest point at the 

0-degree direction. An advantage of the RF method is that it is unlikely to produce extreme, 

unrealistic results as it takes the average of decision tree predictions, while some of the other 

methods can produce extreme, unrealistic results. In that regard, RF is the most robust of the 

methods tested, but not necessarily the most accurate. 



93 
 

 

Figure 24.  Reduced CFD dataset of 35 cases, Model prediction for the met mast velocity at different free-stream 
velocities, k-ε, 15 m/s,  

 

Figure 25. Full CFD dataset of 65 cases, plots of model prediction for met mast velocity against direction for a 
given free-stream velocity, k-ε, 15 m/s,  
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4.5.7. Comparison to CFD model 

The following charts show a comparison of the predictions from the approximation models with 

the CFD model results. In this case, seven further CFD cases were conducted and the 

approximation models were used to predict the results in order to get an estimate for what level 

of error comes from the ML approximation of CFD. The MAE as a percentage of the mean CFD 

value are shown in Figure 26 and the maximum errors are shown in Figure 27.  

 Additionally, a sensitivity study was conducted where the number of training samples was 

increased from the minimum of 35 cases to the maximum of 65. These two additional steps were 

using 55 and 45 training samples. To arrive at 55 samples, the results at the direction of +/- 27.5⁰ 

were removed and for 45 samples, results with direction +/- 15⁰ were removed from that.  

 

Figure 26. MAE as a percentage of the mean, for each approximation method compared to CFD model 

 The MAE values range from 0.54% for RBF with the 65-training point data set to 7.72% 

for RF with the 35-training points data set.  

 

Figure 27. Maximum error percentage, for each approximation method compared to CFD model 
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 The maximum error values range from 1.0% for RBF with the 65-training point data set to 

12.4% for RF with the 35-training points data set. 

 In these results the maximum error is typically twice the MAE with the exceptions of the 

‘artificial samples’ training set for RF where the maximum is slightly less, and for SVR where the 

maximum is roughly three times the MAE. 

4.5.8. Comparison to established method Jensen 

It can be useful to compare these results to other methods used in literature; however, this 

comparison can be challenging. In a wind tunnel experiment, analytical models can give very 

close results to reality, for example Garcia et. al. achieved a 2% error relative to a single turbine 

in wind tunnel tests [146]. For wind farm measurements, where parameters are far less controlled 

and there are more complications, the error can be much larger. For example, comparing wind 

farm efficiency using 4 analytical park models, Shao et. al found a MAE at Lillgrund of between 

6.48% and 17.06% and at Horns Rev an error of between 5.81% and 10.73% [409]. Gaumond et. 

al. found that error level was dependant on an accurate knowledge of wind direction and found 

errors of 20.9%, 20.9%, 21.7% for Jensen, Larsen and Fuga respectively [410]. It can be difficult 

to compare these numbers directly, not only because they often are errors for different things but 

also because the error can be dependent on the wind farm itself as well as factors specific to the 

data recording and collection. Conducting the CFD for this study it was found that a large 

contribution of error was from the level of scatter in the data and the CFD model achieved an 

MAE of around 11% relative to measurement data [16]. 

 For a direct comparison, the Jensen wake model was used to evaluate the same wind 

farm. This is an analytical model which evaluates the wake deficit and propagation as a function 

of the distance from the turbine. Wake interaction is accounted for by superposition of the wakes. 

[29,411] The same 2016 data samples from the met mast are evaluated and the error metrics 

achieved (Mean Absolute Error, MAE, and Mean Bias Error, MBE) in this are given in Figure 28. 

The bias from Jensen is slightly lower than the ML-CFD approach using ANN, around 0.7%, 

however the MAE is 4% higher at around 16%. It should be noted that the Jensen model predicts 

velocity at hub height, which is 80 m, and the met mast records values at 82 m. 

 The effectiveness of this approach can be visualised by plotting the 10-minute averaged 

met mast values sequentially as they were observed along with model predictions, forming a time-

series plot, as in Figure 28. The model used in this case is ANN with 65 training samples and the 

added 0 points. The behaviours discussed earlier in the chapter can be observed in this plot. 

Typically, the predictions track closely with the real values. There is deviation between 10 and 13 

m/s met mast velocities, as mentioned before this is from the CFD model under predicting in this 

area. There is also some over-prediction at very low values. 
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Figure 28. Observations plotted sequentially comparing the met mast values to the predictions from the best method, 
ANN with 65 training samples and the added 0 points, compared to Jensen wake model. 

4.5.9 Stochastic Analysis 

Each model was used to conduct a stochastic analysis to determine the percentage of time at 

which turbine 16 was at or above rated velocity. The purpose of this is to test the utility of the 

method in a stochastic analysis. The real value for time at rated power from the data for this 

particular turbine was 10.1% of the time. The method, outlined in section 2.4, was to randomly 

sample free-stream values from fitted distributions to produce independent variables for each 

approximation model which was fitted to the CFD results for the original data set. The results from 

this are presented in Table 16 which shows the predicted percentage of time at rated power and 

also the difference from the actual percentage of time. The distributions from which the free-

stream conditions were samples are presented in Table 14. 

Table 16. Predictions and errors for percentage of time turbine 16 is at rated power 

Method ANN GP RBF RF SVR 

Percentage at rated power 10.5 8.5 13.0 11.2 12.0 

Difference from actual +0.4 -1.6 +2.9 +1.1 +1.9 

As can be seen in Table 16, ANN and RF produced the closest prediction with a difference in 

values of +0.4 and +1.1 respectively. SVR was the least accurate, over predicting the percentage 

of time at rated power by a difference of 1.9. The distributions are shown in Figure 29. 
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(a) 

 

(b) 

 

(c) 

 

 (d) 



98 
 

The prediction from GP is the only model below the expected value, GP has a larger amount 

of dispersion in the predictions as seen in section 3.1.1. The other methods generally over predict 

time at rated power. This can partially be explained by large scale, atmospheric turbulence which 

is not accounted for in the CFD model. 

 Comparing the distributions produced from each of these models shown in Figure 29 

shows a clear distinction between the models. ANN, RBF and GP all produce distributions roughly 

similar in shape to the distribution from the turbine data shown in Figure 29 (f). The most similar 

distribution is produced by RBF which has a head at the closest height, roughly 0.2 compared to 

the actual value of roughly 0.175, and a tail reaching a similar maximum of roughly 25 m/s. The 

two which are the least good are SVR, which has a higher skewness and a sharp drop just below 

the mean, which is itself below the actual value. 

 The RF model shows considerable overfitting, only producing discrete peaks and not a 

smooth curve. This behaviour was addressed by the method outlined in section 2.3.3 where 

artificial samples were produced and used to train the RF model. The result of this approach to 

the resulting distribution is shown in Figure 30. This distribution reaches a maximum normalised 

occurance only slightly higher than the RBF model and produces a similair general shape to the 

actual distribution. The main discrepancy is the large value of ‘Velocity at turbine 16’ at 14 m/s, 

which occurs because the model was not trained on any values above this.  

 

(e) 

 

(f) 

Figure 29. Probability distribution functions for the velocity at turbine 16 for (a) ANN, (b) GP, (c) RBF, (d) RF, (e) 
SVR, (f) Real data for comparison. 



99 
 

 

Figure 30. Random Forest with artificial samples 

 The models trained using the expanded data set were then used to conduct a Monte-Carlo 

analysis and produce joint probability distributions. However, as discussed, the increase in 

training data does not necessarily improve the accuracy of the predictions since many of the real 

data points are lower than the model predictions, possibly due to large scale turbulence. Similarly, 

some of the predictions for time at rated power have gotten worse, but others have improved. The 

values for this are shown in Table 17. 

Table 17. Stochastic prediction for each model trained using the expanded data set 

Method ANN GP RBF RF SVR 

Percentage at rated power 13.0 10.1 11.7 11.4 11.8 

Difference from actual +2.9 0 +1.6 +1.3 +1.7 

 

The prediction for GP is the best in this case, now with a difference from the actual value of 0, 

although this is likely due to chance as the model is not including noise at each data point, 

although the model can do this. The only other two improvements are RBF, going from +2.9 

difference to +1.6, and SVR, going from +1.9 to +1.7. 

 

(a) 
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(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 31. Probability distribution functions for the velocity at turbine 16 for (a) ANN, (b) GP, (c) RBF, (d) RF, 
(e) SVR, (f) Real data for comparison. 

 Figure 31 (a)-(e) show the probability distributions produced by the models and (f) shows 

again the actual distribution from the data. There is a slight improvement in the distributions, 

particularly in ANN, GP and SVR where the normalised occurrence of the mode has come down 

and the general shape is closer to (f) in those cases. The distribution from ANN is now very similar 

to the distribution from RBF. The distribution from RF is almost identical to how it was with the 

original data set. 

4.6. Discussion 

The approximation models were trained on CFD generated training data and then used to make 

predictions which were compared to both further CFD cases as well as against met mast 

recordings. Against further CFD cases, all methods were able to perform well, with a MAE under 

3% for the best training data. However, the methods which clearly performed best against further 

CFD cases were ANN, RBF and GP as their MAE were all below 1% with the largest training set. 

In terms of approximating velocity deficit at a given point, these approximation methods can 
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successfully provide similar results as conducting more CFD cases. It should be noted that this 

approach models the input/output relationship between free-stream values and measured values 

within the windfarm wake. The approach predicts are individual 10-minute values. If forecasts 

were to be made, then an appropriate method for statistically sampling free-stream values would 

need to be used which includes seasonality and cycles. 

 The goal of the combined CFD-ML approach is to predict the physical system and the 

accuracy to which this is accomplished is measured by the comparison to met mast results. The 

CFD model predicts a range of parameters including velocity deficit at various locations as well 

as turbulence. The ML portion of the approach can then approximate these results to sets of 

independent variables not used in the CFD models, in this case velocity deficit. The accuracy is 

compared to measured values recorded on the real wind farm as well as accuracy of the ML 

models relative to the CFD model. In this study, the lowest MAE was achieved with SVR using 

the 65 CFD training sample data set with the additional 0 values, with a MAE of only 11.8%. This 

is despite still having a relatively large error compared to further CFD cases of 2.65% for the 65-

point training set. This is because SVR case provides a response which doesn’t change as much 

with direction, while the CFD, based on this, changes too much with direction. It appears from this 

that the stochastic nature of the real measurement data smears out sharp changes in the result, 

and so SVR, which approximates without the sudden dip at 0 degrees, achieves a lower error 

than the other methods against measurement data. Applying this in the future however, it would 

be good practice to either reduce the error from the CFD or to deliberately account for the 

stochastic nature of the real data. Otherwise, the best method after SVR is ANN with a lowest 

MAE of 12.39%. This agrees with the other results, that it is one of the best approximations of the 

CFD predictions. 

Using the larger training set improves the results for the comparison to further CFD cases with 

all models except for SVR which becomes slightly worse. The improvement from training on the 

larger data is substantial for comparison to further CFD, reducing MAE to one seventh compared 

to the smaller training set in one case. The improvement compared to the met mast 

measurements is not so significant and doesn’t even reduce for some models. This is because 

the error of the approximation models to the CFD is much less than the error of the CFD to the 

met mast. 

Adding the zero values improved the accuracy of almost all cases and can therefore be 

recommended to be included in future such studies. This provides a noticeable improvement at 

no computational cost. 

The use of artificial samples, effectively using a polynomial regression for one variable before 

then using the RF, had a big impact in all error metrics. With this training set, the RF model 

performed as well as the other models. The reason for this is clear in the plot of the randomly 

chosen cases as the points no longer form discrete clusters due to overfitting. 

From a practical standpoint, some of the methods approximate the CFD results to a small error 

of only around 1% maximum error, but the error to the met mast is much larger. With the use of 

these approximation methods, similar results to conducting more CFD cases can be obtained at 

vastly lower computational cost. The overall computational cost of this approach is still high due 
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to requiring so many CFD cases as training data, which in this case required roughly a month on 

a high-performance computer cluster. 

This ML-CFD approach can be useful in cases when measured data isn’t available but when a 

layout is already established. It is more computationally intensive than the Jensen wake model 

but much more accurate and inherently accounts for physical behaviour of the wake. Therefore, 

it is useful in cases such as: determining values at points which aren’t measured, evaluating 

different wind farm control strategies or predicting future wind farm performance. 

4.7. Conclusions 

In this study, a method is developed for conducting stochastic analysis of an offshore wind farm. 

This method takes results from CFD analyses at a set of input values, builds an approximation 

model of the system from the CFD data and produces predictions between the modelled inputs. 

CFD cases were conducted at a range of free-stream speeds and directions in order to build a 

suitable training set based on the 65 CFD cases. Velocity deficit at the met mast was predicted 

by the trained models and was compared to measurement data from the real met mast. 

Five Approximation methods were compared: Artificial Neural Networks, Gaussian Process with 

a Radial Basis Function kernel, Radial Basis Function and Support Vector Regression. These are 

state-of-the-art methods which all work in very different ways. The suitability and accuracy of each 

for this task is assessed. 

On balance, both Artificial Neural Network and Radial Basis Function were the best method with 

the most accurate prediction of CFD results, achieving a mean absolute error of 0.73% and 0.54% 

respectively. Increasing the number of data samples for training had a clear improvement on the 

replication of CFD results by the approximation methods with the surrogate models, Gaussian 

Process and Radial Basis Function, showing the largest improvements in replicating the CFD 

results with an increase in the training data set size. For support vector regression however, there 

was no improvement with the larger training set. 

In the case of comparing against the measured site data, the best method was SVR with a MAE 

of 12.27%, followed by ANN and RBF which had MAEs of 12.39% and 12.68% respectively. Good 

practice in future work would be to use either ANN or RBF, which predict CFD results well, and 

then account for the stochastic nature of the real measurements. 

Future work could build on this by incorporating the stochastic capabilities of some approximation 

models in order to replicate the stochastic nature of the wakes. Additionally, other variables which 

can be calculated could be approximated such as turbulence values, or a time-series prediction 

can be generated, which can be useful for estimating fatigue. 
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Chapter 5 

5. Wind and wave time series forecasting 

5.1. Literature Review  

5.1.1. Markov Chains 

Markov chains (MC) is a widely accepted statistical tool [412] for modelling a variety of natural 

phenomena, including wind speed values. Authors have used MCs for both on and offshore wind 

[69,413] and discussed the uses in reliability forecasting [414], [415]. There are some limitations 

to using Markov Chains for wind speed prediction; it has been found that the autocorrelation plots 

for short intervals are often inaccurate due to lacking the persistence found in real data. As a 

result, they do not perform well in ranges from 15 to 40 minutes, it was found that the synthetic 

wind data fluctuates more rapidly in first order MCs than real data for these time scales [416]. 

However, authors have devised modifications for Markov chains which improve upon this aspect 

and others. For example, the aforementioned limitation was addressed by incorporating a second 

lag as well as a running-average filter [417]. Other improvements include nested Markov Chains 

which are better able to capture the temporal self-dependence in wind speed [413]. More 

improvements exist, such as accounting for the uncertainty in the transition matrix through 

Bayesian inference, which in a case study was found to outperform traditional Markov Chains in 

a credible interval criterion. Another interesting idea is to first cluster the wind data as a method 

of discretisation. This was done on two dimensional anemometer data and found to show 

‘characteristic’ wind behaviour of the site [71]. 

 An important aspect for the present chapter is seasonality. There is seasonality in the real 

wind data and this needs to be represented in the model. One author trained separate models for 

summer and winter in order to incorporate seasonality [415]. Another author, with only one year 

of training data, trained a separate Markov Chain for each month. They not only found that this 

captured the seasonality present in the wind speed data but also found that one month of data 

per model was sufficient to capture the statistical properties [70]. 

5.1.2. Gradient boosting and trees 

Gradient boosting is often used in stochastic value prediction [418]. The method has been used 

to win two Global Energy Forecasting competitions [419,420] where it was required not only to 

forecast into the future but also to back-cast missing data. The method works well at forecasting 

at different time scales – some authors have used it to forecast 1 to 6 hours ahead [421], others 

up to one day [66], and others have used it for even longer time scales [67]; all found it to perform 

very well compared to other methods tested in those studies. Boosted regression trees have also 

been used for prediction of maximum wind speed based on geographical considerations, though 

this is not forecasting, it shows the diversity of the approach [422]. 
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 Some authors have found ways to improve upon the gradient based boosting method for 

certain problems. For example, by incorporating instance-based transfer learning, Cai et. al. were 

able to incorporate related data sources into their training and improve against a benchmark 

approach [423]. Chen et. al. improved on Gradient boosting by incorporating Markov Chain mixing 

rate to derive upper bounds in the loss function, which improves convergence of the problem [65]. 

5.1.3. Probabilistic methods 

For estimating sea-states and wind speeds, statistical distributions are normally used, and this 

practice is also recommended in engineering standards. For example, prediction of annual energy 

production is recommended by International standards IEC 61400-12 to be conducted with a two-

parameter Weibull distribution [424]. Similarly, the American Bureau of shipping recommends a 

two-parameter Weibull distribution for mean wind speed estimation, but finds that sometimes a 

Rayleigh distribution is appropriate [38]. Researchers have used a range of distributions to model 

both significant wave height and mean wind speed, particularly for investigations at the design 

phase. Authors have used Weibull [47,48], mentioned before, as well as Gumbel [49,50], 

Lognormal [45,46] and many other distributions. 

 Seasonality has been incorporated into the use of statistical distributions for wind speed. 

Jaramillo et. al. fitted a distribution for winter, spring, autumn and fall for a site in Mexico [37]. This 

is the same approach used by a number of other authors who also characterized wind speed at 

sites using Weibull distributions [425,426]. A challenge in addressing seasonality was discusses 

by Erikson et. al. who found that at different times of the year, much of the wind speed can exhibit 

non-Weibull behaviour [427]. To address this, Drobinski et. el. proposed an alternative which fits 

both the diurnal and seasonal variability better [428]. 

5.2. Weather forecasting methods 

5.2.1. Markov chains 

A Markov Chain is a stochastic process which defines a set of probabilities for the next possible 

set of states, given the current state. The set of probabilities for moving from one state to the next 

are called transition probabilities and are dependant only on the state being moved from. In a 

regression problem, each possible discretised numeric value can be defined as a state. In Markov 

chains, the probability of any state at time tn for a state, 𝑖, within a countable set of states, S, is 

independent of all previous states except for the last one, as shown [429]:  

 Pr{𝑋(𝑡𝑛) = 𝑖𝑛|𝑋(𝑡1) = 𝑖1, …𝑋(𝑡𝑛−1) = 𝑖𝑛−1} = Pr {𝑋(𝑡𝑛) = 𝑖𝑛|𝑋(𝑡𝑛−1) = 𝑖𝑛−1} (35) 

                    

Forecasting into the future is accomplished as a series of steps and any state in the future 

is dependent on all of the probabilities in between those states. With a given start time 𝑖, the 

probability of a certain state at time 𝑗 which is 𝑟 steps from the value, is given in the Chapman-

Kolmogorov equation [412]:  
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𝑃𝑖𝑗 = ∑ 𝑃𝑖𝑘𝑃𝑘𝑗

𝑟

𝑘=1

 (36) 

Markov chains and how they work are described in detail in references [412,429,430]. 

The Markov Chain model used in this chapter is a first-order, observation driven model which 

generates a probability vector of wave height given the previous (𝑡𝑛−1) wave height, with a 

separate matrix for each month. A probability matrix of wind speed, given wave height, is 

constructed as well as a matrix of wind direction given wave height. These are constructed by 

counting the number of occurrences within each matrix position and then normalising them by the 

total number. To determine each next iteration, the model samples from the probability matrixes 

given the current state. 

5.2.2. Gradient boosting 

In this chapter gradient boosting is applied using LightGBM which is an API for Python 

[230]. Gradient boosting is an ensemble of weak learners where new learners are added 

sequentially in such a way as to minimize the gradients of the loss function. At each iteration, a 

new model is added which aims to correct the error of the previous model. Each new term fits to 

the residual of the previous model, R=𝑦 − 𝐹𝑚(𝑥). By identifying this as the gradient of the squared 

error loss function, the method can be generalized with other loss functions. Each new iterated 

model, 𝐹𝑚(𝑥), is defined from the previous model, 𝐹𝑚−1(𝑥), in the following equations [431]: 

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜌𝑚ℎ(𝑥; 𝑎𝑚) (37) 

Where ℎ(𝑥; 𝑎𝑚) is the constrained negative gradient. The ‘line search’, 𝜌𝑚, along the 

direction of the gradient is defined as: 

 
𝜌𝑚  = arg𝑚𝑖𝑛𝜌 ∑𝐿(𝑦𝑖 , 𝐹𝑚−1(𝑥𝑖) +  𝜌ℎ(𝑥𝑖; 𝑎𝑚))

𝑁

𝑖=1

 (38) 

𝐿() is the loss function between the value yi and the previous model plus the new term. 

In applying this method, the time variable, t, needs to be converted to lag variables. A 

starting point is variables of ‘month’, ‘day’ and ‘hour’. However, this was found to not be enough 

to capture the time-series behaviour. In the same concept, generic lag variables were also created 

where a repeated duration is subdivided into a set of intervals. These durations were chosen from 

the optimized time-lengths found through the hybrid statistical method discussed in the next 

section. 

There are many parameters which can be set when implementing a LightGBM model [231]. A 

Gradient Boosting Decision Tree is used for training with the loss metric of mean absolute 

percentage error. 
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5.2.3. Hybrid probabilistic method 

The key premise to the proposed concept, in terms of time-series forecasting, is that any 

time-series is composed of three components: trend, seasonality and randomness. Trend is the 

gradual change over time, seasonality is repeated patterns which are expected to continue and 

randomness is behaviour which cannot be fully explained based on past patterns. To an extent, 

trend and seasonality can be removed from a time-series data by various approaches, leaving 

only the randomness of the data. This randomness can be parameterised and replicated through 

distribution fitting and sampling. If one is interested in predicting accurate values for any given 

observation, then this is not enough. However, when the objective is to simulate, rather than 

predict, then this can be appropriate, as this chapter will show.  

The hybrid statistical/ regression method proposed in this chapter uses a combination of 

sampling from statistical distributions with regression of parameters. The distribution parameters 

are fitted to the time series data through repeated polynomial regression. In the case of a 

univariate model these parameters are the mean and standard deviation as they vary with time, 

and are used to fit a normal distribution. In the case of a multivariate model this is the mean and 

the covariance between the training data arrays, and this is used to fit a multivariate normal 

distribution. Both of these distributions are widely used in literature [432]. For wind speed 

prediction, authors tend not to use normal distributions opting for others [31,32,34]. However, with 

the seasonality removed, the data is much closer to a normal distribution than before and the 

small number of parameters in a normal distribution is appealing for applying this method. 

The seasonality and trend are first removed from the data by iterative fitting of polynomial 

regression curves where the curve is subtracted from the training data before the next iteration is 

conducted. The first curve is a first order polynomial to remove trend and the following sets of 

polynomials are all fourth order as this appears to fit the trends well. A least-squares based fitting 

approach is used.  

The regression fitted to seasonality should cover each time span for which there is a 

significant repeated pattern. This may initially be taken as each year, each month, each day and 

so on, but this is insufficient. The process for selecting the seasonality time spans is automated 

in this approach. At each iteration, a curve for all time lengths below a set value is fitted to, and 

then subtracted from, the data. The time span leading to the lowest standard deviation in rolling 

average for the new, de-trended data is then used and another iteration is conducted. The new 

maximum time length for the next iteration is a value just under the previous selected time length. 

The reduction in the error metric is shown in Figure 32. These parameters can be visualised over 

the measurement values, as in Figure 33.  
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(a) 

 

(b) 

Figure 32. Reduction in error metric,  standard deviation of rolling mean, for the de-seasoned data at each iteration. (a) 
u10, (b) Hs 

A curve for the standard deviation (for a univariate model) or the covariance (for a 

multivariate model), is then fitted to the de-trended data using only an annual time scale. These 

fitted curves can then be extended into the future. This whole process is shown diagrammatically 

in Figure 34. 

 

Figure 33. Mean curve as well as the mean +/-1 standard deviation over the measured values for wind speed for the 
year 2016. 
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Figure 34. Hybrid method process diagram showing the approach used to fit curves for distribution parameters from 
time series data. 

The model can be expressed in the pdf of equation 5 (univariate) or equation 6 

(multivariate). 

 
𝑓(𝑡) =  

1

𝜎(𝑡)√2𝜋
𝑒

−
1
2
(
𝑧−𝜇(𝑡)
𝜎(𝑡)

)
2

 (39) 

 
𝑓(𝑡) =

1
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𝑛
2|𝛴(𝑡)|

1
2

𝑒−
1
2
(𝑧−𝜇(𝑡))𝑇𝛴−1(𝑧−𝜇(𝑡)) 

(40) 

 

Where the parameters are time dependant and are calculated in this model as: 

 
𝜇(𝑡) =  ∑ ∑ 𝑎𝑘𝑡

𝑘

𝐾

𝑘=0

𝑁

𝑛=0

 

(41) 

 
𝜎(𝑡) 𝑜𝑟 𝛴𝑖,𝑗(𝑡) =  ∑ 𝑎𝑘𝑡

𝑘

𝐾

𝑘=0

 

(42) 

With N as the number of optimized timescales, and hence the number of curves, and K is the 

polynomial order of each curve. The items i and j are indices in the covariance matrix. To match 
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the rate of change of the real measurements, samples are taken every 5 intervals and linearly 

interpolated between these. 

5.2.4. Strengths and weaknesses of methods 

The following table presents the strengths and weaknesses of the methods presented in section 

5.2. 

Table 18. Strengths and weaknesses of the methods used in this chapter. Markov Chains, Gradient Boosting and the 
hybrid regression method. 

 Strengths Weaknesses 

Markov 
Chains 

• Accurately replicates the 

probability distribution [416]. 

• Can be generated with limited 

data (e.g. one year) [70] 

• Well developed with improved 

implementations. [413] 

• Seasonality accomplished by 

having separate models, not 

unified in one, therefore 

limited. [70] 

• Persistence dependant on 

prediction rate and limited to 

certain timescales. [416] 

Gradient 
Boosting 

• Very low computational 

requirement and quick to train. 

• Can be useful at a range of 

timescales. [66,67,421] 

• Flexible and suitable for a 

variety of problems [419,420]. 

• Not a statistically based 

method, so it won’t inherently 

capture statistical distribution. 

• Deterministic method and so 

cannot be used as a stochastic 

input without modification. 

Hybrid 
Regression 

• Captures trends at all 

significant timescales. 

• Level of persistence is a 

tuneable parameter. 

• Uses statistical distributions 

and is therefore closer to 

recommendations from 

standards. [38,53] 

• Slow to train in its current form 

as the code is not optimized.  

• Depends on linear interpolation 

between sample points. 

• New idea and so not 

developed yet by other 

authors. 
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5.3. Results and discussion 

The time series forecasting methods are now compared in terms of their numerical 

similarity to the real time series data. This is to show which is a closer approximation of the real 

data as well as to help explain differences which will be seen in the operational KPIs. The methods 

are compared for the year 2016, which is the last year that real data is available. There is a large 

amount of scatter in real wind and wave values, so it is unreasonable to compare individual 3-

hour observations. Instead, the results are compared on a monthly basis.  

Figure 35 shows box plots of the real as well as predicted values for the year 2016. This 

shows that the general results of all models are similar and roughly comparable with the real 

values. However, there are months where the mean values of predictions as well as the level of 

deviation do not match as closely with the real data, particularly in December where all methods 

overestimate the mean value. To investigate this further, the difference in mean and standard 

deviation are calculated. 

 

(a) 
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(b) 

Figure 35. Box and whisker plot showing real, monthly values (left, red) compared to 
predicted monthly values for wind speed (a) and significant wave height (b) for 2016. 

 

 

Figure 36 shows this difference, from the real measurements, in monthly mean values for 

wind speed and significant wave height for 2016.  In both u10 and Hs the methods all under 

predict the early months and over predict the later months. There are occasional months where 

all but one method shows a low difference, for example in October Markov Chains under predicts 

the mean values while all other methods slightly over predict. These discrepancies are typically 

quite small, roughly 10% of the mean values for the month. These differences are summarised in 

the following table. 
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(a) 

 

(b) 

Figure 36. Difference in mean, for each month, compared to the real data for 2016. (a) Wind speed, u10 and (b) 
Significant wave height, Hs. Showing deviation from real average. 

The conclusion from the values shown in Table 19 is that the tree-based approach in 

LightGBM gives predictions with mean values furthest from the real mean, and also gives 

comparatively large maximum differences. Markov Chains, as well as the two hybrid methods, 



114 
 

give the closest monthly mean values with the hybrid multivariate approach showing slightly better 

results. However, it is not close enough to say definitively that the hybrid methods outperform 

Markov Chains in this, only that they are all similarly good. 

Table 19. Summary of difference between mean of real and forecast monthly values for 2016. 

  U10 average U10 maximum Hs average Hs maximum 

LightGBM 1.206 4.221 0.135 0.616 

Markov Chains 0.776 2.119 0.176 0.445 

Hybrid, univariate 0.793 2.579 0.128 0.297 

Hybrid, multivariate 0.741 1.919 0.146 0.385 

 

With a few exceptions, all methods under predict the level of deviation in each month, as 

shown in Figure 37. LightGBM particularly under predicts the level of deviation, which is to be 

expected as tree-based approaches use an average of a leaf and so some level of scatter in the 

measurements is averaged out. All methods are closest to the real value of standard deviation 

during the mid-months such as 4 and 6; this can simply be due to the fact that there is much less 

deviation in the real values for these months. These differences in standard deviation are 

summarised in the following table. 
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(a) 

 

(b) 

Figure 37. Difference in standard deviation for each month compared to the real measurement values. (a) wind 

speed u10 and (b) significant wave height, Hs 

The conclusion from Table 20 is that LightGBM shows the largest difference from the real 

standard deviation while Markov chains shows the smallest with the Hybrid multivariate values 
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very close to the Markov Chain values. The values for Markov Chains and the two hybrid methods 

are very close and so it can only tentatively be concluded that Markov Chains performs slightly 

better in this. 

Table 20. Summary of difference between standard deviation of real and forecast monthly values for 2016. 

  U10 average U10 maximum Hs average Hs maximum 

LightGBM 1.367 2.334 0.220 0.406 

Markov Chains 0.332 1.015 0.095 0.220 

Hybrid, univariate 0.743 1.368 0.110 0.254 

Hybrid, multivariate 0.485 1.267 0.072 0.228 

 

The final value which is important in the replication of the forecasts compared to the real 

values is the level of correlation between the wind speed and the significant wave heights. This 

level of correlation is important for O&M modelling as some activities are dependent on both 

values. The Pearson correlation coefficients are given in the following table. This coefficient 

shows the level of linear correlation between two sets of variables in both magnitude and direction. 

A value of +1 indicates perfect positive correlation and a value of -1 indicates perfect negative 

correlation. 0 indicates no relationship between the two sets of variables. 

Table 21. Pearson correlation coefficients between wind speed, u10, and significant wave height, Hs, for the real 
measurement observations and the forecasts. 

Real LightGBM Markov Chains Hybrid, univariate Hybrid, multivariate 

0.829 0.579 0.807 0.120 0.810 

 

The level of correlation in the real observations between u10 and Hs is roughly 0.8, which 

is also accomplished in Markov Chains and the hybrid multivariate approach. The tree based 

LightGBM shows some level of correlation and the hybrid univariate shows no correlation.  

 Based on the previous metrics, Markov chains and the hybrid multi-variate approach 

appear to produce comparable estimates. However, looking within one month shows this to not 

be the case. There are several distinctions which can be seen in plots for January 2016, as an 

example, shown in Figure 38. 
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(a) 

 

(b) 

Figure 38. Time series plots within the month of January 2016 comparing real values to predictions. Recorded 
wind speed time-series is plotted in grey. (a) - prediction from the hybrid multivariate approach for that month, 

(b) - prediction from Markov Chain. 



118 
 

The Markov Chain appears to show a higher persistence, it remains around a value for 

longer, than the hybrid method. The persistence in Markov Chains is a fundamental quality of the 

model and is dependent on the training data. For the hybrid method persistence is determined by 

how frequently predictions are made, and so is a changeable parameter. 

The Markov Chain captures seasonality within a year by training a separate model for each month. 

However, any trend which occurs within a month is not captured using this approach. Conversely, 

the hybrid approach fits the parameters to trends at multiple timescales and so shows trends 

within a month. This point about shorter trends is clear in Figure 38 where the general movement 

of the hybrid method follows the real data in a more deliberate way then the Markov Chain. 

5.4 Conclusion 

In this chapter a comparison of numerical weather forecasting methods and their results were 

presented. Three numerical methods were used including Markov Chains, gradient boosting and 

a proposed hybrid regression/ statistical method. The methods are compared in terms of their 

numerical similarity to the measurement data. 

The results show that, numerically, both Markov Chains and the hybrid method perform similarly 

to the measurement data. Markov Chains and the hybrid method are roughly equal in terms of 

prediction of monthly mean and deviation values as well as correlation between wind and wave 

vectors. The largest difference resulted from the gradient boosting method. The difference in 

Markov Chains and the hybrid method comes down to the level of persistence in the two methods 

as well as capturing trends at multiple timescales, where the hybrid method excels.  

This work is novel because it evaluates the results of numerical weather model choice in 

comparison to site data. This chapter is also novel because it presents a hybrid forecasting 

approach which combines existing ideas in a way which is tailored for this problem and results in 

forecasts which are numerically similar to measurement data. Future work will focus on 

developing the numerical forecasting models further. This work will be of value to practitioners 

who are developing maintenance strategies for offshore wind farms, as contractual relationships 

between developers/operators and the grid often depend on ensuring adequate levels of 

availability; accurate prediction of such value is critical towards reducing risks of such 

agreements. Further, the study can be of value to researchers and developers of numerical tools 

which utilise forecasting algorithms as it shows how different algorithms can be modelled, and at 

the same time discusses performance characteristics for each method applied.  
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Chapter 6 

6. Damage identification through 

monitoring of global structural 

dynamics 

6.1. Introduction 

Operation and maintenance activities make up a large portion of the levelized cost of energy for 

offshore wind power. Operators spend this money because the cost of failure is larger and 

comprises cost of repairs, loss of productivity and loss of remaining fatigue life caused in the time 

the asset still operates while the structure is in a condition of exceeded design parameters. These 

exceeded design parameters could either be caused by damage, such as a crack, or 

environmental parameters such as excessive scour. Detecting the exceedance of design 

parameters quickly can save a lot of money, identifying the type of damage and assessing its 

severity can provide considerable further benefits. For example, it was found in a cost-benefit 

analysis that implementing structural health monitoring on offshore wind support structures 

significantly reduced the operational expense [433,434].  

Data on failed structures is typically not available, being able to identify failure when it occurs is 

of significant economic benefit. To overcome this lack of data, researchers have modeled 

structures to simulate damage. Some researchers aimed to detect damage in their model in the 

presence of measurement noise; for example, Malekzehtab et. al. used mode shapes and natural 

frequency in an objective function, combined with a penalty term to avoid false positives [222]. 

Liu et. al found, even with 3% noise, modal flexibility could still effectively detect damage [223]. 

Wang et. al. investigated their approach in the presence of temperature variation and used Modal 

Strain Energy Decomposition to detect damage [224] while Xu et. al. used a residual strain 

energy-based approach [206].  

This work differs from others in that a detailed design model is used which includes more complex 

aspects of the structure and allows for a more detailed investigation. This work includes the mass 

and moment of inertia for the nacelle and blades, an aspect which is not present in many other 

studies, but which is important in the modal properties of a wind turbine structure. Both element 

damage and scour are simulated allowing for direct comparison of their impacts on the same 

structure. 

There are four levels of damage identification: damage detection, damage localization, damage 

severity assessment and damage consequence/ progression [226]. Detecting a damage is 

beneficial because while the turbine continues to operate, the remaining fatigue life is used much 
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more rapidly. By detecting the damage and parking the turbine, the excess consumption of fatigue 

life can be reduced. By localizing the damage, time and resources can be saved in its repair. With 

the quantification and assessment of damage, decisions regarding the growth and operational 

impact can be made. A great deal of knowledge is required to achieve all four levels. The use of 

virtual sensing, along with pre-existing detailed design models, can a cost-effective way of 

improving the detection and assessment of damage. Operational modal analysis (OMA) can 

provide information about the structure, and numerically solving the eigenvalue problem can 

provide information on how the structure responds to damage cases. The aim of this chapter is 

to show what information can be gained from a numerical, structural model and what lessons can 

be learned to aid those conducting OMA in the hopes to detect, identify and quantify damage as 

it occurs.  

The approach used in this chapter is shown diagrammatically in Figure 39. The process followed 

is to alter a detailed design model with simulated damages, solve the eigenvalue problem for that 

model and compare the modal properties to the unaltered model. ‘Damages’ include element 

damage, global scour, and corrosion. The operational condition altered is the nacelle direction. 

 

Figure 39. Diagram of damage process used to map damages implemented in a structural model with structural 
response caused by a change in the structure. 

A limitation of this chapter is that there is no laboratory tests or operational data for comparison. 

This is unfortunate, but unavoidable. The real structure from which the model was based is not 

damaged, so no damaged operational data is available. Additionally, because so many 

parameters are investigated in this chapter, and the model incorporates so many details, a 

laboratory model of all of this would be unfeasible. There are other published publications in this 

field with the same limitation, for a few examples: [206,210,435]. 

The chapter begins with the damage quantification approach in section 2 which presents the 

metrics used and the equations for calculating them. In section 3 the structure evaluated in this 

case study is presented along with information about the numerical model used. The types of 

damage replicated in the numerical model and the method for implementing them are given in 

section 4. Results are presented in sections 5 and 6; the results in 5 are presented separately 
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because they are useful for understanding 6, which is the outcomes from each damage case. 

Finally, a discussion is given in section 7 and a conclusion in section 8. 

6.2. Damage Identification approach 

6.2.1. Metrics and the Modal Assurance Criterion equation  

Two of the fundamental modal parameters of the structure are the natural frequency and the 

mode shape. The natural frequency is the frequency at which each mode shape occurs, and the 

mode shape is the vector in which the structure oscillates. The natural frequencies can easily be 

compared as they are scalar quantities; however, the mode shapes are vectors and so require an 

additional step for comparison.  

MAC is commonly used to compare mode shapes; not only in numerical modelling but also in 

OMA. The equation for calculating the MAC, for two vectors {𝜑𝐴} and {𝜑𝑋}, is given in equation 

(43) [436]. This gives a value ranging from 1 to 0 where a value of 1 indicates that the mode 

shapes are fully consistent, while a value of zero indicates that they are totally inconsistent.  

 
𝑀𝐴𝐶(𝐴, 𝑋) =  

{𝜑𝐴}
𝑇{𝜑𝑋}2

({𝜑𝐴}𝑇{𝜑𝐴})({𝜑𝑋}𝑇{𝜑𝑋})
 (43) 

 

6.2.2. Algorithms, MAC vs frequency 

When solving the eigenvalue problem, a set of natural frequencies and their corresponding mode 

shapes are determined. For a set of mode shapes, the convention is to assign labels to these 

modes based on the order of low to high natural frequency. It is observed that damage can cause 

the dynamics of a system to change, resulting in a shift of both natural frequency and mode 

shapes. As each ‘damaged’ case is distinct and not tied through some time history to an 

‘undamaged’ case (and the same for two observations in an OMA situation) making comparisons 

based only on mode number is not always appropriate, as will be shown in the results of this 

chapter. This mode switching, which is an issue for pseudo-symmetrical structures, raises the 

question of which comparison should be made for a reliable identification of damage. This is 

important because in this study, the wrong pairing could show that a type of damage is easily 

detected, when it is not or that changes in the wrong modes indicate a certain type of damage. If 

the wrong pairing is chosen in an OMA situation then it could lead to a false alarm.  

An approach which is used in this chapter is to select mode pairings such that the total sum of 

MAC values is maximized, thus assuming the minimum change in the system. This assumption 

is not always valid so care is taken when applying it – in this chapter it is found to be not 

appropriate when there is a very large change in the mode shape. To maximize the MAC value 

selection, a Kuhn-Munkres algorithm, sometimes called the ‘Hungarian algorithm’, is used [437]. 

This method reliably selects the highest total MAC value. Both this method and the method of 

selecting the diagonal elements are used, but often only one is shown. 
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6.2.3. Modal Flexibility based damage metric 

The approach of using modal flexibility for damage detection was presented by Liu et. al. [223]. 

Modal flexibility presents an attractive means of deriving a damage index, as it is calculated as a 

combination of mode shapes and frequencies, there is no need for matching of mode shapes 

between damaged and intact. Additionally, as will be shown in the results, it is also relatively 

unaffected by changes to the turbine direction compared to the MAC values. One downside is 

that modal flexibility is affected more by lower modes than higher ones; in this case, changes only 

observed in higher modes cause less of a change in the modal flexibility. With virtual sensing the 

global modes 1-5 are targeted to reduce the number of sensors required in a potentially real case. 

In this study, the damage index used is the Frobenius norm of the modal flexibility residuals. This 

is calculated using the following equations. First, the modal flexibility is: 

 𝐹 = ∑
𝜑𝑖𝜑𝑖

𝑇

𝜔𝑖
2

𝑛

𝑖=1

 (44) 

Where 𝜑𝑖 is the mode vector and 𝜔𝑖 the natural frequency for each 𝑖 mode. A modal flexibility 

residual is then calculated as the difference between the intact and damaged cases. 

 𝐹𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = 𝐹𝐻𝑒𝑎𝑙𝑡ℎ𝑦 − 𝐹𝐷𝑎𝑚𝑎𝑔𝑒𝑑 (45) 

A single damage index is then derived using the Frobenius norm of this residual. 

 ‖𝐹‖𝐹 = √∑∑𝐹𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
2

𝑚

𝑗=1

𝑚

𝑖=1

 (46) 

This approach is useful to indicate the level of damage but since the damage index is only a single 

value, it does not give enough information to diagnose the damage. Used in combination with 

MAC and change in natural frequency, more information about the effect of the damage can be 

ascertained. 

6.3. Case study structure and model 

The structure being evaluated is a four-legged jacket structure from the Wikinger wind farm, which 

is owned by Iberdrola. These jackets are situated in the Baltic Sea at a water depth of between 

39-42 meters. Their footprint is 23 m square, they are 62 meters tall and support 5 MW, Adwen 

AD 5-135 turbines [438]. The structure is fixed with 40 m long piles at each leg [439]. The 67 m 

long blades are not modelled; however, the structure is modelled with the mass and moment of 

inertia of the blades and nacelle. 

Dynamic analysis is conducted using Ramboll’s proprietary, in-house software, Ramboll Offshore 

Structural Analysis Package (ROSAP), which Ramboll have developed over the past 30+ years. 

In this case, version 53, the latest at the time, is used [440]. The ROSAP package, and the module 
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ROSA, has been used for the design of the majority of offshore wind turbine foundations 

worldwide [441].  

ROSA is a beam element-based design software used for frames, truss structures and piping 

systems. The transition piece is modelled as a ‘super element’ where the complex shape is 

analysed in ANSYS and the results are used as an element in this model. The soil structure 

interaction is conducted considering each soil layer and in accordance with API standards [442]. 

Only the first five mode shapes and corresponding eigenfrequencies are investigated in this 

chapter and the reasons for this come from the rationalization that the aim is to reflect practical 

measurement of operational global dynamics. While a coupled dynamics analysis will result in 

modes from sources such as the blades [99], this eigen analysis only gives structural modes and 

so the first five modes are major structural modes. The reason for not using higher modes is that 

in practice, in an OMA situation for offshore wind structures, lower modes can more reliably be 

detected and the most significant are first and second order fore-aft and side-side modes [211]. 

In this structure, the frequency of the 6th mode is much higher than the 5th, and so even with 

significant damage the frequencies do not change enough for a mode 6 or higher to be mistaken 

for mode 5 or lower. An example demonstrating the difference in eigenfrequencies can be seen 

in Figure 40 which shows the eigenfrequencies of the first 10 modes as a leg element is damaged. 

This demonstration shows that even after a large change in the structure, the 6th eigenfrequency 

is still much higher than the 5th.  

 
Figure 40. Example case showing the eigenfrequencies of the first 10 modes as the stiffness of a leg element is reduced 
from design stiffness (right) to complete loss of stiffness (left). 

Of the five modes calculated, the first two are both tower modes which are tower fore-aft and side-

side. The third mode is a torsional mode while the fourth and fifth are both tower-swaying modes. 

Plots of these modes along with their respective frequencies, are shown in Figure 41, with modes 

1 and 2 as well as modes 4 and 5 shown together. A representation of the structural model is 

shown in Figure 42. 
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Fundamentally, ROSA works in the same way as any beam-element based structural model 

which solves the eigenvalue problem and so these results can be reproduced with other, similar 

software. 

 A wide range of relevant parameters are included in ROSA and can be adjusted by the 

user in ‘cards’ within the text-based input file. Some of these parameters include element and 

joint stiffness; corrosion; scour, both global and local in addition to a range of other items. The 

parameters changed are discussed in more detail in the following section. 

 There are several failure mechanisms which are time dependent and expected to occur, 

such as marine growth, scour, corrosion and some others [443,444]. The model includes these 

at the level which they are generally expected, or an average amount over the lifetime of the 

structure. In cases when one of these parameters is varied, they might be given as a multiple of 

this expected value or as a measurable value, as appropriate. For example, corrosion is defined 

as a profile with respect to depth and so this is varied as multiplied by a factor, however, global 

scour can be quantified with just scour depth and so this value is given. 

 

(a) 

Mode 1: 0.3017 (1/s) 

 

 

(b) 

Mode 3: 1.3107 (1/s) 

 

 

(c) 

Mode 4: 1.3712 (1/s) 
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Mode 2: 0.3042 (1/s) Mode 5: 1.3949 (1/s) 

Figure 41. Shapes of first five modes along with their respective frequencies. Coloured by total displacement. (a) 

tower modes 1 and 2 (b) torsional mode 3 (c) swaying modes 4 and 5 

 

 

Figure 42. Representation of the structure in ROSA, including appurtenance, sea and soil. Labels of joints presented. 

6.4. Structural model and damage modelling 

6.4.1. General approach 

Each case is an eigen value solution from the ROSAP model. This has both advantages and 

disadvantages and it’s important to be aware of them. The disadvantage is that environmental 

impacts such as damping from wind or waves is not considered as they would be in a coupled 

dynamics simulation. The advantages are that it is possible to consider a wide range of damage 

cases and focus on the direct impact to the structural dynamics. Environmental impacts are not 

considered here because they can be measured in a real structure without causing any damage 

and so real measurements can be referenced for this [210]. Some examples of these 

measurements in literature, which include temperature variation, can be found at these references 

[211,445]. Frequency based measurements are temperature dependent and so when results of 

frequency changes are presented in this chapter, the reader should bear in mind this change. 
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As each damage case is implemented, only one damage is implemented at a given time. There 

is an average, expected state, which has some level of scour and corrosion at values which are 

expected, and everything is changed relative to this. 

6.4.2. Joint damage 

Researchers who have developed damage detectability models by implementing some damage 

into an Finite Element Analysis (FEA) modelled structure have typically limited their investigation 

to joint damage [222]. The way that joint damage has typically been implemented is through the 

reduction of either joint or element stiffness. Within many equations used to derive the equations 

of motion for the beam members, the effect from a change in stiffness and from area are 

proportional, as shown in the Lagrange equation given for reference in equation (47).  

 

𝑈 = 
1

2
𝐸𝐴∫(

𝜕𝑢

𝜕𝑥
)
2𝐿

0

𝑑𝑥  (47) 

Where U is the strain energy, x is the length along the element and u is the displacement, while 

E is modulus of elasticity and A is cross-sectional area. The assumption that a change in stiffness 

is proportional to a change in area due to the growth of a crack is not always strictly realistic, but 

for investigating the first five natural frequencies this assumption has been made by other authors 

[224,446].  

 Two types of joint damage are implemented: complete loss of the joint and gradual loss. 

The jacket structure is composed of four legs and the legs are joined by cross members. The 

cross members are less significant to the modal properties than the legs and so all of them are 

tested in a complete loss. The legs are integral to the structural integrity of the jacket and their 

complete loss is typically not survivable. Instead of modelling the complete loss of the legs, the 

gradual reduction in stiffness of two leg elements is modelled. This is done with the idea of 

determining whether the reduced stiffness impacts the modal properties in a noticeable enough 

way that the impending loss can be detected through OMA before complete loss occurs. This is 

modelled in multiple stages where, at each stage, the stiffness of the joint is altered and then the 

modal properties are determined. 

 Based on the previous discussion in this section, the physical meaningfulness of these 

changes in Young’s Modulus is representative of a crack at two general values: 1) relatively low 

reductions in E where the effect is roughly proportional to reduction in area due to the crack and 

2) reduction of E to 0, where the joint no longer supports load. The range of E where it is 

significantly reduced but not yet 0 is too large to draw a direct reference to a crack growth. 

6.4.3. Pile interaction 

Multiple parameters are modelled and can be changed in ROSA. The soil-structure interaction is 

modelled using the approach recommended by the API recommended practice RP 2A [442] and 

dynamic loading. The soil is modelled as springs with stiffness dependent on displacement factors 
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which can be applied to these curves to either compress or elongate them. The soil itself is 

modelled in layers, each with a characteristic strength. Both local and global scour are modelled.  

 The parameters investigated are scour, P-Y/Z/W displacement factors and characteristic 

soil strength. Scour is varied from 0 to 5.5 meters, which in this case is removing the top layers, 

exposing pile length. The displacement curves are multiplied by a factor which either compresses 

or elongates the curves. This is not representative of any physical process but rather investigates 

the possibility of uncertainty in this parameter. All characteristic strength values are multiplied by 

a factor from their original, ‘expected’ value – this is also not representative of a process but an 

investigation of variation. 

6.4.4. Bolted connection 

The tower is connected to the transition piece through a bolted flange connection, where tightness 

of the bolted connection must always be ensured. Loosening can be detected with sensors on 

the bolts or with an inspection, but this study investigates if this can be detected in modal 

parameters. 

The individual bolts are not modelled in ROSA but rather the interface between the tower and 

transition piece is modelled as a node with a stiffness value. To model the loosening of the bolts, 

the stiffness of this node is gradually reduced from its original values down to 0. The physical 

meaningfulness of this is not a reduced joint stiffness with the members in contact, but rather 

points at which separation of the clamped members occurs resulting in a lower stiffness. The 

equation for the stiffness, 𝑘𝑓𝑟, of an individual bolted connection (frustum) is given in equation 

(48) and the total joint stiffness, 𝑘𝑔𝑟𝑖𝑝, is given in equation (49) [447]. Where d is the inner diameter 

of the frustum, D is the smallest value of the frustum outer diameter, t is the frustum thickness 

and 𝛼 is the pressure angle of the cone. The tension in the bolt does not come into these equations 

and so, based on this, as the tension is lost, there would be no change in joint stiffness. However, 

when significant load is applied, there is a point of separation between the two bolted members 

and all the load is then carried in the bolts, which have a lower stiffness than the members. It is 

this stiffness after separation which might be observed by the change in modal parameters. 

 
𝑘𝑓𝑟 = 

𝜋𝐸𝑑𝑡𝑎𝑛(𝛼)

𝑙𝑛 [
(2𝑡 ∗ tan (𝛼) + 𝐷 − 𝑑)(𝐷 + 𝑑)
(2𝑡 ∗ tan (𝛼) + 𝐷 − 𝑑)(𝐷 + 𝑑)

]
 

(48) 

 

 
𝑘𝑔𝑟𝑖𝑝 = 

1

1
𝑘𝑓𝑟1

+
1

𝑘𝑓𝑟2
+ ⋯+

1
𝑘𝑓𝑟𝑁

 
(49) 

 

 

6.4.5. Corrosion and marine growth  

In ROSA, corrosion is modelled as a reduction in material thickness with both internal and external 

corrosion, but with the mass of the corroded material still included in calculations. Equivalent 



129 
 

outside diameter is unaffected by this. The amount of corrosion is set based on the elevation, 

since the level of corrosion is driven by variables that change with depth. A certain amount of 

expected corrosion is included in the model, the values used in the model are a multiple of this 

expected level of corrosion by a factor, assuming a linear growth. The expected values for 

corrosion are both internal and external and range from around 1 mm to around 12 mm depending 

on height on the structure and exposure zone. One of the main concerns of marine corrosion is 

that it can exacerbate the initiation and growth of cracks and so detecting it is important [448]. 

 Marine growth affects the mass as well as the surface roughness height, thereby affecting 

structural mass as well as damping due to changed fluid dynamics [449–451]. As with corrosion, 

the values are set based on depth. The values are plotted as a multiple of an expected value. 

6.5. Detectability considerations 

6.5.1. Dependence on nacelle direction of modal properties in intact condition 

The turbine blades and nacelle have a large mass and moment of inertia and as a result their 

position relative to the rest of the structure has a significant impact on the modal parameters of 

the structure, which is particularly apparent due to the structure’s lack of rotational symmetry. 

Therefore, it is necessary to investigate the effect from changing nacelle yaw direction.  

The nacelle and blades are modelled here as point masses with pre-assigned moment of inertia 

values. To model the nacelle yawing from the original reference direction, the point masses are 

moved around the tower by 1 degree each iteration and the moment of inertia components are 

transformed correspondingly. This process of changing the direction is then repeated for a 

‘damaged’ case, with joint loss at the middle of a leg element.  

To determine the response of the structure with the nacelle yawed away from the original direction 

and compare it back to the original reference direction, the mode shapes are then transformed 

back to the original reference direction and compared to the ‘intact’ case at the original direction; 

the transformation is conducted using elementary coordinate rotation as shown in equation (50) 

[452] which is applied for both translation and rotation values. An alternative approach is to 

compare ‘damaged’ at 𝜃 degrees to ‘intact’ at 𝜃 degrees where 𝜃 is each change from the 

reference. The first method is used here rather than the second as this would make future 

comparison to operational data more convenient since the directional values in operational data 

are effectively continuous. This method also allows them to use more of the data rather than only 

comparing subsets. 

 
(
𝑥′
𝑦′

𝑧′

) = (
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜃 0

− 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 0
0 0 1

)(
𝑥
𝑦
𝑧
) (50) 

As the turbine direction yaws to make a complete rotation, the natural frequency does not change 

by an amount that exceeds a 4% threshold where it would be considered detectible. The 

maximum change in frequency calculated using the ROSA model, normalized by the original 

frequencies, for the first five modes are: 0.002, 0.009, 0.002, 0.022, 0.024 respectively. However, 
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the mode shapes, as quantified by the MAC values, change considerably. Figure 43 shows the 

MAC values for the first five mode shapes, as calculated after the shapes have been transformed 

back to the original reference. MAC is calculated in comparison to 0 degrees case. 

The first two modes are the tower fore-aft and side-side modes. In the first two modes the tower 

always oscillates roughly in the direction of the jacket legs. There is an edge-case exception to 

this which is when the nacelle is pointed equally between two jacket legs, which is the case for 

45, 135, 225 and 315 degrees. In cases when the nacelle is pointed equally between jacket legs, 

there appears to be a transition as the direction of the first two modes swap with each other. The 

MAC value for 45, 135, 225 and 315 degrees is 1 because of the transformation approach. 

Without the mode shape being transformed, the MAC values in the leg directions are 0.5 as the 

MAC changes between 1 and 0.  

Mode 3 is a torsional mode with the otherwise vertical axis of oscillation offset slightly in the 

direction of the nacelle. As the nacelle turns, the axis about which mode 3 oscillates also moves.  

Modes 4 and 5 are tower swaying modes and their direction rotates at the rate of the nacelle yaw, 

but in the opposite direction (in a sense of clockwise/counterclockwise about the tower centerline). 

At 0 degrees of yaw, mode 5 is in line with the nacelle and 4 is perpendicular. At 45 degrees of 

yaw, mode 4 is in line with the nacelle yaw and mode 5 is perpendicular. 

 

Figure 43. MAC values for the undamaged case as nacelle direction is rotated in comparison to 0 degrees. 
Comparison is made to the original direction at 0 degrees. Mode shapes are transformed to the original 

reference. 
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Figure 44. Total Structural Dynamic Moment of Inertia (MoI) with changing yaw direction 

The change in mode vectors resulting from RNA yaw is important to be aware of because without 

accounting for it, even an intact structure would appear damaged using MAC. However, being 

aware of this, MAC can be used effectively to detect and identify damage. 

 Figure 44 shows the dynamic moment of inertia of the structure calculated by the model. 

This shows a smooth change in moment of inertia with nacelle direction which gives some 

indication that the model is performing as expected. We also see that the spikes in the 1st and 2nd 

modes seen in Figure 43 correspond to directions when the x-axis and Y-axis Moment of Inertia 

are equal; this is where the change in oscillating direction occurs. 

 The ‘damage index’ value calculated using modal flexibility varies less with direction, 

except for the four peaks. This damage index is not quantifying a damage in this case, there is no 

damage, it is showing the effect on this metric of an operational behaviour - it is a difference in 

the flexibility of the structure due to this operational behaviour. Besides the peaks, the values are 

all under 0.9, which by itself does not mean much but can be used as a reference when quantifying 

damage cases. The seemingly anomalous results in this plot are the peaks at 45, 135, 225 and 

315 degrees. The modal flexibility, and hence damage index seen in Figure 45, is more affected 

by lower modes and these peaks correspond with the rapid change in MAC seen in Figure 43, 

which are changes in mode shape between the first and second modes. It is possible that these 

four peaks are an artefact of the numerical solution process and might not be seen in 

measurements of a real structure, so this aspect should be taken with caution. 
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Figure 45. 'Damage index' as a result of changing nacelle direction, with no damage implamented. This comparative 
value is calculated in comparison to the nacelle at 0 degree case. 

 

6.5.2. Choice of damage metric 

The MAC is a comparative value between two observations. If an observation is made at two 

points in time, there is not necessarily any time history linking these two observations, instead 

there are a set of modes to be compared with another set of modes. This raises the question of 

how that pairing should be done to best represent the change. This is particularly important in the 

case of mode switching where the labelling of modes can change due to changes in frequency. 

This is important for the task of damage identification as well as potentially in sensor placement 

when determining which mode shapes need to be identified. Although each numerical model 

represents a discreet state, gradually induced change in the model can help give an indication of 

whether a comparison makes logical sense. 

 To illustrate the problem, as well as a potential solution to the problem, a leg element is 

gradually damaged, meaning the stiffness at a joint is gradually reduced. This is also useful from 

the perspective of damage identification to determine when a damage becomes detectible. In this 

case the leg element is halfway up the structure. Figure 46 (a) and (c) show the mode frequencies 

as simulated damage is gradually induced. (a) shows comparisons made where the order is 

based on frequency order, as is the established approach. Choosing the modes to compare based 

on the order of frequencies is not always the correct approach. Some of the modes have a gradual 

reduction in frequency, but the reduction stops when it becomes the same as the next mode 

down, but then the frequency of the next mode down continues the downwards trend – when one 

frequency passes another, the comparison changes. (c) Shows comparisons made where the 

sum MAC value is maximized using the Hungarian algorithm. With this approach, one frequency 

can go below the other without the comparison changing. The implication when comparing 
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frequency is that rather than determining the frequency for mode 1 changes by 14% from start to 

finish, instead mode 2 changes 14% and mode 5 changes 10%. 

 The effect of this change is even more apparent looking at MAC values. Figure 46 (b) and 

(d) show the MAC values calculated with these two approaches. If the comparison is made based 

on frequency order, then all modes have points where they become completely inconsistent with 

the undamaged mode. If the comparison is made based on maximizing the sum of MAC, then 

these drops happen only briefly before the MAC returns to a relatively high value. The drops occur 

when two frequencies approach equality. If there is a mode shape which is so close to being 

consistent with an intact mode shape, such as a MAC of greater than 0.9, then that is a strong 

argument that this pairing is what should be considered. This also gives more information for 

determining which damage has occurred, since if all MAC values are roughly 0 then this may also 

be the case for many types of damage. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 46. MAC values for the first five modes as simulated damage to a leg element is implemented. (a) Mode 
frequency value (b) MAC value, both with comparison based on mode frequency. (c) Mode frequency value (d) 
MAC value, both with comparison based on maximized MAC values 
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The damage index calculated through the modal flexibility does not have this same question of 

which modes to compare as all modes are combined before damaged and intact are compared. 

The damage index calculated for this gradual implementation of damage is shown in Figure 47. 

This figure shows a peak at the same time modes 1 and 2 have a sharp reduction at 2E4, but not 

any of the other similar sharp reductions. While the MAC returned to a relatively high value, the 

damage index continued to increase as more damage was implemented, therefore the damage 

index is a better choice for quantifying the level of damage. 

 

Figure 47. Damage index as simulated leg damage is implemented. 

6.6. Results – Damage types 

6.6.1. Joint Damage 

6.6.1.1. joint loss  

This section gives the results for complete loss of joints (Young’s Modulus equal to zero). In the 

first section this is shown for all joints in the structure with no change in nacelle yaw angle. In the 

second section, the focus is on the impact of nacelle yaw angle to damage detectability.  Figure 

48a shows the change in natural frequency of the first five modes, normalized by the intact natural 

frequency, for all cross-member joints. Figure 48b shows the MAC values for the structure with 

the loss of each joint, calculated relative to the intact structure. These results are all relative to 
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the intact, 0-degree nacelle yaw case and does not include any leg member joints, only cross-

member joints, leg member joints are addressed later. Only a single damage is implemented at a 

time. Normalization is the change from the intact frequency, which is typically negative, divided 

by the intact frequency.  

 Frequencies for modes 1 and 2, the tower side-side and fore-aft shapes, are not 

significantly affected for any cross-member joint. However, the other three modes are changed 

noticeably. Based on field experience, frequency changes larger than 4% and a MAC value less 

than 0.8 are detectable, in that it can be discerned clearly from the standard variation caused by 

environmental and other factors. However, more study is needed to clearly establish detectability 

bounds as this depends on sensor quality, placement and site characteristics, among other 

factors. The joints lower down in the structure have generally more of an impact than joints higher 

up, as has been found in other studies [224]. Based on these graphs, no damage on cross 

members above 25m is detectible through frequency, and joints above 50m, elements 40 

upwards, are only detectible through MAC if rotational modes are captured. There is almost no 

measurable effect from damage to the horizontal member joints, 33 – 40, since they are a 

relatively small part of this structure.  

 Using the ‘damage index’ as a metric results in the same conclusions as for the frequency 

and MAC plots. The one exception is that the values for the horizontal member joints are higher, 

between 0.2 and 0.3, which is as high as for elements which are higher than the horizontal ones. 

This would still be difficult, but easier to detect than through frequency or MAC. 
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(a) 

 

(b) 

Figure 48. Change in mode frequency (a) and MAC value (b) calculated relative to undamaged case.  

 

6.6.1.2. Damage at varied nacelle direction 

It can be observed from the previous section that, for a given nacelle yaw angle, the impact of 

loss from a given joint is not the same as a joint on the other side of the structure at otherwise the 

same location. Due to the mass and momentum of the nacelle and blades, the structure is not 

rotationally symmetric and so joint losses on different sides have different impacts. This lack of 

rotational symmetry can be best demonstrated by looking at the effect of damage to a leg element. 

Figure 49 shows the MAC for the case where a joint halfway up the leg is damaged; the nacelle 

and blade point-masses are turned a full rotation with their mode shapes transformed back to the 

original reference. The undamaged plot which this can best be compared to is Figure 43b, which 

is the undamaged case with transformation. The key point from this figure is that the MAC values 
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now exhibit a sinusoidal behaviour. If only the first and second modes are detected, then there 

are directions where the damage is not detectible by MAC as it is above the threshold, but also 

nacelle directions where it is much easier to detect the damage as the MAC reaches 0. 

Additionally, to identify which damage has occurred then the MAC value should also be assessed 

knowing what direction the nacelle was pointing when the mode shapes were recorded. If a leg 

next to this leg, at 90 degrees, is damaged at the same height, then the plot of the MAC value for 

different directions looks the same except that the phase is shifted by 90 degrees. 

The frequency of the modes varies more significantly by direction than in the undamaged case. 

The change in frequency of mode 5 ranges from -0.04 to 0 and mode 3 varies from -0.08 to -0.04. 

The other three, modes 1, 2 and 4, stay roughly around their 0-degree change values of -0.14, 0, 

and -0.04 respectively.  

 

Figure 49. MAC values for the Leg damaged case at varying nacelle directions compared to undamaged case at 0 
degrees. Mode shapes have been transformed back to original reference. 

 From these results, if the higher modes cannot be discerned in measurements, then at 

some directions of the nacelle the damage might not be detectible with the MAC values. In this 

case, the alternative approach of the modal flexibility can be used. The Frobenius norm of the 

flexibility residual stays between 0.65 and 0.25 for all nacelle directions and there are none of the 

peaks seen in the undamaged case. This indicates that the damage can be identified with modal 
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flexibility regardless of nacelle direction. In the damaged case there are no peaks as direction is 

varied, unlike in the undamaged case. The peaks have disappeared because there are no longer 

any sudden changes in mode shape, the transitions are now smoother.  

6.6.2. Soil 

The soil parameters investigated were global scour, variation in displacement curve scaling and 

variation in characteristic strength values. Global scour is a natural phenomenon which is 

expected to change over time, the other two parameters are not expected to change, but are 

investigated here as a sensitivity study of their impact on the modal properties. 

6.6.2.1. Global scour 

Jacket structures and monopiles respond differently to scour; others have found that the first 

mode frequency changes significantly with scour, around 5% for a scour/diameter ratio of 1 [453] 

for a monopile, however, the results presented here in Figure 50 show that for this jacket structure 

the frequency of the first mode is almost unaffected and the MAC does not go below 0.996. Modes 

3, 4 and 5 are more affected by this change. At just under 4m scour depth, the frequencies of the 

4th and 5th modes cross each other, resulting in a dip in the MAC values for these modes. The 

damage index calculated for this case is almost completely linear, fitting a linear trendline gives 

an increase in damage index by 0.22 per meter. A certain level of scour is expected, so over time 

from installation, the natural frequencies will reduce. [120] 

 

(a) 

 

(b) 

Figure 50. Effect of gradually increased depth of global scour, compared to 0 scour depth. Modes compared 
based on maximized MAC (a) Difference in natural frequency, (b) MAC value. Scour depth in meters for the 23m 
x 23m jacket 

 

6.6.2.2. Displacement factor  

Values of the three displacement – stiffness curves are multiplied by the displacement factor; this 

gives an investigation of sensitivity of modal parameters to soil stiffness. A displacement factor of 
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1 indicates the expected curve and other values indicate either a compressed or elongated curve. 

The graphs for change in frequency against factor and MAC against factor are similar between 

the P-Y, T-Z and Q-W curves, although the amount the response is affected by the factor varies 

slightly. Figure 51 shows the change in frequency and the MAC values calculated as a result of 

changing the displacement factor for the P-Y curves, which was found to be the most significant 

of the three. The largest change in natural frequency is just over 0.03 and the smallest MAC is 

0.96, these values are small, and the parameter is not time dependent. This is not an observable 

change but rather might act to make the measured parameters different from the ‘intact’ case.  

 

(a) 

 

(b) 

Figure 51. Effect of displacement factor compared to a factor of 1 (a) Difference in frequency (b) MAC value 

 

6.6.2.3. Characteristic strength  

Variation in the characteristic strength of the soil has only a minor impact for this jacket structure. 

If the strength value is not below 0.6 of what is expected, then there is not much change to either 

the natural frequencies or the MAC values. Below a factor of 0.6 the MAC values drop quickly, 

however, even at this low value modes 1 and 2 show negligible change. This is shown in Figure 

52, where the change in natural frequency is shown in (a) and MAC in (b). The effects are very 

similar to what is observed with a change in displacement factor.  
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 (a) 

 

(b) 

Figure 52. Characteristic soil strength sensitivity. (a) Difference in frequency (b) MAC value 

 

6.6.3. Bolted connection 

The bolts are not specifically modelled, so instead, the stiffness of the node at the location of the 

bolted joint is reduced. In this model, stiffness is reduced from its original value down to nearly 0, 

though this range is just for the sake of exploration and not necessarily realistic, as described in 

section 6.4.4. The change in frequency for the modes is shown in Figure 53. The largest change 

is in the frequencies for modes 1 and 2 - these are both tower modes. This change in stiffness 

has almost no change on the mode shapes, the MAC values for modes 1 and 2 only reduce to a 

minimum of 0.999. The damage index is similarly not much changed, only going as high as 0.11 

for the minimum stiffness. This is investigated further by taking the lowest stiffness case and 

applying a change in nacelle direction, as discussed in section 4.4. The results from changing 

direction are very much like the undamaged case, except that the first and second mode 

frequencies are shifted down by the amount shown in Figure 53. As discussed in section 6.4.4 

the effect of loosened bolts would not be apparent as a gradual change but rather appearing to 

suddenly change between ‘intact’ and ‘damaged’ depending on the load at the time and if it 

exceeds the clamping strength. 
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Figure 53. Change in frequency from reduced node stiffness at tower base. 

6.6.4. Corrosion and marine growth 

6.6.4.1. Corrosion 

Corrosion is modelled in this case as a wall thickness reduction with the mass of the corroded 

material retained. This has the effect of lowering the stiffness of the structure but not the mass. 

There is an expected corrosion profile given in section 6.4.5 and this is multiplied by the factor 

‘corrosion factor’. The effect from corrosion strongly resembles the effects from scour. This 

similarity to the effects from scour is potentially useful, both behaviors are expected to some 

extent and so the similarity of their effect potentially makes them easier to differentiate from other 

factors which are not expected. The normalized change in natural frequency and the MAC values 

are shown in Figure 53. The frequencies of the 4th and 5th mode become the same at around a 

corrosion factor of 1.4, causing the dip in MAC.  

The main difference between how corrosion affects modal parameters, in this model, and how 

scour affects it is that the frequency changes more with corrosion; at the dip in MAC for corrosion, 

the frequency for the 4th and 5th modes reduced more than 12%, whereas with scour the 

frequencies of these same modes changed only 6% and 8% respectively. It would be difficult to 

distinguish between these two without a good understanding of the specific structure. There is a 

much higher damage index for corrosion due to the larger change in modal frequency, around 1.3 
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for the dip while it is only around 0.7 at the dip from scour. However, this is subjective to how this 

is implemented and how it is modelled. 

 

(a) 

 

(b) 

Figure 54. Effect of corrosion relative to the uncorroded structure. (a) Change in frequency (b) MAC values 

 

6.6.4.2. Marine growth 

The marine growth increases the mass of the structure and increases surface roughness, which 

affects hydrodynamic properties and both factors are accounted for in this model. The effect of 

this is to decrease the eigen frequencies almost linearly with an increase in marine growth. There 

is no dip in the MAC values observed with other cases as the frequencies of the modes never 

pass each other; this observation seems to be consistent when the nacelle is rotated. 

 

(a) 

 

(b) 

Figure 55. Effect of marine growth relative to the unfouled structure. (a) Change in frequency (b) MAC values 
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6.7. Discussion 

The results of this study reveal several findings about the behaviour of this jacket structure and 

about the potential for damage detection based on these measurement values. Some 

consideration should be made as to the applicability of these results to other cases. In terms of 

similar models of similar jacket structures, it should be expected that comparable results would 

be achieved. It should also be expected that this is a good approximation of the real system as 

this study was conducted using the design model to which the system was built. However, if a 

more complex model is used, such as one which explicitly models the blades, the results may 

differ due to the more complex dynamic behaviour. Measurement results from a real wind turbine 

may be different still, and so it would be important to understand this difference for any case of 

interest. 

There is a consistent order in normalized change in frequency and MAC values for effects which 

are global on the structure, that is all factors investigated that are not a damage to a specific 

structural element. The order in terms of largest change to smallest is consistently 5th, 4th, 3rd, 2nd, 

1st for normalized change in frequency and for MAC, within moderate changes, the order is 3rd, 

4th, 5th, with negligible change in 1st and 2nd. This order is of course dependent on how the 

comparison is chosen, but the conclusion is that based on the order of frequency change or MAC 

values, these effects cannot be distinguished. To distinguish between these effects, this can 

potentially be done based on the quantity of the changes with respect to each other as well as 

using time history observing the development of the change.   

 Damages to the structural member joints have a nonsymmetric effect and therefore, the 

observed change in modal parameters is closely related to the nacelle direction. Because of this 

directionality, the side of the structure on which the damage has occurred is identifiable. The level 

of effect the joint damage has can also be characterized by the height of the damage and therefore 

it should be possible to locate joint damage with reasonable accuracy.   

 It is useful to calculate several metrics when trying to detect and identify damage. This 

gives more information about what change has occurred and can make the situation easier to 

understand. In calculations which require comparison of specific modes, it is useful to make this 

selection both with the order of the frequency and by maximizing the total MAC value, as it 

appears that neither approach is always the better choice. The damage metric calculated with the 

modal flexibility can be hard to interpret on its own as the value indicating ‘damage’ changes 

between damage types. For example, the damage index is 1.2 with 6 m of scour, 0.35 with a 

marine growth factor of 1.45 and 2 at a corrosion factor of 1.6, while just changing the direction 

of the nacelle the value can go up to 0.3. By itself, it can only show if there is a change in the 

structure, but it can be useful if combined with other information. 

 When the frequencies of two modes intersect, there is a sharp change in the shape of 

these two modes which is observed in the MAC values. When this happens with lower modes, 

the change is also observed in the modal flexibility. 
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6.8. Conclusion 

This chapter presented the simulated dynamic response of an offshore wind turbine jacket 

structure and how it changes in response to a range of situations. These situations include: 1) 

operational changes, the turbine nacelle yaw 2) damage including cracks on structural joints and 

3) exceeding design parameters for corrosion, scour, marine growth and tower bolt tension. This 

can serve as a useful reference for future work as these situations were investigated on a single 

structure using a highly detailed design model. The feasibility of detecting a range of damages, 

based on simulated damages to a numerical model, was investigated. An eigenvalue solution 

using a detailed design model was conducted for the sake of calculating damage metrics at these 

conditions and sensitivity studies to a range of parameter changes was conducted. The model is 

more detailed than other models typically used in similar studies, such as including the mass and 

moment of inertia of the nacelle and blades. The effects simulated included not only cracks on 

structural elements but also other types of damage such as scour, marine growth and corrosion. 

The metrics calculated are global metrics to reflect real-world limitations, these metrics are natural 

frequency changes, MAC values and a value derived from modal flexibility. 

It was found the nacelle direction substantially alters the mode shapes and hence the MAC values, 

although the frequencies are not significantly altered. Therefore, any damage detection algorithm 

using mode shapes should include knowledge of the nacelle yaw direction. This also impacts how 

cracks in joint elements appear in terms of MAC value; the result is that at some nacelle yaw 

directions it may be hard to detect damage, but this potentially aids in locating the damage.  

  If there is a significant enough change in the modal properties caused by the damage, 

then the frequency of one mode can move below the frequency of another, this mode-switching 

is an issue encountered for semi-symmetric structures. Two methods for dealing with this were 

used and assessed, which includes using the Hungarian algorithm to maximize the sum of MAC 

values as well as using a modal stiffness-based damage metric. Both approaches were shown to 

be effective, although the Hungarian algorithm was only effective up to a limited level of change 

in some parameters. 

 There are several observations which would aid in the localization of cracks through 

changes in global dynamics. One of these observations confirms what is already known, that for 

cracks on elements, the severity on the structural dynamics is a function of height in the structure; 

lower elements change mode shape and frequency more than higher ones. This combined with 

the directionality of the nacelle can make localization of the damaged member joint possible using 

global metrics. 

  For non-joint effects which are symmetric on the structure such as global scour or 

corrosion, the change in frequencies and the MAC values follow a consistent order, given 

moderate levels of damage. This can make distinguishing these types of damage difficult. 
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Chapter 7 

7. Sensor placement impact on modal 

extraction 

7.1. Introduction 

The way in which a structure vibrates, in the eigenvectors, frequency and other parameters, can 

give a great deal of information about the structure. The source loading to excite the structure can 

be either deliberately applied, as in experimental modal analysis, or in the case of operational 

modal analysis, the result of natural loading such as wind and wave [204].  

By measuring the modal parameters after a structure is built, models of the structure can 

be updated so that they more closely resemble the real structure. This updated model can then 

be used for purposes such as to estimate fatigue life. Measurement of the modal parameters can 

also be useful in offshore wind for the purpose of damage detection, where a change in 

parameters indicates a change in the structure [226,227]. 

Accelerometer measurements can be processed with a variety of methods to determine 

modal parameters from simple approaches such as peak picking, where a significant peak in the 

frequency-response-function corresponds to one mode, to more advanced methods such as 

Stochastic Subspace Identification [454,455]. Once extracted, the structure’s modal parameters 

can be evaluated based on Eigenfrequency, mode shape and damping. The mode shape can be 

represented as a matrix of node displacements and so a comparison of mode shapes requires 

use of a statistical parameter. A widely used tool is the modal-assurance criterion (MAC) 

[436,456]. This parameter gives the level of consistency between two vectors. This is not always 

ideally suited to a problem and so there are other, similar parameters, such as sensor elimination 

algorithm using modal assurance criterion (SEAMAC) and others.  

 For any of these aforementioned purposes for using the modal parameters, the 

parameters need to accurately and reliably be measured. However, measurement and the 

process for determining parameters from the measurement is not straight forward when it comes 

to the practical implementation. The sensors need to be placed at locations where the natural 

vibration of the structure leads to measurable displacements, but there are practical limitations to 

sensor placement. Installing sensors offshore and maintaining them can be expensive, so it is 

desired to not only limit the number of sensors but also install them at locations which are easily 

accessible.   

 When determining sensor placement, an optimal sensor placement study can be 

conducted where the sensors are placed at locations where they can optimally capture the 
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structure’s natural mode shapes. This is a numerical study which can employ an optimization 

algorithm to best place sensors. The optimized layout is where a limited number of sensors are 

placed in a way that the diagonal elements of a MAC matrix are maximum, without having large 

off diagonal.  

 This chapter is unique in that accelerometer data is analysed on a full scale and 

operational, offshore substation which allows for the comparison of multiple optimized sensor 

layouts as well as non-optimized layouts on the same structure during the same time period. This 

allows for extraction of modal parameters for each of the sensor layouts which can then be 

compared to the modal parameters predicted by the FEA model from which the layouts were 

optimized. Additionally, the observed modal parameters can be clustered and analysed in a 

theoretical real-world case where the consequence of choosing each layout can be shown. 

 This chapter begins in section 1 by showing the structure analysed as well as the first five 

mode shapes predicted from the finite element analysis (FEA). Background to the optimal sensor 

placement is then given in section 2, followed by the resulting sensor layouts. The methodology 

and data processing are given in section 3. The results are given in section 4, first the results of 

clustering, followed by comparison to the FEA model and then to the cluster averages. A 

discussion on the practical implications is given in section 5 and finally a conclusion is given. 

7.2. Reference structure 

The structure measured in this study is an offshore sub-station (OSS) located in the Wikinger 

wind farm, owned by Iberdrola. The main purpose of wind farm OSS structures is to collect the 

low voltage power from the turbines and transform it to a higher voltage to be exported back to 

land. The OSS at the Wikinger site is built on a jacket structure which is fixed to the sea-bed 

through six pile foundations. This is a large structure, relative to the turbines, and is equipped with 

a crane, a helicopter landing-pad and a considerable amount of electrical equipment such as 

transformer, switchgear and shunt reactor.  

The main source of excitation of the structure is wave loading. Although the structure doesn’t 

have a wind turbine, there is still wind loading on the structure. Throughout this study it is assumed 

that the structure is stationary, it is assumed that the mass and stiffness matrix are not time-

variant, however it is possible that this is not completely true as components, related to power 

conversion, may have been added or removed in the course of the study.  

The FEA model of the structure is illustrated in Figure 56 and the first five mode shapes from the 

FEA model are illustrated in Figure 57. 
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Figure 56. FEA model of the Wikinger OSS 

A natural frequency analysis of the OSS structure is performed, and the first five natural 

frequencies and mode shapes are shown in Figure 57. These will be compared to the operational 

modal parameters of modal vectors and eigenfrequencies. 

 

  

1st mode – 0.434 Hz 2nd mode – 0.492 Hz 

 

3rd mode – 0.508 Hz 
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4th mode – 1.784 Hz 5th mode – 1.802 Hz 

Figure 57. FEA model mode shape illustration 

 

7.3. Sensor placement 

7.3.1. Optimal sensor placement study 

The objective of the optimal sensor placement study is to assess the optimal number and locations 

for mounting accelerometers on the structure. It is based on a large choice of criteria. The aim is 

for a sensor layout with the capability of extracting linearly independent mode shapes up to a 

defined number of harmonics. This should be achieved by utilizing minimum amount of hardware 

(sensors, cabling and data acquisition system) to save costs while keeping high-quality data 

analysis levels and considering sensor redundancy. Mounting locations must be regarded as 

acceptable in terms of installation risks, maintainability and exposure to potentially harming 

environment. 

For the OSS structure a SEAMAC algorithm – sensor elimination algorithm using modal 

assurance criterion – is chosen. It tests the removal of DoFs for each candidate sensor location 

to find the setup with minimum off-diagonal terms in the MAC matrix. This ensures the highest 

linear independence of the specified mode shapes. The sensor locations have been limited to the 

topside of the OSS only as sensors in the splash zone and below water are considered unfeasible 

due to maintainability. 

7.3.2. Sensor layouts 

Three sensor layouts are developed according to the criteria listed in Table 22. They aim to extract 

the first five mode shapes of the OSS. For comparability two non-optimized sensor layouts are 

considered and outlined in  

Table 23. 

The number of sensor types, total sensors, maximum MAC off-diagonal value and total MAC off-

diagonal values are summarized in Table 24. The off-diagonal MAC properties give an 

interpretation of how linearly independent mode shapes are extracted. Low values are favourable. 

The Bundesamt für Seeschifffahrt und Hydrographie (BSH) govern offshore activity for Germany 

[433] and their relevant standards are given in [457]. 
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Table 22. Optimized sensor layout definitions. 

Layout Definition 

1a Aims to balance number of sensors and small off-diagonal MAC values. Utilizes sensors 
from the permanent sensor setup. Additional sensor locations on the jacket legs above 
the splash zone are allowed. 

1b Aims to balance number of sensors and small off-diagonal MAC values. Utilizes sensors 
from the permanent sensor setup. 

2a Aims to reduce the number of sensors to a minimum while keeping off-diagonal MAC 
values around 25%. Sensor locations on the jacket legs above the splash zone are 
allowed. 

2b Aims to reduce the number of sensors to a minimum while keeping off-diagonal MAC 
values around 25%. 

 

Table 23. Non-optimized sensor definitions. 

Layout Definition 

Complete Combination of permanent sensors and temporary sensors. 

Permanent Utilizes the sensor setup that was established in accordance with 
the BSH monitoring standards. 

 

Table 24. Number of sensors and MAC properties per layout. 

Sensor DoF Permanent Complete 
Setup 

1a 
Setup 

1b 
Setup 

2a 
Setup 

2b 

3D 6 12 1 0 3 1 

2D 0 0 2 3 0 0 

1D 0 0 4 4 0 4 

Total  6 12 7 7 3 5 

Max. off-
diagonal 

70% 62% 11% 18% 27% 33% 
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Total off-
diagonal 

184% 153% 72% 111% 146% 166% 

 

The sensor locations of all layouts on the OSS topside are shown in Figure 58. 

 

Figure 58. Sensor locations according to specified sensor layouts. 

7.4. Methodology 

7.4.1. Initial data collection and processing 

The data present for this work consists of a permanent and a temporary measurement campaign. 

Between these two sets of sensors, there is one month of overlap running from the middle of 

November to the middle of December 2018. Multiple types of sensors are placed at the nodes 

measured. The sensors used for this study are 3-axis accelerometers which record accelerations 

in the X, Y and Z axis over time.  

 These time series signals were divided into 30-minute intervals. Prior experience with 

these structures has shown that 30 minutes is the ideal amount of time to extract modal 

parameters. The two configurations, the temporary sensor configuration and the permanent 

configuration, are then combined at this stage. An ARTeMIS batch process was then used to 

process all the resulting samples. ARTeMIS is a commercial modal analysis tool. Each of the 

sensor layouts shown in Figure 58 can be constructed be omitting sensors from the ARTeMIS 

analysis. Within ARTeMIS the SSI-UPC (Stochastic Subspace Identification – Unweighted 

Principle Component) was used to extract the modal parameters. The result of this is that for each 

of the 30-minute samples, and for each of the possible sensor layouts, the modal parameters are 

extracted. For each mode captured, the eigenfrequency, damping and modal displacements are 

determined. 

7.4.2. Data processing 

The main purpose of this study is to determine the ability to detect the modal parameters between 

optimized and non-optimized sensor layouts. To this end, it is necessary to determine the level of 

consistency between the mode displacement vectors observed in a given sample and some 
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reference mode vectors. The statistical tool used for comparing mode vectors in this work is the 

Modal Assurance Criterion (MAC) [458], this is a scalar constant which is a measure of the level 

of consistency between two vectors. A MAC value of 0 indicates that the modes are inconsistent 

and a value of 1 indicates that they are totally consistent [456]. The equation for comparing vector 

c to the reference vector d is given, for degree of freedom q and mode r, as: 

 

MAC =
|∑ 𝛹𝑐𝑞𝑟𝛹

∗
𝑑𝑞𝑟

𝑁0
𝑞=1 |

2

∑ 𝛹𝑐𝑞𝑟𝛹∗
𝑐𝑞𝑟

𝑁0
𝑞=1

∑ 𝛹𝑑𝑞𝑟𝛹∗
𝑑𝑞𝑟

𝑁0
𝑞=1

 (51) 

Where the * indicates the complex conjugate of the vector 𝛹 with modal coefficient reference p, 

degree of freedom q, mode r. 𝑁0 is the number of outputs. This relatively simple statistical tool is 

highly used in operational modal analysis for both model updating and damage detection 

[445,459]. However, there are limitations to this tool, the two to be most aware of for this research 

are: 1) Due to the least squares fitting approach used, the value is highly influenced by outlier 

values. 2) The prediction becomes more affected by slight errors if there are only a few degrees 

of freedom used (between 2 and 5) [456]. These will be discussed more in the results section. In 

all calculations of MAC, if a degree of freedom is not present then it is not part of the MAC 

calculation to avoid zero padding. 

7.4.3. Clustering 

For the sake of comparison, a reference set of averaged modes needs to be determined. Over 

1400 30-minute samples were evaluated for the 6 layouts, each of which can have more than one 

mode extracted. This provides a significant number of observations. Based on the FEA model of 

the structure we obtain that there are a certain number of distinct modes, each of which are at a 

frequency which is noticeably different from each other. This is also observed in the operational 

data, that the eigenfrequencies of modes are far enough apart from each other that, despite 

scatter, they form distinct, observable clusters. The MAC value is used to determine if a mode 

vector is consistent with another, however, there needs to be some reference vector with which 

the observed vector’s consistency can be judged. The approach used for clustering can be 

assessed given the hypothetical scenario where no FEA model is available and we believe the 

structure has not fundamentally changed in the observation period. Then to determine how the 

mode vector changes relative to some reference vector derived from those observations, it can 

be enough to use a clustering algorithm based on eigenfrequency alone. In this way the value 

being investigated, variation in mode vector, is not included as part of creating the reference, but 

the reference is still meaningful. Mode vector could be included in the clustering approach, but 

that is made challenging by the fact that some degrees of freedom are not available in some 

observations. 

 In this chapter, a k-means clustering approach is used, implamenting the scikit-learn 

Python library [460]. The limitation to this is that the number of clusters needs to be manually set. 

In this chapter, the predominant interest is the first three modes which have eigenfrequencies 

bellow 0.7, this is seen both in the reference FEA model as well as the operational data. To set 

the number of clusters, the minimum number to form three clusters below 0.7 is used. The 
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frequencies of these three modes are close together compared to the higher modes and so this 

approach also distinguishes higher modes with good fidelity. 

7.4.4. Comparison approaches 

The two key questions this chapter aims to answer are 1) how do operational measurements vary 

relative to the FEA model from which optimal sensor placement was conducted? 2) Given a set 

of sensor layouts, how does the choice of layout influence the consistency of modal parameter 

extraction? 

 Towards answering the first question, each operational mode is compared to the FEA 

model. The MAC value is used to identify which FEA mode each observed mode most resembles. 

 To answer the second question, a baseline set of operational modes are established. All 

the observations are first clustered based on their eigenfrequencies and then the eigenvectors 

within a cluster are averaged together to create an average mode shape for that cluster. Each 

operational observation is then compared to this ‘baseline’ mode to investigate level of variation 

resulting from the layout choice. 

 A factor influencing the ability to extract modes appears to be sensor availability and 

number of sensors. The permanent campaign sensors are reliable with no loss of DoFs in the 

observed period, however the temporary campaign is not as reliable and there is frequent loss of 

DoFs. This can influence the MAC value as fewer DoFs lead to the result being more influenced 

by outliers. 

7.5. Results 

7.5.1. Resulting eigenfrequencies of observed modes 

Figure 59 and Figure 60 show scatter plots of the observed eigenfrequencies for each sample for 

all layouts. Each layout is represented by a different shape and colour. The first three mode 

frequencies are relatively close together and so the second figure shows the same as the first, 

except the y-axis is limited to between 0.5 and 0.7 Hz.  
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Figure 59. Scatter plot of observed operational 
eigenfrequencies for each observation sample and all layouts. 

 

Figure 60. Scatter plot of all observed operational 
eigenfrequencies with the y-axis limited to between 0.5 and 0.7 
Hz and x-axis limited to the first 200 samples. 

 There are two points to these figures, the first is that the scatter plots show distinct clusters 

by frequency, justifying the clustering approach presented in section 3.3. The second observation 

is that even only in terms of eigenfrequencies, the choice of sensor layout is important in order to 

obtain consistent values – although it will be shown that this is influenced by sensor availability. 

Additionally, and this will be discussed further in subsequent sections, the sensor layout also 

affects whether an eigenmode is identified or not. 

 Based on the clustering approach, the mean and standard deviations of the operational 

clusters are presented in Table 25. For reference, the FEA eigenfrequencies are: 0.434, 0.492, 

0.508, 1.784 and 1.802 Hz. 
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Table 25. Mean, μ, and standard deviation, σ, of mode observation clusters each of the sensor layouts. 

Complete Permanent  Setup 1a 

μ (Hz) σ (Hz) μ (Hz) σ (Hz) μ (Hz) σ (Hz) 

0.553 0.0018 0.553 0.0015 0.555 0.0031 

0.614 0.0041 0.612 0.0016 0.613 0.0043 

0.681 0.0153 0.680 0.0024 0.683 0.0357 

1.337 0.0288 1.318 0.0369 - - 

2.952 0.0937 2.935 0.0499 2.747 0.0722 

- - - - - - 

4.500 0.1281 4.499 0.0627 4.504 0.3370 

Setup 1b Setup 2a Setup 2b 

μ (Hz) σ (Hz) μ (Hz) σ (Hz) μ (Hz) σ (Hz) 

0.554 0.0016 0.557 0.0066 0.554 0.0018 

- - 0.617 0.0071 0.613 0.0041 

0.681 0.0027 0.679 0.0098 0.680 0.0108 

- - 1.976 0.0147 1.773 0.0316 

3.026 0.1072 2.943 0.0262 - - 

- - 3.961 0.0510 4.424 0.0548 

4.503 0.4229 4.476 0.1275 4.562 0.071 
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For all layouts, the first three eigenfrequencies are 0.55, 0.61 and 0.68 Hz, except for ‘setup 

1b’ which does not find the 0.61 Hz mode. ‘Setup 2a’ locates more modes, specifically at 

frequencies 1.98 and 3.96 Hz, which are not captured in any other layout but is similar in terms 

of frequency and MAC to the 4th and 5th FEA modes. The ‘Complete’ and ‘Permanent’ layouts 

locate a mode at 1.34 Hz and 2.95 Hz. For reference, the FEA model Eigenfrequencies were 

0.434 Hz, 0.492 Hz, 0.508 Hz, 1.784 Hz and 1.08 Hz. 

7.5.2. Results compared to structural model 

The purpose of comparing the operational observations to the FEA model is to investigate the 

influence of the off-diagonal elements in the MAC matrix, which was generated from optimal 

sensor placement study, on the ability to extract modes. To accomplish this, it is first necessary 

to relate the observed modes to the model modes. This is so that the high MAC values in the 

optimal sensor study can be tied to specific observations. 

 Comparison of the observations to a specific model mode can be done through 

Eigenfrequency of eigenvectors, the consistency of which is determined through the MAC. To 

get an initial overview, these two quantities are shown in box and whisker plots in Figure 61 

and Figure 62, where the circles are individual observations. Typically, the lower the mode 

number, the higher the MAC number. This is reasonable since the lower modes are first-order 

modes and are less influenced by the complexity of the top-side structure. An issue of 

comparing only to the first five FEA modes is that higher order modes are sometimes observed 

in the sensor data and therefore are erroneously compared to lower modes. This also shows 

that, in terms of eigenvector, the mode found by setup 2a at roughly 2 Hz most closely 

resembles the FEA, torsional modes 4 and 5, which are also around that frequency. 

As shown in Figure 62, the more optimized layouts, setup 2a and 2b, have fewer low MAC 

values for the first three modes, than the permanent layout. This is because the sensors were 

placed with the objective of best capturing mode displacements which the model shows as 

indicative of that mode, these are high displacement DoFs from the model. Therefore, the 

MAC value calculation for these layouts will only use DoFs which were determined to be 

important in the model, and so will be more significant in the MAC calculation.  
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Figure 61. Box and whisker plot of measured eigenfrequency of each observed mode, for each sensor layout, 
grouped by which FEA mode it most closely matches (based on highest MAC). 

 

 

Figure 62. Box and whisker plot of highest MAC value of each observed mode, for each sensor layout, grouped by 

which FEA mode it most closely matches (based on highest MAC). 

To show this in more detail, Figure 63 shows histograms number of observations within each 

measurement cluster for each sensor layout. The histogram is coloured by which FEA model 

eigenvectors the observation is most consistent with (highest MAC). Each subplot has a title 

showing which layout as well as the frequency mean values of each cluster. The frequency of 

each numbered mode is given under the layout name and the number corresponds to the 

clusters given in Table 25.  
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Figure 63. Histogram of number of observations in a cluster for each layout, coloured by the FEA mode the 
observation is most consistent. 

From these histograms, it can be seen that typically the order of observed mode to model 

mode is reversed for the first three modes, which is that mode 1 of the model matches mode 

3 of the observations. The mode which is captured by setup 2a at roughly 2 Hz matches with 

the fourth and fifth model modes. 

7.5.3. Results compared to cluster averages 

For each cluster of modes for a given sensor layout, an averaged mode vector is calculated, 

and this acts as a reference mode vector to which each observation is then compared. 

 Figure 64 and Figure 65 show the frequency and MAC value respectively of all 

observations and layouts compared to the cluster averaged reference vector with which it has 

the highest match. This shows that the MAC values are typically much higher for each 

observation than compared to the FEA model, although this is to be expected.  

 For some 30-minute samples, the SSI process detects two modes which are at very 

similar Eigenfrequencies. It is assumed that one of these is anomalous and would not be 

useful to include in damage detection or model updating. To deal with this, if two similar modes 

are detected in the same sample, only the mode with the Eigenfrequency closest to the cluster 

average is used to form part of the cluster eigenvectors average. This criterion is also used 

when calculating the MAC value of each observation relative to the cluster average. This 

results in a reduction in the amount of low MAC values which otherwise indicate a greater 

level of scatter than is present. 
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Figure 64. Box and whisker plot of measured eigenfrequency of each observed mode, for each sensor layout, 
grouped by which cluster mode it most closely matches (based on highest MAC). 

 

 

Figure 65. Box and whisker plot of highest MAC value of each observed mode, for each sensor layout, grouped by 

which cluster mode it most closely matches (based on highest MAC). 

 The decision process for if a mode should be compared to a given reference mode is 

based on a thought process which might be followed in an operational situation and so these 

are treated as new observations. If these were new observations and not observations already 

in a cluster, then deciding which cluster it belongs to should be done first by which cluster the 

new observation has the highest MAC value with and second by whether the frequency is 

relatively close. That is the process followed here in order to replicate an operational condition.  

 Figure 65 shows the consistency of the mode vector for each layout. For the permanent 

layout the MAC is always very near one, meaning the mode shape derived is always very 

consistent with the reference. This is good for using the operational data. For model updating, 

only a few observations are needed and for damage detection there is little scatter in the 

healthy state. Setup 2a however shows recordings which are typically inconsistent with the 
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reference. Even though setup 2a can detect modes which the permanent layout cannot detect. 

The permanent sensor layout and setup 2a do not share any sensors. 

 Setup 2a shows relatively low availability. This layout consists of only 3 sensors, so 

there are only 9 degrees of freedom if everything is working correctly. To show the level of 

availability of each layout, the number of degrees of freedom in each observation is shown 

per layout. Despite this, setup 2a is still able to distinguish the largest number of modes by 

cluster. 

Table 26. Maximum, minimum and mode of number of degrees of freedom for the observations for each sensor 
layout. 

Sensor layout Maximum Minimum Mode 

Complete 33 27 31 

Permanent 18 18 18 

Setup 1a 11 8 11 

Setup 1b 10 9 10 

Setup 2a 9 3 7 

Setup 2b 6 3 6 

 

Table 26 shows the statistics for number of degrees of freedom available for each 30-minute 

observation over for each sensor layout. The permanent sensor layout has 100% availability 

with 18 DoFs throughout the entire time period. The temporary campaign however is less 

reliable with the occasional loss of a DoF as well as a sensor (with 3 DoFs) becoming 

unavailable after the 21st of November. One might conclude from this that the MAC value is 

dependent on the number of sensor DoFs available. However, plotting MAC value against 

number of degrees of freedom shows this to not be the case. An implication of this when 

designing a sensor layout is that more degrees of freedom from more sensors doesn’t 

necessarily lead to a more consistent extraction of modal parameters. 
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Figure 66. Scatter plot showing MAC value against number of DoFs available. Coloured by sensor layout. 

7.6. Discussion 

Although the permanent sensor layout, constructed through engineering judgement, resulted 

in very reliable modal extraction, there is potential to improve upon this. There are clear 

practical considerations for these results on why an optimal placement sensor study should 

be conducted. For a single structure like this OSS, sensors are relatively inexpensive. 

However, for the case of wind turbine structures, where there can be tens or even hundreds 

in a wind farm, sensors for all structures are expensive to procure, install and maintain. More 

sensors also lead to more complexity in signal processing and storage. If fewer sensors can 

give equal or better results, as this chapter has shown, then that saves money. The results 

can be better, as shown in this chapter, the most optimized layout was able to detect more 

modes than the non-optimal setup. Damage sensitive modes can also be targeted through 

conducting an optimal sensor study. Furthermore, redundancy can be designed deliberately 

through an optimal layout if this is required. Knowledge of installation requirements cannot be 

overlooked as the sensors need to be installed in accessible and solidly mounted locations. 

There may be resistance to conduct an optimization as it is a technical challenge which 

requires a detailed FEA model, however it requires only the application of an algorithm. 

7.7. Conclusion 

In this chapter the influence of accelerometer sensor placement on the ability to extract modal 

parameters was investigated. Operational readings covering 1 month from 12 accelerometers 

placed on an OSS platform from the Wikinger wind farm (owned by Iberdrola) were used. The 

SSI-UPC method in ARTeMIS modal was used to extract modal parameters. Observed modes 

are clustered using a k-means approach and then compared to both the original FEA model 

as well as a cluster averaged eigenvector. 

 These results show that while relatively high MAC values between the observation and 

the FEA model can be obtained, there is still a significant enough difference between the FEA 

model and the observed modal parameters to draw any conclusions on the impact of off 

diagonal elements in the MAC matrix from optimal sensor placement for the first 5 modes.  
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 Comparing the modal parameters of each observation to a cluster-averaged vector 

shows level of fluctuation in the observed mode for each sensor layout. While the most 

optimized sensor layout (setup 2a) is able to detect the most modes, it shows the greatest 

level of fluctuation in both eigenfrequency and mode vector. A contributing factor to this 

appears to be sensor availability which is less high for the temporary campaign (which includes 

setup 2a) than the permanent. 

 The recommendation from this is that sensors should be placed with knowledge of the 

mode vectors (optimal sensor placement) and sensor reliability is critical to obtaining 

consistent results. 

 

 

  



163 
 

Chapter 8 

8. Discussion 

The goal of this thesis is to advance areas required for digital twin technology. This is 

inherently a multidisciplinary task which this thesis has approached in a two-part approach 

viewing both load and resistance. These two parts are: Part 1) Load variation at an array level, 

Part 2) structural variation and data. The parts within each section all show important findings 

and considerations. 

8.1 Literature 

The literature review conducted as part of this research highlighted models that can be used 

and highlighted gaps in the research which can be filled. It provided an overview of topics in 

modelling wind, wave and geotechnical variation within a wind farm, as well as consolidating 

a list of applicable models which can be used. 

It was identified that there are a wide range of computational fluid dynamics models and parts 

of models which could be used to model the wave within a wind farm. These models all provide 

different levels of fidelity and capture behaviour in different areas. As computational 

capabilities that researchers and engineers have access to advances, more complicated 

models become suitable for tasks which they previously were not suitable for. Additionally, in 

some cases the simplifications which had been made to the models for performance reasons 

can be removed. The literature review also highlighted the growing role of machine learning 

in engineering applications, particularly in predicting wind and wave time-series applications. 

The literature review highlighted that there is not much existing research on load variation 

within wind farms resulting from the impact of other structures on the waves. However, there 

is a plethora of research on wave and current models which are applicable, this can be 

particularly useful in sites with significant depth variations. 

When conducting wind farm aerodynamic wake models, it is important to answer 5 key 

questions to identify the models most suitable for the task: 1) What level of fidelity is required? 

2) How quickly are the results needed? This should be considered in conjunction with available 

computational capability. 3) Are time domain results required or are steady state, time 

averaged results sufficient? 4) What is the area of interest? Is it near or far wake? 5) What 

level of complexity is required for the turbine model? This question can also be combined with 

what information on the turbine is available since many require detailed aerodynamic 

information, but some do not. Answering all these questions is a vital first step to any turbine 

wake modelling. 

Waves and wave loading in normal conditions can be modelled suitably with existing models. 

There exist many wave models of various orders to represent sea level as well as statistical 

models for sea state which are suitable for different regions. Loading can be modelled through 



164 
 

analytical means such as Morrison’s equation or more complex loading can be modelled 

numerically.  

Geotechnical variation within a wind farm results from two things: either there is spatial 

variation between turbines, for which a ground model can be built through consolidating 

numerous data sources. The second source of variation is time-varying depth caused by 

scour, which can be either a global reduction or local around the structure. Scour can be 

roughly predicted analytically based on soil type but can be modelled much more accurately 

by considering fluid flow erosion as well as soil transport and other factors. 

Part 1 

8.2 Computational fluid dynamics 

The computational fluid dynamics chapter in this thesis forms the foundation of the load 

variation investigation in this thesis. It is used for further investigation in other chapters but 

also provides novel and useful findings.  

An important part of modelling is the quantification of error, and that was done at multiple 

stages in conducting the computational fluid dynamics model. A grid sensitivity study was 

conducted, and it was found that the results of the grid used are roughly 2.2% from the 

continuum value. This grid was used, rather than being more refined, due to computational 

limitations. 

Turbulence models were investigated, comparing some of the most commonly used Reynolds 

Averaged Navier Stokes models. It was found that in this application k-𝜀 gives the closest 

results to the operational values with a mean absolute error of around 8%, compared to 10% 

for k-ω SST. This is in general agreement with literature which shows k-𝜀 to be better for this 

application.  

A range of inflow directions and speeds were considered to consider multiple different 

behaviours which can be observed in turbine wakes. While k-𝜀 typically performs better, there 

are some cases when the lower velocity in k-ω SST, resulting from slower wake recovery, 

results in closer predictions. 

There is a large amount of scatter in the observed measurements and so comparing to 

individual observations was unsuitable. Instead, two approaches were compared which allow 

comparison to an averaged observation. These two approaches are binning and regression. 

In the binning approach the CFD results are compared to averages within a range while in the 

regression approach the data is approximated and the CFD is compared to the approximation. 

While binning generally results in a lower error observed, the regression approach gives more 

information about the response within the wind farm and avoids the potential of being near the 

edge of a bin. Results ate higher speed show higher errors, but this region in the data is also 

less reliable as there are fewer observations at higher speeds. 

There is a reduction in velocity everywhere in the wind farm, even when the met mast is not 

directly in line with a turbine wake. This is observed in the operational data as well as in the 

CFD results. The size of the wake itself is more apparent in the turbulence viscosity plots 
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which show the wake to be broad, at the turbine the turbulence change is wider than the 

turbine itself. 

These results were interesting as they show in detail where sources of error occur and since 

the model is compared to operational data, which is rarely available to researchers. This also 

forms the training data set for further study in this thesis. 

8.3 Machine learning expansion 

Several machine learning approaches were applied to the CFD data with the intention of 

expanding on the applicability of that CFD data. This includes a range of models which work 

in fundamentally different ways to identify behaviours which are suitable or not suitable for this 

task. These models were then compared to further CFD results as well as the operational data 

to validate the approach.  

Compared to further CFD cases, the machine learning models were all within 3% mean 

absolute error, with the smallest error of 1% resulting from artificial neural networks. This 

validates this idea of the approach in that the machine learning models can be used instead 

of conducting further CFD analysis. The approach could then either be used with existing data 

to predict the loads each turbine has experienced or with a time-series forecasting approach 

to predict future loads. 

While support vector machines provided poor predictions relative to further CFD cases, it 

provided the best results when compared to met-mast observations. This was surprising, but 

it was because the scatter in the observed site data causes a smearing of the result and a 

reduction in the sharpness of dips due to direct wakes. Future models should account for this 

stochastic nature deliberately rather than with a model with a more general fit. Otherwise, ANN 

provided the best results compared to MM data. 

Random forest showed an inability to generate smooth predictions between training data 

which are located relatively far from each other, as was the case for wind speed. The use of 

‘artificial samples’ where polynomial models were used in lower dimensional training sets to 

fill the gap resulted in a significant improvement in the RF model predictions such that their 

error metrics were in-line with other approaches. 

A small ‘trick’ was found to improve the performance of all models – this was to include the 0 

m/s inflow wind speed values in the training data. These are trivial cases when CFD would not 

be conducted since the wind speed at the met mast is simply 0, but including them greatly 

improves the machine learning performance since low wind speed values (less than 5 m/s) 

are no longer outside of the range of modelled values. 

From a practical perspective this approach can result in comparable results to conducting 

more CFD cases without the corresponding computational expense. This allows for analysis 

involving the lifetime of the structure or Monte-Carlo analysis. However, it does not totally 

avoid significant computational expense since the training data needs to be generated, which 

in this case required one month on a high-performance computer cluster. This approach can 

provide values in cases where the layout is already established but modelling would provide 

some value. For example, this could be useful when assessing different control strategies or 

in repowering. 
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8.4 Wind and wave time series forecasting 

Three different time series forecasting methods were compared to a measured 3-hour data 

set and were evaluated for their numerical similarity to the observed values. These three 

methods include Markov-Chains, Gradient Boosting and a novel method involving a 

combination of deterministic fitting of seasonality with random sampling, referred to as the 

hybrid method.  

It is unreasonable to compare to individual values as there is so much randomness in each 

observation, instead comparison is made to metrics for monthly values. In general, all three 

models produce usable predictions, but some are better suited to the task. Comparing 

difference from the mean, Markov-Chains and the hybrid approach are both very close, while 

Gradient Boosting has the largest error from the means. In terms of the size of standard 

deviation of the predictions within a month, again, both Markov-Chains and the hybrid 

approach perform well while the gradient boosting approach shows the least amount of 

deviation. It is desirable to have a have larger deviation since that is what is observed in the 

real values, but GB has too much averaging and no inherent randomness in the model. It is 

very important to model correlation between wind and wave values because, for a lot of 

application, both values are important. For example, correlation is needed for vessel weather 

windows or predicting contemporaneous loads. Both Markov-Chains and the hybrid method 

(when used with multivariate distributions) gave levels of correlation comparable to the 

observed value (0.8), but gradient boosting did not show as much correlation (0.6). 

Based on monthly metrics, both Markov-Chains and the hybrid approach provide similar 

values, however there are still important differences between them in terms of the forecasts 

that they produce. They are different in terms of the level of persistence in the forecast (how 

long high wind or waves stay high), which is changeable in the hybrid approach but is inherent 

and unchangeable in first-order Markov-Chains.  

The most significant difference between Markov-Chains and the hybrid approach is that of 

seasonality. Markov-Chains model seasonality by having a separate model for each month. 

Within a month, there is no seasonality and the trend of the forecast is relatively free to wander 

up and down. In the hybrid approach, seasonality is modelled at several levels by the 

underlying series of polynomial models. This results in a forecast which follows trends shorter 

than a month and so follows the observed data in a more deliberate way. 

This can be used to provide more accurate inputs for calculation of loading for structural 

models, or to better predict the ability to conduct maintenance on the structures. 

8.5 Part 1 discussion 

The first part of the thesis investigated aspects related to loading within a wind farm. Although 

no load values were calculated, the research conducted incorporates the stochastic nature of 

how wind behaves in a wind farm as well as the forecasting of time series to input into the 

models. This forms the basis for the different loading within an offshore wind farm and so 

allows for a more accurate, turbine specific load analysis. A potential use case could be to 1) 

first model the wind farm through computational fluid dynamics, then 2) train a machine 

learning model on the results 3) to forecast freestream wind speeds using the hybrid approach 

and 4) use the machine learning model to predict wind speeds at each turbine based on the 
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forecast freestream values over the life of the structure. For making predictions with a digital 

twin model, this approach would provide very accurate estimates for the wind values to use in 

a load analysis for each structure.  

Part 2 

8.6 Damage detection 

An investigation of damage detection through global modal analysis was conducted using a 

detailed design model of the Wikinger wind turbine structure, which uses a four-legged jacket. 

This model is a very close analogue of the real structure as it is very detailed and is the model 

that the real structure was designed from. There is some limitation that the model provides an 

eigenvalue solution and does not model the time series with blade rotation, but for the sake of 

the current work the model is sufficient. 

There were some consistent patterns observed in the rate at which different modes change 

frequency. For effects which are global and symmetric, such as scour or corrosion, the order 

from most to least change is 5th, 4th, 3rd, 2nd, 1st. When these are normalised by the starting 

frequency of each mode, the order becomes 3rd, 4th, 5th with the 1st and 2nd having negligible 

change.  

Changes which are non-symmetric, such as damage to a single element, have unique 

behaviour. The side of a structure that a damaged element is located on can be identified 

when the nacelle changes direction and the identification should be made with knowledge of 

nacelle direction. The height of the damage can be identified by the amount of change in 

metrics.  

In this analysis it was found that more metrics provided more information and so ideally several 

metrics should be used. When determining the pairing for damaged against undamaged 

frequency and MAC values, using a pairing which maximises the MAC value can provide the 

most appropriate and consistent pairing. Modal flexibility can be a useful metric to use because 

it is calculated without a pairing of individual modes between damaged and undamaged. 

However, modal flexibility does not provide much information or give have a consistent value 

for ‘damaged’ and ‘undamaged’ so it is best to use it in conjunction with other metrics. 

8.7 Sensor placement 

In this chapter, an optimal sensor placement study had been conducted on a structure 

resulting in 6 possible sensor configurations using the sensors which were installed on an 

offshore substation that had been operating in the Baltic sea. These sensor placements were 

composed of two campaigns which had 1.5 months of overlap. 

The permanent sensor campaign resulted in the more consistent modal extraction and had no 

cases of missing data, while the temporary campaign sensors occasionally had missing data. 

While the permanent layout had the most consistent model extraction, the optimized layouts 

were able to detect more mode shapes using fewer sensors. This shows that by placing the 

sensors with consideration for the structure’s mode vectors, fewer sensors can be used. 
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For a single structure, having fewer sensors might not save much money or time, but if multiple 

structures within a wind farm have fewer sensors then this can add up to a more significant 

reduction. However, sensors cannot be placed based on optimised locations alone, they 

should also be placed with consideration to access and other concerns. 

8.8 Part 2 discussion 

In part 2 the modal response of the structure in a range of circumstances was investigated 

and the ability for accelerometers on an operational structure to detect those mode properties 

was also investigated. This can provide value to an operator who can combine the data they 

receive from the operational structure with the knowledge about the structure from their digital 

twin in order to quickly and accurately assess the condition of the structure. 

9. Conclusion 

9.1 Summary and key findings 

The main purpose of this research is to develop methodologies required for the assessment 

of offshore wind turbine assets through digital twins. Digital twins are inherently 

multidisciplinary, with both load and resistance aspects to consider as well as the requirement 

to incorporate data and stochasticity into the models. The components of this research include 

fluid dynamics, structural dynamics, weather time series, accelerometer data processing and 

machine learning. The outcome of this research is to support digital twins in offshore wind by 

developing, verifying and validating modelling approaches required to simulate operational 

offshore wind assets. The conclusions of this thesis are summarised in the following sub-

sections. 

9.1.1 Computational Fluid Dynamics 

Modelling wind turbine wake effects at a range of wind speeds and directions with actuator 

disk (AD) models can provide insight but also be challenging. With any model it is important 

to quantify the level of error, but this can also present a challenge when comparing a steady-

state model to measurement data with scatter. This research models wind flow in a wind farm 

at a range of wind speeds and directions using an AD implementation. The results from these 

models are compared to data collected from the actual farm being modelled. An extensive 

comparison is conducted, constituted from 35 cases where two turbulence models, the 

standard k-ε and k-ω SST are evaluated. The steps taken in building the models as well as 

processes for comparing the AD computational fluid dynamics (CFD) results to real-world data 

using the regression models of ensemble bagging and Gaussian process are outlined. Turbine 

performance data and boundary conditions are determined using the site data. Modifications 

to an existing opensource AD code are shown so that the predetermined turbine performance 

can be implemented into the CFD model. Steady state solutions are obtained with the 

OpenFOAM CFD solver. Results are compared in terms of velocity deficit at the measurement 

locations. Using the standard k-ε model, a mean absolute error for all cases together of roughly 

8% can be achieved, but this error changes for different directions and methods of evaluating 

it. 
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9.1.2 Stochastic expansion of Computational Fluid Dynamics model 

Wind turbine flow field prediction is difficult as it requires computationally expensive 

computational fluid dynamics (CFD) models. The contribution of this research is to propose 

and develop a method for stochastic analysis of an offshore wind farm using CFD and a non-

intrusive stochastic expansion. The approach is developed through testing a range of 

machine-learning methods, evaluating dataset requirements and comparing the accuracy 

against site measurement data. The approach used is detailed and the results are compared 

with real measurements obtained from the existing wind farm to quantify the accuracy of the 

predictions. An existing offshore wind farm is modelled using a steady-state CFD solver at 

several deterministic input ranges and an approximation model is trained on the CFD results. 

The approximation models compared are Artificial Neural Networks, Gaussian Process, 

Radial Basis Function, Random Forest and Support Vector Regression. RBF achieves a mean 

absolute error relative to the CFD model of only 0.54% and the error of the SVR predictions 

relative to the real data, with scatter, was 12%, compared to 16% from Jensen. This approach 

has the potential to be used in more complex situations where an existing analytical method 

is either insufficient or unable to make a good prediction. 

9.1.3 Wind and wave time-series forecasting 

With the growing demand for offshore wind energy and the continued drive for reduced 

levelised cost of energy, it is necessary to further to make operation and maintenance (O&M) 

activities more effective and reduce related costs. A key factor in achieving this aim is to more 

representatively model O&M activities and to do this, simulation models should include more 

accurate weather forecasting algorithms. In this research three weather forecast modelling 

methods are used to generate projections of wind and wave values which are then compared 

to measured, operational data. These methods include Markov Chains, gradient boosting and 

a novel hybrid regression/statistical approach which has been developed and is presented 

herein. It is shown that numerically the Markov Chain model and the hybrid model perform 

similarly, although the hybrid method has some additional desirable features.  

9.1.4 Damage identification through global dynamics 

The modal response of a four-legged jacket structure to damages are explored and resulting 

considerations for damage detection are discussed. A finite element model of the Wikinger 

jacket structure is used to investigate damage detection. Damages, such as cracks, scour, 

corrosion and more, are modelled in a simulation environment. The resulting modal 

parameters are calculated, these parameters are compared to those from an unaltered 

structure and metrics are calculated including frequency change, modal assurance criterion 

and modal flexibility. A highly detailed design-model is used to conduct a sensitivity study on 

modal parameters for a range of changes. By conducting this on the same structure, this acts 

as a useful reference for those interested in the dynamic response of offshore wind jacket 

structures. Additionally, this research addresses the issue of changes in mode parameters 

resulting from turbine yaw. This research also considers the challenge of mode-swapping in 

semi-symmetric structures and proposes several approaches for addressing this. Damage 

typically results in a reduction of frequency and change in mode shapes, but in ways which 

can be distinguished from other structural changes, given the extent of this model. These 

findings are important considerations for modal-based damage detection of offshore wind 

support structures. 
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9.1.5 Impact of accelerometer placement layout 

The modal parameters extracted from a structure by accelerometers can be used for damage 

assessment as well as model updating. To extract modal parameters from a structure, it is 

important to place accelerometers at locations with high modal displacements. Sensor 

placement can be restricted by practical considerations, and installation might be conducted 

more based on engineering judgement rather than analysis. This leads to the question of how 

important the optimal sensor placement is, and if fewer sensors suffice to extract the modal 

parameters. 

In this research, an offshore wind substation (OSS) from the Wikinger offshore wind farm 

(owned by Iberdrola) is instrumented with 12, 3-axis accelerometers. This sensor setup 

consists of 6 sensors in a permanent campaign where sensors were placed based purely on 

engineering judgement, as well as 6 sensors in a temporary campaign, placed based on a 

placement analysis. An optimal sensor placement study was conducted using a finite element 

model of the structure in the software package FEMtools, resulting in optimal layouts. The 

temporary campaign sensors were placed such that they, in combination with the permanent 

campaign, can be used to complete the proposed layouts.  

Samples for each setup are processed using the software ARTeMIS modal to extract the mode 

shapes and natural frequencies through the Stochastic Subspace Identification (SSI) 

technique. The frequencies found by this approach are then clustered together using a k-

means algorithm for a comparison within clusters.  

The modal assurance criterion (MAC) values are calculated for each result and compared to 

the finite element model from which the optimal sensor placement study was conducted. This 

is to match mode shapes between the two and thus determine the importance of off diagonal 

MAC elements in the sensor optimization process. MAC values are also calculated relative to 

a cluster-averaged set of eigenvectors to determine how they vary over the 1.5 months. 

The results show that for all sensor layouts, the three lower frequency modes are consistently 

identified. The most optimized sensor layout, consisting of only 3 sensors, was able to 

distinguish an additional, higher frequency mode which was never identified in the 6-sensor 

permanent layout. However, the reduced sensor layout shows slightly more scatter in the 

results than the 6-sensor layout. There is a higher signal to noise ratio in the temporary 

campaign which results in scatter. We conclude that with an optimized placement of 

accelerometers, more modes can be identified and distinguished. However, off diagonal 

elements in the original MAC matrix, as well as loss of sensor degrees of freedom, can result 

in additional scatter in the measurements. Some of these findings can be extended to other 

offshore jacket structures, such as those of wind turbines, in that it gives a better 

understanding of the consequence of an optimal sensor placement study. 

 

9.2 Contribution to knowledge 

This research contributes to knowledge in a way which is novel, scientifically sound and 

provides value to stakeholders. Three scientific journals have been successfully published as 

well as four peer-reviewed, scientific conference papers. 
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Section Novelty Value to stakeholders 

Computational fluid 
dynamics 

• Simulation of an entire 
wind farm at multiple 
free-stream wind 
speeds and directions - 
comparing turbulence 
models for this. Other 
research has either not 
shown this range of 
variables or has not 
done so at close 
enough resolution to 
observe the effects. 

• Demonstrates a novel 
modification of an 
existing actuator disk 
code.  

Researchers and industry will 
benefit from the wind farm 
computational fluid dynamics 
findings as they give a better 
understanding for how wind 
flow behaves and how errors 
related to measurements vary 
with different wind speeds and 
directions.  The actuator disk 
code developed can be used 
to model other offshore wind 
farms and achieve similar 
results. The methods shown 
for comparing accuracy of 
measured results to CFD 
results can be of value for 
others comparing their CFD 
results to measurements. 

Stochastic 
expansion of CFD 

• Develops an approach 
for expanding upon 
CFD results using 
machine learning. This 
provides a novel 
method for stochastic 
analysis of wind 
turbine loading within a 
wind farm. 

The method used can be 
applied to gain more value 
from CFD results at either an 
initial planning phase of a wind 
farm or when considering 
different turbine control 
behaviour. The validation of 
results can give confidence to 
researchers and industry when 
applying machine learning 
techniques to similar problems 
as well as demonstrating 
which methods might be most 
suitable and why. 

Wind and wave 
time-series 
forecasting 

• Comparison of existing 
weather forecasting 
time-series methods, 
providing insights into 
the strengths and 
weaknesses as well as 
difference in error 
between the 
approaches. 

• Development of a 
novel time-series 
forecasting approach 
which combines 
deterministic and 
statistical models. This 
approach shows 
considerable promise 
in this field as it 
incorporates features 

The new weather forecasting 
time series method is shown to 
be as accurate as existing 
methods while having features 
which are desirable for 
weather forecasting. When 
closer replication of real 
wind/wave time series 
behaviour is required in order 
to reduce conservativism in 
offshore wind load calculation, 
this new method can be used 
and reduce cost. 
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which other methods 
do not. 

Damage 
identification 
through global 
dynamics 

• Use of more detailed 
model than other 
works for an offshore 
structural damage 
detection study. 

• Includes mass/moment 
of inertia of rotor 
nacelle assembly 
which is found to be 
important for when 
observing relative 
changes in damage 
metrics. 

• A broad range of 
damage were 
simulated on a single 
structure which allows 
for direct comparison 
between damages. 

• Explores methods for 
overcoming the known 
issue of mode-
switching. 

The findings of the damage 
identification work are vital for 
developing an operational-
modal-analysis based damage 
detection approach in industry. 
It shows how much the 
eigenfrequencies and vectors 
change as a result of various 
damages which informs 
practitioners how to identify 
damage in real structures. 
Additionally, researchers are 
often unsure how to approach 
the issue of mode-switching in 
semi-symmetric structures as 
a result of damage, this 
research shows the 
effectiveness of different 
approaches. 

Impact of 
accelerometer 
placement layout 

• Investigate 
measurements from 
multiple sensor layouts 
for a single operational 
structure. Shows direct 
implication of sensor 
layout optimization for 
operational scenarios. 

The research on 
accelerometer placement 
impact is important for industry 
because accelerometer 
layouts which give better 
readings usually requires 
placing them at locations with 
more difficult access. This 
research shows the real 
impact of choosing better 
placements over accessibility. 

 

Scientific soundness 

The research is scientifically sound in that all the best practice procedures have been followed, 

results have been validated against operational site data and state-of-the-art methods have 

been used. Both through an extensive literature review, as well as working with experts in 

academia and industry, it has been assured that the research followed the highest and most 

appropriate standards. Throughout the work , models and results have been validated against 

operational site data which provides a metric for the efficacy of the methods used and gives 

confidence in their results and usefulness. 
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9.3 

9.3 Future research 

Regarding potential future work from a CFD perspective, with the growth in computational 

capabilities, CFD can more be applied in a way that expands the compromise between 

capturing flow complexity and computational time. 

The machine learning based expansion of CFD can be developed further by incorporating the 

stochastic capabilities of some approximation models in order to replicate the stochastic 

nature of the wakes. Additionally, other variables which can be calculated could be 

approximated such as turbulence values, or a time-series prediction can be generated, which 

can be useful for estimating fatigue. 

The time-series forecasting method developed could be developed further by applying the 

novel time-series method to forecasting other types of time series. This would test its ability 

under different conditions. 

The damage identification model could be applied to other types of structures. Additionally, it 

could be valuable to apply damage detection algorithms to synthetic data generated from 

these model results. 
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Appendix 

A.1 Additional research, damage detectability in the presence of 

scatter 

Additionally, there other research has been conducted but has not yet been completed and so 

has not been made part of this thesis.  

A.1.1 Additional research objective 

In chapter 6, the potential for damage detection through global dynamics was presented. While 

this research showed the change in modal dynamics as a result of changes in environmental 

conditions and damage situations, it did not show whether this damage is likely to be 

detectable in the presence of natural scatter observed in measured data. Further research 

was conducted to answer this question and provide an estimate for how large damage should 

be in order to be reliably detected.  

A.1.2 Method 

Damage to the structure, in this case a crack, is simulated in increments as it progresses from 

the design condition to complete loss of the joint. This gradually changes the modal 

parameters. The crack is simulated as a reduction in stiffness of the joint.  The frequency is 

shown in the figure where the design value for stiffness is on the right and this reduces towards 

the left. The same modal parameters are used in this case as were used in the previous modal 

properties study. 

Modal properties obtained through operational modal analysis of real structures contain 

scatter. For the level 3 damage severity approach it is necessary to replicate that scatter in 

the modelled, synthetic data. The NFA results are deterministic and do not have any scatter. 

So, the NFA results are combined with observations from real OMA results in order to fit 

statistical distributions which are then sampled in order to generate ‘scattered’ modal property 

observations. 

The method followed is shown diagrammatically in . The first two steps are the same as were 

followed in chapter 6, where an intact structure is modelled, and the modal parameters are 

calculated through solving the eigenvalue problem. The modal parameters are also calculated 

for a simulated damage state. The new approach is to the simulate scatter in the ‘damaged’ 

modal parameters. The simulated, scattered data is created by fitting a normal distribution to 

the modal parameters, with the mean set as the deterministic value, the standard deviation is 

based on the level of deviation which was observed in chapter 7 where real accelerometer 

measurements from an offshore substation at the Wikinger site were investigated. The 

scattered values were sampled from these fitted distributions. Next, machine learning, 

classification, models were trained on the scattered data and the test ability of these models 

to predict the damage state was judged. 
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Figure 67. Method followed to investigate the potential for damage detection from modal parameters in the 
presence of scatter. 

An example of the scattered sate is shown in . In chapter 7 it was observed that the level of 

scatter is higher for higher eigenfrequency modes and so this was replicated in the approach 

by setting the standard deviation as proportional to the mean value of frequency. 

 

Figure 68. Scattered data generated in order to replicate real scatter in a modelled damage scenario. This shows 

the eigenfrequency for three damage cases as well as ‘healthy’ scattered data.  

A.1.4 Machine learning models tested 

The two machine learning approaches used for this study are 1) random forest classification 

and 2) logistic regression classification. The motivation for this choice is as follows: 

1) Random Forest 
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This represents the ideal case as the model does not have a predefined shape it is able to fit 

closely to the specific data used. It should have a higher prediction accuracy but not be as 

representative of a real situation where the real damage response of the structure, rather than 

modelled, is unknown.  

In summary:  

• Fits well to the training data and accurately predicts the test data 

• High bias, suited to this data but conclusions cannot be extended beyond this case 

• Ideal case 

 

2) Logistic regression classification 

This is a simpler model where the decision boundary is defined linearly. This is useful because 

it is more representative of the performance which might be expected in a real situation, 

because it doesn’t fit the data as closely. Additionally, this approach is interesting because the 

linear nature of the model means that several metrics and variable reduction approaches are 

valid. The variable reduction approach itself can provide useful insights into damage detection. 

In summary: 

• Simple model with linear decision boundaries, low variance, low bias 

• Allows for methods to reduce variables (Information value and P-value) 

• Gives probabilities and not just classification 

• Findings are more generic 

A.1.5 Results 

A.1.5.1 Random Forest Classification results 

This shows the confusion matrix from random forest where all damage levels are included in 

a multi-class classification. It shows that early on, there are a large number of false negative 

results where minor damage is classified as healthy. This is in the bottom right of the plot. As 

the damage becomes more severe it becomes more detectible and, beyond a point, the level 

of damage is very accurately predicted. The most important part of this graph is the bottom 

right, damage should be detected as soon as possible because there can be sudden failure if 

a crack grows too large. How realistic the middle section of the confusion matrix is subject to 

how well the behaviour of the model replicates the behaviour of the real structure and model 

updating is only conducted for the healthy case. 
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Figure 69. Confusion matric from random forest classification showing the true joint stiffness against the predicted 
joint stiffness. 

 shows the accuracy of classification between healthy and damaged, conducted in a 

sequential, binary approach rather than a multi-class approach. This shows more clearly when 

damage becomes detectible. When the stiffness value has reduced to 80 % of the design 

value it can be distinguished from the intact case. This shows that, in the ideal case where a 

random forest model is used, damage can be detected relatively early. 
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Figure 70. Accuracy score achieved by random forest classification for changing damage levels (represented in 
this case by member stiffness) 

A.1.5.2 Logistic Regression Classification results 

The second ML model used in the level 3 study is logistic regression. The relative simplicity of 

this linear model makes it more useful for some purposes. Statistical methods can be used to 

reduce the number of variables. While variable reduction is normally conducted to reduce 

numerical cost, in this case it can serve the very useful purpose of reducing sensors. To reduce 

variables, first the ‘information value’ is calculated for each variable and lower IV variables are 

removed, with the model retrained and tested. Information value is calculated according to the 

following equation: 

 
𝐼𝑉 = ∑(𝐸𝑣𝑒𝑛𝑡% − 𝑁𝑜𝑛 𝑒𝑣𝑒𝑛𝑡%) ∗ ln (

𝐸𝑣𝑒𝑛𝑡%

𝑁𝑜𝑛 𝑒𝑣𝑒𝑛𝑡%
) 

(52) 

 shows that the number of variables can be reduced significantly, from 185 to 29 variables, 

without much loss of accuracy. Logistic regression is a binary model and so this is predicting 

between ‘damaged’ and ‘undamaged’ labels. 
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Figure 71. Accuracy of the logistic regression model to predict damaged/undamaged against the number of 
variables used as the number of variables is reduced based on information value 

The number of variables can be further reduced by iteratively removing variables with p-values 

above a given threshold. Doing this reduces the number of variables further to only 23. 

The final list of variables after the complete variable reduction approach is shown in . There is 

only one frequency value, the rest are node displacements. There are also no vertical 

displacements, only dy and dx, therefore, to detect this damage, only 2 dimensional 

accelerometers are needed. Some nodes only include either dy or dx, however this may 

change when nacelle yaw is changed. A potential use for this approach is for sensor reduction 

– if the aim of installing sensors is damage detection, then the variables can be reduced in 

this way while directly associating it with the loss in accuracy. 
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Table 27. List of variables after variable reduction for logistic regression 

Number Value type Mode number Node axis 

1 displacement 3 95A0P0 dy 

2 displacement 3 95B0P0 dy 

3 displacement 3 95B0Q0 dy 

4 displacement 4 TOWN07 dy 

5 displacement 3 99ABPQ dy 

6 displacement 1 TOWTOP dx 

7 displacement 3 95A0Q0 dy 

8 displacement 1 TOWN07 dx 

9 displacement 4 95A0P0 dy 

10 displacement 3 TOWN07 dy 

11 displacement 2 TOWTOP dy 

12 displacement 4 95A0Q0 dx 

13 displacement 4 99ABPQ dx 

14 frequency 5 - - 

15 displacement 4 TOWN07 dx 

16 displacement 4 95B0Q0 dx 

17 displacement 5 TOWN07 dx 

18 displacement 2 TOWN07 dy 

19 displacement 4 95B0P0 dx 

20 displacement 4 95A0P0 dx 

21 displacement 4 95B0P0 dy 

22 displacement 5 95A0Q0 dy 

23 displacement 2 TOWTOP dx 

 

The accuracy of the model, using the reduced set of variables is shown in the following figure: 
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(a) 

 

(b) 
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Figure 72. Logistic regression model accuracy using reduced set of variables. a) Receiver operating 
characteristic showing the impact of the choice of decision boundary, b) confusion matrix showing the 
prediction results. 

This shows the ROC curve and the subsequent confusion matrix of the final LR model. LR 

calculates probabilities of an observation belonging to a class, rather than simply the class, 

and so the ROC curve helps show where the boundary in the probability should be set. The 

confusion matrix shows that the number of false positives can be made smaller than the 

number of false positives, which reduces cases where the inspection team is sent 

unnecessarily. 

A.1.6 Conclusion 

The conclusions for level 3 tracking modal properties is that, given a good enough model, 

damage can begin to be detected relatively early. Once the damage is detected, the severity 

can be classified quite accurately as the rate of change in the independent variables becomes 

larger. With LR, variable reduction can be used to significantly reduce the number of variables. 

This has implications for sensor reduction for the purpose of damage detection.  

There are several aspects to be further investigated in the future which can make the results 

more robust as well as giving new insights. The nature of the scatter can be investigated to 

more accurately replicate observed scatter. The applicability of using machine learning for 

sensor reduction can be further developed. 


