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In modern marine structural design, the fatigue life and fracture prediction of 

local connection details of the vessel is necessary. 

The traditional empirical rules or numerical work has considerably advanced the 

qualitative and quantitative understanding of fatigue and fracture analysis. Compared 

with the existing methods, this thesis explores a novel geometric methodology to 

evaluate the stress intensity and stress concentration factors (SIF and SCF). 

The background and special theory was developed to give: 

1. A better understanding of the singularities that commonly occur in sharp 

corners in ship connection details;  

2. A quicker method for fatigue life estimation than present methods based on 

finite element analysis and/or detail classes. 

3. A prediction of the stress fields so that more appropriate and reliable finite 

element meshes can be selected  

 

When dealing with the influence of each connection detail, a “Length Scale” is 

estimated from the dimensions of the connection detail. This Length Scale can be 

converted into a Hot Spot Stress Concentration Factor for SN based fatigue 

calculations or used with (often simply added to) the real crack length to determine, 

in conjunction with a constant Y value (commonly 1.1) a Stress Intensity Factor for 

linear elastic fracture mechanics crack growth calculations.  

The method is useful both for assessment of existing structures and for design 

application.  

The thesis includes a comparison of the results from the application of this new 

methodology and existing fatigue analysis guidance.  

Within the thesis the methodology is described together with relevant 

conclusions. 

ABSTRACT
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The nature of ship structures is emphasized: inhomogeneous material, welding 

residual stresses and length scale characteristics. Imperfections are generally present 

and affect the fatigue strength characteristics and the fatigue damage. The basic 

approaches to service life assessment are based on fatigue analysis; and account for 

fatigue phenomena, influencing parameters, objectives of the assessment, global and 

local approaches and historical development.  

An empirical method from ship classifications rules or FEM is usually required 

for the calculation. But the FEM process is quite time consuming and the 

extrapolation method, which is used to determine the stress to use in the fatigue 

calculations, is still subject to uncertainty, especially at the sharp corners with stress 

singularities.  

A new methodology for fatigue (and possibly fracture) assessment, has been 

developed, starting from a cruciform model; and then further developed to realistic 

ship structural components. 

The theoretical background involves the determination of a “Length Scale” 

from the sizes of the components making up the structural detail. This characterizes 

the stress field in the vicinity of the notch or sharp corner of the un-cracked structure. 

The “Length Scale” is estimated from the dimensions of the connection detail. 

This Length Scale can be converted into a Hot Spot Stress Concentration Factor 

(SCF) for SN based fatigue calculations or used with (often simply added to) the real 

crack length to determine, in conjunction with a constant Y value (commonly 1.1) a 

Stress Intensity Factor (SIF) for linear elastic fracture mechanics crack growth 

calculations.  

In some cases the method, with its capability to directly estimate SCFs and SIFs, 

may avoid the need for a finite element analysis, but the work also helps in setting up 

finite element analyses, by understanding the nature of the stress field appropriate 

mesh refinement can be selected for the type of analysis (that may be trying to model 

or to avoid the singularity in the notch/corner).  

Various methods for SIF prediction are discussed, including the new empirical 

SUMMARY
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Length Scale, approximate weight functions, extrapolation methods and the critical 

distance method. Relationships between simple and complex geometry shapes are 

found. Numerical codes are selected supporting SIF calculation, which having good 

accuracy between FE and analytical derivations.  

The work presented here enables easy estimation of service life, including 

understanding the sensitivity to changes in the detail dimensions. The Length Scale is 

particularly useful during the early design stage and when attempts to identify fatigue 

prone locations for inspection planning purposes.  
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Without Specific explanation, the symbols used in this dissertation are referred 

to as follows: 

 

2D, 3D Two (Three)-Dimensional 

ABS American Bureau of Shipping 

ae Additional Crack Size 

as or Length Scale Length scale of the corner/notch singularity 

ASCE American Society of Civil Engineers 

ASME American Society of Mechanical Engineers 

BCM Boundary Collection Method 

BSI British Standards Institution 

BV Bureau Veritas 

CD Critical Distance 

DNV Det Norske Veritas 

FDA ShipRightFatigue Design Assessment 

FEA Finite Element Analysis 

FEM,FEA Finite Element Method (Analysis) 

GL Germanischer Lloyd 

HAZ Heat Affected Zone 

HHI Hyundai Heavy Industries. Co., Ltd. 

HHS Hot-spot Stress 

IACS International Association of Classification Societies 

IIW International Institute of Welding 

ISSC International Ships Structure Congress 

KI, SIF Stress Intensity Factor 

LEFM Linear Elasticity Fracture Mechanics 

LR Lloyds’ Register 

SCF Stress Concentration Factor 

NOMENCLATURE
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SEC, SEN Singular Edge Crack, Singular Edge Notch 

SN Stress range – number of stress cycles (SN-curves) 

SS Structural Stress 

SSC Ship Structural Committee 

WF Weight Function 

0  Nominal Stress 
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Fatigue failure is the main cause of a large number of structural failures in 

engineering structures, causing many catastrophic accidents; it leads to loss of life 

and gross environmental pollution, damage of equipment and so on. The fatigue 

phenomenon is involved many basic disparities in fatigue analysis between the 

laboratory research and real engineering structures of very difficult and complex.  

Experience from industries is relevant, but the structural details may be quite 

different and the nature of the fatigue damage may be significantly different with 

random turbulence and regular pressure cycles for aircraft, regular cyclic loads and 

random ‘bumpy road’ load for vehicles.  

Welding strongly affects the material by the process of heating and subsequent 

cooling, the fusion process with additional filler material and the residual stresses 

that remain after welding. The weld is usually far from being perfect, containing 

inclusions, pores, cavities, and undercuts. As a consequence, fatigue failures appear 

in welded structures mostly at the welds rather than in the base component. 

It demonstrates in Figure 1.1 that a failure appears in the ship engineering; 

fatigue of ships and offshore structures is typically characterized by a large number 

of cycles of wave induced stresses that are relatively low away from the high stress 

concentrations.  

CHAPTER 1 

INTRODUCTION 

1.1 State of the Art
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Figure 1.1 Illustration of a significant failure, involving fracture 

 

 

However the combination of a weld and a sharp corner frequently occurs in ship 

structures. Fatigue may also be involved in the final failure associated with the 

accident, such as collisions, grounding, and wave impact damage.  

The research will be arranged starting with a mid-section of the hull girder and 

side shell in which global structural locations of interest are identified. These regions 

are particularly prone to cyclic fatigue from stiffener, or overall cross section bending 

under cyclic pressures. Low fatigue lives may also be found under the effect of cyclic 

vertical and horizontal wave bending moments (see Figure 1.2).  
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Figure 1.2 Typical fractures connection on double Bulk Carriers, (ABS, 1995) 

 

 

There is no single agreed methodology for fatigue assessment of ships however 

some attempts have been made to unify the procedures and to understand differences. 

Compared with the laboratory study of the components, many factors influence and 

complicate the real subject e.g. material, load, and environmental corrosion, 

discontinuous geometry, defect, residual stresses or manufacturing. 

 

In order to investigate the different procedures for fatigue strength assessment 

of ship structures, the members of ISSC Committee, ‘Fatigue and Fracture’ (ISSC, 

2006, 2009) performed a comparative study.  

During 2004 and 2005 common design rules for bulk carriers and tankers were 

proposed. The rule proposals were developed in two different projects: 1) the rules 

for bulk carriers were developed in the Joint Bulker Project (JBP, 2005) with 

participation of the following Classification societies: BV (1999), CCS, GL (1998), 

NK (1995), RINA, KR (1998) and RS the rules for tankers were developed in the 

Joint Tanker Project (JTP) with participation of the following Classification societies: 

ABS (1996), DNV (1999) and LR (1998), and the whole life from building to 

decommission compared with academic research. 
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The research is to provide the practicing naval architect with a readily 

accessible method, for improving the assessment of the fatigue performance of 

structural connections; however this thesis concentrates on the geometry assessment 

research of fatigue SCFs and fracture SIFs.  

 

 

The reasons why fatigue leads to structural fractures are various but two factors 

are important, acting separately or together:  

1. Cyclic forces acting on the ship structure;  

2. Insufficient resistance of the material.  

Fatigue analyse is of high practical interest for all welded ships, ocean platform, 

and offshore renewable energy devices. 

 

Even now, in the 22nd century, with superior steels and advanced weld processes, 

many hull structures still fail such as the ‘Prestige’ accident shown in Figure 1.3, 

where wave impact probably initiated fracture failures by fatigue loads. 

 

Figure 1.3 Prestige oil tanker breaks in half. (AP, 2002) 

 

1.2 Industrial Background
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Very often, the phenomena are inspected for the purposes of: 1) design 

philosophy, where fracture failure probabilities and consequences should be 

considered and controlled, 2) the selection of materials and to improve structure 

resistance quality and 3) the selection of appropriate periodic inspection and 

maintenance procedures.  

The case studies, by the Ship Structure Committee (SSC) 

(http://www.shipstructure.org/), demonstrate a wide range of structural failures, 

casualties and analysis, which should increase appreciation of the structural issues, 

which are common in the shipbuilding industry and provides a forum for the 

dissemination of information to naval architects.  

Depending on the functions of the component and usage in service, the failure 

impact on the overall system will vary from a minor degradation to catastrophic 

failure. In order to understand ocean engineering fatigue failures, it is necessary to 

review these disasters and significant structure damages, semi-submersible 

Alexander Kielland, Liberty ships and tanker and bulk carriers.  

 

 

One of the most serious fatigue failures, which resulted in a heavy loss of life, is 

the semi-submersible pentagon platform ‘Alexander Kielland’ (shown in Figure 1.4). 

The rig capsized creating the worst disaster in Norwegian waters since World War II; 

123 people perished.  

 

1.2.1 Case Study: Alexander Kielland Wreck
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Figure 1.4 Platform-pentagon ‘Alexander Kielland’ working in the North Sea 

 

 

The Alexander Kielland is a Norwegian owned semi-submersible rig (by the 

Stavanger Drilling Company) in the Ekofisk oil field. The rig, located approximately 

320 km east from Dundee, Scotland, hired by the U.S. Company Phillips Petroleum 

then.  

In driving rain and mist, early in the evening of 27 March 1980 more than 200 

men were off duty in the accommodation on the Alexander Kielland, and the wind 

was gusting to 40 knots with waves up to 12m high. About 18:30 the staff on board 

felt a 'sharp crack' following by 'some kind of trembling'. The rig began to heel over 

and the heel continued to increase; the anchor cables preventing the rig from 

capsizing but broke one by one. At 18:53, the only remaining anchor-cable snapped 

and the whole rig turned upside down. (Later, evidence was put forward indicating 

that the rig had been deliberately sabotaged with explosives, but the fracture surfaces 

demonstrated that fatigue loading on the defective welded was the cause.) 

(http://en.wikipedia.org/wiki/Alexander_L._Kielland) 

The investigative report in March 1981 concluded that the rig collapsed owing 
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to a fatigue crack in one of its bracings, which connected the collapsed leg to the rest 

of the rig. Cold cracks in the welds, increased stress concentrations due to the 

weakened flange plate, the poor weld profile, and stress concentrations, collectively 

worked towards the rig's collapse.  

Furthermore, the investigation report showed that considerable amounts of 

lamellar tearing were found in the flange plate and cold cracks in the butt weld 

position, which may be also the potential cause. Broken brace that lead to the 

disconnection of the leg is shown in Figure 1.5.  

 

Figure 1.5 The collapsed leg floating above the sea surface after the accident 

 

 

The rig was recovered in 1983; it was scuttled later to search for missing bodies, 

and to determine the cause of the disaster. Part of the bracing failed in accident is 

displaying in the Norwegian Petroleum Museum (as shown in Figure 1.6).  
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Figure 1.6 Smashed bracket of Alexander Kielland in Norway museum 

 

 

After the investigation of Alexander Kielland accidents, it gave rise to several 

new rules to control the disaster incidents, and a number of measurements have been 

adopted after the accident to improve offshore safety. Safety courses became 

mandatory, and all offshore staff had to be issued with survival suits – both on the rig 

and on helicopter flights over the sea.  

Other major structural elements then failed in sequence, destabilizing the entire 

structure, the rig design flawed owing to the absence of structural redundancy. 

Design rules following this failure required structural redundancy. The rigs must stay 

afloat even if one brace collapsed, and all loose equipment had to withstand at least 

40 degrees of listing.  

 

 

Probably the best well-known examples of ship fatigue failure are Liberty cargo 

built during World War II. The Liberty ships were purchased for the U.S. fleet and 

for lend-lease provision to Britain. One report ‘Liberty cargo ship feature article’, 

written by James Davies (2008), described their histories, names, backgrounds and 

1.2.2 Case Study: Liberty Ship
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contributions to WWII in detail.  

 During World War II, eighteen American shipyards produced large numbers of 

petroleum tankers, most of them were the T2 series. But 1941-1945, there were 

nearly 1,500 instances of significant brittle fractures on the Liberty Ships, shown in 

Figure 1.7.  

 

Figure 1.7 Fracture cutting split right across the main deck and down both sides from 

top to bottom in two amidships 

 

 

Compared with the immense effort to build Liberty ships, the fact that the ships 

survived less than the original design life of five years, resulted in them being 

studied: 

Twelve ships, including three of the 2,710 Liberties built, broke in half without 

warning, including the SS John P. Gaines which sank on 24 November 1943 with the 

loss of 10 lives, reported by newspaper in Figure 1.8.  
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Figure 1.8 Newspaper report for SS John P. Gaines broken accident 

 

 

Generally, early Liberty Ship suffered hull and deck cracks. One common type 

of crack nucleated at the square corner of a hatch which coincided with a welded 

seam, both the corner and the weld acted as stress concentrators and small fatigue 

cracks probably become unstable and fractured.  

Suspicion fell on the shipyards that often used inexperienced workers and new 

welding techniques to produce large numbers of ships in great haste. The 

predominantly welded (as opposed to riveted) hull construction then allowed cracks 

to run for large distances unimpeded. 
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However, work by 

the Engineering 

Department in 

Cambridge, Constance 

Tipper (in Figure 1.9) 

established that the 

factor could be critical 

temperature: If the 

environmental 

temperature fell below 

a critical point, the 

mechanism of failure 

changed from ductile to 

brittle, and thus the hull 

could fracture relatively easily.  

 

The studies on the Liberty Ship lead to recommendation for steel manufacture 

and material selection to reduce the fatigue fracture risk, although, with better steels, 

fast crack growth is now not so much of a problem but it can still occur. Various 

reinforcements were applied to the same series ships to arrest the crack problems, 

and the successor design, was stronger and less stiff to better deal with the fatigue 

problem.  

 

 

Even if the ship does not break in two, fatigue cracks can cause pollution if 

there is oil on one side of a plate and the sea on the other side. Joint design rules have 

been developed by classification societies, providing information on two generic ship 

types: Double Hull Tankers and Bulk Carriers. The hull of a tanker is now of double 

construction design shown in Figure 1.10, where the bottom and sides of the ship 

have two complete layers of watertight surface, which forms a redundant barrier 

 
Figure 1.9 Constance Tipper 

 

1.2.3 Industrial Demanded Constructions
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between seawater and oil cargo, so a single plate failure, by cracking, corrosion, 

collision or grounding will not cause a pollution incident.  

Note though that FPSOs (Floating Production, Storage and Offloading tankers) 

may still be built with a single bottom, because grounding is unlikely. However this 

increases the consequences of risks associated with bottom fatigue cracking.  

Figure 1.10 Typical Double Hull Tanker Mid-ship Global Structural Arrangement 

(SSC-405, 1999) 

 

A bulk carrier, or bulker, is a merchant ship specially designed to transport 

unpackaged bulk cargo, such as grain, coal, ore, or cement in its cargo holds. Bulk 

cargo can be very dense, corrosive, or abrasive. The typical construction is shown in 

Figure 1.11; the use of ships that are old and have corrosion problems has been 

linked to a spate of bulker sinking since the 1990s, as have the bulker's large 

hatchways, important for efficient cargo handling and under strength hatchcovers and 

bulkheads.  

To improve the safety of the bulk carrier, the strength of hatches has been 

increased to resist additional green water loading and bulkhead strength and the 

double bottom has been increased to withstand hold-flooded and alternate hold cargo 
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loading conditions.  

 

Figure 1.11 Typical Bulk Carriers Mid-ship Global Structural Arrangement 

(SSC-405, 1999) 

 

For the two generic ship types and the many detaches (SSC 294, 1996 for 

catalogue), the research presented in this thesis could provide sources of information 

for practicing designers to use in addressing fatigue issues.  

 

 

Many structural details are similar in more than one ship type. At the design 

stage, the mid-section of ships is documented and submitted to the Classification 

Society as part of the design review and approval process. The section drawings 

illustrate the detail for a bulk cargo ship type (then a tanker) so that the user has 

complete information within mid section.  

The rules focus on details associated with the mid-section of the vessel, since 

1.3 Reorganization of Assessment Procedures 
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this is generally the most critical area. It is shown in Figure 1.12 (the mid-section of 

bulk carrier) as good detail practice and is suggested those alternative configurations 

(shown circled) considered under high risk. (However the high stress concentration 

associated with the lower left right angled corner of the centre hold would need 

careful analysis.) All welded connections which are potentially prone to fatigue 

failure are presented. 

 

Figure 1.12 Example of Bulk Carrier (RISPECT documents, 2010) Mid-section 

Drawings 

 

 

 

Typical classification Society outline guidance is of the form: the design load 

combinations should be sufficiently severe and varied so as to encompass all 

scenarios that can reasonably occur. Hydrodynamic loads should be based on the 

worldwide scatter diagram. Design load should combine local and global static and 

dynamic load components to represent identified load situations”, (see Figure 1.13).  

More detailed guidance will propose stress concentration factors for different 

types of detail. 
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Figure 1.13 Pressure in Cargo Tank (Left) and Ballast Tank (Right) due to Positive 

and Negative Vertical Tank Acceleration (ABS, 2010) 

 

 

The severity of the loadings seen by any specific detail will be determined by 

location-specific factors, and thus an inherently high-risk connection may require 

modification depending on its application. Accidental design load combination will 

usually also be considered.  

Although the external environment plays an important role in fatigue and final 

failure are more dependent on the flaws or notches in the structure where fractures 

originate. To help understand the fatigue issues, we should analyze the fatigue 

behaviour and view the damage in terms of an intrinsic orderliness rather than an 

extrinsic problem. 

While recent analysis results and guidance have emphasized the possible 

consequences of fatigue and related that with the geometry of the component, 

(dimensional shape, open angle, length and local weld connections) the analytic 

derivation of the geometry contribution to fatigue still needs to be clarified. The 

Length Scale method is based on the dimensions and shapes of the details and so 

provides a logical approach. 

Several investigations have focused on the discussion of finite element meshing 

techniques at crack locations and on the fatigue resistance of the local structural 
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details. In the author’s opinion, the combination of defects in the weld, the weld and 

connection profile shape and non-welded discontinuities in the connection will create 

stress concentrations that depend on the varying geometry parameters that are not 

properly accounted for in present guidance; the fatigue strength evaluation of a 

connection should be based on the stress concentration of the particular geometrical 

connection. Unless finite element analysis is to be applied to every location then the 

behaviour and the effect of the influencing factors need to be widely explored so that 

sensible fatigue analysis decisions can be made.  

Starting from scratch a designer might browse a series of structural details, 

appropriate for the vessel local position, along with suggested “good practice” to 

improve fatigue performance.  

The primary step in the design process for the details involves the selection of 

suitable sizes and thicknesses; the final aim, from this research is to help industry to 

better understand and predict fatigue behaviour using the defined Length Scale, so 

that efficient cycle life design method can be applied in order to optimize levels of 

risk and cost. 

A detail analytical fatigue life assessment system should be developed to 

indicate the effects of the different geometry properties associated with the ship or 

offshore structure. Innovation of a new length scale based fatigue resistance 

procedure should proceed through a series of levels, or steps, like industry 

background, physical definitions, mathematical derivation, calculation method and 

time/costs, error performance and engineering application. 

 

 

In the thesis, the definition of the Length Scale has been brought out combined 

with SCF. This should allow fatigue design to be performed more efficiently (if the 

geometry is use to estimate the Length Scale/SCF directly) and/or more accurately 

(If the method is used to estimate the stress field in the un-cracked structure, which 

will provide guidance on the finite element meshing and what parts of the stress 

singularities are likely to be included in the analysis and what needs to be separately 

1.4 Objectives and Scope of My Thesis
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accounted for. 

 

The scope of my research work is: 

Chapter 2 reviews existing literatures, on the fatigue assessment of ship and 

offshore structures, during the last 40 years. A series of papers are categorized into 

branches, and the efficiency of the different methods will be compared  

In Chapter 3, the elasticity theory is discussed, especially the mathematical 

derivation and confirmation of the stress distribution formula. The cruciform shape 

will be used as the starting point.  

More energy will be focused on the discussions of Length Scale (as), such as the 

effect of various in plane angles and the effect of out of plane angles. An innovation 

is the introduction of a power index into the formula to represent the behaviour of 

very small cracks.  

The relationship between SCF and geometry property can be built by the bridge 

of Length Scale ‘as’: Based on conformal mapping explanation and mathematical 

hypothesis of Length Scale ‘as’ has been developed.  

The fracture mechanics calculation is the other point. The Additional crack size 

‘ae’ is now used and related to Length Scale ‘as’. In Chapter 4 a parametric equation 

of SIF is estimated from the empirical expressions and related to ‘ae’ by integrating 

the linear elastic fracture mechanics, crack propagation equations.  

FEM is a very effective tool applied in modern design. FE calculation will be 

discussed in Chapter 5, and more calculations will be simulated. Guidelines for the 

mesh size will be verified for stress distributions using.  

The approach of using Length Scale in fatigue strength prediction is discussed 

in Chapter 6, and verified by the numerical calculations.  

Experimental specimens by Hyundai Heavy Industry (HHI) are used as the 

models comparison in Chapter 7. SCF results from Length Scale method and LEFM 

method are used to compare with the existing ones.  

In Chapter 8 the SCF values for real ship structural locations predicted by the 

Length Scale approaches are compared with the traditional extrapolation ones. The 

numerical SCF employed, applicability of the Length Scale methods is determined.  

Both the engineers and analysts urgently need well-founded methods in respect 
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of fatigue assessment. Based on our new methodology for the preliminary design 

stage, conclusions and recommendations are offered in Chapter 9, and also outlook 

for future work. 

 

Appendices 

Selected topics are presented in the Appendices: Appendix A explains the classic 

definition and derivation of the stress formula using complex series theory (main 

derivation is summarised from the works by Muskhelishvili, Westergaard, Irwin and 

Williams); Appendix B describes traditional theoretical methods for SIF calculations, 

and summary of Elasto-Plastic Fracture Mechanics, which will be the future 

development direction in structural strength analysis; Appendix C mainly described 

FE technology: introduced theoretical background, explained four special FE skills 

application in fracture mechanics calculations; and single edge crack model is 

simulated by ANSYS FE package in this section. Appendix D summaries relevant 

developments in structural analysis are presented of virtual crack closure technology 

firstly, and then reviewed two classical formula fistly: SN curve formula and Paris 

Law.  
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Fatigue cracks occur and develop if cyclic stresses are too high. The local 

stresses may be controlled effectively in the design; the locations of crack 

propagation can be examined and overall stresses reduced or local stresses reduced 

by improving the structural connection details.  

 

The hull details can be grouped as follows:  

Details comprises the discontinuous joints, e.g., bracket connections of 

longitudinal and transverse girders in bottom constructions, web plate connections of 

transverse girders in side tank frames has shown in Figure 2.1 (AMSP, 2006)  

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction
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Figure 2.1 Longitudinal Framing Double Bottom Constructions (AMSP, 2006) 

 

 

Details comprising the continuous welded connections of the hull elements, 

such as the bulkhead plating and longitudinal shell stiffener are shown in Figure 2.2 

(AMSP, 2006)  
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Figure 2.2 Transverse Framing ship Side Constructions (AMSP, 2006) 

 

 

Details comprising the continuous welded jointsError! Bookmark not defined. located at 

structural discontinuities, at deck bulwark stay and side openings framed, e.g., in 

connections of supporting to deck plating, shown in Figure 2.3 (AMSP, 2006) 
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Figure 2.3 Partial Watertight Plane Bulkhead Construction (AMSP, 2006) 

 

 

A case study has been successfully performed by Eylmann et al, 2005 where a 

comprehensive fatigue prediction program has been carried out on a ship structural 

component of a truck deck stiffened by trapezoidal profiles. 

Therefore the details of these groups may be regarded as the details with 

controllable fatigue properties. 

Due to the inspection problems, cracks in the beam-web to side-frame 

connections, which are menacing to the tanker’s structural integrity, are often not 

identified until they are as large as 100-300 mm.  

To meet the reliability requirements, the local stresses may be altered through 

small changes to the geometry of the details, e.g., by smoothing the bracket ends, 

increasing the hatch corner radius, increasing the stiffener sizes of the structural 

elements.  
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However, it is commonly observed that the cracks occur at stiffeners as shown 

in Figure 2.4.  

 

 

 

Figure 2.4 Crack propagating along the longitudinal stiffener  

(Fricke W., Hans Paetzold, 2010) 

 

 

Illustrating in Figure 2.5, it is found that the crack also initiates at the end of the 

bracket of the longitudinal stiffeners.  
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Figure 2.5 Fatigue crack at the bracket end of longitudinal stiffener 

(R.V. Guchisky, S.V. Petinov, 2011)  

 

 

Cracks also grow along brackets, Figure 2.6.  

 

 
Figure 2.6 Fatigue cracks growth along the bracket plate  

(I. Lotsberg, En Landet, 2005) 
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During the ship services, cracks are also observed at the inner connection 

locations shown in Figure 2.7.  

 

 

 
Figure 2.7 Material repairing at the inner mouse-hole location  

(WU Xiaoyuan, 2007) 

 

 

The web frames are the primary structural members for the transverse ship 

sections. Longitudinal web panels are considered particularly for the crack initiation 

locations. It has shown in Figure 2.8 that the bracket connecting longitudinal and 

transverse bulkhead stiffener.  
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Figure 2.8 Considering crack initiation locations on the longitudinal panel  

(Brian E. Healy, 2004)  

 

The tests results for the tensile loaded models are given in the form of stress 

concentration factor distributions at the detail parts where high strains are measured. 

As the reference value, the nominal stress used is obtained by dividing the applied 

load in the stiffened panel by the sectional area.  

High stress concentrations are found in the stiffener’s web, at the circular cutout 

in it, at a small distance from the bulkhead, where the smooth edge material is 

affected.  

The fatigue strength of the panel structures based on direct fatigue tests may be 

overestimated in model tests, when transverse deflections of asymmetric stiffeners 

are not allowed, (S. Petinov, 2003).  

Dimensionless principal stress distributions, around the crack initiation 

positions, are shown in Figure 2.9 are useful for estimating stress concentrations. 
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Figure 2.9 SCF of the bracket connection (Ziganchenko et al., 1981); 

Solid lines marked for restricted transverse deflections and dashed for unrestricted 

 

 

The crack propagation from the bracket end into the beam web and flange is a 

certain complication because standard stress intensity solutions do not exist. Once 

initiated at the bracket end, the crack propagates in the web beam and enters the 

connection of the web and beam flange.  

A common design case concerns the bracket connection of plating longitudinal 

at a transverse bulkhead. The local stress elevation at the bracket end results from the 

hull girder deformation and bottom structure deformation, including the bottom 

longitudinal bending of the space between neighbouring floor and bulkhead. Being 

elements of the hull shell, these details sustain high stresses due to hull deformations 

and pressures imposed on the shell plating. The bracket connections are usually 

designed to withstand the longitudinal loading and therefore may be less effective in 

the transferring the local loads and shear stresses. A side longitudinal-flat bar 
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connection of a single-skin tanker structure under multiple loading; the longitudinal 

flange at the web plate is one of the potential critical points.  

These details are responsible for the hull structural reliability, and their fatigue 

strength is the most influential factor in defining the hull reliability.  

Entering the connection, the crack splits in branches into the flange and its rate 

is slowed due to essential expansion of the crack front. The problem can be solved by 

FE modelling of the detail and boundary conditions and simulating the crack 

extensions. 

A series of fatigue test (Lotsberg I, 2001; Bergan PG, Lotsberg I, 2002, 2004) 

have been carried out as representative of the ship connections. The geometry 

transformations are needed for structures, and the definitions are given in Figure 2.10. 

The web frames are primary structural members, which can be transferred to the 

cruciform shape.  

Approaches discussed in previous section are rather approximate and should be 

refined accounting for the typical structural damage failure.  

We will see in later Chapters that we can usually ignore the dimensions of the 

main plate (a, b), and just the dimensions of flange (H, L) play the decisive role 

leading to significant influence on the SCF results.  

 

 
Figure 2.10 Specifying the simple length scale specimen for stress raisers 

 (N. Barltrop, 2011) 



LITERATURE REVIEW 

30 

It is generally acknowledged that the fatigue strengths of specimen component 

can decrease with the plate thickness increasing (Gurney, 1979). Further refinement 

in recommendations (IIW, 1996) is to modify the thickness correction exponent. 

Some works (Maddox SJ, 1987, 1995) showed the geometry effect depending on the 

proportions of the geometry details.  

 

 

 

The engineers are unable to produce defect-free components; it is very obvious 

that many connections can be recognized as defects in the bottom or side frames of 

the cargo hold.  

It should be noted that during design and inspection, the physical criteria of the 

fatigue damage may be different: in design it should preferably be, as discussed 

above, the macroscopic crack happen, whereas inspection has to reply on the 

detectable size of the fatigue crack which depends on the resolution of the 

monitoring means. (Sergei Petinov, 2003) 

To improve the design methods, many studies are particularized for related 

engineering types of specimens. In order to minimize the prediction proceed during 

fatigue analysis, crack is assumed to be found during the web frame detail categories, 

primary supporting stiffener transverse locations. The stress concentration factors are 

used for the fatigue life assessments.  

The proposed structural detail has been surveyed from literature review, relevant 

work by classification institutions, or discussions with experts. The web frame 

connections are incorporated by Lotsberg.I, 2005 in shipbuilding community, a 

schematic of the transverse section are provided in Figure 2.11.  

2.2 Engineering Validation of Novel Methods 
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Figure 2.11 Full-scale test specimens (I. Lotsberg, 2005) 

 

 

In this section, we are trying to consider the fatigue sensitive location from the 

real engineering project. According to the specimen selections from the tanker and 

bulk cargo constructions, the stress raisers along the crack propagation path are 

predicted. The Length Scale is used to investigate the fatigue behaviours of the web 

frame specimens.  

Therefore, proper guideline for the calculation on complex geometry should be 

required, adhesive connecting applied commonly throughout the marine structures 

component.  

 

 

 

The accidents caused by cracking failures of the hull are usually with fracture 

cracks propagations. Following the accidents, many institutes have done component 

tests and numerical calculation and brought out empirical or analytical formula. A 

large number of papers and books have been published as guides to the fatigue theory 

and application.  

In view of the complexity of the fatigue subject and the mass of technical papers, 

2.3 Fatigue assessment approaches
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it is not surprising that within the two main branches of 1) SN curves and 2) Paris 

law / fracture mechanics, plenty of approaches to this topic exist and that even within 

an overall approach the detail of the methods used may differ. It is impractical to 

discuss all the possible options for fatigue assessment. However, fatigue analysis 

approaches may be subdivided, as shown in Figure 2.12 and Table 2.1. 

 

 

 

Figure 2.12 Approaches for description of the fatigue strength and life 

(D. Radaj, 1995) 

 

For the purpose of division of technical papers, available approaches are picked 

out to consider particularly. Furthermore, the following areas, each of them can be 

the subject of similar reviews, have been left out or are only touched. The two main 

possible approaches are in Table 2.1: 
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Table 2.1  

Consistent application of IIW recommendations 

SN Curve Approach 
Fracture Mechanics 

Approach 

Method 
SN curve 

 

SN curve 

 

SN curve 

 

Paris 

Law 

Paris 

Law 

Load 

on component 

Nominal 

stress 

Structural 

hot-spot 

stress 

Notch 

stress 

Notch 

Stress 

Intensity 

Stress 

intensity 

at crack 

tip 

Component 
Structural 

detail 

Type of 

weld 

Particular 

detail 

Particular 

detail 

Particular 

detail 

 

 

Before different papers on fatigue assessment of ship and offshore engineering 

components are discussed I note that some classic books provide a background into 

this subject and summarize the fundamentals as well as recent developments.  

In connection with welded joints, the books by Gurney (1979) and Maddox 

(1991) present fundamentals of the fatigue strength assessment, investigations on 

fatigue behaviour and design rules and applications. Radaj (1990) presents the 

fatigue strength characteristics of welded joints and outlines different approaches for 

their assessment. 
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The SN curve approach prediction is based on fatigue strength of a critical 

structure detail as a function of the fatigue life.  

The SN curve is used in conjunction with Miner’s cumulative damage rule for 

dealing with varying sequential stress ranges, usually defined by a stress histogram. 

If the real structure contains stress concentrations that did not occur in the tests 

that determined the SN curve then the design stress range will need to be multiplied 

by a stress concentration factor before entering the SN curve. 

Different stresses are used with the different SN approaches. These are 

described briefly here and in more detail in Section 2.4: 

 

 

 Nominal stress approach: This uses the nominal stress range n usually 

determined by the loads and the section properties at several plate thicknesses 

from the location of interest. This is used with an SN curve which accounts 

for the local stress pattern in the detail. 

 

 Hot spot stress: This corresponds to a peak stress at the location of interest. 

A hot-spot stress is either calculated using local finite element calculation or 

estimated on the basis of tabulated SCF values multiplied by the nominal 

stress n . For sharp notches, where the elastic stress concentration is 

theoretically infinite, even though the fatigue life is finite, the peak stress 

predicted by the finite element analysis is very sensitive to the mesh used and 

is not a reliable stress to use in the fatigue calculation. Instead a linear or 

quadratic extrapolation of the surface stresses into the corner, from specified 

distances from the corner is used to define the hot-spot stress. The fact that 

this is less than infinity can be considered to account for the fatigue crack 

growing into areas of lower stress. (Even for a round hole the peak elastic 

stress on the edge of the hole, corresponding to an SCF of 3, is often reduced 

2.4 SN Curve Approaches
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in fatigue calculations by using a “Fatigue SCF” of 2.4 to account for the 

reducing stress away from the corner.) On the basis that the effects of the 

corner have been taken into account in the calculated stress, this is used with 

an SN curve representing a welded connection between flat plates. 

 

 Structural stress approach: It uses an approximate stress range at the weld 

to partly consider the effect of the structural discontinuity. A structural stress 

range s is a local stress range that accounts for the local average axial stress 

and the local bending moment, based on an approximate, linearly varying 

stress at the location of interest. Note that in many connections the average 

axial stress within the structural stress is greater than the average axial stress 

at some distance from the connection, because the stiffness of the connection 

draws load towards it. Structural stress range can be useful for interpreting 

finite element results, particularly if solid elements are used in the finite 

element model. 

 

 Notch stress approach: A notch stress k can be defined if a pre-defined 

radius e.g. 1mm (not a sharp corner) is assumed at the structural discontinuity. 

This substitutes a finite stress for the infinite sharp corner stress and allows 

FEA to converge to a solution as the mesh is refined. 

 

 

Some of the differences between these stresses, which are also indicative of the 

difficulty of estimating them, are illustrated in Figure 2.13. This shows the stresses at 

the end of a bracket, both on the plate surface and through the thickness of the plate.  
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Figure 2.13 Concentrated stress types at a typical plate-type strip 

 

 

 

 

In all cases these stresses characterize the linear elastic stresses in the 

un-cracked structure and providing they are calibrated with experiments: 

 on similar geometry  

 of similar sizes  

to the real structure, then they should lead to reasonable fatigue life estimates. 

 

 

In a laboratory test, the definition of nominal stress is not complicated and can 

be calculated from Force/Area with possibly an allowance for bending: 

Moment/Section modulus, if the structure is eccentrically loaded. The nominal stress 

approach has been generally applied, mostly in large engineering component fatigue 

life predictions, by prescribing the related cross section properties of the stress range 

Δσn histogram together with the number of external and internal load cycles.  

2.4.1 Nominal Stress Approach
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Most codes refer to nominal stress range and then leave the engineering 

assessment of nominal stress to the designer. Modern design workflow (see Figure 

2.14) makes increasing use of finite element method (FEM); however it can be 

difficult to interpret the results of a complicated stress field in terms of a nominal 

stress. 

 

Figure 2.14 Nominal stress approach for assessing the fatigue strength and service 

life of structural component, according to Kloos, 1989 

 

The nominal stress approach uses standard SN curves together with detail 

classes of basic joints which can be found in several standards. The appropriate class 

can be selected using example diagrams. SN curves are mainly based on the 

statistical evaluation of relevant fatigue tests, where a lower limit (usually -2 

standard deviations) to the scatter in the results is used as the design curve. Two 

example curves are shown in Figure 2.15 and curves, from the International Institute 

of Welding (IIW) that correspond to a wider range of details, with different fatigue 

performance caused primarily by the inherent stress concentrations and initial defects, 

are shown in Figure 2.15.  
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Figure 2.15 Example of design SN curves in the nominal stress concept; 

recommendations refer to fatigue design classes (Hobbacher A, 2007) 

 

 

There are curves relating with the hot-spot stress concentrations, more and more 

experimental results up to Giga-cycles and failure experiences with decline of the 

Woehler SN in Figure 2.16. In traditional codes, the knee point of the SN curve is 

defined as the transition to infinite life, the fatigue resistance of about 10% per 

decade is assumed.  
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Figure 2.16 Modified net of Woehler SN curves for variable amplitude 

(A. Hobbacher, 2009) 

 

 

As well as the general references (Gurney and Maddox) given previously, the 

following references are useful:  

Backstrom and Marquis (2001) re-analyzed different experimental 

investigations for multi axial fatigue loading and compared the results with different 

methods of stress estimation.  

A. Hobbacher (2009) gives basic guidelines for the design and analysis of 

welded components loaded by fluctuating forces, relevant to common structural 

components.  

 

 

The Hot spot is a point in a structure where a fatigue crack may initiate due to 

the combined effect of structural stress fluctuation and the weld geometry. The hot 

2.4.2 Hot‐spot Stress Approach
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spot stress excludes the contribution to the stress concentration caused by the local 

geometry but includes those that result from the overall geometry. The stresses are 

measured by extrapolating results from surface strain gauges or are obtained from 

extrapolating surface stresses from finite element analysis. The idea to exclude the 

local stress concentration is related to experimental investigations performed in the 

1960s by Peterson, Manson and Haibach. 

An HSS extrapolation method is shown in Figure 2.17. 

 

Figure 2.17 Extrapolation to the hot spot (Luca Susmel, 2009) 

 

 

Several extrapolation procedures (shown in Figure 2.18, linear and quadratic 

extrapolation approaches) have been suggested for the determination of the local 

stress raiser.  
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Figure 2.18 Different rules for hot spot stress extrapolation 

(A. Hobbacher, 2003; W. Fricke, A. Kahl, 2005) 

 

 

In the recommendations of the International Institute of Welding (IIW), 2009 

the hot-spot stress is derived, using extrapolation, from reference points on the 

surfaces at distances from the weld toe of 0.4t/1.0t, 0.5t/1.5t or 0.4t/0.9t/1.4t where t 

is the plate thickness. The hot spot stress is then found from one of the following 

extrapolation formulae (which require strain gauges or finite element results at the 

specified distances from the hot-spot: 

 

0.4 1.01.67 0.67hs t t       2.1

0.5 1.51.50 0.50hs t t       2.2

0.4 0.9 1.42.52 2.24 0.72hs t t t          2.3
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For attachments to a plate, the plate thickness is considered as a suitable 

parameter to define the extrapolation locations. However for corners in plates and 

extrapolation points on the edges of the plate, the plate thickness should not be 

relevant and IIW recommends reference points at fixed distances from the corner: of 

4/8/12 mm or 5/15mm. 

4 8 123 3hs mm mm mm         2.4

5 151.50 0.50hs mm mm       2.5

Lotsberg from DNV has published a lot of works about fatigue design 

procedures, for realistic engineering components: 

Due to fabrication tolerances for design guidelines, classical shell theory is used 

by Lotsberg, 1998 to derive the analytic expressions. The design cases include butt 

welds in tubular, welds at ring stiffeners and bulkheads in shell structures, welds at 

conical transitions and tubulars subjected to axial tension, as in risers and tethers. 

Lotsberg (2004) supplied a design procedure for fatigue assessment of welded 

pipe penetrations in plated structures, based on SCF from finite element analyses. 

Numerical examples using the procedure are presented. 

Lotsberg (2006) compared 200 fatigue test data, the test specimens were 

subjected to different loading conditions, with two procedures for calculating fatigue 

life. 

Lotsberg (2008) applied Shell theory to pipes subjected to internal pressure and 

axial force. He considered circumferential butt welds, welds connecting different 

wall thicknesses, welds at buckling arrestors, welds at flanged connections, and 

welds at ring stiffeners on the inside and the outside of the pipes.  

In the recommendation, Lotsberg (2009) improved equations for stress 

concentration factors to be used in fatigue design rules and for butt welded tubular 

sections and pipelines structures. Eccentricities at plate thickness and with 

fabrication tolerances gave increased stresses due to local in-plane bending.  

Arno M. van Wingerde, et al, (1997) focused on the definition of hot-spot stress, 

using knowledge gained from experiments and the important fatigue behaviour of 

90° T- and X-connections between hollow structural sections.  

C.M. Sonsino (1990, 2001, and 2003) from Germany is doing research more 

works about SN curves of hot-spot stress approach assessment, in which there are 
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several reviews. His papers can be considered as necessary literature reviews for the 

automotive industry and ship-offshore structures through the recent approaches: 

In C.M. Sonsino’s study (2003) the fatigue properties of different types of laser 

beam welded thin sheet aluminum are examined by experiment. Fatigue test data 

derived from specimen geometry is transferred to real structures with a master curve 

concept. 

Especially, under a spectrum of variable amplitude loading, the decrease in the 

permitted stress range from the effect of tensile residual stresses is not as high as 

under constant amplitude loading; this knowledge benefits light weight design of 

C.M. Sonsino (2007). 

The influence of multi-axial stress/strain is researched, C.M. Sonsino (2007). 

He researched the fatigue behaviour of hollow cylindrical specimen under 

elastic-plastic deformations and determined fatigue reliably with un-notched 

specimens in deformation controlled tests.  

C.M. Sonsino (2008) reviewed the fatigue design of components submitted to 

loadings below the knee point of the SN curve, i.e. in the very high-cycle area. 

Material and manufacturing dependent recommendations are given; the work 

revealed a continuous decrease of fatigue strength.  

The paper by C.M. Sonsino (2009) describes how spectra and test conditions 

should be clearly described and how statistics can be applied when variable 

amplitude test results are presented.  

G. Savaidis, M. Vormwald (2000) examined various welded joints from the floor 

of buses. The numerical and experimental work considered bending and tensional 

cyclic constant-amplitude loading.  

Bard Wathne Tveiten et al (2000) reviewed and verified already published 

hot-spot stress extrapolation procedures for plate structures, and developed and 

establish a general method together with a hot-spot design SN curve for aluminium 

ship structures. 

In conclusion, the majority of the effort has been on developing effective 

hot-spot stress extrapolation procedures and correlated to various available SN 

curves.  
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The definition of such corresponding structural stress approaches can also be 

referred to as Dong’s method or the Battelle method. The feature that distinguishes 

the structural approaches is the inclusion of the effect of the stress gradient along the 

anticipated crack path, which is taken into account using fracture mechanics. For 

completeness the solution technique is applied to the Mode I problems with a 

discontinuity connection (Dong, 2001), which, it is claimed, can be consistently 

calculated in a mesh-insensitive manner regardless of finite element models and 

regardless of element types or loading modes.  

The structural stress distribution needs to satisfy equilibrium conditions within 

the context of elementary structural mechanics theory at the anticipated crack plane. 

Membrane ( m ) and bending ( b ) stress components that are equilibrium-equivalent 

to the local stress distribution are calculated as illustrated in Figure 2.19 and Figure 

2.13.  

 

 
Figure 2.19 Structural stress definition for through-thickness crack: local normal and 

shear stress at weld toe by Dong (2001) 

 

 

2.4.3 Structural Stress Approach
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The structural stress procedure proposed by Dong (2001) linearizes the stress 

over the plate thickness.  

In a recently proposed alternative structural stress approach by Xiao and 

Yamada (2004) the computed stress at 1mm distance from the crack initiation point 

and along the expected crack path is compared with the fatigue strength.  

In the structural stress method, the SCF is obtained from stress results along the 

crack path, whereas in the traditional hot-spot extrapolation method the results are 

obtained from the surface stresses, as shown in Figure 2.20.  

  

Figure 2.20 Differences comparison between HSS and SS determinations 

(W. Fricke, A. Kahl, 2005) 

 

 

There are numerous on-going international efforts addressing the structural 

stress assessment issue. 

Dong (2001) utilized the structural stress definition from Radaj, evaluated the 

structural stress at the weld toe position by using principles of structural mechanics. 

Mesh insensitivity is demonstrated by several examples, however, mostly on 2D 

basic joints.  

See also Dong and Hong (2008) for fatigue analysis of welded tubular joints 

considering the thickness correction in the calculation of the structural stress.  

The use of theoretical derivation for stress and displacement solution for the 

semi-infinite domain is discussed by Radaj and Zhang (1996), and compared with 

finite-element results.  

Soh (1997) found that the stresses in the vicinity of the welded brace/chord 
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intersections of tubular joints computed with solid elements do not satisfy the free 

surface conditions and developed a correction procedure to improve the accuracy of 

computed stresses.  

Tveiten and Moan (2000) describe the development and verification of a more 

general method for the structural stress calculation, being based on the asymptotic 

behaviour of the stresses adjacent to an idealized notch and the definition of stress 

extrapolation from points outside the region. 

Tovo and Lazzarin (1999) also used a similar approach with fillet welds. The 

influence of sheet thickness on fatigue strength in thin-walled (less than 5 mm) and 

welded structures have also been studied numerically and experimentally by Mashiri 

et al (2001), Fourlaris et al (2006), Gustafsson (2006), Sonsino et al (2007) and 

Ringsberg et al (2008).  

 

 

The notch stress approach of the fatigue life assessment proceeds from the stress 

amplitudes at the notch root (which may be artificially radiused) and then uses them 

with the SN curves for an un-notched comparison specimen.  

The idea behind notch stress approach is that the mechanical behaviour of the 

material at the notch root in respect of local deformation, local damage and crack 

initiation is similar to the behaviour of a miniaturized, axially loaded, un-notched 

specimen in respect of global deformation, global damage and complete fracture, as 

shown in Figure 2.21.  

 

2.4.4 Notch Stress and Strain Approach
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Figure 2.21 Comparison specimen for simulating the cyclic stress strain and crack 

initiation behaviour at the notch root (Radaj D, 1996) 

 

 

Different micro-structural support hypotheses exist, which are further described 

in textbooks (1990) such as: the stress gradient approach according to Siebel and 

Stieler, the stress averaging approach according to Neuber (1958) and the surface 

layer approach according to Peterson. Using the Airy stress function, the solution is 

extended to the region outside the notch bisector. 

Filippi’s equations which include Williams’ solution (1952) for pointed 

V-notches are shown to be superior. By means of Filippi’s equations and considering 

different failure criteria (Rankine, von Mises and Beltrami), the fictitious notch 

radius is evaluated for different notch opening angles, and also the micro-structural 

support length.  

A fictitious notch radius is predicted for different geometry shape, plane stress 

or plane strain conditions by F. Berto, P. Lazzarin and D. Radaj (2009). The support 

factor is derived. 

The severity of the notch stress concentration depends on the notch geometry 
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configuration, generally referred to as the V-shaped notch open angle.  

The ratio of the peak stress and the nominal stress leads to the commonly used 

definition of the notch-SCF, in Eqn.2.6. 

peak norminal/tK    2.6

It gives a direct indication of the concentration severity, and an amplification 

factor on the elastic stress level nominally present in the notch. In the traditional 

elliptical hole case, the maximum stress, peak , occurs at the end (x = a, y = 0); and 

SCF is a function of the notch geometry in Eqn.2.7: 

peak norminal(1 2 )
a 


    2.7

As a result, the tK -expression ( (1 2 )
a


 ) for a round hole where a = ρ is 

equal to 3, which is a classical value.  

Taylor and Lawless (1996) extended this idea to include stress concentrations of 

arbitrary geometry, known as the crack modelling method. The resulting SCF in a 

modified form is given in Eqn.2.8: 

1/ 2[ / 2 ] (1 / 2 )tK a r r   2.8

a , reference dimension of a component 

r , polar coordinates 

 , notch tip radius 

 

The SCF of the weld toe notch tK is determined by Eqn.2.9  

Where:  

1

1 1

1 2(1 )
1 14(2 tan / 2)

( ) 0.5
2 sin 2 2t

t
K


 

  

 
 


 2.9

1 , the first eigen value 

 , open angle 

t , thickness of plate 

In the case of butt welds with partial penetration, the stress concentration 

factor tK  is determined by Eqn.2.10 
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Where:  

2
1

cos( )
t

a
K

a
t


   

2.10

a , reference dimension of a component 

 , notch tip radius 

t , thickness of plate 

 

The result of an SCF analysis for the tensile-loaded cruciform joint, with 

load-carrying fillet welds (Radaj D, 2006) is evaluated with respect to the thickness 

effect.  

Complex potentials and conformal mapping can be used for the stress 

singularity calculation (N. I. Muskhelishvili, 1963). And also the calculation of stress 

intensity factor for a sharp V-notch is calculated for the limiting case of the stress 

concentration factors for the same V-notch with rounded root radius by G. Lhermet, G. 

Vessiere and J. Bahuaud (1987).  

The plane elastic-static problems of a lozenge hole and a rigid lozenge inclusion 

in an infinite plate under tension loading are examined by the conformal mapping 

and Goursat stress functions (1989).  

Seeger et al. (1991, 1993) proposed notch stress approach for welded joints, 

which also uses a toe radius of 1mm; however, he considers this radius as the mean 

of real values.  

The analogies between crack tip and rigid line tip stresses and displacements are 

stated by Radaj (1993), in respect of loading modes with singular stresses, with 

non-singular stresses, distribution of singular stresses, ligament related limit value 

formulae for stress intensity factors, notch stress related limit value formulae and 

elementary explicit formulae.  

Stress analysis of a semi-infinite plate with a triangular notch and a crack 

originating from a triangular notch are carried out. Muskheiishvili’s method (N. I. 

Muskheiishvili, 1953) is used for stress analysis and rational mapping functions of a 

sum of fractional expressions (Newman. Jr and Dowling N, 1998).  

With the aim to perform a comprehensive evaluation of the structural support 
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factor for sharp V-notches, the indispensable theoretical tools, especially the basic 

stress equations, are reconsidered and amended in respect of accuracy by F. Berto, P. 

Lazzarin and D. Radaj (2008).  

By definition, FEM or BEM determines the effective notch stress; the fatigue 

assessment is then done using a single universal Woehler curve. Thus besides the 

weld toe, a possibly present weld root gap can be assessed. Useful are also SCFs 

available for standard cases, which can be found in papers (Yung JY, Lawrence FV, 

1985; Iida K, Uemura T., 1996; Radaj D, Zhang S., 1992).  

Using FE models, notch stresses are analyzed, corresponding to the worst case 

in the approach proposed by W. Fricke (2010), assuming that the maximum value of 

stress was obtained at the effective notch locations in the fatigue-critical region.  

Verreman and Nie (1996) proposed, from observations, to use the related notch 

stress intensity factor (N-SIF) as a parameter describing the crack initiation life of 

welds including short crack propagation up to a crack depth of approx. 0.5 mm. 

The definition of N-SIF was justified by finite element analyses performed on 

cruciform joints which confirmed the possibility of using the analytical solution 

already obtained by Williams for open V-shaped cracks; local stress distribution in 

the neighbourhood of a weld toe is linear in a log–log plot, and its slope 

corresponded to the analytical solution valid for V-shaped sharp notches with the 

same opening angle as the severe V-notched geometry of the welds. The idea of 

estimating the fatigue strength of welded joints (the weld toe radius being zero or 

tending towards zero) on the basis of the stress fields represented by straight lines in 

log–log diagrams was proposed previously by Atzori (1985), and largely used in 

fatigue life predictions. (Lazzarin and Tovo, 1998)  

Lazzarin and Tovo (1998) quantified the contributions of the symmetric and 

anti-symmetric loading modes for different geometries of welds and re-analyzed 

experimental data in terms of the new stress field parameter.  

Further applications of the approach demonstrate the limits (applicability to real 

structures, not sufficient for evaluation of the local stress field, and the difficulty in 

defining the geometrical parameters) of the structural stress approach (Tovo R, 

Lazzarin P., 1999) and of local strain measurements close to the weld toe (Atzori B, 

Meneghetti G., 2001).  
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Today, fracture mechanics analysis has been well established particularly for 

fatigue assessment, where the crack propagation phase is typically longer than the 

crack initiation phase. The fracture mechanics approach is useful for assessment of 

cracks or crack-like imperfections.  

The elements of the crack propagation approach are the crack propagation 

equations, normally according to Paris and Erdogan; when the range of the stress 

intensity factor ΔK, (or possibly the range of the J-integral) is used to describe the 

increase of the crack length per cycle, i.e. the crack propagation rate da/dN. 

The history of the fracture mechanics approach for fatigue assessment has been 

reviewed by Smith (1986) and more recently also by Paris (1998), both giving some 

insight into the dramatic development during the past 40 years. George Irwin, 1956, 

firstly drew attention to the elastic stress field surrounding crack tips in loaded bodies 

and the intensity factor of that unique field, K, as a tool to analyse abrupt failures 

(Smith RA., 1986). Following the work by Maddox (1991) in the 1970s, several 

investigations have been performed on cracks varying the geometry and loading 

parameters. 

The fracture mechanics approach (W Fricke, 2003) often offers the only way for 

fitness for purpose assessment of structural members with flaws or other crack-like 

defects. 

Where stress intensity factors (SIFs) from standard handbooks are not 

applicable to the locations of interest, rising computing power has encouraged the 

widespread use of FEA for the determination of K values and the simplicity of the 

method makes fracture mechanics a widely used tool. 

 

 

Crack growth can be divided into 4 main phases: crack nucleation, short or 

micro-crack growth, macro-crack growth, and failure, as shown in Figure 2.22.  

2.5 Fracture Mechanics Approaches

2.5.1 Fatigue failure life prediction
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New striations will be produced by the initial grains. It can be imagined that the 

slip traces accumulate on the slip bands and propagate into adjacent grains with 

intensive slip bands. Coarsened, the slip bands will transform into micro-tears. Some 

adjacent slip bands will accumulate the micro cracks and grow under cyclic loading, 

the process may require large numbers of the loading cycles. Consequently, the 

fatigue life comprises the micro-structural crack initiation life and the short-crack 

propagation life up to a final crack length. In welds the first and second stages are not 

needed as the welding effectively puts macro cracks into the structure. 

 

Figure 2.22 Different phases of crack growth life and relevant factors  

modified after Schijve (2001) 

 

 

Service fatigue life estimates use analytical or numerical solutions for K for the 

macro stage of crack growth. 

Fatigue life prediction is well established, particularly for the fatigue strength 

assessment of the structural components where the crack propagation phase is longer 

than the crack initiation phase.  

The procedure is shown schematically in the flow chart in Figure 2.23.  
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Paris Law: 0
mda

C K
dN

   for thK K   

Figure 2.23 Flow chart showing various stages of modelling fatigue damage with the 

integrated use of inputs from experiment  

(A.K. Vasudevan, K. Sadananda and G. Glinka, 2001) 

 

 

The rate of fatigue crack growth under cyclic loading can be expressed in terms 

of the range of stress intensity factor (ΔK). Or the range of stress intensity factor (ΔK) 

can be modified to an effective stress intensity factor (ΔKeff) to allow for the effect of 

various parameters on the fatigue crack growth rate. 

The crack propagation approach has been applied to investigate the effect of 

various geometrical influences on fatigue life, e.g. the effects of a longitudinal 

attachment, the misalignment of load-carrying cruciform joints and the effects of 

undercuts and residual stresses at misaligned butt-joints. 

Based on the success of the stress intensity factor concept for static fracture, 

Paris et al. (1957) postulated that the rate of fatigue crack propagation per cycle, 

da/dN, should be determined by the range of stress intensity factor K . 
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0 ( )mda
C K

dN
    

Below a threshold level of ΔK there is no crack growth: 

thK K    then 0
da

dN
  

2.11

 

For preliminary screening assessments, hand-calculations or assessments that 

can be compared directly with calculations based on fatigue design rules; the 

following curve is recommended in Figure 2.24.  

 

 
Figure 2.24 Schematic representation of fatigue crack growth rate curves 

(P Paris, F Erdogan, 1963) 

 

 

In Paris’ law, 0C and m depend on various factors such as material properties, 

environment conditions, frequency of applied load, temperature, stress ratio. In BS 

7608 and BS 7910 (British Standard guide of methods for assessing the acceptability 

in metallic model) the recommended simple values are.  

 

3m  , 13
0 5.21 10C    2.12
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For steels (excluding austenitic stainless steels) operating in marine 

environments at temperatures up to 20 °C, the following values are recommended: 

 

3m  , 12
0 2.3 10C    2.13

for /da dN in /mm Cycle and K in 3/ 2/N mm  

 

The fatigue crack growth data can be used to estimate the remaining fatigue life 

of a cracked component. A critical crack size is specified or estimated and the 

number of cycles to failure of the component is then predicted as: 

 

0 0( / ) ( )

c ca a

f ma a

da da
N

da dN A K
 

   2.14

 

In this form and with modifications (e.g. including explicit power law 

dependence on another parameter) Paris law has served the engineering design 

community well.  

 

 

 

For the micro-crack stage of fatigue the SN curve approach is often used. Small 

cracks grow together, and then form larger cracks, a process which is not easily 

represented by calculation. Even when the micro-crack is detectable and immediate 

crack propagation can be assumed, the stress intensity factor is unsuited for 

describing micro-crack growth.  

Micro-cracks can be initiated at several positions simultaneously and united to a 

single crack in a later stage as shown in Figure 2.25. 

 

2.5.2 Micro‐cracks 
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Figure 2.25 Examples of microcosmic stresses affect K (1963) 

 

 

Micro crack behaviour is always related to the notch stress and strain approach 

as well as to crack closure effects (K. Hussaint, 1997). The geometry correction 

factor cannot simply be determined for cracks at the notch. It is necessary to describe 

short crack propagation in the plastically deformed area based on the cyclic J-integral 

(L. Lawson, E.Y. Chen, M. Meshii, 1999); the procedure is laborious in respect of 

numerical procedures. 

As demonstrated by Newman et al. (1998), the growth behaviour including 

threshold value of micro cracks differs considerably from that of large cracks. In the 

paper, they review the capabilities of crack-closure model to predict fatigue lives of 

metallic materials using ‘small-crack theory’.  
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The Weight Function Method (WFM) originally developed by Buckner (1987, 

1989), is a useful procedure for the determination of stress intensity factors in 

complex stress distributions. The weight function is the stress intensity factor caused 

by a force on part of the crack surface. The method separates the influences of a 

stress field and the geometry of a cracked body on a stress intensity factor.  

K is calculated using the weight function method by simple integration of the 

weight function ( , )m x a and the stress distribution ( )x for the un-cracked body, as 

shown in Eqn.2.15: 

 

0
( ) ( , )

a

I rK x m x a dx    2.15

 

 

The method is shown in Figure 2.26.  

 

2.5.3 Methods for K Determination (for macro cracks) 

Weight Function Method
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Figure 2.26 Weight function notation under mode I loading: (a) applied reference 

stress system rS and the corresponding local stress distribution ( )r x in the 

prospective crack plane; (b) and corresponding crack opening displacement ( , )ru x a  

(G. Shen and G. Glinka, 1991) 

 

 

The determination of weight function ( , )m x a requires complex elastic analysis 

for a specific geometry and applied stress system; however, it can be simplified by 

using the relationship in Eqn.2.16:  

( , ) r

r

u
m x a

K a

 
 


 2.16

( , )m x a , weight function; 

 , E  for plane stress and 2/1E   plane stain; 

rK , reference stress intensity factor; 

ru  is ( , )ru x a , corresponding crack opening displacement; 

a  crack depth 

Weight functions calculation can be simply to determine by the 

Petroski-Achenbach method in the paper (Fett T, 1987). However it has been found 
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that the crack opening displacement function proposed by Petroski and Achenbach 

ware not accurate for discontinuous and high gradient reference stress fields. 

The displacement fields of edge cracks under tensile stress (Fett T, Munz D and 

Yang, 2000) can be described by approximation given by Petroski and Achenbach. 

Using approximation and the weight function method, the displacement fields for 

single forces and varying stress distributions can be obtained.  

Weight functions have been derived by Niu and Glinka (1987), for a variety of 

crack configurations they have the same general mathematical form.  

A numerical technique for simple and efficient integration of weight functions is 

presented in the paper (Moftakhar A and Glinka G, 1992). The method enables the 

stress intensity factors to be calculated with the aid of a hand calculator for any 

non-linear stress distribution normal to the crack surfaces. The proposed integration 

routine is validated against accurate numerical and analytical solutions.  

An algorithm for crack growth analysis of planar cracks under arbitrary Mode I 

loading was presented in the paper (JC. Newman, 1971). The method is based on the 

point-load (2D) weight function used for the calculation of stress intensity factors. 

Validation results supporting the entire methodology are discussed. Application 

examples of the proposed method for crack growth analysis under arbitrary Mode I 

stress fields are presented. 

An effective approach which can be used to solve stress intensity factors for 

crack problems with built-in end boundary conditions was summarized by Marchand 

etc (1986). 

An approximate weight function for embedded elliptical cracks was deduced 

from the properties of weight functions and available analytical weight functions for 

penny shape and half plane cracks (Niu X and Glinka G, 1989). The weight function 

is then validated against available exact stress intensity factor solutions for embedded 

elliptical cracks for several linear and non-linear stress distributions.  

Parametric formulae for the determination of SIF (or weight functions)  have 

been developed for a multitude of structural details (Albrecht P, Yamada K, 1977). 

An additional function Mk(a) considers the non-linear stress peak and the special 

geometrical conditions of the different structural details and joint types. The 

numerical integration and the determination of the Mk(a)-values can be performed in 
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parallel using a simple algorithm.  

A procedure is discussed that allows the determination of weight functions from 

a number of known reference stress intensity factors and two geometrical conditions, 

namely vanishing second and third derivatives of the weight function at the crack 

mouth (Fett T, 1992).  

A convergence consideration is included in the paper (T. Fett, H-A. Bahr, 1999), 

in order to provide weight function solutions including displacement boundary 

conditions, rectangular plates with different length-to-width ratios are studied using 

the boundary collocation method. It was found from the numerical data that weight 

function results are independent of Poisson's ratio for mixed boundary conditions at 

the plate ends, but depend on in case of pure displacement conditions. 

Weight functions for one-dimensional cracks in plates are given for the special 

case of loadings along the crack line. The solution for an edge crack in a rectangular 

plate is given by interpolated by cubic splines (Fett T, 1995).  

Weight functions are derived for edge cracks and internal cracks in the vicinity 

of interfaces of dissimilar materials. The first terms of a power series representation 

are determined by directly adjusting the weight function to reference stress intensity 

factors and geometric conditions (Fett T, Munz D etc, 1997). 

Mode I weight functions (Zheng XJ, Kiciak A and Glinka G, 1997) are derived 

for the deepest and surface points of an internal, radial-longitudinal, surface, 

semi-elliptical crack in an open-ended, thick-walled cylinder with internal radius to 

wall thickness ratio R/t=2.0. This paper complements a set of previously published 

weight function solutions for cracks in cylinders with other radius to thickness ratios. 

Another research group lead by D. Munz and T. Fett (1997) has provided a 

significant contribution to the derivation of SIF through the weight function method.  

 

 

 

The Boundary Collocation Method (BCM), originally developed for plane 

isotropic analysis, depends on the selection of a stress function describing the stress 

Boundary Collocation Method
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field and matching boundary portions at the vicinity of the crack tip in the crack 

anisotropic plates. The simplicity of computation is attractive compared with other 

methods.  

Successive additions of stress fields which remove the stresses along the crack 

path can be visualized as an infinite repetition of additive stress fields. Each stress 

removal along the crack path provides a corrective contribution to the value of K. 

Thus an approximate estimate of K is given by K a  . 

oK F a     2.17

Where: F is geometric function; 

    0  is nominal stress 

The method results in closed-form stress intensity factor solutions in various 

types of specimens.  

In order to correlate the results of geometry, the process is considered as 

determination of the related geometric function F. The function can be defined by 

Eqn.2.18 

0/F K a   2.18

Coefficients for the corrective function are determined by fitting the general 

solution to the geometry, and resulted in the functional form for F given in Eqn.2.19 

,
a H

F F
H W

   
 

 2.19

For the cases of a central crack in a plate, boundary collocation formulas have 

been applied; the stress intensity factor calculation can be considered as the result of 

a combination of the crack lengths. 

Despite the fact that several stress intensity factor handbooks (H. Tada, P. Paris 

and G. Irwin, 1985; Y. Murakami et al., 1987) have been published, it is still difficult 

to find adequate solutions for many practical problems. Recently, Fett (2005) 

presented the numerical solutions of stress intensity factor for edge-cracked plate 

with built-in ends using the boundary collocation method.  

The results provide geometric functions in terms of normalized half specimen 

width and normalized half effective specimen length using Zhang’s analytical 

solutions (S. Zhang, 1997).  
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For the determination of the stress intensity factor solutions for edge-cracked 

plates with built-in ends under complex stress distributions (Fett T, Rizzi G and 

Diegele E, 2004). Ted L and G Glinka (2006) develop an alternative technique for 

surface and corner cracks, which greatly improves both efficiency and accuracy of K 

estimation.  

The single edge-cracked plate (SECP) is one of the most commonly used 

specimens, the weight functions for stress intensity factor have been summarized by 

Wu (1991), Shen and Glinka (1991), and compared with FEM by Wang (1996).  

 

 

The Critical Distance Method (CDM), originally proposed by Neuber (1958), 

defines failure criteria based on the stresses within a critical region surrounding the 

stress concentration, the size depending on the material. D. Taylor subsequently has 

discovered a new reinterpretation (Taylor, 1999) and shown that the same approach 

first proposed by Neuber (1936) and Peterson (1959) had been used for over 50 

years. 

Theories of fracture generally accept the need for a material length scale, i.e. a 

parameter with the dimensions of length by ElHaddad’s (1980), which is 

incorporated into the theoretical model.  

Using the stress intensity factor together with oa , successful correlation was 

demonstrated by El Haddad (1979) between growth rates at notches and long crack 

elastic growth rate curves.  

,
0

th a th

a
K K

a a
  


 2.20

Where: Da is the parameter of the critical defect. 

This equivalent stress intensity factor calculation turns out to be equal to 

formula proposed by D. Taylor (1996).  

( )IK a ae       2.21

 

Critical Distance Method
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The distance size effects are capable of predicting this effect, which is similar in 

both monotonic fracture (Whitney JM, Nuismer RJ, 1974) and fatigue of metallic 

materials (Taylor D, 1999). Another example of size effects is the variation in 

specimen strength which occurs when the size of the entire specimen is changed, 

without changing its shape (C. Berger etc, 2002).  

The authors have shown that complications arise when the size of the specimen 

becomes similar to L, (L is half length of the rectangular cut-out longer edge) 

necessitating a modified form of the approach in which L becomes a variable 

quantity (D. Neal, 1970). 

It is surprising that the graphs (G. Crupi etc, 2005) have similar forms 

considering that the underlying mechanisms are so different, indicating short-cracks 

and small defects.  

A particularly interesting case study is a vehicle suspension component for 

which the location of fatigue failure was not the same as the location of the 

maximum stress, an effect which CD anticipates (Taylor D etc, 2000). The CD has 

also been applied to cases in which high local stresses arise due to contact between 

bodies, such as fretting fatigue (Vallellano C etc, 2003, Araujo JA etc, 2007). The 

characterization of notch effects in fatigue is an area of great practical concern; 

several investigators have demonstrated the value of the sharp notches (Lazzarin P 

etc, 1997; Susmel L etc, 2003; Taylor D etc, 2000). Further research revealed other, 

independent, inventions of the theory, in slightly different forms, for the prediction of 

brittle fracture (Niu X and Glinka G, 1989), in composite materials (Y. Murakam, 

1978) and polymers (Kinloch AJ etc, 1982). 

The work described in Chapter 6 of this thesis involves an equation that is 

identical to equation 2.22. However the interpretation of ‘ae’ in this thesis is of an 

increased effective defect size caused by a sharp notch singularity. This thesis 

follows on from Xu and Barltrop (2007) who investigated stress singularities with 

the aim to allow the estimation of hot spot stresses or stress intensity factors by 

considering the geometry of the structural detail in conjunction with simple formulae. 

According to elastic stress analysis, structural sharp corners are singularities and may 

be classified by singularity type and strength. The authors pointed out that, once a 

correspondence has been determined between these characteristics and the 



LITERATURE REVIEW 

64 

geometrical characters under consideration, it provides guidance both on the mesh 

size needed to analyze a structure and on the size-dependent stress concentration 

factors. 

 

 

The stress intensity factors at keyhole seam welds of overlap joints are derived 

from the outer surface deformations of the joined plates (Zhao. W, Newman Jr etc, 

1997). Relations between forces and stresses are given which avoid the measurement 

of curvature. Unequal thickness of the plates and dissimilar materials are taken into 

account. The analysis for a circular hole (H. Nisitani and M. Isida, 1973; Y. 

Murakamj, 1978), an elliptical hole (G. Savaidis, M. Vormwald, 2000) and a square 

hole (D. M. Neal, 1970; M. Isida, 1978) can be found. A crack originating from a 

square hole is analyzed as a plane elastic problem (Nprio Hasebe, Minoru Ueda, 

2003).  

 

 

 

 

Fatigue analyses performed according to current (July 2012) rules and 

guidelines from the several classification societies are individually considered below. 

The initial scantlings are often based on strength (structural capacity) considerations, 

fatigue being checked afterwards. 

The fatigue analysis procedures from LR, DNV, ABS, and NK have been 

applied, within a comparative study, to the fatigue assessment of a pad detail on a 

tanker, bulk cargo ship and an FPSO. 

The Lloyd’s Register, the Ship Right Fatigue Design Assessment Level 3 

procedure (LR, 2004) was applied. The objective of the FDA procedure is to analyze 

the ship's structural response due to applied static and dynamic loads. This procedure 

Others 

2.6 Classification Rules 
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effectively increases confidence that the ship's structural integrity will be maintained 

throughout its service life. FDA Level 3 is a spectral approach where, in this case, a 

scaled hull form and weight distribution from a similar ship is used for generation of 

the vertical bending moment response amplitude operator from 2D strip theory.  

ABS also supports both the nominal and the hot-spot stress approaches in their 

simplified fatigue strength assessment method (ABS, 2003). The fatigue stress 

ranges are assumed to follow a Weibull probability distribution. The effect of mean 

stress has been ignored. SN curves are used to describe the fatigue strength of the 

details. The structural requirements in Part 5A (ABS, 2010) of ABS Rules are 

applicable for double hull oil tankers of 150 m in length and upward, with structural 

arrangements as specified in Part 5A.  

Generally, for double hull tankers of less than 150m in length, the Rules of the 

individual Classification Society are to be applied. The structural requirements in 

Part 5B (ABS, 2010) of ABS Rules are applicable for single side skin and double 

side skin bulk carriers of 90m in length and upward, with structural arrangements as 

specified.  

The procedure from DNV (1999) for fatigue strength assessment is based on the 

hot-spot stress approach. The stress concentration factor is obtained from a table of 

standard details which contains doubled plates. The stress range is further reduced by 

a factor of 0.80 to account for worldwide operation. The stress concentration factor is 

obtained from local FE analysis of the patch detail or experimental standard details 

containing double plates (by DNV). By the rules of DNV, the stress range is 

multiplied by a stress concentration factor for the weld (notch stress) before entering 

the Woehler SN curve. The DNV Recommended Practice (2010) presents 

recommendations in relation to fatigue analyses based on fatigue tests and fracture 

mechanics. The aim of Recommendation is to ensure that the structure has an 

adequate fatigue life. In terms of DNV design rules (2010), a design cycle may be 

considered as consisting of two distinct phases: Preliminary Design Phase and 

Fatigue Design Phase for FPSO.  

The stresses and SN curve, by the BV rules (1998, 1999), are based on the notch 

stress approach. The calculation included the stress component from the IACS (1989, 

1999) head sea vertical bending moment, transferred to a probability of 10e-5 using a 
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Weibull distribution with a shape parameter of 0.943 combined with a horizontal 

bending moment. Parametrical SN curves may also be used to fit the results from 

component fatigue tests. 

A comparative study between the rules of classification and FE extrapolation 

has been performed as part of the work of Committee III.2, ‘Fatigue and Fracture’, of 

the International Ship and Offshore Structures Congress (ISSC) during the working 

period 1997–2000, and a technical paper was published in ‘Marine Structure’ (W. 

Fricke, W. Cui, etc., 2002).  

It has been shown that there is high scatter: the fatigue lives vary considerably 

between 1.8 and 20.7 years on the panamx container ship; in a parametric study 

several assumptions and input parameters have been modified, resulting in calculated 

fatigue lives, ranging from 2.9 to 6.2 years, and a relatively short fatigue life of 5.3 

years, assuming the North Atlantic wave climate and a certain speed profile. 

 

 

In view of the complexity of the subject and the wide area of application it is 

not surprising that different approaches exist for fatigue analysis. The fatigue 

literatures review above demonstrates both existing experienced and mature results 

and new ideas. However there is no universally correct or best method. The 

circumstances of the considered special case determine the choice of approaches. 

The nominal stress approach (by Hobbacher, Gurney, British Standard and IIW) 

is considered as robust as far as it is statistically founded. However it is only valid for 

details similar to those tested so it cannot represent all structural details. 

The main drawback of the HHS method (by Maddox, Lotsberg, Sonisino and 

Classification Societies) is the limitation to surface crack failures and the uncertainty 

of extrapolation procedure, which varies depending on the particular codes used. And 

incorrect extrapolation will result in a poor estimate of this important parameter. FE 

analyses are performed to evaluate the hot-spot stress but the results depend on the 

mesh and elements used. 

The supporters of the structural stress approach (by Dong, Marquis and Yamda) 

2.7 Conclusions 
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hold against the notch stress approach (Lazzarin, Radaj and Lawrence) that the 

scattering of the notch geometry cannot be accurately evaluated and that it is not well 

suited for the notch stress analysis. However there are also critics of the structural 

stress approach. 

The notch stress approach and the fracture mechanics approach (Glinka, Fett 

and Taylor), have the main disadvantage that there are a very large number of 

possible geometrical forms, and it is time consuming to set up the required finite 

element analyses for industrial application.  

It is easy to understand why experts still disagree on the best approved to the 

fatigue problem assessment approaches, but any approach can be adjusted to the 

engineering requirements in a restricted field of application. 

Disregarding the limitations, fatigue analysis is well established in ship and 

offshore engineering, to simplify the ways for fatigue strength assessment.  

This thesis continues work started by Xu and Barltrop (2007) in order to allow 

the estimation of hot spot stresses and the stress field from the geometry of the 

structural detail. The hot spot stress can be used directly in fatigue analysis and the 

stress field can be characterized to provide guidance on the required mesh size in 

finite element analysis and, with suitable weight functions, it can be used directly in 

fracture mechanics based assessment. 

The novel research direction will be discussed to give fatigue guidelines to 

designers. The simplicity and clearness of the method will be in contrast to the 

difficulty of practical application of some other methods. 
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Compared with the nominal stress fatigue prediction method, the drawback with 

the finite element based hot spot, structural stress and fracture mechanics methods is 

that they require significant time to set up finite element analyses and require good 

insights into the structural behaviour. It is important to understand how much of the 

local singularity is included in the analysis but that is often unclear. For 2D problems 

of attachments to plates, the structural stress approach does avoid the singularity but 

for 2D corner problems and 3D problems the structural stress approach still requires 

an understanding of what is and is not included in the calculated stresses.  

The methodology developed in this work considers the nature of the stress 

singularity and provides a theoretical background when sets up an analysis, about the 

scale singularity relative to the used elements size and hence how much of the 

singularity might be resolved by the analysis. It can also give preliminary estimates 

of the intensity of the singularity which can be used directly within a stress 

concentration calculation and fracture mechanics calculation.  

It should be mentioned that the treatment of fatigue failure uses 

continuum-mechanics approaches, and fatigue damage is a localised phenomenon 

resulting from repeated stress application. The knowledge of elasticity theory built up 

in the applied mechanics framework is necessary for describing the behaviour of 

structures’ fatigue behaviour. This chapter will briefly highlight the theoretical 

CHAPTER 3 

THEORETICAL BACKGROUND 

3.1 Introduction
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background and relevant mathematical formula relevant to the ‘Length Scale 

method’.  

 

 

The elasticity solutions have the advantage of being extended to cracks at the 

interface of homogeneous isotropic materials and applicable for V-notch problems. It 

is necessary to bring out the theory of elasticity analysis of preparation for the stress 

derivation (S. Timoshenko, 1951; E. E. Sechler, 1952; N. I. Muskhelishvili, 1953). 

Just as both Kolosoff (1910) and Inglis (1913) independently discovered the 

elasticity stress problem with defect, there are several classical solutions for it. The 

first ones are proposed by Westergaard (1937), the later by Williams (1961); and the 

original development of complex variable was done by a series of Russian elasticians 

of Muskhelishvili (1953).  

Developments have proceeded on parallel tracks, there being little overlap 

between the study of the notches and cracks shown in Table 3.1. 

Table 3.1  

Original development for the singular stress solutions 

Problem Coordinate System Real/Complex Solution Date 

Circular Hole Polar Real Kirsh 1898 

Elliptical Hole Curvilinear Complex Inglis 1913 

Crack Cartesian Complex Westergaard 1939 

V notch Polar Complex Williams 1952 

Isotropic Materials Cartesian Complex Muskhelishvili 1953 

Dissimilar Materials Polar Complex Williams 1959 

Anisotropic Materials Cartesian Complex Sih 1965 

 

In this part we propose a semi-empirical corner stress formula that is based on 

the geometry. That this formula seems to be useful may be partly due to the fact that 

the stress functions above allow the use of conformal mapping and more 

fundamentally that stress patterns scale with the size of the structural detail.  

3.2 New Stress Distribution Formula
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Using the method of separation of variables, M L Williams (1952) proposed the 

solution for Airy’s stress function (detail elasticity stress problem derived in 

Appendix A); note that the problem originally considered is not a crack, but rather a 

plate under tension with angular corners, making an angle 2 : 

1( , ) ( , )r r F r    3.1

For =0 we recover the crack problem of Westergaard. Substituting Eqn. 3.2 

into the bi-harmonic equation give: 

4 2
2 2 2

4 2

( , ) ( , )
2( 1) ( 1) ( , ) 0

F F
F

      
 

 
    

 
 3.2

However, using the method of eigenfunction expansion, the stress at the crack 

tip cannot be determined but has a 1 over distance (r) to the power ½ singularities, or 

asymptotic solution, as r becomes small and approaches the notch tip. 

Williams (1952) demonstrated that in the context of the elasticity theory, the 

asymptotic stress state near a sharp corner is singular and its degree of singularity is a 

function of the angle of the corner (Fig 3.1).  

The asymptotic state at the singularity of a sharp open corner is defined by the 

root of the eigenvalue function, the exponent value ‘p’ for the stress distribution is 

the first solution of following expression by M L Williams (1958):  

( 1)sin(2 ) sin(( 1)(2 )) 0p p          3.3

Where:  is the corner angle; p is the factor for different corner angles. 

Results for different angles are shown in Figure 3.1 

Table 3.2  

Typical coefficients values from the eigenvalue functions 

  0o 60o 90o 100o 120o 135o 140o 160o 

p  0.5 0.488 0.455 0.437 0.374 0.326 0.303 0.181 

Based on analysis of linear elastic fields at a sharp open corner, Williams stated 

that the stress distribution in a re-entrant V-shaped corner is similar to the Mode I 

stress distribution of a crack.  

3.2.1 William’s Eigen Stress Solution
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Figure 3.1 a) Plot of applied stress with notch, and 

b) the ‘p’ value curves relating with the notch angles 

 

This permits geometric simplification to be made. The cruciform is the most 

suitable shape for initial study as it offers a similar geometry to many details found in 

classical ship components, from simple joints shown in Figure 3.2, the singularities 

are out of the plane of the members to more complex components, where the 

singularities are also out of the plane of the members itself.  

 
Figure 3.2 Cruciform shape for connection section modelling 
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From the power singularity just illustrated, it can be seen that the solution of a 

singular stress field can be visualized, for more functions, we can also check in 

handbook (Tada etc, 1973).  

Lazzarin and Tovo (1998) investigated a theoretical framework and formal 

definition of the Notch-SIF, and directly correlated fatigue life with N-SIF values 

taking into account different welded joints. 
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Where: 1 is singularity exponent of Mode I (opening mode) notch,  

11-  is equal to the ‘p’ value in William’s formula (1952) 

2 is singularity exponent of Mode II (sliding mode) notch 

The exponent values for the stress distributions are the eigenvalues 

defined from the solutions of William’s (1952), which relate to the 

opening angle of notch.  

 

 

 

The N-SIF approach has the capability to describe the stress gradient along a 

free edge. For example that the radial stress distribution for 135   and 120    

can be determined from the stress formula of Williams’, which is shown as 

following: 

0.326 0.302
1 20.423 0.553r K r K r        3.5

Note: the positive exponent of second term is correct. (Lazzarin and Tovo,1998) 

A problem with the simple asymptotic formula is that it predicts the stress 

decays to zero at a large distance from the crack. To obtain a stress which decays to a 

nominal value at some distance from the crack tip Xu and Barltrop (2007) proposed 

the formula in Eqn.3.6. This empirical formula was adapted from the formula by 

Paris and Sih (1965) which, with p = 0.5, is exact for a centre crack in an infinite 

sheet.  
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3.6

where: q = 3p – 0.5, ‘x’ is the distance from the crack tip; 

    0  is nominal stress;  

and sa is a characteristic size of the singularity with units of length, that 

characterizes the stress field from the notch.  

 

Non-dimensional stress plots for different corner angles (actually based on a 

unit nominal stress and an ‘as’ value of 10mm) are shown in Figure 3.3. Note that the 

stress at any non-dimensional distance x/as from a crack tip is proportional to the 

applied stress 0 .  
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Figure 3.3 Stress distribution of different cruciform angles (and hence p vales) 

(Drawn for an ‘as’ value of 10mm) 

In practice the as value depends on the geometry features and the dimensions of 

the structure containing the sharp corner, usually the effect of the singularity is at the 
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distances range of as/3 or less from the crack tip.  

 

 

The rational mapping function of the sum of fractional expressions can be 

formed for comparatively arbitrary shapes and is particularly efficient for obtaining 

the stress distributions (it is also used for many other problems such as in fluid 

mechanics). 

The semi-infinite plate with a triangular notch (and with a crack originating 

from a triangular notch) on a rim of a semi-infinite plate is analyzed for an angle of 

the notch, under uniform tension as shown in Figure 3.4.  

 

 
Figure 3.4 The semi-infinite region mapping to a triangular notch 

 

Conformal mapping of an infinite region with a corner can be obtained by 

Schwarz-Christoffel transformation. The transformation function is defined by: 

0

1

1

( ) ( ) k

nw

kw
k

f w A w w dw B 



    3.7

where: A and B could be constants 

 

Let the seven vertices A1, A2…A7 of the plate enumerated in a counter 

clockwise order, be the points 1 2 7, ...z z z with corresponding exterior angles 

3.2.2 Conformal Mapping Theory
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1 2 7, ...   respectively and let their image points on the real axis be 

2 7...  respectively. 

Thus, we can apply a Schwarz-Christoffel transformation in order to map the 

interior of this polygon onto the upper half plane with the polygon on the points, of 

the real axis of the semi-infinite plane.  

The values of the exterior angles are: 

1 2 3 7

4 6

5

/ 2

/ 2 / 2

    
   
  

   
  
 

 3.8

The polynomial mapping function may be expressed as: 

1
1

0

( ) ( )
1

N
n

n

m C
n

  




  3.9

where 1C is a new constant  

A solution by Aifantis (1978) uses the conformal mapping technique, for a 

convenient Mode III stress solution of the semi-infinite domain.  

The solution holds for each point in the linear elastic, homogeneous isotropic 

material. It is shown that the limiting case of the V-notch collapses to the stress 

functions independently of the edge-cut.  
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Figure 3.5 Transformation example among the planes by Aifantis, 1978 

 

 

It is necessary to map the upper-half z plane to the upper-half y with a unit 

semicircle removed requiring the slit 0 2 ia  to be mapped on the being of the unit 

semicircle.  

The appropriate inverse transformation is taken by 

2 21
( )z z a

a
     3.10

 

 

 

 

The Length Scale is a practical parameter dealing with problems of interest to 

industry. It will be shown later that if this value can be determined then SCFs for hot 

spot fatigue analysis and SIFs for fracture mechanics analysis can be determined. 

3.2.3 Explanation and Solutions for Length Scale 
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The physical reality must be clearly understood in order to propose formulae which 

will be connected to the essence of the phenomena. The cruciform is considered to be 

a main plate with an outstand of length L and height H. Important influences on the 

behaviour are: 

The corner angle (often 90 degrees implies that the singularity is likely to be of 

the form 1/r 0.455. Relevant dimensions are: 

The length of the outstand, L; 

The height of the outstand, H; 

The width of the plate, a; 

The length of the plate, b 

Providing the plate is sufficiently long and wide the most important influences 

will be the angle and the length and height of the outstanding.  

 

Figure 3.6 Summary of the crack modelling technique 

(stress field of right corner is similar to the stress field of an edge crack, suggesting 

that the corner appears to be an additional length of crack)  

 

 

The Length Scale ‘as’ expression (Eqn. 3.11) is obtained by applying finite 

element analysis to numerous cruciform joints and fitting Eqn. 3.6 of the stress 

distribution along the line from the corner and at right angles to the applied load, as 

shown in Figure 3.7: 

( )sa Function geometry  3.11
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Figure 3.7 Traditional cruciform plate with corner leading to stress singularity 

 

 

Ten thousand different combinations of cruciform dimensions were computed 

using FE calculation. The singularity power p was found, as theoretically predicted, 

to be approximately 0.455.  

Values of the as factor were least-squares fitted with a polynomial of second 

order and the ‘as’ results non-dimensionalized by dividing by H or by L are shown in 

Figure 3.8. This was done using the MATHCAD ‘genfit’ function.  

Uniform stress
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Figure 3.8 ‘Length Scale’ values converting from FE calculations of different 

geometry dimensions 

Drawing means curves through the data Figure 3.9 are obtained. The 

significance of the scatter will be discussed in Chapter 6. 
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From Figure 3.9, we can see that: 

When L/H is less than 0.5, as is approximately H/3.  

When L/H is greater than 5, as is approximately L/22.  

In between L/H values, the simple approximations above over estimate the as value 

but the smaller of either estimate is a useful approximation to the as value.  

Therefore a simple estimate of as (that will be a little high for L/H between 5 

and 10) can be obtained from Eqn. 3.12a. 

 ( / 22, / 3  ) sa smallest of L H  3.12a

where L is the length of the bracket, and H is its height (shown in Figure 3.7). 

This applies for constant plate thickness (to = tbp) 

For the case where the thickness of the outstand arms (to) of the cruciform have a 

different thickness to the thickness of the main load carrying plate (tbp) the following 

formula 3.12b fitted the results: 

0.5 0.87 ( / 22 ( / ) , / 3 ( / ) )s o bp o bpa smallest of L t t H t t     
3.12b 

Furthermore, if a bracket of length l is fitted into the corner, so effectively 

increasing the length of the connection, the equation is simply modified as follows:  

  (( ) / 22, / 3)sa smallest of L l H   3.13

Note that this typically means that the as value (and hence the SCF) increases. 

 

 

 

Stress concentrations leading to high local stress result in objects failing quickly 

through fatigue. The stress concentrations are usually introduced by geometric 

discontinuities. (It is very important for engineers to carefully consider the geometry 

at the design stage.  

The relevant stress is termed the ‘concentration stress’ to avoid confusion with 

the design stress which may exclude stress concentration effects.  

For the case of stress concentration caused by a central circular hole in a thin 

plate is shown in Figure 3.10, the elastic stress concentration factor is finite and for 

3.3 Constant Distance SCF Definition 
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uniform applied stress =3. However it is sometimes argued that this is too pessimistic 

and that a value of 2.4 is more consistent with the observed fatigue life, so the peak 

stress value may not be the important value for fatigue. 

This at least partly explains why the infinite elastic stresses at sharp corners lead 

to finite rather than zero fatigue lives. So a method is needed for determining a 

fatigue SCF for a sharp corner. 

 
Figure 3.10 The concentration effect of a circular hole on the stress component 

(S. Timoshenko, 1951) 

 

In the structural stress method proposed by Dong (2001), the fatigue-effective 

“structural stress” over the cross section replaces the non-linear singular stresses by 

the sum of a membrane stress and a shell bending stress. As explained previously. 

This method is not suitable for in-plane corners but it does provide a method of 

reducing the singular stress to a finite value. 

Another method of calculating fatigue stress concentrations is to calculate the 

stress at some specified ‘critical distance’ from the singularity. For a critical distance 

normal to the applied nominal stress this is straightforward if ‘as’ is known because 

Eqn. 3.6 will defines the stress at the required through thickness position. As shown 

previously the length, ‘as’ is obtained from geometry, and ‘da’ is recognized as the 

critical distance away from the corner. Eqn.3.6 then becomes Eqn.3.14.  
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3.14

 

This will not be satisfactory if the critical distance is in the direction of the 

stress surface and e.g. 1 or 1.5 times thickness. Xiao and Yamada (2004) proposed 

that the concentration stress is measured at a point of 1 mm below the longitudinal 

surface; Haibach (1970) proposed the concentration stress is determined at the 

surface 2 mm from the corner. 

By trial and error a critical distance of 1.2 mm, Eqn. 3.15 gives similar results to 

linear extrapolation from the corner, as shown in Figure 3.11. 

 

1 1
( ) ( 1) ( )
2

( 1.2)

2 1.2 1.2

p
q qq

p p p

as
SCF

as




  
        

 

3.15

 

 



THEORETICAL BACKGROUND 

95 

0 0.01 0.02 0.03 0.04 0.05
1

1.5

2

2.5

3

3.5

4
Stress at 1.2 mm
Extrapolation method from FEA

Geometrical factor 'as' (m)

S
tr

es
s 

C
on

ce
nt

at
io

n 
F

ac
to

r

Figure 3.11 Comparison of SCF according to different approaches 

 

 

In Chapter 4 further (and similar) SCF comparisons are made with fracture 

mechanics simulations where the as value will be used within the fracture mechanics 

or LEFM formulation. 

Note: the advantage of the use of as over the other methods is that it allows a 

quick estimate of the results without the need for finite element analysis, and/or it 

can be used to help check the finite element analysis and interpret the results. 

 

 

The results so far are all for the 2D, planar cruciform plates, however real 

engineering connections are more complicated than the 2D plate. For example, the 

flat bar or bracket attached to the web of the longitudinal stiffener shown in Figure 

3.12. We will consider how to apply the Length Scale SCF to real ship engineering.  

3.4 Transformation for 3D Situations
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Figure 3.12 Illustration of a ship structural connection 

 

 

For the commonly occurring cracks A, B and E initiation occurs at the 

intersection of the stiffener web and flange. The web and flat bar or bracket are 

similar to the cruciform but the flange at right angles to these plates adds some 

further complexity.  

It is useful to consider a simpler case where the longitudinal stiffener is simply a 

flat bar and the plane of the flat bar web stiffener or bracket can be changed.  

We can see that the problem will go from 2D to 3D; the determination of the 

peak stress becomes more complicated because the Poisson’s ratio effect is different 

when there is a right angle connection. Also equilibrating local moments are different 

for the out of plane case.  

Numerical results have shown that Poisson’s ratio does not have a significant 

effect on the stress distributions but changes in the pattern of the moment equilibrium 

are important. The outstand (flat bar or bracket) connection supports the longitudinal 

stiffeners but introduces an eccentricity in the resistance to the axial loads on the 

stiffener. It follows that the axial load eccentricity will produce a secondary bending. 

This bending can be resisted by moments between outstand and stiffener (MX) or by 

moments within the outstand (MN), see Figure 3.13.  
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Figure 3.13 Details of the bending moment at the connection between the main plate 

and the outstanding plate due to the need to balance the eccentric y-direction stress 

within the outstanding plate (Li, B. Lou and N Barltrop, 2012) 

 

If we imagine folding the outstand from the planar, 0 degree, case shown in Fig 

3.13 back through 90 degrees to a right angle and then to 180 degrees so that it is 

lying against the stiffener, as shown in Figure 3.14.  

For the 90 degree case, the moment MX changes to zero (as a result of the small 

out of plane bending stiffness of the outstand) and the moment has to be resisted 

primarily by MN. 

For the 180 degree case the MX moments applied to the outstand are the same 

for the 180 degree case as for the 0 degree case but the sign has reversed for the 

moment applied to the longitudinal. This substantially reduces the stress 

concentration in the corner. 

 

Longitudinal 

Outstand 
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Figure 3.14 Dimensions and constraints of the model with outstanding plate 

attached at different angles (L. Xu, B. Lou and N Barltrop 2012) 

 

In practice there is usually an in plane connection with the addition of a flange 

out of plane. This provides an opportunity for the 0 degree type of moment 

equilibrium even when some of the eccentricity results from the longitudinal stiffener 

flange being at right angles to the outstand. 

It has been found that the 3D connections problem can be transferred to the 

planar stress by folding plate thickness: the ratio of the thickness of the outstand and 

the sum of the longitudinal web and flange thicknesses allows, the Length Scale to be 

determined using the formula of Eqn.2b with relative thickness corrections: 

0.5 0.87 ( / 22 ( / ) , / 3 ( / ) )s o bp o bpa smallest of L t t H t t    3.16

Here, L is the length of the outstand attachment, and H is the height 

For different plate thicknesses (totbp);  

to is the thickness of the outstand plate, and tbp is the sum of the thicknesses of the 

longitudinal flange and web. 

 

Understanding the stress flow inside the system for different cases will allow 

the clear estimation of stress concentration factors for fatigue assessment. Numerical 
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calculations are needed to prove the length scale method for more complicated 

realistic details.  

 

 

The influence of geometry on stresses has been considered in detail in this 

chapter. The amount of material affected by the geometry is rather localized in 

comparison with the size of the geometric characteristics.  

The effect of geometry will be fundamental to the stress distributions and hence 

the overall life of the joint. For an outstand on the edge of a structural member (as 

found in a typical shell to frame connection) the Length Scale of the local stresses are 

determined by the outstand height and the outstand length, the relative thicknesses 

and the characteristic nominal stress.  

From the Length Scale of geometry a new definition of Stress Concentration 

Factor can be defined using Eqn 3.14. With this information the design fatigue 

strength is easily calculated. For the case of equal outstand and longitudinal member 

thickness the Length scale is the lesser of H/3 or L/22. 

In the Chapter 5, the length scale is linked to the Stress Intensity Factor for 

fracture mechanics calculations; as well as providing a direct crack growth 

calculation method, which links the Length Scale to SCF values.  
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Mathematical analytical derivations or simple formula often will not be 

sufficient for the fatigue analysis of real engineering problems, and numerical 

analysis of finite element analysis (FEA) will often be required.  

This chapter discusses the application of FEM to fracture mechanics problems. 

 

 

Applications of FEA calculation are typically:  

 local (i.e. of a fine mesh analysis of the area in the vicinity of the actual 

or possible crack) static analysis ( 1x K F ) where K here is the 

stiffness matrix and x is the local displacement vector, or  

 local quasi static analysis ( 1( )dgx K F M x    ): a static analysis but 

where the acceleration vector dgx  is approximately pre-calculated in a 

separate dynamic global analysis.  

 

The finite element mesh will depend on the results required. 

 

For SN curve approach the stress distribution calculation is required, so that 

either the stress concentration or a nominal stress can be estimated. Commonly the 

corner singularity is not properly modelled depending on the element size near the 

CHAPTER 4 

FEA IN FATIGUE and FRACTURE MECHANICS 

4.1 FEA with SN Predictions
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corner.  

If the stress concentration is to be obtained, the elements will need to be small 

enough to model the increasing stress within a distance of ‘as’ from the corner. A 

curve fit to determine a more accurate ‘as’ value is then used to determine the SCF 

that is compared with the parabolic or linear extrapolation method. 

If a nominal stress is required, the stresses need to be calculated at a distance of 

at least 2as from the corner. A much coarser mesh should be satisfactory. Clearly care 

is required if effects, other than the corner, are causing the stress to vary in this 

region.  

If the details of the stress field in the vicinity of the singularity are required, 

then a more detailed mesh will be required: 

The limiting mesh size value is defined as convenience, and then comparing 

refined-mesh study is needed to determine the peak stresses (shown in Figure 4.1).  

Figure 4.1 Infinite stress distribution on the vertical path with constant thickness of 

plate (t=10 mm) away from the corner 

(Stress singularity happened at 0-line; the results under different finite element 

meshes are very mesh except for the ones away a short distance from the singularity.)

 

0 
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Clearly, from the figures, the stress distribution has a dramatic stress raiser with 

the fine mesh density. This diagram needs to be plotted on a horizontal axis of x/as 

and the mesh sizes given in terms of element size/as. Then we can justify the 

recommendation for minimum element size = as/10.  

It was observed that the stress values found from the FE analysis are highly 

related to the mesh density within a distance of about as/3 from the crack tip, 

especially in the case of the flange geometry, while the stresses outside as/3 are far 

less affected by the density of mesh. At least 10 4-noded elements are required to 

properly resolve the SN approach, the singularity will depend on the estimation of 

the power value and ‘as’ value. (Except for the area near the crack tip, the work was 

based on the 4 noded FE formulations, having approximate constant stress. If the 8 

nodes elements had been used, they could have modelled and had approximately 

linearly varying stress. This would allow a coarse mesh for the same accuracy. )  

The imposition of the equilibrium conditions in the context of elementary 

mechanics with the self-equilibrating stress distribution need to be eliminated in the 

stress fitting calculations.  

The limitation of element size from the corner is accepted as /10as  that will 

plot the stress raise correctly, and avoid the slow convergence of the Length Scale 

prediction. Fortunately, with the performance of modern computers, the required fine 

meshes can be realized easily.  

 

 

 

In this section, numerical values of the stress intensity factors are compared to 

the analytical solutions.  

Based on an extensive parametric study (by Saouma and Schwemmer, 1984) the 

following recommendations were obtained for the use of the singular quarter point 

elements (See Appendix C.4 Singular Element in LEFM) in general fracture 

mechanics calculation, where the applied stress field is uniform.  

4.2 FEA in Fracture Mechanics Calculations
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1. Use 2 2 (reduced) integration scheme;  

2. Use at high order singular elements around a crack tip;  

3. Have the internal angles of all the singular elements around the crack tip 

approximately equal to 45 degrees or less;  

4. Unless an excessively small element side length to overall crack length 

ratio /l a  ratio is used, little improvement is achieved by using transition elements; 

5. For problems with uniform non-singular stress distribution, little 

improvement is achieved by using small /l a ;  

6. For problems where a non-singular, stress gradient is expected, /l a should 

be less than 0.5.  

 

 

For the calculation of stress raisers the mesh density and the element type are 

important. For the 2D elements, the mesh insensitivity has been confirmed in my 

method.  It is also noted that, for 3D problems neglects the influence of element 

side shear forces. For 3D situation, the stress evaluation area is strongly affected by 

FE modelling, so whether mesh insensitivity remains questionable of them. The 

theoretical comparisons between shell and solid element have been given in 

Appendix C.2 Solid and Shell Elements Considerations.  

The first series of FE results used in ANSYS are the 8-node solid element 

(Solid45), the model can describe the real geometry properly; the stress contour plots 

are shown in Figure 4.2. Furthermore, the solid element can be simplified to 4-noded 

shell element (Shell63).  

This shell element (Shell63) can work as a multi-layer elements; the shell 

element can calculate and display every layer simultaneously. However in these 

calculations it is assumed that the crack behaviour is determined by the mid-layer 

stress values. This assumption would clearly be poor if there was a significant 

bending stress relative to the membrane stresses. 

 

4.2.1 Selection of Element Type
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Figure 4.2 Stress distribution plots at the corner location by  

a) Solid 45 elements and b) Shell 63 elements 

 

 

Due to the symmetry of the cruciform plate, only a quarter sector of plate is 

modelled (L=0.3, H=0.6; a=1.0, b=1.0), the diagram is selected from the cruciform 

model shown in Figure 3.2, showing the local stress distributions at the corner.  

Mesh refinement is applied at the corner location. The results from 3D elements have 

been compared with 2D elements, and the fine mesh density results are compared 

with the coarser mesh results.  

A comparison of non-dimensional x-component in the mid-plane stresses (stress 

on the mid-plane of the plate), 0/x  , computed by the solid model and by 2D finite 

elements model plotting in Figure 4.3.  
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Figure 4.3 Stress distribution values along crack growth path  

 

 

The nominal points along vertical path fit each other very well using both 2D 

and 3D elements, the peak stresses are more clearly marked (the effect can be 

explained with the fact the contribution of membrane stresses to the total peak stress 

varies with the angular imperfection).  

According to the discussions above, cracks usually start from a plate edge, then 

it is unnecessary (and the calculation cost is higher) to model ship structure plates by 

solid elements which can include the bending effect. This is because the thickness is 

small compared with the other two dimensions. However for some details where 

cracks grow through the through-thickness direction then solid elements would allow 

better modelling, especially when cracks are also to be modelled because the crack 

tip plate element in ANSYS cannot determine the stress intensity factor in bending.  

 

 

4.2.2 Sub‐modelling
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To conveniently allow different crack sizes to be analyzed, sub-modelling is 

often used. On the boundary of the sub and main model the coarse mesh and the 

sub-model should have identical mode patterns. (No need to revise and reanalyze the 

entire FE model.) Mesh refinement band modification can be strictly local shown in 

following in Figure 4.4. 

 

Figure 4.4 Portion of FEA in a coarse-mesh model and fine mesh sub-model 

Robert D. Cook (P137) 

 

 

Various techniques have been developed with finite element analysis to solve 

the crack propagation problem. If the crack path is known prior to the analysis then 

the crack can be modelled at various sizes. If the crack path is to be calculated this 

requires an analysis, starting from the smallest crack, at each stage estimating the 

preferential direction of cracking, extending the crack in the defined direction, 

calculating K value by repeating the process. One of the best methods for estimating 

the preferential crack propagation direction is to map the discontinuous near-tip field 

of curved cracks.  

 

 

4.2.3 Crack Path determination
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Methods of performing FEA for fracture mechanics in ANSYS, including the 

J-integral method are compared with known solutions for an edge crack, as shown in 

Figure 4.5.  

The FE models are built with (for steel) a very high tensile steel material, which 

has a Young’s modulus of 210GPa , Poisson’s ratio of 0.30 and yield strength 

of 670MPa .  

The geometry is the same as the analytical model of handbook (Tada, H., Paris, 

P.C. and Irwin, G.R, 2000); the length L of specimen geometry model is 2000mm, the 

height H is 1000mm; and the edge crack is assumed perpendicular to the loading 

direction, having crack length ratio from 0.05 of the plate height through to the half 

height of plate. The thickness of the steel plate specimen is 10 mm. Plane stress 

conditions are applied. 

 

 
Figure 4.5 Single edge crack originating through 10 mm thickness plate 

 

 

In general, the relationship between crack-tip element size and accuracy is 

complicated and depends primarily on the crack-tip mesh. The convergence 

behaviour is studied by reducing the size of the crack tip elements as shown in Figure 

4.6.  

4.2.4 Crack Modelling in ANSYS
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Figure 4.6 Illustration of the pattern of mesh refinement around crack tip 

 

 

The in-built technology for the crack definition places elements around the 

“key-point” of the crack tip and creates transition zones between the crack tip and the 

surrounding plate area.  

The geometry building surrounds the arc-shaped mesh transition zone by a 

hexagon, which is useful for the J-integral integration path selection. Finally the 

global specimen FE model is simulated and connects to the crack area shown in 

Figure 4.7.  

 

Figure 4.7 Specific geometric global model of the edge cracked tension plate 

 

 

 

A critical issue that must be addressed in 2D FE fracture mechanics analysis is 

that of mesh generation. Software implemented in conjunction with ANSYS is 

presented, for topology and meshing in relation to crack (in Appendix C.6 Fracture 

FE Case Study).  
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In the geometry of a single edge crack, it is possible to utilize standard mesh 

generation tools to produce a crack tip surrounded by the required singular elements. 

Around the node at the crack tip a circular area is meshed by a designated number of 

triangular singular elements with quarter nodes. The mid-node element meshing 

model generation (using 8 nodes Shell93) can be created automatically by the 

programs; and stress intensity factor calculation just becomes an input-output process, 

although the process is a little time-consuming. The plate area was meshed using 

ordinary 4-node isoparametric elements except for the vicinity of the crack tip with 

series of singular elements shown in Figure 4.7. Parabolic isoparametric shell 

elements were used, the models containing up to 8000 elements at the crack front. 

 

 
Figure 4.8 Plate FE model meshed by ordinary and singular elements 

 

 

In Figure 4.9, it is an enlarged view of the singular elements showing that 

triangular elements are placed in a radial manner and that the size of the second row 

of elements equals half the radius of the first, crack tip, row of elements.  
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Figure 4.9 Enlarged view of the triangle singular elements  

(with quarter point nodes) at the crack tip 

 

 

The results are presented as a function of the ratio of the crack-tip element size 

along the crack length. The K values can be calculated from the crack surface 

deformation. Alternatively the FE-calculated J value can be used, together with a 

relationship of K-J. The calculated stress intensity factors compared favourably with 

theoretical solutions published in the literature (PC. Paris and GC. Sih, 1965) in 

Table 4.1.  

Stress intensity factors, considering step increases in crack length, have been 

calculated using FEA. The single edge crack model is investigated according to FEM 

with a refined mesh in ANSYS using shell elements (SHELL93) and solid elements 

(SOLID95) of ANSYS.  

The non-dimensional geometry (Y) factors for KI are obtained by FE and 

published analytical solutions. A very good correspondence is found between the 
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analytical solutions and the numerical points.  

/IY K a   4.1

 

The theoretical and numerical SIF estimates are compared in Table 4.1. 

Table 4.1  

Y value of single edge crack strip plate of width w 

 Bowie Gross Numerical results (2D) 

a/b Strip with edge crack KI J-integral 

0.05 1.15 1.14 1.137 1.185 

0.1 1.20 1.19 1.186 1.237 

0.15 1.29 1.29 1.263 1.316 

0.2 1.37 1.37 1.366 1.424 

0.25 1.51 1.50 1.498 1.561 

0.3 1.68 1.66 1.662 1.733 

0.35 1.89 1.87 1.867 1.947 

0.4 2.14 2.12 2.121 2.213 

0.45 2.46 2.44 2.441 2.547 

0.5 2.86 2.82 2.849 2.972 
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The KI estimates are consistently closer to the analytical solutions than those 

derived from the J-integral values. 

The trend for different crack lengths is shown in Figure 4.10.  
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Figure 4.10 SIF factors comparison between the existing approaches 

(this is the data from Table 4.1) 

 

It is seen from the figure that FE calculation can match the analytical points 

quite well; with a maximum error 6%. This simple modelling should precede more 

complex models. 
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Stress concentrations are usually calculated by linear or quadratic extrapolation 

from predefined extrapolation points on the plate surface. These usually depend on 

the plate thickness and have been developed by research institutes and classification 

societies. The final fatigue life assessment is performed using Woehler SN curves.  

This section compares different methods from different rules. 

The numerical results were obtained using ANSYS. The unit system was 

defined consistently as length—m, time-s, mass-kg, force-N and stress-Pa. Complete 

columns of the element size, element type and the results are provided. The ship 

component analysed is shown in Figure 4.11. 2D elements (Shell63) were used. 

Around the structural connections the mesh had a very fine density.  

 

 

3,000 mm 

1,300mm

10KN 

10KN

Figure 4.11 Principal fine mesh model of the ship components 

 

 

Preceding finite element analyses have shown that large stresses occur around 

the corners.  

4.3 FEM Applications in Ship Engineering 
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The recommendations by classifications societies (LR, ABS, BV/RINA, GL, 

KR and NK were compared in a comparative study, W. Fricke, W. Cui, etc, 2002). 

The predicted lives varied considerably; between 1.8 and 20.7 years, as shown in 

Table 4.2. This is clearly unsatisfactory.  

 

 

In this Chapter, FE analysis is used to calculate KI values for an edge crack and 

the results are found to agree, to within less than 6% difference with analytical 

solutions:  

 

 Singular stress field 

 Nominal stresses 

 SCFs 

 Stress intensity (K) values 

 

The use of the Length Scale, when selecting mesh size or locations for taking 

stresses from the analysis, is discussed. 

SCFs calculated by different organizations and using different rules are 

compared and found to differ very considerably. Results from the Length Scale 

method were also compared with these results and showed in Chapter 6. 

 

1. P.C. Paris and G.C. Sih, in: Stress Analysis of Cracks, ASTM STP 381 (1965) 

30-83 

2. Saouma, V. and Schwemmer, D., Numerical evaluation of the quarter point 

singular element, International Journal of Numerical Methods in Engineering 

20, 1629–1641 

3. Tada, H., Paris, P.C. and Irwin, G.R. The Stress Analysis of Cracks Handbook, 

4.4 Conclusions 

REFERENCES 



FEA IN FATIGUE&FRACTURE MECHANICS 

116 

2nd edition, Paris Productions and Del Research Group, 2000, Missouri 
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Table 4.2  

Results comparison of the comparative study from classifications 

Rules and  

guidelines 

Types of stress 

approach 
Elem. type 

Size 

long./transv./vert. 

Ref.  

points (t) 

SCF 

(hot spot/weld) 

Fatigue 

life (yr) 

ABSa 
Nominal 

Hot spot 
Solid 20-nodes 330 30 30mm   0.5/1.5 

-/- 

1.736/- 

8.9 

7.0 

BV/RINAb Notch Solid 8-nodes 330 30 10mm   0.5/1.5 1.63/1.84 6.0 

DNVc Notch    1.47/1.5 20.6 

GLd 
Nominal 

Hot spot 
Solid 20-nodes 330 30 30mm   0.5/1.5 

-/- 

1.9/- 

13.4 

20.7 

KRe Hot spot Solid 8-nodes 330 30 30mm   0.5/1.5 1.66/- 6.5 

LRf Hot spot Shell 230 30mm  0.5 1.81 12.0 

NKg Hot spot Solid 8-nodes 330 30 15mm   0.5/1.5 2.15/- 1.8 

RSh Hot spot Solid 20-nodes 330 30 7.5mm   0.5/1.5 1.80/- 15.2 

 
a  ABS. Guide for dynamic based design and evaluation of container carrier structures. A simplified method for fatigue strength 

assessment. American Bureau of Shipping, Houston, 1999. 

b  BV. Rules for the classification of steel ships. NR466A JAP R00 E, Bureau Veritas, Paris, 1999. 

c  DNV. Fatigue assessment of ship structures, Det Norske Veritas Class Notes No.30. 7, 1999. 
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d  GL. Rules for classification, IFship technology, Part 1, seagoing ships, Hull Structures, Germanischer Lloyd, Hamburg, 1998 

[Chapter 1] 

e  KR. Guidance relating to rules for classification of steel ships.Annex 7-8 Guidance for the fatigue assessment of ship structures. 

Korean Register of Shipping, 1998 

f  LR. Ship Right FDA level 3 procedures manual, technical planning and development department. Lloyd’s register of Shipping, 1998 

g  NK. Guidance for fatigue design of ship structures. Nippon Kaiji Kyokai, 1995 

h  Boitsov GV et al. New norms of ship hull strength realized by software system ‘RUSLAN’. Transactions of Russian Register of 

Shipping, 22nd ed., RS, St. Petersburg, 1999. 
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Table 4.3  

FE calculated SIF with different crack length 

a/w 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

SIF 4517.05 6668.25 8853.20 10856.76 13290.03 16111.41 19603.81 23759.14 29004.20 35334.50 

2D J 9.7E-05 2.12E-04 3.60E-04 5.63E-04 8.45E-04 1.25E-03 1.84E-03 2.72E-03 4.05E-03 6.12E-03 

2D J KI 4695.07 6930.25 9033.23 11288.58 13834.68 16822.20 20414.24 24801.48 30276.25 37233.25 

Error (%) 3.94% 3.93% 2.03% 3.98% 4.10% 4.41% 4.13% 4.39% 4.39% 5.37% 

3D J 9.84E-05 2.15E-04 3.72E-04 5.76E-04 8.48E-04 1.27E-03 1.86E-03 2.74E-03 4.11E-03 6.15E-03 

3D J KI 4718.76 6976.70 9181.88 11414.55 13851.39 16979.21 20540.05 24896.15 30497.77 37325.75 

Error (%) 4.47% 4.63% 3.71% 5.14% 4.22% 5.39% 4.78% 4.79% 5.15% 5.64% 
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This chapter considers the usage of the Length Scale confirmed in Chapter 3 

and 4 in Linear Elastic Fracture Mechanics. This section aims to find a simple 

expression for K, applying to cruciform plate directly, extend to realistic 

components.  

The fracture mechanics concept is applicable to the assessment of crack 

imperfections, and the simplicity and clearness of the theory are in contrast to the 

difficulty of application for many practical details.  

Fracture mechanics usually consider the elastic stress intensity factor and energy 

release rate, or non-linear CTOD and J-integral. In crack propagation analysis: 

LEFM is the usually applied. 

Fatigue analyses carried out by LEFM requires the Stress Intensity Factor 

calculations. Then the fatigue crack growth rate can be calculated using Paris’ Law: 

Eqn. 5.1:  

0 ( )mda
C K

dN
    5.1

 

The Paris equation initiated widespread research activities. However, both in 

CHAPTER 5 

FRACTURE MECHANICS 

IN FATIGUE ASSESSMENT 

5.1 Introduction
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this form and with modifications (e.g. including explicit power law dependence on 

parameters), Paris Law has served the engineering design community well.  

 

 

The calculation of SIF is needed and it can be obtained by using finite element 

(FE) analysis, unfortunately numerical simulation is too complex for quick prediction 

of the likely behaviour and too time-consuming for the repeated analysis that would 

be required for reliability analysis of a complete ship.  

There are other methods for stress intensity factor, such as analytical methods 

(Westergaard method, and complex functions method), Numerical method (Green’s 

function (H.G. Maschke, 1985), weight function (Bueckner H, 1987), boundary 

collocation, integral method, continuous dislocations, or experimental methods 

(photoelasticity, holography and caustics). All these methods are also difficult or 

time-consuming to apply to realistic structures. 

 

 

The crack is assumed to start at the sharp corner and then to propagate along the 

direction perpendicular to the loads (the former assumption is clearly good, the latter 

assumption involves some approximation as the true crack path is likely to be 

curved).  

Numerical results for a cruciform geometry are obtained from the FE program 

ANSYS; the results are plotting in Figure 5.1. In the figure, the x-axis values are the 

crack length ratio of height of the cruciform flange and the y-axis values are the 

non-dimensional mode of SIF values ( /K a  ). As one check on the results two 

kinds of elements (shell and plate element) are used for the KI calculation; however, 

there are no distinguishing differences, as shown in Figure 5.1.  

5.2 SIF Calculation

5.2.1 SIF Comparative Calculations for Different Crack Sizes
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Figure 5.1 Non-Dimensional FE KI results along the crack growth path 

 

 

 

 

It is possible to predict this behaviour using the equations for the stress 

singularity (as developed in Chapter 3) in conjunction with weight functions of crack 

in the cruciform plate. This weight function could be calculated using FEA but that 

would not be very helpful when, as discussed above, there is an advantage from 

avoiding FEA. 
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Firstly, the confirmation of corner weight function was checked by different 

weight functions results and FEA results in Figure 5.2. The use of the weight 

function for an edge crack in a semi-infinite plate gave the best approximate results. 

(More detailed background to the weight functions used is given in Appendix B.1 

Weight Function Method.  

 

Figure 5.2 Comparisons of various weight function curves  

non-dimensional SIF is /K a   

 

 

 

5.2.2 Use of Different Weight Functions for Estimating the 

Corner SIF 
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Figure 5.3 a) Plate dimensions with center crack; b) plate dimensions with edge 

crack 

 

It has been shown that the weight function of semi-infinite plate can be used for 

a single edge crack, in conjunction with the singular stress field of un-cracked plate, 

to predict the single edge crack in the cruciform; the trend of the results fit very well 

and the error between the analytical curve and the numerical points is less than 0.1% 
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within the crack length ratio range 0.1~0.5.  

 

 
 

Figure 5.4 KI comparisons of cruciform plate in the allowance crack stage 

 

 

The results, in Figure 5.4, calculated by using the analytical functions within the 

range of crack sizes, around 0.05 - 0.2, however for short cracks (shown in more 

detail in Figure 5.5), the difference between the values based on the stress 

distributions for weight functions and finite element results differ considerably.  
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Figure 5.5 KI comparisons of cruciform shape during the short crack stage 

 

 

 

The shape in the Figure 5.4 and Figure 5.5 is interesting, with the rapid increase 

of SIF for small crack sizes and for large crack sizes. The rapid increase of large 

crack size relate to the crack growing through a large proportion. It will be shown 

that the rapid increase at small crack size is related to  

 the effect of the corner singularity; and 

 the corner being a weaker singularity than that of the crack 

 

 

 

 

 

In the results comparisons of FEA (see Chapter 4) and the additional crack size 

5.2.3 SIF Corrections for Early Crack Extensions 
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analysis are compared. It is apparent that the except for the smallest cracks the 

additional crack size method provides a good fit to the finite element results.  

For small (though not the smallest) cracks, an additional crack size can also be 

defined to represent the effect of the singularity. As the crack becomes smaller, the 

additional crack size ‘ae’ constitutes an increasing fraction of the effective overall 

crack length. Conversely as the crack propagates into the interior of the specimen the 

effect of ‘ae’ reduces. 

0( ) ( )K F a a ae    5.2

As an alternative to use the weight function, the geometry factor can be added to 

the crack size. A similar concept has been applied to fatigue crack growth thresholds. 

(The relationship or links between the fatigue limit and threshold SIF was proposed 

by Kitagawa and Takahashi (1976) using Kitagawa diagram. For the concept of 

threshold stress intensity factor, it is often used with damage tolerant design, which 

defines a loading criterion under which the cracks will not grow significantly 

(Lawson L, Chen EY, Meshii M, 1999).  

By investigating plastic threshold effects, El Haddad (1980) proposed the use of 

an additional crack size ‘ 0l ’ in Eqn. 5.3.  

0 0( ) ( )K F a a l    5.3

 

It is shown differences between FE results and WF and BC methods existing, 

the reason can explained as the structural shape differences: FEA is applied on the 

cruciform plate and the WF and BC methods are different. It is obvious that the 

differences are found at the initial length outside of the large crack length. 
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Figure 5.6 Fatigue crack SIF comparisons at threshold crack length 

 

 

It is found empirically that for right angled corners ‘ae’ is approximately equal 

to as in Eqn. 5.4, which has shown to be reasonable in Section 6.4.  

 

ae as  5.4

 

In order to check the application of the empirical expression, it is useful to 

research the behaviour of different crack size of as ranges. The additional crack size 

method works particularly well for crack sizes greater than as (or than the distance to 

a significant change in thickness).  

 

 

 

5.2.4 Small cracks in corners
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Because a corner singularity is weaker than crack singularity (e.g. 1/r0.455 for a 

90o corner, 1/r0.5 for a crack, the stress intensity factor for a crack in a corner starts at 

0, for no crack but increased rapidly; so the Mode I solution for very short stage can 

be approximated from the power index expressions shown in Eqn. 5.5 

2
0 1( / )CK C a b    5.5

a  is the crack length on the cruciform 

b  describe the geometry characterics, can be considered as the Length Scale ‘as’ 

 

Suitable fitted values are given in Eqn. 5.6 

1 20.765, and 0.225C C   5.6

 

To calculate the stress intensity factor the small crack formula can be used for a 

< as, which also includes results from Eqn.5.6.  

The fit is shown in Figure 5.7; a better fit with Eqn. 5.6, and a relation to the 

previously calculated as value can be obtained by including an additional term: 

 

2

0 1 31.1
C

a a
K C C

as as
 

        
   

 5.7

1 2 3, and , C 0.1.24 0.075 94C C    5.8

 

Note the constant of 1.1 could be combined with C1 and C2 but it is convenient 

to keep it separate as it relates to an edge crack. 
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Figure 5.7 Illustration of approximation power index formula with the FE results 

 

 

For larger cracks approaching a plate edge, the K value depends on the crack 

length, a, to the plate width, b, as shown in Eqn. 5.8. 

 

2

0 1 3

0

1.1  for 

1.1 ( )             for a > as, / 0.1

 or                         for 0.1 / 1.0

C

I

I

a a
K C C a as

as as

K a ae a b

WF BCM a b

 

 

                  


  

 5.9

 

For the middle range ‘ae’ is approximately equal to ‘as’ and a constant Y value 

of 1.1 fits finite element analysis results quite well.  
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Several attempts have been made to find the general analytical form for edge 

crack model. Bowie (1964) and Gross (1967) treated the single edge crack using 

Williams’ eigenfunction representation of the Airy stress function.  

Author of this thesis developed a further equation by modified the geometry 

function of Tada’s (1985), which also accounts for the effect of a nearby singularity 

with power factor ‘p’ shown in Eqn. 5.10.  

0.455
2

( / 2)
( / ) [tan(1.325 )

/ 2

     0.65sin(1.40( ) 0.16( ) )]
/ 2 / 2

b a
F a b

a b

a a

b b

 


  


 5.10

A number of empirical formulas dealing with edge or central crack problems are 

given for any a/b are given in Appendix B.2 Boundary Collocation Function, and the 

classical results shown in Table 5.1.  

Table 5.1 

Correction factors of single edge crack plate 

a/b 
F(a/b) 

by Gross, 1967 

F(a/b) 

by Bowie, 1964 

F(a/b) 

Eqn5.10 

0.05 1.14 1.15 1.153 

0.1 1.19 1.20 1.204 

0.15 1.29 1.29 1.276 

0.2 1.37 1.37 1.371 

0.25 1.50 1.51 1.488 

0.3 1.66 1.68 1.632 

0.35 1.87 1.89 1.813 

0.4 2.12 2.14 2.048 

0.45 2.44 2.46 2.381 

0.5 2.82 2.86 2.926 

 

5.3 Cracks approaching an edge 
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In their works (Bowie1964 and Gross1967), they found the collocation was 

required to obtain convergence; the correction factors are given in Figure 5.8 curves 

show good agreement with each other. The excellent agreement is obvious, especially, 

the classical solution is determined comparing with my empirical formula of Eqn. 

5.9.  
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Figure 5.8 Values by BCM of single edge crack of strip specimen 

 

 

 

 

 

 

 



FRACTURE MECHANICS 

IN FATIGUE ASSESSMENT 

133 

 

Cruciform is accepted as typical model analyzed by FEA with edge crack 

propagating from sharp corner, midline symmetry on single side. 

The resulting K values were fitted equations of the form: 

0( ) ( )K F as a ae      5.11

The SCF prediction methodology, from the LFEM results, is illustrated in the 

method of a crack propagating from a likely initial size (0.25mm) to a size 

corresponding to design failure of the component.  

Several definitions are possible for the final crack depth. 25 mm seemed 

reasonable, representing the thickness of the ship hull plates applied in practice. This 

final crack size is referred as af and the initial crack size as a0 in Eqn. 5.11. 

 

Figure 5.9 Typical fatigue design stress concerning crack growth approach 

(-2 standard deviation SN curves) 

 

The crack propagation can be simulated with LEFM adopting the Paris law 

in5.12.  

0 ( )m

da
dN

C K


 
 5.12

5.4 SCF Assessments from LEFM 
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Where 

0 0( ( ) ( ))m

da
dN

C F as a ae 


   
 5.13

2

0 0

( ( ))

( ( ) )

m

m

a ae da
dN

C F as





 


 

 5.14

 

f

0

f

0

2

0 0

1 1

2 2
f 0

0 0

( ( ))

( ( ) )

( 2 ( )) ( 2 ( ))

( ) ( )

m

a

ma

a

m a

a ae da
N

C F as

a ae a ae da

C F as




 




 

 


 

    


 





 5.15

 

The crack growth constants, C0 and m, were mean or -2 standard deviation 

values taken from BS7910 (2005) and the SN curves are mean or -2 standard 

deviation curves from BS 7608 (1993). A single slope SN curve and the simplified 

constant crack growth coefficients were selected 

The decisions taken regarding these issues are based on the two basic data 

presented: crack propagation calculation and the SN curve transitions, and then the 

subsequent crack growth is modelled by a 2D stress situation with an edge crack 

using LEFM based on British guidance.  

The SCF (appropriate for a given S-N curve class, typically D or E is given 

either by: 

 

   The stress from the Class D or E (-2 standard deviation SN curves) 

      The nominal stress for the fracture mechanics calculation 

or by the ratio of cycles to failure at the same stress: 

-m
nominal

Design /

D D

m
D

N C S

SCF N N

 


 5.16

 

The new methodology provides a simplified way of estimating SCFs or K 

values for fracture mechanics calculation. In particular we can determine SCF values 



FRACTURE MECHANICS 

IN FATIGUE ASSESSMENT 

135 

directly from the geometry by estimating the scale factor from a function based on 

these results (Eqn. 5.16). 

( )SCF Function as  5.17

 

 

Figure 5.10 Length Scale approach for assessing the stress concentration factor of 

pointed engineering structural component 

 

 

 

We can also fit a curve get SCF against as value by LFEM, conveniently shown 

in Figure 5.11.  
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Figure 5.11 Comparison of SCF according to different approaches 

 

 

 

The method presented here provides an effective direct or screening method for 

solving general fatigue problems, may justify more careful consideration.  

Understanding the nature of the stress field as categorized by ‘as’ will also help 

the FE analyst set up a better model because they can estimate location from the 

corner that is significantly influenced by the right angled corner singularity:  

 Stresses are about 10% greater than the nominal value at a distance of as. 

 Stresses are about twice the nominal value at a distance of as/10.  

The results also demonstrate the shortcomings of conventional extrapolation 

techniques used for determining SCFs from FE analyses that are often based on 

extrapolation from specified multiples of the plate thickness. This is clearly wrong 

but the IIW (2007) provide a more logical extrapolation rule and BS7608 is being 

5.5 Conclusions 
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updated (with input studies used within this work helping to justify the new 

extrapolation rule). 
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  The Length Scale concept has been developed to provide: 

 a simple method of roughly assessing the stress patterns and hence the fatigue 

life in structural details containing sharp corners with, theoretically, infinite 

stress; 

 guidance, on the stress patterns to expect, when setting up a finite element 

analysis; 

 estimates of stress intensity factor : SIF or K for fracture mechanics 

calculations 

 

It is generally acknowledged that the fatigue strengths failing from the ‘weak’ 

locations can decrease with increase in plate thickness (Gurney TR, 1979). Some 

works (Maddox SJ, 1987, 1995) showed that there was an affect of the overall sizes 

of the components.  

This section considers how the length scale varies with different geometry and 

provides some background to the analyses used to develop the approximate form of 

Length Scale.  

 

 

CHAPTER 6 

LENGTH SCALE ‘as’ VERIFICATION 

6.1 Introduction
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The approximate ‘as’ formula, derived in Chapter 3 for the simple cruciform 

specimen having constant thickness plate, serves as a very valuable estimator for the 

Length Scale:  

 

 ( / 22, / 3  ) sa smallest of L H  3.12

 

 

FEA was performed to determine the influence of the attachment geometry; the 

lengths (L, H) of the attachment were changed from 0.05m to 0.95m, the dimensions 

of the main plate (a, b) are both fixed at 2.0 m, the equivalent thickness of the plate is 

accepted as 10 mm.  

 

 
Figure 6.1 Cruciform diagram of the connection section 

 

 

 

6.2 Approximate Length Scale

6.2.1 Bracket/attachment plate influences 
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Finite element analysis is employed for the stress calculation on the 

perpendicular loading direction. If the width of the flange is fixed as constant 

(L=0.1m, 0.3m, 0.5m, 0.7m, 0.9m), the stress values are plotted with different height 

values shown in Figure 6.2:  
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Figure 6.2 Stress distribution plots 

Each colour represents the effect of changing H from 0.05 to 0.95 for the noted 

length of cruciform L. The higher curves correspond to the higher values of H 

(Changing H values and a=2.0m, b=2.0m, t=10mm) 

 

 

From the points plotting in Figure 6.2, the curves for different heights 

convergence to same stress curve line, even the width of attachment is very short. If 

the length of the attachment is increased, then the height of the attachment becomes 

important. Note that these results are for the same range of H for each L. If the range 

of H/L had been kept constant then there would have been some variation of stress 

with H, even for the smaller L values. 
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If the length of the attachment is varied with constant height of flange (H=0.5m, 

0.9m), the stresses increase with the length of the attachment shown in Figure 6.3. 

It can be seen the influence of the geometry is such that usually the length of the 

attachment will affect the stress singularity more than the height of the attachment.  
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Figure 6.3 Stress distribution plots of constant height H of cruciform 

The higher curves at each H correspond to longer L 

(Changing L from 0.05 to 0.95, a=2.0m, b=2.0m, t=0.01m) 

 

 

Each stress distribution can be fitted to equation 3.12. It can be done by using 

MATHCAD and the function ‘genfit’. Examples of fit calculation are shown in 

following figures. 

 

The resulting Length Scales are plotted out as a contour surface in Figure 6.4. 

The reason for the lack of smoothness for large H and L is not clear, it may be caused 

by a poorer mesh used for these analyses, and it may be caused by the finite width or 
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length of the cruciform. 

 

Most of this surface shows the relationship between as and the length L of the 

bracket. The fold downwards on the left side represents the area where the height H 

of the attachment is dominating the as value. The approximate formula is shown in 

Figure 6.4 

 

Figure 6.4  ‘as’ changing with the L and H for cruciform component 

The solid black lines represent the surface defined by the approximate formula of 

Eqn. 3.12 

 

Sections through the surface are shown in Figure 6.5 and Figure 6. 6. 
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Figure 6.5 Sections through Figure 6.3 for constant H 
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Figure 6.6 Sections through Figure 6.3 for constant L 
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By analyzing a large number of cruciform types, Figure 6.7 and Figure 6.8 

represent a summary of the typical Length Scale as results graphically. It is again 

evident in Figure 6.7, that the ‘as’ values are only dependent on H values, for the 

larger lengths L.  
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Figure 6.7 The effect of short width L influence on the ‘as’ value 

 

 

For the higher height and Length values, the numeric ‘as’ results are as shown in 

Figure 6.8, which again shows the irregular shapes.  
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Figure 6.8 The effect of longer width L influence on the ‘as’ value 

 

 

 

 

According to the simplistic idea of the length scale for geometrically similar 

shaped details the length scale should change in proportion to the size of the detail. If 

the attachment dimensions are kept constant, while the main plate changes may have 

insignificant effect on the ‘as’ value  

To check this the main plate size (a, b) is increased in steps (2×2m, 4×4m, 6×6m, 

8×8m, 10×10m) but the same range of the attachment sizes are used.  

The resulting ‘as’ values are shown in Figure 6.9, these suggests that there is a 

small effect of the main plate size, except where the attachment size become similar 

to the plate size (for the case of smaller a, b and larger L) 

 

6.2.2 Basic plate influences
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Figure 6.9 ‘as’ results of assumed large main plates 

 

 

Figure 6.10 shows the SCF values that are derived from the as values. Again 

there is little effect of the size of the base plate. 
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Figure 6.10 SCF changing with the cruciform geometries (H, a or b) 

 

 

The results show that the stress raiser rarely depends on the geometry of main 

plate, and for most cases it will be the geometry of the attachment that is important. 

Note that the ‘as’ formula can be applied to real component evaluations, this will be 

the subject of later sections.  

 

 

To check the quality of the fit, the stress distribution from FEA is compared 

with a stress distribution estimated from Eqn. 3.6 with the singularity power p taken 

as the theoretical value 0.455 and the as value the lesser of H/3 and L/22.  

 

6.3 Comparison of the length scale formula and stress 

distributions at the corner of a Cruciform Shape 
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Results for L varying from 0.2m to 0.9m are shown in Figure 6.11.  
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Figure 6.11 FE Stress values for various constant height H (=0.1m) specimen 

  

 

The geometric effects can be seen more clearly, for H = 0.1 with L = 0.2 and L = 

0.9 in Figure 6.12 and Figure 6.13. In Figure 6.12, the length of the attachment is 

0.2m and height is 0.1m; the Length Scale is calculated as 9.091E-3m. The formula 

for the stress distribution exhibits a reasonable approximate fit to the numerical 

results as shown on the log plot. Note that the stress from the FEA dips down below 

the mean level. This may be caused by the moments needed to equilibrate the 

eccentricity of the force that transfers into the outstand. 
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Figure 6.12 Stress comparisons for cruciform specimen (L=0.2m and H=0.1m); 

analytical Length Scale, as=9.091E-3m (min(L/22, H/3 = 9.091E-3)) 

In Figure 6.13, it shows the other extreme of the cases considered. Again the fit 

is slightly better than for the shorter outstand. Maybe because the stresses require 

balancing the eccentric moment are smaller. 
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Figure 6.13 Stress comparisons for cruciform specimen (L=0.9m and H=0.1m); 

analytical Length Scale, as=0.033m (min(L/22, H/3 = 0.033)) 
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The numerical and analytical curve of 3 kinds of different geometry attachments, 

each having the same ‘as’, are checked in Figure 6.14, showing that as can be a good 

indicator of the likely stress pattern. The results are shown separately in Figure 6.15; 

with attachment (L=0.5 m and H=0.7m) in Figure 6.16; with attachment (L=0.5 m 

and H=0.9m) in Figure 6.17. 
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Figure 6.14 Stress comparisons for cruciform specimen; 

analytical Length Scale, as=0.023m (min(L/22, H/3 = 0.023)) 
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Figure 6.15 Stress comparisons for cruciform specimen (L=0.5m and H=0.1m); 

analytical Length Scale, as=0.023m (min(L/22, H/3 = 0.023)) 
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Figure 6.16 Stress comparisons for cruciform specimen (L=0.5m and H=0.7m); 

analytical Length Scale, as=0.023m (min(L/22, H/3 = 0.023)) 
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Figure 6.17 Stress comparisons for cruciform specimen (L=0.5m and H=0.9m); 

analytical Length Scale, as=0.023m (min(L/22, H/3 = 0.023)) 

 

It is evident that with Length Scale the curves do exactly coincide with the FE 

results, except for the tip locations where the stress singularity points.  

 

In Figure 6.18, the results for a constant length L (=0.1m) are plotted for values 

of height H (from 0.2m to 0.9m). These curves are all the same, and again show the 

stresses dipping down to 10% less below the nominal stress. The Length Scale is 

from about 0.012m or 0.5as to 0.1m or 4.4as.  
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Figure 6.18 FE Stress values for various constant width L(=0.1m) specimens 

analytical Length Scale, as=0.023m (min(L/22, H/3 = 0.023)) 
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Figure 6.19 Stress comparisons for cruciform specimen (L=0.5m and H=0.7m) 

analytical Length Scale, as=4.545E-3m (min(L/22, H/3 = 4.545E-3)) 
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It is clear that the stress trends are similar, though not exactly the same as the 

approximate formula. Nevertheless, the stress distribution is still acceptable for a 

stress concentration factor or crack growth calculation with an acceptable error 

between the approximate formula and the FEA result.  

It can be recognized that the geometry will affect the stress raises by discussing 

the Length Scale ‘as’ for different attachment shapes. The good matches between our 

formula and numerical results do show significant applications of the Length Scale 

approach, particularly considering that Length Scale can be taken as a measurement 

of stress concentrations.  

 

 

Structural details are not simple cruciform; however the cruciform research 

provides a method for assessing many other details in Figure 6.20.  

 

 
Figure 6.20 Longitudinal stiffener plates in fatigue analysis 

 

 

For the attachment shown in Figure 6.21, the attachment can be converted to the 

cruciform shape, with the main plate (for a one sided attachment) being considered to 

be thickness 2tp (tp for a single sided attachment) and folded downwards. Note that 

this excludes any bending of the main plate from the eccentricity of asymmetric 

attachments.  

6.4 Verification for Geometric Transformation 

to 

tp 

L
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Figure 6.21 Cruciform equivalent plate to Figure  

 

 

The mid-layer stress along the longitudinal direction of the main plate is 

compared with the stress from Equation 3.6. The thickness factor is found from Eqn. 

3.16.  

 

0.87 0.5
0 0 ( / 22 (2 / ) , / 3 (2 / ) )s p pa smallest of L t t H t t    3.16

 

To position the surface evaluation points, the stress distributions are obtained by 

verifying the stress formula. We just need top-layer stress distribution (or hot-spot 

SCF values) to compare the two geometry specimens.  

The Length Scale ‘as’ was derived from the attachment (L, H), and then applied 

in the empirical stress distribution formula. The models have the following 

dimensions L=0.25m/ H=0.55m, L=0.45m/ H=0.20m, L=0.95m/ H=0.35m and 

L=0.55m/ H=0.15m.  

 

The results are compared in Figure 6.22 to Figure 6.25; the distance away from 

corner is plotted by log.  

2tp 

to H 

L 

L 
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Figure 6.22 Stress comparisons for cruciform specimen (L=0.25m and H=0.55m); 

analytical Length Scale, as=0.021m (min(L/22, H/3 = 0.021)) 
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Figure 6.23 Stress comparisons for cruciform specimen (L=0.45m and H=0.20m); 

analytical Length Scale, as=0.037m (min(L/22, H/3 = 0.037)) 
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Figure 6.24 Stress comparisons for cruciform specimen (L=0.95m and H=0.35m); 

analytical Length Scale, as=0.079m (min(L/22, H/3 = 0.079)) 
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Figure 6.25 Stress comparisons for cruciform specimen (L=0.55m and H=0.15m); 

analytical Length Scale, as=0.046m (min(L/22, H/3 = 0.046)) 
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The gusset thickness plays a main leading role to decrease the stress singularity, 

comparing the stress flow goes across the gusset, the peak stress will be cut to flat 

floor. SCF can be introduced by geometric application; the decisive issue is how to 

obtain the significant Length Scale from the thickness corrections.  

It was shown that the influence of the thickness can be separated from that of 

gusset dimensions by checking the singularity. By comparing the numerical results 

derived from ANSYS and scaling the stress distribution values, the geometry 

correction (by folding the thickness of plate) can apply on the transformation of 

shape categories very well.  

The raise stress distribution is still influenced by the width of gusset dominantly, 

although the equivalent thickness can be compared with the folded plate thickness, 

however the thickness correction can not ignore during the calculation of Length 

Scale.  

 

 

The new Length Scale concept and associated stress patterns has been compared 

with FEA using ANSYS. The comparison has shown:  

1. For the cruciform the factor ‘as’ is a useful way of characterizing the 

singularity.  

2. For many practical cases the stress singularity is strongly dominated by the 

length of the attachment.  

2. The size of the main plate will generally be sufficiently large that it does not 

affect the prediction of Length Scale ‘as’. Therefore we do not need to introduce 

main plate information into the formula for determining the Length Scale.  

3. At the cruciform corner, the stresses from the Length Scale based formula and 

the numerical results show an agreement that is acceptable for preliminary and 

screening purposes.  

4. As well as the cruciform shape, other more complex components can be 

assessed using the length scale method.  

 

6.5 Conclusions 
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In laboratory tests and during the service life of ship structures, cracks are 

observed at the connection locations. The stiffener is the frequent location owing to 

the severe angular discontinuity in the ship (or shell-plate) structure.  

This chapter considers the structural connections in the HHI report (W. Kim and 

I. Lotsberg, 2004). A comparative study of the guidelines of IIW recommendations 

(IIW, 2002; Hobbacher, 2004) and BS7910 (1999), and the length scale method is 

performed to find the SCF predicted by each approach.  

 

 

The various specimens investigated by Hyundai Heavy Industries. Co., Ltd is 

defined as HHI#1-5 specimen and is shown in Figure 7.1. ISSC (1997), and the 

FPSO JIP (reference) also studied of these structural details. 

 

CHAPTER 7 

COMPARISON OF LENGTH SCALE SCFs WITH 

PUBLISHED DATA 

7.1 Introduction

7.2 Selection of Structural Examples
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Figure 7.1 Specimens fatigue tested by HHI and analyzed by FE (Lotsberg, 2006) 

 

It could be seen in Figure 7.1 that HHI#1 is a well known detail frequently 

fatigue tested considering to be one of the most reliably categorized details 

(Zettlemoyer and Fischer, 1978); HHI#3 has two doubling plates of an oblong shape 

during the FPSO JIP (W.S Kim, I. Lotsberg, 2004) and the HHI#5 is considered to be 

the most severe for out of plane bending. These details are fabricated with a full 

penetration weld without plate fillets, which increases the corner discontinuity. 

Parallel to the experimental investigations, extensive finite element analyses 

were performed. The typical hot spot positions (or failure positions) are classified 

according to geometric characteristics, at the end of attachment and connection 

around the plate edge.  

Lotsberg (1998), decided to perform analyses of the HHI specimens and the 

specimen with the severe discontinuity at crossing plates where measurements of 

stress gradient region have been performed in a DNV project.  

W. Fricke (2001) used the conventional hot-spot stress approach. He compared 

models with thin plate shell elements and solid elements. 

Based on the investigation by the previous authors, stress concentration values 

were evaluated in the 5 specimens. These stress concentration factors are 

summarized in Table 7.1.  
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Table 7.1  

Typical stress concentration values (Lotsberg, I. and Sigurdsson, 2004) 

Specimen Fricke (2001) Lotsberg.I (2004) Difference 

HHI #2 1.85 1.96 5.95% 

HHI #1 1.77 1.69 0.00% 

HHI #3 1.32 1.32 9.02% 

HHI #5 1.22 1.33 -4.52% 

HHI #4 1.96 1.64 -16.33% 

 

The structural stress procedure is investigated in fatigue strength assessment of 

the HHI specimens by P. Dong (2004), the similarities and differences between the 

surface extrapolation procedure and the structural stress method are discussed. 

 

 

In Figure 7.1, specimens HHI #2 and HHI #5 may be classified as edge details, 

according to the works by Dong (2001) for the corner crack initiate. The joint types 

and categories of HHI #1, HHI #3, and HHI #4 are classified by Yagi etc (1991) as 

the symmetric component. It should be noted that HHI #1, HHI #3 and HHI #4 

posses the symmetry in joint geometry and loading with respect to the mid-thickness 

direction.  

Although there are 5 specimen tests, four of details are selected for the 

refinement of length scale stress approach. These investigated specimens are HHI#2, 

HHI#5, HHI#1 and HHI#3 (in the order presented below) 

 

 

The first detail has gussets, 150 mm long and 80 mm high, on the plate edges, as 

shown in Figure 7.2. The size for the main plate is 60 570 mm. For the analysis the 

7.3 Further Assessment of HHI Specimen

7.3.1 Specimen HHI #2: Gussets on the Plate Edge 
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main plate is subjected to tensile loading 1.0MPa  .  

 

Figure 7.2 Specimen HHI#2 with edge gussets investigated  

(W.S Kim, I. Lotsberg, 2004) 

 

 

To apply the length scale methodology the structure is represented by a folded 

flat equivalent plate, see Figure 7.3. 

 

Figure 7.3 Gusset conversion to an equivalent cruciform 

 

 

A thickness equal 2 times the thickness of the plates is used for modelling of the 

transverse plates.  
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Using Eqn. 3.16, we have the Length Scale:  

 

0.5 0.87(150 / 22 (2.0) , 40 / 3 ( ) ) 2.0 as smallest of    7. 1

Here L is the length of gusset 150mm, and H is the height 40mm 

 

From the formula, the predicted Length Scale, 9.642as mm , which will be 

used for the prediction of SCF for the case.  

The surface stress distributions from all ABAQUS 2D shell finite element 

models with different mesh sizes and element types are summarized by (Dong and 

Hong, 2004) (using about txt, 0.5tx0.5t, 1/4tx1/4t and 1/8tx1/8t; four and eight node 

elements respectively) are summarized for comparison purposes. As element sizes 

were further refined, the HSS values using extrapolation from 0.5/1.5t, 0.4/1.0t and 

0.5t showed convergence to a stable value when the element sizes approached 1/8t.  

The structural stress results were calculated according to Dong from the fine 

corner mesh. The shell element models provided only a membrane stress for this case, 

therefore they did not capture any thickness direction bending component, which is 

largely restrained by the geometry.  

The approach of Xiao and Yamada, 2004 was applied to a model with solid 

elements having a size of 1mm in the critical region. Therefore, one value 

representing the stress concentration at the node 1mm below the weld toe was given.  

It has been acknowledged that the approach of SCF by LEFM against ‘as’ is 

right. Here we employ the LEFM research result diagram to predict the SCF directly.  

Using the length scale estimated in Equation 7. 1 the SCF was estimated, from 

Figure 3.11, to be the function of Length Scale: 1.99.  

Using FEA to calculate the stress distribution and applying the Paris Law and 

calculating the SCF for a Fat 90 curve the SCF from Figure 5.11 was found to be: 

2.16.  

The SCFs from the various approaches are shown in Figure 7.4. 
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Figure 7.4 Summary of converged Length scale, HSS-based and SS-based SCF 

(HHI#2) 

 

The results from calculating as and from LEFM are both a little higher than the 

results obtained by the other analysis methods. All of the calculated results are lower 

than the experimental results (2.38) by Fricke (2005).  

 

 

The second edge detail is the specimen 5 from the HHI tests, representing a 

stiffener connection being subjected to shear and bending loads. In my opinion, the 

HHI#5 is a little similar with the tensile loading case, and the bending loading 

direction should be converted to that of the tensile loads. The fatigue critical position 

is the weld toe on the upper plate edge of the flat bar, as shown in Figure 7.5. 

 

 

7.3.2 Specimen HHI #5: Plate to I‐beam Box
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Figure 7.5 Loaded stiffener on I-beam box joint and the critical area 

 

 

The width (L, 200mm) and height (H, 100mm) of the flat plate are varied to 

factors for dimensional factor ‘as’, considering the stiffer plate as flange in the 

cruciform form. The thicknesses of the all plates are considered as 10mm, and also 

need to add thickness terms into the calculation. It would then be smallest of 200/22 

and 100/3 =9mm with no thickness correction. 

 

 (200 / 22, 100 / 9  3) .1as smallest of mm   7.2

Here L is the length of flat bar 200mm, and H is the height 100mm 

 

The flanges contribute in this case should be ignored. In the previous case the 

folded elements were stressed whereas here if the flat bar is considered the main 

stressed plate (see superimposed diagram above) then the flange is not doing 

anything except providing a moment restraint for the vertical member.  

From Length scale method (from Figure 3.11), this as corresponds to an SCF of 

1.947; and from the LEFM method (Figure 5.11), the SCF is around the value of 

2.12. 

The detail has also been investigated in a round-robin analysis with finite 

element models by the (Dong and Hong 2004, Choo 2004, Fricke, 2001). The stress 

Equivalent 

cruciform 
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concentration factors were derived from surface stress extrapolation according to IIW 

(2007) specifies the formula.  

The SCF results at the hot spot region are shown in Figure 7.6. 
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Figure 7.6 Summary of converged Length scale, HSS-based and SS-based SCF 

(HHI#5) 

 

 

The SCF values show a wide range. The LEFM result is higher than the 

experimental results. The SCFs estimated by the length scale are about 1.947, when 

alternative length scale method is tried, compared with the measured SCF value of 

1.85 by Fricke (2001).  

 

 

This specimen involves the gusset plate attachments on the top (and bottom) 

surfaces at the middle of the main plate as shown in Figure 7.7. (The design yield 

stress equals to 235MPa corresponding to a ship-structural mild steel according to 

the classification societies’ specifications.)  

7.3.3 Specimen HHI #1 Longitudinal Gussets on the Plate 
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Figure 7.7 Specimen HHI#1 with longitudinal gussets investigated 

 

 

The length of flange and distortions in each fabricated specimen were measured 

before fatigue testing. The attachment lengths were 150mm; with overall height 

40mm and the height from the main plate to the chamfer is 20mm. The length and 

width dimension of main plate are the same as for the HHI#2 specimens. The 

thicknesses of the base plate and doubling plates are 10mm, respectively.  

The value of the Length Scale as is derived in Eqn. 7.3.  

 

0.5 0.87 (150 / 22 (1/ 2) , 20 / 3 (1/ 2) ) 3 .6 48as smallest of mm     7.3

Here L is the length of gusset 150mm, and H is the height 20mm 

 

The structural stress procedure employs the base plate width W as the reference 

depth in the structural stress calculations using solid element models. An alternative 

particularly for this HHI#1 case could be to use solid elements to determine the steep 

stress gradients in the plate thickness direction.  

As element sizes were further refined, the HSS values used 0.5/1.5t, 0.4/1.0t and 

0.5t extrapolation for various element mesh level.  

The structural stress concentration calculated along the through-thickness 

direction of the base plate, is shown large differences comparing with other values. 

Note the values are read from the OMAE paper by Dong, 2004. 

20
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Note that due to symmetry with respect to x-y plane, the mid surface of the base 

plate, the stress gradients near the hot spot are expected to be relatively localized and 

were ignored. Typical FE model used by Dong and Hong (2004) is shown in Figure 

7.8.  

 

 
Figure 7.8 Representative FE models of Specimen HHI #1 (Dong and Hong 2004) 

 

The SCF resulting from length scale (Figure 3.11) is 1.439. The results from 

other Authors are shown in Figure 7.9 and Table 7.2. 
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SS Shell (Dong 04)

SS Solid (Dong 04)

Figure 7.9 Summary of converged Length scale, HSS-based and SS-based SCF 

(HHI#1) 
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It can be seen that the value from the length scale method (1.439) is one of the 

lower estimates of the value derived from LEFM (Figure 5.11) is 1.657.  

 

 

The last detail is HHI#3: one- sided double plate joint is similar to specimen 

detail #3 (single doubling plate joint), subjected to tensile forces. It should be noted 

that in the earlier publications, the two joint types are not distinguished. In the 

author’s opinion, there are distinguishing differences between the specimens, 

especially when comparing the results. The difference is that the joint plate surface of 

HHI#3 is pasted on the surface of the main plate as shown in Figure 7.10. The 

specimen has been investigated in a Japanese research project.  

 

Figure 7.10 Specimen HHI#3 with one-sided double plate investigated 

 

 

The fatigue critical position is at the connection end between the plates oriented 

transversely to the loading. The circular double plate causes a non-uniform stress 

distribution in the transverse direction shown in Figure 7.11.  

 

7.3.4 Specimen HHI #3: Two‐sided Double Plate Joint
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Figure 7.11 Stress steep location of HHI#3  

(Doerk, O., Fricke, W., and Weissenborn, C, 2002) 

 

The width (50mm) and height (10mm) of the double plate varied for the Length 

Scale ‘as’, considering the cross are as the cruciform plate.  

 

  (50 / 22 , 25 / 3)as smallest of  7.4

Here L is the length of double plate 50mm, and H is radius of plate 25mm, the 

thickness correction factor is assumed folding the doubler and the basic plate. 

 

The above does not allow for the transverse in plane stress concentration 

The Length Scale of HHI#3 specimen is determined as 2.273mm. The stress 

concentration factor derived by length scale method is 1.276 from Figure 3.11.  

The values derived from the performed analyses supplemented by surface 

extrapolation stress in Figure 7.12 average 1.278, slightly lower than the values from 

the length scale method. Dong’s method (2004) is applied using solid and three shell 

FE models in ABAQUS, yielding the stress concentration factors given for 

through-thickness linearization. In the study by (Dong, 2004 solid elements are used, 

from which a stress magnification factor of 1.78 was derived. All the results are 

included and together shown in Figure 7.12.  



COMPARISON OF LENGTH SCALE SCFs WITH PUBLISHED DATA 

172 
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Figure 7.12 Summary of converged Length scale, HSS-based and SS-based SCF 

(HHI#3) 

 

The longitudinal stresses are measured in front of the critical connection and 

linearly extrapolated using IIW (2009) guidelines, yielding a hot-spot stress 

concentration factor ranging from 1.15 to 1.25. 

The equation provides stress concentration factors that are in good agreement 

with hot spot and structural SCF values. The advantage is that the ‘as’ is that the SCF 

is obtained with minimal analysis. However some skill may be required to apply the 

method well.  

 

 

In this chapter, the fatigue life is assessed for the 4 different structural details 

described above. The nominal stress range (important for physical experiments) was 

150MPa  for the specimen of HHI#1, HHI#3 and HHI#5 and 80MPa  for 

the specimen of HHI#2. My predicted lives were compared with estimates from other 

researchers and the test results. This is a considerable data base with useful FE 

analyses results, correlating SN data from all the joint types.  

The investigation has shown that the SCFs obtained from the length scale 

7.4 Fatigue Life Assessment
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approach are good estimates of the SCFs from FE analysis combined with LEFM 

 

 

This chapter gives an overview of HHI test specimens. Recommendations with 

respect to definition of Length Scale (for stress concentration factors prediction) are 

given based on the types of geometry. 

From the results comparisons with FEA and tests results, the following 

conclusions are drawn:  

Uncertainties in the computed stresses raisers are mainly due to the element 

properties and sizes in surface extrapolation method, and in particular to the FE 

modelling, however, the Length Scale can be successfully and easily obtained. 

Stress concentration changes with the dimensions of gussets. The Length Scale 

plays an important role during in the prediction of concentrations.  

Compared with numerical and experimental estimates of stress concentration, it 

is shown that the novel Length Scale approach gives conservative results.  

As extensively discussed above, the comparisons have shown that the length 

scale and LEFM methods can be applied on the fillet geometric form very well, and 

with one exception reconsider when that case is recalculated-are slightly 

conservative compared with fatigue tests and/or linear elastic fracture mechanics 

assessment. 
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Table 7.2  

Structural stress concentration factors obtained for the details by different methods and FE models 

Structural 

Details 

SCF 

FAT90 
1 2 

Dong’s work 2004 c ABAQUS Choo’s 2004 d Wolfgang Fricke 2005 e 

0.5t/1.5t 0.4t/1.0t 0.5t 
Dong’s SS 

0.5t/1.5t 0.4t/1.0t 0.5t 1-mm 

stress 
Measure 

Shla/Sldb Shl/Sld Shl/Sld Shl/Sld Shl/Sld Shl/Sld 

HHI#2 1.96 1.99 2.16 1.73 (shl) 1.92 (shl) 1.52 (shl) 1.55 (shl) 1.89a /1.85b 1.90a /1.96b 1.63a /1.60b 1.84 2.38 

HHI#5 1.69 1.756 1.95 1.50-1.52a 1.62-1.66a 1.35-1.37a 1.09 1.64a /1.77b 1.73a /1.74b 146a /1.54b 1.64-1.95 1.85 

             

HHI#1 1.32 1.471 1.688 1.25a /1.24b 1.29a /1.27b 1.20a /1.19b 1.94a/1.74b      

HHI#3 1.33 1.276 1.482 1.20a /1.18b 1.24a /1.20b 1.16a /1.17b 
1.28-1.32 a 

/1.78b 
     

             

 

 

a Extrapolated HSS SCF using shell element type; 
b Extrapolated HSS SCF using solid element type; 

c Dong P, Hong JK. Hot spot stress and structural stress analyses of FPSO fatigue details. Proceedings of OMAE Specialty Conference on FPSO systems, 

OMAE-FPSO’04-0023, Houston TX, ASME International Petroleum Technical Institute; 2004 
d Choo, Y.S. and Zahidul Hasan, Md. “Hot Spot Stress Evaluation for Selected Connection Details”. OMAEFPSO' 04-0028 Int. Conf. Houston. 

e Fricke, W., Recommended Hot Spot Analysis Procedure for Structural Details of FPSOs and Ships Based on Round-Robin FE Analysis. ISOPE, 2001. 
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Bulk carriers and tank oil carriers are usually constructed of mild steel. The use 

of high tensile steel can reduce the rigidity of the ship hulls and may develop earlier 

fatigue cracks. It is also important to identify the holds designed for partial filling as 

this affects the maximum allowable corrosion diminution that can be applied to the 

cargo hold plates. 

Be grateful to the checks by the surveyors, the ship components surveyed are 

located in the building environments shown in Figure 8.1, frames and connections 

can be made accessible to surveyed. Details in way of the bulk carrier contractures 

are most exposed to fatigue cracks. CSR (Common Structural Rules) require 25 years 

operational life in North Atlantic.  

 

CHAPTER 8 

COMPARISON OF LENGTH SCALE SCFs AND 

EXTRAPOLATION METHODS OF REAL SHIP 

DETAILS 

8.1 Introductions
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(http://3.bp.blogspot.com/‐l3YstQq4VRc/UFLbkptxsII/AAAAAAAABbI/mVJZv2KCmDI/

s1600/Midship_A.jpg) 

(ABS, Classification, Certification & Related Services Tank, 2008) 

Figure 8.1 Bulk Carrier Ship Constructions 

 
 

Some typical details of Oil Tanker are selected in Figure 8.2.  
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(http://marineinsight.com/wp‐content/uploads/2011/04/coverStory_maritimeEcono

my_tanker3D_280.jpg) 
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(ABS, Classification, Certification & Related Services Tank, 2008)  

Figure 8.2 Oil/Chemical Tanker Ship Constructions 
 

 

The details of ship structural components are usually concluding primary 

longitudinal connections at double bottom shell, side shell frame end bracket at the 

side shell, structural gunwale connections at the deck girders, gusset edge stiffening 

at the cargo holds, stiffener ends and panel stiffeners, and overall gusset shape 

(tripping brackets, tight collars, non-tight collars and stanchion ends). 

Critical problem in structural fatigue analysis is to determine the differences 

between the fatigue damage of laboratory specimens and the full scale structural 

details. The principles of mechanics, the similar initial defect size imply that the 

fatigue damage is not identical at different scales of structural detail. Extensive 

experiments have been performed, mainly on small simple specimens and these are 

the basis of most rules. 

Research work has been converted to guidance by the International Institute of 
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Welding (IIW, 1991 and Hobbacher A, 2007) and International Association of 

Classification Societies (IACS, 2006). Technical reports such as by Yagi (1991) and 

Lotsberg (2004) also provide updated methodology for the hull fatigue analysis. 

Account should also be taken of the chemical environment in which the cracks occur 

(Burnside etc, 1984; Bea etc, 1995), large scale testing shown in Figure 8.3 (Lotsberg, 

2004).  

 

Figure 8.3 Full-scale test specimen (Lotsberg, I. and Einar L 2004) 
 

Recently, the novel fatigue assessment methodologies and ideas have been 

brought out. Based on numerical comparison and theoretical discussion, it was found 

that the method could be applied on the relative simple shape efficiently; moreover, 

in a sole operation, it is extended in realistic components, requiring definitions of 

crack locations.  

 

( / 22, /  3)sa smallest of L H   

0.5 0.87
0 0 ( / 22 ( / ) ,  / 3 ( / ) )s bp bpa smallest of L t t H t t     

where L is the length of the bracket, and H is its height;  

and t0 is the thickness of the outstand arms;  

(tbp) is the thickness of the main load carrying plate. 
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For the purpose of the design recommendation improvement, it is therefore 

important that a proper link between geometry property and fatigue capacity in 

design standards. Moreover, the realistic components should be concluded into 

several categories by the locations and discontinuity locations. In this chapter, I will 

select ship detail locations from the existing drawings referring to the experimental 

cases, apply the Length Scale method and LFEM curves to the selected components.  

However, more engineering examples will be needed to clarify the method and 

engineers will have to understand the methodology and structural behaviour in order 

to properly apply it.  

 

In the following, the fatigue strength of critical members of Panamax Bulk 

Carrier (Piano Delle Cpacita) and 50.000DWT Oil/Chemical Tanker (SHELL 

EXPANSION) is listed. The ship detail locations from the existing drawings are 

referred as the experimental cases, applying the Length Scale measurement. In a sole 

operation, it is going to extend to engineering guides, requiring definitions of critical 

locations.  

Moreover, the components should be concluded into categories by the 

discontinuity locations, where usually from the ship’s side or deck the cracks may 

occur and propagate relatively easily. Probably it is also needed specify bottom 

frames, deck orientate stiffeners and brackets to particular sides of e.g. a bulkhead 

plate. Finite element can be used as an alternative to compliance with the 

requirements of direct calculation procedures, including in cases of unusual side 

structure arrangements or framing to which the applications of this approach can be 

directly applied. In such cases, the analysis criteria and the strength check criteria are 

to be in accordance with the Rules of each Society’s. 

Finally, the peak / reference stress is used to calculate SCFs. The SCF are 

compared with FE extrapolation methods, including the results convergence studies.  

 

8.2 Structural Components Study
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The first case study is double bottom construction detail. The web frame 

stiffener is selected from the bottom constructions where the bracket attachment 

adhesive to the longitudinal stiffener.  

The double bottom details are shown in Figure 8.4, the location often 

experiences fatigue cracking as the result of stress fluctuations; and detail description 

of principal and secondary crack initiation positions is shown in Figure 8.5. 

 

 
 
 

8.2.1 Double Bottom Longitudinal 

P

P

SEC. P-P
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Figure 8.4 Sketch of ballast tank bottom longitudinal 
 

 

 
Figure 8.5 Detail description of Bottom Shell of Bulk Carriers 

 
 

The hydrodynamic pressure acting on the bottom shell is due to local wave 

loading, in Figure 8.6.  
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Figure 8.6 Sea Loads on the bottom shell of Bulk Carriers 
 

 

 

As shown in Figure 8.7, the crack is recognized as that initiated from the 

connection of the flange and girder, and then propagates along the flange plate and 

longitudinal frames. It is implicitly assumed that the corner position is enough to 

prevent root cracking of bottom longitudinal fatigue problems, as situation I.  

 

Situation I: Bottom Longitudinal Frame Cracks

Sea Loads 
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Figure 8.7 Situation I of cracks at bottom longitudinal frames 
 

 

The stress concentration will be found at the connection end, and the geometry 

of bracket is the key factor affecting the crack initiations. For the case study of edge 

crack in the bottom longitudinal frames, the major loading can be recognized as the 

tensile load on the longitudinal. Even though, the bottom longitudinal can be 

addressed as the case of cruciform corner crack, for typical length scale 

measurements; and conversion rules have been given in Figure 8.7Error! Reference 

source not found..  

 

Table 8.1 

Dimensions of the longitudinal stiffener frame 

Component Dimensions (mm) 

Bottom Shell Plate    1000.0 3000.0  

Girder    1000.0 1300.0  

Longitudinal Frame 300.0 100.0 10.0L    

Triangle Bracket    100.0 100.0 10.0   

  0
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Mouse Hole 35.0R  

 

Dimensions of the longitudinal detail are listed in Table 8.1, and also marked in 

Figure 8.8; the longitudinal stiffener is a web frame stiffener on flat plate.  

 

Figure 8.8 Dimensions on bottom longitudinal frames 
 

The component can be considered as the cruciform having the geometry 

dimensions: height H 1.0 m and width 0.3 m, with the bracket 0.1 m (L=0.4m), 

assumed as the length of the cruciform corresponding to simple specimen. The 

thicknesses of the plate are 10mm separately; the thickness correction factor can be 

got by folding the flange. The Length Scale ‘as’ equals to 12.86 mm from the 

formula.  

 

0.5 0.87((300 100) / 22 (10 / 20) , 1000 / 3 (10 / 2 ) )  0as smallest of      

Here L is the length of Width+Bracket 400mm, and H is the height 1000mm; 

         the thickness correction factor is 1/2 
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Considering the critical distance point (1.2 mm) away from the corner, the value 

of SCF can be given as 2.22; if we check the LEFM curves against Length Scale, the 

value of SCF are found out equalling to 2.36.  
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Figure 8.9 SCF Comparison of bottom longitudinal frame 

 

 

 

Within the bottom shell longitudinal frames, the boundary condition is assumed 

symmetric between the stiffeners and between the web frames. The situation I case 

comparison will be on the ANSYS FE calculations. Both of the linear and quadratic 

extrapolation methods are got to take the hot-spot stress value, and the diagrammatic 

models are shown in Figure 8.10Error! Reference source not found..  
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Figure 8.10 FE bottom longitudinal frames model 
 

A

A’

B

B’
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Moreover it should be confirmed that the shell FE mesh can be simulated by 

multi-surfaces; and the longitudinal plate is the relatively thick one, to be extended to 

the top-surface intersection. The mesh size for the FE model is 0.1t, which, based on 

the convergence discussion by authors in Chapter 4, will be fine enough to get the 

accurate stress concentration factors for design code purposes.  

The hot spot stress based fatigue design is based on the linear or quadratic 

extrapolation method over 2 or 3 points in front of the crack initiation position (and 

on the surface). Based on the ANSYS calculation, the non-dimensional surface stress 

values (divided by nominal stress) are shown in Table 8.2.  

 

Table 8.2 

Surface Non-dimensional stress (divided by nominal one) for Extrapolations 

 1st point  2nd point 3rd point SCF 

0.4/1.0t 2.089 1.641  2.39 

4/8/12mm 2.089 1.715 1.592 2.71 

0.5/1.5t 1.942 1.544  2.14 

5/15mm 1.942 1.544  2.14 

 

The stress concentration around the double bottom frame is predicted to have a 

value between 2.14-2.71; the SCF result found from the Length scale curve is 2.22, 

and from the LEFM is 2.36, in Figure 8.11.  
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Figure 8.11 SCF results by various methods for the double bottom frames 
 

 

 

As shown in Figure 8.12, the cracks can be also found the connections of the 

girder and transverse plate, which can be recognized as secondary fatigue failure 

situation (Fatigue Failure Situation II). In this situation, the stress concentration will 

be found at the girder connection end, and the geometry of the frames will be the key 

factor affecting the crack generations. There may be the dimension definitions for the 

assumed cruciform, and rules for length scale measurement are also marked in Figure 

8.12.  

 

Situation II: Bottom Longitudinal brackets Cracks 
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Figure 8.12 Situation II of cracks happen at bottom longitudinal brackets 
 

 

For the case study of crack propagation along the girder, the major loading can 

be recognized as the tensile load on the transverse plate and the girder directions. 

Dimensions of the longitudinal detail are listed in Table 8.2. 

The component can be considered to be a geometry transformation of a 

cruciform having: height H 0.3 m and width 0.3 m, with the bracket 0.1 m (L=0.4m), 

assumed as the length of the cruciform corresponding to simple specimen. The 

thicknesses of the plate are 10mm separately. The Length Scale ‘as’ equal to 18.18 

mm based on the prediction formula, ignoring the thickness effect from the flange.  

 

 ((300  100) / 22, 300 / 3)as smallest of    

Here L is the length of Width+Bracket 400mm, and H is the height of longitudinal 

frames 300mm 

 

Considering the critical distance point (1.2 mm) away from the corner, the value 

of SCF can be given as 2.555; if we check the LEFM curves against Length Scale, 

the value of SCF are found out equalling to 2.65 in Figure 8.13.  
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Figure 8.13 SCF Comparison of bottom longitudinal frame 
 

 

 

 

The stool is to be fitted with diaphragms in line with the longitudinal double 

bottom girders for effective support of the corrugated bulkhead.  

Where corrugations are cut at the lower stool, the weld connections of 

corrugations and stool side plating to the stool top plate is to be in accordance with.  

The corrugated bulkheads used in bulk carriers are normally fitted with top and 

bottom stools. 

Transverse bulkheads are constructed of corrugated steel plates, reinforced at 

the bottom and top connections with bottom and top stools.  

The buckling analysis is to be carried out for the bottom panel between the 

hopper tank girder (margin girder) and the first double bottom girder inboard. The 

8.2.2 Double Bottom Girders
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allowable reduction (in mm) found by this analysis is to be applied for the other 

bottom plates as well. 

The bottom girder structural details can be recognized as top deck girder 

connections, when the girder framing comes under heavy loading shown in Figure 

8.14 and Figure 8.15, the girder buckled due to their reduced thickness. The 

supporting longitudinal girder gives rise to stress concentration locations requiring 

fatigue evaluation.  

 

 
 

P

P
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Figure 8.14 Sketch of Centre girder of Double bottom ballast tank 
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Figure 8.15 Detail description of Centre girder and web frame plating  
 

 

 

 

Situation I: Cracks at the Connections of Centre line/side 

Girder   
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Figure 8.16 Situation I of Cracks at the Connections of Centre line/side Girder 

 
 

Figure 8.17 Situation II of Cracks at the Connections of Centre line/side Girder 
 

Situation II: Cracks at the Connections of Centre line/side 

Girder   

0

0

  0
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The structural details in the double-bottom construction are influenced by the 

lower water ballast load; fatigue cracks are tolerated at the connection between 

vertical brackets of the inner bottoms.  

 

 
 
 

8.2.3 Inner Double Bottom Frames

P

P
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Figure 8.18 Sketch of Inner Bottom, Web frame plating 
 

 

 

 

Figure 8.19 Detail description of Inner Bottom, Web frame plating 
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By comparing various stress amplitude values, large differences are found 

between our methods and extrapolated hot spot approaches. For the deck connections, 

the extrapolation method will give larger values. It is abnormal that the SCF 

increased to such high value at the connection of side frames and decks, because of 

that the fatigue cracks are not initiated from deck locations first. It is the 

disadvantage of the surface stress extrapolation. The Length Scale methods are less 

conservative.  

A number of cracks exposed to fatigue failure can be found at the bulkheads of 

ships and the bulwark constructions, as shown in Figure 8.20 

 

 

 

 

 

Figure 8.20 Gunwale Framing Constructions 
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Figure 8.21 Cracks at Gunwale Framing Constructions 
 

 

 

Figure 8.22 Gunwale Framing Constructions Details 
 

 

 

  0 0
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The discontinuous stiffener flanges lead to stress concentrations. The rat (mouse) 

hole is necessary by the demand of fabricated manufacture process. 

The FE model is shown in Figure 8.23.  
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Figure 8.23 Gunwale Frames Constructions FE results 
 

The chosen connection of a web frame corresponding to the side tank plate, 

where the width of plate included in full-scale specimen. The distance between sides 

longitudinal was 2000mm. The side shell was 10mm thick and the transverse frames 

are 10mm thick. L-section is used for the longitudinal stiffener: 

bracket 250 250mm mm , thickness 10mm, and flat bar is 150 90 10mm  used as 

buckling stiffener.  

The shape can be found in the test specimen similar with the cruciform 

geometry, it provides guidance on possible theoretical prediction to achieve the stress 

concentration target. From the drawing of specimen, H is assumed as 0.4m and L is 

2.0m approximately; the Length Scale can be derived as 12.86mm leading to SCF, 

2.22, and 2.36 (LEFM).  

0.5 0.87((250 150) / 22 (10 / 20) , 2000 / 3 (10 / 2 ) )  0as smallest of      

Here L is the length of Width+Bracket length 400mm, and H is the height 2000mm,  

     the thickness correction factor is (10/20); 
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Alternatively, stress linearization leads to the exclusion of the local stress peak 

in plate or shell structures. No guides are available for determining usable stress 

value from these FEA results.  
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Figure 8.24 Comparison of SCF of Bulwale Construction Details 
 

 

A comparison of the various stress amplitude values is shown in Figure 8.25, 

little differences are found between our methods and the extrapolated method in the 

detail.  
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Figure 8.25 SCF results by various methods for the gunwale frames 
 

 

 

 

The details of Oil Tanker are concluding connection and stiffener type of ballast 

tank and cargo tank; the gusset shape, gusset edge stiffening and knife edge crossings 

still remain as the most trouble structural details.  

 

 

 
 

8.2.4 Double Bottom Ballast Tank Longitudinal

P

P Q
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Figure 8.26 Sketch of Ballast Tank Bottom 

 
The hydrodynamic pressure acting on the bottom shell is due to local wave 

loading, in Figure 8.27. 

 

 

 

Figure 8.27 Sea Loads on the bottom shell of Bulk Carriers 

 

Sea Loads 
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As shown in Figure 8.28, the crack is recognized as that initiated from the 

connection of the flange and girder, and then propagates along the flange plate and 

longitudinal frames. It is implicitly assumed that the corner position is enough to 

prevent root cracking of bottom longitudinal fatigue problems, as situation I.  

 

Figure 8.28 Situation I of cracks at bottom longitudinal frames 

 

 

The stress concentration will be found at the connection end, and the geometry 

of bracket is the key factor affecting the crack initiations. For the case study of edge 

crack in the bottom longitudinal frames, the major loading can be recognized as the 

tensile load on the longitudinal. Even though, the bottom longitudinal can be 

addressed as the case of cruciform corner crack, for typical length scale 

measurements; and conversion rules have been given in Figure 8.28.  

Dimensions of the longitudinal detail are listed in Table 8.3, and also marked in 

Situation I: 

  0
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Figure 8.29; the longitudinal stiffener is a web frame stiffener on flat plate.  

 

Table 8.3 

Dimensions of the longitudinal stiffener frame 

Component Dimensions (mm) 

Bottom Shell Plate    1000.0 3000.0  

Girder    1000.0 1300.0  

Longitudinal Frame 300.0 100.0 10.0L    

Triangle Bracket    100.0 100.0 10.0   

Mouse Hole 35.0R  

 

 

 

Figure 8.29 Dimensions on bottom longitudinal frames 
 

 

The component can be considered as the cruciform having the geometry 

dimensions: height H 1.0 m and width 0.3 m, with the bracket 0.1 m (L=0.4m), 

assumed as the length of the cruciform corresponding to simple specimen. The 
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thicknesses of the plate are 10mm separately; the thickness correction factor can be 

got by folding the flange. The Length Scale ‘as’ equals to 12.86 mm from the 

formula. 

0.5 0.87((300 100) / 22 (10 / 20) , 1000 / 3 (10 / 2 ) )  0as smallest of      

Here L is the length of Width+Bracket 400mm, and H is the height 1000mm; 

         the thickness correction factor is (10 / 20)  

Considering the critical distance point (1.2 mm) away from the corner, the value 

of SCF can be given as 2.22; if we check the LEFM curves against Length Scale, the 

value of SCF are found out equalling to 2.36.   
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Figure 8.30 SCF Comparison of bottom longitudinal frame 

 
 

Within the bottom shell longitudinal frames, the boundary condition is assumed 

symmetric between the stiffeners and between the web frames. The situation I case 

comparison will be on the ANSYS FE calculations. Both of the linear and quadratic 

extrapolation methods are got to take the hot-spot stress value, and the diagrammatic 

models are shown in Figure 8.31.  
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Figure 8.31 FE bottom longitudinal frames model 

 
 

A

A’

B 
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Moreover it should be confirmed that the shell FE mesh can be simulated by 

multi-surfaces; and the longitudinal plate is the relatively thick one, to be extended to 

the top-surface intersection. The mesh size for the FE model is 0.1t, which, based on 

the convergence discussion by authors in Chapter 4, will be fine enough to get the 

accurate stress concentration factors for design code purposes.  

The hot spot stress based fatigue design is based on the linear or quadratic 

extrapolation method over 2 or 3 points in front of the crack initiation position (and 

on the surface). Based on the ANSYS calculation, the non-dimensional surface stress 

values (divided by nominal stress) are shown in Table 8.4.  

 

Table 8.4 

Surface Non-dimensional stress (divided by nominal one) for Extrapolations 

 1st point  2nd point 3rd point SCF 

0.4/1.0t 2.089 1.641  2.39 

4/8/12mm 2.089 1.715 1.592 2.71 

0.5/1.5t 1.942 1.544  2.14 

5/15mm 1.942 1.544  2.14 

 

The stress concentration around the double bottom frame is predicted to have a 

value between 2.14-2.71; the SCF result found from the Length scale curve is 2.22, 

and from the LEFM is 2.36, in Figure 8.32.  
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Figure 8.32 SCF results by various methods for the double bottom frames 
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As shown in Figure 8.33, the cracks can be also found the connections of the 

girder and transverse plate, which can be recognized as secondary fatigue failure 

situation (Fatigue Failure Situation II). In this situation, the stress concentration will 

be found at the girder connection end, and the geometry of the frames will be the key 

factor affecting the crack generations. There may be the dimension definitions for the 

assumed cruciform, and rules for length scale measurement are also marked in Figure 

8.33.  

 

Figure 8.33 Situation II of cracks happen at bottom longitudinal brackets 
 

 

For the case study of crack propagation along the girder, the major loading can 

be recognized as the tensile load on the transverse plate and the girder directions. 

Dimensions of the longitudinal detail are listed in Table 8.4. 

The component can be considered to be a geometry transformation of a 

cruciform having: height H 0.3 m and width 0.3 m, with the bracket 0.1 m (L=0.4m), 

Situation II: 
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assumed as the length of the cruciform corresponding to simple specimen. The 

thicknesses of the plate are 10mm separately. The Length Scale ‘as’ equal to 18.18 

mm based on the prediction formula, ignoring the thickness effect from the flange.  

 

 ((300  100) / 22, 300 / 3)as smallest of    

Here L is the length of Width+Bracket 400mm, and H is the height of longitudinal 

frames 300mm 

 

Considering the critical distance point (1.2 mm) away from the corner, the value 

of SCF can be given as 2.555; if we check the LEFM curves against Length Scale, 

the value of SCF are found out equalling to 2.65 in Figure 8.34 
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Figure 8.34 SCF Comparison of bottom longitudinal frame 
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8.2.5 Ballast Tank Side Shell
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Figure 8.35 Sketch of Tank Side Shell  
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Figure 8.36 Sea Loads on the side shell of Tank 
 

 

 

 

Figure 8.37 shows a section through a ballast tank showing the connections by 

side bracket framing (30.000DWT_Transerve Bulkhead Construction). It is observed 

that the side frame components with double bracket design are favourable in terms of 

fatigue life.  

 

Situation I: Cracks at the connection of side shell longitudinal 

webs   

Sea Loads 
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Figure 8.37 Transverse Side Plates Frames 

 
 

This is especially true on tank ships where long spans of side framing can be 

supported by the flanged-triangular brackets. The transverse side tank frames can be 

considered as the cruciform geometry transformations. Dimensions of the side tank 

framing components have been listed in Table 8.5.  

 

 

 

Table 8.5 

Dimensions of the side tank framing constructions 

Component Dimensions (mm) 

Side Plating    2000.0 3000.0 12.0   

Longitudinal Bulkhead    2000.0 3000.0 12.0   

Horizontal Stiffener 250.0 90 12.0L    

Longitudinal Side Frame 250.0 90 12.0L    

Strut    1500.0 250 10.0   

Triangle Bracket I, II    300.0 300.0 10.0   
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Figure 8.38 Situation I of Cracks at the connection of side shell longitudinal webs 

 

 

The equivalent height and width of the cruciform specimen, corresponding to 

simple rectangular specimen, are 1.5 m and 0.25 m respectively, with the bracket 

0.30 m on two sides. The strut stops the stress transferring through the longitudinal 

frames, as a result that we use the single bracket length to predict the Length Scale. 

The thickness correction should fold the thickness of flange to 24mm and divided by 

the thickness of bracket 10mm.  

 

0.5 0.87((300 250) / 22 (10 / 24) , 1500 / 3 (10 / 2 ) )  4as smallest of      

Here L is the length of With+Bracket length 550mm, and H is the height 1500mm,  

     the thickness correction factor is (10 / 24)  

 

The Length Scale ‘as’ was predicted as 16.13 mm assuming folding the plate of 

  0

0

0
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the flange as the double thickness. Considering the critical distance point (1.2 mm) 

away from the corner, the stress concentration factor can be found out equalling to 

2.43, and LEFM is 2.54 

A study is performed on the RISPECT components Level 3; using shell element 

models as shown in Figure 8.39. The SCF can be extrapolated from the surface FE 

points.  
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Figure 8.39 FE calculation results of the transverse side plate frames 

 

 

The numerical results of side plates framing constructions and concentration 

factors are given in Figure 8.40.  
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Figure 8.40 Comparison of SCF of Side Tank Frames Details 
 

 

Table 8.6 

Surface Extrapolation SCF values for the Specimen 

 
1st point  

(convert stress) 
2nd point 3rd point SCF 

0.4/1.0t 1.72 1.32  1.99 

4/8/12mm 1.83 1.47 1.32 2.39 

0.5/1.5t 1.60 1.22  1.795 

5/15mm 1.70 1.26  1.91 

 

A comparison of the various stress amplitude values is shown in Figure 8.41, 

little differences are found between our methods and the extrapolated method in the 

detail.  

 



COMPARISON OF LENGTH SCALE SCFs AND 

 EXTRAPOLATION METHODS OF REAL SHIP DETAILS 

224 

2.43
2.54

1.795

1.99 2.39
1.91

0

0.5

1

1.5

2

2.5

3

Side Tank Frames Details

S
C

F

ConstantDistanceValue

LEFM-Method

TWI-Line0.4/1.0t

TWI-Quarti4/8/12mm

TWI-Linemode0.5/1.5t

TWI-Linemode5/15mm

Figure 8.41 SCF results by various methods for the side frames 
 

 

 

 

 

Situation II: Cracks at the connection of side shell longitudinal

to vertical web frame   
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Figure 8.42 Situation II of Cracks at the connection of side shell longitudinal, to 

vertical web frame 
 

 

 

Stool side plating is to align with the corrugation bulkheads, and side shell 

frames (of their brackets) are to align with the bulkhead lower stool to to provide 

vertical load transmission between these stiffening members.  

The bulk cargo requires that the transverse bulkheads have lower and upper 

stools to improve loading and unloading of the bulk cargo and also to improve 

structural strength of transverse bulkheads. Scallops should be avoided in the way of 

the locations of the lower stool and double bottom.  

In general, plate diaphragms or web frames are to be fitted in bottom stools in 

way of the double bottom girders and plate floors, although lower stool side plating 

8.2.6 Cargo Lower Stool Plates

  0

0
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may not be surveyed visually anywhere between the inner bottom plating and the 

stool top plate in Figure 8.43.  
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Figure 8.43 Sketch of lower stool plating in Cargo holds 
 

 

The loading conditions should be considered in the rule criteria checking of 

local strength. Some Bulk Carriers have cargo holds designed to be partially filled 

with salt-water ballast. In order to identify whether a Bulk Carrier has this facility, it 

is necessary to check the Capacity Plan and/or the Trim and Stability booklet to 

identify which holds are designated for partial filling purposes.  

The loading conditions of the hold mass curves should be included in the 

loading manual and loading instrument. In addition, careful planning is required in 

the loading of bulk carriers. Not only is it critical that the final departure condition be 

sound, but how the ship is loaded and offloaded is very important for a successful 

operation.  

In addition to the loading condition of the carrier, careful planning must go into 

the sequence in cargo holds and during loaded and unloaded situations.  

The full cargo mass in the considered cargo hold completely filled to the top of 

the hatch coaming with cargo density, whichever is the greater, is defined as Mfull. 

The conditions usually applicable to service are: Maximum DraughtFuel oil tank 



COMPARISON OF LENGTH SCALE SCFs AND 

 EXTRAPOLATION METHODS OF REAL SHIP DETAILS 

228 

in double bottom 100% full, ballast water tank in double bottom empty, shown in 

Figure 8.44 Error! Reference source not found.a); and 67% Maximum DraughtNot 

applicable (when No Multi-Port) is assigned Fuel oil tank in double bottom 100%, full 

Ballast water tank in double bottom empty, in Figure 8.44 b). Additional conditions 

applicable during loading and unloading are in harbour of 67% Maximum Draught in 

Figure 8.44 c).  

 

  

a), b), c) 

Figure 8.44 Full Cargo Mass levels of the bulk carrier 
http://www.veristar.com/bvrules/D_4_s3_4_5.htm 

 

The actual cargo mass in a cargo hold is corresponding to a homogeneously 

loaded condition at maximum draught, noted by MH in Figure 8.45.  

The general conditions applicable to service features is Maximum DraughtAll 

double bottom tank empty; and the additional conditions applicable is Maximum 

DraughtApplicable to cargo holds which are intended to be loaded with high density 

cargo Fuel oil tank in double bottom 100% full Ballast water tank in double bottom 

empty. In operation, the maximum allowable cargo mass is limited to MHD, which is 

in the considered hold for loading conditions with specified holds empty at 

maximum draught, as given in the Loading Manual.  

         
a), b) 

 
Figure 8.45 Actual Cargo Mass levels of the bulk carrier 
http://www.veristar.com/bvrules/D_4_s3_4_5.htm 
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The conditions of empty cargo mass in harbours are defined in Figure 8.46 that 

all double bottom tanks empty. It should be notated the No Multi-Ports is assigned in 

83% Maximum DraughtNotApplicable of Figure 8.46 b; Maximum 

DraughtApplicable to cargo holds which are intended to be empty at maximum 

draught of Figure 8.46 c.  

 

 
a), b), c) 

 
Figure 8.46 Empty Cargo Mass levels of the bulk carrier 
http://www.veristar.com/bvrules/D_4_s3_4_5.htm 

Even more, shear and bending moment will be changed during the loading and 

unloading process. Shifts monitors or measurements will be necessary to confirm the 

weight of cargo loaded and to ensure that intermediate loading still satisfies the 

limitations based on local draft. 

In general, the shell framing has been subjected to heavy loadings and the loads 

transferred through the bottom corner brackets have caused the box girder framing to 

buckle.  

Brackets or deep webs are to be fitted to connect the lower stool to the bottom 

transverses.  

Fatigue cracks of main cargo holds are found at the connections on the hopper 

sloping plating and lower stool plating in Figure 8.47, on the edge of the stoop plate 

along the surface of the surface of the cargo holds.  
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Figure 8.47 Fatigue cracks happened on the edge of the stoop plate 

 
 

 

Note the cracks are to be in the structural configuration of the cargo hold bottom 

where the welded position. The weld connections are to be in accordance with the 

inner bottom plating of stool side plating and supporting floors, shown in Figure 8.48.  

They are caused by the critical pressure to the intersection of the girders or bending 

of the double bottom.  
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Figure 8.48 Crack positions on the cargo hold bottom plating 
 

 

 

 

It appears obviously that cracks propagate along the hopper sloping that large 

stresses occur at the connections that may lead to rupture of the bottom frames.  

It is interesting to investigate if this stress concentration is caused by the 

right-angled configuration of the stool and if the fitting of a symmetric stool, that is, 

inclined in both holds, could smooth the stress flow at this area.  

Conversion rules of the cargo hold lower stool are marked in Figure 8.49, and 

the assumed cruciform is to have a height in general of the length between two 

frames, and length of the bracket height. In particular, the thickness of main 

cruciform plate is to be of the 3 times of the one of upper strake of the lower stool, 

and the thickness of the attachment is doubled by folding the plate of the inner 

bottom longitudinal plate.  

Detailed FE models have to be used when estimating stress concentration at 

Situation I: Cracks along Hopper Sloping 
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these locations accurately.  

 

 

Figure 8.49 Situation II of cracks at alongside hopper sloping 
 

 

In general terms, the ship is longitudinally stiffened except from the side shell 

between the hopper tank and the top-side tank that are transversely stiffened. Also, in 

some areas, such as between the centreplate and the first longitudinal girder in the 

double bottom, transverse stiffeners are located at half web spacing, except from 

specific locations. 

The size of the selected vessel is justified by the fact that it is a very usual bulk 

carrier design placed between the existing bulk carriers’ size extremes (cape and 

handy size), thus better allowing the generalisation of any obtained results from this 

work.  

 

 

0



COMPARISON OF LENGTH SCALE SCFs AND 

 EXTRAPOLATION METHODS OF REAL SHIP DETAILS 

233 

 

In general, the ends of stool side ordinary stiffeners are to be attached to the 

floors of the bottom plates, or at the lower ends of the stool. The continuity of the 

stress flow is to be adequately broken at these locations. High stress concentrations 

occur at the intersection of the girders of the double bottom with the crack 

propagation into the floors; it appears that the lower stool connection suffers larger 

stresses that could herein become critical. 

If applying transverse stresses directly to the bottom longitudinal, since it is to 

be recognized as the cruciform types based on the previous rules, show in Figure 

8.50. The assumption can be recognized as 135 degree cruciform situation.  

The height of the cruciform flange, H is the vertical height of the lower stool; 

the width is to be in line with stool connections to the inner bottom floors, and is to 

have a width of the mean depth of the sloping stool side approximately. The 

thickness of the stool plate is to be equal to the flange thickness, and the main 

cruciform plate is to be required 3 times of the inner bottom plating, the thickness 

correction is illustrated in Figure 8.50.  

 

Situation II: Cracks into Double Bottom Components 
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Figure 8.50 Situation I of cracks into the double bottom plates 
 

 

Note that until now and in view of the experiences from historical accident data, 

it is expected that relevant bulk carrier designs of major shipbuilders are commonly 

cross checked by proper FE models both on the builder’s and the classification 

society’s side.  

It is beyond the confirmations of the present study is recommended to use more 

dense mesh models of ship constructions, where having high stress concentrations.   

The observations on the induced stresses at the lower stool plates show that the 

scantlings of a ship constructed are adequate to withstand the design loads according 

to rules.  

 

Frame brackets are the structural members connecting the lower end of side 

frames, or web frames with the tank top plating, floors or bottom plating. These 

structural members transfer the loading between side structure assemblies and 

bottom structure assemblies. 

8.2.7 Side Shell Frames

  0 0
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Special consideration to the side shell frames survey measurements may have 

been given by the Society, bracket cracks can decrease the service life of the ship 

component, and also can be attributed to instability of the side shell panel. 

The fatigue configurations that occur often at the side frame bracket connections 

shown in Figure 8.51, especially in the mid ship/cargo section having high failure 

rates. 

Where cracks close to the bracket end connection are found, the number of hold 

frames to be measured is to be increased; numbers of side frames to be measured are 

equivalent to those of the class renewal survey or intermediate survey corresponding 

to the ship's age. 

 

 
 
 

 
 

SEC. 
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Figure 8.51 Sketch of Side shell frames 
 

 

Figure 8.51 shows a frame bracket connecting the lower end of a side frame 

with the tank top plating of a transversely and longitudinally framed double bottom 

structures. There is a variety of construction forms used for side shell frames in bulk 

carriers. Some have faceplates (T-sections) on the side shell frames, some have 

flanged plates and some have bulb plates.  

The use of faceplates and flanged sections is considered similar for gauging 

purposes in that both the web and faceplate or web and flange plate are to be gauged. 

If bulb plate has been used, then web of the bulb plate is to be gauged in the normal 

manner and the sectional modulus has to be specially considered if required.  

The dimensions and shapes of our interested lower brackets are shown in Figure 

8.52 as well. The bracket toes of inner skin, horizontal girders of transverse bulkhead 

or connections of the web and flange are potential crack positions.  
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(http://www.maritime‐executive.com/media/transfer/img/cargo_hold_cleaning_hig

h_res.jpg) 

Figure 8.52 Detail description of Side shell frames 
 

 

Double continuous plate is to be adopted for the connections of frames and 

brackets to side shell, hopper and upper wing tank plating and web to face plates. 

 

 

As shown in Figure 8.53, the crack is recognized as that initiated from the 

bracket toe of side shell frames, and then propagates along the inner plate and girder 

of the lower stool.  

Situation I: Stool and Side Frame Connections
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Figure 8.53 Structural reinforcement using Tripping Brackets 
(LR, Thickness Measurement and close-up survey guidance Part1, 2012, P43) 

 
It is implicitly assumed that the corner position is located at the end of the 

bracket connections, as situation I in Figure 8.54.  

Figure 8.54 Cracks at connections of stool and side frame 
 

 

0
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Dimensions of the side shell frame are listed in Table 8.7, and also marked in 

Figure 8.55; the side shell frame is a web frame stiffener welded on stool plate, and a 

flange plate weld on the bracket.  

 

Table 8.7 

Dimensions of the side shell frame (of mid-sections Frames) 

Component Dimensions (mm) 

Web Plate high bracket edge    840.0 15.0  
Web Plate Length    2100.0 15.0  
Web Plate low bracket edge    15.0 15.0  
Flange Plate    150.0 21.0  

 

 

Figure 8.55 Dimensions on side shell frame 
 

 

The hull form is such to prohibit an effective fillet weldment, edge preparation 

of the web of frame and bracket may be required, in order to ensure the same 
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efficiency as the weld connection stated above. 

As a result, the component can be considered as the cruciform having the 

geometry dimensions: width 2.1 m (L=2.1m) and height H 15.0 mm, corresponding 

to the simple specimen.  

In way of the foremost hold, side frames of asymmetrical section are to be fitted 

with doubling the thickness at the end of the bracket. The thickness of the web plate 

is 15mm, and the thickness of the stool plate is 10mm; the thickness correction factor 

of the side shell frame location can be got by folding the stool plate as (15 / 20) . The 

Length Scale ‘as’ equals to 3.89 mm from the formula:  

 

0.5 0.87(2100 / 22 (15 / 20) , 15.0 / 3 (15 / 20) )  as smallest of     

Here L is the length of Wed plate 2100mm, and H is the height 15.0 mm; 

         the thickness correction factor is 15/20 

 

Considering the critical distance point (1.2 mm) away from the corner, the value 

of SCF can be given as 1.466; if we check the LEFM curves against Length Scale, 

the value of SCF are found out equalling to 1.68 from Figure 8.56.   
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Figure 8.56 SCF Comparison of bottom longitudinal frame 
 

 

 

 

The part of bracket component to be coated includes: the web and the face plate 

of the side frames; and the hold surface of side shell, hopper tank and topside tank 

plating, as applicable, over a width not less than 100 mm from the web of the side 

frame.  

When lower end brackets are not assembled well with the flanges, the cracks are 

to be found at the toe connections in the design stage, shown in Figure 8.57.  

 

Situation II: Bracket Toe Ends
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http://www.dkfotinakis.com/pics/cat11big.jpg 

Figure 8.57 The bulk carrier side shell frames and plating repairs 
 

 

The loading conditions are to meet the outside sea pressure requirements, which 

can be converted to the pure tensile strength along the direction in Figure 8.58. 

Adequate cruciform structure in the bracket end is to be ensured: the flange is to be 

aligned with the attachment part, and the geometry of the bracket web is to extend up 

beyond the main plate which the cracks propagate in.  
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Figure 8.58 Cracks at End of the Bracket Toe 
 

 

 

Dimensions of the side shell frame are listed in Table 8.8, and also marked in 

Figure 8.59; the side shell frame is a web frame stiffener welded on stool plate, and a 

flange plate weld on the bracket.  

 

Table 8.8 

Dimensions of the bracket end (of mid-sections Frames) 

Component Dimensions (mm) 

Flange Plate long edge    150.0 21.0  
Flange Plate short edge    30.0 15  
Flange Plate    30.0 15.0  
Thickness of Web Plate    15.0  

 

 

0
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Figure 8.59 Dimensions of the bracket toe end 

 
 

The component can be considered as the cruciform having the geometry 

dimensions: width 2.256 m (L=2.256m) and height H 15.0 mm, assumed as the 

length of the cruciform corresponding to simple specimen.  

For alternative calculations, thickness factor may be used. The thickness of the 

flange plate is 21mm, and the thickness of the web plate is 15mm; the thickness 

correction factor can be got by folding the flange. The Length Scale ‘as’ equals to 

12.24mm from the formula: 

 

0.5 0.87(2256 / 22 (42 /15) , 15.0 / 3 (42 /15) )  as smallest of     

Here L is the length of Wed plate 2256mm, and H is the height 15.0 mm; 

         the thickness correction factor is 42/15 

 

The actual section modulus of the brackets of the side frames is to be imagined 

about an axis parallel to the attached plate, based on the assumed shape in figure. 

Considering the critical distance point (1.2 mm) away from the corner, the value of 

SCF can be given as 2.18; if we check the LEFM curves against Length Scale, the 

value of SCF are found out equalling to 2.30.   
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Figure 8.60 SCF Comparison of bottom longitudinal frame 
 

 

 

 

The structural characteristic of deck design is the transverse connections of the 

decks and sides, which allows for flexibility.  

The local web frame is easily buckled but there is no apparent impact loading 

on the shell plating. Possibly a large gunwale load caused the subsequent buckle in 

the web frame. 

 

 

8.2.8 Top Tank Longitudinals
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Figure 8.61 Sketch of ballast tank bottom longitudinal 
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Figure 8.62 Detail description of Longitudinal, transverse web 
 

 

 

Figure 8.63 Situation I of Cracks happen at the connection of the flange and web 
plate in lowest longitudinal and vertical stiffener (axial loading), 

 
 

 

 

Situation I:

Situation II:
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Figure 8.64 Situation II of Cracks happen at the connection of the flange and web 
plate in lowest longitudinal and vertical stiffener (pressures loadings), 

 
 

 

 

Situation III:
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Figure 8.65 Situation III of Cracks happen in lowest longitudinal and vertical 
stiffener at transverse web frame (axial loading) 

 
 

 

 

Strength decks form the principle members of the hull girder upper flange and 

usually the upper watertight boundary and may be subject to local water, cargo and 

equipment loadings, shown in Figure 8.66.  

Other decks depend on the longitudinal extent, vertical distance from the neutral 

axis of the hull, and their effective attachment contribute to a lesser extent in 

resisting the longitudinal bending. 

8.2.9 Deck Stiffening Connections
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Figure 8.66 Main deck connections  
 

 

 

 

This detail is from reference (30.000DWT_Transerve Bulkhead Construction), 

the main deck stiffeners had been reinforced with the ‘rider plates’ to improve the 

endurance under the loading and special attention given to the existing brackets.  

Several failures occurred at the connection between the deck and side frames, 

serving as the end bracket for transverse main deck stiffening running from the side 

shell to the main deck, see Figure 8.67. 
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Figure 8.67 Stress fatigue crack found at cut-outs of Bulk carriers 

(http://www.amteccorrosion.co.uk/papers/coatingfailuresguide.html) 
 

Variations of the deck configurations included in the beam brackets observed by 

surveys are shown in Figure 8.68. The configurations that occur most often in the 

mid-ship/cargo section are the corner bracket connections, which have a high failure 

rate.  

 

 
Figure 8.68 Deck Framed Connection 

 
 

The chosen detail centres on the deck framing connection corner, where a 
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longitudinal stiffener passes through the bulkheads. Dimensions of the selected 

components are listed in Table 8.9 for the case study. The longitudinal stiffener is an 

angle section.  

 

Table 8.9  

Dimensions of Deck Connection 

Component Dimensions (mm) 

Deck Plating   2000.0 1000.0 12.0   

Side Plating   2000.0 3000.0 12.0   

Deck Web Beam 250.0 90.0 12.0L    

Main Frame 300.0 100.0 12.0L    

Beam Bracket    300.0 25.0 10.0   

 

Although some stiffeners had been reinforced with rider no attention had been 

given to the existing brackets.  

The detail can be considered to the cruciform specimen geometry: height H=0.3 

m and width W=0.3 m. The Length Scale ‘as’ was predicted as 17.60 mm, assuming 

double plate thickness by folding the web plate of the longitudinal stiffener. 

Considering the critical distance point (1.2 mm) away from the corner, the stress 

concentration factor is equal to 2.52; and LEFM is about 2.62.  

 

0.5 0.87((300 300) / 22 (10 / 24) , 2000 / 3 (10 / 2 ) )  4as smallest of      

Here L is the length of Width+Bracket length 600mm, and H is the height 2000mm,  

     the thickness correction factor is (10 / 24)  

 

The numerical plotting results comparisons are given in Figure 8.69 by ANSYS; 

SCFs are extrapolated from the extrapolation points.  
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Figure 8.69 Deck Frames Connection FE results 
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The numerical results of side plates framing constructions and concentration 

factors are given in Figure 8.70.  
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Figure 8.70 Comparison of SCF of Side Tank Frames Details 

 
Comparison of various stress amplitude values are shown in Figure 8.71.  
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Figure 8.71 SCF results by various methods for the deck frames 
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The primary aim of the current chapter is to investigate the length scale method 

applications on the realistic engineering components, and more to check the 

validation of the method.  

Case study SCF comparisons are listed for the connection detail in. According 

to the tested specimens selected from bulk carrier and tank, higher and more 

conservative SCFs have been obtained. Good application can be seen across the 

board in figures, with the primary source of variation being the computed values.  

For full-scale detail fatigue analysis, the specimen can be simplified to focus on 

the locations where cracks happen. The connection can be related to the cruciform 

shape. This results in simple rules for the prediction of SCFs. The real structural 

verification has suggested that the length scale method can be efficient enough for 

the engineering fatigue analysis. In addition the length scale method will help and 

guide the engineers to solve the more complicated details efficiently. The approach 

will be more general applicable.  
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A new stress concentration and stress intensity factor assessment method has 

been established.  

The main achievements are:  

1. A singular stress field in the vicinity of a sharp corner is characterized by a 

length scale: ‘as’;  

2. The length scale is related to the shape and dimensions of the structural 

detail;  

3. The length scale is related to the stress intensity factor through the concept 

of an effective additional crack length: ‘ae’. For right angled corner or 

notches bigger than ‘as’, ‘ae’ is empirically found to be approximately equal 

to the length scale ‘as’;  

4. The nature of the stress field can be defined by the length scale and this 

indicates to the stress analyst the mesh size required to capture the stresses 

as they tend to infinity at the singularity;  

5.  

6. Using Paris Law, the fatigue life of a detail is predicted from ‘ae’; and from 

usage of the fatigue life prediction ‘ae’ and hence ‘as’ is related to a fatigue 

SCF;  

7. SCFs predicted from the length scale ‘ae’ are compared with SCFs predicted 

by conventional linear and quadratic extrapolation methods. 

CHAPTER 9 

CONCLUSIONS AND RECOMMENDATIONS 

9.1 Achievements 
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8. SCFs predicted from the length scale ‘ae’ are compared with SCFs predicted 

from the stress interpolated to 1.2mm from the corner.  

9. Fatigue strength predicted using the length scale method has been compared 

with large scale experiments on ship structural details of HHI; 

10. Alternatively the length scale indicates the distance away from the corner, 

where the stresses can be considered nominal values (i.e. values that are not 

substantially affected by the singularity).  

 

 

 

The aim of the series of approaches review above is to provide effective fatigue 

design way; ignoring the time-consuming of FEM procedures and uncertainty of 

surface points’ extrapolation. The designer will spend less time to check structure 

fatigue analysis and verify in advance that the Length Scales are importance in stress 

concentration calculations.  

Conclusions at algorithm level are already drawn in individual chapters, so an 

overview has been offered here to generalize what had been studied for future 

fellows. The main advantage of the Length Scale approach is the combination with 

fatigue assessment obtained in this research. 

 

 

a) An analogy has been shown to exist between the well known Westergaard 

stress function and similar to sharp re-entrant corner. The closed form solutions to 

corner elasticity problems can be generated with Williams’ index for the similar 

traction-free crack problem. 

The novel length scale raiser stress definitions are based on an approximate 

analytical frame, and the accuracy has been carefully checked against numerical 

analyses. The dimensional factor ‘as’ has been found to represent the stress field well 

in 70% of the numerical models and that makes an empirical formulation of practical 

interest.  

9.2 Conclusions 
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Care is required to identify cases where the existing length scale method does 

not perform well. A case would be when there is significant bending, either in or out 

of plane. 

The method works well for gusset attachment plates to longitudinal stiffeners, 

and other stiffened plate structural connections. 

 

 

b) Although the extrapolation method (hop-spot method) is accepted by most 

classification societies, the accuracy of the SCF obtained from the extrapolation 

methods will clearly depend on the actual size of the prototype structure, the 

extrapolation points and the mesh size. It should be best to estimate effective applied 

reference stress; it may be possible, on basis of systematic studies using the geometry 

factor methods, to come up with simple guidance for SCFs of various welded 

connection configurations. The Length Scale can be used in a formula, which can be 

used to convert the geometry characteristics into an SCF.  

 

 

c) Stresses determined at 1.2mm from the corner were also found to be a good 

indicator of the SCF. 

 

 

d) For short cracks (roughly smaller than ‘as’) the length scale method needs to 

be modified to account for the K value tending to zero as the crack size tends to zero. 

This is a result of the 90-degree-corner stress singularity being slightly weaker 

(power = 0.455 for a right angled corner) than the crack singularity (power = 0.5). 

 

 

e) The proposed method compared with the FE resulted in typical relative 

differences in the order of 1%. The method can be used to make useful predictions, 

even in the very short crack stage.  
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f) For more complex cases in real ship structural locations, multi stage 

approaches may be required as the crack grows and breaks flanges or moves from a 

web into shell plating. 

 

 

g) It has been observed that the developed program can reasonably predict 

fatigue crack propagation behaviour in comparison with experiments. 

In the experiments of the HHI bracket-type specimens, the real details were 

approximated to the cruciform and the SCF prediction formula using ‘as’ was found 

to result in a good estimate of fatigue life.  

 

 

h) For full-scale ship hull construction, the applicability of the method has been 

discussed for details such as stiffened panels with corner connections, transverse 

frame structures and bracket attachments to the longitudinal stiffener flange.  

 

 

i) From the results of the simulations and the experiments, it is shown that the 

length scale methodology in stiffener can offer good results. This may imply a 

possibility of avoiding, or at least better targeting of the details to subject to 

numerical FEA simulations. 

 

 

It is apparent that not only SCFs but also stress intensity factors can be easily 

estimated using length scale methods. This could change the habits of designers, 

especially those working on stiffened plated structures at the preliminary design 

stage. 
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Besides the achievements above, numerous tasks are still left for future 

scientific research. Actually the work is still ongoing, further understanding of the 

stress flow inside of the system for more cases studies.  

 Those involving out of plane bending will allow the clear SCF estimation for 

fatigue assessment in much more complicated realistic details.  

 Attachments to folded plates (e.g. stiffener flange-web-bracket connections) 

are more complex than the simple cruciform and need further research to fully 

understand the effects of the in-plane bending moments that result from the eccentric 

forces within these connections.  

Thickness changes between the attached plate and the parent plate have been 

considered in this work but the analysis of cracks growing from one plate thickness 

into another, or moving through a junction of three plates requires further work.  

The effects of shear forces need to be considered.  

 

It is evident that there is also room for further progress in fatigue calculations 

out with this area: 

a) Large cyclic straining of the material, 

b) Residual stress effects  

c) Corrosion of the surface.  

 

 

9.3 Future Works 
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Before we begin with the concept of the analytical stress derivations, the 

pertinent aspects of analytic and harmonic functions should be examined first.  

An analytic function ( )f z can be regarded as a function of x and y having 

single-valued continuous partial derivatives. Thus: 

( ) ( )

( ) ( )

f z f z
x

f z if z
y

 

 


 A.1

where z x iy   

Now, let us assume the function ( )f z takes the form 

( ) ( , ) ( , )f z P x y iQ x y   

or simply ( )f z P iQ   
A.2

Accordingly  

( ) ( , ) ( , )

( ) ( , ) ( , )

f z P x y Q x y
i

x x x
f z P x y Q x y

i
y y y

  
 

  
  

 
  

 A.3

And then 

( , ) ( , ) ( , ) ( , )
( )

P x y Q x y P x y Q x y
i i i

x x y y

   
  

   
 A.4

Equating the real and imaginary parts of the above expressions yields 

( , ) ( , ) ( , ) ( , )
  and  

P x y Q x y P x y Q x y

x y y x

   
  

   
 A.5

The equations above are known as the Cauchy-Riemann equations, the 

functions P andQ are termed conjugate harmonic functions. It is evident that both 
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functions are real that the knowledge of one will enable the determination of its 

conjugate via the use of the Cauchy-Riemann equations.  

In general, the theory of elasticity gives a full development of the equations for 

plane extension. The strain-displacement relationships and Hooke’s law lead to 

compatibility equations: 

2 2
2

2 2
( ) ( )( ) 0x y x yx y
    

     
 

 A.6

The equilibrium equations are automatically satisfied by defining a stress 

function , in terms of its relationship to the stresses, substituting the expressions for 

the stresses into the compatibility leading to 

4 2 2( ) 0       A.7

In the above expression is a bi-harmonic function known as Airy’s stress 

function, used in solving two dimensional boundary-value problems.  

Indeed, considerable flexibility can be gained by adopting the complex stress 

function approach, since they are generally more concise and permit the solution of 

problems containing sharp corners, notches or cracks. 

According to Muskhelishvili’s complex stress function approach, it enables the 

Airy’s stress function  to be written in terms of two complex functions, 

( )z and ( )z . The integral of the compatibility equations with respect to z is also 

another analytic function: 

( ) ( ) 4 ( )f z dz P iQ dz p iq z       A.8

We differentiate expression with respect to x , we get 

Accordingly: 

  and  
4 4

p P q Q

x x

 
 

 
 A. 11

Now since p and q are conjugate analytic function, they satisfy the 

Cauchy-Reimann equation, then it is possible to express Eqn. A.12 as 

1
( ) ( )

4

p q
z i f z

x y
     

 
 A.9

i.e.  
1

( )
4

p q
i P iQ

x y

 
  

 
 A.10
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2 4 2( )
p p q

x x y

  
    

  
 A.12

Equivalently, the above expression can be written as 

2 ( ) 0xp yq     A.13

Consequently, obtain an expression for the stress function as being 

xp yq p     A.14

Clearly, p has its conjugate q , such that 

1 1( )z p iq    A.15

Accordingly, any stress function can be written as 

Re[ ( ) ( )]z z z     A.16

where ( )z and ( )z  are suitably chosen analytic functions 

It is worth nothing that the general expression for the stress function ( )F z is 

( ) ( ) ( )F z i z z z        A.17

And that it is always possible to obtain the equivalent Airy’s stress function. The 

Westergaard semi-inverse method (Westergaard, 1939) constitutes another simple 

and versatile tool for solving a certain class of plane elasticity problems. It uses the 

Airy’s stress function representation, in which the solution of plane elasticity 

problem is reduced to finding a functionwhich satisfies the bi-harmonic Equation 

and the appropriate boundary conditions. In conformity with Eqn. A.17 above, 

Westergaard defined Airy’s stress function  for symmetric problems by 

Re ImI IZ y Z    A.18

Here automatically satisfied bi-harmonic equation, the stress resulting to be 

Re Im

Re Im

Re

x I I

y I I

xy I

Z y Z

Z y Z

y Z






 
 

 

 A.19

The constant term entering 1,2,3 in equation takes different values depending on 

the applied loads and the geometry of the cracked plate. Now any function IZ which 

is analytic in the region except for a particular branch cut along a portion of the 

x-axis will have the form. 
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1/ 2

( )

[( )( )]I

g z
Z

z b z a


 
 A.20

This will solve crack problems for a crack along the x-axis at a x a   , 0y   

and leads to boundary conditions of uniform biaxial stress at infinity 

2 2 1/ 2( )I

z
Z

z a





 A.21

For the problem of an infinite plate subjected to uniform in-plane shear stresses 

 at infinity, the boundary conditions may be stated as 

2 2 1/ 2

0

 for ( )

x y

xy x y

 

 

 

   
 A.22

The Westergaard function of the sliding mode is 

2 2 1/ 2( )I

i z
Z

z a





 A.23

The study of stress and displacement fields near the crack tip is important, 

because these fields govern the fracture process that takes place at the crack tip. In 

this section we make a thorough study of the stresses near the crack tip. 

If we place the origin of the coordinate system at the crack tip z a through the 

transformation 

z a    A.24

The Westergaard function for an infinite plate with a crack of 

length 2a subjected to equal stress infinity, takes the form as 

1/ 2

( )

[ ( 2 )]I

a
Z

a

 
 





 A.25

Expanding equation we obtain 

2 3
1/ 2

( ) 1 1 3 1 3 5
[1 ( ) ( ) ...]

(2 ) 2 2 2 4 2 2 4 6 2I

a
Z

a a a a

    

   

    
  

 A.26

For small , ( 0)when   , that is the distance near to the crack tip at x a , 

the Westergaard function can therefore be written: 

1/ 2(2 )I

K
Z


  A.27

Or if we using polar coordinates, ,r   we have 
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ire    A.28

And the stresses near the crack tip are 

3
cos (1 sin sin )

2 2 22
3

cos (1+sin sin )
2 2 22

3
cos sin cos

2 2 22

I
x

I
y

I
xy

K

r
K

r
K

r

  


  


  


 





 A.29

Now suppose that the cracked plate is subjected to uniform stress   and 

k along y and x directions, respectively, at infinity. The stress field may be obtained 

by superimposing the stress field and the uniform field ( 1)x k    

Thus 

3
cos (1 sin sin ) (1 )

2 2 22
I

x

K
k

r

   


     A.30

The quantity IK is the opening stress intensity factor and expresses the strength 

of the singular elastic stress field. As shown by Irwin (1958), the equation applies to 

all crack-tip stress fields independently of crack/body geometry and the loading 

conditions. 

Combined with the approaches of Williams and Westgaard described above, the 

study of stress and displacement fields near the crack initiation is important; we are 

trying to give a new stress formula for corner prediction (Xu and Barltrop, 2007, 

20121), although it is semi-analytical methodology, and the formula would be 

accepted by engineers more easily. 

For illustration consider IZ function, some of application cases are given below, 

such as a crack of length 2a in an infinite plate subjected to one direction uniform 

tension at infinity:  

2 2

1

2I

pz
Z p

z a
 


 A.31

crack of length 2a in infinite plate subjected to partly uniform stress on the crack: 

2
( arctan )I

a a
Z pa

z z
   A.32

Using the ModeI , the problem solved is that of a central crack of length, 2a, 
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opened by a pair of splitting forces P , acting against the crack surfaces at the 

position y=0, x=b.  

2 2

2 2( )I

P a b
Z

z b z a


 
 

 A.33

P a b
K

a ba





 A.34

If we add a second pair of equal size splitting forces at the position 0,y x b   , 

the total value of IZ becomes 

2 2

2 2 2 2

2

( ) 1 ( / )
I

P a b
Z

z b a z


 
 

 A.35

K value at each crack-tip is given by 

2 2

2P a
K

a a b



 A.36
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Various analytical methods have also been used by several authors to develop 

approximate weight functions specifically. For deriving weight functions, proposed 

by Petroski and Achenbach, 1978 has attracted a lot of attention. However, it has 

been shown that the Petroski-Achenbach method can sometimes lead to inaccurate 

weight functions, dependent on the type of the reference stress field.  

An appropriate reference stress intensity factor K, can often be found in the 

literature without, however, the crack opening displacements ( , )ru x a . Petroski and 

Achenbach proposed a general approximate crack opening displacement 

function ( , )ru x a of the form 

3/ 2
0 ( )

( , ) [4 ( ) ]
2

r

G a x
u x a F a a x

a





    B.1

Where, 0/rF K a   

Thus, if the reference stress intensity factor K, and, as a consequence, the 

geometry correction factor fare known, the only unknown in Eqn.B.1 is the function 

G, which can be determined from the self-consistency of Eqn.B.2 resulting in: 

0
( )

a
r

r r
r

u
K x dx

K a

  
 

  B.2

However, the general weight function form of Eqn. B.2 seems to be adequate 

for many other crack configurations as demonstrated. The accuracy of weight 

functions approximated depends on the associated stress field ( )r x ; it has been 

shown to be inaccurate for very non-uniform or discontinuous local reference stress 
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field ( )r x . 

It was also pointed out that in some cases the three-term expression of Eqn.B.2 

is not sufficient, requiring sometimes more than three terms.  

For this reason Fett (1987) proposed a more general weight function in the form 

of expression Eqn.B.3 

2
1 2

2
( , ) [1 (1 ) (1 ) ... (1 ) ]

2 ( )
n

n

x x x
m x a M M M

a a aa x
       


 B.3

However, Shen and Glinka, 1991 found that a variety of existing weight 

functions has the same singular term and they can be accurately approximated by 

Eqn.B.4. Knowing the general weight function expression, the derivation of the 

weight function for particular geometrical configuration can be reduced to the 

determination of parameters 1M 2M and 3M .  

1/ 2 3/ 2
1 2 3

2
( , ) [1 (1 ) (1 ) (1 ) ]

2 ( )

x x x
m x a M M M

a a aa x
      


 B.4

The accuracy of the three parameters and consequently, accuracy of the weight 

function depends on the quality of the reference stress intensity factors. The method 

of derivation of these parameters 1M 2M and 3M  is discussed below.  

Mathematically, the weight function ( , )m x a , is the Green’s function for the 

present boundary value problem scaled with respect to the crack dimension. It has 

been further shown by Niu and Glinka (1987, 1990) that the method makes it 

possible to derive a general weight function of the form Eqn. B.5 

2
1 2

2
( , ) [1 (1 ) (1 ) ]

2 ( )

x x
m x a M M

a aa x
    


 B.5

Knowing the 2-term general weight function expression, the derivation of the 

weight function for a particular geometrical configuration of cracked body can be 

reduced to the determination of parameters 1M and 2M . 

Although Eqn.B.3 of weight functions are admissible for crack problems, 

expressions of Eqn. B.4 and Eqn. B.5 are used more accuracy. Therefore, the general 

weight function forms of equations are tested to check the number of necessary terms 

required to sufficiently approximate known exact weight functions. 

The principle of superposition allies on any linear elastic system. If two or more 



 

272 

different loadings are applied to the system, the effect of the combined loads is the 

sum of their individual effects. The principle of superposition enables us to relate 

K-values for different load cases when the geometries are the same.  

Many authors also applied numerous weight functions of different mathematical 

forms available in technical journals and handbooks. The weight function ( , )m x a for 

an edge crack emanating from the weld toe in a T-butt joint was finally given in the 

polynomial form:  

1/ 2 2
1 2

2 1
( , ) ( ) [1 (1 ) (1 ) ]

1 /

x x
m x a m m

a a ax a
    


 B.6

2 6
1 0.6147 17.1844 8.7822m      B.7

2 6
2 0.2502 3.2889 70.0444m      B.8

G. Glinka, 1991 generalized forms of mode I weight functions for the deepest 

point and the surface point of a surface, semi-elliptical crack in a flat plate. These 

expressions are subsequently used to determine weight functions and stress intensity 

factors for semi-elliptical cracks in plates, thin- and thick-walled cylinders.  

1/ 2 3/ 2
1 2 3

2
( , ) [1 (1 ) (1 ) (1 ) ]

2 ( )
A A A A

x x x
m x a M M M

a a aa x
      


 B.9

1/ 2 3/ 2
1 2 3

2
( , ) [1 ( ) ( ) ( ) ]B B B B

x x x
m x a M M M

a a ax
     B.10

The weight function ( , )m x a does not depend on the stress distribution, but only 

on the geometry of the component. The limitation of the generalised method is that 

the determination of the parameters, which need more M  values to apply to 

engineer conditions. 

If the geometries are different then the principle does not strictly apply but may 

be used to obtain approximate solutions. Hence, the WF method enables an efficient 

and direct SIF calculation. However, the obvious disadvantage of this method is the 

number of reference stress intensity factors that has to be known and which could be 

difficult to find. However, the number of necessary reference SIF calculation can be 

decreased by using characteristic properties of weight functions. 

The cracks propagate from the edge approaching to the centre of the plate till 

the failure of the whole plate, and the twin cracks growth will interact with each 
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other leading to the results similar with the ones from the semi-infinite plate. 

 

 

Wigglesworth (1957) determined the crack opening displacement of the surface 

crack for a = 0 analytically. The solutions are given as a power series 

1/ 2

0

( ) (1 )n
n

n

u A 






   B.11

The coefficients up to the 12th order are 

0 1 2 3

4 5 6

7 8 9

10 11 12

1.0000 0.143719 0.019965 0.019665

0.011856 0.006254 0.002993

0.001256 0.000390 0.00001

0.000172 0.000213 0.000212

A A A A

A A A

A A A

A A A

    
  
   
     

 B.12

 

The reference stress intensity factor associated with weight functions and 

relation form of the equations necessary for derivation of parameters 1 2, ...M M .  

The weight function for a double edge crack was derived using reference stress 

intensity factors according to general weight functions definitions. The final 

expressions for the weight function parameters are 

2 3
1

4 5 6

7 8

( ) 0.08502 0.02230 ( ) 1.41028 ( ) 4.64559 ( )
2 2 2 2

                19.6924 ( ) 148.266 ( ) 336.837 ( )
2 2 2

                336.591 ( ) 127.009 ( )
2 2

a a a a
M

b b b b
a a a

b b b
a a

b b

      

     

   

 B.13

2 3
2

4 5 6

( ) 0.2234 0.6146 ( ) 11.1687 ( ) 56.5326 ( )
2 2 2 2

                151.937 ( ) 182.634 ( ) 86.4731 ( )
2 2 2

a a a a
M

b b b b
a a a

b b b

      

     
 B.14

2 3
3

4 5 6

( ) 0.4983 0.7512 ( ) 10.5597 ( ) 47.9251 ( )
2 2 2 2

                115.933 ( ) 131.976 ( ) 59.8893 ( )
2 2 2

a a a a
M

b b b b
a a a

b b b

      

     
 B.15

B.1.1 Weight Function for double edge crack
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It has been shown that the integration technique is accurate and easier from the 

view of the mathematical derivation. Much more efficient and easier method for 

stress intensity factor calculation should be found for engineering fatigue application, 

such as using the length scale function method. 

 

 

Observing the numerical points carefully, the trend of the results looks similar 

with that of the shape edge crack in an infinite width plane. As a reason, to give 

additional checks of the weight functions, the stress intensity factors were plotted in 

Figure B.1 for pure tension, by application of finite element calculations, and also 

comparing with the boundary collocations function F 

 
a) 

 
b) 

Figure B.1 Weight function notation for edge crack in bodies: 

(a) in a semi-finite plate; (b) in a finite width plate 

 

     

It is therefore of practical significance to develop weight function solutions for 

both embedded cracks in infinite body and in semi-infinite body, which will enable 

the determination of stress intensity factor. 

B.1.2 Weight Function for edge crack in infinite plane 
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The weight function for an edge crack in a semi-infinite plate (Figure B.1.a) is 

derived analytically by Sih in the form 

5/ 4

2

2
( , ) [1.3 0.3( ) ]

(1 ( ) )

x
m x a

ax
a

a


 


 
B.16

The least square fitting of B.5 expression to general weight function form 

resulted in the determination of the factors in front of the terms in equations. 

22
( , ) [1 0.569300(1 ) 0.279375(1 ) ]

2 ( )

x x
m x a

a aa x
    


 B.17

here: 1 20.569300; 0.279375M M   B.18

Or  

1/ 2

3/ 2

2
( , ) [1 0.0719768(1 )

2 ( )

              0.246984(1 ) 0.514465(1 ) ]

x
m x a

aa x

x x

a a


  



   

 B.19

here: 1 2 30.0719768; 0.246984; 0.514465M M M    B.20

An accuracy comparison of different weight function formula changing, 

calculated using Eqn. B.16 and B.20 to the theoretical points of crack length ratio, is 

shown in Figure B.2.  
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Figure B.2 Comparison of weight functions for single edge crack 

in a semi-infinite width plate 

 

The other analytical weight function for single edge crack in a finite width plate 

(Figure B.1.b) was given by Kaya and Erdogan (1980) that 

2
3/ 2

( , )2 2( , )

(1 / 2 ) [1 ]

x a
G

a bm x a
a x

a b
a




    
 

 B.21

The unknown functions in weight function can be expressed by combined 

formula of fitting parameters and the geometric ratio. 

2 3

1 2 3 4( , ) ( ) ( ) ( ) ( )
2 2 2 2 2

x a a a x a x a x
G g g g g

a b b b a b a b a
            
   

 B.22

There are 4 corrective function factors in the function above, which has make 

determination, application and correction of the functions more complicated, and 

more than the numerical factor in front of the ratio be known. 

B.1.3 Weight Function for edge crack in finite plane 
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5 2 2
1( ) 0.46 0.36 0.84 (1 ) 0.66 ( ) (1 )

2 2 2 2 2

a a a a a
g

b b b b b
           B.23

2
2 ( ) 3.52 ( )

2 2

a a
g

b b
    B.24

2 3 3/ 2
3

5 2 2

( ) 6.17 28.22 34.54 ( ) 14.39 ( ) (1 )
2 2 2 2 2

                5.88 (1 ) 2.64 ( ) (1 )
2 2 2

a a a a a
g

b b b b b
a a a

b b b

        

      
 B.25

2 3 3/ 2
4

5 2 2

( ) 6.63 25.16 31.04 ( ) 14.41 ( ) 2 (1 )
2 2 2 2 2

                5.04 (1 ) 1.98 ( ) (1 )
2 2 2

a a a a a
g

b b b b b
a a a

b b b

          

      
 B.26

For the model, the general form of weight function is considered 2-term 

reference general Eqn.B.27; the derivation of point load weight function can then be 

simplified using this general expression.  

2
1 2

2
( , ) [1 (1 ) (1 ) ]

2 ( )

x x
m x a M M

a aa x
    


 B.27

The derivation of weight function for an edge crack should be reduced to the 

derivation of parameters 1 2, ...M M  along the entire crack front. The values for the 

unknown parameters 1M and 2M are not constant values like the situation in 

semi-finite plate, that is because the effect of the width in semi-infinite plate can be 

recognized as zero, while the influence should be separated by sub-interval crack in 

finite width plate. And the unknown factors 1M and 2M could be expressed as the 

function the crack ratio as following 

2 6
1( ) 0.6147 17.1844 ( ) 8.7822 (1 )

2 2 2

a a a
M

b b b
       B.28

2 6
2 ( ) 0.2502 3.2899 ( ) 70.0444 (1 )

2 2 2

a a a
M

b b b
       B.29

 

 

Even more, for a finite width plate containing edge crack shown in Figure B.3, 

B.2 Boundary Collocation Function 
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several reference solutions have been referred. For this kind of crack model, the 

stress intensity factor can be known for pure tension; and knowledge of solution 

(bending) allows being determined. 

 

Figure B.3 Geometry of edge crack embedded in finite width strips 

 

 

Tada and Fett etc. (1991) derived stress intensity factors for constant crack 

surface loads and quadratically distributed stresses. For costant  , one can fit the 

geometric function ( / )F a b , as shown in Eqn. B.30. 

 
 

2.73895

3/ 2

0.026778 0.427103 / 0.26514 / 0.72475
( / ) 1.122

1 /

a b a b
F a b

a b

  



 

B.30

The most accuracy results are given by least square fitting method (Gross 1964 

and Brown 1966) in Eqn. B.31. 

2 3 4( / ) 1.12 0.23( / ) 10.6( / ) 21.7( / ) 30.4( / )F a b a b a b a b a b      B.31

The tension loaded edge crack several geometric functions have been compiled 

in handbook. One of them is given by Eqn. B.32. 

4 3/ 2( / ) 0.265(1 ) 0.857 0.265 (1 )
a a a

F a b
b b b

       
 

 B.32

One of expression is given by transcendental function, which referred the 

geometric function from the solution of central crack in a plate. In his viewpoint, the 
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geometric function is separated by the analytical expression and folded influences 

multiplied by function factors in Eqn. B.33.  

30.752 2.02( ) 0.37(1 sin )2 2( / ) tan
2 cos

2

a a
b a b bF a b

aa b
b






  
   B.33

 

As the reference load case bending is used exclusively and for the geometric 

function F a solution based on the Boundary Collocation Method is applied, which 

for the edge crack in pure bending for any a/b is given by Eqn. B.34. 

40.923 0.199(1 sin )2 2( / ) tan
2 cos

2

a
b a bF a b

aa b
b






 
   

Or 

4tan 0.923 0.199(1 sin )
( / )

cos
/ 2

F a b

a b

 
 

 

 
 



 

B.34

 

The result by least square fitting method is presented of pure bending loaded 

condition in Eqn. B.35. 

2 3 4( / ) 1.122 1.40( / ) 7.33( / ) 13.08( / ) 14.0( / )F a b a b a b a b a b      B.35

In case of pure tension of double crack in the plate, the solutions can be referred 

that from the case of central crack in plate. The solutions are compared with the 

geometric function F given by Eqn. B.36.  

By asymptotic approximation, Benthem (1975) and Koiter derived the 

geometric function, F as 

2 31.122 0.561( / ) 0.015( / ) 0.091( / )
( / )

1 /

a b a b a b
F a b

a b

  



 B.36

Divided the central cracks to the both sides of the plate, the formula of Eqn. 

B.37 is completely identical for the modification of the Irwin’s interpolation formula 

by Tada 1973. 

2 3 41.122 0.561( / ) 0.205( / ) 0.471( / ) 0.19( / )
( / )

1 /

a b a b a b a b
F a b

a b

   



 B.37

The solutions of edge crack propagating in the rectangle strip has provide 
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various analysis results for difficult crack ratio shown in Figure B.4 
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Figure B.4 Geometric function curves of the central crack in plate strip 

 

Figure B.5 illustrates a plate containing a central crack. For this kind of crack 

model, the stress intensity factor is known for pure tension; and knowledge of a 

non-symmetrical solution (or bending) allows BC to be determined. 

 

Figure B.5 Geometrical data of a rectangular plate with a central crack 

 

 

It can be noted by comparing the result that geometric function corresponds to 
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the exact correction, equations below of a finite width strip approximate form having 

acceptable accuracy. Irwin (1957) gave approximate solution by periodic crack 

solutions (Eqn. B.38) 

2
( / ) tan

2

b a
F a b

a b




  B.38

Based on the Isida’ series solution 1970, Brown et al also got least square fitting 

solution by the following form (Eqn. B.39): 

2 3( / ) 1 0.128( / ) 0.288( / ) 1.525( / )F a b a b a b a b     B.39

Feddersen (1966) guessed empirical formula, based on the Isida’s results, the 

accuracy of the formula is better than 0.3% even for the crack exceeding the half 

length of plate; it is more concise equation (Eqn. B.40) comparing with others. 

( / ) sec
2

a
F a b

b


  B.40

Koiter 1965 used asymptotic approximation method got the solution (Eqn. 

B.41): 

21 0.5( / ) 0.326( / )
( / )

1 /

a b a b
F a b

a b

 



 B.41

Tada (1986) based on the works of Isdia, modified the solutions of Koiter’s and 

Feddersen’s and gave the empirical solution; the two equations can gave out more 

than 0.3% accuracy results for any /a b : 

2 31 0.5( / ) 0.370( / ) 0.044( / )
( / )

1 /

a b a b a b
F a b

a b

  



 B.42

 2 4( / ) 1 0.025( / ) 0.06( / ) sec
2

a
F a b a b a b

b


    B.43

As a consequence, it was just illustrated that basic solutions were used with 

proper central crack case calculation, which can be applied in the similar cases of 

component having internal crack in the plate; the stress intensity factor calculation 

can be recognized as the combination of the two cases of different crack lengths in 

centre of plate. Examples a symmetric crack in the shape of strip should be 

considered as well for the special problems. The solutions will provide approximate 

analyses for more difficult situations shown in Figure B.6 
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Figure B.6 Geometric function curves of the central crack in plate strip 

 

 

Based on the numerical and empirical results of SIF in tension (or bending loads) 

reported herein, SIF of engineering components (such as naval or offshore structures) 

are assumed to be predicted. 



 

283 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Tada's Central Crack1
Tada's Central Crack2
Tada's Edge Crack1
Tada's Edge Crack2

Central&Edge Crack Function Comparasions

Crack Length Ratio

G
eo

m
et

ri
c 

Fu
nc

tio
n 

F

 
Figure B.7 Geometric function curves of the central crack in plate strip 

 

 

 

 

The weight function method can be used to obtain stress intensity factors under 

complex loading conditions. It should be noted that the type of stress distribution can 

be given by nonlinear expressions. The boundary collocation method can be regarded 

as a relatively simple extension of weight function method.  

Mathematically, the weight function can be considered as a generalized Green’s 

function for the stress intensity factor problem. It has been found that the weight 

function can often be represented by Eqn. B.44 

1/ 2
1

3/ 2
2 3

2
( , ) [1 (1 )

2 ( )

              (1 ) (1 ) ]

x
m x a M

aa x

x x
M M

a a


  



   

 B.44

B.3 Relationship between BCM and WF
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An important feature is that weight functions can be applied for wide variety of 

crack configurations. By using the general expression, the determination of weight 

function reduces to the determination of three parameters 1 2 3,M M and M .  

The stress intensity factor may be good to compare with indication of the state 

of the stresses at the crack tip. If the reference stress intensity factors are known, 

these three parameters can be obtained with the help of assumed conditions.  

In the current analysis, the following additional condition Eqn.B.45 is used, 

where 0x   at the open end of the crack.  

0

( , )
0

x

m x a

x 





 B.45

The condition, as opposed to the null second derivative condition at 0x   

proved analytically by Fett, 1997; was found to improve the accuracy of the derived 

weight functions.  

In order to determine the weight function ( , )m x a ; two reference stress intensity 

factors are required. The stress intensity factor described for uniform stress 

distribution 0( )x  in Eqn.B.46: 

1 0 0( )K Y a a   B.46

Similarly, the stress intensity factor results for linearly varying stress 

distribution 0( ) (1 / )x x a   in Eqn.B.47: 

2 1 0( )K Y a a   B.47

Substituting these values plus the third condition into the above form of the 

weight function, the BCM equations with corresponding stress distribution, three 

equations solving unknowns of  1 2 3,M M and M are established in Eqn.B.49-B.51: 

 

1 0 1

14 25 64
2

3 3 9
M Y Y      

 B.48

 2 1 0

5
24 12 7

3 2
M Y Y

     
 B.49

 3 1 0

16
5 2 2

3
M Y Y     B.50

This approach was developed for crack problems with prescribed stress 
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boundary conditions.  

 

 

The linear elastic analysis of the stress field in body with or without cracks, 

dealt with in the preceding, applies to ideal brittle materials for which the amount is 

negligible, of inelastic deformation near the tip. The singular stress fields represent 

the asymptotic fields from the distance tending to zero, and their realm of 

applicability is confined to a very small region around the crack tip. In other words, 

under the applied loading, the plastic zone configuration influences the strength of 

the deformation field and the stress distributions.  

Little progress has been made on the important problems of tensile loadings 

opening a crack, although the anti-plane strain case is now well understood for both 

perfectly plastic (Hult and McClintock, 1956) and strain hardening (Neuber, 1961; 

Rice, 1967) materials, and some useful approximate models (Irwin, 1960 and 

Dugdale, 1960) have been proposed for tensile cases.  

In the present we present an elementary analysis of the elastic-plastic stress field. 

It includes J-integral explanation, energy release rate G calculation and the plastic 

zone of Irwin and Dugdale.  

For crack problems, Rice introduced the two-dimensional version of the 

conservation law, a path independent line integral, defined as the J-integral. It has 

come to receive widespread acceptance as an elastic-plastic fracture parameter.  

The J-integral appeared in the works of provided the primary contribution 

toward the application of the path independent integrals to stationary crack problems 

in nonlinear elastic solids (shown in Figure B.8). In an effort to establish path 

independence for the J-integral the deformation theory of plasticity has been 

invoked. 

 

B.4 Summary of Elasto‐Plastic Fracture Mechanics
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Figure B.8 Arbitrary path integrals to stationary crack problem 

 

 

The definition of the J integral in two-dimensional problems, and its physical 

interpretation in terms of the rate of potential energy with respect to an incremental 

crack. The potential energy ( )a of the body is given by 

( ) k k

A

a wdA T u ds


     B.51

where A is the area of the body and s is the boundary 

Under the previous assumptions differentiation of Eqn. B.51 with respect to 

crack length a yields, we get 

d
J

da


   B.52

For any path of integration surrounding the crack tip, it is expressed the 

J-integral as the rate of decrease of potential energy with respect to the crack length, 

and holds only for self-similar crack growth.  

The integration path may be taken close or far away from the crack tip, and can 

be selected to make the calculation of the J-integral easy. Tractions and 

displacements are assumed to be independent of crack length. 

[ ( ) ]
u

J W dy T ds
x





  

  B.53

having the same value for any path surrounding the tip 

The utility of the method rests in the fact that alternate choices of integration 
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paths often permit a direct evaluation of J. In linear elastic analysis, and under pure 

modes, J can be used for the computation of stress intensity factor K below: 

K EJ       (Plane stress) B.54

2(1 )K EJ    (Plane stain) B.55

The path independent nature of the integral allows the integration path to be 

taken close or far away from the crack tip. The utility of the path independent 

integral lies largely in the fact that its value may be simply determined for a variety 

of cases and configurations. 

Recently, the J-integral has been used to study three-dimensional nonlinear 

finite deformation of an elastoplastic body, dynamic fracture, thermal fracture 

(Nakamura etc, 1986), fracture in viscoplastic materials (Dexter, R. J, 1993), and 

creep and fatigue crack growth analysis (Dowling, 1976 and Riedel, 1980). 

In early studies (Irwin, 1960), energy release rate is defined G in terms of the 

behaviour at the crack tip; it is also found a trend for G (Rice 1963) to decrease with 

increase of plate thickness, also found that G value to increase when the crack and 

plate size are increased.  

The energy release rate and the corresponding stress intensity factor are 

determined for each crack extension increment in several possible crack propagation 

directions. It can be evaluated from the maximum energy release G criterion, where 

the released strain energy dW per crack extension da is dissipated. 

dW
G

da
   B.56

If NW  is the energy in original configuration of crack tip elements, while DW  

is the energy in subsequent configuration of these elements with virtually extended 

crack tip a . Then for virtual crack extension da it follows: 

D NW WdW
G

da a


   B.57

The relationship between G and K of an isotropic material is established by 

using Irwin’s crack closure integral (Irwin, 1958). 

2 2
2 2(1 ) (1 )

I IIG K K
E E

  
   B.58

By using the instantaneous energy release rate, the virtual crack closure 
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technique (VCCT) is a very efficient method for determining the stress intensity 

factor for any given virtual crack extension. This technique was originally proposed 

by Rybicki and Kanninen (1977), is a very attractive SIF extraction technique, a 

relatively easy algorithm of application capability of FEM relating with the energy 

release rate.  

Simplified model for plane stress yielding which avoids the complexities of a 

true elastic-plastic solution was introduced by Dugdale, 1960. The model applies to 

thin plates in which plane stress conditions dominate, and to materials with 

elastic-plastic behaviour which obey the yield criterion. For lower stress levels, or for 

which the plastic zones are much smaller than the plate thickness, it was found that 

the yield regions through the thickness remain almost the same; this is consistent 

with plane strain deformations. 

Yielding leads to stress redistribution and modifies the size and shape of the 

plastic zone shown in Figure B.9. However, we can obtain some useful results 

regarding the shape of the plastic zone from the approximate calculation. 

 

 
Figure B.9 Plastic zone of an elastic-plastic analysis of the stress field 

 

 

It can be remembered even that, clearly demonstrated by the analytical 

approaches, Irwin’s contention is that if a crack extends by a small amount ry. Thus, 

as a result of the crack-tip plasticity, the displacement is larger and the stiffness of the 

plate is lower than in the elastic case. 

Or if based on the solution by Nikishkov and Vainshtok (1980), the stress 
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intensity factor could be expressed as following: 

1 2 3 1 2 3

1
( )

2
KI E J J G J J G       B.59

1 2 3 1 2 3

1
( )

2
KII E J J G J J G       B.60

32KIII G  B.61

Where  

33
2

11 22

1
[ ( ) ]
1 1

v
E E

v v


 

  
  

 B.62

This argument is supported by the following fundamental properties of J: (1) J is 

path independent for linear or nonlinear elastic material response; (2) J is equal to 

/d da  for linear or nonlinear elastic material response; (3) K can be related to the 

crack-tip opening energy relationship by a simple relation of the form K EJ ; (4) 

J can be calculated by FEM easily. 

As discussed already, the increase in cracked area due to a virtual crack 

extension of a  and energy approach is simple. In more complicated analysis, the 

J-integral has to be applied to some point on the crack front if the local value of the 

energy release rate is sought, and the increase in cracked area has to be calculated. 

Consider the case of a smooth specimen containing a crack and having an 

applied stress range  , combining the linear elastic stress intensity equations, J 

loses its potential energy interpretation, but retains physical significance as a measure 

of the crack tip strain field, is expressed as follows: 

2
0( )

e

Y a a
J

E

 
   B.63

2
02 ( )e eJ Y W a a    B.64

whereWe is the elastic strain energy density, ( 2 / 2E )  

An approximate solution for pJ of the exponential plastic case may be obtained 

based on an estimate that has been made by Shih and Hutchinson (1975) for tension 

loaded cracked members. 

2
02 ( ) ( )p pJ Y f n W a a    B.65

The quantity pW is the plastic strain energy density, which may be expressed in 
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terms of n , stress (  ) and plastic strain range ( pe ), causing Eqn. 3.109 to yield: 

2
02 ( ) ( )

1
p

p

e
J Y f n a a

n




 
  


 B.66

For combined elastic-plastic deformation, the last total J may be approximated 

to express as: 

2
2

0

( ) 2 ( )
2 ( )[ { } { 1} ]

1 1 2

f n eE f n
J Y a a

n E n E

    
    

 
 B.67

To estimate the extent of the plastic zone in front of the crack, Irwin presented a 

simplified model for the determination of the plastic zone attending the crack tip 

under small-scale yielding. Using the approximate solution and found that the 

distance pr from the crack tip to the point of the yield stress is exceeded. 

Introducing the expressions for the singular principal stresses into the von Mises 

yield criterion expressed, we obtain the following expression of the plastic zone 

2 21 3
( ) ( ) ( sin 1 cos )

4 2
I

p
Y

K
r   

 
    B.68

for plane stress 

and 

2 2 21 3
( ) ( ) [ sin (1 2 ) (1 cos )]

4 2
I

p
Y

K
r    

 
     B.69

for plane stress, where Y is the yield stress 

These observations propose that the effect of plasticity makes the plate behave 

as if it had a crack longer than actual crack size. The extent of the plastic zone along 

the crack axis ( 0  ) is given by 

21
(0) ( )

2
I

p
Y

K
r

 
  B.70

for plane stress 

Since internally applied forces are in static equilibrium, the distribution of stress 

in the sheet must be independent of elastic constants. We assume that plastic 

concentration in front of the crack; and which has an effective length which exceeds 

that of the physical crack by the length of the plastic crack. 

It is apparent in this determination that the equilibrium condition along the y 
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direction is violated, since the actual elastic stress distribution inside the plastic zone 

is replaced by constant stress.  
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In the finite element method, the actual continuum or body of matter is 

represented as an assemblage of subdivisions called finite elements, taking solid 

mechanics as the example. These elements are considered to be interconnected at 

specified joints called nodes or nodal points. The nodes usually lie on the element 

boundaries where adjacent elements are considered to be connected. Since the actual 

variation of the stress field variable (e.g., displacement, stress, or velocity) inside the 

continuum is not known, we assume that the variation of the field variable inside a 

finite element can be approximated. The approximating function (also called 

interpolation model) is defined in terms of the values of the field variables at the 

nodes. By solving the field equations, which are generally in the form of matrix 

equations, the nodal values of the field variable will be known. 

Once these are known, the approximating functions define the field variable 

throughout the assemblage of elements. The solution of continuum problem by the 

finite element method always follows an orderly step-by-step process. With reference 

to static structural stress problems, the step-by-step procedure can be stated as 

follows (S. S. Rao, 2004): 

 

Step (I): Discretization of the simulation area, the first step in the finite element 

method, is to divide the structure (or solution region) into subdivisions or elements. 

Hence, the structure (plate or solid) is to be modelled with suitable elements. The 

number, type, size, and arrangement of the elements are to be decided. 

 

APPENDIX C 

FEA Applications in LEFM 

C.1 Terminology of Finite Element Method 
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1

( )
n

i i i
i

q x N q


  C.1

Where n is the number of nodes for each element, iq are nodal values of q, and 

iN are element shape functions. 

Step (II): Selection of proper interpolation and displacement model, since the 

displacement solution of real component under some specified load conditions 

cannot be predicted exactly, we assume some suitable solution to approximate the 

unknown results. The assumed ones must be simple from a computational standpoint, 

but it should satisfy certain convergence requirements. In general, the solution or the 

interpolation model is taken in the form of a polynomial. 

Step (III): Derivation of element stiffness matrices and load vectors, from the 

model assumed above, the element stiffness matrix[ ]ek  and the load vector are to be 

derived by using either equilibrium conditions or a suitable variational principle, the 

general formula of stiffness matrix is  

e Tk B EBdV   C.2

where B is the strain-displacement matrix, E is the material property matrix, and dV 

is an increment of the element volume V. To obtain B for the element by deriving 

shape function matrix N. 

Step (IV): Assemblage of element equations to obtain the overall equilibrium 

equations, here the individual element stiffness matrices and load vectors are to be 

assembled in a suitable manner and the overall equilibrium equations have to be 

formulated as 

[ ]{ } { }K v P  C.3

where [ ]K  is the assembled stiffness matrix, { }v  is the vector of nodal 

displacements, and{ }P is the vector of nodal forces for the complete structure. 

Step (V): Solution for the unknown nodal values; the overall equilibrium 

equations have to be modified to account for the boundary conditions of the problem. 

After the incorporation of the boundary conditions, the equilibrium equations can be 

used to solve the unknown values (like displacement). For linear problems, the 

vector displacement can be solved very easily. However, for nonlinear problems, the 

solution has to be obtained in a sequence of steps, with each step involving the 
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modification of the stiffness matrix[ ]K and/or the load vector{ }P . 

Step (VI): Computation of structural stresses (or strains) at the nodes, from the 

known nodal displacements{ }v , if required, the element stresses can be computed by 

using the equations of structural mechanics.  

   iD B d      

 i iB d      
C.4

The terminology used in the previous six steps has to be modified if we want to 

extend the concept to other fields. For example, we have to use the term continuum 

or domain in place of structure, field variable in place of displacement, characteristic 

matrix in place of stiffness matrix, and element resultants in place of element strains. 

The application of the steps of the finite element analysis is illustrated with the help 

of the following schematic outline. 

 

Figure C.1 Outline of the whole process in FE analysis project (S. S. Rao, 2004) 

 

 

By now, there are commercial simulation software using the technologies of 

Finite Elements, and are capable of performing static (stress) analysis, (more such as 

thermal analysis, modal analysis, frequency response analysis, transient simulation 

and also coupled field analysis). The most frequent used ones are ANSYS (ANSYS 
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Inc, US, 1970), ABAQUS (Dassault Systèmes Simulia Corp. US, 1978), NASTRAN 

(MSC.Software Corporation, US, 1960s) and so on. It is convenient to use the 

general-purpose package, and for some professional manufacturing production 

analysis, engineers prefer to use some special ones such as SESAM (DNV), FAD 

(LR) etc. 

ANSYS (or ABAQUS, NASTRAN) is a general-purpose finite-element package 

solving a wide variety of mechanical problems, all of them can be accepted to solve 

the fatigue and fracture problems. 

SESAM is a life cycle management system, developed by DNV, delivering 

strength assessment and operational management from design to operation. It covers 

a structure's entire life cycle delivering engineering software support in design, 

structural re-analysis systems, modifications and repair, input to the operational 

phase, emergency response and decommission; FDA is similar software for 

production cycles developed by LR; they are used in naval architecture and offshore 

engineering widely. 

This calculation method will be applied through our results verification and 

careful observation of structural calculations gained further insight into research 

serving life of ship structures.  

 

 

As assessing above, the typical stress equilibrium equation has been given. In 

the finite element method, the solution region is considered as built up of sub-regions 

elements. As an example of application of finite element method, it might be used to 

represent a complex geometrical shape, considering such as the bottom structure (or 

side ones) of ship. It is very difficult to find the exact response (like stresses and 

displacements) of the part under any specified loading condition. In each piece or 

element, a convenient approximate solution is assumed and the conditions of overall 

equilibrium of the structure are derived.  

The satisfaction of these conditions will yield an approximate solution for the 

displacements and stresses. And each kind of elements or the dimensions of the 

C.2 Solid and Shell Elements Considerations 
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elements should be considered, considering the consuming of the calculation. 

The term of ‘solid element’ is used to mean a three-dimensional solid that is 

unrestricted as to shape, loading, material properties. A consequence of this 

generality is that six possible stresses (three normal and shear) must be taken into 

account; the displacement field involves all three possible components. Typical finite 

element of 3D solids are tetrahedral and hexahedra showing in Figure C.2, with three 

translational DOF per node.  

 

Figure C.2 Common tetrahedral and hexahedra 3D elements 

 

With n the number of nodes per element, and translational DOF, these relations 

for 3D solids and solids of revolution are as follows: 

6 1 6 3 3 1n nB d      

3 3 6 6
T

n nk B E Bdxdydz    
C.5

Additional 3D elements are of course possible and are described the 

documentation of commercial software. Some elements may have nodes at the 

middle of each face, in addition to midedge nodes. The analysis should consult the 

documentation, in case even the basic elements describe above the special features. 

Typical 3D elements do not use rotational DOF; accordingly, rotational DOF must be 

suppressed in the global equations. In examining computed displacements and 

stresses it is helpful to view results from different directions and on different cross 

sections. Most often, peak stresses appear on the surface of a solid; therefore a plot of 

surface stresses must be examined.  

Problems of beam bending, plane stress, plates and so on, can all be regarded as 

special case of 3D physical problems. In fact, this would be a simplification by using 

2D elements. 3D solid models are the hardest to prepare, the most tedious to check 
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for errors, and the most demanding of computer resources; as a reason 2D elements 

would become elongated in modelling plates, and shells. 

A plate is a thin solid and might be modelled by 3D solid element. But a solid 

element is wasteful of DOF, as it computes transverse normal stress and transverse 

shear stresses, all of which are considered negligible in a thin plate. Also, thin 3D 

element invite troubles produces by ill-conditioning, plane element may be able to 

display states of constant x y and xy if it is to pass patch tests; plate element may 

be able to display these states in each constantz  layer (in Figure C.3).  

Figure C.3 The comparable solid and plate element, viewed normal to xy plane 

 

For two-dimensional steady-state problem, the governing differential equation is 

( ) ( ) 0x y

T T
k k q

x x y y

   
  

   
  C.6

and the boundary conditions are 

0 ( , )

0

( ) 0

x x y y

x x y y

T T x y

T T
k l k l q

x y

T T
k l k l h T T

x y 


 

  
 
 

   
 

           on the boundary 
C.7

 

A Mindlin element is based on nodal values, if all interpolations use the same 

polynomial, then for an element of n nodes; the iN are given for a four-node 

quadrilateral element, an eight-node quadrilateral is also popular, based on the same 

iN used for a plane eight-node. 
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N      
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N            4

1
(1 )(1 )

4
N      

C.8

Accordingly, the behaviour of the Mindlin plate element can be reduced from 

the behaviour of the corresponding plane element provided that all terms of the 

integrand and integrated by the same quadrature rule; integration of TB EB with 

respect to z is done explicitly. Integration in the plane of the element is done 

numerically if the element is isoparametric. 

 

1

0 0

0 0

0 0

in

x xi
i

y yi

w Ni w

Ni Nd

Ni

 
 

    
         
        

  C.9

 

Classical plate theory uses polar coordinates for circular plates. In FE analysis, 

it is simple by making shell elements flat rather than cylindrical of conical. Each 

such element is thus a flat annular ring. The geometry of a shell is defined by its 

thickness and its mid-surface, which is curved surface in space. Load is carried by a 

combination of membrane action and bending action. A thin shell can be very strong 

if membrane action dominated, in the same way that a wire can carry great load in 

tension but only small load in bending. A wire must have a different shape for every 

different distribution of lateral load if there is to be no bending. 

Equations that describe the behaviour of shells of other shapes are considerably 

more complicated, so that shell solutions for engineering purposes must usually be 

obtained by FE analysis. Advantages of a flat element include simplicity of element 

formulation, simplicity in the description of element geometry, and the element’s 

ability to represent rigid-body motion without strain. 

Commercial software does some checking automatically. These checks involve 

computing a numerical value from the input data and comparing it with one or more 

stored values that define limits of acceptability. Software often allows a ‘check run’ 

that stops short of solving global equations or even generating them. Errors that may 

be detected by automatic data checks include the following: nodes are not connected 
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to any element; nodes are close together or coincident but not connected; elements 

share a node but do not use the same set of DOF at the node; The poisson’s ratio 

should be in the range of 0 0.5  ; the elements should not have too large aspect 

ratio or corner angles that differ too greatly; Side node may curve the side too greatly 

or be too far from mid-side; the linear element in space is too greatly warped; that is, 

its node are too far above or below the mean plane; a curved shell element spans too 

great an arc.  

The FE method is not very good at calculating peak stress at holes, fillets, and 

so on. Often a stress raiser is small, being roughly the size of an element that would 

be used if the stress raiser were absent. The stress raiser is not modelled, but nominal 

stresses at its location are calculated by FE analysis. Then if a tabulated SCF for the 

local geometry and stress field is available, one need only multiply the nominal stress 

by the SCF to obtain the peak stress. 

In an axially symmetric problem, radial and circumferential normal stress 

should be equal on the axis of revolution. None of these conditions is likely to be met 

perfectly. The amount of imperfection is a measure of discretizeion error, or is 

perhaps a warning of an error in the FE model. One would also suspect a error in 

modelling if there are unexpected stress gradients or stress concentrations. Inevitably, 

there will be disagreements between FE results and other results (analytical results, 

experimental, and formulas from handbooks) used for comparison. Reasons for any 

substantial disagreement must be sought. FE results are not necessarily when there is 

disagreement, but experience shows that most users are entirely too willing to accept 

computed results as face value. Close inspection of results shows how the FE model 

can be improved. A need for mesh refinement is indicated in regions where stress 

contours display considerable inter-element discontinuity. 

Application of commercial software ANSYS, which supplies several meshing 

tool for meshing elements, can optimum our calculation in Figure C.4: 
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Figure C.4 Illustration of (a) Shell 63 input data; (b) Solid 95 geometry 

(ANSYS 13.0 User Manual) 

 

Several requirements have to be satisfied for performing acceptable calculations 

related to discontinuities in the vicinity and the stress gradient close to the hot spot. 

However, the 20 node solid elements (Solid95) used for finite element modelling and 

the stresses obtained at midpoints of the first elements are normally slightly 

exaggerated due to the singularity at the weld toe and latter are somehow corrected 

by linear extrapolation applied for stress rising. 

 

 

The displacement based on finite element formulation occurs in the solution of 

structural static problems. The method is, however, general and can be also applied 

for solving multi-point constraint conditions on primary variables of finite element 

method (Mark Ainsworth, 2001, and Libor Jendele, Jan Cervenka, 2009). The fact 

significantly reduces computer storage requirements, which will be called Complex 

Boundary Conditions, or Multi-points Constraints. 

The types of Von-Neumann boundary conditions have no impact on dimension 

n in FEA. Constraints can also be more complicated, such as those modelling rigid 

parts, or those transmitting motion between flexible bodies. Structural component 

may be consisted of rigid parts and moving parts connected together by rotational or 

sliding connections.  

Here discussing a solution for implementing Dirichlet BCs form, each degree of 

C.3 MPC Technology
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structural freedom is a linear combination with other degrees of freedom. The 

important point about implementing equations is that the boundary conditions are 

already utilized by assembling the equation system. It means that if we have m of 

these BCs, then the final dimension of the matrix K becomes only n m . 

Let us suppose that all structural constraints are specified; mathematically, this 

is expressed as  

0l l lk ku u u   C.10

The constraint may be as simple as that of identical displacements between 

nodes. The simply form of single boundary condition after manipulation is written as 

following:  

0
1

( )
n

ij ij ij ij j i il l
j

K K u r K u 


      1,...,i n  C.11

The set of equations have already used to solve unknown displacements, which 

will be preceded to the case of multiple boundary conditions.  

Redundant conditions are ignored and contradictory conditions are fulfilled after 

their summation. Therefore, before any such set of conditions is used, it is necessary 

to detect and fix all redundant and contradictory multiple conditions.  

This is easily done in the case of a simple set of conditions, which can be 

written in vector form:  

0l l ku u Au   C.12

The above relationship represents a system of algebraic linear equations. The 

system is typically non-symmetric, sparse and has different numbers of rows (the 

number of conditions) and columns (the number of master and slave DOFs). It is 

often known which DOF is dependent (or slave) and which is independent (or master) 

previously. 

The Multi-points Constraints are successfully implemented in the finite element 

package ANSYS; Multipoint constraint element (MPC184 in ANSYS) comprising a 

general constraint class that apply kinematic constraints between nodes. The 

elements are loosely classified here as ‘constraint elements’.  
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It can be noticed that a slightly higher stress concentration effect occurs at the 

specimen mid-thickness point with respect to the specimen free surfaces (V Saouma, 

D Schwemmer, 1984). In equation C.9 if the stresses are to be singular, then [B] (FE 

theory has been described in Appendix C. 4) has to be singular as the two other 

components are constants. Consequently, if [B] is to be singular then the determinant 

of Jacobian Matrix, J-Matrix must vanish to zero at the crack tip.  

x y

J
x y

 

 

  
   
  

   

 
C.13

Now considering a rectangular element of length L along its first side (1-2-3, in 

Figure C.5), we can readily see that both off-diagonal terms ( y



 and x



 ) are 

zero.  

 

Figure C.5 Quadratic Finite Element: Global and Parent Element 

 

 

 

Thus, for the determinant of the Jacobian to be zero we must have either one of 

the diagonal terms equal to zero.  

 

 

C.4 Singular Element in LEFM
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It will suffice to force x



  to be zero. Making the proper substitution for 

x



 at 1   , we have:  

2

1

1 1
(2 4 ) + (-4 )

4 2

x
L x



 
 


 


 C.14

 

After simplification and considering the first corner node (where 1    ), 

we would have:  

2 4
Lx   C.15

 

Thus all the terms in the Jacobian Matrix vanish if and only if the second node 

is located at 4
L instead of 2

L , and subsequently both the stresses and strains at the 

first node will become singular. Thus singularity at the crack tip is achieved by 

shifting the mid-side node to its quarter-point position, see Figure C.6.  

a) b) 

Figure C.6 (a) Finite element discretization of the crack tip using singular elements;  

(b) Displacement correlation method from quarter point singular elements 

 

 

 

For the quarter-point singular element, in two dimensions, the displacement 

field is given by: 
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( 3 4 ) (2 2 4 )A A B C A C Br ru u u u u u u uL L
                

C

.16 

( 3 4 ) (2 2 4 )A A B C A C Br rv v v v v v v vL L
                

C

.17 

Herein, u and v are the local displacements of the nodes along the crack in the 

singular elements. Equating the terms of equal power 1/2 in the preceding two 

equations, the r term vanishes, and we can obtain the two stress intensity factors for 

mixed mode problems: 

0 1 3 4( ) ( )1 2 2

1 02 1
3 4( ) ( )

A B D C EI

II
A B D C E

K u u u u uG

K L
v v v v v




                                 

 
C

.18 

Thus it can be readily seen that the extraction of the SIF can be accomplished 

through a ‘post-processing’ routine following a conventional finite element analysis 

in which the quarter point elements have been used. 

 

 

As describe before in Appendix C.4 Singular Element in LEFM, J-integral is a 

special powerful parameter to predict crack propagation value, especially for 

nonlinear elastic cracked body. Crack energy flow package can deal with two types 

of crack calculation LEFM and EPFM: they offer full control of the nodes in front of 

the crack tip and integrate the rate of the total potential energy. Even if the special 

crack tip elements are valid for elastic-plastic analysis, the results will be 

satisfactory.  

It was found that the applied J vs. displacement for shell cracks bridged by 

stiffener, or girder can be calculated incorporating all sections. Standard crack 

calculation by J-integral will use high order element; the node information will be 

summed along the selected path (shown in Figure C.7). The innermost ring contains 

“collapsed” elements to represent the singularity in the crack tip stress field. 

 

C.5 J‐integral Calculation Path



 

307 

Figure C.7 Available FE J integral path around the crack tip region 

(ANSYS 13.0 User Manual) 

The J-integral can be determined from analytical derivations or displacement 

measured. The energy release rate for the general multi dimension case can then be 

written in the matrix notation as the discretized form is given by  

1
1 1

[ ]
n

j
ij i iw ie

i i

uu q
J Wdy T ds w w A

x x x
 

 


 
   

     C.19

Walterset al. (2006) also reported mixed mode stress intensity factors for 

three-dimensional cracks using a two-state interaction integral method. Shih and 

Hutchinson (1976) proposed a general method to compute J, later developed further 

and validated in the General Electric Corporation of a handbook (1981). 

Many methods and models have been presented for estimation of J-integral. 

Consequently FE is accepted to estimate J along the crack front for the comparison 

purpose.  

If an analysis is being performed by the finite element method, the formulas of 

the energy release rate have to be put into the finite element framework. One of 

discretized forms of the J-integral was provided by Shih et al (1986), the numerical 

method for evaluating J-integral can be written as:  

1 2
1 1 1 1

{[( ) ]det( )} ( )
m

j j j
ij i p p j

AorV P crackfacek

u x uq
J w w q w

x x x
  



  
  

       C.20

where m is the number of Gaussian points for each element, w and pw  are 

weighting factors, ij are stress components, ju , are displacement members, ix , are 
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global coordinates, i , are local coordinates, ij , is the Kronecker delta.  

 

The 3D implementation will be a little more complicated than the 2D situations; 

however, the principal is the same for path simulations. For the 3D crack problems, 

domain integral representation of the J-Integral is a volume integration, which again 

is evaluated over a group of elements. 

It consists of path operations necessary to compute the J-Integral; one contour 

path was used around the crack tip to calculate J. 

 

 

Consider a finite plate in tension with a central crack as shown in Figure 1, the 

plate is made of steel with Young’ modulus E=200GPa and Poisson’s ratio v=0.3. Let 

b=0.2m, a=0.02m, Pressure=100MPa. Determine the SIFs (stress intensity factors) 

using 2D facture, and J-integral analysis.  

An analytical solution given by W.D.Pilkey (Formulas for Stress, Stain, and 

Structural Matrices) is  

IK C a   C.21

where 

2 3 41.12 0.23( / ) 10.6( / ) 21.7( / ) 30.4( / )a b a b a bC b

a

a

b


   




 

Use of this section yields 25.680IK MPa m   

 

Linear elastic and fracture mechanics (LEFM) and Plane stress assumption is 

used, the SIFs at a crack tip may be computed using the ANSYS commend (KCALC). 

The right-half model is used to calculate the SIF for 2D model refer to the model of 

“ANSYS TUTORIAL”. (Using the APDL to finish the calculation) shown in Figure 

C.8 and Figure C.9 

C.6 Fracture FE Case Study
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Figure C.8 The right-half model for 2D calculation 

 

The crack-tip region is meshed using quarter-point (singular) 8 node 

quadrilateral elements (Shell93). The whole process was finished by GUI in 

“ANSYS TUTORIAL-2D FRACTURE ANALYSIS” in Figure C.9.  
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Figure C.9 the detail information of half model for 2D calculation 

 

 

Classical fracture theory defines 3 fundamental modes (I The opening mode; II 

the edge-sliding mode; III the tearing mode) based on macroscopic relative 

displacement profiles. For this finite cracked sheet with uniform normal stress 

problem, only the first-mode fields are present. 

It is general noticed that smooth and silky corresponding to the crack 

propagation by fatigue of corresponding to brittle fracture. Any cracking can be 

brought back to the one of the three simple stress modes or their superposition. There 

are thus three elementary failure modes of cracking shown in Figure C.10.  
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Figure C.10 Fracture failure modes with related loading situations 

 

 

Mode I: mode of crack opening, where displacements with the lips of the crack 

are perpendicular to the direction of crack propagation; 

Mode II: mode of in-plane shear, where displacements with the lips of the crack 

are parallel to the direction of crack propagation; 

Mode III: mode of out-of-plan shear, where displacements with the lips of the 

crack are parallel to the crack front. 

The stress intensity factor calculation equation for Mode I:  

1
2

1IK C a ; 0II IIIK K   C.22

J-Integral method 

( )yx
x y

uu
J Wdy t t ds

x y 


  

    C.23

where 2(1 )(1 2 )

4 IWdy K
E

 


 
  C.24

 2(1 )(3 2 )
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4
yx

x y I

uu
t t ds K

x y E

 


  
  

   C.25

and 
 2 21IK

J
E


  C.26

 

Due to the symmetry of the problem, a quarter models can be used in this report 

for 3D and J-integral methods shown in Figure C.11. 
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Figure C.11 the quarter model for 3D calculation 

 

 

This variable, stress intensity factor is the function of the crack length a , 

component geometry and the applied loading; although, the numerical value has an 

accuracy of better than 0.5% for any value of ratio /a b , the process is time-wasting 

work. Obviously, it can be considered as the natural endurance ability to the fatigue 

strength.  
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The stress intensity factor at the crack front was computed using the virtual 

crack closure technique (VCCT). This technique was originally proposed by Rybicki 

and Kanninen (1977), is a very attractive SIF extraction technique, a relatively easy 

algorithm of application capability of FEM.  
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The idea (E.F. Rybicki and M.F. Kanninen, 1977) presented in technical paper is 

based on the calculation of the energy release rate, using Irwin assumption that the 

energy released in the process of crack expansion is equal to work required to close 

the crack to its original state as the crack extends by a small amount. 

We note that deLorenzi (deLorenzi, H.G., 1985) has shown that the energy 

release rate is given by 

1
1

1

1
( )j

ij i
i

u x
G w dA

A x x
 

 
 
    D.2

for a unit crack growth extension along 1x  

It is shown in Figure D.1 that FE model in the vicinity of a crack tip before the 

virtual crack closure. 

APPENDIX D 

Special Technology in Fatigue and Fracture 

Analysis 

D.1 VCCT Technology 
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Figure D.1 2D finite element model in the vicinity of a crack tip before the virtual 

closure 

 

 

For the finite element calculation, similar procedure can be applied to put the 

nodes in pairs to calculate the strain energy release rate. The translation vector 

always indicates corresponding nodes. 

 

 

It is submitted that physical modelling of fatigue crack growth remains uniquely 

unsuccessful. But that should not worry us too much, since Fracture Mechanics 

analysis methods allow the prediction of growth rates of structural cracks from 

simple lab test configurations. It saves us from being required to have an 

understanding of the detailed micro-physics of crack growth. 

The formula sets up a theoretical framework accounting for effects believed to 

be important, which efforts can be refined. Overview, reference states that the 

evaluation of failure analyses was hampered by a combination of a limited data base 

and uncertainties in experimental inputs. For those reasons, it should not be inferred 

that discrepancies between theory and experience reveal an inherent deficiency of 

fracture mechanics. 

Most proposals were judged to be too empirical and received sceptically by many 

D.2 Paris Law Formulas
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experts in the field. Usually K is a function of the crack length under a cyclic stress 

or displacement. The number of fatigue-crack growth rate relations in the literatures 

is enormous, but the first such relation was attributed to Head. Table D.1 gives list of 

some crack-growth rate relations that have been proposed since the early 1960's. This 

list is just a slight section summary of the all major relations currently used today.  

 

 

The section above has described the process of calculating fatigue lives from 

linear FE-SAFE commercial packages. For FE analyses ANSYS may be used to 

model a series of ship structures, with the stress results being written for each event 

and FE-SAFE will analyze the sequence of stresses, and get the fatigue life of the 

real ones. Its focus has been to provide useful information to the design engineer 

when fatigue failure may be a concern.  

The fatigue analysis requires accurate stress information, and inadequate 

meshing will give accurate stresses rarely. Sensitivity analysis, where fatigue lives 

Table D.1  

Evolution of some typical crack-growth rate relations 

Table-lookup procedure Peoples Dates 

/ ndc dN C K   Paris, Gomez and Anderson 1961 

max/ ( )n mdc dN C K K    Paris and Erdogan 1963 

/ ( , , )cdc dN f K R K   Forman, Kearney and Engle 1967 

/ ( )dc dN f CTOD   Tomkins 1968 

/ ( )n
effdc dN C K   Elber 1970 

/ ( , )dc dN f K R   Walker 1970 

/ ( )n
effdc dN C J   Dowling and Begley 1976 

/ ( )effdc dN f W  Ogura et al. 1985 

/ ( , )dc dN f K R   Miller and Gallagher 1981 

D.3 SN Assessment Employing FE‐SAFE
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are calculated for the same model with different mesh densities, it is recommended 

using FE-SAFE to predict the fatigue life. 

It can be separated into 3 areas: materials definition, loading analysis, and 

results evaluation. In the previous examples, loading was applied in the form of static 

load on the steel material, and analysis assumes that linear relationship between load 

and stress responses. 

By introducing the stresses from calculating software, graphics may not be able 

to plot fatigue life contour plots on a linear scale because the contour algorithms 

cannot cope with the large range of numbers, which may encompass several orders of 

magnitude. Contour plots of fatigue life provide the clear indication of fatigue lives 

and the location of crack initiation sites. 

The SN approach is effective method for fatigue assessment when fatigue life 

may be defined as a crack reaching the physically final crack. The statistical 

evaluation of the test results is given by Fricke (2004), using again a fixed slope 

exponent of the SN curve. For the lower-bound SN curve (97.7%) in the following 

form  

log log log nN a m     D.3

If the constant amplitude fatigue limit of the resistance SN curve corresponds to 

endurance less than 810 cycles, the fatigue resistance curve has to be modified 

according to: 

log log logN a m     D.4

N     = predicted number of cycles to failure for stress range   

  = stress range 

m     = negative inverse slope of S-N curve 

log a   = intercept of log N-axis by S-N curve 

  

log log 2a a s   D.5

a   = constant relating to mean S-N curve 

s   = standard derivation of log N  

 

The slope of the fatigue strength curves for details assessed on the basis of 
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normal stresses is m=3.00. The constant amplitude fatigue limit is 65 10 cycles. The 

slope of the fatigue strength curves for details assessed on the basis of the shear 

stresses is m=5.00, but in this case the fatigue limit corresponds to an endurance of 

810 cycles. FE-SAFE analysis is discussed in this section, have been comprised in 

this section by following: 

(a) Several options accounting for mean stress are available; the 

elastically-calculated FEA nodal stress tensor is read; 

(b) The stress tensor is multiplied by the time history of the applied loading, to 

produce a time history of the stress tensor; 

(c) The time histories of the in-plane principal stresses are calculated. (The 

out-of-plane stress is checked for possible contact loading); 

(d) The time histories of the three principal strains can be calculated from the 

stresses; 

(e) For SN curve analysis a plane perpendicular to the surface is defined, and 

the time history of the stress normal to this plane is calculated; 

(f) On the fatigue damage is calculated. For the individual fatigue cycles are 

identified using a ‘Rainflow’ cycle algorithm, the fatigue damage is calculated and 

the total damage is summed. The plane with the shortest life defines the plane of 

crack initiation, and this life is written to the output file; 

(g) During the calculation, FE-SAFE may modify the endurance limit amplitude. 

If any cycle is damaging, the endurance limit amplitude is no calculated fatigue 

damage on the component, and the damage curve extended to this new endurance 

limit. 

The availability of commercial FE tools is limited while the stress intensity 

factor calculations that are available are usually quite expensive and difficult to use 

in the hands of designers. Currently, fatigue life approach has been adopted for 

conducting FE analysis. It would of course be possible to use FEA to calculate the 

stresses or strains responses for each point in the load history. 

And more that the failure behaviour of complex structures determined in 

numerical analyses may differ from the actual failure behaviour due to varying 

residual stresses. 
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