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Abstract

Numerical algorithms to implement an advanced nonlinear constitutive

model, S-CLAY1S, for natural soft clay into PLAXIS are studied in

order to reduce the numerical instability. Simulations performed using

several triaxial tests and a benchmark test indicate that the use of an

automatic substepping modified Newton-Raphson (MNR) algorithm can

eliminate or minimize the problem. Therefore, this algorithm is adopted

to implement S-CLAY1S into PLAXIS as a user defined soil model. The

modified S-CLAY1S model was proposed by incorporating Lode angle

dependency failure criterion. This has improved the model predictions

in failure condition especially in extension.

A hybrid implicit numerical algorithm for the Sekiguchi-Ohta (SO) in-

viscid/viscid models capable of robustly overcoming the vertex singu-

larity is presented. The proposed hybrid algorithm consists of modified

Newton-Raphson algorithm and Stolle’s algorithm, used to implement

the SO models into PLAXIS. Numerical simulations and benchmark test

demonstrate the algorithm’s accuracy and numerical stability even for

large strains.

The main part of this thesis is the development and implementation into

FE code of a new constitutive model to represent the cyclic behaviour

of natural soft clays. The S-CLAY1S model has been extended to the

bubble surface plasticity in which smooth transitions between elastic and

plastic behaviour can be modelled. The model developed in this research

is named ’B-SCLAY1S’ and requires thirteen parameters. Numerical

examples show that the implementation into PLAXIS of the present

model is successful. Finally, applications of the B-SCLAY1S model are

made in two levels. First, simulations and comparison with laboratory

tests including kaolin, Swiss lacustrine clay and Bothkennar clay test

data. Second, the finite element benchmark analysis of an embankment

and a pile driving problem subjected to cyclic loading were presented.

At both levels the B-SCLAY1S is shown to be superior to the S-CLAY1S

models, mainly because it captures the small strain behaviour.
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Chapter 1

Introduction

Due to the growth of population in the cities geotechnical engineers have to design

and construct infrastructures on soft soils. Due to the complexity of soft soil be-

haviour, engineers are using computational modelling techniques, such as the finite

element method to solve engineering problems in practice. The accuracy of finite

element analyses is dependent on several factors, one of which is the ability of the

material model used in the finite element code to predict the stress-strain behaviour

of the material. This creates greater need for accurate constitutive models, which

account for complex behavior of soft soil such as anisotropy, destructuration and

time dependency resulting from the nature of deposition, geological history and any

subsequent processes.

In addition to developing accurate constitutive models, the robustness and ef-

ficiency of a finite element code also depends on the integration procedures used to

implement the constitutive equations into a finite element package. In finite element

calculations, strain increments for a given loading step are input to the constitutive

driver, and the corresponding stress increments with constitutive behavior of ma-

terial are returned to the main finite element code. The efficiency and accuracy of

a finite element code may suffer if stress increments cannot be correctly calculated

for given set of strain increments. Therefore, the numerical algorithms to integrate

constitutive equations is a key component of constitutive model development.

The soft soils in the vicinity of structures such as railway tracks, at the vicinity

of windmill foundations and offshore foundations that are exposed to cyclic loading

may experience significant permanent plastic deformation. Standard critical state

models cannot adequately simulate permanent plastic deformation and/or other

important features with respect to the cyclic response when the loading history
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remains inside the yield surface. In order to predict the cyclic response of soft soil

correctly, a suitable constitutive model has to be used in the finite element analysis.

The original part of this research is the development of a new constitutive

model which is applicable for cyclic behavior of soft soils. In parallel, improvements

of an existing constitutive model in terms of a numerical procedure to integrate

constitutive equations are made and the implementation of constitutive models into

the PLAXIS finite element code is discussed.

1.1 Objectives

The aim of this research is to develop, improve and implement constitutive models

in the PLAXIS finite element code to account for complex soft soil behavior under

both monotonic and cyclic loading.

The main objectives are:

• To explore numerical methodologies for implementing advanced constitutive

models of soft soil in PLAXIS to minimize the numerical instability and im-

prove the numerical efficiency.

• To study the existing S-CLAY1S model which accounts for anisotropy and

destructuration of soft soil, to further improve the model and to implement

these improvements in PLAXIS using robust numerical algorithms.

• To develop numerical algorithms to solve the singularity problem of the Sekiguchi-

Ohta models in order to implement the models in PLAXIS.

• To develop a mathematical formulation for cyclic behaviour of soft soil and

implement the model in PLAXIS. This model, developed by author, is known

as B-SCLAY1S, and forms the major original part of this research project.

• To verify and validate the constitutive models implemented in PLAXIS, and to

apply them to a number of benchmark problems representing typical geotech-

nical applications.
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1.2 Secondment

1.2 Secondment

The author was seconded to PLAXIS B.V. (The Netherlands) for 9 months from

November 2008 to August 2009 as part of the EC-funded Geo-Install Industry-

Academia Pathways and Partnership (PIAG-GA-2009-230638) project. During this

period, the author was supervised by Dr.Ronald Brinkgreve and Dr. Paul Bonnier,

and given a task to implement the Sekiguchi-Ohta models (inviscid/viscid) in the

commercial finite element code PLAXIS as a user defined soil model (UDSM). This

secondment led to a breakthrough: a new implicit hybrid algorithm used to im-

plement the models in PLAXIS which overcomes singularity of the Sekiguchi-Ohta

models. The work was done in collaboration with Dr. Paul Bonnier. The proposed

new algorithm and implementation in PLAXIS are detailed in Chapter 4.

1.3 Layout of Thesis

This thesis is divided into eight chapters. The outline of the work presented in this

thesis is given below:

Chapter 2 incorporates a literature review of constitutive models which covers

conventional constitutive models, advanced non-linear constitutive models, consti-

tutive models for cyclic loading and other alternative approaches in soil modelling .

The S-CLAY1S model (Wheeler et al., 2003 and Karstunen et al., 2005), the Bub-

ble model (Al-Tabbaa, 1987 and Al-Tabbaa & Wood, 1989) and several soil models

thought to be the most relevant for this work are reviewed and the main differences

between them are discussed.

In Chapter 3, the mathematical formulation of the S-CLAY1S model is pre-

sented in detail. A modification to the model to account for the Lode angle depen-

dency is proposed and discussed. The implementation of the modified S-CLAY1S

model incorporating these modifications in PLAXIS is explained, as are the numeri-

cal algorithms used for the implementation. The inclusion of Lode angle dependency

into the S-CLAY1S model is validated with published experimental data on natural

marine clay. The implementation of the modified S-CLAY1S model in PLAXIS is

verified by simulating benchmark tests with PLAXIS.

In Chapter 4, the Sekiguchi-Ohta (SO) (Sekiguchi & Ohta, 1977) model is

presented, in its original formulation in triaxial stress space and general stress space.

Discontinuity at the vertex of the model and the numerical difficulties encountered

3
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in the stress derivatives of the yield surface are discussed. A novel hybrid implicit

numerical algorithm is introduced to overcome the singularity of the model, which

is presented and discussed. The implementation of the general formulation of the

model into the PLAXIS finite element code and the verification of the model is also

given in this chapter.

In Chapter 5, the new B-SCLAY1S model is explained in detail. The math-

ematical formulation of the model in triaxial stress space and general stress space

is presented and discussed. Parameters determination of the B-SCLAY1S model

is covered. A number of strategies are explored in order to reduce the numerical

instability which occurs when implementing the model into PLAXIS.

In Chapter 6, a parametric study of the B-SCLAY1S model is carried out to

investigate the relative importance and the effective range of each parameter of the

model.

In Chapter 7, verification and application of the B-SCLAY1S model for bench-

mark tests is presented. The verification of the model implementation is carried out

for an isotropic B-SCLAY1S model with the MCC bubble model (Al-Tabbaa, 1987)

predictions. The benchmark problems used include the analysis of an embankment

for static loading conditions and pile driving for cyclic loading conditions.

Chapter 8 presents a summary of the main findings of the study including

conclusions and discussions, and gives recommendations for further research.
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Chapter 2

Constitutive Models

This chapter presents a review of existing conventional and advanced constitutive

models for static and cyclic behavior of clay. The review covers elastic models,

elasto-plastic models, the critical state theory and classical critical state models, ad-

vanced critical state models, cyclic loading models and other alternative approaches

in modelling soil behavior. The main features of the existing models are discussed

together with their limitations.

2.1 Simple soil models

2.1.1 Elastic models

The simplest type of modelling of soil is the elastic model; the behavior of an elastic

soil is described by Hooke’s law. The elastic model has a ‘one to one’ stress strain

relationship. Hence the stress is uniquely determined by strain. The parameters,

Young’s modulus (E ′) and Poisson’s ratio (ν ′), are needed to describe the response

of isotropic homogeneous soil to a change of stress states in elasticity theory. The

simple elastic constitutive models ignore important features of real soil behavior,

such as high nonlinearity with both strength and stiffness depending on stress and

strain level. Nonlinear elastic models give a substantial improvement in represent-

ing the shape of the stress strain curve. Two of the most common non-linear elastic

models are the K −G model or Barron-Sandler model (Naylor et al., 1981) and the

hyperbolic model (Kondner, 1963). Both models have simple hypoelastic (nonlinear

but reversible) formulations in the elastic moduli which are functions of stress state
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and model parameters. Nonlinear elastic models have several shortcomings, includ-

ing 1) stress history and path dependency are not taken into account 2) it is not

possible to model irrecoverable plastic strain along an unload-reload path 3) dilatant

response during shearing violates the principles of thermodynamics and cannot be

simulated within the framework of elasticity.

2.1.2 Elasto-plastic models

In elasto-plastic models, the behavior of soil is characterized by the existence of

reversible and irreversible deformations called elastic and plastic deformations, re-

spectively. A yield surface is adopted for soils to define where the response of soil

changes from elastic to plastic. Stress changes inside a chosen yield surface produce

an elastic response. As soon as the stresses touch the yield surface, a combination

of elastic and plastic responses occurs.

In general, there are two types of elasto-plastic models; elastic-perfectly plastic

models and hardening elastic-plastic models.

2.1.2.1 Elastic-perfectly plastic models

Elastic-perfect plasticity implies that the yield surface is fixed in the stress space and

there is no hardening/softening law required. There is no expansion or contraction

of the yield surface. Examples of elastic-perfectly plastic models are: Tresca (1864),

von Mises (1913) , Mohr-Coulomb (see e.g. Potts & Zdravkovic, 1999), Drucker &

Prager (1952), Lade & Duncan (1975) and Matsuoka & Nakai (1974, 1982). De-

formation prior to yielding is assumed to be linear elastic governed by the elastic

parameters (E ′) and (ν ′). The elastic-perfectly plastic models behave purely elastic

until the yield surface. This is not represent the real soil behaviour.

2.1.2.2 Hardening elastic-plastic models

With hardening models, soil behavior is characterized by the existence of reversible

(elastic) and irreversible (plastic) deformations combined with hardening/softening.

The mathematical theory of elastic-plasticity is well established and has been the

foundation for the development of many soil models. Various permutations and

combinations of the yield functions, plastic potentials and hardening rules give rise

to different models.
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2.2 Critical State Theory

One of the major developments of constitutive models in the last 50 years is the

introduction of models based on the critical state soil mechanics. This was started by

Roscoe and his co-workers at the University of Cambridge in the late 1950s (Roscoe

et al., 1958, Roscoe & Poorooshasb, 1963, Roscoe et al., 1963b, Roscoe & Schofield,

1963, Roscoe & Burland, 1968 and Schofield & Wroth, 1968). A brief review of

critical state soil mechanics is presented in the next section.

2.2 Critical State Theory

The theory of soil behavior known as ‘critical state soil mechanics’ was developed

from the application of the theory of plasticity to soil mechanics. The first critical

state models were the series of Cam-clay formulations developed at the University

of Cambridge by Roscoe and his co-workers. The formulation of the original Cam-

clay (CC) model as an elastic-plastic constitutive law was presented by Roscoe &

Schofield (1963), Roscoe et al. (1963b) and Schofield & Wroth (1968). Afterwards,

Roscoe & Burland (1968) proposed the Modified Cam-clay (MCC) model.

The critical state concept is based on the consideration that, when a soil sample

is sheared, it will eventually reach an ultimate or critical state at which plastic

shearing can continue indefinitely without changes in volume or effective stresses.

When the critical state is reached, critical states for a given soil form a unique line

in q− p′− v space referred to as the Critical State Line (CSL) where p′ is the mean

effective stress, q is the deviatoric stress and v is specific volume.

2.2.1 Original Cam-clay (CC) model

The original Cam-clay model was developed by Roscoe & Schofield (1963) assuming

Drucker-Prager failure criterion. The Cam-clay models (original and modified) are

essentially based on the assumption that changes in the size of the current yield

surface are related to permanent changes in volume. The models permit the com-

pression and shearing of clays to be simply combined and leads to a class of models

of what can be called volumetric hardening models. All other assumptions stated in

Section 2.1.2 for an elastic-plastic model are retained in the original and modified

Cam-clay models.
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2.2 Critical State Theory

The yield surface of original Cam clay model in triaixal stress space is expressed

as follows:

q

p′
= Mln

p′m
p′

(2.1)

where p′m is the preconsolidation pressure at hydrostatic axes and M is the stress

ratio q/p′ at critical state. The yield surface is plotted in Fig. (2.1). In the original

Cam-clay model, it is assumed that plastic flow obeys an associated flow rule. The

yield surface is assumed to expand with constant shape, and the size of the yield

surface is assumed to be related to the changes in volume as follows:

∆εpv =
λ− κ
v

∆p′m
p′

(2.2)

where ∆εpv is plastic volumetric strain increment, λ is the slope of the normal com-

pression line and κ is the slope of the swelling line.

Figure 2.1: The original Cam clay (CC) model yield surface

2.2.2 Modified Cam-clay (MCC) model

The modified Cam-clay model was developed by Roscoe & Burland (1968) as a

modification to the original Cam-clay model. This model successfully reproduces the

major deformation characteristics of soft clay and is more widely used for numerical

predictions than the original Cam-clay model. It has been used effectively in several

8



2.2 Critical State Theory

applications, and a summary of these applications can be found in Wroth & Houlsby

(1985).

One of the main improvements of the modified Cam-clay model from the orig-

inal Cam-clay model is the prediction of the coefficient of the earth pressure at rest

K0,nc for one-dimensional normal compression. Furthermore, the discontinuity of

the original Cam-clay yield surface at q = 0 causes difficulties because the associ-

ated flow rule will predict an infinite number of possible strain increment vectors

for isotropic compression. This causes difficulty in finite element formulation. The

modified Cam-clay model overcomes these problems by adopting an elliptical-shaped

yield surface (see Fig. (2.2)) which has the following expression:

q2 = M2(p′p′m − p′2) (2.3)

Figure 2.2: The modified Cam clay (MCC) model yield surface

The flow rule for modified Cam-clay model is assumed to be associated. The

yield surface is assumed to expand with a constant shape and its size is controlled

by the pressure (p′m). The hardening relationship for modified Cam-clay is the same

as the original Cam-clay model as follows:

∆εpp =
λ− κ
v

∆p′m
p′

(2.4)

In both Cam-clay models, when the stress state reaches the crest of the yield

surface (point A in Fig. (2.1) and (2.2) ) unlimited plastic shear strains develop with
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2.2 Critical State Theory

no plastic volumetric strain. At this point, shearing continues indefinitely without

change in size of yield surface. This condition is known as a critical state.

2.2.3 Sekiguchi-Ohta (SO) model

The original Cam-clay model was developed based on isotropically consolidated

samples. However, Sekiguchi & Ohta (1977) proposed a model for K0 consolidated

clays by changing a classical yield surface into another shape centered on the K0

line. The new shape of the SO model accounts for the anisotropy developed dur-

ing K0 normally consolidation (i.e. consolidation under conditions of zero lateral

strain), see Fig. (2.3). This model is called in the following chapters the SO in-

viscid (time-independent) model. Further to SO inviscid model, Sekiguchi & Ohta

(1977) formulated a viscid formulation which describes consistently both anisotropy

and time dependency. This model is called in the following chapters the SO viscid

(time-dependent) model.

Figure 2.3: The Sekiguchi-Ohta (SO) model yield surface

2.2.3.1 SO inviscid model

Sekiguchi & Ohta (1977) introduced a new stress parameter, generalized stress ratio

η∗. This is defined by:

η∗ =

√
3

2
(ηij − ηij0)(ηij − ηij0) (2.5)

10



2.2 Critical State Theory

where

ηij =
sij
p′
, ηij0 =

sij0
p′m

where sij is stress deviator and sij0 is stress deviator at preconsolidation stress state.

The yield function of the SO inviscid model (see Fig. (4.5)) is expressed in the

form:

f(σ′, εpv) = MDln
p′

p′m,0
+Dη∗ − εpv (2.6)

where p′m,0 is effective mean stress at the end of completion of anisotropic consol-

idation (typically K0 consolidation), εpv is volumetric plastic strain, M is slope of

critical state line and D is a coefficient of dilatancy proposed by Shibata (1963) ,

which can be defined as:

D =
λ− κ

M(1 + e0)

where e0 is initial void ratio.

2.2.3.2 SO viscid model

The SO viscid model is a constitutive law formulation for anisotropically normally

consolidated clay with volumetric creep. The flow equation of the viscid model is:

F = Cα ln

{
1 +

v̇0t

Cα
exp

(
f(σ′)

Cα

)}
− εvpv (2.7)

where Cα is the coefficient of secondary compression, t is the current time, v̇0 is the

initial volumetric strain rate, εvpv is the visco-plastic part of the volumetric strain

and the f(σ′) is defined as:

f(σ′) = MDln
p′

p′m
+Dη∗

where M is critical state parameter and D is a coefficient of dilatancy. A

detailed description of the Sekiguchi-Ohta models is given in Chapter 4.
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2.2.4 Shortcomings of the original, modified Cam clay and

Sekiguchi-Ohta models

The above mentioned classical critical state soil models are known to be able to

predict the behavior of normally and lightly overconsolidated clay reasonably well.

However, there are several shortcomings which are summarized briefly below.

The original Cam-clay and Sekiguchi-Ohta models have a discontinuity in the

yield surface which causes difficulties in numerical calculation for plastic strain in-

crements. The flow rule will predict an infinite number of possible strain increments

due to the vertex or singularity of the yield surface. However, this problem is elim-

inated with the modified Cam-clay model.

The original and modified Cam-clay models assume soils are isotropic but it

is well known that soils are anisotropic due the mode of deposition. However, this

problem is addressed with the Sekiguchi-Ohta model which assumes initial stress

induced anisotropy.

The original and modified Cam clay models do not take into account the degra-

dation of bonds during plastic straining of soil known as destructuration typical to

natural clay and the time effects of soil known as creep. Though Sekiguchi-Ohta

viscid model addresses the creep behavior of soil, it does not take into account

destructuration of soil.

The modelling of soil under cyclic loading is another shortcoming of the above

mentioned classical critical state soil models. The essential features of the models are

that on primary loading large plastic strains occur but on subsequent unload reload

cycles within the yield surface only purely elastic strains are produced. However

in reality, all unload reload cycles result in the gradual accumulation of permanent

strain and/or pore pressure generation and the occurrence of hysteretic behaviour.

2.3 Advanced critical state models

In order to achieve better agreement between predicted and observed soil behavior,

a large number of modifications have been proposed to the classical critical state soil

models. The following sections discuss the most important advanced critical state

models in relation to this thesis, such as S-CLAY1, S-CLAY1S and EVP-SCLAY1S

models.

12



2.3 Advanced critical state models

2.3.1 S-CLAY1 model

The S-CLAY1 model was founded on ideas by Wheeler (1997) and was subsequently

modified to its current form by Wheeler et al. (1999) and Wheeler et al. (2003). The

model is an extension of conventional critical state models, with anisotropy of plastic

behavior represented through an inclined yield surface and a rotational component of

hardening to represent the development or erasure of fabric anisotropy during plastic

straining. In generalised formulation of S-CLAY1, the use of stress invariants is no

longer possible due to the evolution of anisotropy in the model.

For the simplified conditions of a triaxial stress space, the S-CLAY1 yield func-

tion (fy) identical to that suggested by Dafalias (1986a) and Korhonen & Lojander

(1987) can be expressed in terms of the mean effective stress p′ and deviator q:

fy = (q − αp′)2
+
(
M2 − α2

)
(p′m − p′)p′ = 0 (2.8)

where M is the slope of the critical state line, p′m defines the size of the yield

curve and α defines the orientation of the yield curve, see Fig. (2.4). The scalar

parameter α is a measure of the degree of plastic anisotropy of the soil. With α = 0

the soil behavior is isotropic and Eq. 2.8 corresponds to the yield curve in the

conventional modified Cam-clay model.

Figure 2.4: The S-CLAY1 yield surface in triaxial stress space

The rotational hardening law describes the changes in the orientation of the

yield surface with plastic straining. In triaxial stress space, the hardening law takes
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2.3 Advanced critical state models

the following form:

dα = µ

([
3η

4
− α

]
〈dεpv〉+ β

[η
3
− α

]
|dεpd|

)
(2.9)

where dεpd is the increment of plastic deviatoric strain, and µ and β are two additional

soil constants. The soil constant β controls the relative effectiveness of plastic shear

strains and plastic volumetric strains in setting the overall instantaneous target value

for α (which will lie between 3η
4

and η
3
), whereas the soil constant µ controls the

absolute rate of rotation of the yield surface towards its current target value of α.

〈〉 are Macaulay brackets and 〈∆εpv〉 = ∆εpv for ∆εpv > 0 and 〈∆εpv〉 = 0 for ∆εpv < 0.

|| is a norm (of deviatoric plastic strain).

2.3.2 S-CLAY1S model

The S-CLAY1S model, developed by Koskinen et al. (2002a,b) and Karstunen et al.

(2005), is an extension of the S-CLAY1 model incorporating the influence of bonding

and destructuration.

In triaxial stress space, the yield curve of the S-CLAY1S model can be expressed

similarly to S-CLAY1 by Eq.2.8. The natural and intrinsic yield surface of the S-

CLAY1S model is shown in Fig. (2.5).

Figure 2.5: The S-CLAY1S yield surface in triaxial stress space

The effect of the bonding is introduced by the intrinsic and natural yield sur-

faces (Gens & Nova, 1993). The intrinsic yield surface is of smaller size but same
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orientation as the yield curve of the natural soil. The size of the intrinsic yield

surface is defined by the state variable p′mi which is linked to the size of the natural

yield by:

p′m = (1 + χ)p′mi (2.10)

where χ defines the amount of bonding. The degradation of bonding with plastic

straining (the destructuration law) is given by Eq.2.11 with a and b are two addi-

tional soil constants controlling the the rate of degradation. A detailed description

of the S-CLAY1S model is given in Chapter 3.

dχ = −aχ (|dεpv|+ b |dεpd|) (2.11)

2.3.3 EVP-SCLAY1S model

The EVP-SCLAY1S model is a new visco-plastic model developed by Karstunen

& Yin (2010). The EVP-SCLAY1S model framework is developed based on the S-

CLAY1S model (Karstunen et al., 2005) and Perzyna’s overstress theory (Perzyna,

1966a). The elastic behavior of the model is assumed to be isotropic and the visco-

plastic strain rate, ε̇vp, is defined by Eq.2.12 following the original proposal by

Perzyna (1966a). The model obeys the associated flow rule with respect to the

dynamic loading surface.

ε̇vp = ω 〈Φ(F )〉 ∂fd
∂σ′ij

(2.12)

where ω is the apparent viscosity coefficient, Φ(F ) is the overstress function repre-

senting the ratio of dynamic loading surface and static yield surface, see Fig. (2.6)

and 〈〉 are Macaulay brackets and 〈Φ(F )〉 = Φ(F ) for Φ(F ) > 0 and 〈Φ(F )〉 = 0 for

Φ(F ) < 0. Φ(F ) is defined as:

Φ(F ) = exp

[
N

(
pdm
psm
− 1

)]
− 1 (2.13)

where N is strain-rate coefficient.
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Figure 2.6: The EVP-SCLAY1S yield surface in triaxial stress space

2.3.4 Shortcomings of advanced critical state models

Though the advanced models such as S-CLAY1S (Karstunen et al., 2005) and EVP-

SCLAY1S (Karstunen & Yin, 2010) models capture the most important aspects

of natural soil behaviour for normally consolidated and lightly over-consolidated

soils, modelling of soil under cyclic loading is a shortcoming of the above mentioned

advanced critical state soil models. The essential features of the models are that on

primary loading large plastic strain occurs but on subsequent unload reload cycles

within the yield surface only purely elastic strains are produced, see Fig. (2.7).

However, typical response (Muir Wood, 1990) show that all unload reload cycles

results in the gradual accumulation of permanent strain and/or pore pressure and

hysteretic behavior occurs as shown in Fig. (2.8).

The critical state models were discussed so far assumes an approximately lin-

ear elastic behaviour for over-consolidated clays within the state boundary surface.

However, pre-failure behaviour of over-consolidated clays is highly non-linear and

inelastic from the very early stages of loading. Generally soil yielding occurs at very

small strains i.e. less than 0.001% (Atkinson & Sallfors, 1991). Fig. 2.9 shows the

typical strain ranges experienced under a variety of geotechnical structures; and with

the increasing strains, soil stiffness decays non-linearly (Atkinson & Sallfors, 1991)

where normalised shear modulus (G/G0) is used to express the non-linear behaviour

of strain-dependent modulus of soil. Experimental G−γ curves have been presented
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by many researchers (e.g. Atkinson & Sallfors, 1991; Mair, 1993; Ishihara, 1996 and

White et al., 2001).

Various approaches suggested to account for cyclic behaviour and the non-

linearity within the yield surface will be discussed in the following section.

(a) (b) (c)

Figure 2.7: The S-CLAY1S model response: (a) effective stress path, (b) stress-

strain response and (c) pore pressure-strain response

Figure 2.8: Typical response: (a) effective stress path, (b) stress-strain response and

(c) pore pressure-strain response (Muir Wood, 1990)
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2.4 Cyclic loading models

Figure 2.9: Characteristics stiffness-strain behaviour of soil with typical strain ranges

(after Atkinson & Sallfors, 1991)

2.4 Cyclic loading models

Various models have been developed for cyclic loading since Iwan (1967) and Mróz

(1967) independently formulated the first kinematic hardening model for metals

which was later applied to soils by Prévost (1977, 1978). Mróz et al. (1979) described

a two-surface kinematic hardening model which has a kinematic yield surface inside

the consolidation surface. Carter et al. (1982) developed a simple way of modeling

cyclic loading behaviour using the critical state soil model by reducing the size of the

yield surface in an isotropic manner on unloading. Pender (1982) proposed a cyclic

loading model based on the Critical State Soil Mechanics framework. Ghaboussi

& Momen (1982) proposed a cyclic model for sand using isotropic and kinematic

hardening for the yield surface. Nova (1982) described a model, which is suitable

for both granular material and clay.

The following subsections brief the most important cyclic loading models in

relation to this research, such as the bounding surface model, the MIT-E3 model,
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the subloading surface model and the bubble surface model, developed for improved

predictions of cyclic behaviour of clay.

2.4.1 Bounding surface model

The concept of bounding surface was first proposed by Dafalias & Popov (1975)

and Krieg (1975) independently for modeling cyclic behavior of metals. Since the

introduction of bounding surface plasticity, a variety of plasticity constitutive models

(Dafalias & Herrmann (1982); Aboim & Roth (1982); McVay & Taesiri (1985);

Bardet (1986); Whittle (1993b) and Yu & Khong (1993)) have been developed. The

key features of bounding surface plasticity models are that plastic deformation may

occur when stress states lie inside the yield surface, and a smooth transition from

high to low stiffness is achieved during plastic deformation.

Figure 2.10: Sketch of bounding surface model in triaxial stress space

The sketch of a typical bounding surface and loading surface of bounding surface

plasticity in triaxial stress space is shown in Fig. (2.10). The plastic modulus

depends upon the distance between the current state of stress and a corresponding

stress (image stress) on the bounding line. The stress state does not have to satisfy

the consistency condition, which allows the generation of irreversible strain with

simpler isotropic hardening. The disadvantage of this bounding surface type models

is the unrealistic ratcheting behaviour for small unload-reload cycles.
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2.4.2 MIT-E3 model

The MIT-E3 model has been developed at the Massachusetts Institute of Technology

(MIT) (Whittle, 1993a and Whittle & Kavvadas, 1994). The model incorporates

three key aspects of the behavior of clay:

• anisotropy and strain hardening/softening behavior,

• small strain non-linearity and hysteretic response in unloading and reloading,

• bounding surface plasticity for irrecoverable, anisotropic and path dependent

behavior of moderately overconsolidated clays (OCR < 8).

The MIT-E3 model has an inclined yield function, which is an elliptical MCC

yield surface (see Fig. (2.11)), written in the form:

fy = (q − p′.b)2 −M2p′(p′m − p) = 0 (2.14)

where b defines the inclination of yield surface and M is the ratio of the semi-axes of

the ellipsoid, which is slightly different from the critical state definition. The failure

criterion is defined by an anisotropic conical surface as follows:

h = (q − p′.ξ)2 − k2p′2 = 0 (2.15)

where h describes the boundaries of the critical state cone in compression and ex-

tension. ξ defines the symmetry axis of cone and constant k is the half range of

critical state cone, see Fig. (2.11).

The MIT-E3 model requires a large number of soil parameters (15 parameters),

some of which are not easily obtainable using routine geotechnical testing (Potts &

Zdravkovic, 1999). Because of this, to date, its use has been mainly limited to the

research and development environment.
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Figure 2.11: Sketch of MIT-E3 model in triaxial stress space

2.4.3 Subloading surface model

The subloading surface model (Hashiguchi, 1980, 1989) possesses the following fea-

tures:

• interior of the yield surface is not purely elastic domain but plastic deformation

is induced during loading/reloading;

• smooth transition between normally consolidated and over-consolidated states;

• strain hardening behaviour with positive dilatancy.

In subloading surface theory, the conventional yield surface is renamed as the

normal-yield surface and the subloading surface which is similar to normal-yield

surface, lies in a position of similarity and represents the same orientation, see Fig.

(2.12). The subloading surface expands/contracts within the normal-yield surface

passing through a current stress point during the loading and unloading process.

The plastic strain rate depends on the ratio of the size of the subloading surface

to that of the normal-yield surface, so that it is used to capture the cyclic loading

behavior of clays. The limitation of the model when applied to cyclic loading is

that elastic behavior is predicted during unloading until the stress state reaches the

similarity-center, which does not corresponds to the real behavior of soils.
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Figure 2.12: Subloading surface model in triaxial stress space

2.4.4 Bubble surface model

The original ‘bubble’ model was proposed and formulated in triaxial stress space

under the framework of critical state soil mechanics by Al-Tabbaa (1987) and Al-

Tabbaa & Wood (1989). The bubble model is similar to the two-surface model

proposed by Mróz et al. (1979). The outer surface of the bubble model, called the

bounding surface, is the same as the modified Cam-clay surface, which is centered

on the p′ axis and passes through the origin but does not intersect the q axis. The

inner surface is called the ‘bubble’, which encloses the elastic region. The bubble

surface has the same shape as the modified Cam-clay surface (bounding surface).

The ratio of size between the bubble surface and the bounding surface is a constant

expressed by the parameter ‘R’. The two surfaces are illustrated in Fig. (2.13).

The bounding fy and bubble fb surface functions in triaxial stress space are

given as follows:

fy =
(q)2

M2
+
(
p′ − p′m

2

)2

−
(p′m

2

)2

= 0 (2.16)

fb =
[q − qb]2

M2
+ (p′ − p′b)2 −R2

(p′m
2

)2

= 0 (2.17)

where p′b and qb are centre of bubble surface and R is the ratio of the size of the

bubble surface to that of the bounding surface, see Fig. 2.13.
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Figure 2.13: Bubble surface model in triaxial stress space (after Al-Tabbaa, 1987)

The kinematic hardening rule of the bubble is given:


dp′b

dqb

 =
dp′m
p′m


p′b

qb

+ S


p′−p′b
R
− (p′ − p′m)

q−qb
R
− q

 (2.18)

where S is a scalar quantity.

The kinematic hardening rule is similar to the translation rule proposed by

Hashiguchi (1985). The translation rule of the bubble has to guarantee that the

bubble and the bounding surface can touch at a common normal, but must never

intersect. A conjugate point on the bounding surface can be associated with the

current stress point on the bubble in such a way that these two points have the

same direction of outward normal. Translation of the bubble, which occurs when

plastic strains are being generated, can be separated into two components. One

part is associated with change in size of the surfaces (the first term of Eq. 2.18),

the other part is associated with translation of the bubble along the vector f (the

second term of Eq. 2.18).

The hardening function is given by:

h = h0 +H (2.19)

where h0 is the plastic modulus when the bubble and the bounding surface are

in contact corresponding to the current stress point. H is a scalar quantity to ensure
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a smooth fall of stiffness when the bubble approaches the bounding surface. h0 and

H are given by equations 2.20 and 2.21 respectively.

ho =
p′ − p′b
λ∗ − κ∗

[
p′(p′ − p′b) +

q(q − qb)
M2

]
(2.20)

H =
1

λ∗ − κ∗
( `

`max

)ψ(p′m
2

)3

(2.21)

where ` and `max are given by:

` =
1

R p′m
2

[(
p′ − p′b

)[p′ − p′b
R

−
(
p′ − p′m

2

)]
+
q − qb
M2

(q − qb
R
− q
)]

(2.22)

`max = p′m(1−R) for M ≤ 1 (2.23a)

`max = p′mM(1−R) for M > 1 (2.23b)

It should be noted that in Eq. 2.22, `max only depends on the size of the

surfaces. A modification was made by Muir Wood (1995) so that `max also depends

on the current stress state. In fact many other functions of H can be chosen as

long as they can ensure a smooth reduction of stiffness. Al-Tabbaa & Wood (1989)

reported that the transition of stiffness as the effective stress path leaves the elastic

region on reaching the edge of the bubble is too abrupt, but this can be improved

by altering the hardening function H.

The original bubble model was enhanced for structured soil by Muir Wood

(1995) and Muir Wood & Rouainia (2000). The process of destructuration is mod-

elled by introducing another surface called the ‘reference’ surface (basically it is an

intrinsic surface) and the bounding surface is renamed the ‘structure’ surface, see

Fig. (2.14). The bubble surface has the same shape as the reference and structure

surfaces, and their sizes are represented by Rp′m , p′m and rp′m respectively. r rep-

resents the size of the structure surface determined by exponential destructuration

law in the following form:

r = 1 + (r0 − 1)exp

(
−kεds
λ− κ

)
(2.24)
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where r0 describes the initial size of the structure surface (not less than 1); k is a pa-

rameter controlling the rate of destructuration with strain. εds is the destructuration

strain and rate of destructuration strain can be given as follows.

δr =
−k
λ− κ

(r − 1)δεds (2.25)

where δεds can be calculated from:

δεds =
√

(1− A)(δεpp)2 + A(δεpq)2 (2.26)

whereA is a parameter controlling contribution of volumetric and distortional strains

to destructuration ranging from 0 to 1.

Figure 2.14: Bubble model for structured soil (Muir Wood, 1995)

Some of the advances/limitations of the bubble model are:

• The bubble model can simulate small-strain behaviour of soils; non-linearity

starts from the early stage of loading.

• Depending on the position of bubble surface relative to the bounding sur-

face, the bubble model predicts anisotropic yielding and stiffness but isotropic

strength.

• The bubble model predicts hysteretic behaviour and accumulation of plastic

strains during cyclic loading and unloading. This is important for the mod-

elling of cyclic behaviour of soils.
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• The bubble model cannot simulate inherent anisotropy and the evolution of

anisotropy of natural soil behaviour.

2.5 Other alternative approaches in soil models

In order to achieve better agreement between the predicted and observed soil behav-

ior, a large number of approaches have been proposed as an alternative to traditional

elasto-plasticity theory. A brief summary of some of the most important approaches

such as hyperplasticity, hypoplasticity, multilaminate and disturbed state concept

are discussed below.

2.5.1 Hyperplasticity model

As an alternative to conventional plasticity theory, which may violate the law of

thermodynamics, Collins & Houlsby (1997) proposed an approach to model soil

behavior called ’hyperplasticity’ theory based on Ziegler’s concept (Ziegler, 1983).

A constitutive model in hyperplasticity theory is completely defined by two scalar

potential functions: (i) an energy function and (ii) a dissipation function (yield func-

tion) (Houlsby & Puzrin, 1999 and Houlsby & Puzrin, 2006). The hyperplasticity

model has been further developed into a rate-dependant model (Houlsby & Puzrin,

2002) from two scalar potential functions; instead of a dissipation potential func-

tion, force potential and flow potential functions are used to model rate-dependant

plasticity.

Although hyperplasticity theory obeys the laws of thermodynamics, for simple

models this approach may not offer significant advantages over conventional plas-

ticity (Houlsby, 1981). Because of this, hyperplasticity models are not generally

used.

2.5.2 Hypoplasticity model

Hypoplastic models were first developed by Kolymbas (1987, 1988) and Chambon

& Desrues (1985) independently for granular materials. Gudehus (1996) and von

Wolffersdorff (1996) include the critical state concept into modelling hypoplasticity.

Further, granular hypoplastic models were extended to clays by Gudehus (2004)

and Herle & Kolymbas (2004) for rate-dependent and rate-independent behaviour,
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2.5 Other alternative approaches in soil models

respectively. Recently, Maŝin (2005, 2007) proposed a hypoplastic model suitable

for description of clay behaviour, which is combined with the critical state soil

mechanics.

Hypoplastic models are incrementally non-linear constitutive models. The hy-

poplastic constitutive model is more complex than the classical plasticity model,

but is primarily applicable to granular materials. In classical plasticity, the plastic

strain rate depends only on the stress state whereas in hypoplasticity it depends

on the stress state and on the stress rate direction (Dafalias, 1986b). It is worth

noting hypoplasticity has no thermodynamics basis and fundamentally it ignores the

law of thermodynamics. The disadvantage of hypoplasticity models is that many

parameters are required and they are not easily determined by laboratory tests.

2.5.3 Multilaminate model

The basic feature of the multilaminate framework is to consider various integration

planes to formulate the stress strain relationship, see Fig. (2.15). In contrast to

the classical plasticity theory, flow and hardening rules are formulated on the planes

rather than in three dimensional stress space. The multilaminate framework was

presented for rocks by Zienkiewicz & Pande (1977) and extended to soils by Pande &

Sharma (1983) and Pietruszczak & Pande (1987). Schuller (2000) introduced within

the multilaminate framework a strain-softening formulation to capture the post peak

behavior of soil. More recently, the multilaminate model was further developed

within the framework of induced and inherent anisotropy of soils (Schweiger et al.,

2009). The disadvantages of the multilaminate modelling are:

• difficulties in defining inherent anisotropy.

• expensive computational effort require to store all possible state parameters

for each individual sampling plane.

• there is no global equivalent to the yield function and the definition in the

plane is rather arbitrary.
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2.5 Other alternative approaches in soil models

Figure 2.15: Yield curve and failure criterion on a sampling plane (Schuller &

Schweiger, 2002)

2.5.4 Disturbed state concept model

The initial idea of disturbed state concept (DSC) was proposed by Desai (1974).

The disturbed state concept (DSC) for deforming material is assumed to be a mix-

ture of two constituent parts, the relative intact (RI) and fully adjusted (FA) states,

see Fig. (2.16). The DSC based constitutive modelling includes elastic, plastic and

creep deformations, microcracking, damage and softening, stiffening and cyclic fa-

tigue under thermomechanical loading (Desai & Zhang, 1998). According to DSC,

external excitation from mechanical, environmental and thermal forces causes the

transformation of the microstructure of the materials from the RI state to the FA

state at randomly disturbed locations. Microstructural transformation causes par-

ticle reorientation and relative motions. This disturbance can be expressed as a

combination of individual contributions from RI and FA parts by using disturbance

(D) as a coupling mechanism. The advantages of the DSC are:

• free from mesh dependence due to the coupling mechanism within its frame-

work (Desai, 2001).

• the DSC models are “significantly simplified, involve fewer parameters and

easier to implement in computer procedures”, Carter et al. (2000).

• the DSC can be applied to modelling geomaterials, interfaces and joints (Carter

et al., 2000)
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2.6 Summary

Figure 2.16: Schemetic of relative intact and fully adjusted clusters in DSC (Desai

& Toth, 1996)

2.6 Summary

In this chapter, the constitutive models in relation to this thesis were described.

The chapter started with introducing the simple elasto-plastic models and critical

state theory including Cam-clay models and Sekiguchi-Ohta models. Then the ad-

vanced constitutive models such as S-CLAY1S and cyclic loading models such as the

bubble surface model are presented. Finally some alternative approaches in consti-

tutive modelling have been introduced. Summary of constitutive models discussed

in this chapter in given in Fig. 2.17. Chapters 3, 4 and 5 discuss in more detail

the constitutive models S-CLAY1S, Sekiguchi-Ohta and the bubble surface model,

respectively.
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Chapter 3

Further improvement and

implementation of S-CLAY1S

model

This chapter discusses further development and implementation of the S-CLAY1S

model as a user defined soil model (UDSM) into the PLAXIS finite element pro-

gram. It summarizes the mathematical formulation of S-CLAY1S model in gen-

eral stress space. The implementation of the S-CLAY1S model incorporating these

modifications in PLAXIS is explained, as are the numerical algorithms used for the

implementation. Modification to the model in relation to Lode angle dependency is

proposed and discussed. The inclusion of Lode angle dependency into the S-CLAY1S

model is validated with published experimental data on natural marine clay. The

implementation of the modified S-CLAY1S model in PLAXIS is verified through

benchmark tests in PLAXIS.

3.1 Mathematical formulation in general stress

space

The S-CLAY1S model, which was developed by Karstunen et al. (2005), is an exten-

sion to the earlier model S-CLAY1 (Wheeler et al., 2003) incorporating the influence

of bonding and destructuration. This section describes the mathematical formula-

tion of the S-CLAY1S model in general stress space which is necessary in order to
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3.1 Mathematical formulation in general stress space

implement the model into the PLAXIS finite element program. The generalization

of the model was given by Wiltafsky (2003).

3.1.1 Elastic behaviour

The elastic behavior of the S-CLAY1S model is the same as in the critical state Cam-

clay type models. The elastic bulk modulus, K ′, and the elastic shear modulus, G,

are defined by the following expressions (see e.g. Potts & Zdravkovic, 1999 and

Muir Wood, 2004):

K ′ =
1 + e

κ
p′ (3.1)

G =
3(1− 2ν ′)

2(1 + ν ′)

1 + e

κ
p′ (3.2)

where κ is the slope of swelling line, p′ is mean effective stress, e is the current

void ratio and ν ′ is the Poisson’s ratio. The elastic stiffness matrix, [De], can be

expressed in terms of the elastic shear modulus (G) as follows (see e.g. Potts &

Zdravkovic, 1999 and Muir Wood, 2004):

[De] =



2G 1−ν′
1−2ν′

2G ν′

1−2ν′
2G ν′

1−2ν′
0 0 0

2G ν′

1−2ν′
2G 1−ν′

1−2ν′
2G ν′

1−2ν′
0 0 0

2G ν′

1−2ν′
2G ν′

1−2ν′
2G 1−ν′

1−2ν′
0 0 0

0 0 0 G 0 0

0 0 0 0 G 0

0 0 0 0 0 G



(3.3)

3.1.2 Yield function

The yield surface of the S-CLAY1S model can be expressed in the general stress

space as follows:

fy =
3

2

{σ′d − αdp′}
T {σ′d − αdp′}

M2 − α2
+
(
p′ − p′m

2

)2

−
(p′m

2

)2

= 0 (3.4)
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3.1 Mathematical formulation in general stress space

In the above equation σ′d and αd are the deviatoric stress vector and the deviatoric

fabric vector respectively (see Appendix A for definitions). {} represents vector. M

is the value of the stress ratio η = q/p′ at critical states, p′m defines the size of the

yield surface and α defines the orientation of yield surface, see Fig. (3.1). The scalar

parameter α is a measure of the degree of anisotropy of the soils, with α = 0, the

soil behavior is isotropic and the yield surface corresponds to the modified Cam-clay

model. For simplicity it can be written as s = σ′d − αdp′ and yield surface becomes:

fy =
3

2

{s}T {s}
M2 − α2

+
(
p′ − p′m

2

)2

−
(p′m

2

)2

= 0 (3.5)

Figure 3.1: The S-CLAY1S yield surface in triaxial stress space

The intrinsic yield surface (Gens & Nova, 1993) has the same shape and ori-

entation as the yield surface of the natural (bonded) soil but is smaller in size, and

represents the yielding behaviour of an equivalent unbonded soil. The size of the

intrinsic yield surface is described by p′mi, and this is related to the size of the yield

surface for the bonded soil by a parameter χ which determines the current degree

of bonding as follows:

p′m = (1 + χ)p′mi (3.6)

The S-CLAY1S model incorporates a Drucker-Prager failure criterion, which

was one of the earliest proposed failure criterions. The Drucker-Prager failure cri-

terion assumes circular shape in the π-plane as shown in Fig. (3.2). The π-plane is
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3.1 Mathematical formulation in general stress space

a plane perpendicular to the p′-axis (σ′1 = σ′2 = σ′3). In the context of S-CLAY1S,

due to the effect of anisotropy, the axis of symmetry of the failure surface does not

coincide with the hydrostatic axis.

Figure 3.2: The Drucker-Prager failure surface in the π-plane

3.1.3 Flow rule

The assumption of an associated flow rule is a reasonable approximation of a natural

clay when combined with an inclined yield surface (Wheeler et al., 2003, Karstunen

& Koskinen, 2008). Therefore, the S-CLAY1S model assumes an associated flow

rule so that the yield surface given in Eq. 3.5 serves as a plastic potential function

as follows:

py =
3

2

{s}T {s}
M2 − α2

+
(
p′ − p′m

2

)2

−
(p′m

2

)2

= 0 (3.7)

The increment of plastic strain is determined using the plastic multiplier ∆Λ

as:

∆εp = ∆Λ
∂py
∂σ′

(3.8)

3.1.4 Hardening rule

The S-CLAY1S model incorporates three hardening laws. The first of the hardening

laws relates to the change in size of the intrinsic yield surface, which is assumed
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3.1 Mathematical formulation in general stress space

to be related solely to plastic volumetric strain (dεpv) (Karstunen et al., 2005) as

follows:

∆p′mi =
(1 + e)p′mi
λi − κ

∆εpv (3.9)

where λi is the slope of the intrinsic normal compression line for a reconstituted

soil and κ is the slope of the elastic (pre-yield) swelling line in the v : lnp′ plane

(specific volume : v = 1 + e). It is worth noting that when the parameter χ relates

to Eq. 3.6 is set to zero and the S-CLAY1S model becomes the S-CLAY1 model

(without destructuration), and the first hardening law relates to the yield surface as

in the modified Cam-clay model as follows:

∆p′m =
(1 + e)p′m
λ− κ

∆εpv (3.10)

where λ is the slope of the post-yield compression line in the v : lnp′ plane.

The second hardening law is called the ‘rotational hardening law’ (Wheeler

et al., 2003) and describes the change of the orientation of the yield surface with

plastic straining. The rotational hardening law in general stress space is:

∆αd = µ

([
3σ′d
4p′
− αd

]
〈∆εpv〉+ β

[
σ′d
3p′
− αd

]
∆εpd

)
(3.11)

where µ and β are soil constants: where µ governs the absolute rate at which αd

changes with plastic straining and β governs the relative effectiveness of volumetric

and deviatoric strains in the rotation of yield surface. 〈〉 are Macaulay brackets and

〈∆εpv〉 = ∆εpv for ∆εpv > 0 and 〈∆εpv〉 = 0 for ∆εpv < 0.

The third hardening law (Karstunen et al., 2005) relates the degradation of

bonding with plastic straining is given as:

∆χ = −aχ
[
|∆εpv|+ b |∆εpd|

]
(3.12)

where a and b are soil constants controlling the rate of degradation.

3.1.5 Hardening modulus

The hardening modulus is formulated by incorporating three hardening moduli

which include anisotropy and destructuration. The first hardening modulus (stan-
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3.2 Numerical implementation

dard modulus), H0, relates to isotropic hardening similar to the modified Cam-clay

(MCC) hardening modulus. The second hardening modulus (anisotropic modulus),

Hα, relates to the rotation of the inclined yield surface. The third hardening mod-

ulus (destructuration modulus), Hχ, relates to the degradation of bonding. The

hardening modulus of the S-CLAY1S model can be expressed as:

H = H0 + Hα + Hχ (3.13)

The standard hardening modulus (H0) is as follows:

H0 = −p′(1 + χ)p′mi
1 + e

λi − κ
∂py
∂p′

(3.14)

The anisotropic hardening modulus (Hα) as follows:

Hα =

{
∂fy
∂αd

}T {∂αd
∂εpv

}〈
∂py
∂p′

〉
+

{
∂αd
∂εpd

}√
3

2

{
∂py
∂σ′d

}T {
∂py
∂σ′d

} (3.15)

The destructuration hardening modulus (Hχ) as follows:

Hχ =
∂fy
∂χ

 ∂χ
∂εpv

∣∣∣∣∂py∂p′

∣∣∣∣+
∂χ

∂εpd

√
3

2

{
∂py
∂σ′d

}T {
∂py
∂σ′d

} (3.16)

The derivatives of each components in the above equations are given in Ap-

pendix B.

3.2 Numerical implementation

To carry out a non-linear finite element analysis using the S-CLAY1S model, it is

necessary to compute the elastic-plastic matrix, [Dep] relating an increment of strain

to an increment of stress:

{∆σ′} = [Dep] {∆ε} (3.17)

where {∆ε} is defined in Appendix A.

The definition of the yield surface places some restrictions on the stresses, i.e.

stresses can lie within the yield surface (elasticity) or on the surface itself. Stresses
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3.2 Numerical implementation

cannot, however, exist outside the surface. This is described mathematically as the

consistency condition (ḟy) and is given for the S-CLAY1S yield surface as follows:

ḟy =
∂fy
∂σ′

∆σ′ +
∂fy
∂p′m

∆p′m +
∂fy
∂α

∆α +
∂fy
∂χ

∆χ = 0 (3.18)

By using standard manipulation, the expression for the elastic-plastic matrix,

[Dep], can be obtained as:

[Dep] = [De]−
[De]

[
∂py
∂σ′

] [
∂fy
∂σ′

]T
[De][

∂fy
∂σ′

]T
[De]

[
∂py
∂σ′

]
+ H0 + Hα + Hχ

(3.19)

where [De] is the elastic stiffness matrix and H0, Hα and Hχ are hardening moduli.

Combining Equations 3.17 and 3.19 results in the expression for the change of

stress relating to an increment of strain which is given as:

{∆σ′} =

[De]−
[De]

[
∂py
∂σ′

] [
∂fy
∂σ′

]T
[De][

∂fy
∂σ′

]T
[De]

[
∂py
∂σ′

]
+ H0 + Hα + Hχ

 {∆ε} (3.20)

The above equation can be further written as follows

{∆σ′} = {∆σ′}e −∆Λ[De]
∂py
∂σ′

(3.21)

where the plastic multiplier ∆Λ is given by

∆Λ =


[
∂fy
∂σ′

]T
[De] {∆ε}[

∂fy
∂σ′

]T
[De]

[
∂py
∂σ′

]
+ H0 + Hα + Hχ

 (3.22)

The terms ∂fy/∂σ
′ and ∂py/∂σ

′ needed for the calculation of plastic multiplier

∆Λ in Eq. 3.22 can be obtained from the following equations:

∂fy
∂σ′

=
∂fy
∂p′

∂p′

∂σ′
+
∂fy
∂s

∂s

∂σ′
(3.23)

∂py
∂σ′

=
∂py
∂p′

∂p′

∂σ′
+
∂py
∂s

∂s

∂σ′
(3.24)
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3.2 Numerical implementation

When a strain increment produces an elastic stress state outside the yield sur-

face, a plastic flow occurs. The plastic flow requires stress integration of Eq. 3.21.

Numerical integration techniques such as the forward (explicit) and backward (im-

plicit) Euler method and the modified Newton-Raphson (implicit) method provide

approximations for these integrations. Since the integration is an approximation, it

is very important to choose the correct numerical integration techniques to minimize

resulting integration error.

3.2.1 Euler forward (explicit) method

Constitutive equations are most straightforward to formulate in classical explicit

(Euler forward) integration schemes, but their accuracy depends significantly on

the given step size. The stress update which employs the Forward Euler method is

performed stepwise by using the previous elasto-plastic stiffness matrix as shown in

Eq. 3.19. If the calculation steps are set relatively large, the computational error

is accumulated on the result. Therefore the stress may not be on the yield surface

in the elasto-plastic state at the current time. In order to minimize this problem, a

sub-stepping explicit numerical algorithm, yield intersection from elastic to plastic

algorithm and correction of yield drift algorithm are used. Before discussing the

sub-stepping explicit algorithm, it is important to briefly discuss the yield surface

intersection algorithm and the correction for drift algorithm.

If plasticity is associated with a given strain increment, the incremental stress-

strain constitutive relationship is written as:

{
σ′n+1

}
= {σ′n}+ [Dep

n ] {∆ε} (3.25)

It is necessary to locate the yield surface intersection when an elastic trial

stress goes from the purely elastic state, fy(σ
′
0,H) < 0, to elastic-plastic state,

fy(σ
′
0 + ∆σ′e,H) > 0, during a load increment (see Fig. 3.3), where σ′0 is an

initial stress vector and ∆σ′e is an elastic trial stress increment vector. Therefore,

the proportion of the strain increment (scalar quantity Ω) that only causes elastic

behaviour can be found by solving the following nonlinear equation:

fy(σ
′
0 + Ω∆σ′e,H) = fy(σ

′
int,H) = 0 (3.26)

where σ′int = σ′0 + Ω∆σ′e.
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3.2 Numerical implementation

The above equation can be solved by using the Pegasus intersection scheme

(Sloan et al., 2001). Once the scalar quantity Ω (0 ≤ Ω ≤ 1) is determined, the por-

tion of the strain increment which causes plastic deformation can be found. The ex-

act yield condition fy(σ
′
int,H0) = 0 is replaced by the approximation fy(σ

′
int,H0) ≤

FTOL, where FTOL is the tolerance value and is a small positive value. A suitable

value for tolerance FTOL is typically in the range of 10−6 to 10−9 (Sloan et al.,

2001). In the S-CLAY1S model numerical implementation, FTOL is assumed to

be 10−7. The advantage of the Pegasus algorithm over the Newton-Raphson and

Scant algorithm that it is unconditionally convergent and does not require the use

of derivatives (see Sloan et al., 2001 for details). A summary of the intersection

algorithm using the Pegasus scheme is given in Algorithm 1.

Figure 3.3: Explicit stress update with substepping (after Yu, 2006)

In the explicit integration scheme, the stresses may diverge from the yield

surface at the end of each sub-increment. This is commonly known as yield surface

‘drift’ and depends on the accuracy of the integration scheme and the non-linearity of

the constitutive equations. Potts & Gens (1985) examined five methods to account

for this drift. These involve correcting the stresses by projecting back along the

plastic flow, the total strain increment, reducing second variant and constant p′ and

the accumulated effective stress direction. In addition, a method called ‘correct

method’, which accounts for changes in elastic strains that accompany any stress

correction is considered. Potts & Gens (1985) concluded from this investigation that

projecting back along the plastic flow direction gives sufficiently accurate predictions.

The stresses are, however, projected back to the yield surface fy(σ
′
c,HB) as shown
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3.2 Numerical implementation

Algorithm 1 : Intersection algorithm

if fy(σ
′
0,H0) ∗ fy(σ′0 + ∆σ′e,H0) < 0 then

REQUIRE: Initial values of Ω0 and Ω1

SET: f 0
y = fy(σ

′
0 + Ω0∆σ′e,H0) and f 1

y = fy(σ
′
0 + Ω1∆σ′e,H0)

for ( Iteration = 1, MaxIts ) do

Ω = Ω1 − f 1
y ∗ Ω1−Ω0

f1y−f0y

Calculate new yield function

fnewy = fy(σ
′
0 + Ω∆σ′e,H0)

if fnewy < FTOL then

return Ω

end if

if fnewy ∗ f 0
y < 0 then

SET: Ω1 = Ω and f 1
y = fnewy

else

SET: f 1
y =

f1y f
0
y

f0y+fnewy

SET: Ω0 = Ω and f 0
y = fnewy

end if

end for

return Ω

end if
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3.2 Numerical implementation

Figure 3.4: Sketch indicating yield surface drift (after Potts & Gens, 1985)

in Fig.3.4 along the plastic flow direction and HC set is equal to HB. The corrected

stresses can be written as follows:

σ′C = σ′B −Θ
∂py
∂σ′

(3.27)

The corrected stresses must satisfy the yield condition:

fy(σ
′
C ,HC) = fy

(
σ′B −Θ

∂py
∂σ′

,HB

)
(3.28)

where scalar value Θ can be found from Taylor series as follows:

Θ =
fy(σ

′
C ,HC){

∂py
∂σ′

}T {
∂fy
∂σ′

} (3.29)

The iterative procedure to find the Θ value for correction of the drift from yield

surface is summarized in Algorithm 2. Initial substitution of values of
{
∂py
∂σ′

}
and{

∂fy
∂σ′

}
are evaluated at point ‘A’, i.e., at the beginning of the step.
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3.2 Numerical implementation

Algorithm 2 : Drift algorithm

if Abs
(
fy(σ

′
B,HB)

)
> FTOL then

REQUIRE: Initial values of
(
∂py
∂σ′

)
and

(
∂fy
∂σ′

)
for ( Iteration = 1, MaxIts ) do

Θ =
fy(σ′C ,HC)(
∂py
∂σ′

)(
∂fy
∂σ′

)
σ′C = σ′B −Θ∂py

∂σ′

Calculate fy(σ
′
C ,HC)

if fy(σ
′
C ,HC) < FTOL then

return σ′C
end if

end for

return

end if

The S-CLAY1S model is implemented in PLAXIS using the substepping with

error control explicit numerical scheme (Sloan, 1987 and Sloan et al., 2001) which

starts with the known strain increment {∆ε}, initial stresses {∆σ′0}, initial hard-

ening parameter H0 and an initial pseudo time step ∆T1. For a given strain

increment,{∆ε}, the constitutive relations to be integrated at each Gauss point

are described in Equations 3.21 and 3.25. The explicit algorithm for the S-CLAY1S

model is shown in Algorithm 3.
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3.2 Numerical implementation

Algorithm 3 : Explicit algorithm for S-CLAY1S

DECIDE: n sub by StepSize : (n sub = number of substepping)

GET: {σ′0}, {∆ε}, H0 and FTOL

for ( Iteration = 1 to n sub ) do

Calculate: {∆σ′}e = [De] {∆ε} and {σ′}e = {σ′0}+ {∆σ′}e

Calculate: fy
(
{σ′}e ,H0

)
and fy

(
{σ′0} ,H0

)
! for checking yield criterion

if fy
(
{σ′}e ,H0

)
≤ FTOL then

Purely elastic behavior

return

end if

! Start plastic correction

if fy
(
{σ′}e ,H0

)
≥ FTOL then

if fy
(
{σ′0} ,H0

)
≤ FTOL and fy

(
{σ′}e ,H0

)
≥ FTOL then

Follow intersection Algorithm 1

Update corresponding strains:

{∆ε} ← (1− Ω) {∆ε}
end if

Calculate plastic multiplier ∆Λ : Go to Algorithm 4

Calculate plastic strains : Go to Algorithm 5

Update state variables : Go to Algorithm 6

Update stresses: {σ′} = {σ′0}+ [De] {∆εp}

Calculate f fy = fy
(
{σ′} ,H

)
! check for drift correction

if f fy > FTOL then

follow drift correction Algorithm 2

end if

end if

return

end for
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3.2 Numerical implementation

Algorithm 4 : Calculation of plastic multiplier for explicit algorithm

Calculate derivatives of yield & potential surfaces:

∂fy
∂σ′

=
∂fy

(
{σ′0},H0

)
∂σ′

: from Appendix B

∂py
∂σ′

=
∂py

(
{σ′0},H0

)
∂σ′

: from Appendix B

Calculate Hardening modulus:

H = H0 + Hα + HX

H0 : from Eq. 3.14

Hα : from Eq. 3.15

HX : from Eq. 3.16

Calculate:[
∂fy
∂σ′

]T
[De]

[
∂py
∂σ′

]
Calculate ∆Λ : from Eq. 3.22

return ∆Λ

Algorithm 5 : Calculation of plastic strains

Calculate plastic strain increment

{∆εp} = ∆Λ∂py
∂σ′

∆εpv = ∆εpx + ∆εpy + ∆εpz

Calculate:

{∆εpd} : from Appendix A

∆εpd =
√

3
2
{∆εpd}

T {∆εpd}

return {∆εp}, ∆εpv and ∆εpd
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3.2 Numerical implementation

Algorithm 6 : Update state variables

Calculate:

∆p′mi =
(1+e)p′mi
λi−κ ∆εpv

∆αd = µ
([

3σ′d
4p′
− αd

]
〈dεpv〉+ β

[
σ′d
3p′
− αd

]
∆εpd

)
∆χ = −aχ

[
|∆εpv|+ b |∆εpd|

]
Update state variables:

{α}1,2,3 ⇐ α + ∆αd + 1

{α}4,5,6 ⇐ (α + ∆αd)/
√

2

α⇐
√

3
2
{α + ∆αd} {α + ∆αd}

T

p′mi ⇐ p′mi + ∆p′mi
χ⇐ χ+ ∆χ

p′m ⇐ (p′mi + ∆p′mi) ∗ (1 + (χ+ ∆χ))

return {α}, α, p′mi, χ and p′m

3.2.2 Euler backward (implicit) method

Using the Euler backward implicit integration scheme, the trial stress is modified

under consideration of the occurring plastic strains as long as convergence is reached.

The convergence criterion is fulfilled when the iterative stress state returns to the

yield surface. If plasticity is associated with a given strain increment, it is essential

to solve the following system of equations:

{
σ′n+1

}
= {σ′n}+ [Dep

n+1] {∆ε} (3.30)

To derive the backward Euler scheme, the yield surface fy can be expanded

about σ′0 and H using Taylor series. Ignoring second order terms and above, this

gives the following expansion:

fy = f 0
y +

∂fy
∂σ′
{∆σ′}+

∂fy
∂H

∆H (3.31)
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3.2 Numerical implementation

Based on Eq. 3.21, it is possible to calculate the elastic predictor as:

{∆σ′} = −∆Λ[De]
∂fy
∂σ′

(3.32)

The rate of hardening parameter ∆H can be derived (see for details Sloan et al.,

2001) from the following equation:

∆H = −∆Λ
H

∂fy/∂H
(3.33)

By setting fy = 0 in Eq. 3.31 and combining Eq. 3.32 and Eq. 3.33, the plastic

multiplier is given as:

∆Λ =

[
f 0
y

[∂fy/∂σ′]
T [De] [∂py/∂σ′] + H

]
(3.34)

Wiltafsky (2003) implemented first the S-CLAY1S model in PLAXIS using the

Euler backward scheme. In this implementation, one input parameter Stepsize has

been added to provide a possibility to control the size of the loading increment

within the subroutine. Details of the implementation is given by Wiltafsky (2003).

This implicit algorithm has a similar limitation to the explicit algorithm that if

the Stepsize is set relatively large, the computational error is accumulated on the

result. It may be concluded that in order to obtain accurate solutions for non-linear

problems, sufficiently small Stepsize is required. The implementation of S-CLAY1S

using a single step Euler backward scheme is summarized in Algorithm 7.
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3.2 Numerical implementation

Algorithm 7 : Euler backward implicit algorithm for S-CLAY1S

DECIDE: n sub by StepSize : (n sub = number of substepping)

FIND: {∆ε} ⇐ {∆ε} /n sub
GET: {σ′0}, H0 and FTOL

for ( Iteration = 1 to n sub ) do

{∆ε}t = {∆ε}
{∆ε}p = 0

while (until convergence is reached) do

{∆ε}t = {∆ε}t − {∆ε}p

{∆ε}p = 0

Calculate: {∆σ′}e = [De] {∆ε}t and {σ′}e = {σ′0}+ {dσ′}e

Calculate: fy
(
{σ′}e ,H0

)
! Check yield criterion

if fy
(
{σ′}e ,H0

)
≤ FTOL then

Purely elastic behaviour

return

end if

! Start plastic correction

if fy
(
{σ′}e ,H0

)
≥ FTOL then

Calculate plastic multiplier ∆Λ : Go to Algorithm 8

Calculate plastic strains : Go to Algorithm 5

Update state variables : Go to Algorithm 6

end if

end while

end for
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3.2 Numerical implementation

Algorithm 8 : Calculation of plastic multiplier for implicit algorithm

Calculate Fy

Calculate derivatives of yield & potential surfaces:

∂fy
∂σ′

=
∂fy

(
{σ′0},H0

)
∂σ′

: from Appendix B

∂py
∂σ′

=
∂py

(
{σ′0},H0

)
∂σ′

: from Appendix B

Calculate Hardening modulus:

H = H0 + Hα + HX

H0 : from Eq. 3.14

Hα : from Eq. 3.15

HX : from Eq. 3.16

Calculate:[
∂fy
∂σ′

]T
[De]

[
∂Gy
∂σ′

]
Calculate ∆Λ : from Eq. 3.34

return ∆Λ

3.2.3 Modified Newton-Raphson (implicit) method

The discussion on Euler forward (explicit) and backward (implicit) schemes has

highlighted that errors can occur when large increment steps are used. The modi-

fied Newton-Raphson (MNR) scheme with automatic substepping described in this

section rectifies this problem by eliminating residual errors in the system of equa-

tions. The MNR scheme uses an iterative technique to solve the system of non-linear

constitutive equations of the S-CLAY1S model. The proposed MNR scheme is gen-

erally very robust, but it is relatively expensive, as for each estimate for the strain

the inverse of a iterative scheme matrix needs to be calculated. The MNR scheme

may also not converge when the behaviour is strongly non-linear. To avoid this

problem, the proposed MNR scheme includes an automatic substepping routine to

stabilize the scheme.
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3.2 Numerical implementation

The basic elasto-plastic assumption is that strain rate consists of two parts, i.e.

elastic and plastic strain rates as follows:

∆ε = ∆εe + ∆εp (3.35)

By using Eq. 3.8, it can be written as:

∆ε = ∆εe + ∆Λ
∂py
∂σ′

(3.36)

When there is plasticity, it should satisfy (due to associated flow rule) the

following conditions:

∆ε−∆εe −∆Λ
∂fy
∂σ′

= 0 (3.37)

fy
(
σ′,H

)
= 0 (3.38)

In total, there are seven equations, comprising six strain conditions and one

yield condition to be solved using MNR iteration. Further, the six strain conditions

can be written for iteration as follows:

∆εn −∆εen − δ∆εen+1 − (∆Λn + δ∆Λn+1)

(
∂fy
∂σ′n

+
∂2fy
∂2σ′n+1

δσ′n+1

)
= 0 (3.39)

The higher order term of above equation expansion is neglected giving:

∆εn−∆εen− δ∆εen+1−∆Λn
∂fy
∂σ′n
−∆Λn

∂2fy
∂2σ′n+1

δσ′n+1− δ∆Λn+1
∂fy
∂σ′n

= 0 (3.40)

The above equation can be restructured as follows:

(
I + ∆Λn

∂2fy
∂2σ′n+1

[De]n+1

)
δ∆εen+1 +

∂fy
∂σn

′
δ∆Λn+1 = ∆εn−∆εen−∆Λn

∂fy
∂σ′n

(3.41)

The yield surface equation can be formulated as:

∂fy
∂σ′n

[D]n+1δε
e
n+1 = −fy,n (3.42)
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3.2 Numerical implementation

Total system of equations to be solved by the MNR iteration scheme can be

derived from Eq. 3.21 and Eq. 3.22 as follows:

 I + ∆Λn
∂2fy
∂2σ′n

[De]n+1
∂fy
∂σ′n

∂fy
∂σ′n

[De]n+1 0




δ∆εen+1

δ∆Λn+1

 =


∆εn −∆εen −∆Λn

∂fy
∂σ′n

−fy,n

 (3.43)

where I is the identity matrix.

From the above system of equations, the changes of elastic strain increment

and the plastic multiplier can be calculated using MNR iteration. In each iteration,

the state variables are updated. MNR algorithm’s kth local iteration is in the form:

[
Ξ

(k)
n+1

]{
δ∆v

(k)
n+1

}
=
{
R(k)

}
(3.44)

where the components of
[
Ξ

(k)
n+1

]
,
{
δ∆v

(k)
n+1

}
and

{
R(k)

}
are in Eq. 3.43 and their

partial derivatives are given in Appendix B. The iterative process can be completed

when changes are very small (|δ∆Λk+1| << |∆Λk+1| and ‖fy‖ <<
∥∥f 0

y

∥∥). The first

iteration can start from the following system of equations:

 I ∂f
∂σ′1

∂fy
∂σ′n

[De]1 0




∆εe1

∆Λ1

 =


0

−f 0
y

 (3.45)

The implementation of S-CLAY1S using an automatic substepping modified

Newton-Raphson scheme is summarized in Algorithm 9.
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3.2 Numerical implementation

Algorithm 9 : An automatic substepping scheme for MNR algorithm of S-CLAY1S

GET: {σ′0}, H0, {∆ε} and FTOL

ASSUME: T0 = 0 and dT = 1

FIND: {∆ε}t = dT ∗ {∆ε}

99 Continue

NewStep = 1

CALL: S-CLAY1S subroutine Algorithm 10

if (NewStep < 0.9999) then

dT = NewStep ∗ dT
{∆ε}t = dT ∗ {∆ε}
if (dT > 0.0001) then

GO TO 99

else

CALL: S-CLAY1S subroutine Algorithm 10

Abort ” Too small step size”

end if

end if

T0 = T0 + dT

if (T0 < 0.9999) then

dT = 1− T0

{∆ε}t = dT ∗ {∆ε}
GO TO 99

end if

return
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3.2 Numerical implementation

Algorithm 10 : MNR algorithm of S-CLAY1S

GET: {σ′0}, H0, {∆ε} , RTOL and FTOL

Calculate: {∆σ′}e = [De] {∆ε} and {σ′}e = {σ′0}+ {dσ′}e

Calculate: fy
(
{σ′}e ,H0

)
! Check yield criterion

if (fy
(
{σ′}e ,H0

)
≤ FTOL) then

Purely elastic behaviour

return

end if

if fy
(
{σ′}e ,H0

)
≥ FTOL then

SET: f ty = fy and {∆ε}e ={∆ε}
Calculate plastic multiplier ∆Λ : Go to Algorithm 8

Calculate plastic strains : Go to Algorithm 5

Update state variables : Go to Algorithm 6

Update strain: {∆ε}e = {∆ε}e − {∆ε}p

Update stresses: {σ′} = {σ′0}+ [De] {∆εp}
Calculate: fy = fy

(
{σ′} ,H

)
and

{
∂fy
∂σ′

}
Estimate residual error: {R} = {∆ε} − {∆ε}t −∆Λ∂Fy

∂σ′

Calculate: Rn =
√
{R}T {R}

SET: iConv = 0

if (Abs(Fy) < FTOL AND Rn < RTOL) then

iConv = 1

return

else

CALL MNR iteration scheme Algorithm 11

end if

if (iConv = 0) then

NewStep = 0.25 ! divergence

return

end if

end if

return
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3.2 Numerical implementation

Algorithm 11 : MNR iteration scheme

GET: MaxIt

f ey = fy

for (Iteration = 1, MaxIt) do

Calculate ∂fy
∂σ′

and ∂2fy
∂σ′2

from Appendix B

Estimate residual error

{R} = {∆ε} − {∆ε}t −∆Λ∂fy
∂σ′

Rn =
√
{R}T {R}

ASSEMPLE:
[
Ξ

(k)
n+1

]
from Eq. 3.43

FIND:
[
Ξ

(k)
n+1

]−1

if (
[
Ξ

(k)
n+1

]
is singular) then

NewStep = 0.25

return

end if

Calculate: ∆Λ = ∆Λ + δ∆Λ

Calculate: {∆ε}e = {∆ε}e + δ {∆ε}e

Calculate: {∆ε}p = {∆ε} − {∆ε}e

Update stresses: {σ′}(k)
n+1 = {σ′n}+ [De]n {∆εp}(k)

n+1

Update state variables : Go to Algorithm 6

Calculate fy = fy
(
σ
′(k)
n+1,H

(k)
n+1

)
if (f ey/fy > 1000) then

NewStep = 0.25 ! divergence

return

end if

if (fy < FTOL AND Rn < STOL) then

iConv = 1

return

end if

end for

return
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3.3 Performance comparison of different algorithms

3.3 Performance comparison of different algorithms

The performance of the numerical algorithms used to implement the advanced kine-

matic hardening S-CLAY1S model can be studied by analyzing their relative accu-

racy, stability and efficiency. The relative accuracy can be defined as the degree of

closeness of a numerical solution to the exact result. The relative accuracy can be

studied by comparing numerical results from an algorithm with an algorithm that

converges to the exact solution for very small steps. A step size independent algo-

rithm which produces an accurate solution for large strain increments is desirable.

The stability can be described as the ability to achieve convergence without varying

randomly, hovering and oscillating. Here, the efficiency is defined as the computing

cost of an algorithm to produce results.

The performance analysis is carried out using the integration point program

(IPP) and the finite element program PLAXIS. The IPP of S-CLAY1S is a stan-

dalone program directly used to input strain-controlled loading paths without con-

necting to the finite element program. A big advantage of the IPP is that better

control of the program is achieved and it is easier to debug. The algorithms have

been tested inside the finite element program PLAXIS for the solution of a relatively

simple boundary value problem.

The material parameters for soft Bothkennar clay used for all analyses are sum-

marized in Table 3.1. Bothkennar clay has been extensively studied and sufficient

laboratory data is available to derive material parameters for the S-CLAY1S model

(e.g. Géotechnique Symposium in Print, 1992; McGinty, 2006; McGinty et al., 2008).

3.3.1 Simulations of strain-controlled triaxial tests

Verification of the S-CLAY1S model implementation using different algorithms is

performed by using IPP without involving the finite element software PLAXIS. The

S-CLAY1S model is strain-driven, i.e. known increments in strain are input to

the model and the corresponding stresses are output. Thus by specifying strain

increments, and the material parameters, the corresponding stress output can be

used for model verification without the need for the finite element code PLAXIS.

Undrained compression, extension and isotropic compression were chosen to

cover many important stress strain conditions in triaxial tests. Strain controlled

IPP was used to simulate these tests. Volume is conserved for undrained tests
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3.3 Performance comparison of different algorithms

Table 3.1: Material parameters of Bothkennar clay for S-CLAY1S

Soil constants

κ ν ′ λ M
γ kx = ky

(kN/m3) (m/day)

0.02 0.2 0.3 1.5 16.5 2.5 E-4

State variables

e0 K0 α0 χ0 OCR

2.0 0.5 0.59 8.0 1.5

Additional parameters for anisotropy

β µ

1.0 50.0

Additional parameters for destructuration

λi a b

0.18 9.0 0.2

on saturated clay; therefore, undrained tests can be simulated by applying dε1 =

−2dε2 = −2dε3. The isotropic compression test was simulated by applying a strain

increment dε2 = dε1 = dε3.

Three triaxial simulations which represent typical stress paths in the triaxial

stress space are simulated. Stress paths and the initial and final yield surfaces of

S-CLAY1S in undrained triaxial compression and extension simulations are shown

side by side in Fig. (3.5). For isotropic straining, Fig. (3.6) shows the stress path

and the initial and final yield surface of S-CLAY1S in p′ − q space. Figs. (3.7),

(3.8) and (3.9) show undrained compression simulations for the Euler forward, the

Euler backward and the MNR respectively. The undrained extension simulations are

shown in Figs. (3.10), (3.11) and (3.12) and the isotropic compression simulations

are presented in Figs. (3.13), (3.14) and (3.15).

The undrained test simulations assumed that the sample is normally consoli-

dated and undrained shearing starts from p′ = 12kPa and q = 12kPa; the maximum

vertical strain applied to the sample is 6%. Fig. (3.7) and Fig. (3.10) show compar-

ison of the undrained compression and extension simulations using the substepping

explicit numerical algorithm at the strain increments 0.01%, 0.06% and 0.6%.
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3.3 Performance comparison of different algorithms

Further larger increments were not simulated because the allowed maximum

strain increment in the algorithm is 0.1%. If larger increments are used, they (in-

crements) will be subdivided due to the substepping explicit algorithm e.g for 0.6%.

It was clearly observed from the stress-strain simulation, that the results are sensi-

tive to the increment size. However, by reducing the maximum allowed increment

size, the explicit algorithm can produce small errors for a large strain increment

size at the larger computational cost. In finite element analysis, a maximum strain

increment applied is 0.01% to avoid divergence of the solution and/or minize the

numerical errors.

The undrained compression and extension simulations from the Euler-backward

implicit algorithm are compared for the strain increments 0.01%, 0.06%, 0.6% and

1.2% in Fig. (3.8) and Fig. (3.11). In addition, Euler-forward explicit results are also

presented. The results show that stress paths and stress-strain curves are sensitive

to the size of increment and give very large errors for the larger increment size. The

simulation with the size of strain increment 0.6% and 1.2% gave larger errors in the

p′ and q values.

Fig. (3.9) and Fig. (3.12) show comparison of undrained compression and

extension simulation using the automatic substepping modified Newton-Raphson

(MNR) for given strain increments 0.01%, 0.06%, 0.6% and 1.2%. The simulations

are not very sensitive to the size of strain increment and well with the same magni-

tude. The accuracy of the MNR algorithm depends on the substepping tolerance.

Fig. (3.13), Fig. (3.14) and Fig. (3.15) compare the isotropic compression stress

paths and stress-strain curves for the explicit method, implicit Euler-backward and

implicit (MNR) algorithms respectively. Inspection of Fig. (3.14) indicates clearly

that the Euler-backward implicit algorithm is sensitive to the size of increment.

However, substepping explicit and MNR algorithm are relatively insensitive to the

increment size and are of similar magnitude.
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3.3 Performance comparison of different algorithms

(a) compression (b) extension

Figure 3.5: Undrained triaxial stress path

Figure 3.6: Isotropic straining stress path
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3.3 Performance comparison of different algorithms

(a) stress paths (b) stress-strain curves

Figure 3.7: Explicit Euler-forward: Undrained compression simulation

(a) stress paths (b) stress-strain curves

Figure 3.8: Implicit Euler-backward: Undrained compression simulation

(a) stress paths (b) stress-strain curves

Figure 3.9: Implicit MNR: Undrained compression simulation
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(a) stress paths (b) stress-strain curves

Figure 3.10: Explicit Euler-forward: Undrained extension simulation

(a) stress paths (b) stress-strain curves

Figure 3.11: Implicit Euler-backward: Undrained extension simulation

(a) stress paths (b) stress-strain curves

Figure 3.12: Implicit MNR: Undrained extension simulation
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3.3 Performance comparison of different algorithms

(a) stress paths (b) stress-strain curves

Figure 3.13: Explicit Euler-forward: Isotropic straining simulation

(a) stress paths (b) stress-strain curves

Figure 3.14: Implicit Euler-backward: Isotropic straining simulation

(a) stress paths (b) stress-strain curves

Figure 3.15: Implicit MNR: Isotropic straining simulation
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3.3 Performance comparison of different algorithms

3.3.2 Simulations of benchmark test

The S-CLAY1S model has been implemented into the PLAXIS finite element pro-

gram using all the algorithms described above. In this section, simulations of a

surface strip footing are presented using the same properties for Bothkennar clay

used in earlier triaxial simulations (see Table. 3.1 for model parameters). A displace-

ment controlled strip footing was analyzed under drained conditions. The model is

4m in height and 4m in width; 228 triangular 8 noded elements are utilized as shown

in Fig. (3.16). The length of the footing is 1m. The initial stress condition was com-

puted by assuming normally consolidated clay with in-situ K0 = 0.5. The footing

was given a maximum vertical displacement of 0.2m. The water table is assumed to

be 1m below the surface.

Fig. (3.17) shows the comparison of footing load Fy versus displacement at

nodal point A for the explicit Euler-backward, implicit Euler-backward and implicit

MNR methods, respectively. Since the explicit method has a maximum increment

limit of 0.01%, there is no difference in the results for increment sizes 0.01% and

0.1% as shown in Fig. (3.17(a)), but the displacement shows little difference from

increment size 0.001%.

Figure 3.16: Finite element mesh of the geometry around the footing
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3.3 Performance comparison of different algorithms

The maximum size of strain increment means that any strain increment applied

which is higher than the allowed maximum value is subdivided into several sub

increments to the limit strain increment. The explicit algorithm stress paths for the

Gauss points B and C is shown in Fig. (3.18(a)). Results of stress paths shows that

there is no difference for increment sizes 0.01% and 0.1% and little deviation from

the stress path of increment size 0.001%. The implicit (Euler-backward) algorithm

displacement of nodal point A and stress paths of gauss points B and C are shown in

Fig. (3.17(b)) and Fig. (3.18(b)). The results show very clearly that when the strain

increment size increases the difference in the results also increases. The stress paths

and displacement curve for strain increment size 1.0% shows clear deviation from

the proper results represented by increment size 0.001%. Using the Euler-backward

implict algorithm to anlayse a practical engineering problem, a geotechnical engineer

should be aware about the value of stepsize in the input program.

Fig. (3.17(c)) and Fig. (3.18(c)) show the displacement curve at nodal point

A and the stress paths at Gauss point B and C for the modified Newton-Raphson

implicit method. Since there is no limitation for the strain increment size in the

implicit MNR algorithm, only one displacement curve and stress path are shown.

The implicit MNR algorithm does not require a stepsize as a input value, giving an

advantage over the other algorithms for practicing engineers and researchers.

Table. 3.2 shows the time taken by different algorithms to complete the above

mentioned benchmark problem, which measures the efficiency. Even though the Eu-

ler forward and backward algorithms appear to be relatively faster than the MNR al-

gorithm when larger increment sizes used (e.g. 0.01% for the Euler forward and 0.1%

for the Euler backward), the increments are not sufficently small for real geotech-

nical problems. In practice, geotechnical engineers choose small increment sizes to

avoid numerical convergence issues. Because of this conservative assumption, it can

be less efficent in terms of computational time (e.g. 0.001% for the Euler forward

and 0.01% for the Euler backward) to use the Euler forward or backward algorithm

than the MNR algorithm.

Based on the efficiency, displacement curves and stress paths, it can be con-

cluded that the modified Newton-Raphson algorithm is the best algorithm to in-

tegrate constitutive equations of the S-CLAY1S model. These findings agree with

the findings of Potts et al. (2002) who showed that the modified Newton-Raphson

algorithm is more accurate and less dependent on increment size than the other

algorithms.
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3.3 Performance comparison of different algorithms

(a) Explicit Euler-forward

(b) Implicit Euler-backward

(c) Implicit MNR

Figure 3.17: Comparison of displacement at point A
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3.3 Performance comparison of different algorithms

(a) Explicit Euler-forward

(b) Implicit Euler-backward

(c) Implicit MNR

Figure 3.18: Comparison of stress paths at point B & C
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Table 3.2: Time taken by different numerical algorithms

Explicit (Euler-forward)

size of increment [%] time [s]

0.1 48

0.01 47

0.001 256

Implicit (Euler-backward)

size of increment [%] time [s]

1.0 48

0.1 33

0.01 125

0.001 820

Implicit (MNR)

size of increment [%] time [s]

− 107

3.4 Lode angle dependency

The stress ratio at critical state M is assumed to be constant for the original S-

CLAY1S model i.e. the Drucker-Prager failure criterion is adopted (Mc = Me).

However, the experimental results by McGinty (2006) on Bothkennar clay showed

that the value of critical state in triaxial compression (Mc) was greater than in

triaxial extension (Me). Further, Potts & Zdravkovic (1999) suggest that the Mohr-

Coulomb criterion is more appropriate to failure conditions especially in extension.

Therefore the critical state constant M should be a function of Lode angle in stress

space. In the proposed modified S-CLAY1S model, critical state constant M has

been made a function of Lode angle, according to the expression proposed by Sheng

et al. (2000). This formulation incorporates a smooth failure yield surface as an

alternative to the Mohr-Coulomb failure surface. The Sheng et al. (2000) failure

surface gains an advantage from a numerical point of view over the Mohr-Coulomb

failure surface by avoiding corners in the failure surface. Fig. (3.19) shows the yield

surfaces of the original and proposed S-CLAY1S models in the p′ − q plane and the

failure surface in the π plane.
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3.4 Lode angle dependency

(a) p-q plane (b) π-plane

Figure 3.19: S-CLAY1S yield surface

3.4.1 Formulation of Lode angle dependency

The Lode angle dependent yield surface of S-CLAY1S is formulated in general space

as follows:

fy =
3

2

(σ′d − αdp′) : (σ′d − αdp′)
M2(θ)− α2

+
(
p′ − p′m

2

)2

−
(p′m

2

)2

= 0 (3.46)

The function M(θ) defines the shape of the failure surface in the deviatoric plane of

the S-CLAY1S yield surface, and θ is the value of Lode angle. The magnitude of θ

defines the orientation of the stress state within the deviatoric plane. The general

version of function M(θ) is defined for an isotropic model:

M(θ) = Mc

(
2mn

1 +mn + (1−mn)sin3θ

) 1
n

(3.47)

According to Sheng et al. (2000), a possible form for the variation of M(θ) for

an isotropic model is given as:

M(θ) = Mc

(
2m4

1 +m4 + (1−m4)sin3θ

) 1
4

(3.48)
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3.4 Lode angle dependency

where m:

m =
Me

Mc

(3.49)

where Mc is the value of M in triaxial compression with θ = −30o, and Me is the

value of M in triaxial extension with θ = 30◦.

For the anisotropic S-CLAY1S model, the size of the yield curve p′m is defined

on the α-line ( σ′d − αdp′ = 0) rather than on the isotropic axis (σ′d = 0). There-

fore, for consistency, Lode angle dependency should be incorporated by making the

parameter M(θ) in the yield surface equation a function of the modified Lode angle

θα, which corresponds to the stress state to the α− line and can be defined as:

sin3θα = −

[
3
√

3

2

(J3)α

(J2)
3
2
α

]
(3.50)

where (J2)α and J(J3)α are the second and third invariants of the modified stress

deviator σ′d−αdp′ which compares the stress state with the α− line. Definitions of

(J2)α and (J3)α can be found in Appendix A.

A possible form for variation of M(θ) for S-CLAY1S with modified Lode angle

θα is given as:

M(θ) = Mc

(
2m4

1 +m4 + (1−m4)sin3θα

) 1
4

(3.51)

All necessary terms of derivatives for modified Lode angle dependency are given

in Appendix B.

3.4.2 Verification and validation of Lode angle dependency

The Lode angle dependent S-CLAY1S model implementation is verified for the fol-

lowing cases;

• Case 1 The original S-CLAY1S model in which it is assumed that both the

shape of the plastic potential and yield surface in the deviatoric plane are

circular with the value of constant M
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3.4 Lode angle dependency

• Case 2 The modified S-CLAY1S model in which it is assumed that both

the shape of plastic potential and yield surface in the deviatoric plane are of

the Sheng et al. (2000) shape in Fig. (3.19), and ∂M/∂σij is allowed to vary

according to Eq. 3.48 for both yield surface and plastic potential.

Isochoric monotonic loads were applied in radial direction for verification of

the modified S-CLAY1S model implementation. Fig. (3.20) shows the S-CLAY1S

model mobilization of stress path in the π-plane for Case 1, and Case 2 respectively.

As shown in Fig. (3.20(b)), the modified S-CLAY1S model shows good agreement

with the Sheng et al. (2000) failure surface. However, the stress mobilization in the

π-plane produces a shape which is not exactly the same as the Sheng et al. (2000)

failure surface due to the rotational hardening of S-CLAY1S.

(a) Original S-CLAY1S (b) Modified S-CLAY1S

Figure 3.20: Stress paths in π-plane during isochoric monotonic loading

The ability of the modified S-CLAY1s model to simulate real soil behaviour

was assessed by simulating laboratory data from a triaxial extension test. Hong

Kong Marine clay lab data by Zhou et al. (2006) was used for the comparison with

the original and modified S-CLAY1S models. Model parameters for the S-CLAY1S

model were obtained from Leoni et al. (2008). The anisotropy of Hong Kong Marine

clay was taken into account for simulation and the destructuration is switched off

in the S-CLAY1S model simulations. Hence the S-CLAY1S model becomes the S-

CLAY1 model. In this simulation, the two set of tests considered are E150 and E400
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3.4 Lode angle dependency

Table 3.3: Material parameters of Hong Kong Marine clay for S-CLAY1

Soil constants

κ ν ′ λ Mc Me

0.0564 0.25 0.238 1.243 0.879

State variables

e0 α0 OCR

2.0 0.474 1.0

Additional parameters for anisotropy

β µ

0.807 43.15

as originally labeled by Zhou et al. (2006). Table 3.3 shows the full data set used in

this simulation. The soil sample was first consolidated following the KNC
0 line and

then sheared in undrained extension.

In Fig. (3.21), the comparisons between the predicted and experimental stress

paths are plotted for Hong Kong Marine clay (Zhou et al., 2006). The modified

S-CLAY1S model with Lode angle dependency shows good agreement with the lab-

oratory data, even though the final deviatoric stress is higher than the laboratory

value. This is due to the fact that the Me value has been calculated assuming Mohr-

Coulomb in extension given no triaxial extension tests were made. By contrast, the

original S-CLAY1S model shows a much higher deviatoric stress value than the ex-

perimental value and clearly deviates from the experimental data. For comparison,

the MCC model simulation also plotted.

The stress strain plots are shown in Fig. (3.22(a)) and Fig. (3.22(b)) for labo-

ratory data E400 and E150 respectively. Both the original and modified S-CLAY1S

numerical simulations do not match exactly the experimental data but modified S-

CLAY1S model deviates less from the experimental data. This difference would be

expected due to the creep behaviour of Hong Kong marine clay. Both S-CLAY1S

models could be improved by applying small-strain stiffness in the constitutive mod-

elling. By changing the failure criterion from the Drucker-Prager to the Sheng et al.

(2000) formulation, the model has been substantially improved, especially in exten-

sion simulations.
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3.4 Lode angle dependency

Figure 3.21: Stress paths for undrained extension E400 and E150 tests of Hong

Kong Marine clay (data from Zhou et al., 2006)

(a) test E400 (b) test E150

Figure 3.22: Deviator stress against axial strain in undrained extension test (data

from Zhou et al., 2006)
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3.4 Lode angle dependency

The modified and original S-CLAY1 model (without destructuration) is com-

pared for Swiss lacustrine clay triaxial test data in extension (S2aT4) provided by

Messerklinger (2006).

The natural test sample was first reconsolidated in the triaxial apparatus to a

stress state of p′ = 300 kPa and q = 225 kPa beyond the in-situ preconsolidation

stress along the stress ratio ηK0 = 0.75, unloaded to a stress state of p′ = 150 kPa

and q = 112.5 kPa using drained swelling along the stress ratio ηK0 = 0.75. Then

the probing extension stress path was simulated using stress increment ratio η =

-7.1 and δσ′1/δσ
′
3 = -1.1. Table 3.4 summarizes the model parameters which were

obtained from Messerklinger (2006).

Table 3.4: Material parameters of lacustrine clay (after Messerklinger, 2006)

Soil constants

κ ν ′ λ Mc Me

0.01 0.1 0.053 1.25 0.88

State variables

e0 α0 OCR

0.693 0.42 1.0

Additional parameters for anisotropy

β
µ

1.31 5

Comparison of the original and modified S-CLAY1 models simulation results

to the triaxial test data S2aT4 are presented in Fig. (3.23). Both models do not

predicts very well plastic volumetric straining, the original S-CLAY1 model overpre-

dicts whereas the modified S-CLAY1 underpredicts (Fig. 3.23(a)). The shear strain

predictions (Fig. 3.23(b)) show that the modified S-CLAY1 model simulates the

lab data more accurately than the original S-CLAY1 model. The results of simula-

tion after incorporating Lode angle dependency are more close to the experimental

results in extension than with the Drucker-Prager failure criterion.
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3.4 Lode angle dependency

(a) Volumetric strain increments (b) Shear strain increments

Figure 3.23: Comparison of original and modified S-CLAY1 simulations with triaxial

test data S2aT4 (Messerklinger, 2006)

3.4.3 Benchmark applications using Lode angle dependency

To further investigate the importance of the Lode angle dependency, a finite ele-

ment benchmark test carried out for an axis-symmetric and plane strain footing on

Bothkennar clay (assumed Mc = 1.5 and Me = 1.1) described Section 3.3.2 was

simulated. The results of the investigation are presented in Fig. (3.24) where the

applied vertical load Fy is plotted against displacement at point A (see Fig. 3.16).

For the axis-symmetric (circular) footing, the effect of Lode angle dependency is

found to be not significant (see Fig. 3.24(a)) as would be expected. This is due

the fact that the M value calculated using Eq. 3.51 for the Lode angle dependent

S-CLAY1S model is similar to the the value of Mc used in Lode angle independent

S-CLAY1S model under triaxial compression. However, for the plane strain (strip)

footing, the Lode angle dependency has an effect on the load-displacement behaviour

(see Fig. 3.24(b)).

Furthermore, the Lode angle dependency is even more significant in 3-dimensional

finite element analysis than in 2-dimensional analysis. Modified S-CLAY1S model

requires further validation in the 3D finite element applications.

72



3.5 Summary

(a) Circular footing: axis-symmetry (b) Strip footing: plane strain

Figure 3.24: Effect of the shape of footing on the deviatoric plane

3.5 Summary

The S-CLAY1S model is implemented into the finite element code PLAXIS using

an automatic substepping modified Newton-Raphson algorithm (MNR). The MNR

algorithm performance was compared with explicit Euler-forward and implicit Euler-

backward algorithms. The comparison showed that the MNR algorithm is very

robust, but it is relatively expensive, as for each strain increment, the inverse of a

iterative scheme matrix needs to be calculated.

The modified S-CLAY1S model is an extension of the original S-CLAY1S model

which includes Lode angle dependency. The purpose was to incorporate Lode angle

dependency to improve the model predictions in failure conditions especially in the

axial extension. The model simulations comparison to the experimental data high-

lights the importance of Lode angle dependency. The modified S-CLAY1S model

numerical implementation is verified using benchmark tests too.
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Chapter 4

Implementation of Sekiguchi-Ohta

(SO) models

In this chapter, the Sekiguchi-Ohta (SO) inviscid/viscid models are presented in

their original formulation in triaxial stress space and general stress space. Disconti-

nuity at the vertex of the models and numerical difficulties encountered in the stress

derivatives of the yield surface are discussed. A novel hybrid implicit numerical

algorithm is introduced to overcome the singularity of the models. The implemen-

tation of the general formulation of the model into the PLAXIS finite element code

and the verification of the models are also given in this chapter.

4.1 Introduction

This chapter discusses implementation of Sekiguchi-Ohta (SO) inviscid model and

viscid (time-dependent) model, which both account for initial stress-induced anisotropy

proposed by Sekiguchi & Ohta (1977). These models have been widely used in

geotechnical engineering practice in Japan. Because of this, there is a demand for

the SO models to be implemented into the finite element codes.

The yield surface of the SO model falls into the category of non-smooth yield

surface (see Fig. 4.1(a)) due to the corner along the K0-line. However, overcoming

the singularity of the model at the corner of the yield surface at which the gradient

is not defined has been a great challenge. This singularity problem is clearly seen for

cases such as K0 consolidation, self-weight consolidation, K0 creep and ageing, as

well as site responses when the level of the water table is changed (Pipatpongsa et al.,
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2002a). Similar difficulty in implementation of original Cam-clay model (Roscoe

et al., 1963a) was also found due to the non-smooth yield surface. However, because

of the position of the corner, this is a major issue with the SO models, as the

stress paths are often close to K0 region in many geotechnical applications such as

foundation loading.

Since the SO models (Sekiguchi & Ohta, 1977) were developed, numerous pa-

pers have been published in relation to the numerical implementation of the mod-

els for engineering practice (Iizuka & Tachiabna, 2009; Pipatpongsa et al., 2009b;

Takeyama et al., 2005; Pipatpongsa & Tachibana, 2005; Yuttapongtada et al., 2003;

Pipatpongsa et al., 2002a; Pipatpongsa et al., 2002b; Pipatpongsa et al., 2001; Pi-

patpongsa & Ohta, 2000). Most of the papers adapt an algorithm to evaluate plastic

flow at the corner of the yield surface proposed by Simo et al. (1988) using an in-

tersecting multi-surface by employing Koiter’s associated flow rule (Koiter, 1953).

Based on this idea, when the stress comes to the corner of the SO yield surface,

two activated yield loci referred to upper and lower yield surfaces intersecting each

other as shown in Fig. 4.1(b) are used to calculate plastic flow using Koiter’s rule

as follows:

dεp = ∆ΛL
∂fL
∂σ′

+ ∆ΛU
∂fU
∂σ′

(4.1)

where ∆ΛL and ∆ΛU are lower and upper yield surface plastic multipliers respec-

tively.

The above mentioned algorithm has two problems when used in finite element

analysis. The first problem is to identify the upper and lower yield surface in general

stress space because the SO yield surface is a single yield surface with a vertex. The

other problem associated with this algorithm is that when loading goes from one

surface to the other surface (upper to lower or lower to upper), it is not possible to

switch the yield surface to continue the calculation. This problem can produce a

large error in finite element analysis.

In the case of the original Cam-clay model, to avoid this numerical uncertainty,

recently Pipatpongsa & Ohta (2008) and Pipatpongsa et al. (2009a) proposed an

alternative method using Koiter’s flow rule to determine plastic flow at the vertex of

the original Cam-clay model by additionally considering a constraint plane (see Fig.

4.2). However, there is no equivalent implementation proposed to the SO models by

the above authors.
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(a) Singularity point (b) Upper and lower yield surfaces

Figure 4.1: Yield surfaces of Sekiguchi-Ohta model

Figure 4.2: The original Cam-clay yield and the constraint functions in principal

stress space (Pipatpongsa et al., 2009a)

In this study, a constraint surface is applied to the SO inviscid model using

single step backward implicit algorithm in the vertical direction and perpendicular

to the K0 line as shown in Fig. 4.3. This approach has not previously been applied

to the SO models.
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To verify the numerical implementation of the constraint yield surface added to

the SO inviscid model, an integration point program (IPP)is used to simulate triaxial

K0 consolidation. The following initial stress and strain are applied; p′ = 71.5 kPa,

q = 42.5 kPa and 10% strain. In Fig. 4.4, the simulation of the SO inviscid model

along the K0 line with and without the constraint surface is presented. Fig. 4.4(a)

shows stress along the the K0 line without constraint surface. Due to the singularity

at the corner, and that there is no special treatment for the singularity, stresses

hover along the K0 line. When additional constraint surface is placed exactly on

the corner, it shows huge numerical error as shown in Fig. 4.4(b). In contrast to the

other cases, it produces 3 times higher values for predicted stresses. The constraint

surface is placed exactly at the yield surface vertex, the algorithm tries to evaluate

the gradient at the vertex. This numerical error comes from the non-determination

of derivative at the corner.

(a) (b)

Figure 4.3: Constraint and yield surfaces of Sekiguchi-Ohta model

To avoid this non-determination, the constraint surface is placed 1% and 5%

off from the corner of the value of p′ at vertex. Fig. 4.4(c) and Fig. 4.4(d) show the

simulation when the constraint surface is placed at 1% and 5% off from the corner

respectively. The predicted stressses deviate slightly from the K0 line but there is

no numerical instability. It can be clearly seen that when the constraint surface is

placed further away from the corner, the predicted results also deviate further from

the K0 line.
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(a) No Constraint Surface (b) Constraint surface on vertex

(c) 1% off from vertex (d) 5% off from vertex

Figure 4.4: Numerical simulation of constraint surface

The following sections present a new hybrid implicit algorithm proposed and

used to implement the SO models into the PLAXIS finite element code. Further-

more, the numerical implementation is validated at integration point program (IPP)

level and subsequently a benchmark boundary value problem is described.

78



4.2 SO inviscid model

4.2 SO inviscid model

4.2.1 Mathematical formulation of the SO inviscid model

The yield function (fy) of the SO inviscid model (see Fig. 4.5) is originally expressed

by Sekiguchi & Ohta (1977) in the following equation where M is the critical state

frictional parameter, p′ is the mean stress, pm,0 is the effective mean stress at the

end of K0 consolidation, q̄ is the modified deviatoric stress to K0-line, εpv is the

volumetric plastic strain and D is the coefficient of dilatancy.

fy = MD ln(
p′

p′m,o
) +D

q̄

p′
− εpv (4.2)

Figure 4.5: Sekiguchi-Ohta model yield surface in triaxial stress space

where q̄ =
√

3J̄2 and the modified second invariant J̄2 to the K0-line can be

found as:

J̄2 =
1

2

(
s̄2
xx + s̄2

yy + s̄2
zz

)
+ s̄2

xy + s̄2
yz + s̄2

zx (4.3)

where the vector s̄ can be derived as:

s̄ = s− p′η (4.4)
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where the vectors s and η are described as following (note that this definition is

different from that used in Appendix A):

s =


σ′xx − p′
σ′yy − p′
σ′zz − p′
σ′xy
σ′yz
σ′zx

 (4.5)

The value of η can be calculated by assuming initially normally consolidated

situation:

ηT =

(
−

1−Knc
0

2 + 2Knc
0

2
1−Knc

0

2 + 2Knc
0

−
1−Knc

0

2 + 2Knc
0

0 0 0

)
(4.6)

From Eq.(4.3) and Eq.(4.4), s̄ is found:

s̄ =


σ′xx − p′ − p′ηxx
σ′yy − p′ − p′ηyy
σ′zz − p′ − p′ηzz
σ′xy − p′ηxy
σ′yz − p′ηyz
σ′zx − p′ηzx

 (4.7)

The hardening/softening of the materials induced by the plastic volumetric

strain is given by the following equation:

p′m = p′m,o e
(ε
p
v−ε

p
v0)

(MD) (4.8)

where D is defined as:

D =
λ∗ − κ∗

M
(4.9)

where λ∗ and κ∗ are the modified compression and swelling indices.

Using Eq.(4.2) and Eq.(4.8), the yield function of the SO model can be derived

in an alternative form as follows:

fy = MD ln(
p′

p′m
) +D

q̄

p′
(4.10)
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The consistency condition (ḟy) of the yield function of the SO inviscid model

is written as following:

ḟy =
∂fy
∂σ′

∆σ′ +
∂f

∂p′m
∆p′m = 0 (4.11)

where ∆p′m is derived from Eq.(4.8) is given as:

∆p′m =
p′m
MD

dεpv (4.12)

Also from the incremental stress strain constitutive relationship; the change of

stress is written as:

∆σ′ = [De]
(

∆ε−∆εp
)

(4.13)

The SO inviscid model incorporates the associated plastic flow rule using the

plastic multiplier ∆Λ which can be found as follows:

∆εp = ∆Λ
∂fy
∂σ′

(4.14)

∆εpv = ∆Λ
∂fy
∂p′

(4.15)

By substituting Eq.(4.12) and Eq.(4.13) into Eq.(4.11), the following equation

can be derived:

ḟy =
∂fy
∂σ′

: [De]
(

∆ε−∆εp
)

+
∂f

∂p′m

p′m
MD

dεpv = 0 (4.16)

By further substituting Eq.(4.14) and Eq.(4.15) into Eq.(4.16) the plastic mul-

tiplier ∆Λ can be derived as follows:

∆Λ =

∂fy

∂σ′
: [De] : ∆ε

∂fy

∂σ′
[De]

∂fy

∂σ′
−

∂f

∂p′m

pm

MD

∂f

∂p′

(4.17)
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4.2.2 Singularity of the SO inviscid model

The partial derivatives with respect to stress of the SO inviscid yield function can

be written as follows:

∂fy
∂σ′

=
∂fy
∂p′

∂p′

∂σ′
+
∂fy
∂q̄

∂q̄

∂σ′
(4.18)

where ∂fy
∂p′

and ∂p′

∂σ′
can be derived as:

∂fy
∂p′

=
MD

p
−D s̄

p′2
(4.19)

∂p′

∂σ′
=

1

3
m (4.20)

where mT =
(

1 1 1 0 0 0
)

And similarly the partial derivatives of ∂fy
∂q̄

and ∂s̄
∂σ′

can be found as follows:

∂fy
∂s̄

=
D

p′
(4.21)

∂q̄

∂σ′
=

3

2q̄

∂J̄2

∂σ′
(4.22)

The details of above derivation is given in Appendix C.

By substituting Eq.(4.19), Eq.(4.20), Eq.(4.21) and Eq.(4.22 )into Eq. (4.18),

the partial derivatives of yield function w.r.t stress can be derived as:

∂fy
∂σ′

=

(
MD

p
−D s̄

p′2

)(
1

3
m

)
+

(
D

p

)(
3

2q̄

∂J̄2

∂σ′

)
(4.23)

In the above formulation, when the stress comes to the corner on the yield

surface moving along the K0 consolidation line where s = p′η, the derivatives cannot

be determined (see the corner in Fig. 4.6). In this case:

q̄ = 0 when s = p′η (4.24)
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The derivative of yield surface goes to infinity (singularity) when q̄ becomes

zero.

∂fy
∂σ′
→∞ (4.25)

Figure 4.6: Sekiguchi-Ohta model yield surface in principal stress space

(a) stress paths (b) e− log(p′)

Figure 4.7: Stress hovering along K0 line during 1D consolidation (after Iizuka &

Tachiabna, 2009)

Due to the singularity on the corner of the SO model yield surface, the plastic

flow at a point of preconsolidated stress from the K0 consolidation cannot be eval-
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uated correctly. Previous work by Iizuka & Tachiabna (2009) has shown that the

stresses hover along the K0 line, see Fig. 4.7.

4.2.3 Implementation of the inviscid SO model into PLAXIS

As discussed earlier in this chapter, the difficulty of implementing the SO mod-

els into PLAXIS comes from the singularity at the yield surface. A novel hybrid

implicit algorithm consisting of a modified Newton-Raphson (MNR) and Stolle’s

implicit algorithm (Stolle et al., 1997) is introduced to overcome the singularity of

the SO model. The MNR and Stolle’s algorithms have their own limitations when

integrating the SO model constitutive equations as discussed later. However, the

aim of this study is to combine both algorithms as shown in Fig. 4.8 in such a way

as to produce a robust algorithm which will enable the SO model to be implemented

in PLAXIS.

Figure 4.8: Hybrid algorithm for the SO model implementation

4.2.3.1 Modified Newton-Raphson (MNR) method

The MNR algorithm is discussed in detail in Chapter 3 for the S-CLAY1S model

implementation in PLAXIS. However, this section covers the mathematical formu-
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lation for MNR algorithm but not the algorithm in detail. Following equations are

used to formulate an iterative procedure of MNR algorithm:

∆ε = ∆εe + ∆εp = ∆εe + ∆Λ
∂fy
∂σ′

(4.26)

fy = fy(σ
′, p′m) (4.27)

When there is a plasticity, the following conditions should be satisfied:

∆ε−∆εe −∆Λ
∂fy
∂σ′

= 0 (4.28)

f(σ′, p′m) = 0 (4.29)

In total, there are 7 equations, 6 associated with strains and one related to the

yield function. The 6 strain components can be written for the iteration procedure

as follows;

∆ε−∆εek − δ∆εek+1 − (∆Λk + δ∆Λk+1)

(
∂fy
∂σ′k

+
∂2fy
∂2σ′k+1

δσ′k+1

)
= 0 (4.30)

By neglecting higher order terms and restructuring the above system of equa-

tions, the following system of equations for modified Newton-Raphson iterative pro-

cess can be derived.

(
I + ∆Λk

∂2fu
∂2σ′k+1

[De]

)
δ∆εek+1 +

∂fy
∂σ′k

δ∆Λk+1 = ∆ε−∆εek − δ∆εek+1 (4.31)

The yield surface equation fy is reformulated as following;

fy,k+1 = MD ln
p′

p′m,k
+D

q̄

p′
− (∆εpv,k+1 −∆εpv,k) (4.32)

This can be further simplified in the form of iteration as follows;

fy,k+1 = fy,k +
∂fy
∂σ′k

[De]δεek+1 − δ∆ε
p
v,k+1 (4.33)
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For very small change of strain δ∆εpv,k+1 = −δ∆εev,k+1. Hence it is written as;

fy,k+1 = fy,k +
∂fy
∂σ′k

[De]δεek+1 + δ∆εev,k+1 (4.34)

Since fy,k+1 = 0, the above equation is written in the following form:

(
m+

∂fy
∂σ′k

[De]

)
δεek+1 = −fk (4.35)

By combining Eq.(4.31) and Eq.(4.35), the system of non-linear equations can

be written as a matrix form as follows:

 I + ∆Λk
∂2fy
∂2σ′k

[De] ∂fy
∂σ′k

m+ ∂fy
∂σ′k

[De] 0




δ∆εek+1

δ∆Λk+1

 =

 ∆ε−∆εek −∆Λk
∂fy
∂σk

−fy,k

 (4.36)

From Eq.(4.36), elastic strain increments and plastic multiplier can be calcu-

lated and updated for the iteration as follows;

∆εek+1 = ∆εek + δ∆εek+1 (4.37a)

∆εp = ∆ε−∆εek+1 (4.37b)

pm,k+1 = pm,0 exp
∆εpv

λ ∗ −κ∗
(4.37c)

σ′k+1 = σ′0 + [De]∆εe (4.37d)

The iteration can be stopped when changes are very small. The above system

of non-linear equations of the SO inviscid model is implemented in a similar way as

for the MNR method in Chapter 3.

Limitation of the MNR method

When q̄ becomes negative during the iteration process as shown in Fig.4.9, the

modified Newton-Raphson algorithm shows random movement around the p′ − q

plane. In Fig.4.9(a), it converges to a solution after 4 iterations whereas in Fig.4.9(b)

it took 13 iterations to start real convergence. This is a major drawback of the MNR

method.
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4.2 SO inviscid model

Another drawback of this algorithm is that it cannot solve the singularity of

the SO model when stress comes to the vertex of the SO model.

(a) 4 iterations (b) 13 iterations

Figure 4.9: Random movement of the MNR algorithm

4.2.3.2 Stolle’s implicit method

This implicit algorithm was first proposed by Stolle et al. (1997) to integrate the Soft

Soil Creep (SSC) model to overcome the limitation of size of admissible time step

of the semi implicit procedure developed by Stolle (1991). Stolle’s algorithm is an

efficient numerical algorithm, which solves the non-linear equation of the SO inviscid

model using a stress update, which is first performed in the (p′, q) space using radial

return before the general stress space components are updated. A schematic view of

the Stolle’s algorithm is shown in Fig. 4.10. For a given elastic trial stress (p′e, qe),

a correct yield surface as shown in thick line in Fig. 4.10(a) should be found by

varying p′ value and corresponding q value. This procedure is detailed below.

The general stress components of the SO inviscid model can be written as a

combination of p′ and q as follows:

s̄ = s− p′η =


σ′xx − p′ − p′ηxx
σ′yy − p′ − p′ηyy
σ′zz − p′ − p′ηzz
σ′xy − p′ηxy
σ′yz − p′ηyz
σ′zx − p′ηzx

 (4.38)
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4.2 SO inviscid model

When the value of p′ and/or q̄ changes, the general stress components can be

back-calculated using the elastic stress component as follows;

σ′(p′, q̄) = mp′ + p′η +
q̄

q̄e



σ′exx − p′e − p′eηxx
σ′eyy − p′e − p′eηyy
σ′ezz − p′e − p′eηzz
σ′exy − p′eηxy
σ′eyz − p′eηyz
σ′ezx − p′eηzx


(4.39)

σ′(p′, q̄) = mp′ + p′η +
q̄

q̄e
s̄e (4.40)

Supposing the calculation starts assuming a value of p′, and the p′ is on the

yield surface, the elastic volumetric strain can be derived as follows;

∆εev =
p′ − p′0
K

(4.41)

where p′0 is initial p′ value and K is bulk modulus. Since the given total strain

increment is known, the plastic volumetric strain can be calculated as follows;

∆εpv = ∆εv −∆εev (4.42)

From the hardening function, preconsolidation pressure p′m can be calculated

as follows:

pm = pm,0 exp
∆εpv
MD

(4.43)

The value for q̄ can be calculated from the assumption previously made that

the stress is on the yield surface as follows:

q̄ = −Mp′ ln
p′

p′m
(4.44)

By using the Eq.(4.39), 6 general stress components can be calculated. The

elastic strain increments can be calculated using following form:

∆εe = [De]−1
(
σ′(p′, q̄)− σ′0

)
(4.45)
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4.2 SO inviscid model

Once the stresses and plastic strains are calculated, the plastic multiplier ∆Λ

can be found using the following equations:

∆Λ =
∆εpv

∂fy/∂p′
(4.46)

The plastic multiplier ∆Λ and plastic strain increments are calculated for the

updated stress, and the stress can be updated from the plastic strain increment ∆εp

is found as follows:

∆εp = ∆Λ
∂f

∂σ
(4.47)

Using above plastic strain increment, plastic stress increment can be calculated.

∆σp = [De]∆εp (4.48)

From above stress, the final temporary stress can be found as;

σet = σ + ∆σp (4.49)

If there is no difference between σe and σet, iteration can be stopped; otherwise

a new p′ is chosen and calculation is repeated from Eq.4.41. When the stress come

to the vertex of the model, stress is updated as shown in Fig.4.10(b).

Assumed p′ should be modified until q̄e − q̄et ≈ 0 have a small difference. The

Stolle implicit algorithm to implement the SO inviscid model is summarized in

Algorithms 12 and 13.
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(a) Find a correct yield surface

(b) Stress update at the vertex

Figure 4.10: Schematic view of Stolle’s implicit algorithm
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Algorithm 12 : Algorithm to find best p′ value

GET: {σ′0}, H0, {∆ε} , δ, RTOL and FTOL

Calculate: p′0 = 1/3tr[σ′0] and ∆εv
Calculate: {∆σ′}e = [De] {∆ε} and {σ′}e = {σ′0}+ {dσ′}e

Calculate:p′e and q̄e =
√

3J̄2 and J̄2 from Eq.4.3

if (Fy
(
{σ′}e ,H0

)
≤ FTOL) return ! purely elasticity

! Calculate maximum value of p′m
1 Continue

Calculate: Γ = p′e −K ∗∆εpv − p′m0 ∗ exp(
∆εpv

MD
)

Calculate: dΓ = −K ∗ −p′m0 ∗ exp(
∆εpv

MD
)/MD

δεpv = − Γ
dΓ

∆εpv = ∆εpv + δεpv

if (Γ > FTOL) then

GO TO 1

end if

Calculate: p′m = p′m0 ∗ exp(
∆εpv

MD
)

p′m,max = p′m

! Do iteration to calculate stresses & strains

CALL Algorithm 13

!Update stresses

p′ = p′

Calculate: ∆εev =
p′−p′0
K

Update: p′m
Calculate: q̄ from Eq. 4.44

Calculate: σ
′t from Eq. 4.39

return
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4.2 SO inviscid model

Algorithm 13 : Stolle implicit algorithm of the SO inviscid model

GET: p′max
ASSUME: p′ = (1− 10−6)p′max

5 Continue

it = it+ 1

while k = 0, 1 do

if (k = 1) ⇒ p′ = p′ + δ

Calculate: ∆εev =
p′−p′0
K

and ∆εpv = ∆εv −∆εev
Update: p′mi from Eq. 4.43

Calculate: q̄ from Eq. 4.44

Calculate: σ
′t from Eq. 4.39

Calculate: ∂fy/∂σ
′t and ∆Λ =

∆εpv

∂fy/∂p′t

Calculate: ∆εp = ∆Λ∂fy
∂σ′

and σ
′e,t = σ

′t + [De]∆εp

Calculate: p
′e,t and q̄e,t

if (k=0) then

Calculate: dqa = q̄e,t − q̄e

else

Calculate: dqb = q̄e,t − q̄e and dq = (dqb − dqa)/δ
Calculate: p′ = p′ − dqb/dq

end if

end while

if (p′ > pmax) then

p′ = p′max
dqa = 0

return

end if

if (Abs(dqa) > RTOL) then

GO TO 5

end if

return
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4.2 SO inviscid model

Limitation of Stolle’s implicit method

This algorithm has a problem that when there is shear component given into the

input, it produces a slight error. This slight error is caused by the back calcula-

tion of general stress components using p′ and q̄ in Eq.(4.39). Table.4.1 shows the

comparison of the MNR and alternative algorithm when a shear component is given

during undrained shearing test.

Table 4.1: Comparison of the MNR and Stolle’s algorithm

Initial stress the MNR final stress Stolle’s method final stress

σxx 57.24886 56.52565 56.47672

σyy 100.0000 95.98568 96.05137

σzz 57.24886 56.52565 56.47672

σxy 1.000000 0.545683 0.704445

4.2.4 Verification of the SO inviscid model

In order to test the performance of the numerical implementation of the SO in-

viscid model, three different tests were carried out using an integration point pro-

gram (IPP). The verification and the performance of the implementation were done

through the simulation of an undrained triaxial test, radial strain controlled triaxial

test and triaxial compression along K0 line. An arbitrary set of soil parameters to

represent clay were used for the verification of the model, the parameters are given

in Table. 4.2.

Table 4.2: Material parameters used for the SO inviscid model verification

M κ∗ λ∗ D e0 Knc
0 ν

1.12 0.02368 0.1368 0.101 1.5 0.5725 0.364

Undrained Triaxial test

The initial state variables were generated from an initial vertical stress of σy =

100kPa and an OCR of 1.0. In order to compare accuracy of the integration method,

undrained compression and extension tests were repeated with 1, 5, 10 and 50 steps

for an applied strain of 10%. Fig.4.11 and 4.12 shows undrained compression and
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4.2 SO inviscid model

extension simulations respectively. It can be seen that the influence of the step size

is relatively insignificant, and therefore the simulations results are satisfactory.

(a) (b)

Figure 4.11: Undrained triaxial compression

(a) (b)

Figure 4.12: Undrained triaxial extension
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Triaxial compression and extension

The initial state variables were generated from an initial vertical stress of σy =

100kPa and an OCR of 1.0. The radial strain increment was simulated as β varies

from -0.5 to -0.26 using a step size of 0.01 applied in 10 steps and given strain εa =

1% as εT = {βεa, εa, βεa, 0, 0, 0}. Fig.4.13(a) shows the simulation of compression

in the p′ − q space. Another triaxial test was simulated as β varies from -0.5 to

0.5 in step size of 0.01 applied in 10 steps and given strain εa = −1% as εT =

{βεa, εa, βεa, 0, 0, 0}. The results of the simulation is plotted in p′ − q space as

shown in Fig.4.13(b), clearly show that there are no apparent numerical errors.

(a) compression (b) extension

Figure 4.13: Triaxial simulation

Triaxial compression along K0 line

Fig. 4.14 shows the performance of the hybrid algorithm to overcome the singularity

of the SO inviscid model. The initial values of p′ and q are 12.2 kPa and 7.27 kPa

respectively. It can be seen that stress points lie along the K0 line with no hovering

and no stress points lie above the λ line as it is shown in Fig. 4.7.
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(a) (b)

Figure 4.14: Triaxial compression simulation along K0-line

4.3 SO viscid model

4.3.1 Mathematical formulation of the SO viscid model

Sekiguchi & Ohta (1977) proposed a elasto-viscoplastic plastic constitutive model,

which accounts for creep or relaxation, called the SO viscid model. In this section,

the SO viscid model is formulated so that it can be implemented in PLAXIS. In

the SO viscid model, the volume change due to creep (secondary consolidation) is

linearly related to time expressed in a logarithmic scale (Takeyama et al. (2007)).

An important distinction from the overstress theory (Perzyna, 1966b) is that the

current stress state can not be outside the yield surface therefore the consistency

condition is applicable. In Perzyna theory, the stress state is allowed to be outside

the yield surface and directly define the plastic relaxation equations in stress space.

The flow function F of viscid model is written as follows:

F = Cα ln

(
1 +

v̇ot

Cα
exp

(f(σ′)

Cα

))
− εvpv = 0 (4.50)

where Cα is coefficient of secondary consolidation, t is the real time, v̇o is the initial

volumetric strain rate and εvpv is viscoplastic volumetric strain. The scalar function
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f(σ′) can be defined as follows:

f(σ′) = MD ln
p′

p′0
+D

q̄

p′
(4.51)

The flow function F can be transformed to a scalar function and hardening

parameter as follows:

g(σ′, h) = f(σ′)− h(εvpv , t) = 0 (4.52)

where the hardening parameter h(εvpv , t) is defined as follows:

h(εvpv , t) = Cα ln

{
cα
v̇ot

[
exp

(εvpv
cα

)
− 1

]}
(4.53)

The initial time to calculate the hardening parameter should not be zero (t 6= 0)

because it is not determined hence it is assumed that t = 1E−7. Another assumption

made for a starting condition is that the hardening parameter h is equal to zero,

h = 0, hence the initial visco-plastic volumetric strain is calculated as follows:

Cα ln

{
cα
v̇0t

[
exp

(εvpv
cα

)
− 1

]}
= 0 (4.54)

εvpvo = Cα ln

{
v̇ot

cα
+ 1

}
= 0 (4.55)

The consistency condition of flow function for the SO viscid model can be

written as follows:

Ḟ =
dF

dt
= 0 (4.56)

Ḟ =
∂F

∂σ′
σ̇′ +

∂F

∂εvpv
ε̇vpv +

∂F

∂t
(4.57)

The SO viscid model assumes the associated flow rule and viscoplastic strains

can be derived as follows:

ε̇vp = ∆Λ′
∂F

∂σ′
(4.58)
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ε̇vpv = ∆Λ′
∂F

∂p′
(4.59)

where ∆Λ′ is rate of visco-plastic multiplier. The increment of stress can be written

as;

σ̇′ = [De](ε̇− ε̇vp) (4.60)

σ̇′ = [De](ε̇−∆Λ′
∂F

∂σ′
) (4.61)

By combining Eq.(4.57), Eq.(4.59) and Eq.(4.61);

Ḟ =
∂F

∂σ′
[De](ε̇−∆Λ′

∂F

∂σ′
) +

∂F

∂εvpv
∆Λ

∂F

∂p′
+
∂F

∂t
= 0 (4.62)

From the above equation, the plastic multiplier can be derived as;

∆Λ′ =

∂F

∂σ′
[De]ε̇+

∂F

∂t
∂F

∂σ′
[De]

∂F

∂σ′
−

∂F

∂εvpv

∂F

∂p′

(4.63)

where the derivatives can be found from the following equations:

∂F

∂σ′
=
∂f(σ′)

∂σ′
(4.64a)

∂F

∂p′
=
∂f(σ′)

∂p′
(4.64b)

∂F

∂εvpv
= −1 (4.64c)

By combining Eq.(4.63) and Eq.(4.64), the plastic multiplier ∆Λ′ can be derived

as follows:

∆Λ′ =

∂f(σ′)

∂σ′
[De]ε̇+

∂F

∂t
∂f(σ′)

∂σ′
[De]

∂f(σ′)

∂σ′
+
∂f(σ′)

∂p′

(4.65)
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From Eq.(4.61) and Eq.(4.65), we can derive the stress increment as follows;

σ̇′ = [De]ε̇− [De]


∂f(σ′)

∂σ′
[De]ε̇+

∂F

∂t
∂f(σ′)

∂σ′
[De]

∂f(σ′)

∂σ′
+
∂f(σ′)

∂p′

 ∂f(σ′)

∂σ′
(4.66)

Change of stress can be written in the following incremental form:

dσ′ = ∆tσ̇′ (4.67)

By substituting Eq.(4.67) into Eq.(4.66):

dσ′ = [De]ε̇∆t− [De]


∂f(σ′)

∂σ′
[De]ε̇∆t+

∂F

∂t
∆t

∂f(σ′)

∂σ′
[De]

∂f(σ′)

∂σ′
+
∂f(σ′)

∂p′

 ∂f(σ′)

∂σ′
(4.68)

Stress and strain can be written in the following incremental form:

dσ′ = [De]dε− [De]


∂f(σ′)

∂σ′
[De]dε+

∂F

∂t
∆t

∂f(σ′)

∂σ′
[De]

∂f(σ′)

∂σ′
+
∂f(σ′)

∂p′

 ∂f(σ′)

∂σ′
(4.69)

Similarly the plastic multiplier can also be written in the incremental form as

follows:

∆Λ = ∆Λ′∆t (4.70)

∆Λ =

∂f(σ′)

∂σ′
[De]dε+

∂F

∂t
∆t

∂f(σ′)

∂σ′
[De]

∂f(σ′)

∂σ′
+
∂f(σ′)

∂p′

(4.71)

where ∂f
∂σ′

is same as in Sekiguchi-Ohta inviscid model; see Section 2 for details of

derivatives. Derivative of ∂F
∂t

can be derived as follows:

∂F

∂t
=

[
v̇0 exp(

f(σ′)− εvpv
Cα

)

]
(4.72)
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∆t∂F
∂t

in Eq.(4.71) is written as follows:

∆t
∂F

∂t
= ∆tv̇0 exp(

f(σ′)− εvpv
Cα

) (4.73)

Takeyama et al. (2005) reported that ∆t∂F
∂t

is not stable as written above. By

using Maclaurin expansion, reformulation is done as follows;

∆tv̇0 exp(
f(σ)− εvpv

Cα
) ≈ Cα ln

{
1 +

∆t

Cα
v̇0 exp(

f(σ)− εvpv
Cα

)

}
(4.74)

4.3.2 Singularity of the SO viscid model

As mentioned above, the stress derivatives ∂f
∂σ′

of viscid model is the same as inviscid

yield function. The derivative of ∂f
∂σ′

goes to infinity (singularity) when stress comes

to the corner of flow function ( q̄ = 0).

∂f(σ′)

∂σ′
→∞ (4.75)

To overcome the singularity of the SO viscid model, the hybrid algorithm dis-

cussed earlier is also used for this model.

4.3.3 Dry side of the SO viscid model

In Fig. 4.15, the point A represents the point of the yield curve with horizontal

slope. If a soil element yields at a point to the right of A, it is said to be on the wet

side, and to the left of A is on the dry side. Takeyama et al. (2005) reported first

that when soil element yielding takes place in the dry side of the SO viscid model,

the model experiences a problem in convergence. A triaxial undrained simulation

was carried out by Takeyama et al. (2005) with different OCR values, and when the

stress comes to the dry side it shows numerical instability as shown in Fig. 4.16.

To avoid this divergence problem on the dry side of the model and to improve

the overall convergence of the model implementation, the SO viscid model is im-

plemented in such a way that the model does not include the dry side, see Fig.

4.17.
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Figure 4.15: Sekiguchi-Ohta viscid model dry/wet side in principal stress space

Figure 4.16: Undrained simulation at different OCR values (after Takeyama et al.,

2005)
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Figure 4.17: Sekiguchi-Ohta model viscid model in wet side alone

4.3.4 Verification of the SO viscid model

The verification of the SO viscid model was carried out in integration point program

(IPP) by simulating triaxial laboratory tests. The model was validated against the

simulation produced by Sekiguchi & Ohta (1977). Undrained stress-strain response

was presented under conventional K0 consolidation triaxial conditions to demon-

strate the effect of strain rate. Table 4.3 shows the material parameters used in this

simulation. Fig.4.18 shows the simulated triaxial undrained paths, on both com-

pression and extension. The dots are from the original simulation of Sekiguchi &

Ohta (1977) and the continuous line shows the implicit implementation in PLAXIS.

These can be observed to be in close agreement.

Fig. 4.19 verifies the performance of the hybrid algorithm to overcome the

singularity of the SO viscid model. The initial values of p′ and q are 71.2 kPa and

47.27 kPa respectively. The simulation shows no hovering along the K0 line. It can

be concluded that the hybrid algorithm works robustly to handle the vertex of the

model.

Fig.4.20(a) and 4.20(b) shows triaxial undrained simulations at different OCR

values and unloading triaxial simulations in compression and extension respectively.

In order to verify the dry side cut off from the SO inviscid model, undrained com-

pression and extension tests were repeated with OCR values of 1, 1.5, 2, 4 and 10

for applied 10% of strain. The results appear to be stable.
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Table 4.3: Material parameters used for the SO viscid model verification (Sekiguchi

& Ohta, 1977)

Soil constants

M κ∗ λ∗ D e0 Knc
0 ν ′

0.96 0.0199 0.0921 0.053 2.0 0.50 0.394

Additional viscosity parameters

cα v̇o

0.0029 1.0 E-5

(a) stress paths (b) stress-strain response

Figure 4.18: Comparison of effect of strain rate with Sekiguchi & Ohta (1977) results
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Figure 4.19: Triaxial simulation at varying directions

(a) Undrained simulation at different OCR val-

ues

(b) Unloading simulation at varying directions

Figure 4.20: Triaxial simulations to verify the dry side cut off
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4.4 Application to a benchmark problem

The performance of the hybrid numerical algorithm used to implement SO invis-

cid/viscid models is tested in finite element benchmark problems using PLAXIS and

their results are compared in this section. This benchmark problem is to explore and

verify the implementation of the SO models into PLAXIS. A benchmark embank-

ment problem is selected to represent a typical geotechnical engineering problem

where anisotropy and creep might play a role. Finite element calculations are per-

formed with PLAXIS 2D using the SO models which have been implemented as a

user defined soil model (UDSM).

An embankment constructed on soft soil is assumed to be 2 m high, with a

width at the top of 10 m and the side slopes with a gradient of 1:2. The soft soil is

assumed to have the properties of soft Bothkennar clay which extends to a depth of

30m. At the surface there is a 1m depth over-consolidated dry crust. The geometry

of the embankment is shown in Fig. 4.21(a). The groundwater table assumed to

be located at 1 m below the ground surface. The finite element mesh used in this

benchmark embankment is shown in Fig. 4.21(b).

The embankment, assumed to be made of granular material, was modelled with

a simple Mohr Coulomb model; see Table 4.4 for material parameters. The crust

layer is also modelled with the Mohr-Coulomb model (see Table 4.4 for material

parameters). This embankment problem is hence expected to be dominated by the

soft soil response and is not sensitive to the embankment and crust parameters.

Table 4.4: Soil parameters of sand and peat layer

Dry crust

E ′ ν ′ C ′ ϕ′ ψ′
γ kx = ky

(kPa) (kN/m3) (m/day)

3000.0 0.2 2.0 37.1 0.0 19.0 1.0*10−3

Sand

E ′ ν ′ C ′ ϕ′ ψ′
γ kx/ky

(kPa) (kN/m3) (m/day)

40000.0 0.35 2.0 40.0 0.0 20.0 8.64*10−5
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4.4 Application to a benchmark problem

(a) Geometry and assumed soil profiles

(b) Mesh

Figure 4.21: The geometry and mesh of the benchmark embankment
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4.4 Application to a benchmark problem

Bothkennar clay material has been extensively studied and a consistent set

of laboratory data is available to derive material parameters for the SO inviscid

model (e.g., Géotechnique Symposium in Print (1992), McGinty (2006), McGinty

et al. (2008)) in a consistent manner. Based on the κ and λ values, and the initial

void ratio, κ∗ and λ∗ can be calculated for the SO models. The permeability k

is assumed to be the same in the vertical and horizontal direction for the sake of

simplicity.

The ratio of secondary compression Cα,e for SO viscid model, expressed in

terms of changes in vertical strain with log time and compression index Cc, is fairly

constant for Bothkennar clay at about 0.06− 0.11 (Nash et al., 1992b, Hight et al.,

1992). Similar values were found by Mesri & Godlewski (1977) for wide range of

clays. In this analysis, Cα,e/Cc value is assumed 0.05 (λ = 0.434Cc).

The physical meaning of initial volumetric strain rate v̇0 for SO viscid model is

obvious (Sekiguchi, 1984), but it is rather difficult to estimate from the laboratory

test data. However, Iizuka & Ohta (1987) proposed a procedure to estimate v̇0

using coefficient of consolidation Cv. This procedure is summarized in Appendix D.

The Cv value is not a unique and is reduced when the stresses exceeded the yield

stress (Nash et al., 1992a). The field test values of Cv are substantially greater than

those measured in the laboratory too (Nash et al., 1992a). In this analysis, the Cv

value 20 m2/year is assumed to be constant with depth from Nash et al. (1992a)

laboratory test data. Table 4.5 gives the material parameters for Bothkennar clay

used to simulate the SO inviscid&viscid models.

Table 4.5: Material parameters of soft clay for SO inviscid & viscid models

Soil constants

κ∗ ν ′ λ∗ M D
Knc

0 γ kx = ky

(kN/m3) (m/day)

0.00667 0.2 0.1 1.51 7.1 0.397 16.5 2.5*10−4

State variables

e0 OCR

2.0 1.50

Creep parameters

Cα v̇o

0.0115 3.5*10−6
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4.4 Application to a benchmark problem

The analysis was performed using a small deformation assumption to compare

the two models at boundary value level. The construction of the embankment was

simulated by two undrained phases of 5 days each. In all analyses, drained conditions

and zero initial pore pressures have been assumed above the clay layer. For the initial

condition, the in-situ K0 value was assumed to be 0.5 due to overconsolidation

of Bothkennar clay. The first construction phase, in which the first layer of the

embankment was built, was followed by a 30 day consolidation stage. After the

completion of the second layer of embankment, the final consolidation was simulated

until the maximum excess pore pressure had reduced to 1 kPa (i.e. practically full

dissipation of excess pore pressures).

The settlement predictions versus time at the ground surface under the cen-

treline of the embankment (point A in Fig. 4.21(b)) are shown in Fig. 4.22. The

SO viscid model predicted significantly higher vertical displacements and longer

time for full consolidation than the inviscid model. The creep behaviour of the SO

viscid model is delayed the consolidation, by developing additional excess pore wa-

ter pressure during consolidation and really effect the magnitude of settlement and

consolidation time. The predicted settlement troughs at the end of the analyses are

shown in Fig. 4.23 and the SO viscid model vertical deformation prediction of about

1.5 m is unrealistic.

Horizontal displacement predictions at the centreline line of the embankment

are shown in Fig. 4.24 at the end of analyses. Again, considerable differences are

observed between SO viscid and inviscid predictions. The SO viscid model predicts

noticeably larger horizontal deformation than the SO inviscid model.

Fig. 4.25 compares the excess pore water pressure with time underneath (at

2m depth) the centreline of the embankment (point B in Fig. 4.21(b)). The SO

viscid model predicts considerable excess pore water pressure in comparison to the

SO inviscid model. Effect of creep results in significant consolidation time and from

the stability point of view the embankment is modelled by the SO viscid model is

less safe than the SO inviscid model.
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4.4 Application to a benchmark problem

Figure 4.22: Time settlement curves at point A predicted by SO inviscid/viscid

models

Figure 4.23: Surface settlement at the end of analysis predicted by SO inviscid/viscid

models
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4.4 Application to a benchmark problem

Figure 4.24: Final horizontal displacement at the embankment toe predicted by SO

inviscid/viscid models

Figure 4.25: Excess PWP with time at point B predicted by SO inviscid/viscid

models
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4.5 Summary

4.5 Summary

The Sekiguchi-Ohta (SO) inviscid/viscid models were presented in general stress

space. A new hybrid implicit algorithm to integrate the SO constitutive models was

proposed. The hybrid algorithm that consists of modified Newton-Raphson (MNR)

and Stolle’s algorithm is described in this chapter. The hybrid algorithm described

here has computational advantage to overcome the vertex singularity of the SO

models. A series of strain controlled triaxial simulations were performed to verify

the accuracy and stability of the hybrid algorithm. Furthermore, the models were

implemented into the FE code PLAXIS and a benchmark test was done to verify

the robustness of the numerical algorithm.
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Chapter 5

B-SCLAY1S model formulation

and its implementation

In this chapter, the formulation of the B-SCLAY1S model developed in this thesis

is explained in detail. The mathematical formulation of the model in triaxial stress

space and general stress space is presented. Parameter determination for the B-

SCLAY1S model is discussed. A number of strategies are explored in order to

reduce the numerical instability which occurs when implementing the model into

PLAXIS.

5.1 Introduction

The original bubble model first proposed by Al-Tabbaa (1987) is based on the mod-

ified Cam-clay (MCC) (Roscoe & Burland, 1968) model, named as B-MCC by the

author. The B-MCC model was formulated in triaxial stress space and validated

against the slow cyclic response of speswhite kaolin. The model was shown to sim-

ulate many of the important aspects of observed response for speswhite kaolin, like

hysteresis, accumulation of permanent strains and loading-unloading cycles. The

model is capable of predicting both non-linearity and plasticity from the early stages

of loading. Grammatikopoulou (2004) states “from the kinematic hardening model

review, the simplest and most theoretically attractive is the two surface model de-

veloped by Al-Tabbaa (1987).” The review of the original bubble constitutive model

(B-MCC) is given in Chapter 2. The B-MCC model mathematical formulations

in general stress space and numerical implementation into a finite element program

(ICFEP) were given by Grammatikopoulou (2004).
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5.2 Triaxial stress space

The proposed B-SCLAY1S model is a hierarchical extension of the S-CLAY1S

model (Koskinen et al., 2002a,b; Karstunen et al., 2005; Karstunen & Koskinen,

2008) using the principles of the original bubble model to capture non-linearity and

plasticity from the early stages of loading. The B-SCLAY1S model is developed

within the framework of critical state theory and bounding surface plasticity. In B-

SCLAY1S model, S-CLAY1S kinematic yield surface is treated as bounding surface

and a kinematic bubble surface introduced within the bounding surface. The kine-

matic bubble surface, which is the same shape as the bounding surface but smaller

in size and encloses truly elastic region. An intrinsic yield surface is introduced into

B-SCLAY1S to simulate the destructuration of soil. The intrinsic surface is same as

in S-CLAY1S model and formulated as it is in S-CLAY1S.

In the following sections, the B-SCLAY1S model is discussed in triaxial stress

space and general stress space followed by determination of parameters and numer-

ical implementation into PLAXIS.

5.2 Triaxial stress space

In triaxial stress space, the B-SCLAY1S model mathematical formulation is pre-

sented. The development of B-SCLAY1S model was based on axial symmetry in

triaxial stress space. Stress quantities p′ = (σa+2σr)/3 and q = (σa−σr) and strain

quantities εv = εa + 2εr and εq = 2(εa − εr)/3 are used where subscripts a and r

denote the axial and the radial directions, respectively, of a triaxial stress space.

5.2.1 Elastic part of the model

When the stresses lie within the bubble surface, the predicted behaviour is elastic.

The elastic bulk modulus, K ′ is the same as in the case of the S-CLAY1 model:

K ′ =
(1 + e)p′

κ
(5.1)

For the calculation of elastic shear strains, a constant Poisson’s ratio, ν ′, was

assumed. The elastic shear modulus, G is defined as:

G =
3(1 + e)p′

2κ

1− 2ν ′

1 + ν ′
(5.2)
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5.2 Triaxial stress space

Therefore the elastic strain increments are given as:


dεev

dεes

 =


1

K ′
0

0
1

3G




dp′

dq

 (5.3)

where the elastic bulk and shear moduli, K ′ and G, are given by Eq.5.1 and

5.2 respectively.

5.2.2 Equation of surfaces

The bounding surface of the model in triaxial stress space is the same as the S-

CLAY1S model yield surface, given as follows:

fy =
(q − αp′)2

M2 − α2
+
(
p′ − p′m

2

)2

−
(p′m

2

)2

= 0 (5.4)

where M is the slope of the critical state line, p′m defines the size of the yield curve

and α defines the orientation of the yield curve, see Fig. 5.1. The scalar parameter

α is a measure of the degree of plastic anisotropy of the soil.

The intrinsic yield surface is linked to the size of the bounding surface as follows:

p′m = (1 + χ)p′mi (5.5)

where p′mi defines the size of the intrinsic yield surface and χ defines the amount of

bonding.

The kinematic bubble surface, enclosing the truly elastic region, has a similar

shape to the bounding surface, but is smaller in size. In triaxial stress space it is

formulated as follows:

fb =
[(q − p′α)− (qb − p′bα)]2

M2 − α2
+ (p′ − p′b)2 −R2

(p′m
2

)2

= 0 (5.6)

where p′b and qb are centre of bubble surface and R is the ratio of the size of the

kinematic bubble surface to that of the bounding surface, see Fig. 5.1.

114



5.2 Triaxial stress space

Figure 5.1: The B-SCLAY1S model yield surface in triaxial stress space

5.2.3 Flow rule

Experimental evidence suggests that the assumption of an associated flow is a

good approximation of natural clays when combined with an inclined yield sur-

face (Wheeler et al., 2003). Therefore, plastic strains increment is assumed to be

normal to the kinematic bubble surface at the current stress state. Hence, the flow

rule of the model is the associated flow rule and the plastic potential is given by Eq.

5.2.

5.2.4 Hardening rules

The evolution of the bounding surface incorporates three hardening rules. The first

of the hardening laws relates to the change in size of the intrinsic yield surface; the

second hardening law called the ’rotational hardening law’ (Wheeler et al., 2003)

describes the change of orientation of the inclined yield surface with plastic straining;

the third hardening law (Karstunen et al., 2005) relates the degradation of bonding

with plastic straining, see Chapter 3 for details. The evolution of the bubble surface

is described by a combination of the above mentioned three laws, and in addition

the surface translates in the stress space following the current stress point. The

combination of hardening rules forms the translation rule of the bubble surface.
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5.2 Triaxial stress space

Isotropic hardening rule

The model adopts the volumetric hardening rule, which is the same formulation of

the S-CLAY1S model as given below.

dp′mi =
(1 + e)

λi − κ
p′midε

p
v (5.7)

In the equation above the change in size of the bounding surface is controlled by

the plastic volumetric strain increment. λ and κ are slopes of the normal compression

line and swelling line in the e− lnp′ space, where e is void ratio.

Rotational hardening rule

The model incorporates rotational hardening to control the rotation of the bubble

surface due to the anisotropy, in the same way as S-CLAY1S. The rotation of the

bubble surface is defined as follows:

dα = µ
[(3

4

q

p′
− α

)
〈dεpv〉+ β

(1

3

q

p′
− α

)
dεpd

]
(5.8)

where dεpv is the plastic volumetric strain increment and dεpd is plastic deviatoric

strain increment. Parameter β controls the relative influence of the dεpd and µ the

absolute rate of the plastic strain increments on the rotation of the bubble surface.

Destructuration rule

The effect of the bonding is introduced by using the concept of an intrinsic yield

surface is given by Eq. 5.5. The destructuration law describes the degradation

of bonding with plastic straining where the plastic volumetric strains and plastic

deviatoric strains tend to reduce the bonding parameter χ towards a target value of

zero as follows:

dχ = −aχ (|dεpv|+ b |dεpd|) (5.9)

where a and b are two additional soil constants; parameter a controls the absolute

rate of destructuration and parameter b controls the relative effectiveness of plastic

deviatoric strains and plastic volumetric strains in destroying the bonding.
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5.2 Triaxial stress space

Translation rule

The translation rules of the bubble surface in B-SCLAY1S are formulated based on

Al-Tabbaa (1987) translation rules. Two different translation rules are adopted, one

for when bubble surface moves inside the bounding surface and one for when two

surfaces are in contact.

Figure 5.2: Relative translation of the bubble surface along the vector f

The first translation rule describes the bubble surface movement within the

bounding surface in such a way the bubble surface and bounding surface can come

in contact at common normal but never intersect. Fig. 5.2 shows that the center of

bubble surface moves along a vector, f, which joins the current stress state to its

conjugate stress point on the bounding surface. The vector f is defined as follows:

f =


p′ − p′b
R
− (p′ − p′m)

(q − p′α)− (qb − p′bα)

R
− (q − p′α)

 (5.10)

The translation rule contains two components, one is associated with the change

of the bubble surface due to expansion or contraction of the bounding surface, the

other one is associated with the movement of bubble surface along the vector f.
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5.2 Triaxial stress space

The translation of the bubble is defined when the bubble moves within the bounding

surface as follows:

{
dp′b
dqb

}
=
dp′m
p′m

{
p′b
qb

}
+ S


p′ − p′b
R
− (p′ − p′m)

(q − p′α)− (qb − p′bα)

R
− (q − p′α)

 (5.11)

The S scalar quantity can be derived from the consistency condition of the

bubble surface as follows (details given in Appendix):

S =

∂fb

∂p′
(dp′ −

dp′m
p′m

p′b) +
∂fb

∂q
(dq − dp′m

p′m
qb) +

∂fb

∂p′m
dp′m

∂fb

∂p′

(p′ − p′b
R
− (p′ − p′m)

)
+
∂fb

∂q

((q − p′α)− (qb − p′bα)

R
− (q − p′α)

) (5.12)

where partial derivatives are defined as follows:

∂fb
∂p′

= 2(p′ − p′b)− 2
((q − p′α)− (qb − p′bα)

M2 − α2

)
(α) (5.13)

∂fb
∂q

= 2
((q − p′α)− (qb − p′bα)

M2 − α2

)
(5.14)

The second translation rule describes the movement of bubble when two sur-

faces are in contact at the current stress state, the vector f becomes zero and the

translation rule is reduced to:


dp′b

dqb

 =
dp′m
p′m


p′b

qb

 (5.15)

5.2.5 Hardening modulus

The hardening modulus is defined in such a way that, when the two surfaces touch

and experience continuous yielding, the model predicts the same behaviour as the

S-CLAY1S model. It is initially formulated for the special case when two surfaces

are in contact and then modified for other case when two surfaces are not in contact

and the stress state is within the bounding surface.
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5.2 Triaxial stress space

The consistency condition is applied to the bounding surface to derive the

plastic multiplier ∆Λ. The consistency condition is a mathematical expression of the

requirement that the stress state to stay on the bounding surface as long as loading

continues, even though the bounding surface itself will be moving and changing

shape due to hardening. Thus, the consistency condition is written as follows:

ḟy =
∂fy
∂p′

dp′ +
∂fy
∂q

dq +
∂fy
∂p′mi

dp′mi +
∂fy
∂α

dα +
∂fy
∂χ

dχ = 0 (5.16)

By using above consistency condition,the plastic multiplier ∆Λ is derived and

written in simplified form as follows:

∆Λ =

∂fb

∂p′e
dp′e +

∂fb

∂q
dqe

A+ H0 + Hα + Hχ

(5.17)

where H0 relates to isotropic hardening similar to modified Cam-clay (MCC) hard-

ening modulus, Hα relates to the rotation of inclined yield surface and Hχ, relates

to the degradation of bonding are defined as follows:

A =
∂fb
∂p′

K ′
∂fb

∂p′
+
∂fb
∂q

G
∂fb

∂q
(5.18)

H0 = −p′(1 + χ)p′mi
1 + e

λi − κ
∂fb
∂p′

(5.19)

Hα =

{
∂fb
∂α

}[{
∂α

∂εpv

}〈
∂fb
∂p′

〉
+

{
∂α

∂εpd

}
∂fb
∂q

]
(5.20)

Hχ =
∂fb
∂χ

[
∂χ

∂εpv

∣∣∣∣∂fb∂p′

∣∣∣∣+
∂χ

∂εpd

∂fy
∂q

]
(5.21)

Kinematic hardening function H0 from Eq. 5.19 can be further derived using

Eq. 5.5 and Eq. 5.13 as follows:

H0 =
4(1 + e)

λi − κ

[
(p′ − p′m

2
)− (q − αp′)

M2 − α2
(α)
][
p′
p′m
2

]
(5.22)
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5.2 Triaxial stress space

The above hardening function is further extended using the yield function of

S-CLAY1S model as follows:

H0 =
4(1 + e)

λi − κ

[
(p′ − p′m

2
)− (q − αp′)

M2 − α2
(α)
][(q − αp′)2

M2 − α2
+ (p′ − p′m

2
)p′
]

(5.23)

When the bubble lies inside the bounding surface, hardening modulus is defined

based on Al-Tabbaa (1987) description, and H0 is replaced with a more general

expression as follows:

H0 = H0b + Hb (5.24)

H0b is defined similarly the formulation for S-CLAY1S given in Eq. 5.23 as

follows:

H0b =
4(1 + e)

λi − κ

[
(p′ − p′b)−

(q − αp′)− (qb − αp′b)
M2 − α2

(α)
][
p′(p′ − p′b)+

(q − αp′)((q − αp′)− (qb − αp′b))
M2 − α2

] (5.25)

where Hb is a scalar quantity which is a function of the stress state. The hard-

ening function Hb was assumed to be of the form by Al-Tabbaa (1987) description

is defined as follows:

Hb =
4(1 + e)

λi − κ

( `

`max

)ψ(p′m
2

)3

(5.26)

`max is shown in Fig. 5.3 defined as follows:

`max = p′m
√

1 + α2(1−R) (5.27)

` is the proximity of bubble surface to the bounding surface defined as follows:

` =
1

R
√

1 + α2 p
′
m

2

[(
p′ − p′b − α

(q − p′α)− (qb − p′bα)

M2 − α2

)(p′ − p′b
R

−
[
p′ − p′m

2

])
+
((q − p′α)− (qb − p′bα)

M2 − α2

)((q − p′α)− (qb − p′bα)

R
− (q − p′α)

)]
(5.28)
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5.3 General stress space

The resulting hardening H0 is given as follows:

H0 =
4(1 + e)

λi − κ

[[
(p′ − p′b)−

(q − αp′)− (qb − αp′b)
M2 − α2

(α)
][
p′(p′ − p′b)+

(q − αp′)((q − αp′)− (qb − αp′b))
M2 − α2

]
+
( `

`max

)ψ(p′m
2

)3
] (5.29)

Figure 5.3: Diagram showing the position of maximum value of `, `max

5.3 General stress space

This section describes the extension of the B-SCLAY1S model from triaxial stress

space to general stress space, which is important in order to implement the model

into the PLAXIS finite element program. Before the formulation of the model in

general stress space two issues will be discussed; the generalization of stress, strain

and fabric tensor in general 3D stress space and the shape of the yield and plastic

potential surfaces assumed in the deviatoric plane.
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5.3 General stress space

5.3.1 Preliminaries

The generalization of the bubble surface can be performed in 3D stress space by

using the following definitions:

The centre of bubble surface σ′bij is defined as:

σ′b =



σ′bxx
σ′byy
σ′bzz
σ′bxy
σ′byz
σ′bzx


(5.30)

Mean effective stress of bubble centre, p′b, is defined as:

p′b =
1

3

(
σ′bxx + σ′byy + σ′bzz

)
(5.31)

Deviator stress vector of bubble center σ′bd defined as:

σ′bd =



σ′bxx − p′b
σ′byy − p′b
σ′bzz − p′b√

2σ′bxy√
2σ′byz√
2σ′bzx


(5.32)

5.3.2 Elastic part of the model

If the stress path remains within the bubble surface, the predicted behaviour is

isotropic elastic. The elastic bulk modulus, K ′ and elastic shear modulus G, is the

same as in the case of the S-CLAY1S model:

K ′ =
(1 + e)p′

κ
(5.33)

E ′ = 3(1− 2ν ′)K ′ (5.34)

G =
1

2

E ′

1 + ν ′
(5.35)
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5.3 General stress space

5.3.3 Yield and plastic potential surface

The extension of the model in general stress space requires some assumption of

the shape of the yield and plastic potential surfaces in the deviatoric plane. The

modified Cam-clay and the S-CLAY1S models assumed a circular shape of the yield

and plastic potential surfaces in deviatoric plane. A circular shape in deviatoric

plane implies that the model is independent of the Lode angle. B-SCLAY1S also

assumes a circular shape because of the simplicity of the model. However, bubble

models proposed by Muir Wood (1995); Muir Wood & Rouainia (2000) and Gram-

matikopoulou (2004) assume Lode angle dependent failure criterion, i.e., the critical

state constant M is a function of Lode angle.

5.3.4 Equation of surface

The equation of bounding surface and intrinsic surface in general stress space are

formulated as follows:

fy =
3

2

{s}T {s}
M2 − α2

+
(
p′ − p′m

2

)2

−
(p′m

2

)2

= 0 (5.36)

p′m = (1 + χ)p′mi (5.37)

where s̄ is defined as follows:

s = σ′d − αdp′ (5.38)

The equation of the bubble surface in general stress space is given as follows:

fb =
3

2

{s− sb}
T {s− sb}

M2 − α2
+ (p′ − p′b)2 −R2

(p′m
2

)2

= 0 (5.39)

where sb is defined as follows:

sb = σ′bd − αdp′b (5.40)
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5.3 General stress space

5.3.5 Flow rule

The model assumes associated flow rule. The bounding plastic potential surface, py,

and the bubble plastic potential surface,pb, are same as the bounding surface and

the bubble surface respectively. So the flow rule is defined as follows:

∆εpij = ∆Φ
∂pb
∂σij

= ∆Φ
∂fb
∂σij

(5.41)

5.3.6 Hardening rules

The formulation of the hardening rules in general stress space is a combination of

following rules:

Isotropic hardening rule

The first of the hardening laws relates to the change in size of the intrinsic yield

surface, which is assumed to be related solely to plastic volumetric strain (dεpv)

(Karstunen et al., 2005) as follows:

∆p′mi =
(1 + e)p′mi
λi − κ

∆εpv (5.42)

where λi is the slope of the intrinsic normal compression line for a reconstituted

soil and κ is the slope of the elastic (pre-yield) swelling line in the v : lnp′ plane

(specific volume : v = 1 + e). It is worth to note that when the B-SCLAY1S model

becomes the B-SCLAY1 model (without destructuration), the first of the hardening

laws relates to the yield surface as in the modified Cam-clay model follows:

∆p′m =
(1 + e)p′m
λ− κ

∆εpv (5.43)

Rotational hardening rule

The second hardening law called the ’rotational hardening law’ (Wheeler et al.,

2003) describes the change of orientation of the inclined bubble surface with plastic

straining. The rotational hardening law in general space is given as follows:

∆αd = µ

([
3σ′d
4p′
− αd

]
〈∆εpv〉+ β

[
σ′d
3p′
− αd

]
∆εpd

)
(5.44)
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5.3 General stress space

where µ and β are two soil parameters, where µ governs the absolute rate at which α

changes with plastic straining and β governs the relative effectiveness of volumetric

and deviatoric strains in the rotation of yield surface. 〈〉 are Macaulay brackets and

〈∆εpv〉 = ∆εpv for ∆εpv > 0 and 〈∆εpv〉 = 0 for ∆εpv < 0.

Destructuration rule

The third hardening law (Karstunen et al., 2005) called destructuration rule relates

the degradation of bonding with plastic straining is given as follows:

∆χ = −aχ
[
|∆εpv|+ b |∆εpd|

]
(5.45)

where a and b being soil constants controlling the rate of degradation.

Translation rule

Two different translation rules adopted, one for the special case when bubble surface

and bounding surface are in contact and one for the case when bubble surface moves

within the bounding surface. Following sections explain in details.

Translation rule for two surfaces are in contact

With the bounding surface and the bubble surface are in contact, Gram-

matikopoulou (2004) used a translation rule in accordance with Stallebrass (1990)

formulation to implement the MCC model based bubble surface model into ICFEP.

The same concept, which ensures that the two surfaces remain tangential to each

other for further loading, is applied. Changes of center of the bubble is given as

follows:

∆σb = (1−R)∆σ′ +R
∆σ′m

2
(5.46)

In terms of the isotropic and deviatoric components of the stress tensor of above

equation can be rewritten as follows:

∆p′b = (1−R)∆p′ +R
∆p′m

2
(5.47)

∆sb = (1−R)∆s (5.48)
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5.3 General stress space

Translation rule for bubble surface moves within bounding surface

In this case, the translation rule formulated in generals stress space is based on

rule proposed by Al-Tabbaa (1987) as follows:

∆σb =
∆p′m
p′m

σ′b + S
[σ′ − σ′b

R
−
(
σ′ − σ′m

2

)]
(5.49)

The above Eq.5.49 can be written in terms of the isotropic and deviatoric

components of the stress tensor as follows:

∆p′b =
∆p′m
p′m

p′b + S
[p′ − p′b

R
−
(
p′ − p′m

2

)]
(5.50)

∆sb =
∆p′m
p′m

sb + S
[s− sb

R
− s
]

(5.51)

The scalar quantity S can be obtained as before by substituting Eq.5.50 and

Eq.5.51 into the consistency condition for the bubble yield surface (Eq.5.39). The

consistency condition the bubble surface can be written as:

ḟb =
∂fb
∂p′

∆p′+
∂fb
∂p′b

∆p′b+
∂fb
∂s

∆s+
∂fb
∂sb

∆sb+
∂fb
∂p′mi

∆p′mi+
∂fb
∂αd

∆αd+
∂fb
∂χ

∆χ = 0 (5.52)

The scalar quantity S can be derived by substituting Eq. 5.50 and Eq. 5.51

into Eq. 5.52 as follows:

S = −

∂fb

∂p′
(∆p′ −

∆p′m
p′m

p′b) +
∂fb

∂s
: (∆s−

∆p′m
p′m

sb) +
∂fb

∂p′mi
∆p′mi +

∂fb

∂αd
∆αd +

∂fb

∂χ
∆χ

∂fb

∂p′

(p′ − p′b
R
− (p′ −

p′m
2

)
)

+
∂fb

∂s
:
(s− sb

R
− s
)

(5.53)

The partial derivatives of bubble yield surface require in Eq.5.53 will be given

in following sections.

5.3.7 Hardening modulus

The hardening modulus is formulated for the two different cases; the first one when

the kinematic bubble surface moves within the bounding surface and the second one
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5.3 General stress space

when two surfaces are in contact. In the first case the kinematic bubble surface is

active yield surface and formulation of hardening modulus follows the one proposed

by Al-Tabbaa (1987). In the second case the active yield surface is the bounding

surface and the hardening modulus reduces to the S-CLAYS hardening modulus.

The hardening modulus of S-CLAY1S is given in Chapter 3, see for details.

Bubble surface moves within bounding surface

The hardening modulus, H , formulated in general stress space comprises 4 different

moduli:

H = H0b + Hb + Hα + Hχ (5.54)

where H0b, Hα, Hχ and Hb are given as follows:

H0b =
4(1 + e)

λi − κ

[1

2

∂fb
∂p′

][1

2

∂fb
∂s

: sb + p′b(p
′ − p′b) +R2

(p′m
2

)2]
(5.55a)

Hb =
4(1 + e)

λi − κ

( `

`max

)ψ(p′m
2

)3

(5.55b)

Hα =

{
∂fb
∂αd

}T {∂αd
∂εpv

}〈
∂fb
∂p′

〉
+

{
∂αd
∂εpd

}√
3

2

{
∂fb
∂σ′d

}T {
∂fb
∂σ′d

} (5.55c)

Hχ =
∂fb
∂χ

∂X
∂εpv

∣∣∣∣∂fb∂p′

∣∣∣∣+
∂χ

∂εpd

√
3

2

{
∂fb
∂σ′d

}T {
∂fb
∂σ′d

} (5.55d)

where ` is defined from Al-Tabbaa (1987) as follows:

` =
1

R
√

1 + α2 p
′
m

2

[
1

2

∂Fb
∂p′

[p′ − p′b
R

−
(
p′− p′m

2

)]
+

1

2

∂Fb
∂s

:
{s− sb

R
− s
}]

(5.56)

where `max is defined from Al-Tabbaa (1987) as follows:

`max = p′m
√

1 + α2(1−R) for M ≤ 1 (5.57a)

`max = p′mM
√

1 + α2(1−R) for M > 1 (5.57b)
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5.3 General stress space

Two surfaces are in contact

When the two surfaces are in contact, the bounding surface is active yield surface

and the hardening modulus, H, reduces to the hardening modulus of S-CLAY1S

model:

H = H0 + Hα + HX (5.58)

H0 =
4(1 + e)

λi − κ

[1

2

∂fy
∂p′

]
[(q − αp′)2

M2 − α2
+ p′(p′ − p′m

2
)
]

(5.59)

Hα =

{
∂fy
∂αd

}T {∂αd
∂εpv

}〈
∂fy
∂p′

〉
+

{
∂αd
∂εpd

}√
3

2

{
∂fy
∂σ′d

}T {
∂fy
∂σ′d

} (5.60)

Hχ =
∂fy
∂χ

 ∂χ
∂εpv

∣∣∣∣∂fy∂p′

∣∣∣∣+
∂χ

∂εpd

√
3

2

{
∂fy
∂σ′d

}T {
∂fy
∂σ′d

} (5.61)

5.3.8 Centre of Bubble

The initial centre of bubble is assumed to coincide with the initial stress state and

given as follows:

σ′b,0 = σ′0 (5.62)

If the initial bubble centre σ′b,0 lies in between dotted surface and the bounding

surface as shown in Fig. 5.4, the initial bubble centre must be corrected back to the

dotted surface along the radial direction to satisfy the non-intersection translation

rule. The dotted surface is defined in p′ − q space as follows:

fL =
(q − p′α)2

M2 − α2
+ (p′ − p′m

2
)2 − (1−R)2

(p′m
2

)2

= 0 (5.63)

The corrected bubble centre can be found using fL. When stress state lies on
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5.3 General stress space

Figure 5.4: Schematic illustration of drift correction of bubble surface

the dotted surface (e.g. point B), the p′ at point B can be derived as follows:

p′B =
p′m
2

+

√√√√√√√
(1−R)2

(
p′m
2

)2

1

M2 − α2

( qB − p′Bα
p′B − p′m/2

)2

+ 1

(5.64)

The slope of stress states at point A and B are the same about the centre of

bounding surface. Hence

qB − p′Bα
p′B − p′m/2

=
qA − p′Aα
p′A − p′m/2

(5.65)

By using Eq. 5.64 and Eq. 5.65, the corrected bubble centre (p′B, qB) is derived

as follows:

p′B =
p′m
2

+

√√√√√√√
(1−R)2

(
p′m
2

)2

1

M2 − α2

( qA − p′Aα
p′A − p′m/2

)2

+ 1

(5.66)
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5.4 Determination of model parameters

qB = p′Bα +
qA − p′Aα
p′A − p′m/2

(p′B − p′m/2) (5.67)

The translation of the bubble surface is defined when bubble surface lies within

the bounding surface as follows:

∆σ′b =
∆p′m
p′m

[
sb + p′b

]
+ S

[s− sb
R
− s+

p′ − p′b
R

−
(
p′ − p′m

2

)]
(5.68)

The translation of the bubble surface is defined when the bubble surface and

bounding surface are in contact at the current stress state, the above translation

equation is reduced to:

∆σ′b =
∆p′m
p′m

[
sb + p′b

]
(5.69)

5.3.9 Pore water pressure

An assumption is made that water and soil particles are incompressible under

undrained condition for fully saturated soils. Therefore, the following equation is

applicable:

∆εpv + ∆εev = 0 (5.70)

where εpv and εev are plastic and elastic volumetric strain change, respectively.

The pore water pressure is calculated when plastic deformation take place as

follows:

u = −K ′w∆εpv = K ′w∆εev (5.71)

where K ′w is the bulk modulus of water.

5.4 Determination of model parameters

The proposed B-SCLAY1S model has a feature that it is a hierarchical extension of

S-CLAY1S. By giving a value 1 for R, the model converges to the S-CLAY1S model.

Similarly by setting the initial value of χ0 to zero, and using apparent value of λ

130



5.4 Determination of model parameters

instead of intrinsic value λi, the proposed model accounts for small strain behaviour

and anisotropy only, denoted as B-SCLAY1. Likewise model can be reduced to the

elasto-plastic modified Cam-clay model (Roscoe & Burland, 1968) by setting R =

1 and destructuration and anisotropy parameters to zero. Table 5.1 summarizes all

possible hierarchical models in B-SCLAY1S.

Table 5.1: Hierarchical of the B-SCLAY1S model

Model Parameters

B-SCLAY1S : All 13 model parameters required

B-SCLAY1 : χ0 → 0 and λi → λ

B-MCC : χ0 → 0 , λi → λ and α0 & µ→ 0

S-CLAY1S : R→ 1

S-CLAY1 : R→ 1, χ0 → 0 and λi → λ

MCC : R→ 1, χ0 → 0 , λi → λ and α0 & µ→ 0

Thirteen model parameters are required to define the B-SCLAY1S model (see

Appendix F). In this section, most relevant parameters to the bubble surface (κ, R

and ψ) are discussed. The determination of other parameters is detailed in Appendix

F.

Swelling index κ

The initial part of the swelling curve can be used to derive value of κ as shown in

Fig. 5.5 (Al-Tabbaa, 1987).

Ratio of the size of the bubble surface R

Al-Tabbaa (1987) noted that model parameters accounting for isotropic modelling

can be obtained from a multi-stage triaxial test. Fig. 5.5 shows an example of such

a test. The test starts with an isotropic compression and isotropic swelling follows.

The initial part of the swelling can be used to derive the value of R as shown in Fig.

5.5.

Exponent in the hardening function ψ

The parameter ψ cannot be measured directly from a test data and has to be de-

termined by varying a value in a series of simulations (Al-Tabbaa, 1987).
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5.5 Numerical implementation into PLAXIS

Figure 5.5: A multi-stage triaxial test (after Al-Tabbaa (1987))

5.5 Numerical implementation into PLAXIS

The proposed B-SCLAY1S constitutive model can be implemented into PLAXIS

using so called user defined soil model (UDSM) option. Basically a developer has

to write subroutines in FORTRAN (or any other) programming language for a

constitutive model which will be linked to the main program using Dynamic Link

Library (DLL) to the PLAXIS finite element program. Details of how to write a

program for a user defined soil model are given in Brinkgreve et al. (2008). The B-

SCLAY1S model is implemented into PLAXIS using a sub-stepping explicit scheme.

Details of the implementation into PLAXIS is given in this section for only the

‘bubble’ (two surfaces are not in contact) and not for when two surfaces are in

contact i.e., the model becomes S-CLAY1S (see for details Chapter 3).

In the explicit schemes, the stresses are computed directly from the consistency

condition, the plastic potential and the hardening rule at previously known point.

Accuracy and efficiency of the explicit algorithm is improved by combining with

a sub-stepping algorithm, bubble surface intersection algorithm and surface drift

algorithm.

The application of the explicit integration schemes for conventional plasticity
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5.5 Numerical implementation into PLAXIS

model has been demonstrated by Sloan (1987); Sloan et al. (2001). An explicit inte-

gration scheme with automatic sub-stepping and error control to integrate multiple

yield surfaces and kinematic hardening rules were presented by Zhao et al. (2005).

According to Zhao et al. (2005) and Luccioni et al. (2001), explicit stress integration

schemes are preferable to implicit schemes when the constitutive equations become

more complex and non-linear. Moreover, an implicit algorithm may not converge to

the non-linear system of equations, and it is very difficult to derive the second-order

derivative of the plastic potential for complex constitutive equations.

Explicit rather than implicit integration algorithms are preferred to implement

the B-SCLAY1S model into PLAXIS as they are advantageous in regards to effi-

ciency, robustness and accuracy for complex constitutive equations. Accuracy and

efficiency of the implementation is enhanced further using an automatic sub-stepping

and error control algorithms (Sloan, 1987; Sloan et al., 2001). This integration

scheme is adopted in this implementation by modifying it to suit the formulation of

the B-SCLAY1S model for natural soils.

Recalling the incremental general stress- strain relationship to perform the non-

linear finite element analysis as follows:

{∆σ′} = [Dep] {∆ε} (5.72)

where {∆ε} is the imposed incremental strain. There is a standard method to obtain

the expression for the elasto-plastic matrix, [Dep], which can be derived from the

following standard formula:

[Dep] = [De]−
[De]

{
∂pb

∂σ′

}{
∂fb

∂σ′

}T

[De]{
∂fb

∂σ′

}T

[De]

{
∂pb

∂σ′

}
+ H

(5.73)

[De] is the elastic matrix and H is the hardening modulus. Since the B-SCLAY1S

model assumes the associated flow rule, the yield surface and plastic potential are

same pb = fb. The hardening modulus for the B-SCLAY1S model is given as follows:

H = H0b + Hb + Hα + Hχ (5.74)
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The details of the hardening moduli are given in Section 1.3. The rest of

this section presents explicit integration scheme for computing stresses from the

incremental stress-strain relationship derived in Eq. 5.73

In explicit (Euler’s forward) algorithm, the constitutive equations are integrated

directly using the elasto-plastic matrix computed at the previously known stress

point. It is also known as the tangential stiffness method. The stress at the next

increment,
{
σ′n+1

}
is calculated as follows:

{
σ′n+1

}
= {σ′n}+ {∆σ′} (5.75)

where {σ′n} is the current stress and {∆σ′} is computed using Eq. 5.72. The

corresponding plastic strains {∆ε}p is obtained using the following formula:

{∆ε}p = ∆Λ

{
∂pb

∂σ′

}
(5.76)

with

∆Λ =

{
∂fb

∂σ′

}T

[De] {∆ε}{
∂fb

∂σ′

}T

[De]

{
∂pb

∂σ′

}
+ H

(5.77)

In order to achieve acceptable accuracy and guarantee the consistency condition

at the end of each increment, the explicit algorithm requires small increment size.
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The following state variables were used to program UDSM:

StV ar(1) : αx

StV ar(2) : αy

StV ar(3) : αz

StV ar(4) : αxy

StV ar(5) : αyz

StV ar(6) : αzx

StV ar(7) : α

StV ar(8) : p′mi
StV ar(9) : χ

StV ar(10) : p′m
StV ar(11) : e0

StV ar(12) : σ′bxx
StV ar(13) : σ′byy
StV ar(14) : σ′bzz
StV ar(15) : σ′bxy
StV ar(16) : σ′byz
StV ar(17) : σ′bzx
StV ar(18) : 123.

The procedures to program B-SCLAY1S model using the sub-stepping explicit

scheme is summarized in Algorithm 14, 15, 16, 17 and 18. Furthermore, the bubble

surface intersection algorithm and drift algorithm are discussed following the explicit

algorithms of B-SCLAY1S.
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Algorithm 14 : An automatic sub-stepping scheme for the explicit algorithm of

B-SCLAY1S

READ: material parameters

READ: state variables

GET: {σ′0}, H0, {∆ε} and FTOL

ASSUME: T0 = 0 and dT = 1

FIND: {∆ε}t = dT ∗ {∆ε}

99 Continue

NewStep = 1

CALL: B-SCLAY1S subroutine from Algorithm 15

if (NewStep < 0.9999) then

dT = NewStep ∗ dT
{∆ε}t = dT ∗ {∆ε}

if (dT > 0.0001) then

GO TO 99

else

CALL: B-SCLAY1S subroutine from Algorithm 15

Abort ” Too small step size”

end if

end if

T0 = T0 + dT

if (T0 < 0.9999) then

dT = 1− T0

{∆ε}t = dT ∗ {∆ε}
GO TO 99

end if

return
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Algorithm 15 : Subroutine to identify active yield surface

DECIDE: n sub (maximum allowable strain increment)

for ( Iteration = 1 to n sub ) do

Calculate: {∆σ′}e = [De] {∆ε} and {σ′}e = {σ′0}+ {∆σ′}e and {σ′}e = {σ′0}+

{∆σ′}e

Calculate: p′, p′b
Calculate f from Eq. 5.10

if
(
f ≤ 0

)
then

B-SCLAY1S becomes S-CLAY1S

CALL: S-CLAY1S subroutine (given in Chapter 3)

else

Calculate: f eb = fb
(
{σ′}e , {σ′b} , H0

)
and f 0

y = fb
(
{σ′0} , {σ′b} , H0

)
from

Eq. 5.39

! Check yield condition

if
(
f eb ≤ FTOL & f 0

b ≤ FTOL
)

then

return ! Purely elastic behaviour

else

if
(
f eb ≥ FTOL & f 0

b ≤ FTOL
)

then

CALL: intersection subroutine

{∆ε} ← (1− Ω) {∆ε}
end if

CALL: B-SCLAY1S subroutine from Algorithm 16

end if

end if

end for

Calculate: new global stress state

Calculate: ∆εev
UPDATE: e0 = ∆εv ∗ (1 + e0) + e0 ! current void ratio

if Undrained then

du = K ′wdε
e
v

u = u+ du ! update pore water pressure

else

u = u

end if

return
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Algorithm 16 : Explicit algorithm for B-SCLAY1S

Calculate: {σ′d} and {σ′bd}
Calculate: ∂fb

∂Q̄
, ∂fb

∂p′
, ∂Q̄

∂p′
,
{
∂Q̄
∂σ′

}
and

{
∂fb
∂σ′

}
from Appendix E

Assume:
{
∂pb
∂σ′

}
=
{
∂fb
∂σ′

}
from the associated flow rule

Calculate: dd =

{
∂fb

∂σ′

}T

[De]

{
∂pb

∂σ′

}
Calculate:

{
∂Q̄
∂αd

}
and

{
∂pb
∂αd

}
from Appendix E

Calculate: ∂fb
∂χ

from Appendix E

Calculate:
∂p′mi
∂εv

from Appendix E

Calculate:
{
∂αd
∂εpv

}
and

{
∂αd
∂εpd

}
from Appendix E

Calculate: ∂χ
∂εpv

and ∂χ
∂εpd

Calculate:
{
∂fy
∂σ′d

}
Calculate: b from Eq. 5.56

Calculate: bmax from Eq. 5.57

Calculate: H = H0b + Hb + Hα + HX from Eq. 5.55

Calculate: [Dep] from Eq. 5.73

Calculate: ∆Λ from Eq. 5.77

Calculate: {∆εp} = ∆Λ
{
∂py
∂σ′

}
Calculate: {∆εpd} using Eq. A.10

Calculate: {∆σ′} from Eq. 5.72

UPDATE: stresses {σ′} = {σ′0}+ {∆σ′}
UPDATE: state variables StV ar(1 : 10) CALL: subroutine Algorithm 17

Calculate: S from Eq. 5.53

UPDATE: bubble centre {σ′b} from Eq. 5.68

CALL: Algorithm 17 ! Bubble drift correction

UPDATE: bubble centre {σ′b}

return
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Algorithm 17 : Update state variables

Calculate:

∆p′mi =
(1+e)p′mi
λi−κ ∆εpv

∆αd = µ
([

3σ′d
4p′
− αd

]
〈dεpv〉+ β

[
σ′d
3p′
− αd

]
∆εpd

)
∆χ = −aχ

[
|∆εpv|+ b |∆εpd|

]
Update state variables:

{α}1,2,3 ⇐ α + ∆αd + 1

{α}4,5,6 ⇐ (α + ∆αd)/
√

2

α⇐
√

3
2
{α + ∆αd} {α + ∆αd}

T

p′mi ⇐ p′mi + ∆p′mi
χ⇐ χ+ ∆χ

p′m ⇐ (p′mi + ∆p′mi) ∗ (1 + (χ+ ∆χ))

return

Algorithm 18 : Drift correction and bubble centre update

Calculate: fb = fb
(
{σ′} , {σ′b} , H

)
if
(
Abs(fb) ≥ FTOL

)
then

for
(

Iteration = 1, MaxIt
)

do

! Correct centre of bubble

Calculate: Γ = fb/

{
∂fb

∂σ′

}T {
∂pb

∂σ′

}

Calculate: {σ′t} = Γ

{
∂fb

∂σ′

}
Update: {σ′} = {σ′} - {σ′t}
Calculate: fb = fb

(
{σ′} ,H

)
if
(
Abs(fb) ≤ FTOL

)
then

return

end if

end for

end if

return
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Correction of bubble surface drift

A correction of the bubble surface drift is required where the computed stresses fail

to satisfy the yield condition on the updated bubble surface. The predicted stress

state at the end of an increment may not lie on the current bubble surface due to the

assumption of constant elasto-plastic matrix over the imposed strain increment. To

avoid cumulative effect on subsequent computations, stresses are always corrected

back to the current yield surface at the end of each increment (Potts & Gens, 1985).

Fig. 5.6 shows the schematic illustration of the bubble drift correction.

Figure 5.6: Schematic illustration of drift correction of bubble surface

In conventional plasticity, various methods of drift correction were used to

restore the stress back to the yield surface. Potts & Gens (1985) proposed correction

schemes which involve correcting stresses along the direction of the plastic flow, the

total strain increment, the accumulated effective stress, normal to the yield surface

and the consistency condition. Typically a systematic method is necessary to find a

direction for correcting the stresses by projecting back to the yield surface. Based
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5.5 Numerical implementation into PLAXIS

on this considerations, a scheme is proposed to correct the stresses along the plastic

flow direction to preserve the consistency condition.

The corrected stresses can be written as follows:

σ′C = σ′B − δσ′ (5.78)

where δσ′b can be found as follows:

δσ′b = Γ

{
∂fb
∂σ′

}
(5.79)

The corrected centre of bubble must satisfy the condition on the bubble surface

as follows:

fy(σ
′
C , σ

′
b,C , H) = 0 (5.80)

The above equation can be re-written by substituting Eq. 5.78 and Eq. 5.79

as follows:

fy(σ
′
B − δσ′, σ′b,C , H) = 0 (5.81)

where Θ can be found using Taylor series expansion as follows:

Γ =
fy(σ

′
B, σ

′
b,C , H){

∂fb

∂σ′

}T {
∂fb

∂σ′

} (5.82)

In this procedure the stresses are updated to the bubble surface.

Bubble surface intersection

The bubble surface intersection algorithm is implemented to minimize the error in

explicit algorithm when an elastic trial stress goes from the purely elastic state,

fb(σ
′
n,H) < 0, to elastic-plastic state, fb(σ

′
n+1 + dσ′e,H) > 0, during the load

increment (see Fig. 5.7). The portion of the strain increment (scalar quantity Ω)
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5.6 Summary

that only causes elastic behaviour can be found by solving the following nonlinear

equation:

fb(σ
′
n + Ω∆σ′e,H) = fy(σ

′
int,H) = 0 (5.83)

The above equation can be solved by using the Pegasus intersection scheme

(Sloan et al., 2001). Once the scalar quantity Ω (0 ≤ Ω ≤ 1) is determined, the

portion of the strain increment which causes plastic deformation can be found. In

Chapter 3, a summary of algorithm used to implement the S-CLAY1S is given and

the same algorithm used to in the implementation of B-SCLAY1S.

Figure 5.7: Bubble surface intersection: elastic to plastic transition

5.6 Summary

The S-CLAY1S model was developed by Karstunen et al. (2005) for simple mono-

tonic loading conditions especially for normally consolidated or lightly over-consolidated
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5.6 Summary

natural clays. However, some very important aspects of soil behaviour mainly in

relation to the cyclic response cannot be adequately described by S-CLAY1S. The

principal reason is that the classical concept of a yield surface provides a purely

elastic stress range within the yield surface.

A new bubble B-SCLAY1S constitutive model, an extension of the S-CLAY1S

model (Karstunen et al., 2005) using the bubble surface concept (Al-Tabbaa, 1987)

was introduced in this chapter. Two new parameters, ratio of the size of the bub-

ble surface (R) and exponent in the hardening function (ψ) are introduced in the

new model compared with S-CLAY1S. The salient feature of the introduced bubble

surface is that plastic deformation may occur for stress state within the S-CLAY1S

yield surface. The B-SCLAY1S model should be more realistic than S-CLAY1S in

terms of predicting behaviour of over-consolidated clays and cyclic behaviour. The

new model has been detailed in triaxial stress space first then generalized into the

three-dimensional stress space and successfully implemented into PLAXIS.

A parametric study and application to some typical boundary value problems

in geotechnical engineering are presented in detail in Chapter 6 and 7, respectively.
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Chapter 6

Parametric study of B-SCLAY1S

This chapter presents a parametric study to examine the influences of the model

parameters on behaviour of the bubble B-SCLAY1S model. The parametric study

was carried out using B-SCLAY1S integration point program (IPP). The first part

of parametric study is carried out by utilizing a set of parameters and triaxial ex-

perimental data provided by McGinty (2006) for Bothkennar clay. Secondly, the

influence of bubble surface parameters on small-strain stiffness was investigated.

Finally, the performance of the B-SCLAY1S model was analysed using simple con-

stant q slow cyclic triaxial simulations. Results obtained from this chapter provide

general guidance in choosing parameters for application of the B-SCLAY1S model

in the following chapter.

6.1 Introduction

The B-SCLAY1S model explained in Chapter 5 was used to perform the parametric

study. The typical set of parameters were used from McGinty (2006) except the

intrinsic λi value and the additional parameters for the bubble. McGinty (2006)

suggested λi = 0.18 but λi = 0.21 was selected to well define the slope of the post

yield compression in the simulation. The additional parameters to represent the

bubble surface are assumed as R = 0.15 and ψ = 1.5. Typical values of parameters

are given in Table 6.1, which are utilized as reference parameters for the parametric

study.

The B-SCLAY1S model simulations of triaxial tests on vertical samples (McGinty,

2006) of Bothkennar clay were used in test Series B, named Test B2, B6 and B7. The
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6.2 Size of Bubble

Table 6.1: Material parameters of Bothkennar clay for B-SCLAY1S

Soil constants

κ ν ′ λ M
γ kx = ky

(kN/m3) (m/day)

0.02 0.2 0.48 1.40 16.5 2.5 E-4

State variables

e0 K0 α0 χ0 p′m0

2.0 0.5 0.31 10.0 84 kPa

Additional parameters for anisotropy

β µ

0.94 30

Additional parameters for destructuration

λi a b

0.21 9.0 0.4

Additional parameters for the bubble

R ψ

0.15 1.5

values of stress ratio η in the first and second loading stages were η1 = 0 & η2 = 0.70,

η1 = 0 & η2 = −0.70 and η1 = 0 & η2 = 0 for Test B2, Test B6 and Test B7, re-

spectively. Simulations of Test B7 are given in Appendix G.

The above mentioned tests were first loaded isotropically from mean effective

stress of p′ = 16 kPa to p′ = 210 kPa. The first load takes the sample to a stress

level approximately three times the initial yield stress. The Test B2 was isotropically

unloaded to mean effective stress of p′ = 9.9 kPa and again reloaded at stress ratio

η = 0.70 to effective stress of p′ = 550 kPa and q = 388 kPa. The Test B6 was

isotropically unloaded to mean effective stress of p′ = 10 kPa and again reloaded at

stress ratio η = −0.70 to effective stress of p′ = 326 kPa and q = -229 kPa.

6.2 Size of Bubble

The size of the bubble R controls the non-linear behaviour at small strain. The

simulations of the model are compared with experimental data for Series B, Test
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6.2 Size of Bubble

B2 and Test B6 in Figs. 6.1 and 6.2 respectively using varying R values of 0.1,

0.15, 0.20 and 0.25. In each figure the stress strain behaviour presented in terms of

volumetric strain εv versus logarithm of mean effective stress ln p′, deviator stress q

versus deviatoric strain εd, axial stress σa versus axial strain εa and deviatoric strain

εd versus volumetric strain εv.

The model predicts the experimental data very well for all the R values for

the 1st loading of isotropic compression and is generally a good match with the

experimental data (see Figs, 6.1 and 6.2). In particularly ln p′ vs εv plots in Figs.

6.1(a) and 6.2(a), the model predicts generally good match to the experimental data

before unloading starts for the all R values. The R value 0.10 predicts slightly lower

volumetric strain before the bubble reaching the bounding surface compared to the

experimental results. During unloading and reloading after each of the first loading

stages, the R value has a greater influence in the prediction.

In the axial stress-strain plots in Figs. 6.1(b) and 6.2(b), the model is in good

agreement with the experimental data. In terms of axial strain, higher value of R

predicts results which are closer to the experimental data than the lower value of R.

In plots of deviatoric stress-strain response in Figs. 6.1(c) and 6.2(c), a small

amount of negative shear strain is observed in the experimental data and this be-

haviour is well predicted by the model for all R values. The B-SCLAY1S model

simulation underestimates the deviatoric strain during the reloading stage. A higher

value of R predicts more closely to the experimental deviatoric strain than a lower

value of R.

Strain paths plots are shown in Figs. 6.1(d) and 6.2(d) for Test B2 and B6

respectively. Simulations show the influence of R in the behaviour of the devia-

toric and volumetric strain. The model prediction generally match well with the

experimental data. A higher value of R predicts more closely to the experimental

deviatoric strain than a lower value of R.

The test data is well modelled by the B-SCLAY1S model in general for the R

value of 0.15.
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6.2 Size of Bubble

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.1: Influence of bubble size R of Test B2 (McGinty, 2006) simulation, where

η1 = 0 and η2 = 0.70
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6.2 Size of Bubble

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.2: Influence of bubble size R of Test B6 (McGinty, 2006) simulation, where

η1 = 0 and η2 = −0.70
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6.3 Plastic modulus parameter

6.3 Plastic modulus parameter

Plastic modulus parameter ψ controls the degradation of stiffness when plastic de-

formation occurs. The simulations of the model are compared with experimental

data for tests in Series B (Test B2 and Test B6) in Figs. 6.3 and 6.4 respectively,

using varying ψ values of 2.5, 2.0, 1.5 and 1.0. In each figure the stress strain be-

haviour presented in terms of volumetric strain εv versus logarithm of mean effective

stress ln p′, deviator stress q versus deviatoric strain εd, axial stress σa versus axial

strain εa and deviatoric strain εd versus volumetric strain εv.

The model predicts almost similar behaviour for all the values of ψ for the 1st

loading of isotropic compression and is generally a good match with the experimental

data (see Figs. 6.1 and 6.2). In particularly lnp′ vs εv plots in Figs. 6.3(a) and 6.4(a),

the model predicts generally good match against experimental data before unloading

starts for the all ψ values. The ψ value 1.0 predicts slightly lower volumetric strain

before the bubble reaches the bounding surface compared to the experimental data.

During unloading and reloading after each of the first loading stages, the ψ has a

greater influence in the prediction.

In the axial stress-strain plots in Figs. 6.1(b) and 6.2(b), the model shows a

good agreement with the experimental data. In simulation of Test B6, the model

underestimates the axial strain. In terms of axial strain a higher value of ψ predicts

more closely to the experimental data than a lower value of ψ.

In plots of deviatoric stress-strain in Figs. 6.3(c) and 6.4(c), a small amount of

negative shear strain is observed in the experimental data and this behaviour is well

predicted by the model for all the ψ values used. The B-SCLAY1S model simulation

underestimates the deviatoric strain during the reloading stage. A higher value of

ψ predicts more closely to the experimental deviatoric strain than a lower value of

ψ.

Strain paths plots are shown in Figs. 6.3(d) and 6.4(d) for Test B2 and B6,

respectively. In Test B2 and B6 simulations show the influence of ψ in the behaviour

of the deviatoric and volumetric strain. A higher value of ψ predicts a better match

with the experimental deviatoric strain than a lower value of ψ.

The plastic modulus parameter ψ = 1.5 of B-SCLAY1S gives a good match to

the experimental data.
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6.3 Plastic modulus parameter

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.3: Influence of hardening parameter ψ of Test B2 (McGinty, 2006) simula-

tion, where η1 = 0 and η2 = 0.70
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6.3 Plastic modulus parameter

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.4: Influence of hardening parameter ψ of Test B6 (McGinty, 2006) simula-

tion, where η1 = 0 and η2 = −0.70
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6.4 Standard parameters

6.4 Standard parameters

The parametric study carried out with the standard parameters of intrinsic com-

pression index λi, swelling index κ and Poisson’s ratio ν ′. To investigate their

significance, following ranges of parameter values were assumed λi = 0.19, 0.20,

0.21 and 0.22, κ = 0.01, 0.02, 0.03 and 0.04 and ν ′ = 0.1, 0.2, 0.3 and 0.4. The

simulations of varying λi value are shown in Figs. 6.5 and 6.6 for Test B2 and Test

B6 respectively. Similarly, κ and ν ′ simulations are shown in Figs. 6.7, 6.8, Figs. 6.9

and 6.10, respectively. In each figure the stress strain behaviour presented in terms

of volumetric strain εv versus logarithm of mean effective stress ln p′, deviator stress

q versus deviatoric strain εd, axial stress σa versus axial strain εa and deviatoric

strain εd versus volumetric strain εv.

Figs. 6.5(a) to 6.10(a) show ln p′ vs εv plots for λi, κ and ν ′, respectively. Figs.

6.5(a) and 6.6(a) show that lower values of λi underestimate the volumetric strain

and λi = 0.21 shows the best agreement against the experimental data. Simulation

of varying κ value is shown in Figs. 6.7(a) and 6.8(a) for ln p′ vs εv where κ has

more influence during unloading-reloading. The κ value of 0.02 gives a good match

to the experimental data. The Poisson’s ratio has no influence in ln p′ vs εv plot,

see Figs. 6.9(a) and 6.10(a).

The axial stress-strain plots are shown in Figs. 6.5(b) to 6.10(b) for λi, κ and

ν ′ respectively. Figs. 6.5(b) and 6.5(b) show good agreement with the higher values

of λi (0.21 or 0.22) but in contrast the Test B6 shows lower value of λi predicts the

experimental data better (see Fig. 6.6(b)). The influence of the κ is visible again

during unloading stage (see Figs. 6.7(b) and 6.8(b)). Though Poisson’s ratio ν ′ has

no influence in isotropic loading and unloading-reloading, it has an influence in Test

B2 and Test B6 in other plots. Higher values of Poisson’s ratio ν ′ correspond more

closely to the experimental data than lower values (see Figs. 6.9(b) and 6.10(b)).

Figs. 6.5(b) to 6.10(b) show the plot of deviatoric stress-strain behaviour for

varying λi, κ and ν ′ values for Test B2 and Test B6 respectively. A small amount

of negative shear strain (around 1%) is observed in the experimental data of Test

B2 and this behaviour is well predicted by the model (see Figs. 6.5(c), 6.7(c) and

6.9(c)). Compared to the λi and κ values, the ν ′ values has more influence in the

deviatoric stress-strain behaviour (see Figs. 6.9(c) and 6.10(c)) and higher values of

ν ′ match best with the experimental data.
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6.4 Standard parameters

Strain paths plots are shown in Figs. 6.5(d) to 6.10(d) for λi, κ and ν ′ for Test

B2 and B6 respectively. The model simulation of Test B2 and B6 show an influence

of varying λi, κ and ν ′ in the behaviour of the deviatoric and volumetric strain,

see Figs. 6.5(d), 6.6(d), 6.7(d), 6.8(d), 6.9(d) and 6.10(d). The lower values of λi

underestimate the volumetric and deviatoric strains, see Figs. 6.5(d) and 6.6(d). In

contrast to the λi, the higher values of κ underestimate the volumetric and deviatoric

strains, see Figs. 6.7(d) and 6.8(d). A higher value of ν ′ predicts more closely to the

experimental deviatoric strain than a lower value of ν ′, see Figs. 6.9(d) and 6.10(d).

In general, parameter values of λ1 = 0.21, κ = 0.02 and ν ′ = 0.2 provide best

match to the experimental data.
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6.4 Standard parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.5: Influence of intrinsic compression index λi of Test B2 (McGinty, 2006)

simulation, where η1 = 0 and η2 = 0.70
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6.4 Standard parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.6: Influence of intrinsic compression index λi of Test B6 (McGinty, 2006)

simulation, where η1 = 0 and η2 = −0.70
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6.4 Standard parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.7: Influence of swelling index κ of Test B2 (McGinty, 2006) simulation,

where η1 = 0 and η2 = 0.70
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6.4 Standard parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.8: Influence of swelling index κ of Test B6 (McGinty, 2006) simulation,

where η1 = 0 and η2 = −0.70
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6.4 Standard parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.9: Influence of Poisson’s ratio ν ′ of Test B2 (McGinty, 2006) simulation,

where η1 = 0 and η2 = 0.70
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6.4 Standard parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.10: Influence of Poisson’s ratio ν ′ of Test B6 (McGinty, 2006) simulation,

where η1 = 0 and η2 = −0.70
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6.5 Anisotropy parameters

6.5 Anisotropy parameters

Absolute effectiveness of rotational hardening µ and relative effectiveness of rota-

tional hardening β were used for the parametric study of anisotropic parameters in

the range of µ = 20, 30, 40 and 50 and β = 0.90, 0.94, 0.98 and 1.02. The simula-

tions of varying µ and β values are shown in Figs. 6.11 and 6.12 and Figs. 6.13 and

6.14 respectively. In each figure the stress strain behaviour presented in terms of

volumetric strain εv versus logarithm of mean effective stress ln p′, deviator stress q

versus deviatoric strain εd, axial stress σa versus axial strain εa and deviatoric strain

εd versus volumetric strain εv.

Figs. 6.11(a) and 6.12(a) and Figs. 6.13(a) and 6.14(a) show lnp′ vs εv plots for

µ and β respectively. The µ has minimal influence in the generation volumetric strain

(Figs. 6.11(a) and 6.12(a)) however, β has no influence in the generation volumetric

strain (see Figs. 6.13(a) and 6.14(a)). Both µ and β show good agreement against

the experimental data.

The axial stress-strain plots are shown in Figs. 6.11(b) and 6.12(b) and Figs.

6.13(b) and 6.14(b) for µ and β respectively. Though the influence of µ is minimal

in Test B2 (η1 = 0 and η2 = 0.70), it shows a significant influence in Test B6 (η1 =

0 and η2 = -0.70). The lower values of µ match more closely with the experimental

data than the higher values of µ (see Figs. 6.12(b)). The β value has again no

influence in this plot (see Figs. 6.13(b) and 6.14(b)).

Figs. 6.11(b) and 6.14(b) plot the deviatoric stress-strain behaviour for varying

µ and β values for Test B2 and Test B6, respectively. A small amount of negative

shear strain (around 1%) is observed in the experimental data of Test B2 and this

behaviour is predicted by the model (see Figs. 6.11(c) and 6.13(c)). Compared to

the Test B2, µ has more influence in the Test B6 and lower values of µ give a better

match with the experimental data (see Figs. 6.11(c) and 6.12(c)). Again β has no

influence in deviatoric stress-strain prediction.

Strain paths plots are shown in Figs. 6.11(d) and 6.12(d) and Figs. 6.13(d)

and 6.14(d) for µ and β values for Test B2 and Test B6, respectively. A lower value

of µ predicts gives a marginal better match with the experimental deviatoric strain

than a higher value of µ, see Fig. 6.11(d). Again β has no influence in deviatoric

and volumetric strain simulation.

Simulation of B-SCLAY1S shows µ = 30 and β = 0.94 give a good agreement

to the experimental data.
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6.5 Anisotropy parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.11: Influence of anisotropy parameter µ of Test B2 (McGinty, 2006) simu-

lation, where η1 = 0 and η2 = 0.70
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6.5 Anisotropy parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.12: Influence of anisotropy parameter µ of Test B6 (McGinty, 2006) simu-

lation, where η1 = 0 and η2 = −0.70
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6.5 Anisotropy parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.13: Influence of anisotropy parameter β of Test B2 (McGinty, 2006) simu-

lation, where η1 = 0 and η2 = 0.70
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6.5 Anisotropy parameters

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.14: Influence of anisotropy parameter β of Test B6 (McGinty, 2006) simu-

lation, where η1 = 0 and η2 = −0.70
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6.6 Destructuration parameter

6.6 Destructuration parameter

The initial bonding χ0 and absolute and relative rate of destructuration a and b

parameters were used in this parametric study in the range of χ0 = 6, 8, 10, 12 and

a = 9 & b =0.2, a = 9 & b =0.4, a = 10 & b =0.2 and a = 10 & b =0.4. The

simulations of varying χ0 and a & b values are shown in Figs. 6.15 and 6.16 and

Figs. 6.17 and 6.18, respectively.

Figs. 6.15(a) and 6.16(a) and Figs. 6.17(a) and 6.18(a) show ln p′ vs εv plots

for χ0 and a & b, respectively. Higher values of χ0 predicts a better match with

the experimental data, see Figs. 6.15(a) and 6.16(a). The absolute rate of destruc-

turation parameter a has significant influence of the model predictions whereas the

relative rate of destructuration parameter b has no significant influence in the model

predictions, see Figs. 6.17(a) and 6.18(a).

The axial stress-strain plots are shown in Figs. 6.15(b) and 6.16(b) and Figs.

6.17(b) and 6.18(b) for χ0 and a & b, respectively. The parameters χ0 and a have

more influence than parameter b in the prediction of the model. An influence of a

& b is marginal in Test B2 (η1 = 0 and η2 = 0.70) compared to the other tests, see

Fig. 6.17(b).

Figs. 6.15(b), 6.16(b) and Figs. 6.17(b), 6.18(b) show the plot of deviatoric

stress-strain behaviour for varying χ0 and a & b values for Test B2 and Test B6,

respectively. The highest value of χ0 predicts the best match with the experimental

results, see Figs. 6.15(b) and 6.16(b). In deviatoric stress-strain behaviour, the a &

b have a minor influence see Figs. 6.17(b) and 6.18(b). A small amount of negative

shear strain (around 1%) is observed in the experimental data of Test B2 and again

this behaviour is predicted by the model (see Figs. 6.15(c) and 6.17(c)).

Strain paths plots are shown in Figs. 6.15(d) and 6.16(d) and Figs. 6.17(d) and

6.18(d) for χ0 and a & b values for Test B2 and Test B6, respectively. The highest

value of χ0 gives the best match with the experimental volumetric strain than the

lowest value of χ0, see Figs. 6.15(d) and 6.16(d). However the model predictions

significantly underestimate the deviatoric strains. Compared to the influence of χ0,

the a & b has a marginal influence in the model predictions, see Figs. 6.17(d) and

6.18(d).

The test data is well modelled by B-SCLAY1S of the destructuration parame-

ters χ0 = 10 and a = 9 & b =0.4.
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6.6 Destructuration parameter

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.15: Influence of initial bonding χ0 of Test B2 (McGinty, 2006) simulation,

where η1 = 0 and η2 = 0.70
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6.6 Destructuration parameter

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.16: Influence of initial bonding χ0 of Test B6 (McGinty, 2006) simulation,

where η1 = 0 and η2 = −0.70
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6.6 Destructuration parameter

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.17: Influence of destructurational parameter a and b of Test B2 (McGinty,

2006) simulation, where η1 = 0 and η2 = 0.70
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6.6 Destructuration parameter

(a) compression behaviour (b) axial stress-strain behaviour

(c) deviatoric stress-strain behaviour (d) strain paths

Figure 6.18: Influence of destructurational parameter a and b of Test B6 (McGinty,

2006) simulation, where η1 = 0 and η2 = −0.70
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6.7 Small strain stiffness

6.7 Small strain stiffness

The proposed B-SCLAY1S model predicts small strain behaviour during loading

through an introduction of the bubble surface. The size of the bubble (i.e. elastic

range) determines the non-linear behaviour. If the size of the bubble is very small

(R ≤ 0.01), the model shows a non-linear behaviour from the beginning of loading.

Though a small value of R can produce a smooth transition in modulus, it may

increase computational time significantly and errors in calculation. To avoid these

problems, the R value should be larger (R ≥ 0.05).

The undrained shear modulus (Gu) against shear strain behaviour is considered

for this parametric study. Two parameters R and ψ are considered to be the most

influential model parameters on the small-strain behaviour. The initial preconsoli-

dation pressure of the bounding surface is assumed 400 kPa and accordingly, initial

bubble is sized for R = 0.05, 0.10, 0.15, 0.20 and 0.25 with the bubble centre being

at the isotropic line (p′ = 300 kPa) as shown in Fig. 6.19. The plastic modulus

parameter ψ is assumed to have varying values of 1.0, 1.5, 2.0 and 2.5. Rest of

the all parameters are the same as the reference data given in Section 6.1 for Both-

kennar clay. For a comparison, simulation is done using R = 1.0 i.e. S-CLAY1S.

Triaxial undrained simulation is done using 10 % of vertical strain and a small strain

increment of 0.001% per step is used.

The undrained shear modulus (Gu) normalized with respect to the mean stress

at the start of the shearing (p′0) is plotted against the shear strain (εs) in Figs. 6.20(a)

and 6.20(b) for varying R and ψ values respectively. In undrained triaxial condition,

shear strain (εs) is equal to axial strain (εa). The undrained shear modulus (Gu) is

given by:

Gu =
1

3

∆q

∆εs
(6.1)

Fig. 6.20(a) represents G− γ curves for R equal to 0.05, 0.10, 0.15, 0.20, 0.25

and 1.0 respectively with constant ψ = 1.5. It can be seen that shear modulus start

to degrades faster with shear strain if R is smaller. At the beginning of the curves,

there is a flat portion due to the presence of elastic region of the bubble. This flat

portion of the curves increases when the size of the bubble increases. There is a

sudden drop in stiffness when the stresses touch the bubble surface and a relatively

small drop of stiffness with strain for smaller values of R. Because of this, a new

hardening modulus is required in order to have smooth transition in stiffness.
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6.7 Small strain stiffness

Figure 6.19: Initial location and size of the bubbles and bounding surfaces

Fig. 6.20(b) shows the influence of the plastic modulus parameter ψ for constant

R = 0.15. The shear modulus start to degrade when stress passes the elastic region

defined by the bubble, this is faster the lower the values of ψ.

(a) R (b) ψ

Figure 6.20: G - γ curves
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6.8 Constant q slow cyclic triaxial simulations

6.8 Constant q slow cyclic triaxial simulations

To investigate the effect of the two parameters (R and ψ) related to the bubble

surface and the κ value on the performance of the B-SCLAY1S model, a simple con-

stant q slow cyclic triaxial simulation was performed. The soil sample was assumed

to be slightly over-consolidated (OCR=1.1) with an initial stress of p′= 66.7 kPa

and q = 50 kPa. The deviatoric stress was kept constant while cell pressure was

increased and then decreased (one way cyclic loading). Ten load cycles were applied.

First four cycles, p′ varies from 91.6 kPa to 41.6 kPa; second three cycles, p′ varies

from 111.6 kPa to 41.6 kPa and final three cycles, p′ varies from 121.6 kPa to 41.6

kPa. The soil input parameters were used to represent the Bothkennar clay (Table.

6.1). Two out of three parameters were kept constant while third parameter was

varied so that its effect on the model’s performance could be seen.

Firstly, Figs. 6.21 - 6.23 show the effect of κ on the performance of the B-

SCLAY1S model. The higher the value of κ, the more strain (both axial and volu-

metric) the model will recover upon unloading. In other words, the lower the value

of κ, the more permanent strains the model will predict. This is because a larger

value of κ leads to the soil being softer during unloading and hence, larger amounts

of strains are recovered.

Secondly, the effect of the parameter R which relates to the size of the bubble

surface is investigated. The permanent strains (both axial and volumetric) increases

as the value of R decreases, see Figs. 6.24 - 6.26. This is because a smaller value of

R causes the soil to be softer during loading/reloading stages and strains increase

as a result.

Finally, the parameter ψ (exponent in the hardening function) is examined in

cyclic behaviour of clay. Figs. 6.27 - 6.29 shows the results when ψ = 1.0, 1.5 and

2.0, respectively. It can be seen that a bigger value of ψ will make the soil become

softer during reloading, and as a result more permanent strains occur.
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6.8 Constant q slow cyclic triaxial simulations

(a) axial strain (b) volumetric strain

Figure 6.21: Influence of κ = 0.02

(a) axial strain (b) volumetric strain

Figure 6.22: Influence of κ = 0.03

(a) axial strain (b) volumetric strain

Figure 6.23: Influence of κ = 0.04
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6.8 Constant q slow cyclic triaxial simulations

(a) axial strain (b) volumetric strain

Figure 6.24: Influence of R = 0.10

(a) axial strain (b) volumetric strain

Figure 6.25: Influence of R = 0.15

(a) axial strain (b) volumetric strain

Figure 6.26: Influence of R = 0.20
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6.8 Constant q slow cyclic triaxial simulations

(a) axial strain (b) volumetric strain

Figure 6.27: Influence of ψ = 1.0

(a) axial strain (b) volumetric strain

Figure 6.28: Influence of ψ = 1.5

(a) axial strain (b) volumetric strain

Figure 6.29: Influence of ψ = 2.0
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6.9 Summary

6.9 Summary

In summary, a parametric study of the B-SCLAY1S model detailed in Chapter 5 has

been carried out in this chapter. This study indicates that parameters related to the

bubble (R and ψ) and to S-CLAY1S (λi and κ) have more influence on the bubble

model simulations than the other soil constants. Poisson’s ratio (ν ′), anisotropy pa-

rameters (β and µ) and destructuration parameters (χ, a and b) generally have a less

important role in the B-SCLAY1S model prediction. The test data for Bothkennar

clay is well modelled by the B-SCLAY1S model in general for the R value of 0.15 and

the plastic modulus parameter ψ = 1.5. In general, parameter values of λ1 = 0.21,

κ = 0.02 and ν ′ = 0.2 provide best match to the experimental data. Simulation of

B-SCLAY1S shows anisotropic parameter µ = 30 and β = 0.94 the destructuration

parameters χ0 = 10 and a = 9 & b =0.4 good agreement with Bothkennar test data.

The size of bubble R and plastic modulus parameter ψ affects small strain

stiffness and control the degradation of stiffness due to plastic straining. The value

of R needs to decreases to smoothen the stiffness transition from elastic region to

yielding. However, very small value of R may cause numerical errors.

Furthermore, three important parameters (R , ψ and κ) which are most relevant

in cyclic behaviour of the B-SCLAY1S were used for a parametric study. It has been

found that B-SCLAY1S was very flexible in predicting cyclic soil behaviour.
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Chapter 7

Verification and application of the

B-SCLAY1S model

This Chapter presents series of slow cyclic oedometer tests and triaxial tests for

verification of the model implementation followed by application of the model to

benchmark problems. First part of this chapter involves verification of the model

implementation against a number of simulations presented by Al-Tabbaa (1987)

which does not include anisotropy and destructuration. Secondly, triaxial test results

of Swiss lacustrine clay presented by Messerklinger (2006) are compared with B-

SCLAY1, S-CLAY1 and MCC simulations as explained in Table 5.1 in Chapter 5.

Thirdly, the B-SCLAY1S model simulations are compared with the laboratory test

results presented by McGinty (2006) for Bothkennar clay. Finally the B-SCLAY1S

model is applied to benchmark problems for static and dynamic loading condition.

7.1 Verification against Al-Tabbaa (1987) simu-

lations

The implementation of proposed model was first verified in a case of isotropic soil by

comparing against the results of Al-Tabbaa (1987) model predictions for a slow cyclic

triaxial test at constant deviatoric stress q and a number of undrained triaxial tests

on speswhite kaolin. In order to repeat this simulation, the features of B-SCLAY1S

model are switched off for anisotropy and destructuration by setting corresponding

parameters to zero. The model parameters were derived by Al-Tabbaa (1987) from
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7.1 Verification against Al-Tabbaa (1987) simulations

Table 7.1: Material parameters used by Al-Tabbaa (1987) for speswhite kaolin

Soil constants

κ ν ′ λ M

0.0172 0.3 0.187 0.90

State variables

e0 α0

1.2 0.0

Additional parameters for anisotropy

β µ

0.37 60

Additional parameters for the bubble

R ψ

0.2 1.5

slow cyclic oedometer and triaxial test results, and are given in Table 7.1. Fur-

thermore, the isotropic bubble model (B-MCC) is compared against the anisotropic

bubble model (B-SCLAY1) for K0 consolidation followed by shearing on speswhite

kaolin. The additional soil constant and state variables related to anisotropy were

determined based on the suggestions by Wheeler et al. (2003) for β and Karstunen

& Koskinen (2008); Karstunen et al. (2005) for µ .

Figs. 7.1 and 7.2 show a number of simulations for undrained stress paths

initiated from isotropically and one-dimensionally normally and overconsolidated

states. Comparison of Figure 7.1(a) with Fig. 7.1(b) and Fig. 7.2(a) with Fig.

7.2(b) for Al-Tabbaa (1987) simulations and the B-MCC model respectively, shows

that the implemented B-SCLAY1S model reproduces the same stress paths to the

ones presented by Al-Tabbaa (1987).
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7.1 Verification against Al-Tabbaa (1987) simulations

(a) Al-Tabbaa (1987) model predictions

(b) B-MCC model predictions

Figure 7.1: Undrained stress paths after isotropic stress history
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7.1 Verification against Al-Tabbaa (1987) simulations

(a) Al-Tabbaa (1987) model predictions

(b) B-MCC model predictions

Figure 7.2: Undrained stress paths after a one-dimensional stress history
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7.1 Verification against Al-Tabbaa (1987) simulations

(a) Al-Tabbaa (1987) model predictions

(b) B-MCC model predictions

Figure 7.3: Slow cyclic isotropic constant q triaxial simulation: η against εs

The cyclic triaxial simulation was initially started from normally consolidated

state corresponding to one-dimensional loading, and the deviator stress q was kept

constant when cyclic loading (unloading/reloading) were applied by changing p′.

Figs. 7.3 and 7.4 show slow cyclic triaxial test at constant deviator stress q

simulation for η = q/p′ against εs and η = q/p′ against εv, respectively. The initial

values of p′ and q are 300 kPa and 80 kPa respectively, and q is kept constant while
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7.1 Verification against Al-Tabbaa (1987) simulations

(a) Al-Tabbaa (1987) model predictions

(b) B-MCC model predictions

Figure 7.4: Slow cyclic isotropic constant q triaxial simulation: η against εv

cyclic changes of p′ are applied. As mentioned above, initial anisotropy has been

switched off (α0 = 0) and additionally, the evolution of anisotropy was switched

off by setting µ equal to zero. Comparison of the B-SCLAY1S model prediction

with Al-Tabbaa (1987) simulations shows good agreement. Although B-SCLAY1S

is very similar to the Al-Tabbaa (1987) model, the modified compression and swelling

indices were used by Al-Tabbaa (1987) instead of λ and κ, and hence small differences
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7.1 Verification against Al-Tabbaa (1987) simulations

would be expected.

In Fig. 7.5, thick solid lines represent the predictions of the anisotropic B-

SCLAY1 model and the dashed lines represent the equivalent results by the isotropic

B-MCC model. In this simulation, initial anisotropy has been switched off (α0 = 0)

and the additional evolution of anisotropy parameters were given as in Table 7.1.

In reality, anisotropy has been created through initial K0 consolidation, resulting in

a theoretical value of α0 = 0.35.

Figure 7.5: Undrained stress paths after a one-dimensional stress history

The differences between the two model predictions are very striking relating

to the simulations of anisotropically consolidated undrained shearing in compres-

sion and extension. The soil is assumed initially isotropic, but during the initial

K0 consolidation anisotropy evolves in the case of B-SCLAY1 model, resulting in

an value of 0.35 at the start of undrained shearing. Due to the associated flow

rule, K0 - loading results in different predicted stress paths, both for loading and

unloading. B-MCC gives, like the MCC model, a very poor K0 prediction. Overall,

during compression the B-SCLAY1 model predicts higher undrained strength than

B-MCC, and the predicted undrained strength in extension is notably lower than
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7.2 Comparison with Messerklinger (2006) triaxial test results

in compression. In contrast the isotropic B-MCC model predicts almost the same

value of undrained shear strength in compression and extension.

7.2 Comparison with Messerklinger (2006) tri-

axial test results

This section compares the simulated response of B-SCLAY1 (without destructura-

tion) for Swiss lacustrine clay with triaxial test data provided by Messerklinger

(2006). The triaxial tests consists of four major stress paths in triaxial stress space

are compression (S2T4), one-dimensional (S2cT1), isotropic (S2T3) and extension

(S2aT4).

The natural test samples were first reconsolidated in the triaxial apparatus to

a stress state of p′ = 300 kPa and q = 225 kPa beyond the in-situ preconsolidation

stress along the stress ratio ηK0 = 0.75, unloaded to a common stress state of p′ =

150 kPa and q = 112.5 kPa using drained swelling along the stress ratio ηK0 = 0.75

and finally reloaded along various probing stress paths of constant stress increment

ratios to failure.

Table 7.2: Material parameters of lacustrine clay ( data after Messerklinger, 2006)

Soil constants

κ ν ′ λ M

0.01 0.1 0.053 1.25

State variables

e0 α0

0.693 0.42

Additional parameters for anisotropy

β µ

1.31 5

Additional parameters for the bubble

R ψ

0.15 1.5
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7.2 Comparison with Messerklinger (2006) triaxial test results

Table 7.2 summarizes the model parameters which were obtained from Messerklinger

(2006). In order to compare the performance of the B-SCLAY1 simulation, S-CLAY1

and MCC were also simulated for the lacustrine clay response. The yield surfaces

(see Fig. 7.6) for S-CLAY1 bubble, S-CLAY1 bounding/yield and MCC yield sur-

faces were drawn and compared to the yield stress points from Messerklinger (2006).

Comparing the S-CLAY1 bounding surface to the MCC yield surface, S-CLAY1 gives

a much better agreement than the MCC yield surface.

Figure 7.6: B-SCLAY1 and MCC yield surfaces compared with test data (data after

Messerklinger, 2006)

7.2.1 Compression test: S2T4 (∆p′ = constant)

The probing compression stress path was simulated at the start point p′ = 150

kPa and q = 112.5 kPa with a previous one-dimensional consolidation history to

maximum values of stresses p′ = 300 kPa and q = 225 kPa. Mean effective stress

remained constant during probing stress path stress increment ratio η = ∞ and

δσ′1/δσ
′
3 = -2.
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7.2 Comparison with Messerklinger (2006) triaxial test results

(a) Deviator stress versus shear strain increment

(b) Deviator stress versus volumetric strain increment

Figure 7.7: Model simulation and test results for compression test: S2T4 (data after

Messerklinger, 2006)
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7.2 Comparison with Messerklinger (2006) triaxial test results

Fig. 7.7 shows the failure behaviour simulated by B-SCLAY1, S-CLAY1 and

MCC in the corresponding stress-strain plots. The deviator stress versus shear

strain increment curves are shown in Fig. 7.7(a). However, the comparison of

simulations show the same linear elastic response for S-CLAY1 and MCC, and both

models behave stiffly due to linear elastic response. The B-SCLAY1 model is the

only model that follows the test data from small strains quite effectively. This is

because B-SCLAY1 incorporate a bubble surface to simulate non-linearity in the

elastic region.

The deviator stress versus volumetric strains simulation is shown in Fig. 7.7(b).

The S-CLAY1 and MCC models are not able to simulate the observed behaviour

in test data. This is because these models are based on critical state theory and

couple the development of volumetric strains to the change in mean effective stress

only. This drawback comes from the assumption of isotropic elastic behaviour.

The B-SCLAY1 model captures the trend with test data in the shear stress versus

volumetric strain increment plot.

Figure 7.8: Model simulation and test results for compression test: S2T4. Shear

versus volumetric strain increment (data after Messerklinger, 2006)

Fig. 7.8 shows the simulation of the shear strain versus the volumetric strain

increments and the test data. The MCC and S-CLAY1 models are unable to capture
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7.2 Comparison with Messerklinger (2006) triaxial test results

the behaviour again due to the poor volumetric strain predictions. However, B-

SCLAY1 model follows the test data remarkably well.

7.2.2 Compression test: S2cT1 ( η = 0.9 )

The probing stress path was simulated at the start point p′ = 150 kPa and q = 112.5

kPa with a previous one-dimensional consolidation history to greatest stresses p′ =

300 kPa and q = 225 kPa. The stress was applied in stress increment ratio η = 0.9

and δσ′1/δσ
′
3 = 2.3. With the stress path simulated no failure occurs (recompressed)

and stress path was applied beyond the previous one-dimensional consolidation.

Fig. 7.9 shows the deviator stress versus the shear strain and the volumetric

strain increment plot. The S-CLAY1 model corresponds better to test data than

the MCC and B-SCLAY1 model in the deviator stress versus shear strain increment

plot, see Fig. 7.9(a). However, the B-SCLAY1 model simulation has more realis-

tic curvature than the other models. The volumetric strain increment response is

presented in Fig. 7.9(b). The B-SCLAY1 model simulation shows better agreement

the test data than the S-CLAY1 and MCC models, but also these models follow the

trend of the test data reasonably well.

The shear versus volumetric strain increment is presented in Fig. 7.10. While

the S-CLAY1 and MCC models overpredict the shear strain, the B-SCLAY1 model

slightly underpredicts the shear strain.

The comparison demonstrates a reasonably good agreement between the sim-

ulation and test data for all models. It can be noted that for these results, non-

linearity in the elasticity is not very dominant in the deformation behaviour due

to the stress path in this simulation is applied well beyond the consolidation stress

state reached in the laboratory.
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7.2 Comparison with Messerklinger (2006) triaxial test results

(a) Deviator stress versus shear strain increment

(b) Deviator stress versus volumetric strain increment

Figure 7.9: Model simulation and test results for compression test: S2cT1 (data

after Messerklinger, 2006)
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7.2 Comparison with Messerklinger (2006) triaxial test results

Figure 7.10: Model simulation and test results for isotropic compression test: S2cT1.

Shear versus volumetric strain increment (data after Messerklinger, 2006)

7.2.3 Isotropic compression test: S2T3 (∆q = constant)

The probing isotropic compression stress path was simulated at the start point p′ =

150 kPa and q = 112.5 kPa. The stress was applied in stress increment ratio η =

0 and δσ′1/δσ
′
3 = 1.

The deviatoric stress-strain plots are presented in Fig. 7.11 together with the

shear strain versus volumetric strain plot in Fig. 7.12. The negative shear strain

increment developed in test data (Fig. 7.11(a)) is predicted by the B-SCLAY1 and

S-CLAY1 models only due to inclination of the yield surface (anisotropy). How-

ever, the MCC model predicts positive shear strain increment due to the isotropic

behaviour of the model. The B-SCLAY1 model only responds to the test data

corresponding to the negative shear strain increment developing immediately.

The S-CLAY1 model simulates isotropic elastic behaviour until it reaches the

yield surface, which gives zero shear strain increment for isotropic compression. This

can be improved by inclusion of an elastic anisotropic formulation.
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7.2 Comparison with Messerklinger (2006) triaxial test results

(a) Mean effective stress versus shear strain increment

(b) Mean effective stress versus volumetric strain increment

Figure 7.11: Model simulation and test results for isotropic compression test: S2T3

(data after Messerklinger, 2006)

191



7.2 Comparison with Messerklinger (2006) triaxial test results

The B-SCLAY1 and S-CLAY1 models only predict similar trend of the shear

strain versus volumetric strain increment test data in Fig. 7.12. The MCC model is

not able predict the strain increment plot for isotropic load paths due to anisotropic

nature of lacustrine clays. Lacustrine clays have an inherent anisotropy due to the

deposition mode (Messerklinger, 2006).

Figure 7.12: Model simulation and test results for isotropic compression test: S2T3.

Shear versus volumetric strain increment (data after Messerklinger, 2006)

7.2.4 Extension test: S2aT4 (∆p′ = constant)

The probing extension stress path was simulated at the start point p′ = 150 kPa

and q = 112.5 kPa. The stress was applied in stress increment ratio η = -7.1 and

δσ′1/δσ
′
3 = -1.1.

The deviator stress versus shear and volumetric strain increments are presented

in Fig. 7.13. Fig. 7.13(a) shows comparison of model responses to test data for

the shear strain development. The S-CLAY1 and MCC model simulations show
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7.2 Comparison with Messerklinger (2006) triaxial test results

linear elastic response well within the first ∆q ≈ 100 kPa and after that MCC

cannot simulate the stiffness deceases. Both the B-SCLAY1 and S-CLAY1 mod-

els capture the general trend of the shear strain behaviour but the S-CLAY1 model

underpredicts shear strains whereas B-SCLAY1 overpredicts the shear strains. How-

ever, B-SCLAY1 predicts non-linear from small strain up to failure but lower stiff-

ness throughout failure. The S-CLAY1 model simulation would improve by using

Matsuoka-Nakai type failure criterion rather than the Drucker-Prager failure crite-

rion.

The deviator stress versus volumetric strain increment plot is presented in

Fig. 7.13(b). The comparison of simulations and test data shows S-CLAY1 and

B-SCLAY1 simulate plastic volumetric straining whereas MCC shows elastic volu-

metric straining. The S-CLAY1 model predicts volumetric strain increment with

deviator stress very well to test data correspond to the B-SCLAY1 model. The

B-SCLAY1 model underpredicts the deviator stress at failure whereas MCC under-

predicts volumetric strains at failure.

Fig. 7.14 shows models simulation and test data for the shear versus the volu-

metric strain increment. The comparison shows that none of the models are able to

predict the strain increment very well. While B-SCLAY1 and the S-CLAY1 models

simulate elastic and plastic volumetric straining, the MCC model simulates elastic

straining only.
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7.2 Comparison with Messerklinger (2006) triaxial test results

(a) Deviator stress versus shear strain increment

(b) Deviator stress versus volumetric strain increment

Figure 7.13: Model simulation and test results for extension test: S2aT4 (data after

Messerklinger, 2006)
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7.3 Comparison with McGinty (2006) triaxial results

Figure 7.14: Model simulation and test results for extension test: S2T4. Shear

versus volumetric strain increment (data after Messerklinger, 2006)

7.3 Comparison with McGinty (2006) triaxial re-

sults

This section compares the B-SCLAY1S and S-CLAY1S model simulations with ex-

perimental triaxial test data on vertical samples of Bothkennar clay by McGinty

(2006). Applicability and limitations of the both models were assessed in predicting

soft clay behaviour in particular the small strain stiffness (Bubble surface) during

the loading. The S-CLAY1S model is included to provide a benchmark in order to

assess whether B-SCLAY1S simulations produce more accuracy than the S-CLAY1S

model.

Model parameters have been obtained from McGinty (2006) data and from the

parametric study in Chapter 6 and are summarized in Table 6.1 in Chapter 6. The

B-SCLAY1S model was used to generate the S-CLAY1S model simulation by setting
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7.3 Comparison with McGinty (2006) triaxial results

the parameter R value to one. Stress increments were chosen to be sufficiently small

(∆p′ = 0.5 kPa) so that there is no influence of stress increment size.

Chapter 6 contains parametric study simulations involving samples first loaded

isotropically (Test series B) and hence this Section discuss samples first loaded

anisotropically (Test series C). Details of the multi-stage stress paths in Test series

C taken into simulations using B-SCLAY1S and S-CLAY1S are given in Table 7.3.

The information includes the stress ratio for first and second loading stages (η1 and

η2) and the maximum mean effective stresses in the first and second loading stages

(p′1 and p′2).

Table 7.3: Summary of stress paths used in simulation from test series C

Test η1 p′1 (kPa) η2 p′2 (kPa)

C2 1.10 198 -0.50 587

C6 0.20 210 1.03 318

C7 0.42 210 -0.70 354

Test C2 was first loaded at relatively high stress ratio in triaxial compression

followed by relatively low stress ratio in the second loading stage. Test C6 and

C7 were first loaded at low stress ratio in triaxial compression followed by a much

higher stress ratio in triaxial compression and a relatively higher stress ratio in

triaxial extension for Test C6 and C7, respectively.

Compression behaviour of model simulations and test data is presented in terms

of semi-logarithmic (εv : ln p′) plots in Figs. 7.15(a), 7.16(a) and 7.17(a) for Test

C2, C6 and C7, respectively. In each case, the B-SCLAY1S and S-CLAY1S model

predicts a good match to the experimental data for the magnitude of volumetric

strain in the second loading stages. However, first loading, unloading and reloading

stages, the B-SCLAY1S model predicts well due to the small strain stiffness nature

of the model. During unloading and reloading after each of the first loading stage,

the S-CLAY1S model shows differences between experimental data and simulations

due to the assumption of purely elastic behaviour inside the yield surface. Further-

more, during first loading stage, the S-CLAY1S model predicts slightly higher mean

effective stress, which generally provides a slightly poorer match to the experimental

data than B-SCLAY1S. Before first loading stage yielding, S-CLAY1S predicts lin-

ear elastic behaviour in contrast to the experimental data (although the difference

is minimal)whereas B-SCLAY1S predicts satisfactorily the experimental data which

is non-linear.
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7.3 Comparison with McGinty (2006) triaxial results

The deviatoric stress-strain (εs :q) behaviour of test data and model simulations

are plotted in Figs. 7.15(b), 7.16(b) and 7.17(b) for Test C2, C6 and C7, respectively.

Inspection of the deviatoric stress-strain curves, the B-SCLAY1S model predicts

reasonably well except test C2, but S-CLAY1S predicts less accurately to the test

data. Post yield deviatoric strains in the first loading stage is well predicted by

B-SCLAY1S model in Test C2. The B-SCLAY1S and S-CLAY1 models overpredict

the amount of shear strain during first loading stage in Test C2 (see Fig. 7.15(b))

whereas both models underpredict the amount of shear strain during first loading

stage in Test C7 (see Fig. 7.17(b)).

Axial stress-strain (εy : σy) behaviour of test data and simulations are shown

in Figs. 7.15(c), 7.16(c) and 7.17(c) for Test C2, C6 and C7, respectively. Axial

stress-strain behaviour show similar predictions to the deviatoric stress-strain plots.

Again, the B-SCLAY1S model shows considerable improvement over S-CLAY1S in

the prediction of Test C6 and C7.

The strains paths observed in test data and model simulation are plotted in

terms of deviatoric and volumetric strains (εs : εv) in Figs. 7.15(d), 7.16(d) and

7.17(d) for Test C2, C6 and C7, respectively. Strain paths for Test C6 (7.16(d)) and

Test c7 (see 7.17(d)) are reasonably well predicted by B-SCLAY1S compared to the

S-CLAY1S model. Fig. 7.16(d) shows the both models overpredict deviator strain

for Test C2 because the deviatoric strain predicted by the first loading stage is so

large. However, B-SCLAY1S model predicts correctly the trend of the experimental

data during unloading and reloading stages in Test C2.
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7.3 Comparison with McGinty (2006) triaxial results

(a) compression behaviour (b) deviatoric stress strain behaviour

(c) axial stress strain behaviour (d) strain paths

Figure 7.15: B-SCLAY1S and S-CLAY1S simulations of Test C2 where η1 = 1.10

and η2 = -0.50
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7.3 Comparison with McGinty (2006) triaxial results

(a) compression behaviour (b) deviatoric stress strain behaviour

(c) axial stress strain behaviour (d) strain paths

Figure 7.16: B-SCLAY1S and S-CLAY1S simulations of Test C6 where η1 = 0.20

and η2 = 1.04
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7.3 Comparison with McGinty (2006) triaxial results

(a) compression behaviour (b) deviatoric stress strain behaviour

(c) axial stress strain behaviour (d) strain paths

Figure 7.17: B-SCLAY1S and S-CLAY1S simulations of Test C7 where η1 = 0.42

and η2 = -0.70
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7.4 Application to an embankment

The proposed B-SCLAY1S model performance is also evaluated using an embank-

ment boundary value problem constructed on Bothkennar soft clay deposit. The

purpose of this analysis to see any obvious numerical problems in the implemen-

tation of the B-SCLAY1S model into PLAXIS when subjected to static loading

and consolidation analysis. For verification, the simulation was also compared with

the S-CLAY1S model. Model parameter values for Bothkennar clay related to S-

CLAY1S were obtained from McGinty (2006) and additional parameters required

for B-SCLAY1S were obtained by parametric study and are summarized in Chapter

6, Table 6.1. Geometry of the embankment and construction details were given in

Chapter 4, Section 4.4.

Results of finite element analysis using PLAXIS v9 are presented in terms of

time-settlement curve, surface settlement, horizontal displacement and excess pore

water pressures (PWP) generated during construction. The two constitutive models

used for the subsoil differ only for the fact that B-SCLAY1S model includes small

strain stiffness due to the inclusion of the bubble surface. Differences between results

can therefore be uniquely attributed to the small strain stiffness behaviour of the

subsoil.

In Fig. 7.18, results are presented in terms of vertical displacement versus

time at the ground surface corresponding to the centreline of the embankment. The

B-SCLAY1S model predicts a final settlement about 0.4 m, which is larger than

the one predicted by the S-CLAY1S model of about 0.3 m. A general tendency

of B-SCLAY1S to predict larger settlement than S-CLAY1S due to the assumption

of small size of elastic region by incorporating the bubble surface, because of this

plastic deformation is taking place from early stages of loading.

Fig. 7.19 shows horizontal displacement immediately after construction of 2nd

layer of embankment and end of the analysis underneath of the toe of the embank-

ment. The B-SCLAY1S model predicts considerably larger displacement than the

S-CLAY1S model.

Surface settlement at end of the analyses is presented in Fig. 7.20. Both models

give similar trend in surface settlement, but the B-SCLAY1S model predicts more

than the S-CLAY1S model. After a distance of 10 m from the centreline, both

models predicts the same quantitative response.
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7.4 Application to an embankment

Figure 7.18: Comparison of time settlement curve at point A

Excess pore water pressure distribution immediately after construction of 1st

and 2nd layer of embankment are presented in Figs. 7.21(a) and 7.21(b), respectively.

Both models predict same qualitative distribution, which is also quantitatively cor-

respondent to immediately after construction of 1st layer of embankment.
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7.4 Application to an embankment

(a) immediately after 1st loading (b) immediately after 2nd loading

Figure 7.19: Comparison of horizontal displacement predictions at the embankment

toe for B-SCLAY1S and S-CLAY1S

Figure 7.20: Comparison of surface settlement curves at the end of analyses
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7.5 Application to a pile driving problem

(a) immediately after 1st loading (b) immediately after 2nd loading

Figure 7.21: Comparison of excess PWP at the centreline of the embankment for

B-SCLAY1S and S-CLAY1S

7.5 Application to a pile driving problem

This section involves penetration of a concrete pile into a Bothkennar clay layer

using dynamic pulse loading. Bothkennar clay is modelled using the B-SCLAY1S

and S-CLAY1S models. The main objective of this analyses is to investigate the

difference in B-SCLAY1S and S-CLAY1S in the penetration of a pile and to visually

check any numerical issues when dynamic loading is applied. Furthermore, excess

pore pressures generated due to the rapid stress increases around the pile are also

analysed. The pile driving problem used here is similar to that used in PLAXIS

dynamics manual (Brinkgreve et al., 2008).

An axisymmetric geometry model is used, where the pile is positioned along the

axis of symmetry and the driving analysis for a pile already in place at a depth of

11 m is assumed, as shown in Fig. 7.23. In the beginning, the pile is not placed, so

initially the Bothkennar clay properties are assigned to the pile cluster too. The pile

has a diameter of 0.4m. The finite element mesh used in this analysis is shown in

Fig. 7.24. A double blow is simulated using a periodic force function and the force

time variation is illustrated in Fig. 7.22 for a single blow. A dynamic load is applied

to 0.01s with peak value of 5000 kPa and for the rest of the 0.19s, dynamic analysis
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7.5 Application to a pile driving problem

done with dynamic loading to zero. The blow (driving force) is a distributed unit

load (system A) applied on top of the pile.

Figure 7.22: Pulse load time curve

The subsoil is assumed to be Bothkennar clay (undrained behaviour) and ma-

terial properties are given in Table 6.1 in Chapter 6. Linear elastic behaviour is

assumed for concrete pile considering non-porous behaviour and interface elements

are used to allow the slip between the pile and soil. The pile properties are Eref =

3 × 107, ν = 0.1 and γ = 24 kN/m3. Standard PLAXIS absorbent boundaries are

applied at the bottom and at the right hand boundary to prevent wave reflection

resulting from the driving process.

Fig. 7.25 shows pile tip penetration for B-SCLAY1S and S-CLAY1S versus

dynamic time for a double blow. It can seen that the pile penetration under the

B-SCLAY1S model is more than that of the S-CLAY1S model. During first blow,

maximum vertical settlement and the final settlement of the pile tip is about 18 mm

& 19 mm and 10.5 mm & 11 mm for S-CLAY1S and B-SCLAY1S, respectively.

In the second blow, the vertical settlement shows significant difference due to more

plasticity mobilized by B-SCLAY1S model (the maximum settlement 31 mm and 28

mm and the final settlement 20 mm and 23 mm for S-CLAY1S and B-SCLAY1S,

respectively).

205



7.5 Application to a pile driving problem

Figure 7.23: Geometry for pile driving problem

Figure 7.24: Mesh used for pile driving problem
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7.5 Application to a pile driving problem

Figure 7.25: Pile settlement with time comparison for B-SCLAY1S and S-CLAY1S

Most of the settlement occurs after the blow is ended (after 0.01s) because of

the fact that compression wave is still propagating downwards in the pile and that

causes additional pile penetrations. The pile is damped more for B-SCLAY1S than

S-CLAY1S due to the mobilized soil plasticity.

It can be seen that large excess pore water pressures are generated very locally

around the pile tip (see Fig. 7.26) and relatively low excess pore water pressures

occurs away from pile tip (see Fig. 7.26(b)). Due to the large excess pore water

pressure, the effective shear strength of the soil around the tip is reduced and hence

contributes to the penetration of the pile into the clay layer. This excess pore water

pressure remains in the analysis since consolidation is not considered and analysis

time also very short (total analysis time is 0.4 s).
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7.5 Application to a pile driving problem

(a) at point B (pile tip)

(b) at point C (subsoil)

Figure 7.26: Excess PWP with time comparison for B-SCLAY1S and S-CLAY1S
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7.6 Summary

7.6 Summary

This chapter is divided into five parts. The first part of the chapter described the

validation of the B-SCLAY1S model implemented into PLAXIS through a series of

IPP simulations. A number of stress paths simulated by Al-Tabbaa (1987) were

repeated and the results were compared with already published data for isotropic

bubble model. Good agreement has been found.

Further, the anisotropic bubble model (B-SCLAY1) performance was compared

to S-CLAY1 and MCC at IPP level. The comparison of simulations against to

Messerklinger (2006) test results was presented in the second part of the chapter.

The third part compared the structured anisotropic bubble model (B-SCLAY1S)

simulations to McGinty (2006) test data for Bothkennar clay. Comparison of the

B-SCLAY1S model simulation to published experimental data highlights the impor-

tance of the bubble surface in natural soil behaviour prediction.

In final two sections, the B-SCLAY1S model performance was evaluated using

an embankment boundary value problem and a pile driving problem for static and

dynamic loading condition respectively. In addition, the B-SCLAY1S model results

were compared with the prediction by the S-CLAY1S model. Implementation of B-

SCLAY1S into the FE code PLAXIS was verified through these benchmark tests.
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Chapter 8

Conclusions and
Recommendations

The research presented in this thesis includes a study on implementation of advanced

non-linear constitutive models in the finite element code PLAXIS. The most signifi-

cant contribution is the development and implementation of the bubble B-SCLAY1S

model and its benchmark applications to static and dynamic loadings. Below, the

main findings of this thesis as well as directions for future research are outlined.

8.1 Summary and Conclusions

The work described in this thesis had the following objectives:

• To explore numerical methodologies for implementing advanced constitutive

models of soft soil in PLAXIS to minimize the numerical instability and im-

prove the numerical efficiency.

• To study the existing S-CLAY1S model, which accounts for anisotropy and

destructuration of soft soil, to further improve the model and to implement

these improvements in PLAXIS using robust numerical algorithms.

• To develop a numerical algorithm to solve the singularity problem of the

Sekiguchi-Ohta (SO) models in order to implement the models in PLAXIS.

• To develop a mathematical formulation for cyclic behaviour of soft soil and

implement the model in PLAXIS. This model, developed by the author, is

210



8.1 Summary and Conclusions

known as B-SCLAY1S, and forms the major original part of this research

project.

• To verify and validate the constitutive models implemented in PLAXIS, and to

apply them to a number of benchmark problems representing typical geotech-

incal applications.

In the following sections, the conclusions that can be drawn from this research

are summarized to demonstrate how these objectives were achieved.

8.1.1 Numerical algorithms to implement into FE code

An automatic substepping modified Newton-Raphson (MNR) implicit integration

algorithm has been developed to implement the S-CLAY1S model within the fi-

nite element code PLAXIS. Elementary tests under monotonic loading conditions

demonstrate the numerical performance and accuracy of the proposed MNR algo-

rithm over the Euler-backward implicit and explicit algorithms. The simulation

results indicate that the MNR algorithm is relatively insensitive to loading steps.

Furthermore, the robustness of the MNR algorithm was also verified by the analysis

of a benchmark test.

8.1.2 Lode angle dependency

The Lode angle dependency (Sheng et al., 2000) has been implemented without

adding too much complexity to the S-CLAY1S model. Simulations of extension

triaxial tests against Hong Kong Marine clay data (Zhou et al., 2006) showed im-

provement in the predictions of failure condition in extension. The importance

of Lode angle dependency and verification of implementation were achieved using

benchmark tests.

8.1.3 Hybrid algorithm to implement the SO models

A hybrid implicit algorithm, which consists of MNR algorithm and Stolle’s algorithm

has been developed to implement the inviscid/viscid Sekiguchi-Ohta (SO) models

into the FE code PLAXIS. The hybrid algorithm has computational advantage to
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8.2 Recommendations for future work

overcome the vertex singularity of the SO models. The developed algorithm was

verified through several triaxial simulations. The implementation and performance

of inviscid/viscid models in the FE code was demonstrated at benchmark level to

verify the robustness of the hybrid algorithm.

8.1.4 Bubble surface B-SCLAY1S model

A new bubble surface model, which incorporates natural clay phenomena such as

anisotropy and destructuration, has been developed and implemented into the FE

code PLAXIS. A parametric study using triaxial test data has been performed to de-

termine the model parameters and their importance. The model prediction has been

validated with experimental data on kaolin, Bothkennar clay and Swiss lacustrine

clay. Despite the strong ratcheting feature of the model (Sivasithamparam et al.,

2010), the B-SCLAY1S model gives realistic predictions for loading and unloading

response and cyclic loading response. The model implementation into the FE code

PLAXIS is verified through static and cyclic benchmark tests.

8.2 Recommendations for future work

In line with the work presented in this thesis, the following topics are worthy of

further investigation.

8.2.1 Modified S-CLAY1S model

Despite the advances in modelling the behaviour of natural clay for non-monotonic

loading, a number of aspects of modelling behaviour should be further improved.

• Natural clay shows significant anisotropic pre-yield behaviour (McGinty, 2006).

The modified S-CLAY1S model requires elastic cross-anisotropy.

• Further validation is required in 3D finite element applications.
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8.2.2 Sekiguchi-Ohta models

The numerical instability in the dry side of the SO viscid model was treated in such

a way that the model does not include the dry side. Numerical instability should

be further investigated in order to find a way to include the dry side of the model

in the implementation.

8.2.3 B-SCLAY1S model

Despite the advances in modelling the cyclic behaviour of natural clay, a number of

aspects of modelling behaviour should be further improved.

• In order to improve the model prediction for cyclic loading, the parameter R

could be made to be a function of number of cycles. This may eliminate the

strong ratcheting behaviour of the model.

• A modification of the hardening modulus is required to eliminate the abrupt

drop in stiffness once stress state becomes elasto-plastic.

• Before the model can be used in any real applications, extensive full scale tests

should be performed to validate the model predictions.
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Appendix A

Definitions in general stress space

The generalization of the constitutive models used in this thesis can be performed

in general stress space by using the following definitions.

Stress vector σ′ is defined as:

σ′ =



σ′xx
σ′yy
σ′zz
σ′xy
σ′yz
σ′zx


(A.1)

Mean effective stress p′ is defined as:

p′ =
1

3

(
σ′xx + σ′yy + σ′zz

)
(A.2)

Deviator stress vector σ′d is defined as:

σ′d =



σ′xx − p′
σ′yy − p′
σ′zz − p′√

2σ′xy√
2σ′yz√
2σ′zx


(A.3)
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strain increment vector ∆ε is defined as:

∆ε =



∆εxx
∆εyy
∆εzz
∆εxy
∆εyz
∆εzx


(A.4)

Deviatoric strain increment vector ∆ε̄d is defined as:

∆εd =



1
3
(2∆εxx −∆εyy −∆εzz)

1
3
(2∆εyy −∆εxx −∆εzz)

1
3
(2∆εzz −∆εyy −∆εxx)

1√
2
∆εxy

1√
2
∆εyz

1√
2
∆εzx


(A.5)

Volumetric strain increment ∆εv is defined as:

∆εv = ∆εxx + ∆εyy + ∆εzz (A.6)

Deviatoric fabric tensor ᾱd is defined as:

αd =



αxx − 1
αyy − 1
αzz − 1√

2αxy√
2αyz√
2αzx


(A.7)

where components of fabric tensor have the property:

1

3

(
αxx + αyy + αzz

)
= 1 (A.8)

The scalar value of fabric tensor, α, which defines the orientation of the yield

surface in the triaxial space can be defined as:

α2 =
3

2
{ᾱd}T{ᾱd} (A.9)
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The scalar value of ∆εpd is defined as:

∆εpd =

√
3

2
{∆εpd}

T {∆εpd} (A.10)

where the superscript p refers to plastic component.

The second (J2)α and third (J3)α invariants of the modified stress deviator

σ′d − αdp′ are defined as follows:

(J2)α =
1

2

[
(σ′xx − (1 + αdxx)p

′)2 + (σ′yy − (1 + αdyy)p
′)2+

(σ′zz − (1 + αdzz)p
′)2

+(σ′xy − αdxyp′)2 + (σ′yz − αdyzp′)2 + (σ′zx − αdzxp′)2
] (A.11)

(J3)α = (σ′xx − (1 + αdxx)p
′)(σ′yy − (1 + αdyy)p

′)(σ′zz − (1 + αdzz)p
′)−

(σ′xx − (1 + αdxx)p
′)(σ′zx − αdzxp′)2−

(σ′yy − (1 + αdyy)p
′)(σ′yz − αdyzp′)2−

(σ′zz − (1 + αdzz)p
′)(σ′xy − αdxyp′)2+

2(σ′zx − αdzxp′)(σ′yz − αdyzp′)(σ′xy − αdxyp′)

(A.12)
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Appendix B

Derivatives of S-CLAY1S

The yield function of S-CLAY1S model in general space can be written as:

fy =
3

2

q̄

(M2(θ)α − α2)
+ (p′ − p′m

2
)2 −

(p′m
2

)2

= 0 (B.1)

q̄ = s̄ij : s̄ij = s̄2
xx + s̄2

yy + s̄2
zz + s̄2

xy + s̄2
yz + s̄2

zx (B.2)

s̄ij = σ′d − αdp′ (B.3)

∂fy
∂σij

=
∂fy
∂p′

∂p′

∂σ′ij
+
∂fy
∂q̄

∂q̄

∂σ′ij
+
∂fy
∂α

∂α

∂αd

∂αd
∂σ′ij

+
∂fy

∂M(θ)α

∂M(θ)α
∂σ′ij

(B.4)

∂fy
∂p′

=
3

2

1

(M2(θ)α − α2)

∂q̄

∂p′
+ 2(p′ − p′m

2
) (B.5)

∂q̄

∂p′
= −2

(
s̄xx(1 + αxx) + s̄yy(1 + αyy) + s̄zz(1 + αzz)+

√
2s̄xyαxy +

√
2s̄yzαyz +

√
2s̄zxαzx

) (B.6)

∂p′

∂σij
=

1

3
[1 1 1 0 0 0] (B.7)

∂fy
∂q̄

=
3

2

1

(M2(θ)α − α2)
(B.8)
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∂q̄

∂σ′xx
=

2

3

(
3s̄xx − s̄xx(1 + αxx)− s̄yy(1 + αyy)− s̄zz(1 + αzz)−

√
2s̄xyαxy −

√
2s̄yzαyz −

√
2s̄zxαzx

) (B.9)

∂q̄

∂σ′yy
=

2

3

(
3s̄yy − s̄xx(1 + αxx)− s̄yy(1 + αyy)− s̄zz(1 + αzz)−

√
2s̄xyαxy −

√
2s̄yzαyz −

√
2s̄zxαzx

) (B.10)

∂q̄

∂σ′zz
=

2

3

(
3s̄zz − s̄xx(1 + αxx)− s̄yy(1 + αyy)− s̄zz(1 + αzz)−

√
2s̄xyαxy −

√
2s̄yzαyz −

√
2s̄zxαzx

) (B.11)

∂q̄

∂σ′xy
= 2
√

2s̄xy (B.12)

∂q̄

∂σ′yz
= 2
√

2s̄yz (B.13)

∂q̄

∂σ′zx
= 2
√

2s̄zx (B.14)

∂αd
∂σ′ij

= 0 (B.15)

So,
∂fy
∂α

∂α

∂αd

∂αd
∂σ′ij

= 0 (B.16)

∂fy
∂M(θ)α

= −3
q̄

(M2(θ)α − α2)2
M(θ)α (B.17)

∂M(θ)α
∂σij

=

√
27

8
Mc(1−m4)

(2m4)
1
4(

1 +m4 − (1−m4)
[√

27
2

(J3)α

(J2)
3
2
α

]) 5
4

∂
[

(J3)α

(J2)
3
2
α

]
∂σ′ij

(B.18)

∂
[

(J3)α

(J2)
3
2
α

]
∂σ′ij

=
(J2)

3
2
α
∂(J3)α
∂σ′ij

− 3
2
(J2)

1
2
α(J3)α

∂(J2)α
∂σ′ij

(J2)3
α

(B.19)
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∂(J2)α
∂σ′xx

= s̄xx −
1

3

[
s̄xx(1 + αdxx) + s̄yy(1 + αdyy) + s̄zz(1 + αdzz)+

s̄xyα
d
xy + s̄yzα

d
yz + s̄zxα

d
zx

] (B.20)

∂(J3)α
∂σ′xx

= s̄yys̄zz −
1

3

[
s̄yys̄zz(1 + αdxx) + s̄xxs̄zz(1 + αdyy) + s̄xxs̄yy(1 + αdzz)

]
−s̄2

zx +
1

3

[
s̄2
zx(1 + αdxx) + s̄2

yz(1 + αdyy) + s̄2
xy(1 + αdzz)

]
+

2

3

[
s̄xxs̄zxα

d
zx + s̄yys̄yzα

d
yz + s̄zz s̄xyα

d
xy

]
−2

3

[
s̄yz s̄zxα

d
xy + s̄xys̄zxα

d
yz + s̄yz s̄xyα

d
zx

]
(B.21)

Similarly other derivative components can be derived.

∂fy
∂s̄ij

=
∂fy
∂q̄

∂q̄

∂s̄ij
+

∂fy
∂M(θ)α

∂M(θ)α
∂s̄ij

(B.22)

∂fy
∂q̄

=
3̄

2(M2(θ)α − α2)
(B.23)

∂q̄

∂s̄ij
= 2s̄ij (B.24)

∂M(θ)α
∂s̄ij

=

√
27

8
Mc(1−m4)

(2m4)
1
4(

1 +m4 − (1−m4)
[√

27
2

(J3)α

(J2)
3
2
α

]) 5
4

∂
[

(J3)α

(J2)
3
2
α

]
∂s̄ij

(B.25)

∂
[

(J3)α

(J2)
3
2
α

]
∂s̄ij

=
(J2)

3
2
α
∂(J3)α
∂s̄ij

− 3
2
(J2)

1
2
α(J3)α

∂(J2)α
∂s̄ij

(J2)3
α

(B.26)

∂(J2)α
∂s̄xx

= s̄xx (B.27)

∂(J3)α
∂s̄xx

= s̄yys̄zz − s̄2
zx (B.28)
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Similarly other derivatives components can be derived.

∂fy
∂αdij

=
∂fy
∂q̄

∂q̄

∂αdij
+

∂fy
∂M(θ)α

∂M(θ)α
∂αdij

(B.29)

∂q̄

∂αdij
= −2s̄ijp

′ (B.30)

∂M(θ)α
∂αdij

=

√
27

8
Mc(1−m4)

(2m4)
1
4(

1 +m4 − (1−m4)
[√

27
2

(J3)α

(J2)
3
2
α

]) 5
4

∂
[

(J3)α

(J2)
3
2
α

]
∂αdij

(B.31)

∂
[

(J3)α

(J2)
3
2
α

]
∂αdij

=
(J2)

3
2
α
∂(J3)α
∂αdij

− 3
2
(J2)

1
2
α(J3)α

∂(J2)α
∂αdij

(J2)3
α

(B.32)

∂(J2)α
∂αdxx

= −s̄xxp′ (B.33)

∂(J3)α
∂αdxx

= −s̄yys̄zzp′ + s̄2
zxp
′ (B.34)

Similarly other derivatives components can be derived.

∂fy
∂χ

=
∂fy
∂p′m

∂p′m
∂χ

(B.35)

∂fy
∂p′m

= −p′ (B.36)

∂p′m
∂χ

= p′mi (B.37)

∂αd
∂εpv

= µ

(
3σ′d
4p′
− αd

)
(B.38)

∂αdij
∂εpd

= βµ

(
3σ′d
4p′
− αd

)
(B.39)

232



∂χ

∂εpv
= −aχ (B.40)

∂χ

∂εpd
= −abχ (B.41)

∂p′mi
∂εpv

=
(1 + e)p′mi
λ− κ

(B.42)
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Appendix C

The SO model

ηij
T =

(
−

1−Knc
0

2 + 2Knc
0

2
1−Knc

0

2 + 2Knc
0

−
1−Knc

0

2 + 2Knc
0

0 0 0

)
(C.1)

s̄ =


σ′xx − p′ − p′ηxx
σ′yy − p′ − p′ηyy
σ′zz − p′ − p′ηzz
σ′xy − p′ηxy
σ′yz − p′ηyz
σ′zx − p′ηzx

 (C.2)

J̄2 =
1

2

(
s̄2
xx + s̄2

yy + s̄2
zz

)
+ s̄2

xy + s̄2
yz + s̄2

zx (C.3)

q̄ =
√

3J̄2 (C.4)

∂q̄

∂σ′
=

3

2q̄

∂J̄2

∂σ′
(C.5)

∂J̄2

∂σ′xx
= (σ′xx − p′ − p′ηxx)

(2− ηxx)
3

+ (σ′yy − p′ − p′ηyy)
(−1− ηyy)

3
+

(σ′zz − p′ − p′ηzz)
(−1− ηzz)

3
+ 2(σ′xy − p′ηxy)

(−ηxy)
3

+

2(σ′yz − p′ηyz)
(−ηyz)

3
+ 2(σ′zx − p′ηzx)

(−ηzx)
3

(C.6)
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∂J̄2

∂σ′yy
= (σ′xx − p′ − p′ηxx)

(−1− ηxx)
3

+ (σ′yy − p′ − p′ηyy)
(2− ηyy)

3
+

(σ′zz − p′ − p′ηzz)
(−1− ηzz)

3
+ 2(σ′xy − p′ηxy)

(−ηxy)
3

+

2(σ′yz − p′ηyz)
(−ηyz)

3
+ 2(σ′zx − p′ηzx)

(−ηzx)
3

(C.7)

∂J̄2

∂σ′zz
= (σ′xx − p′ − p′ηxx)

(−1− ηxx)
3

+ (σ′yy − p′ − p′ηyy)
(−1− ηyy)

3
+

(σ′zz − p′ − p′ηzz)
(2− ηzz)

3
+ 2(σ′xy − p′ηxy)

(−ηxy)
3

+

2(σ′yz − p′ηyz)
(−ηyz)

3
+ 2(σ′zx − p′ηzx)

(−ηzx)
3

(C.8)

∂J̄2

∂σ′xy
= 2(σ′xy − p′ηxy) (C.9)

∂J̄2

∂σ′yz
= 2(σ′yz − p′ηyz) (C.10)

∂J̄2

∂σ′zx
= 2(σ′zx − p′ηzx) (C.11)

235



Appendix D

Determination of SO models

parameters

A determination procedure for input parameters to the SO models is detailed by

Iizuka & Ohta (1987). In this section, the determination procedure of input param-

eters to be used in SO models is summarized.

D.0.4 SO inviscid model parameters

The SO inviscid model requires a total of seven parameters. These parameters with

their standard units are listed below:

Modified compression index and modified swelling index

These parameters can be obtained from an isotropic compression test including

isotropic unloading. When plotting the logarithm of the mean stress as a function

of the volumetric strain for clay type materials, the plot can be approximated by

two straight lines. The slope of the primary loading loading line gives the modi-

fied compression index, and the slope of the unloading (or swelling) line gives the

modified swelling index.
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parameter description unit

λ∗ : Modified compression index [-]

κ∗ : Modified swelling index [-]

ν ′ : Poisson’s ratio [-]

KNC
0 : Earth pressure coefficient at rest [-]

M : Slope of critical state line [-]

OCR0 : Initial overconsolidation ratio [-]

POP0 : Initial pre-overburden pressure [kN/m2]

Poisson’s ratio

The Poisson’s ratio (ν ′) is a real elastic parameter and not a pseudo-elasticity con-

stant as used in the Mohr-Coulomb model. Its value will usually be in the range

between 0.1 and 0.2.

Knc
0 -parameter

Knc
0 is defined as a stress ratio in a state of normal consolidation.

Knc
0 =

σ′xx
σ′yy

(D.1)

Slope of the critical state line

In order to obtain the correct shear strength, the parameter M should be based

on the friction angle φ. The critical state line is comparable with Drucker-Prager

failure line, and represents a (circular) cone in principal stress space. Hence, the

value of M can be obtained from φ in a similar way as the Drucker-Prager friction

constant α is obtained from φ.
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Initial overconsolidation ratio

The initial overconsolidation ratio OCR0 is defined as the highest stress experienced

divided by the current stress. A soil which is currently experiencing its highest stress

is said to be normally consolidated and to have an OCR of one.

Initial pre-overburden pressure

The initial pre-overburden pressure POP0 is defined as:

POP0 = σ′p − σ′yy

where σ′p is the pre-consolidation stress (the greatest vertical stress reached previ-

ously) and σ′yy is the in situ effective vertical stress.

D.0.5 SO viscid model parameters

Compared to the SO inviscid model, the SO viscid model requires two additional

parameters as input: Cα and v̇0. All other parameters remain the same as in the

SO inviscid model. The input two additional parameters of viscid model are listed

below:

parameter description unit

Cα : Coefficient of secondary compression [-]

v̇0 : Initial volumetric strain rate [day−1]

Coefficient of secondary compression

The coefficient of secondary compression Cα is expressed as:

Cα =
dεv

d(ln t)
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at time tc. Mesri & Godlewski (1977) proposed a correlation to find Cα,e for clay

and peat as:

Cα,e/λ = 0.05± 0.02 (clay) Cα,e/λ = 0.07± 0.02 (peat)

where Cα and Cα,e are correlated by Sekiguchi & Ohta (1977) as follows:

Cα =
Cα,e

1 + e0

Initial volumetric strain rate

The physical meaning of initial volumetric strain rate is obvious (Sekiguchi, 1984),

but it is rather difficult to estimate from the laboratory test data. The initial

volumetric strain rate at reference state is expressed as:

v̇0 =
Cα
tc

where tc is the time at the end of primary consolidation. tc can be derived (Sekiguchi

& Ohta, 1977) as:

tc ≈ t90 =
H2Tv(90%)

cv

where Cv is coefficient of consolidation has dimensions L2T−1. H is the drainage

distance and Tv(90%) is the nondimensional time factor. Time factor Tv(90%) is

constant using

The following equations are summarized from Iizuka & Ohta (1987) to deter-

mine the coefficient of consolidation Cv.

mv =
3λ

(1 + e0)(1 + 2K0)σ′v0

Cv =
k

mvγw

logCv(cm
2/min) = −0.025PI − 0.25± 1
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Appendix E

Derivatives of B-SCLAY1S

The derivatives related to the bubble surface is detailed in this section.

if we set Q̄ = (s̄ − s̄b) : (s̄ − s̄b), then bubble surface of B-SCLAY1S model

become:

fb =
3

2

Q̄

M2 − α2
+ (p′ − p′b)2 −R2

(p′m
2

)2

= 0 (E.1)

Q̄ = (s̄xx − s̄bxx)2 + (s̄yy − s̄byy)2 + (s̄zz − s̄bzz)2 + (s̄xy − s̄bxy)2+

(s̄yz − s̄byz)2 + (s̄zx − s̄bzx)2
(E.2)

∂fb
∂σij

=
∂fb
∂p′

∂p′

∂σij
+
∂fb
∂Q̄

∂Q̄

∂σij
(E.3)

∂fb
∂p′

=
3

2

1

M2 − α2

∂Q̄

∂p′
+ 2(p′ − p′b

2
) (E.4)

∂Q̄

∂p′
= −2

[
(s̄xx − s̄bxx)(1 + αxx) + (s̄yy − s̄byy)(1 + αyy)+

(s̄zz − s̄bzz)(1 + αzz) +
√

2(s̄xy − s̄bxy)αxy+
√

2(s̄yz − s̄byz)αyz +
√

2(s̄zx − s̄bzx)αzx
] (E.5)

∂fb
∂Q̄

=
3

2

1

M2 − α2
(E.6)
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∂Q̄

∂σ′xx
= 2
[
(s̄xx − s̄bxx)−

1

3
(s̄xx − s̄bxx)(1 + αxx)−

1

3
(s̄yy − s̄byy)(1 + αyy)−

1

3
(s̄zz − s̄bzz)(1 + αzz)−

√
2

3
(s̄xy − s̄bxy)αxy −

√
2

3
(s̄yz − s̄byz)αyz−

√
2

3
(s̄zx − s̄bzx)αzx

] (E.7)

∂Q̄

∂σ′yy
= 2
[
(s̄yy − s̄byy)−

1

3
(s̄xx − s̄bxx)(1 + αxx)−

1

3
(s̄yy − s̄byy)(1 + αyy)−

1

3
(s̄zz − s̄bzz)(1 + αzz)−

√
2

3
(s̄xy − s̄bxy)αxy −

√
2

3
(s̄yz − s̄byz)αyz−

√
2

3
(s̄zx − s̄bzx)αzx

] (E.8)

∂Q̄

∂σ′zz
= 2
[
(s̄zz − s̄bzz) −

1

3
(s̄xx − s̄bxx)(1 + αxx)−

1

3
(s̄yy − s̄byy)(1 + αyy)−

1

3
(s̄zz − s̄bzz)(1 + αzz)−

√
2

3
(s̄xy − s̄bxy)αxy −

√
2

3
(s̄yz − s̄byz)αyz−

√
2

3
(s̄zx − s̄bzx)αzx

] (E.9)

∂Q̄

∂σ′xy
= 2
√

2(s̄xy − s̄bxy) (E.10)

∂Q̄

∂σ′yz
= 2
√

2(s̄yz − s̄byz) (E.11)

∂Q̄

∂σ′zx
= 2
√

2(s̄zx − s̄bzx) (E.12)

∂Fb
∂s̄

= 3
s̄− s̄b
M2 − α2

(E.13)
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Appendix F

Determination of B-SCLAY1S

model parameters

Table F.1 shows the required parameters for B-SCLAY1S and their meanings.

Compression index λ & λi

These parameter can be obtained from an isotropic compression test. When plotting

the logarithm of the mean stress as a function of the void ratio for clay type materials,

the plot can be approximated by lines . The initial slope of the primary loading

loading line gives the compression index as shown in Fig. F.1.

Poisson’s ratio ν ′

The Poisson’s ratio (ν ′) is a real elastic parameter and not a pseudo-elasticity con-

stant as used in the Mohr-Coulomb model. Its value will usually be in the range

between 0.1 and 0.3.
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Table F.1: Parameters required for the B-SCLAY1S model

λ : Compression index (B-SCLAY1) [-]

λi : Intrinsic compression index (B-SCLAY1S) [-]

κ : Swelling index [-]

ν ′ : Poisson’s ratio [-]

M : Slope of critical state line [-]

e0 : Initial void ratio [-]

α0 : Initial inclination of yield surface [-]

µ : Absolute effectiveness of rotational hardening [-]

β : Relative effectiveness of rotational hardening [-]

χ0 : Initial bonding [-]

a : Absolute rate of destructuration [-]

b : Relative rate of destructuration [-]

R : Ratio of the size of the bubble surface

to that of bounding surface [-]

ψ : Exponent in the hardening function Hb [-]

OCR0 : Initial overconsolidation ratio [-]

POP0 : Initial pre-overburden pressure [kN/m2]

Knc
0 -parameter

Knc
0 is defined as stress ratio in a state of normal consolidation.

Knc
0 =

σ′xx
σ′yy

(F.1)
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Figure F.1: The compression index of remoulded and natural soil

Initial void ratio e0

Initial void ratio e0 is a physical characteristic of soil sample. The e0 is defined as

follows:

e0 =
volume of voids

volume of solids
(F.2)

Slope of the critical state line M

In order to obtain the correct shear strength, the parameter M should be based

on the friction angle ϕ′. The critical state line is comparable with Drucker-Prager

failure line, and represents a (circular) cone in principal stress space. Hence, the

value of M can be obtained from ϕ′ in a similar way as the Drucker-Prager friction

constant α is obtained from ϕ′. Hence, the parameter M can be determined from

the critical state soil friction angle ϕ′ by the following expression:

M =
6 sinϕ′

3− sinϕ′
(F.3)
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Initial overconsolidation ratio OCR0

The initial overconsolidation ratio OCR0 is defined as the highest stress experienced

divided by the current stress, see Eq. F.4. A soil which is currently experiencing its

highest stress is said to be normally consolidated and to have an OCR of one.

OCR0 =
σ′p
σ′yy

(F.4)

Initial pre-overburden pressure

The initial pre-overburden pressure POP0 is defined as:

POP0 = σ′p − σ′yy (F.5)

where σ′p is the pre-consolidation stress (the greatest vertical stress reached

previously) and σ′yy is the in situ effective vertical stress.

Initial inclination α0

Wheeler et al. (2003) described a procedure to estimate the initial inclination α0 for

normal or slightly overconsolidated soils. The initial inclination of the yield surface

can be derived by following expression:

α0 =
η2
K0 + 3ηK0 −M2

3
(F.6)

M is the slope of the critical state line and ηK0 is normally consolidated stress ratio.

ηK0 can be estimated using Jaky’s empirical formula (K0 = 1 − sinϕ′; ϕ′ is the

critical state friction angle) as following expression:

ηK0 =
sinϕ′

1− 2
3

sinϕ′
(F.7)

Hence, the initial inclination of yield surface α0 can be determined using critical

state friction angle ϕ′ of the soil.
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Relative effectiveness of rotational hardening β

Model parameter β defines the relative effectiveness of plastic shear strains and plas-

tic volumetric strains in the rotational hardening. Wheeler et al. (2003) suggest that

the soil parameter β corresponding to the α0, can be calculated from the following

expression:

β =
3(4M2 − 4η2

K0 − 3ηK0)

8(η2
K0 −M2 − 2ηK0)

(F.8)

Absolute effectiveness of rotational hardening µ

The parameter µ can not be derived through a direct method. Therefore, it can be

determined through several model simulations with different values of µ compare

the predicted behaviour with observed behaviour. Alternatively, it can be found

from a empirical formula suggested by Zentar et al. (2002) as follows:

µ =
10....20

λ
(F.9)

Initial bonding χ0

Koskinen et al. (2002a) suggested a procedure for determining the initial value of

χ0. The value of χ0 can be best derived from the sensitivity St measured from a fall

cone test. St provides an estimate for the bonding parameter χ0.

χ0 ≈ St − 1 (F.10)

Absolute and relative rate of destructuration a, b

Koskinen et al. (2002a) suggested an optimization procedure using model simulations

of laboratory test to derive parameters a and b. First, simulating a drained triaxial

test involving a low value of η, the best value for parameter a is achieved. For

example, a stress path close to isotropic compression can be chosen, where the shear

strains are small and hence influence of parameter b is negligible (Krenn, 2008). The

parameter b is selected through modelling test involving a high value of η where the

contribution from shear strains is dominant (Krenn, 2008).
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Appendix G

Parametric study of B-SCLAY1S

The B-SCLAY1S model simulations of triaxial tests on vertical samples (McGinty,

2006) of Bothkennar clay was used in test Series B named Test B7. The values of

stress ratio η in the first and second loading stages were η1 = 0 & η2 = 0. Sample

was first loaded isotropically from mean effective stress of p′ = 16 kPa to p′ = 210

kPa and then isotropically unloaded to mean effective stress of p′ = 14.8 kPa and

again isotropically reloaded to mean effective stress of p′ = 450 kPa.
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(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.1: Influence of bubble size R of Test B7 (McGinty, 2006) simulation, where

η1 = 0 and η2 = 0

248



(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.2: Influence of hardening parameter ψ of Test B7 (McGinty, 2006) simu-

lation, where η1 = 0 and η2 = 0
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(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.3: Influence of intrinsic compression index λi of Test B7 (McGinty, 2006)

simulation, where η1 = 0 and η2 = 0
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(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.4: Influence of swelling index κ of Test B7 (McGinty, 2006) simulation,

where η1 = 0 and η2 = 0
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(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.5: Influence of Poisson’s ratio ν ′ of Test B7 (McGinty, 2006) simulation,

where η1 = 0 and η2 = 0
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(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.6: Influence of anisotropy parameter µ of Test B7 (McGinty, 2006) simu-

lation, where η1 = 0 and η2 = 0
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(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.7: Influence of anisotropy parameter β of Test B7 (McGinty, 2006) simu-

lation, where η1 = 0 and η2 = 0
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(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.8: Influence of initial bonding χ0 of Test B7 (McGinty, 2006) simulation,

where η1 = 0 and η2 = 0
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(a) compression behaviour (b) axial stress-strain behaviour

(c) strain paths

Figure G.9: Influence of destructurational parameter a and b of Test B7 (McGinty,

2006) simulation, where η1 = 0 and η2 = 0

256


	List of Figures
	List of Tables
	List of Algorithms
	List of Notations 
	1 Introduction
	1.1 Objectives
	1.2 Secondment
	1.3 Layout of Thesis

	2 Constitutive Models
	2.1 Simple soil models
	2.1.1 Elastic models
	2.1.2  Elasto-plastic models
	2.1.2.1 Elastic-perfectly plastic models
	2.1.2.2 Hardening elastic-plastic models


	2.2 Critical State Theory
	2.2.1 Original Cam-clay (CC) model
	2.2.2 Modified Cam-clay (MCC) model
	2.2.3 Sekiguchi-Ohta (SO) model
	2.2.3.1 SO inviscid model
	2.2.3.2 SO viscid model

	2.2.4 Shortcomings of the original, modified Cam clay and Sekiguchi-Ohta models

	2.3 Advanced critical state models
	2.3.1 S-CLAY1 model
	2.3.2 S-CLAY1S model
	2.3.3 EVP-SCLAY1S model
	2.3.4 Shortcomings of advanced critical state models

	2.4 Cyclic loading models
	2.4.1 Bounding surface model
	2.4.2 MIT-E3 model
	2.4.3 Subloading surface model
	2.4.4 Bubble surface model

	2.5 Other alternative approaches in soil models
	2.5.1 Hyperplasticity model
	2.5.2 Hypoplasticity model
	2.5.3 Multilaminate model
	2.5.4 Disturbed state concept model

	2.6 Summary

	3 Further improvement and implementation of S-CLAY1S model
	3.1 Mathematical formulation in general stress space
	3.1.1 Elastic behaviour
	3.1.2 Yield function
	3.1.3 Flow rule
	3.1.4 Hardening rule
	3.1.5 Hardening modulus

	3.2 Numerical implementation 
	3.2.1 Euler forward (explicit) method
	3.2.2 Euler backward (implicit) method
	3.2.3 Modified Newton-Raphson (implicit) method

	3.3 Performance comparison of different algorithms
	3.3.1 Simulations of strain-controlled triaxial tests
	3.3.2 Simulations of benchmark test

	3.4 Lode angle dependency
	3.4.1 Formulation of Lode angle dependency
	3.4.2 Verification and validation of Lode angle dependency
	3.4.3 Benchmark applications using Lode angle dependency

	3.5 Summary

	4 Implementation of Sekiguchi-Ohta (SO) models 
	4.1 Introduction 
	4.2 SO inviscid model 
	4.2.1 Mathematical formulation of the SO inviscid model 
	4.2.2 Singularity of the SO inviscid model
	4.2.3 Implementation of the inviscid SO model into PLAXIS 
	4.2.3.1 Modified Newton-Raphson (MNR) method
	4.2.3.2 Stolle's implicit method

	4.2.4 Verification of the SO inviscid model

	4.3 SO viscid model
	4.3.1 Mathematical formulation of the SO viscid model
	4.3.2 Singularity of the SO viscid model
	4.3.3 Dry side of the SO viscid model
	4.3.4 Verification of the SO viscid model

	4.4 Application to a benchmark problem
	4.5 Summary

	5 B-SCLAY1S model formulation and its implementation
	5.1 Introduction
	5.2 Triaxial stress space 
	5.2.1 Elastic part of the model
	5.2.2 Equation of surfaces
	5.2.3 Flow rule
	5.2.4 Hardening rules
	5.2.5 Hardening modulus

	5.3 General stress space
	5.3.1 Preliminaries
	5.3.2 Elastic part of the model
	5.3.3 Yield and plastic potential surface
	5.3.4 Equation of surface
	5.3.5 Flow rule
	5.3.6 Hardening rules
	5.3.7 Hardening modulus
	5.3.8 Centre of Bubble 
	5.3.9 Pore water pressure

	5.4 Determination of model parameters 
	5.5 Numerical implementation into PLAXIS 
	5.6 Summary

	6 Parametric study of B-SCLAY1S 
	6.1 Introduction 
	6.2 Size of Bubble 
	6.3 Plastic modulus parameter
	6.4 Standard parameters
	6.5 Anisotropy parameters
	6.6 Destructuration parameter
	6.7 Small strain stiffness
	6.8 Constant q slow cyclic triaxial simulations
	6.9 Summary 

	7 Verification and application of the B-SCLAY1S model 
	7.1 Verification against Al-Tabbaa (1987) simulations
	7.2 Comparison with Messerklinger (2006) triaxial test results 
	7.2.1 Compression test: S2T4 (p' = constant) 
	7.2.2 Compression test: S2cT1 (  = 0.9 ) 
	7.2.3 Isotropic compression test: S2T3 (q = constant) 
	7.2.4 Extension test: S2aT4 (p' = constant) 

	7.3 Comparison with McGinty (2006) triaxial results 
	7.4 Application to an embankment 
	7.5 Application to a pile driving problem 
	7.6 Summary

	8 Conclusions and Recommendations
	8.1 Summary and Conclusions
	8.1.1  Numerical algorithms to implement into FE code
	8.1.2  Lode angle dependency 
	8.1.3 Hybrid algorithm to implement the SO models 
	8.1.4  Bubble surface B-SCLAY1S model 

	8.2 Recommendations for future work
	8.2.1  Modified S-CLAY1S model
	8.2.2  Sekiguchi-Ohta models
	8.2.3  B-SCLAY1S model 


	References
	A Definitions in general stress space
	B Derivatives of S-CLAY1S
	C The SO model
	D Determination of SO models parameters
	D.0.4 SO inviscid model parameters
	D.0.5 SO viscid model parameters


	E Derivatives of B-SCLAY1S
	F Determination of B-SCLAY1S model parameters
	G Parametric study of B-SCLAY1S

