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Abstract

The field of computational neuroscience has seen significant growth, driven by the

development of sophisticated machine learning algorithms. These advancements allow

for detailed analysis of brain signals, helping researchers to discover new properties and

phenomena within the human brain. Progress in machine learning, especially with the

introduction of the transformer architecture and Large Language Models (LLMs), has

revolutionized Natural Language Processing (NLP) by achieving unprecedented results.

The continuous evolution of these methods highlights the ongoing advancements in NLP

technologies and applications.

Beyond NLP, machine learning models like Data2Vec and Wav2Vec2 have broad-

ened possibilities in image and video processing by integrating multiple data modalities.

These models improve multi-modal frameworks, enhancing the capability to interpret

various inputs, such as combining textual and visual data in question-answering sys-

tems. This integration signals a paradigm shift in machine learning, exemplified by

advancements like voice-activated assistants and Google Lens, which offer innovative

interaction methods. This thesis explores the potential of brain-computer powered in-

terfaces for user interaction through cognitive processes as an alternative way of inter-

acting with a computer system, recognizing the need to address foundational challenges

to advance this cutting-edge field. Due to the early stages of this innovative discipline,

substantial groundwork is required to identify and systematically resolve the multi-

faceted challenges intrinsic to the development of such advanced interaction systems,

thereby establishing a robust foundation for future advancements in this intriguing

domain.

In the Chapter 1 of this thesis, a thoroughly developed introduction is presented.
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Chapter 0. Abstract

This section fulfils several critical functions: it outlines the structure of the thesis, pro-

viding readers with a coherent roadmap of the thesis’s contents and the trajectory of

the forthcoming discussion. Additionally, it concisely summarizes the research achieve-

ments to date, offering a retrospective overview of the progress attained during the

investigation. The chapter also examines the foundational motivation driving the re-

search effort, clarifying the reasoning behind the development of the proposed system.

Central to this section is the expression of the core research questions that the thesis

aims to explore, which are essential in steering the scholarly inquiry and contributing

to the broader academic dialogue.

Within Chapter 2 of the present thesis, a comprehensive literature review has been

rigorously executed to encompass a broad spectrum of the most esteemed brain imaging

modalities, along with their recent advancements within the multidisciplinary sphere

of neuroscience. This extensive analysis also highlights certain contemporary develop-

ments in machine learning that are pertinent to the field of neuroscience. Moreover, it

presents particular tools, such as Data2Vec, which primarily are not being specifically

intended for interaction with neural data, bear potential utility in the conceptualization

and design of such a complex system.

In Chapter 3, the proposed system is introduced in detail. This chapter offers an

exhaustive description of the system, articulating all of its essential components and

anticipating potential challenges that may arise during its development. A schematic

high-level design of the system is presented. It is crucial to emphasize that the full

implementation of such an ambitious system lies beyond the scope of this thesis. Chap-

ters 4 through 6 provide a thorough investigation into three critical components of this

complex system. Each component is meticulously examined to clarify the challenges

encountered, the recent progress made, and the subsequent improvements achieved to

integrate these components seamlessly into the comprehensive system framework.

In Chapter 4, we employ a rigorous analytical methodology to evaluate the con-

gruence of advanced natural language processing models with empirical neuroscientific

data. This evaluation is imperative for the prospective implementation of models capa-

ble of interpreting human cognitive processes. Our findings validate that while certain
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models do not achieve complete congruence with brain data, they demonstrate a sig-

nificant level of alignment, thereby affirming the proficiency of current state-of-the-art

models in acquiring intricate representations.

Chapter 5 embarks on a comprehensive investigation into the domain of text gen-

eration derived from neurological data. This investigation is motivated by two primary

considerations. Firstly, text serves as one of the most prevalent means through which

individuals interact with computational systems. A variety of mechanisms have been

developed to facilitate this interaction with both precision and security. Adhering to

the principle of eschewing the duplication of existing mechanisms, it was hypothesized

that if a model could be developed to generate text from neural signals, it could be

seamlessly integrated with existing systems. The brain’s capacity to provide precise lex-

ical terms could, therefore, enhance search engine inputs by mitigating issues related

to query disambiguation.

Secondly, within the domain of Neuroscience, the ambition to generate text from

brain activity, particularly through non-invasive neuroimaging techniques, has persisted

as a longstanding intellectual venture among many researchers. As presented in Chap-

ter 5, the preliminary attempt to actualize this type of generation involved utilizing

transformer models to synthesize brain features and subsequently applying a large lan-

guage model to produce text. Diverse activation functions were employed to optimize

the performance of the processing pipeline. This approach was based on the obser-

vation that conventional activation functions predominantly assume linearity within

the data at some stage of the training process, as demonstrated by their graphical

representations.

Nonetheless, empirical studies have indicated that the aforementioned assumption

fails to hold in real-world data situations, notably within meteorological datasets. The

empirical assessment of various activation functions identified that those based on poly-

nomials, along with polynomial functions featuring adjustable constants fine-tuned dur-

ing the training phase, emerged as the most effective. These results represent a signif-

icant advancement in the neural data-to-text transformation framework, presenting a

novel dimension to the fields of computational and neuroscientific research.
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In the course of advancing this thesis, particularly in the forthcoming Chapter 6, an

exploration is undertaken into the development of a novel brain encoder. This encoder

seeks to establish a comprehensive and generalized modelling framework capable of

effectively learning and encapsulating general features pertinent to the cognitive pro-

cesses by which the human brain interprets language. The impetus for this research

trajectory stems from the findings of Chapter 5, wherein, despite surpassing existing

baseline results, there remained a significant gap in achieving authentic brain-to-text

decoding capabilities. The hypothesis informing this investigation posits that the lim-

itation does not reside in the incorporation of specific neural features derived from the

transformer encoder model. Chapter 6 further explores how advanced methodologies

such as Data2Vec and Wav2Vec2 might be harnessed to formulate such holistic brain

’embeddings.’ Previous efforts in this domain have predominantly focused on utilizing

generic embeddings for mental state classification, with minimal focus on their poten-

tial in the generation domain. Consequently, Chapter 6 articulates and implements

a systematic pipeline designed to construct these generic embeddings, systematically

applying them to the complex domain of brain-to-text conversion processes, thereby

offering a novel perspective and making a significant contribution to the field.

In Chapter 7, we present the design of a novel interface that offers a dual contri-

bution to both the Neuroscience and Machine Learning communities. The primary

objective of this thesis was to develop a software system that enables users to interact

through brain activity. We have designed and implemented a chatbot interface capa-

ble of concurrently capturing brain data while functioning as a conventional chatbot.

Furthermore, this chatbot is engineered to be adaptable and highly customizable with

millisecond precision, allowing it to serve as a bridge between machine learning and

neuroscience, as well as a platform for further neuroscience-focused data collection.

In the final Chapter 8 of this thesis, a comprehensive and detailed synthesis of the

research findings is meticulously articulated, with particular emphasis on the systematic

addressing of each research question. Additionally, this chapter scrupulously delineates

the current limitations that hinder the development of such an innovative system. A

thorough and comprehensive report is subsequently presented, providing robust and
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practical guidelines for leveraging the insights derived from this research. Such a report

is crucial for constructing a framework upon which future scholarly research can build

to ultimately achieve the completion and realization of this sophisticated system.
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Chapter 1

Introduction

1.1 Introduction

This thesis addresses a fundamental challenge in current human-computer interaction

(HCI) paradigms: the limitations imposed by traditional input methods such as key-

boards, mice, voice commands, or touchscreens. These conventional modalities, while

functional, restrict the fluidity and intuitiveness of communication with digital sys-

tems. To overcome these limitations, this research investigates the development of a

Brain-Computer Interface (BCI) system that facilitates interaction and control of dig-

ital platforms using only cognitive activity, thereby eliminating the need for physical

interaction.

The study presents a comprehensive exploration of a system that allows the user

to engage directly with technology via brain signals alone. The primary objective is

to establish a seamless interaction mechanism that relies solely on the user’s cognitive

faculties. By focusing on the integration of Brain-Computer Interfaces (BCIs) with

machine learning, particularly in the context of natural language processing (NLP), this

research aims to create a novel framework for digital interaction. The research delves

into the feasibility of decoding neural signals into coherent text, with the dual goals of

enhancing human-computer communication and contributing to foundational scientific

understanding. The creation of such a system hinges on the effective combination of

brain signal data and machine learning models capable of real-time interpretation and
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translation of human thought.

Moreover it outlines a blueprint for the construction of such a system, with a par-

ticular emphasis on one core component: the machine learning-based decoding of brain

signals into natural text. This focus is selected both because it represents a critical

functional challenge and because the complete system exceeds the developmental scope

of a single doctoral study.

Based on this focus, the thesis explores how various brain modalities—such as fMRI

and EEG—can be combined with contemporary AI tools in the NLP domain. Rather

than attempting to redefine existing text-based HCI pipelines, this research proposes

a novel input layer: text generation from brain activity. This addition can integrate

seamlessly into existing HCI infrastructures while offering an enriched, non-physical

modality for interaction.

The use of machine learning models for tasks like mental workload assessment and

emotion detection has been investigated in earlier studies [5–7]. Even though scientists

have successfully manage to classify such states a long standing achievement for true

Brain Computer Interface (BCI) is to be able to generate speech from text [8,9]. Cur-

rently in the domain of NLP ,LLMs excel on generating text amongst other tasks [10,11].

Nevertheless, little research has been done on the connection between the development

of LLMs and the brain mechanisms underlying language comprehension and how these

models can be utilised to achieve brain to text generation [12].

Moreover large volumes of data are produced by the brain imaging methods, which

can be difficult for people to understand. Recent developments in deep learning and

artificial intelligence, however, have created models that can efficiently handle these

data and identify complex patterns in them [13, 14]. This capacity could have a big

impact on how we comprehend the human brain in the future and help solve its many

mysteries. Researchers may be able to better understand intricate neural processes by

utilizing these cutting-edge AI technologies, which could ultimately result in revolu-

tionary discoveries in cognitive neuroscience and related fields.

Finally this research aims to contribute to our understanding of language cognition

and laying the groundwork for more intuitive AI applications. In doing so, it also brings
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us closer to a new generation of more adaptive, general-purpose, and real-time BCIs

that enable users to interact with digital systems using only their thoughts. Advances

in brain data acquisition—such as fMRI, EEG, and MEG—have enabled diverse ex-

periments that identify brain functions ranging from emotional processing [15–17] to

semantic comprehension [18,19]. These techniques provide the foundational data upon

which AI models can be trained. As neuroscience uncovers the structural and func-

tional complexities of cognition, machine learning has evolved in parallel, inspired by

biological processes to develop models capable of reasoning and language generation.

The emergence of LLMs has brought us closer than ever to human-level linguistic per-

formance in machines, including reasoning, coherence, and even passing the Turing

Test.

1.2 Motivation

The emerging confluence of neuroscience and artificial intelligence offers unparalleled

prospects for advancing computational technologies as well as enhancing our compre-

hension of human cognition. Furthermore, recent developments in machine learning

have facilitated interactions with computer systems in modes that transcend text in-

put, including the utilization of voice commands and images as a search medium.

This thesis undertakes an investigation into a promising area by addressing a notable

gap in the prevailing research landscape, specifically the integration of brain modal-

ities with LLMs to examine their potential utility in enabling mechanisms for text

generation from brain data and facilitating interaction with computer systems. Fur-

thermore, it devises a comprehensive blueprint delineating the essential components

and inherent challenges in constructing such a system. Lastly, it attempts to address

certain challenges associated with a pivotal component in the architecture, namely the

brain-to-text generator.

Despite significant advances in machine learning applications for tasks such as men-

tal workload assessment and emotion detection, a chasm remains unabridged: the

comparative analysis of language processing in both human brains and LLMs. This

undertaking constitutes the primary motivation for our research. By establishing cor-
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relations between how humans and machines comprehend language, we aspire to bol-

ster the development of AI applications that better mimic human-like understanding,

leading to more authentic and nuanced natural language interfaces. The potential

for such advancements holds particular promise in the realm of BCIs. As we inno-

vate methods to convert raw brain data into coherent natural text through AI, the

resulting Bi-directional communication could dramatically transform the interaction

between humans and machines. The intricate conversion of neural signals into lan-

guage, if achieved, could mark a transformative milestone in empowering individuals

with communication impairments, enabling real-time dialogue through BCIs.

Moreover, the methodological advancements anticipated from this work promise

substantial contributions to cognitive neuroscience. The expansion of techniques such

as fMRI, EEG, and MEG, paired with robust AI models, could elucidate the neural

correlates of language processing. By deciphering these patterns, the thesis aspires to

lay the groundwork for novel insights into the cognitive processes underlying language

comprehension.

In summary, this thesis is wishes to explore the intersection of neuroscience and

artificial intelligence, particularly the integration of brain modalities with LLMs to

enable text generation from brain data and improve human-computer interactions. It

addresses gaps in current research by proposing a system that facilitates bi-directional

communication between the brain and computers, potentially benefiting individuals

with communication impairments. The work focuses on mapping language processing

in humans and LLMs to enhance AI’s mimicry of human understanding. The research

holds promise for BCIs and aims to advance cognitive neuroscience by employing AI

models with neuroimaging technologies like fMRI, EEG, and MEG to better understand

language comprehension processes.

1.3 Thesis statement

This thesis explores the novel concept of developing an advanced system designed to

enable seamless user interaction exclusively through cognitive functions. The research

concentrates chiefly on BCIs and seeks to promote progress in direct mental interaction
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with digital platforms, thereby offering a unique user experience.

The primary objective of this thesis is to provide a detailed framework for a sys-

tem that integrates machine learning models to translate human thoughts into textual

data derived from brain signals. This domain was recognized as a critical functional

component essential for the system’s development, selected because of its broad scope,

which surpasses the limits of a single PhD thesis.

In pursuit of this vision, the thesis investigates the intersection of various brain

modalities with contemporary AI tools, particularly in the domain of natural language

processing. Given the extensive body of research on text-based computer interac-

tions, this thesis contributes a novel dimension by proposing models for text genera-

tion, positing their potential utility in enhancing current human-computer interaction

frameworks.

Despite significant progress in employing machine learning to assess mental work-

load and identify emotions, the generation of spoken text from neural inputs continues

to be an essential objective for authentic BCIs. NLP has achieved significant progress

in text generation, largely facilitated by LLMs. However, there is limited investiga-

tion into the interrelationship between these models and the brain’s mechanisms for

language comprehension.

This thesis seeks to fill this gap by employing neuroimaging technologies such as

fMRI, EEG, and MEG. It argues that the development of machine learning models

utilizing brain data will elucidate neural processes, thereby offering significant insights

into the field of cognitive neuroscience.

The foundational motivation for this thesis illustrates the emerging synergy between

neuroscience and AI, providing unparalleled opportunities for the advancement of com-

putational technologies and the deepening of human cognitive understanding. The

incorporation of brain modalities with LLMs suggests transformative applications that

facilitate brain data-assisted text generation for the enhancement of human-computer

interfaces. In conclusion, this thesis seeks to pioneer the direct communication between

the brain and computers, specifically addressing individuals with communication im-

pairments while augmenting the field of human-computer interaction by aligning AI
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applications with human-like language processing emulation. It aims to contribute

significantly to both cognitive neuroscience and AI, establishing foundational frame-

works for cutting-edge technological applications and enhancing humanity’s cognitive

understanding.

1.4 Research Questions

This thesis aims to understand one main question :

1. To what extent can we design and implement a system that enables

users to generate coherent natural language text from brain signals

in real time, thereby facilitating interaction with a computer without

physical input?

To achieve this main research question we divided this thesis to address some sub-

questions. The answer to these questions should pave the path towards achieving the

construction of the system.

1. Neural-Linguistic Alignment: How closely do the neural representations of

natural language in the brain align with the internal representations of language

in large language models (LLMs)?

2. Feasibility of Brain Data Training : Can machine learning models, partic-

ularly deep learning architectures, be effectively trained on neuroimaging data

(e.g., EEG, fMRI) to learn mappings between brain activity and language repre-

sentations?

3. Real-Time Brain-to-Text Decoding: : Is it possible to decode raw brain

signals into accurate and contextually appropriate natural language text in real

time using current AI techniques?

1.5 Publications

1. Role of Punctuation in Semantic Mapping Between Brain and Transformer Mod-

els [20]. - Published in ACAIN 2022
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2. On the Role of Activation Functions in EEG-To-Text Decoder [21]. - Published

in ACAIN 2024

3. Customizable LLM-Powered Chatbot for Behavioral Science Research [22]. -

Submitted in SIGIR 2025

4. On Creating A Brain-To-Text Decoder [23]. - Submitted in Arxiv

1.6 Overall Layout and Outline

This thesis is divided into 8 chapters.

Chapter 1 : Introduction

Chapter 1 aims to provide an overall introduction to the thesis. It describes in

general what this thesis is about and outlines also the motivation behind it. It also

outlines the thesis statement and the research objectives for this thesis.

Chapter 2 : Literature Review

Chapter 2 presents a concise and thorough literature review around every pillar of

this research. It provides a thorough research on 3 different brain imaging techniques

(fMRI, EEG, electronic arrays), and how these techniques have been used so far on

training machine learning models. It also provides a blueprint on the landscape of

machine learning models outlining all the latest advancements in the field. Finally, it

outlines the state-of-the-art models used in NLP and how they can be used or have

already been used with brain data or in the field of Neuroscience.

Chapter 3 : Core System

Chapter 3 seeks to present a comprehensive implementation of a system enabling

user interaction through brain activity. It further aims to construct a conceptual frame-

work of the entire system and to elucidate potential challenges inherent in its develop-

ment. Lastly, it offers a synopsis of the system components that will be examined in

subsequent sections of the thesis.

Chapter 4 : fMRI Encoder

Chapter 4 introduces the fMRI Encoder. The fMRI Encoder is a collection of models

that by utilising a novel technique showed to be brain aligned in terms of how they
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understand and encode language. We present the methodology to produce such fMRI

encoders and we present our results that show the validity of our approach.

Chapter 5 : Activation Functions

Chapter 5 explores the application of various activation functions for improved

fitting of brain data and more efficient training of deep learning models on such data.

We detail our methodology and outcomes when employing diverse activation functions

within the same model architecture, highlighting how our findings differ based on the

activation function used.

Chapter 6 : Brain Decoder

Chapter 6 details the implementation of the Brain Decoder, outlining the method-

ology employed to achieve real-time brain decoding within an open vocabulary frame-

work. It further presents the experimental results and insights gleaned from utilizing

the Brain Decoder.

Chapter 7 : NSChat Chapter 7 delineates the implementation of NSChat. This

chapter provides a detailed exposition of the system and its present features. It expli-

cates the usage and advantages of this system in comparison to other extant systems.

Lastly, it presents a thorough analysis of all the prospective new features anticipated

in subsequent versions of the system.

Chapter 8 : Conclusion

Chapter 8 encapsulates the key points of the document, emphasizing the importance

of the results, and frequently presents suggestions or implications for further research or

application. This chapter concludes the document by connecting back to the introduc-

tion, ensuring that the reader grasps the broader message.It also outlines the potential

directions for further research, possible improvements or expansions upon the current

study, and related questions that remain unanswered. It might identify limitations of

the present work and suggest how future studies could address these limitations. Ad-

ditionally, it could propose applications of the research findings in real-world contexts

or explore how emerging technologies might impact the research area.
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Literature Review

2.1 Introduction

This chapter presents an extensive and thorough literature review, forming an integral

component of this thesis.It begins with a foundational presentation, of a chapter that

meticulously acknowledges and categorizes the quintessential studies associated with

each specific brain-imaging technique. This categorization is executed with methodical

precision, advancing sequentially through Sections 2.2.1 to 2.2.3. Thereafter, Section

2.2.4 provides an in-depth and detailed exploration of Neurolinguistics. Within this

section, significant emphasis is placed on current pioneering research efforts concerning

EEG-to-text decoding methodologies, as further articulated in Section 2.4. This sec-

tion highlights the crucial importance of converting neural signals into coherent and

meaningful linguistic forms.

Subsequent to Section 2.2.5, a succinct overview of the nascent field of ”NeuraSearch”

is presented. NeuraSearch represents an evolving discipline focused on the integration

of neuroscience with information retrieval through the application of machine learn-

ing techniques. This chapter delivers a comprehensive yet concise examination of the

current state of the field, emphasizing the applications and interconnections between

machine learning and neuroscience. It seeks to provide insights into the intersection

of these domains, showcasing recent developments and potential future research tra-

jectories within NeuraSearch. By investigating the synergies between these disciplines,
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this work aims to enhance the understanding of NeuraSearch and its relevance to the

advancement of both fields.

Finally, in its concluding segments, this review examines the integration of LLMs

within the framework of EEG-to-text decoding systems, as discussed in Section 2.2.4.

It further contemplates the profound potential of LLMs to synergize proficiently with

various modalities, as outlined in Section 2.3.1. The chapter’s meticulously structured

organization not only compiles and synthesizes the existing body of literature but also

adeptly identifies critical research gaps while offering insightful prospects for future

scholarly explorations. Thus, it provides a robust and substantial foundation for the

ensuing chapters of this academic thesis.

2.2 Neuroscience

2.2.1 fMRI

fMRI stands as a sophisticated, non-invasive neuroimaging modality designed to quan-

tify and map cerebral activity through the detection of alterations in cerebral blood

flow and oxygenation levels, which are inherently linked to neuronal activation dynam-

ics. The principal mechanism underpinning fMRI technology is the blood-oxygen-level

dependent (BOLD) contrast, which adeptly leverages the intrinsic magnetic property

disparities between oxygenated and deoxygenated haemoglobin molecules. In physi-

ological scenarios where neurons in distinct cerebral regions exhibit activity, there is

a heightened consumption of oxygen molecules, necessitating an augmented influx of

blood to maintain physiological homeostasis. This physiological response culminates in

an increased proportion of oxygenated to deoxygenated blood within neural substrates,

manifesting as an observable transformation in the magnetic resonance imaging signal.

Conceived in the early 1990s—a pivotal period in neuroimaging history, as evi-

denced by foundational work [24]—fMRI has profoundly transformed neuroscientific

inquiry by delivering high-precision spatial resolution imaging capabilities, which fa-

cilitate the visualization of active cerebral regions during diverse cognitive operations

or states of quiescence. Crucially, unlike neuroimaging techniques employing ionizing
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radiation, fMRI remains inherently safe for iterative application in human populations.

Typical fMRI experimental paradigms encompass the longitudinal acquisition of image

sequences, chronicling the haemodynamic cascade that ensues subsequent to neuronal

excitation.

Despite the fact that the temporal acuity of fMRI is comparatively constrained vis-

à-vis methodologies such as EEG, its capacity to yield granulated spatial maps of brain

function compensates for this limitation. fMRI has played an indispensable role in ad-

vancing cerebral understanding, illuminating complex cognitive processes, including but

not limited to, linguistic processing, memory encoding, attentional mechanisms, and

affective modulation, as documented in substantial scholarly repositories [25–27]. In

clinical paradigms, it has been instrumental in evaluating neurological function within

pathological states and shaping surgical strategies by delineating critical functional

zones [28–30]. Accordingly, fMRI is now a quintessential instrument in both experi-

mental and applied contexts, affording profound insights into the intricate interplay of

human cognition and neural architecture.

Regarding fMRI experiment design, a prevalent methodology involves juxtapos-

ing brain activity across dual conditional paradigms [31]. Customarily, one paradigm

constitutes a rigorously controlled baseline, whereas the alternate paradigm embodies

the cognitive process under scrutiny. Illustratively, to elucidate cerebral semantic pro-

cessing, experimental conditions frequently compare narrative comprehension against

word list processing [31]. Nonetheless, divergent research methodologies [32–36] have

adopted narrative forms to probe into cognitive semantics in greater depth.

An innovative study conducted by Wehbe et al. (2014) [37] represents a pioneer-

ing attempt to analyse the intersection of cognitive neuroscience and AI through the

lens of narrative processing, illuminating how the brain assimilates semantic informa-

tion. This was achieved by having subjects engage in reading textual sentences while

their neural activities were meticulously captured using fMRI. By leveraging this ap-

proach, the study provides a novel bridge linking cognitive science with AI principles,

offering a crucial framework to interpret and potentially enhance state-of-the-art NLP

architectures.
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The research intricately dissects the operation of four noteworthy NLP models:

ELMo [38], Universal Sentence Encoder (USE) [39], Bidirectional Encoder Represen-

tations from Transformers (BERT) [40], and Transformer-XL [41]. Each model exem-

plifies diverse structural paradigms and methodologies for processing linguistic data.

By scrutinizing these algorithms in juxtaposition with the neural activities captured

from human subjects, this work provides unparalleled insights into the comparative

mechanisms between synthetic and biological neural networks.

Hence, this examination permits an in-depth understanding of the parameters in-

fluencing word and sequence representation across myriad model facets such as depth

of layers, context lengths, and attention modalities. The investigation reveals dis-

tinct variations in context-related information representation, elucidating the inherent

strengths and deficiencies across examined models. Notably, the interactions between

layer complexity and context magnitude, as well as attention typologies in transformer

architectures, offer profound insights into the hierarchical organization of language pro-

cessing within artificial neural networks.

A central hypothesis proposed in this research postulates that aligning NLP archi-

tectures with the brain’s processing methodologies could substantially augment their

linguistic comprehension capabilities. To substantiate this hypothesis, a particular

emphasis was placed upon BERT, due to its extraordinary performance in numerous

NLP domains. By modifying its architecture to simulate brain processing patterns

as revealed by fMRI, a brain-aligned version of BERT was generated. This adapted

model was rigorously evaluated through syntactic NLP tasks, demonstrating supe-

rior performance over its conventional counterpart. This pivotal finding corroborates

the feasibility of brain-inspired architectural adjustments, heralding potential enhance-

ments within machine learning paradigms through insights extracted from cognitive

neuroscience.

Furthermore, the broader implications of this research transcend mere performance

optimization, establishing a paradigm of model interpretability and biological align-

ment that opens pathways for AI systems with heightened intelligibility and plausibility

relative to human cognitive processes. Such advancements portend the future devel-
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opment of NLP models capable of more authentically processing language, leading to

substantially refined human-AI interactions.

Moreover, the interdisciplinary synergy propounded in this paper could stimulate

groundbreaking progress in both AI and neuroscientific inquiries. For the neuroscience

community, contrasting artificial with biological neural mechanisms unveils new vistas

in understanding cerebral language comprehension. Concurrently, for AI developers,

the invaluable insights garnered from neural imaging exemplify an untapped reservoir

for innovating more proficient and streamlined linguistic algorithms.

Thus, the work spearheaded by Toneva et al. is acknowledged as a monumental

leap towards crafting more interpretable and biologically congruent NLP frameworks.

Demonstrating the fertility of interdisciplinary research that melds cognitive neuro-

science with AI, this study embarks on new trajectories for enriching machine learn-

ing models whilst advancing our comprehension of both biological and machine-driven

language processing. As the NLP landscape continues to evolve, the principles and

strategies delineated herein are expected to significantly influence the trajectory of fu-

ture language understanding systems, propelling the creation of AI that mirrors human

cognitive processes in language perception and interpretation.

Another exemplary study that sought to amalgamate neurological signals, more

specifically through fMRI, with language models is the investigation by Jain and Huth

(2018) [42]. This research constitutes a noteworthy progression in deciphering the

mechanisms through which the human brain interprets linguistic information. It ad-

dresses a pivotal shortcoming in pre-existing language encoding models for fMRI by

integrating contextual information, thereby forging a connection between artificial lan-

guage structures and the innate processes of human linguistic comprehension. Typified

by the conventional methodologies, encoding models for fMRI data employed word

embeddings that considered each lexical stimulus in isolation, neglecting the inherent

contextual dynamics intrinsic to language comprehension. In contrast, Jain and Huth’s

methodology confronts this paradigm by utilizing comprehensive contextual represen-

tations that originate from Long Short-Term Memory (LSTM) language models.

This innovative approach facilitates a more refined and precise modelling of cerebral
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reactions to linguistic stimuli. The methodological innovation propagated by the au-

thors yields substantial enhancements in encoding accuracy across nearly all examined

cerebral regions, performing superiorly compared to contemporary word embedding

frameworks. These improvements in performance can be ascribed to two fundamental

elements: the elevated calibre of word embeddings formulated by the LSTM model and

the deliberate integration of contextual nuances. By meticulously modulating the mag-

nitude and calibre of context incorporated within their models, the scholars elucidate

the indispensable role of contextuality in predicting cerebral activity during linguistic

processing. One of the most noteworthy contributions of this investigation is the intri-

cate delineation of context sensitivity throughout the cortex, providing unprecedented

insights into the processing and amalgamation of contextual information by various

cerebral regions during the comprehension of language. The outcomes imply a hier-

archical stratification of language processing within the brain, with distinct regions

exhibiting variable sensitivity to contextual cues.

Furthermore, the study establishes a substantive interconnection between artifi-

cial language constructs and human cognitive processes. The abstract representations

discerned by LSTM language models reveal strong concordances with those observed

within the human brain, positing that these artificial constructs might be successfully

encapsulating cardinal elements of human linguistic processing. This correlation engen-

ders new investigative avenues in BCIs and engenders the evolution of more biologically

plausible language models. The ramifications of this scholarly work extend well beyond

the domain of neuroscience, reverberating into the realms of AI and NLP. By com-

pellingly demonstrating the significance of context in modelling cerebral reactions to

language, the study offers critical insights for the enhancement of language models

and the development of advanced AI systems adept in replicating human-like linguistic

understanding and generation. Jain and Huth’s research delineates a substantial leap

forward in comprehending the neurological basis of language processing.

By assimilating contextual intelligence into fMRI encoding paradigms, they have

not only augmented the precision of predictions regarding cerebral activities but also

established an innovative framework for examining the neural substrates underpinning
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language comprehension. This pioneering work paves the way for future inquiries prob-

ing the complex interplay between synthetic language models and human cognition,

potentially catalysing progress in brain-computer interface technologies, advanced lan-

guage comprehension solutions, and therapeutic approaches for language disorders.

The pioneering research conducted by Caro et al. [43] represents a remarkable ad-

vancement in the integration of fMRI with cutting-edge machine learning methodolo-

gies. At the heart of this study lies the innovative Brain Language Model (BrainLM),

a sophisticated analytical framework purpose-built to facilitate the comprehension and

exploration of extensive brain activity datasets obtained from fMRI recordings. By ap-

plying self-supervised masked-prediction training strategies, BrainLM is adeptly trained

on a substantial dataset encompassing more than 6,700 hours of fMRI data.

This training endows BrainLM with the capacity to execute an array of tasks pro-

ficiently, such as refining predictive models for clinical variables and forecasting future

neural states, while also performing zero-shot inference to distinguish functional net-

works and articulate latent, interpretable representations of neuronal dynamics. A

salient feature of BrainLM is its adeptness at task-specific adaptive learning, exhibited

through fine-tuning processes that enable the model to assimilate additional data for

enhanced task performance. This is particularly beneficial in medical arenas, where

BrainLM can predict critical clinical metrics from observed neural patterns.

Furthermore, its zero-shot inference capability exemplifies its ability to extend its

computational understanding of cerebral dynamics without necessitating data tailored

to specific tasks, a trait instrumental for delineating functional networks in the brain

and unearthing the interactions of different regions during diverse cognitive activi-

ties. The introduction of a groundbreaking prompting mechanism further enhances

BrainLM’s utility, enabling it to simulate brain responses to hypothetical perturba-

tions in silico. Through this functionality, researchers are empowered to scrutinize

speculative scenarios, projecting the impact of alterations in precise brain regions on

overarching neural activity schemas.

The capability for simulating these dynamics underpins BrainLM’s role as a vital

analytical instrument, enriching the scholarly discourse on brain function complexities
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and fostering novel approaches to interpreting expansive brain activity data. The pro-

found implications of these findings lie in BrainLM’s establishment as a comprehensive,

scalable framework for brain activity analysis. This framework not only broadens the

horizons of our understanding of neural dynamics but also opens new avenues for prac-

tical clinical applications, such as informing treatment strategies through predictive

brain state modeling in neurological pathologies.

Moreover, BrainLM’s proficiency in generating interpretable neural activity mod-

els heralds deeper inquiries into the fundamental processes underpinning cognition. In

essence, BrainLM’s introduction into the scientific landscape marks a watershed mo-

ment in neuroscience and neuroimaging domains. By capitalizing on voluminous fMRI

repositories and avant-garde machine learning paradigms, this model provides a holis-

tic apparatus for the investigation of cerebral dynamics. Its adeptness at fine-tuning

and zero-shot inference, when coupled with progressive simulation strategies, positions

BrainLM as an invaluable asset to both empirical researchers and clinical practitioners

in quest of elucidating and deciphering the intricate functionalities of the brain.

Consequently, this body of work lays the foundational stone for future explorations

intended to demystify the complex tapestry of human thought and to propel advance-

ments in comprehending neural disorders.

2.2.2 EEG

As elucidated in Section 2.2.1, fMRI has been a predominant modality in the scientific

pursuit to map and decode the intricacies of human cognitive processes, particularly

in linguistic functions and thought pattern decoding. fMRI’s adoption in elucidating

insights derived from LLMs underscores its relevance in neuroscience and computational

linguistics spheres. Despite its contributions, fMRI is beset with inherent limitations

that curtail its utility. Notably, the BOLD signal, a cornerstone of fMRI-based studies,

is hampered by a significant temporal delay of approximately 5-6 seconds, thereby

impeding real-time data acquisition.

Furthermore, the exorbitant costs associated with fMRI data acquisition present

substantial financial barriers, especially given the burgeoning data demands imposed
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by the evolution of LLMs, which are now architected with billions of parameters neces-

sitating vast datasets for successful training. Consequently, the scientific community

has pivoted towards an earlier, simpler modality: EEG. EEG emerges as an invalu-

able non-invasive neuroimaging methodology employed to measure and document the

brain’s electrical activity. By strategically affixing electrodes onto the scalp, EEG facili-

tates the capture of spontaneous neural electrical discharges, predominantly emanating

from cortical neurons. This technical facet allows for the real-time monitoring of brain

activity, rendering it indispensable for gaining insights into both cognitive operations

and a spectrum of neurological conditions.

EEG’s operational modality is particularly instrumental in diagnosing epilepsy and

other seizure-related disorders, owing to its proficiency in detecting abnormal electrical

discharges, typified by spikes or sharp waves, indicative of seizure activity. Despite

the progression in imaging technology advancements, EEG retains critical importance

owing to its superior temporal resolution capabilities, with the ability to track brain

dynamics on a millisecond scale [44]. The genesis of EEG dates back to the early 20th

century, marked by Hans Berger’s pioneering recording of the inaugural human EEG

in 1924. Since this seminal advancement, EEG technology has undergone significant

evolution, culminating in diverse applications that transcend conventional clinical di-

agnostics. In addition to its role in seizure disorder identification, EEG is harnessed

for sleep pattern analysis [45, 46], brain tumour diagnostics [47, 48], coma state as-

sessments [18, 49], Alzheimer’s disease symptoms predictions [50] and encephalopathy

evaluations [51,52].

Its application scope extends further into research domains, where it is employed

to probe cognitive functions inclusive of attention, memory consolidation, and multi-

modal EEG decoding [53]. EEG’s competency in capturing rapid fluctuations in brain

activity renders it particularly adept at investigating the cerebral response to diverse

stimuli or task-oriented engagements. One of the salient advantages of EEG lies in

its cost-effectiveness and accessibility, which markedly surpasses that of other neu-

roimaging modalities such as fMRI and Positron Emission Tomography (PET). The

portability of EEG equipment, coupled with its adaptability for diverse environmental
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settings, augments its suitability for both clinical and extensive research applications.

Technological advancements have further engendered the development of dry electrodes

and wireless systems, thereby streamlining the apparatus setup process while concur-

rently enhancing patient comfort. Consequently, EEG sustains its pivotal role in both

deciphering brain function and diagnosing neurological afflictions. The continuum of

research within this domain continues to unravel EEG’s potential as a tool for cognitive

augmentation and brain-computer interface innovation [44,54].

The investigation carried out by Frank, Otten, Galli, and Vigliocco (2015) [55] offers

an insightful and robust contribution to the scientific discourse on the cerebral mecha-

nisms underlying linguistic information processing. This meticulous study remarkably

bridges the distinct yet interconnected domains of information theory, neurolinguis-

tics, and EEG technology, providing groundbreaking insights into the neural correlates

pertaining to the informational content of words during the process of sentence com-

prehension. The researchers meticulously applied Event-Related Potentials (ERPs) as

a tool to methodically examine the brain’s responses to varying degrees of information

conveyed by individual lexical items within sentences.

Through the sophisticated integration of EEG recordings with computational met-

rics delineating information content, they furnish compelling empirical data substan-

tiating the intricate relationship between the information-theoretic attributes of lan-

guage and neural information processing mechanisms. A pivotal central innovation

within this study emanates from their employment of surprisal and entropy reduction

as methodological, quantitative indices for gauging a word’s informational content. Sur-

prisal, functioning as an indicator of the unexpectedness of a word given its contextual

surroundings, alongside entropy reduction, encapsulating the degree by which a word

mitigates uncertainty regarding subsequent sentence elements, are both derived from

sophisticated probabilistic linguistic frameworks. This innovative methodology facili-

tates a more intricate and nuanced understanding of cerebral information processing

compared to conventional linguistic categorizations.

The empirical results from this investigation elucidate that both surprisal and en-

tropy reduction exert modulatory influences on the N400 component of the ERP, a well-
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established neural marker indicative of semantic processing. Specifically, higher levels

of surprisal and entropy reduction are correlated with a more pronounced negativity

in the N400 amplitudes, implying that words encapsulating heightened informational

content are potent elicitors of intensified neural responses. Significantly, these effects

are discernible even when accounting for conventionally recognized psycholinguistic

variables such as word frequency and close probability.

Moreover, the study elucidates distinct temporal dynamics for surprisal and entropy

reduction within the ERP waveform. Surprisal effects manifest in earlier temporal win-

dows, signifying immediate lexical-semantic processing, whereas entropy reduction ex-

erts influence over later stages, indicative of extended sentential integration processes.

This differentiation highlights the brain’s specialized processing strategies for various

aspects of lexical information. The scientific implications of this research are extensive

and profound. By establishing a tangible linkage between information-theoretic con-

structs and neural activity, this study provides robust support for probabilistic language

comprehension models. It suggests that the cerebral apparatus is exquisitely sensitive

to minor variations in word informational content, dynamically revising its predictive

framework and attenuating uncertainty throughout sentence unfolding. Furthermore,

this pioneering work unlocks avenues for advancing our understanding of language pro-

cessing disorders. The methodologies employed may be instrumental in studying the

sentence-level information processing of individuals with linguistic impairments, poten-

tially contributing to novel diagnostic techniques or therapeutic interventions.

In the expansive arena of cognitive neuroscience, this investigation stands as a

quintessential exemplar of the transformative power of interdisciplinary methodologies.

By blending insights across information theory, computational linguistics, and elec-

trophysiological profiling, the authors afford a comprehensive, multifaceted account of

language processing beyond the limits of any single disciplinary perspective. Finally,

the scholarly contributions of Frank et al. denote a significant leap forward in elu-

cidating the neural foundation of language comprehension and extend beyond mere

empirical corroboration of information-theoretic models. The integration of computa-

tional models with neurophysiological data underscores the broader potential for refined
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and precise explorations into the complex landscape of cerebral language processing,

thereby establishing a formidable platform for progressing future interdisciplinary re-

search efforts at the nexus of linguistics, cognitive science, and neuroscience.

In the specialized and intricate realm of neurolinguistics and computational cogni-

tive science, the research conducted by Hale, Dyer, Kuncoro, and Brennan (2018) [56]

marks a considerable leap forward in our comprehension of the neuromechanisms under-

lying syntactic structure processing during language comprehension. This trailblazing

study adeptly bridges the divisions between computational linguistics and cognitive

neuroscience, employing beam search — a sophisticated algorithm extensively utilized

in NLP — to systematically analyse EEG data. The authors’ pursuit aimed explic-

itly at explicating the dynamic interplay between incremental parsing decisions and

concomitant brain activity.

Through the strategic application of beam search, they were able to model the

sequential, stepwise process integral to sentence parsing, thereby correlating it with

the temporal neurological response dynamics. Not only does this methodology afford a

profound and intricate understanding of syntactic processing as witnessed in the neural

matrix, but it also offers a nuanced comprehension that eclipses the explanatory power

of prior analytic frameworks.

One of the paramount discoveries of the study is the discernible and substantive

correlation identified between beam search-derived surprisal metrics and correspond-

ing EEG responses. This critical association signifies that the human brain engages

in syntax-sensitive predictive processing during the grooming of linguistic structures

in comprehension tasks. The methodology, by its merit, demonstrated that the beam

search approach surpasses the predictive efficacy of conventional n-gram models in

elucidating EEG data variance, thereby offering compelling corroboration for the sig-

nificance of hierarchical syntactic frameworks in sentence processing.

The methodological approach is distinguished by its groundbreaking implementa-

tion of beam search within a neurolinguistic research context. By recalibrating this

computational technique to encompass brain data analysis, the authors have facili-

tated exploration avenues that were previously uncharted in the nexus of cognitive
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neuroscience with language processing paradigms. This interdisciplinary venture is ex-

emplary of the fertile exchange of ideas and methodologies between AI and cognitive

neuroscience, showcasing an innovative synergy.

Moreover, this research furnishes invaluable insights into the temporal dynamics

characteristic of syntactic processing. A detailed analysis conducted by the authors

elucidates the manifestation of syntactic surprise across various chronological junctures

in the EEG signal, presenting an enriched understanding of the temporal progression

inherent in language processing mechanisms in the human brain. Such temporal insight

is indispensable for decoding the swift and intricate cognitive processes entailed in

human language comprehension.

The research outcomes possess implications transcending the immediate landscape

of neurolinguistics. By illustrating the remarkable efficacy of computational models in

decoding neural data, this study sets the groundwork for developing more sophisticated

cognitive domain analyses through the prism of brain function. It underscores the

potential of leveraging advanced NLP methodologies to procure deeper insights into

human cognitive processing.

Furthermore, the work contributes saliently to the sustained discourse concerning

the nature of language processing within the cerebral domain. The success of utiliz-

ing the beam search model to predict EEG responses stands in support of theoretical

structures that ascribe a central standing to hierarchical syntactic mechanisms in lin-

guistic comprehension. This decisive finding carries significant ramifications for linguis-

tic theory, language acquisition research, and the advancement of language processing

constructs within artificial cognition.

In conclusion, the pivotal research landscape charted by Hale et al.’s study repre-

sents a cardinal progression in decoding cerebral language processing intricacies. By

adeptly applying beam search to EEG analytical frameworks, the authors have not

only unearthed new facets of understanding regarding syntactic processing dynamics

but have significantly showcased the substantive merit of synthesizing computational

methodologies with neuroscientific inquiry. This seminal work establishes a founda-

tional reference for ensuing research investigations that may further illuminate the
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symbiotic relationship between linguistics’ structural elements and neural activity, po-

tentially advancing towards more integrative models of language processing encompass-

ing human and AI systems alike. It is poised as an essential referential cornerstone for

researchers located at the confluence of linguistics, cognitive science, and AI, imparting

both methodological innovations alongside insightful theoretical contributions vis-a-vis

enhancing the field’s trajectory.

In the rapidly transforming domain of BCIs, the limited availability and diverse na-

ture of EEG data present substantial obstacles for proficient model development and op-

timal performance outcomes. The contemporary investigation by Cui et al. (2023) [57]

introduces Neuro-GPT, an innovative foundational model meticulously engineered to

surmount these impediments by employing expansive publicly accessible datasets. This

scholarly initiative embodies a paramount progression in the deployment of machine

learning methodologies to analyse EEG data, specifically within the parameters of mo-

tor imagery classification tasks. Neuro-GPT integrates an EEG encoder in conjunction

with a Generative Pre-trained Transformer (GPT) architecture, establishing a robust

analytical framework adept at accommodating heterogeneous EEG data inputs.

This foundational model undergoes a pre-training phase using a self-supervised

learning protocol centred on reconstructing occluded segments of EEG data. This self-

supervised paradigm is especially advantageous in contexts characterized by a scarcity

of labelled data, permitting the model to extract significant insights from the extant

data corpus without necessitating extensive manual annotation procedures.

The efficacy of Neuro-GPT is substantiated through rigorous fine-tuning on a motor

imagery classification exercise involving nine participants, evidencing its capability to

substantially enhance classification performance relative to models developed de Novo.

The findings elucidate that the foundational model not only augments performance in

scenarios with limited data availability but also demonstrates adaptability across di-

vergent datasets, effectively addressing the intrinsic variability and complexity inherent

in EEG signal patterns. Cui et al. (2023) [57] offer compelling substantiation that the

implementation of a foundational model can efficaciously alleviate challenges associated

with data paucity and heterogeneity within EEG research domains.
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Their results imply that such models represent formidable instruments for advancing

BCI applications, facilitating more dependable and precise decoding of neural repre-

sentations. The authors have opted to make their codebase publicly accessible, thereby

promoting transparency and inciting continued scholarly inquiry within the research

community. This transparency is consonant with current trends in machine learning

scholarship, which accentuate reproducibility and collaborative efforts.

In summation, the advent of Neuro-GPT signifies a substantive leap forward in the

realm of EEG-centric BCIs. Through the judicious application of expansive datasets

via self-supervised learning mechanisms, this foundational model efficaciously tackles

cardinal challenges related to EEG data scarcity and heterogeneity. The auspicious

outcomes derived from motor imagery classification tasks highlight its potential appli-

cability across broader disciplines in neurotechnology and rehabilitation science. This

initiative paves the way for forthcoming innovations in assistive technologies, with spe-

cific pertinence to individuals impacted by motor function impairments.

A comprehensive study aimed at developing generic brain embeddings from EEG

data was undertaken by Kostas et al. [58], showcasing an innovative framework intended

to substantially enhance the efficiency and effectiveness of BCI systems by utilizing

advanced self-supervised learning methodologies. This research meticulously addresses

the significant challenges characteristic of conventional BCI systems, which typically

rely heavily on annotated datasets that are both restricted in size and circumscribed

in diversity. The authors make a compelling argument that prevailing approaches have

inadequately exploited the extensive abundance of unlabelled EEG data, a resource

that, if harnessed appropriately, could lead to markedly improved generalization of

models across a wide variety of contexts, subjects, and tasks. The BENDR (Bert-

inspired Neural Data Representations) model derives its theoretical underpinning from

successful language modelling strategies, particularly those prevalent in the realm of

NLP.

By judiciously incorporating the architectural principles of models akin to Wav2vec

2.0 [3], the researchers encode arbitrary EEG data segments into informed feature vec-

tors identified as BENDR. This pioneering approach facilitates the effective modelling
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of raw EEG sequences acquired from diverse hardware configurations and a range of

subjects. The architecture of the BENDR framework is bifurcated into two principal

segments: an initial phase where raw EEG data undergoes downsampling through a

series of convolutional layers, resulting in the generation of BENDR vectors, and a

subsequent phase where a transformer encoder transposes these vectors into sequen-

tial forms applicable to numerous downstream tasks. This architecture is meticulously

fashioned to encapsulate critical features while concurrently maintaining computational

efficiency.

A cornerstone of this study is its pronounced emphasis on self-supervised learn-

ing, which adeptly enables the model to glean insights from unlabelled data by re-

constructing masked portions of the input sequences, thereby significantly augmenting

the model’s capability to generalize across an array of datasets and tasks devoid of

the need for extensive labelled training data. The evaluative component of the study

scrutinizes the efficacy of the BENDR model across a spectrum of EEG classification

tasks, wherein it demonstrably succeeds in generating resilient representations that sur-

pass the performance metrics of conventional task-specific models. Empirical findings

conspicuously illustrate that a singular pre-trained model possesses the adaptability

requisite for effective application to novel EEG datasets recorded under variable con-

ditions.

Consequently, this study posits that self-supervised learning methodologies exempli-

fied by BENDR could usher in a substantive transformation within the domain of BCI,

facilitating superior utilization of large-scale unlabelled EEG data and, by extension,

propelling expansive research initiatives into scalable and adaptive BCI systems de-

signed to confront assorted applications within the spheres of neuroscience and human-

computer interaction. In essence, the investigative pursuit by Kostas et al. illuminates

the profound potential possessed by self-supervised learning in fortifying BCI systems

via the BENDR framework. Through the proficient leverage of vast unlabelled EEG

datasets, this methodological approach not only elevates model performance metrics

but concurrently lays the groundwork for pioneering advancements in brain-computer

interface technology. The insights accrued from this research decidedly augment our
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comprehension of the application of sophisticated machine learning techniques to intri-

cate neural data, thereby establishing a robust foundation for the impending exploration

within this swiftly advancing domain.

2.2.3 Intra-cortical microelectrode arrays.

The realm of speech neurolinguistics has witnessed significant advancements, particu-

larly in the domain of assistive technologies tailored for individuals grappling with pro-

found speech impairments due to conditions like amyotrophic lateral sclerosis (ALS). A

seminal work in this field is presented by [59], which delineates the design and success

of a high-performance speech BCI aimed at decoding neural signals associated with

speech production. This investigation not only addresses a critical demand for effica-

cious communication solutions for individuals rendered speechless by paralysis but also

sets a new benchmark in neuroprosthetic research.

The study by [59] showcases an extraordinary feat in both decoding accuracy and

operational velocity. A reported WER of 9.1% for a constrained vocabulary encom-

passing 50 words, alongside 23.8% for a significantly broader lexicon of 125,000 words,

underscores this achievement. The participant, denoted as T12, achieved a communica-

tion velocity of 62 words per minute, a pace nearing natural conversational dynamics.

Such an advancement signifies a monumental stride beyond preceding speech neuro-

prosthetic frameworks, which historically encountered challenges in achieving similar

efficiency and precision levels.

A pivotal focus of this study is on dissecting the neural representation of speech

within the motor cortex. The findings elucidate that this region is robust in encod-

ing orofacial movements, facilitating effective decoding even amidst the participant’s

paralysis. This significant insight into the neural machinations underpinning speech

production is invaluable for comprehending how BCIs may harness preserved neural

activities to enable communication. Furthermore, the employment of Recurrent Neural

Networks (RNNs) in predicting phonemes from captured neural signals is noteworthy.

By employing sophisticated language models, the authors achieved heightened tran-

scription accuracy. This pioneering methodology not only enables real-time speech
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output but also provides a practical conduit for individuals with speech impediments

to communicate proficiently. Moreover, the research accentuates the persistence of

articulatory codes years post-paralysis, insinuating that intricate details pertinent to

phoneme production remain extractable from the motor cortex.

This revelation bears significant implications for future explorations into neural

encoding and its potential applications in neurolinguistics. The researchers also delib-

erate on pivotal design considerations impacting BCI performance, such as vocabulary

breadth, electrode density, and training data prerequisites. They advocate the expan-

sion of microelectrodes and the refinement of language models as strategies to bolster

system performance and adaptability subsequently. Such insights are imperative for

steering future progressions in speech neuroprostheses.

In essence, this research by [59] epitomizes a palpable leap in neurolinguistics, ev-

idencing that high-performance speech BCIs can viably restore swift communication

functionalities to individuals with severe speech impairments. Although challenges per-

sist concerning system resilience and long-term applicability, this study offers a promis-

ing perspective for imminent innovations dedicated to ameliorating the quality of life

for those confronting communication hindrances due to paralysis. These revelations

not only enhance the scholarly grasp of speech but also underpin future inquiries aimed

at advancing assistive technologies for individuals impeded by speech ailments.

2.2.4 Neurolinguistics

Neurolinguistics stands as a quintessential interdisciplinary field that meticulously ex-

plores the intricate relationship between language and the brain. Its core focus lies

in understanding how neural mechanisms intricately govern the comprehension, pro-

duction, and acquisition of language. This field synthesizes insights from an array

of disciplines including linguistics, neuroscience, psychology, and cognitive science, to

delve into how various brain structures are intricately involved in language process-

ing. Researchers dedicated to neurolinguistics employ a vast array of methodologies,

prominent among which are neuroimaging techniques such as fMRI and EEG, aimed at

observing brain activity during language-related tasks. This nascent field traces its lin-
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eage to seminal studies on individuals presenting with language impairments, notably

aphasia, and has progressively expanded to embrace a comprehensive understanding of

how the brain organizes, processes, and utilizes linguistic information.

The significance of neurolinguistics transcends mere theoretical inquiry, venturing

into impactful practical implications particularly within the realms of education, health-

care, and AI. By discerning the neural underpinnings of language acquisition and asso-

ciated disorders, neurolinguistics are equipped to devise more effective, individualized

teaching strategies that cater to diverse learning needs and enhance diagnostic tools

for language-related conditions. Moreover, insights gleaned from neurolinguistics crit-

ically inform the burgeoning development of NLP systems within the domain of AI,

significantly enhancing their capabilities to comprehend and generate human language.

As research endeavours continue to push the frontiers in this arena, neurolinguistics

holds a pivotal role in bridging the dichotomy between linguistic theory and neurologi-

cal function. This ultimately contributes significantly to an enriched understanding of

human communication.

From a neuroscience perspective, the field of neurolinguistics remains largely under-

explored with respect to the role of punctuation in semantic interpretation and its cog-

nitive processing within text. Despite being a relatively emergent domain, neurolinguis-

tics has witnessed numerous notable efforts aimed at advancing scholarly understanding

and probing unanswered questions within its expansive purview.

In relation to the pivotal role of punctuation in the syntactical analysis of lan-

guage, certain scholarly inquiries have striveded to concentrate on the formulation of

multidimensional features that are intricately linked to the syntactical components of

language [60]. Subsequently, employing these derived features, scholars attempted to

accurately model the syntactical representation of punctuation marks within textual

materials. Notably, there exists considerable variability within the literature regarding

the treatment of punctuation. For instance, utilizing identical fMRI data yet diver-

gent research aims, one investigation involved preprocessing the text encountered by

participants inclusive of punctuation [61], whereas another excluded it entirely [62].

Additionally, distinct research efforts [63] have sought to demonstrate that the amal-
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gamation of words can engender more intricate meanings, and have attempted to iden-

tify which cerebral regions are accountable for representing such meanings. Within

their preprocessing phase, they elected to excise punctuation from text prior to pre-

sentation to participants. This evidentiality research further elucidates the absence

of consensus regarding the semantic and syntactic processing of punctuation by the

brain, and whether its inclusion in a corpus is imperative for achieving optimal out-

comes. Moreover, there is a discernible paucity of investigative studies that scrutinize

or enhance NLP models via brain recordings, as posited by Toneva and Wehbe [1].

Although there exists research into cognition that evaluates whether word embed-

dings encapsulate relevant semantics [64], additional research [65] has sought to create

novel embeddings that coincide with brain recordings to determine if these embeddings

exhibit superior alignment with behavioural measures of semantics. By leveraging

cutting-edge models to ascertain how their representations are congruent with brain

activity, we can significantly contribute to the expansion of this vital and burgeoning

area of research. Through this process, we have the potential to elucidate which specific

training choices may enhance alignment with neural data by examining how various

training decisions can enhance or diminish this alignment.

2.2.5 NeuraSearch

In recent years, a significant volume of interdisciplinary research has been conducted

to identify the potential applications of neuroscience in advancing the field of infor-

mation retrieval. This emerging area of study has been collectively referred to as

NeuraSearch [66], as evidenced by various studies [67–70]. Moshfeghi et al. [71–75] con-

ducted pioneering works to establish the NeuraSearch field by introducing neuroscience

methods to improve information retrieval systems through implicit relevance feedback

from users’ emotional and physiological responses and in turn satisfying searchers’ in-

formation need. Traditional systems rely on explicit feedback, like clicks or ratings,

which may not fully capture user engagement. This study utilizes affective signals

such as emotions derived from facial expressions and physiological metrics like heart

rate, combined with user interaction patterns. The researchers employed a multi-modal
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approach, collecting data on participants’ physiological responses during information

retrieval tasks. This method allowed them to identify implicit cues that signal user

relevance and interest, often overlooked in standard systems. Experimental results

showed that incorporating these emotional and physiological features significantly im-

proved the precision of implicit feedback mechanisms, leading to better predictions of

user preferences.

The findings suggest that the use of neurophysiological signals can help information

retrieval systems adapt more effectively to users, offering personalized recommendations

without explicit input. This not only enhances user experience but also aids in develop-

ing intuitive search interfaces. The research lays the foundation for further exploration

of affective computing integration into information retrieval to create more responsive

and user-centric technologies, with potential applications across sectors focused on user

engagement.

NeuraSearch embodies the intersection of neuroscience and information retrieval,

investigating novel approaches to improve the ways in which information is accessed

and utilized [66]. The domain of NeuraSearch applications encompasses a diverse ar-

ray of investigations across several pivotal areas. A principal area of inquiry pertains

to comprehending and fulfilling the information requirements of users, as extensively

documented in numerous academic studies [76].Moshfeghi et al. (2016) [73] conducted

a seminal investigation into the concept of information need. This study explores the

neural correlations of information need utilizing fMRI. The researchers assessed brain

activity in 24 participants engaged in a Question Answering (Q/A) task, uncovering

a distributed network of brain regions implicated in information retrieval processes.

Their results demonstrate distinct patterns of brain activity contingent upon whether

participants possessed prior knowledge of the answers or were required to seek them

out, thus offering insights into the neurological underpinnings of information needs.

This research highlights the multifaceted nature of information needs and signifies a

substantial advancement in enhancing user satisfaction in information retrieval systems

by elucidating the cognitive processes involved.

In addition Moshfeghi et al. (2019) [74], the authors further their prior research
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by employing EEG to forecast users’ information needs in real-time during search ac-

tivities. This investigation underscores the capacity of EEG data to offer immediate

insights into users’ cognitive states and their assessments of the relevance of search

results. By examining brain signals while participants engaged in question and answer

tasks, the researchers discerned distinct EEG patterns associated with various phases

of information need recognition. The paper advocates for the integration of neurophys-

iological measures into information retrieval systems to formulate more adaptive and

responsive user experiences, thereby accentuating the potential of EEG to augment

user profiling and enhance system interactions.

Finally Michalkova et al. (2024) [77] make a significant contribution to this field

with their work titled ”Query Augmentation with Brain Signals,” which investigates the

integration of brain signals to enhance search query augmentation in order to optimize

relevance and user satisfaction. The authors introduce a framework that synergistically

combines conventional query augmentation strategies with insights gleaned from users’

neurophysiological responses during search activities. Through the application of EEG

data, they illustrate that the incorporation of brain signal information can yield more

personalized and contextually appropriate search outcomes. This research underscores

the practical advantages of employing neuroimaging techniques to refine information

retrieval processes, positing that an understanding of users’ cognitive states can greatly

improve their interactions with digital systems. This comprehensive text provides a

cohesive overview of each cited work, highlighting their contributions to advancing the

understanding of user information needs within the scope of NeuraSearch applications.

Another critical application is situated in the formulation of search queries, con-

tributing to the creation of more precise and user-centered searches [78]. Moreover,

the user search process itself has been conceptualized as a navigation through varying

search states, offering significant insights into search behaviors [79]. A crucial facet of

NeuraSearch research involves assessing the potential for utilizing brain activation to

enhance relevance feedback [71,80–82].

Pinkosova et al. [83] examine the neurodegenerative mechanisms underlying Hunt-

ington’s disease (HD), with a particular emphasis on the dysfunctions within cortical
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and basal ganglia circuits. The authors underscore that HD is marked by pronounced

neurodegeneration, primarily affecting the striatum and neocortex, which culminates

in motor and cognitive impairments. Their discussion includes the loss of GABAergic

medium spiny neurons within the striatum and the degeneration of cortical pyramidal

neurons as key contributors to these symptoms. Notably, the study highlights that

alterations in neuronal function may precede cell death, indicating that initial changes

in neural circuits could underlie the early stages of the disease. These findings highlight

the imperative for future research into therapeutic strategies that target these neural

circuits to impede the progression of HD.

In a subsequent study [84] that extends their prior research, new insights into the

structural and functional alterations in cortical circuits associated with HD are pro-

vided. This paper systematically reviews recent advancements in the comprehension of

how these alterations impact cognitive abilities and motor control in individuals with

HD. The authors examine findings from various studies, incorporating imaging and

electrophysiological data, which indicate that progressive cortical atrophy and modi-

fied neuronal excitability are principal characteristics of HD pathology. Furthermore,

potential interventions are explored that might restore normal circuit functionality or

mitigate deficits, emphasising the significance of comprehending these mechanisms for

the development of effective treatments.

Finally in a final study [85] The authors examine the impact of extended physio-

logical stimulation on blood-brain barrier (BBB) permeability and its association with

cortical plasticity. Their findings indicate that such stimulation results in heightened

BBB permeability mediated by AMPA receptor signaling, a mechanism essential for

synaptic potentiation. This study offers new insights into the role of BBB modula-

tion in facilitating synaptic alterations during learning and memory processes. The

authors propose that a deeper understanding of these interactions may guide the de-

velopment of therapeutic strategies to improve cognitive function in disorders marked

by compromised cortical plasticity.

Moreover NeuraSearch concentrates on how neurological responses can yield more

refined and nuanced feedback relative to conventional methods. Additionally, an area
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of focus is the thorough satisfaction of user information needs through the application

of innovative neuroscience approaches [86, 87]. In addition, NeuraSearch emphasizes

the detection of mental workload, employing sophisticated techniques to gain a deeper

understanding of cognitive load during information retrieval tasks.

Kingphai et al. (2021) [88] provide a comprehensive review of methodologies em-

ployed in the evaluation of mental workload through EEG signals. The authors examine

how variations in experimental designs and analytical techniques can affect the estima-

tion of workload and underscore the significance of selecting suitable features for precise

assessment. Their study accentuates the potential of EEG as a non-invasive instrument

for monitoring cognitive load across diverse contexts, such as human-computer inter-

action and occupational health.

Furthermore, Kingphai et al. (2021) [89] conducted an examination of diverse

methodologies for the classification of mental states utilizing EEG data, encompassing

preprocessing methods, feature extraction techniques, and classification algorithms.

The authors critically analyse the strengths and limitations inherent in existing stud-

ies, highlighting the necessity for standardized protocols to augment reproducibility

and comparability across research endeavours. They conclude that while EEG demon-

strates considerable promise for implementation in brain-computer interfaces and af-

fective computing, it necessitates further methodological refinement to achieve its full

potential.

Kingphai et al. (2023) [90] have investigated the problem of identifying the most

pertinent EEG channels for the purpose of effective emotion recognition. They in-

troduce an ensemble learning methodology that integrates various feature selection

techniques to enhance classification accuracy. The findings suggest that this approach

substantially improves emotion recognition performance in comparison to conventional

single-channel methods. This research advances the domain of affective computing by

offering insights into the optimization of EEG data for real-time emotion detection

applications.

McGuire et al. (2023) [91] conducted an investigation into the encoding mechanisms

of the anterior cingulate cortex (ACC) regarding sequential action strategies influenced
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by recent behavioral choices. The authors elucidate that the dynamics of the ACC are

modulated by a summary statistic of previous actions rather than being predominantly

driven by the prevalence of rewards. Their experimental findings indicate that the

ensemble activity within the ACC monitors both global and local contexts during task

performance, positing that the ACC is integral to processes of statistical learning and

decision-making. This study significantly advances our comprehension of ACC function

within cognitive neuroscience and its relevance to behavioral adaptability.

Last but not least in the pursuit of advancing these applications, several neuroimag-

ing techniques have been integrated into NeuraSearch studies. Prominent among these

is MEG, which has been highlighted in scholarly reports for its efficacy in real-time

cerebral monitoring [92]. Additionally, fMRI is a widely utilized method, extensively

documented for its proficiency in observing neural activity over extended durations and

with high spatial resolution [72,73,75,86,87,93].

Lamprou et al. (2022) [94] employed fMRI data to examine the influence of punc-

tuation on semantic comprehension in both human brains and transformer models

utilized in NLP. The authors emphasize that contemporary neural networks, notably

those engineered for NLP, do not adhere to explicit linguistic regulations. Rather, they

propose that these models might acquire generic linguistic patterns through the process

of training. To investigate this proposition, the study adopts an experimental method-

ology that leverages human brain recordings to ascertain the potential for establishing

a correspondence between cerebral activity and neural network representations.

In their research, the authors evaluate four advanced NLP models to determine

which model most closely aligns with human semantic processing. They perform ex-

periments wherein punctuation is systematically removed from text across four distinct

scenarios to assess its impact on semantic comprehension. The findings indicate that the

RoBERTa model exhibits the highest congruence with brain activity, surpassing BERT

in terms of accuracy. Importantly, the results suggest that the removal of punctuation

can improve the performance of BERT, highlighting the significant role of punctuation

in the semantic interpretation of text by both humans and models. This research con-

tributes to the ongoing investigation of the interplay between linguistic features and
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cognitive processing within the realms of AI and neuroscience.

Moreover, EEG has been frequently employed, esteemed for its capability to capture

rapid neural responses [78, 89, 90, 95–98]. An examination of the advantages of these

techniques and their specific suitability for NeuraSearch is provided in the ensuing

sections.

Allegretti et al. (2015) [80] investigated the temporal and neural correlates of rel-

evance judgments in the context of information retrieval tasks through the utilization

of EEG. The study seeks to elucidate the mechanisms by which users evaluate the rel-

evance of information during their interaction with digital content. In this research,

the authors conducted experiments in which participants were presented with various

informational items and tasked with assessing their relevance. By capturing EEG sig-

nals throughout these tasks, the researchers sought to pinpoint specific brain activity

patterns correlating with the process of relevance judgment formation. The findings

reveal that distinct neural markers, particularly within Event-Related Potential (ERP)

components, are associated with the timing of these judgments. Furthermore, the study

underscores the influence of individuals’ self-assessed knowledge on their relevance eval-

uations, suggesting that confidence in one’s comprehension can alter cognitive process-

ing during such assessments.

This research significantly augments the comprehension of cognitive mechanisms

involved in the processes of information retrieval and relevance evaluation. Through

the correlation of EEG data with distinct decision-making instances, the study advances

our understanding of user interactions with information systems and underscores the

necessity of integrating cognitive elements in the design of more efficacious retrieval

systems. This work establishes a foundational basis for subsequent inquiries into the

convergence of neuroscience and information retrieval, potentially facilitating enhanced

user experiences within digital contexts.

Jacucci et al. (2019) [96] have introduced an innovative methodology to enhance

Information Retrieval (IR) systems by integrating implicit relevance feedback obtained

from neurophysiological measures, specifically EEG and eye-tracking. The authors con-

tend that conventional IR systems are predominantly dependent on explicit user signals,
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such as clicks and queries, which may inadequately capture the nuanced information

needs of users. By leveraging neurophysiological signals, the study seeks to offer a more

sophisticated comprehension of user intent and relevance assessments in real-time, thus

augmenting the effectiveness of information retrieval processes.

The present study introduces a comprehensively integrated IR system that effec-

tively processes implicit relevance feedback derived from brain activity and eye-tracking

data in an online context. An evaluative experiment, conducted with 16 participants,

demonstrated that the system is capable of computing neurophysiology-based relevance

feedback with performance exceeding chance levels in complex data domains. The au-

thors meticulously describe their methodology, which involves the training of a user-

specific classifier designed to predict relevance from EEG signals and eye movements

observed during keyword fixation. This classifier functions in two distinct phases: a

calibration phase that serves to collect labelled data and an online phase during which

real-time relevance predictions are executed. The findings indicate that the integration

of neurophysiological feedback into interactive intent modelling significantly enhances

the precision of relevance assessments. This advancement paves the way for the develop-

ment of more adaptive and user-centred IR systems. Moreover, the research underscores

the potential of neuroadaptive IR systems to exploit implicit feedback mechanisms with-

out interfering with the user experience, thereby presenting promising implications for

subsequent research in this field.

In conclusion, the NeuraSearch field investigates the interdisciplinary domain that

amalgamates neuroscience with information retrieval to optimize user interactions with

digital systems. Prominent research contributions within this area include leveraging

neurophysiological signals to provide implicit relevance feedback, thereby enhancing

user experience absent explicit input. Different research attempted the employment

of emotional and physiological signals, such as EEG data, to tailor and modify in-

formation retrieval processes, thereby markedly enhancing the accuracy of predicting

user preferences. Moreover extending these findings by employing brain signals for

query augmentation, underscoring the potential of neuroimaging in improving search

results. Furthermore, the review underscores the significance of understanding informa-
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tion needs through neural activities, as illustrated by examining brain activity patterns

during cognitive tasks utilizing fMRI and EEG.

Research also examines the neurological foundations of cognitive states influencing

information requirements, mental workload, and search behaviour. For example, some

research investigations concentrate on evaluating methods for mental workload, demon-

strating the effectiveness of EEG in assessing cognitive load, while others explore the

function of the anterior cingulate cortex in decision-making processes. Furthermore,

advancements in methodologies utilizing fMRI and EEG highlight the continuous in-

tegration of neuroimaging techniques in observing cognitive processing and relevance

judgment in information retrieval systems.

2.3 Machine Learning

2.3.1 LLMs, Transformers And Different Modalities

One notable recent advancement in the field of machine learning is the introduction of

LLMs, which leverage the Transformer architecture. As these models have evolved, they

have increased in size, contributing to their growing complexity. Notably, these models

exhibit multimodal capabilities, functioning as generic encoders that integrate diverse

modalities such as text and images within a single model framework. This capability

for cross-modal integration, decoding, and generation presents new opportunities for

utilizing LLMs and the Transformer architecture to decode EEG data and generate

text.

The Transformer architecture, as proposed in [99], revolves around the attention

mechanism, which overcomes the limitations associated with traditional sequence trans-

duction models reliant on RNNs and Convolutional Neural Networks (CNNs). By em-

ploying a pure attention-based model, the Transformer eliminates the necessity for re-

currence and convolutions. This architectural choice facilitates enhanced parallelization

during training, significantly reducing the time required for model training on extensive

datasets. Consequently, the Transformer architecture has emerged as a cornerstone for

many state-of-the-art NLP systems, excelling in applications such as machine transla-
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tion, text summarization, and question answering.

A fundamental innovation of the Transformer model lies in its employment of self-

attention mechanisms, allowing the model to evaluate the relative importance of differ-

ent words within a sentence. This mechanism functions by transforming input sequences

into three critical components: queries (Q), keys (K), and values (V). The dot product

computation between queries and keys derives attention scores, permitting the model to

concentrate on pertinent segments of the input when generating outputs. Additionally,

the integration of multi-head attention, whereby numerous attention mechanisms oper-

ate concurrently, empowers the model to discern various intra-data relationships. This

feature enhances the model’s ability to comprehend context and semantics, thereby

augmenting its performance in tackling complex language tasks.

The authors carried out extensive experimental evaluations, substantiating their

method by publishing results that demonstrate the Transformer’s superiority over ex-

isting models across standard machine translation benchmarks. For example, a BLEU

score of 28.4 was achieved on the WMT 2014 English-to-German translation task, and a

new state-of-the-art score of 41.8 was recorded for English-to-French translation. Such

outcomes underscore not only the Transformer architecture’s effectiveness but also its

training efficiency relative to antecedent models, which necessitated greater computa-

tional resources and prolonged training durations.

Moreover, the Transformer’s applicability extends past machine translation, as it

effectively generalizes to other tasks like English constituency parsing. Beyond ar-

chitectural innovations, the paper ”Attention Is All You Need” delves into practical

ramifications for future research within NLP and adjacent domains. The authors posit

that attention mechanisms can transcend language processing, finding application in

diverse tasks like image recognition, where discerning relationships among elements is

essential. This versatility has spurred further advancements, including the develop-

ment of Vision Transformers (ViTs) [100], which have adapted self-attention principles

for image classification tasks by treating image patches analogous to text words. Ac-

cordingly, transformers are poised to replace CNNs as the prevailing architecture in

computer vision.
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In summation, ”Attention Is All You Need” has significantly influenced machine

learning and AI research. Introducing a streamlined yet potent architecture predicated

solely on attention mechanisms, the authors have pioneered progress in NLP and com-

puter vision alike. The Transformer model’s ability to efficiently process sequences

while capturing intricate dependencies positions it as a foundational framework for

developing expansive language models and multichannel AI systems. By 2024, this

seminal paper has accrued over 100,000 citations, underscoring its pivotal role in shap-

ing contemporary AI methodologies and applications.

One of the pioneering implementations of the attention mechanism is exemplified

through the development of BERT [40]. This transformative model constitutes a signif-

icant leap forward in the domain of NLP, as it harnesses the self-attention mechanism

inherent to the transformer architecture to perform bidirectional training. Such ca-

pacity allows it to process textual data by simultaneously considering contexts from

both preceding and subsequent segments, thereby deviating from the earlier models

which predominantly processed information in a linear, unidirectional fashion, working

from either the left-to-right or vice versa. The multifaceted bidirectional approach as

evidenced by the authors, markedly enhances the model’s interpretative capabilities

regarding linguistic contexts, thereby yielding improved outcomes across a spectrum of

NLP tasks.

BERT’s preparatory training involves large-scale text corpora and is based on two

distinct training objectives: Masked Language Model (MLM) and Next Sentence Pre-

diction (NSP). Within the MLM framework, a portion of the input tokens are subjected

to random masking, compelling BERT to anticipate these obscured tokens by leveraging

the contextual clues surrounding them. This method plays a critical role in fostering

highly detailed contextual embeddings for lexical items. Concurrently, NSP requires

the model to ascertain the likelihood of one sentence succeeding another in a continuous

context, thereby fine-tuning its grasp of sentence interrelations. Through conditioning

on bidirectional contexts during the training phase, BERT effectively achieves profound

insights into the subtleties of human language, establishing its application across a di-

verse array of contexts. The authors note that BERT redefines standards by setting
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new state-of-the-art results across eleven NLP tasks, which include but are not lim-

ited to question-answering, sentiment analysis, and natural language inference. For

instance, BERT accomplishes an unprecedented GLUE score of 80.5%, thereby sur-

passing previous benchmark records by notable margins. The model’s capacity for

fine-tuning necessitates minimal customization for task-specific objectives, enabling it

to seamlessly transition across various application domains while maintaining exem-

plary performance.

This notable flexibility makes it an attractive solution for researchers and devel-

opers aiming to construct advanced NLP applications without extensive architectural

overhaul. Beyond its outstanding performance metrics, BERT has incited consider-

able scholarly interest, giving rise to the field known as ”BERTology,” dedicated to

exploring the model’s internal mechanisms and representations. Scholars are delving

into how BERT, through its attention mechanisms, encapsulates linguistic properties

and relationships, and how these insights can enhance subsequent models. Moreover,

the inception of compact variants like DistilBERT addresses computational resource

concerns, facilitating deployment in more constrained environments without sacrific-

ing substantial efficacy. The advent of BERT epitomizes a pivotal milestone in NLP

by showcasing the dynamic potential of bidirectional training and transformer-based

architectures.

BERT’s proficiency in generating nuanced, contextualized representations has set

exceptional benchmarks for efficacy across varied NLP tasks and continues to inspire on-

going research into the comprehension and refinement of language models. As BERT’s

influence perpetuates advancements in NLP, it establishes a foundational platform for

future breakthroughs in AI-enhanced language comprehension systems and applications

that span across diverse industry sectors.

In their initial application, transformer models and LLMs were primarily deployed

within the NLP field, becoming instrumental in various tasks like sentiment analysis

[18, 101,102], word classification [103–105], text generation [106–108], and information

retrieval [109–111]. Recent notable advancements in the area of information retrieval

involve the use of Retrieval-Augmented Generation (RAG) models [112]. According to
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Lewis et al., this model presents a groundbreaking framework tailored to bolster LLM

capabilities, specifically in knowledge-intensive NLP tasks. Traditional LLMs, though

powerful, exhibit limitations in effectively accessing and utilizing factual knowledge,

which hampers their performance in precision-demanding tasks such as information

retrieval.

The proposed RAG framework addresses these issues by integrating parametric and

non-parametric memory, thus enabling models to dynamically access external knowl-

edge sources. This innovative approach not only enhances the generated responses’ ac-

curacy but also tackles challenges related to knowledge provenance and model updates.

The RAG framework operates through two primary phases: retrieval and generation.

In the retrieval phase, a neural retriever interacts with an external knowledge base, like

a dense vector index of Wikipedia, to collect pertinent data corresponding to the user’s

query. This information subsequently facilitates the generative phase, where a pre-

trained Sequence-to-Sequence (seq2seq) model produces context-aware responses. The

RAG models are evaluated against multiple knowledge-intensive tasks, including open-

domain question answering, demonstrating superior performance over both traditional

parametric-only seq2seq models and task-specific retrieve-and-extract architectures.

One of RAG’s significant advantages lies in its ability to generate language that

is not only specific and diverse but also factual, compared to existing methodologies.

By anchoring responses in current external information, RAG produces answers that

are both relevant and verifiable, an attribute critical in domains such as medicine and

technology. The authors also note that RAG minimizes the need for extensive retraining

of foundational LLMs, presenting a cost-effective strategy for organizations intending

to enhance their NLP capabilities without substantial computational expense.

Furthermore, the study delves into the broader consequences of merging retrieval

systems with generative models. By establishing a dynamic connection between LLMs

and external knowledge repositories, RAG promotes more informed decision-making

processes within AI applications. This synergy allows for real-time updates to the

model’s knowledge, circumventing the need for complete retraining, thereby overcoming

one of the significant limitations of traditional LLMs: their static nature with respect
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to training data. Consequently, RAG introduces a promising pathway for crafting more

adaptable and reliable AI systems capable of addressing complex queries across diverse

fields.

The advent of RAG signifies a substantial progression in the NLP sector. By adeptly

integrating retrieval with generation methodologies, RAG not only elevates LLM per-

formance on knowledge-demanding tasks but also pushes the frontier in efficiency and

precision. The framework establishes novel benchmarks for question answering and

information retrieval, while concurrently unlocking potential areas for future investiga-

tions in multimodal learning and AI-driven applications. As corporations increasingly

pursue the deployment of intelligent systems proficient at delivering precise and context-

driven insights, RAG stands out as a formidable instrument to meet these objectives

amidst a perpetually shifting data and knowledge ecosystem.

The domain of NLP has seen remarkable advancements due to the exceptional

capabilities of transformer models, as illustrated in prior examples. These models have

shown remarkable prowess in NLP tasks, owing to their intricate architecture. However,

the inherent complexity of transformers has driven researchers to explore their potential

beyond the conventional realm of NLP. The research conducted by Alexey Dosovitskiy

et al. [100] investigates the novel application of transformer architectures within the

sphere of computer vision.

The authors have introduced the Vision Transformer (ViT) model, an innovative

paradigm that conceptualizes image patches with the same theoretical approach as

words in a sentence. By segmenting an image into uniform patches and embedding

these segments, the ViT utilizes the transformer architecture to process them, thus

enabling it to perform image classification tasks with efficacy that rivals traditional

CNNs. This shift in methodology illustrates the transformers’ capability of handling

visual data without dependence on CNNs, which have historically been predominant

in computer vision. The ViT model operationalizes its function by transforming an

image into a sequence of flattened patches, further embedding these entities in high-

dimensionality contexts.

By analogizing each patch to a token, similar to NLP paradigms, the ViT em-
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ploys the attention mechanism to reassess the inter-patch relationships that contribute

to a comprehensive understanding of imagery. This not only enhances model per-

formance but also showcases transformative superiority by encapsulating long-range

dependencies across the image’s multiple aspects. The authors further emphasize the

greater scalability and adaptability harnessed through transformers compared to the

traditional CNNs, which primarily emphasize localized features. Their experimental

endeavours involve the pre-training of the ViT model with expansive datasets, with

subsequent testing against benchmarks such as ImageNet and CIFAR-100. Encour-

agingly, the ViT’s outcomes exhibit competitiveness relative to sophisticated CNNs,

while also demonstrating an economy of computational resources during the training

phase. The implications of these findings suggest that transformers, when trained on

extensive data sets, possess the ability to surpass conventional CNN architectures in

image classification tasks. This potential indicates a pivotal shift towards redefining

computer vision methodologies and prompts further inquiry into utilizing transformers

beyond established paradigms. In addition, the authors delve into possibilities facil-

itated by the application of transformers on a large scale for image recognition. By

asserting that pure transformer architectures can operate independently from CNNs

and still secure outstanding results, they question prevailing assumptions in the field

of computer vision.

This exploration illustrates the immense advantages in terms of performance and

suggests that integrating transformers can broaden the scope of numerous vision-centric

applications, including object detection and pixel-level segmentation tasks. The inher-

ent versatility of transformers thus encourages novel research trajectories that surpass

preceding conventions, advancing AI-driven visual recognition technology. Ultimately,

this study offers persuasive evidence supporting the integration of transformer architec-

tures within computer vision disciplines. By verifying the viability of pure transformer

models in undertaking image classification duties, the research underscores that such

models not only match but potentially exceed the robustness of existing CNNs, offer-

ing notable benefits in terms of scalability and versatility. This progression lays crucial

groundwork for transforming contemporary approaches to computer vision, urging a
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re-evaluation of traditional methodologies to exploit the capacities of groundbreaking

transformer models in varied application domains.

The utilization of transformer architectures extends beyond textual applications

and enters the realm of Visual Question Answering (VQA) as discussed in foundational

works such as [113]. VQA constitutes a sophisticated pursuit within AI, focusing on the

provision of answers to open-ended questions predicated on the visual data obtained

from images. The core aim of VQA is to empower computational systems to compre-

hend visual input and produce responses in a natural language format. To achieve

this, it necessitates a synergistic integration of computer vision techniques and NLP

methodologies, demanding that models simultaneously interpret the visual components

of an image along with the linguistic elements of the posed question. VQA architec-

tures are meticulously crafted to generate responses that are not solely accurate but

are also contextually pertinent, broadening their utility across several sectors, such as

educational frameworks, assistive technologies for individuals with visual impairments,

and the refinement of image retrieval methodologies.

A distinctive hallmark of VQA is its engagement with free-form, unconstrained

queries that may address particular facets of an image, including but not restricted to

background nuances and contextual information. Contrasting the conventional image

captioning tasks that typically yield generic summary descriptions, VQA mandates a

profound comprehension of the image’s intricacies to furnish precise responses. For

illustration, when confronted with a query such as “What is the color of the car in

this image?” the system is tasked with not only identifying the presence of the car

but also delivering an accurate assessment of its colour. Such intricacies render VQA

an intellectually demanding yet fruitful discipline, propelling the boundaries of AI’s

contemporary capabilities.

The progression of VQA has catalysed the compilation of specialized data repos-

itories to support both training and rigorous evaluation undertakings. For instance,

a prominent dataset encompasses roughly 265,000 images coupled with an excess of

1 million textual inquiries and 11 million substantiated answers. These datasets are

instrumental for the critical benchmarking of VQA systems, providing a basis for com-
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parative analyses among divergent methodologies and facilitating the identification of

potential enhancements. They commonly include a multiplicity of plausible responses

per inquiry to foster resilient evaluative standards and stimulate progress in model

precision. VQA’s applicability spans a myriad of real-world scenarios. Notably, it can

serve as a valuable tool for individuals with visual impairments by offering articulate

image descriptions or fulfilling inquiries regarding their environments. In pedagogical

contexts, VQA systems stand to revolutionize museum visitations by enabling direct

interaction inquiries about the exhibits on display. Moreover, VQA bolsters image re-

trieval systems by allowing users to locate specific visuals based on descriptive prompts.

Its functional reach into multimedia is further augmented by the capacity to retrieve

video segments predicated on visual content parameters.

In conclusion, VQA epitomizes a prominent synergy between computer vision and

NLP, tasking models with the understanding and analytical reasoning of visual infor-

mation in conjunction with textual interrogatives. As research in this domain evolves,

advancements in VQA are anticipated to significantly bolster AI’s interactive capabili-

ties with users, leading to increased accessibility and enriched user engagement across

diverse applications. The ongoing evolution of advanced models and expansive datasets

will be pivotal in defining the prospective contours of visual intelligence technologies.

The applications of transformers transcend merely processing textual data, as illus-

trated in the examples provided, by showing their utility across various modalities and

their capacity to unify different data types through the use of generic transformer de-

signs. Baevski et al. [4] have introduced an innovative method for creating embeddings

applicable to any modality. Their approach, Data2Vec, establishes a comprehensive

framework for self-supervised learning applicable to a multitude of modalities, namely

speech, vision, and text. The authors elucidate that, despite self-supervised learning

being a universal concept, the algorithms and objectives employed have hitherto been

tailored to specific domains. Data2Vec seeks to bridge this by employing a consistent

learning strategy that forecasts latent representations derived from complete data in-

puts via masked views, all while utilizing a self-distillation technique situated within a

conventional transformer framework. A key innovation of Data2Vec lies in its emphasis
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on producing contextualized latent representations instead of targets tied to specific

modalities, such as words, visual tokens, or speech elements. This strategic choice al-

lows the model to encapsulate exhaustive insights from the entire data input, thereby

elevating its capability to decode complex data structures. The efficacy of this frame-

work is corroborated by extensive experimentation on significant benchmarks relevant

to various domains: speech recognition (LibriSpeech), image categorization (ImageNet),

and natural language comprehension (GLUE). In these evaluations, Data2Vec matches

or exceeds state-of-the-art performance compared to existing methodologies, solidifying

its adaptability and effectiveness across modalities.

The architectural details of Data2Vec, as outlined by the authors, integrate a stan-

dard transformer model which is further augmented using modality-specific encoding

approaches. Specifically, it employs a multi-layer 1-D CNN for processing speech data,

adopts a ViT schema for interpreting image inputs, and encodes text through sub-word

units. This versatility permits Data2Vec to retain high performance across diverse

data types without sacrificing operational efficiency. Data2Vec’s capacity for effective

pre-training on extensive datasets underscores its prowess, demonstrating remarkable

performance improvements even in contexts with limited resources.

Moreover, the paper discusses the broader implications of a unified self-supervised

learning architecture for advancing research. By streamlining the training procedure for

multiple modalities, Data2Vec not only mitigates the complexity involved in crafting

separate models but also enhances generalization capabilities. This innovation lays the

groundwork for more integrated AI systems capable of comprehending and processing

heterogeneous information sources, ultimately leading to significant advancements in

multi-modal applications.

In summary, the advent of Data2Vec signifies a substantial progression toward re-

alizing generalized self-supervised learning techniques applicable across speech, vision,

and language disciplines. By harnessing a unified architecture and learning objective,

this framework achieves notable advancements on principal benchmarks, promoting

straightforward model development and deployment. The work of Baevski et al. estab-

lishes a fundamental basis for future endeavours in multi-modal learning and highlights
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the potential for evolving sophisticated AI systems that are competent in understanding

and interacting with the world through myriad information forms.

Another significant study introduces a comprehensive model for processing various

modalities [114], presenting an innovative MultiModal Large Language Model (MM-

LLM) capable of generating and interpreting content across different media formats,

including text, images, videos, and audio. This model, known as NExT-GPT, developed

by the NExT++ research group at the National University of Singapore, addresses a

crucial limitation in existing MM-LLMs, which typically prioritize multimodal input

comprehension over output generation in different modalities. The authors describe

an integrated system that associates a LLM with multimodal adaptors and diffusion

decoders, enabling efficient processing and generation across diverse formats.

Built with a robust architecture of established encoders and decoders, NExT-GPT

requires minimal parameter adjustments—approximately 1%—in certain projection

layers. This approach not only facilitates cost-effective training but also allows for scal-

ability to include additional modalities as required. The model introduces a novel tech-

nique called Modality-Switching Instruction Tuning (MosIT), supported by a meticu-

lously curated dataset that enhances cross-modal semantic interpretation and content

creation capabilities. Through these technological advancements, NExT-GPT aims to

develop an AI system capable of universal modality representation, thereby enhancing

human-like interaction capabilities within AI frameworks. NExT-GPT’s architecture

is composed of three main components: multimodal encoding, LLM processing fo-

cused on semantic comprehension, and multimodal content generation. At the encod-

ing stage, high-performance encoders process varied modal inputs, transforming them

into language-representative formats understandable by the LLM. Following this, the

LLM engages in semantic reasoning, generating outputs based on user input, which in-

clude modality-specific tokens that guide the decoding layers to create the appropriate

content. This systematic methodology allows NExT-GPT to undertake complex tasks

necessitating concurrent understanding of multiple modalities.

The performance of NExT-GPT is promising across several multimodal applica-

tions, demonstrating its versatile handling of inputs and outputs among various modal-
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ities. For example, users can input an image to receive a descriptive text or a correlated

video response. Such capabilities have significant implications for user interaction, po-

tentially broadening application possibilities within educational, entertainment, and

content creation domains. In conclusion, NExT-GPT signifies a crucial stride forward

in the evolution of multimodal AI systems. By fostering seamless interaction between

diverse content types—text, images, videos, and audio—it addresses pressing limita-

tions of current MM-LLMs. With its efficient training strategies combined with an

innovative design, NExT-GPT emerges as a pertinent model for driving future devel-

opment in human-like AI interactions. As ongoing research in this domain progresses,

NExT-GPT lays the groundwork for further advancements in multimodal AI technology

capabilities and applications.

Transformers have emerged as a versatile framework capable of adapting across

various modalities, facilitating advancements in numerous applications. In our research,

we leveraged the robust adaptability of transformers to develop an innovative brain

encoder. This encoder aims to provide learnable features that facilitate the EEG-

to-text decoding process, addressing a significant challenge in the current scientific

literature where the exploration of such applications remains limited. Brain signals

exhibit complexity similar to wave data like speech but are recorded at much higher

frequencies. Given the extensive research in the speech-to-text domain, we sought

to incorporate proven techniques from this field to enhance our understanding and

interpretation of brain data.

The Conformer Architecture, introduced by Anmol Gulati et al. [2], stands out

as the current state-of-the-art model for speech-to-text decoding tasks. It represents a

groundbreaking architecture designed to improve Automatic Speech Recognition (ASR)

systems through the integration of CNNs with transformers. The Conformer seeks to

combine the strengths of both approaches to more accurately capture local and global

dependencies within audio sequences, effectively addressing the limitations associated

with models that rely solely on either CNNs or transformers. By synergizing the parallel

processing capabilities of transformers with the local feature extraction strengths of

convolutional layers, the Conformer achieves an equilibrium that significantly enhances
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performance in speech recognition tasks.

The architecture of the Conformer incorporates several innovative components,

namely Multi-Head Self-Attention (MHSA) layers, convolutional modules, and feed-

forward networks (FFNs). The authors introduce a distinctive configuration that inte-

grates two macaron-style FFNs, featuring half-step residual connections as a structural

framework enclosing the attention and convolution modules. This design choice ensures

the model sustains high accuracy while optimizing parameter efficiency. Exhaustive

experimentation using the LibriSpeech benchmark has demonstrated the Conformer’s

superior performance, achieving a WER of 2.1% on the test-clean set and 4.3% on the

test-other set, even without the addition of an external language model. Remarkably,

when utilized in conjunction with an external language model, these WERs improve to

1.9% and 3.9%, respectively. A notable advantage of the Conformer architecture is its

effective handling of varied input lengths, rendering it well-suited for real-world ASR

applications where audio sequences often exhibit substantial differences in duration.

The inclusion of convolutional layers permits efficient capture of local context, while

the attention mechanism ensures the retention of long-range dependencies within input

data. This dual capability is crucial for accurate comprehension of speech, which is

characterized by intricate patterns and variability in pronunciation, intonation, and

rhythm.

Despite its impressive performance, the Conformer architecture does encounter chal-

lenges related to computational efficiency, primarily due to the inherent complexity of

the attention mechanism. Such complexity has the potential to be a bottleneck during

both training and inference phases, potentially restricting the model’s deployment in

extensive ASR systems. To mitigate this issue, ongoing research attempts focus on

optimizing the Conformer model further. These initiatives include exploring pruning,

quantization, and more efficient attention mechanisms aimed at reducing computational

overhead without compromising accuracy.

The introduction of the Conformer model marks a substantial advancement in the

realm of ASR technology. By effectively merging convolutional and transformer archi-

tecture, it sets new performance benchmarks while maintaining parameter efficiency.
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The Conformer’s prowess in capturing both local and global dependencies underscores

its potential as a formidable tool for ASR applications across diverse domains. Con-

tinued research into refining this architecture addresses its computational challenges

and promises further improvements in speech recognition systems, broadening their

application in real-world settings. This work not only contributes significantly to ASR

technology but also envisions future innovations in multi-modal learning and AI-driven

communication systems. In the ensuing sections, we will elucidate our employment

of the Conformer Architecture in executing EEG-to-text decoding, demonstrating its

applicability beyond traditional speech recognition contexts.

2.3.2 Activation Functions

Activation functions are mathematical functions used in artificial neural networks to

determine the output of a neuron based on its input. They play a crucial role in

enabling neural networks to learn complex patterns and relationships within data by

introducing non-linearities into the model. Without activation functions, the output of

a neural network would be a simple linear transformation of the input, severely limiting

its ability to perform tasks such as image recognition, language processing, and other

complex computations. By applying an activation function, the network can effectively

”decide” whether to activate a neuron based on the weighted sum of its inputs, allowing

it to capture intricate patterns in the data.

There are several types of activation functions, including linear, sigmoid, hyper-

bolic tangent (Tanh) [115], and Rectified Linear Unit (ReLU) [116], each with its own

characteristics and applications. For example, while the sigmoid function outputs val-

ues between 0 and 1, making it suitable for binary classification tasks, ReLU is often

preferred in hidden layers due to its ability to mitigate issues related to vanishing gra-

dients. The choice of activation function can significantly impact the performance and

convergence of a neural network during training, making it essential for practitioners

to select the appropriate function based on the specific requirements of their models

and tasks.

Goyal et al. [117] highlighted the existing research gap in devising activation func-
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tions for neural networks. They also addressed the pivotal role of activation functions

in the performance and learning dynamics of neural networks. Activation functions

are essential components that introduce non-linearity into the network, enabling it to

model complex relationships within data. The authors argue that the choice of activa-

tion function significantly influences the network’s ability to learn and generalize, and

they propose a framework for understanding and optimizing these functions.

The authors begin by reviewing traditional activation functions such as sigmoid and

hyperbolic tangent (Tanh) [115], which have been widely used in early neural network

architectures. While these functions helped in introducing non-linearity, they also posed

challenges, particularly with issues like vanishing gradients, which hindered the training

of deep networks. The paper discusses how these limitations led to the development of

newer functions like ReLU [116] and its variants, which have become popular due to

their simplicity and effectiveness in mitigating vanishing gradient problems.

One of the key contributions of this paper is the introduction of a systematic ap-

proach to learning activation functions. The authors propose a method where activation

functions can be treated as parameters that can be optimized during training. This

paradigm shift allows for adaptive learning of activation functions based on the specific

characteristics of the data and tasks at hand. By integrating this approach into ex-

isting neural network architectures, models can potentially achieve better performance

by tailoring their activation mechanisms to the nuances of the input data.

The paper also explores various experimental results demonstrating how learned

activation functions can outperform traditional fixed activation functions across dif-

ferent datasets and tasks. The authors present empirical evidence showing that their

proposed method leads to improved convergence rates and overall model robustness.

They emphasize that this new approach not only enhances performance but also pro-

vides deeper insights into the inner workings of neural networks, facilitating a better

understanding of how different configurations affect learning dynamics.

Furthermore, the authors discuss potential applications of learned activation func-

tions in various domains, including computer vision, NLP, and reinforcement learning.

They highlight how adaptive activation functions can lead to more efficient training
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processes and improved generalization capabilities in complex models.

Summing Goyal et al. presented a comprehensive framework for optimizing ac-

tivation functions within neural networks. By treating these functions as learnable

parameters, the authors open up new avenues for research and application in deep

learning. This work not only enhances our understanding of neural network behaviour

but also lays the groundwork for future innovations in model design and optimization

strategies that leverage adaptive mechanisms for improved performance across diverse

tasks.

To enhance the claim made by Goyal et al., Bilonoh et al. [118] proposed another

category of activation functions, as they aimed to go beyond the universally used activa-

tion functions to speed up convergence and improve accuracy. Their proposed function

is termed the tunable activation function, which allows for the modification of its pa-

rameters, as well as the between neuron connection weights during the training process.

They presented a novel approach to enhancing the performance of deep learning models

through the introduction of tunable activation functions. Traditional activation func-

tions, such as ReLU [116] and sigmoid, are fixed and may not be optimal for all tasks or

datasets. This research addresses this limitation by proposing a framework that allows

activation functions to be learned and adapted during the training process, thereby

improving the model’s ability to capture complex patterns in data.

The authors begin by discussing the importance of activation functions in neural

networks, emphasizing their role in introducing non-linearity and enabling the network

to learn intricate relationships. They highlight common challenges associated with

standard activation functions, including issues like the vanishing gradient problem and

the ”dying ReLU” phenomenon, where neurons become inactive and fail to contribute

to learning. By allowing activation functions to be tunable, the proposed method aims

to mitigate these issues and enhance overall model performance.

Tunable activation functions can be adjusted according to the characteristics of the

input data. This adaptability allows the neural network to optimize its performance

based on the specific features and patterns present in the dataset. The authors employ

a parameterized approach that enables each neuron to adapt its activation function

52



Chapter 2. Literature Review

dynamically during training. This adaptability is shown to lead to improved conver-

gence rates and better generalization on various tasks compared to static activation

functions.

To give more perspective of the differences of a tunable activation function typically

the equation of a polynomial function is written as follows:

f(x) = anx
n + an−1x

n−1 + . . . + a2x
2 + a1x + a0,

The authors proposed a different polynomial equation that replaces the constant

values with adjuted parameters :

ai =

 αi1zi + αi2z
2
i + αi3z

3
i , if zi ≥ 0

βi1zi + βi2z
2
i + βi3z

3
i , otherwise

,

Through extensive experiments on benchmark datasets, the authors demonstrate

that their tunable activation functions outperform traditional fixed functions in terms

of accuracy and robustness. They provide empirical evidence supporting their claims,

showcasing how different configurations of tunable functions can lead to superior per-

formance across multiple deep learning architectures.

Additionally, the paper discusses practical implications for implementing tunable

activation functions in real-world applications. The authors suggest that this approach

can significantly enhance model flexibility, making it easier for practitioners to achieve

optimal performance without extensive manual tuning of hyper-parameters.

To conclude Bilonoh et al. offered a compelling advancement in neural network

design by introducing an innovative framework for adaptive activation functions. This

research not only addresses existing limitations in traditional activation methods but

also opens new avenues for improving deep learning models’ efficiency and effectiveness

across diverse applications. The findings underscore the importance of flexibility in

model architecture, suggesting that future research should continue exploring adaptive

mechanisms to enhance neural network capabilities.

Wang et al. [119], also highlighted the importance of different activation functions

in machine learning by utilising a different approach then the 2 research investigations

mentioned previously They introduced a novel approach to enhancing neural network

performance through the use of polynomial activation functions. Traditional activation

functions, such as ReLU and sigmoid, have limitations that can hinder the learning

53



Chapter 2. Literature Review

capabilities of deep networks, especially in complex tasks like precipitation forecasting.

The authors propose using polynomial functions of order two or higher as activation

mechanisms, which can better approximate continuous real-valued functions within

specific intervals. This flexibility allows the model to capture intricate non-linear rela-

tionships inherent in meteorological data.

The authors detail the mathematical formulation of polynomial activation functions

and discuss their advantages over conventional methods. One significant benefit is the

ability to learn non-linearities that may not be monotonic, enabling the network to

adapt more effectively to the underlying data distribution. However, they acknowledge

challenges such as potential exploding gradients associated with higher-order polyno-

mials. To mitigate these issues, the authors introduce techniques like dynamic input

scaling, output scaling, and a lower learning rate specifically for polynomial weights.

These strategies help stabilize training and improve convergence rates.

Their research presents empirical results from experiments conducted on three pub-

lic datasets related to precipitation forecasting. The findings demonstrate that networks

utilizing polynomial activation functions can achieve performance levels comparable to

or exceeding those of state-of-the-art activation functions. The authors emphasize that

their approach allows each layer in the network to discover its preferred nonlinearity

during training, enhancing the model’s overall adaptability and effectiveness.

To sum up, this research contributes valuable insights into the design of activation

functions in deep learning models, particularly for complex tasks such as precipitation

forecasting. By leveraging polynomial activations, the authors provide a promising

alternative that addresses some limitations of traditional activation functions while

offering enhanced flexibility and performance in neural network architectures. This

work not only opens new avenues for future research but also highlights the importance

of exploring diverse activation mechanisms to improve model training and prediction

accuracy in various applications.
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2.3.3 Information Need and Recommender Systems

As extensively examined in Chapter 1.1, the principal aim of this comprehensive thesis

is to conduct an in-depth investigation into the opportunity of the development of a so-

phisticated computer system that the users can navigate using a brain powered machine

as the input. This exploration is grounded on the foundational framework presented

in Section 3.1, which outlines two primary and extensive categories of user interaction

that the system intends to address: an advanced search engine and a dynamic chatbot

system.

The principal objective of both systems is to address the user’s informational needs.

Fundamentally, the core emphasis is placed on satisfying this inherent need for infor-

mation possessed by users. A chatbot system functions as an interactive mechanism

wherein users engage in dialogue to acquire answers to their inquiries by interacting

with a virtual agent. This interaction directly attends to the conversational dimension

of information seeking [120–122]. Conversely, a search engine is designed to fulfil a

comparable role, albeit without engaging in a dialogue-oriented exchange. Instead, it

delivers information through a more direct retrieval methodology to satisfy the informa-

tion need [123–125]. Although these two systems differ in their modes of interaction, the

essence of their functioning is grounded in addressing the user’s pursuit of information.

The effective delivery of pertinent information, whether through a chatbot or a search

engine, is essential. These systems aim to satisfy the fundamental informational desire,

an intrinsic component of user interaction. Consequently, both systems, notwithstand-

ing their divergent methodologies, converge on the shared objective of fulfilling the

information needs of users, albeit through divergent mediums and methodologies.

Within the historical framework of IR systems, notwithstanding the compelling ne-

cessity to integrate these two systems—each exemplifying state-of-the-art methodolo-

gies in information retrieval—a discernible trend emerged wherein users predominantly

preferred alternative solutions for acquiring information. This tendency is unequivo-

cally evidenced by the sustained engagement with and reliance on RSS feeds, which have

been recognized as a pragmatic and effective method for accessing information [126].

With the progression of technological advancements, the development of increasingly
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personalized information retrieval systems became apparent, particularly through the

advent of recommender systems.

From an IR perspective, recommender systems aim to optimize user experience by

pre-emptively anticipating and meeting users’ information needs, subsequently provid-

ing a customized array of recommendations. The scope of recommender systems is

extensive, with their applications spanning various sectors, such as movie recommen-

dation systems [127], and systems intended for the recommendation of contextual photo

tags [128]. Therefore, recommender systems signify a notable progression in the field,

proficiently addressing user requirements ahead of their explicit articulation.

In order to enable these systems to fulfill their intended purposes of delivering

high-quality recommendations and relevant information to users, thus addressing their

informational needs, a comprehensive array of feedback data has been methodically

collected over a prolonged duration [129]. It is posited that a proficient recommender

system should adeptly integrate a diverse array of methodologies and various feedback

inputs to provide valuable suggestions and improve the overall search experience [130].

The compiled data encompasses a broad spectrum of elements, including facial expres-

sions [131], emotional and semantic-based characteristics [132], as well as physiological

and behavioral attributes [133].

In recent developments, despite significant advancements in these technological

frameworks, it has been recognized that cognitive insights can be derived from the

human brain [66, 73–75, 77, 93, 134]. This crucial discovery has initiated a paradigm

shift, leading researchers to move away from traditional methodologies such as pseudo-

relevance feedback [135], and gravitate towards leveraging implicit neural feedback

originating from the user’s cognitive processes to determine relevance and enhance

information retrieval in complex tasks such as passage retrieval [136]. Among the re-

search activities focused on neural relevance are the extraction of cerebral features

using video topological significance [137], the analysis of the transitional dynamics

occurring between neural states during search [138], and the investigation of cognitive

saturation [139]. Through this perspective, the exploration and implementation of neu-

ropsychological feedback mechanisms have the potential to transform the understanding
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of relevance and retrieval processes, symbolizing a shift from outdated paradigms to

neuroscience-based approaches.

The application of implicit feedback data, sourced from brain activity, within rec-

ommender systems has been the subject of extensive scholarly investigation over the

past several decades, as previously noted. In contexts such as chatbots and search

engines, recommender systems aim to fulfill the information requirements of users, not

only by recommending pertinent content but also by improving the quality of responses

available to users’ queries. Nevertheless, the incorporation of neural data into these

systems has largely remained unexplored. There exists a research gap concerning the

potential enhancement of interactions with these systems through the utilization of

neural data. Additionally, there is substantial, unexplored potential in employing such

systems to gather a more comprehensive range of implicit feedback, influenced by users’

brain activity throughout their interaction with the systems.

2.4 Brain-To-Text Decoding

In recent years, there has been a significant body of research aimed at understanding

the decoding of language within the human brain, specifically focusing on how language

can be processed when individuals either read text or listen to spoken language. This

domain has been explored in adequately by a range of studies but still not a definite

implementation has been made available to openly decode human thoughts and inner

speech.

In their pioneering study, one of the initial forays into the domain of brain-to-text

decoding was conducted by [1]. Their seminal research, titled ’Interpreting and Improv-

ing Natural-Language Processing (in Machines) with NLP (in the Brain)’, meticulously

investigates the nexus of cognitive neuroscience and the burgeoning field of AI. The re-

search underscores a particular emphasis on the transformative insights that can be

gleaned from human brain functions related to language processing, with the express

intent of using these insights to innovate and refine machine learning algorithms in

NLP.

The distinguished authors postulate that deciphering the neural substrates and
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mechanisms pivotal to human language comprehension holds the potential to furnish

AI researchers with robust frameworks that can inform and elevate the efficacy of algo-

rithms currently deployed in NLP. The investigative endeavour embarks by presenting a

comprehensive overview of the present landscape of deep learning architectures, which

have notably championed significant advancements and efficacy in a spectrum of NLP

tasks encompassing, but not limited to, text generation, automatic translation, and

nuanced sentiment analysis.

Despite these advancements, it is acknowledged that such models often navigate

challenges related to interpretability and do not yet authentically emulate the intricate

and nuanced modes of human linguistic understanding. To approach this limitation,

the authors propose a methodical juxtaposition of cerebral activity data elicited during

linguistic tasks and the output of various state-of-the-art NLP models. The method-

ological framework utilized incorporates advanced neuroimaging techniques, specifically

fMRI alongside MEG, to map and record the neurophysiological responses of partic-

ipants as they cognitively engage with language stimuli. The accrued empirical data

was rigorously analysed to pinpoint distinct neural circuits engaged at various stages

of linguistic processing.

The results illuminate a fascinating finding: certain advanced deep learning models,

especially those employing transformer-based architectures, demonstrate neural activa-

tion patterns bearing a significant resemblance to those observed in the human brain

during analogous language processing tasks. Two pivotal insights emerge from this

comparative analysis: foremost is the assertion that the degree of congruence between

artificial and cerebral representations is predominantly influenced by the models’ profi-

ciency in contextual word prediction. This infers that enriching contextual paradigms

within NLP algorithms could stimulate more brain-analogous processing schemas. Fur-

thermore, the research delineates specific cortical zones instrumental for processing per-

ceptual, lexical, and compositional language constructs, thereby charting a path for the

creation of refined NLP systems that intricately simulate human cognitive pathways.

Moreover, the treatise deliberates on tangible implications for the enhancement of

NLP algorithms through the assimilation of cognitive science-derived principles. Mod-
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els architected to mirror hierarchical and contextual linguistics akin to human cerebral

activities promise to be not only more efficient but also possess enhanced interpretabil-

ity.

The authors ambitiously recommend that ensuing research pursuits should be ori-

ented towards fine-tuning these models to augment their analytical prowess across di-

verse linguistic tasks, all the while ensuring resonance with human cognitive paradigms.

In summation, this comprehensive paper presents a profoundly persuasive argument

advocating for the strategic application of cognitive neuroscience insights to propel

advancements in NLP technologies. By marrying machine learning innovations with

human cognitive processing frameworks, scholars can architect NLP systems that are

not only more robust and interpretable but also more accurately mirror the rich com-

plexities inherent in human communication. Such a cross-disciplinary approach extends

its value beyond mere machine capability enhancement, enriching the broader under-

standing of language as an essential element of cognition, thus fortifying the bridge

between AI and human linguistic faculties.

In the expansive and rapidly evolving field of machine learning, it is a widely ac-

cepted fact that the quality and accessibility of data serve as foundational elements for

the conception and refinement of models that are both robust and accurate. The process

of gathering and utilizing fMRI data is notably expensive and inherently lacks real-time

capabilities, which poses certain limitations for its application in timely decision-making

processes.

In contrast, EEG data, particularly within the interdisciplinary domains of cognitive

neuroscience and Neuroinformatics, offers real-time data collection capabilities and is

relatively more economical to acquire. Despite these advantages, EEG data brings forth

unique challenges attributable to its inherently complex signal structure, as well as the

resource-intensive nature of its acquisition and the sophisticated analysis required for

meaningful interpretation .

The Zurich Cognitive Language Processing Corpus (ZuCo) [140, 141] represents a

pivotal contribution to this field by amalgamating high-density EEG recordings with

eye-tracking data for an enriched understanding of cognitive language processing. The
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ZuCo corpus is meticulously curated to elucidate the intricate neural and behavioural

dynamics involved in language comprehension, thereby offering an invaluable asset for

researchers at the intersection of NLP and cognitive neuroscience.

Specifically, the dataset encompasses comprehensive recordings from 12 neurotyp-

ical English-speaking adults engaged in an array of reading tasks, with a cumulative

duration of 4 to 6 hours per participant. These tasks yielded a substantial corpus of

data, encompassing 21,629 discrete words embedded in 1,107 sentences, alongside a

total of 154,173 eye-tracking fixations. This extensive dataset not only permits the

in-depth analysis of reading behaviour but also provides a granular view of cognitive

load and processing strategies employed during naturalistic sentence comprehension.

ZuCo is meticulously partitioned into structured tasks, including two paradigms of

typical reading alongside a specialized task-focused reading activity. This pertains to

the systematic exploration of diverse facets of cognitive and linguistic processing. The

symbiotic integration of EEG data, representing neurophysiological activities, with eye-

tracking metrics, illustrating oculomotor behaviour and visual engagement, amplifies

the potential to decipher the reciprocal interactions between cognitive mechanisms and

linguistic constructs.

Advancing research in NLP methodologies, the authors of ZuCo underscore its pro-

found utility in enhancing machine learning paradigms for sophisticated applications

such as entity recognition, relational extraction, and sentiment analysis. The dataset’s

EEG and eye-tracking components provide essential inputs for the refinement of algo-

rithms aimed at emulating human linguistic processing capabilities with higher fidelity.

Moreover, the corpus extends its significance beyond machine learning applications by

serving as a foundational dataset for probing core inquiries into human reading pro-

cesses and language cognition. By elucidating the confluence of brain activity patterns

and ocular dynamics during text interpretation, ZuCo offers critical insights into the

cognitive architecture driving language comprehension. This dual data synthesis not

only enriches theoretical frameworks but also has potential translational implications

in developing cognitive and linguistic interventions for individuals with reading and

language impairments.
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The ZuCo has introduced an advanced iteration, designated as ZuCo-2.0, subse-

quently producing an enriched dataset. In comparison to its predecessor, ZuCo-1.0,

the ZuCo-2.0 dataset incorporates comprehensive psycholinguistic data from a cohort

of eighteen subjects. This expanded dataset embodies a substantial linguistic resource,

presenting 15,138 distinct words articulated across 739 exemplified sentences [141].

The meticulous construction of these datasets involved the integration of sophisticated

eye-tracking metrics, as methodically detailed within the GECO corpus [142], thereby

offering a dual-layered analysis encompassing both lexical and sentential dimensions.

Notably, the dataset leverages critical eye-tracking features, such as ’first fixation

duration,’ representing the initial temporal period during which participants focus their

visual attention on a specific word, in conjunction with ’total reading time,’ which ag-

gregates the entirety of fixation periods observed on the target word. These metrics not

only provide nuanced insights into cognitive processing but also serve as a fundamental

basis for advancing psycholinguistic research.

In summary, the ZuCo epitomizes a landmark advancement in the empirical study of

cognitive language processing through its systemic integration of EEG and eye-tracking

modalities. This dataset provides a pivotal resource for the dual exploration of neu-

ral mechanisms and behavioural paradigms underpinning reading and comprehension,

furthering both theoretical insights and practical applications in cognitive neuroscience

and NLP.

The utilization of the Zurich Cognitive Language Processing Dataset, commonly re-

ferred to as ZuCo, represents a groundbreaking development in the realm of neuroscience-

assisted NLP. One of the first large-scale applications, spearheaded by Hollestein et

al. [143], sought to investigate the utility of EEG data in enhancing the capabilities of

NLP tasks. Historically, human behavioural data, such as eye-tracking from reading

tasks, predominantly served to elucidate underlying cognitive processes. However, this

pioneering research diverges by exploring the deployment of neural signals, inherent to

language processing, to augment machine learning models within the NLP domain.

At the heart of the study is an innovative multi-modal machine learning architecture

that harmonizes both textual data and EEG features. This integrative approach is de-
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signed to pinpoint and analyse EEG signals’ elements that predominantly bolster NLP

performance. A pivotal discovery by the authors is the superior efficacy of EEG signals

partitioned into discrete frequency bands over general broadband signals. This finding

posits that particular frequency domains within EEG data encapsulate more pertinent

information essential for comprehending language processing mechanisms compared to

others.

The research rigorously examines two principal NLP tasks, namely sentiment clas-

sification and relation detection. In the domain of sentiment analysis, involving both

binary and ternary classification tasks, the incorporation of EEG-derived data signif-

icantly amplifies performance metrics compared to baseline models devoid of neural

inputs. Conversely, the intricacy of relation detection tasks necessitates reliance on ad-

vanced word embeddings. The specific superiority of contextualized embeddings, with

BERT proving particularly beneficial, underlines the complexities inherent in integrat-

ing neurophysiological features in sophisticated NLP tasks. This calls for a continued

inquiry into optimizing EEG data application in more complex NLP functionalities.

Complementary modalities, such as eye-tracking, are juxtaposed with EEG data

to provide a holistic assessment of cognitive load experienced during language pro-

cessing. Whereas eye-tracking furnishes an indirect gauge of cognitive exertion, EEG

can supply immediate insights into neurological activities allied with linguistic compre-

hension. This differentiation accentuates the merit of synergistically employing these

methodologies to attain a comprehensive apprehension of human language processing.

The authors elucidate their methodical framework, entailing an exhaustive evalua-

tion of diverse EEG features and their consequential impacts on selected NLP tasks. By

examining varying neural network models adept at concurrently processing both textual

and cerebral data streams, the investigation champions the importance of customizing

feature extraction to cater to EEG’s distinct signal properties.

In summary, the discussed investigation epitomizes a pivotal advancement in the in-

tegration of neurophysiological data with NLP architectures. Through demonstrating

EEG’s augmentative role in machine learning approaches oriented towards language

processing, the work not only unveils newer trajectories for developing more nuanced
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and interpretable NLP systems but also sets a precedent for future inquiry. This tra-

jectory encompasses probing the intricate relationship between neural activities and

language understanding, heralding advancements in assistive communication technolo-

gies for individuals with linguistic impediments, and expanding our comprehension of

human cognitive processes.

Another EEG-to-Text research was conducted by Herff et al. [144] epitomizes a pi-

oneering advancement in the domain of BCIs by presenting the unprecedented ability

to decode continuous spoken language directly from neural signals acquired through

intracranial Electrocorticography (ECoG). This research addresses a formidable chal-

lenge in the field: the translation of neural activity into coherent and fluid text, thereby

bridging the communicative gap between human cognitive processes and computational

devices. By building upon previous efforts that have been limited to recognizing iso-

lated components of speech such as phonemes or discrete words, the authors achieve a

breakthrough that extends these capabilities to decode entire phrases with remarkable

proficiency.

The innovative Brain-To-Text system rooted in this study adopts a refined model

for the integration of ASR techniques with neural signal analysis, focusing initially on

the sub-processes related to single phoneme recognition. Herff et al. [144] successfully

transition from this micro-level analysis to a macro-level demonstration of decoding

continuously spoken phrases, a feat previously unattainable due to the intricate nature

of speech-related neural encoding. By addressing this complexity, the research signifi-

cantly advances our technical and theoretical understanding of speech signal processing

from a neural perspective.

The empirical results underscore the efficacy of the Brain-To-Text system, which

achieves commendable WERs as minimal as 25% and phone error rates under 50%.

These figures represent a substantial stride in the accurate decoding of continuous

speech from neural activity, indicating potential practical applications. In elucidat-

ing the cortical regions with rich neural correlates to phonemic information, the study

enhances our comprehension of the spatial and functional mapping of speech produc-

tion within the brain, thereby contributing to the broader corpus of neurocognitive
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linguistics.

Methodologically, the research framework involved the development of neural phone

models that were rigorously trained on ECoG data obtained during specific speech

tasks. Through meticulous analysis, the researchers were able to draw a nexus between

distinct neural firing patterns and their corresponding phonetic and linguistic outputs.

This methodological innovation not only accentuates the translational potential of BCIs

but also demystifies the underlying neural mechanisms of speech, providing seminal

insights that fuse neuroscience with advanced computational linguistics.

The broader implications of this research are transformative, heralding a new epoch

in the development of assistive technologies prioritizing human-machine communication

grounded in the neural representation of imagined speech. By potentially revolutioniz-

ing the modalities through which individuals with speech impairments or neurological

conditions interact with external environments, this research holds the promise for sub-

stantially improving life quality through improved intuitive and personalized assistive

solutions.

In reflection, the Brain-To-Text system signifies an epochal advancement in the

intersection of cognitive neuroscience and machine intelligence. By successfully de-

coding neural signals into spoken phrases, this body of work opens expansive avenues

for realizing sophisticated BCIs that seamlessly convert natural human thought into

machine-readable language. This pursuit not merely heightens current technological

capabilities but significantly enriches our scientific understanding of human cognitive

processes related to speech production, thereby contributing to an interdisciplinary

dialogue between neuroscience, AI, and linguistics.

Furthermore in the domain of neuroscience and AI the last study that touches the

domain of EEG-to-Text decoding, is the cutting-edge study by Wang et al. [145] breaks

new ground in the realm of EEG-to-text decoding systems. This research presents

an innovative paradigm for translating spoken language from EEG signals while con-

currently processing sentiment classification, all without the burdensome necessity of

substantial annotated training datasets. The overarching goal of this research is to

advance communication technologies, particularly for individuals experiencing speech
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impairments, by directly converting neural activity into textual output while capturing

the latent emotional undertones of such communications.

The research commences by elaborating on the constraints inherent in conventional

EEG-based methodologies for speech decoding, which typically depend upon a nar-

row lexicon and extensive datasets for training. The researchers introduce an adaptive

open-vocabulary framework that transcends the limitations of a predefined vocabulary

by facilitating the decoding of any spoken phrase. This adaptability is realized through

sophisticated machine learning paradigms that harness the capabilities of expansive lan-

guage models designed to comprehend and generate text based on nuanced contextual

signals.

To operationalize this open-vocabulary paradigm, the authors employ a meticu-

lously structured two-phase process: Initially, they extract critical features from EEG

signals that correlate with brain activities indicative of speech articulation; subse-

quently, these extracted features are integrated with a pre-trained linguistic model

to yield textual representations. This bifurcated approach not only augments the fi-

delity of decoding but also bolsters the system’s capacity to adapt to diverse speech

idiosyncrasies and situational contexts.

Beyond merely facilitating speech decoding, the study ventures into the realm of

zero-shot sentiment classification. This enables the model to infer the emotive tone

of the decoded text, effectively classifying sentiments as positive, negative, or neutral,

without necessitating explicit training on predefined sentiment labels. Such a capability

is invaluable, particularly in contexts where labelled sentiment data is sparse or entirely

absent. The authors empirically demonstrate how their methodology effectively utilizes

the inherent contextual nuances of decrypted text to perform sentiment classification.

The empirical results delineated within the study reveal that the proposed frame-

work substantiates marked improvements in decoding precision and sentiment classifi-

cation efficacy relative to pre-existing methodologies. The facility to decipher phrases

with an open vocabulary from neural signals signifies a pivotal evolution in BCI tech-

nologies, heralding a potential shift towards more intuitive human-machine interactions.

Moreover, the implications of this research resonate beyond assistive communica-
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tion technologies; they imply burgeoning applications across disciplines such as mental

health surveillance, where decoding an individual’s emotional state via neural activity

could yield profound insights into their psychological welfare.

Ultimately, this seminal paper illustrates a forward-looking trajectory in neurotech-

nology by synergizing open-vocabulary EEG decoding with advanced sentiment classifi-

cation techniques sans training datasets. The developments elucidated not only expand

the functional repertoire of BCIs but also deepen our understanding of the neural encod-

ing of language and emotion. This cross-disciplinary strategy paves the way for novel

research inquiries and practical implementations spanning both the neuroscientific and

AI fronts.

Extensive initiatives have been undertaken in the domain of EEG-to-text and brain-

to-text decoding, each confronting intrinsic limitations reflective of the complexity in-

herent in neural signal translation. Our research initiative is poised to significantly

elevate the operational effectiveness of the leading EEG-to-text conversion framework

by strategically revising its architectural design. This endeavour entails a shift from

the traditional reliance on extracted EEG features towards a profound emphasis on the

utilization of unprocessed, or raw, EEG signals. Empirical evidence underscores the

superiority of such raw data in enhancing classification performance, particularly when

merged with the state-of-the-art deep learning mechanisms or advanced transformer-

based technologies [146,147]. This empirical foundation not only confirms the efficacy of

raw signals but also mitigates the exigencies associated with exhaustive preprocessing.

Preprocessing of EEG data typically demands substantial computational resources

and significant manual effort, a burden substantially alleviated through the adoption

of unrefined data. By circumventing the preprocessing phase, computational overheads

are appreciably reduced, aligning with the overarching objective of creating a more

efficient and streamlined workflow for EEG data analysis. Thus, our approach is not

merely revolutionary in the context of data processing but also in resource manage-

ment, showcasing a shift towards sustainability in computational practices. Through

the strategic alignment of raw EEG data with pioneering advancements in the realms of

neuroscience and AI, specifically machine learning paradigms, we envisage approaching
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the conceptualization of a functional, real-time brain decoding apparatus. This am-

bition carries profound implications for the future of neurotechnology, suggesting the

potential to bridge the existing gap between abstract neural signal interpretation and

tangible, real-world applications.
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Brain-Computer Interface Neural

Information System

3.1 Introduction

The principal objective of this thesis is to present a comprehensive architectural frame-

work enabling user interaction exclusively through BCI technologies. This interaction

paradigm obviates the need for traditional input mechanisms by utilizing advanced

neuroscientific methodologies for direct command.This section offers a thorough ex-

amination and systematic breakdown of each key component required for the imple-

mentation of a Brain-Computer Interface Neural Information System (BCI-NIS). Each

component is dissected independently, elucidating their distinct contributions and roles

within the comprehensive system architecture. In addition, a thorough examination of

the sub-modules enabling the functionality of each component is provided, explain-

ing the sophisticated frameworks that support their operations. Particular emphasis

is placed on explicating the justification for incorporating each component BCI-NIS,

emphasizing their fundamental operational responsibilities and projected outcomes.

Additionally, this chapter offers an assessment of potential constraints and technical

challenges that may arise during the development and integration of these components

and their linked sub-modules. By presenting these elements, this analysis highlights

the complexities involved and outlines the tactical approaches to address issues faced
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Frame Handler

Word Perceived Model

Brain To Text Decoder

User has thought of a
word

Passing the frames
to check if the user
thought of a word

Chatbot or Virtual Assistant
Search Engine

Pass to Search EnginePass to Chatbot
or Virtual
Assistant

Figure 3.1: The proposed BCI-NIS architecture is outlined in this Figure, comprising
several key components. Initially, the Brain Decoder captures real-time brain data from
the user. This data is managed by the Frame Handler, which stores and preprocesses
the most recent frames securely. The frames are then analyzed by the first AI layer to
ascertain if they form a user-conceived word. Finally, the core component decodes the
frames to generate text, which can be sent to a virtual assistant or a search engine.

in implementing a fully integrated brain-interactive system, thereby paving the way

for future advancements and enhancements in the field of brain-computer interfacing.

An accompanying diagram is presented in Figure 3.1 where you can a see a complete

diagram with all the high level components and how they interact with each other and

a description of the flow of the system.

3.2 Brain recorder

The Brain Recorder serves as the foundational and pivotal element of BCI-NIS. Its pri-

mary function is to provide a crucial interface for the incorporation of neural data into
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the comprehensive BCI-NIS system architecture. It is of utmost importance to main-

tain the BCI-NIS system’s portability; thus, non-invasive brain imaging techniques

are identified as optimal solutions. These techniques facilitate the efficient transfer of

neural data, thereby enhancing the BCI-NIS system’s portability and practicality.The

implementation of an integrated brain recorder within the system is significant because,

in the field of neuroscience, it is uncommon to find or implement modules that are ca-

pable of programmatically recording EEG data and facilitating its transfer to other

components of a computer system. More frequently, external software, such as Brain-

Vision, is utilized to record neural activity, with the recorded files later being analyzed

through computational methodologies.

An efficacious strategy for the Brain Recorder is to focus on the acquisition and

documentation of EEG data from the user. When compared to other traditional brain

imaging modalities, EEG technology provides unmatched benefits concerning portabil-

ity. The intrinsic properties of EEG enable it to surpass the constraints posed by more

cumbersome and less mobile alternatives, thus aligning seamlessly with the objectives

of BCI-NIS system portability.

Moreover, EEG data offers unparalleled real-time surveillance of neural activities,

a characteristic that is critical to the BCI-NIS system’s efficacy and responsiveness.

This capability of real-time data capture guarantees that the BCI-NIS system obtains

prompt and precise information regarding brain activities, thereby augmenting its ca-

pacity to process and react expeditiously.

Upon successful acquisition of EEG-based neural data, it is subsequently directed

to the ensuing BCI-NIS system component, referred to as the Frame Handler. The

Frame Handler meticulously processes the input data, ensuring its seamless integration

into the BCI-NIS system, thereby enabling further analytical procedures or actions

predicated on the recorded neural activations.

Having presented the functionality of the Brain Recorder now the difficulties and

challenges of constructing this component are presented.

The primary challenge delineated in this research pertains to the extant difficulties

associated with the portability of BCI-NIS systems that utilize EEG data in practical
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applications. Although EEG technology is inherently non-invasive, an array of ad-

vanced EEG devices has been identified as notably burdensome to convey due to their

inherent complexity. Furthermore, these BCI-NIS systems often necessitate supple-

mentary external apparatus, such as amplifiers, for their effective operation, thereby

magnifying the challenge of portability. To address this challenge, insights may be

drawn from the seminal work by Kingphai and Moshfeghi, as cited in [148]. Their

study, elaborated in Section 2.2.5, reveals the potential for training a deep learning

model in an offline context with data from a highly channel-rich EEG apparatus. This

model, once trained, can be fine-tuned or employed for inference with data from sources

possessing significantly fewer channels, essentially comprising subsets of the original

comprehensive electrode data.

Although this specific methodology has not yet been empirically implemented in

BCI-NIS, it is underpinned by a robust theoretical framework that suggests its poten-

tial effectiveness. This strategy could potentially enable the development of a compact,

portable EEG system, utilizing, for instance, merely four EEG channels as the input

for the device, while leveraging backend models trained on more extensive datasets.

The application of such a solution has the potential to significantly enhance the porta-

bility and usability of EEG systems across a variety of practical contexts, marking a

considerable advancement in the field.

3.3 Frame Handler

In the section designated as Frame Handler, the discourse addresses a pivotal element

of the BCI-NIS system architecture tasked with the management and processing of se-

quential data frames. The role of the Frame Handler transcends mere data organization;

it is integral to the BCI-NIS system’s capability to manage real-time data processing

requirements efficiently. As data frames are received in succession, the Frame Handler

expeditiously arranges them into a coherent structure, thereby enabling subsequent

modules to process the information both effectively and accurately.

Fundamentally, the Frame Handler serves not simply as a supplementary component

of the BCI-NIS system but as a critical element that facilitates the maintenance of
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high performance and reliability. Its function in coordinating the flow of data frames

constitutes the core of the BCI-NIS system’s data management strategy, underscoring

its essential contribution to the overall operation and efficiency of the BCI-NIS system

architecture.

A key difficulty encountered by the Frame Handler lies in the careful maintenance

of a complete history encompassing all recordings obtained from the Brain Recorder

during one session. This task is critically important because the AI models integral to

the BCI-NIS system require an extensive dataset of recordings, rather than just one,

to perform efficient inference procedures. Various studies have conclusively demon-

strated that utilizing an ensemble of recordings, as opposed to an individual recording,

substantially enhances outcomes [149, 150]. This approach primarily facilitates signif-

icant noise reduction in neural data. Given that EEG has been selected as the brain

imaging technique for this BCI-NIS system, a solitary EEG recording could be poten-

tially encumbered with noise. Conversely, a collection of recordings not only provides

augmented variability for the model but also ensures considerable noise reduction [151].

Additionally, a strong machine learning model is often defined by its generalization

skill. Introducing diverse recordings greatly improves the generalization aspect of the

data fed into the model [152]. In conclusion, the aggregation of several EEG recordings

addresses the challenge of temporal stability. EEG data inherently exhibit temporal

fluctuations in brain activity patterns. Capturing these changes over time, multiple

recordings yield a more stable depiction of brain functions. This comprehensive depic-

tion embodies both the transient and persistent attributes of neural activity [153].

Given the stipulated requirements for the Frame Handler, a notable challenge

presents itself. Taking into consideration that modern EEG headsets can achieve a

sampling rate between approximately 256Hz and 500Hz, preliminary computations in-

dicate that this would result in approximately 15000 to 30000 recordings per minute.

This represents a considerable quantity of recordings, thereby necessitating the man-

agement of a substantial volume of data by the Frame Handler.

Hence, an additional compelling justification arises for the implementation of a spe-

cialized component interposed between the Artificial Intelligence models and the Brain
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Recorder. This intermediary is designed to proficiently manage the incoming data

stream. An effective solution entails the deployment of cutting-edge big data manage-

ment libraries alongside sophisticated algorithms. These technologies would proficiently

facilitate data retrieval while preserving the sequential integrity of the recordings. Con-

sequently, this strategic measure augments the BCI-NIS system’s overall capacity to

process large datasets with accuracy and efficiency.

3.4 Word Perceived Model

In this crucial segment of the chapter, the detailed mechanisms of the Word Perceived

Model are thoroughly explicated. This element is crucial to the overall success of the

BCI-NIS system due to its indispensable capability to accurately identify instances

when a particular word or phrase has been authentically conceived by the user. The

implementation of this module is of significant importance due to the continuous activ-

ity of the human brain, which invariably generates various forms of activation, such as

blinking. The Word Perceived Model provides a crucial mechanism for distinguishing

those moments when the system user genuinely conceives words intended for inclusion

and engagement with the system, from those periods of idleness or physical movement.

This functionality is imperative, as it mitigates the introduction of erroneous samples

of misclassified ’words’ into the system.

The BCI-NIS system achieves this by distinguishing intentional mental activities

from less pertinent states, such as when the user is in a passive resting condition

or engaged in unrelated tasks. This differentiation is critical as it enables the BCI-

NIS system to accurately map and respond to the user’s dynamic cognitive processes

without erroneously interpreting unrelated neural signals that may occur during periods

of inactivity or distractions. Consequently, the success of this model is contingent upon

its proficiency in identifying and isolating genuine word perception among a multitude

of potential mental states, a characteristic that substantially enhances the efficacy

and reliability of the broader BCI-NIS system within which it functions. This is a

particularly important functionality as it will limit the times the Brain-To-Text Decoder

is going to be used, since our brain is producing activity 24/7 but not all of those
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activations indicate thinking of a particular word or correspond to a text.

To develop this capability and ensure the efficacy of a Word Perceived Model, nu-

merous challenges must be confronted. A primary challenge lies in the effective training

of this model. During the initial design and research phase, a suitable dataset that could

supply a proper training regimen to achieve this functionality was not identified. It is

crucial to document as a potential enhancement of this thesis that there may be a need

to curate a dataset endowed with the essential characteristics to train such a model,

or alternatively, to identify one that becomes available subsequent to the authorship

of this chapter. Addressing these aspects will be imperative for the advancement and

refinement of the model’s development process.

In the domain of advancing a Word Perceived Model, a considerable obstacle is

encountered during the model’s training phase. Despite the extensive body of lit-

erature demonstrating the efficacy of machine learning models in predicting mental

states, this particular investigation was unable to identify a pre-existing model that

meets the specific criteria outlined for this module. While one might initially per-

ceive this task as being relatively straightforward, our analysis suggests that training

such an advanced model would inevitably reveal further, as yet unexplored, challenges.

Consequently, embarking upon the training of this model represents a significant and

unresolved challenge, highlighting the complexity and novelty inherent to this pursuit.

This underscores the essential need to address various uncharted challenges associated

with model training, representing hurdles yet to be overcome in the quest for a truly

effective Word Perceived Model.

3.5 Brain To Text Decoder

The final component within the proposed BCI-NIS system architecture is the Brain-

To-Text Decoder, which plays an indispensable role in translating neural signals into

textual format. The user interaction with the computer system is facilitated through

either a search engine or a chatbot component. Both of these modalities primarily re-

quire textual information as input. Successful interaction necessitates the translation of

user thoughts or neural signals into text. This translation process facilitates interaction

74



Chapter 3. Brain-Computer Interface Neural Information System

through textual output with virtual assistants or chatbots, in addition to various search

engine BCI-NIS systems. The advancement of this decoder constitutes a critical aspect

of this research, enabling the development of comprehensive interaction models with

broad applicability across digital platforms. By decoding brain waves, this approach

bridges the communication divide between human cognitive processes and digital tex-

tual interaction BCI-NIS systems, thereby enhancing usability and functionality.

This research strives to concentrate substantially on the Brain-To-Text Decoder,

attributed as the most technically complex and innovative element of the architec-

ture. The decoder adeptly interprets intricate patterns of brain activity and converts

them into coherent text, subsequently enabling functionality across a wide array of

applications, including virtual conversational agents and sophisticated online search

mechanisms. Through meticulous analysis, an enhanced understanding of the submod-

ules comprising this component can be attained, utilizing insights from our preliminary

research findings and theoretical projections. This component of the thesis necessitates

comprehensive analytical exploration, positioning itself as a vanguard in brain-wave

interpretation and laying the groundwork for future progress in interactive AI develop-

ment.

Moreover, the Brain-To-Text Decoder exemplifies the convergence of neuroscience

and artificial intelligence, representing an area promising extensive exploration and

advancement. By deciphering and converting neural activities into textual data, this

component holds the potential to revolutionize interactions with digital BCI-NIS sys-

tems, enhancing their intuitiveness and integration with human cognitive processes.

Consequently, it not only presents significant opportunities for further academic in-

quiry but also offers practical applications that could fundamentally alter how users

engage with technology. Based on our preliminary investigation, we establish a foun-

dational comprehension of the submodules involved, which will inform the subsequent

phases of this research, ensuring that the Brain-To-Text Decoder is comprehensively

examined and developed to its utmost potential.

As illustrated in Figure 3.2, the overarching framework is systematically catego-

rized into three principal subcomponents. Among these, the foremost is the Brain
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Encoder. The Brain Encoder’s primary function is to develop a versatile deep learning

architecture by employing advanced methodologies such as Wav2Vec2 or Data2Vec. As

described in Section 2.3.1, these methodologies have recently demonstrated an excep-

tional capacity to formulate models that generate embeddings applicable to multiple

modalities. These embeddings provide a comprehensive feature set for each item across

the modalities. The significance of adopting a model that internalizes universal brain

embeddings lies in its capability to render the entire Brain-to-Text decoder architecture

autonomous from the specifics of the EEG cap, such as the sampling rate or the number

of channels currently utilized by the user. Consequently, this results in the provision

of information to the model that is both generic and task-agnostic, thus enhancing its

versatility and adaptability across various applications.

The second primary subcomponent within the architectural framework is designated

as the Brain Feature Decoder. This component is pivotal in acquiring and interpret-

ing representations derived from the generic features managed by the Brain Encoder,

subsequently translating them into natural language text. During the initial phase of

research, it was ascertained that the mechanisms and processes pertinent to speech-to-

text conversion exhibit significant commonalities with tasks associated with brain-to-

text translation. Consequently, critical modules have been identified as vital for the

successful construction and operation of this subcomponent. Among these critical mod-

ules are the implementations of LogSoftmax and Connectionist Temporal Classification

(CTC) Loss. These modules are employed to efficiently facilitate the learning and trans-

lation of representations from the Brain Encoder into coherent natural language text,

thereby ensuring a robust and accurate decoding process within the BCI-NIS system.

In the final stage of this research, we present the ultimate component, which in-

volves the integration of LLMs as a fundamental subcomponent. This integration is

crucial for the re-evaluation and refinement of the textual output produced by the

Brain Feature Decoder. Similar to speech-to-text technology, where homophones may

create ambiguity despite their phonetic resemblance, such words can assume different

grammatical functions depending on the contextual framework in which they are em-

ployed. The implementation of LLMs plays a crucial role as a protective mechanism,
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re-assessing the generated text to ensure nuanced contextual interpretations that yield

a sequence precisely aligned with the user’s original intent. Through this meticulous

process, LLMs significantly enhance the reliability and contextual fidelity of the text,

thus bridging the gap between intended cognitive expressions and their concrete textual

representation the same way this is done in speech-to-text task [103,154,155].

The pursuit of developing the current module exemplifies a trailblazing approach

within this domain, accompanied by a plethora of anticipated and unanticipated chal-

lenges. Our preliminary research efforts have effectively highlighted several critical

obstacles that necessitate resolution. As we advanced through the implementation

phase, integrating our three principal tasks, a comprehensive array of challenges was

discerned. These challenges were meticulously documented, and strategic measures

were employed to surmount them. The project’s novelty mandates an adaptive and

innovative problem-solving approach, as each developmental stage unveiled distinct dif-

ficulties requiring targeted solutions. This iterative process of challenge identification

and resolution is crucial to enhancing our understanding and optimizing the module’s

efficacy.

The preliminary domain presenting potential challenges pertains to the training

data associated with this model. In the subsequent sections, it becomes evident that

a fundamental issue highlighted is the variability in sequence lengths observed across

different EEG recordings. The recording of each individual sentence within the training

dataset exhibits variability in the number of recordings associated with that particular

sentence. Furthermore, it is essential to acknowledge that the volume of data exceeds

that of traditional speech-to-text datasets, merely for comparative purposes. Conse-

quently, this indicates that the architecture of conventional speech-to-text models may

face difficulties when attempting to accommodate both the extensive data and the

model itself within a single machine. This could result in complications, as the compu-

tational resources required could surpass the capabilities of a solitary machine, thereby

necessitating alternative solutions or adaptations of existing models to effectively and

efficiently manage the increased complexity and size of the data.

Subsequent to the initial investigation, a significant challenge of this research is

77



Chapter 3. Brain-Computer Interface Neural Information System

the construction of a robust model capable of generating text from brain data. Con-

trasting with other issues in Neuroscience where machine learning techniques have

been effectively utilized, this particular problem is characterized by the absence of a

well-established framework or guidelines. At the time of this thesis composition, there

existed no precedence or documented methodologies in the Neuroscience literature that

clearly delineated successful strategies for translating brain signals into coherent text.

Recognizing this shortfall, the research community initiated a collaborative effort to

identify machine learning approaches from other disciplines that possess similar data

structures or requirements. They collectively examined the viability of adapting these

approaches for application to brain data. The intricate nature of brain function con-

tributes to the complexity of brain data, which is frequently affected by noise or does

not possess real-time attributes, thus making analysis more challenging. This intri-

cacy necessitates more bespoke approaches, as conventional, out-of-the-box solutions

frequently prove insufficient or ineffective. Consequently, these conventional models

necessitate significant modifications to fulfil the demands imposed by brain data com-

plexities. Hence, researchers are compelled to meticulously refine and tailor extant ma-

chine learning techniques to accurately and effectively interpret neural signals within

the inherent constraints and limitations of brain data.

Finally, a principal challenge in EEG research is the considerable difficulty in achiev-

ing uniformity in the configuration of EEG datasets, even when the datasets are suc-

cessfully acquired. Each dataset is frequently characterized by unique parameters and

settings, which are largely dictated by the specific experimental design and the technical

specifications of the equipment employed during data acquisition. This lack of unifor-

mity presents a significant obstacle to the standardization of EEG datasets. More-

over, this variation is exacerbated when attempting to establish a common protocol

for data collection across various EEG machines. The absence of standardized proce-

dures, coupled with the diversity in equipment specifications, renders the attainment

of consistency in data acquisition protocols exceedingly challenging. Consequently, sig-

nificant variability is introduced into the datasets, which impedes the generalization

of algorithms, such as the Brain-To-Text decoder, across diverse studies or experimen-
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tal settings. This variability severely impacts the feasibility of developing a versatile

brain-powered BCI-NIS system. Without a common protocol and standardized config-

uration, the successful realization of such BCI-NIS, applicable to a wide array of EEG

data sources, becomes increasingly improbable.

Brain
Encoder

Decoder of
Brain

Features

LLM

Brain To Text Decoder

LLaMa GPT BART

Conformers Wav2Vec2 Data2Vec CTC Loss Log Softmax

Figure 3.2: A high level overview of the 3 main components that are used to construct
the Brain-To-Text Decoder.

3.6 Rationale for choosing the focus area

This thesis aims to conduct a thorough analysis of all submodules, principally aimed at

offering deeper understanding into the development of the Brain-To-Text decoder com-

ponent. The rationale for focusing on this element arises from multiple considerations.

Primarily, the difficulties faced in the Brain Recorder and Frame Handler modules are

intrinsically associated with software-related challenges. These challenges can generally

be addressed by investigating and implementing well-established methodologies from
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existing literature, thus providing solutions to these distinct issues.

Although these modules are indispensable for the comprehensive operation of the

entire BCI-NIS system, they do not constitute the core of the model. Rather, the

central functionalities reside within the AI systems. Consequently, emphasis on the

advancement of these AI systems is of utmost importance, as their development is

anticipated to reveal a plethora of sub-challenges. Moreover, the evolution of AI systems

in this framework is not only critical but is also projected to catalyse significant progress

and address emerging challenges throughout the course of this research initiative.

The selection of this specific component was predominantly influenced by the pres-

ence of multiple datasets that amalgamate the analysis of human text reading with EEG

data. The utilization of these pre-existing datasets facilitates the research process by

obviating the necessity to develop a novel dataset, thereby enabling a more streamlined

and efficient research methodology. Notably, existing datasets such as ZuCo-1.0 and

ZuCo-2.0 were identified as suitable alternatives, necessitating a concentration on this

framework instead of delving into the Word Perceived Model. This determination was

guided by the datasets’ robustness and pertinence in relation to the research objectives.

Furthermore, the ultimate justification for focusing efforts on this module lies in

its potential implications across diverse research domains, with a particular empha-

sis on IR. The component is meticulously designed to interact with virtual assistants

and search engines, where a critical element of user engagement involves information

retrieval. This offers a distinct opportunity to examine the efficacy of information re-

trieval processes and the incorporation of neural data into the IR domain. Evaluating

the efficacy of information retrieval, while investigating the potential applications of

EEG data in augmenting IR systems, represents a significant pathway for interdisci-

plinary research.

In Chapters 4 through 6, this thesis embarks on a thorough exploration to exam-

ine the alignment between the representations generated by state-of-the-art natural

NLP models and the manner in which the human brain processes natural language.

This section is dedicated to investigating this intellectual synergy in detail. Moreover,

the thesis attempts to provide a comprehensive framework aimed at identifying and
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analysing the various aspects involved in training deep learning models. The focus is

cast more sharply on transformer models, particularly in the context of their appli-

cation to brain data. Through these investigations, the thesis seeks to elucidate how

such models might be refined and adapted for optimal performance in this domain.

Finally, it attempts to construct a versatile encoder-decoder model with the capability

to generate coherent text from input brain data. This initiative is the culmination

of efforts to bridge neuroscience and artificial intelligence, contributing to the broader

understanding of cross-disciplinary methodologies in automating text generation from

neural processes. These chapters collectively aim to advance the frontier of research

that lies at the intersection of machine learning and cognitive neuroscience.

3.7 Chapter Summary

In summary, this chapter presents a comprehensive architectural framework designed

to enable user interfaces solely through BCIs, effectively eliminating the need for tradi-

tional input mechanisms by leveraging cutting-edge neuroscience techniques. It offers

a detailed breakdown and analysis of the critical elements necessary to develop such a

system, highlighting potential constraints and technical hurdles. The thesis emphasizes

the importance of non-invasive approaches, particularly EEG, to maintain the system’s

portability. Managing the acquisition, processing, and handling of EEG data is crucial,

as is tackling the portability concerns related to current EEG systems.

The Brain Recorder is primarily dedicated to the acquisition of EEG data, with

notable advantages in terms of its portability and capabilities for real-time data pro-

cessing. However, the existing systems are often cumbersome, presenting a need for

innovative strategies to achieve more compact designs. The Frame Handler is responsi-

ble for the organization of EEG data in preparation for subsequent analysis, addressing

challenges such as noise reduction and temporal stability through the utilization of

multiple recordings.

The Brain-To-Text Decoder facilitates the conversion of neural signals into textual

form, thereby integrating cognitive processes with digital interaction systems. This

component employs advanced deep learning methodologies and LLMs to enhance the
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precision of textual outputs, addressing issues related to data heterogeneity and the in-

tricacy of model design. The thesis examines the adaptation of speech-to-text method-

ologies for application to neural data, highlighting the lack of established frameworks

for such conversions.

The thesis represents a groundbreaking venture in the integration of neuroscience

and artificial intelligence, concentrating on addressing the challenges associated with

EEG data standardization and the development of robust models for the interpretation

of neural signals. This work seeks to promote interdisciplinary research, particularly in

domains such as information retrieval, and exhibits potential for substantial practical

applications.
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Development of an fMRI-Based

Brain Encoder and Identification

of Brain Alignment in Machine

Learning Models.

4.1 Introduction

The field of NLP has undergone significant advancements over recent decades, resulting

in the creation of advanced deep learning models. These models, including transformer-

based architectures, have established new standards across various NLP tasks due to

their ability to discern intricate patterns within textual data. Notwithstanding their

achievements, the mechanisms by which these models internally encode and represent

linguistic subtleties remain obscure. This opacity is chiefly attributable to the models’

inherent complexity and large-scale characteristics, which pose challenges to traditional

interpretability frameworks.

Traditionally, linguistic theory posits that the understanding and production of

language are directed by explicit grammatical and syntactic rules. In contrast, contem-

porary deep learning models challenge this premise by acquiring statistical representa-

tions of language that surpass explicit rule-based methodologies. These models utilize
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extensive corpora that encompass a myriad of linguistic phenomena, allowing them to

internalize a broad spectrum of language characteristics in a generalized fashion. Sub-

sequently, these acquired representations can be fine-tuned to enhance performance on

particular downstream tasks, demonstrating superior effectiveness relative to models

focused exclusively on isolated NLP tasks [40,156,157].

As a result, a considerable body of research is directed towards elucidating the la-

tent representations of these models in order to gain a clearer understanding of their

decision-making processes. This pursuit has led to the development of myriad inno-

vative methodologies aimed at dissecting model behaviour within regulated linguistic

contexts [158–160]. By amalgamating insights from these efforts, the NLP community

endeavours to align the predictive capabilities of the models with transparency, thereby

promoting progress in both theoretical linguistics and practical applications within AI.

Previous investigations have sought to offer a more theoretical analysis of the repre-

sentational capabilities of word embeddings [161–163]. Toneva and Whebe [1], aiming

to clarify the internal representations of four NLP models, introduced a novel method-

ology utilizing brain recordings obtained through functional magnetic fMRI and MEG.

They proposed that the alignment between cerebral data and the features extracted by

a model could enable the learning of a mapping from cerebral to model representations,

thereby enhancing the understanding of how these models encode linguistic informa-

tion. This process is identified as the alignment of neural network representations with

cerebral activity.

BERT was among the models examined by [1]. Since its inception [40], BERT has

garnered considerable academic interest, with extensive efforts aimed at augmenting

its performance, addressing particular inadequacies, or refining it to achieve domain-

specific expertise [164–170]. Toneva and Whebe [1] successfully developed a mapping

of representations from BERT, ELMo [156], USE [171], and T-XL [172] to neural data.

However, this mapping was not validated against more advanced versions of BERT.

In our research, we adopt the same innovative methodology outlined by [1] to analyse

four advanced derivatives of the BERT model: RoBERTa [168], DistiliBERT [167],

ELECTRA [170], and ALBERT [169].
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Moreover, this innovative approach acts as a proof of concept to demonstrate the

correspondence between cognitive and artificial neural systems. The primary objective

was to examine the potential impact of omitting various punctuation symbols on the

outcomes of the study. This investigation seeks to improve the congruence between

neural networks and cognitive processes. Previous research on punctuation, including

the study by Moore et al. [173], has highlighted its influence on reading behaviour.

While punctuation assists readers in facilitating text navigation, its semantic role and

cognitive processing mechanisms remain relatively under-explored. Substantial research

investigates the semantic and syntactic processing of textual information within the

brain [60–62].

Furthermore, investigations like those by Acunzo et al. [63] have examined partic-

ular neural areas associated with specific linguistic functions, such as the processing

of intricate lexical semantics. Despite the diversity in the aims of these studies, they

typically utilize an fMRI experimental framework in which participants read sets of

sentences. Within experimental designs, a determination must be made concerning

whether to include or exclude punctuation in the pre-processed text shown to partici-

pants; however, a consensus regarding this methodological decision remains elusive.

4.2 Methodology

4.2.1 Data

The fMRI dataset utilized in this study was initially acquired as a component of previ-

ously published research conducted by Wehbe et al. [34]. This dataset has been made

available in the public domain for academic use, with the relevant data and original

code accessible through the following repository.1.

The experimental design of the original investigation comprised the participation

of eight human subjects, each of whom engaged in a continuous reading of Chapter 9

of ’Harry Potter and the Sorcerer’s Stone’ [174]. Data acquisition was executed in four

distinct sessions, wherein each lexical item from the text was presented for a duration

1https://github.com/mtoneva/brainlanguagenlp
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of 0.5 seconds on a screen. Correspondingly, cerebral activity, quantified via the BOLD

signal, was recorded every 2 seconds, corresponding to a single Time Repetition (TR).

This temporal arrangement ensured that each brain volume encapsulated information

pertaining to four consecutive words, as preserved in their original narrative sequence

within the literary text. The dataset available for analysis, having been preprocessed

and smoothed by the original investigators, is publicly accessible in its refined form.

Although the initial experimental study also incorporated MEG data, this research

venture exclusively utilizes the fMRI data, as they are the only dataset extant for

public access.

It should be emphasized that the alignment between words and brain recordings

is established within the dataset. Consequently, during the training phase, we can

accurately associate specific words with each TR, thereby ensuring precise training

on the correct words and confirming the consistency of the alignment. Furthermore,

the dataset comprises a total of 5176 words, encompassing repeated instances, with

a subset of 1840 unique words. Functional images were acquired utilizing a Siemens

Verio 3.0T scanner at the Scientific Imaging and Brain Imaging Center at Carnegie

Mellon University. The employed protocol was a T2*-weighted echo planar imaging

(EPI) pulse sequence characterized by a repetition time (TR) of 2 seconds, an echo

time (TE) of 29 milliseconds, and a flip angle of 79 degrees, covering 36 slices and

generating inline graphic voxels.

4.2.2 Transformer models

In our effort to find a more advanced transformer model that might produce better

brain alignment we tested four different models against BERT, which we used as our

baseline. Each model was selected based on its new characteristics compared to BERT.

• RoBERTa constitutes a significant advancement in the realm of transformer-

based NLP models, subsequent to the initial introduction of the BERT model. As

highlighted by the foundational research of [168], the effective training of neural

networks necessitates substantial computational resources, with a critical reliance

on precisely determined hyper-parameter configurations. Through an exhaustive
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comparative examination of the methodologies utilized in the two primary tasks

for which BERT was originally pre-trained, namely MLM and NSP, RoBERTa

has been established as a superior iteration of BERT, exhibiting improved per-

formance metrics across these tasks. The primary rationale for incorporating

RoBERTa into our study is to conduct an in-depth investigation into its internal

representational structures with a focus on evaluating the potential impacts of

differing hyper-parameter selections in NLP experiments. This inquiry seeks to

determine whether such parametric adjustments might result in representations

that more closely resemble the methods by which the human brain processes

and contextualizes information. Understanding these elements is essential to nar-

rowing the divide between artificial model representations and genuine cognitive

processes.

• DistiliBERT Transformers have revolutionized the field of NLP in recent years,

providing state-of-the-art results across a variety of tasks. However, these models

have inherently large architectures, which poses challenges in terms of computa-

tional resources required for both pre-training and fine-tuning processes. Among

popular Transformer-based models, BERT is noted for its effectiveness, yet its sig-

nificant size renders it computationally expensive. As an innovative solution to

address these computational limitations, [167] proposed DistilBERT—a distilled

version of the original BERT model.

DistilBERT has been meticulously designed to contain approximately 40% fewer

parameters, while concurrently attaining a 60% decrease in training duration,

without considerable compromise in performance. Notably, it preserves up to

97% of the original BERT model’s capacity for language comprehension. This

significant diminution in both model size and training time is a direct result

of the distillation process, which leverages the concept of knowledge distillation

whereby a smaller student model assimilates the behaviour of a larger teacher

model.

The undertaking by [167] to develop a condensed model underscores the poten-
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tial of DistilBERT not only to reduce computational demands but also to be

applicable in real-time environments. DistilBERT’s streamlined architecture is

particularly noteworthy for experimental evaluation, as it presents a significant

opportunity to assess whether its internal language representations maintain the

same integrity and depth as those of the larger BERT model, despite its reduced

size and enhanced computational speed. This feature is particularly relevant for

applications that require swift yet precise language processing capabilities, ren-

dering DistilBERT an appealing subject for further empirical study in the domain

of cutting-edge NLP applications.

• ALBERT ALBERT, as initially introduced by [169], is designed to comprehen-

sively tackle the critical challenge presented by the escalating scale of modern NLP

models, which often encounter memory limitations when deployed on GPUs or

TPUs. To address this important concern, the authors proposed an elegant two-

fold parameter reduction strategy. The first aspect of this innovative approach

is termed ’factorized embedding parameterization,’ where the authors postulated

that by reducing the dimensionality of the embedding space before integrating it

into the model’s hidden layers, the embedding space could be condensed without

negatively impacting model performance. This sophisticated technique illustrates

an advanced comprehension of embedding space dynamics and their optimization.

The second element of ALBERT’s parameter reduction strategy is ’cross-layer pa-

rameter sharing.’ This mechanism entails the consistent application of parameters

across all layers of the ALBERT architecture, thereby enhancing computational

efficiency while preserving the model’s representational capabilities.

In the seminal study [1], the model’s features are systematically extracted on a

per-layer basis, enabling distinct evaluation and prediction utilizing neurological

datasets. This layer-by-layer analysis is crucial, providing detailed insights into

the model’s ability to map cerebral data. We hypothesize that should ALBERT

exhibit superior accuracy in brain data prediction tasks, it may suggest the brain’s

utilization of a uniform and consistent weighting mechanism across its hierarchical

layers.
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• ELECTRA ELECTRA, a pioneering model devised by [170], was purposefully

engineered to redefine the core principles underpinning the MLM task, which

serves as a fundamental pre-training paradigm of the original BERT architec-

ture. Awareness of the extensive computational demands inherent in current

NLP frameworks for effective training prompted the researchers to propose a

transformative alternative to the traditional MLM methodology.

Instead of utilizing the [MASK] token to conceal particular tokens within the

input sequence, which subsequently requires the model to predict likely alterna-

tives, they proposed an innovative methodology wherein these tokens are replaced

by solutions derived from a succinct yet effective generation network. The pri-

mary learning model subsequently undergoes pre-training through the evaluation

of the authenticity of these generated tokens, categorizing them as either correct

or incorrect within a binary classification framework.

The authors advance a hypothesis suggesting that this re-conceptualized method-

ology produces superior contextual representations compared to those generated

by BERT. This hypothesis positions the ELECTRA model as an intriguing can-

didate for assessing its effectiveness in correlation with neurological data, thus

facilitating an inquiry into whether its internal representational framework more

accurately reflects the mechanisms through which the human brain processes con-

textual information.

Studies exploring the alignment between machine learning models and cognitive

neuroscience are pivotal in advancing our understanding of both artificial and

biological systems. Analysing the performance of ELECTRA in the context of

brain data prediction may enable future research to illuminate possible conver-

gences between AI and human cognition, thereby broadening the discourse on

representation learning and its relevance across diverse interdisciplinary domains.
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Figure 4.1: A brief description of the architecture of every model used in our experi-
mental procedure.

4.2.3 Experimental Procedure

The methodological framework of this study is delineated into three distinct phases.

In the initial phase, features were extracted from the specified transformer models

using a range of sequence lengths to achieve a thorough representation of features.

Subsequently, these extracted features served as inputs for training a ridge regression

model to reconstruct the brain fMRI recordings from the transformer features, which

was subsequently employed to infer brain data. In the final phase, the effectiveness of

the predictive model was rigorously assessed using searchlight classification, a technique

that evaluates classification performance across various brain regions. The following

sections provide a comprehensive exposition of each phase. To ensure transparency and

reproducibility, the code underpinning this analysis has been made publicly accessible

2.

Extracting features from models

In the context of feature extraction from models, the preliminary stage of the experi-

mental protocol entailed the methodical retrieval of features from a variety of sequences

of predetermined lengths denoted by S. The foundational research referenced in [1]

2https://github.com/NeuraSearch/Brain-Transformer-Mapping-Punctuation.git
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Get the sequences Extract sequences of N
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embeddings for each

sequence

Load the encoder
Model

Figure 4.2: A high level representation of the pipeline used to extract NLP features
from the different NLP models.

utilized sequence lengths specifically of 4, 5, 10, 15, 20, 25, 30, 35, and 40. Our ex-

perimental design adhered to this paradigm to preserve consistency with established

methodologies. The sequences in question were carefully compiled from Chapter 9 of

the renowned literary work, Harry Potter and the Sorcerer’s Stone. A comprehensive

dictionary was constructed to contain entries corresponding to each layer within the

model architecture, including the embedding layer, where applicable. Initially, repre-

sentations were extracted from the embeddings layer for each individual word within

the chapter. Subsequently, the analysis advanced to the extraction of the first sequence

of length S, followed by the acquisition of layer-wise representations for said sequence,

repeated S times to ensure methodological rigour. Upon completion of each sequence

iteration, a two-dimensional matrix was generated, characterized by dimensions S x L,

where S represents the sequence length, L denotes the number of layers present in each

model.

Furthermore, the representation extraction for each sequence of length S was facil-

itated through a sliding window methodology analogous to that applied to the initial

sequence. The deliberate extraction of the first sequence re-iteratively S times was

purposefully implemented to achieve parity between the quantity of sequences and the

total number of words constituting the dataset.

Distinct scripts were developed and executed for each specific model selected for

analysis. To facilitate access to pre-trained model checkpoints, the Hugging Face li-

brary was utilized, enabling the seamless downloading of these pre-trained checkpoints.

This choice of library integration was instrumental in ensuring the reproducibility and

scalability of the experimental procedures.
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Making predictions using the fMRI recordings and the extracted features

During the preliminary phase of model development, we prioritized the creation of

a rigorous computational framework designed to precisely map the complex relation-

ship between cerebral activities and their respective neural network representations. In

pursuit of this objective, a ridge regression model was meticulously developed as the

fundamental element of this methodological approach. This decision was guided by

an extensive evaluation of previous seminal studies [34, 35, 37, 175,176], which success-

fully utilized linear functions with ridge penalties, thereby highlighting their efficacy

in modelling brain-to-network mappings. To evaluate how closely NLP models mir-

ror human cognitive processes, researchers use encoding models that predict neural

responses based on the model’s internal representations. Cognitive neuroscience under-

pins this strategy, utilizing encoding models to link stimulus features to brain activity

patterns [177]. Within this paradigm, a linear model is developed to associate word or

sentence embeddings from NLP systems (such as RoBERTa or ALBERT) with brain

data collected during human linguistic processing. The extent to which the model’s

representations can predict brain activity in a linear fashion indicates representational

alignment [178]. This is based on the premise that analogous cognitive processes yield

similar representational structures, permitting a linear relationship between them. This

technique has been employed to pinpoint which aspects or layers of NLP models most

effectively correspond with the brain regions essential to language processing, offering

insights into both model interpretability and human psychological functions [1].

Though ridge regression may appear simplistic, its prior validation as an efficacious

tool for this application [1] offers substantial rationale for its employment. However,

we recognize the opportunity for future research to integrate more advanced models,

potentially achieving superior mapping efficiency. In this study, the ridge regression

model was instrumental in producing predictions, leveraging brain data and features

derived from the prior analytical phase.

Prediction generation was executed across multiple dimensions: individual layers,

distinct subjects, and diverse models, all within the meticulously structured environ-

ment of a cross-validation framework. Specifically, a 4-fold cross-validation procedure
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was utilized, in accordance with the methodologies delineated by Toneva and Wehbe [1].

The fMRI datasets were scrupulously organized into four discrete runs per validation

fold, with each run being employed as a test dataset for the respective fold.

The analytical procedure began with the loading of extracted features, which were

subjected to dimensionality reduction into a ten-dimensional space utilizing Princi-

pal Component Analysis (PCA). Subsequent stages entailed the meticulous temporal

alignment of fMRI data with features derived from the model, establishing a robust

mapping framework for the training of the ridge regression model. Initially, 1351 im-

ages per subject were recorded; however, to alleviate edge effects, this was reduced to

1211 images.

The alignment procedure required the determination of the temporal resolution

associated with each word presentation to the user. This mapping was facilitated by

the equivalence in length between sequences and words. The index of the sequence was

directly aligned with the TR index. Upon completing this mapping, we concatenated

representations from preceding time points (t-4, t-3, t-2, t-1) with the current time

point t, as a methodological improvement aimed at enhancing model representation

and predictive accuracy [1].

Following alignment, the analytical procedure culminated in a set of 1351 tempo-

rally anchored values. Subsequent adjustments involved the removal of edges from

each run, ultimately condensing the dataset to 1211 time-stamped sequences. Upon

the completion of preprocessing, the training of the ridge regression model commenced.

The predictive weight for each voxel was meticulously computed by exploring an exten-

sive range of lambda values within the ridge regression framework, specifically λ = 10x

where −9 ≤ x ≤ 9. The lambda value that minimized error for each voxel was crucial

in constructing the model’s final weight matrix. During each iteration, the error was

quantified using the R2 error metric to ascertain the disparity between the synthe-

sized brain recordings and the actual ground truth data at specified temporal points.

This error was subsequently employed as the training loss within the ridge regression

framework. The resultant model, developed through these comprehensive processes,

was subsequently applied to test data, generating predictions ready for further exami-
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Figure 4.3: This figure depicts the procedure involved in loading the natural language
processing features until the reconstruction of neural data from the established features.
The NLP features are temporally aligned with the neural features, extraneous edges
are eliminated, and a ridge regression model is subsequently trained.

nation.

Evaluating the predictions

The primary aim within our methodological framework was to conduct a rigorous eval-

uation of the predictive efficacy of the ridge regression model, which had been metic-

ulously trained using neural data to map representations derived from the brain to

those derived from neural networks. To ensure a robust evaluation, we implemented

and refined the advanced searchlight classification algorithm as previously elaborated

by Toneva and Wehbe (2019) [1]. This approach entailed a binary classification task

conducted over spatially adjacent voxels for each individual subject’s dataset. Conse-

quently, the comprehensive analysis of voxel-wise predictive performance was anchored

in pre-computed spatial neighbourhoods, a strategic element provided by the foun-

dational research. These neighbourhoods facilitate a localized examination of voxel

interactions and bolster the reliability of predictive accuracy evaluations.

The evaluation process employed the fMRI data recorded from each subject, whereby
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a stochastic method was implemented by randomly sampling a segment of 20 TRs,

considered to be indicative of correct predictions. Simultaneously, from the predic-

tions generated by the neural model, an equivalently indexed segment of 20 TRs was

extracted to provide a standard for accurate prediction comparison. Furthermore, to

introduce a contrasting element, another random selection of a 20 TRs segment was

drawn from the forecasted data and designated to signify incorrect predictions.

Upon delineation of these parallel data segments, the evaluation progressed with

the computation of Euclidean distances within the framework of predefined voxel neigh-

bourhoods. For each voxel, the analysis entailed examining distances between the ac-

curately predicted segment and the predicted segment, subsequently contrasting these

against distances associated with the inaccurately predicted segment. When the Eu-

clidean metric demonstrated a closer proximity of the predicted sequence to the correct

segment than to the incorrectly labelled one, the prediction for that voxel was recorded

as accurate.

This evaluative process was conducted in an iterative manner, executing 1000 unique

trial applications per voxel, thereby producing an extensive evaluative dataset. Follow-

ing this, a statistical synthesis of the accuracy metric was undertaken, involving the

computation of the average accuracy across all voxels for each cross-validation fold

pertinent to each individual subject. This meticulous procedure not only ensured the

reliability of the evaluation but also furnished a refined comprehension of the ridge

regression model’s prediction accuracy, with spatial detail at the voxel level, across the

entire cohort of subjects.

Removing punctuation

To rigorously assess the semantic processing of punctuation symbols by the human

brain, we employed a methodology similar to that previously described, with a slight

alteration in its initial stage. The study involved the implementation of four distinct

scenarios, each aimed at the removal of punctuation characters before the sequences

were introduced into computational models for analysis. Following their removal, the

feature extraction process was conducted in a manner analogous to that previously
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Figure 4.4: This diagram explains using a graphical interfaces the process of evaluating
the predictions.

detailed, albeit applied to the altered text sequences. After the extraction of these

sequences, the subsequent stages of the methodology remained unchanged, adhering to

the previously established procedure. Our investigation focused on the following four

scenarios:

1. The initial scenario encompasses the replacement of the fixation symbol ”+” with

the token ”[UNK]”, a process subsequently referred to as ’Removing Fixation’.

This procedure was meticulously implemented to rigorously evaluate the impact

of the fixation symbol’s textual presence within input sequences on the fidelity

and alignment of the resultant feature set with human brain processing. By sub-

stituting the fixation symbol with the ”[UNK]” token, this alternative symbol

functions to denote an unknown token to the computational model, thus poten-

tially altering the model’s interpretative framework. It is further hypothesized

that the substitution impacts the processes of semantic extraction and subsequent

cognitive mapping, thereby enhancing our understanding of symbolic influence

in computational linguistics. Consequently, this scenario highlights the signifi-

cance of unknown symbols within textual processing, offering insights into the

complexities introduced by symbolic variances and their implications for neuro-

computational modelling. As a result, the methodological refinement introduced
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by this scenario not only underscores the potential disruption in traditional fea-

ture interpretations but also suggests broader implications for the fidelity and

neuro-semantic coherence of computational models. This scenario was labelled

”Removing Fixation” in our experimental results.

2. Within the esteemed realm of cognitive linguistics and neurocomputational mod-

elling, we outline a secondary experimental condition termed ’Padding fixation,’

which meticulously examines the semiotic function of fixation symbols within

textual sequences. This scenario is of critical importance in our methodological

framework as it investigates the effects of replacing the traditional fixation symbol

’+’, widely employed in sequence alignment processes, with the ’[PAD]’ token—a

methodical placeholder utilized within computational paradigms to denote non-

essential data points. The rationale for this substitution lies in its ability to

systematically eliminate the interpretive significance of the fixation symbol, thus

enabling a clearer evaluation of its underlying influence on the procedural effec-

tiveness of feature extraction.

Our theoretical framework suggests that the incorporation of the ’[PAD]’ token

induces a significant transformation in the perceptual structure of computational

models, thereby reconstituting the algorithmic pathway through which textual

sequences are processed and cognitively represented. By pre-emptively render-

ing the fixation symbol computationally irrelevant, we assert that this strategic

obfuscation reveals the inherent adaptability of human-computer interaction sys-

tems, particularly concerning brain-aligned feature representation. Consequently,

the conceptualization of ’Padding fixation’ as a methodological innovation facil-

itates a sophisticated examination of symbolic retrieval mechanisms, elucidating

the foundational neurosemantic alignment that characterizes adaptive informa-

tion processing within the realm of human linguistic undertaking. This scenario

is termed ’Padding Fixation’ in our experimental outcomes.

3. In the specified scenario, the substitution of special characters such as double

hyphens ”–”, ellipsis ”. . . ”, and em dash ”—” with the ”PAD” token (padding
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all instances) is systematically executed to homogenize the text extracted from

a selected chapter of the Harry Potter series. This investigative methodology

facilitates a comprehensive assessment of the occurrence and prevalence of these

particular non-alphanumeric sequences within the corpus. The principal aim is

to determine the potential implications of these characters on the efficacy and ac-

curacy of the model’s operational functionalities, specifically related to its use in

brain-network mapping tasks. By detailing the transformative process of charac-

ter substitution and *-*/*/- the consequent text modifications, the study aims to

augment the comprehension of the model’s resilience in managing textual variabil-

ity. Such comprehension is essential for identifying the impact of non-standard

character components on computational analyses involved in intricate network

mapping, thereby offering significant insights to the domain. Consequently, this

experimental framework serves as a critical evaluation of character-induced vari-

ations in model performance metrics when applied to advanced neuro-informatics

studies. We have designated this scenario as ”Padding All” in our experimental

results.

4. In the pursuit of extending the preliminary investigative scenario pertaining to

character substitution, an exhaustive modification has been executed to encom-

pass additional non-alphanumeric and punctuation elements within the analyti-

cal framework. Specifically, this modification involves the substitution of selected

special characters, namely the double hyphen ”–”, ellipsis ”. . . ”, em dash ”—”,

alongside the period ”.” and question mark ”?” with the uniform ”PAD” token.

The rationale underlying this expansion arises from the imperative to determine

the implications associated with the excision of these ubiquitous punctuation

marks. These marks embody essential components of sentence structure and syn-

tactic demarcation within the corpus, crucial to maintaining textual coherence

and continuity.

Through a systematic expansion of the range of target characters to include previ-

ously unexamined elements such as periods and question marks, this study seeks

to rigorously assess the impact of character standardization on the fidelity and
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Figure 4.5: This Figure illustrates how we changed a sample text depending our 4
different implementation scenarios on testing the role of punctuation in text compre-
hension in the brain.

precision of sequence mapping algorithms. Considering that these punctuation

marks function as essential syntactic and semantic signals within the corpus, their

intentional removal and replacement with the ”PAD” token offers a sophisticated

network perspective on how their absence might affect elucidation and interpre-

tative accuracy in computational text mappings.

This approach invariably facilitates a deeper understanding of the fundamen-

tal principles governing character substitution methodologies in neural linguistic

tasks and is positioned to provide substantial insights pertinent to enhancing ac-

curacy rates in sequence mapping. Such insights are crucial for the advancement

of methodologies within the field of neuro-informatics, wherein even the subtlest

character modifications can result in significant variations in model performance.

Therefore, this adjusted experimental framework represents a deliberate and com-

prehensive investigation into character selection strategies, further reinforcing its

potential as a foundational research endeavour within the sphere of PhD-level

academic exploration. We referred to this scenario as ”Padding Everything” in

our experimental results.
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4.3 Results and discussion

Comparing the models: We have conducted a thorough analysis of the performance

metrics of BERT in comparison to the range of models outlined in Section 4.2.2. In

this section, we articulate the differences among these neural network architectures and

examine the potential implications these empirical results might have in understanding

the neural mechanisms that underpin human cognitive functions.

A consistent pattern observed across the diverse range of neural network models,

including BERT, is the marked decrease in the predictive accuracy of the ridge re-

gression model as sequence length increases. This phenomenon highlights the intrinsic

limitations these architectures face in sequence processing. All the empirical findings

elaborated upon in this discussion are systematically depicted in Figure 4.6, offering a

visual representation of the data outcomes discussed.

In addition, to ascertain the validity of the results for each model, we conducted

a statistical review to evaluate statistical significance. We further ensured that each

model exceeds the random baseline of 50%. This benchmark was selected due to the

nature of our evaluation task, which involves a searchlight classification within a binary

framework, necessitating the surpassing of a 50% random baseline. The results outlined

in the subsequent subsection represent the mean accuracy over 30 iterations for each

model, with an average standard deviation(STD) of ∼ 0.01 for the models and ∼ 0.02

for the punctuation scenarios , thereby ensuring consistency across trials. More over to

ensure statistical significance we conducted pairwise t-tests for all the models against

the random and BERT baselines and also for our handling punctuation methods against

the same baselines. Our results showed that an initial one-way ANOVA revealed a

significant overall effect with a p-value of p ≤ 0.05. When dissecting the results for

the individual pairs regarding the models all the pairs had a statistical significance

with a p-value of p ≤ 0.05 except distilibert against the BERT baseline that had a

p-value 0.15. Finally the same process was conducted for the remaining methods when

removing punctuation from the text. Our results again showed a p-value of p ≤ 0.05

signifying statistical significance against our 2 baselines.
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(a) ALBERT (b) RoBERTa

(c) ELECTRA (d) DistiliBERT

Figure 4.6: This figure shows the overall accuracy across all subjects for the four
different models we investigated. It is clearly shown that RoBERTa and DistiliBERT
outperform the other 2 models and the baseline and are the most brain-aligned models.

BERT

Adhering closely to the experimental procedure detailed in Section 4.2.3, and utilizing

the same dataset, we were unable to perfectly replicate the original findings reported

by [1]. Consequently, our reproduced baseline, intended as a comparative standard

with other models, was established using our independently developed code. This

baseline is presented in Figure 4.7, alongside the original findings. We surmise that

the discrepancies in results can be attributed to three main factors: firstly, the precise

methodological details of the averaging process across subjects and multiple folds for

each neural network layer were insufficiently explained in the original publication. An-

other complicating aspect pertains to the application of PCA, specifically, the stochastic

state employed in this analysis was not specified, potentially introducing an additional
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variable affecting our ability to replicate the exact outcomes. Lastly, our computational

infrastructure differs from that of the original authors, which could further contribute

to the outcome differences. Nevertheless, we maintain confidence in the accuracy of our

results. A detailed analysis of the outcomes, as depicted in Figure 4.7, which simulta-

neously presents the findings from [1] and our reproduced data, reveals that although

the qualitative trajectory or contour of the data remains consistent, noticeable quan-

tifiable disparities exist in the precise values. Noteworthy consistencies include the

observation that our reconstructed results reach a peak at a sequence length of ten,

aligning with the peak identified in the original study. Additionally, in agreement with

the original outcomes, the observed accuracy declines as the sequence length increases.

This comprehensive analysis highlights the inherent complexity and potential sources

of variation in replicating experimental outcomes within the realm of computational

modelling.

(a) BERT Original Results (b) BERT Reproduced Results

Figure 4.7: On the left hand side are the original results reported in [1]. On the right
hand side are the reproduced results we obtained when running our code for BERT.
Note that the y-axis has a different minimum and maximum value for the two panels,
original and reproduced.

ALBERT

The primary model under consideration in this research is the ALBERT model, an

acronym for A Lite BERT. ALBERT is distinguished by its unique architectural de-

102



Chapter 4. Development of an fMRI-Based Brain Encoder and Identification of
Brain Alignment in Machine Learning Models.

sign, which entails the utilization of a shared representation across all network lay-

ers. This architectural strategy was rigorously investigated to ascertain its impact on

model performance, particularly in relation to BERT, from which ALBERT is derived.

Notwithstanding the architectural divergence, detailed analysis revealed that there are

no appreciable differences in accuracy levels between ALBERT and BERT. This finding

suggests that the alterations implemented in ALBERT were unsuccessful in enhancing

the congruence of its latent representations with neural representations as efficaciously

as BERT. Moreover, the implementation of shared weights across ALBERT’s various

layers, which is posited to emulate a cognitive mechanism akin to the shared ’weights’

model in the human brain, did not result in improved alignment between patterns of

brain activity and neural network activations. This phenomenon underscores a critical

area for future inquiry and verification within the disciplines of cognitive neuroscience

and artificial intelligence: the question of whether the brain employs a comparable

strategy of shared representations across its neural architecture remains an unresolved

issue meriting further empirical study.

RoBERTa

In the investigation of transformer-based architectures, a comprehensive examination

was undertaken on the RoBERTa model within this research. The observations identi-

fied a consistent pattern within the graphical data associated with RoBERTa that mir-

rors the trends originally observed in BERT. Empirical analyses of the models indicate

that RoBERTa demonstrates marginally superior accuracy across almost every layer

in comparison to its predecessor, BERT. This finding is particularly prominent at the

peak of the model’s performance, where RoBERTa surpasses BERT. This enhancement

can be attributed to the strategic selection and adjustment of hyper-parameters which,

when meticulously calibrated and optimized, result in improved internal representa-

tions. These representations demonstrate a closer resemblance to cognitive structures

analogous to those found in human neural architectures. Such insights highlight the

potential benefits of optimizing training parameters to enhance model efficacy and cog-

nitive similarity. Consequently, the methodological decision to adjust hyper-parameters
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plays a crucial role in advancing the parallelism between artificial neural models and

human cognitive processes.

DistiliBERT

An in-depth analysis conducted with DistilBERT reveals that, notwithstanding its re-

duced number of layers and a smaller architectural footprint in comparison to the

original BERT model, the performance metrics of DistilBERT’s layers demonstrate su-

perior capabilities across all evaluated dimensions. This enhancement in performance,

although not exceedingly significant, underscores DistilBERT’s ability to effectively

capture and represent nuanced semantic information at a level equivalent to, or even

exceeding, that of BERT. This phenomenon can be attributed primarily to the robust

inner representations that DistilBERT develops, attesting to its competence in semantic

comprehension. Furthermore, it is noteworthy that the neural correspondence, often re-

ferred to as ’brain alignment,’ present within DistilBERT’s layers is consistently on par

with that observed in the more extensive and heavier BERT model, thus highlighting

the efficacy of DistilBERT’s design in maintaining high levels of neural representational

alignment.

ELECTRA

Upon examining the findings related to ELECTRA, it becomes evident that ELEC-

TRA’s performance does not surpass the baseline results achieved with BERT. Despite

the consistency of our observations across both graphical depictions, ELECTRA’s in-

ability to outpace BERT is noteworthy. This consistency indicates that its training

strategies did not yield a level of alignment with cognitive processes comparable to

that of BERT. From these observations, one can infer that the methodology employed

during ELECTRA’s training phase has not produced a model architecture that is as

closely aligned with human neural patterns as BERT’s architecture. This insight sug-

gests a potential limitation within ELECTRA’s training regimen, which inadequately

mimics the brain’s architecture and functioning compared to BERT.

Results with Removing Punctuation: After using the corpus without any modi-
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fications, we wanted to modify the corpus by removing punctuation symbols. In doing

so, we wanted to see what this might suggest of how the brain semantically processes

punctuation symbols. In a comprehensive investigation into the effects of punctuation

(a) Padding All (b) Padding Everything

(c) Padding Fixations (d) Removing Fixations

Figure 4.8: The figures presents the results of the 4 different punctuation scenarios.
The immediate observation is that the first 6 layers are more brain aligned than the last
6 and also that as the context length increases the role of punctuation to understand
the text meaning is less significant.

modification on neural language models, it was observed that alterations in the usage

of punctuation influence model accuracy, particularly in specific layers. This study ex-

amined four distinct scenarios of punctuation alteration and disclosed a notable trend:

improvements in accuracy were confined to layers 7 through 12. Although these im-

provements were not universally significant, with the highest observed enhancement in

performance amounting to approximately 1.5%, they nonetheless highlight an impor-

tant pattern. Of particular interest was the observation that treating punctuation as

padding tokens alleviated the typical accuracy loss associated with increased sequence
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lengths. This finding implies that punctuation, when employed as padding, minimally

contributes to the degradation of model performance as sentence length increases. Fur-

thermore, the study identified a distinct functional division at layer 6, suggesting it

serves as a demarcation between the model’s initial and terminal layers.

These findings are consistent with previous research conducted by Toneva et al.

(2019) [1], which hypothesized a discrepancy in neural alignment across the layers of

BERT, with layers 1 through 6 exhibiting reduced alignment in contrast to layers 7

through 12. This antecedent study suggested that the removal of the attention mech-

anism from the first six layers could potentially augment the model’s representational

efficacy.

Drawing from these observations and the assertions made by Toneva et al. (2019)

[1], it is reasonable to propose the hypothesis that human cognitive processing does not

heavily depend on punctuation for semantic comprehension. Furthermore, as sequences

are extended, thereby conveying additional information, the model’s performance re-

mains largely unaffected. This resilience underscores the limited role of punctuation in

semantic interpretation. Collectively, these findings enhance the understanding of how

language models engage with punctuation and inform hypotheses about the cognitive

mechanisms underlying human language processing.

4.4 Chapter Summary

In this chapter, a comprehensive examination was conducted on four distinct trans-

former models: ELECTRA, RoBERTa, ALBERT, and DistilBERT. The principal ob-

jective was to determine which of these models, in comparison to a baseline defined

by BERT, is capable of producing language representations that more closely resemble

those of the human brain. This similarity is quantitatively evaluated through align-

ment with fMRI brain data. The results of our investigation reveal that RoBERTa and

DistilBERT exhibit the highest levels of alignment, outperforming the BERT baseline

and the random baseline.

Moreover, our study encompassed an analysis across four distinct scenarios to as-

sess the impact of punctuation symbols on semantic processing. Building on the foun-
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dational research of Toneva and Wehbe (2019) [1], which introduced a methodology

for translating neural network features into brain representations, we aimed to refine

this feature mapping process by systematically omitting punctuation symbols from our

dataset. Our experiments indicate that the removal of punctuation symbols consis-

tently improved model performance across all scenarios evaluated and keeping a higher

score from the random baseline. Furthermore, it was observed that with increased

sequence length, the decline in accuracy when predicting brain data was substantially

less pronounced than previously reported.

These empirical findings provide evidence in favour of the hypothesis that the human

brain may only minimally rely on punctuation marks to interpret the semantic meaning

of sentences. Additionally, they imply that as the length of textual context increases,

the requirement for punctuation symbols correspondingly decreases.

We remain confident that the direction of our research can be further enhanced

by expanding the scope to include a broader array of transformer models in the quest

to identify language processing models with closer alignment to brain activity. Fur-

thermore, the innovative experimental framework introduced by Toneva and Wehbe

(2019) [1] provides a strong basis for assessing the neural alignment of novel and

emerging models. Moreover, we propose a deeper exploration of the cerebral mech-

anisms involved in the semantic processing of punctuation, employing various models,

as a component of the larger effort to decipher the complex capabilities of the human

brain in language comprehension and processing.
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Chapter 5

Optimizing Brain Decoding using

different Activation Functions

5.1 Introduction

In contemporary neuroscience, the exploration of the human brain has witnessed re-

markable progress. Scholars across various disciplines have successfully classified mental

states ranging from fundamental sensory experiences, such as the perception of pain, to

more complex cognitive phenomena, including the evaluation of the significance of var-

ious stimuli [84]. This progress is indicative of the advanced methodologies employed

in cognitive and psychological research. One of the pioneering advancements in this

scientific domain is the decoding of human thought processes and inner speech. This

endeavour is primarily driven by the urgent requirement to restore communicative func-

tionalities in individuals afflicted with neurological disabilities. Multiple studies have

demonstrated the feasibility of deciphering human thought using modalities such as

fMRI [1] or EEG [145] data.

This pioneering research culminated in the development of ’brain embeddings,’

through which computational models are designed to analyze neural signals and es-

tablish connections with linguistic features. Nevertheless, the application of fMRI data

in real-time Brain-to-Text translation systems faces significant challenges due to two

primary factors. Firstly, the acquisition of fMRI data incurs substantial financial costs.
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Secondly, fMRI’s reliance on the BOLD signal results in a time lag, rendering real-time

application infeasible. Given these significant limitations, there has been a gradual

shift in neuroscientific research towards employing EEG for real-time Brain-to-Text

conversion. The advancement and accessibility of extensive datasets, such as those

from ZuCo-1.0 and ZuCo-2.0 [140,141], have considerably enhanced the capabilities of

the research community in this domain. EEG data from these sources have been suc-

cessfully utilized in previous studies to either decipher human cognition or to develop

comprehensive EEG embeddings applicable in downstream analytical tasks, such as the

classification of EEG-derived mental states [58,145,179].

This transition marks a critical shift towards more viable and utilitarian applications

in neural decoding technologies. In the groundbreaking work by Wang and Ji [145], an

EEG-based text decoder was constructed, yielding promising initial outcomes. How-

ever, there remains considerable potential to improve the effectiveness of brain-to-text

translations. Hence, in this section of the doctoral research, we aim to enhance the

foundational performance delineated in Wang and Ji’s study by investigating the rela-

tively underexplored domain of neural network optimization through diverse activation

functions.

The selection of activation functions in neural networks exerts a profound influ-

ence on the characteristics of the features acquired as well as on the model’s efficacy

across various tasks. Activation functions incorporate critical non-linearities enabling

networks to discern intricate patterns within data. Furthermore, divergences in their

mathematical attributes—such as smoothness, sparsity, and continuity—impact the

model’s capability to develop robust and generalizable representations [180, 181]. Al-

though fixed functions such as ReLU, GELU, and Swish are recognized for their estab-

lished strengths, recent scholarly investigations have delved into learnable activation

functions that are capable of adapting during the training process to more effectively

align with specific tasks or datasets.Moreover it has been evidenced in several stud-

ies [117,118] that incorporating nonlinear and tunable activation functions can signifi-

cantly enhance model performance. These investigations further indicate a knowledge

gap concerning the application of such specialized activation functions, as state-of-the-
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art models predominantly employ traditional activation functions. Notably, nonlinear

and tunable functions may be better suited to real-world data contexts.These adapt-

able functions offer a flexible mechanism for adjusting gradient flow and representa-

tional capacity, thereby enabling the tailored customization of activation patterns to

meet specific task requirements during the training phase. Empirical studies demon-

strate that such adaptability can lead to significant enhancements in domains such as

image recognition, language modeling, and speech processing [182, 183]. Considering

the nascent stage of research in text generation from EEG data, compounded by the

inherently complex and noisy characteristics of EEG signals, selecting the activation

function as a variable for experimentation could potentially reveal a more suitable al-

ternative to traditional activation functions. Moreover, the use of tunable activation

functions facilitates the determination of the most optimal parameters for such func-

tions by minimizing the training error.

In this section of the thesis, we conducted a methodical examination of a broad

spectrum of activation functions to assess their comparative efficacy. The results il-

luminate that the integration of tunable activation mechanisms can enhance model

performance without requiring modifications to the foundational architecture. Addi-

tionally, the deployment of polynomial activation functions of higher degrees showed

superior performance compared to their linear counterparts. The significant contribu-

tion of this research segment resides in demonstrating the potential for optimizing a

Transformer Encoder by employing alternative activation functions, whether through

the utilization of high-degree polynomial models or tunable activation parameters.

5.2 Methodology

To rigorously assess the potential for performance enhancement through the deploy-

ment of alternative activation functions, a comprehensive re-training of the EEG-to-

Text decoder framework, originally formulated by Wang and Ji [145], was undertaken.

The preservation of the original network architecture ensured a controlled experimental

environment, facilitating the systematic incorporation and evaluation of diverse activa-

tion functions. The experimental protocol necessitated the application of these varied
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activation functions within the context of an analysis employing raw EEG signals. This

methodological approach was based on constructing an experimental baseline, achieved

by training the model in its unaltered form. Subsequently, the empirical results derived

from the employment of alternative activation functions were meticulously compared

to this established baseline, allowing for a detailed examination of the performance

implications associated with each activation function adaptation.

5.2.1 Data

During the training phase of our computational model, we engaged comprehensively

with the unprocessed EEG data, meticulously recorded for each linguistic unit within

each successive sentence. Although the architectural framework of our model closely

resembles that proposed by Wang and Ji [145], a fundamental distinction is our uti-

lization of raw EEG data as opposed to the processed, word-level EEG attributes. The

ZuCo dataset encompasses an extensive range of experimental tasks, thereby providing

diversity. The significant study by Wang and Ji [145] demonstrated that enhancing the

training sample pool leads to improvements in the model’s performance efficiency.

In alignment with their findings, our research employs Task 1 and Task 2 from

ZuCo-1.0 along with Task 2 from ZuCo-2.0 as the primary training stimuli. To align

divergent data formats, we applied advanced transformation algorithms to our raw

EEG corpus prior to integration into our model’s architecture for training procedures.

In stark contrast, whereas word-level features align to a unidimensional sequence of

attributes, raw EEG data innately manifest as a bidimensional array.

The primary dimension encompasses the number of recordings per linguistic unit,

while the secondary dimension describes the levels of electroactivity across individual

electrodes. To harmonize these dimensional differences and achieve the desired unidi-

mensional format, we calculated the mean electroactivity levels for each electrode by

averaging across all recordings related to a specific word. The resultant values inte-

grated into a singular mean activation metric per electrode, producing a unidimensional

array of feature vectors. This data transformation was crucial in optimizing the inte-

gration of raw EEG data within our model framework, ensuring seamless compatibility
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and facilitating an effective training process.

5.2.2 Model

Our model architecture, while sharing similarities with the framework introduced by

Wang and Ji [145], significantly diverges in terms of the activation functions utilized

within our Transformer Encoder. This design is fundamentally consonant with the

paradigms underlying methodologies for translation tasks, employing neural networks

structured with encoder and decoder components. The encoder architecture integrates

a series of Transformer Encoder layers, each initialized with random weights, intended

to distill high-level feature representations from raw EEG signals. These abstracted

features subsequently inform the operations performed by the decoder.

A notable deviation from the prototypical study is our incorporation of distinct

activation functions within these Transformer layers, aimed at enhancing the efficacy

of the feature extraction mechanism. Our configuration specifically consists of X layers

of Transformer Encoders, each possessing a dimensionality of N and incorporating S

attention heads to ensure robust processing. During the decoding phase, we employ

a pre-trained LLM, specifically the Bidirectional and Auto-Regressive Transformers

(BART) model, which Wang and Ji [145] also utilized. BART’s capabilities in gener-

ative tasks are exemplary, rendering it eminently suitable for converting EEG-derived

features into logically structured and cohesive sentences. Furthermore, the selection of

BART is predicated on its pre-training via a denoising auto-encoder objective, which

is particularly advantageous for addressing the inherently noisy characteristics of EEG

data. Moreover, BART’s autoregressive generation capability allows for the prediction

of each word contingent upon its predecessors, thereby potentially enhancing accuracy

by leveraging the context generated at each time step as an ancillary modality, rather

than solely relying on EEG data [184].

Model Operation

Encoder: The randomly initialised stack of Transformer Encoder layers processes the

raw EEG data, extracting meaningful features that encapsulate the information within
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the EEG signal.

Decoder: The BART model takes these high-level features from the encoder and

generates the corresponding sentences. This combination of a customised Transformer

Encoder and a robust LLM decoder allows our model to effectively perform the EEG-

to-text translation task.

5.2.3 Activation Functions

During the training and evaluation stages of our investigation, a thorough exploration

of different activation functions was executed. Activation functions are crucial to the

efficacy of neural networks as they determine the level of non-linearity incorporated,

thus greatly affecting the model’s capability to learn intricate patterns.

In our experimental framework, we meticulously evaluated a variety of activation

functions under controlled conditions with the aim of maximizing model performance.

This approach sought to transcend the traditional use of the ReLU, which is extensively

implemented as the default activation function in Transformer Encoder architectures.

Each activation function was rigorously assessed using a range of performance metrics

to ascertain those that might outperform ReLU, especially concerning the processing

of EEG data within our model structure.

1. The Swish activation function, as articulated by Ramachandran et al. in their

foundational paper [185], constitutes a noteworthy progression in the field of ac-

tivation functions, particularly within the realms of machine learning and deep

learning applications. Distinct from conventional activation functions such as the

ReLU, Swish embodies a smooth, non-monotonic attribute that delineates it as

an advanced alternative for neural network models. Its mathematical formulation

as f(x) = x ·σ(βx), wherein σ represents the sigmoid function, not only augments

the networks’ capacity to model complex datasets but also streamlines the train-

ing process by alleviating challenges linked to gradient-based optimization. The

body of empirical evidence substantiating Swish’s efficacy is substantial, with sig-

nificant enhancements in performance observed in demanding image classification

tasks, notably those assessed on the ImageNet dataset.
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This activation function’s adeptness in identifying and utilizing intricate patterns

and relationships within data structures establishes it as a potent option for

improving both the predictive accuracy and generalization aptitudes of modern

deep learning architectures. Swish’s refined ability to surpass the confines of

monotonic activation functions renders it an essential element in our experimental

investigation, aimed at advancing beyond the traditional ReLU capabilities.

2. The Gaussian Error Linear Unit (GELU), as described in [186], constitutes a

smooth, non-monotonic activation function that is increasingly recognized in the

domains of machine learning and AI. Its distinctive operational mechanism within

computational architectures involves the weighting of input signals based on their

inherent values, thereby creating a gradient landscape enriched with informational

content compared to that employed by the ReLU.

This enhanced propagation of gradients endows GELU with the capability to

excel across a wide array of deep learning paradigms. GELU exhibits notable

efficacy within NLP frameworks, as exemplified by models such as the BERT.

This efficacy stems from GELU’s capability to capture detailed semantic and

syntactic features of language which are crucial for advanced NLP tasks. Thus,

the preference for GELU as the activation function of choice is substantiated by

its superior performance metrics relative to ReLU within these rigorous contexts.

3. The Exponential Linear Unit (ELU) [187] constitutes a notable advancement

within the domain of deep learning, yielding significant improvements in perfor-

mance metrics. These enhancements are especially evident in addressing issues

related to vanishing gradients and biases associated with activations. The ELU

function is distinguished by its smooth and non-monotonic nature, setting it

apart from traditional activation functions such as the ReLU. It possesses the

advantageous properties of ReLU for positive inputs while integrating a uniquely

formulated exponential curvature for managing negative inputs. This dual nature

is regulated by a parametric variable α, which permits mechanistic control over

the saturation characteristics of the function.
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In the broader context of activation functions employed in deep neural networks,

the design of ELU arises as a strategic amalgamation of linear and exponential

components, facilitating a more adaptive response to the varied input distribu-

tions encountered during training. In contrast to its ReLU counterpart, which

remains strictly linear for positive values and zero for negatives, the exponential

decay characteristic of ELU in the negative domain inhibits the deactivation of

neurons, thereby addressing the ’dying ReLU’ issue while maintaining simplicity

and computational efficiency. As a result, this innovative formulation of ELU not

only accelerates convergence rates but also fosters the consistent acquisition of ro-

bust hierarchical feature representations. Thus, in sophisticated AI architectures,

particularly those that encompass expansive parameter spaces and complex data

patterns, ELU emerges as an optimally balanced activation function, offering both

theoretical sophistication and empirical effectiveness in high-performance neural

computation tasks.

4. In the domain of AI, particularly within the framework of deep learning and

neural network architectures, the employment of advanced activation functions is

crucial for optimizing performance and fostering the development of sophisticated

models. In this context, the Leaky Rectified Linear Unit (Leaky ReLU) [188]

and its derivative, the Parametric ReLU (PReLU) [189], have been strategically

selected owing to their capacity to maintain non-zero gradients even for negative

input values. This is a deliberate methodological choice aimed at addressing the

pervasive issue known as the ’dying ReLU’ problem, a condition where neurons

become inactive due to the nature of conventional ReLU activation, which renders

zero output for negative inputs. Unlike the traditional ReLU, which may lead to

sparse gradients and suboptimal learning in such negative regions, both Leaky

ReLU and PReLU afford enhanced gradient propagation, thereby mitigating the

risk of neuron inactivation.

The Leaky ReLU adopts a predetermined, fixed slope for negative inputs, enabling

improved gradient flow during backpropagation—albeit at the expense of intro-

ducing an additional layer of structural complexity. This characteristic allows
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Leaky ReLU to ensure continuity and gradual transitions in the learning process,

preventing abrupt disruptions that might otherwise hinder convergence. Con-

versely, PReLU offers an adaptive advantage by dynamically learning the slope

coefficient as part of the training process itself. By endogenously calibrating the

slope’s steepness throughout model refinement, PReLU provides a dynamic learn-

ing capability that optimizes the activation function’s responsiveness to varied and

complex data inputs. This adaptability potentially leads to superior model per-

formances, although it incurs a computational cost associated with optimizing an

additional parameter. Thus, the choice to incorporate Leaky ReLU and PReLU

is a testament to the pursuit of a balance between structural simplicity and the

efficacy of intricate learning paradigms within the neural network.

5. Within the domain of neural network architectures, the majority of activation

functions typically exhibit monotonic behavior, thereby restricting their capac-

ity to effectively model complex and periodic phenomena characterized by non-

monotonic attributes. To address this limitation, our research has elected to em-

ploy the sine function as the activation mechanism. This decision is predicated

on the sine function’s intrinsic oscillatory qualities, which render it exception-

ally competent in capturing rhythmic fluctuations and cyclical patterns inherent

in data derived from periodic inputs. By exploiting these inherent periodicities,

neural networks utilizing sine-based activation functions may potentially demon-

strate superior performance in domains where other activation functions, such

as ReLU, may be inadequate due to their linear characteristics and insufficient

modulation ability.

Despite its advantages in specific contexts, it is imperative to acknowledge that

the sine function and its associated variations have not achieved the same level

of acceptance or prevalence as more traditional, monotonic functions, such as the

ReLU, or other canonical activation functions within standard machine learn-

ing practices. Consequently, although the sine function may not be as widely

recognized or implemented within conventional neural network frameworks, its

application in our research is grounded in the hypothesis that its non-linear, pe-
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riodic properties could enhance model performance in complex, non-monotonic

modelling scenarios that necessitate the capture of dynamic and fluctuating data

patterns.

6. Chebyshev polynomials represent a class of orthogonal polynomials of critical

importance, distinguished by their extensive analytical properties and applica-

tions in diverse fields, including scientific computing, numerical analysis, and

approximation theory. Their unique structure is defined by a trigonometric for-

mula involving cosine functions, which imparts them with distinctive attributes

conducive to both theoretical exploration and practical application. Consistent

with the insights presented in Chapter 2, empirical research, such as the study

by [119], has demonstrated that Chebyshev polynomials significantly enhance the

predictive accuracy of models applied to the dynamics of real-world atmospheric

phenomena.

This empirical evidence highlights their potential as a valuable methodological

resource, making them a promising prospect for enhancing our predictive mod-

elling framework by capitalizing on their inherent ability to approximate complex

functions effectively and precisely.

7. Learnable polynomials represent a class of polynomial equations characterized by

dynamically adjustable constants, which undergo optimization during the training

phase of a computational model. This adaptability permits the precise calibration

of the polynomial equation to address the complexities inherent in the modelled

phenomenon. Recent academic inquiries, including the investigation by Bilonoh

et al. (2022) [118], have systematically evaluated the efficacy of these constructs.

Their research highlights the considerable potential of learnable polynomials in

achieving highly accurate approximations of complex functions within predictive

modelling frameworks.

Consequently, these adaptive polynomial constructs present themselves as a promis-

ing candidate for integration into our experimental methodologies. The capabil-

ity to alter their coefficients through iterative learning processes further enhances
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their suitability as a methodological resource, thereby augmenting the robustness

and effectiveness of our experimental configurations and heightening the overall

precision and reliability of the modelling outcomes.

5.2.4 Training process and Evaluation

Our comprehensive training protocol is systematically partitioned into two symmetric

phases of training repetition. In the initial phase, the learnable parameters of BART

are meticulously constrained, effectively immobilizing its weights. Simultaneously, the

loss generated by BART, aligning with its standard loss function, is utilized as a super-

visory signal to explicitly optimize the parameters of the Transformer Encoder. This

critical stage enables the extraction of salient, high-dimensional features from the neu-

ral architecture of the Transformer Encoder, which subsequently channel these features

as inputs into the BART framework. Consequently, this mechanism equips the Trans-

former Encoder with the capability to proficiently partition and synchronize EEG signal

characteristics with the linguistically structured information processed by BART. The

foundational training phase is imperative for ensuring that the Transformer Encoder

acquires comprehensive, semantically rich representations of the EEG signal data; this

serves as an optimal prerequisite for subsequent model evolutions.

Progressing to the second training iteration, the methodology remains consistent;

however, fine-tuning of BART is initiated concurrently with the Transformer Encoder.

This crucial development allows the adaptable weights of BART to undergo modifica-

tion, thereby optimizing them during this dual-phase training schema. The rationale for

orchestrating these dualistic training phases is twofold: the preliminary phase leverages

the inherent capabilities of BART as an informative scaffold, augmenting the Trans-

former Encoder’s capacity to effectively integrate EEG-derived signals with text-based

constructs. Upon successful alignment, the subsequent phase focuses on the bespoke

fine-tuning of BART, thereby enhancing its proficiency in serving as a conduit for

EEG-to-text translation in downstream applications.

Upon the completion of the comprehensive training regimen, the model is utilized

to generate textual output from BART, employing the advanced beam search algo-
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rithm. The syntactic and semantic integrity of the resulting textual sequences is then

meticulously evaluated through comparative analysis with reference sentences. Evalua-

tion metrics, such as BLEU scores and ROUGE scores, are calculated to quantitatively

assess the fidelity and coherence of the generated text relative to the source material.

In our experimental study, we systematically trained the machine learning model

using each specific activation function over the course of 10 epochs in individual and

separate runs, resulting in an aggregate total of 20 epochs across the training sessions.

Our approach employed a consistent batch size of 16 in conjunction with a finely-tuned

learning rate set at 5×10−5 across both trial scenarios. To rigorously evaluate the per-

formance and generalizability of the constructed model, we combined the entire dataset

collected from each subject, subsequently executing a randomized division into train-

ing, validation, and test subsets according to an 80% training sample, 10% validation,

and 10% testing cohort for balanced evaluation.

Throughout both phases of model refinement, we employed the stochastic gradient

descent algorithm with an unvarying learning rate of 5 × 10−5 to ensure convergence

and optimization of the model parameters.

5.2.5 Evaluation Metrics

Within our extensive evaluation framework, we adopt a dual-metric methodology to

thoroughly appraise the efficacy of our models. The primary metric employed is the

BLEU score, an acronym for BLEU, as delineated in the foundational research by

Siddhad, Gupta, Dogra, and Roy (2024) [147].

The BLEU score is a well-established quantitative metric frequently utilized in the

evaluation of outputs from machine translation systems, which constitute essential com-

ponents of NLP tasks. This metric precisely assesses the fidelity of generated outputs

in comparison to one or more predefined reference translations. The BLEU score is

depicted as a continuum ranging from 0 to 1, with scores approaching 1 indicating a

closer alignment with the references, thus signifying high-quality translations. Such a

metric facilitates the objective assessment of translation accuracy and is instrumental

in identifying opportunities for enhancement in the quality of machine-generated text.
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Transformer Encoder

High Level EEG
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.edia was born in 18 way Texas and
he father was a
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Jed Bush was born in Midland,
Texas, where his father...

Targeted Text

BLEU ROUGE

Figure 5.1: This figure shows the flow used to fine-tune BART alongside a transformer
encoder and generate text from brain data.

In the domain of computational linguistics and NLP, the BLEU metric is widely

regarded as an essential benchmark for evaluating the performance accuracy of machine-

generated translations and text generation tasks. BLEU measures the precision of n-

grams, which are contiguous sequences of ’n’ items (typically words or tokens) extracted

from a text sample, thereby quantifying the extent to which these n-grams in the

generated text align with those in the reference text. In practical applications, n-grams

of sizes ranging from 1 (unigram) to 4 (quartgram) are predominantly utilized, as they

offer a comprehensive representation of text coherence across various linguistic levels.

In conjunction with BLEU, the Recall-Oriented Understudy for Gisting Evaluation

(ROUGE) metric is employed. ROUGE comprises a set of evaluation metrics specifi-

cally crafted to navigate the complexities involved in assessing the quality of summaries

and translations produced by NLP models. Differing from BLEU, which emphasizes

precision, ROUGE primarily focuses on recall and the degree of n-gram overlap between
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the generated and reference textual contents. ROUGE metrics are particularly valued

in tasks related to summarization and other forms of text-generation evaluations due

to their nuanced capacity to capture semantic similarities and the presence of content.

The ROUGE score itself includes various iterations, each tailored to address different

text evaluation requirements. In our research, we utilize ROUGE-N, which is adept at

quantifying the overlap of n-grams between the generated content and reference materi-

als. This involves calculating unigrams (ROUGE-1) and bigrams (ROUGE-2), thereby

revealing both individual word matches and paired word sequences.

Furthermore, we incorporate ROUGE-L, a metric that assesses the Longest Com-

mon Subsequence (LCS) present between the generated and reference texts. By doing

so, ROUGE-L encapsulates not only the presence of n-grams but also the sequential

order and relational dynamics of the words in the text, thus presenting a more com-

prehensive view of content alignment. [190]

5.3 Results

In our thorough evaluation of model performance, internationally respected evaluation

metrics, specifically the BLEU score and the ROUGE score, were employed. These

metrics have achieved extensive recognition in the domains of machine translation and

question-answering tasks due to their effectiveness in measuring alignment between

machine-generated text and reference materials.

Our investigative strategy was further distinguished by a comparative analysis with

an established pipeline as described in [145], wherein our resulting data visualizations

consistently refer to this reference configuration under the label ”plain”. In addition

we compared our results to random baseline denotated as ”random baseline” in our

results table.

Moreover, not withstanding the considerable challenges presented by inter-subject

variability and noise within EEG data, a decision was made to amalgamate data across

all subjects. This choice was informed by insights from previous investigations [119],

which indicated that an enriched training dataset correlates with improved model per-

formance outcomes. We scrupulously aligned our experimental parameters with those
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from preceding studies to ensure the highest possible fidelity in our comparative anal-

ysis.

Upon scrutiny of Table 5.2, it becomes apparent that configurations such as ”torch

poly 3” and ”head same as layers” consistently demonstrated superior BLEU scores,

thus positioning them as leading configurations in translation quality, with scores con-

verging in the 0.09 to 0.10 range. In contrast, configurations incorporating custom ac-

tivation functions, such as ”use custom activation Chebysev degree 3” and ”use swish

activation function,” yielded comparatively lower BLEU scores, predominantly falling

below the 0.08 threshold. This notable variability highlights the differing efficacy levels

across various configuration paradigms.

A comprehensive analysis of the preceding results has led to the identification of sev-

eral significant observations that merit further scientific investigation. Firstly, a notable

discrepancy was observed in the performance metrics between the Chebyshev and Torch

polynomials, although both utilize equivalent 3rd-degree polynomial frameworks. This

discrepancy is hypothesized to be due to the presence of learnable parameters within

the Torch polynomial. By enabling the parameters of the activation functions to be

learnable, it is apparent that the model’s performance can be considerably enhanced.

Additionally, configurations described as ’head identical to layers’ gain prominence

when combined synergistically with a custom activation function. The ’head is the

same as layers’ configuration pertains to a Transformer Encoder where the number of

attention heads equals the number of its layers. Implementing such a transformative

approach reveals that the learnable activation function surpasses the performance of

traditional configurations, highlighting the essential role of learnable activation func-

tions in improving model accuracy. However, these findings are predominantly evident

when the BLEU score is assessed using a 1-gram evaluation method.

This indicates that, while our model demonstrates competence in recognizing in-

dividual words within sentences, it tends to predict their positions inaccurately. Fur-

thermore, a detailed analysis of BLEU scores for 2-gram and 3-gram setups suggests

the superior performance of the ’head identical to layers’ configuration, with the leaky

ReLU activation function being the leading evaluative metric. Additionally, an im-
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Activation Function Rouge Score 1 Rouge Score 2

P±(STD) R±(STD) P±(STD) R±(STD)

Random Baseline 0.05±0.01 0.05±0.01 0.05±0.01 0.05±0.01

plain 0.04±0.007 0.009±0.007 0.000±0.0 0.000±0.0

swish 0.051±0.007 0.013±0.007 0.000±0.0 0.000±0.0

gelu 0.087±0.006 0.060±0.006 0.0026±0.0001 0.0023±0.0001

elu 0.156±0.007 0.046±0.007 0.0037±0.0005 0.0016±0.0004

leaky relu 0.155±0.007 0.115±0.007 0.0142±0.007 0.0124±0.007

swish norm first 0.018±0.001 0.013±0.001 0.0002±0.00007 0.0001±0.0001

parametric relu 0.158±0.007 0.114±0.001 0.0102±0.0004 0.0065±0.0003

sine 0.009±0.001 0.008±0.001 0.0002±0.00001 0.0001±0.00001

chebysev degree 3 0.170±0.007 0.053±0.007 0.0070±0.0001 0.0028±0.0001

chebysev degree 3 norm first 0.018±0.007 0.013±0.007 0.0002±0.00007 0.0001±0.0

chebysev degree 2 0.136±0.007 0.048±0.007 0.0007±0.0001 0.0002±0.0001

torch poly 2 0.106±0.007 0.041±0.007 0.0005±0.0001 0.0002±0.0003

torch poly 3 0.173±0.007 0.06±0.007 0.0055±0.0002 0.0024±0.0002

negative positive poly 0.142±0.007 0.044±0.007 0.0027±0.0002 0.0010±0.0002

negative positive poly norm first 0.018±0.007 0.013±0.007 0.0002±0.00001 0.0001±0.00002

Table 5.1: Rouge Scores results table
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portant observation was made: modifying the position of the normalization layer to

precede the encoder leads to a reduction in performance, diminishing it to a tenth

of its previous efficiency, irrespective of the activation function used. As depicted in

Table 5.2, applying the Chebyshev polynomial with a 3rd-degree along with a prior

normalization layer results in a decrease in performance from 0.087 to just 0.008. A

similar reduction pattern is observed with the use of a negative-positive polynomial

configuration.

Activation Function BLEU 1-Gram ±(STD) BLEU 2-Gram ±(STD)

Random Baseline 0.05±0.0 0.005±0.0

Plain 0.07±0.005 0.009±0.005

Neg-Positive Poly Norm 0.009±0.001 0.001±0.0001

Neg-Positive Poly 0.08±0.005 0.015±0.0001

Torch Poly Degree 3 0.1±0.005 0.02±0.0001

Torch Poly Degree 2 0.080±0.005 0.017±0.0005

Chebysev Poly Degree 3 Norm 0.009±0.007 0.001±0.0001

Chebysev Poly Degree 2 0.09±0.001 0.003±0.0001

Chebysev Poly Degree 3 0.09±0.005 0.002±0.01

Sine 0.004±0.005 0.001±0.0001

Parametric ReLu 0.07±0.007 0.02±0.007

Swish Norm First 0.008±0.007 0.001±0.0007

Leaky ReLu 0.09±0.005 0.03±0.007

ELU 0.08±0.005 0.017±0.001

GELU 0.04±0.005 0.009±0.001

Swish 0.07±0.005 0.006±0.0001

Head Same as Layers 0.09±0.005 0.03±0.005

Norm First 0.008±0.001 0.001±0.0005

Half Layers 0.03±0.001 0.001±0.0005

Table 5.2: In this table we present our BLEU score results for 1-Gram and 2-Gram
BLEU configuration.

To rigorously evaluate the performance and efficacy of our computational models,

we have integrated the ROUGE-score into our assessment metrics. The results of these

evaluations are comprehensively documented and presented in Table 5.1. In Table

5.1 we have only included our precision and recall for ROUGE-1 and ROUGE-2 for
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simplicity. A more complete table with all our results can be found in the Appendix

Chapter A containing all our results. Similarly, we observe parallel trends concerning

the BLEU-score. Although ROUGE is widely regarded as a metric with a strong

emphasis on recall, our analysis indicates that the application of ROUGE-1 metrics

demonstrates that optimal performance is achieved when utilizing either a learnable

activation function or a homogeneous configuration for the head as compared to the

layers. However, when the evaluative focus shifts to 2-grams, the findings suggest that

the leaky ReLU activation function proves to be the most effective.

To ensure statistical significance of our results and the validity of our results we

conducted a pairwise t-test on all our approaches against the random baseline and the

plain baseline and calculated the standard deviation(STD) accross 20 runs for each

method. Moreover the results presented is the calculated average accross our different

runs.

In both our Tables (5.2 & 5.1) our STD values range from 0.0001 to 0.001 with the

most dominant value to be 0.007. Since the value S calculated for the STD is S ≤ 0.01

which typically this indicates a low variance accross different runs we showed that there

is a consistency accross the performance for the different activation functions.

Furthermore, we performed a pair-wise t-test to assess the statistical significance of

our top-performing methods in comparison to both random and plain baselines. The

methods exhibiting the highest performance were: ’Torch Polynomial Degree 3’, ’Torch

Polynomial Degree 2’, ’Chebyshev Polynomial Degree 2’, ’Chebyshev Polynomial De-

gree 3’, and ’Leaky ReLU’. Each of these methodologies demonstrated a p-value of

p ≤ 0.05 when evaluated against the random baseline across all assessment metrics,

signalling statistical significance relative to the random baseline. Additionally, when

compared to the plain baseline, each of our best approaches showed a p-value of p ≤ 0.05

for all 1-Gram metrics and the longest metric for Rouge-L. Furthermore, for the 2-Gram

metrics (BLEU-2, Rouge-2), the second-degree polynomial approaches (’Torch Polyno-

mial Degree 2’, ’Chebyshev Polynomial Degree 2’) and Leaky ReLU exhibited a p-value

of p ≤ 0.07, indicating a potential trend towards statistical significance since this value

approaches 0.05. This observation is reinforced as the third-degree polynomial meth-
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ods show statistical significance with respect to the 2-Gram metrics, suggesting that

higher polynomial degrees correlate with improved activation performance, statistically

significant against the plain baseline.

5.4 Chapter Summary

In this study, a comprehensive investigation was undertaken into a range of activa-

tion functions, alongside two distinct transformation methodologies, with the aim of

enhancing the current effectiveness of an EEG-to-Text decoder model that relies on

the analysis of EEG data. Our empirical findings reveal the improved performance of

these models in real-world contexts when subjected to alternative activation functions,

thus demonstrating a substantive enhancement in the decoder’s capabilities. The study

accentuates the potential benefits inherent in the use of learnable activation functions.

Notably, the Leaky ReLU activation function exhibited superior performance metrics in

the context of 2-gram sequences and higher, as assessed by ROUGE and BLEU scores,

indicating a robust model output in these areas.

In contrast, the learnable third-degree polynomial function showed a tendency for

enhanced performance in 1-gram evaluations, suggesting its potential applicability in

specific modelling scenarios. It is hypothesized that employing a diverse array of activa-

tion functions in the training of such models constitutes a promising, yet inadequately

explored, research area. Our findings underscore the need for increased scholarly atten-

tion in this direction. Although the outcomes derived from the EEG-to-Text decoding

process offer promising insights, it remains clear that achieving an applied, accurate,

real-time model capable of generating text from raw neurological data requires further

exploration. Initial investigations indicate the viability of brain-derived text generation,

establishing a preliminary basis for future research undertakings.

A salient constraint identified is the limited frequency of sentence repetition within

the current dataset, whereby each subject encounters each sentence only once or twice.

This deficiency may adversely affect the learning dynamics of deep learning models,

which benefit from recurrent exposure to samples. It is posited that increasing the fre-

quency of repetition within the EEG dataset could substantially enhance performance
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outcomes. Given the inherently noisy characteristics of EEG data, it is hypothesized

that the model’s capacity for representation learning is obstructed by an inability to ad-

equately model the noise, potentially due to its simplistic architectural design. Hence,

the deployment of a more sophisticated encoder, designed to extract high-order EEG

features before their integration into the extensive language model, represents a poten-

tial enhancement strategy. Finally, due to temporal constraints, experimentation with

the activation function was limited to a single random seed. Therefore, future research

will involve multi-seed testing to evaluate the impact of randomness on the reported

performance metrics.
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Chapter 6

Development of a Generic

Brain-to-Text Decoding Module

6.1 Introduction

The intricate workings of the human brain have engaged the interest of the scien-

tific community for numerous decades, precipitating extensive research and exploration

within the field of neuroscience [191–195]. Historically, the endeavor to elucidate the

mysteries of brain function has been propelled by the fundamental aspiration to com-

prehend the complex cognitive processes that characterize the human species. Recent

technological advancements have profoundly enhanced our capacity to examine the liv-

ing brain in a non-invasive manner. Techniques such as EEG, Magnetic Resonance

Imaging (MRI), and MEG have emerged as pioneering methodologies facilitating the

visualization and quantification of brain activity in real time. These methodologies

have unveiled novel dimensions in the sphere of cognitive neuroscience, permitting the

analysis of neural substrates associated with cognitive and emotional functions.

In the early phases of brain research, investigators employed relatively rudimentary

experimental paradigms to elicit discernible patterns of neural activation. For instance,

studies often utilized straightforward binary conditions, such as exposing subjects to

emotionally charged scenes (e.g., happy versus sad imagery), thereby facilitating the

examination of the neural correlates of emotional processing. These early experiments
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established a foundational understanding of emotional representation within the cere-

bral architecture. As scientific inquiry matured, researchers embarked on more sophis-

ticated experiments intended to elucidate the nuanced functions of specific cerebral re-

gions, such as the Superior Temporal Sulcus and the Human Insula. Studies conducted

by Hein et al. (2008) and Chang et al. (2013) exemplify this trajectory [196, 197].

Their findings underscored the multifaceted nature of brain regions, highlighting both

the diversity of functions they serve and the intricate web of interconnectivity among

neural networks. This paradigm shift paved the way for a deeper appreciation of the

brain’s capacity to integrate multifarious stimuli, thereby facilitating complex processes

such as audiovisual integration and linguistic comprehension.

Among the notable endeavours in contemporary neuroscience is the pursuit to eluci-

date the cerebral mechanisms by which the human brain interprets natural language and

semantic constructs. Attaining a thorough comprehension of these processes promises

not only to enhance theoretical models of language processing but also to provide pro-

found insights into the evolutionary progression of the human brain across millennia.

The emerging field of neurolinguistics seeks to bridge this knowledge gap by analysing

the neural foundations of language comprehension, thereby contributing to a more pro-

found understanding of both language and cognition within the neural context. The

implications of effectively mapping these cognitive pathways are extensive, carrying the

potential to revolutionize educational, clinical, and computational paradigms. Within

this dynamic research landscape, the pursuit to unravel the complexities of human cog-

nition and language understanding persists, charting a course toward a more profound

understanding of the human condition.

Prior research within the realm of neurolinguistics has extensively depended on the

acquisition of empirical data via techniques such as fMRI. As noted in scholarly stud-

ies [1,37,60,198], fMRI is acknowledged for its limitations, including its slow speed and

high cost, and it does not support real-time data processing when compared with other

neuroimaging methodologies. Recent scholarly efforts aim to elucidate the cerebral rep-

resentation of information needs [73, 80]. Information needs are intrinsically linked to

the discipline of neurolinguistics, primarily due to their crucial role as driving forces be-
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hind the execution of information retrieval operations. A dominant perspective suggests

that artificial intelligence frameworks are ineffective in capturing the authentic seman-

tic essence, consequently often failing to provide users with the desired informational

content. Previous approaches have been restricted to merely classificatory functions,

concentrating on specific areas such as classifying information needs [134], assessing

mental workload [89,90], engaging in reading tasks [143], or imagining categories [199],

among others.

To the best of our knowledge, this study constitutes a foundational exploration into

the application of raw EEG signals for the precise identification of linguistic compo-

nents and the generation of sentences as direct cerebral outputs. The significance of

our methodology is underscored by the advantageous attributes of EEG, which encom-

pass real-time data acquisition, cost efficiency, and operational simplicity, especially

in comparison to fMRI. By decoding brain activity using unprocessed EEG signals,

our research endeavours to accelerate the understanding of neural functions, offering a

method that is both more rapid and methodologically rigorous. Furthermore, within

the current academic discourse, our study is established as a pioneering initiative to

utilize raw EEG signals as the fundamental input for our computational model intended

for decoding purposes.

The following sections of this work are structured as follows, Section 6.2 discusses

the methodology of the research, Section 6.3 highlights the results of our investigation,

and lastly, Section 6.4 a summary of the current Chapter is presented.

6.2 Methodology

6.2.1 Introduction

This section delineates the systematic methodology employed in this study to facilitate

the successful training of the brain-to-text decoder. It elaborates on the research design

and the analytical procedures implemented. Additionally, it presents a comprehensive

overview of the machine learning methodologies and tools employed, along with the

justification for their selection based on the results obtained from each integration.
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Furthermore, it provides a succinct overview of the two datasets utilized, as well as the

reasoning behind their selection.

Each experimental concept and instrument employed underwent multiple iterations

to ensure uniformity across results. A detailed exposition of our findings is provided in

Section 6.3, accompanied by the standard deviation(STD) and statistical significance

tests for each method. In the methodology section, we provide only a succinct overview

of the results to justify the inclusion and transition from one method to another.

6.2.2 Data

In the process of the development and refinement of our Brain Decoder system, we

adopted a strategy involving the training on two distinct datasets of cerebral data.

This dual-data strategy was pivotal in achieving a comprehensive understanding of

neural activities across diverse experimental protocols. Initially, we employed publicly

accessible EEG datasets, ZuCo 1.0 [140] and ZuCo 2.0 [141] provided by the University

of Zurich. These EEG datasets constituted the foundational basis for our preliminary

analyses and facilitated the development of an initial model of neural activity patterns,

which served as the cornerstone for our subsequent research endeavours. Building upon

the foundational insights derived from the EEG data, we elected to expand the scope

of our research by integrating a second dataset type, which consisted of intra-cortical

microelectrode arrays data. This supplementary dataset was provisioned and made

available through the research conducted by Willett et al. [59].

The incorporation of the microelectrode array datasets enables the acquisition of

neural signals with markedly superior spatial and temporal resolution in comparison

to EEG data, thus facilitating more profound insights into the cortical processing me-

chanics on a microscopic level. The rationale for the utilization of these two distinct

datasets is comprehensively explored in Section 6.2.2. This section presents a thor-

ough narrative that substantiates our choice of these particular datasets. It provides a

succinct description of each dataset, clarifies their unique attributes, and specifies the

particular segments of these datasets that were employed as training data to refine and

augment the capabilities of the Brain Decoder.
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EEG

This comprehensive investigation leverages the highly regarded and publicly accessi-

ble Zurich Cognitive Language Processing Corpus, specifically the ZuCo 1.0 [140] and

ZuCo 2.0 datasets [141]. These datasets are distinguished by their inclusion of EEG

data in conjunction with eye-tracking records. These records are meticulously gath-

ered from a robust sample of participants.ZuCo 1.0 encompasses data from 12 native

English-speaking healthy participants, while ZuCo 2.0 includes data from 18 partic-

ipants, culminating in a collective sample of 30 individuals. Furthermore, ZuCo 1.0

comprises 1,107 sentences, and ZuCo 2.0 consists of 739 sentences, resulting in an ag-

gregate of 1,846 sentences across both datasets. By leveraging these datasets, the model

was trained on approximately 30,000 words, each of which is accompanied by corre-

sponding EEG recordings. In both datasets the participants systematically engaged in

both Normal Reading (NR) and Task-Specific Reading (TSR) activities for about 4-6

hours. The content for these activities has been carefully curated, focusing on the in-

depth analysis of movie reviews and informative Wikipedia articles. In Normal Reading

(NR) activities, participants engaged in reading the text devoid of any associated tasks.

Conversely, Task-Specific Reading (TSR) required participants to perform a semantic

relation annotation task concurrently with reading the text. This methodological ap-

proach facilitates the capture of neural and ocular signals indicative of goal-directed

language processing, thereby enhancing the dataset’s utility for investigating profound

semantic comprehension and cognitive load during reading. Additionally, it allows for

the development of more robust models capable of detecting task engagement through

physiological data.

A crucial characteristic of the ZuCo datasets is the exact temporal alignment of

EEG data with text-based stimuli. This alignment is accomplished through meticulous

monitoring of fixation points, which are precisely recorded by advanced eye-tracking

technology. The datasets comprise an extensive range of EEG features that are closely

linked with specific eye-tracking metrics. These metrics include, among others, First

Fixation Duration (FFD), which denotes the duration of initial fixations on a particular

text element.
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Furthermore, the datasets offer insights into total reading time (TRT), which en-

compasses the cumulative duration of all fixations on a specific text, as well as gaze

duration (GD), which quantifies the total time spent in first-pass reading before any

regressions occur. The single first fixation (SFD) is another parameter of interest, rep-

resenting the isolated duration of an initial fixation event on an object, while go-past

time (GPT) is essential for examining backward eye movements and re-reading patterns

in reading tasks.

The ZuCo corpus, characterized by its extensive dataset composition, represents an

essential asset for the investigation of cognitive language processing. By integrating

EEG and eye-tracking data, it enables researchers to examine the intricate dynamics of

reading behaviour and neural processing. This amalgamation of data enhances compre-

hension of the physiological and psychological dimensions of reading, thereby advancing

developments in brain decoding technologies and cognitive neuroscience. Eye tracking

played a crucial role in the experimental setup, as the sentences were presented to the

participants in their entirety. Utilizing eye tracking data enabled the determination of

the precise interval during which a word was read, allowing for the corresponding EEG

recording to be aligned with this word.

Within the scope of this scholarly investigation, the comprehensive exploration of

raw EEG data at the sentence level has been undertaken. This methodological ap-

proach is underpinned by several compelling justifications. Chiefly, sentence-level data

demonstrates an alignment with the structure of conventional speech-to-text datasets,

a consideration of significant importance as thoroughly expounded in the Methodology

section of this dissertation. This section rigorously elucidates the manner in which the

architecture of the Brain Decoder system is inherently influenced by the paradigms

of established speech-to-text and ASR frameworks, thus rendering sentence-level data

especially advantageous and relevant.

Moreover, a comprehensive analysis of the dataset uncovered significant inconsis-

tencies at the word level. It was apparent that while raw EEG data were recorded for

some words, such recordings were intermittently missing for others. This inconsistency

exhibited variability among different subjects. The authors of the original study offer
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an explanation, stating that if the time required by a subject to read a particular word

was shorter than the EEG sampling interval, it resulted in the absence of recorded data

for that specific word during the pertinent fixation period.

Intra-cortical Microelectrode Arrays (IMA)

In light of the detection of inconsistencies within the ZuCo dataset, which raised sig-

nificant concerns about its reliability and suitability for our research framework, an

investigation was undertaken to identify an alternative dataset that satisfied the req-

uisite parameters. The central criterion guiding our search was the need for a dataset

replicating the structure of ZuCo.

The congruence of the data configuration would allow for its seamless integration

with our pre-existing analytic codebase, thus enabling the advancement of our research

efforts without requiring substantial alterations or the restructuring of our code. Our

objective was to maintain the integrity and efficiency of our computational processes

while minimizing disruption.

The dataset introduced by Willet et Al [59]. was utilised to expand our research.

This dataset as mentioned in Section 2.2.3 compromises of a single subject reading

natural text whilst intra cortical arrays are recording his or her brain activity. The

data were gathered as the participant endeavored to express sentences prompted on a

computer monitor. On each assessment day, between 260 and 480 sentences (amounting

to 41 ± 3.7 minutes of data) were recorded for the purpose of training. The subject

executed these tasks over multiple days, culminating in a cumulative training dataset of

10,850 sentences by the concluding day of data collection. On average, data acquisition

and RNN training persisted for 140 minutes each day.

Their research discusses advancements in speech neurolinguistics, specifically fo-

cusing on assistive technologies designed for individuals with severe speech impair-

ments due to conditions like ALS. A significant study highlights the creation of a

high-performance speech BCI capable of decoding neural signals linked to speech pro-

duction. This BCI achieves a word error rate of 9.1% for a vocabulary of 50 words

and 23.8% for a lexicon of 125,000 words, with a communication speed of 62 words per

134



Chapter 6. Development of a Generic Brain-to-Text Decoding Module

minute, close to natural conversation rates.

This research underscores the relevance of factors like vocabulary size, electrode

density, and training data in optimizing BCI performance, advocating for microelec-

trode expansion and language model refinement. While challenges regarding system

resilience and long-term use remain, the study signifies a substantial leap in neurolin-

guistics, offering new possibilities for enhancing communication for individuals with

speech impairments, thus improving their quality of life.

Although the technique is invasive, it provided an opportunity to conduct a more in-

depth evaluation of our model and determine whether the identified technical challenges

were the cause of inadequate model training.

Data Summary

The primary motivation for the integration of Intra-cortical Microelectrode Arrays

(IMA) [59] data into the analytical paradigm is largely due to the limitations inherent

in the experimental framework of the ZuCo dataset. Although the ZuCo dataset is

robust across various dimensions, it notably lacks repetitive data collection, an element

deemed crucial for the training and progression of AI models. Repetition in learning

datasets is essential for success, as it allows AI systems to repeatedly assess the same

instances with slight variations. This systematic repetition enables the development of

diverse representations of the same entity, thereby enhancing the AI’s ability to identify

and distinguish the entity amidst subtle differences.

For elucidation, consider the analogy of various feline breeds. Although individual

breeds may exhibit significant variations, the overarching classification as ’cat’ remains

constant. In contrast, these breeds are distinctly different from canines. In ZuCo’s

experimental framework, subjects were not subjected to repetitive stimuli, and only a

restricted number of sentences were common across different experimental tasks. To

address the challenge of repetition, data were aggregated across multiple subjects to

construct a comprehensive dataset. Nonetheless, conducting cross-subject data training

in the field of Neuroscience is acknowledged as being highly unstable and unreliable due

to the inherent variability in brain structure and function among individual subjects.
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In contrast, the IMA dataset originated from a single participant, effectively elim-

inating complexities associated with cross-subject variability. Importantly, the experi-

mental design required the subject to read the same sentences on five distinct occasions,

thereby ensuring the necessary repetition within the dataset. Such repetitive expo-

sure was crucial in enhancing the model’s ability to discern significant patterns and

insights. As a result, transitioning to this dataset was advantageous, as the data collec-

tion method conformed to previously established configurations, facilitating a seamless

transition with minimal need for code alterations. This transformation enabled an effi-

cient adaptation process and significantly reduced disruptions during implementation.

6.2.3 LLM substitution

In the preliminary experimental framework, we adopted the architectural paradigm

outlined in Section 5.1. The basis of our methodology was founded upon employing

a stable transformer encoder, which was enhanced by modifications in the activation

function to support text generation. During the initial phases, our aim was to improve

the quality of the model’s output by systematically replacing the LLM employed at the

conclusion of the processing pipeline. Initially, we selected BART as our core LLM,

recognizing the limitations imposed by the technological advancements available at that

time.

In the subsequent evolution of research on LLMs, a diverse array of advanced mod-

els have been integrated into the machine learning ecosystem. The introduction of the

Large Language Model Meta AI (LLaMa) [200] by Meta AI, alongside OpenAI’s sub-

sequent releases, GPT-3.5 and GPT-4.0 [201], signified a significant transformation in

the domain of NLP. These pioneering models demonstrated exceptional capabilities by

surpassing existing benchmarks, thereby establishing novel paradigms of excellence.

In light of our primary focus on text generation through LLMs, the inherent ca-

pabilities of these advanced models offered a significant opportunity to improve the

quality of textual outputs beyond the potential of BART. We hypothesized that the

implementation of these state-of-the-art models in place of BART would result in more

refined textual generation since these models were state of the art and achieve the best
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Figure 6.1: This figure shows the enhancement from the previous implementation il-
lustrated in Figure 5.1 with the introduction of several state-of-the art LLMs

results in text generation at the time. Therefore, a systematic transition was executed

to replace BART with these improved models, facilitating comprehensive documenta-

tion and analysis of our empirical observations throughout this developmental phase. A

comprehensive list of all the models evaluated within our pipeline is presented in Table

6.1. As previously described, we adhered to the original pipeline outlined in Section 5.1.

However, to facilitate the incorporation of the new LLMs, it was necessary to adjust

the output configuration of our Transformer Encoder to align with the input config-

uration of the intended LLM. This adjustment was an unavoidable constraint, as the

features produced by our encoder needed to conform to the dimensional requirements

for effectively utilizing these LLMs as decoders.
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Model Name

EleutherAI-GPT-Neo-1.3B [202]

Facebook-BlenderBot 400M [203]

Google BigBird Pegasus Large [204]

Microsoft Prophetnet Large Uncased [205]

RoBERTa [168]

T5 [206]

Table 6.1: List of Model Names Tested as an enhancement to our pipeline.

6.2.4 CTC integration

Initially, our efforts to utilize various LLMs did not demonstrate significant enhance-

ments in the performance of the pipeline. We postulated that the absence of observed

improvements may be attributed to inadequately constructed neural features derived

from our Transformer Encoder. This prompted a thorough investigation aimed at un-

covering potential areas for improvement, which ultimately highlighted the effectiveness

of incorporating CTC loss [207] when constructing our initial Brain Encoder. CTC loss,

a method predominantly employed during the training stages of speech-to-text systems,

could effectively addresses the inherent characteristics and format similarities that exist

between speech data, EEG, and IMA data. Each of these modalities is characterized

by a wave-based structure and is segmented into time-steps as determined by sampling

rates, presenting specific challenges related to their variable input and target lengths.

These variations result from the heterogeneity in text sizes and discrepancies in reading

or speaking durations, which are influenced by individual speeds and comprehension

capacities.

The CTC loss function provides a robust methodology for addressing the intricate

task of classifying unsegmented data. It is adept at mapping sequences of variable

lengths into coherent outputs. Unsegmented data, which lack the explicit segmentation

often exemplified in auditory character depiction where the precise timing of the spoken

element is known, pose a significant challenge. The resolution of this issue involves

the adjustment of the sampling rate; however, variability persists, with discrepancies

occurring when characters are articulated over extended time frames, influenced by

complexity and speech velocity. The task of segmenting brain data, which shares similar
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complexities, is particularly challenging. Hence, the integration of CTC loss into our

pipeline was considered optimal, effectively alleviating segmentation challenges. In

the realm of speech-to-text tasks, as documented, CTC loss has shown exceptional

performance, frequently achieving notably superior outcomes [208,209].
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Figure 6.2: This figure illustrates how CTC loss was integrated to the pipeline with the
hope of learning positional alignment of characters and brain data. For each time step
the log probabilities of each character in the vocabulary were calculated and then the
CTC loss was calculated between the predicted and actual sentence.

Further elucidation on this approach highlights the rationale for associating each

time-step with a character. This approach simplifies the classification problem, reducing
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the classification space significantly compared to word-level classification driven by

extensive dictionaries. The limited scope of the English alphabet, comprising only 26

letters, constrains the classification space, facilitating the generation of any conceivable

word and thereby extending the vocabulary’s reach. Furthermore, in spoken discourse, a

character’s sound varies, and clusters of characters may coalesce into singular phonemic

sounds, such as the ’ch’ sound in speech. To address these nuances, phonemes were

incorporated, significantly boosting the effectiveness of speech-to-text models. These

observations steered the decision to tokenize our text data using either character or

phonemic granularity, striving for precise classification within the temporal framework

of our data. To enable this functionality, we implemented two custom tokenizers: one

employing the English alphabet as its vocabulary, and the other utilizing a phonetic

vocabulary [210,211].

Considering the aforementioned characteristics, we developed a novel training pipeline

for our Transformer Encoder by incorporating the CTC Loss function. Notably, the

sentence representation of EEG recordings was utilized as both training and testing

data. Each sentence comprised numerous EEG recording frames, serving as time steps.

As illustrated in Figure 6.2, for each time step, the EEG data is fed into our Transformer

Encoder, where the log probabilities of each character in our vocabulary are calculated.

Our vocabulary was determined based on the chosen tokenizer (phoneme versus charac-

ter), including the addition of a blank character. The CTC is pivotal, particularly when

the input sequence is significantly longer than the target output, and explicit frame-wise

labels are unavailable, underscoring the importance of the blank character for the input

frames. Instead of requiring a fixed alignment between input frames and output labels,

CTC allows the model to predict a special blank symbol alongside the target labels

and establishes a many-to-one mapping that collapses consecutive repeated labels and

removes blanks. Subsequently, the CTC loss computes the negative log probability of

all valid alignments capable of producing the desired label sequence after this collaps-

ing process. Formally, given an input sequence x = (x1, x2, . . . , xT ) and a target label

sequence y = (y1, y2, . . . , yU ), where U ≤ T , the CTC loss is mathematically defined
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as: ,

LCTC = − log

 ∑
π∈B−1(y)

T∏
t=1

p(πt|xt)


, where π signifies a path (a length-T sequence including blanks), B(π) represents the

collapsing function that transforms paths to the final output sequence by eliminating

repeated symbols and blanks, and p(πt|xt) denotes the model’s predicted probability of

symbol πt at time step t. This formulation facilitates end-to-end model training without

necessitating manual alignment between inputs and outputs, significantly simplifying

the learning process for sequential data. Upon completion of the CTC loss training,

we employed a greedy decoding approach, selecting the maximum probability of each

character at each time step, and subsequently passed this information to the LLM to

conduct the decoding and evaluate the generated text against the ground truth using

BLEU and Rouge scores. We trained our models using a batch size of 16, 100 epochs

using the Adam optimizer with a learning rate l where: 0.01 ≤ l ≥ 0.001.

Upon the integration of the CTC loss within the structure of our current pipeline,

an enhancement in performance metrics was anticipated. Nevertheless, the expected

advancement in performance did not manifest as anticipated. We believed that the

initial Transformer Encoder was not able to capture good temporal and spatial features

for the EEG so we replaced it with a more suitable model architecture that has exhibit

notable state-of-the art results when used in time series data.The model utilized was the

Conformer model, extensively documented in the literature, such as the work by Gulati

et al. (2020) [2], for exhibiting exceptional results in accuracy and efficiency within

speech-to-text tasks. The Conformer model is renowned for its ability to effectively

manage and process sequential data inputs, dynamically adapting to the temporal

variations inherent in speech signals.

The Conformer architecture synergizes CNNs and self-attention mechanisms, pro-

viding an enhanced ability to capture both local and global dependencies in acoustic

signals. The design of the model integrates essential characteristics required for high-

performance speech recognition systems, including scalability and robustness against

perturbations and noise. Given these attributes, it was logical to foresee that the
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Figure 6.3: This figure shows the architecture of a Conformer Neural Network as pro-
posed by Gulati et Al. [2] and how Convolution Layer can be integrrated with a Multi
Headed Attention Layer.

augmentation of our pipeline with CTC loss would lead to significant performance im-

provements. However, the empirical findings of our experiments did not align with these

expectations, necessitating a deeper investigation into the underlying factors hindering

the anticipated performance enhancements.

6.2.5 Wav2Vec2 and Data2vec Implementation

A detailed examination of the training process across various models reveals that, in

numerous instances, data is subjected to augmentation and feature extraction prior to

being input into the conformer model. In the domain of speech models, features are

typically derived by generating MEL spectrograms from audio files or by employing a

pre-trained feature model on speech data to extract features from individual audio sam-

ples. Contrastingly, there exists a lack of standardized processing pipelines for deriving

features from EEG and IMA data. The existing pipelines are not only cumbersome but

also resource-intensive, necessitating significant processing power.

Wav2Vec2 [3] and Data2Vec [4], the latter being proposed as a more general imple-

mentation, offer a training framework aimed at the construction of ’encoder models’

that are cable of creating task agnostic feature of a modality. These models leverage
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self-supervised learning through the organization of unlabelled data in a supervised

framework using contrastive loss, thereby acquiring generic features pertinent to each

modality. Data2Vec has been adeptly employed across various modalities, such as text,

video, and images, successfully developing potent encoders for each. Additionally, given

the complex nature and advanced development of novel machine learning models, these

modalities can be cohesively integrated to forge robust multimodal models capable of

effectively processing a wide array of data types.

Figure 6.4: This Figure shows the proposed architecture for a Wave2Vec2 model train-
ing regime as proposed by Baevski et Al. [3]

Figure 6.5: This figure illustrates the proposed architecture for training effectively a
Data2Vec model as proposed by Baevski et Al. [4]

In our pursuit of developing a model that closely emulates brain-like data, we iden-

tified a substantial gap, as no existing models, to the best of our knowledge, have suc-

cessfully accomplished this objective. This gap in the current research prompted us to

explore the potential application of Data2Vec in the development of a truly representa-
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tive brain modality. Our experimental model is primarily based on the well-established

Conformer architecture, which is extensively detailed in Figure 6.3. The unique ad-

vantage of Conformer blocks resides in their hybrid structure. They astutely combine

the feature extraction capabilities of CNNs with the comprehensive attention mecha-

nisms employed in transformer architectures. This is accomplished through a strategic

arrangement of self-multiheaded attention layers within each conformer block. The

structural design of our model integrates multiple Conformer blocks in a tiered man-

ner, with each tier enhancing model complexity. The flexibility in the number of blocks

enabled us to methodically increase model intricacy and capture more nuanced pat-

terns in our data. Subsequent to the arrangement of conformer blocks, the architecture

transitions into a fully connected layer, culminating in a projection layer designed to

output character probabilities within our designated classification framework. Here,

the implementation of a Log Softmax activation function is particularly noteworthy.

Unlike the conventional Softmax, Log Softmax offers distinct advantages, especially

in machine learning contexts such as neural networks. The superiority of Log Softmax

is demonstrated through its contribution to numerical stability, a challenge frequently

encountered due to overflow and underflow issues associated with large score values

(logits) in neural computations. By employing the log-sum-exp trick, Log Softmax ef-

fectively addresses these issues, simplifying the Softmax and logarithm computations

into a streamlined operation that enhances computational efficiency. This efficiency

leads to faster convergence during training by improving error penalization for inac-

curate predictions, thereby ensuring a more precise trajectory for gradient descent.

Furthermore, the integration of Log Softmax with loss functions, particularly cross-

entropy, highlights its seamless compatibility. Since these loss functions necessitate log

probabilities, Log Softmax optimizes the training cycle not only by facilitating sta-

ble gradient computation, crucial for robust back-propagation, but also by efficiently

adapting to extreme data values. Such attributes contribute to a balanced probabil-

ity output, ultimately affirming Log Softmax as a prudent choice in numerous deep

learning contexts.

We have modified our existing pipeline to integrate a Conformer-based encoder,
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which will generate feature representations from the EEG and IMA data. Subsequently,

these extracted features will be employed as input to our pre-existing deep learning

model, which will utilize Connectionist Temporal Classification (CTC) loss to interpret

the provided features.

Our methodology has evolved into a two-step training pipeline. Initially, a generic

encoder is trained utilizing contrastive learning to discern generic features from brain

data. The contrastive learning pipeline adheres to the principle of generating self-

supervised examples through the random masking of a certain percentage of sentence

time steps. Subsequently, the model endeavors to reconstruct the masked time steps.

In our experimental design, we masked 15% of the time steps. Contrastive loss is

employed to learn embeddings by encouraging similar input pairs to possess closer

representations in the feature space, while dissimilar pairs are driven apart by at least

a specified margin. It is formally defined as:

Lcontrastive =
1

2
y D2 +

1

2
(1 − y) max(0,m−D)2

where y ∈ {0, 1} designates whether the pair is similar (y = 1) or dissimilar (y = 0), D

represents the distance (commonly Euclidean) between the two embeddings, and m is

a margin hyperparameter dictating the minimum desired separation between dissimilar

pairs. Taking these considerations into account, we designated a positive pair as the

ground truth and a negative pair as a randomly sampled EEG or IMA recording from

our dataset. Our initial encoder model was trained employing a batch size of 16 for

100 epochs with a learning rate l, where: 0.01 ≤ l ≥ 0.001, using the Adam optimizer.

The second stage of our training pipeline mirrors the approach detailed in Sec-

tion 6.2.4. The sole distinction is that the deep learning model trained with CTC

employs featurized inputs in contrast to raw EEG data. Each time step is initially

featurized by the encoder and subsequently inputted into the decoding model. The

underlying rationale is that the model can execute the classification task more effec-

tively, thereby improving the CTC loss and leading to more optimal adjustments of the

model’s weights.
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6.2.6 Bendr And EEG-Conformer Integration

In efforts to optimize and improve the pre-existing processing pipeline we hypothized

that a generic brain encoder was needed for better performance by providing better

brain features. Alongside our training phase in the previous section we were performing

a research in parallel for any new advancments regarding the construction of a generic

brain encoder. In our research came to light 2 distinct cases :Bendr [58] and EEG-

Conformer [212]. As a result a substantial modification was done to the pipeline for the

incorporation of two adaptable EEG encoding models: Bendr [58] and EEG-Conformer

[212]. These encoders, initially crafted for the purpose of generating generalized EEG

features, fulfil distinct functions: Bendr is primarily employed in the domain of EEG

feature classification tasks, while EEG-Conformer strives to encapsulate both local and

global features within a unified EEG classification framework.

It is crucial to recognize that neither encoding model was originally devised or

intentionally crafted for the purpose of generating text directly from EEG-derived data.

Nevertheless, it was postulated that with judicious fine-tuning, these models could be

tailored to accommodate the distinct requirements of our particular task objectives. To

enable this functional adaptation, a structural modification to the existing architecture

was instituted.We substitute our training using contrastive learning to just use one of

the 2 pre-trained encoders. We hypothesized that an increase in performance could

indicate a faulty training regime for our encoder model.

This integration involved the strategic integration of an additional pair of layers

at the final stage of the pipeline. Specifically, a fully connected layer was introduced,

succeeded by a projection layer. The primary objective of this structural alteration

was to proficiently compute and produce a probability distribution over prospective

character outputs, thereby augmenting the model’s proficiency in generating text-based

representations from EEG data.

Nevertheless, even with the incorporation of these two models as replacements for

our brain encoder, a significant enhancement in performance was not observed. A com-

prehensive discourse on our comparative analysis of the three approaches is provided

in Section 6.3, wherein we delineate our conclusions and formulate our hypotheses.
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6.3 Results

In assessing the performance of our models, we have adjudged it appropriate to utilize

the BLEU score and ROUGE score as our principal evaluation metrics. This decision

is consistent with the evaluation framework articulated in Chapter 5. Given the ho-

mogeneous nature of the task, the continued application of these metrics was deemed

judicious for two compelling reasons. Primarily, as previously expounded upon in this

thesis, the BLEU score and ROUGE score are esteemed among the most widely ac-

knowledged standards within the text generation evaluation domain. Their established

standing in the field substantiates our selection.

We compared each of our results against a random baseline and the current baseline

set by Wang et Al. [145] using the appropriate statistical tests to ensure the validity

of our results. Moreover in Table 6.2 we present our results alongside, as the average

value accross runs for our different approaches, and their STD value. To obtain the

STD we run our experimentation 18 times. As you can see from our results the STD

S is S ≤ 0.01 and that signifies a consistency for our different model approaches.

Moreover, these metrics played an integral role in the evaluation of the seminal

transformer Encoder. Consequently, their continued use in assessing our models facil-

itates a coherent and seamless comparison of results across various model iterations.

Maintaining such consistency is essential for accurately interpreting the performance

improvements and the efficacy of our novel approaches within the framework of pre-

established benchmarks.

Our empirical findings have unequivocally demonstrated that the mere substitution

of the LLM within the extant pipeline did not yield a significant improvement in the

results. This observation is consistent with the existing literature, which suggests that

LLMs, when employed for the translation of various modalities into text [213–215],

primarily operate as correctional mechanisms rather than transformative agents. For

instance, within the realm of converting spoken language into written form, certain

lexemes such as ”red” and its homophonic counterpart ”read” (past tense) remain

phonetically indistinguishable.
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Scenario Technique EEG (BLEU±STD, ROUGE±STD) IMA (BLEU±STD, ROUGE±STD)

Baselines

Random Baseline (0.05, 0.05) (0.05, 0.05 )

Plain Baseline (0.07, 0.05) (0.07, 0.05 )

CTC

CTC+Phoneme (0.02±0.007, 0.0±0.001) (0.01±0.001, 0.0±0.001)

CTC+Character (0.09±0.01, 0.0±0.0) (0.07±0.02, 0.001±0.01 )

Generic Algorithms

Data2Vec+Phoneme (0.02±0.001, 0.0005±0.0003) (0.008±0.001, 0.0005±0.003)

Data2Vec+Character (0.1±0.01, 0.02±0.007) (0.05±0.01, 0.02±0.01)

Wav2Vec2+Phoneme (0.02±0.01, 0.0002±0.00001) (0.008±0.0001, 0.0005±0.001)

Wav2Vec2+Character (0.1±0.0, 0.02±0.007) (0.05±0.005, 0.02±0.01)

Brain Encoders

Bendr+Phoneme (0.03±0.007, 0.0002±0.00007) (0.02±0.006, 0.0±0.0)

Bendr+Character (0.13±0.02, 0.02±0.01) (0.04±0.005, 0.0±0.0)

EEG-Conformer+Phoneme (0.02±0.0001, 0.0004±0.00007) (0.009±0.002, 0.0006±0.0004)

EEG-Conformer+Character (0.1±0.001, 0.02±0.001) (0.05±0.005, 0.03±0.002)

Table 6.2: Performance comparison of different techniques and scenarios using EEG
and IMA metrics (BLEU, ROUGE).

In such circumstances, ascertaining the intended meaning demands the utilization

of surrounding sentence structure and contextual cues, which remain beyond the reach

of the decoder sans a suitably pre-trained LLM. Consequently, while the LLM occu-

pies an essential role as an integral component within the system, it is imperative that

the text generation mechanism facilitated by the decoder achieves a level of sophisti-

cation adequate for the precise extraction and formation of coherent and contextually

pertinent sentences. The incorporation of an LLM is, therefore, fundamental to ful-

filling this objective, ensuring that translations are not only syntactically accurate but

also semantically significant. Furthermore, upon scrutinizing our pipeline for errors

or defects, it became evident that our pipeline was affected by teacher forcing, conse-

quently rendering our results invalid. In light of the aforementioned considerations, we
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resolved to exclude our results, as they were deemed invalid and beyond the scope of

our undertaking.

Given the dependence of LLMs on the decoder component, we commenced the inte-

gration of CTC loss into our workflow. This initiative was motivated by the aspiration

to develop a more efficient decoder model prior to the deployment of the LLM. As de-

tailed in our methodology Section 6.2.4, CTC loss is a well-recognized technique within

the sphere of speech-to-text applications. These applications share the data format

challenges encountered in our task, thus justifying our selection of this particular loss

function.

Moreover, the speech-to-text field frequently contends with the challenge posed

by variable-length input recordings, a dilemma analogous to the issues we face. The

efficacy of CTC is demonstrated in its ability to manage this variability effectively.

Nonetheless, our experiments employing only the CTC loss did not result in the ex-

pected improvement in the performance of our decoder, as depicted in Table 6.2. We

hypothesize that the lack of progress is due to the absence of an Encoder mechanism.

In particular a more focused Brain Encoder

It is imperative to situate this research within the extant body of literature, with

particular emphasis on the encoder-decoder framework, which could yield further un-

derstanding of our hypothesis. We particularly wanted to utilised encoder-decoder

architecture since many times previously in the literature has shown immense perfor-

mance on different sequence-to-sequence tasks [216–218]. Since our task is generating

a text sequence from a brain sequence an encoder-decoder architecture fits perfectly.

This foundational gap underscores the possible need for the incorporation of an encoder

to attain enhanced results. Therefore, although CTC loss provides certain benefits, its

solitary application proves insufficient, necessitating the exploration of an augmented

architecture to achieve superior outcomes.

To test the hypothesis stated above we incorporate different techniques to train

different encoders and test them in our pipeline. Firstly we tried training our encoder

model using 2 generic techniques : Data2Vec and Wave2Vec2. Both techniques outper-

form the current state-of-the art models in modalities such as videos , text and audio
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and both offer a unique perspective of constructing agnostic modality encoders, hence

why we wanted to test how they fair against brain data. We couldn’t obtain any results

for this 2 modalities for a very specific reason. The CTC loss obtain at the last training

step was negative. A negative CTC means that some of the probabilities obtain in each

time step using log Softmax are positive. Log Softmax’s probabilities should be always

negatives since it measures the negative log likelihood. We hypothesized that this is

because our encoder was not learning correct representations could not provide good

features to our decoder.

To address the identified challenges associated with encoder obstacles, we employed

two existing pre-trained models: BENDR [58] and EEG-Conformer [212]. These models

were originally developed as general-purpose EEG encoders across various datasets and

were adapted through minimal modifications for use in classification tasks. Similarly,

we have applied minimal adjustments to fine-tune these models on our datasets and

subsequently assessed their efficacy as encoders within our processing pipeline. As

illustrated in Table 6.2, the utilization of both encoders yielded results; however, these

results were insufficient and inconclusive to achieve effective brain-to-text decoding.

Method

Baseline

Plain Baseline Random Baseline

BLEU-EEG ROUGE-EEG ROUGE-IMA BLEU-IMA BLEU-EEG ROUGE-EEG ROUGE-IMA BLEU-IMA

CTC+Character 0.5 0.05 0.01 0.41 0.2 0.001 0.02 0.66

Data2Vec+Character 0.001 0.05 0.03 0.001 0.001 0.05 0.12 0.001

Wave2Vec+Character 0.001 0.05 0.02 0.01 0.001 0.05 0.05 0.42

Bendr+Character 0.29 0.1 0.001 0.009 0.2 0.15 0.001 0.05

Table 6.3: P-values for statistical significance comparison between different methods
against the Random and Plain baseline.

To further substantiate the validity of our results, we conducted a pair-wise t-test for

all the methods outlined in Table 6.2 against both the random baseline and the baseline

provided by Wang et al. [145]. Based on the findings presented in Table 6.2, our four
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best-performing methods are as follows: ”CTC+Character,” ”Data2Vec+Character,”

”Wav2Vec2+Character,” and ”Bendr+Character.” The first method surpasses both

the random and plain baselines in analyses of both EEG and IMA data. Conversely,

the latter three methods exhibit superiority over the two baselines when applied to the

EEG data.

Our statistical analysis, detailed in Table 6.3, demonstrates that in the majority

of experimental conditions, within both datasets and for various evaluation metrics,

there is a statistically significant difference when comparing the results to the plain

and random baselines. This is supported by our p-value calculation, which yields a

score of p and p ≤ 0.05, indicating statistical significance. However, in some instances,

a significant difference is not observed between the two baselines, suggesting that while

most results indicate statistical significance, it is not possible to definitively conclude

the superiority of one method over all others. Nevertheless, the Data2Vec+Character

method exhibited the highest statistical significance against both baselines across both

datasets and metrics. Moreover, the Wav2Vec2+Character method achieved a compa-

rable level of statistical significance. These findings, combined with the application of

these methods for developing a generic brain-encoder to enhance brain feature extrac-

tion for the decoder, suggest that employing a brain encoder can indeed improve the

model’s performance.

During the course of our analysis, we identified a previously overlooked inconsistency

within our dataset: certain scenarios depicted in Table 6.2 exhibited a lack of data in

the results section. A thorough scrutiny of the execution logs disclosed that throughout

the model’s training phase, the loss metric remained consistently high. Typically, loss

metrics are expected to fluctuate within a range of approximately 0.1 to 1.0, indicative

of satisfactory model performance. In contrast, our observations revealed that the loss

values exceeded the threshold of 2.0, with certain training instances exhibiting values as

high as 30.0 and above. Such elevated loss values precipitate the occurrence of ’gradient

explosion,’ whereby the model’s gradients diverge, culminating in the computation

of infinite loss. Consequently, this unfavourable phenomenon disrupted the training

process, rendering the model incapable of effectively learning from the supplied data.
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This finding is crucial as it highlights potential deficiencies in the training phase that

could impede model convergence, thereby providing valuable insights for enhancing our

methodology in subsequent experiments.

6.4 Chapter Summary

In summary, the chapter entitled ”Brain-to-Text Decoder” examines the progression

of brain research with an emphasis on advancements in neuroimaging technologies

such as EEG, MRI, and MEG. These advancements have significantly enhanced our

comprehension of brain activity and cognitive processes. The study underscores the

complexity of brain regions and their interconnections, highlighting a particular focus

on the brain’s mechanisms for language comprehension, thus contributing to the field

of neurolinguistics.

The study utilizes raw EEG data for the identification of linguistic components,

thereby underscoring the greater efficiency of EEG compared to the slower and more ex-

pensive fMRI. By employing the ZuCo datasets, which integrate EEG and eye-tracking

methodologies, the research aims to decode brain activity to produce coherent inter-

pretations. These datasets are crucial for advancing the comprehension of reading

behaviour and neural processes.

Difficulties in maintaining dataset consistency necessitated the incorporation of

intra-cortical microelectrode arrays to achieve enhanced data resolution. The research

recognizes the limitations inherent in the ZuCo dataset, particularly its deficiency in

repetitive data, which is essential for effective AI training. Consequently, single-subject

IMA data was utilized to enhance the reliability of the training process.

Moreover, the research investigates the implementation of sophisticated language

models, in conjunction with CTC loss for the management of unsegmented data. Con-

trary to expectations, these advancements did not significantly enhance performance,

thereby necessitating the incorporation of data augmentation and feature extraction

methodologies.

This chapter advocates for the utilization of the Conformer model architecture,

which combines CNNs with self-attention mechanisms, to augment the processing of
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sequential data. It incorporates Log Softmax to achieve greater computational efficiency

and stability. The research comprehensively highlights the inherent challenges and

recent advancements in the development of brain-to-text models, bearing significant

implications for technologies aimed at aiding speech-impaired communication.

Our findings indicate that merely substituting the LLM within an extant pipeline

does not substantially enhance outcomes. This concurs with literature suggesting that

LLMs primarily function as corrective mechanisms rather than transformative agents in

tasks such as speech-to-text. The accurate interpretation of homophones, for instance,

is heavily contingent upon contextual cues, necessitating a well-trained LLM integrated

with an advanced decoder.

In order to enhance the efficiency of the decoder prior to the deployment of a LLM,

the researchers conducted experiments using CTC loss, which is prevalent in speech-

to-text applications managing variable input lengths. Nevertheless, the application of

CTC loss in isolation did not result in improved performance of the decoder, possibly

attributable to the lack of an encoding mechanism.

Subsequent experimentation with encoders utilizing Data2Vec and Wave2Vec2 method-

ologies encountered challenges, as evidenced by negative CTC loss values and high loss

resulting in exploding gradients. While the application of pre-trained models such

as BENDR and EEG-Conformer as encoders yielded some promising outcomes, they

were insufficient for proficient brain-to-text translation. Furthermore, the statistical

significance analysis did not conclusively determine whether some of our approaches

outperformed the random and plain baseline; however, it demonstrated statistical sig-

nificance in most cases across the two datasets. The most promising approach, with

statistical significance, was identified as Data2Vec+Character. These findings empha-

size the necessity for a more cohesive integration of an encoder-decoder framework

,with a dedicated brain encoder to enhance overall results, as a future direction for

this research. We believe that the creation of such an encoder should be investigated

further to enhance the results.
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Chapter 7

Design and Development of a

Customizable Brain-Powered

Chatbot System

7.1 Introduction

As explored in Chapter 6, a primary factor contributing to the unsuccessful training

of the Brain-To-Text decoder is the inadequate quality of the underlying data. This

issue is critical since, akin to all machine learning experiments, the performance and

precision of models are intrinsically linked to the quality and robustness of the datasets

they are trained on. Therefore, it is imperative to meticulously capture, curate, and

organize these datasets to ensure their reliability and applicability.

In pursuit of this objective, significant efforts have been made to gather EEG data,

resulting in the creation of various EEG datasets. Notable contributions to this field

include datasets referenced in [140,141,219]. A common attribute among these datasets

is the introduction of stimuli in diverse forms such as text, images, or videos, intended

to elicit responses from the subjects’ brains. Thus, employing an appropriate stimuli

presentation medium is essential in facilitating such interactions.

Moreover a prevailing trend in the field of Neuroscience is the utilization of EEG

data to develop machine learning models for a diverse range of applications, including
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elementary classification tasks [76, 220–223] and more intricate pursuits such as text

generation from EEG signals [145]. The real-time acquisition capabilities of EEG data,

coupled with its cost-effectiveness relative to other neuroimaging techniques like fMRI,

render it an ideal approach for deployment in real-world scenarios, thereby contributing

to its increasing popularity in recent years.

However even though a lot of attempts have been made still some of the datasets lack

on quality for machine learning integration. This can happen for many reasons.One of

these reasons identified is the lack of a standardized medium amongst the community

[224], with often different datasets using different medium for stimuli presentation.

Moreover another reason identified is the lack of customization, flexibility and exact

timing of the stimuli presented [225–228].

The objective of this chapter is to introduce NeuraSearch Chat (NSChat) along

with its capabilities. This system is specifically designed to address the identified chal-

lenges and facilitates the presentation of stimuli within a more authentic environment.

It also serves to bridge the gap between the interaction with chatbot agents and the

collection of neural data during these interactions, including those with large language

models (LLMs). Furthermore, it provides precise timing and customization, allowing

for seamless use across various settings. Additionally, a notable feature of this system

is its capacity to concurrently record EEG signals as the system operates. This func-

tionality offers a foundational design interface for the conceptual system intended for

development in this thesis..

The rest of the Chapter is formatted as followed: in Section 7.2 we showcase the

features of NSChat and how they can be used to overcome the current difficulties and

finally in Section 7.3 we state future improvements coming to NSChat.

7.2 System architecture

In this section, we present an exhaustive examination of the functionalities inherent

within the NSChat System. We explicate the complexities of the current user inter-

face, delivering a detailed analysis of its design and operational attributes. Moreover,
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we explore the various features that have been carefully implemented to address and

mitigate the challenges and difficulties outlined in Section 7.1.

7.2.1 User Interface

The NSChat System is accessible via both web and mobile platforms, utilizing the React

framework for its front-end development. React provides the capability to develop a

singular application compatible with various platforms, thereby ensuring a responsive

design adaptable to a wide range of screen sizes.

Upon initial entry into the platform, users are prompted to input a username and

an experiment code. The username serves as a means to verify and correlate the data

recorded by the system for each participant. Our objective is to employ NSChat as

an experimental instrument rather than a conventional chatbot; hence, the experiment

code corresponds to the ongoing experiment, enabling researchers to subsequently ver-

ify the specific experiment in which the participant was engaged within the provided

dataset.

Upon the successful input of user credentials, the primary chat interface is displayed.

The user interface is designed to be straightforward, featuring a solitary chat window

through which users can submit queries and receive responses from NSChat. Situ-

ated on the left side is a settings icon, which presently provides five sets of parameter

customization options.

1. Modify the language model responsible for generating the response.

2. Alter the manner in which the results are displayed.

3. Adjust the interval at which each word is rendered on the screen.

4. Change the font size.

5. Change the line spacing.

At the bottom of the interface, there is a text input field designated for user entries,

which employs the currently selected language model to generate a response. Addition-
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ally, the user is afforded the capacity to evaluate the utility of a response by utilizing

the thumbs up or thumbs down buttons situated adjacent to each response.

Figure 7.1: Basic Usage of the NSChat System: The user transmits a message and
subsequently receives a response, which they then evaluate as pertinent by selecting
the thumbs-up icon..

7.2.2 Flexibility and Customization

The NSChat offers considerable flexibility and customization for researchers, facilitat-

ing adaptation to diverse experimental scenarios with minimal modifications to the

codebase. The system framework permits the augmentation of functionalities, enabling

seamless implementation of new features. As detailed in Section 7.2.1, the user interface

permits customization across four distinct parameters. The first parameter involves the

selection of the LLM employed to generate responses. The second parameter pertains

to the modification of response presentation to participants, with current options in-

cluding ”Show whole response,” ”Show one word at a time,” ”Show one sentence at a

time,” and ”Typing.”

The initial option delivers the complete response to the user instantaneously, whereas

the subsequent three options present the response incrementally—either one word, one

sentence, or one character at a time. This characteristic is especially beneficial in neu-

roscience research, as it aids in the examination of reading intervals when users interact
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with paragraphs or discrete words.

The two additional adjustable parameters encompass the duration for which each

word is displayed on the screen and the inter-word fixation interval. Users are afforded

the ability to regulate the display duration of words and the intervals between them

when utilizing formatting response options two and three. Notably, these temporal

modifications can be effected without any code alterations; researchers are enabled to

make modifications directly via the user interface.

Furthermore, the NSChat system incorporates two additional features for cus-

tomization. Researchers have the capability to modify the font size and line spacing

of the textual responses. This adaptability serves two primary functions. Firstly, it

establishes a platform usable by individuals with visual impairments without necessi-

tating code alterations, thus enhancing accessibility for a broader audience. Secondly,

it facilitates the precise alignment of eye tracking with the actual reading behaviour of

users when an eye tracker is employed, thereby preventing misinterpretation of word

positioning. In neuroscience experiments, eye trackers are frequently utilized as a sup-

plementary input to ascertain which specific word a user is reading. By allowing for

the precise identification of words without the risk of the eye tracking circle moving

over two words, due to adjustments in line spacing, the quality of the data collected is

enhanced.

Finally, NSChat offers a template configuration file that researchers can configure in

advance of conducting experiments to enhance the customization of system behaviour.

Users have the capability to incorporate prompts into NSChat, enabling them to adjust

the model’s responses without necessitating modifications to the code. Additionally, a

secondary configuration file is provided, allowing researchers to establish default val-

ues prior to experimentation, thereby facilitating extensive customization of system

parameters and behaviours.

7.2.3 Utilizing Different LLMs

The NSChat system exhibits a notably advantageous capability that facilitates the in-

tegration of responses from a variety of large language models (LLMs) while preserving
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Figure 7.2: This Figure showcases the customization available for the NSChat in a set
of parameters that can be set by the user.

the continuity of an active dialogue. By maintaining the current conversation at a level

superior to that managed by individual LLMs, NSChat permits users to dynamically

transition between different models, as depicted in Figure 7.2. This functionality is

especially advantageous in experimental scenarios, as it permits researchers to con-

currently assess and compare responses from multiple LLMs. The entire backend of

NSChat is implemented in Python, which streamlines the process of incorporating and

integrating new models into the system. Furthermore, NSChat affords researchers the

latitude to introduce novel or custom models, contingent upon their ability to be loaded

and executed within a Python environment. This architectural design not only aug-

ments the adaptability of NSChat but also promotes a more thorough examination of

LLM capabilities across diverse research settings.

7.2.4 Logging Mechanism

The NSChat system incorporates a customizable logging mechanism that is specifically

engineered to document various user events and interactions with the interface. This

mechanism was developed to fulfil two primary objectives: firstly, to ensure that the

system can be readily expanded to accommodate new foundational events as required;
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and secondly, to enable researchers to integrate their own logging events with minimal

programming effort, thereby obviating the need for implementing a distinct logging

mechanism. NSChat systematically records user interactions across both the front-

end and back-end, thereby safeguarding against data loss in scenarios of server or user

interface malfunctions by archiving all interactions in a backup location for subsequent

retrieval.

By default, the system chronicles an array of events, encompassing user interactions

such as clicking the approval or disapproval buttons, hovering over response indicators,

dispatching responses, receiving model-generated replies, and noting the initiation and

termination times for response display. The logging framework is architected with a

general approach, empowering users to selectively implement the specific events they

endeavor to log while seamlessly integrating these bespoke events within the extant

system. Such adaptability augments the utility of NSChat for researchers engaged in

EEG experiments and other interactive investigations, thereby ensuring expansive data

acquisition without superfluous complexity.

7.2.5 PyLSL integration

Within the domain of EEG and neurophysiological data collection, a considerable dif-

ficulty lies in achieving precise synchronization of stimuli and accurately documenting

the timing of stimulus presentations to participants. Researchers in psychology fre-

quently employ basic software packages that lack the advanced customization options

present in NSChat. To augment the neuroscience functionality of NSChat, the PyLSL

library has been incorporated into its backend infrastructure. The Lab Streaming Layer

(LSL) offers a robust synchronization mechanism that generates precise timestamps for

stimulus presentations. Moreover, it facilitates seamless integration with any EEG

recording software proficient in capturing LSL streams, as LSL operates over a local

network, obviating the need for direct connections between devices.

Researchers are able to enable or disable the PyLSL integration through a simplified

setting in the configuration file. By default, the system logs all events delineated in

Section 7.2.4 as triggers within PyLSL. This architecture allows users to integrate new
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triggers for EEG experiments without the necessity to manually incorporate PyLSL

or its related capture mechanisms. Consequently, NSChat not only streamlines the

data collection process but also substantially enhances the flexibility and adaptability

of experimental arrangements in neuroscience research. To assess the synchronization

between the LSL protocol and our system, identical events are fired both with and

without LSL to examine the temporal duration between events. Figure 7.3 demon-

strates that nearly 85% of the events exhibit an offset of less than 1 ms compared to

the LSL event, thereby affirming that our system is well synchronized.

Figure 7.3: This figure illustrates that the majority of events in NSChat exhibit an
offset of less than 1 millisecond.

7.3 Conclusion and Future Work

In this study, we introduce NSChat, an online chatbot system specifically crafted to aid

neuroscience research. The system is distinguished by its flexibility and adaptability

across diverse research contexts, while retaining a user-friendly interface. The con-

figuration process is simplified through the employment of configuration files, thereby
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obviating the necessity for programming expertise. Moreover, NSChat incorporates a

comprehensive logging mechanism and a trigger system that can be immediately de-

ployed or effortlessly expanded as required. Prospectively, we intend to incorporate

a mechanism that addresses server delays, thus enabling NSChat to operate profi-

ciently in distributed online environments beyond the constraints of local access. It is

pertinent to highlight that although our system is principally constructed to support

neuroscience research, it is not confined to this domain; it can be readily adapted to

support information retrieval research or interactions with chatbot agents in general.

Ultimately, the features of the system have been meticulously developed to address the

requirements of standard experimental designs prevalent in various neuroscience stud-

ies [1, 140, 141]. The system has yet to undergo a comprehensive evaluation by users,

except for a preliminary pilot test conducted by a single test user. As part of future

work, we intend to disseminate the system to a broader user base in order to facilitate

a thorough evaluation process and obtain feedback from diverse users.

7.4 Chapter Summary

In summary, the chapter examines the obstacles encountered in training the Brain-

To-Text decoder, identifying inadequate data quality as a principal cause of failure.

It underscores the indispensable role of robust datasets in machine learning and de-

tails initiatives to compile electroencephalogram (EEG) datasets with diverse stimuli.

Although EEG data holds promise for applications such as text generation and ba-

sic classification, challenges regarding inconsistencies in the medium of stimuli and a

paucity of customization options remain. To mitigate these issues, the chapter presents

NSChat, a system devised to enhance data collection by incorporating neural data

acquisition during interactions, including those with large language models (LLMs).

NSChat is characterized by its precise stimuli timing, high degree of customizability,

and adaptability across web and mobile platforms.

Leveraging its Python-based architecture, the system facilitates dynamic model in-

tegration and offers extensive configurability through template files. It employs PyLSL

to achieve synchronization with EEG recording software, thereby ensuring precision
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in data logging and integration, aspects that are particularly beneficial for both neu-

roscience and broader research applications. The chapter concludes by highlighting

NSChat’s adaptability for applications extending beyond the realm of neuroscience,

with proposed future enhancements targeting the reduction of server delays and the

augmentation of distributed system functionalities.
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Chapter 8

Conclusion And Future Work

8.1 Introduction

This section furnishes a comprehensive overview of the contributions and principal

conclusions derived from this thesis. It encapsulates an exhaustive summary of the

findings and meticulously explores how the research questions, initially posited at the

commencement of this study, have been addressed. By elucidating the core essence of

the work executed, it ensures that the pivotal research outcomes are cogently articu-

lated, underscoring the methodological thoroughness and analysis employed.

Furthermore, this section re-examines the fundamental questions that directed the

research process, elucidating the systematic approach undertaken to explore and resolve

each inquiry throughout the study. Accordingly, it underscores the thesis’s significance

and pertinence within its respective field, while establishing a basis for potential future

research and academic contributions.

8.2 Chapter Outline

In the ensuing sections of this thesis, we furnish a thorough elucidation of our capacity

to address the research questions posited at the outset of this study. Initially, in

Section 8.3.1, we engage in an in-depth reflection on our originally proposed high-

level architectural paradigm, evaluating its feasibility and consistency with our research

objectives. Subsequently, in Section 8.3.2, we explore our findings and explicate the

164



Chapter 8. Conclusion And Future Work

methodologies employed to establish a consistent alignment between NLP models and

the cognitive representation of language within the brain. This section emphasizes

our strategy in bridging the divide between computational models and neurological

evidence. Progressing further, Section 8.3.3 expounds upon the insights derived from

training these models on a meticulously curated dataset, aimed at optimizing text

generation tasks. We concentrate on key discoveries and identify crucial influences

that such data exerts on the models’ efficacy. Furthermore, Section 8.3.5 provides a

comprehensive account of our initiatives towards developing a fully functional brain-to-

text decoder. In this context, we elucidate both the results obtained and the challenges

encountered throughout the development process. Concluding this discourse, the final

Section 8.4 offers a reflective overview of the thesis as a cohesive body of research.

Here, we conduct a critical evaluation of the path undertaken and propose potential

avenues for future investigation, establishing foundational pathways that may amplify

and broaden the scope of this vital research frontier.

8.3 Contributions

8.3.1 High Level Architecture

The primary objective and central research question formulated at the inception of

this thesis concerned the development of a comprehensive framework for a system

facilitating user interaction through the application of neural data. The principal aim

was to conceptualize a high-level architectural blueprint that explicates the mechanisms

enabling such interactions, with a particular focus on incorporating neural signals as

input data. Consequently, this thesis seeks to meticulously analyse and examine one of

the critical components identified as essential to the proposed system—a Brain-To-Text

decoder. This component functions as a vital interface for converting neural impulses

into coherent textual outputs.

In Chapter 3 of this thesis, a thorough and comprehensive investigation is presented,

meticulously dissecting all the necessary components essential for the construction of

a brain-controlled communication system. Each element of the system has been ex-

165



Chapter 8. Conclusion And Future Work

amined independently and in detail, offering a comprehensive understanding of their

functions and interconnections. The analysis further elucidates the numerous potential

challenges and technical obstacles that must be overcome during the development of

these components, thereby offering a roadmap for future progress in this emerging field

of research.

In our extensive research, we have systematically identified three essential com-

ponents that are fundamental for the development of this complex system. The first

component is an advanced module designed to meticulously manage the recording of

data, while simultaneously maintaining a comprehensive history of these recordings.

This historical record is crucial as it allows for the provision of these recordings to

the Word Perceive Model in a strictly chronological order, ensuring seamless integra-

tion and analysis. Secondly, the implementation of a robust Word Perceive Model is

indispensable and critically vital to the success of the system. This component ful-

fils the important function of accurately detecting the precise instances when the user

conceptualizes a word. Considering the continuous activity within the human brain,

it is essential to accurately determine when and which of the recordings should be

transmitted to the Brain-To-Text decoder.

This process ensures an exact and thorough classification of the words considered

by the user. The third and pivotal component of the system is the Brain-To-Text

decoder. This fundamental element undertakes the intricate task of translating brain

data into textual output. It subsequently transmits this textual data to various appli-

cations, which may include a chatbot, virtual assistant, or even a search engine system.

Within this framework, our initial research attempts have effectively demonstrated the

feasibility of developing such a system. Additionally, we have elucidated the critical

components essential for the construction and operation of this innovative system.

8.3.2 Are the current state-of-the art NLP models brain aligned

This thesis primarily aims to investigate the potential existence of a substantive link

between state-of-the-art NLP models and the field of cognitive neuroscience. It entails a

comprehensive examination of whether there are significant parallels in the mechanisms
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of representation learning that are shared by both artificial intelligence systems and the

human brain.

Chapter 4 this thesis significantly extends the current body of scholarly literature

through an in-depth analysis of four state-of-the-art NLP models: RoBERTa, Distil-

BERT, ALBERT, and ELECTRA. Each model, though based upon the foundational

BERT architecture which introduced the groundbreaking transformer and attention

mechanisms, demonstrates unique features designed to address specific computational

challenges within the NLP field. Our detailed examination emphasizes the distinc-

tive attributes inherent in each model, attributes which have been astutely optimized

to address the constraints of the original BERT model, including but not limited to

challenges of memory usage and computational efficiency.

Throughout our comprehensive investigation, we uncovered a noteworthy finding:

despite the inherent disparities among these models, primarily resulting from varied

technical priorities and limitations, all four models exhibited an unexpected capacity

to generate representations that more closely resemble neural representations observed

in the human brain. This phenomenon indicates that the methodological advance-

ments intended to address computational requirements have inadvertently fostered an

enhanced congruence with human cognitive processes. Specifically, the models’ ac-

quired representations, initially honed to fulfil technical objectives, also encompassed

a degree of alignment with brain function that was not explicitly pursued during the

initial development of these technologies. We also uncover that the first layers of these

models are more brain aligned than the subsequent one, a result which is aligned with

the initial research done by Toneva at Al. [1]

In addition, this thesis delineates substantive progress in methodological frame-

works, particularly through the refinement of models used to assess the alignment

between brain functions and NLP models. Driven by the objective of enhanced effi-

ciency, we have realized a remarkable reduction in evaluation duration, enhancing the

speed of this process by an unprecedented 300-fold relative to preceding methodologies.

This advancement holds profound implications, significantly increasing our capability

to evaluate novel NLP models. It facilitates the expedited analysis of whether their
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internal representations pertaining to natural language processing tasks are consonant

with those employed by the human brain, thus providing an efficacious trajectory for

future academic inquiry and practical implementation in the converging domains of

Artificial Intelligence and Cognitive Neuroscience.

Moreover in this investigation, our research was advanced by executing experiments

across four distinct scenarios, each employing varying context lengths to assess the role

of punctuation in natural text interpretation. Our findings consistently reveal that as

context length increases, the significance of punctuation in language comprehension

markedly decreases. This suggests that as the volume of context within a sentence

expands, the sentence’s meaning can be comprehended effectively without reliance on

punctuation marks. By examining these varying context lengths, we highlight the

flexible nature of language processing and its capacity to derive meaning even in the

absence of conventional punctuation symbols.

In summary, our primary research question seeks to determine whether there exists

a relationship between state-of-the-art NLP models and cognitive neuroscience, specif-

ically focusing on similarities in representation learning between artificial systems and

the human brain. This study examines four NLP models—RoBERTa, DistilBERT,

ALBERT, and ELECTRA—that are rooted in the BERT architecture, although they

have been optimized to address particular computational challenges. Despite their

varied optimizations, all models unexpectedly yield neural-like representations akin

to those found in the human brain, not as a result of deliberate design but as an

unintended outcome of addressing computational necessities. The research further in-

troduces significant advancements in evaluation methodologies, achieving a 300-fold re-

duction in evaluation time, thereby enhancing the analysis of NLP models’ congruence

with brain functions. This advancement holds considerable implications for future re-

search and practical applications within the fields of artificial intelligence and cognitive

neuroscience. We posit that by establishing these neural connections and developing

a sufficiently rapid framework for evaluating emerging models, we are positioned to

affirmatively address our initial research question.
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8.3.3 Effectively train NLP models on brain data

The second research question this thesis aims to answer is if we can effectively train

deep learning models to generate text from brain data. Chapter 5 encompasses a

detailed analysis followed by the optimization of neural network models, accomplished

through the integration and application of a diverse spectrum of activation functions.

It has been conclusively established that the employment of non-linear and tunable

activation functions can substantially enhance the performance of these models while

preserving the integrity of their foundational architectures. A meticulous and thorough

retraining process was executed on the EEG-to-Text decoder. This process entailed the

deployment of various activation functions, which provided substantiated evidence that

tunable functions, such as polynomial activation functions of higher degrees, yielded

significantly superior results by suppressing the traditional use of ReLU activation

function.

A Transformer Encoder was employed in this framework, where it underwent metic-

ulous optimization through experiments with various activation functions. The archi-

tecture was engineered to incorporate raw EEG data, processed through sophisticated

transformation algorithms, highlighting the complexity introduced by managing bidi-

mensional raw EEG data. The encoder comprised multiple layers initialized with ran-

dom weights, focused on extracting features from EEG signals. This was further com-

plemented by the integration of a pre-trained BART model for decoding. The evaluation

utilized BLEU and ROUGE scores as metrics, demonstrating that certain configura-

tions significantly improved performance, particularly within the scope of brain-to-text

translation tasks.

It was observed that configurations, particularly the one referred to as ”head iden-

tical to layers,”,which employs the same number of attention heads and hidden lay-

ers, significantly enhanced performance, especially when employed in conjunction with

learnable activation functions such as leaky ReLU. Moreover, the deliberate placement

of normalization layers was found to substantially affect performance, with notable

declines occurring when alterations were misaligned with the activation function’s dy-

namics. Consequently, the study substantiates the assertion that the integration of
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advanced activation functions within neural architectures not only augments EEG-to-

text translation performance but also pinpoints specific configurations that yield the

most favourable outcomes.

To summarise Chapter 5 investigates whether deep learning models can be effec-

tively trained to generate text from brain data. It finds that non-linear and tunable

activation functions significantly enhance model performance while maintaining archi-

tectural integrity. Through optimizing a Transformer Encoder with various activation

functions and integrating a pre-trained BART model, the study achieves significant

improvements in brain-to-text translation tasks, as measured by BLEU and ROUGE

scores. A ”head identical to layers” configuration with learnable activation functions

like leaky ReLU, combined with strategic normalization layers, is identified as par-

ticularly effective. The research confirms that advanced activation functions improve

EEG-to-text model performance and identifies specific configurations for optimal out-

comes. The answer to the questions here however is not clear. Yes we are able to

suppress the current pipeline but still the results were not very promising on generat-

ing how quality text from our pipeline. That is why moving to Chapter 6 we explored

a more generic technique that excel on generating text from different modalities than

text.

8.3.4 Brain-To-Text Decoder

The third research inquiry centred on evaluating the feasibility of generating textual

outputs directly from raw brain data. To investigate this possibility in detail, we

conducted an extensive series of experiments as outlined in Chapter 6. This exploration

involved the utilization of two distinct datasets, each presenting specific challenges and

insights. We systematically applied three diverse experimental designs to rigorously test

and validate our hypotheses. This methodological diversity facilitated a comprehensive

analysis of our primary research question, allowing us to derive meaningful conclusions

regarding the potential transformation of brain data into coherent text.

Throughout the course of our experimental investigation, we conducted a compre-

hensive analysis of the implementation of Connectionist Temporal Classification (CTC)
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loss in conjunction with two generic techniques for embedding generation, namely

Data2Vec and Wav2Vec2. These techniques supplied a foundational framework es-

sential for comprehending the potential evolution of embeddings within our system.

To further enhance our experimental pipeline, we incorporated two specialized, pre-

trained EEG encoders, namely BENDR and EEG-Conformer. These encoders were

meticulously selected to augment our capacity to accurately interpret intricate EEG

data, thereby bolstering the analytical efficiency of our trials. The integration of these

components significantly contributed to the refinement of EEG signal processing.

Our experimental approach was augmented by the implementation of two distinct

tokenizers: one employing a standard English vocabulary and the other utilizing a

phonetic vocabulary. This bifurcated methodology permitted a diversification in our

analysis of language-based data, thereby improving our capacity to effectively handle

and process varied data inputs. Notably, our entire experimental framework was pred-

icated upon the Conformer architecture, a decision that was pivotal in enabling the

extraction of both spatial and temporal features from the EEG data. This facilitated a

more comprehensive and refined understanding of the information encapsulated within

these signals.

Unfortunately, the development of an effective brain-to-text model that performs

satisfactorily in both BLEU and ROUGE metrics was not achievable. A major chal-

lenge encountered during the implementation was the occurrence of gradient explosion,

attributable to excessively elevated loss values. Such elevated loss values may result

from several factors, including excessively high learning rates, the presence of data

noise, or a lack of alignment between the dataset’s quality and the task requirements.

Additionally, it is noteworthy that the ZuCo dataset lacked adequate repetition at the

subject level. Consequently, it necessitated the aggregation of data from all subjects

for both training and validation phases, thereby escalating the risk of high loss values

and subsequent gradient explosions.

In conclusion, Chapter 6 presents an investigation of various experimental scenarios

aimed at developing a machine learning model capable of generating coherent text

solely from brain signal data. However, despite our efforts, the experimental design did
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not facilitate the effective or comprehensive training of such a model, thus leaving our

central research question only partially addressed and unresolved. Notwithstanding

these limitations, the research into text generation from brain signals continues to be

a significant and open-ended question within the scientific community. Although our

research did not yield a definitive conclusion regarding the feasibility of this generation

process, it does not entirely negate the potential for future success in this domain. In

Section 8.4, we present an overview of preliminary research initiated throughout the

course of this thesis, proposing potential pathways forward. This includes an analysis of

recent research initiatives and observations that were not explored in detail due to time

constraints. Accordingly, our findings represent preliminary steps towards advancing

research in this field, highlighting pathways that could be further explored to achieve

significant breakthroughs in the future.

8.3.5 NSChat

The final advancement elucidated in this thesis is the development of a novel system

termed NSChat. This system adroitly integrates the functionalities of conventional

chatbot agents with the complex discipline of Neuroscience. NSChat is meticulously

designed to support researchers within scholarly domains, furnishing them with an

advanced instrument to collect data with heightened efficacy in environments that

more accurately replicate real-world conditions than previously attainable. The sys-

tem features exceptional customizability and flexibility, alongside capabilities such as

event timing precision at the millisecond level. These attributes ensure that NSChat is

adaptable for utilization across a diverse array of settings for data collection, thereby

extending its applicability even into specialized fields like Neuroscience. In achiev-

ing this, NSChat not only improves the efficiency and precision of data collection but

also expands its utility, rendering it an indispensable resource for academic research

pursuits.

NSChat serves a critical role as a foundational interface within our proposed Brain-

To-Text system. By leveraging its capability to seamlessly incorporate EEG data in

parallel with its operations with minimal code modifications, we have successfully im-
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plemented a configuration where the EEG data operates as a direct input channel.

However, the current absence of an adequately robust Brain-To-Text decoder constrains

the system’s functionality to merely recording the incoming data, thus precluding its

deployment as a comprehensive end-to-end model. Notwithstanding these present con-

straints, the interface is inherently structured to support and facilitate the integration

and application of various emerging models that may be developed for extensive re-

search purposes in the foreseeable future. It also shows that is feasible to construct a

computer interface integrated with non-invasive brain data.

8.4 Future Work

In this study, a thorough examination was undertaken of the innovative concept con-

cerning the creation of an advanced computer system amenable to direct manipulation

via neural input methods. This ambitious venture required an extensive investigation,

culminating in the formulation of a comprehensive blueprint that delineates the core

architecture and systematically addresses all foreseeable challenges associated with the

development of such a sophisticated technological system. The project highlighted the

imperative for a multifaceted approach to achieve successful implementation.

The central focus of this thesis lies in the comprehensive clarification of the Brain-

To-Text decoder, an essential part of the system. This component underwent an ex-

tensive, in-depth examination owing to its crucial role and inherent complexity. The

experimental investigations predominantly concentrated on the realization of this crit-

ical component, in line with the hypothesis that it constitutes the most technically

demanding and challenging facet of the proposed system’s architecture.

Nevertheless, the realization of such a system within the scope of a single PhD

thesis proves impractical. This is attributed to the intricate and extensive nature of

the work involved, requiring a substantial degree of further research and exploration.

Consequently, engaging in this undertaking in the future offers numerous burgeoning

opportunities for subsequent scholarly inquiry and investigation. Numerous challenges

and unresolved issues persist, necessitating meticulous attention and critical examina-

tion. Therefore, addressing these multifaceted aspects will advance future research and
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significantly contribute to the field.

The first challenge that offers a noteworthy research opportunity is the development

and implementation of the Word Perceived Model. While its utility and the challenges it

aims to address have been acknowledged, conducting thorough research and proposing

a comprehensive implementation extend beyond the scope of this thesis. Nevertheless,

we maintain that embarking on a rigorous examination of this component will not only

uncover further complexities beyond those presently identified but also enhance the

field by introducing additional avenues for research. Therefore, we assert that this

constitutes a significant and promising direction for future academic investigations.

The second future opportunity identified resides in the capacity to markedly en-

hance the performance of the Brain-To-Text decoder. At the time of authoring this

thesis, this module has been developed utilizing the most advanced and state-of-the-art

techniques currently accessible in the field. Nonetheless, the domain of machine learn-

ing is advancing at a remarkable pace, especially in recent years. It is projected that

more sophisticated methodologies will be introduced, enabling models to be trained

more rapidly and with increased efficiency. Additionally, these advancements could

significantly bolster the performance of existing models. Given that our objective is

to render this system accessible to the general populace, attaining the utmost level of

accuracy is imperative. Therefore, there exists substantial potential for refinement and

enhancement to realize this ambitious goal. A prominent area of interest involves the

development of a sophisticated brain encoder to deliver high-quality EEG features to

the decoder. In any generative task, the quality of the embeddings or features produced

is crucial for the decoder to effectively learn the relationship between these features and

the text intended for generation. Specifically, it is posited that defining an appropriate

loss function or employing a pre-existing one that more accurately aligns with brain

data is imperative for enhancing the learning process.

Additionally, we have identified the need for enhanced curated datasets, which may

serve as foundational components in the development of the Brain-To-Text decoder. To

achieve this objective, the creation of a more naturalistic interface capable of attaining

millisecond accuracy is required, as this will be crucial for the collection of precise
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data. We assert that future research efforts should utilize NSChat as a methodological

instrument for the acquisition of EEG data specifically tailored for the EEG-to-text

task.

The next opportunity identified for future research involves the empirical evaluation

of the system using human participants. At present, the conceptual blueprints and high-

level architectural designs remain theoretical, as no practical testing has been conducted

with live participants. Additionally, the Brain-To-Text Decoder has been assessed

solely through offline test data sets, and not with actual human subjects, largely due to

time constraints. Thus, it is posited that once the system reaches maturity, extensive

research should be conducted to thoroughly assess its functionality. This will enable the

identification and analysis of further challenges and potential issues that may emerge

in real-world applications.

Ultimately, we have identified two new dimensions that we hypothesize require fur-

ther exploration to effectively train a Brain-To-Text model capable of generating text

from cerebral data. The initial dimension involves the integration of an external guiding

modality into the encoder. Researchers at Meta AI have pioneered an innovative, non-

invasive technique for speech decoding from cerebral activity through the employment

MEG [229]. This methodology enables communication via a computer interface for

individuals with speech impairments. The system’s architecture encompasses a ’brain

module’ tasked with extracting information from MEG recordings and a ’speech mod-

ule’ dedicated to decoding speech representations. By providing the pre-trained speech

module with the auditory stimuli experienced by participants and simultaneously pro-

cessing the MEG recordings through the brain module, the researchers achieved the

alignment of the two modules using contrastive learning. This process enabled the

brain encoder to assimilate auditory-analogous features from the neural data.

Building on this observation, there is evidence suggesting that individuals engage in

more complex cognitive processes when employing inner speech, as opposed to merely

relying on contextual cues in natural language. Research indicates that cognition may

occur through visual or auditory modalities [230–233]. In our study, we strived to

synchronize models containing contextual information pertinent to the target text with
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neural data. We posit that this approach constitutes a segment of the intended method-

ological pipeline. The exploration of other modalities and their integration with neural

data represents an area that remains largely unexamined. We contend that this is

an open domain warranting further investigation, especially in light of recent break-

throughs in machine learning and neuroscience.
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