
I 

UNIVERSITY OF STRATHCLYDE  

Faculty of Engineering  

Department of Biomedical Engineering  

DOCTORATE DISSERTATION  

PhD Biomedical Engineering 

 

 

 

 

 

 

 

 

Variability In Semi-Automatic Segmentation From CT 

Images: Implications For Knee Joint Modelling 

 
 

By 

Reyhaneh Asadirad 

Supervised by Dr. Phil Riches 

Dr. Danial Kahani 
 

 

 

 

 

 

 

 

 

 

 

A dissertation submitted in fulfilment of the requirements of the award of a  

Doctor of Philosophy of the University of Strathclyde 

May 2024



I 

 

 
UNIVERSITY OF STRATHCLYDE 

DEPARTMENT OF BIOMEDICAL ENGINEERING 

 

 

 

 

 

DECLARATION  
 

This thesis is the result of the author's original research. It has been composed by the 

author and has not been previously submitted for examination, which has led to the 

award of a degree. 

The copyright of this thesis belongs to the author under the terms of the United 

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50. 

Due acknowledgement must always be made of the use of any material contained in, 

or derived from, this thesis. 

 

 

 

 

Signature of Student                                                                          Name of Student 

 

Date 

 

 

 



II 

ACKNOWLEDGMENTS 
 

First, I would like to thank my esteemed supervisor Dr. Phil Riches for their invaluable 

advice, continuous support, and patience during my PhD study. His immense 

knowledge and plentiful experience have encouraged me throughout my academic 

research with his invaluable supervision. It would be impossible for me to complete 

my study without his support. 

Additionally, I would like to express my special gratitude to Dr. Danial Kahani for his 

mentorship and treasured support, which influenced my research. He was always 

helpful with his knowledge and patient support. 

I would also like to thank Dr. Monika Kerr for her technical support in my study. I 

would like to thank all the members of the Biomedical Engineering department who 

kindly encourage me to be resilient in my study.  

My special appreciation goes out to my son, Amir, who was most dependent on me 

during his early ages and most vulnerable. During these irreversible and tough years, 

he was always for me. He was the only reason to face challenging years and to continue 

with faith.  

Finally, I would like to express my gratitude to my friends and family. Without their 

tremendous understanding and encouragement over the past few years, I could not 

terminate this mission of my life. 

 

 

 

 

 

 

 

 



III 

ABSTRACT 

The knee joint is one of the most complex and weight-bearing joints in the body, 

making it highly susceptible to injury from various activities. Knee surgery often 

becomes necessary when conservative treatments fail to alleviate pain and other 

related disorders. In 2020, research indicated that there were nearly 60,000 total knee 

replacements (TKRs) for women and approximately 50,000 TKRs for men across 

England, Wales, Northern Ireland, and the Isle of Man. Projections suggest that by 

2060, the demand for hip and knee replacements in the UK will rise by 40%. 

Robotic knee surgery, a minimally invasive and computer-assisted orthopaedic 

surgery (CAOS), allows for precise surgical movements, leading to quicker recovery 

and reduced postoperative pain. However, according to NHS Patient Reported 

Outcome Measures (PROMs), around 4% of patients in England remain dissatisfied 

with their knee replacement outcomes, primarily due to implant malalignment. 

Virtual 3D knee models, generated from CT and MRI scans, play a critical role in 

improving implant alignment before surgery. These models enable preoperative 

planning by allowing surgeons to virtually model the patient's knee in 3D, optimizing 

implant selection and simulating postoperative range of motion. However, the 

mechanical functionality of the knee joint remains poorly understood, and researchers 

are actively exploring improvements through finite element analysis (FEA). 

FEA is a valuable tool for simulating the mechanical behaviour of the knee under 

various conditions, helping surgeons and biomedical engineers analyse stress 

distribution, implant stability, and soft tissue interactions. Although existing finite 

element (FE) knee models provide highly detailed meshes of anatomical structures like 

bones, cartilage, ligaments, and tendons, these models are complex, time-consuming 

to create, and prone to human error, making them unsuitable for analysing large image 

datasets. 

This brings us to our primary research question: What is the impact of using simplified 

soft tissue models on finite element simulations of subject-specific knee joints? Can 

we create an FE model that incorporates elastic, homogeneous soft tissue around knee 
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bones instead of modelling individual ligaments and cartilage? This approach is 

inspired by a study by Arjmand, which replaced soft tissue in the proximal tibia with 

an incompressible cylindrical medium. However, that model did not adequately 

represent the joint's volume or surface topology. 

In our study, we propose a simplified FE model where all soft tissues and bony 

structures are contiguous, maximizing anatomical accuracy. One of the critical steps 

in creating subject-specific 3D models for FEA is segmentation, which, as our 

systematic review revealed, suffers from significant variability. Variability in the 

segmentation process introduces uncertainty into the quantitative data, affecting the 

reliability of the resulting models. 

To assess this variability, we conducted inter- and intra-observer variability tests, 

which are commonly performed in various fields but are notably lacking in the 

literature for knee joint surgeries. Our secondary aims included determining the intra- 

and inter-examiner variability in semi-automatic segmentation performed by one 

operator and 15 operators, respectively. Additionally, we sought to determine the 

optimal threshold values for knee joint tissues during segmentation, using thresholding 

techniques. 

We segmented the tibia at various thresholds and compared the results to a reference 

tibia segmented at 205 HU. The effect of thresholding proved significant, impacting 

the final model by causing under- or over-segmentation. The optimal threshold values 

were identified as 205 HU for the tibia, 160 HU for the femur, 200 HU for the patella, 

and 232 HU for the fibula. 

In a pilot study, intra-observer variability was assessed by having one participant 

segment the knee five times, with the results compared using the Cloud-to-Cloud 

(C2C) method. The highest similarity (93.39%) was observed between the fourth and 

fifth segmentations, indicating that operator experience influences the segmentation 

process. Following ethical approval, 15 volunteers were trained to segment the femur, 

tibia, and patella five times using ITK-Snap software. Graphical comparisons were 

performed using CloudCompare, and quantitative metrics, including Hausdorff 

Distance, Dice Similarity Coefficient (DSC), and Jaccard Index, were computed to 
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assess intra-observer variability in MATLAB. Inter-observer variability for DSC was 

calculated using the intraclass correlation coefficient (ICC) in IBM SPSS. 

The ICC for DSC was 0.975 for the femur, 0.981 for the tibia, and 0.959 for the patella, 

indicating excellent reliability in the segmentation process. The femur and patella 

exhibited high DSC and Jaccard Index values, while the tibia had the highest Hausdorff 

Distance. After confirming the segmentation process’s reliability, we segmented the 

knee twice more, including the soft tissues, making the model subject-specific. 

These models were imported into Ansys for FEA, where the soft tissue was modelled 

as isotropic, homogeneous, and hyperplastic with a neo-Hookean material model 

(shear modulus: 1 MPa, Poisson's ratio: 0.45). The von Mises strain in the soft tissue 

following an applied force on the tibia was 1.42 µm for the first knee and 2.43 µm for 

the second, reflecting a 71% difference. The von Mises stress was 637 Pa and 728 Pa, 

respectively, showing a 14.2% difference. The articular cartilage experienced the 

highest stress and strain. 

Our study successfully simplified the modelling of soft tissue in knee FE models while 

achieving convergence. The results demonstrated that simulation outcomes are highly 

sensitive to even minor variations in segmentation. Despite the tibias lower similarity 

(higher Hausdorff distances), the overall agreement between operators remained 

consistent. Our findings show good to excellent reliability for segmenting the tibia, 

patella, and femur in 4D CT images of the knee joint across multiple observers. 
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Chapter 1 Introduction  

1.1 Research background and justification 

The knee joint is not only the most complex but also the main weight-bearing joint in 

the body, which is mainly prone to harm or injury from routine activities, including 

walking, jumping, climbing stairs, and participating in sports [1]. Knee surgery is a 

final consequence of these activities, following knee pain and other disorders that 

cannot be successfully managed conservatively. Despite knee surgery being a routine 

procedure performed worldwide, its success rate, as determined by reviewing patients` 

opinions after surgery, has room for improvement leading researchers to investigate 

strategies to enhance outcomes. The complexity of the knee joint has been the subject 

of countless studies and journal papers in different aspects during the past decades. 

Direct measurements of the knee joint cannot currently be made in vivo, and ex-vivo 

tests employing cadavers are both expensive and limited in their use. In order to 

simulate the mechanics of the knee joint, computer models such as finite element 

models (FEM) are an affordable option. 

Robotic knee surgery is a minimally invasive computer-assisted orthopaedic surgery 

(CAOS) that allows for precise and controlled movements during surgery, leading to 

a quicker recovery and less postoperative pain. Virtual 3D knee models created from 

computed tomography (CT) and magnetic resonance imaging (MRI) scans are used in 

knee surgery to improve implant alignment. These models provide vital information 

for accurate implant placement, preoperative planning, and surgical decision-making.  

There are a few critical steps in the making of a computational model of the knee joint, 

to use it for FEM or CAOS. A CT or MRI scans need to be acquired from 3D image, 

in which the anatomical structures need to be identified and differentiated. This 

process is known as segmentation. This process is fundamental in orthopaedics as it 

defines the shape and local topology of the bones, which is potentially critical for the 

model outcome. However, segmenting the knee joint for these 3D models, particularly 

semi-automatic methods, presents challenges due to anatomical variations and a lack 

of consistent methodologies. Currently, to the best of our knowledge, there has been a 

lack of research conducted on evaluating the segmentation of the knee joint, despite 

its significant functionality and importance.  
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Manual and semi-automatic segmentation methods involve human input, which may 

affect the segmentation outcome. Consequently, the first aim of this study is to 

evaluate the intra- and inter-observer variability of subject-specific semi-automatic 

segmentation of 4D CT knee joint images.  

Existing finite element models are either oversimplified by ignoring most of the soft 

tissues that surround the knee joint or overcomplicated so that they take a lot of time 

to be made [2, 3]. Complex models are not suitable for large data set and fast analysis. 

These models usually only include a couple of the main ligaments and/or cartilage. 

While the knee capsule members all work together to stabilize and lubricate the knee 

joint to provide smooth movement. The knee capsule is known to be meniscus, bursae, 

ligaments, cartilage, synovial membrane, and fluid. Therefore, a second aim of this 

project is to develop a simplified finite element model of the knee joint that includes 

all the knee capsule compartments as a single soft tissue that represent more realistic 

representation of knee joint. The third aim was to assess the effect of segmentation 

variability on such a finite element model of the knee. 

This idea was inspired by two studies. Arjmand et al. [4] created subject-specific FE 

models for 14 osteoarthritis (OA) knees and normal knees. They were looking to 

determine the specific proximal tibia mechanical metrics that distinguished between 

normal knees and OA knees. By using quantitative computed tomography (QCT) scans 

they evaluated the structural stiffness, von Mises stress and strain, and minimum main 

stress. To assess the repeatability of the FE-based mechanical measures they imaged 

the knees three times. CV%RMS was used to evaluate the in vivo precision of these 

mechanical metrics. To investigate the differences between OA and normal knees, they 

conducted both parametric and non-parametric statistical analyses and calculated 

Cohen's d effect sizes. The average CV%RMS for all FE-based mechanical measures 

was less than 6%. While minimum principal strain values were similar, there was an 

average 75% increase in minimum principal stress in OA knees compared to normal 

knees. There was no distinguishable change in the structural rigidity. In vivo, FE 

modelling could accurately measure and distinguish between mechanical metrics 

alterations in healthy and OA knees. This study concluded that bone stress patterns 

might be crucial to comprehending the pathophysiology of OA in the knee. However, 

the focal point of interest in this study lies in the method they used to replace soft tissue 
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with an incompressible cylindrical medium. This is particularly noteworthy because 

soft tissues are not distinguishable by CT imaging. Figure 1 illustrates the 

representation of soft tissue as an incompressible cylinder made by Arjmand [4] , in 

which A is generated three-dimensional geometries of the femur, tibia, and fibula from 

CT images, B is meshed bones of the knee with 10-noded tetrahedral elements and C 

is assigned material properties for the FE model. Body mass density was mapped to 

the modulus of elasticity of the bones. 

 

Figure 1.Finite element model by Arjmand [4] 

In another study [5], the concept of soft tissue surrounding the knee bones is explored. 

This paper delves into the role of intra-osseous lesions, specifically subchondral bone 

cysts (SBC), in the progression of knee osteoarthritis (OA) through Finite Element 

Modelling (FEM) coupled with high-resolution imaging techniques (figure2). The 

primary objective of their study was to clear up how these lesions contribute to 

increased intra-osseous stress in early-stage OA patients. The surrounding soft tissue 

is modelled using the compressive properties of cartilage under compression at 

equilibrium. Soft tissue outside the bony margins is assigned the material properties 

of cartilage. 
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Figure 2. Finite element modelling by McErlian [5] 

Therefore, to achieve the aims, five questions are considered in this study:  

1. What is the optimal threshold value for segmentation of each bone in the knee 

joint using semi-automatic segmentation techniques, and how does it impact 

the accuracy of the segmentation results. 

2. What is the reliability and repeatability of semi-automatic segmentation for 

knee joint structures in CT images when performed by a single operator? 

3. What is the impact of inter-observer variability in semi-automatic 

segmentation of knee joint structures in CT images, performed by multiple 

individuals, on the accuracy and reliability of 3D knee models used in total 

knee arthroplasty planning and implant design? 

4. Can a simplified model of the knee be easily created by replacing all knee 

format into two structures, one rigid body and one soft tissue?  

5. Does the segmentation process, necessary to build the model, affect the 

outcome, i.e do small differences in the segmented models leads to any 

significant differences in the model output? 
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1.2. Thesis structure 

1.2.1 Chapter 1 Introduction 

This chapter provides a brief rationale for investigating knee joint segmentation 

variability. It discusses the complexity of the knee joint, its susceptibility to injury, and 

the challenges associated with knee surgery. It emphasizes the significance of knee 

surgery in managing pain and disorders resulting from routine activities. Researchers 

aim to enhance the success rate of knee surgeries, particularly through the use of finite 

element models (FEM) to simulate knee joint mechanics. 

The importance of subject-specific FEM is highlighted, requiring CT or MRI scans to 

create 3D models for finite element analysis (FEA) and robotic knee surgeries. This 

section introduces the concept of robotic knee surgery as a minimally invasive and 

precise procedure for quicker recovery. Virtual 3D knee models derived from CT and 

MR scans are crucial for preoperative planning and accurate implant placement. 

However, challenges arise in segmenting knee joints due to anatomical variations. 

This part also specifies the aims to address gaps in research by evaluating intra- and 

inter-observer variability in subject-specific semi-automatic segmentation of 4D CT 

knee joint images. It also strives to develop a simplified finite element model that 

includes all knee capsule compartments, providing a more realistic representation of 

the knee joint. 

1.2.2 Chapter 2 Theory and Literature review  

This chapter describes the function of knee joint in mobility, and its vulnerability to 

wear and tear. It looks at the issue of knee instability and the necessity of exact implant 

placement. The utilisation of robotic surgery, 3D knee models, and different 

segmentation strategies are highlighted. The anatomy of the knee, including the femur, 

tibia, patella, fibula, ligaments, muscles, and meniscus, is also covered in this chapter. 

The responsibility of each component in the stability and movement of the knee joint 

are mentioned as well as their properties and functions. 

Patient satisfaction rates for knee replacements are analysed, revealing factors 

contributing to dissatisfaction. The importance of accurate medical image 

segmentation in creating 3D virtual representations of the knee joint is highlighted. 

The use of 3D modelling technology during the planning stage is shown to enhance 
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implant alignment and soft tissue balance, resulting in improved outcomes, fewer 

complications, and higher patient satisfaction. 

Different segmentation processes - manual, semi-automatic, and automatic - are 

described, highlighting their advantages and limitations. Manual segmentation is 

accurate but time-consuming and prone to human error, while automatic segmentation 

is faster but less accurate. Semi-automatic segmentation offers a balance between 

speed and accuracy.  

The impact of the threshold level on image segmentation results is mentioned. The 

choice of threshold determines the inclusion or exclusion of image parts, affecting the 

accuracy of the segmentation. Optimal thresholding depends on the specific image and 

segmentation goals. Various studies, particularly in medical imaging, have highlighted 

the importance of threshold selection in achieving precise and reliable segmentation. 

Achieving reliable data and precise surgical plans requires reducing inter- and intra-

observer variability, improving repeatability, and ensuring segmentation reliability. 

The selection of target tissues during segmentation relies on morphological features, 

density, homogeneity, structure, and location. Challenges arise when identifying weak 

or absent parameters, leading to inaccurate or impossible outcomes.  

ITK-Snap, as one of the image segmentation software, is introduced. The method of 

segmentation using ITK-Snap is discussed in detail in the chapter, involves the use of 

evolving contours to achieve accurate segmentation results. In addition, the effect of 

mineral density of tissue is highlighted. The absorption or attenuation of x-ray beam 

by the subject determines the Hounsfield Unit. The Hounsfield unit (HU) is a relative 

quantitative measurement of radio density used by radiologists in the interpretation of 

computed tomography (CT) images. The absorption/attenuation coefficient of 

radiation within a tissue is used during CT reconstruction to produce a grayscale 

image. 

Segmentation is discussed as one the important steps in medical diagnosis and 

treatment. It will be shown that orthopaedic researchers and surgeons are concerned 

with the accuracy and reliability of the segmentation process. Several evaluation 
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studies have been conducted in different medical fields to shed light on this matter. 

Inconsistencies and gaps in the literature in this field are identified.  

In addition, some segmentation evaluation measures and techniques, such as the Dice 

Similarity Coefficient (DSC), Jaccard Index (JI), Hausdorff distance (HD), and the 

software CloudCompare, are explained in detail to assess the segmented models of this 

experiment. Intra class correlation coefficient (ICC), is also described here as 

repeatability evaluation metric.  

Finally, finite element analysis is mentioned in this chapter. It is one the most crucial 

applications that uses segmentation for further analysis leads to treatment and/or 

diagnosis.  

1.2.3 Chapter 3 Research aims and objectives  

This chapter outlines the research aims and objectives emanating from chapter 2 

related to determining the optimal threshold level on the knee joint segmentation, 

assessing repeatability and reliability of these segmentation and effects of 

segmentation variability on finite element analysis of the knee joint. 

1.2.4. Chapter 4 Effect of threshold on segmentation 

This chapter focuses on analysing the effect of thresholding levels on the segmentation 

of tibia and determining the optimal threshold level for further study. Following the 

methodology, this chapter proceeds to explore a thorough examination of the results 

and subsequent discussion, each addressed separately for clarity and coherence. It 

discusses the visually optimal threshold value for tibia segmentation and the impact of 

threshold variations on tibia segmentation quality. The chapter also compares the 

results of manual segmentation and semi-automatic segmentation using different 

threshold values. The study concludes by highlighting the importance of threshold 

values in semiautomatic segmentation, comparing the results to previous research, and 

emphasizing the need for optimal threshold values for knee segmentation. 

1.2.5 Chapter 5 pilot experiment Intra- observer variability of segmentation of 

knee CT images  

This chapter presents an experiment that examines the within-subject repeatability of 

knee joint segmentation by a single experiment observer. The study utilizes 4D CT 
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images acquired from a Toshiba Aquilion ONE™ 4D CT scanner. The knee joint is 

segmented five times in sequence using open-source ITK-Snap segmentation software. 

The segmentation process involves a semi-automatic approach with manual editing to 

ensure accuracy. The experiment focuses on segmenting the femur, tibia, and patella 

of the knee joint. 

1.2.6 Chapter 6 Intra- Inter observer variability  

This study focused on intra-examiner and inter-examiner reliability, comparing 

segmentations within and between operators. It utilizes an anonymized 4D CT dataset 

to analyse the dynamic movement of the knee using the Toshiba Aquilion ONE™ 4D 

CT scanner. Ethic approval was followed by recruiting and training fifteen volunteers 

in the ITK-Snap semi-automatic segmentation software. Each participant segmented 

the femur, tibia, and patella five times, resulting in 225 STL mesh files. CloudCompare 

software was used for graphical analysis, and MATLAB was employed to obtain 

quantitative measures such as Hausdorff Distance, Dice Similarity Coefficient, and 

Jaccard Index. The findings contribute to the understanding of knee movement 

dynamics and highlight the potential of these methods for clinical applications.  

1.2.7 Chapter 7 Finite element Analysis 

Conventional knee models involved production of each ligament for each person and 

model them individually which is time-consuming and prone to error. This chapter 

suggests a novel solution to these problems, by using a simplified representation that 

is an incompressible, isotropic, homogeneous, elastic cylinder. This replacement offers 

a thorough yet condensed soft tissue model that considers the ligaments, tendons, 

bursae, meniscus, muscles, and knee capsule. This methodology which enables 

computerised analysis of the knee joint is inspired by Arjmand et al.[4] and McErlain's 

[5] earlier work, which used comparable finite element models to evaluate mechanical 

metrics in healthy and osteoarthritic knees as well as the effect of intra-osseous 

subchondral cysts in osteoarthritis. This idea has a lot of potential for using 

computerised analysis in the knee joint with simpler soft tissue models. Additionally, 

to assess the effects of minor segmentation variations, this chapter applies finite 

element simulation to two consecutively segmented knee joints from Chapter 6. 
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Chapter 2 Theory and Literature review 

2.1 Introduction  

The knee joint, as the most complex joint in the body, plays a crucial role in enabling 

movement in the lower leg during numerous daily activities like walking, jogging, 

jumping, and climbing stairs. It is remarkably complicated and built to carry significant 

weight. The knee joint is prone to deterioration over time due to its frequent use, 

especially in older people or athletes who are active. As a result, this may ultimately 

end in a knee joint replacement, also known as knee arthroplasty. 

Knee instability is reported in up to 72% of people with OA[1], which leads to 

disintegration of articular cartilage with surgeons advising total knee arthroplasties 

(TKA) in serious cases. In the United Kingdom, over 90,000 total knee arthroplasties 

(TKAs) are performed annually [2]. Although this procedure has been generally 

successful, 25% of patients are not fully satisfied with the outcome of the surgery [2, 

3]. Implant malalignment is one of the important reasons for this dissatisfaction [4]; 

hence, significant efforts and advancements in technology have been made to enhance 

alignment in knee surgery. This includes the use of robotic surgery, Computed 

Assisted Surgery (CAS), Patient Specific Instrumentation (PSI), and Computed 

Tomography (CT) and Magnetic Resonance (MR) scans to create virtual 3D knee 

models. Robotic knee surgery is a type of minimally invasive procedure that utilizes a 

robot-assisted surgical system to perform knee joint surgery. This type of surgery 

allows for precise and controlled movements during the procedure, leading to a quicker 

recovery and less pain compared to traditional open knee surgery [158]. The popularity 

of robotic knee surgery varies depending on the country and region, but it has been 

growing in popularity in recent years because of its benefits.  

Models from CT or MRI may provide a deeper understanding of the relative positions 

of bones in the knee, which is crucial for accurate implant placement. They also aid in 

preoperative planning and facilitate the surgeon's decision-making during surgery, 

such as determining the proper size of the implant and ensuring proper resection, 

alignment, and rotation. Accurate 3D models are also required for implant design [4-

6], finite element analysis [7-10], and computerised surgical planning [11-13]. These 
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3D models are created using various software programs and image segmentation 

techniques [14].  

Medical image segmentation refers to the process of dividing an image into different 

parts or regions, each representing a specific anatomical structure [159]. Image 

segmentation sub-divides into manual, semi-automatic and automatic processes where 

each one has its own advantages and disadvantages. The medical imaging research 

community denotes manual segmentation as the gold standard in medical imaging 

[15]. However, manual segmentation is very time consuming and highly influenced by 

the operator experience and subject to error [16]. In terms of time, semi-automatic 

segmentation is comparable to automatic segmentation, and in term of efficiency, it is 

comparable to manual segmentation. 

Semiautomatic segmentation involves human input to define seed points or to refine 

the results of an automatic segmentation algorithm. The variability and reliability of 

semiautomatic segmentation depend on the skill and experience of the user, and the 

quality and consistency of the image data. Therefore, it is important to carefully 

consider the intra- and inter-observer variability and reliability when using 

semiautomatic segmentation. 

This chapter delves into the foundational knowledge required for computer-assisted 

knee surgery. It provides an overview of the anatomy of the knee joint, highlighting 

its key components that support stability and movement, as well as cushion and 

lubricate the articulation. Additionally, the chapter discusses various knee diseases that 

can lead to arthroplasty, and covers the significance of knee stability, its related 

tendons, and the satisfaction rate of knee surgeries along with its causes. 

Furthermore, the chapter outlines the creation of 3D model pipelines and the various 

types of segmentation, including their pros and cons. It highlights the impact of 

thresholding on 3D model segmentation, and the limitations and difficulties that affect 

the accuracy of the segmentation process. The chapter also introduces the ITK-snap 

tool and its role in the segmentation process. Additionally, the chapter covers the effect 

of mineral density on the creation of CT images and the use of the CloudCompare 

software. Finally, it provides an overview of the history of finite element analysis, 

which is an important aspect in the development of computer-assisted knee surgery. 
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2.2 Knee Anatomy 

The largest and most complex joint in the human body is the knee joint. The femur 

and tibia are connected by a hinge-like joint that allows for movement such as bending 

and straightening of the leg. The fibula, a minor bone located in the knee that aids in 

stabilising the joint but is not connected to the hinge. 

All parts work together to provide stability and movement of the knee joint. A layer of 

cartilage covers the articulating bony surfaces of the knee joint, which helps to cushion 

them and reduce the friction while the knee moves. In addition, the knee has a number 

of tendons and ligaments that support the bones allow movement and provide stability 

of it. Knee joint muscles plays role in strengthening as well as movement of knee joint. 

Menisci are present in the joint capsule to provide stability to femorotibial articulation, 

distribute axial load, absorb shock. 

2.2.1 Femur 

The femur at its distal end is wide with medial and lateral condyles, round 

prominences, that can be seen from anterior and posterior views of the knee. The 

medial and lateral condyles have medial and lateral protuberances called epicondyles. 

The medial and lateral condylar surfaces are distal to epicondyles and with smooth and 

round surfaces facing inferiorly, articulating with the tibia. On the inferior aspect of 

the distal femur, the intercondylar fossa is a trench between two condyles; also, on the 

anterior aspect of the distal femur, there is a groove in the centre and distal epiphysis 

of femur, which is named the patellar groove to articulate with patella (Figure3). 

 

Figure 3. Anterior and posterior distal femur [6] 
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2.2.2 Tibia 

The proximal tibia joins the knee joint and has a large flat end that articulates with 

femur, named the tibial plateau, and beneath that are the medial and lateral condyles 

of the tibia. The medial condyle is bigger than lateral, they aid in weight bearing 

process.  

2.2.3 Patella 

The patella is a large sesamoid bone that sits anterior to the knee and with attachment 

to tendons act as pulley. Its posterior aspect is covered with hyaline cartilage and 

articulates with the distal femur.  

2.2.4 Fibula  

The fibula is a long bone that is a place for muscle connection and does not help weight 

bearing. It articulates inferiorly and posteriorly with the lateral condyle of the tibia. A 

ridge on the medial surface of the fibula forms the interosseous border, which connects 

the fibula to the tibia through the interosseous membrane [160]. This connection forms 

a syndesmotic joint, meaning it has very little mobility [161]. The fibula is not a 

weight-bearing bone like the tibia is [162]. Its primary job is to combine with the tibia 

to stabilise the ankle joint, hence these two bones are very close to each other. Figure 

5 is the CT image used in future chapters, which is showing the close contact of tibia 

and fibula. There are several grooves on the distal end of the fibula for ligament 

attachments, which stabilise and provide leverage when the ankle moves. The lateral 

side of the fibular head is where the lateral (fibular) collateral ligament is attached. 

This ligament provides knee stability. On the other hand, the fibula itself plays a minor 

part in knee stability. 
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Figure 4. Anterior and posterior view of knee joint [3] 

 

 

Figure 5. Transvers plane of proximal tibia; fibula is very close to tibia 

2.2.5 Knee Ligaments 

The knee has eight ligaments that preserve knee stability and allow restrained 

movement. The anterior cruciate ligament (ACL) and posterior cruciate ligament 

(PCL) are located inside knee capsule. They cross each other at the centre working in 

opposite directions and they named from their distal attachment. The ACL is attached 

distally to the anterior section of the medial tibial plateau to posterior section of the 
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lateral epiphysis of femur and PCL is fixed to the posterior part of lateral tibial plateau 

to anterior part of medial femoral epiphysis. Anterior and posterior ligaments prevent 

femur from sliding off the tibial plateau in the anterior and posterior directions. The 

ACL is the main focus of the last decade studies, it plays critical role in stabilization 

of the knee. During normal knee motion and at 20° to 30° of knee flexion the ACL 

involves with minimum strain thus it is the best angle to properly assess the ACL 

stiffness [7]. 

Medial collateral ligament (MCL) and lateral collateral ligament (LCL) are 

extracapsular which means they are located outside of knee capsule. The MCL can be 

divided in to two parts, the superficial MCL (sMCL) and deep MCL (dMCL). The 

proximal end of the sMCL is attached to medial epicondyle of femur and distal end is 

fixed with medial tibia.  

The primary function of superficial and deep medial collateral ligament is restraining 

against valgus force, and, to a lesser extent, the rotational force. The sMCL resist 

valgus movements through all degree of flexion, it also reduced external rotational 

movement at 30 degree of flexion of the knee. The dMCL prevent internal rotation of 

knee in 90-dgree of flexion to full extension [8]. 

The dMCL is composed of two parts, meniscofemoral and meniscotibial. The 

meniscofemoral has proximal connection to femur just distal to sMCL and it blends in 

medial meniscus. The meniscotibial starts proximally from medial meniscus and 

distally to the articular cartilage of medial tibial plateau. It is thicker and shorter than 

meniscofemoral [9, 10]. 
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Figure 6. Meniscofemural and meniscotibial [11] 

 

Figure 7. sMCL and dMCL  Insertion landmark [12] 

The LCL starts from lateral epicondyle of femur and insert to anterolateral fibular 

head. The primary function of LCL is restraining the varus movement during 5 to 25 

degree of flexion, and the second responsibility of the LCL is to resist posterolateral 

rotation under 50 degrees of flexion. The LCL with help of ACL and PCL prevent 

Varus during full extension [13] 
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Figure 8. Medial, Lateral and posterior Landmarks [14] 

The oblique popliteal ligament is placed posteriorly in the knee and protect knee from 

hyperextension. The transverse ligament connects two menisci and fixes them with 

anterior part of tibial plateau. 

Also, the other two ligaments the arcuate popliteal ligament and patella ligament; 

which are not a point of interest in this study. Although these two minor ligaments 

might be relevant in the knee stability but they do not have adequate power to involve 

in varus-valgus movement.  

2.2.6 Muscles and Tendons 

The knee is one of the most complicated joints in the human body with fifteen muscles 

acting about it, eight of them with their origin proximal to the hip. The tendons of these 

muscles attach to the iliotibial band, proximal tibia and fibula. These muscles are the 

sartorius, tensor fasciae latae, rectus femoris, gluteus maximus, gracilis, biceps 

femoris- long head, semitendinosus, and semimembranosus (figure 9,10). Knee 

flexion occurs with activation of these muscles, except the rectus femoris. The rectus 

femoris is specifically performing the knee extension. The biceps femoris short head 

flexes the knee, laterally rotates lower leg when knee slightly flexed. The biceps 

femoris attaches proximally to the diaphysis of the femur; it crosses the knee and 

embeds in the fibular head and lateral condyle of the tibia [163].  Figure (9,10). 

Similar to the rectus femoris, the quadriceps femoris group muscles participate in knee 

extension. Vastus intermedius, vastus medialis and vastus lateralis are part of 

quadriceps femoris muscle group that are attached to the diaphysis of the femur and 

insert into the patella through the quadriceps tendon; subsequently the patella is 
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connected to the patella tendon (also known as the patella ligament) and then to the 

tibial tuberosity.  

In a posterior view of the knee the popliteus muscle is short muscle that paths from the 

lateral condyle of the femur to the medial part of the tibia. The popliteus muscle 

function is limited to the rotation of the femur and tibia; in this situation the fixed bone 

determines the direction of the rotation. (Figure 10).  

The gastrocnemius and plantaris are two muscle that lie posterior to the knee, and they 

cross both the knee and the ankle. Their most effective function is plantarflexing the 

foot, but they help knee flexion as well. The gastrocnemius is two-headed muscle that 

attaches proximally to the lateral and medial condyles of the femur and distally to the 

heavy tendocalcaneus or Achilles tendon (Figure 10)  

Finally, the plantaris has short belly and long distal tendon that joins the 

tendocalcaneus in the medial area and its proximal branch is superior to proximolateral 

part of gastrocnemius muscle [15].  

 

Figure 9. Hip and knee muscles [16] 
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Figure 10. Posterior lower leg muscles [17] 

2.2.7 Meniscus 

Knee meniscus tissue approximately consists of 70% collagen, 10% non-collagen 

protein and around 10% glycosaminoglycan and glycoprotein [14]. The knee contains 

two menisci: the medial and lateral. The menisci are C-shaped shells that located 

between femoral condyle and tibial plateau. The menisci have triangular cross section 

as shown in Figure 11. The collagen fibres of menisci are aligned circumferentially 

which aid to absorb compressive forces and resist hoop stresses in the direction of 

circumference. The edge of menisci are connected to each other and to the tibia by the 

transvers ligament as shown in Figure 12 [18, 19]. 

  

Figure 11. F for femur, T for tibia, m for meniscus, pcp for capillary plexus[14] 
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Figure 12. Medial and lateral menisci [18] 

The medial meniscus is wider, thicker and more semi-circular in shape than the lateral 

meniscus. The medial meniscus is connected to the deep medial collateral ligament 

and it also has a connection to the knee capsule, rendering the medial meniscus 

immovable [164].  

On the other hand, the lateral meniscus is more like a circle, and in contrast to medial 

meniscus, it shows a different shape, size, and thickness. Additionally, the lateral 

meniscus is not attached to lateral collateral ligament and the connection to the knee 

capsule is disrupted by popliteus tendon that is between it and the LCL. For these 

reasons, the lateral meniscus is much more movable than medial meniscus [14, 18]. 

The fixed medial meniscus causes less compensation of joint forces and angular 

movement, and thus the lateral meniscus has the higher rate of injuries [20]. Therefore, 

any loss in the lateral meniscus could affect the stability of the knee. During the 

anterior translation of the tibia on the femur, the lateral meniscus provides more 

stability than medial side [21, 22].  

As shown in Figure 11, two meniscofemoral ligaments are hidden between the femoral 

condyle and tibia. The posterior horn of the lateral meniscus is connected to 

intercondylar field of the tibia and also attached laterally to medial femoral condyle. 

The anterior meniscofemoral ligament that sits anterior to posterior cruciate ligament 

is known as the ligament of Humphrey, and the posterior meniscofemoral ligament is 

termed the ligament of Wrisberg [18, 19, 23]. Only 46% of people have both of these 

ligaments but 100% of people have at least one of them [18].    
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2.2.8 Bursae 

A bursa is a synovial fluid sac between moving structures with the purpose of 

decreasing the wear and tear of those structures and act as momentum arms during 

knee movement. The knee joint has three bursae that are close to the patella; the 

suprapatella, prepatella and inferapatella bursae. The suprapatella bursa lies between 

quadriceps tendon and the femur. The prepatella bursa is located between the patella 

and the skin. The infrapatella bursa is divided in to deep and superficial regions. The 

deep sac lies between the tibia and the posterior area of patella tendon, whilst the 

superficial sac separates patella ligament where meet tibial tubercle and the skin. 

Moreover, the bursa that is not adjacent to the patella is gastrocnemius-

semimembranosus bursa. Therefore, the semimembranosus bursa is located at 

posteriorly to the knee joint enclose by the semimembranosus muscle and head of the 

gastrocnemius [24]. The schematic diagram of bursae of the knee is illustrated in 

Figure 13. 

 

Figure 13. Four bursea in the knee joint[25] 

 

2.3 Knee movement  

The knee is a synovial or diarthrotic joint, with a high degree of movement. There are 

six different types of synovial joint in the body such as hinge, pivot, condyloid, saddle, 

ball and socket and gliding; the knee is hinge-like joint in which a convex surface 

(femur) moves on the concave surface (tibia). Maintenance of the alignment of the 

knee completely relies on connective tissue due to the lack of bony constraining 

anatomy. The knee is movable in all three planes (frontal, sagittal and transverse 

planes) hence it has six degrees of freedom, which are three (x, y, z direction) 

translations and three rotations, figure15.The highest range of knee motion is flexion-
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extension about 145° [26]. These motions can be controlled by static internal structures 

as well as dynamic external structures whilst maintaining knee stability.  

2.3.1 Flexion-extension 

Flexion in the knee occurs when the angle between the leg and thigh decrease, and 

with an increase in the same angle, the extension happens.  

 

Figure 14. knee flexion- extension angles [15] 

 

Figure 15. knee six degree of freedom [14] 

 

Simultaneously with flexion and extension, another kind of movement is noticeable, 

which is sliding and rolling. Sliding of the femur on the tibia happens during knee 

flexion. If sliding does not occur and rotation occurs about the contact point, then the 

posterior metaphysis of the femur is subjected to impingement (figure16A). On the 

other hand, if rolling occurs and no sliding, the femur will roll off the tibia (figure16B). 

However, realistic knee motion involves both rolling and sliding concurrently 

(figure16C). The relation of sliding and rolling is not constant and are related to 

anatomy of joint and with the ACL as well as PCL. Therefore, some researchers 

believe that pure sliding happens at the last part of flexion and pure rolling appears at 

initial flexion [14].   
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Figure 16. rolling and sliding of knee joint [14] 

 

2.3.2 Abduction – Adduction (Varus- Valgus)  

During normal knee gait cycle are small rotations in the frontal (or coronal) plane 

which are termed varus-valgus movement. The degree of this motion depends on varus 

or valgus shape of native knee. This movement is also related to the amount of flexion-

extension in this regard at the full extension where the femur and tibia are locked, the 

varus-valgus is prevented, and on the other hand, when the knee is flexed at 30° this 

motion is at its highest level, although it is only few degrees [14, 26].  

2.3.3 Internal-External rotation and the Screw-Home Mechanism 

As the knee move from flexion to extension, the tibia rotates externally at the same 

time, this is called screw-home mechanism. The degree of this rotation is under study 

yet, however Zatsiorsky [26], believes this coincident rotation occurs mostly at 

finishing 30° of extension. Additionally, axial rotation shows independent movement 

from flexion-extension, when the knee is flexed between 30° to 150° [26]. It is 

considerable that the direction of tibial rotation is not fixed and is relevant to the prior 

position of tibia before extension. If the tibia during flexion is rotated externally, then 
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it rotates internally during knee extension, which is reversed to the definition of the 

screw-home mechanism.  

 

Figure 17. Screw-home mechanism [26] 

2.4 Knee disease  

Frequent knee injuries are anterior cruciate ligament (ACL) tear and rupture, meniscal 

tears, patellofemoral pain syndrome (PFPS) and runner's knee. However, the main 

knee disease that leads to knee arthroplasty is osteoarthritis. Osteoarthritis is a 

degenerative joint condition that results in joint pain and stiffness as the articulating 

cartilage is worn away [165].  

2.5 Knee stability 

Instability is not a specific knee disease, but rather a common symptom or presentation 

of several knee conditions. Knee instability can occur due to various factors such as 

ligament injuries, cartilage damage, muscle weakness, or misalignment of the bones. 

This can cause the knee to give way or feel unstable, leading to discomfort, pain, and 

difficulty in performing daily activities. In some cases, knee instability can progress 

and lead to further injury if left untreated.  

In order to accurately and preferably interpret knee stability, it is vital to clearly define 

the common terms of the knee motion. In other words, the terminologies found in the 

literature do not show commonality. In this regard, terms such as instability, laxity, 

disability will be redefined according to the general agreement of the best definitions 

in this section. 

Generally speaking, movement of the knee joint with respect to the resistance of one 

or more ligaments is defined as laxity. The capability of the knee joint to guide a 

movement or to preserve a position is defined as knee stability [21]. Thus, instability 
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is the inability to guide movement or maintain a specific position. Instability is a 

common difficulty. Knee instability has been described as a buckling or giving way in 

osteoarthritic knee, recorded in 72% of people [27, 28]. The stability of the knee is 

maintained by muscle strength, the passive ligament and joint capsule structures. Knee 

instability could therefore be the result of muscle weakness, joint laxity and 

misalignment [21].  

The stabilisers of the knee can be divided into two categories: primary and secondary. 

Ligaments are known to be primary stabilisers coupled with muscles that considered 

as secondary stabilisers. However, they both act simultaneously.  

As mentioned earlier, ACL, posterior cruciate ligament (PCL), medial collateral 

ligament (MCL), lateral collateral ligament (LCL), popliteofibular ligament, oblique 

popliteal, arcuate popliteal and transverse all play stabilizer roles for the knee. In this 

regard, the ACL stabilizes anterior and rotational displacement, whilst the PCL 

restricts posterior displacement. In addition, the MCL stabilizes the knee medially and 

becomes tense during extension and external rotation thus limiting extreme valgus 

stress. In a similar way, the LCL has the role of stabilizing the knee laterally, resisting 

excessive Varus stress and, also, during flexion it prevents external rotation [29]. 

Similarly, the popliteofibular ligament prevents tibial posterior translation, as well as 

external rotation of the tibia on the femur.  

Significantly, the ACL is the most effective ligament in knee stabilization. It is 

responsible for 85% of the knee stability [30]; this is the reason that the ACL injured 

more frequently and investigated broadly in different aspects (anatomy, physiology, 

rehabilitation, and biomechanics) in the last decade.  

2.6 Knee surgery success rate 

In 2019, the NHS published the Patient Reported Outcome Measures (PROMs) in 

England for hip and knee replacement procedure, according to this research over 

90000 knee replacement procedures performed in the UK. Patients surveyed and asked 

to answer the following question: “How would you describe the results of your 

operation” 28.6% of the participants described it as excellent, 36% very good, 9% fair, 

and ~4% poor (Figure 18) [31]. Other recent research reported on 27372 TKR 

procedures of non-revised surgeries shows 17%  unsatisfied with the outcome of the 
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procedure [32]. Nakano et al. had a systematic review of patient satisfaction of their 

surgery results that shows more than 50% of patient’s un-satisfaction is related to intra-

operative technical factors [33]. These factors can be named but not limited to, pre-

imaging, imaging during surgery, chosen surgical approach, patient position, bone 

preparation and soft tissue handling. The imaging and the 3D model critically affect 

the approach chosen by the surgeon. 

 

Figure 18. knee surgery patients survey by NHS [31] 

The use of patient-specific, virtual models of the knee joint has become an essential 

component of computer-assisted orthopaedic surgery (CAOS) both before and during 

surgery. Over the past ten years, there has been a significant increase in the use of this 

novel robotic approach, especially in total knee arthroplasty (TKA), which aims to 

improve the alignment of arthroplasty components [4]. The critical first stage in 

computer-assisted orthopaedic surgery (CAS) is the medical image segmentation 

process. Its primary function is to segment the region of interest (ROI) accurately from 

the tissue around it, creating a complete 3D virtual picture of the patient's knee joint. 

This makes it possible to carefully arrange the placement of the implant and identify 

the precise amount of bone that needs to be removed. This method greatly improves 

process precision by customising the knee prosthesis to each patient's particular 

anatomy, lowering the risks of infection, deep vein thrombosis, and nerve injury [34]. 

Additionally, robotic knee surgery causes smaller incision during the knee procedure 

hence patients benefit faster recovery after operation.  

2.6.1 Improving Knee Arthroplasty Results (3D Modelling and segmentation)  

A quarter of patients who have knee arthroplasty may not be completely satisfied with 

the results, despite the fact that the majority of patients notice a significant 

improvement in pain and function after the procedure, 17% of patients expectation is 
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not fulfilled [32]. Some of the dissatisfaction reasons included but not limited to, 

patients still feel discomfort, their range of motion are limited, implant loosening and 

fail over time, tendons and ligaments imbalance that cause instability and pain. 

Misaligned implants and 3D models may have an impact on patients’ comfort and 

relief. Incorrect implant alignment can cause pain and restricted range of motion. 

Better results may result from the use of 3D modelling technologies during the 

planning stage of surgery to help assure correct implant alignment and soft tissue 

balance. 

3D modelling is a necessary procedure during the preoperative planning stage of 

surgery because it enables preoperative planning, which can help assure optimal 

implant alignment and soft tissue balance. Using this technology, the surgeon can 

model the patient's knee virtually in 3D, which can be utilised to plan the procedure, 

assess various implant possibilities, and simulate the patient's range of motion after the 

surgery. 

There have been numerous studies conducted to evaluate the use of 3D modelling 

technology in knee arthroplasty, and they have demonstrated that its use can help to 

improve the accuracy of implant alignment and balance of the soft tissue, which results 

in better outcomes, fewer complications, and higher patient satisfaction. [35-38] 

To create reliable 3D models of knee arthroplasty, or to plan CAOS procedures, 

segmentation is an essential step. Basically, segmentation is the process of isolating 

significant structures from background tissue in CT imaging data, such as the bones in 

the knee joint. The important structures required for successful 3D modelling are 

recovered through this segmentation method. 

Studies have demonstrated that the accuracy of implant alignment and the balance of 

soft tissue can be enhanced using 3D modelling technologies. This is closely related 

to the segmentation step because good segmentation of the knee joint components 

enables more precise implant alignment and a better comprehension of the balance of 

soft tissue during the planning stage. Hence, it will enhance results, lower problems, 

and boost patient satisfaction. The next section gives more information about 

segmentation.  
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2.7 Segmentation  

In the medical field, the segmentation term is used to separate the region of interest 

(ROI) from surrounding tissues. It plays an important role in computer-assisted surgery 

(CAS) diagnosis and treatment systems. Image segmentation process starts from a 

medical image modality such as magnetic resonance imaging (MRI), computed 

tomography (CT), X-ray, ultrasound, microscopy, dermoscopy and positron emission 

tomography then partition it into an interested organ or tissue by manual, 

semiautomatic or automatic process [39]. 

Image segmentation sub-divides into manual, semi-automatic and automatic 

processes. CT image segmentation is used excessively for medical investigation, but 

due to the divergence of morphology and reliance on specific operators and scanners, 

it involves some errors and limitations [40-42]. Although semiautomatic and automatic 

segmentation is well-validated in literatures, but the medical imaging research 

community denotes manual segmentation as the gold standard [43]. 

Manual segmentation is accurate because a radiologist or doctor who possesses the 

expertise to recognize and distinguish between various structures in the CT image data 

performs it. In addition, it is flexible and completely under control by observer. In 

challenging situations, the automatic techniques are unable to separate the structures 

of surrounding and the manual method is flexible and make segmentation achievable. 

However, It is highly time-consuming that makes the process impossible for large data 

set and also it is highly influenced by operator experience, and prone to human error 

[44].  

On the other hand, automatic segmentation algorithms make process fast for huge data 

set and prevent bias intervention of the observer. However, it is not as accurate as 

manual segmentation done by a skilled radiologist or medical professional. In addition, 

in cases with existence of noise, contrast change and artefacts, accurate segmentation 

is not easily functional. Hence, automatic segmentation is one of the most complicated 

approaches in image segmentation and analysis [45]. 

Semi-automatic segmentation is faster than manual, and it is specifically advantageous 

when dealing with large data sets. Its predefined algorithms help to avoid bias 

interference of observer [46]. In consequence, this method is preferred in this study for 
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modelling our 4DCT image of the knee joint. However, researchers believe that slow 

spread of semiautomatic segmentation could be because of the inadequate literature 

and experience on reliability and repeatability of the process [46].  

Researchers have used various software tools to assess the variability in segmentation 

results, either within a single operator or between multiple operators. These studies 

aim to compare different methods of segmentation and determine which approach 

provides the most accurate results. This can provide important insights into the 

reliability and repeatability of different segmentation techniques and help identify 

areas for improvement. These studies are crucial in advancing the field of medical 

imaging and improving the accuracy of segmentation results which some of them will 

be discussed in the section 8 of this chapter. 

Image segmentation is affected by image quality, contrast, anatomy variation, organ 

overlap and threshold level. Thresholding is one of the segmentation techniques that 

divides pixels or regions according to their intensity levels. Pixels with intensity values 

above or below the threshold are divided into various segments according to the 

threshold, which specifies a certain threshold value. Thresholding effectively separates 

the image into foreground and background regions, enabling additional analysis and 

the extraction of information. To isolate significant regions of interest and make it 

easier to read and comprehend the resulting images, thresholding is a vital stage in the 

segmentation process. This is explained more in the following section. 

2.7.1 Effect of threshold on segmentation  

The threshold level used for image segmentation has a significant impact on the results. 

It determines which parts of the image are included in the segmentation and which 

parts are excluded. The optimal threshold level depends on the specific image and 

segmentation goals. For this reason, the effect of the threshold has been studied 

previously, as will be discussed below. 

Studies have shown that the threshold level has a significant effect on segmentation, 

particularly in medical imaging such as CT and CBCT scans. For example, a study 

investigating mandible bone segmentation from CT and CBCT scans found that the 

threshold value had a significant impact on the surface [51]. They emphasized that the 

accuracy of the segmentation depends on grey-value and threshold value that is 
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operator input. Segmentation is applied on the mandible by two techniques, one 

commercial software and experienced 3D clinician. All segmented mandible is 

compared to 3D model made by high resolution laser surface scanner as gold standard. 

As a result, they found the consistency in measurements was excellent, with an 

intraclass correlation coefficient (ICC) ranging from 0.923 to 1.000. The 3D models 

produced by the commercial software group exhibited an average deviation of 0.330 

mm ± 0.427 from the gold standard, whereas the models from the Clinician's rendering 

showed a mean deviation of 0.763 mm ± 0.392. Additionally, the surface models 

obtained through both protocols tended to have larger dimensions compared to the 

reference models. 

Similarly, other studies have investigated the effect of image thresholding level on 

segmentation [50, 61-67], highlighting the importance of carefully considering the 

threshold level for optimal results. 

Recently a study by Luca Friedli [42] investigated the effect of the thresholding value 

used for cranial bone segmentation from CT and CBCT using Viewbox 4 software. 

The generated models were superimposed to a manually selected reference model and 

compared by Iterative closest point (ICP). The results show that the threshold value 

had a significant impact on the surface. They conducted the experiment with one 

person to assess intra-examiner reliability, while inter-examiner reliability remains a 

subject of inquiry. One limitation they acknowledged was the absence of a true gold 

standard reference model. 

Other researchers also investigated the effect of image thresholding level on 

segmentation for different parts of body [41, 47-53]. Since the focus of this section is 

on the threshold value's critical function in attaining efficient segmentation, a thorough 

discussion of other relevant studies has been removed for the sake of brevity, as it is 

not directly related to the main idea of this research. 

A study [41] investigates into how different segmentation techniques affect 

measurements on 3D surface models made from medical scans in terms of clinical 

differences. The study uses a laser surface scan as the gold standard for comparison 

and examines the differences between a commercial company's and a doctor's 

segmentation (DS) method. The effect of threshold-dependent techniques on 
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segmentation quality is the main topic of discussion. The findings show that the 

segmentation process is subjective and dependent on several variables, and that the 

threshold selection has a significant impact on measurement accuracy. The study 

emphasises how crucial it is to comprehend and enhance the segmentation process to 

produce 3D models that are more precise and applicable to therapeutic settings.  

Understanding of the inter- and intra-observer variability has been recommended to 

find the variability and repeatability of segmentation [42]. In this regard, researchers, 

and medical organizations always keen to find a precise, reliable, repeatable and 

accessible image segmentation algorithm to produce 3D bone models from CT or MRI 

scans. This has been studied few times in different fields such as cartilaginous bone 

tumour, upper airway, cranial one, prostate cancer, lumber spine and vertebrae [40, 42, 

54-57].  

Even though segmentation is widely and necessarily used in the medical industry, there 

are still certain limitations with it, which are discussed in the section below. 

2.7.2 Limitation and difficulties of segmentation 

To ensure that a surgical plan is founded on reliable data and computer-assisted 

surgery is successfully carried out, the knee joint image must be segmented accurately. 

To maintain the highest level of accuracy and confidence in the surgical plan, it is 

crucial to reduce the inter- and intra-observer variability, repeatability, and reliability 

of the segmentation process, which helps the surgeons in pre-operative planning and 

clinical decision making for each specific patient [58].  

During the segmentation process, the target organ or tissue is selected based on its 

morphological features, density, homogeneity, basic structure, and location. If these 

identifying parameters are weak or absent, the segmentation process may result in 

inaccurate or even impossible outcomes.  

The optimization of scans during the segmentation process is influenced by four 

factors: spatial resolution, aliasing, contrast resolution, and artifacts.  

Spatial resolution refers to the ability to detect two points in an image, leading to 

blurriness in cross-sectional images if there is insufficient spatial resolution. Aliasing 

occurs when the frequency of the sampled signal is not in line with the sampling 
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frequency. In other words, aliasing happens when a continuous signal like an image or 

an analogue audio waveform is sampled too slowly to catch its highest frequencies. 

Contrast resolution refers to the ability to differentiate between two densities amidst 

noise background. Artifacts result from CT image reconstruction that intersects with 

one or two high contrast faces, appearing as high pitches in the images [59].   

The segmentation process will be challenging as well if the demanded structure is 

connected to the surrounding tissues. The perimeter surface of each tissue can be 

determined by establishing the threshold value, manually or by an appropriate 

algorithm [59].  

Furthermore, the accuracy of computerized segmentation can be impacted by images 

with poor contrast and complex tissue geometry. The bone mineral density, which will 

be discussed in more detail later, also plays an important role in determining the quality 

of the scans. Pathological conditions, such as degeneration and arthritis, can also result 

in uncertainty in the segmentation boundaries [60].   

Extensive use of segmentation in medical imaging leads to development of different 

software and algorithms. Several software packages are available in the market for 

medical image segmentations, Included and not limited to ITK-SNAP, 3D Slicer, 

MATLAB, DeepMedic, Vaa3D, Amira. Some are free and open source while others 

are commercial and need licenses. This study utilizes ITK-SNAP as other researchers 

used this software for the segmentation and it is open source software. This software 

will be described in detail in the following sections. 

This is a popular open-source software application used for medical image 

segmentation. This software is used for the segmentation process of this study for the 

following reasons: ITK-SNAP is known for its user-friendly interface, making it 

accessible to researchers and clinicians who may not have extensive technical 

expertise in image processing. The graphical user interface (GUI) allows users to 

interactively segment and visualize medical images. Also, it supports a variety of 

medical image formats, including DICOM, NIfTI, Analyze, and several others. This 

flexibility in file format support makes it convenient for working with different types 

of medical imaging data. It is a powerful and widely used open-source image analysis 

toolkit. The software offers 3D visualization capabilities, allowing users to view and 
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manipulate volumetric data in three dimensions. This is crucial for understanding the 

spatial relationships within medical images and verifying the accuracy of 

segmentations. Finally, the author of this thesis was familiar with this software.    

2.7.3 ITK-SNAP  

ITK-SNAP, also known as the Insight segmentation and registration Toolit (ITK) is 

an open-source software package for medical image segmentation. The method was 

thoroughly explained by Yushkevich et al. [46] who discussed the utilization of active 

contours, commonly referred to as "snakes," for separating anatomical structures in 

3D medical images. The authors proposed a user-guided active contour method that 

incorporates user input to improve the efficiency and reliability of the segmentation 

process. 

The conventional active contour approach for medical image segmentation can 

sometimes be slow and yield inaccurate results when the object boundary is not well 

defined. The authors suggest an active contour method, which employs user input in 

the form of seed points to get around this. These seed points help direct the contour 

towards the object boundary and lead to fewer iterations needed for the contour to 

converge, resulting in improved efficiency and accuracy. 

The authors of the study evaluated the proposed user-guided active contour method on 

3D scans of the liver and brain. They discovered that their method significantly 

decreases the number of iterations needed for the contour to reach convergence, 

resulting in more accurate segmentation outcomes due to the initial seeds is added by 

the operator. However, the success of the segmentation heavily relies on the quality of 

the input image data. The authors also noted that the incorporation of user input makes 

the method more resilient to noise and capable of handling images with limited 

contrast. This is because the user input helps guide the contour towards the object of 

interest. 

ITK-SNAP offers semi-automated segmentation, which involves human interaction. 

This segmentation process is based on classic algorithms for 3D active contour 

evolution. It involves the evolution of one or more contours around the object of 

interest, as shown in Figure 19. The initial contour is drawn, and it evolves over time 

to outline the entire region of interest. ITK-SNAP can process grayscale images and 
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perform image-processing operations to distinguish different tissue types based on 

their Hounsfield unit values. The evolution contour can be shown by the following 

equation [46]: 

𝜕𝐶(𝑢,𝑣;𝑡)

𝜕𝑡
= 𝐹�⃗⃗�    Equation 1 

Where 𝐶(𝑢, 𝑣; 𝑡) is evolving contour close surface, which is dependent on time, 𝑡, and 

spatial variables 𝑢 and 𝑣. In addition, �⃗⃗�   is the unit normal to the contour and 𝐹 means 

the sum of various forces, internal and external forces. Internal forces are from the 

geometry of the contour and try to regulate the shape of it. External forces spread 

information of the segmented image until the boundaries. In other words, distribution 

of forces outwards the foreground and inward over the background continue until the 

active contour get to the equilibrium at boundary of the region (Figure 20)  

 

 

Figure 19. evolution of initial point over time [46] 

 

 
Figure 20. external and internal forces makes equilibrium for the right contour [61] 
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2.7.4 Effect of mineral density and Hounsfield unit 

Radiologists analyse Computed Tomography (CT) images by using the Hounsfield 

Unit (HU), which is a relative measurement of radiodensity. The CT reconstruction 

process creates a grayscale image by utilizing the radiation absorption/attenuation 

coefficients within a tissue. The X-ray beam's absorption or attenuation is proportional 

to the tissue's physical density, which determines the Hounsfield Unit through a linear 

transformation of the initial linear attenuation coefficient. In this scale, distilled water 

is set to 0 HU and air is set to -1000 HU (at standard pressure and temperature). Bones 

can have HU values up to 1000 and metals such as steel or silver can reach over 3000 

HU. The Hounsfield scale appears as grey tones on the screen, where low-density 

tissues have negative HU values and appear dark, while high-density tissues have 

positive values and appear bright due to increased X-ray beam absorption.[62] 

After realising the importance effect of the Hounsfield Unit and threshold in 

segmentation as well as the effect that segmentation has on 3D modelling and 

computer-assisted surgery, it is crucial to investigate how segmentation is evaluated. 

Various evaluation techniques will be discussed in the following section. 

2.8 Segmentation assessment metrics 

Two well-liked similarity measures, the Dice similarity coefficient (DSC) and the 

Jaccard index (JI), are employed in a wide range of applications, including image 

processing, data mining, and machine learning. The similarity between two sets of data 

is determined using both measurements. The characteristics of these two metrics, their 

mathematical formulations, and their applications in many domains is examined in this 

section as well as CloudCompare and Hausdorff Distance (HD). 

2.8.1 Dice similarity coefficient (DSC) 

In image processing, the Dice similarity coefficient [63] (also called the Srensen-Dice 

coefficient) is a similarity metric that is frequently employed. It is calculated by 

measuring the overlap of two comparing segmentations, divided by sum of them, 

multiply by two. The following formula shows dice Coefficient for data A and B: 

Dice(A,B) = (2 |A ∩ B|) / (|A| + |B|) 

Equation 2 
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Figure 21 showing schematic diagram of DSC formula, where A is blue entity and B 

is red entity. Where |A| is total number of points in segmentation A and |B| is total 

number of point in segmentation B. |A ∩ B| denotes for intersection of two data sets, 

which is identical points between set A and B. The Dice similarity coefficient runs 

from 0 to 1, with 0 represents no similarity and 1 denotes perfect similarity between 

the two sets. This has been used in many image evaluations [39, 58, 64]. 

 

Figure 21. Dice similarity schematic diagram [65] 

 

2.8.2 Jaccard Index (JI) 

Jaccard index (also known as the Jaccard similarity coefficient) is also used for 

evaluating segmentation similarity [66]. It is the intersection of two comparing 

segmentation divide by union of them. Jaccard Index is used in many fields as well as 

medical segmentation. It defines similarity between two sets of data A and B by the 

following equation: 

Jaccard (A,B) = |A ∩ B| / |A ∪ B| 

Equation 3 

Where |A ∪ B| is union of A and B, in other words it is the combination of points in A 

and B, all point that are in either of them or in both. In addition, |A ∩ B| is the 

intersection points of these two sets. Same as Dice similarity coefficient it ranges from 

0 to 1, that 1 represents best overlap.  
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Jaccard (A,B)= 
|𝐴 ∩ 𝐵|

 |𝐴 ∪ 𝐵| 
 =  

|𝐴 ∩ 𝐵| 

⎸𝐴 ⎸+⎸𝐵 ⎸−|A ∩ B|
 

Equation 4 

Both metrics used to measure similarity in different fields, the main difference between 

them is that Dice coefficient is more sensitive to false negative and Jaccard index in 

more sensitive to false positive.  

In the context of similarity metrics, a false negative in Dice coefficient would mean 

that elements that are similar are not being identified by the metric. The Dice 

coefficient is more sensitive to this, meaning that it might give a lower score if there 

are elements that are missed. In addition, a false positive for Jaccard index means that 

elements are being considered similar when they are not. The Jaccard index is more 

sensitive to this, meaning that it might give a lower score if there are elements that are 

incorrectly identified as similar [66].  

The graphical comparison of the segmented 3D model is also important step in the 

validation and assessment of the accuracy of the segmentation process and it is visually 

more visible. This can be achieved by using a software tool called CloudCompare to 

analysis the point clouds of the 3D model. The visualization features in CloudCompare 

make it easier to identify any discrepancies or inaccuracies in the segmented model. 

The following section provides a more detail about CloudCompare. 

2.8.3 CloudCompare  

CloudCompare is an open-source software that specialises in comparing and analysing 

differences between 3D point clouds. Unlike traditional mesh-based comparison 

methods, CloudCompare views all entities as points. It converts meshes into point 

clouds with similar topology. Each triangle is made of three points called vertices. By 

doing so, it takes advantage of octree-based calculations to compute differences 

quickly, even with large numbers of points.  

This software creates octrees from cloud points before calculating the difference. 

Octrees makes the calculation of millions or billions of cloud points faster. For 

example it calculates the distance of 3 million points to 14000 triangles in 10 seconds 

[67].  
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An octree is a tree-structured data format that subdivides 3D points into smaller groups 

of nearby points, with each node having eight children. Each octree node can either be 

empty or hold an object. (Figure 22) This structure allows for faster searching and 

manipulation of large 3D datasets. [68]. 

         

Figure 22. (a) input cloud point, (b) octree division of points [68] 

CloudCompare compute the distance using iterative closest point. For each point of 

compared cloud, it searches for nearest neighbour point of reference cloud and 

manipulate the distance by Euclidean [69]. The results are effective to number of 

points and selecting which point cloud is reference or compared. The Euclidean 

distance between two points in 3d space is simply an extension of Pythagorus’ theorem 

into 3 dimensions, and also known as the 2-norm [166]. 

2.8.4 Hausdorff Distance (HD) 

Hausdorff Distance metric used to quantify similarity or dissimilarity between two sets 

of data points using mathematical concept. It calculates maximum distance of the point 

in one set to the nearest point on the other set (Figure 23) [70].  

ℎ(𝐴, 𝐵) = max(d(aϵB) , (min 𝑑(bϵA))) 

Equation 4 

Where a is point of set A; b is point of set B. Also, d(aϵB) is the distance between point 

a from set A and nearest point in set B. likewise, d(bϵA) is the distance between point 

b in set B and nearest point is set A. 
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However, the maximum property function makes the Hausdorff distance an 

asymmetric function: h(A, B) is not necessarily equal to h(B, A). This leads to a more 

general equation called forward and backward Hausdorff distance of A,B, which takes 

the maximum of h(A, B) or h(B, A): 

𝐻(𝐴, 𝐵) = max (h(A, B), h(B, A)) 

Equation 5 

 

Figure 23. Iterative closest point [67] 

The Hausdorff distance offers a measure of dissimilarity in practical applications that 

considers both the locations and configurations of the points in the sets being 

compared. It is a helpful tool in many geometrical and computational tasks because it 

captures the broad differences between the shapes or distributions of points. 

2.9 Segmentation evaluation 

Segmenting medical images is an important step in both medical diagnosis and 

treatment. As a result, assessing the segmentation process is persistent concern for the 

researchers and surgeons [71]. Some of these evaluations are detailed below. 

Semiautomatic and manual segmentation of knee cartilage is evaluated by Yu [72]. In 

comparison to manual segmentation, the study indicated that semi-automatic 

segmentation produced decreased intra-operator variability. The study also suggests 

that semi-automatic segmentation may be a more accurate technique for segmenting 

cartilage in the knee. 

https://www.cloudcompare.org/doc/wiki/index.php?title=File:NNDistancePrinciple.jpg


40 

In addition, another study rated semi-automatic and manual segmentation but in the 

vascular field. Luzon [43] compared the results of manual and semi-automated 

segmentation techniques while building 3D reconstructions of the central mesenteric 

vascular models (A condition known as mesenteric vascular disease occurs when the 

arteries in the abdomen that provide blood to the intestines narrow as a result of the 

accumulation of plaque. The outcome is that the intestines receive insufficient blood 

flow). This study performed semi-automatic segmentation with Mimics software and 

manual segmentation with 3-Matic software, respectively, and compared the outcomes 

with CloudCompare software. The findings demonstrate that although the quantitative 

outcomes are satisfactory numerically, the qualitative outcomes are unclear and may 

lead to misunderstanding during surgery. The results of the study demonstrate the 

necessity for further improvement of the segmentation process to increase the 

precision and clarity of the outcomes.  

Argüello [73] compared three different open-source segmentation software for bone 

structure analysis. The software under review is semi-automatic region growing of 3D 

Slicer, active contour segmentation of ITK-Snap and automatic segmentation of In 

Vesalius. They compared the outcomes of each software with CloudCompare. The 

effectiveness of the software was assessed using a segmentation of vertebrae. The 

outcomes showed that 3D Slicer's Region Growing approach had the lowest volume 

inaccuracy and was the fastest.  

Soodmand [74] focused on a comparative analysis of four segmentation software 

programs and a 3D scanner to assess the accuracy of segmented femur models. 

Reference femur model created from an optical 3D scanner and other done by seven 

operators using Mimics, Amira, YaDiv and Fiji Life-Line software. This study used 

specific value of Hounsfield Unit for bones on CT images. They concluded that the 

average deviation of the segmented model done by expert operators from 3D scanner 

is lower than 0.79mm, which they believe is not a significant discrepancy. 

Additionally, this study emphasises the importance of validity of CT data 

reconstruction process and usage of this in various medical procedures. 

Intra- and inter- observer reliability and reproducibility is clearly important, and some 

studies have investigated these with regard to segmentation, as detailed below. 
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The accuracy of manually segmenting femoral metastatic lesions in medical imaging 

has been assessed [75]. This study evaluated both intra-operator reliability, which 

measures segmentation consistency within the same operator over time, and inter-

operator reliability, which measures segmentation consistency between different 

operators. According to the study's findings, femoral metastatic lesions can be 

manually segmented with moderate to good inter-operator reliability but low intra-

operator reliability. The study concludes that additional investigation is required to 

increase the consistency of manual segmentation and provide more dependable 

techniques for locating and quantifying femoral metastatic lesions. 

Intra- and inter-observer reliability of measurements of the calcaneus bone has been 

studied by Misselyn [76]. In this study, the 3D segmentation of CT image of the 

cancellous tarsal bone is constructed with Mimics (MaterialiseTM, Leuven, Belgium). 

The study compares the results by Intraclass Correlation Coefficient (ICC). ICC of 

intra-observer showed upper class range, and ICC of inter-observer was good. 

However, the study comes to the further conclusion that strengthening measurement 

reliability requires thorough training and standardisation of measurement techniques. 

This means that to guarantee consistent and reliable results, it is crucial that the 

observer taking the measurement be properly trained and conversant with the 

measurement technique. Standardizing the measurement methodology will also enable 

various observers to collect measurements in a consistent way, enhancing inter-

observer reliability.  

A study [77] assessed the repeatability and inter- and intra- observer reliability of the 

measurement of total knee arthroplasty (TKA) component rotation by two-

dimensional CT scans. Three independent doctors assessed 52 CT images of TKAs 

that were being considered for revision surgery. The findings showed that the femoral 

component had poor inter- observer reliability, while the tibial component and 

combined rotation measurements had strong inter- observer reliability. The femoral 

component's intra- observer reliability was good, while the tibial components and 

combined rotations were both very good.  

A limitation within the process of semi-automatic knee joint segmentation arises from 

the inherent variability in knee anatomy. Developing a segmentation technique is a 
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significant challenge with anatomical variations observed across individuals. 

Accordingly, subject-specific semiautomatic segmentation method is a promising 

approach that can make unique anatomical characteristics of each individual's knee 

joint. 

However, this review has highlighted that minimal research has specifically focussed 

on the assessment of knee joint segmentation, despite the prevalence of CAOS 

procedures of the knee. Nevertheless, other study have been investigated which can 

provide insight, namely lung cancer cell segmentation [78], evaluation of 

segmentation of bone from micro-CT [57], assessment of bone segmentation of cone-

beam CT [79], evaluating of imaging software of mandibular condyle [80] and 

segmentation accuracy of long bone [81]. Therefore, to the author’s knowledge, this is 

the first time the semiautomatic segmentation of knee joint is being evaluated, 

including its intra- and inter- variability. 

ICC has been utilized in several of the referenced studies. The subsequent section 

provides an explanation of it, and it will be employed in upcoming chapters for the 

analysis of large datasets. 

2.9.1 ICC Intraclass Correlation Coefficient (ICC) 

In the context of reliability studies, the Intraclass Correlation Coefficient (ICC) is a 

statistical metric used to evaluate the consistency or reliability of measurements 

produced by various observers or methodologies. ICC is frequently used in 

engineering domain and is especially helpful when handling continuous or 

proportional data. It offers a means of calculating the percentage of overall 

measurement variability related to real differences between subjects or objects as 

opposed to measurement error [82]. The ICC is a value between 0 and 1, where values 

below 0.5 indicate poor reliability, between 0.5 and 0.75 moderate reliability, between 

0.75 and 0.9 good reliability, and any value above 0.9 indicates excellent reliability 

[82]. 

ICC could be different based on the “Model” (1-way random effects, 2-way random 

effects, or 2-way fixed effects), and the “Definition” of relationship considered to be 

important (consistency or absolute agreement) [82]. 
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2.10 Finite Element Analysis  

In several disciplines, including biomechanics, structural engineering, and medical 

research, segmentation is a crucial step before Finite Element Analysis (FEA). 

Segmentation is one of the important step to produce a precise representation of the 

objects under analysis, which separates the relevant structures of interest from the 

surrounding background tissue. FEA enables the analysis of complicated mechanical 

behaviours, such as stress distribution, deformation, and load-bearing capacities, by 

breaking the segmented model into smaller pieces and producing a mesh. Since the 

geometry and material characteristics of the objects are precisely represented in the 

final finite element model due to effective structure segmentation, FEA simulations 

can provide trustworthy predictions and insights. In this regard, this section contains 

more information about Finite element analysis contextualised to the knee. 

When the biomedical problems are difficult, impossible, too expensive and/or time 

consuming to be solved analytically, computational modelling often offers a 

mathematical approach that can provides approximate solutions. Virtual modelling, 

computer simulation, and other terms are also used to refer to computational 

modelling. Due to considerable advancements in both software and hardware, 

computational approaches have become very popular. It is very useful tool to 

understand the physics systems. It estimates the model behaviour under embedded 

boundary conditions and supports. This approach divides the complex engineering 

problems into smaller and more manageable pieces called finite elements. Finite 

element method applies to skeletal system, analyse dynamic activities and motions, 

loading, and mechanics analysis of stress and strain at tissue levels.  

In the following the use of finite element modelling is justified for the knee joint, and 

some literature that applied finite element on knee is mentioned: 

2.10.1 Finite element analysis of the knee joint 

 
The knee joint is one of the most frequently used parts of the body, bearing 4 to 7 times 

a person's body weight during daily activities such as walking or running, and up to 24 

times during jumping [2]. Despite this heavy usage, the knee has supporting elements, 

including ligaments, tendons, meniscus, bursae, muscles, and the knee capsule, that 

help protect it from injury or stabilize it. However, damage to these soft tissues can 
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cause instability and pain, as seen in 72% of osteoarthritic knees with self-reported 

buckling [27]. Increased joint laxity, resulting from injury or genetic conditions, it also 

linked to instability. 

In-vivo measurement of knee joint is not practical or possible, while ex-vivo 

measurement is expensive and limited by the availability of cadavers. Therefore, 

computer models are often used to simulate knee joint mechanics, as they are reliable 

and cost-effective. 

For decades, researchers have created mathematical models, including finite element 

models, to analyse the complex knee joint. Although the complexity of these models 

varies, they are all time-consuming due to the intricate reproduction of ligaments and 

cartilage, requiring significant computational power and time to run simulations. 

Additionally, they are not easily accessible for most pathological and mechanical 

studies. There is also no consensus among researchers regarding the properties of soft 

tissue materials in the knee. 

The study of knee biomechanics through experimental means is often challenging due 

to the high cost and time investment, as well as the difficulty of obtaining accurate 

stress and strain readings, especially in the case of rare or non-reproducible native 

tissue. To overcome these obstacles, the FEM has become a crucial tool in 

biomechanics for investigating the mechanics and kinematics of various body parts 

and joints [83]. There are several commercially available software programs, such as 

ANSYS, ABACUS, LS-Dyna, and COMSOL, that use algorithms to break down 

complex problems into smaller, manageable pieces and solve them based on their 

inter-relationships [84]. 

In the analysis and testing of the human knee joint, FEM plays a vital role. It can 

demonstrate stress points within the joint, anticipate mechanical activity under 

different loads and conditions, simulate and analyse the behaviour of implants prior to 

surgery, test the implant's response post-surgery, and help identify joint problems that 

cause pain [85-88].  

The Finite Element Method (FEM) has a long history of use in knee joint analysis, 

beginning with the work of Wismans et al . [89] in 1980, who established a 3D model 
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of the joint using FEM and concluded that the computed internal and external rotations 

during flexion-extension were consistent with experimental results. Similarly, 

Andriacchi et al. [90] in 1983 found that knee movement under loading was largely 

dependent on constraints to a few degrees of freedom, and Essinger et al. [91] in 1989 

discovered that the movement of condylar type knee was shaped by the prosthesis's 

articular surface shape and figure. 

Blankvoort et al. [92] in 1991 used a 3D mathematical model of the knee joint to 

investigate the behaviour and movement of the joint with respect to articular contact, 

considering both rigid and deformable contact. The material properties of ligaments 

and cartilage were sourced from literature. In recent years, 3D models of the knee joint 

have been generated from Magnetic Resonance Imaging (MRI) and Computed 

Tomography (CT) scans. For example, FEM models have been constructed from 

manually acquired CT images of cadavers by Haut et al. [93] in 1997 and by Donahue 

et al. [94]. Soft tissue was digitized using a laser-based 3D coordinate system. 

However, this system can only digitize the soft tissue of cadavers, making it impossible 

to use on live human knee joints. A recent review of the FEA of the knee joint has 

been published [95]. Figure 24 shows the steps involved in constructing a finite 

element model of the knee joint and mesh generation for further analysis.  

 

Figure 24. Making 3D model of knee joint from CT scan images.   Left [96], middle [97], right [98] 

 



46 

Recently, researchers, Maffulli, and Rohita [99, 100] used finite element analysis to 

represent cartilage as a non-linear anisotropic material, which allows for the variation 

of material properties. This has advantages over conventional linear elastic isotropic 

material models, leading to improved physical model and more reliable and accurate 

behaviour assumptions. However, the complexity and expenses associated with this 

method limit the modelling of tissues in isolation, which only considers relevant 

assumptions and excludes the rest. This approach is suitable for certain cases but has 

limitations when modelling osteoarthritis in the knee joint, as it is a disease affecting 

the entire joint and requires investigation of the entire knee joint [101]. 

Mononen et al. [102] modelled the knee joint with the help of nonlinear cartilage, 

incorporating viscoelastic or time-dependent components. Other studies have 

represented cartilage as a fibril-reinforced poroviscoelastic material with different 

properties, for investigating chondrocyte compression during walking and cartilage 

deformation under compression. Dabiri [103] modelled cartilage as fibril-reinforced 

to examine fluid pressure and inhomogeneity of surrounding tissues. Meng [104] 

modelled cartilage as a fibril-reinforced biphasic material to investigate knee joint 

contact performance under body weight. 

Studies [105-108] suggest that changes in age, gender, physical activity, and disease 

can alter material properties, leading to unreliable experimental quantities over time. 

This study aims to find material properties to represent all soft tissues around the knee 

joint. Many studies [108-110] used the ACL, PCL, LCL, quadriceps tendon, and 

patella ligament as ligament material properties. Shepherd [111] modelled cartilage 

material properties using human femoral condyle and tibial plateau samples. Some 

researchers [112] faced a lack of appropriate data and used bovine menisci samples for 

modelling soft tissue material properties, while LeRoux [113] used canine meniscal 

material properties. Other studies [114, 115] adopted material properties from a 

previously published review article. Kazemi [116] modelled the knee joint using MRI 

and adopted material properties from bovine humeral head cartilage as well as human 

menisci and tibial plateau.  
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Chapter 3 Research Aims and Objectives 

The literature review in chapter two has highlighted the importance of developing 

accurately 3D models of the knee joint for a variety of applications. Existing finite 

element models of the knee detail each anatomical structures separately, which is time 

consuming and computationally complex to solve the multiple contact regions. A 

recent study [4] suggested a way forward in which the soft tissue envelope surrounding 

the bony anatomy was considered a single material.  

If such a method proves useful in modelling knee joint kinematics and kinetics, then 

the potential for this approach is very strong. However, due to the contiguous boundary 

between bone and soft tissue small variations in bony anatomy may give rise to 

localised stress concentrations in resulting analyses. It would therefore be of wise to 

investigate sources of variability in constructing such a model. These sources mainly 

are 

 Inter- and intra- observer repeatability  

 Thresholding level 

Such an understanding gained will also be of interest to the wider biomechanics 

community modelling the knee and segmenting.  

With this in mind, this thesis adopts the following aims: 

3.1 Primary Aim 

Research question: What is the impact of using simplified soft tissue models, 

specifically an incompressible, isotropic, homogeneous, elastic cylinder 

representation, on finite element simulations of knee joints? 

In conventional knee joint models each ligament and lubricants must be defined 

separately, which takes lots of time for both the person and the model to be constructed. 

This study aims to use a more effective method to handle this problem by substituting 

the knee capsule, muscles, tendons, ligaments, bursae and meniscus with a single, 

incompressible, isotropic, homogeneous, elastic cylinder. This all-encompassing 

cylinder, which has unique material properties created to replicate the behaviour of the 
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soft tissues, includes all the knee capsule parameters in its representing of the soft 

tissues.  

Consequently, the effect of repeating segmentation and existence of small change in 

the surface is investigated on the knee model, and stress and strain are obtained.  

The primary aim is to replace the soft tissue around the knee with an isotropic, 

incompressible, homogeneous, elastic cylinder. This will be useful for clinical research 

and analysis in the following principle: 

1. Simplifying complex soft tissue model and properties leads to reduce 

computational time and complexity   

2. Reduce time consumption during ligament or other soft tissue modelling.  

These sub-aims bring the following objects: 

Objective 1. Inspect finite element literature. 

Objective 2. Produce two 3D knee model from CT by available software and the 

bespoken soft tissue environment. 

Objective 3. Apply restraint, support, and force in finite element software. 

Objective 4. Find the effect of two different segmentation on the simulation results. 

These arises three more aim to investigate.  

 

3.2. Secondary Aim 

Research Question: How thresholding affects the segmentation of 4D CT images 

of knee joint?  

Thresholding is a common technique used in image processing to segment an image 

into foreground and background regions based on the intensity values of the pixels. In 

medical imaging, the threshold value is used to separate the relevant structures, such 

as the bones and tissues of the knee joint, from the surrounding tissue or background. 

The choice of threshold value can have a significant impact on the outcome of the 
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segmentation, as different values can result in different levels of detail and accuracy 

in the resulting 3D model.  

Reliable segmentation required a proper threshold value. Therefore, finding the 

optimal threshold level is an important step in the segmentation process, as it ensures 

that the resulting 3D model accurately reflects the structures of interest and is suitable 

for further analysis and interpretation. The effect of different thresholding values on 

the outcome 3D model of the knee joint can be evaluated by comparing the models 

generated using different threshold values, and assessing their accuracy, consistency, 

and suitability for the intended application. 

The secondary aim is to find the optimum threshold level for the tibia, femur, and 

patella in order to get the most advantageous segmentation from the available CT 

image in this study. This is one of the primary steps for image segmentation and further 

analysis in this study. 

To attain this goal, the following research goals were chosen: 

Objective 1. Review literature about the threshold value and its effect on the 

segmentation 

Objective 2. Finding the optimum threshold level for each bone 

Objective 3. Compare it to the manual segmentation. 

Objective 4. Implement found threshold level, perform the semiautomatic 

segmentation, and produce the knee joint 3D model.   

 

3.3 Tertiary Aim 

Research question: How repeatable and consistent is the segmentation process 

that is done by one person?  

The third mission here is to perform a Mock test for the Intra-reliability of the 

semiautomatic segmentation. For this purpose, the author performs the segmentation 

of the same femur joint CT image five times and compared them in CloudCompare. 

By considering the number of points in each segmentation and comparing them, the 
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total number of identical points between two 3D models, the percentage of identical 

nodes with respect to total nodes, the number of non-identical nodes, and the absolute 

difference between them are obtained. The measurements have been determined by 

the difference between the surfaces in a point-by-point manner. 

The tertiary aim is to perform the repeatability and reliability of the semiautomatic 

segmentation process. To find out the intra- observer variability.  

Objective1. Study the literature concerning bone intra- observer variability. 

Objective2. Using the optimum threshold level found previously, segment the CT 

image of the knee joint five times and produce 3D model. 

Objective3. Produce step-by-step protocol to submit to the ethical department and use 

them for the next experiment.   

Objective4. Compare all the fifth segmentation by CloudCompare  

Objective5. Assess the reliability of the semiautomatic segmentation process when 

performed by a single person repeatedly. 

 

3.4 Quaternary Aim 

Research question: How reliable and repeatable is the semiautomatic 

segmentation process is?  

ITK-Snap is a programme that is frequently used in the medical imaging sector. It 

offers a user-friendly interface and cutting-edge features for automated segmentation. 

To verify whether the semiautomatic segmentation method employing ITK-Snap is 

useful in clinical and research settings, it is critical to assess its repeatability and 

reliability. This study attempts to evaluate the repeatability and reliability of the 

automated segmentation process. Researchers and healthcare practitioners can decide 

whether ITK-Snap is appropriate for their particular applications by being aware of the 

tool's advantages and disadvantages. 

The quaternary aim is to perform the inter-observer reliability test on semiautomatic 

segmentation. This is the main purpose of this study, which is subdivided into previous 
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aims as well. The experiment can help researchers and clinicians in the diagnosis 

investigation of knee joints in these principles: 

1. Accurate pre-operating planning and confident surgery for surgeons  

2. Personalized treatment respect to individual patient needs 

3. Enhance surgical outcome 

4. Minimize the invasive surgery 

For these aims, the following objectives are considered: 

Objective 1. Perform a thorough analysis of the literature related to inter- and 

intra- observer variability. This should be related to the bone as much as 

possible.  

Objective2. Obtain the ethical approval to recruit fifteen participants to 

perform the segmentation.  

Objective 3. Perform five times segmentation by fifteen participants and collect 

the raw data. 

Objective 4. Write the MATLAB code to do the mathematical comparison. 

Objective5. Graphically compare all the results in CloudCompare  

Objective6. Import the data to SPSS IBM for statistical analysis and find Inter 

correlation coefficient. 
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Chapter 4 Effect of the threshold level on segmentation 

outcomes 

4.1 Introduction 

Based on pixel intensities, the threshold acts as a border, separating pixels that 

represent objects from those that represent backgrounds. A poorly selected threshold 

may result in either under- or over- segmentation. Finer details and limits may be lost 

in under-segmentation when objects are clustered together. However, over-

segmentation causes objects to be divided into smaller, fractured sections, which 

introduces noise and lessens the quality of segmentation. This threshold value is called 

optimal threshold value that is the value that is best to segment foreground from 

background. Therefore, one of the most important steps in image segmentation 

algorithms is determining the ideal threshold. This is going to vary from CT to CT that 

needs to gain insight of varying threshold level.  

Hence, investigators explore the impact of threshold values across numerous studies, 

which will be mentioned in the following. Notably, the influence of threshold levels 

on segmentation on mandible bone segmentation from CT and CBCT scans 

underscored the significant effect of the threshold value on surface outcomes [51]. The 

study emphasized the reliance of segmentation accuracy on both grey values and the 

threshold, which are operator inputs. Employing two techniques, commercial software 

and the expertise of a 3D clinician. The study compared segmented mandibles to a 3D 

model established by a high-resolution laser surface scanner as the gold standard. 

Results revealed excellent consistency in measurements, with an intraclass correlation 

coefficient (ICC) ranging from 0.923 to 1.000. Models from the commercial software 

group exhibited an average deviation of 0.330 mm ± 0.427 from the gold standard, 

while those from the clinician's rendering showed a mean deviation of 0.763 mm ± 

0.392. Furthermore, surface models from both protocols tended to have larger 

dimensions than the reference models.  

Another recent study [42] specifically examined the influence of thresholding values 

on cranial bone segmentation from CT and CBCT using Viewbox 4 software. The 

results, assessed through superimposition and Iterative Closest Point (ICP) comparison 

to a manually selected reference model, highlighted the significant impact of the 
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threshold value on the surface. While intra-examiner reliability was assessed in the 

experiment, inter-examiner reliability remains a subject of inquiry, with acknowledged 

limitations, such as the absence of a true gold standard reference model.  

Additional research has also explored the effects of image thresholding levels on 

segmentation for various body parts [41, 47-53]. To detect inter- and intra-observer 

variability, understanding and assessing variability and repeatability of segmentation 

have been recommended [42]. Consequently, researchers and medical organizations 

consistently seek precise, reliable, repeatable, and accessible image segmentation 

algorithms for generating 3D bone models from CT or MRI scans. This pursuit has 

been investigated across different fields, including cartilaginous bone tumors, upper 

airway, cranial bones, prostate cancer, lumbar spine, and vertebrae [40, 42, 54-57]. 

Similarly, other investigations delved into the impact of image thresholding levels on 

segmentation, emphasizing the need for meticulous consideration of threshold values 

for optimal outcomes [50, 61-67]. Hence, this chapter investigating the effect of the 

threshold value on the knee joint and finds the optimal threshold value for the available 

CT image. 

There are three brief experiments described in this chapter. In the first experiment, the 

tibia was segmented by using different threshold levels. The tibia with the highest level 

of graphical and visual detail, detected by the author to closely resemble the actual 

anatomy of the tibia, was identified and referred to as the reference tibia. This reference 

model was manually edited with filling the cavities. Next, the tibia is segmented with 

variety of threshold values and compared with reference tibia. 

In the second experiment, the threshold value of the reference tibia is changed to see 

the effect of it in the comparison. This is to ensure the reference threshold level is not 

biased and the human point of view is not influencing the optimum threshold value 

selection.  

The third experiment compares a manually-segmented tibia with reference tibia and 

tibia which is semi-automatically segmented with other threshold value.  

This chapter is necessary to determine the effect of threshold level on the tibia and to 

find its optimal level for use in future chapters.  



54 

4.2 Image Data Collection 

Image data has been collected from previous study done by Attard [117]. Briefly, ten 

patients were scanned using the Toshiba Aquilion ONE™ 4D CT scanner at the 

Clinical Research Imaging Centre (CRIC). The 3D Adaptive Integrated Dose 

Reduction control system (AIDR 3D) on the Aquilion ONE™ is an advanced 

algorithm that can lower the exposure dose by continuously adjusting the tube current 

during the scan to get the ideal dose at every instant based on the anatomy of the patient 

and the targeted region [118]. This was planned to reduce radiation dose which the 

patient receives during the scan.   

In this previous study, the Toshiba Aquilion ONE™ 4D CT scanner was used to 

capture the dynamic movement of the knee. This scanner is a 320-multidetector CT 

(320-MDCT) scanner. It can produce continuous 4D 3D images at a distance of 16 cm 

along the z-axis (without the need to shift the table) because of its wide detector. This 

allows fast and non-invasive dynamic kinematic evaluation of the knee joint in vivo. 

The voxel size is reported as 0.78 x 0.78 x 0.5 mm in metadata.  

To optimise the scanning methodology for the 4D CT component of the study, control 

volunteers knees were first scanned. Control participants for the study were recruited 

from the staff and student population at the University of Strathclyde. The anonymous 

4D CT image data used in this study is from one of the control participants. The image 

is taken of both knees in the prone position during flexion. 

4.3 Methodology 

Although multiple frames of 4D CT data were captured, a single frame of data was utilised 

for this study. After importing the DICOM (Digital Imaging and Communications in 

Medicine- is the international standard for medical images and related information) file 

into ITK-Snap, the first experiment involved the semi-automatic snake active contour 

tool to find the visually optimal threshold value. The “optimal threshold” represents 

the threshold value which shapes the bone with the maximum intensity, but has 

minimal bleed to nearby bones.   

The upper threshold for consideration was fixed at 2017 HU, the maximum threshold 

value available for this CT image within software. The threshold value was reduced 

from this maximum to find the optimum threshold value. Lower threshold values 
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define more of the image as cortical bone, and higher threshold value include less 

image as cortical bone. Other parameters of importance, such as region of interest 

(ROI), position and coordinate of initial growing points, step size and iteration were 

kept constant. Holes or voids in the reference tibia were manually filled-in.   

The reference tibia was then compared with other tibiae segmented with different 

threshold values that vary from -2048 HU to 1000 HU. The produced 3D models were 

exported as STereoLithography (STL) mesh files and imported to CloudCompare to 

compute their mean values and standard deviation of their nearest neighbour distance 

using iterative closest point (ICP). As all the 3D models were exported from same CT 

machine, software and raw DICOM, they were equal in size and already finely aligned. 

Rough and fine registration procedures in the CloudCompare software to best-align 

the surfaces were not required.  

The second experiment was performed in order to find if the chosen optimal threshold 

affected critical anatomical landmarks in the resulting image. The first experiment was 

repeated with a sub-optimal reference tibia, obtained using a threshold of 130 HU. This 

model required the fibula to be manually erased, and any holes and voids were 

manually filled-in, as before.  

The third experiment was designed to find the influence of manual segmentation 

versus semiautomatic segmentation. The tibia was segmented manually using the 

polygon tool in polygon mode. The manual tibia was then compared to the two 

assumed reference tibiae determined semiautomatically, in CloudCompare.   

CloudCompare analysis involved determination of the mean difference between the 

point clouds as determined by the iterative closest point algorithm. At the time of this 

experiment, evaluation methods, such as Dice Similarity Coefficient (DSC), Hausdorff 

Distance (HD), Jaccard Index (JI), and Interclass Correlation Coefficient (ICC), were 

unknown to the author and were therefore not used. Subsequent exploration and a 

broader understanding of the field prompted the incorporation of these additional 

metrics in the later chapters. 
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Optimal threshold values for the femur, fibula and patella were also determined based 

on the above methodology, although not analysed in the same manner using 

CloudCompare. 

4.4 Results 

Figure 25 illustrates tibias that are segmented with different threshold values. At a 

threshold of 140 HU, there is a clear bone density for the tibia, but the algorithm bleeds 

the tibial segmentation to the fibula. Similarly, at a threshold 200 HU, whilst there is 

less bone density, the fibula is still attached. At the threshold of 205 HU the bleeding 

to fibula is eliminated however the tibia segmentation ends up with having cavities, 

which needs to be edited manually. At the threshold of 300 HU the bone segmentation 

is very poor with many voids. The threshold of 205 HU was chosen due to the 

automatic elimination of the fibula from the resulting image combined with minimal 

manual editing. Therefore, the semi-automatic segmentation methodology determined 

the optimal threshold level to be 205 HU for tibia. Following gap filling, this model 

was set to be the reference model. Other generated models were compared with this 

reference model.  

Figure 26 depicts the mean (+/- SD) distance between model vertices using iterative 

closest point algorithm (C2C). Altering the threshold causes significant effect on tibia 

segmentation. Above 205, the mean C2C distance increases to just over 1mm. There 

is a clear jump below 205 which is associated with the appearance of the fibula in the 

resulting images. 

 

 

Figure 25. Effect of threshold value on tibia 3D model 
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Figure 26. Effect of threshold with respect to threshold value ±SD 

 

The second experiment is same as first experiment except the reference tibia is 

segmented at different threshold value. It is generated at 130 HU threshold and edited 

manually by filling the holes and erasing the fibula. This new reference tibia was 

compared with other tibia segmented with different threshold value and the results are 

shown in Figure 28-32. Figure 27, shows the difference in the mean values a clear drop 

in the error is clear from the picture. 
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Figure 27. Difference of tibia segmented by 130HU and other threshold values 

 

 

Figure 28 Distance between reference tibia (130 HU) vs tibia with 100HU 
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Figure 29. Distance between reference tibia (130 HU) vs tibia with 130HU 

 

Figure 30. Distance between reference tibia (130 HU) vs tibia with 204HU 
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Figure 31. Distance between reference tibia (130 HU) vs tibia with 205HU 

 

 

Figure 32. Distance between reference tibia (130 HU) vs tibia with 350HU 

 

For the third experiment, the tibia was segmented manually using the polygon tool in 

‘polygon mode’. Both the cortical bone and spongy bone were segmented whereas 

during the semiautomatic only the cortical bone was segmented which has more bone 
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density. Figure 33 is showing tibia segmented manually and segmented with 130 HU 

and 205 HU. Figure 36 represents their respective number of points. Figure 35 showing 

mean value of the comparison. Figure 27D illustrates comparison histogram of 

manually segmented tibia versus semi-automatically segmented tibia with 205 HU. 

 

Figure 33. Manually segmented tibia compared to semiautomatic segmented tibia. 

 

 

Figure 34. Internal and external differences between tibia segmented by 130HU and 205 HU 
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Figure 35. Comparison of three different segmented model and their mean values  

 

Figure 36. Number of points for each model 

 

Optimal threshold values were determined as being 205 HU for the tibia, 160 HU for 

the femur, 200 HU for the patella and 232 HU for the fibula. 
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4.5 Discussion 

Various imaging parameters, such as slice thickness, reconstruction algorithms, and 

contrast enhancement techniques, directly influence the accuracy of image 

segmentation techniques [41]. These parameters affect the contrast and sharpness of 

anatomical structures in medical images, necessitating careful consideration and 

adjustment of threshold values for precise segmentation. Furthermore, variations in 

imaging protocols across different scanners and imaging centres can introduce 

complexities, underscoring the need for robust segmentation methods adaptable to 

diverse imaging conditions [119]. 

The selection of an appropriate threshold value is critical for accurate image 

segmentation, as demonstrated by the experiments in this study. Even minor variations 

in the threshold value can significantly affect the final segmented model, leading to 

under-segmentation or over-segmentation of the desired anatomical structures [42]. 

The study identified the optimal threshold values for accurately segmenting various 

bones within the knee joint from CT images: 205 HU for the tibia, 160 HU for the 

femur, 200 HU for the patella, and 232 HU for the fibula. 

The differences in ideal threshold values across bones can be attributed to several 

factors. Firstly, varying bone densities affect their appearance on CT scans, requiring 

different threshold values for precise segmentation. Secondly, each bone's internal 

structure and shape influence its CT appearance, necessitating distinct threshold 

values. Additionally, factors such as CT scanner type, imaging protocols, acquisition 

characteristics, image noise, and artifacts can influence the segmentation process, 

justifying threshold value adjustments [120]. 

This study also highlights the potential influence of operator bias in manual 

segmentation. The comparison between manual and semi-automatic segmentation 

revealed that semi-automatic segmentation using optimal threshold values could 

produce more accurate models with less human error than manually segmented 

models. This finding aligns with previous research and underscores the advantages of 

semi-automatic segmentation techniques in reducing subjective biases [121, 122]. 

Furthermore, the experiments revealed that the choice of reference model threshold 

value does not significantly affect the identification of the critical threshold point for 
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optimal segmentation. This observation suggests that the optimal threshold value is an 

inherent property of the image data and is not influenced by the initial reference model 

used for comparison. Figures 26 and 27 show that changing the threshold value of the 

reference model does not affect the critical point where sudden change happened. This 

research compared the manual segmentation, using polygon tools, versus 

semiautomatic segmentation with two different threshold values Figure 33, that can 

interpreted as semi-automatic segmentation could be as reliable as manual 

segmentation or even more realistic and prevent human bias error.  

The quantitative data supports the significant effect of threshold values on the final 

segmentation model (Figure 26, Figure 27). The curves show sharp breaks and become 

highly nonlinear at the optimal threshold values, indicating the critical points for 

segmentation accuracy. Additionally, the manually segmented models were smaller, 

with fewer points and triangles, compared to the semi-automatic models, potentially 

due to the "Koch snowflake" theory, where manual segmentation may have a smaller 

perimeter with less fine detail [123]. Figure 25-27 shows 205 HU is optimal threshold 

for tibia in this case. At this point, the curve breaks sharply and the curve become 

extremely nonlinear. Figure 35, 36, quantitatively supports the idea that the manually 

segmented model of tibia is smaller than semiautomatic tibia and has less number of 

points and triangle. It also represents that the tibia model with optimal threshold value 

shows most bone density than smaller threshold value (130 HU).  

The results align with previous studies [72], emphasizing that the accuracy of 

segmented 3D models highly depends on grayscale values and threshold values, which 

are often chosen manually by operators. Image quality, grayscale levels, noise, 

artifacts, and inhomogeneity can further complicate the segmentation process, 

highlighting the importance of robust segmentation methods and carefully selected 

threshold values. 

In clinical practice, accurately segmented 3D models play a crucial role in guiding 

surgical interventions and optimizing patient outcomes. Deviations from optimal 

threshold values can lead to inaccuracies in surgical planning and execution, 

potentially compromising patient safety and surgical efficacy [168]. Therefore, 

ensuring the precision of segmentation methods through the selection of threshold 
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values is paramount for achieving reliable clinical outcomes and enhancing patient 

care. 

While manual segmentation approaches offer high precision, they are often time-

consuming and labour-intensive. In contrast, semi-automatic segmentation techniques 

strike a balance between accuracy and efficiency, leveraging computational algorithms 

to streamline the segmentation process while minimizing human intervention. By 

optimizing computational efficiency, researchers can accelerate the generation of 

segmented models. 

The generalizability of optimal threshold values across different patient populations, 

anatomical regions, and imaging modalities is an important area of investigation. 

While specific threshold values of this study may be identified for a particular cohort 

or imaging protocol, their applicability to broader clinical contexts requires validation 

across diverse datasets. Future research efforts should focus on identifying factors 

influencing the generalizability of threshold values and developing robust 

segmentation methods that can adapt to independent imaging conditions.  

Educationally, segmented 3D models offer immense value for medical training, 

anatomical visualization, and patient education. Interactive anatomical models enable 

students, clinicians, and patients to explore complex anatomical structures and 

pathological conditions in a virtual environment, fostering deeper understanding and 

facilitating informed decision-making. By using segmentation techniques to create 

new educational resources, researchers can enhance the learning experiences of 

healthcare professionals and empower patients to actively participate in their 

healthcare journey. 

Moreover, efforts should be made to reduce potential biases in dataset selection and 

ensure equitable representation of patient demographics to uphold the ethical integrity 

of segmentation research. 

4.6 Conclusion 

This chapter provides insights into the effects of threshold selection on image 

segmentation accuracy, particularly for segmenting knee joint bones from CT images.  
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Threshold value selection is a critical step in image segmentation, as it directly affects 

the quality and accuracy of the segmented models. Optimal threshold values were 

identified for segmenting different bones of the knee joint, namely tibia (205 HU), 

femur (160 HU), patella (200 HU), and fibula (232 HU). 

Semi-automatic segmentation using the optimal threshold values can produce more 

accurate and detailed models compared to manual segmentation, reducing the potential 

for human bias and error. 

These findings contribute to the development of more reliable and accurate image 

segmentation techniques for medical imaging applications, particularly in the field of 

orthopaedics and joint analysis.  
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Chapter 5 Pilot experiment of intra- observer variability of 

segmentation of knee CT image 
 

5.1 Introduction 

For applications in knee surgery and biomechanics, accurately segmenting the 

structures of the knee joint from CT scans is an essential first step in creating subject-

specific finite element models. However, there are challenges, as this procedure 

involves identifying and differentiating between soft tissues and bony structures, 

which is not always easy. 

"Intra-observer variability" describes the degree of variation or inconsistency in 

segmentation results when the same observer repeats the segmentation task on the 

same set of images in the context of medical imaging, especially with CT scans. In 

other word, it evaluates the consistency and repeatability of the segmentation 

procedure as perceived by a single observer [44]. Evaluating the variability of 

segmentation within a single operator and across different operators is of interest to 

scientists. Some points of consideration include the following. 

The impact of inter- observer manual segmentation variability on the reproducibility 

of 2D and 3D CT and MRI patients with cartilaginous bone tumors were investigated 

by another study [54] in which three radiologists independently performed manual 

contour-focused segmentation on unenhanced CT, T1-weighted, and T2-weighted 

MRI, drawing both 2D and 3D regions of interest (ROIs). The study extracted 783 and 

1132 features from original and filtered 2D and 3D images, respectively. Intra-class 

correlation coefficient (ICC) was used to assess feature stability. The results shows 

that 2D and 3D features of cartilaginous bone tumors extracted from unenhanced CT 

and MRI are reproducible. However, some degree of inter observer segmentation 

variability emphasizes the need for reliability analysis in future studies utilizing these 

segmentation techniques. 

Also a study [75] evaluated inter- and intra- operator reliability of manual 

segmentation of CT scans of femoral metastatic lesions. For this study two operators 

independently segmented 54 metastatic femurs (19 osteolytic, 17 osteoblastic, and 18 

mixed). Dice coefficients (DCs) were calculated to assess reliability, with a DC > 0.7 
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indicating good reliability. The results revealed generally poor inter- and intra-operator 

reliability for lesion segmentation. Inter-operator DCs were 0.54 (± 0.28) and 0.50 (± 

0.32) for the first and second segmentations, respectively. Intra-operator DCs were 

0.56 (± 0.28) for operator one and 0.71 (± 0.23) for operator two. Larger lesions 

showed significantly higher DCs compared to smaller lesions. Femurs with larger 

mean segmentation volumes demonstrated good inter- and intra-operator DCs (> 0.7) 

in 83% and 93% of cases, respectively. Additionally, no significant difference was 

observed between the mean DCs of osteolytic, osteoblastic, and mixed lesions. The 

study concludes that manual segmentation of femoral bone metastases is challenging, 

emphasizing the need for a segmentation protocol to reduce variability and the 

potential use of computer-assisted segmentation tools in the future. 

Intra- and inter- observer reliability of measurements on 3D images of the calcaneus 

bone was studied by Misselyn [76]. Four observers with different medical backgrounds 

assessed the 3D segmentations of preoperative, postoperative, and uninjured calcanei 

from 54 patients. The MeVisLab™ software calculated the 3D orientation angle of the 

subject. The intra- and inter-observer reliability was assessed using the intra-class 

correlation coefficient (ICC). Intra-observer ICC for the 3D orientation angle ranged 

from 0.699 to 0.890. Inter-observer ICC for preoperative measurements was 0.828, for 

postoperative measurements was 0.692, and for uninjured measurements was 0.776. 

The results indicate good to excellent reliability for the 3D orientation angle on 3D 

images of the calcaneus bone.  

Another study [77] evaluated inter- and intra- observer reliability and repeatability of 

2D CT scans of TKA component rotation. They considered fifty-two CT scans of 

TKAs, which were independently measured by three physicians. Inter-observer 

reliability was assessed using intra-class correlation coefficients (ICCs), and 

repeatability was calculated. The ICC for the femoral component was 0.386 (poor), 

while it was 0.670 (good) for the tibial component. The combined rotation 

measurement had an inter-observer ICC of 0.617 (good). Intra-observer ICC for the 

femoral component was 0.606 (good), and for the tibial component, it was 0.809 (very 

good).  
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Although precise segmentation is essential in creating realistic finite element models 

of the knee joint, there is a significant research gap regarding the assessment of 

variability and repeatability of the knee joint in this subject. This gap is particularly 

significant considering the nature of the knee joint and the necessity for precise 

segmentation to capture its complex anatomical structures. Hence, this study 

endeavours to address this gap by investigating the variability and repeatability of knee 

joint segmentation. As a preliminary step towards optimizing protocols for a larger 

experiment encompassing both intra- and inter-observer variability, this chapter serves 

as a pilot study focusing solely on intra-observer variability. 

Rational: 

This work seeks to close this gap by assessing the intra-observer variability of subject-

specific semi-automatic segmentation of 4D CT knee joint images. This section offers 

insights into the consistency and reliability of the segmentation process by performing 

a thorough examination of segmentation outcomes acquired repeatedly by the same 

observer. This research is vital for advancing the development of realistic finite 

element models, ensuring that the simulated knee joint mechanics accurately represent 

the complexities of the in vivo physiological conditions. The findings from this 

investigation hold the potential to enhance the overall accuracy and effectiveness of 

knee surgery planning and biomechanical simulations and crucial for further study.  

5.2 Data acquisition  

The data acquisition for this chapter followed a similar protocol to that described in 

Chapter 4. Collected by a colleague for another study [117], ten patients were 

randomly selected for in-depth assessment using the Toshiba Aquilion ONE™ 4D CT 

scanner at the Clinical Research Imaging Centre (CRIC). Employing the 3D Adaptive 

Integrated Dose Reduction control system (AIDR 3D) on the Aquilion ONE™, 

radiation exposure was minimized by continuously adjusting the tube current based on 

the patient's anatomy and the targeted region [118]. 

The Toshiba Aquilion ONE™ 4D CT scanner, a 320-multidetector CT (320-MDCT) 

scanner, captured dynamic knee movement. Continuous 4D 3D images were acquired 

every 16 cm along the z-axis without the need to shift the table. The voxel size, 
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reported as 0.78 x 0.78 x 0.5 mm in metadata, facilitated fast and non-invasive dynamic 

kinematic evaluation of the knee joint in vivo. 

To optimize the scanning methodology for the 4D CT component, control volunteers 

were initially scanned. Participants were recruited from the staff and student 

population at the University of Strathclyde. The 4D CT images used in this chapter are 

from control participants, with images taken of both knees in the prone position during 

flexion. 

5.3 Methodology 

In this study, a single observer conducted an evaluation to assess the consistency and 

variability in segmenting the knee joint from a CT scan. The knee joint was segmented 

five times in sequence using 4D CT images, which were imported as DICOM files into 

the open-source ITK-Snap segmentation software. To determine the optimal threshold 

values for each bone segmentation, the results from the previous chapter's analysis 

were utilized. An operator with experience in segmentation and anatomy knowledge 

performed the segmentation process. The operator repeated the segmentation process 

five times while maintaining consistent experimental parameters. The only variable 

parameter was the manual editing performed by the operator to fill in any holes or 

remove irregularities. 

The experiment utilized 4D CT images of both knees from a 45-year-old male taken 

in the prone position during flexion. The DICOM files were imported into ITK-Snap 

software to segment the knee bones, namely the femur, tibia, and patella, at zero 

degrees flexion. The segmentation procedure was carried out semi-automatically. For 

the right knee, a region of interest (ROI) was selected by the observer, and its location 

and size were recorded to ensure consistency across repetitions. The ROI had the 

following coordinate position (x,y,z): (76,188,8) and size (x,y,z): (158,143,307). Four 

labels were defined to identify the tibia, femur, patella, and fibula. The fibula label was 

used to obtain a better view and shape of the tibia but was excluded from the final 3D 

model to simplify the knee model. The pre-segmentation mode employed 

thresholding, with the upper threshold fixed in 2017, the maximum available threshold 

value for the CT image within the software. The lower threshold values were 
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determined through previous experiments, with the optimal values for tibia, femur, and 

patella thresholding set at 205 HU, 160 HU, and 200 HU, respectively. 

After selecting the bubbles to initiate the segmentation contour, the operator applied 

semiautomatic, active contour thresholding to distinguish the knee bones from 

surrounding tissues. The contour expanded until the intensity of the surrounding 

environment changed, resulting in a three-dimensional representation of the knee 

bone. The outcome was a 3D model that included the tibia, femur, and patella. 

However, the tibia and femur exhibited cavities that needed to be filled by the operator. 

The resulting 3D model was then edited to fill in these holes or remove any irregular 

shapes in relation to the CT image, and an STL file was saved. This entire procedure 

was repeated five times, resulting in Segmentation1 (S1), Segmentation2 (S2), 

Segmentation3 (S3), Segmentation4 (S4), and Segmentation5 (S5). 

Next, the segmented patella, femur, and tibia were imported individually as STL files 

into CloudCompare and merged to create a single knee joint model. CloudCompare 

automatically removed duplicated vertices and faces from each component. The 

resulting models from the first segmentation (S1) were compared to the second (S2), 

third (S3), fourth (S4), and fifth (S5) segmentations using the Iterative closest point 

(ICP) for cloud-to-cloud distance (C2C) metric. The comparisons were performed in 

pairs, such as S1 vs. S2, S1 vs. S3, and so on. The results were analysed by calculating 

the mean distance, creating graphical representations, and generating histograms. This 

process was repeated for subsequent pairs of segmentations (S2 vs. S3, S2 vs. S4, and 

so on) until all ten comparisons were completed. CloudCompare generated a histogram 

as output for the comparison, illustrating the distribution of absolute distances between 

numbers and indicating the frequency of each distance value. These values modified 

in excel and recalculated as the following variables. Table1 gives details about these 

variables. 
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Table 1.The variables and their definition used for comparison. 

Number of Identical Nodes (NIN) 

 

This refers to the count of nodes that are 

identical between two compared model 

Total Number of Nodes (TNN) This represents the overall number of 

nodes in the model 

Percentage of Identical Nodes (PIN) PIN is the ratio of the number of identical 

nodes (NIN) to the total number of nodes 

(TNN), expressed as a percentage 

Number of Non-Identical Nodes (NNIN) NNIN indicates the count of nodes that 

are not identical in the two model 

Sum of C2C Absolute Differences 

(SC2CAD) 

SC2CAD refers to the total sum of 

absolute differences in measurements, 

specifically node-to-node differences, 

within the models. These differences are 

measured in millimeters (mm) 

Average Difference of Non-Identical 

Nodes (ADNIN) 

ADNIN represents the average 

difference, in millimeters (mm), between 

non-identical nodes in the system. It 

provides insights into the level 

difference among two models 

Average Difference Based on All Nodes 

(ADAN) 

ADAN is the average difference, in 

millimeters (mm), calculated across all 

nodes in the system. This value takes into 

account both identical and non-identical 

nodes, providing a comprehensive 

measure of the overall differences within 

the system. 
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5.4 Results  

Five segmented knees, segmented by one participant, are compared using Cloud-to-

Cloud (C2C) method. Segmentations are named as S1 for first segmentation, S2 for 

second segmentation and so on. Figure 37, 38 shows example of points cloud 

comparison in the following format: S1/S2 (S1 compared to S2), S1/S3, S1/ S4, S1/S5, 

S2/S3, S2/S4, S2/S5, S3/S4, S3/S5, S4/S5, which make ten comparisons for one 

person. All ten comparison is added to Appendix F. 

 

 

Figure 37. (a) C2C distance comparison of S1 and S2. (b) C2C distance comparison of S1 and S3 

 

 

Figure 38. (a) C2C distance comparison of S1 and S4. (b) C2C distance comparison of S1 and S5 
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Significantly, the lateral proximal region of the tibia consistently exhibited the greatest 

disparity among all segmentation comparisons. The comparison output data is 

compiled on table (2). Table2 shows ten paired wise comparisons between five 

segmentations generated by one participant. The percentage identical nodes between 

fourth and fifth segmentation is 93.39%, which is the highest similarity, then third and 

fourth with 92.71% similarity. Then it decreased to 89.21%, for second and fifth times. 

Table 2. Five segmentation comparison results 

 

 

5.5 Discussion 

This experiment shows that graphically, there is not a significant difference between 

five segmentations performed by one person. Reassuringly, segmentations are over 

90% identical, with average errors on the order of the dimension of one voxel. 

However, whether 90% similarity is sufficient is another question that warrants further 

consideration. As mentioned earlier, the voxel size is 0.78*0.78*0.5mm, the diagonal 

of the voxel is 1.21mm, therefore the critical distance is set as 1.21mm, this means any 

differences >1.21mm is definitely more than one voxel. 

The voxel size of 0.78 x 0.78 x 0.5 mm played a crucial role in enabling fast and non-

invasive dynamic kinematic evaluation of the knee joint in vivo. This voxel size, 

achieved using the Toshiba Aquilion ONETM 4D CT scanner, strikes a balance 

between spatial resolution and acquisition speed. 

A smaller voxel size would provide higher spatial resolution, allowing for more 

detailed visualization of the knee joint structures. However, it would also require 

longer scan times, which could introduce motion artifacts and increase radiation 
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exposure for the participants. On the other hand, a larger voxel size would enable faster 

scans but at the cost of reduced image quality and potential loss of fine anatomical 

details. 

The chosen voxel size of 0.78 x 0.78 x 0.5 mm represents an optimal compromise 

between these factors. It provides sufficient spatial resolution to capture the complex 

geometry of the knee joint, including the femur, tibia, and patella, while allowing for 

rapid image acquisition. The fast scan times minimize the risk of motion artifacts, 

which is particularly important when imaging dynamic knee movements. 

Moreover, the non-invasive nature of the 4D CT scanning protocol, combined with the 

optimized voxel size, ensures participant comfort and safety. The participants can 

undergo the scans without the need for invasive procedures or contrast agents, 

reducing the overall risk and increasing the feasibility of conducting dynamic 

kinematic studies on a larger scale. 

The lateral proximal region of the tibia, which consistently displayed the highest 

level of difference across all segmentation comparisons, indicating a recurring 

pattern of variability in that specific anatomical area. However, the aggregation and 

average distance measures show different. This indicates that, for some reason, this 

specific part of the tibia is more prone to inconsistency in the segmentation process, 

possibly due to its anatomical complexity or challenges in distinguishing it clearly. 

However, when all the segmentations are aggregated and measured using average 

distance metrics, the overall results suggest a smaller difference. This means that while 

individual comparisons show notable variability in this region, when you take an 

average or combine all the data, the variability seems less significant. This could imply 

that the variability is localized but doesn’t heavily impact the overall segmentation 

accuracy across the entire tibia. 

The Table 2 could be explained as if there is constancy of operator decision making 

for the first two segmentations during segmentation process and editing of the 3D 

model, regardless of how accurate the results were graphically. After the third 

segmentation, the operator may have developed more experience and confidence to 
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change his/her mind during the process, so the difference of second and fourth and 

fifth process is much higher.    

The ADAN values, which represent the average difference in millimeters across all 

nodes, are consistently low, with the highest value being 0.039 mm for the S1/S3 

comparison. 

These findings demonstrate the robustness of the semi-automatic segmentation 

methodology and the operator's ability to generate consistent results across multiple 

segmentations. The high percentage of identical nodes and sub-voxel average 

differences suggest that this approach can be reliably employed to create accurate, 

subject-specific 3D models of the knee joint for various applications, such as finite 

element analysis and surgical planning. 

                                      

 

Figure 39. S1 and S2 comparisons’ Histogram  
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Figure 40. The percentage of identical nodes for ten separate comparisons 

Figure 39 shows the histogram of non-identical points between first and second 

segmentation; it represents that around 600 points have around 0.1 millimetre of 

difference and approximately 300 points have 0.2 millimetre and so on.  

The consistency in segmentation results also highlights the potential for other studies 

and comparisons of knee joint morphology across different populations or disease 

states. However, to further validate these findings and establish the generalizability of 

the segmentation methodology, future studies should investigate inter-observer 

variability and include a larger cohort of participants with diverse characteristics. 

5.5 Conclusion 

The intra-observer variability assessment of semi-automatic segmentation of 4D CT 

knee joint images provides valuable insights into the consistency and reliability of the 

segmentation process. The high percentage of identical nodes (over 90%) and the sub-

voxel average differences between segmentations demonstrate the robustness of the 

methodology and the operator's ability to generate consistent results. These findings 

have important implications for future research and applications in knee joint 

segmentation and modelling. The low intra-observer variability suggests that the semi-

automatic segmentation approach can be reliably employed to create accurate, subject-

specific 3D models of the knee joint by one operator. These models can serve as the 

foundation for various applications, such as finite element analysis, surgical planning, 

and the development of personalized treatment strategies for knee disorders. 

Furthermore, the consistency in segmentation results highlights the potential for 
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longitudinal studies and the comparison of knee joint morphology across different 

populations or disease states. However, to further validate these findings and establish 

the generalizability of the segmentation methodology, future studies should investigate 

inter-observer variability and include a larger cohort of participants with diverse 

characteristics. 
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Chapter 6 Inter-observer variability  

6.1 Introduction  

The subject of musculoskeletal research has undergone a revolution by the medical 

imaging, especially the use of 4D CT, which offers dynamic insights into joint 

anatomy. Knee bone segmentation is one of the crucial uses of 4D CT that has attracted 

attention due to its potential to improve orthopaedic treatment planning and diagnostic 

accuracy. However, repeatability within the same observer (intra-observer) and 

consistency and agreement between multiple observers (inter-observer) are major 

factors in segmentation accuracy. To ensure the validity of the collected data and the 

ensuing clinical interpretations, the investigation of intra- and inter-observer 

variability in 4DCT knee bone segmentation is essential. 

Variability can affect the general reliability of the segmentation process and inject 

uncertainty into quantitative data. Therefore, it is essential to comprehend and reduce 

these variabilities to fully utilise 4D CT for knee bone segmentation. Some researchers 

have addressed the challenge of intra- and inter-observer variability in bone 

segmentation which are mentioned in the following.  

A paper by Dominique Misselyn [76] et al. investigates the reliability of measurements 

on 3D images of the calcaneus bone, particularly focusing on the 3D orientation angle 

of the calcaneal posterior subtalar (PTC) joint facet. The researchers conducted 3D 

segmentations of preoperative, postoperative, and uninjured calcaneus bones in 54 

patients. Four observers with different medical backgrounds delineated the 3D 

segmentations of their calcaneus bone by Mimics™ using their DICOM CT images of 

the injured side and MeVisLab™ software calculated the 3D orientation angle of the 

PTC. They found that the intra-observer ICC values for the 3D orientation angle of the 

PTC ranged from 0.699 to 0.890. Also, inter-observer ICC for preoperative 

measurements was 0.828, for postoperative measurements was 0.692, and for 

uninjured measurements was 0.776.  

Also, Patrik F. Raudaschl [124] discusses the significance of automated organ and 

structural delineation in medical imaging, along with the difficulty of choosing the 

best segmentation techniques for a range of uses. The brainstem, mandible, chiasm, 

bilateral optic nerves, bilateral parotid glands, and bilateral submandibular glands were 
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among these structures. The mandible was the only bony segmented structure, as it 

exhibits high contrast compared to surrounding tissues and relatively low shape 

variation compared to most soft-tissue organs it has higher Dice coefficient and less 

error. However, a significant challenge in mandibular segmentation lies in accurately 

excluding the teeth, which have similar grey values to the bone. Furthermore, the 

presence of dental implants in some datasets introduces image noise, particularly 

affecting the mandibular region. They evaluated the segmentation by Dice similarity 

coefficient, 95% Hausdorff distance (HD). They achieved Dice scores > 0.8 and an 

average 95% HD < 5 mm for mandible.  

On the other study the reproducibility of nasal bone was not promising. The paper 

[125] explores the reproducibility of assessing fetal nasal bones through ultrasound in 

the first trimester. The study aims to investigate the variability in identifying fetal nasal 

bones and its implications for the detection of trisomy 21 (Down syndrome). The 

research involved 1040 ultrasound examinations at 11–14 weeks of gestation, focusing 

on nasal bone identification. Three experienced operators assessed 657 video-loops, 

classifying cases into categories of present, uncertain, or absent nasal bones. Intra-

observer variability was evaluated by having each operator review a subset of 100 

video-loops. The inter-operator variability, assessed using the Kappa index, showed 

fair reproducibility, with values ranging from 0.26 to 0.37. Intra-operator variability 

yielded Kappa values between 0.35 and 0.48. The study concludes that the assessment 

of fetal nasal bones is only fairly reproducible.  

According to insufficiency of research on the variability of bone segmentation and the 

absence of studies examining the variability of the knee joint, this chapter explore into 

investigating both intra- and inter-observer variability within the knee joint 

segmentation process. 

6.2 Methodology 

This study focuses on assessing the intra-examiner and inter-examiner reliability of 

knee segmentations using an anonymized 4D CT dataset. Fifteen volunteers were 

recruited and trained in ITK-Snap software to segment the femur, tibia, and patella. 

The graphical analysis was performed using CloudCompare software, while 

quantitative measures such as Hausdorff Distance, Dice Similarity Coefficient, and 
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Jaccard Index were employed to assess intra-observer variability using MATLAB. 

Inter-observer variability (ICC) for the Dice Similarity Coefficient (DSC) of the femur, 

tibia, and patella was calculated using IBM SPSS. The results demonstrate the 

reliability of the segmentation process. The findings contribute to the potential clinical 

applications of these methods.  

6.3 Data collection 

The data acquisition process for Chapter 6 mirrored the methodologies outlined in 

Chapters 4 and 5. Initially collected by a colleague for another study [117], ten people 

volunteered for detailed assessment using the Toshiba Aquilion ONE™ 4D CT 

scanner at the Clinical Research Imaging Centre (CRIC). Eight had knee joint 

replacements of unknown description and 2 control participants had non-pathological 

knees. Radiation exposure was minimized using the 3D Adaptive Integrated Dose 

Reduction control system (AIDR 3D) on the Aquilion ONE™, adjusting the tube 

current based on the patient's anatomy and targeted region [118]. 

The Toshiba Aquilion ONE™ 4D CT scanner, a 320-multidetector CT (320-MDCT) 

scanner, facilitated the capture of dynamic knee movement. Continuous 4D 3D images 

were obtained at 16 cm along the z-axis without the need to shift the table. The voxel 

size, as reported in metadata, was 0.78 x 0.78 x 0.5 mm, enabling rapid and non-

invasive dynamic kinematic evaluation of the knee joint in vivo. 

The 4D CT images used in this chapter are from a single control participant, with 

images taken of both knees in the prone position during flexion. 

6.3.1 Ethical Approval 

All procedures detailed below were approved in line with University procedures by 

the Departmental Ethics Committee in May 2022 (approval letter is attached in 

appendix A).  

6.3.2 Subject recruitment 

Fifteen volunteers from the Department of Biomedical Engineering were recruited to 

perform semi-automatic segmentation of the collected data. All the recruited 

volunteers were active and healthy adults recruited from staff and students at the 

University of Strathclyde. This proposal sought to determine the variability of CT 

segmentation within a defined volunteer group of people with an appropriate 
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background in biomedical engineering. Thus, our cohort consisted of those typically 

recruited to such positions and they were generally aware of the procedures involved. 

Since the aim is to describe the variability within this group, and participants are not 

split into different groups, a sample size calculation is not possible. Nevertheless, 15 

participants felt sufficient to descriptively characterise the variability of the group with 

regards to CT segmentation. All volunteers were invited for the experiment by a 

recruitment email (the email is attached in appendix B) through biomedical department 

of Strathclyde university email. 

The participant information sheet (PIS is attached in appendix C) given to participants 

who accepted to take part in the experiment and explained to them verbally as well. 

They were clarified any concern they had by signing the consent form (consent form 

is attached in appendix D) 

The inclusion/exclusion criteria and any further screening procedures were as follow 

and are all self-reported. 

Table 3. Participants recruitment requirements 

Inclusion Criteria Exclusion Criteria 

Ability to use a standard, mouse-

operated Windows PC, without 

additional accessibility features 

Age below 18 or over 60 

To be in training for a biomedical 

engineering degree, or equivalent 

technical competence (having at least 6 

months of experience working in 

biomedical related field), understanding 

of knee anatomy and the intended 

outcome of the process of segmentation 

Colour blind 

Self-reported “good” eyesight with or 

without glasses or contact lenses 

Unable to sit for two hours 

To be able to sit comfortably in front of 

a computer for about 2 hours 

Any type of Tremor  

 Non adequate field of vision 
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 Visuospatial neglect 

 Attention deficit disorder  

 Any neurological condition affecting 

movement or mood 

 Any symptoms associated with Covid-

19 including a new continuous cough, a 

high temperature or loss or change to 

your sense of smell or taste. 

 

 

6.3.3 Study design 

This study uses an anonymised 4D CT data set previously collected [117] in dynamic 

movement of knee by the Toshiba Aquilion ONE™ 4D CT scanner from a single 

person without history of knee pathology. These are same data used for chapter 5.  

The volunteers attended training sessions, so the ITK-snap semi-automatic 

segmentation software package was explained to them (verbally and/or written) and 

they were supplied with a short tutorial document as well as exemplar datasets to do 

practice segmenting the bones of the knee. Volunteers stopped training when they felt 

themselves confident and competent in the use of the software and their ability to 

segment the bones of the knee. 

On the experimental day, the volunteers were asked to perform the same methodology 

as the tutorial on a previously unseen dataset (DICOM image). The methodology is 

detailed in section 6.3.4. The participants were asked to segment the provided image 

five times to assess within-subject variation. All fifteen operators segmented the same 

femur, tibia and patella five times and the output 3D models were saved as STL mesh 

files providing 75 files per bone and 225 files in total to be analysed. 

The segmentation results were analysed by CloudCompare™ software [67] to examine 

the intra-examiner reliability. The STL files were also read into Matlab™ to examine 

the inter-examiner reliability by determining the Hausdorff Distance (HD), Dice 

similarity Coefficient (DSC) and Jaccard index (JI) [126].  
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6.3.4 ITK-Snap Methodology 

The 4D CT image from a patient in the DICOM format was imported in an open-

source segmentation tool called ITK-Snap. The scan reference number was J2045969 

and the knee is in approximately 45° flexion. The ROI (region of interest) and 

threshold filter was determined and fixed to keep the experimental conditions fixed for 

all participants. The position of the ROI in the X, Y, and Z axes was recorded as 274, 

157, and 1, respectively, and its size in X, Y, and Z axis were 148, 235, 310 

respectively. As mentioned in chapter 4, changing the threshold levels on segmentation 

can greatly vary the resulting image and therefore it must be controlled in this study. 

By decreasing the threshold level, the generated contour may bleed into the 

surrounding soft tissue and by increasing the threshold level, more bone tissue is 

removed, which results in increasing the cavity volume. A compromise must be met 

to create an “optimal” image for segmentation. The upper threshold was fixed at 3523 

HU (the maximum allowable) with the lower threshold fixed at 160 HU for the femur, 

205 HU for the tibia and 200 HU for the patella. The same threshold levels were used 

for all 225 segmentation trials in order to maintain consistency throughout the 

experiment.  

In order to initialize the segmentation from the surrounding tissues (Figure 41), each 

operator introduced “bubbles” into the areas of interest. This crucial step provides the 

software with information regarding the intensity (HU) by which the contour can 

expand and form the boundary. This step is the only operator-influenced step prior to 

manual editing. 
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Figure 41. Placing bubbles on interested area 

 

Figure 42. Growing contour to which intensity is determined 
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In the next step, the operator executed and controlled the evolution of the segmented 

region until manually stopped (Figure 42). The software would stop the segmentation 

evolution after 9999 iterations, but the operators often stopped this before this number 

of iterations was reached. An exemplar 3D model of the knee joint shown in fourth 

window (Figure 43), and the generated model may include cavities within the cortical 

bone. Therefore, the operator was required to manually edit the model by using the 

paintbrush tool and to fill in the cavities as per the guidelines provided in the training 

session. They were asked to remove the fibula from tibia as it was too close to tibia 

and the contour bleeding to fibula was inevitable. It is important to note that the fibula 

stabilises the ankle joint and does not directly affect the knee joint [127]. The 

segmented and edited femur, tibia and patella were saved as STL mesh files. 

 

 

Figure 43. 3D model of knee joint is made 

6.4 Data Analysis 

6.4.1 CloudCompare™ Analysis 

CloudCompare™ was used to perform two functions: importantly the interior surface 

of the bones removed and additionally, the software provided a useful graphical 

depiction of the differences between the point clouds created by the STL files. 
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STL files only provide information regarding the surfaces of objects. The bones in this 

study will have both an external surface, defining the exterior of the bony surface, and 

an internal surface defining the interior medullary cavity. As this study focus on the 

outer surface only, the inner surface was manually removed for all bones in 

CloudCompare (Figure 44). The process of removing the inner surface is a long and 

time-consuming procedure that was done by the author. The step-by-step screenshot 

of the process of removing the inner layer of one tibia is available in Appendix E. 

 

Figure 44. (a) inner layer is removed. (b) femur with inner layer 

 

To assess intra-observer variability, for each operator, all 10 combinations of the five 

segmentations from each individual were compared. To achieve this, the first 

segmentation (S1) was imported into CloudCompare™, followed by the import of the 

second segmentation (S2). Subsequently, the vertices of S1 were compared to those of 

S2 using C2C absolute distance. C2C is the CloudCompare™ terminology for iterative 

closest point analysis (REF section in section 2.8.3). An example of a resulting scalar 

field of differences between S1 and S2 is shown in Figure (39). The differences were 

visualized using colour coding, where red indicates the maximum difference, followed 

by yellow and green, while blue indicates no difference between the two models. This 

process was repeated for each possible segmentation pairing (i.e. S1/S2, S1/S3, S1/S4, 

S1/S5, S2/S3, S2/S4, S2/S5, S3/S4, S3/S5, and S4/S5). 

The resulting visual representations of the point cloud comparisons were then analysed 

with regards to the location of the maximum C2C distance. The anatomy of each bone 

was divided into regions and location of the maximum difference in between the two 
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segmentations was coded accordingly. This enabled the regions of the knee joint most 

likely to be poorly segmented to be identified. 

 

 

 

6.4.1.1 Femur 

The location of the maximum distance between each comparison of the femur was 

determined and each area is given a code.  

 

 

Figure 45. Schematic dividing of the distal femur 

 

Table 4. Assigning code for each parts of the distal femur 

Codes for femur Anatomical Positions 

Codes Anatomical positions 

Code1 Anterior aspect of medial condyle  

Code2 Medial aspect of medial condyle  

Code3 posterior aspect of medial condyle 

Code4 Anterior Intercondylar notch 
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Code5 Middle Intercondylar notch 

Code6 posterior Intercondylar notch  

Code7 Lateral Intercondylar notch 

Code8 Medial Metaphysis 

Code9 Lateral Metaphysis  

Code10 Posterior aspect of lateral condyle 

Code11 lateral aspect of lateral condyle 

Code12 Anterior aspect of lateral condyle  

 

6.4.1.2 Tibia 

Tibia is divided schematically into nine section to help understand the frequency of 

location with largest distance between operators. 

 

 

Figure 46. Schematic dividing of the proximal tibia 

 

Table 5. Assigning code for each parts of the proximal tibia 

Codes for tibia Anatomical positions 

Code 1 Medial proximal tibia 

Code 2 Lateral proximal tibia 

Code 3 Posterior proximal tibia 

Code 4 Anterior proximal tibia 

Code 5 Medial distal tibia 

Code 6 Lateral distal tibia 

Code 7 Posterior distal tibia 
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Code 8 Anterior distal tibia 

Code 9 Intercondylar eminence 

 

 

 

 

6.4.1.3 Patella 

The location of the maximum distance between each comparison of the patella was 

determined and each area is given a code. 

 

Figure 47. Schematic dividing of the patella 

 

 

Table 6. Assigning code for each parts of the patella 

Codes for Patella Anatomical 

positions 

Codes Anatomical positions 

Code1  Anterior proximal medial  

Code2 Anterior proximal lateral  

Code3 Anterior distal medial 

Code4 Anterior distal lateral  

Code5 Posterior proximal lateral 

Code6 Posterior proximal medial 

Code7 Posterior distal lateral  

Code8 Posterior distal medial 
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6.4.2 Hausdorff Distance, Jaccard Index, Dice Similarity Coefficient 

The edited femur, tibia, and patella were subjected to a mathematical comparison using 

MATLAB. All 255 STL files were analyzed, resulting in 2776 comparisons for the 

femur, 2776 for the tibia, and 2776 for the patella, including both intra and inter 

comparisons.  

Briefly, point clouds were created from the STL files and were aligned using the 

matlab function pcregrigid. Subsequently, the Hausdorff distance between the two 

aligned point clouds was determined, and the maximum, mean, median and standard 

deviation of the Euclidean distances were also determined. Using a threshold value of 

1.2mm, corresponding to the approximate size of a voxel in the image, the number of 

points with their closest Euclidean neighbour less than this threshold were determined. 

These were considered identical points for the purpose of calculating the Dice 

Similarity Coefficient and the Jaccard Index including determination of the false 

positive and false negatives (see sections 2.8.1 and 2.8.2). Finally, volume similarity 

was also determined. 

The Matlab code used to generate these measures may be found in Appendix G 

 

6.4.2.1 Statistical analysis 

For each bone (femur, tibia, patella), there were 10 possible point cloud comparisons 

between different segmentations, and this was repeated for 15 observers. The Dice 

Similarity coefficient (DSC), Jaccard Index (JI) and the Hausdorff distance (HD) were 

analysed with repeated-measures ANOVA with ‘bone’ and comparison (e.g. S1 vs S2) 

as main effects, including their interaction. The Greenhouse-Geisser p-value was taken 

as this provides a conservative p-value. Subsequent post-hoc pairwise comparisons 

were made, with Bonferroni-adjustment. Significance was taken when p <= 0.05. 

6.4.3 Inter-observer Analysis 

Further inter-observer analysis was performed using the interclass correlation 

coefficient (ICC). The DSC measures for each person, for each comparison were 

assessed to find out the consistency between the observers using the two-way random 

effect model is chosen, as suggested by Koo [82].  
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6.5 Results 

6.5.1 CloudCompare™ Analysis 

This section details the Location of maximum C2C distances 

6.5.1.1 Femur 

An exemplar visual representation of an intra-examiner comparison of femur, 

segmented by a single individual using CloudCompare™, is presented below. Bones 

have been rotated to locate and identify the largest difference between two 

segmentations, which is marked as red colour. 

 

 

 

Figure 48. C2C absolute difference of S1 with S2 and S3 
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Figure 49. C2C absolute difference of S1 with S4 and S5 

 

 

 

Figure 50. C2C absolute difference of S2 with S3 and S4 
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Figure 51. C2C absolute difference of S2 versus S5 and S3 versus S4 

 

 

Figure 52. C2C absolute difference of S3 versus S5 and S4 versus S5 
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With reference to table 4, the positions of the maximum differences between 

segmentations of the femur are provided in the table below: 

Table 7. The codes of maximum differences between segmentations of the femur 

 

Forty one out of 150 (27%) of the biggest differences occur in the anterior aspect of 

the medial condyle and 52/150 (35%) occur in the medial metaphysis. Other regions 

which also show occasional maximum differences are the medial aspect of the medial 

condyle (8%), the lateral metaphysis (9%) and the lateral aspect of the lateral condyle 

(8%). 

6.5.1.2 Tibia 

The following illustration is the intra-examiner comparison of the tibia performed by 

the first operator. 

 

Figure 53. (a) C2C absolute distance of S1 vs S2 , (b) S1 vs S3 

S1S2 S1S3 S1S4 S1S5 S2S3 S2S4 S2S5 S3S4 S3S5 S4S5

P1 1 3 3 3 3 3 3 8 8 1

P2 1 11 6 6 11 6 6 6 6 8

P3 2 2 2 2 2 11 11 2 2 9

P4 11 11 11 11 2 2 2 2 2 1

P5 1 8 1 8 8 8 8 9 9 9

P6 9 1 8 8 1 8 8 8 8 1

P7 8 10 8 8 8 8 8 8 8 8

P8 11 11 11 11 8 3 3 1 8 8

P9 1 9 8 8 1 1 1 8 1 9

P10 9 1 8 8 8 9 8 8 8 9

P11 8 8 1 8 8 8 1 8 8 8

P12 1 1 1 1 1 1 1 8 8 8

P13 1 1 3 1 1 1 1 1 1 1

P14 1 1 1 1 10 10 10 8 1 1

P15 8 9 9 8 8 8 8 9 9 1
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Figure 54. (a) C2C absolute distance of S1 vs S4, (b) S1 vs S5 

 

Figure 55. (a) C2C absolute distance of S2 vs S3, (b) S2 vs S4 
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Figure 56. (a) C2C absolute distance of S2 vs S5, (b) S3 vs S4 

 

Figure 57. (a) C2C absolute distance of S3 vs S5, (b) S4 vs S5 
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Table 8. The codes of maximum differences between segmentations of the tibia 

  Graphical tibia comparison 

  S1S2 S1S3 S1S4 S1S5 S2S3 S2S4 S2S5 S3S4 S3S5 S4S5 

Participant 

P1 2 2 3 2 2 2 2 2 2 2 

P2 2 2 2 2 2 3 3 2 2 2 

P3 7 7 7 2 2 2 2 2 2 2 

P4 7 7 7 7 3 2 2 2 2 2 

P5 2 5 5 5 9 9 3 2 2 2 

P6 2 2 2 2 2 2 2 7 7 2 

P7 7 7 6 7 7 7 2 7 7 2 

P8 7 7 7 7 3 7 2 3 3 2 

P9 2 7 7 7 7 7 7 7 2 2 

P10 7 7 2 7 2 2 7 2 2 7 

P11 2 2 7 2 2 7 2 7 2 2 

P12 7 2 7 7 7 2 2 7 7 2 

P13 2 2 2 2 7 2 2 2 2 2 

P14 3 3 3 3 2 2 2 2 2 2 

P15 2 2 2 2 3 3 2 2 7 2 

 

More than half (86 out of 150, 57%) of the comparison shows maximum difference in 

lateral proximal tibia. Posterior distal tibia is next with 44/150 (29%) of the biggest 

differences. Maximum difference is repeated 14 times in 150 total comparison which 

is 9%. Medial distal tibia (2%), lateral distal tibia (1%) and intercondylar eminence 

(1%) are other regions with occasional maximum differences.  

6.5.1.3 Patella 

Also, the following presentation displays the results of the intra-examiner comparison 

of the patella conducted by the first individual. 
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Figure 58. (a) C2C absolute distance of S1 vs S2, (b) S1 vs S3 

 

Figure 59. (a) C2C absolute distance of S1 vs S4, (b) S1 vs S5 

 

Figure 60. (a) C2C absolute distance of S2 vs S3, (b) S2 vs S4 
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Figure 61. (a) C2C absolute distance of S2 vs S5, (b) S3 vs S4 

 

Figure 62. (a) C2C absolute distance of S3 vs S5, (b) S4 vs S5 
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Table 9. The codes of maximum differences between segmentations of the patella 

  Graphical patella comparison 

  S1S2 S1S3 S1S4 S1S5 S2S3 S2S4 S2S5 S3S4 S3S5 S4S5 

Participant 

P1 7 7 7 7 7 7 7 6 6 6 

P2 8 8 8 8 1 7 2 2 2 2 

P3 8 8 8 8 7 7 7 8 8 8 

P4 8 8 8 8 8 8 8 7 8 7 

P5 6 6 6 2 2 2 2 2 6 6 

P6 8 8 8 8 8 8 8 6 6 6 

P7 7 2 6 6 2 6 6 6 2 2 

P8 2 2 6 2 6 2 6 2 6 6 

P9 6 6 6 6 6 6 6 2 2 2 

P10 6 2 2 6 2 6 6 6 6 2 

P11 6 6 6 6 2 2 2 2 2 2 

P12 6 6 6 6 6 6 2 2 2 6 

P13 6 8 2 2 6 2 2 2 2 6 

P14 8 6 8 8 6 8 8 6 6 2 

P15 8 2 8 8 8 7 6 8 8 6 

 

54/150 (36%) comparison shows the maximum difference is at posterior proximal 

medial part of patella, 42 cases (28%) of maximum difference is at Anterior proximal 

lateral, 25% is at posterior distal medial, 10% at posterior distal lateral and 1% at 

Anterior proximal medial.  

6.5.2 Hausdorff Distance, Jaccard Index and Dice Similarity Coefficient 

Table 10 describes the overall average (±SD) values for all 2776 comparisons for the 

femur, tibia and patella. 
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Table 10. Overall average of all comparisons of each bone 

 Femur Tibia Patella 

DSC 0.925 ± 0.076 0.793 ± 0.103 0.894 ± 0.042 

JI 0.868 ± 0.114 0.668 ± 0.131 0.811 ± 0.068 

HD (mm) 2.788 ± 0.693 5.289 ± 2.299 2.142 ± 0.787 

Maximum Eucl. 

Distance (mm) 
2.989 ± 0.789 4.845 ± 1.916 2.198 ± 0.804 

Mean Eucl. 0.036 ± 0.05 0.143 ± 0.101 0.050 ± 0.044 

Median Eucl. 0 ± 0 0.001 ± 0.003 0 ± 0 

Vol Similarity (%) 0.002 ± 0.035 0.002 ± 0.023 -3.1*10(-4)  ± 0.013 

 

 

The DSC, JI and HD varied significantly between bones (Figure 63, p < 0.001). 

Regarding the DSC, the femur had a higher coefficient than the tibia (p < 0.001), but 

it was not different to the patella (p = 0.146). The tibia also had a lower DSC than the 

patella (p = 0.002). Jaccard indexes demonstrated the same differences (femur vs tibia, 

p < 0.001; femur vs patella, p = 0.057; tibia vs patella, p = 0.001). Finally, in an 

opposite pattern, the mean Hausdorff distance were significantly higher for the tibia 

than for the femur and patella (femur vs tibia, p < 0.001; femur vs patella, p = 0.008; 

tibia vs patella, p < 0.001). 
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Figure 63. Mean DSC, JI and HD for each bone (error bar = standard error)  

 

The comparison sequence had no significant effect on the DSC, JI and HD variables 

(Figure 64), as the p values are 0.087, 0.077 and 0.055 respectively. However, these p 

values are very close to the 5% level, therefore they are suggesting a trend that there 

possibly could be an effect, but statistical convention dictate there is no effects of bone 

and comparison on the measurement matrixes. With regards to Figure 64 it could be 

said that there may be a trend for increasing DSC and JI measures, and a decreasing 

HD measure, but it is clearly not conclusive, visually or statistically. 
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Figure 64. Mean DSC, JI and HD over all comparison (error bar = standard error) 

 

No interaction of bone and comparison sequence was found, as the Greenhouse-

Geisser p values were 0.462, 0.454 and 0.283 for DSC, JI, and HD respectively.  

The full statistical output may be seen in Appendix H. 

The above analysis combines all three bones; however, one should ascertain as to 

whether any particular bone of the knee joint is more susceptible to segmentation 

errors. The mean DSC of the three bones, against comparison sequence, is illustrated 

in figures 65. In accordance with Figure 63, femur has the highest similarity overall 

the experiment, followed by the patella and then tibia. The lack of an interaction effect 

is evidenced by the similarity in variation with comparison sequence for each of the 

bones.  
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Figure 65. Relation of each bone and comparison on DSC   

 

Figure 66 is also representing the average JI of all bones over all the segmentation, 

which showing same behaviour as DSC, tibia has less mean JI than Femur and patella. 

 

Figure 66. Relation of each bone over all comparison on JI 
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Figure 67 depicts the average HD of each bone against the comparison sequence. 

Clearly the tibia has a higher HD than the femur and patella, as described above in the 

main effect of bone on HD. The interaction p-value is 0.283, and whilst non-

significant, the figure suggests that whilst the femoral HD value remains constant, the 

HD for the tibia and patella may drop after comparison 4, indicative of a possible 

learning effect. 

 

 

Figure 67. Relation of each bone and overall comparison on HD 

 

6.5.3 Inter- observer Analysis 

6.5.3.1 Femur 

The average inter-class correlation coefficient (ICC) of femur using DSC is shown in 

Figure 68. The data that is used for this calculation is available at Appendix I. ICC of 

DSC of femur is 0.975.  

P_ID P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 

DSCFS1S2 0.96 0.96 0.75 0.62 0.96 0.95 0.96 0.96 0.97 0.96 0.97 0.97 0.97 0.97 0.97 

DSCFS1S3 0.91 0.96 0.75 0.64 0.95 0.98 0.97 0.96 0.97 0.96 0.98 0.97 0.96 0.97 0.98 

DSCFS1S4 0.94 0.94 0.77 0.65 0.94 0.96 0.97 0.96 0.97 0.96 0.99 0.97 0.97 0.96 0.98 

DSCFS1S5 0.93 0.95 0.76 0.65 0.94 0.96 0.97 0.96 0.97 0.96 0.98 0.97 0.97 0.97 0.97 
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DSCFS2S3 0.90 0.96 0.74 0.79 0.97 0.96 0.97 0.96 0.97 0.97 0.98 0.96 0.97 0.97 0.97 

DSCFS2S4 0.93 0.94 0.75 0.79 0.94 0.94 0.97 0.96 0.97 0.98 0.98 0.97 0.97 0.97 0.96 

DSCFS2S5 0.93 0.95 0.75 0.78 0.95 0.95 0.98 0.96 0.97 0.97 0.99 0.97 0.97 0.97 0.96 

DSCFS3S4 0.92 0.96 0.75 0.91 0.96 0.96 0.98 0.97 0.97 0.97 0.99 0.97 0.96 0.97 0.98 

DSCFS3S5 0.92 0.97 0.75 0.91 0.97 0.97 0.98 0.97 0.97 0.97 0.98 0.97 0.97 0.96 0.97 

DSCFS4S5 0.97 0.97 0.94 0.93 0.97 0.96 0.98 0.97 0.97 0.98 0.98 0.97 0.97 0.97 0.96 

 

 

Figure 68. Average DSC ICC of femur is 0.975 

6.5.3.2 Tibia  

Figure 69 plotted the aggregation of Dice Similarity Coefficient of segmentation of 

tibia for fifteen people. Which shows the ICC is 0.981.  
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Figure 69. Average DSC ICC of tibia is 0.981 

 

 

6.5.3.3. Patella  

Figure 70 shows scattering plot of the DSC of patella with ICC of 0.959. 

 

Figure 70. Average DSC ICC of patella is 0.959 
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6.6 Discussion 

6.6.1 CloudCompare  

The CloudCompare analysis not only provides valuable insights into segmentation 

variability but also offers a visual understanding of specific anatomical regions prone 

to challenges. These insights are crucial for improving segmentation protocols, 

especially in mitigating issues such as partial volume effects, image quality, and 

noises. By identifying problematic areas susceptible to variability, segmentation 

protocols can be refined to enhance accuracy and consistency in delineating tissue 

boundaries. Following section provides more detail about these and illustrates them in 

our case study.  

6.6.1.1 Partial volume effects  

Partial volume effects occur when a single voxel (3D pixel) in a medical image 

contains a mixture of two or more different tissue types, such as bone and soft tissue. 

This happens at the boundaries or interfaces between different tissues, where the voxel 

encompasses a partial volume of each tissue type. As a result, the voxel value 

represents an average of the intensities or densities of the different tissues, leading to 

blurring or inaccurate representation of the tissue boundaries. 

In the context of segmentation, partial volume effects can cause inaccuracies in the 

delineation of boundaries between different structures or tissues. This is because the 

segmentation algorithm may struggle to correctly classify voxels that contain a mixture 

of intensities, leading to errors in the final segmented region. 
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Figure 71. Example of partial volume effect between tibia, soft tissue and fibula 

 

The boundary between the tibia and the surrounding muscles or other soft tissues, 

seems to contain a partial volume of bone (from the tibia) and a partial volume of soft 

tissue (Figure 71). Similarly, at the interface between the tibia and the fibula, voxels 

may encompass both bone structures, leading to ambiguous intensities and potential 

misclassification during segmentation (Figure 71). This factor may contribute to the 

increased segmentation variability observed in the tibia compared to the femur and 

patella. 

The presence of voxels containing a mixture of intensities from different tissues at 

these boundaries could have led to inconsistencies in how the segmentation algorithm 

classified these voxels. As a result, different operators may have obtained slightly 

different segmentation results, particularly in regions where partial volume effects 

were more pronounced, such as the lateral proximal tibia or the distal end of the tibia 

(where motion artifacts were also present). 

6.6.1.2 Image quality: contrast and noise 

Contrast in CT medical imaging refers to difference between x-ray attenuated by body 

and x-ray transmitted through body. Therefore, the CT image shows lighter areas for 

bones as more x-ray stopped by bones and fewer x-rays hit the detector. In the same 

manner, it shows darker areas as more x-ray transmitted and hit the detectors. Very 

low image contrast results in low contrast sensitivity and low visibility as shown in 
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Figure 72A; and high contrast also reduced visibility in the very light and dark areas 

(Figure 72B).   

 

Figure 72. A Knee joint CT image with low contrast, B knee joint CT image with high contrast 

 

Additionally, CT images may contain noise, which can be caused by low radiation 

dose, hardware imperfections and patient motion during scanning. Noise can make it 

difficult to distinguish between relevant structures and background, leading to 

segmentation errors. 

Now, there is probability for the CT image that may contain both low contrast and 

noise at same time. Figure 73 shows the ratio of contrast over noise chart. Contrast is 

signal level of a given region above the background. In the following image the first 

row and column show signal with 20HU above the background with 40HU so the 

contrast is 20 HU (numbers are arbitrary), so if there is more contrast and less noise, 

the image is more visible. If the noise increase over contrast, the noise to ratio reduces 

and become harder to visualise it (Figure 73).  
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Figure 73. Contrast to noise ratio 

6.6.1.3 Rose model effect 

On the other hand Albert Rose [128] published a study as Rose model, that mentioned 

human visual system is related to contrast, by, square root of area multiply by number 

of photons. Where V is human visual system, C is contrast, A is area, and N is number 

of photons, which is related to Noise. The noise is inversely proportional to the square 

root of the number of photons used to make the image. In other words, if the number 

of photons used is quadrupled, the noise in the resultant image should be halved [129]. 

𝑉~𝐶√(𝐴.𝑁)   

This equation means that smaller objects need higher contrast to be seen by human 

eye, Figure 74. In this regard, the hypotheses suggests that the tibia has more irregular 

boundaries and smaller anatomical features compared to the femur and patella. 

According to the Rose model, these smaller features and intricate boundaries may have 

lower contrast and be more susceptible to the effects of noise, making them less visible 

or detectable during the segmentation process. 

 

The irregular boundaries of the tibia may result in regions with lower contrast, as the 

transition between bone and soft tissue may be more gradual or blurred. 



113 

Additionally, In the context of the semi-automatic segmentation process used in this 

study with the ITK-Snap software, the Rose model highlights the potential challenges 

faced in segmenting regions with low contrast or high noise levels. 

The software's segmentation algorithm may struggle to accurately delineate 

boundaries or detect smaller features in regions with low contrast-to-noise ratios, as 

predicted by the Rose model. This could partially explain the higher variability 

observed in segmenting the tibia, which has more irregular boundaries and smaller 

anatomical features compared to the femur and patella. 

However, the software allowed for user input and manual editing, which could 

compensate for these challenges to some extent. By manually adjusting the 

segmentation results or providing additional guidance operators could potentially 

overcome the limitations imposed by low contrast or noise and improve the 

segmentation accuracy of challenging regions. Or may could cause more human error. 

 

 

Figure 74. Relation of Visual system to contrast and noise [128, 130] 

On the other point of view, considering the semi-automatic segmentation feature, the 

level of user interaction and input during the segmentation process may affect the 

identification of irregular boundaries. Investigating the impact of user involvement on 

the software's ability to detect smaller areas could guide improvements in user 

interfaces and segmentation algorithms. 
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6.6.1.4 Motion Artefacts 

This phenomenon occurs when x-ray photons, initially directed towards a specific 

detector, are deviated due to sudden patient movements, resulting in inaccurate 

information.  

In this study, despite the acquisition of three CT images per second, motion artefacts 

from patient movements during image acquisition are visible near the distal end of the 

tibia, which leads to inaccurate data throughout the segmentation process. (Figure 75). 

Patient movement causes blurring, streaking, or shading, during a CT scan. 

 

Figure 75. Tibial distal end shows motion artefacts 

Figure 76 illustrates the anterior aspect of the medial condyle of femur with maximum 

difference. Lack of enough contrast, low bone density, and pathological situation could 

cause this. 

 

Figure 76. Anterior aspect of medial condyle of femur shows maximum difference 
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In the tibia, the lateral proximal region showed the most variability (Figure 77). The 

hypothesis comes from the idea that the surface texture of the tibia might affect the 

performance of segmentation software. Irregularities in the surface, such as bumps or 

grooves, could lead to misinterpretations by the segmentation algorithm.  

Additionally, the density of the tibia's bone structure may also affect the visibility of 

certain areas. Higher bone density could potentially obscure smaller regions, making 

them less distinguishable.  

 

 

Figure 77. Lateral proximal tibia shows maximum difference  

Figure 78 shows the patella with the posterior proximal medial region had the greatest 

differences. 

  

Figure 78. Posterior proximal medial patella shows maximum difference  
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6.6.2 Hausdorff Distance, Jaccards Index, Dice Similarity Coefficient  

The quantitative similarity metrics showed significant differences between the bones, 

with the tibia having lower similarity (higher Hausdorff distances) compared to the 

femur and patella. This aligns with the CloudCompare analysis showing high 

variability in the tibia. 

While the tibia still shows good agreement (DSC = 0.793), it has a lower DSC 

compared to femur and patella. This might be attributed to the motion artefact, because 

of movement during four-dimensional CT scan and the quality of the scan.   

Across all metrics, the femur showed the best segmentation consistency. The patella 

showed good consistency by DSC. 

Both femur and patella show high agreement in segmentation among different 

observers, as indicated by the high DSC values and ICC. This suggests that the 

segmentation process for these bones is more reliable and reproducible than tibia. 

This result is consistent with Raudaschl [124] study, in which they highlight the lack 

of consensus on the best automated segmentation method due to the diversity of 

structures and a wide variety of segmentation algorithms. They evaluated the 

segmentation methods on head and neck CT. Six teams participated in the 

segmentation process, segmenting nine structures in head and neck CT images, 

including the brainstem, mandible, chiasm, bilateral optic nerves, and bilateral salivary 

glands. Mandible was the only bony structure that they segmented, which had the 

highest DSC as 0.814 that was average between three operator groups, and average 

maximum HD is 25.42mm. Comparing to the achieved average DSC over all bones in 

our study, which is 0.87, are very consistent with their results, suggesting good 

performance.   

However, their results show a big inconsistency with our study in maximum HD.  Our 

maximum HD is related to tibia which is 5.289mm but their HD among three teams is 

56.128mm, 15.391mm and 4.749mm. They mentioned this could be due to upper part 

of mandible which was thin, and because they had different segmentation techniques 

for auto-segmentation. They emphasize that more general-purpose segmentation 

technique is needed and all the teams should have used same technique. 
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Other study is done by Ataei [76] assessed the inter- and intra-operator reliability of 

manual segmentation of femoral metastatic lesions. Two operators conducted 

segmentation twice for each femur, and Dice coefficients (DCs) were calculated to 

assess reliability. A Dice coefficient greater than 0.7 was considered indicative of good 

reliability. While their study demonstrated good reliability, it appeared to be less 

consistent than our study. This discrepancy may be attributed to the irregular and 

unpredictable shapes of bone metastatic than healthy bones. They mentioned simpler 

surfaces are easier to segment and they saw improved reliability for larger volumes. 

6.6.2.1 Learning trend 

On the other point of view, figures 65, 66, 67 shows a trend. The trend (although not 

statistically significant) for increasing DSC and JI and decreasing HD may be 

suggestive of a learning curve for the participants and the segmentations proceeded. 

Comparing the 4th segmentation with the 5th segmentation, across all bones, seemed to 

have the highest similarity scores and the lowest Hausdorff distance. However, any 

such learning effect is fairly minimal and may not be clinically meaningful when 

translated to future modelling scenarios. 

6.6.2.2 Presence of Fibula 

The presence of the fibula in close proximity to the tibia emerges as a potential 

influencing factor, contributing to the tibia's higher HD and lower similarity compared 

to the femur and patella. Distinguishing between the borders of these two bones also 

presented challenges for the operator (Figure 77). The close spatial relationship 

between the tibia and fibula appears to have led to the bleeding of the initial seed of 

segmentation into the neighbouring tibia. This phenomenon may have occurred due to 

the challenges in precisely delineating the boundaries between the two closely situated 

bones. Consequently, manual intervention by the operator was necessitated to rectify 

this bleed, introducing an element of subjectivity into the segmentation process. 

Additionally, Distinguishing between the borders of the tibia and fibula emerged as a 

notable challenge for the operator. The anatomical proximity and potential similarities 

in radiodensity between these bones may have made it difficult to establish clear and 

distinct boundaries during the segmentation process.  
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6.6.3 Inter- observer Analysis  

The ICC analysis demonstrates excellent inter-rater reliability for the femur, tibia and 

patella segmentations. ICC values were 0.975, 0.981 and 0.959 for the three bones 

respectively. According to Koo [82] et al. this means there is a good to excellent 

reliability for the segmentation of tibia patella and femur on 3D images of the knee 

joint between the different observers (Koo and Li 2016).   

The high ICC values for DSC in all three bones demonstrate that ITK-Snap provides 

a reliable platform for segmentation. Considering the level of experience among 

operators and the agreement among them, suggests that the tool is consistent across 

observers with different experience, enhancing its utility in clinical or research 

settings. 

In comparison with Misselyn [76] paper which they got 0.828 ICC on preoperative 

measurements and their inter-observer ICC for postoperative measurements was 

calculated as 0.692. The high agreement is in line with the results of femur, patella and 

tibia of this study, however the 0.69 is moderate reliability of the measurement, which 

could be because, presence of the implants in post operation cases. Their preoperative 

has high agreement that is line with our study, but their postoperative study are not 

inline. They suggest another probability for this, which is the lack of perfect symmetry 

of the calcaneus bone in the human body and also by the variation of the 

measurements. 

6.7 Conclusion 

The results demonstrate the reliability of the segmentation process. The findings 

contribute to the potential clinical applications of these methods. Additionally, 

statistical analysis using SPSS software reveals a significant effect of bone on the 

measurement variables. The study also observes an improvement in segmentation 

similarity over time, particularly for the femur. 

In conclusion, the comprehensive analysis of knee joint segmentation using 

quantitative metrics of Intra- observer variability, CloudCompare visualization, and 

inter-observer reliability assessments has provided valuable insights into the 

challenges of the process. While challenges such as image quality, motion artefacts, 

proximity of the fibula, and irregularities in bone structure impact segmentation 
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outcomes, the study emphasizes the importance of refining protocols, optimizing 

algorithms, and providing targeted operator training. The consistent inter-observer 

reliability signifies the potential clinical utility of the segmentation tool, reinforcing its 

reliability in diverse applications. The findings contribute to the ongoing efforts to 

enhance the accuracy and reproducibility of musculoskeletal imaging. 

 

 

  



120 

Chapter 7 Effect of segmentation on FEA 

7.1 Introduction 

Differences in segmentation of the bones may manifest in differences in subsequent 

computations models, as these are based on segmented data. These models are used in 

hospitals for surgical planning, and also in academic research. Many research 

questions utilise finite element models of bone to determine stress and strain in 

response to external loads and moments [131-133]. It is therefore of interest to 

determine the effect of small changes in the topology of the segmented models on the 

numerical outputs. This chapter details an example in which this is achieved.  

In FE models of orthopaedic interest, if a part of the bony anatomy is not in contact 

with another structure, e.g. cartilage or ligament, then a small variation in that surface 

is unlikely to have an effect on the meaningful output of the model, with the exception 

of very localised stress and strain. However, if the bony surface is in contact with 

another structure in the model (e.g. ligament insertion points, articular cartilage), then 

uncertainty in the true location of the bony surface may spread uncertainty into these 

other structures, which may or may not, be of academic or clinical importance. 

Therefore, to maximise the potential for identifying the importance of the bony 

surface, a model that has as much contact area surrounding the bone as possible, is a 

sensible approach. 

In conventional knee models, the process of individually defining each ligament for 

every person and model is not only time-consuming but also susceptible to human 

error. They are also complicated to create; often segmenting multiple tissue types, and 

are currently not suitable for analysing large image data sets. To overcome these 

challenges, this chapter uses an approach that replaces the ligaments, tendons, bursae, 

meniscus, muscles, and the knee capsule with a simplified representation as an 

incompressible, isotropic, homogenous, elastic volume. This methodology is 

particularly suited to work with CT data because the soft tissues are not easily 

distinguishable in CT images. 
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Figure 79. Finite element model by Arjmand [4] 

 

This concept has been inspired by Arjmand et al. [4], who made a FE model to describe 

the mechanics of the proximal tibia in normal and OA knees. Their work built on 

McErlain et al. [5] who used the same methodology to investigate the effect of intra-

osseous subchondral cysts in Osteoarthritis (OA) knee. 

Arjmand et al. [4] developed individualised FE models for 14 knees affected by 

osteoarthritis (OA) and normal knees. Their objective was to identify specific 

mechanical characteristics in the proximal tibia that distinguish between normal and 

OA knees. Utilizing quantitative computed tomography (QCT) scans, they analysed 

structural stiffness, von Mises stress, strain, and minimum principal stress. The study 

concluded that FE modelling in this manner effectively measures and distinguishes 

biomechanical differences between healthy and OA knees. Importantly, the study 

focused on the method of replacing soft tissue with an incompressible cylindrical 

medium, which is not representative of the volume of the joint and surface topology, 
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which may have implications for the material properties chosen for the tissue. Figure 

79 illustrates the representation of soft tissue as an incompressible cylinder. 

Prior to this, McErlain et al. [5] investigated intra-osseous lesions such as subchondral 

bone cysts (SBC), in knee osteoarthritis (OA) progression. The soft tissue surrounding 

the joint was modelled using the compressive properties of cartilage under 

compression at equilibrium, with properties of cartilage assigned to all soft tissue 

outside the bony margins. 

The above two research studies [4, 5] created soft tissue models, but they did not make 

them patient-specific based on individual images. This chapter extends their approach 

as the soft tissue surrounding the knee is derived exclusively from subject-specific 

segmentation of a real patient CT image, differentiating it from the previous models 

that bounded the bony anatomy in a cylinder of soft tissue. This approach maximises 

the contact area between bone and soft tissue, making it ideal to assess the effect of 

segmentation.  

Therefore, the primary aim of this chapter is to use a simplified soft tissue model, 

specifically an incompressible, isotropic, homogeneous, elastic volume in an FE 

simulation of knee joint loading to assess small differences in bone topology due to 

variability in segmentation. To do this, the study replicates and enhances a method for 

constructing knee joint models by replacing the traditional approach of defining 

individual ligaments, muscles, tendons, ligaments, bursae, and meniscus with a 

comprehensive, all-encompassing external knee joint surface. 

The outcomes of this research will contribute to a better understanding of the 

feasibility and advantages of utilising simplified soft tissue models in finite element 

simulations of knee joints, with potential implications for clinical research and 

analysis. Moreover, and uniquely, it will highlight the role that segmentation plays in 

the numerical outcome of models based on CT and MRI images. 

7.1 Methodology 

In this section two subject-specific finite element models were constructed in Ansys 

Workbench (Ansys 2022 R2). 
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As before, the four dimensional (3D + time) Computed Tomography scan of the knee 

joint from a healthy man is taken, with the person lying in prone position and 

successive images were taken during knee flexion providing a 4DCT dataset [117]. 

The DICOM image was imported to ITK-Snap for segmentation and creating 3D 

representation of the images. The following process flowchart outlines the steps, 

4DCT scans are initially segmented using ITK Snap software. Subsequently, Ansys 

Spaceclaim converts the surface only data into solid representations. Finally, Ansys 

Mechanical performs the analysis on the resultant model. 

 

7.1.1 ITK-Snap Analysis 

One image (N3018368) was selected as it had less moving artefact and had a relatively 

extended knee joint. The right knee was selected for analysis (Figure 80Figure 80).  

 

Figure 80. ROI selection on ITK-Snap 
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Figure 81. 3D model of knee joint is made 

 

Labels were defined for the femur, tibia, fibula, patella and soft tissue. The previously-

described thresholding method was used to make the binary image. The optimal 

threshold value was found, as mentioned in chapter 4, for each bone. The optimal 

threshold values for the tibia, femur, patella, fibula and soft tissue were 205HU, 

160HU, 200HU, 232HU, -400HU respectively. The upper threshold level was kept as 

the maximum available and lower threshold level was the optimal threshold. The 

operator initialised the contour by giving bubbles in the regions. The contour expands 

its progression and stops at the point where there is a variation in Hounsfield Units 

(HU).  

As the tibia and fibula are very close to each other, the contour bleeds. To overcome 

this problem during segmentation, first the tibia is segmented normally, then a mask 

is placed on the tibia when performing segmentation of the fibula. The action of the 

mask is to prevent bleeding from the fibula to the tibia. Every orthogonal viewpoint of 

the image is checked and inspected for any holes. 

By updating the fourth window, the 3D model is constructed for the cortical part of 

bones whilst the spongy parts of bones are not included. This spongy part and any hole 

on the cortical area are filled manually by using the paintbrush tool (Figure 81) 
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After all the bones are segmented, the bones are masked and the soft tissue is 

segmented to ensure no bleeding into the bone regions (Figure 82) 

Figure 83 and Figure 84 depict the bony anatomy of the knee joint and the soft tissue 

in Meshmixer™. 

The constructed 3D model was saved as a stl file; however, stl files only represent the 

surfaces of the objects. Therefore, before any analysis could be done, they needed to 

be converted to solid geometry files. Hence, they were imported to Ansys SpaceClaim 

2022 R2, to be converted to CAD geometry to be able to use in Ansys mechanical. 

 

Figure 82. The 3D model of soft tissue surrnding knee joint is made  

 

Figure 83. Soft tissu of knee joint is shown in Meshmixer,bones are hidden 
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Figure 84. Meshmixer is showing 3D model of constructed bones 

7.1.2 Ansys SpaceClaim Analysis 

The stl file was imported and checked for any problematic facets. Then with the Auto 

Skin tool it was converted to geometry. The repair tool was used to look for any gaps, 

missing faces, stitches, split edges, sharp edges and duplicated edges and tried to make 

sure it is poreless (Figure 85Figure 85). All bones are created successfully as geometry 

(Figure 86Figure 86).  

The final CAD geometry was saved as a SpaceClaim file (.scdoc) and imported to 

Ansys worckbench™. 

 

Figure 85.converting Stl file to CAD geometry in Ansys SpaceClaim 
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Figure 86. bones are converted to CAD Geomtry inAnsysSpaceClaim 

7.1.3 Ansys Mechanical Analysis 

In the Ansys 2022 R2 Workbench, the units are set as millimetre and a static structural 

system was chosen and the knee joint was imported. The literature was studied to find 

appropriate and relevant soft tissue material properties, which are listed in (Table 11). 

The literature describe different material properties for soft tissue and, obviously, there 

is no consensus for a specific material characteristic for soft tissue around knee joint. 

Based on these data, this study used a hyperelastic neo-Hookean material with a shear 

modulus of 1 MPa and a Poisson's ratio of 0.45 for soft tissue in the Engineering data 

section, to make it constitutively simple but able to withstand large deformation gives 

the best chance for model solution.   

Table 11. Published soft tissue material properties 

Author Tissue type Elastic Modulus (MPa) Poisson’s 

ratio 

Noyes [134] Young human 

ligament 

111 
 

 
Old human 

ligament 

65.3 
 

Butler [135] ACL 278-310 
 

 
PCL 280-447 

 

 
ACL 375-25 
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Butler  [136] Anteromedial 

fiber human 

ligament  

238 
 

 
Anterolateral 

fibers human 

ligament 

285.9 
 

 
posterior fibers 

human ligament 

154.9 
 

Race [137] Anterolateral 

fibers of human 

PCL 

248 
 

 
posteromedial 

fibers of human 

PCL 

145 
 

Quapp [138] Longitudinal 

ligament 

38.6 
 

 
Transverse 

ligament 

1.7 
 

Chandrashekar [139] ACL total 113 
 

 
Male 128 

 

 
Female 99 

 

Wang [140] Cartilage 10 0.05– 0.45 
 

Menisci 20–140 0.2 

Pena  [85] Cartilage 5 0.46 
 

Menisci 59 0.49 
 

ACL 1.95 
 

 
PCL 3.25 

 

 
MCL 1.44 

 

 
LCL 1.44 

 

Pen˜a [114]  Cartilage 5 0.46 
 

Menisci 59 0.49 
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ACL 5.83 

 

 
PCL 6.06 

 

 
MCL 6.43 

 

 
LCL 6.06 

 

Guo [141] Cartilage 5 0.45 
 

Menisci 59 0.46 

Mootanah [115]  Cartilage 25 0.45 
 

Menisci 20–120 0.2-0.3 
 

ACL 154 
 

 
PCL 40 

 

 
MCL 43 

 

 
LCL 56 

 

Kazemi [116] Cartilage 0.26– 1600 0.36 
 

Menisci 0.5–28 0.36 
 

ACL 10–14,000 
 

 
PCL 10–14,000 

 

 
MCL 10–14,000 

 

 
LCL 10–14,000 

 

Kazemi [142] Cartilage 0.41–367.14 
 

 
Menisci 0.0–12.84 

 

 
ACL 46.47–1118.60 

 

 
PCL 46.47–1118.60 

 

 
MCL 46.47–1118.60 

 

 
LCL 46.47–1118.60 

 

Donlagic [143]  Cartilage 67.6 0.3 
 

Menisci 130 0.3 
 

ACL 200–260 
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PCL 200–260 

 

 
MCL 114–134 

 

 
LCL 114–134 

 

Li  [144]  Cartilage 3.5–10 0.45 

Li  [96] Cartilage 5 0.45 

Blankevoort [97] Cartilage 5 0.45 

Blankevoort [92]  Cartilage 5 0.45 

Bendjaballah [98] Cartilage 12 0.45 
 

Menisci 8–15 0.45 

Bendjaballah  [2] Cartilage 12 0.45 
 

Menisci 8–15 0.45 

Bendjaballah  [145] Cartilage 12 0.45 
 

Menisci 8–15 0.45 

Jilani [146]  Cartilage 12 0.45 
 

Menisci 8–15 0.45 

Moglo  [147]  Cartilage 12 0.45 
 

Menisci 8–15 0.45 

Shirazi [148] Cartilage 12 0.45 
 

Menisci 8–15 0.45 

Yang  [149] Cartilage 15 0.45 
 

Menisci 20–140 0.2–0.3 

Beillas  [150] Cartilage 20 0.45 
 

Menisci 250 0.45 
 

ACL 150 
 

 
PCL 150 

 

 
MCL 60 

 

 
LCL 60 
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Asgari  [151] Cartilage 5 0.46 
 

Menisci 250 0.3 
 

ligament 345 0.22 

lance franzer [152]  Cartilage 50 0.45 
 

Menisci 20,120 0.3,0.45 
 

ligament 300 0.3 

Kang [153] Cartilage 15 0.47 
 

Menisci 20,120 0.20,0.3 

Silvia [154] Cartilage 13 0.475 
 

Menisci 53 0.49 
 

ACL 169 0.45 
 

PCL 177 0.45 
 

MCL 362 0.45 
 

LCL 228 0.45 

 

The tibia, femur, patella, and fibula were set to have rigid stiffness behaviour as this 

would maximise the effect on the soft tissue of the bony topology variation. This was 

considered a valid assumption as bones have much higher stiffness compare to soft 

tissues [155]. As rigid bodies do not deform, this assumption also simplified the 

numerical problem during finite element simulation and reduced the computational 

time and storage requirements. 

Bodies can pass through each other by default in Ansys, so it was essential to add a 

contact definition between the tissues to prevent penetration [156]. However, the tibia 

and femur should not be in contact directly, as there are intervening soft tissues. 

Nevertheless, a “no separation” contact between tibia and femur was selected which 

allows the two bone to slide without resistance, but they cannot separate [131, 157]. 

This extra contact is defined in case of movement or applied force the tibia and femur 

contact each other. 
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“Bonded” contact was selected between the tibia and fibula, tibia and soft tissue, femur 

and soft tissue, patella and soft tissue, fibula and soft tissue, so that the respective 

objects can neither separate nor slide at the contact interface. The contact body was 

the soft tissue and the target body was the bones, with asymmetric behaviour, (rigid 

bodies can only have asymmetric behaviour) (Figure 88Figure 88). 

A nominal force of 1N is applied vertically to the tibia to compress the joint space. 

(Figure 89Figure 89). This force was chosen to keep the analysis simple, but any 

differences due to topology should be visible numerically as a percentage difference. 

Further, a low force gives the maximum opportunity for the convergence of a solution, 

which may be problematic given the large number of contact interfaces, and reduces 

the strain in each element, which is also computationally advantageous. A fixed 

boundary condition was imposed on the femur, fixing it in 6 degrees of freedom. The 

tibia, fibula, patella and soft tissue had no boundary conditions imposed and were 

unconstrained.  

The finite element analysis was applied to two differently-segmented knee joints, as 

described in chapter six. All the boundary conditions, force and variable items remain 

same, with the only difference be as the difference in the two segmentations. 

The geometries were automatically meshed in Ansys using a combination of elements 

with tetrahedral ‘tet4’ elements. The model contained 43956 nodes and 206503 

elements in total (Figure 87Figure 87). In order to construct a coherent, contiguous 

and solvable mesh, some smoothing of the mesh was automatically conducted, using 

default settings, during the meshing operation. It is likely that mesh smoothing would 

be conducted in every FE analysis and so, whilst this step seems to affect the 

differences between the meshes, precisely what this analysis is trying to investigate, it 

is an integral part of FE analysis and unavoidable. This analysis is therefore seeking 

to identify differences in the outputs despite this mesh smoothing. We expect the mesh 

smoothing to lessen the differences between the two models, although the final nodal 

structures of the meshes have not been analysed.  

In case of large localised deformation, large deflection analysis was enabled. A mesh 

convergence analysis was not conducted as we were computing similar mesh densities 
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but with slightly different geometries. The analysis took approximately 30 minutes to 

compute, and the mesh. 

Total deformation and von Mises stress and strain were the considered outputs of the 

model, chosen to give a single indicative value for the mechanics at any given point.  

 

Figure 87. Meshing of the model in Ansys 

 

Figure 88. Contact between tbia and soft tissue. 
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Figure 89. Applied force on z axis of tibia 

7.2 Results  

Before analysing the Ansys results, this section describes the small difference between 

the two knee joints prior to importing into Ansys. Figure 90Figure 90 illustrates the 

difference between the two segmented knees, with the maximum Euclidian difference 

calculated in CloudCompare as 5.57 mm (Figure 91Figure 91). These figures show 

that the femurs are similarly segmented, but the extremities of the tibial plateau and 

fibula head are the regions that show the greatest differences.  

 

Figure 90. The green knee is first segmented knee and blue knee is second   
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Figure 91. C2C distance of two knee 

Figure 92Figure 92 shows the von Mises strain of the soft tissue following the applied 

force on the tibia. One knee had a maximum of 1.42µɛ (Figure 92), whilst the other a 

value of 2.43 µɛ (Figure 94Figure 94), a difference of 71%.  

With regards to von Mises stress, the maximum stress for the one knee was 637 Pa and 

the other 728 Pa, corresponding to a 14.2 % difference. The maximum stress and strain 

on both knees is in the soft tissue between femur and tibia (Figure 92-Figure 95), where 

the articular cartilage is. 

 

Figure 92. Elastic strain on Soft tissue of first segmentation 
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Figure 93.von-Mises stress on soft tissue for first segmentation 

 

 

 

 

Figure 94. Elastic strain on Soft tissue for second segmentaion 

 

 

Figure 95. Von-Mises Stress on Soft tissue for second segmentation 
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7.3 Discussion  

The goal of the current study is achieved which was to introduce a unique method that 

makes use of simplified soft tissue representations along with finite element analysis 

to overcome the problems with traditional knee joint modelling. The outcomes of this 

innovative approach offer insightful information about how the knee joint structures 

behave in various segmentation circumstances.  

The examination of the impact of small differences in knee joint segmentation on 

simulation results produced interesting findings. The observed variations in the 

distribution of strain and stress between two subsequent segmentations by the same 

operator highlight how sensitive simulation results are to segmentation variations. The 

experiment showed that even little variations in the delineation of structures can result 

in significant variations in the expected mechanical response. The reliability and 

repeatability of simulation-based research must be carefully considered about the 

maximum strain variation that can be up to twice as great between the two 

segmentations. 

5.6mm of variation in the 3D model made by operator caused elastic strain applied on 

the soft tissue to increase by 71%. This sensitivity of the system, emphasizing the 

critical impact of operator-induced variations on the biomechanical outcomes. 

These results are in line with Arjmand [4] paper in utilizing a cylinder of tissue with 

an isotropic homogeneous material to model soft tissue of the knee joint. They 

incorporates subject-specific bone density-modulus mappings for proximal tibia from 

1MPa to 25 GPa. Also, they modelled the femur bones with isotropic linear material 

properties E =500GPa and a Poisson’s ratio of 0.3; while we used rigid body material 

for all bones which is impeded in the Ansys software, this may be because of the 

difference of Abaqus software they used.  

Although, we both chose the homogeneous, incompressible, and isotropic material for 

soft tissue but they chose young’s modulus of 10Mpa for it, and ours is 1MPa.  
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We subjectively modelled it from a patient CT image and it is actual knee model of 

the patient. So it is more complex model than their, especially with presence of patella 

which they removed it from image. (Figure 96) 

They used bonded contact between bone (the femur, tibia and fibula) and the soft tissue 

cylinder same as ours. We both highlight the sensitivity of FE model outcomes to small 

variations in factors like segmentation. 

They fixed the proximal femur in all directions except the longitudinal axis of femur, 

which a uniform displacement of 1mm applied, while we fully fixed femur and applied 

1N force on distal tibia.  

 

Figure 96. Right ours knee joint model 

 

Clinical Implications 

The findings of this study have significant implications for clinical and research 

applications. The observed sensitivity to segmentation highlights the necessity for 

accurate and standardized segmentation techniques given the difficulties in precisely 

identifying soft tissue features and delineating anatomical structures in imaging data. 

Clinically, this work emphasises the significance of precise picture segmentation in 

patient-specific simulations, especially when therapy planning or intervention 

evaluation are involved. The variations identified in the study highlight the necessity 

of extensive validation and sensitivity analysis in patient-specific simulations to take 

into account any potential uncertainties in the segmentation process. 
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Further investigation  

The use of simplified soft tissue models in this study opens up an amazing new area 

for investigation. Future research could examine the relationship between the accuracy 

of predictions made using more complicated and anatomically accurate models versus 

the computational efficiency gained by utilizing simplified models. Additionally, 

attempts to improve segmentation procedures' automation and standards might reduce 

the effects of operator-dependent variability. 

Limitations 

It is vital to recognize that this study has several limitations. Despite being logical, the 

material properties chosen for soft tissues might not accurately represent the wide 

range of mechanical behaviours experienced in reality. Additionally, the limited 

generalization of the results is due to the small sample size of two knees. Additional 

research with bigger sample numbers might offer a more thorough understanding of 

the effects of segmentation variability. 

The other limitation was the default mesh smoothing. To ensure the creation of a 

unified and solvable mesh, automated mesh smoothing was implemented during the 

meshing process, utilizing default settings. Mesh smoothing is a standard practice in 

finite element (FE) analysis, aimed at enhancing mesh coherence and stability. While 

this process may influence the variations between meshes, which is the focal point of 

this analysis, it remains an inevitable aspect of FE analysis. 

This study aims to discern discrepancies in outcomes despite the application of mesh 

smoothing. It is anticipated that mesh smoothing will reduce differences between the 

two models, although a detailed examination of the final nodal structures of the meshes 

has not been conducted. 

7.4 Conclusion 

In summary, this study presents a unique method for modelling knee joints that 

combines simplified soft tissue models with finite element analysis. The study of 

segmentation variability's impact highlights how sensitive simulation results are to 

even minor segmentation variations. These results highlight the necessity of careful 

validation in patient-specific simulations and conventional segmentation techniques. 
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Appendix D 

 

Consent Form 

Name of department: Biomedical Engineering 

Title of the study: Inter- and intra-examiner variability of 4DCT image 

segmentation of the knee 

 I confirm that I have read and understood the Participant Information 

Sheet for the above project and the researcher has answered any queries 

to my satisfaction.  

 I confirm that I have read and understood the Privacy Notice for 

Participants in Research Projects and understand how my personal 

information will be used and what will happen to it (i.e. how it will be 

stored and for how long). 

 I understand that my participation is voluntary and that I am free to 

withdraw from the project at any time, up to the point of completion, 

without having to give a reason and without any consequences. 

 I understand that I can request the withdrawal from the study of some 

personal information and that whenever possible researchers will comply 

with my request. 

 I understand that anonymised data (i.e. data that do not identify me 

personally) cannot be withdrawn once they have been included in the 

study. 

 I understand that any information recorded in the research will remain 

confidential and no information that identifies me will be made publicly 

available.  

 I consent to being a participant in the project. 

 

 

(PRINT NAME)  

Signature of Participant: Date: 

 

 

 



154 

Appendix E 

 

 

 

 



155 

 

 

 



156 

 

 

 

 

 



157 

 

 

 

 

 



158 

 

 

 

 

 



159 

 

 

 

 



160 

 

 

 

 

 



161 

 

 

 

 



162 

 

 

 



163 

 

 



1 

Appendix F 

 

a) C2C distance comparison of S1 and S2. (b) C2C distance comparison of S1 and 

S2 

 

 

 

 (a) C2C distance comparison of S1 and S4. (b) C2C distance comparison of S1 and 

S5 
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(a) C2C distance comparison of S2 and S3. (b) C2C distance comparison of S2 and 

S4 

 

 

(a) C2C distance comparing of S2 and S5. (b) C2C distance comparison of S3 and S4 

 

 

 

(a) C2C distance comparison of S3 and S5. (b) C2C comparison of S4 and S5 
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Appendix G 

 Main all: 

clear all; 

close all 

clc; 

 

% Select folder containing the STL files 

folder_path = uigetdir; 

if folder_path == 0 

    return; 

end 

file_list = dir(fullfile(folder_path, '*.stl')); 

num_files = length(file_list); 

 

% Initialize the results table 

results = []; 

 

% Loop through every pair of files 

for i = 1:num_files 

    for j = i+1:num_files 

        % Read and process the STL files 

        file1 = fullfile(folder_path, file_list(i).name); 

        file2 = fullfile(folder_path, file_list(j).name); 

         

        [hd, dsc, ji, pc1_count, pc2_count, n_similar_nodes, 

threshold, false_positives, false_negatives, mean_dist, 

median_dist, max_dist, std_dist, volume_similarity] = 

compare_stl_files(file1, file2); 

         

        % Save the results 

        results = [results; {file_list(i).name, 

file_list(j).name, hd, dsc, ji, pc1_count, pc2_count, 

n_similar_nodes, threshold, false_positives, false_negatives, 

mean_dist, median_dist, max_dist, std_dist, 

volume_similarity]; 

    end 

end 

 

% Save the results to an Excel file 

results_table = cell2table(results, 'VariableNames', {'File1', 

'File2', 'Hausdorff_Distance', 'Dice_Similarity_Coefficient', 

'Jaccard_Index', 'Points_in_Mesh1', 'Points_in_Mesh2', 

'Similar_Nodes', 'Threshold', 'False_Positives', 

'False_Negatives', 'Mean_Distance', 'Median_Distance', 

'Max_Distance', 'Standard_Deviation', 'Volume_Similarity'}); 

writetable(results_table, 'results.xlsx'); 

 

% Extract the Hausdorff distances 

hd_values = cell2mat(results(:, 3)); 

 

% Initialize the matrix for Hausdorff distances 

hd_matrix = zeros(num_files); 
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% Fill the matrix 

index = 1; 

for i = 1:num_files 

    for j = i+1:num_files 

        % Use the index variable to access the right element 

in hd_values 

        hd_matrix(i, j) = hd_values(index); 

        hd_matrix(j, i) = hd_values(index); 

        index = index + 1; 

    end 

end 

 

% Calculate the ICC 

[~, ~, ~, ICC_results] = ICC(hd_matrix, 'A-1'); 

ICC_results 

% Repeat the process for other measurement types (dsc, ji, 

etc.) 

 

Compare stl files:  

function [hd, dsc, ji, pc1_count, pc2_count, n_similar_nodes, 

threshold, false_positives, false_negatives, mean_dist, 

median_dist, max_dist, std_dist, volume_similarity] = 

compare_stl_files(file1, file2) 

    % Read the STL files 

    tri1 = stlread(file1); 

    tri2 = stlread(file2); 

 

    % Extract vertices 

    vertices1 = tri1.Points; 

    vertices2 = tri2.Points; 

 

    % Create point clouds 

    % Create point clouds 

    pc1 = pointCloud(vertices1); 

    pc2 = pointCloud(vertices2); 

 

    % Assign point counts 

    pc1_count = pc1.Count; 

    pc2_count = pc2.Count; 

 

    % Align point clouds 

    [tform, pc2_aligned] = pcregrigid(pc2, pc1, 'InlierRatio', 

0.7, 'MaxIterations', 1000, 'Tolerance', [1e-4, 1e-4]); 

 

    % Calculate the Hausdorff distance 

    hd = hausdorff(pc1, pc2_aligned); 

 

    % Calculate the Dice similarity coefficient and Jaccard 

index 

    threshold = 0.012; 

    distances = pdist2(pc1.Location, pc2_aligned.Location, 

'euclidean', 'smallest', 1); 
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    n_similar_nodes = sum(distances <= threshold); 

    dsc = 2 * n_similar_nodes / (pc1.Count + 

pc2_aligned.Count); 

    ji = n_similar_nodes / (pc1.Count + pc2_aligned.Count - 

n_similar_nodes); 

 

    % Calculate false positive and false negative errors 

    false_positives = sum(distances > threshold); 

    false_negatives = pc2_aligned.Count - n_similar_nodes; 

 

    % Calculate mean, median, max, and standard deviation of 

distances 

    mean_dist   = mean(distances); 

    median_dist = median(distances); 

    max_dist    = max(distances); 

    std_dist    = std(distances); 

 

     

function hd = hausdorff(A, B) 

    n = size(A.Location, 1); 

    d = zeros(n, 1); 

 

    parfor i = 1:n 

        d(i) = min(pdist2(A.Location(i, :), B.Location)); 

    end 

 

    hd = max(d); 

end 

 

   

 

end 

 

  



6 

Appendix H 

 

Average of 3 bones ten comparisons over three matrix  

 DSC mean JI mean HD mean   DSC Std error JI Std error HD Std error 

S1S2 0.884 0.804 3.638  0.019 0.027 0.316 

S1S3 0.879 0.796 3.712  0.019 0.027 0.298 

S1S4 0.870 0.785 3.650  0.020 0.028 0.266 

S1S5 0.874 0.791 3.756  0.020 0.028 0.268 

S2S3 0.892 0.815 3.173  0.017 0.024 0.237 

S2S4 0.883 0.803 3.283  0.017 0.025 0.255 

S2S5 0.886 0.807 3.071  0.018 0.026 0.290 

S3S4 0.892 0.816 3.219  0.014 0.021 0.267 

S3S5 0.898 0.824 3.118  0.016 0.022 0.270 

S4S5 0.905 0.834 2.875  0.009 0.013 0.189 

 

Table 12. Univariate Tests 

 

 

Univariate Tests 

Source Measure 

Type III 

Sum of 

Squares df 

Mean 

Square F Sig. 

bone DSC Sphericity 

Assumed 

1.244 2 .622 25.850 <.001 

Greenhouse-

Geisser 

1.244 1.714 .726 25.850 <.001 

Huynh-Feldt 1.244 1.929 .645 25.850 <.001 

Lower-bound 1.244 1.000 1.244 25.850 <.001 

JI Sphericity 

Assumed 

2.937 2 1.468 33.235 <.001 

Greenhouse-

Geisser 

2.937 1.866 1.574 33.235 <.001 

Huynh-Feldt 2.937 2.000 1.468 33.235 <.001 

Lower-bound 2.937 1.000 2.937 33.235 <.001 

HD Sphericity 

Assumed 

767.739 2 383.870 94.003 <.001 

Greenhouse-

Geisser 

767.739 1.679 457.162 94.003 <.001 
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Huynh-Feldt 767.739 1.882 407.886 94.003 <.001 

Lower-bound 767.739 1.000 767.739 94.003 <.001 

Error(bone) DSC Sphericity 

Assumed 

.674 28 .024 
  

Greenhouse-

Geisser 

.674 23.990 .028 
  

Huynh-Feldt .674 27.010 .025   

Lower-bound .674 14.000 .048   

JI Sphericity 

Assumed 

1.237 28 .044 
  

Greenhouse-

Geisser 

1.237 26.124 .047 
  

Huynh-Feldt 1.237 28.000 .044   

Lower-bound 1.237 14.000 .088   

HD Sphericity 

Assumed 

114.341 28 4.084 
  

Greenhouse-

Geisser 

114.341 23.511 4.863 
  

Huynh-Feldt 114.341 26.351 4.339   

Lower-bound 114.341 14.000 8.167   

comparison DSC Sphericity 

Assumed 

.046 9 .005 2.631 .008 

Greenhouse-

Geisser 

.046 2.077 .022 2.631 .087 

Huynh-Feldt .046 2.446 .019 2.631 .076 

Lower-bound .046 1.000 .046 2.631 .127 

JI Sphericity 

Assumed 

.090 9 .010 2.739 .006 

Greenhouse-

Geisser 

.090 2.145 .042 2.739 .077 

Huynh-Feldt .090 2.546 .035 2.739 .066 

Lower-bound .090 1.000 .090 2.739 .120 

HD Sphericity 

Assumed 

39.543 9 4.394 2.506 .011 

Greenhouse-

Geisser 

39.543 3.845 10.283 2.506 .055 

Huynh-Feldt 39.543 5.483 7.211 2.506 .033 

Lower-bound 39.543 1.000 39.543 2.506 .136 

Error(comparison) DSC Sphericity 

Assumed 

.242 126 .002 
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Greenhouse-

Geisser 

.242 29.085 .008 
  

Huynh-Feldt .242 34.244 .007   

Lower-bound .242 14.000 .017   

JI Sphericity 

Assumed 

.459 126 .004 
  

Greenhouse-

Geisser 

.459 30.036 .015 
  

Huynh-Feldt .459 35.643 .013   

Lower-bound .459 14.000 .033   

HD Sphericity 

Assumed 

220.868 126 1.753 
  

Greenhouse-

Geisser 

220.868 53.837 4.103 
  

Huynh-Feldt 220.868 76.769 2.877   

Lower-bound 220.868 14.000 15.776   

bone * comparison DSC Sphericity 

Assumed 

.016 18 .001 .917 .558 

Greenhouse-

Geisser 

.016 4.116 .004 .917 .462 

Huynh-Feldt .016 6.043 .003 .917 .487 

Lower-bound .016 1.000 .016 .917 .354 

JI Sphericity 

Assumed 

.033 18 .002 .940 .531 

Greenhouse-

Geisser 

.033 4.410 .007 .940 .454 

Huynh-Feldt .033 6.690 .005 .940 .477 

Lower-bound .033 1.000 .033 .940 .349 

HD Sphericity 

Assumed 

39.551 18 2.197 1.288 .195 

Greenhouse-

Geisser 

39.551 4.366 9.059 1.288 .283 

Huynh-Feldt 39.551 6.590 6.002 1.288 .267 

Lower-bound 39.551 1.000 39.551 1.288 .275 

Error(bone*comparison) DSC Sphericity 

Assumed 

.240 252 .001 
  

Greenhouse-

Geisser 

.240 57.618 .004 
  

Huynh-Feldt .240 84.604 .003   

Lower-bound .240 14.000 .017   
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JI Sphericity 

Assumed 

.489 252 .002 
  

Greenhouse-

Geisser 

.489 61.746 .008 
  

Huynh-Feldt .489 93.664 .005   

Lower-bound .489 14.000 .035   

HD Sphericity 

Assumed 

429.801 252 1.706 
  

Greenhouse-

Geisser 

429.801 61.121 7.032 
  

Huynh-Feldt 429.801 92.255 4.659   

Lower-bound 429.801 14.000 30.700   

Pairwise Comparisons 

Measure (I) bone (J) bone 

Mean 

Difference (I-

J) Std. Error Sig.b 

95% Confidence Interval for 

Differenceb 

Lower Bound Upper Bound 

DSC 1 2 .124* .018 <.001 .076 .172 

3 .031 .015 .146 -.008 .071 

2 1 -.124* .018 <.001 -.172 -.076 

3 -.092* .021 .002 -.149 -.036 

3 1 -.031 .015 .146 -.071 .008 

2 .092* .021 .002 .036 .149 

JI 1 2 .193* .023 <.001 .130 .256 

3 .059 .022 .057 -.002 .119 

2 1 -.193* .023 <.001 -.256 -.130 

3 -.134* .027 <.001 -.209 -.060 

3 1 -.059 .022 .057 -.119 .002 

2 .134* .027 <.001 .060 .209 

HD 1 2 -2.393* .259 <.001 -3.096 -1.690 

3 .643* .175 .008 .167 1.119 

2 1 2.393* .259 <.001 1.690 3.096 

3 3.036* .257 <.001 2.338 3.733 

3 1 -.643* .175 .008 -1.119 -.167 

2 -3.036* .257 <.001 -3.733 -2.338 

Based on estimated marginal means 

*. The mean difference is significant at the .05 level. 

b. Adjustment for multiple comparisons: Bonferroni. 
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Appendix I 

 

 
 

Intraclass Correlation Coefficient 

 

Intraclas

s 

Correlati

onb 

95% Confidence 

Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound 

Valu

e df1 df2 Sig 

Single 

Measures 

.794a .655 .909 39.46

5 

14 126 <.001 

Average 

Measures 

.975 .950 .990 39.46

5 

14 126 <.001 

Two-way random effects model where both people effects and 

measures effects are random. 

a. The estimator is the same, whether the interaction effect is 

present or not. 

b. Type C intraclass correlation coefficients using a consistency 

definition. The between-measure variance is excluded from the 

denominator variance. 

 

 

P_ID DSCFS1S2 DSCFS1S3 DSCFS1S4 DSCFS1S5 DSCFS2S3 DSCFS2S4 DSCFS2S5 DSCFS3S4 DSCFS3S5 DSCFS4S5

P1 0.96 0.91 0.94 0.93 0.9 0.93 0.93 0.92 0.92 0.97

P2 0.96 0.96 0.94 0.95 0.96 0.94 0.95 0.96 0.97 0.97

P3 0.75 0.75 0.77 0.76 0.74 0.75 0.75 0.75 0.75 0.94

P4 0.62 0.64 0.65 0.65 0.79 0.79 0.78 0.91 0.91 0.93

P5 0.96 0.95 0.94 0.94 0.97 0.94 0.95 0.96 0.97 0.97

P6 0.95 0.98 0.96 0.96 0.96 0.94 0.95 0.96 0.97 0.96

P7 0.96 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.98

P8 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97

P9 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

P10 0.96 0.96 0.96 0.96 0.97 0.98 0.97 0.97 0.97 0.98

P11 0.97 0.98 0.99 0.98 0.98 0.98 0.99 0.99 0.98 0.98

P12 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97

P13 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.97 0.97

P14 0.97 0.97 0.96 0.97 0.97 0.97 0.97 0.97 0.96 0.97

P15 0.97 0.98 0.98 0.97 0.97 0.96 0.96 0.98 0.97 0.96
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Intraclass Correlation Coefficient 

 

Intraclass 

Correlatio

nb 

95% Confidence 

Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Value df1 df2 Sig 

Single 

Measures 

.839a .722 .931 53.19

0 

14 126 <.001 

Average 

Measures 

.981 .963 .993 53.19

0 

14 126 <.001 

Two-way random effects model where both people effects and measures 

effects are random. 

a. The estimator is the same, whether the interaction effect is present or 

not. 

b. Type C intraclass correlation coefficients using a consistency definition. 

The between-measure variance is excluded from the denominator 

variance. 
 

 

P_ID DSCTS1S2 DSCTS1S3 DSCTS1S4 DSCTS1S5 DSCTS2S3 DSCTS2S4 DSCTS2S5 DSCTS3S4 DSCTS3S5 DSCTS4S5

P1 0.68 0.68 0.58 0.63 0.76 0.65 0.7 0.76 0.83 0.76

P2 0.84 0.84 0.85 0.81 0.82 0.83 0.79 0.88 0.85 0.88

P3 0.5 0.53 0.54 0.51 0.54 0.56 0.53 0.59 0.56 0.63

P4 0.68 0.67 0.66 0.67 0.76 0.76 0.76 0.86 0.84 0.86

P5 0.8 0.76 0.76 0.83 0.71 0.74 0.78 0.71 0.75 0.76

P6 0.87 0.86 0.86 0.87 0.89 0.87 0.89 0.86 0.9 0.87

P7 0.86 0.85 0.62 0.67 0.89 0.63 0.7 0.63 0.69 0.76

P8 0.92 0.9 0.91 0.89 0.9 0.91 0.9 0.9 0.88 0.9

P9 0.88 0.86 0.84 0.87 0.85 0.84 0.88 0.84 0.85 0.84

P10 0.88 0.87 0.87 0.89 0.9 0.89 0.92 0.87 0.89 0.89

P11 0.91 0.91 0.93 0.94 0.9 0.91 0.92 0.91 0.92 0.93

P12 0.92 0.91 0.91 0.9 0.9 0.9 0.9 0.89 0.88 0.89

P13 0.86 0.85 0.8 0.85 0.86 0.81 0.86 0.8 0.86 0.81

P14 0.85 0.86 0.84 0.86 0.89 0.88 0.88 0.88 0.89 0.86

P15 0.86 0.86 0.83 0.87 0.86 0.81 0.85 0.81 0.86 0.83

P_ID DSCPS1S2 DSCPS1S3 DSCPS1S4 DSCPS1S5 DSCPS2S3 DSCPS2S4 DSCPS2S5 DSCPS3S4 DSCPS3S5 DSCPS4S5

P1 0.84 0.83 0.81 0.8 0.82 0.82 0.8 0.92 0.93 0.93

P2 0.96 0.95 0.97 0.96 0.93 0.95 0.94 0.94 0.94 0.96

P3 0.85 0.83 0.82 0.78 0.84 0.81 0.77 0.82 0.77 0.86

P4 0.87 0.87 0.85 0.88 0.91 0.87 0.91 0.87 0.94 0.88

P5 0.92 0.94 0.93 0.92 0.94 0.95 0.9 0.96 0.91 0.91

P6 0.85 0.78 0.86 0.81 0.84 0.89 0.85 0.87 0.91 0.89

P7 0.94 0.93 0.9 0.95 0.95 0.92 0.95 0.93 0.94 0.91

P8 0.89 0.91 0.91 0.91 0.94 0.95 0.9 0.93 0.91 0.91

P9 0.88 0.88 0.87 0.88 0.96 0.95 0.95 0.98 0.98 0.97

P10 0.93 0.95 0.95 0.94 0.93 0.93 0.93 0.95 0.94 0.94

P11 0.93 0.91 0.92 0.93 0.94 0.95 0.95 0.93 0.94 0.95

P12 0.92 0.91 0.9 0.89 0.94 0.91 0.92 0.91 0.91 0.9

P13 0.96 0.96 0.95 0.94 0.95 0.95 0.93 0.94 0.94 0.93

P14 0.96 0.95 0.95 0.98 0.95 0.94 0.96 0.92 0.95 0.94

P15 0.83 0.83 0.85 0.83 0.83 0.94 0.9 0.82 0.83 0.89
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Intraclass Correlation Coefficient 

 

Intraclas

s 

Correlati

onb 

95% Confidence 

Interval F Test with True Value 0 

Lower 

Bound 

Upper 

Bound Value df1 df2 Sig 

Single 

Measures 

.702a .534 .860 24.52

7 

14 126 <.001 

Average 

Measures 

.959 .920 .984 24.52

7 

14 126 <.001 

Two-way random effects model where both people effects and 

measures effects are random. 

a. The estimator is the same, whether the interaction effect is present 

or not. 

b. Type C intraclass correlation coefficients using a consistency 

definition. The between-measure variance is excluded from the 

denominator variance. 

 

 


