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Abstract 

The ability to diagnose melanoma prior to metastasis could revolutionise the clinical 

environment. This would allow improved patient care via monitoring, rapid follow up of high-

risk cases and improve patient mortality and morbidity. Biomedical spectroscopy can 

diagnose a wide range of pathologies however no study has made it from the laboratory into 

a clinical setting as a regulated spectroscopic test. 

To facilitate translation this thesis describes:  

• Development of the optimal methodology for the quantification of protein 

biomarkers. It was demonstrated that concentrations as low as 0.66 ± 0.05 mg mL-1, 

with a linearity of 0.992, can be achieved within patient samples.  

• Analysis of liquid serum samples led to discrimination of cancer vs. non-cancer with 

a sensitivity of 95.4 % and a specificity of 81.8 %, compared to the air-dried data set, 

which achieved 92.4 % and 84.4 %, respectively. Analysis of liquid samples removes 

the rate determining air drying step. Digitally drying the liquid spectrum was 

investigated to determine if an improvement could be achieved. The optimal result 

was achieved through the use of an extended multiplicative scatter correction 

algorithm, providing a sensitivity of 91.2 % and a specificity of 77.3 %.  

• Discussion and investigation of a longitudinal melanoma biobank containing 311 

samples, from 110 patients. The use of recently developed, novel, clinical attenuated 

total reflectance-Fourier transform infrared (ATR-FTIR) technology was explored and 

achieved the ability to determine BRAF status in melanoma patients with a sensitivity 

and specificity of 77.7 % and 75.0 %, respectively. Finally, developments towards 

spectroscopic precision medicine and categorising of melanoma patients, based on 

analysis of their individual disease and treatment journeys, was completed.  

This thesis showcases the development of ATR-FTIR spectroscopy to allow for clinical 

translation and enable detection and monitoring of melanoma, for close monitoring of high-

risk patients and the progression of therapeutic methods.   
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1.1. Introduction to Cancer 

In the UK, every two minutes someone new is diagnosed with cancer and every four minutes, 

someone dies from the disease 1. Cancer is an extremely complex disease, with over 200 

types, that can be subdivided further based on the region of the body in which it grows, the 

cell type involved and the severity 2,3. Simplistically, cancer is defined as the uncontrolled 

division of the body’s cells. An estimated 14.1 million people were diagnosed with cancer in 

2012, increasing to an estimated 24 million by 2035 4,5. For this reason, it is a worldwide focus 

to understand and cure the disease 6. 

During normal tissue growth and maintenance, the release of growth–regulating signals 

ensure cellular homeostasis 7,8; through proliferation, growth arrest and programmed cell 

death, such as apoptosis. The imbalance of cell growth and death causes conditions like 

hyperplasia and neoplasia, resulting in an amplified amount of organic tissue or abnormal 

cell growth 9. However, in normal tissues, once such an imbalance is removed, abnormal cell 

growth ceases and can be reversed 10. The formation of cancer cells is a result of cell cycle 

dysregulation.  

The cell cycle can be split into four main phases, as shown in Figure 1.1. Progression through 

the cycle is controlled through surveillance mechanisms, called checkpoints, which monitor 

the order, integrity, and conformity of the major events of the cell cycle 11, 12. A family of 

kinase complexes called cyclin-dependent kinases (CDK) and the cyclin protein family are 

responsible for driving cells through the cell cycle 10. Checkpoint pathways can stop the cell 

cycle if irregular or incomplete cycle events occur, until the problem is resolved, through 

effector proteins like CDK inhibitors (CDKI). These effector proteins can act as tumour 

suppressors; however, the mutation of intracellular signal pathways cause these to 

malfunction or not be expressed at cycle checkpoints 13. This can result in uncontrolled cell 

proliferation, leading to carcinogenesis.  

Uncontrolled cell proliferation can lead to the growth of a tumour, which can be either 

benign (non-cancerous) or malignant (cancerous) 14. The ability to spread to and/or destroy 

any surrounding tissue, as well as the possibility of causing other tumours to form are the 

main differences when comparing malignant tumours to benign. Cancer cells do not replicate 

like normal cells. Due to the mutations occurring within, cancer cells often have reproductive 

advantages over normal cells and are successful in the competition for resources. This can 

lead to angiogenesis; the process of developing a blood system and enabling the growth of 
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the tumour. In other cases, primary cancer cells can break away and travel through the 

vascular or lymph system to form tumours in secondary sites 15. This process is known as 

metastasis, and these cancers have the ability to penetrate barriers within the body 16.  

1.1.1. Metastasis 

Metastasis is the spread of cancer cells from the place of first origin, to another part of the 

body. Proteases are secreted from cancer cells, allowing them to breakdown the 

extracellular matrix of the tissue boundary and gain access to new territories. There are three 

main stages of metastasis, the first of which is the invasion of the cancer cells into the 

lymphatic system or straight into the bloodstream. During the second stage, tumour cells 

must avoid destruction by velocity-based forces from the blood flow, attack by immune cells 

or by having a lack of adherence. Following their survival, cells must stop within the 

circulatory system and bind to the capillary beds, before moving from the capillaries to the 

Figure 1.1 - The cell cycle categorised into four sequenced events. The progression is controlled 
by cell cycle checkpoints, regulating cell growth, arrest and apoptosis 10 
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tissue, termed extravasation. The final stage of tumour metastasis is colonisation, through 

the interaction of the metastasising tumour cells with the microenvironment of the distant 

tissue. Micrometastases are formed and progressively grow to form macrometastases, 

although growth can be halted for periods of dormancy.  However, this is deemed the least 

efficient of the stages. Research has shown that more than 80% of injected melanoma 

tumour cells survived the circulatory system and extravasated successfully into the mice 

liver 17. However, only one in 40 cells formed micrometastases by day three, and only one in 

10 micrometastases progressed to form macroscopic metastases within 10 days. Despite this 

inefficient process,  cancers regularly metastasise and  metastasis is reported to be the 

leading cause of death in cancer patients 18,19.  

1.1.2. Risk Factors 

According to recent statistics (2015), half the population of people born after 1960, will be 

diagnosed with cancer 20. Strikingly however, 42% of the cases are related to 14 major 

lifestyle influences that can be attributed to an increased risk of being diagnosed with 

cancer 21. Smoking, alcohol consumption, an unhealthy diet, exposure to high levels of 

ultraviolet (UV) radiation, as well as an inactive lifestyle can all contribute to an increased 

risk of a cancer occurrence; indicating the large number of preventable cancer cases within 

the UK 21–25.  

Skin cancer is one of the most common types of cancer and is usually caused because of sun 

exposure which has been an identified lifestyle influence. This thesis will focus on melanoma, 

a type of skin cancer that is often diagnosed as a result of intense exposure to UV radiation 26.  

1.2. The Skin 

The skin is the largest organ of the body making up around 15% of the total adult body 

weight 27.  It has three main purposes: (i) controlling the temperature of the body and 

ensuring it stays consistent, (ii) protecting the inside of the body against heat, UV radiation, 

injury, infection and by acting as a water-resistant barrier and (iii) allowing for the body to 

get rid of waste products through sweating 28. The skin is between 2 - 4 mm deep depending 

on the location and is formed of three main layers; the epidermis, dermis and the 

subcutaneous tissue 29 (Figure 1.2) 

The epidermis predominantly contains a type of cell known as keratinocytes, responsible for 

synthesising keratin, a protein used for protection. Dispersed among the keratinocytes are 
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dendritic cells, that are responsible for the engulfing of foreign particles or damaged cells 30. 

The epidermis is host to numerous other cells types including melanocytes which play an 

integral part in the development of melanoma. The epidermis itself can be split into four 

layers including the basal,  squamous ,  granular, and the cornified cell layer 29. The cells 

within the epidermis are consistently in motion, especially in the basal layer where mitosis 

creates new protective layers.  The dermis is mainly composed of collagen, a fibrillar 

structural protein vital to the tensile strength of the skin. Lipocytes are fat cells found in the 

subcutaneous layer found beneath the dermis and are responsible for energy storage.  

The high rate of proliferation in the epidermis as well as the frequent exposure to UV damage 

results in a high probability of mutation occurring, resulting in a high rate of skin cancer. Both 

squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are formed from keratinocytes 

within the epidermis and are often referred to as non-melanoma skin cancer 31.  

1.3. Non-Melanoma Skin Cancer 

1.3.1. Types, Risk Factors, Stages & Treatment 

BCC refers to cancer that originates in the lower layer of the epidermis and around the hair 

follicle, often only found in areas of the skin that are exposed to UV radiation. The metastases 

of basal cell carcinomas are rare 32, 33. This is thought to be due to the possibility of early 

recognition, the success of current treatments in the early stages of diagnosis and the non-

Figure 1.2 - Diagram showing the structure of the skin 29 
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invasive character of the tumour 34. With roughly 75% of non-melanoma skin cancers being 

BCC, it is the most common type of skin cancer 35. It is also possible to have more than one 

BCC at the same time, and there is a higher risk of being diagnosed with a second, following 

the diagnosis of one 36. SCC is a more aggressive non-melanoma skin cancer, that occurs from 

the cells present at the surface of the skin, it accounts for around 20 % of diagnoses. Again, 

areas exposed to UV radiation are generally affected and although metastases are rare, they 

can spread to deeper layers of the skin, including the lymph nodes. 

The DNA within the skin cells can be damaged by UV radiation emitted from the sun 37 

although it can take years before the cells become cancerous. Sunlight contains three types 

of UV light; UVA (320 – 400 nm), UVB (290 – 320 nm) and UVC (100 – 290 nm) 38. UVC is the 

most damaging type of UV radiation but the short wavelengths are filtered by the Earth’s 

atmosphere, while medium-wavelength UVB is responsible for delayed tanning/burning and 

skin aging. Finally, long-wavelength UVA has the capability to penetrate the deeper layers of 

the skin (unlike UVB), responsible for immediate tanning and can cause aging and damage 

to the skin 39. UVB is thought to be the main cause of non-melanoma skin cancer, from either 

long term exposure or short, intense periods where the skin burns 40,41. When cells are 

exposed to UV, DNA directly absorbs UVB photons and forms dimer photoproducts such as 

cyclobutane pyrimidine and 6-pyrimidine-4-pyrimidone 42. These form from two 

neighbouring pyrimidine sites in the same DNA strand (Figure 1.3) and is the site for 

mutations associated with UV induced skin cancer 43.  

Incoming UVB 

photon 

Figure 1.3 – Schematic showing DNA damage due to the direct absorption of UVB rays 
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Damage to DNA can be repaired through the numerous effective repair systems contained 

within normal human keratinocytes.  Examples include; DNA double strand break repair 

(DSB), nucleotide excision repair (NER), base excision repair (BER), mismatch repair (MMR), 

and post replication repair (PRR) 44. However, the longer the cells are exposed to the UV 

radiation the more dimers are formed. This leads to an increase in the probability of missing 

a dimer in the correction process. Cellular processes are often disrupted due to incorrect 

repair of dimers/remaining damage and cells cannot carry out regular functions. The extent 

of the damage to the cell determines what happens next, for example the cell can die if the 

damage is extensive or if the damage isn’t widespread, cancerous cells can form from healthy 

cells. UVA can also cause damage to cell DNA through photosensitisation, inducing oxidative 

DNA damage, but not to the same extent as UVB 45.  

As indicated, the risk factors associated with non-melanoma skin cancer is generally 

exposure to both natural and artificial UV radiation. In addition to this, a history of sunburn 

(especially if at a young age), a fair complexion (due to the lower amount of melanin, a 

protective pigment, present) and sunbed use can all increase the chances of developing 

non-melanoma skin cancer. Nevertheless, risk factors indicate potential areas where the 

probability of developing non-melanoma skin cancer is higher, but do not indicate who 

within a population will get cancer, as those with very little sun exposure and dark skin can 

also suffer from non-melanoma skin cancer. A previous non-melanoma skin cancer diagnosis 

can result in 10 times higher risk of a second non-melanoma skin cancer as well as an 

increased risk of the development of a second primary cancer elsewhere in the body 46. 

As with all disease, an earlier diagnosis increases the likelihood of successful treatment, 

providing the best chance of survival 47. A skin biopsy is currently the most effective way to 

diagnose non-melanoma skin cancer. This is followed by a histopathologic examination of 

tissue sections from the biopsy. For storage, biopsies are first fixed with formalin and 

dehydrate with alcohol to prevent degradation and then embedded in paraffin wax.  

Haematoxylin & Eosin (H & E) staining is a popular histology method. However, before 

staining the tissue sections must be dewaxed and rehydrated using xylene, ethanol and 

water. Hemalum colours the nuclei of cells blue, this is then counter stained using either an 

aqueous or alcoholic solution of eosin Y which stains the cytoplasm of the cells, red blood 

cells and extracellular proteins colours varying from red to orange, although yellow/browns 

may be present due to pigments like melanin. This technique is used to allow the pathologist 
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to see nuclear detail and definition using a microscope 48. The pathologist examines the 

tissue architecture and decides, based on experience and knowledge, if the tissue can be 

graded to a certain pathology. Histopathology is the gold standard for skin cancer diagnosis 

(melanoma and non-melanoma) 49, 50, however, due to the wide variety of features and 

patterns involved in the spreading of cancer cells, the study of tissue sections can be time-

consuming and subjective 51. This in turn, can lead to inter-observer discrepancies 52.  

Multiple growth patterns of BCC have been described but these cancers classically present 

as nodules and/or strands of atypical (elongated or compressed) basaloid cells characterised 

by cellular apoptosis, and scattered mitotic activity 53. In long standing tumours, it is possible 

to see tumour calcification, more commonly associated with more aggressive BCC 

subtypes 54. Histopathological examples of the different types of skin cancer are shown in 

Figure 1.4 below.  

 

The majority of BCC and SCC do not undergo diagnostic evaluation 55. Often BCC and SCC can 

be completely removed along with a 4 – 6 mm margin of normal appearing skin, although 

this is dependent on the tumour size and site. Mohs micrographic surgery is able to 

completely remove the cancerous cells from the site of origin, with success rates of 99 % for 

primary tumours and 95 % for recurrent tumours 56. The skin cancer is removed a layer at a 

Figure 1.4 - Characteristic histology of types of skin cancer and normal skin. 
a: normal skin, b: BCC, c: SCC and d: melanoma 45, 46 ,47

. Scale bar shows 100 µm 
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time, along with a small margin of healthy skin, which is then immediately pathologically 

checked 57. This process is repeated until all tumour has been removed, leading to the 

removal of as little healthy skin as possible. Mohs micrographic surgery is particularly useful 

for the removal of tumours on the eyes, nose, ears as well as large tumours 58.  

In the treatment of extensive tumours, high-risk sites or recurring tumours, histopathology 

examinations may be followed by an imaging test to determine the stage of cancer and  the 

size of the tumour, and also whether it has metastasised 59. Magnetic resonance imaging 

(MRI) is considered the imaging technique of choice 60 due to the advanced soft tissue 

resolution and the likelihood of non-melanoma skin cancers spreading to the space 

surrounding a nerve (perineural invasion) 61. When it comes to assess distant metastasis, 

positron emission tomography - computed tomography (PET-CT) and CT scans are the 

imaging modalities of choice 62. Further discussion of imaging modalities will occur in 

Section 1.4.2.  

Radiotherapy can be also used to treat BCC and SCC if the cancer is advanced, extensive or 

is difficult to operate on 63. Radiotherapy can also be considered after initial treatment to 

patients who have undergone lymph node dissections, especially if multiple nodes were 

affected 64. In other cases, treatments such as photodynamic therapy 65, chemotherapy 66 or 

the topical application of chemotherapy and imiquimod creams can be used 66, 67. 

Both BCC and SCC are highly treatable and statistics detailing survival rates within the UK 

following a non-melanoma cancer diagnosis do not exist 69, 70.   

1.4. Melanoma 

Melanoma is the 5th most common cancer in the UK, with around 15,400 diagnoses each 

year 71–74. Arising from the melanocytic cells, melanoma primarily involves the skin, although 

can arise in the eye, menignes (the three membranes covering the brain and spinal cord) and 

on various mucosal surfaces. Worldwide, the incidence rates of melanoma are rising 5,75,76, 

especially in areas of the world where fair skinned are exposed to high levels of sun exposure. 

The UK incidence rates of melanoma skin cancer have dramatically increased by 119% since 

the 1993 (Figure 1.5) 71,74,77,78. 
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1.4.1. Aetiology 

 Melanoma originates in melanocytes; the cells which reside between the basal layer cells. 

They communicate with keratinocytes through branching processes, known as the epidermal 

melanin unit 79, where one melanocyte interacts with 36 keratinocytes 80. Melanocytes 

synthesise the pigment melanin in melanosomes, and then transfer it to the keratinocytes, 

thus determining skin colour and protection from UV radiation 81. It is worth noting that 

melanocytes are not confined to the epidermis, the iris and hair where they are responsible 

for the colour 82 but have also been found in the inner ear, nervous system and heart 83, 84.  

The risk of developing melanoma depends on age, genetics and risk factor exposure level, 

most predominantly the exposure to UV radiation. Melanoma is more common in the ageing 

population, with around half of those diagnosed in the UK being over 65 85. Melanoma is now 

the 2nd most common cancer in adults under the age of 50, showing the increasing risk in the 

younger population, possibly due to  increased sun exposure through the affordability of 

spending time abroad or the use on sunbeds 86. The biggest environmental risk factor is UVA 

and UVB radiation, being carcinogenic 87. Therefore, exposure to natural or artificial UV light, 

such as using sunbeds, can increase the risk of melanoma. This can be exposure for a long 

length of time or short bursts, as is the case with non-melanoma skin cancers. The 

relationship between sun exposure and melanoma is not necessarily correlated, but UV 

Figure 1.5 - Melanoma Skin Cancer, European Age-Standardised Incidence Rates, by Sex, UK, 1993-2014 70 
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radiation has been shown to supress the immune system of the skin, induce melanocyte cell 

division, produce radicals as well as damage DNA, and therefore is determined as a 

melanoma inducer 88,89. Sunburn from intense periods of time in the sun, especially on areas 

of the body that do not often receive exposure are the biggest risk factor for sun exposure 

induced melanoma 90.91. Paler skin, containing less protective melanin, leads to a higher 

chance of developing melanoma, as does the number of moles present on the skin as well as 

any family history of the disease. Melanocytic naevi, commonly referred to as moles are 

made up of clusters of melanocytes and reports published in September 2014 reported that 

people with moles were 4.6 times more likely to develop melanoma than those with no 

recorded moles 92,93,94.  

Those with a previous diagnosis of melanoma are 8-15 times more likely to develop a second 

melanoma, and even those with a previous non-melanoma skin cancer diagnosis are three 

times more likely to develop the disease 95.  

There are four main histologic types of melanoma, which each have varying prognoses. 

Superficial spreading melanoma (SSM) is the most common type of melanoma, making up 

70% of cutaneous malignant melanomas 96. It tends to spread outwards rather than deeper 

into the skin, appearing first as an area of discolouration. Due to the radial slow growth 

spreading to other areas of the body is less likely. Nodular melanoma is a faster growing form 

which commonly grows downwards through the stratum basale and deeper into the skin. 

This type of tumour is often identified by the rapid vertical growth phase, leading to a raised 

area on the skin, often very dark in colour.  Lentigo maligna melanoma (LMM) result from a 

very slow growing melanoma in situ (premalignant disease) and starts from pigmented 

regions of the skin known as lentigo maligna. This type grows flat and outwards, sometimes 

taking years before it grows into the deeper layers of the skin. For this reason, it is mostly 

common in older people, in areas with a lot of sun exposure. Finally, a rarer form of tumour, 

known as acral lentiginous melanoma is often found on the palms of the hands and soles of 

feet. 

Additionally, desmoplastic, amelanotic and polypoid melanomas exist, although are rarer 

variations of melanoma, constituting less than 5% of cases. 
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1.4.2. Melanoma Prognosis & Diagnosis  

Melanoma can be present in the form of small skin lesions that are easily removed through 

surgery and thus have a good prognosis, or conversely, can have metastasised to other areas 

of the body resulting in a poor prognosis, with an average survival of 6 - 9 months 97 

(although this has improved in recent years due to the development of novel treatments). 

The most important factors influencing prognosis are the level of invasion (Breslow 

thickness), whether there is ulceration, and the number of regional lymph nodes. These 

factors in conjunction are described as the ‘stage’, which helps clinicians make decisions 

regarding treatment plans.  

Diagnosis of melanoma skin cancer can be reached via a dermatological examination of the 

abnormal skin area, using a dermatoscope, to determine levels of suspicion, prior to be being 

referred to a specialist. In the case of a pre-existing mole, which is the case for 20 – 40 % of 

cases 98, the ABCDE approach; identifying abnormalities in asymmetry, border, colour, 

diameter and evolution of the suspicious skin portion can determine whether a mole needs 

to be removed, monitored or disregarded 99. Laboratory studies such as complete blood 

counts and chemistry panels are also carried out, but aren’t necessarily used to diagnose, 

and are more implemented as a way of monitoring patient health. A high level of serum 

lactate dehydrogenase (LDH) levels can be used to indicate that the melanoma has 

spread 100.  An excision biopsy can then be carried out, removing the lesion as well as an 

additional 2 mm area surrounding the lesion which can be examined pathologically. If 

melanoma is diagnosed in the surrounding area and depending on the Breslow thickness of 

the melanoma, a further procedure is needed to ensure all cancerous cells are removed, 

referred to as a wide local excision. In some cases, surgery to assess spreading to the 

locoregional lymph nodes is performed, termed a sentinel lymph node biopsy. Imaging tests 

combined with specialised computer software are used to create a picture of the inside of 

the body. These methods are often used to allow clinicians to determine any spread of the 

melanoma, and if so, to decipher the exact stage of the tumour.  

Chest x-rays are often performed to determine if the melanoma has spread to the lungs, as 

this is the most common visceral site for metastases 101. A CT scan produces cross sections 

of the body with the use of x-rays. The superiority of a CT scan in comparison to a normal 

x-ray is the ability to see areas of soft tissue, allowing enlarged lymph nodes or suspicious 

spots on any organ revealing the spread of melanoma 102.  
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MRI combines magnetism and radio waves to produce detailed images, it is particularly 

useful for the discrimination of benign lesions and melanoma metastases and is more 

sensitive than CT for discovery of brain metastasis. MRI can define any vascular involvement 

and can identify hepatic lesions and abnormalities in bone marrow, which is useful for 

looking at the spinal cord.  

A PET scan involves the patient being injected with a mildly radioactive drug that highlights 

areas of increased cell activity, creating an image of radioactive areas, and thus highly 

proliferative lesions within the body. This is often carried out combined with a CT scan 

allowing the areas shown on PET scan to be compared. Some studies have shown that the 

technique is more accurate than CT or MRI 103,104,  but some suggest that there is a lack of 

evidence that shows this improves patient outcome 105. 

Lymph node ultrasounds are a method of determining if the melanoma has spread to the 

lymphatic system, combatting with insensitivity issues of physical examinations and CT 

scanning when looking for small nodal metastases. High frequency sound waves are used to 

allow radiologists to identify abnormalities, which can then be investigated using a biopsy 

which is then studied by a pathologist 106. This technique is of more use in the follow up stage 

when patients may be screened for lymph node relapse and has the advantage over CT/PET-

CT of not involving any radiation exposure to the patient. 

1.4.3. Melanoma Staging 

Determining the stage of the cancer, aids clinicians in choosing the optimal treatment plan. 

For melanoma, the stage is determined by the depth, ulceration (T stage) and whether it has 

spread to regional lymph nodes (N stage) or to other areas of the body (M stage). From the 

TNM stage the overall American Joint Committee on Cancer (AJCC) stage of the disease can 

be determined. Survival of the disease is highly dependent on the stage and location at which 

the cancer is diagnosed. A poorer prognosis is associated with the higher the stage of cancer; 

8.4 % and 25.3 % of men and women, respectively, survive Stage IV (Figure 1.6). Interestingly, 

the outlook is slightly better for women than men, and is also more promising for younger 

people107.  
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Figure 1.6 - Five-Year Relative Survival (%) by Stage, Adults Aged 15-99, Former Anglia Cancer Network 71 

There are different types of melanoma staging and all are used interchangeably. One method 

is the use of numbers as detailed in Figure 1.7, but all methods detail the melanoma depth 

and whether there has been spreading to the lymph nodes, or other parts of the body.  

The Clark and Breslow staging’s refers only to the depth of the melanoma 108. The Clark scale, 

based on anatomic skin markers 109, has five levels, ranging from level one where the 

melanoma is only in the outer layer of skin to level five where the melanoma has grown into 

the subcutaneous fat, although isn’t particularly used at present. The Breslow scale is 

determined by the pathologist who uses a small ruler called a micrometer to determine the 

depth of invasion into the epidermis. 
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Yes: Stage 0 

Treatment: Removal of the abnormal mole and 

a small area of surrounding skin. Possibility wide 

local excision is needed 

  

Yes: Stage II 

Treatment:  Excision biopsy, possibility of a 

wide local excision and potential sentinel 

lymph node biopsy. 

Survival: ≈ 80% of men and 90% of woman will 

survive 5 years after diagnosis. 

Yes: Stage III 

Treatment: Excision biopsy, a wide local 

excision is needed, possible lymph node 

dissection and doctor could suggest 

radiotherapy. 

Survival: ≈ 50% of men and 50+% of woman 

will survive 5 years after diagnosis. 

Yes: Stage IV 

Treatment: Biological therapy, chemotherapy, 

radiotherapy surgery. 

Survival: ≈10% of men and around 25% of 

woman will survive 5 years after diagnosis. 

Yes: Stage I 

Treatment: Excision biopsy, possibility of a 

wide local excision and potential sentinel 

lymph node biopsy. 

Survival: ≈100% of people will survive 5 years 

after diagnosis. 

No: 

Melanoma is in the early stages, only in 

the skin and has not spread to lymph 

nodes or other parts of the body. 

Melanoma between 2 - 4mm thick, 

with/without ulceration. 

No:  

Melanoma is advanced, has spread past 

the nearby lymph nodes to: lungs, liver, 

bones, brain, abdomen or distant lymph 

nodes. 

No: 

The cancer cells have spread into skin, 

lymph vessels, or lymph glands close to 

the melanoma. 

  

The cancer cells are in the top layer of epidermis and have not spread any deeper 

No: 

Melanoma in the early stages, only in the 

skin and has not spread to lymph nodes 

or other parts of the body. Melanoma 

between 1-2mm thick, with/without 

ulceration. 

Figure 1.7 - Flowchart indicating numerical staging of melanoma skin cancer 
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Finally, TNM staging details the tumour (T), Node (N) and metastasis (M) of the melanoma 97. 

The thickness of the tumour has five stages; from Tis, identifying when the melanoma is the 

top layer, to T4 which shows the melanoma is 4 mm thick. The T is further split into two 

groups, a and b dependent on the ulceration and number of mitoses per mm2. N has both 

numbers and letters, 0-3 depending on the number of lymph nodes the cancer has spread to 

and a-c deciphering the extent of metastasis ranging from micro which can only be seen 

under a microscope to satellite/in transit where the melanoma is in areas close to the 

primary site or in the skin lymph channels. There are only two numerical categories of 

metastasis, M, 0 where there is no spread and 1, determining the cancer has spread. The 

letters a, b and c are used to detail the extent of the spreading a, describing metastasis to 

the skin or lymph nodes, b, means there are melanoma cells in the lungs and c, the presence 

of melanoma in other organs. An example of the staging (Figure 1.8), determined by the AJCC 

is shown below 110 : 

 

 

 

 

 

For full details of the staging system determined by the AJCC can be found in Appendix 2, 

please note version 7 was used in this study although version 8 is now published. 

Macrometastases are defined as clinically detectable nodal metastases confirmed by 

therapeutic lymphadenectomy or when nodal metastasis exhibits gross extracapsular 

extension. 

1.4.4. Sentinel Lymph Node Biopsies 

Following a skin biopsy, which determines the presence of melanoma, the next step is to 

determine if the disease has spread beyond the primary tumour or local tissues. If spreading 

of the disease occurs, the most likely place it will spread to is the sentinel lymph nodes, the 

nodes that receive drainage from the primary tumour 111. The presence of melanoma cells in 

the nearby lymph nodes, is determined by a specialised technique known as a sentinel lymph 

node biopsy (SLNB) 112 - 114.  

T4aN2bM1b 

More than 4.0 mm thick, without ulceration 

2 – 3 metastatic nodules, with macrometastases 

Metastases to lung 

Figure 1.8 – Melanoma staging example determined by the AJCC 
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For patients who present with stage IB-IIC, which means their tumour has a Breslow 

thickness of more than 1 mm, SLNB is discussed as a possible diagnostic/treatment option. 

If the melanoma is less than 0.76 mm and there are no other risk features, or the patient is 

stage III/IV then a SLNB is not indicated as a potential staging tool 115, 116.  

The procedure is split into two parts, shown in Figure 1.9 117. Firstly, lymphatic mapping using 

a radioactive dye is carried out before surgery to remove the sentinel nodes, for pathological 

examination 118.  

If the sentinel nodes do not show the presence of melanoma cells, then it is unlikely the 

melanoma has spread to other lymph node and no further surgery is needed. However, if it 

is determined that there are melanoma cells in the lymph nodes, a complete lymph node 

dissection is carried out. All lymph nodes are removed as 5 -12 % of patients will have 

involvement of non-sentinel lymph nodes 119. 

Multiple studies have attempted to define whether SLNB is advantageous to the patient or 

not and it has been shown to improve the length of time patients remain disease free but 

hasn’t been shown to have an impact on the overall survival of the patient 120. Despite this 

SLNB provides significant prognostic information and allows for the personalisation of 

therapeutic choices. 

1.4.5. Survival Curves 

Survival rates and curves are produced to give a better understand about how likely It is that 

the treatment patients receive will be successful. The 5-year survival rate indicates the 

percentage of people who have that specific type of cancer are still alive five years following 

Figure 1.9 – A schematic showing the steps taken during a sentinel lymph node biopsy of the skin 117  
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diagnosis. It is worth noting, these statistics are based on the stage that was first diagnosed, 

and do not consider relapse or metastasis. From the survival curve produced by the AJCC 

(Version 8), shown in Figure 1.10, it is evident that the rate of survival decreases as the 

staging worsens. For example, the 5-year survival rate reduces to 82 % for stage IVb patients 

compared to 99 % for stage Ia patient. This trend is replicated for the 10-year survival rate, 

falling to 75 % for stage IVb patients from 98 % for stage Ia patients. As the survival curve is 

produced from using stage I/II patients only, it highlights that if the disease is diagnosed 

earlier, patients have a better chance of surviving melanoma.  

1.4.6. High-Risk Follow Up 

Within the UK, guidelines for follow up care have been cautious due to the lack of evidence 

that an intensive follow up improves patient outcome. In addition, there is no known 

treatment that significantly improves survival of patients with advanced disease. The risk of 

ionizing radiation, false positives, the unnecessary stress put upon the patient as well as the 

additional cost implications, led to debate regarding diagnostic imaging. Table 1.1 shows a 

minimal 0.6 % risk of cancer in the lifetime of a healthy, 40 – 49-year-old associated with 

Figure 1.10 - Kaplan-Meier melanoma-specific survival curves according to T subcategory for patients 
with stage I and II melanoma from the 8th edition International Melanoma Database. Patients with N0 
melanoma have been filtered, so that patients with T2 to T4 melanoma received a negative sentinel 
lymph node.  
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diagnostic imaging as a follow up method, in comparison to the 40 % cancer risk from all 

other causes, leading to the conclusion that the overall risk of cancer from diagnostic imaging 

is low and can be considered safe for the patient. 

Table 1.1 – Typical cancer lifetime risk 

Typical Lifetime Risk 

CT (Thorax, Abdomen, Pelvis) 0.05 % Per Scan 

CT (Head) 0.007 % Per Scan 

PET – CT 0.06 % Per Scan 

All Follow-Up Imaging 0.6 % 9 Scans over 5 Years 

Overall Cancer Risk 40 % From All Causes 

 

The definition of high-risk was established in 2013, by the Specialist Skin Multidisciplinary 

Team (SSMDT). From the five- and ten- year survival rates predicted from the AJCC staging 

system, it was decided that patients with less than a 50 % chance of surviving the next five 

years would be classified as high-risk.  The following recommendations were also given to 

classify a patient as high-risk:  

I. Any patient with satellite, in-transit or macroscopic nodal disease; 

II. Sentinel node positive patients deemed high-risk following SSMDT review of 

sentinel node pathology 

III. Patients with T4b tumours 

Clinical reviews, for high-risk patients, are recommended to occur every three months, for 

the first three years, then every six months, for years four and five, before moving to annually 

during years six to 10. At these reviews no blood tests are recommended to take place, and 

the following guidelines on imaging surveillance should be followed: 

I. The patient must be aware and informed of risk benefit of imaging protocol 

II. The choice of modality will be determined by MDT 

III. Imaging: 

a. CT – chest, abdomen and pelvic or PET CT – whole body 

and 
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b. MRI – head  

IV. Frequency: baseline, repeat six-monthly for three years, then repeat annually up 

to year five  

1.4.7. Molecular Testing 

Studying the molecular nature of melanoma can lead to the personalisation of therapeutic 

decisions and is now the standard of care for patients with metastatic disease.  To improve 

treatment, often high-risk Stage II, Stage III and Stage IV melanoma patients have their gene 

mutation status evaluated. Currently, the main test performed involves the BRAF V600 

mutation status, which determines the patient’s eligibility for BRAF inhibitor and MEK 

inhibitor treatment. The BRAF mutation occurs in roughly 45 % of cutaneous melanomas 121. 

NRAS mutations are the second most common and are identified in around 15 % of 

melanomas. NRAS inhibitors are currently under clinical development 122. As BRAF and NRAS 

mutations are mutually exclusive, this can act as a way of ensuring a positive BRAF mutation 

is not missed 123. NF1 mutations, are rarer, identified in 10 % of patients with cutaneous 

melanoma and targeted therapies are currently unknown. In acral and mucosal melanomas, 

CKIT mutations are analysed 124, and although positive mutations are rare patients can be 

treated with CKIT inhibitors 125.  

1.4.8. Treatment of Melanoma 

Figure 1.7 details the different treatment options, which are often decided based upon the 

stage of the patient but will be presented below in more detail. 

Surgical excision biopsies are the primary treatment of melanoma and should be performed 

within 4 – 6 weeks of diagnosis 126-128. The safety margins are based upon prospective, 

randomised studies and international consensus conferences and are used within the UK. 

The current recommendations are detailed in Table 1.2, although are dependent on the type 

of melanoma 129, 130. 

Table 1.2 – Recommended minimal excision margins for melanoma 

Tumour thickness (Breslow) Excision margin 

In situ 0.5 cm 

Less than 2.0 mm 1 cm 

>2.0 mm 2 cm 
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As well as being used as a method of determining the stage of disease SLNB can be used as 

a treatment for melanoma that has metastasised. If possible, surgery is the treatment of 

choice when it comes to skin and distant metastasis. In the case of brain metastases, 

radiation therapy and surgery are considered to be equally as effective.  

Radiotherapy of a primary tumour is rare, unless surgery could lead to severe disfigurement, 

in which case it can be considered. If the melanoma has spread to regional lymph nodes, 

radiotherapy can be administered if dissection is incomplete or to gain control of the spread 

to further lymph nodes 131. Radiotherapy can be administered to treat skin metastases if 

inoperable and is effective in the treatment of bone metastases 132,133. Melanoma has a 

natural tendency to metastasise to the brain, dramatically reducing life expectancy to 3 – 5 

months. However, radiotherapy (as well as surgical procedures, if applicable) can also 

improve neurological symptoms, 80 % of headache cases respond to treatment. Additionally, 

50 – 75 % of cases are seen to improve and generally this improves the overall health of the 

patient 134,135. 

1.4.9. Treatment of Advanced Melanoma 

Biotherapy and chemotherapy can be used to treat advanced melanoma (stage IV), 

inoperable of extensive metastases. The aim of these therapies is to prolong survival and 

reduce tumour size, reducing symptoms.  

Biotherapies can either be in the form of targeted therapies, attempting to neutralise specific 

gene changes or through immunotherapy, which aims to assist the body’s natural defence 

system 136. Vemurafenib and Dabrafenib are targeted drugs developed to inhibit the BRAF 

protein. As mentioned, 45 % of cutaneous melanoma patients carry an activation BRAF V600 

mutation causing cancer cells to grow and divide. The development and approval of 

Vemurafenib and Dabrafenib have led to their use in America and the European Union. Both 

drugs are administered twice a day in the form of an oral tablet and can have response rates 

at high as 68 %. Many more exist and can be administered in combinations with each other, 

further details on these medications, their doses and response rates can be found in 

European consensus-based interdisciplinary guideline – Update 2016, for the diagnosis and 

treatment of melanoma 119.  
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Ipilimumab, is an example of an immunotherapy drug, approved by the FDA in 2011 and is a 

check point inhibitor. The T-cells within the immune system can destroy melanoma cells, 

however the presence of a surface protein (CTLA-4) can prevent this from happening. 

Ipilimumab works by blocking this protein, allowing the T-cells to operate more 

effectively 137, and now shown to prolong life 138,139. The most common cytotoxic 

chemotherapy drug is Dacarbazine. Until recently, the use of this drug was part of standard 

care, despite having a lack of positive survival impact as no other treatment regime 

demonstrated superiority 140, 141. It is only since the introduction of biological therapies 

mentioned, that its use is often a last resort as it does not cure disease. 

1.4.10. Adjuvant Therapies 

Adjuvant therapies are offered to patients who do not present with any evidence of 

macroscopic metastases but are a high-risk of developing micrometastases. However, due 

to the reduced quality of life experienced following the administration of these therapies 

must be carefully considered. Multiple clinical trials published included patients with 

tumours thicker than 1.5 mm or those in the stage II and III AJCC staging system. In 2017, 

Long et al. published a clinical trial stating that the adjuvant use of the biological Dabrafenib 

and Trametinib as targeted drugs, significantly lowered the risk of recurrence in stage III 

melanoma patients with the BRAF V600 mutation compared to the use of a placebo 142. 

Similarly, adjuvant therapy with Nivolumab, a check-point inhibitor, for patients undergoing 

resections of IIIB, IIIC, or IV melanoma significantly increased the recurrence-free survival 143. 

Finally, another clinical trial reporting the use of 200 mg of Pembrolizumab administered 

every three weeks for up to one year, to high-risk stage III melanoma, provided patients with 

a longer recurrence-free survival 144.  

These trials demonstrate the successful use of adjuvant treatments for the management of 

patient care. It can be assumed that if the correct population of high-risk patients can be 

identified following surgery, potentially through a blood-based marker, further successful 

targeting could be achieved.  

1.5. Problems Encountered with Current Diagnostic Methods 

The biggest problem facing melanoma treatment, is that 7-20 % of those diagnosed with 

cutaneous melanoma present with metastases at the time of diagnosis 145. This means that 

by the time the patient has reached the point of seeking clinical advice, the cancer has 

advanced beyond the capabilities of current curative treatment. The presence of secondary 
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tumours in the most common sites (liver, bone and brain) leads to poor average survival 

times of 6 – 9 months 146, 147.  

Current diagnostic methodologies are subjective, time consuming and often require highly 

trained personnel. Many patients who have suffered melanoma skin cancer require follow 

up appointments, where their bodies are checked by a clinician or scanned through an 

imaging technique to determine if there has been regrowth of the disease. However, these 

appointments can often only happen every six months, due to the radiation from the scans, 

in which time a relapse could already have occurred.  

This, combined with the fact that a melanoma could potentially go unnoticed for long periods 

of time, means that there is a drastic need for a minimally invasive, rapid method of 

screening high-risk patients. Despite the efforts to develop new methods and technologies, 

a more accurate diagnosis method for the inspection of melanoma has not yet been 

established 148. Early diagnosis of melanoma would allow for early intervention before 

metastasis can occur and could significantly improve patient mortality and morbidity 149.  

In 2016, the European Journal of Cancer published an article predicting that in the near 

future, blood samples or liquid biopsies could be used to carry out genomic testing based on 

the extracellular circulating DNA or tumour cells 96. Blood-based biomarkers with the ability 

to detect melanoma prior to any clinically evident distant metastasis could improve 

treatment outcomes for patients 150. 

As discussed, there are minimal risks associated with current detection methods, in 

comparison to the cumulative cancer risks. However, an appropriate blood-based method 

would present negligible risks to the patient, provide rapid results and would be cost 

effective to health services 151,152. This thesis aims to provide an appropriate blood-based 

methodology for clinical use, which is easy to use, fits with current clinical sample 

preparation and can achieve the required sensitivity and specificity to enable clinical 

acceptance.  

1.6. Vibrational Spectroscopy 

Spectroscopy is the study of the emission, absorption or scattering of light as it interacts with 

matter – Figure 1.11.  The law of energy conservation states that the incident light is equal 

to the sum of all components. Spectroscopy can therefore be referred to, as the study of the 

exchange of energy between electromagnetic radiation and matter.  
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Electromagnetic radiation is measured as packets of energy called photons which have 

specific energies and can be quantised 153.  Max Planck developed the mathematical 

relationship (Equation 1.1) where, the electromagnetic energy (E) is directly proportional to 

frequency (ν), and inversely proportional to wavelength (λ), with the addition of Planck’s 

constant (h), (h) = 6.626 x 10-34 joules/sec.  

Equation 1.1 – Planck’s Postulate 𝐸 =  ℎ𝜈 =
𝑐

𝜆
 

 Vibrational spectroscopy is often the term used to describe two analytical techniques, 

infrared and Raman spectroscopy. Both techniques are non-destructive and can provide 

information regarding the molecular structure of many sample types. A spectrum of the 

vibrational energy associated with the chemical bonds in a sample, through the absorption 

of infrared light, can act like a fingerprint of the molecule under analysis. This leads to the 

possible identification, characterisation and monitoring of samples through the examination 

and interpretation of spectral features as well as the comparison of fingerprint spectra. 

These two techniques provide complementary molecular information, although access this 

information in different ways, as shown in Figure 1.12. Raman lines are present due to a 

change in the polarisability of a molecule, whereas IR absorptions occur when a change in 

dipole moment occurs 153,154. Additionally, a molecular vibration that is said to be infrared 

active is then deemed Raman inactive, and vice versa based on the rule of mutual exclusion, 

which states no normal mode can be both infrared and Raman active in a molecule that 

possesses a centre of symmetry 155.  Infrared spectroscopy uses polychromatic light to 

irradiate the samples and a photon is absorbed when the frequency of the incident light 

Figure 1.11 - The interaction of incident light and the sample. I0: incident light, IR: 
reflected, IS: scattered, IA: absorbed, IT: transmitted 
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matches the energy required to cause that bond to vibrate. Raman, on the other hand, uses 

monochromatic light, where photons are either inelastically scattered (Stokes/Anti-Stokes) 

and the emitted photon provides molecular information or has been elastically scattered 

(Rayleigh) which has the same energy as the incident light.  

 

Over the last ten years, the capability of vibrational spectroscopy to screen, diagnose and 

predict disease through the analysis of biofluids has been highlighted in a wide variety of 

research 156–162. For the analysis of serum, it is thought that infrared spectroscopy could be 

more advantageous due to the weak scattering abilities of biofluids, although arguments 

regarding the fact that water has a very intense absorption band have been made 163.  

 

Biofluids such as serum can contain up to 93 % water 164 and in 2013,  Adato et al. 165 showed 

how the amide I and II vibrations can be hidden by the OH bending mode of water, which is 

visible around 1650 cm-1 . However, this problem can be solved by the drying of the liquid 

samples prior to analysis. Due to minimal experimental parameters, the ease of 

instrumentation use as well as the speed of analysis (all of which will be discussed further) 

for the purpose of this research project infrared spectroscopy, was chosen to carry out the 

experimental work.  

Figure 1.12 - A schematic overview of a Jablonski energy level diagram displaying the 
energy transition processes in infrared, Raman (Stokes and anti-Stokes) scattering 41. 
m = ground state and n = first excited vibrational state 
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1.6.1. Infrared Spectroscopy 

1.6.1.1. Theory 

Infrared radiation refers to the part of the electromagnetic spectrum that has a wavelength 

range of roughly 800 nm – 1 mm (12,500 - 10 cm-1) and can broadly be split into three regions:  

• Near-infrared (NIR), wavenumber ranges from 12,500 – 4000 cm-1, exciting 

overtone and combination vibrations 

• Mid-infrared (MIR), wavenumber ranges from 4000 – 400 cm-1, exciting 

fundamental vibrations 

• Far-infrared (FIR), wavenumber ranges from 400 – 10 cm-1, exciting lattice vibrations 

 

An IR spectrum is recorded as a plot of wavenumber (cm-1) vs. absorbance. The wavenumber 

range covers 4000 - 400 cm-1 and can be split into two regions, 4000 – 2000 cm-1, and the 

fingerprint region which ranges from 1800 - 400 cm-1. The fingerprint region contains a 

complicated array of absorptions and is usually used when comparing samples of very similar 

composition as it is highly unlikely samples will have the same chemical composition, 

identifiable in this region. 

 

As previously mentioned, vibrational spectroscopy uses infrared light to induce vibrations 

within a chemical species 166. Chemical bonds are not stiff and can vibrate when they interact 

with electromagnetic radiation by absorbing, emitting or scattering a photon. The frequency 

at which a bond oscillates can be determined using Hooke’s Law (Equation 1.2). This 

encompasses the idea that the bond connecting two atoms can be thought of like a spring 

and acts as a simple harmonic oscillator 153. The simple harmonic oscillator curve is shown in 

red in Figure 1.13. The law allows for the expression of a fundamental vibrational frequency 

of a molecule, where 𝜈  is the fundamental frequency, k is the force constant and µ is the 

reduced mass. 

Equation 1.2 – Hooke’s Law  𝜈 =  
1

2𝜋
√

𝑘

𝜇
 

 

This relationship allows the strength of a bond and the atomic masses to be related to the 

frequency at which the molecule will absorb IR radiation, and is the basis of the characteristic 

nature of this spectroscopy.  
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An IR spectroscopic signal relates to a photon releasing its energy to the molecule through 

absorption of energy of the same frequency and allows it to transition from one energy state 

to another, higher energy state 167, 168. However, to obey the rules of quantum mechanics, 

and allow the energy of transitions to be quantised only transitions that fit Equation 1.3 can 

occur, where n is the quantum number and ν is the frequency of the vibration. 

 

Equation 1.3 – Energy of Harmonic Motions  𝐸 = (𝑛 +  
1

2
) ℎ𝜈 

 

This leads to the equally spaced energy levels of harmonic motions (Figure 1.13). These 

molecular vibrations happen at a specific frequency within the infrared range and are 

characteristic to that molecule.  

 

This simple model does not take into consideration any attractive or repulsive forces that 

may take effect when considering a real chemical bond, or the fact that at high levels of 

absorbed energies the bond could dissociate. Therefore, real molecules don’t obey the laws 

of simple harmonic motion, leading to the development of the Morse curve, shown in green 

Figure 1.13 – The Morse potential (green) and harmonic oscillator potential (red) 
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in Figure 1.13, which has been derived to approximate the energy of a diatomic molecule 

undergoing anharmonic extensions and compressions. As can be seen in Figure 1.13, the 

energy levels become closer together, with the increasing interatomic distances and is due 

to the relationship displayed in Equation 1.4, where ν is the vibrational quantum number and 

xe and ye are the first and second anharmonicity constants, respectively. The v = 0 level is the 

vibrational ground state. 

Equation 1.4 - Energy of Anharmonic Motions  

 

 𝐸𝜈 = (𝜈 + 
1

2
) 𝜈𝑒 − (𝜈 + 

1

2
)

2
𝜈𝑒𝑥𝑒 + (𝜈 + 

1

2
)

3
𝜈𝑒𝑦𝑒 + ⋯ 

 

IR spectroscopy is guided by selection rules 169,170;  

• the transitions involved must only occur due to a change in one vibrational level, 

fundamental transitions occur when 0→1  

• the molecule must contain a dipole moment to absorb infrared radiation 

 
Functional group vibrations occur over the full range of MIR wavenumbers (4000 – 400 cm-1) 

and are normally referred to as fundamental vibrations and these are often used to identify 

the compounds 166-48. The number of bands in an IR spectrum can correspond to the number 

of vibrational modes that particular molecule has and is related to the number of atoms 

within the molecule. If the molecule is non-linear it is said to have 3N – 6 vibrational modes 

(vibrations along the X, Y and Z axis and then an additional three for rotations around the 

axis) and if it is linear 3N – 5 vibrational modes. However, the number of vibrational modes 

does not always equal the number of spectral bands, as the molecule must demonstrate a 

dipole moment to be classified as IR active 43, 47. 

 

This is highlighted in Figure 1.14, which shows the molecule carbon dioxide (CO2) undergoing 

a symmetric stretch and an asymmetric stretch.  

 

Figure 1.14 - Symmetric (left) and asymmetric (right) stretching modes of CO2 171 Blue: 
Oxygen, Purple: Carbon 
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 As the molecule loses its inversion centre, when undergoing the asymmetric stretch, a 

change in dipole occurs and produces an IR active signal. On the other hand, the symmetric 

stretch does not induce a change in dipole so is therefore regarded as being, IR inactive.  

Due to the interest in biomolecular components, for example proteins, Figure 1.15 displays 

the vibrational modes of the amide functional group.  

 

Combinations and overtones are infrequent transitions which can occur, although they are 

much weaker in intensity than the fundamental vibrations. Overtone transitions occur when 

the vibration leads to a transition of 0→n (n>1). Theories have been developed that state 

the frequency of the overtones are half the fundamental, however this is not exact 171. 

Combination vibrations occur if two fundamental vibrations occur at the same time and 

Amide I 

(1700 – 1600 cm
-1

) 

Amide III 

(1300 – 1230 cm
-1

) 

Amide II 

(1580 – 1480 cm
-1

) 

Amide A 

(3350 – 3250 cm
-1

) 

Figure 1.15 - IR active molecular vibrations of the amide group. 
Orange: Hydrogen, Red: Nitrogen, Purple: Carbon, Blue: Oxygen 
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cause complications like that of overtones. Hot bands can occur if the transition from one 

excited state to another occurs, 1→n (n>1) takes place. 

An advantageous property of IR based techniques, are that they obey the principles of the 

Beer-Lambert law 173 – Equation 1.5. 

Equation 1.5 – Beer-Lambert Law  A= 𝑙𝑜𝑔
𝐼𝑜

𝐼
 = ε c l 

This law states that the quantity of given molecules is relative to the absorbance of IR 

radiation (A) by the sample, using the intensity of the incident light, I0 and intensity of the 

transmitted light, I. However, when using the Beer-Lambert law to determine the 

concentration of the sample analysed it can be expressed in terms of the molar absorptivity 

(ε), pathlength of the sample (l) and the concentration (c). This enables IR spectroscopy to 

quantify specific biomolecule concentrations, as the proportion of light absorbed by the 

sample will correlate with the concentration of molecules within a sample. 

1.6.1.2. Instrumentation 

There are four different types of infrared instruments: dispersive spectrometers, Fourier 

transform (FT) spectrometers, filter photometers and most recently, novel laser-based 

systems. However, for the purpose of this project the focus will be on the FT system, which 

is considered to be the most widely implemented type of IR spectrometer 169,170,174–176.  

FTIR spectrometers were developed to overcome the limitations of dispersive instruments. 

Firstly, as the frequencies are measured simultaneously, spectra can be acquired in seconds. 

The sensitive detectors and the higher optical throughput leads to a higher signal to noise 

ratio (S/N). The speed of measurement allows multiple scans to be co-added, again 

improving the quality of spectra obtained. The sensitivity enables identification of molecular 

changes and has led to the use of FTIR spectrometers in a wide variety of industries. For 

example, biological and medical fields 177 and also in areas of the food industry 178 and quality 

control 179,180.  

An FTIR instrument contains a Michelson Interferometer which first splits the incoming IR 

radiation into two optical beams; one is reflected off a fixed mirror and the other is directed 

towards a moving mirror. After reflection off the mirrors, the light beams come back 

together to recombine in a constructive (amplitudes have the same sign) or destructive 

(amplitudes have opposite signs) manner, and with the use of a reference laser, an 
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interferogram is produced. As it is a result of the moving mirror function, the interferogram 

contains a unique property; each signal has information regarding every infrared frequency 

coming from the source46,49–51. This phenomenon is responsible for the fast-spectral 

acquisition time. A typical FTIR spectrometer is shown in Figure 1.16. 

The sample absorbs infrared radiation at multiple different wavelengths within the MIR 

spectral range (4000 – 400 cm-1), which are characteristic of its chemical composition. Before 

analysis of any sample is carried out, a reference interferogram must be taken and stored to 

create a relative absorbance intensity scale.  The background spectrum is normally a 

measurement with no sample in the beam path, allowing the removal of all instrument 

characteristics, and the resulting spectra to be purely due to the sample alone. Once this has 

been done, an interferogram of the sample can be attained. A mathematical equation known 

as the Fourier transform, takes the time domain interferogram and converts it to a frequency 

spectrum (an intensity at each frequency) like shown in Figure 1.17.  

Figure 1.16 – Schematic of FTIR Spectrometer System 169 
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1.6.2. Attenuated Total Reflectance - Fourier Transform Infrared 

Spectroscopy 

There are four major FTIR sampling modes: transmission, attenuated total reflectance (ATR), 

specular reflectance and diffuse reflectance 172,174–176. In the, 1990s ATR – FTIR spectroscopy 

became an area of wide interest 167. The main reason for this, is the little or no sample 

preparation associated with the qualitative and quantitative measurements. Additionally, 

the penetration depth of the IR beam into the sample is independent of sample thickness 181, 

allowing for the analysis of liquid and air dried samples.  

ATR-FTIR is based upon the principle that when radiation penetrates through a medium with 

a higher refractive index, n1, to a medium with a lower refractive index, n2 (n1 > n2) total 

internal reflection occurs at the media interface, provided the radiation angle of incidence is 

greater than the critical angle (ϴc). Equation 1.6 shows how the ϴc can be defined as a 

function of the refractive indices of two media:  
 

Equation 1 6 - Critical Angle  𝜃𝑐 =  𝑠𝑖𝑛−1 𝑛2

𝑛1
 

 

By measuring the change that occurs in the total internal reflection when the beam interacts 

with the sample an ATR spectrum can be produced 174–176.  

 

An ATR-FTIR set up contains an internal reflection element (IRE) which is made from an IR 

transparent material and has a high refractive index (n1). When the IR radiation is passed 

through the IRE (typically at an angle of 45°), from Equation 1.6, it is totally reflected at the 

IRE/sample interface (Figure 1.18). The radiation is not directly reflected at the boundary and 

Figure 1.17 – Sample analysis process 169 

Interferogram FT Computer Spectrum 
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a small proportion of the light reaches into the sample and is known as the evanescent wave 

182. The evanescent wave then interacts with the sample and at specific spectral frequencies 

where the sample absorbs energy, the evanescent wave is attenuated, and is passed out to 

the detector. Peaks are formed at characteristic IR wavenumbers where the sample has 

absorbed energy 172,174–176.  

 

Analysis is carried out by placing a sample on top of the ATR IRE ensuring contact between 

IRE and sample as the evanescent wave only extends a few microns beyond the surface of 

the IRE, defined as the penetration depth. In order to gain a high resolution spectrum good 

contact between the sample and the IRE surfaces must be achieved because the evanescent 

wave only extends 0.5 – 5.0 µm beyond the IREs 176.  

The depth at which the evanescent wave can penetrate the sample depends on: 

• Refractive indices of the ATR IRE (n1) and the sample (n2) 

• Angle of incidence of the IR beam (θ) 

• Wavelength of the IR beam (λ) 

 

Equation 1.7 shows this relationship: 

Equation 1.7 - Depth of Beam Penetration 49 𝑑𝑝 =  
𝜆

2𝜋(𝑛1
2𝑠𝑖𝑛2𝜃−𝑛2

2)
1/2 

 

As stated above the IRE material has an impact on the penetration depth of the evanescent 

wave, which can have dramatic effects on the appearance of an ATR spectrum and there are 

a range of options available. The most common are those composed of diamond, zinc 

selenide (ZnSe) and germanium (Ge) each of which have different optical properties 

(Table 1.3) 183.  

Sample in contact with the evanescent wave 

IR beam To detector 

ATR IRE 

Figure 1.18 - Graphical representation of ATR FT-IR spectroscopy set up 
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Table 1.3 - Different IRE materials and indicative properties 

Material Spectral Range Refractive Index dp at 45°, 1000 cm-1 Hardness 

ZnSe 500 – 20,000 cm-1 2.43 1.66 µm 130 Knoop 

Ge 600 – 5,000 cm-1 4.01 0.65 µm 550 Knoop 

Diamond 10 – 45,000 cm-1 2.40 1.66 µm 9,000 Knoop 

Si 33 – 8,333 cm-1 3.42 0.81 µm 1,150 Knoop 

 

ZnSe is the optimum material for the analysis of liquids and gels and is relatively cheap, 

however is not suitable for samples that have a pH range 5-9. Ge is a more versatile material 

in terms of pH range and can be used for the analysis of both weak acids and alkalis. Since 

Ge IREs have a very high refractive index, the use of them is often kept for strongly absorbing 

compounds. The toughness and durability of diamond IREs make them ideal for the analysis 

of a wide range of materials, although the high initial purchase cost of this material is a 

significant barrier compared to the other two types mentioned 172.  

Recent advances in IRE technology, providing an IRE capable of high-throughput analysis was 

developed in the Spectral Analytics Laboratory (Baker Group), University of Strathclyde 

whilst this project was ongoing. Therefore, the work described in Chapter 2 and 3 use 

Diamond IREs for ATR-FTIR analysis, however Chapter 5 will describe the use of a Silicon IRE 

(SIRE), properties detailed in Table 1.3. These disposable, high-throughput IREs were 

provided by ClinSpec Dx™, a prospective spin-out from the Spectral Analytics Laboratory 

(spin-out target January 2019), and were produced to combat the inability of conventional 

fixed IRES to enable high-throughput analysis, making them not fit and not economically 

attractive for use in the clinic. The SIRE is mounted on a 3D printed polylactic acid (PLA) 

holder designed to be the size of a microscope slide. The SIRE is secured in place with a 

branded ClinSpec Dx™ label. This allows the creation of four sampling wells (Figure 1.19), the 

first used as a background well and the remaining three allowing for biological repeats. This 

development allows for batch drying as well as storage, providing the option of repeat 

analysis if needed in the future, a feature that was impossible with conventional fixed IREs.   
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The reduction in sample preparation has led to the wide implementation of ATR-FTIR 

spectroscopy. Samples are often too thick to gain a high-resolution absorption spectrum via 

transmission mode and deducing any chemical composition from these is difficult due to the 

infrared light not being able to penetrate through the sample 184. Therefore, the solid sample 

undergoes sample preparation before analysis takes place. This can be done by grinding the 

solid into a fine powder and the use of a nujol mull, or by mixing the powder with potassium 

bromide (KBr) and forming glass like discs that can then be analysed. A small piece of the 

sample can be placed between two diamond cells that are twisted together to create a very 

thin layer of solid sample which can then be analysed. Biological samples, like tissue sections 

need to be sliced extremely thin (5 – 10 µm) and may require the removal of paraffin 

dependent on the tissue preservation technique 185. Again, the sample preparation of cells 

involves relatively complicated drying and fixation methods 186.  

 

There are a number of disadvantages of FTIR spectroscopy that have meant studies have not 

developed from early proof of principal stages 187, 188. As mentioned earlier, water has a 

strong absorption band which overlaps with the amide I band of a biological spectrum. As a 

result of this problem, samples must be dried on top of the IRE before any spectral 

acquisition can take place - which can take eight minutes or more per sample, dependent 

upon sample volume and ambient conditions 189. In addition to the drying time, there is also 

the need to clean the IRE between each sample, as well as an additional background 

spectrum. Due to these factors, ATR-FTIR spectroscopy has not yet, been classified as high-

throughput technique; an attribute considered vital for translation 158 . 

1.6.3. Quantum Cascade Laser Based Infrared Spectroscopy 

One approach with the ability to combat the lack of a high-throughput infrared spectroscopy 

technique is with the use of a novel IR light source in the form of tuneable quantum cascade 

lasers (QCLs). The benefit of using this particular type of laser is the increase in spectral 

power, which is several orders of magnitude greater than that of globar sources 190. This leads 

Figure 1.19 – ClinSpec Dx TM optical sample slide  
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to increased sensitivity to MIR absorptions, through the interaction of the laser with a larger 

sample area due to a larger penetration depth compared to FTIR spectroscopy. The 

combination of QCL sources with refractive-based, high numerical aperture objectives and a 

large format detector system allows analysis to be optimised through achieving a high 

resolution without a trade-off in signal to noise 191. This technique is known as discrete 

frequency infrared (DFIR) imaging as the laser is tuned to a custom range and results in 

spectral information from a defined region 192.  This reduces acquisition time and creates the 

possibility of real-time data collection for disease-specific diagnostics on a clinically 

appropriate time scale 193,194. DFIR imaging has already shown to be successful in rapid 

diagnostics through the analysis of dried serum spots 189. 

1.7. Spectral Pre-processing 

A spectrum obtained from a vibrational spectroscopic measurement, acts as a fingerprint for 

that specific sample and allows very small differences between samples to be identified.  

However, other information regarding the background environment and the presence of 

substrates and the thickness of the sample, to name a few. It is important to minimise these 

features unrelated to the sample to allow optimal examination. Although this can be 

minimised during sample acquisition, spectral pre-processing further ensures any 

information taken from the data is true to the sample alone. It is worth noting that often the 

pre-processing steps and specific methods used, depend entirely on the technique and 

sample. From this point onwards, the pre-processing options discussed are specific to the 

analysis of biofluids using ATR-FTIR. 

Initially, spectral ranges can be cut to reduce variables and the data set size. Spectra are 

often cut to the fingerprint region which range from 1800 – 1000 cm-1. This region is often 

where the vibrations of the biomolecules of interest tend to occur and is known to be very 

information rich.  

1.7.1. Baseline Correction 

When light scattering occurs it can have an impact on the baseline of an infrared spectrum, 

producing a slope or an offset. Upon interaction with a sample, the electromagnetic wave 

can be scattered, either at the same frequency, referred to as elastic scattering or at a 

different frequency, known as inelastic scattering. Two different forms of elastic scattering 

are Rayleigh scattering which describes the scattering of radiation by molecules that are 

much smaller than the wavelength of the incident radiation. Secondly, Mie scattering is an 
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elastic scattering process which occurs from molecules with dimensions comparable to the 

wavelength of the incident radiation.  

Infrared spectroscopy is based on the principle that light is absorbed by the sample, 

therefore, any scattering of the incident light can cause the baseline to fluctuate. This can 

often mean that the start and the end point of the spectrum are at different absorption 

intensities, in some cases, oscillating between positive and negative values. This means 

absorbance values cannot be compared to each other, as the baseline could introduce 

discrepancies between spectra.  

Correction algorithms can be applied to overcome this problem, if scattering is unavoidable 

during spectral acquisition. There are several approaches to choose from, including 

rubberband and polynomial corrections, as well as derivatisation of spectra. The rubberband 

correction works by dividing the spectra into n ranges. The minima absorbances within each 

range acts as baseline points which are connected by straight lines. A rubberband is then 

stretched from the bottom up over this curve and any baseline point which isn’t on the 

rubberband is omitted 205. This helps to remove sloped baselines. A polynomial baseline 

correction algorithm estimates the mathematical equation of the baseline through the 

selection of n points along the spectrum with a spline, and then subtracts this from the 

original spectrum 206. Finally, the extended multiplicative signal correction (EMSC) algorithm 

developed by Kohler et al. 207, is capable of removing the oscillating baseline left from non-

resonant Mie scattering. The raw measured spectrum can be thought of as the spectrum 

resulting from the sample analysed, in addition to offset and sloping baselines, and scattering 

curves. Put simply, the EMSC algorithm allows for these to be removed. An adaptation of this 

algorithm known as emscorr was used and in short, uses a reference spectrum to iteratively 

remove these scattering effects from the raw spectrum 208.  

1.7.2. Normalisation 

Normalising spectra allow the differences in sample thickness, and therefore pathlength 

discrepancies, to be accounted for. The most common methods are a min/max normalisation 

or vector normalisation. Min/max works by scaling the spectrum intensities so that the 

minimum absorbance is set to 0 and the maximum 1. Vector normalisation calculates the 

average absorbance of each spectral region, before being subtracted from the spectrum, and 

being divided by the spectral length. The spectra are then scaled so that the square of 

absorbance minus the average absorbance, summed, is equal to one 209. 
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1.7.3. Derivatisation 

As well as being used for baseline correction, derivatising the intensity of spectra can remove 

baseline drifts and de-convolute the spectrum, resolving broad peaks into their constituent 

elements. This allows subtle differences in spectra to be seen and overlapping bands to be 

resolved. By using the first-order derivative to measure the peak slope, the max absorbance 

peak becomes 0. The second-order derivative spectrum is often favoured due to the fact the 

peak frequency is in the same place as the original spectrum, allowing easier interpretation. 

Executing derivatives leads to a lower signal to noise ratio (SNR), getting increasingly worse 

by increasing order of derivatisation, although can overcome through the use of smoothing. 

1.7.4. Noise Reduction & Smoothing 

Smoothing and noise reduction steps are processes that can reduce noise within spectra. 

Caution is needed when applying these filters to spectra, due to the risk of increasing the 

SNR but at the expense of changing the IR peak shape. 

PCA based noise reduction is a method involving the transformation of the spectra into 

principal components (PCs), explained further in Section 1.9.1. The numbers of PCs are equal 

to the number of samples and describe any variance between spectra. They are numbered 

in order of the variance explained, resulting in the high order PCs containing most of the 

unexplained variance or “noise” 210. Therefore, in order to reduce the spectral noise, the high 

order PCs can be omitted before reconstructing the data matrix. Selecting few PCs leads to 

the largest noise reduction but increases the risk of removing spectral information 211.  

1.7.5. Sampling Methods 

If the class groups are not approximately equal in sample members it is said the there is a 

class imbalance. In these situations, it is not appropriate for the performance of machine 

learning algorithms to be evaluated based on predictive accuracy. Through sampling the 

existing data, this can be counteracted. For example: 

• Up-sampling: Is a method that samples from the class with the lower number of 

samples, until there are sufficient samples within that class group 

• Down-sampling: The use of this method, discards samples from the majority class to 

ensure both class groups are different. 

• Synthetic minority over-sampling technique (SMOTE): This is the most widely used 

sampling method, as it is a computational mix. The method creates new “synthetic'' 
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minority instances between existing minority instances, rather than creating copies 

by over-sampling with replacement of the minority class. In order to oversample, a 

sample data pint is selected from the dataset and its nearest neighbours in feature 

space are identified. The vector between one of the neighbours and the current data 

point is then multiplied by a number between 0 – 1, before being added to the 

current sample data point to create a new, synthetic data point. 

A typical example of what data looks like before and after pre-processing is shown in 

Figure 1.20.  
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1.8. Multivariate Analysis 

The statistical analysis of many variables at one time, for example the absorbance intensities 

over a spectral range, where one variable is one wavenumber, is referred to as multivariate 

analysis (MVA). The spectroscopic analysis of biofluids such as patient serum leads to an 

extremely large amount of data being acquired, leading to a heavy reliance on analytical 

software packages and MVA for the interpretation of such complex data 213.  This section 

focuses on the primary methods of modern MVA: principal component analysis (PCA), partial 

least squares (PLS) and support vector machine (SVM) and random forest (RF) analysis. 

Figure 1.20 – Pre-processing examples. Top: Raw data. Bottom: 
Data that has been baseline corrected using an EMSC algorithm, 
normalised using a 0-1 scaling method before being cut to the 
fingerprint region. 
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1.8.1. Principal Component Analysis 

The main aim of principal component analysis (PCA) is to extract important information from 

complex data sets, through reducing the dimensionality to reveal hidden patterns within the 

data 214. The retention of the original information is achieved by detecting the directions of 

maximum variance, principal components (PCs), in high-dimensional data and then 

projecting into a smaller dimensional space 215. PCA determines a new coordinate system, as 

highlighted in Figure 1.21, which will allow for the largest variance to be described by the 

first principal component 216.   

 
Using spectroscopic data as an example, to begin with a data matrix is formed. This is made 

of up rows representing the samples and columns representing the variables, absorbance at 

different wavelengths in this case.  The original data matrix (X) can be thought to be 

composed of the underlying structure of the data with the addition of combinations of 

random instrumental or environmental variation (E) 217. The matrix is then transformed 

orthogonally into two smaller matrices 218, the scores (T) indicating relationships between 

samples and the loadings (P) which describe relationships between measurements, linked by 

Equation 1.8 and Figure 1.22 219. 

y 

x 

Figure 1.21 – Schematic showing the formation of the principal components 215 
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Equation 1.8 - PCA Representation    𝑋 = 𝑇. 𝑃 + 𝐸 

 

The dataset is now viewed on the axis that best represents the covariance (the variance with 

regards to the wavenumbers). The decision of how many PCs to accurately describe the 

variance within the data is often done through the analysis of the eigenvalues. Each 

column/row of the scores/loadings matrix is a vector, specifically an eigenvector and each 

has a corresponding eigenvalue, determining the amount of variance described by that 

principal component 220. By plotting the principal component number vs. the eigenvalue, it 

becomes evident that when the eigenvalue becomes so low that no additional variance in 

the data is being described and there is said to be a sufficient number of PCs. 

 

 

Once the data has been reduced, visualisation is a lot more simplistic and can be done 

through the scores or loadings plots. Score values are thought of as the distance from the 

origin along the loading vector to the point where the original data observation projects on 

to the vector. A plot of the scores can be thought of as a measure of the scale of the PC. This 

means that samples with a similar score value will be plotted in the similar area of the plot, 

with closeness representing similarity and separation representing dissimilarity. On the 

other hand, a plot of the loadings describes any relationships between the individual 

measurement variables. As the loadings of a PC are the cosines of the angles between the 

individual variable axis and the direction of the PC, they can range between +1 or -1. Positive 

indicates correlation, 0 indicates no association and negative indicates anti-correlation. In 

spectroscopy, these plots can give indication as to what peaks are responsible for the 

closeness or separation on the scores plot. Different combinations of principal components, 

as well as plot type can lead to the discovery of sample relationships.  

Figure 1.22 - Visual representation of data, scores, loadings matrices and residual matrix, containing the noise 
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1.8.2. Random Forest 

The use of random forest (RF) as a machine learning tool finds features associated with input 

classes and presents easily interpretable results and can be used as a supervised 

classification algorithm 221. In short, given the training data and the input classes contained 

within, RF builds a ‘forest’ of regression trees and outputs a mean prediction which can then 

be used on test data. RF analysis can extract statistical values, based on the number of true 

positives, false positives, true negatives and false negatives, determining both the accuracy 

and reliability of the classification 222. Secondly, visual results can be analysed in the form of 

Gini plots, produced from the combined mean decrease in the Gini coefficient with respect 

to the wavenumbers. These plots allow for particular wavenumbers and wavenumber ranges 

to be highlighted as important to the classification established, shown in Figure 1.23. The 

author points readers towards Smith, B. R. et al. 223 for more information on RF as a machine 

learning tool.  

1.8.3. Support Vector Machine 

A Support Vector Machine (SVM) is a supervised algorithm used mainly for classification 

purposes 224. Upon being given labelled data the algorithm outputs an optimal dimension for 

the separation of the data, termed the hyperplane 225. Support Vectors are the co-ordinates 

of the individual observation and the hyperplane can be used to categorise new samples. 

The analysis of linear and non-linear data sets can be achieved using SVM 226, through tuning 

parameters, but can lead to multiple decisions and trade-offs being made. Highly complex 

curved boundaries can be used to separate classes, however at the cost of potentially over 

fitting the data. This can be carried out by a kernel trick, which acts as a mapping function 

and allows for the transformation of a given space into another, normally a much higher 

Figure 1.23 - Average mean spectrum, superimposed on top of Gini importance plot 
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dimensional space 227. Worked carried out by Hands et al. demonstrated the use of RBF-SVM 

to diagnose gliomas from non-cancer patients with average sensitivities and specificities of 

93.75 % and 96.53 % 189, respectively. 

The optimisation of SVM parameters (hyperparameters) can change the classification 

efficiency dramatically 227. The cost, C, can be referred to as the penalty parameter and is 

responsible for the trade-off between smooth boundaries and the ability to classify the data. 

If C is large, a large penalty is assigned to margin errors. This can alter the hyperplane 

orientation and lead to the hyperplane being close to numerous other data points. On the 

other hand, if C is lower, points close to the hyperplane become margin errors, again altering 

the hyperplane orientation and can lead to a higher margin for the rest of the data, as 

highlighted in Figure 1.24. 

 

 

Figure 1.24 -The effect of cost, C, on the decision boundary. The decision boundary is highlighted by 
the thick line, with the lighter lines highlighting the margin area. A larger C value (left) decreases the 
margin and does not allow you to ignore points close to the boundary. However, the larger C value 
(right), increases the margin and allows for points close to the margin to be ignored 
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Gamma, γ, is a coefficient responsible for the level of fit. Small γ values lead to the decision 

boundary being almost linear, whereas large γ values lead to increased flexibility of the 

boundary and potentially overfitting 228, shown in Figure 1.25. Through a grid search, the 

optimal classification performance can be identified.  

1.8.4. Partial Least Squares (PLS) 

Multiple linear regression (MLR) is a method that is useful when using controllable, easy to 

measure variables to predict how other variables will behave. However, an ATR-FTIR 

spectrum, is made up of hundreds of measured responses making MLR almost impossible.  

Therefore, partial least squares (PLS) is a technique that combines MLR and PCA.  

Figure 1.25 - The effect of gamma,, with all other parameters fixed. Small  values (top left) lead to the decision 

boundary being almost linear. However, in the bottom right, where  is large, the decision boundary flexibility 
has increase and overfitting has occurred.  
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PLS is one of the most frequently used supervised learning techniques and is used to 

determine the relationship between two matrices. Opposed to determining a hyperplane 

defining the relationship between two variables. Partial least squares regression (PLSR) 

determines a linear regression model. As in PCA the data (X) can be decomposed into the 

scores (T) and loadings (P). However, emphasising the variation in X, that correlates with the 

variation in Y while generating the PCs in such a way that the variation in it does so by 

projecting the predicted variables and the observable variable to a new space. This is a 

method to produce quantitative models due to its ability to identify systematic variations of 

contributing factors and generative quantitative predictive models. This allows the 

prediction of unknowns, using the latent variables extracted from the regression model. 

1.8.5. Partial Least Squares – Discriminant Analysis (PLS-DA) 

Partial least squares – discriminant analysis (PLS-DA) is a linear classification method that 

combines the properties of partial least squares regression with the discrimination power of 

a classification technique 229 . The aim is to optimise separation between the two groups of 

samples, by linking the raw data (X) and the class membership (Y), by aiming to find a straight 

line that divides the space into two areas 230. It is often the case that the samples are 

projected perpendicular to the linear subspace, or the discriminator in this case 231. The 

distance from this discriminator is referred to as discriminant scores, equivalent to a principal 

component score 232. Once the model has been built, the new subspace allows for the 

prediction of test samples, based on a reduced number of variables.  

1.9. Vibrational Spectroscopic Analysis of Blood Components 

Early disease diagnosis has been at the forefront of research regarding vibrational 

spectroscopy. Cancer is caused by numerous reasons, resulting in several biomolecular and 

biomarker changes. However, rigorous research is and has been conducted trying to 

determine singular biomarkers for their use as a cancer detection method. As highlighted by 

the review published in Chem. Soc. Rev by Baker et al. 233 the number of studies dedicated 

to identifying cancer biomarkers has increased as can be seen Figure 1.26; this is an 

expansion of the figure included in the review, to include the year 2016. The use of 

vibrational spectroscopy would allow all biochemical changes to be examined together, 

addressing the true heterogenous nature of cancer and could lead to the development of 

spectral signatures, as opposed to focussing on singular biomarkers. 
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Blood is an ideal sample medium as it can be obtained easily from patients and provides the 

highly discriminatory components contained therein. The serum and plasma components of 

blood are often used to investigate the use of biomedical spectroscopy, chosen due to the 

existing clinical pathways and ethical protocols, as well as the consequent high number of 

samples available from biobanks.  

The majority of currently published research involves proof-of-principle studies, highlighting 

the many advantages of using FTIR and Raman spectroscopy to differentiate cancerous from 

non-cancerous samples. High-throughput FTIR spectroscopy was used to discriminate blood 

samples acquired from patients with urinary bladder cancer and patients with urinary tract 

infections, that had been prepared into thin dried films, using linear discriminant analysis 

(LDA) and random forest (RF) 204. Backhaus et al. also used HT-FTIR spectroscopy to develop 

a rapid method for detecting breast cancer due to the high incidence within women. 

Mammograms, ultrasounds and punch biopsies, considered to be the gold standard, are time 

consuming, unpleasant for the patient and require highly trained staff. It was possible to 

diagnose breast cancer from 1 µL of serum diluted with water and dried onto Si plates, which 

could speed up the current methodology. While the authors admit the inability to diagnose 

breast cancer early, they can diagnose carcinoma in situ 188. Zhang et al. were able to 

Figure 1.26 – Number of publications returned in PubMed when inputting the terms “cancer 
biomarker” from 1995 to 2016. 

 

0

5000

10000

15000

20000

25000

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

N
u

m
b

er
 o

f 
P

u
b

lic
at

io
n

s

Year



 

68 
 

distinguish between cirrhotic disease patients with hepatocellular carcinoma and those 

without 234. 

Hands et al. 189 published work using ATR-FTIR spectroscopy together with support vector 

machine (SVM) analysis to discriminate between brain tumours of different severities. 

Results demonstrated that the analysis of only 1 µL drop of serum using ATR-FTIR 

spectroscopy could produce high-quality and reproducible spectral data. ATR-FTIR 

spectroscopy was used to differentiate ovarian cancer patients from healthy controls using 

human blood plasma and a SVM classification 187.  

In 2013, it was demonstrated that ATR-FTIR spectroscopy had the ability to distinguish 

patients with ovarian and endometrial cancer from non-cancer patients. By obtaining serum 

and plasma from 90 recruited patients, the authors were able to construct four datasets to 

estimate the real-world diagnosis of ovarian and endometrial cancer. Different combinations 

of feature extraction and classifications were performed resulting in the optimum 

classification of 96.7 % for ovarian cancer and 81.7 % for endometrial cancer. Pilot studies 

such as this demonstrate the suitability of ATR-FTIR spectroscopy to analyse blood with the 

aim of developing a robust tool for accurate diagnosis. It was concluded that this specific 

study could act as a screening test for ovarian cancer in primary care settings 197.  

Further to this, the investigation into the potential use of Raman spectroscopy for the 

diagnosis of ovarian cancer, as well as the ability of both biospectroscopy techniques to 

characterise molecular alterations was completed. The project concluded that the blood 

plasma and the use of Raman spectra and a support vector machine classifier lead to a 

diagnostic accuracy of 74.0 %, while IR data and the use of the same classifier lead to an 

accuracy of 93.3 % 187. This research concluded that ATR-FTIR showed better classification 

accuracy than spontaneous Raman spectroscopy, although enhancement of the Raman 

signal with colloidal silver/gold could improve the classification performance.   

Raman spectroscopy has demonstrated the potential to discriminate serum samples from 

patients with oral cancer from control patient samples 202. The same authors published work 

two years later, stating the use of Raman spectroscopy to predict the probability of oral 

cancer recurrence 203. Furthermore, Raman spectroscopy has been shown to have the ability 

to decipher non-cancerous patients from those with cervical 201 and breast 162 cancers.  



 

69 
 

 Evidently, within the field of oncology it has been demonstrated that vibrational 

spectroscopy could assist with the diagnosis of cancer, using minimally invasive and rapid 

analysis of blood. However, both Raman and infrared have been shown to be useful in the 

diagnosis of other diseases. The use of Raman spectroscopy to explore the feasibility of 

detecting asthma was completed in 2013, Sahu, A. by et al. who published results showing 

the ability to distinguish asthma groups from the reference samples 236.  The potential of FTIR 

spectroscopy at determining the differences between patients with hepatic fibrosis and 

patients with no hepatic fibrosis has also been investigated, with the aim of facilitating 

treatment of chronic hepatitis C. The use of SVM to analyse the 219 spectra, produced a 

sensitivity of 95.2 % and a specificity of 100 %, highlighting the use of infrared spectral 

signatures to distinguish patients with extensive fibrosis to those with none 237.  Serum 

samples from 389 patients with acute chest pain were analysed using FTIR spectroscopy, 

producing results of 88.5 % and 85.1 %, sensitivity and specificity, when discriminating acute 

myocardial infarction from chest pains of other origins 238. The same authors observed 

spectral differences from serum obtained from healthy control samples and patients 

diagnosed with diabetes. The peak at around 1026 cm-1, assigned to glucose was determined 

to produce significant spectral contributions when discriminating between serum samples 

from patient with diabetes and serum samples from healthy controls with a sensitivity and 

specificity of 80.0 % 239. White blood cells (WBCs) and plasma taken from patients with 

Alzheimer’s disease as well as control patients, were analysed using FTIR spectroscopy, 

combined with principal component analysis (PCA) and linear discriminant analysis (LDA). 

Results from this study show that it was possible to differentiate the different grades of 

Alzheimer’s disease and the controls, with 85% accuracy when using the WBC spectra and 

around 77% when using the plasma spectra. Further to this, the accuracies were increased 

when using spectra from only moderate and severe staged patients to 83 % and 89 % for the 

WBC and plasma spectra, respectively 240.  

Evidence highlighting the potential use of vibrational spectroscopy within a clinical setting is 

apparent. However, none of these studies have made it out of the lab and into the clinic as 

a regulated clinical test, despite its easy to use instrumentation, ability to provide results 

rapidly, achieve the required sensitivity and specificity and the fact that the technique could 

easily fit with current clinical proceedings.  
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1.10. Aims & Objectives 

The project described in this thesis aims to develop a rapid spectroscopic blood-based 

method for the detection of melanoma and metastatic melanoma, enabling closer 

monitoring of high-risk patient cohorts and the progression of therapy.  

To do so, the overall project aim can be split into two themes. The first involves the 

development of spectroscopic methodologies. By analysing samples from biobanks and 

previously existing serum sample sets the optimum sample preparation required to observe 

and understand the spectral signatures of melanoma and metastatic melanoma from 

ATR-FTIR spectra, will be determined. In addition, through the investigations carried out in 

Chapters Two and Three, the use of ATR-FTIR spectroscopy within a clinical environment will 

be facilitated. This will be achieved by determining the most efficient mode of analysing 

patient serum samples and through the inclusion of a protein quantification step which will 

allow for the ATR-FTIR spectroscopic result to be compared to values obtained in the clinic, 

hopefully providing clinicians with confidence in the technique and aid the translational 

process. 

The second theme analyses the serum from melanoma patients to create a translational 

clinical tool. Patient recruitment, sample collection and logging while maintaining detailed 

patient records allows for the formation of a large, multivariable, information rich patient 

data set. This will produce the first longitudinal melanoma study, and combining this with 

the results from objective one, will allow for spectral signatures to be investigated to identify 

particular spectro-clinical relationships.  

The determination of a spectroscopic melanoma fingerprints in serum samples will allow for 

the development of this technology in several settings. These could include: 

 

▪ A screening tool for early disease relapse before radiological detection in patients on 

follow up after resection of high-risk melanoma. 

▪ An alternative to the current sentinel node staging procedure which involves an 

operation rather than a simple blood-based test for staging in patients with 1 -4 mm 

thick melanomas. 

▪ A way of monitoring response to systemic therapies using blood base techniques 

rather than radiology. 
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The objectives undertaken in order to achieve the thesis aim include: 

1. Development of the optimum spectroscopic methodology for the quantification of 

clinical parameters, namely protein concentration, within serum samples (Chapter 2) 

2. Investigating the appropriate sample state and spectroscopic approach to provide a 

methodology that is appropriate for the clinic with the required ease of sample 

preparation, rapid time to results and appropriate accuracy (Chapter 3) 

3. Instigate a longitudinal serum biobank and understand the biobank patient 

demographics (Chapter 4) 

4. Understand and discuss pre-analytical factors that may influence the serum spectral 

response (Chapter 5) 

5. Investigate the spectro-clinical relationship of the samples contained within the 

longitudinal serum biobank (Chapter 5) 
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Abstract and Aims 

Changes in protein concentrations within human blood are used as an indicator for 

nutritional state, hydration and underlying illnesses. They are often measured at regular 

clinical appointments and the current analytical process can result in long waiting times for 

results and the need for return patient visits. Attenuated total reflectance – Fourier 

transform infrared (ATR-FTIR) spectroscopy has the ability to detect minor molecular 

differences, qualitatively and quantitatively, in biofluid samples, without extensive sample 

preparation. ATR-FTIR can return an analytical measurement almost instantaneously and 

therefore could be deemed as an ideal technique for monitoring molecular alterations in 

blood within the clinic.  

To determine the suitability of using ATR-FTIR spectroscopy to enable protein quantification 

in a clinical setting, pooled human serum samples spiked with varying concentrations of 

human serum albumin (HSA) and immunoglobulin G (IgG) were analysed, before analysing 

patient clinical samples. Using a validated partial least squares method, the spiked samples 

(IgG) produced a linearity as high as 0.998 and a RMSEV of 0.49 ± 0.05 mg mL-1, with the 

patient samples producing R2 values of 0.992 and a corresponding RMSEV of 

0.66 ± 0.05 mg mL-1. This claim was validated using two blind testing models, leave one 

patient out cross validation and k-fold cross validation, achieving optimum linearity and 

RMSEV values of 0.934 and 1.99 ± 0.79 mg mL-1, respectively.  

This chapter aims to demonstrate that ATR-FTIR can quantify protein within clinically 

relevant complex matrices and concentrations, such as serum samples, rapidly and with 

simple sample preparation. By providing, a quantification step, along with rapid disease 

classification, from a spectroscopic signature this research aims to aid clinical translation of 

vibrational spectroscopy to assist with problems currently faced with patient diagnostic 

pathways.  
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2.1. Introduction 

The analysis of biofluids such as serum using vibrational spectroscopy is considered a 

potential solution to current problems with early and accurate diagnosis of many diseases 1 

and promises improved patient mortality, morbidity and quality of life 2. Biofluids are 

routinely obtained following a minimally invasive procedure, providing a large sample 

volume that contains biomolecular components  such as proteins, amino-acids, lipids and 

carbohydrates in relative concentrations which are highly dependent on demographical 

characteristics and physiological or pathological status 3. Clinicians establish a diagnosis from 

several criteria, including; medical history, clinical symptoms, imaging data and biological 

exploration. Numerous diseases are characterised by a qualitative or quantitative 

modification of a specific biological parameter, while others are associated with a biological 

signature, changes in multiple biological parameters 4,5.  

Proteomics, peptidomics and metabolomics are often studied through nuclear magnetic 

resonance 6, mass spectrometry 7 or capillary electrophoresis 8. A large number of proof-of-

principle studies have identified diagnostic markers for cancers 9-12. However, there is 

extensive sample preparation associated with these techniques. ATR-FTIR can provide a 

spectral profile of all the macromolecular classes contained within serum and a signature, as 

opposed to single markers, could be advantageous when analysing a heterogenous disease 

such as cancer. Vibrational spectroscopic investigations have resulted in a large number of 

proof of principle studies that show promising results 13.  

The diagnosis of gliomas (high-grade and low-grade) from non-cancer through a combination 

of ATR-FTIR and multivariate support vector machine analysis (SVM), was achieved with 

average sensitivities and specificities of 93.75 and 96.53 % respectively for human serum 

samples 14. In 2016, a large serum study using FTIR spectroscopy was completed, reporting 

the discrimination of cancer vs non-cancer patients with a sensitivity of 91.5 % and specificity 

of 83.0 %, as well as deciphering cancer severity and the primary site of metastasis 15. These 

classification values were then improved to 92.8 and 91.5 %, sensitivity and specificity, by 

executing random forest and 2D correlation analysis in combination 16. The application of 

vibrational spectroscopy to analyse tissue sections, as well as single cells 17, 18 has also been 

hugely successful. The advantages of vibrational spectroscopy, such as ATR-FTIR, and high 

classification values demonstrates a potential use as the gold standard for patient disease 

screening using serum 19-21.  
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To facilitate the translation of an infrared spectroscopy based diagnostic test, the 

incorporation of a quantification step could be regarded as beneficial and complementary to 

current clinical practice as the majority of clinical tests are currently based upon quantitative 

values as opposed to signatures or fingerprints. Protein vibrations are often the most 

prominent in a biological infrared spectrum 22. Furthermore, protein concentrations are 

systematically measured in routine practice; they are useful to interpret biological 

parameters, discuss nutritional status, extracellular hydration status or to help in the 

diagnosis of some diseases. Specific proteins such as human serum albumin (HSA) and 

immunoglobulinG (IgG), (as well as the ratio of the two), may be altered in the case of 

inflammation, infection, unexplained weight loss, fatigue or act as symptoms of kidney or 

liver disease 23,24. HSA constitutes between 57 – 71 % of the serum composition, and globulins 

8 – 26 % 25. HSA and IgG could be regarded as ideal to produce models in order to 

demonstrate an ATR-FTIR spectroscopic test capable of quantifying proteins.  

Infrared spectroscopy enables the production of a unique spectrum representative of the 

fundamental molecular vibrations that occur within the sample, that provides a ‘fingerprint’ 

of the sample 26, 27. The combination of the rapid collection method obtained through the 

FTIR systems and spectroscopic method development has accelerated biomedical research 

using infrared spectroscopy. In particular, ATR-FTIR spectroscopy has been shown to be 

suitable for biological materials, due to the minimal sample preparation and the ability to 

analyse a variety of samples types, including serum 1, 28, 29, 30 . An advantageous property of 

IR based techniques, is that they obey the principles of the Beer lambert law 31, allowing 

quantification of a given molecule relative to the absorbance of light in the sample it is 

travelling through. This enables ATR-FTIR spectroscopy to quantify specific biomolecule 

concentrations, as the proportion of light absorbed by the sample will correlate with the 

concentration of molecules within a sample. 

This is evident from the wide variety of research carried out, quantifying particular 

biomarkers from biofluid samples 32, 33, 34. For example, the analysis of dried serum deposits 

using transmission spectroscopy highlighted the ability to quantify eight serum analytes 35 

and the simultaneous quantification of glucose and urea analytes in addition to malaria 

parasitaemia from a single drop of blood dried on a glass slide 36. The latter highlights the 

capability of using ATR-FTIR spectroscopy to determine disease and metabolic state, through 

the identification and quantification of chemical parameters associated with the disease 
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diagnosis. Furthermore, the concentration of in situ DNA within cells 37, as well as the 

metabolite concentrations in urine 38 and saliva 39, could be determined using ATR-FTIR and 

bovine IgG was quantified using transmission and ATR-FTIR spectroscopy 40. The 

quantification of glycine, a low molecular weight fraction (LMWF), provided evidence that 

ATR-FTIR spectroscopy can monitor systemic spectral modifications created by spiking 

human serum with lyophilised glycine 41. Additionally, the removal of high molecular weight 

fractions (HMWF), through centrifugal filtration, led to an increased precision and accuracy 

of the quantitative models based on the partial least squares algorithm 42. Research carried 

out by Perez-Guaita in 2012 43, showed the possibility of determining total albumin, total 

globulin and immunoglobulin concentrations through the analysis of 50 µL liquid serum 

samples deposited on an ATR crystal cell. This work highlighted the potential for ATR-FTIR to 

act as a green alternative to current methods used within hospitals, through the removal of 

reagents and implementation of relatively cheap and simple instrumentation. However, no 

sample preparation study was performed in order to establish the optimum sample 

preparation with minute volumes of serum. 

Infrared spectral datasets are information rich, highlighting underlying biological and 

structural differences. Coupled with powerful multivariate analysis approaches, they have 

the ability to differentiate between disease classes by extracting relevant information. 

Multiple data mining approaches have been used in spectral data analysis, such as principal 

component analysis (PCA), random forest (RF) and support vector machine (SVM), all 

demonstrating the ability to discriminate diseased from non-diseased biofluid samples 44. 

Currently, partial least squares regression analysis (PLSR) is one of the most frequently used 

techniques for the production of quantitative models, due to its ability to identify systematic 

variations of contributing factors and generate quantitative predictive models. This allows 

the prediction of unknowns, using the latent variables extracted from the regression 

model 32, 40, 45, 46. 

ATR-FTIR spectroscopy has the ability to detect minor differences in biofluid samples, with 

minimal sample preparation, and multiple proof-of-principle studies have highlighted the 

potential clinical use for such a technique. However, translation of ATR-FTIR spectroscopy 

has not occurred due to multiple factors, including the lack of acceptance from clinical 

environments. 
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We show, for the first time, an optimised methodology to enable protein quantification in 

single and complex mixtures using a PLSR approach, detailing the in-depth progression of 

determining protein concentration from spiked samples, to patient samples, before blind 

testing methods. The incorporation of this new quantification step within biofluid diagnostic 

methodologies would enable a direct comparison to gold standard diagnostic methods and 

highlight the clinical excellence of vibrational spectroscopic analysis of biofluids and facilitate 

translation. 

2.2. Materials and Methods 

2.2.1.  Sample Preparation Methodology 

For the first time, an in depth methodological investigation was performed in order to 

establish the optimum sample preparation protocol for quantification from serum-based 

ATR-FTIR spectroscopy. This study was performed using two models; 

•  Whole Serum Dilution Study 

• Spiked Human Serum Models,  

before moving onto patient samples. Table 2.1 and subsections, 2.2.1.1 - 2.2.1.2, below 

provide further information on experimental details. 

 

 

Spiked Human Serum Models 

 Whole Serum 

Dilution Study 
HSA IgG 

Sample 

Preparation 

2 - fold dilutions 

human pooled 

serum 
 

0.14 g HSA/2000 µL 

human pooled 

serum 

0.06 g IgG/2000 µL 

human pooled 

serum 

Sample 

Concentrations 

100, 50, 25, 12.5, 

6.25, 3.125, 0 % 

116.3, 106.29, 96.28, 

86.27, 76.33, 66.32, 

46.3 mg mL-1 

 

43.53, 38.58, 33.48, 

28.53, 23.58, 18.48, 

13.53 mg mL-1 

Sample States 

Analysed 

10 µL liquid, 

1 µL pure air dried 

10 µL liquid, 

1 µL pure air dried, 

2 µL 10% diluted air 

dried 

10 µL liquid, 

1 µL pure air dried, 

2 µL 10% diluted air 

dried 

Table 2.1 - Experimental Details 
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2.2.1.1.  Whole Serum Dilution Study 

To determine the ability of ATR-FTIR spectroscopy to detect variable protein concentrations, 

1000 µL of commercially available, whole, sterile, filtered, mixed pool human serum (TCS 

Biosciences, UK) were used to create a set of seven 2- fold dilutions using deionised water 

(Milli-Q water (Millipore Elix S). 

2.2.1.2. Spiked Human Serum Models 

Two separate experiments were carried out to create an appropriate model for the 

prediction of the patient protein serum levels, the two proteins were spiked separately 

producing two separate models. Human serum albumin (HSA) and immunoglobulin G (IgG) 

(Sigma-Aldrich, UK) were used to spike the pooled serum, due to their abundant nature 

within human blood and the availability of concentrations from patient samples, allowing 

comparisons to be made.  

HSA was mixed in whole serum to produce a 116.3 mg mL-1 stock sample and, from this, 

dilutions using more human pooled serum were prepared. To produce the 

immunoglobulin G model, immunoglobulin G was diluted in pooled human serum to produce 

a 43.53 mg mL-1 stock sample and, similar to the HSA, dilutions were made using more pooled 

serum. The initial concentrations of HSA and IgG of 46.3 and 13.53 mg mL-1, respectively, 

were also taken into consideration. The sample concentrations are displayed in Table 2.2. 

 

 Table 2.2 - Mixed protein sample concentrations 

Sample 
Concentration (mg mL-1) 

Albumin IgG 

1 116.3 43.53 

2 106.29 38.58 

3 96.28 33.48 

4 86.27 28.53 

5 76.33 23.58 

6 66.32 18.48 

7 46.3 13.53 
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2.2.1.3. Patient Sample Protein Levels 

Serum samples collected at the Biochemical laboratory at the University Hospital CHU 

Bretonneau de Tours, for the measurement of total protein, HSA and IgG were used to carry 

out this research, obeying the ethical procedures implemented by the hospital. The 

concentrations of total protein, HSA and IgG were measured using a COBAS 6000 analyser 

series (Roche Diagnostics) with a measurement precision of 1g/L – shown in Table 2.3.  

 

Table 2.3 - Patient sample concentrations 

Sample 

Number 
Gender Age 

Concentration (mg mL-1) 

Total Protein Albumin IgG 

1 F 69 70 45 6.7 

2 F 91 68 36 3.1 

3 F 67 77 38 16.2 

4 F 61 68 38 10.4 

5 F 71 69 44 6.7 

6 F 76 66 41 7.3 

7 M 72 72 48 4.7 

8 M 77 62 36 5.0 

9 M 77 70 43 10.2 

10 M 72 54 32 5.0 

11 F 69 61 32 8.5 

12 M 87 70 40 10.7 

13 M 64 78 46 7.8 

14 F 82 56 39 1.4 

15 M 67 73 40 12.8 

16 M 61 63 34 6.3 

17 M 59 81 44 16.5 

18 F 91 71 42 N/A 

19 F 55 75 32 13.5 

20 M 65 54 27 11.3 

 

The samples were obtained following an in-house standard operating procedure, developed 

by the hospital for the routine analysis of serum samples. Whole blood was collected using 
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a dry tube with separate gel and coagulation activator. After at least one hour of clotting, 

blood was centrifuged for 10 minutes at 3000 g to isolate the serum from the other blood 

components. Sera were then analysed by immunoturbidimetry (IgG and HSA) and a 

colorimetric assay based on copper reaction for total proteins. The remainder of the blood 

serum was stored at -20°C until ATR-FTIR experiments were carried out.  

2.2.2. Data Collection Using ATR – FTIR Spectrometer 

ATR-FTIR spectra were recorded using a diamond crystal and a single reflection golden gate 

accessory (Specac, UK) attached to a Bruker Vector 22 (Bruker, Germany). 32 co-added scans, 

covering a wavenumber range of 4000 – 400 cm-1, were combined to produce the spectrum, 

using a spectral resolution of 4 cm-1. A background spectrum (32 co-added scans), using the 

same spectral range, of the ambient conditions was automatically subtracted by the OPUS 

package version 4.2 (Bruker, Germany) to create the sample spectrum.  

 

The sample preparation approaches used are liquid, air dried and liquid samples which have 

been diluted by 10 % using deionised water, and then air dried (10 % air dried). Spectra from 

liquid serum samples were obtained in triplicate, immediately after the drop was deposited 

on to the crystal. Dry serum samples (air dried and 10% air dried) were also obtained in 

triplicate. Drying time was related to the volume dropped onto the crystal, as well as 

environmental factors such as the temperature and humidity of the room. The drying time 

averaged between 5-8 minutes and was consistently based upon the live spectrum, which 

allowed the broad water peak at 4000 – 2500 cm-1 to be monitored in real time. As the 

sample dries, the water band reduces in intensity until a steady state is achieved. Once the 

signal stabilised the spectrum was acquired, once again in triplicate.  

 

The triplicate analysis of each serum drop accounted for any instrumental variance This 

process was repeated five times to encompass any biological variance between the samples. 

The serum was dropped at a perpendicular angle using a micropipette to ensure a high level 

of reproducibility. This lead to the production of a spiked data set containing 105 spectra and 

a patient data set containing 300 spectra.  
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2.2.3. Data Pre-Processing and Analysis 

Matlab (Mathworks, USA) was used to carry out all pre-processing and data analysis. A 

rubber-band baseline correction and vector normalisation using University of Strathclyde, in 

house written software was applied to the fingerprint region (1800 - 900 cm-1) – Figure 2.1. 

Pre-processing allowed the systematic increase of the two protein concentrations to be 

observed and assessed, by removing any non-biochemical components of the spectra and 

enabling clearer analysis of spectral variations in the amide region.   

 

PLSR was used to quantify the prepared protein concentrations from the spiked samples as 

well as estimate the serum protein levels in patient samples. The algorithm is a supervised 

method, whereby the concentrations are provided to the model prior to running the analysis. 

The PLSR models discussed have been built from the pre-processed data sets. The analysis 

gives an estimated value for the model accuracy 47 and is termed the root mean square error 

(RMSE), as well as an R2 value indicating the linearity between the experimental and the 

predicted concentrations.  
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Figure 2.1 - Highlighting spectral pre-processing steps. From 
top to bottom: raw data, baseline corrected data and finally 
baseline corrected and vector normalised. 
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2.2.4. Whole Serum Dilution Study PLSR Optimisation 

During the PLSR optimisation step, mean spectra were identified following pre-processing to 

calculate the area under the curve (AUC) and determine whether ATR-FTIR can detect and 

quantify protein concentrations. This was carried out on pure air dried and pure liquid, 2-fold 

dilution, samples to determine if a dilution factor was required.  

2.2.5. Spiked and Patient Model Validation 

To validate the robustness of the PLSR predictive models, the optimum number of cross 

validation loops was determined, by re-sampling 512 cross validation iterations, 1000 times. 

This produced three convergence plots, for the outputs of the RMSE calibration (RMSEC), 

RMSE validation (RMSEV) and R2 values (Figure 2.2).  

 

 

From this plot, the optimum number of cross validation loops could be determined to 

produce minimal variation in the output from the PLSR analysis. This was done by curve 

fitting a one term power series model to the data and calculating when the gradient was 

<0.0001. The highest number of iterations, from the three convergence plots, was then taken 

forward to act as the number of cross validation loops. This process resulted in the number 

of cross validation loops differing between models – Table 2.4. 

Figure 2.2 - A representative convergence plot of the R2 value +/- SE vs. the 
no. of iterations from the 10 % diluted air dried globulin analysis. This 
particular plot led to the selection of 26 iterations which was compared to the 
number selected from the RMSEC and the RMSEV plots, before the highest 
value was selected and taken forward to the PLSR analysis 
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Table 2.4 – Number of iterations and dimensions used for each set of analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For each iteration, the calibration set was compiled from 50 % of the data, selected 

randomly, leaving the remaining 50 % to be used for the validation set for the quantitative 

predictions. The mean and standard deviation of the RMSE and R2 were calculated from each 

iteration. This methodology was carried out prior to all PLSR analysis in order to validate any 

results obtained, as PLSR is a supervised method and may be prone to overfitting the data. 

 
Iterations 

Used 

Dimensions 

Used 

Spiked Data Sets   

Albumin 10% Diluted Air Dried 233 7 

Albumin Full Dry 314 6 

Albumin Liquid 234 4 

Globulin 10% Diluted Air Dried 136 12 

Globulin Full Air Dried 100 9 

Globulin Liquid 200 3 

   

Patient Data Sets   

Total Protein 10% Diluted Air Dried 84 11 

Albumin 10% Diluted Air Dried 97 12 

Globulin 10% Diluted Air Dried 148 12 

Total Protein Liquid 445 3 

Albumin Liquid 302 5 

Globulin Liquid 254 5 
   

Blind: LOPOCV   

Total Protein 10% Diluted Air Dried  11 

Albumin 10% Diluted Air Dried  12 

Globulin 10% Diluted Air Dried  12 

   

Blind: K-Fold CV   

Total Protein 10% Diluted Air Dried  11 

Albumin 10% Diluted Air Dried  12 

Globulin 10% Diluted Air Dried  12 
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Once the ability of ATR-FTIR spectroscopy to determine the protein concentration of spiked 

as well as patient samples was identified, the patient set was used to blindly test the models.  

2.2.6. Blind Testing Model Validation 

The patient sample dataset was used to create both the calibration and validation sets. To 

begin with, a leave one patient out cross validation (LOPOCV) method was employed, 

whereby 19 patient samples were used as the training set and the remaining one was used 

to test the model. A similar methodology was then repeated, whereby 15 patients were 

selected to act as the training set, leaving the remaining five to act as the test set and be 

blindly predicted, in a process termed K-fold cross validation. Both approaches were 

optimised ensuring the maximum number of combinations were carried out as cross 

validation iterations. As such, this led to the former approach being repeated to cover all 20 

possible combinations of selecting one patient out of 20, and the latter approach carried out 

over all the 15,504 possible combinations of selecting five from 20 patients. As the IgG 

concentration from patient 18 was not available (Table 2.3), the model validation for the IgG 

concentrations was based on 19 patients as opposed to 20. Thus, the training sets contained 

18 and 14 patients, for the LOPOCV and the K-fold methodologies respectively, reducing the 

number of possible combinations to 19 and 11,628, respectively. 

2.3. Results and Discussion 

2.3.1. Quantification of Protein Concentrations in Spiked Human Serum 

2.3.1.1. Determining Dilution Factor 

The analysis of biofluids, such as serum, using ATR-FTIR, produces high quality spectra with 

clearly defined spectral features 48. In an ATR-FTIR spectrum, spectral peaks can be assigned 

to particular biomolecules, in order to allow the function, structure and biochemical 

signature of the sample to be identified 28. Due to the strong water absorbance of IR light, 

air dried samples are generally preferred over liquid samples, although the biomolecular 

composition of the serum is unchanged 49. The spectra of air dried pooled human serum 

exhibit the expected spectral features and assignments associated with human serum 

(Figure 2.3). 

 

These can be briefly described as; 3280 cm-1 (H-O-H stretching), 2957 cm-1 (asymmetric CH3 

stretching), 2920 cm-1 (asymmetric CH2 stretching), 2872 cm-1 (symmetric CH3 stretching), 
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1650 cm-1 (amide I of proteins), 1536 cm-1 (amide II of proteins), 1453 cm-1 (CH2 scissoring), 

1394 cm-1 (C=O stretch of COO-), 1242 cm-1- (asymmetric PO2 stretch), 1171 cm-1 (ester C-O 

symmetric stretch) and 1080 cm-1 (C-O stretch) 50. The spectra are strongly dominated by the 

abundant proteins contained in the serum, which are present in high concentration 

compared to the other low molecular weight (LMW) components. In fact, the amide I peak 

at 1650 cm-1 has the highest intensity within the entire spectrum.  

 

 

Figure 2.3 - Top: Mean ATR-FTIR spectra collected from the analysis of the 
air dried 2-fold dilution set of pooled serum. Red: 0 % serum, Pink: 3.125 
%, Yellow: 6.25 %, Orange: 12.5 %, Green: 25 %, Blue: 50 % and Black: 100 
%. Stars highlight peaks of interest. Bottom: AUC plot from the fingerprint 
region 
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Figure 2.3 also shows the spectra of serum solutions which have been serially diluted before 

drying. The spectral peak centroids identified and assigned above remain unchanged by the 

dilution process, and the impact of the dilution procedure can be monitored by plotting the 

integrated area under the curve of the fingerprint region, as shown in the bottom of 

Figure 2.3. The curve shows an approximate linear dependence of integrated absorbance as 

a function of concentration in the low concentration region, but the behaviour rapidly 

deviates from linearity above 30% dilution. Notably, after 50 % dilution of the stock solution, 

the integrated absorbance decreases by only less than 5 %. The nonlinearity and saturation 

of the absorbance of dried deposits measured by ATR-FTIR, as a function of solution 

concentration has previously been discussed by Bonnier et al. 41. 

 

Importantly, for the methodology employed in the current study, in order to produce the 

models spiked with protein, further protein will need to be added to the pooled serum to 

incorporate a wide concentration range. The minimal change in absorption above a 50 % 

dilution factor, shown in Figure 2.3 suggests the identification of an upper detection limit for 

the volume deposited. Therefore, for the analysis of the air dried serum, a dilution factor of 

10 %, is required to ensure different protein concentrations are observable. This could also 

could have been combatted experimentally by depositing smaller volumes. However, to 

satisfy the requirement to cover the entire internal reflection element (IRE) and reproducible 

pipetting, diluting the larger volume was determined to be the optimum experimental 

approach.  

 

In contrast, following the analysis of the liquid samples, biomolecular spectral assignments 

are difficult, due to the dominant water contribution from the broad O-H stretching band 

around 3300 cm-1 and bending vibration around 1680 cm-1, (Figure 2.4). The AUC plot, shown 

in Figure 2.4 (bottom), indicates that serum dilution has a minimal effect on the integrated 

absorbance over the concentration range, although a linear decrease is observed below the 

6.25 % dilution, with an R2 value of 0.9979, which may be associated with a disaggregation 

phenomenon 51, therefore no dilution is necessary.  
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2.3.1.2. Construction of the Quantitative Model: PLSR 

Prior to the analysis of patient samples, a quantitative model using the PLSR algorithm was 

produced to evaluate the ability of ATR-FTIR to quantify protein concentration within a 

complex medium, such as human serum. This was applied to the protein spiked human 

serum models that reflect the clinically relevant protein concentrations, which tend to lie 

Figure 2.4 - Top: Mean ATR-FTIR spectra collected from the analysis of 
the liquid 2-fold dilution set of pooled serum. Red: 0 % serum, Pink: 3.125 
%, Yellow: 6.25 %, Orange: 12.5 %, Green: 25 %, Blue: 50 % and Black: 
100 %. Stars highlight peaks of interest. Bottom: AUC plot from the 
fingerprint region 
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outside the normal ranges of 34 – 54 mg mL-1 for HSA and 8.1 – 23 mg mL-1 for IgG, within 

human blood in order to optimise the protocol.   

 

 

Figure 2.5 shows the mean (n = 9) ATR-FTIR spectral fingerprint region for spectra obtained 

from IgG spiked, 10% diluted air dried serum samples. The data shows an increasing 

absorbance trend moving from the stock solution (red) to the highest concentration of 

protein (black), highlighting the systematic increase in the protein amide bands at 1640 cm-1 

and 1560 cm-1 associated with the increased concentration of IgG.  

 

In order to determine any relationship between variations in the spectra and the protein 

concentrations (albumin and immunoglobulin G), PLSR analysis was conducted.  A 

preliminary scores scatter plot of the spectra determined that there was separation between 

Figure 2.5 - Mean ATR-FTIR fingerprint spectra following the analysis of the 10 % diluted air dried, IgG 
spiked samples. Red: 13.53 mg mL-1, Pink: 18.48 mg mL-1, Yellow: 23.58 mg mL-1, Orange: 28.53 mg 
mL-1, Green: 33.48 mg mL-1, Blue: 38.58 mg mL-1 and Black: 43.53 mg mL-1.  
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protein concentrations, an example, for the 10% air dried albumin analysis, is shown in 

Figure 2.6  

 

The optimum number of dimensions was then selected by plotting the RMSE from the 

validation set vs. the number of dimensions, and an example of such a plot, for the 10% 

diluted air dried albumin analysis, is shown in Figure 2.7. This information is fed into a 

predictive model to compare the estimated concentrations from the spectral data set to the 

known concentrations from the produced solutions.  

 

 

 

 

 

 

 

Figure 2.6 - Scores scatter plot from preliminary PLS analysis, showing separation of the 10% air dried 
albumin samples in the 1st dimension. Red: 46.3 mg mL-1, Pink: 66.32 mg mL-1, Yellow: 76.33 mg mL-1, 
Orange: 86.27 mg mL-1, Green: 96.28 mg mL-1, Blue: 106.29 mg mL-1 and Black: 116.3 mg mL-1 
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 Table 2.5 and Figure 2.8 summaries the predictive values from the protein spiked models. 

By comparing the R2 values, as well as the RMSE of the validation set (RMSEV), the best 

overall result came from the 10 % diluted air dried samples. These results show that 

concentrations can be estimated unambiguously, and that dilution ensures that the protein 

absorbances are within the range of validity of the Beer-Lambert Law. Results highlight that, 

after air drying, consistent and reproducible spectra are obtained. The best individual result 

came from the pure air dried IgG spiked samples, the linearity being, R2 = 0.998 and the 

RMSEV being 0.49 ± 0.05 mg mL-1.  

 

Table 2.5- Summary of the RMSEV ± STD and R2 values from the predictive models, for the two protein spikes 

Protein 

Air Dried 
 

Liquid 
 10 % Diluted 

Air Dried 

 

RMSEV ± STD 

(mg mL-1) 
R2 

RMSEV ± STD 

(mg mL-1) 
R2 

RMSEV ± STD 

(mg mL-1) 
R2 

HSA 4.585 ± 0.568 0.959 3.065 ± 0.290 0.982 2.347 ± 0.287 0.989 

IgG 0.487 ± 0.053 0.998 2.365 ± 0.194 0.947 0.861 ± 0.104 0.993 

Figure 2.7 - Evolution of the root mean square error on the validation set (RMSEV). In this 
case, values are averaged from the 233 cross validations.  

X: 8  
Y: 2.347 
Y Delta: [-0.2788 0.2788] 
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Albumin Pure Air Dried (a) 
 

Globulin 10% Diluted Air 
Dried 

(f) 
 

Globulin Pure Air Dried 
 

(d) 
 

Albumin 10% Diluted Air 
Dried 

(c) 
 

(e) 
 

Globulin Liquid 
 

(b) 
 

Albumin Liquid 
 

Figure 2.8 - Predictive models built from the PLSR analysis. Each plot shows the protein used as the spike, as well as the 

sample state. For each concentration, the values displayed are an average of the concentration predicted from the 

iterations of the cross validation. Shown on each plot is the RMSEV and the R2 values as well as the standard deviation 

corresponding to each of the values. a – c: refer to the albumin spike, d – f: refer to the immunoglobulin spike 
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Summarising, the standard deviations across all the predictive values represent good 

repeatability between the cross-validation iterations. As the 10 % diluted air dried samples 

produce the best overall predictive values, this sample preparation protocol was adopted for 

the analysis of the patient samples. Interestingly, the PLSR models from the liquid samples 

produce comparable predictive results to the air dried samples. Due to the speed and ease 

of acquiring liquid ATR-FTIR spectra, given the removal of the rate determining step (5-8 

minute drying time), the liquid sample state was also considered in the patient sample 

analysis steps.  

 

It was necessary to carry out these methodological analysis steps before progressing to 

patient samples and model blind testing, to establish the optimum sample preparation 

protocol, leading to the best possible predictive values. While the work carried out by Perez 

et al. showed excellent results, this particular type of methodology development procedure 

was not considered. This led to protein quantification of 50 µL liquid serum samples using an 

ATR crystal cell, potentially missing the demonstrated potential of diluted serum sample 

analysis 43.  

2.3.2. Protein Level Quantification in Patient Samples 

Due to the natural biological variation between individuals, the analysis of patient samples 

can be considered more challenging than spiking commercially available pooled human 

serum. Spiking a sample with a known amount of a specific biological component can model 

one physiological change, whilst everything else remains consistent. Between patients, the 

composition of blood can vary for multiple reasons, including diet, time of sample collection, 

as well as their disease state. During routine blood analysis, multiple biomolecular 

concentrations are measured, including the total protein concentration made up mainly of 

HSA and immunoglobulins. It is therefore important to analyse patient samples in order to 

understand the potential variance in the spectral response in order for these spectra to be 

used for clinical purposes. As the 10 % diluted air dried samples produced the best predictive 

models, the patient samples were analysed in this sample state. In addition, the patient 

samples were also analysed in the liquid form, due to the promising performance of these 

samples during calibration and the shorter collection time which is an important parameter 

in clinical situations.  
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2.3.2.1. 10 % Diluted Air Dried Patient Samples 

A new PLSR model was calculated based on the 20 patient samples using the 10 % diluted air 

dried sample preparation, and results are listed in Table 2.6 and Figure 2.9. For the 

quantification of total protein concentration, a RMSEV of 0.662 ± 0.046 mg mL-1 and an R2 

value of 0.992 was achieved. This result suggests that, despite moving to a more complex 

serum sample, a high level of predictive power is maintained and the relationship between 

the spectral variations and the total protein concentration is linear, within standard 

deviation.  

 

Table 2.6 - Summary of the RMSEV ± STD and R2 values from the three predictive models, for the two patient 
sample states 

 

Quantification of the individual protein concentrations resulted in the HSA performing better 

than the spiked model and the IgG performing poorer than the spiked model, when 

examining the RMSEV and R2 values detailed in Table 5 (spiked) and 6 (patient). 

 

Protein 
10 % Diluted Air Dried  Liquid  

RMSEV ± STD (mg mL-1) R2 RMSEV ± STD (mg mL-1) R2 

Total 0.662 ± 0.046 0.992 3.080 ± 0.483 0.831 

HSA 0.848 ± 0.064 0.976 2.556 ± 0.351 0.780 

IgG 1.945 ± 0.134 0.812 2.982 ± 0.346 0.566 
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Patient Albumin 10% Diluted Air Dried 

Patient Total Protein 10% Diluted Air Dried 

Patient Globulin 10% Diluted Air Dried 

(a) 

 

(b) 

(c) 

 

Figure 2.9 - Predictive models built from the PLS analysis. 

Each plot depicts a different sample state. For each 

concentration, the values displayed are an average of the 

concentration predicted from the iterations of the cross 

validation. Shown on each plot is the RMSEV and the R2 

values as well as the standard deviation corresponding to 

each of the values. a: total protein, b: albumin c: 

immunoglobulin G 
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2.3.2.2. Liquid Patient Samples 

Similarly, the results from the PLSR analysis of the 20 patient liquid samples are detailed in 

Table 2.6 and Figure 2.10. It is evident that the RMSEV values are relatively consistent with 

those achieved for the spiked samples. The HSA patient model produced a result of 2.56 ± 

0.35 mg mL-1, compared to the HSA spiked models result of 3.065 ± 0.290 mg mL-1. However, 

when comparing the RMSEV values of the patient liquid to the patient 10% diluted air dried 

samples, the results are dramatically higher. This suggests that the analysis of the liquid 

patient samples produce models with a reduced predictive power. 
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Patient Globulin Liquid 

Patient Albumin Liquid 

Patient Total Protein Liquid Patient Total Protein Liquid 

Figure 2.10 - Predictive models built from the PLS analysis. Each 

plot depicts a different sample state. For each concentration, 

the values displayed are an average of the concentration 

predicted from the iterations of the cross validation. Shown on 

each plot is the RMSEV and the R2 values as well as the standard 

deviation corresponding to each of the values. a: total protein, 

b: albumin c: immunoglobulin G  

(a)  

(c) 

 

(b) 
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When considering the R2 values, results show that the values for the liquid patient samples 

are considerably lower than both the spiked models and the 10 % diluted air dried patient 

samples. The drop-in linearity implies the spectral variations and the protein concentrations 

show less correlation; the best result achieved was 0.831 for the total protein concentration, 

dramatically less than the 0.962 achieved for the analysis of the sample patient set in the 

10 % diluted air dried state. The error bars displayed on the plot (Figure 2.11) are increased 

in size and in some areas, show overlap. From this analysis, it is evident that the patient 

sample concentrations cannot be quantified unambiguously.  

2.3.3. Model Validation 

Following the determination of the optimal sample states from predicting the spiked samples 

and then clarifying using the patient sample concentrations, the next stage was to determine 

the ability of ATR-FTIR spectroscopy to predict unknown protein concentrations from serum. 

This was done by blind testing, removing information of the concentrations from the model.  

2.3.3.1. Leave One Patient Out Cross Validation of Patient Based 

Model 

The first method of validating the use of ATR-FTIR spectroscopy to predict serum protein 

concentrations involved the use of a leave one patient out cross validation (LOPOCV) 

process. From the results in Table 2.7, it is evident that the prediction of the total protein 

concentration produced the best results, with an RMSEV of 1.534 ± 1.14 mg mL-1 and an R2 

Figure 2.11 - Predictive model built from the PLS analysis of 
the liquid IgG patient samples. For each concentration the 
values displayed are an average of the concentration 
predicted from the iterations of the cross validation. Shown 
on the plot is the RMSEV, R2 and the standard deviation 
corresponding to each of the values. 
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value of 0.926. The prediction of individual HSA and IgG concentrations were not as effective 

as the total protein concentration, represented by higher RMSEV values for both proteins. 

The high standard deviation of the IgG data (± 2.14), results in the model not being able to 

identify individual patient concentrations with precision. The R2 values for both proteins are 

also lower than those of the total protein concentration, showing correlation between 

spectral variations and concentrations decreases. 

2.3.3.2. K-fold Cross Validation of Patient Based Model 

A similar trend to the LOPOCV is apparent in Table 2.7. The total protein content allows for 

the best predictive values, followed by the HSA and then the IgG. The RMSECV for the total 

protein concentration prediction is higher (1.99 ± 0.78 mg mL-1) than the LOPOCV model, but 

the lower standard deviation suggests that this is a more precise method. For this reason, 

the R2 value of 0.934 is also higher than that of the previous method, showing more linearity 

between the predicted and observed concentrations. The prediction of the individual 

proteins shows the same trend. For both HSA and IgG, the k-fold blind testing produces less 

accurate results, in comparison to the true result but with more precision and reduced 

statistical variability. The linearity of the models decreases and again highlights that a linear 

relationship between the spectral variations and the concentrations. 
 

Table 2.7- Summary of the RMSEV ± STD and R2 values from the two blind predictive models, for the three 
different protein concentrations of the 10 % diluted air dried samples 

 

 

 

 

 

 

Both the LOPOCV and k-fold blind testing methods produced promising results with similar 

trends, specifically for the prediction of total protein concentration. The reason for the poor 

IgG results could be due to the inability to differentiate between the variable contributions 

of the five major types of immunoglobulin present within human blood  (IgA, IgG, IgM, IgE 

and IgD) 52.    

Protein 
LOPOCV  K-Fold CV  

RMSEV ± STD (mg mL-1) R2 RMSEV ± STD (mg mL-1) R2 

Total 1.534 ± 1.140 0.926 1.986 ± 0.778 0.934 

HSA 2.029 ± 1.260 0.890 2.491 ± 0.849 0.805 

IgG 3.582 ± 2.140 0.827 4.464 ± 1.460 0.454 
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2.4. Conclusions 

Vibrational spectroscopy is widely used for the analysis of biofluids and many proof-of-

principle studies have shown the capability of techniques like ATR-FTIR spectroscopy to 

enable disease detection, as well as quantification of biomolecules However, the translation 

of vibrational spectroscopy into a clinical environment is dramatically impacted by the 

inability to perform a direct comparison to the current quantitative diagnostic 

measurements. Current clinical practice uses blood protein concentration as a non-specific 

disease indicator, possibly leading to further investigation and potentially a diagnosis, 

highlighting the advantageous nature of protein quantification.  

 

The work presented showcases for the first time the development of the optimal 

methodology for the quantification of protein biomarkers in a complex background (namely 

10% diluted air dried serum analysis), the inclusion of this methodology into vibrational 

spectroscopic diagnostics of biofluids could bridge the gap between vibrational spectroscopy 

and clinical practice. In addition, the drying process could be accelerated through the 

implementation of heating mantle, the use of a smaller sample volume or batch drying, 

before analysis. 

This study shows how ATR-FTIR spectroscopy can be used to quantify proteins in spiked and 

patient samples, rapidly, economically and with simple sample preparation. Linearity values 

as high as 0.992, in addition to high accuracy and precision demonstrated by RMSEV values 

such as 0.662 ± 0.046 mg mL-1, indicate that quantification of clinically relevant molecules 

can be conducted using this approach. 

The blind testing of patient clinical samples, while maintaining desirable linearity (R2 = 0.934), 

precision and accuracy (RMSEV = 1.986 ± 0.778 mg mL-1), illustrates the potential use of this 

technique within a clinical setting and its incorporation could bridge the gap between 

vibrational spectroscopy and current clinical analyses. The development of a quantification 

step in addition to disease differentiation shows great promise to enable a dynamic clinical 

diagnostic platform that can improve the current patient diagnostic pathway.   
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Abstract and Aims 

Through developing methodologies and the analysis of a large patient data set this work aims 

to highlight the ability of ATR-FTIR spectroscopy to discriminate cancer and non-cancer from 

liquid serum samples.  The analysis of liquid samples resulted in a sensitivity of 95.4 % and a 

specificity of 81.8 %. By comparing this to the air dried data set, which led to a sensitivity and 

specificity of 92.4 % and 84.4 %, respectively, it is considered that the analysis of liquid serum 

samples holds the potential to develop a high-throughput ATR-FTIR spectroscopic 

methodology, for the diagnosis of brain cancer.  

This research investigates the novel idea of digitally drying liquid spectra to determine if this 

could lead to an improvement in classification results. The application of an EMSC algorithm 

to the liquid spectrum produced optimum results, including a sensitivity of 91.2 % and a 

specificity of 77.3 %. Varying discriminatory wavenumbers from the RF analysis performed 

led to the production of unconcordant results and the appearance of negative peaks 

providing evidence that clinical suitability was not achieved.  

The availability of quantum cascade laser based instrumentation as well as the development 

of digital drying allowed for a complementary study to be carried out in unison with ATR-FTIR 

experiments and data analysis, producing a robust diagnostic method for infrared analysis of 

wet human serum. By taking a first derivative of the QCL data a sensitivity of 65.0 % and a 

specificity of 79.0 % was achieved. The use of a smaller wavenumber range, reducing analysis 

time is considered advantageous for clinical translation purposed and despite the lower 

classification results in comparison to the ATR-FTIR data. 

The work presented suggests the use of liquid samples is the optimum approach when 

seeking a rapid and sensitive test, however the analysis of air dried samples is more suitable 

to gain a specific result. The 2.6 % loss in specificity from the analysis of liquid samples could 

be regarded as a suitable compromise given the decrease in analysis time of liquid samples, 

and the consideration of a two-stage analysis approach is discussed.  
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3.1. Introduction 

In the UK, there are over 360,000 new cancer cases every year, equating to almost 990 every 

day 1.  Currently healthcare systems are over burdened with cancer patients, which can often 

lead to poor prioritisation of the correct patients entering the clinic. In turn, despite the 

development of various therapeutic techniques, patients are not able to benefit from such 

advances due to the long waiting times 2. This highlights an urgent clinical need for accurate, 

early diagnostic methods. 

In relation to brain cancer, from the population referred for medical imaging only 3.3 % of 

patients are found to have abnormal, structural lesions, indicative of cancer 3. Patient 

prioritisation in the referral process would lead to an appropriate selection of patients being 

sent forward for medical imaging. Current curative techniques used are seen to be effective, 

involving; surgery, radiation therapy and chemotherapy, although often the patient has to 

endure an extensive and expensive treatment plan 3. To maximise the success of these 

treatments, an early and accurate method of disease detection is necessary. This research 

proposes a method for achieving this through the analysis and discovery of disease 

biomarkers / signatures 5, 6.   

Analysis of biofluid samples represents an optimum solution to counteract the problems with 

the inexistence of an early diagnostic technique. They are easy to obtain following a 

minimally invasive procedure, providing large sample quantities and the possibility of repeat 

sampling. Biofluids such as serum, contain highly discriminatory biomolecular components 

capable of determining the disease status of the patient, dependent on the discovery of the 

specific biological disease signatures 7. Extensive research has been carried out exploring the 

possibility of using biofluids, to improve patient mortality, morbidity and quality of life 

through early detection of disease 8 -10.  

Mid-infrared spectroscopy is one technique that has been recently employed to interrogate 

biofluids, such as blood serum, in order to extract clinical information 11. This approach 

enables a unique spectrum to be produced based on fundamental interactions between 

infrared (IR) radiation and the sample. Measuring the molecular vibrations that occur within 

matter at defined frequencies across the mid-IR spectral range (4000 – 400 cm-1) 12,13 allows 

the production of a spectral fingerprint or signature. This can detail the specific sample 

chemical composition and thus can discriminate between biological samples. The technique 

can be complementary to existing techniques such as histopathology by identifying 
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characteristic spectral signatures of disease, and therefore can enhance the current disease 

classification process 14, 15.   

Fourier Transform Infrared (FTIR) is a well characterised form of IR spectroscopy 

implemented in biological systems, which uses a Michelson interferometer to acquire 

spectra rapidly. One of the most common sampling modes for the analysis of biofluids is 

attenuated total reflection (ATR) – FTIR, which is based on interactions between the 

evanescent wave and the sample, unlike transmission which must traverse the whole 

sample. This removes concerns regarding sample thickness, which coupled with the 

advantages of minimal sample preparation, ease of use and quick spectral acquisition times, 

the acceptance of such a technique into clinical practice is possible. Hands et al. showed that 

ATR-FTIR spectroscopy can be used to discriminate normal from diseased patients, as well as 

decipher disease severity 16. This highlights the clinical relevance of ATR-FTIR spectroscopy 

and demonstrates the feasibility of translation.  

However, despite the ability of FTIR to discriminate between cancer from non-cancer 

samples at high levels of sensitivity, specificity and diagnostic accuracy, many studies have 

not developed past the proof-of-principle stage 17, 18. The impact of water on the biological 

spectrum is said to be one of the reasons for this. The fingerprint region of a biological serum 

spectrum defined as the area between 1700 – 1500 cm-1, has been shown to be influential 

in the discrimination of cancer vs. non-cancer. In this region the protein bands of the Amide I 

(1650 cm-1) and Amide II (1536 cm-1) lie and these vibrations can be hidden by the O-H 

bending mode of water, which is visible around 1650 cm-1 (Figure 3.1) 19. 
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This problem necessitates that samples need to be dried on top of the IRE before any spectral 

acquisition can take place, taking up to eight minutes per sample, dependent upon sample 

volume and ambient conditions 16.  

To highlight how this impacts a study, a data set previously analysed by the Spectral Analytics 

Laboratory, University of Strathclyde was used to calculate the time taken to analyse all the 

samples. The data set was made up of 433 patients and as can be seen from Figure 3.2, this 

led to the acquisition of 3,897 spectra composed of biological and technical replicates. Air 

drying the samples leads to the analysis time of around 45 minutes per patients equating to 

6.5 weeks, to analyse all 433 patients. The same data set analysed in liquid form can be 

analysed within a week and a half, through the removal of the drying time.  

In addition to the drying time, there is also the need to clean the IRE between each sample, 

as well as obtain an additional background spectrum. Due to these factors, ATR-FTIR 

spectroscopy cannot currently be classified as a high-throughput technique, an attribute 

considered vital for translation 20. Progressing forward with biofluid analysis, high-
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Figure 3.1 – Overlay of an air dried spectra (red), liquid spectra (blue) and a water spectra (green), 
highlighting the contribution from water in the liquid spectra 
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throughput and translatable methods must be achieved, while gaining comparable 

sensitivity and specificity demonstrated to date 21 - 23.  

 

 

One approach thought to achieve such a goal is with the use of a novel IR light source in the 

form of tuneable quantum cascade lasers (QCLs). The benefit of using this particular type of 

laser is the increase in spectral power, several of orders of magnitude greater than that of 

globar sources 24. The larger power leads to increased sample penetration depth compared 

to FTIR, leading to increased sensitivity. Another characteristic of the technique is the ability 

to target discrete frequencies, as the wavelength is dependent on the thickness of the 

sample opposed to the chemical components within. Combining QC lasers with refractive-

based high numerical aperture objectives and a large format detector system allows analysis 

to be optimised. For example, emitting the laser at a particular area of interest would reduce 

acquisition time (to a translatable scale) while maintaining a good signal to noise ratio. This 

technique is known as discrete frequency infrared (DFIR) imaging and has already shown to 

be successful in rapid diagnostics through the analysis of dried serum spots 16. 

Figure 3.2 – Sample analysis breakdown, showing number of spectra that are acquired per patient. 
Calculations based on 60mins/hour, 10hours/day and 5days/week 

Air Dried: 30 mins per patient 
= 19,485 minutes 

= 324.75 hours 

= 32.46 days 

= 6.50 weeks  

Liquid: 10 mins per patient 
= 4330 minutes 

= 72.2 hours 

= 7.21 days 

= 1.44 weeks  



 

128 
 

We present for the first time the novel use of ATR-FTIR spectroscopy to analyse liquid serum 

samples to discriminate non-cancerous from brain cancer patients. Using the same patient 

population, QCL based spectrometers were used to assess the potential use of QCLs for novel 

biomedical applications. In addition, we present new strategies for the removal of the water 

spectral components via a process termed “Digital Drying”. Through this investigation, we 

present an alternative, high throughput approach to assess patient disease state through the 

use of ATR-FTIR and QCL based spectrometers, that can achieve high throughput liquid 

analysis whilst discriminating cancerous disease states from human serum based upon a 

reproducible and specific disease signature to provide a disease indication within one 

minute. As such, this novel process could transform the diagnostic and patient care 

environment, leading to increased survival rates and quality of life, alongside health 

economic benefits. 

3.2. Materials and Methods 

3.2.1. Serum Samples 

Blood samples were acquired from 150 patients split equally across three classes; Grade IV 

Glioblastoma multiforme (GBM) (n=50), metastatic brain cancer (secondary brain cancer 

from multiple sites within the body) (n=50) and non-cancer (n=50); demographic information 

is provided in Table 3.1. The research carried out within this paper was granted full ethical 

approval under the Walton Research Bank.  

The whole blood samples were left to stand upright for 30 minutes to allow clotting to take 

place. The BD vacutainer SST tubes were then spun at 2200g for 15 minutes at room 

temperature, before a Pasteur pipette was used to create serum aliquots. The samples were 

stored at -80C until required.  

 

Table 3.1 - Total subject number of disease state, age range, mean age and gender 

Disease Class No. of Subjects Age Range Mean Age Gender 

Normal 50 23 - 71 42.8 19 Female, 31 Male 

GBM 50 35 - 82 61.6 30 Female, 20 Male 

Metastatic 50 36 - 79 63.32 15 Female, 35 Male 
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3.2.2. Data Collection  

3.2.2.1. ATR-FTIR Spectrometer 

ATR-FTIR spectra were collected using a Cary-600 series FTIR spectrometer (Agilent 

Technologies, CA, USA) with a MIRacle TM single reflection ATR configured with a diamond 

(Di) IRE plate (PIKE Technologies, WI, USA). 32 co-added scans, covering a wavenumber range 

of 4000 – 600 cm-1, were combined to produce the spectrum, using a spectral resolution of 

4 cm-1. A background spectrum (32 co-added scans), using the same spectral range, of the 

ambient conditions was automatically subtracted by the Pro Resolution software (Agilent 

Technologies, CA, USA) to create the sample spectrum. The spectra were also ATR corrected 

by the software prior to the importation to Matlab TM (The Mathworks Inc, USA) for further 

analysis using in-house written and open source coding.  

All serum samples were fully thawed at room temperature before spectral collection and the 

sample set was randomised prior to analysis. For every patient sample, 1 µL of serum was 

pipetted onto the crystal using a calibrated pipette (Gilson, UK) and analysed in triplicate 

while in the liquid state. After the eight minute optimal drying time, determined from 

previous drying experiments 16, the serum samples were analysed in triplicate again.  

Following spectral collection Virkon disinfectant (FisherScientific, UK) followed by 99.5% 

ethanol (Thermo Scientific, UK) was used to clean the crystal prior to the next sample being 

analysed. 

3.2.2.2. Quantum Cascade Laser Transmission Spectrometer 

Liquid transmission measurements were performed using a Specac™ FTIR micro-

compression cell. The cell contents comprised of an o-ring followed by 10 µL aliquot of 

serum, placed onto a 1 mm thick, 14 mm diameter, circular CaF2 substrate, a second CaF2 

substrate and finally another o-ring.  

For background measurements, a single CaF2 substrate 2 mm thick was used. To ensure focus 

was consistent in the Z direction, a 1 mm CaF2 sample, containing chemically-fixed biological 

cells on the surface was placed in the open transmission cell on top of the first o-ring. Each 

time the transmission cell was removed and replaced to swap patient samples, the Z focus 

was recalled to the same stage coordinate position. 

Data, in the form of an image, was acquired using a QCL Spero™ microscope (Daylight 

Solutions Inc., San Diego, CA, USA) in ‘full frequency’ mode between 1800-948 cm-1 with a 
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data spacing of 4 cm-1. A single frame was collected with a 4× magnification objective, a field 

of view of 2 mm × 2 mm, a numerical aperture (NA) of 0.15 and pixel size of 4.25 (equating 

to a spatial resolution ~ 37 µm at 5.5 µm). 

3.2.3. Pre-processing 

The spectral collection produced three different data sets. Two from the triplicate analysis 

using ATR-FTIR, one composed of the air dried spectra, the other of the liquid spectra. The 

third set is from the use of QCL spectroscopy. 

3.2.3.1. ATR-FTIR Spectroscopy 

The spectral range was reduced to the fingerprint region, 1800-1000 cm-1, before any 

pre-processing was undertaken. All spectra were vector normalised using a University of 

Strathclyde, in house written software, before a first or second derivative was taken, while 

using five smoothing points. Derivatives were taken to allow for any broad peaks to be 

resolved. The second derivative spectrum provides easier interpretation in comparison to 

the first as following the first, the peak maximum lies upon the zero lie, after the second the 

peak maximum is at the peak frequency. 

3.2.3.2. Quantum Cascade Laser Transmission Spectroscopy 

An image quality test was performed prior to extracting the mean spectrum for the QCL data, 

involving the removal of pixel spectra relating to sample artefacts in the image, such as air 

bubbles or fibres. To do this the total intensity of absorbance image was calculated and 

contrast enhanced for additional structural resolution of image artefact boundaries. Using 

edge detection, a binary mask was then created with which to overlay onto the original 

hyperspectral data and to remove the undesirable spectra (Matlab ‘edge’ and ‘infill’ 

functions). Spectra were then smoothed using a 3-point moving average filter (Matlab 

function). 

3.2.4. Data Analysis: Random Forest 

The first and second derivative, vector normalised data sets were exported to R, where the 

machine learning package randomForest, by Liaw and Wiener 25 was used as the main 

method of classification 26. This method of machine learning finds features associated with 

input classes, presenting easily interpretable results. When using the Gini impurity metric, 

important discriminating wavenumbers can be clearly seen as well as the distinguishing 

power. The accuracy and reliability of the model can be determined from the random forest 
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(RF) statistical value outputs, with the Gini plot highlighting wavenumbers responsible for 

the results 27.  

Each dataset was split into 2/3, 1/3 training and test set based upon patient population to 

ensure no patients had spectra in both the training and test set. The training set was used to 

train the model by pairing the input with the known, expected output. The test set was then 

used as a measure of how well the model had been trained.  RF was then carried out using 

the default settings of the randomForest package within R. This process was repeated 96 

times to ensure the reported results were not biased to a certain patient population and the 

variance within the sample set was fully encompassed. The 96 independent RF models were 

combined to gain reported statistics and significant wavenumbers. Additionally, the standard 

deviation of the 96 iterations was recorded to ensure variability in the RF classifications could 

be measured.  

Due to the class imbalance present when distinguishing the difference between cancer (100 

patients) vs. non-cancer (50 patients), synthetic minority over-sampling technique (SMOTE) 

sampling was used throughout this research to ensure no bias was present within the model.  

3.2.5. Digital Drying 

Following the separation of the data set into liquid spectra and air dried spectra, the liquid 

spectra were used to investigate the idea of digital drying. It was considered that the removal 

of the rate determining step, which is the drying of the serum, could dramatically speed up 

analysis times. This would allow liquid spectra to be dried after analysis using programming 

software and the use of reference spectrum. To achieve optimum methodology, a step wise 

approach was used to the find an appropriate method of drying the liquid spectrum. Four 

experiments were carried out, following the removal of outliers, each developing from the 

previous, shown in Figure 3.3.  
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3.3. Results 

3.3.1. ATR-FTIR Spectroscopy 

3.3.1.1. Air Dried Samples 

Results from the RF analysis of the air dried serum samples are shown in Table 3.2. The 

optimal results were achieved using the SMOTE analysis, with a sensitivity of 92.4 % and 

specificity of 84.4 %. However, despite the improvement of 6.3 % in the specificity 

classification value, using SMOTE reduced the sensitivity by 1.4 %. It is considered that the 

class imbalance created when carrying out a binary classification of cancer vs. non-cancer led 

to the high sensitivity. The sensitivity of a model can be thought of as a measure of the 

model’s ability to detect patients with disease, cancer, in this case. As 100 out of the 150 

Figure 3.3 - Schematic showing the formation of the four digitally dried data sets 
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patient samples were cancerous there was a bias towards the prediction of a cancerous 

serum sample. This is supported by the slight reduction in sensitivity but the improvement 

in the specificity, thought of as a measure of the model’s capability at identifying 

non-cancerous samples. The results of the air dried plus SMOTE suggest the class imbalance 

has been reduced and the classification results from this analysis are optimal.  

Table 3.2 – Classification results from the analysis of the air dried samples 

 Air Dried Air Dried + SMOTE 

Sens (CV) 94.3 % 90.0 % 

Spec (CV) 73.9 % 79.3 % 

Sens (TS) 93.8 % 92.4 % 

Spec (TS) 78.1 % 84.4 % 

 

The top wavenumbers, defined as wavenumbers with a mean decrease Gini value of more 

than 2.0, were tentatively assigned (Table 3.3) to identify the biomolecules responsible for 

the classification of cancer vs. non-cancer. All wavenumbers were tentatively assigned using 

“Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues” by Movasaghi et al 28. 

Most of the wavenumber ranges assigned are attributed to protein structures (Figure 3.4). 

Lipid contribution is also apparent, however, the peak range between 1033 – 1035 cm-1, 

assigned to nucleic acid structures is shown to give the biggest contribution in the 

classification of cancer vs non-cancer. 

 

 

 

 

Figure 3.4 - Gini plot from RF analysis of air dried samples with tentative wavenumber assignments 
overlaid Red: protein, blue: lipid, green: nucleic acid and orange: carbohydrate 
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Table 3.3 – Tentative wavenumber assignments of the top wavenumbers outputted following the RF analysis of 
air dried samples 

Wavenumber (cm-1) Tentative Assignments 

1018 C-O stretching, carbohydrate 

1033 - 1035 (CC) skeletal cis conformation, (CH2OH), (CO) stretching coupled with CO 

bending 

1039 - 1041 Symmetric PO2
- stretching in DNA and RNA 

1049 – 1051 C-O-C stretching of DNA and RNA 

1062 Stretching C-O deoxyribose 

1079 - 1081 Symmetric PO2
- 

1091 Symmetric PO2
- 

1118 - 1120 Symmetric stretching P-O-C 

1193 - 1197 Phosphate PO2
- band 

1373 - 1375 Stretching C-N cytosine, guanine 

1386 - 1392 Stretching C-O, deformation C-H, deformation N-H 

1396 Symmetric CH3 bending of the methyl groups of proteins 

1413 - 1415 Stretching C-N, deformation N-H, deformation C-H 

1436 - 1440 (CH2), lipids, fatty acids, (CH) (polysaccharides, pectin) 

1461 - 1463 CH2 scissoring mode of the acyl chain of lipid 

1481 - 1483 Amide II 

1498 C=C, deformation CH 

1527 - 1529 Stretching C=N, C=C 

1548 - 1552 Amide II 

1596 - 1600 C=N, NH2 adenine 

 

3.3.1.2. Liquid Samples 

Similar to the air dried results, the use of the SMOTE sampling greatly improved the 

specificity classification results, however it reduced the sensitivity result. Without the use of 

SMOTE the specificity achieved was 58.1 %, however it rose to 81.8 % when SMOTE was 

applied, showing an increase of 23.7 %. The sensitivity of the model reduced by 3.6 %, from 

99.0 % to 95.4 % when using the SMOTE sampling. As discussed in Section 3.3.1.1, this 

suggests that the class imbalance of 100 cancer patients to 50 non-cancer patients was 

impacting heavily on the results. The high sensitivity indicates a bias in the model, corrected 

by the use of SMOTE sampling. Comparing the results in Table 3.4 to those in Table 3.2 (air 

dried classification values) it is evident that the analysis of liquid samples performs better 

when it comes to sensitivity, achieving 95.4 % when liquid, compared to 92.4 % when air 
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dried. However, the air dried samples led to a more specific model, achieving a specificity of 

84.4 % compared to the 81.8 % achieved from the liquid samples.  

Table 3.4 - Classification results from the analysis of the liquid samples 

 Liquid Liquid + SMOTE 

Sens (CV) 98.3 % 94.5 % 

Spec (CV) 53.9 % 75.7 % 

Sens (TS) 99.0 % 95.4 % 

Spec (TS) 58.1 % 81.8 % 

 

The Gini plot from the RF analysis is displayed in Figure 3.5 and the top wavenumbers used 

to classify cancer vs non-cancer liquid samples are tentatively assigned in Table 3.5. The 

results suggest that while samples are in the liquid state, the nucleic acid biomolecules are 

mainly responsible for the classification and lead to a better classification than the air dried 

samples. Less contributions are seen from protein structures, the amide I and II bands which 

do not appear in the top wavenumbers used. This could be due to the presence of water 

within the sample. As mentioned in the introduction water over-shadows the amide region 

of the spectrum while samples are in the liquid state. However, from the classification values 

achieved for the liquid analysis of 95.4 % and 81.8 %, sensitivity and specificity, respectively 

it could be concluded that detection of nucleic acid peaks could be more discriminating than 

examining differences in biomolecular protein structures. 

Figure 3.5 - Gini plot from RF analysis of liquid samples with tentative wavenumber assignments 
overlaid. Red: protein, blue: lipid, green: nucleic acid and orange: carbohydrate 
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Table 3.5 - Tentative wavenumber assignments of the top wavenumbers outputted following the RF analysis of 
liquid samples 

Wavenumber (cm-1) Tentative Assignments 

1035 - 1037 (CC) skeletal cis conformation, (CH2OH), (CO) stretching coupled with CO 

bending 

1039 - 1043 Symmetric PO2
- stretching in DNA and RNA 

1051 C-O-C stretching of DNA and RNA 

1078 - 1079 Symmetric PO2
- (Phosphate I) 

1082 - 1085 Symmetric PO2
- 

1091 - 1093 Symmetric PO2
- 

1097 - 1099 Symmetric stretching PO2
- (phosphate II) 

1197 - 1199 Asymmetric PO2
- (Phosphate I) 

1224 Asymmetric PO2 in DNA and RNA 

1376 - 1378 Stretching C-O, deformation C-H, deformation N-H 

1413 - 1415 Stretching C-N, deformation N-H, deformation C-H 

1448 Asymmetric CH3 bending of the methyl groups of proteins 

1461 - 1465 CH2 scissoring mode of the acyl chain of lipid 

1525 - 1527 Stretching C=N, C=C 

1538 Stretching C=N, C=C 

1581 Ring C-C stretch of phenyl 

3.3.2. Digital Drying 

Following the analysis of air-dried and liquid samples using ATR-FTIR spectroscopy, it was 

considered if digitally drying the liquid samples using a mathematical approach would lead 

to the illumination of more discriminatory information as the water peak hides the amide 

structures. Analysis of the liquid samples could lead to the development of a rapid, 

spectroscopic test generating a result within ten minutes. 

3.3.2.1. Water as Background 

The use of water as a background before acquiring the patient serum spectra, produced the 

results seen in Figure 3.6. The full spectrum highlights the negative peaks in the region 

around 3600 – 3000 cm-1, a complex region attributed to the tentative assignments in 

Table 3.6. Negative peaks occur when there are less molecular vibrations in the sample than 

in the background. This is an expected result with the O-H stretches due to the absence of 

water, however negative peaks lead to negative absorbances. This result is also observed 
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upon examination of the fingerprint region, shown in the bottom of Figure 3.6, where the 

carbonyl group also exhibits negative absorbances at 1740 cm-1. 

Table 3.6 – Tentative wavenumber assignments for the determination of the contributions from water 29, 30 

  

 

 

 

 

On the other hand, the positive peaks seen in the full spectrum resemble a typical biological 

spectrum 15, characterised by; the lipid peaks of the symmetric and asymmetric aliphatic CH2 

and CH3 stretches between 2950 – 2800 cm-1. In addition to the protein peaks of the amide I 

and II at 1650 cm-1 and 1540 cm-1 and the carboxylate symmetric stretch around 1420 cm-1, 

as well as the nucleic acid peaks related to the symmetric and asymmetric phosphate peaks 

around 1250 cm-1 and 1100 cm-1. Therefore, it was considered that the use of an 

environmental air background as standard, before the deposition of serum with a 

subtraction of water after spectral collection could improve results. 

Wavenumber (cm-1) Tentative Assignment 

3216 O-H symmetric stretching 

3226 O-H symmetric stretching 

3330 N-H asymmetric stretching 

3352 N-H asymmetric stretching 

3362 O-H, N-H, C-H stretching 
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3.3.2.2. Water Subtraction 

The subtraction of the water reference spectrum from the patient serum samples, led to the 

results displayed in Figure 3.7. Not only do the negative peaks occur in the region of 

3600 – 3200 cm-1, but the CO2 region around 2350 cm-1 and the water combination band at 

roughly 2150 cm-1 are highly variable, although this could have occurred during spectral 

collection. 

Figure 3.6 – Spectra of one patient sample following using water as the background 
spectrum.  
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Figure 3.7 - Spectra of the patient samples following the subtraction of a 
reference water spectrum. Top: full spectrum and middle: fingerprint region 
and bottom: individual patient spectrum to highlight problems with the water 
subtraction process 
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The negative peaks arise since there is a higher absorbance in the spectrum being subtracted 

than the serum sample. Although an expected result, due to the serum samples only 

containing a proportion of water, rather than being purely water, like the reference 

spectrum, the appearance of negative peaks on a spectrum is not optimum. This difficulty is 

normally resolved by the environmental air background acquired before spectral collection.  

Through the examination of one patient spectrum, bottom of Figure 3.7, the problems are 

visually easier to see. The carbonyl peak normally present around 1740 cm-1 could be 

deemed uncharacteristic in shape. In addition to this, the ratio of the amide I and II peaks is 

almost 1:1, when the amide I is usually nearly twice as high as the amide II, when compared 

to a air dried serum spectrum.  

3.3.2.3. Iterative Least Squares  

In order to combat the problems encountered in 3.3.2.1 and 3.3.2.2 developed an iterative 

least squares approach. Figure 3.8 shows the polynomial fit, and how it appears to be 

overfitted around the amide I and II regions.  

 

Figure 3.8 – Fingerprint spectrum highlighting the overfitting of the polynomial fit around 
the amide region 

(cm-1) 
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The linear approximation produced the optimal fit to data, and as can be seen in Figure 3.9, 

the spectra are more typical with regards to a biological serum spectrum, than the water 

subtraction method. Following the determination that the linear approximation produced 

the optimal fit to the data, a small loop was created that fitted the linear approximation 

between the reference spectrum and the liquid spectrum. The linear coefficients from 

Matlab was then multiplied by the liquid reference spectrum to produce a “water estimate” 

for each individual spectrum. This was then subtracted from the liquid spectrum to produce 

a “dry” spectrum. 

The top of Figure 3.9 highlights the negative peaks around 3500 – 2800 cm-1 indicating, again 

that the subtraction of the water reference leads to negative absorbances. However, there 

is also the presence of positive peaks in between 3500 – 3300 cm-1 resulting from potential 

N-H and C-H stretching as well as in the aliphatic lipid C-H region between 2850 – 2750 cm-1. 

The single patient fingerprint spectrum, shown in the bottom of Figure 3.9 demonstrates 

that this method of digital drying leads to a more characteristic carbonyl peak and amide I 

and II ratio.  
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Figure 3.9 - Spectra of the patient samples following an iterative 
least squares approach to digitally dry the patient liquid 
spectrum. Top: full spectrum, Middle: fingerprint region, 
Bottom: one patient fingerprint spectrum 
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3.3.2.4. Extended Multiplicative Signal Correction  

Finally, an EMSC algorithm was applied to the data to digitally dry the liquid samples. 

However, as shown in Figure 3.10 there is evidence of minimal changes to the spectrum as 

they appear to still resemble a liquid. The EMSC algorithm appears to have reduced the 

variance in the broad O-H peak around 3600 – 3000 cm-1 but as can be seen from the bottom 

of Figure 3.10, the amide region continues to be highly variable.  
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Figure 3.10 - Spectra of the patient samples following 
EMSC approach to digitally dry the patient liquid 
spectrum. Top: full spectrum, before EMSC, Middle: full 
spectrum after EMSC, Bottom: fingerprint spectra, after 
EMSC 
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(a) 

(b) 

(c) 

3.3.2.5. Summary of Digital Drying Results 

The same RF analysis as was carried out on the air dried and liquid samples was completed 

for the three digitally dried data sets; the water subtraction data set, iterative least squares 

approach data set and the data set which had the EMSC algorithm applied to it. The 

classification results are detailed in Table 3.7. 

Table 3.7 - Classification results from the analysis of the (a) liquid samples and water subtraction, (b) liquid 
samples with ILS and (c) liquid samples with EMSC 

 Liquid-Sub Liquid-Sub + SMOTE 

Sens (CV) 95.7 % 90.8 % 

Spec (CV) 76.7 % 83.8 % 

Sens (TS) 95.6 % 91.2 % 

Spec (TS) 75.5 % 84.3 % 

   

 Liquid ILS Liquid ILS + SMOTE 

Sens (CV) 93.8 % 90.5 % 

Spec (CV) 74.0 % 86.0 % 

Sens (TS) 93.6 % 90.9 % 

Spec (TS) 75.8 % 87.2 % 

   

 Liquid EMSC Liquid EMSC + SMOTE 

Sens (CV) 91.7 % 89.8 % 

Spec (CV) 59.7 % 76.0 % 

Sens (TS) 92.7 % 91.2 % 

Spec (TS) 59.1 % 77.3 % 

 
In terms of the classification values, as before, the use of SMOTE sampling improved the 

specificity of all the models, in some cases by almost 20 %. The use of a basic water 

subtraction and the EMSC algorithm produced the optimal sensitivities of 91.2 %. In terms 

of specificities, the optimum result was produced using the ILS method, which was 87.2 % in 

comparison to the 84.3 % and 77.3 % obtained following the use of a water subtraction and 

an EMSC algorithm.  Comparing these results to those achieved by the liquid model, it is 

evident that the liquid model produced a greater sensitivity than any of the digitally dried 

models, which was 95.4 %. However, the specificity of the liquid model, was 81.8 %, 5.3 % 

lower than the optimal specificity achieved from the ILS methodology.   
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The Gini plots from the RF analysis are shown in Figure 3.11. As can be seen from the stacked 

plot, the same wavenumbers have not been used for each model and are tentatively 

assigned in Table 3.8.  
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Figure 3.11 - Gini plot from RF analysis of (a) liquid samples and water subtraction, (b) liquid 
samples with ILS and (c) liquid samples with EMSC, with tentative wavenumber assignments 
overlaid. Red: protein, blue: lipid, green: nucleic acid and orange: carbohydrate 

  

 
 

(a) 

(b) 

(c) 
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Table 3.8 - Tentative wavenumber assignments of the top wavenumbers outputted following the RF analysis of 
liquid samples with the water subtraction, the ILS approach and an EMSC algorithm applied 

 

From studying the Gini plots as well as the tentative wavenumber assignments, it is evident 

that the digital drying method is altering the wavenumbers used to classify cancer vs. non-

cancer. As the data set was the same, following the analysis of liquid samples, the molecular 

compositions of the samples do not change, yet the RF analysis is using different 

Subtraction ILS EMSC  

Wavenumber (cm-1) Tentative Assignment   
1004 C-O stretching (carbohydrates) 

1037 - 1039 1037 - 1039 1037 - 1039 (CC) skeletal cis conformation, (CH2OH), (CO) 

stretching coupled with CO bending 

1041 - 1043 
 

1041 - 1043 Symmetric PO2
- stretching in DNA and RNA 

1049 - 1051 1051 1049 - 1052 C-O-C stretching of DNA and RNA 

1078 - 1085 1078 - 1083 1078 - 1083 Symmetric PO2
- 

1091 - 1097 1093 - 1097 1093 - 1097 Symmetric PO2
- 

  
1153 Stretching vibrations of hydrogen-bonding C-OH 

groups 
 

1169 1170 - 1172 CO stretching of the C-OH groups of serine, 

threonine, & tyrosine in the cell proteins, as well 

as carbohydrates 

1365 - 1367 
  

Stretching C-O, deformation C-H, deformation N-H 

1378 - 1380 
 

1376 - 1380 Stretching C-O, deformation C-H, deformation N-H 

1386 - 1390 1386 - 1390 1386 - 1392 Symmetric CH3 bending of the methyl groups of 

proteins 
 

1394 - 1402 
 

Symmetric stretching vibration of COO2 group of 

fatty acids and amino acids 

1413 1411 - 1413 1413 - 1415 Stretching C-N, deformation N-H, deformation C-H 

1461 - 1465 1463 - 1467 1461 - 1465 CH2 scissoring mode of the acyl chain of lipid 
  

1473 CH2 bending of the methylene chains in lipids 

1525 1523 - 1525 1525 Stretching C=N, C=C 

1538 - 1540 1540 - 1548 
 

Stretching C=N, C=C 

1558 
 

1556 Ring Base 

1560 1560 - 1562 1562 Ring Base 
 

1569 
 

Amide II 
 

1648 
 

Amide I 
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biomolecular regions to discriminate cancer from non-cancer. While the majority of peak 

regions are identified in each Gini plot, the intensities are often different and there are in 

fact some wavenumbers featured in one plot but not the other. For example, the amide I 

and II only feature as discriminative wavenumbers following the use of the iterative least 

squares methodology. 

It was decided that the water subtraction and the ILS methodology would not be considered 

as a clinically relevant spectroscopic test for the diagnosis of brain cancer in comparison to 

non-cancer serum samples and are not further analysed. This was due to the inconsistencies 

in the top wavenumbers following the RF analysis, evident from the Gini plots displayed in 

Figure 3.11. It is considered that the digital drying methodologies may be altering the spectra 

and the negative absorbances apparent in the spectra could be responsible for this.  

The tentative wavenumber assignments following the RF analysis of the liquid spectrum with 

the EMSC algorithm applied to digitally dry the spectra was compared to the tentative 

wavenumber assignments from the air dried RF analysis. 

Table 3.9 - Tentative wavenumber assignments of the top wavenumbers outputted following the RF analysis of 
air dried samples and liquid samples with the EMSC algorithm applied 

Air Dried EMSC  
Wavenumber (cm-1) Tentative Assignment 

1018 1004 C-O stretching, carbohydrate 

1033 - 1035 1037 - 1039 (CC) skeletal cis conformation, (CH2OH), (CO) stretching 

coupled with CO bending 

1039 - 1041 1041 - 1043 Symmetric PO2
- stretching in DNA and RNA 

1049 – 1051 1049 - 1052 C-O-C stretching of DNA and RNA 

1062 
 

Stretching C-O deoxyribose 

1079 - 1081 1078 - 1083 Symmetric PO2
- 

1091 1093 - 1097 Symmetric PO2
- 

1118 - 1120 
 

Symmetric stretching P-O-C 
 

1153 Stretching vibrations of hydrogen-bonding C-OH groups 

 
1170 - 1172 CO stretching of the C-OH groups of serine, threonine, & 

tyrosine in the cell proteins, as well as carbohydrates 

1193 - 1197 
 

Phosphate PO2
- band 

1373 - 1375 
 

Stretching C-N cytosine, guanine 

1386 - 1392 1376 - 1380 Stretching C-O, deformation C-H, deformation N-H 
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1396 1386 - 1392 Symmetric CH3 bending of the methyl groups of 

proteins 

1413 - 1415 1413 - 1415 Stretching C-N, deformation N-H, deformation C-H 

1436 - 1440 
 

(CH2), lipids, fatty acids, (CH) (polysaccharides, pectin) 

1461 - 1463 1461 - 1465 CH2 scissoring mode of the acyl chain of lipid 
 

1473 CH2 bending of the methylene chains in lipids 

1481 - 1483 
 

Amide II 

1498 
 

C=C, deformation CH 

1527 - 1529 
 

Stretching C=N, C=C 

1548 - 1552 
 

Amide II 
 

1556 Ring Base 
 

1562 Ring Base 

1596 - 1600 
 

C=N, NH2 adenine 

 

From the comparison of discriminative wavenumbers as detailed in Table 3.9 it is evident 

that there are numerous wavenumber peaks and/or ranges that appear in both the air dried 

samples and the liquid samples, that have been digitally dried using an EMSC algorithm. 

However, there is also evidence that the air dried samples lead to the production of a more 

varied spectrum, shown by the higher number of discriminative wavenumbers, this can be 

more seen visually when comparing the two Gini plots - Figure 3.11.  

Figure 3.11 demonstrates the high number of relatively low intensity peaks present in the air 

dried spectrum, around the nucleic acid range between 1062 – 1120 cm-1 as well as the peaks 

at 1193 – 1197 cm-1, which do not appear in the digitally dried spectrum. Additionally, the 

identification of the lipid peak occurring at 1436 – 1440 cm-1 is only present in the air dried 

spectrum. There are also additional protein bands used in the discrimination of cancer vs 

non-cancer of the air dried samples, evident by the five peaks, in comparison to the two 

present in the digitally dried spectrum. 

From studying the digitally dried spectrum it is apparent that the use of an additional 

carbohydrate peak was used in the classification of cancer vs non-cancer, at roughly 1170 – 

1172 cm-1. Finally, the two ring base peaks due to C=C and C=N stretching vibrations present 
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in the protein structures and the nucleic acid bases are found in the Gini plot of the liquid 

samples digitally dried but are not apparent in the Gini plot from the air dried samples.  

The effect of air drying the serum sample on top of the ATR crystal is considered to be the 

reason why these plots and wavenumber assignments vary from each other. As the sample 

dries, the relative concentration of biomolecular components increases, and the evanescent 

wave can probe more biomolecular components due to the removal of water at the IRE 

surface. This can lead to the detection and identification of more biomolecules, than the 

liquid samples.  

Overall, the liquid samples produced the highest sensitivity of 95.4 %, demonstrating the 

model’s ability to identify patients with cancer. The highest specificity of 84.4 % was achieved 

through the analysis of the air dried samples. Therefore, regarding the optimal sample 

methodology for the discrimination of brain cancer patients vs non-cancer patients, when 

speed and sensitivity is required the use of liquid samples is most effective. On the other 

  

 
 

(b) 

(a) 

Figure 3.11 - Gini plot from RF analysis of (a) air dried samples, (b) liquid samples with EMSC, with 
tentative wavenumber assignments overlaid. Red: protein, blue: lipid, green: nucleic acid and orange: 
carbohydrate 
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hand, if a specific test is required, the use of air dried samples, and the requirement of the 

8-minute drying time will be necessary and is the optimal sample methodology.  

3.3.3. Quantum Cascade Laser Transmission Spectroscopy 

Due to the liquid samples performing comparatively the same to the air dried samples 

following the use of ATR-FTIR spectroscopy, the use of a QCL was investigated to determine 

if the higher source brightness could enable higher classification results. 

Table 3.10 – Classification results from the analysis of the liquid samples using the QCL 

 Sensitivity Specificity  

1st Derivative 65.0 % 79.0 % 

2nd Derivative 57.0 % 72.0 % 

 

The use of the first derivative produced a more optimal result in comparison to the second 

derivative, as can be seen from Table 3.10. The second derivative specificity value decreased 

to 72.0 % from 79.0 % obtained from the first derivative. A similar result was reported for 

the sensitivity, with a 9.0 % decrease from 65.0 % to 57.0 %. The introduction of noise after 

obtaining the second derivative spectrum could be accountable for the resulting lower 

classification percentages.  

 

By using the QCL the full spectrum does not need to be collected. The ability to reduce the 

wavenumber range (1648 – 1448 cm-1) as well as the analysis time is a huge advantage for a 

potential clinical method. It could be considered that despite the lower classification values 

in comparison to the optimal ATR-FTIR results of 95.4 % and 84.4 % sensitivity and specificity, 

the reduction in time and wavenumber range could be more advantageous and easier to 

understand from a clinic point of view. As can be seen in Figure 3.12 nucleic acid and protein 

structures are the only biomolecules contributing to discriminating cancer from non-cancer. 

As the penetration depth of the source is larger, the beam is able to interact with a larger 

number of biomolecules. Yet, due to the samples being in the liquid form, the concentration 

of these biomolecules is relatively dilute, and the beam could in fact be missing the 

discriminating biomolecules, used in the discrimination of the ATR-FTIR data. 

 

The novelty of this technique does lead to the necessary developmental work required, with 

the hope that this could improve the lower classification percentages.  
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Table 3.11 - Tentative wavenumber assignments from the analysis of the liquid samples using the QCL 

Wavenumber (cm-1) Tentative Assignments 

1448 Asymmetric CH3 bending of the methyl groups of proteins 

1528 C=N guanine 

1532 Stretching C=N, C=C 

1536 Stretching C=N, C=C 

1556 Ring base 

1560 Ring base 

1568 Amide II 

1572 C=N adenine 

1576 C=N adenine 

1580 Ring C-C stretch of phenyl 

1588 Ring C-C stretch of phenyl 

1648 Amide I 

3.4. Conclusion 

The use of liquid serum samples possesses the potential to develop a high-throughput 

ATR-FTIR spectroscopic methodology, for the diagnosis of brain cancer. This would overcome 

the time limiting steps that are a real barrier to clinical translation of this technique. 

Only conclusions from the data sets where SMOTE sampling was applied will be discussed 

due to the class imbalance present within the data, skewing the model and impacting the 

Figure 3.12 - Gini plot from RF analysis of liquid samples analysed using QCL, with tentative 
wavenumber assignments overlaid. Red: protein and green: nucleic acid 

key highlights group assignment highlighting the contribution from water in the liquid spectra 
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sensitivity and specificity results. The initial investigation of comparing the RF classification 

results from the air dried and the liquid samples showed comparative results, where 

following SMOTE sampling, liquid produced the greatest sensitivity of 95.4 % while the air 

dried set produced the optimal specificity of 84.4 %.  To improve the liquid results, the use 

of three digital drying methods were investigated, however the three methods produced 

unconcordant results. The top wavenumbers used in the classification varied between each 

method, despite the sample biomolecular make up not changing. This combined with the 

appearance of negative peaks using the water subtraction and ILS method, it was decided 

that no further analysis would be carried out on these data sets.  

The use of the EMSC algorithm to digitally dry the liquid samples, did not result in any 

negative absorbance values and produced a sensitivity of 91.2 % and a specificity of 77.3 %. 

The Gini plots from this classification and the tentative wavenumber assignments were 

compared to the air dried results, where it became clear that the air drying of the samples 

was allowing more biomolecular components of the serum to be analysed. It was considered 

that through air drying, the concentration of biomolecules increased leading to the higher 

number of wavenumbers used to discriminate the cancer from non- cancer samples.  

Following this, a QCL was used to determine if a higher spectral power and more defined 

wavenumber range would allow the production of higher classification values. However, the 

RF results for the distinction of cancer vs non-cancer, the optimal sensitivity and specificity 

were 65.0 % and 79.0 %, respectively, through the analysis of the 1st derivative spectrum. 

Further work must be carried out on this research to allow for a complete conclusion. 

However, preliminary results suggest that the lower classification values are due to the 

absence of the nucleic acid peaks in the lower region of the fingerprint. These peaks are not 

detected using the QCL but are evidently vital in the discrimination of cancer vs non-cancer 

based on the ATR-FTIR analysis. Results could also be improved by using SMOTE sampling. 

In conclusion, it can be considered that the use of liquid samples is the optimum approach 

when a rapid and sensitive test is a priority. However, the use of air-dried samples could be 

regarded as necessary to gain a more specific result. The specificity of the liquid analysis 

produced a result of 81.8 %, 2.6 % less than that of the air dried. Speed of analysis and the 

option of having a high-throughput spectroscopic test is worth the loss of a 2.6 % specificity 

but would need to be investigated further before validation of such a statement occurs. A 

two-stage analysis could be proposed, analysing all samples in the liquid form to begin with 
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identifying cancerous serum samples, before these samples are analysed in the air dried 

state to ensure specificity. Nevertheless, for translation of ATR-FTIR spectroscopy into the 

clinic the development of a high-throughput methodology must be developed, and the work 

discussed in this chapter displays the beginnings of such.  
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Abstract and Aims 

In order to investigate the ability of ATR-FTIR spectroscopy to monitor the disease 

progression of melanoma, 110 patients attending the melanoma clinic at Royal Preston 

Hospital were prospectively recruited to form a longitudinal biobank. This was carried out 

following ethical approval from the National Research Ethics Service.  

Serum samples were obtained each time a patient visited the clinic, resulting in the collection 

of 311 samples. Additionally, a wealth of patient information including blood results, 

previous disease history and medication use was obtained. Here, we explore the population 

demographics and portray an insight into the volume of information obtained over the 

two-year time period, while patient recruitment was on-going. This allows for a better 

understanding of subsequent results after spectral analysis. 
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4.1. Introduction 

Before the recruitment of patients and obtaining samples, the project had to seek ethical 

approval. This was done through the Integrated Research Application System (IRAS) and the 

Research Ethics Committee (REC). IRAS allowed for a single application process to be 

completed for the approval of health care research and ensured the project met regulatory 

and governance requirements. Following submission, the application was reviewed by a REC, 

of which there are around 80 within the United Kingdom (UK). The role of the RECs is to 

review the proposal and give their opinions on whether the research is ethical or not and 

discuss any potential issues.  

On the 20th July 2015, the proportionate review sub-committee of the National Research 

Ethics Service (NRES) Committee London – Brent evaluated the application of the study titled 

“Developing Spectroscopic Biofluid Diagnosis, Monitoring and Therapeutic Profiling of 

Melanoma Patients”, granting a favourable ethical opinion. This provided the research 

project with the ethical approval and allowed a longitudinal biobank to be establish based 

on the following: 

Patients attending the melanoma clinic at Royal Preston Hospital, were approached by Dr 

Ruth Board or an oncology registrar to discuss the use of their blood to determine the ability 

of infrared spectroscopy to develop a spectral signature for melanoma. Blood acquisition 

occurred following consent, while patients gave blood for current diagnostic or monitoring 

purposes. Patients had to be able to receive and understand verbal and written information 

regarding the study and provide written, informed consent. 

Initially patients were asked to donate blood, following consent, at a baseline visit and then 

every three months for up to three years and/or if new melanoma occurs. Only patients with 

a diagnosis of melanoma were eligible and clinical judgement by the investigator was used 

regarding patients who should not have participated in the study. For example, those with; 

• Uncontrolled bleeding 

• Patients with a known blood borne viral infection e.g. hepatitis B or C, HIV 

• Poor venous access  

• patients under 16yrs of age 

should be excluded. 
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Patients were given time to reflect on the information given before signing the consent form. 

This may be on the same day as discussion in some cases to allow the initial blood sample to 

be taken at the same time as routine blood tests at the first patient visit. Patients were also 

informed that they can withdraw at any time. Samples were processed at Royal Preston 

Hospital NHS Trust Foundation and were sent to the University of Strathclyde for analysis. 

To ensure consistency when processing samples and to keep pre-analytical factors to a 

minimum a laboratory standard operating procedure (SOP) was used to process all samples, 

which can be found in Appendix 5.  

4.2. Melanoma Spectroscopy Documents 

To ensure the efficient running of the project as well as to allow documentation regarding 

patient journeys and samples to be recorded, several documents; a sample collection and 

processing log, melanoma spectroscopy biomarker study document and appointment 

tracker, were set up at Royal Preston Hospital. Due to the anonymisation of patient 

information, any patient identification has been removed.  

4.2.1. Sample Collection & Processing Log 

The first database established was the sample collection and processing log. This allowed 

every sample processed by the research nurses working on this project to be recorded. 

Table 4.1 shows the first few lines of the log and highlights the fact that the time in which 

the sample was collected, spun and frozen are all recorded. This provided evidence that the 

SOP was being followed as described. In addition, the details of the aliquots produced were 

recorded, allowing a record of how many cryotubes were part of the study. The comments 

section was vital and permitted anything abnormal to be recorded, for example, storing the 

samples in the -20 ᵒC freezer overnight before transferring them to the -80 ᵒC freezer the 

next day, opposed to going straight into the -80 ᵒC straightaway. Additionally, the size of the 

cryotubes tubes used, whether the samples had haemolysed or not and whether there 

enough blood to obtain samples was also recorded. 

The final column enabled the samples that were sent to the University of Strathclyde, 

Glasgow to be accounted for. The transfer of these samples allowed preliminary work to be 

completed before the bulk transfer of all samples. The document records a total of 316 

samples being processed, from 110 different patients. 
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4.2.2. Melanoma Spectroscopy Biomarker Study 

The next document developed throughout this research, entitled “Melanoma Spectroscopy 

Biomarker Study” compiled information regarding individual patient journeys. This 

information included: 

• Data on the blood results each time the patient visited the clinic (Table 4.4) 

• Baseline data obtained on the date of consent (Table 4.5) 

• Worksheets providing information regarding the disease state at each visit (Table 4.6) 

• An appointment tracker, recording the date of each patient visit (Table 4.7). 
 

This lead to the document containing a wealth of information, with each visit presented in a 

different tab within excel worksheet (18 in total). 

4.2.2.1. Blood Result Data 

Before the discussion of blood results obtained during an appointment at the melanoma 

clinic, at Royal Preston Hospital, it should be noted that using blood tests as an indication of 

cancer is not carried out but is mainly used as a surveillance tool to check the overall health 

of the patient. This can be helpful when administering treatment and can indicate how the 

patient could respond. 

For each visit, a full blood count is conducted, including red blood cell, white blood cell and 

platelet counts. Red blood cells, particularly the haemoglobin component, are responsible 

for transporting oxygen around the body. A low count can indicate anaemia, combined with 

symptoms like lethargy, dizziness and shortness of breath. White blood cells help fight 

infection, and a low count can lead to the patient being more susceptible to infection.  The 

most common causes of a low count are due to cancers such as leukaemia, the treatment of 

cancer through radiotherapy, some medication and infections like hepatitis.  

 

Urea and electrolyte information can be a way of assessing the efficiency of the kidneys, by 

determining how much waste product is contained within the blood. Proteins are broken 

down into the waste products urea and creatinine, which are removed from the blood by the 

kidneys before being discarded in urine. Liver function tests are a method of determining the 

functionality of the liver, by examining enzymes and proteins synthesised by the liver. A 

raised concentration can indicate a blockage in the liver or bile duct (or if alcohol 

consumption is high).  Bilirubin, the chemical within bile and responsible for the jaundice is 
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analysed as low levels could indicate a problem with the gallbladder or liver. A low 

concentration of albumin, another protein within blood, can be a sign of malnutrition.  

 

Table 4.2 exhibits the maximum and minimum level of each blood result found within the 

patient data and the reference range 2, 3 associated with each, for both genders unless state 

otherwise.  

 

Table 4.2 - Blood work up results from the baseline visit, indicating the maximum and minimum concentration 
found within the patient data and the normal ranges for adult males and females 

 Max. Min. Reference Range 

White Blood Cells (109/l) 13.88 2.38 4 – 11 

Haemoglobin (g/l) 166 67 M:130 – 160 F:115 – 165 

Platelets (109/l) 786 79 140 – 440 

Red Blood Cells (1012/l) 6.74 3.16 M:4.5 – 6.1 F:3.8 – 5.8 

Haematocrit Ratio 0.51 0.238 M:0.40 – 0.54 F:0.37 – 0.47 

Mean Corpuscular Volume (fl) 102.7 59.1 82.0 – 98.0 

Mean Corpuscular Haemoglobin (pg) 35.2 18.5 27.0 – 32.0 

Red Cell Distribution (cv) 19.5 11.4 11.8 – 14.0 

Neutrophils (109/l) 12.56 1.61 1.6 – 7.5 

Lymphocytes (109/l) 3.51 0.39 1.0 – 4.0 

Monocytes (109/l) 1.62 0.18 0.2 – 0.9 

Eosinophils (109/l) 1.87 0 0.04 – 0.44 

Basophils (109/l) 0.12 0 <0.10 

Total Bilirubin (µmol/l) 28 5 <21  

Alkaline Phosphatase (U/l) 568 32 30 – 130 varies with age 

Gamma-Glutamyl Transpeptidase (U/l) 511 10 M: <71 F: <42 

Total Protein (g/l) 87 60 60 - 80 

Albumin (g/l) 52 35 30 - 50 

Alanine Aminotransferase (U/l) 160 6 <41 

Sodium (mmol/l) 144 128 133 - 146 

Potassium (mmol/l) 5.6 3.6 3.5 – 5.3 

Urea (mmol/l) 18.9 1.9 2.5 – 7.8 

Creatinine (µmol/l) 174 41 M:59 – 104 F:45 - 84 

Glomerular Filtration Rate 89 32 N/A 
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The glomerular filtration rate does not have a reference range and is based on levels 

corresponding to stages of function. However, further information on what these particular 

levels mean can be found in Appendix 7.  As can be seem from Table 4.2 it is often the case 

that the patients are above the top end of the reference range or below the lower level of 

the reference range. This trend is often the case following the analysis of blood work up from 

patients suffering diseases like cancer. 

4.2.2.2. Baseline Data 

Table 4.5 shows information obtained at the baseline visit, at which point the patient 

consented to be part of this research project. It displays information regarding the patient’s 

disease. For example, diagnostic pathology information including the date of diagnosis, the 

type of melanoma diagnosed, and the tissue sample used to do so. The information provided 

on the prior anti-cancer therapy allowed a complete patient journey to be developed. 

The final column in the spreadsheet, labelled Karnofsky/ECOG is a way of labelling the 

performance status of the patient and gives an indication of the quality of life experienced. 

The two different grading systems are considered to provide the same information, just in a 

slightly different way. Due to the use of the ECOG system in this study, these grades and 

possible patient statuses are explained in Table 4.3 1. In this study, all patients were at an 

ECOG grade 2 or below. 

Table 4.3 - ECOG grades and corresponding patient status 

ECOG Grade ECOG Status 

0 Fully active, able to carry on all pre-disease performance without 

restriction            

1 Restricted in physically strenuous activity but ambulatory and able to 

carry out work of a light or sedentary nature, e.g., light house work, office 

work 

2 Ambulatory and capable of all selfcare but unable to carry out any work 

activities. Up and about more than 50% of waking hours 

3 Capable of only limited selfcare, confined to bed or chair more than 50% 

of waking hours 

4 Completely disabled. Cannot carry on any selfcare. Totally confined to 

bed or chair  

5 Dead 
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4.2.2.3. Baseline and Visit Worksheets 

Each time a patient visits the clinic a worksheet, like that of Table 4.5 is filled in, producing 

eight worksheets overall. Table 4.6 is the worksheet collected at the baseline visit, containing 

information of the state of disease, such as the current stage, the presence of metastatic 

disease and whether the patient is responding to treatment. Information such as this was 

instrumental when it came to analysis of the spectroscopic data acquired, allowing classes 

of patients to be created, specifically, BRAF and disease status. There are some pieces of 

information that do not change throughout the patients return visits to the clinic, for 

example the BRAF status of the patient, therefore this is only recorded at the baseline visit. 

On the other hand, due to the development of disease, the information recorded at the visits 

which follow are slightly different. The inclusion of the date, time and dose of the treatment 

as well as changes in medication are recorded.  

The date and time of relapse, as well as the identification of any new liver, lung, bone, skin 

or lymph nodes are recorded in the worksheet corresponding to the visit they were 

diagnosed. This allowed the production of patient journeys, enabling the investigation into 

whether these changes could be detected through the spectroscopic data of the patient.  

4.2.2.4. Appointment Tracker 

Finally, the melanoma spectroscopy biomarker study document contains an appointment 

tracker, shown in Table 4.7. This allows for number of times each patient visited the clinic at 

a glance. The highest number of visits by a patient was eight, with the lowest number being 

just one, although on average three visits were attended per patient. Each patient is due to 

visit the melanoma clinic every three months, unless otherwise decided that every six 

months was sufficient or in the event of a suspected relapse.    

Table 4.7 highlights the fact that not all patients consent date was the same as their baseline 

visit date. In addition to this, the number of days labelled underneath the date of visit 

indicates the difference in days between the scheduled visit and when the patient was seen 

at the clinic. It was often the case that patients came in a few days early or were seen a 

couple of weeks late but there was in fact one occasion where a patient was + 151 days, 

indicating there was over 21 weeks between when they were ideally supposed to be seen 

and when they actually were. This information was very informative when investigating the 

ability of ATR-FTIR spectroscopy to monitor patient progression, which will be discussed in 

Chapter Five. 
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4.3. Patient Demographics  

Table 4.8 details the demographic information of the 110 consented patients. As can be seen 

from Table 4.8, there is around double the number of males to females, although only two 

years of difference when it comes to the average age. It can also be seen from the table that 

41 % of patients were classified as high-risk at their baseline visit based on guidelines which 

will be detailed in Chapter 5, Section 5.1. However, briefly this means that those patients 

have less than a 50 % chance of surviving the next five years and are advised to visit the clinic 

every three months. Additionally, during the project, 19 patients were informed that their 

cancer had returned. Out of these 19 relapsing patients, 11 of them were classified as high-

risk, potentially highlighting the need for rapid, minimally invasive and cheap method for 

detection of metastatic melanoma. Unfortunately, 19 patients either died or had to 

withdraw from the study. 

Table 4.8 - Patient demographic information 

 Number of Patients Average Age 

Women 35 67.8 Years 

Men 75 65.8 Years 

High-Risk Follow Up 45 
 

Relapsed 19 
 

Died/Withdrew 19 
 

 

Table 4.9 details information regarding the stage distribution of the patients, however only 

88 out of the 110 had their stage recorded. As can be seen from the table there was a high 

proportion of stage IV patients, in fact 58 % of the patients had advanced melanoma.  

Table 4.9 - Distribution of patient stage at baseline visit  

Current stage Number of Patients 

II b 1 

II c 6 

III 4 

III b 13 

IIIc 13 

IV 48 

IV a 3 
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Table 4.10 displays information regarding the organ in which metastases were detected at 

the patients’ baseline visit. From the table, ten patients were diagnosed with brain 

metastases, although only six of them were showing symptoms. The most common place in 

which metastases were diagnosed was the lymph nodes. This shows the importance of 

sentinel lymph node biopsies, which were discussed in Chapter 1. The second most common 

organ metastases were diagnosed was the lungs, followed by melanomas diagnosed on 

secondary skin sites. At the lower end of the spectrum were the diagnosis of bone 

metastases, occurring in 16 patients and liver metastases which were diagnosed in 11 

patients. 

Table 4.10 – The number of patients with metastases, displayed by organ in which found 

 Number of Patients 

Brain Mets At Screening 10 

Symptomatic Brain Mets 6 

Liver Mets 11 

Lung Mets 33 

Bone Mets 16 

Lymph Node Mets 42 

Skin Mets 21 

 

However, as mentioned in Table 4.9, 51 patients were diagnosed with metastatic melanoma, 

stage IV. It is evident from Table 4.10 that there were 139 organs diagnosed with metastatic 

disease. This is predominantly as result of many patients suffering the diagnosis of 

metastases in multiple organs. However, it is worth noting, that patients with lower stages, 

such as III b or III c can also be diagnosed with metastatic melanoma due to the identification 

of lymph node metastases, for more information on how the stage is determined see 

Appendix 2. Further to this, some of the 22 patients, who did not have their stage confirmed 

at their baseline visit, were also diagnosed with metastatic disease.  

Figure 4.1 displays the 24 combinations of organs where metastases were diagnosed, within 

the 72 patients identified as having metastatic disease. As can be seen from the Figure, most 

patients are diagnosed with metastatic disease in one organ. However, one patient was 

diagnosed with metastatic disease in five organs. 
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A general trend is presented, as the number of organs increase the number of patients 

diagnosed decrease. Metastases in one organ were diagnosed in 34 patients, metastases in 

two organs were diagnosed in 23 patients, three metastatic organs effected eight patients, 

four metastatic organs effected six patients and as mentioned, one patient was diagnosed 

with metastatic disease in their brain, lungs, skin, lymph nodes and further secondary skin 

sites.  
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Abstract and Aims 

In the UK, every two minutes someone new is diagnosed with cancer and every four minutes 

someone dies from the disease. Melanoma is the 5th most common cancer, with around 

15,400 diagnoses each year. Since the 1990s, the incidence rates of melanoma skin cancer 

have increased by 119%.  One of the largest concerns with cutaneous melanoma is that 

7 - 20% of patients have metastases at the time of presentation, with the most common sites 

of secondary tumours being the liver, bone and brain. This corresponds with poor prognosis 

and a life expectancy of around 6 – 9 months. Current diagnostic methodologies are 

subjective, time consuming and can require highly trained personnel. Early diagnosis of 

melanoma would allow for early intervention before metastasis occurs, which is beyond the 

capabilities of current diagnostic technologies. 

Therefore, this research aims to demonstrate the possibility of close therapeutic monitoring 

of melanoma skin cancer, through the analysis of 311 melanoma patient serum samples from 

110 patients using ATR-FTIR spectroscopy. These samples have been acquired over various 

time points (up to 8 repeat visits), dependent on the individual patient requirements and 

allows for the disease progression/response during therapy to be assessed.  

Due to the longitudinal nature of the project, the impact of the long-term storage of the 

samples in a -80 ᵒC freezer was assessed. Work presented here shows that there was no 

significant impact of storage over the course of 28 months.  

Knowledge of the BRAF status of a patient can allow for the administration of adjuvant 

therapies, potentially assisting in the management of melanoma. Therefore, the 

investigation in the ability of ATR-FTIR spectroscopy to determine the BRAF status of 

metastatic patients was assessed, producing sensitivities and specificities of 77.7 % and 75.0 

%, respectively. To further validate these results the data was resampled 96 times using RF 

and SVM, where an optimum sensitivity of 40.2 % and an optimum specificity of 81.0 % was 

produced.  This result suggests the ability of the technique to assist in the identification of 

negative BRAF patients, those who would not benefit from BRAF inhibitor treatment.  

A precision medicine approach was taken to explore whether individual patient disease and 

treatment journeys could be monitored. This led to the development of four disease profiles. 

The proposed profiles; 

i. Administered treatment 
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ii. Development of metastatic disease 

iii. Relapse of disease 

iv. Melanoma vs. non-melanoma disease 

were formed based on the exhibition of similar loadings plots from patients based upon 

developed patient inclusion criteria. The ability of ATR-FTIR spectroscopy at detecting 

differences at a molecular level, allowed for similarities in patient profiles under these 

groupings to be tentatively assigned to specific biomolecular components. These findings 

were supported by the investigation of a pseudo-control patient, who did not undergo any 

disease or treatment progression.  

This research presents for the first time, the spectroscopic analysis of a longitudinal biobank 

composed of melanoma patient samples. The results obtained highlights the influence of 

distinct classes when using sensitivity and specificity to measure model accuracy and 

importance of correct clinical note taking. The effect this has on the development and 

translation of a novel diagnostic tool will be discussed.   
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5.1. Introduction 

In the last 30 years, mortality rates for melanoma have increased by 156 % in the UK 1. 

Advancing ages, lighter skin pigmentation, a history of intense UV exposure (sunlight/tanning 

bed), a personal history of dysplastic nevi (moles abnormal in appearance, but benign), prior 

melanoma or a familiar history  are all risk-factors attributed to melanoma 6. Although, 

mortality rates are highly dependent on incidence rates, they are also dependent on how 

successful the healthcare system is at diagnosing and treating disease 7.  The increase in 

incidence rates has been attributed to the increased exposure to UV radiation, accounting 

for between 68 – 97 % of melanoma cases 8. This has led to an increased focus on the primary 

prevention of melanoma, through educating the importance of applying sun protection 9.  

Secondary prevention, via the early detection of melanoma should be feasible as it is usually 

visible on the surface of the skin, while in the curable stage. In fact, 96 % of melanoma 

tumours with a thickness of less than 0.76 mm, referred to as the Breslow thickness, are 

curable through resection 10. However, when the tumour reaches a Breslow thickness of 

3.6 mm, significantly lower survival rates are encountered. Detecting melanoma before the 

disease metastasises beyond the primary tumour site, dramatically impacts the 5-year 

survival, as highlighted in Table 5.1.  

Table 5.1 - Approximate 5-year survival rates for cutaneous melanoma depending on stage 

Stage of Melanoma Approx. 5-year survival rates 

I > 95 % 

II 78 - 85 % 

III 50 - 54 % 

IV 8 - 25 % 

 

Figure 5.1 shows the optimum clinical pathway for a patient following an appointment with 

a general practitioner (GP). Around 41 % of melanomas are diagnosed via the 2-week wait 

referral system, with a lower proportion diagnosed in an emergency (3 %) 11. Comparing 

these statistics to that of the central nervous system (CNS), where 1 % are diagnosed via the 

2-week wait referral system and 62 % via an emergency, it is evident that not only is the 

primary care system is effective, but the ability for melanoma to be detected visually can 

lead to its identification. Tumours of the central nervous system can develop without any 

visual signs, only presenting when symptoms become unbearable for the patient. 
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It was considered that the identification of high-risk melanoma patients would allow for 

increased monitoring and improve overall survival rates, through secondary care routes 12. 

In 2013, the UK defined the meaning of “high-risk” through the analysis of published survival 

rates and the AJCC staging system. It was decided that patients with less than a 50 % chance 

of surviving the next five years, those with lymph node involvement or T4b tumours were 

categorised as high-risk. The NICE guidelines have made recommendations on; follow-up 

schedules, point of discharge and whether screening investigations should take place, 

detailed in Table 5.2. 

Table 5.2 – NICE follow-up appointment recommendations 

Stage Follow-Up Schedule Discharge  Screening Investigations  

IA 2-4 in the first year after 

treatment completed 

After 1 year Do not routinely offer 

IB-IIB, IIC (fully 

staged using SLNB) 

every 3 months for 3 

years, then every 6 

months for the next 2 

years 

After 5 years Do not routinely offer 

IIC (no SLNB), III every 3 months for 3 

years, then every 6 

months for the next 2 

years 

After 5 years Consider surveillance 

imaging and eligibility 

for systemic therapy 

IV personalised follow-up N/A N/A 

 

Table 5.2 highlights that only patients with Stage IIC or III are recommended to receive 

screening investigations. Although, additionally to the recommendations discussed in the 

table, those patients with previous dysplastic nevi, previous melanoma, or a history of 

melanoma in first-degree relatives are advised to be treated personally and not categorised 

based on stage. Diagnosing and monitoring patients through differential follow-up 

appointments and imaging can be complex, lengthy and expensive.  Cost, is generally a 

secondary consideration when it comes to the treatment of cancer, however as stated by 

Saїd et al. 13 treating a single stage I patient is approximately 40-fold less than the cost of 

treating a Stage III/IV patient. In fact, the care and management of these patients account 

for 90 % of the total annual costs 14. This suggests that not only would an early detection 
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method aid patient mortality, but it would also dramatically reduce the economic impact of 

melanoma.  

Due to the aggressive nature of melanoma it is often the case that diagnosis occurs following 

metastasis beyond the primary site 15. Current detection methodologies including; 

histopathological examinations of excision biopsies, CT (computed tomography) scans and 

magnetic resonance imaging (MRI), are subjective, time consuming, require highly trained 

personnel and often do not allow for a responsive clinical environment. Once melanoma is 

advanced, treatment becomes difficult as surgery is no longer an option 14, 15. Despite the 

significant efforts to develop new therapies for the treatment of melanoma, including the 

use of targeted and immunotherapies, patients with advanced disease (Stage IV) continue to 

have a poor prognosis of approximately 6 – 9 months 18. The most effective way to combat 

this problem is through earlier diagnosis of melanoma, allowing for early intervention before 

metastases occurs 19, which can be advanced beyond the capabilities of current curative 

treatment.  

Over the last 10 years, the use of vibrational spectroscopy directed towards clinical problems 

has achieved considerable success in a wide variety of cancers 20, 21. Spectroscopic 

techniques, such as Raman and IR have improved over recent years, and are now 

demonstrated to be quick, cost-effective, simple-to-operate and often require minimal 

sample preparation. Biomedical spectroscopy has been used to diagnose a wide range of 

pathologies, including cervical cytology 22, brain cancer 23, endometrial cancer 24, 25 and 

prostate cancer 26, 27 with high sensitivity and specificity. The use of a rapid diagnostic method 

based upon blood serum samples would allow for a relatively non-invasive test that could 

open-up the possibility of monitoring high-risk patients and therapeutic progression 28. 

However, detection and therapeutic monitoring can only be revolutionised by enabling 

translation of this technique, which is estimated to take up to 17 years 29. The process can 

be facilitated by addressing pre-analytical factors and understanding the translation into 

clinics prior to experimental proof-of-principle studies.   

Previous research by Lovergne et al. looked at multiple pre-analytical factors. To begin with 

the impact of biofluid volume and dilution was investigated. Transmission serum and plasma 

spectra were obtained using a high-throughput module (HTS-XT) coupled to an FTIR 

spectrometer.  Pure, 2-fold, 3-fold and 4-fold dilutions using saline (0.9 % NaCl) were 
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prepared and deposited onto two different Si plates, varying the volumes. 10 spectra were 

acquired from each sample, which were the quality tested, using algorithms based on 

absorbance intensity and the signal to noise ratio (SNR). Samples were deemed valid, when 

8/10 spectra passed the quality test. Results demonstrated that the use of 1 µL of serum, 

without dilution or spreading of the droplet lead to the majority of spectra being validated 

and as pointed out by the authors, this is highly relevant when considering clinical 

applications. Depositing biofluids with no dilution and no spreading would be the ideal 

approach for a high-throughput technology, minimising operator discrepancies and ensuring 

reproducible results.  

To determine day to day reproducibility the authors analysed serum from three patients over 

three consecutive days. Following hierarchical cluster analysis (HCA), which groups spectra 

in accordance with their degree of similarity 30, the dendrogram produced shows clustering 

based on patient information. This demonstrates that patient variation is greater than that 

of day to day variation. To mimic a normal working day within a clinical environment, a 

similar set of analysis was performed. Three different operators used the same 

instrumentation, on the same day, to analyse the same samples. Again, visualisation of the 

results was achieved using HCA and principal component analysis (PCA), which revealed that 

spectral reproducibility was operator-independent.  

Finally, another large topic of interest investigated by Lovergne et al. was the impact of 

repeated freeze-thaw cycles, through the analysis of fresh serum as well as serum after five 

consecutive freeze-thaw cycles.  The spectral profiles were studied using HCA and PCA. Both 

sets of analysis show a clear separation between the fresh serum samples and the serum 

samples having undergone freeze-thaw cycles. However, concluded that FTIR spectroscopy 

did not have the ability to distinguish the difference between the five freeze-thaw cycles.  

Further information on other pre-analytical factors, such as; the impact of the dilution 

solvent, the impact of the type of anti-coagulant, intra- and inter-plate spectral 

reproducibility and the impact of dry modalities on spectral reproducibility can be found 

within this referenced research paper. Developing this work, research discussed in this 

Chapter, investigates the long-term storage of serum samples, addressing a large concern 

relating to biobank studies.  
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In addition to considering the impact of pre-analytical factors, sample throughput is crucial 

to blood processing. In the secondary care setting, serum tests are performed by biomedical 

or pathological laboratories located within the hospital. From conversations with NHS 

biomedical scientist and laboratory managers [unreferenced, private conversation] these 

laboratories are required to process approximately 300 - 350 blood samples per day, 

performing on average, 10 tests per sample. This leads to a total of 3000 – 3500 blood tests 

requested on a daily basis. To enable this level of testing the majority of tests within the 

laboratory are either able to be conducted within a short period of time (seconds to minutes) 

in a flow analysis process or require batch preparation for a high throughput analysis 

approach. Classical FTIR analysis methods, in particular ATR based, are based upon the 

analysis of single samples at a time and are not suitable for the clinic. This is mainly as a result 

of the 8-minute drying time required before analysis takes place, leading to 34 minutes of 

analysis per patient 31.  

To enable batch preparation and high throughout analysis, novel developments within the 

Spectral Analytics Laboratory have led to the production of a high throughput approach 

based upon silicon ATR IREs. The removal of the air-drying step on IRE and the 

implementation of batch drying drastically speeds up analysis and a patient can be analysed 

with 15 minutes, saving weeks of analysis time. These developments, shown in Figure 5.2, 

are currently undergoing commercialisation via the prospective spin-out company ClinSpec 

DxTM (www.clinspecdx.com).  

 

 

 

 

 

 

Figure 5.2 -Batch based drying process for a serum based spectroscopic clinical test 

This research focused upon the exploitation of the silicon ATR IRE slides for the analysis of 

human serum concerned with melanoma detection and the development of this novel 

technology has been performed externally to this research project. 

Routine 
serum 

sample 

3 µL pipetted onto 
ClinSpec DxTM SIRE 

slide 

Batch sample 
drying 

and storage 

IR analysis with 
ClinSpec Dx high-

throughput 
attachment 

Classification of 
cancer or non-cancer 
via the ClinSpec DxTM 
Triage ID™ serum test 

http://www.clinspecdx.com)/
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Early diagnosis of melanoma would allow for early intervention before metastases occurs, 

which can be advanced beyond the capabilities of current curative treatment. Early diagnosis 

would improve patient survival, allowing for a better quality of life. In addition to the 

consideration of survival outcomes, for a test to be translated it needs to provide economic 

benefit for healthcare system. The National Institute of Clinical Excellence guidelines state: 

 

“We base our recommendations on a review of clinical and economic evidence. 

• Clinical evidence shows how well the medicine or treatment works. 

• Economic evidence shows how well the medicine or treatment works in relation to 

how much it costs the NHS - does it represent value for money?” 

 

Gray et al. have recently published an early health economic study on the application of a 

serum spectroscopic intervention for brain tumours 32.  The study discussed the use of 

cost-effectiveness analysis to determine the effects on health outcomes and health service 

costs of implementing serum spectroscopic test into both primary and secondary care 

scenarios. The main health outcome considered was quality-adjusted life-years (QALY) and 

through incremental cost-effectiveness ratios (ICER). The research concluded that the ICER 

of the spectroscopic test was below the threshold of £20,000 - £30,000 per QALY, in the UK, 

providing the test did not exceed £100. It was also stated that the test would be cost effective 

with sensitivities and specificities as low as 80 % although, the cost of the test would need to 

be lowered in conjunction with the lower sensitivities and specificities. The evaluation 

concluded that as a diagnostic tool, serum spectroscopy could deliver improvements in 

health outcome and reduce costs in the primary care setting. The overall positive economic 

benefit of the serum spectroscopic approach can be transferred across when considering the 

detection of melanoma but future economic studies on this specific intervention will be 

required to enable translation. 

The development of a blood based spectroscopic profile for melanoma would allow for the 

early detection of primary cancer, but also allow for the therapeutic monitoring and 

progression of disease. Genomic profile investigations are advantageous, and the use of 

adjuvant therapies based on these results, for melanoma is on the horizon 33, 34. For example, 

Long et al. 35 investigated the use of administering dabrafenib, a BRAF inhibitor in 

combination with trametinib, a MEK inhibitor to improve survival of patients with advanced 
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melanoma. However, only 50 % of lesions from patients with metastatic melanoma have a 

BRAF V600 mutation 36.   

Through the spectroscopic analysis of serum samples obtained each time the patient visits 

the clinic; this research will allow for us to understand spectral signatures related to 

metastatic status. From the discrimination of metastatic vs non-metastatic patients, this 

research proposes a spectroscopic method for the identification of blood-based markers to 

determine who, after surgery, has a higher risk of relapse. The aim is to target these high-risk 

patients without the need for an exploratory follow up scan or a genetic test, allowing for 

intervention of treatment as well as saving time, money, and ultimately, lives. Additionally, 

due to the reported importance of the BRAF V600 mutation in clinical treatment decision 

making, the genotype to phenotype relationships in high-risk patient populations will be 

investigated. 

5.2. Materials and Methods 

5.2.1. Pre-Clinical Validation 

To determine the long-term stability of serum samples, 100 µL serum aliquots were prepared 

using commercially available, whole, sterile, filtered, mixed pool human serum (TCS 

Biosciences, UK) and stored at -80 ᵒC. The samples were analysed over a period of 28 months, 

leading to the production 21 data sets.  

5.2.2. Patient Study 

Following consent, patients attending the melanoma clinic at Royal Preston Hospital donated 

serum samples, at recruitment, at their NHS follow-up appointments and at any clinical 

events such as diagnosis of brain metastases or cancer relapse. To isolate the serum, blood 

samples were left to clot for 30 – 60 minutes, before being spun at 2200 g for 15 minutes, at 

room temperature. A Pasteur pipette was then used to prepare 1 ml aliquots of both serum 

and plasma before transferring them to cryoboxes and stored at -80 ᵒC. For this study the 

discussion of serum samples only will occur. This led to the production of up to eight serum 

samples per patient forming a biobank containing 297 longitudinal samples. Further patient 

information is available in Chapter Four. 
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5.2.3. Data Collection Using ATR-FTIR Spectrometer 

The sample sets were randomised prior to analysis and all serum samples were fully thawed 

at room temperature before spectral collection. A calibrated pipette (Gilson, UK) was used 

throughout all analyses.  

5.2.3.1. Pre-Clinical Validation 

A Cary-600 series FTIR spectrometer (Agilent Technologies, CA, USA) was used to collect 

ATR-FTIR spectra using a MIRacle TM single reflection ATR configured with a diamond (Di) 

crystal plate (PIKE Technologies, WI, USA). A wavenumber range of 4000 – 600 cm-1 was used, 

with a spectral resolution of 4 cm-1 and co-adding 32 scans. A background spectrum, also 

composed of 32 co-added scans and using the same spectral range, of the ambient 

conditions was automatically subtracted by the Pro Resolution software (Agilent 

Technologies, CA, USA) to create the sample spectrum. Following any spectral collection 

Virkon disinfectant (FisherScientific, UK) and 99.5% ethanol (Thermo Scientific, UK) was used 

to clean the crystal prior to the next sample being analysed. The spectra also underwent an 

ATR correction applied by the software prior to the importation to Matlab TM (The 

Mathworks Inc, USA) for further analysis using in-house written and open source coding.  

1 µL of serum was pipetted onto the crystal and analysed in triplicate while in the liquid state, 

before the serum was analysed in an air dried state, again in triplicate. This analysis was also 

repeated in triplicate, producing 54 spectra, for each of the 21 time points. 

5.2.3.2. Melanoma Patient Study 

ATR-FTIR spectra were recorded using a Spectrum Two FTIR spectrometer (Perkin Elmer, MA, 

USA). A spectral range of 4000 – 450 cm-1, a resolution of 4cm -1 and 16 co-added scans were 

used to analyse 3 µL of patient serum. The serum was pipetted onto each well of a silicon 

internal reflection element (SIRE) (Clinspec Dx TM, UK) producing one slide per patient, per 

visit. Samples were analysed in the air dried state, after being allowed to dry in an incubator 

for 60 minutes. Background spectra were obtained prior to the analysis of each slide. Perkin 

Elmer Spectrum, Version 10.5 was used to view the live spectrum before spectra were 

obtained.  

5.2.4. Data Pre-Processing 

Matlab (Mathworks, USA) was used to carry out all pre-processing and data analysis, with 

additional data analysis using PRFFECT 37 and RStudio (RStudio Team, 2016, RStudio: 

Integrated Development for R. RStudio, Inc., Boston, MA). Pre-processing was used to 
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remove any non-biochemical components of the spectra, enabling an enhanced analysis of 

any biomolecular variations.   

5.2.4.1. Pre-Clinical Validation 

Two different pre-processing steps were carried out on the pre-clinical validation data.  

5.2.4.1.1. Pre-Processing: i) Noise Reduction, Vector 

Normalisation 

The full spectrum was cut to 1800 – 900 cm-1 prior to pre-processing, Figure 5.3 (a) and (b). 

Based on previously developed methodology 31 , a principal component-based noise 

reduction, using the first 30 principal components of the data, was carried out to improve 

the signal-to-noise ratio, Figure 5.3 (c). The spectra were then vector normalised, using 

University of Strathclyde, in house written software, Figure 5.3 (d).  

 

Figure 5.3 – Pre-processing steps for the first method (method (i)) of using a PC based noise reduction 
followed by vector normalisation 
a: full spectra, b: fingerprint spectra, c: principal component-based noise reduction spectra and d: vector 
normalised spectra 

(a) (b) 

(c) (d) 
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5.2.4.1.2. Pre-Processing: ii) Derivative, Vector Normalisation 

The spectra were cut to a fingerprint region of 1800 – 1000 cm-1. A second derivative 

spectrum was then obtained, Figure 5.4 (a), prior to a vector normalisation being applied, 

Figure 5.4 (b). 

5.2.4.2. Melanoma Patient Study 

Due to the use of the SIREs a different pre-processing methodology was used. Before 

performing any analysis on the melanoma patient data using Matlab an extended 

multiplicative signal correction (EMSC) was applied, using a silicon reference spectrum to 

correct any baseline shifts. The data was then cut to 4000 – 1000 cm-1, before being scaled 

between 0-1.  

5.2.5. Data Analysis 

5.2.5.1. Pre-Clinical Validation 

Following pre-processing the data was mean centred and was then examined using PCA 38  

to determine if there were any differences in the serum samples following various storage 

times at -80 C. To do so, the data was exported to an in-house written graphical user 

interface (GUI), developed by the Spectral Analytics Laboratory.  

5.2.5.2. Melanoma Patient Study 

Due to the complexity of the data, multiple preliminary PCA exploratory studies (again, 

following mean centring) were carried out. This was done by exporting the pre-processed 

data from Matlab to the in-house written GUI. Following on from this initial data analysis, to 

Figure 5.4 - Pre-processing steps for the second method (method (ii)) of determining the second derivative, 
before vector normalisation. 
Following the selection of the fingerprint regions, a: second derivative spectrum and b: vector normalised 
spectra 

(a) (b) 
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produce classification values using random forest (RF) the data was exported from the GUI 

to RStudio.  

The use of PRFFECT 39, a computer program designed and produced by members of the 

Spectral Analytics Laboratory was used to run a random forest classification, using the 

default settings of the random forest package within R.  The data was split into 75 % training 

set and 25 % test set, based on patient population to ensure spectra of the same patient visit 

did not appear in both the training and test set. The data was re-sampled 96 times with the 

mean of these being recorded as the output results. The output of the analysis provides a 

wide variety of data including classification metrics as well as plots highlighting the 

importance of the individual wavenumbers to the classification models.   

The use of PRFFECT II was used to carry out further classification analysis using partial least 

squares discriminant analysis (PLS-DA) and support vector machine (SVM). In order to 

combat the imbalance of the data sets analysed an over-sampling approach known as 

synthetic minority over-sampling technique (SMOTE) was used. This varies from standard up- 

or down- samples in the sense that the minority class is over-sampled by creating “synthetic” 

examples rather than by over-sampling with replacement 40. 

5.3. Results and Discussion 

5.3.1. Pre-Clinical Validation 

As mentioned, two different pre-processing methods were used. The first based on work 

carried out by Hands et al. in 2014, used to discriminate between high-grade and low-grade 

glioma serum samples from non-cancer serum samples. The high sensitivities and 

specificities of 93.75 % and 96.53 % respectively, demonstrate the possible effectiveness of 

cutting the data to the fingerprint region, carrying out a principal component-based noise 

reduction before vector normalising and is considered a good starting point to determine 

any differences between freezer storage durations. Secondly, following a grid search method 

carried out by Clinspec Dx, determined that a second derivative and a vector normalisation 

produced the best classification of serum samples using a diamond IRE, leading to this 

becoming the second method of choice for this study. 

During the project an electrical fault, caused the temperature of the -80 C freezer to rise to 

-20 C for a period of approximately 24 hours. This caused interruption to the study at month 
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10. As such, the study was restarted whilst also analysing the previous samples. This led to 

the production of two sample sets: 

• Pre-electrical fault: month 1 – month 28 

• Post-electrical fault: month 1a – month 14a 

 

The data was examined as a complete data set to determine if the electrical fault caused any 

significant issues with the serum samples. This fault could be one experienced by hospitals 

or biobanks, providing an extra level of investigation to this study. 

The data was examined using PCA, a technique used to explore and visualise any variation in 

the data by highlighting strong patterns with in it. Figure 5.5 shows the results of this analysis, 

following the first pre-processing method, and show that there are not only no separations 

before and after the electrical fault, but that there is no separation based on the length of 

time samples were stored in the -80 C freezer for. This deduction is evidenced by the 

groupings seen in the scores plots Figure 5.5 (a), (c) and (e), and the loadings plots (b), (d) 

and (f), which determine the wavenumbers responsible for groupings or separation.   

The first three principal components provide information on 89.5 % of the total variance. 

Principal component one is responsible for the largest variance within the data, the 

distribution of the scores plot in Figure 5.5 (a), is sporadic with no overall pattern. The 

corresponding loadings plot, Figure 5.5 (b) provides information the spread across the zero 

line of principal component one is attributed to amide I bands between 1700 – 1600 cm-1 

due to the stretching vibrations of the C=O and C-N groups and the more complex amide II 

region of 1580 – 1510 cm-1 resulting from the N-H bending, C-N stretching and the C-C 

stretching modes. However, as much as this describes the spread across the first principal 

component, these wavenumbers are also responsible for the strong groupings seen in 

principal component two, Figure 5.5 (c) and principal component three, Figure 5.5 (e), where 

the scores are centred around the zero point. This is considered to be as a result of the 

heterogeneity of samples like human pooled serum. Serum is thought to contain over 20,000 

different protein structures and other biomolecules with different concentrations of each 

being aliquoted and analysed with every sample. Figure 5.5 (f), the loadings plot associated 

with the principal component three, highlights a large peak around 1100 cm -1, providing 
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information that the scores on the positive side of the zero line are present due to differences 

in carbohydrate structures 41. 

 

Following the second pre-processing method, using a second derivative and vector 

normalisation, the results from PCA can be seen in Figure 5.6. The scores plots shown in (a), 

(c) and (e), explain 82.9 % of the total variance and show a wider spread than those in 

Figure 5.5 - Results from PCA investigating the long-term stability of human pooled serum samples, following 
pre-processing method (i). (a, c, e): Scores plots, (b, d, f): Loadings plots 

(a) (b) 

(c) (d) 

(e) (f) 



 

193 
 

Figure 5.5. The first observation is the amount of variance explained by the first two PCs, 

which is 39.0 % and 34.7 % compared to the 69.5 % and 11.4 %, seen in the previous set of 

results (Figure 5.5). This leads to the assumption that most of the variance is spread over the 

first two PCs opposed to just the first, put down to the use of derivative spectra. Taking 

derivatives of spectra allow for the deconvolution of broad peaks, allowing for minor 

differences or similarities to be identified. Both principal components one and three spread 

the data over the zero line, as can be seen in Figure 5.6 (a) and (b). Although the loadings 

plots associated with these PCs (Figure 5.6 (b) and (f)), show a higher level of detail than 

those in Figure 5.5, the overall tentative wavenumber assignments are the same as 

previously discussed. 

On the other hand, principal component two, allows for the identification of specific months, 

particularly months 6a (dark pink) and 20 (cyan) on the negative side of the of scores plot, 

Figure 5.6 (a) and (e). However, through the study of the loadings plot associated with PC2, 

Figure 5.6 (d), an insight as to why this may be the case is not provided. The wavenumbers 

present in the negative region of the loadings plot are the amide I and amide II regions 

around 1620 cm-1, 1540 cm-1 and 1510 cm-1. Further investigation led to the discovery that 

the humidity during analysis was increased to 59 %, opposed to the average of 38 %, 

potentially resulting in changes to the protein structures within the human pooled serum 

during analysis, rather than during storage.   

Concluding, through the analysis of human pooled serum sub-samples stored over a period 

of 28 months at -80 C and the examination of the data using PCA, no differences between 

samples can be determined. Results also highlight the ability of ATR-FTIR spectroscopy to 

determine the biological nature of human pooled serum samples due to the heterogeneity 

of such biofluids, but the lack of a specific separation or classification on the scores plots 

highlights the small size of these differences and can be deemed insignificant.  

Until now, clinical validation such as this was absent from literature and as pointed out by 

Lovergne et al. was a necessary step to achieve translation. This preliminary work was vital 

for this research project, due to its longitudinal nature, where samples were acquired every 

time the patient visited the clinic and the varying lengths of time samples from the same 

patient were stored.  This allows for the assumption that any differences between patient 
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samples discovered can be attributed to differences in the serum opposed to the length of 

storage time.  

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5.6 - Results from PCA investigating the long-term stability of human pooled serum samples, following 
pre-processing method (ii) via a second derivative and vector normalisation. (a, c, e): Scores plots, (b, d, f): Loadings 
plots 
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5.3.2. Patient Study 

5.3.2.1. Preliminary Analysis and Outlier Removal 

Following pre-processing, upon the initial inspection of the data two obvious observations 

were made. The first was the appearance of a flat top peak and the second was the significant 

outlier, both can be seen in Figure 5.7.   

Firstly, when examining individual spectra, the flat top peak is not apparent and is a plotting 

artefact, where all single spectrum group along the horizontal line at one on the y-axis. This 

occurs due to the 0 – 1 scaling, which results in the maximum of each spectrum equalling 

exactly one.  

Figure 5.7 – Fingerprint region spectra of the melanoma patient study, highlighting the apparent flat top 
peak magnified to show that it does not exist. Also shows the plasma outlier from patient 17, visit 6. 
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Further examination of the sample set and the cryotubes used to store the samples, it was 

discovered that the outlier seen in Figure 5.7 was due to the analysis of a plasma sample, 

rather than a serum sample. This led to further investigation into whether PCA had the ability 

to distinguish this sample amongst all the other serum samples. To do this, the specific 

patient and the corresponding visit, relating to the plasma sample was identified and the 

scores and loadings plots were examined.  

The scores plot in Figure 5.8 (a), shows that principal component one majorly, although not 

completely, separates the plasma (visit 6) from the serum samples (all other visits), which 

are grouped around the zero lines of both PC1 and PC2. Principal component one accounts 

Figure 5.8 – PCA scores differentiating the analysis of serum samples corresponding to visits 1-7 (a) and 
loadings (b & c) results from PCA, exploring the ability of ATR-FTIR to distinguish between plasma and 
serum samples, through the analysis of patient 17, visit 6.  

(a) 

(b) (c) 
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for 86.6 % of the total variance within the data, suggesting the difference between plasma 

and serum has the largest variance associated with it.  

Studying the loadings plots Figure 5.8 (b) and (c), the discrimination of plasma from serum, 

can be attributed to changes in the protein structure, through the tentative assignments of 

peaks around 1650 cm-1, which is the amide carbonyl group for a large variety of proteins 

and the N-H bending, C-N stretching and the C-C stretching modes of the aliphatic secondary 

amides between 1540 cm- 1 and 1450 cm-1. Despite both plasma and serum being derived 

following blood collection, plasma is isolated using an anti-coagulant removing the red blood 

cell and serum is obtained from coagulated blood via centrifugation 42. This results in serum 

lacking clotting factors such as fibrinogen. Both the loadings plots of PC1 and PC2 highlight a 

peak around 1400 cm-1, assigned to the C=O symmetric stretching vibrations of COO- of 

fibrinogen 43. From this small investigation, there is the possibility of discriminating plasma 

from serum, although a larger study would need to be used to determine the full potential 

of ATR-FTIR spectroscopy to do so.  

5.3.2.2. BRAF Status 

Firstly, the clinical data was explored to determine whether ATR-FTIR spectroscopy had the 

ability to distinguish between BRAF positive and negative patients. Around 50 % of 

melanoma patients have the BRAF V600 mutation, promoting tumour growth. However, the 

identification of these patients through genomic analysis allows them to be administered 

BRAF inhibitors either as treatment or as an adjuvant therapy, to help reduce the chances of 

metastases. The identification of patient BRAF status, through the spectroscopic analysis of 

a blood sample, could provide an efficient and time-saving alternative to current methods.   
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5.3.2.2.1. All Patients 

Only the first visit from each patient was investigated as the BRAF status of a tumour does 

not change, in addition to the fact it provided the largest sample set. Using PCA, the data set 

was explored for visual evidence of any separation between BRAF positive and negative 

patients (Figure 5.9). The first three principal components explain 84 % of total variance of 

the data, determining differences in the patient samples can be identified. However, the 

Figure 5.9 - PCA results from the investigation of BRAF status for all patients included in the melanoma study 
(a, c, e): Scores plots and (b, d, f): Loadings plots 

(a) (b) 

(c) (d) 

(e) (f) 
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scores plots in Figure 5.9 (a), (c) and (e), show radial shapes, with no distinct clustering of 

negative (green) and positive (blue) patients.  

When looking at the loadings plots of the first three PCs, Figure 5.9 (b), (d) and (f) highlight 

peaks associated with a biological spectrum, leading to the determination that any variance 

in the scores plot is a result of the inherent variance in the patient population. Examples of 

these peaks are the amide I and II around 1650 cm-1 and 1540 cm-1, lipid peaks at roughly 

1400 cm-1 as well as phosphate nucleic acid bands between 1250 – 1100 cm-1. Differences in 

these will be unavoidable due to the diverse composition of a patient serum samples, in 

addition to this sample containing 110 different patients.  

The initial RF analysis results produced a sensitivity of 62.4 % and a specificity of 34.3 %, as 

can be seen in Table 5.3. To allow for an understanding of these results, in this case, the 

sensitivity refers to the ability of the analysis to correctly identify those patients with the 

a positive BRAF status and the specificity refers to the ability of the test to correctly 

identify those patients with a negative BRAF status. The use of positive predictive value 

(PPV) and negative predictive value (NPV) are used to assist in the determination of how 

valuable a diagnostic test would be, based on the result achieved. The PPV, allows us to 

determine the likelihood that a patient is BRAF positive based on a positive test results, while 

the NPV allows for the likelihood of a patient identified as BRAF negative, based on a negative 

result to be determined.  

When using machine learning to analyse data, a proportion of the data is initially used to 

train the model, this is termed the training set. Following this, a proportion of data, termed 

the validation set is used to provide an evaluation of the model fit, while allowing tuning of 

the hyperparameters. Finally, the test set, is used to evaluate the model, when training is 

complete and will be the classification values discussed to evaluate competing models.  

A PPV of 50.7 % allows the determination that around half of the BRAF positive patients are 

identified correctly, and a NPV of 45.7 % tell us that 45.7 % of BRAF negative patients are 

identified as being so, again displaying a lack of diagnostic ability.  
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Table 5.3 - Results from the random forest analysis of positive vs. negative BRAF status (all patients) 

 

Figure 5.10 highlights the peaks around 1620 cm-1, tentatively assigned as the carbonyl 

stretching associated with the base within the nucleic acids, at approximately 1650 cm-1 

associated with the carbonyl stretching vibration of the amide I and finally the carbonyl 

stretches that are hydrogen bonded, seen at 1680 cm-1. However due to the low classification 

values outputted from the model, 62.4 % and 34.3 %,  for sensitivity and specificity, 

respectively, these wavenumber assignments do not infer much about the data and results 

such as this are not sufficient enough to be economically or diagnostically beneficial 32. 

Despite there being a lack of health economic assessment published for melanoma, by 

referring to findings published by Gray et al., with regards to a serum diagnostic test for brain 

tumours, sensitivities and specificities as low as 80 % would be cost effective However, the 

numbers produced in Table 5.3 are far from close to this.  

This data set is composed of samples acquired from patients after agreeing to be part of this 

research study. Therefore, many of these patients have undergone resections to remove 

tumours or are already receiving treatment, including BRAF inhibitors. The detection of a 

BRAF positive patient is only achievable through the detection of the BRAF V600 mutation 

within the tumour, if these patients are tumour free, the detection of the mutation is near 

Sens (CV) Spec (CV) PPV (CV) NPV (CV) Sens (TS) Spec (TS) PPV (TS) NPV (TS) 

64.0 % 40.2 % 74.2 % 29.3 % 62.4 % 34.3 % 50.7 % 45.7 % 

Figure 5.10 - Gini plot from the random forest analysis of positive vs. negative BRAF status (all patients) and 
tentative wavenumber assignments overlay 
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impossible. For this reason, a subsample of patients with or who had metastatic disease were 

selected to see if these results could be improved.  

5.3.2.2.2. Metastatic Patients 

The PCA results from the investigation into the BRAF status of metastatic patients are 

displayed in Figure 5.11. By studying the scores plot in Figure 5.11 (a), (c) and (e) it is evident 

that there is no visual separation of BRAF positive and negative patients. The first three 

Figure 5.11 - PCA results from the investigation of BRAF status for metastatic patients included in the 
melanoma study. (a, c, e): Scores plots and (b, d, f): Loadings plots 

(e) (f) 

(c) (d) 

(a) (b) 
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principal components account for 85.3 % of the total variance but the shape and distribution 

of the scores, allow the assumption that this variance is due to the natural difference 

between patient serum samples.  

The loadings plots of the first three PCs, Figure 5.11 (b), (d) and (f), support this, showing 

very little differences to those discussed above in Figure 5.9 (b), (d) and (f). The amide I and 

II regions are predominant in the PC1 and PC3, suggesting that the variance detected is due 

to protein structure.  

This data set was taken forward and analysed using RF within PRFFECT, using pre-processing 

external to the software program using PLS Toolbox (Eigenvector Research Inc., USA) to carry 

out the EMSC. Following on from this, the data was then pre-processed and classified using 

RF and SVM within PRFFECT II (Table 5.4). 

Table 5.4 – Results for the analysis of positive vs negative BRAF status for metastatic patients 

 

The optimal classification result achieved was a sensitivity of 77.7 % and a specificity of 

75.0 %, through the initial RF analysis using PRFFECT I. However, this data was not 

re-sampled, and these results are from one set of analysis. The use of PRFFECT II led to 

re-sampling the data 96 times and is considered to be the reason for the dramatic differences 

 Sens 

(CV)  

Spec 

(CV) 

PPV 

(CV) 

NPV 

(CV) 

Sens 

(TS) 

Spec 

(TS)  

PPV 

(TS) 

NPV 

(TS) 

RF 

(PRFFECT I) 

69.1 % 46.3 % 81.0 % 31.1 % 77.7 % 75.0 % 94.9 % 35.7 % 

RF 

(PRFFECT II) 

28.5 % 80.2 % 43.9 % 67.5 % 31.5 % 81.0 % 45.3 % 70.5 % 

RF + SMOTE 

(PRFFECT II) 

38.1 % 75.7 % 45.5 % 69.5 % 39.0 % 76.6 % 46.0 % 71.9 % 

SVM 

 

40.9 % 78.9 % 51.1 % 71.3 % 38.5 % 79.1 % 47.9 % 72.4 % 

SVM + 

SMOTE 

38.9 % 78.4 % 50.0 % 70.4 % 40.2 % 76.8 % 47.8 % 72. 4% 
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in the results obtained, which were 31.5 % sensitivity and 81.0 % specificity.  This is supported 

by the comparison of the Gini plots, Figure 5.12, from the two sets of RF analysis, which 

highlight the use of different wavenumbers in the assignment of BRAF positive vs negative.  

The top Gini plot in Figure 5.12, shows classification based on the peaks at 1550 cm-1 assigned 

tentatively as amide II protein bands arising from the C-N stretching and the N-H bending 

vibrations, the peak at roughly 1635 cm-1 assigned to the β-sheet structures of the amide I 

as well as the carbonyl lipid stretch occurring at 1740 cm-1. In contrast, the bottom Gini plot 

demonstrates less emphasis on the amide I and II regions, suggesting protein structures are 

responsible for classification results, and has the inclusion of the peaks around 1700 cm-1, 

tentatively assigned as the carbonyl stretches of the nucleotide bases. This allows for the 

consideration that nucleic acids could be responsible for the classification.  

Figure 5.12 – Gini plots from the random forest analysis of positive vs. negative BRAF status (metastatic 
patients) and tentative wavenumber assignments overlay. 
Top: PRFFECT I, no re-sampling 
Bottom: PRFFECT II, 96 re-sampling 
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The use of PRFFECT II, and the low sensitivities of between 31.5 – 39.0 %, achieved from any 

machine learning techniques, suggest the models are poor at identifying a positive BRAF 

status, while the high specificities of 76.6 – 81.0 % suggest the models have the ability to 

identify a negative BRAF status. This provides evidence that the imbalance of the data set, 

23 positives to 45 negatives could be the resulting cause. The higher number of negative 

BRAF patients can lead the models to build a bias towards the negative status, through the 

model cleverly learning that the best option is to classify something as negative. However, 

the use of SMOTE analysis should have combatted this problem and as can be seen from 

Table 5.4, these results do not show an improvement. The use of the SMOTE sampling 

increase the RF and SVM models sensitivity by a maximum of 7.5 %, while reducing the 

specificities by up to 4.4 %. 

This is supported by the PPV and NPV, which range from 45.3 – 47.9 %, and from 

70.5 – 72.4 %, respectively. A low PPV range tells us that 47.9 % of patients with a positive 

BRAF status are correctly identified; however, the optimum NPV is 72.4 % showing that 

negative BRAF status is more likely to be identified. This result leads to the conclusion that 

the identification of BRAF through ATR-FTIR spectroscopy, may not be ideal for those who 

have a positive BRAF status. However, it could be useful in the determination of BRAF 

negative patients and assist with identifying those who would not benefit from BRAF 

inhibitor treatment or further genomic testing, saving time and money for health services. 

Although none of the results displayed in Table 5.4 are as high as the 80 % discussed in the 

health economic evaluation published in BMJ Open, the overall results are improved on from 

previous (Table 5.3). The sensitivity of the models run using PRFFECT II and the use of only 

metastatic patients produced a maximum sensitivity of 40.2 %, 22.2 % lower than that 

achieved from the use of all the patients. However, the comparison of the models run using 

PRFFECT I led to sensitivity increasing by 15.3 % to 77.7 %. The specificity of the models using 

the metastatic patients, increased by 40.6 % and 46.6 % for the use of PRFFECT I and II, 

respectively. While the evaluation discusses these classifications, values based on serum 

diagnostics for the determination of brain cancer, there is currently nothing of similar value 

for melanoma. The determination of BRAF status would occur following the diagnosis of 

cancer and would therefore be used in secondary care and carrying out a similar assessment 

would allow for comparisons to current clinical practise.  
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As the identification of a patients BRAF status is achieved through the detection of circulating 

DNA released by the tumour, further work needs to be conducted to fully determine the 

capability of ATR-FTIR spectroscopy to assist with the positive identification. Many of the 

patients within this study, especially those with metastatic disease, are on treatment; some 

of which include BRAF inhibitors.   

5.3.2.3. Precision Medicine 

The Precision Medicine Initiative from the National Institutes of Health (NIH) and multiple 

research centres within the United States 44 describes precision medicine as: 

"an emerging approach for disease treatment and prevention that takes into account 

individual variability in genes, environment, and lifestyle for each person." 

The approach aims to give clinicians the ability to predict how a particular disease will 

respond to the treatment and use of preventative medication, in a particular group of 

patients. It allows differences between individual patients to be considered, as opposed to 

treating the average person 45. 

5.3.2.3.1. Metastatic Disease 

As previously mentioned, the problem with melanoma is the rapid and aggressive nature of 

metastasis. Therefore, investigating whether ATR-FTIR can determine metastatic patients 

from non-metastatic patients could allow for the development of a metastatic profile or 

signature. Spectroscopic analysis of a serum sample, obtained from a minimally invasive 

blood test to identify metastasis, blood tests not only present a preferable option for patients 

in comparison to imaging techniques such as MRIs, but can be obtained more frequently due 

to availability of resources and the low cost. Obtaining a serum sample, for the analysis using 

spectroscopy, opposed to diagnostic imaging techniques would allow more frequent check-

up appointments to occur. These reasons would also permit more patients to be seen at 

these regular follow-up visits, for example those who fall short of being identified as high-

risk.  

The results from the previous section highlight the ability of PCA to identify natural variance 

within the patient data set opposed to any disease-based variance. Therefore, analysis using 

PCA was not completed for the discrimination of metastatic patients from non-metastatic 

patients and the use of RF and SVM was used to carry out this investigation.  
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The results from Table 5.5 show sensitivities ranging from 77.6 – 89.2 % and specificities 

ranging from 27.8 – 46.5 %. The high sensitivity and low specificity tell us that the tests are 

labelling patients who do not have metastatic disease, as patients with metastatic disease. 

The Gini plot from the RF analysis, shown in Figure 5.13, highlights the main wavenumbers 

responsible for the classification results. These peaks are; the protein peak at around 1550 

cm-1 due to the N-H bending and C-N stretching vibrations, the protein peak at 1640 cm-1 as 

a result of the amide I, the ester carbonyl peak at roughly 1740 cm-1 and finally the peak at 

1020 cm-1 as a result of nucleic acid structures 46.  

 

The optimal PPV of 71.0 % in a range of 67.4 – 71.0 % inform us that, 71.0 % of patients with 

metastatic disease are identified as having so. However, the lower PPV of 56.9 %, allows us 

to determine that around half of the test population with non-metastatic disease are 

identified as such. Results lead to the conclusion that the determination of metastatic 

Table 5.5 – Results for the analysis of metastatic vs non-metastatic patients 

 Sens 
(CV)  

Spec 
(CV) 

PPV 
(CV) 

NPV 
(CV) 

Sens 
(TS) 

Spec 
(TS)  

PPV 
(TS) 

NPV 
(TS) 

RF  79.1 % 39.6 % 69.9 % 51.6 % 80.5 % 42.0 % 70.2 % 56.4 % 

SVM 90.1 % 26.9 % 68.6 % 59.4 % 89.2 % 27.8 % 67.4 % 60.6 % 

SVM + SMOTE 77.2 % 42.3 % 70.3 % 51.7 % 77.6 % 46.5 % 71.0 % 56.9 % 

Figure 5.13 - Gini plot from the random forest analysis of metastatic vs non-metastatic patients and tentative 
wavenumber assignments overlay. 
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disease is reliable if you have metastatic disease but could be deemed as ineffective for those 

who do not have metastatic disease.  

The low classification values obtained from these analyses, could be attributed to the lack of 

non-cancer patients, although as previous, the SMOTE should have overcome this. The data 

set used for the determination of metastatic cancer vs non-metastatic, contained patients 

who were clinically disease free at the time of visit, but who could have suffered from 

metastatic cancer in the past and were in remission. Another factor is the wide range of 

metastatic diseases. There were 18 combinations of organs in which patients had metastatic 

disease identified. It is considered likely that the serum from a patient with metastases in 

their brain, would appear different to that of a patient with metastases in their brain, lungs, 

bone and liver. Additionally, the determination of disease based upon medical imaging and 

pathologically examination of tissue resections is considered to be subjective and can lead 

to inter-operative discrepancies 47. This combined with the fact that notes provided by 

clinicians are relied upon to create the classes within these groups could also contribute to 

the low classification values. 

For the full determination of the ability of ATR-FTIR spectroscopy in distinguishing metastatic 

melanoma from melanoma further work would need to be carried out and will be discussed 

in Chapter 7. 

5.3.2.3.2. Individual Patient Case Studies 

Following the investigation into whether ATR-FTIR spectroscopy had the ability to perform 

population-based classification and attaining sensitives and specificities in the region of 

77.7 % and 48.4 %, it was considered that a more effective way to investigate the possibility 

of developing disease profiles was to study individual patient journeys. This ensures 

personalised information is known opposed to the range and variety of information involved 

with a population-based study. To ensure the relevant patients were studied a patient 

criteria checklist was developed. For inclusion patients had to have: 

• Three or more visits to the clinic, resulting in analysis of three or more samples  

• Sufficient clinical information and data, ensuring no gaps in patient journey 

• Significant disease progression, patient who continued to remain cancer free 

throughout this project were not considered viable 
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• No treatment given prior to visit one (baseline visit), as the variety available could 

impact biological markers, detectable within the serum 

 

This criterion led to the study of 13 individual patients out of a possible 110. As no 

population-based classification was necessary, PCA was used to follow the patient’s disease 

progression and carry out therapeutic monitoring. Information regarding each patient’s 

individual disease progression and treatment was studied in conjunction with the results 

from the PCA. Then, loadings plots that showed similar patterns and discrimination profiles 

were grouped together. The peaks responsible for the similarity were then tentatively 

assigned, with the aim of developing profiles linked to patient journeys. Patients are 

described using their actual research study number and not a sequential numbering system. 
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Patient 1 

Results suggest that PC1 is responsible for the splitting of the groups, Figure 5.14 (b), based 

on the treatment plan of the patient. At visit one (red), which lies on the positive side of PC1, 

the patient was not receiving treatment, although subsequently began treatment at visit 

Figure 5.14 – Analysis of patient 1. (a) disease and treatment journey, (b, d) PCA scores differentiating the 
analysis of serum samples corresponding to visits 1-5, (c) and (e) PC loadings 

Visit 
1 

21.10.15 
metastatic 

disease, before 
treatment 

on ipilimumab 
treatment, stable 

disease 
30.12.15 

Visit 
2 

06.04.16 
disease getting 

worse, just started 
pembrolizumab 

Visit 
3 

14.12.16 
mixed response, some 

disease better but 
worsening disease in bone 

Visit 
5 

Visit 
4 

skin rashes on 
treatment but stable 

disease on scan 
20.07.16 

(a) 

(b) 
(c) 

(d) (e) 

PC1 

PC3 
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two, leading to the grouping of the remaining visits on the zero line or negative side of PC1.  

The loadings of PC1, Figure 5.14 (c), suggest this is due to changes in protein structure 

through the assignment of the amide I and II regions (1650 cm-1 and 1540 cm-1). Additionally, 

the peak around 1590 cm-1 in the positive region of the loadings plots could be assigned to 

the C=N, NH2
 stretching of adenine, highlighting changes in the nucleotide could be 

responsible for the splitting. Further analysis suggests that PC3, Figure 5.14 I could 

potentially be separating the visits out based on the evidence of new bone metastasis 

discovered on visit five (cyan). As well as the amide region being responsible for this 

discrimination, the phosphate region around 1100 cm-1 as a result of changes with the nucleic 

acid is also involved.   
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Patient 3 

 

The scores plot, 5.15 (b), provides evidence that PC2 splits the visits based on treatment, 

separating visit one (red), before treatment started with the remaining visits. Again, the 

amide I and II regions are responsible for this discrimination, although the region around 

Visit 
1 

21.10.15 
metastatic disease, 
before treatment 

On ipilimumab progressive disease, clinically worse 
20.01.16 

Visit 
2 

16.03.16 
Started pembrolizumab, much 

worse, new brain mets 

Visit 
3 

(a) 

(b) 

(c) 

(d) 

Figure 5.15 - Analysis of patient 3. (a) disease and treatment journey, (b) PCA scores differentiating the 
analysis of serum samples corresponding to visits 1-3, (c) and (d) PC loadings 



 

212 
 

1100 cm-1 is predominant, Figure 5.15 (c). This suggests changes in the phosphate region 

could also be responsible, however the multiple peaks present and the fact that the silicon 

lattice peaks appear in this region, suggest the SIRE may also be impacting on the separation. 

In addition, the scores plot, Figure 5.15 (b) shows that the third principal component 

separates visit three (green), where the patient relapsed, and new brain metastases were 

identified, from visits one and two. The positive region of the third principal component 

loadings Figure 5.15 (d) highlights that the peaks responsible for the grouping of visit two 

(orange) and visit three (green) are the amide I and II regions. The negative region of the PC3 

loadings suggests that the peak of the base carbonyl stretching in nucleic acids at 1620 cm-1 

is responsible for the placement of visit one (red) on the negative side of PC3.  
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Patient 19  

Visit 
1 

20.01.16 
Small volume of progressive 

disease, skin only 

stable disease on 
pembrolizumab 

20.04.16 

Visit 
2 

08.02.17 
Progressive disease 

in lungs 

Visit 
3 

Visit 
4 

Disease under control on 
dabrafenib/trametinib 

28.06.17 

(a) 

(b) (c) 

(d) 
(e) 

(f) 
(g) 

Figure 5.16 - Analysis of patient 19. (a) disease and treatment journey, (b), (d), (f) PCA scores differentiating the 
analysis of serum samples corresponding to visits 1-4, (c), (e) and (g) PC loadings 
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The results of patient 19 were difficult to interpret due to the change in treatment, from 

Pembrolizumab to Dabrafenib/Trametinib, as well as the metastasis of disease to the lungs. 

However, from the scores plot, Figure 5.16 (b), it is evident that PC1 shows separation based 

on treatment. Visit one (red) and Visit three (green) are visits corresponding to no treatment. 

From the loadings, Figure 5.16 (c), there are multiple peaks within the amide region 

suggesting protein structures are responsible for this. Referring to scores plots, Figure 5.16 

(b) and (f), as well as the loadings displayed in Figure 5.16 (e), PC2 appears to separate the 

data dependent on the identification of metastasis. As detailed in Figure 5.16 (a), at visit two 

the patient’s disease was stable, with treatment being administered. However, the 

identification of the progressive disease in the lungs was diagnosed at visit three, which 

occurred 203 days later than scheduled. It is considered a possibility that the progressive 

disease was detectable from the serum, prior to radiological detection. The loadings show 

additional peaks at roughly 1710 cm-1 and 1500 cm-1 due to lipid contributions from the C=O 

stretching and CH2 bending. Figure 5.16 (d) and (f) demonstrate that PC3 could highlight the 

differences between the different treatment options experience between visit two (orange) 

and visit four (pink). Although, there is a potential that the peak around 1100cm-1 present in 

all three of the loadings is a contribution from the silicon, displayed in the loadings plot, 

Figure 5.16 (g). This combined with the fact the separation is not exclusive, suggests 

discrimination based on disease or treatment is unlikely. 
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Patient 24 

Patient 24’s journey displays an initial diagnosis of metastatic disease, before responding 

excellently to treatment for around a year, until they were diagnosed with new brain 

metastases. From the scores plot, Figure 5.17 (b), PC1 shows to separate out visit five (cyan), 

which lies on the positive region of the principal component, from all other visits which lie 

on the zero line or negative region. This suggests that the serum obtained at visit five, could 

show metastatic disease, as following on from this visit the patient has brain mets resected 

in June 2017. The next sample was then obtained at visit six (dark blue), following resection 

and appears on the negative side of PC1. The main peaks of interest in the loadings plot, 

Figure 5.17 (c), are the amide I and II as well as the phosphate or silicon lattice region. Due 

to the closeness of these peaks it is not possible to determine which of these is the resulting 

22.07.16 
on pembrolizumab, excellent 

response to treatment 
clinically & radiologically 

PC1 

08.02.17 
on pembrolizumab, excellent 

response to treatment 
clinically & radiologically 

14.12.16 
on pembrolizumab, 

excellent response to 
treatment clinically & 

radiologically 

 

12.07.17 
New brain 

mets 
resected in 
June 2017 

Visit 
6 

Visit 
1 

04.02.16 
metastatic 

disease, before 
treatment 

20.04.16 
on pembrolizumab, 

excellent response to 
treatment clinically & 

radiologically 

Visit 
2 

Visit 
3 

Visit 
5 

Visit 
4 

Figure 5.17 - Analysis of patient 24. (a) disease and treatment journey, (b) PCA scores differentiating the 
analysis of serum samples corresponding to visits 1-6 and (c) PC1 loading 

(a) 

(b) (c) 
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cause, although the subtler view of the peak could suggest they are due to minor differences 

in the nucleic acid.  

Patient 5 

From studying the scores plot of Patient 51, Figure 5.18 (b), it was considered that PC3 

separated the visits out based on the treatment given. However, the lack of significant 

biological peaks in the loadings plot of PC3, Figure 5.18 (c), and the apparent peak around 

the silicon lattice region of 1100 cm-1m, explaining 6.1 % of the total variance it is suggested 

that this discrimination is purely experimental given the novelty of the SIREs and not due to 

any changes in the biomolecular structures present within the serum samples of this patient.  

Visit 
1 

26.05.16 
metastatic disease, before 

treatment- very low 
volume disease 

metastatic disease, 
before treatment- very 

low volume disease 
17.08.16 

Visit 
2 

16.11.16 
metastatic disease, 

before treatment- very 
low volume disease 

Visit 
3 

Visit 
4 

on pembrolizumab, 
C2 only, 

responding well 
14.06.17 

(a) 

(b) (c) 

Figure 5.18 - Analysis of patient 51. (a) disease and treatment journey, (b) PCA scores differentiating the analysis 
of serum samples corresponding to visits 1-4 and (c) PC3 loading 
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Patient 53 

The results from the analysis of Patient 53 suggest that it was possible to follow the disease 

progression via PC1, as shown in Figure 5.19 (b). The zero line of the scores plot represents 

Visit 
1 

01.06.16 
No evidence of disease 

metastatic disease, before 
treatment- very low 

volume disease 
07.09.16 

Visit 
2 

09.08.17 
responding to 

immunotherapy 

Visit 
3 

(a) 

(b) 
(c) 

(d) (e) 

Figure 5.19 - Analysis of patient 53. (a) disease and treatment journey, (b), (d) PCA scores differentiating the 
analysis of serum samples corresponding to visits 1-3, (c) and (e) PC loadings 
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no disease, visit one (red), while negative classifies metastatic disease, visit two (orange), 

and the positive represents the patient responding to treatment while still having disease, 

visit three (green).  The loadings of PC1, Figure 5.19 (c), shows that the discrimination is 

majorly down to the amide I and II peaks at 1640 cm-1 and 1540 cm-1 as there is little evidence 

of anything more significant. PC3 could be indicative of disease vs. no disease.   However, 

not exclusively due to the spectra of one well from visit one (red) falling within the negative 

region of PC3. Principal component three could be identified as separating disease from non-

disease, highlighted by the scores plot in Figure 5.19 (d). However, the loadings plot of PC3, 

Figure 5.19 (e), is more complicated of that of PC1 where there are multiple peaks that could 

be classed as discriminating. The region around 1100 cm-1 could explain why the one well of 

visit 1, lies apart from the other and attributed to the silicon IRE.  Although the phosphate 

(PO2) asymmetric peak at 1240 cm-1, indicates that the region of 1100 cm-1 could be because 

of nucleic acid changes, in addition to silicon lattice vibration as this is the area where the 

symmetric PO2 appears.   The carbonyl stretching peak at 1690 cm-1 due to primary amides 

in addition to the slight appearance of the amide I and II suggests that changes in protein 

structure are also responsible for the separation of metastatic disease vs disease.  
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Patient 61 

Exploration of the scores, Figure 5.20 (b), and loadings plot, Figure 5.20 (c), from PCA 

demonstrates that PC1 separates out the point when patient 61, was diagnosed with 

metastatic disease at visit two (orange). The loadings suggest this is due to changes in the 

protein structures within the serum, based on the identification of the carbonyl peak around 

1720 cm-1 and the amide I and II peaks at 1650 cm-1and 1540 cm-1. Changes in nucleic acid 

could also be responsible based on the strong peak at 1100 cm-1 also seen in the loadings of 

(c) 

(d) 

Visit 
1 

28.07.16 
Well, no disease 

metastatic disease, before treatment 
14.09.16 

Visit 
2 

19.10.16 
on treatment but no much response 

Visit 
3 

Visit 
4 

worsening disease 
22.02.17 

(a) 

(b) 

(c) 

(d) 

Figure 5.20 - Analysis of patient 61. (a) disease and treatment journey, (b), (d) PCA scores differentiating the 
analysis of serum samples corresponding to visits 1-4, (c) and (d) PC loadings 
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PC1. From the scores plot PC2 looks to distinguish between before and after treatment was 

started. During visit one (red) and two (orange) patient 61 was on treatment, however after 

visit three (pink) treatment was started. The corresponding loadings plot, Figure 5.20 (d), 

suggests this is again down to changes within the protein structures. 

Patient 62 

Visit 
1 

28.07.16 
Well, no disease 

Unwell, relapsed disease 
05.10.16 

Visit 
2 

21.12.16 
Responding to treatment  

Visit 
3 

Visit 
4 

progressive disease 
18.01.17 

(a) 

(b) 

(c) 

(d) 

Figure 5.21 - Analysis of patient 62. (a) disease and treatment journey, (b) PCA scores differentiating the analysis 
of serum samples corresponding to visits 1-4, (c) and (d) PC loadings  
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The scores plot of PC2, Figure 5.21 (b), discriminates the point of relapse, visit two (orange) 

from the rest of the visits. The loadings of this principal component 2, Figure 5.21 (c), 

suggests this is down to changes within the protein structures, through the identification of 

the amide region. The lower end of the fingerprint region highlights that changes of the 

nucleic acid may also be occurring. Again, from the scores plot, Figure 5.21 (b), PC3 can 

separate no disease, visit one (red), from disease, corresponding to all the remaining visits. 

Figure 5.21 (d), shows the loadings of PC3 and highlight that this is predominately down to 

changes within the amide II region. The sharp peaks around 1100 cm1 could indicate that, 

this separation is based on silicon lattice vibrations and could be the reason there is not an 

exact split between the visits. From the scores plot, it is evident that some of the repeats 

from visit two (orange) and three (pink) are close to that of visit one (red). 
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Patient 71 

The PCA of the data corresponding to patient 71, shows that the technique can separate the 

visits based on the formation of metastatic disease though the first principal component, 

evident from the scores plot, Figure 5.22 (b). At visit one (red) the patient has no disease, 

before metastatic disease is diagnosed at visit two (orange) and an excellent response to 

treatment Is defined at visit three (green). The loadings, Figure 5.22 (c), suggest this 

separation is due to the amide I and II regions at 1650 cm-1 and 1540 cm-1 and can be 

regarded at changes of the protein structures within the serum. From Figure 5.22 (b), PC2 

Visit 
1 

01.09.16 
Well, no 
disease 

metastatic disease, 
before treatment  

07.12.16 

Visit 
2 

10.05.17 
excellent response to treatment 

clinically and radiologically 

Visit 
3 

(b) 

(c) 

(d) 

(a) 

Figure 5.22 - Analysis of patient 71. (a) disease and treatment journey, (b) PCA scores differentiating the 
analysis of serum samples corresponding to visits 1-3, (c) and (d) PC loadings 
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has the ability to distinguish between when the patient has no disease, visit one, and when 

disease present, visit two and three. The loadings of this principal component, Figure 5.22 

(d), determine the majority of this is due to the amide I. 

ent 101 

 

Following PCA of patient 101’s data, PC2 distinguishes no treatment, based on the scores 

plot, Figure 5.23 (b). Visit one (red) from treatment, visit two (orange) and visit three (green). 

These differences can be attributed to the carbonyl stretching peak around 1670 cm-1 as well 

as the amide I and II at 1650 cm-1 and 1540 cm-1, respectively, all shown from the loadings 

plot of PC1, Figure 5.23 (c).  

  

Visit 
1 

08.02.17 
before treatment, new 

brain mets 

responding to BRAF inhibitors 
17.05.17 

Visit 
2 

09.08.17 
responding to BRAF inhibitors 

Visit 
3 

(a) 

(b) (c) 

Figure 5.23 - Analysis of patient 101. (a) disease and treatment journey, (b) PCA scores differentiating the 
analysis of serum samples corresponding to visits 1-3, (c) and (d) PC loadings 
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Patient 33: No Disease Progression (pseudo-control patient)  

Figure 5.24 - Analysis of patient 33. (a) disease and treatment journey, (b), (d), (f) PCA scores 
differentiating the analysis of serum samples corresponding to visits 1-3, (c), (e) and (g) PC loadings  

Visit 
1 

17.03.2016 
Well, no disease 

Well, no disease 
24.08.2016 

Visit 
2 

03.05.2017 
Well, no disease 

Visit 
3 

(b) (c) 

(d) 
(e) 

(f) (g) 

(a) 
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To allow for comparisons to be made a patient with no change throughout their time as part 

of this study was examined. As can be seen from Figure 5.24 (a), patient 33 remained well, 

with no diease at each of their three visits. Figure 5.24 (b), (d), and (f) show the scores plot 

from the PCA, and despite explaining 93.9 % of the the total variance, no form of 

discrimination between the visit is evident. The loadings plots (c), (d) and (g) suport this, with 

no resemblence to a biological spectrum. PC 1, Figure 5.24 (c), shows the amide I and II peaks 

at 1650 cm-1 and 1540 cm-1, but rather than representing seperation, those assignments 

represent the grouping of all three visits. The loadings of PC 2 and PC 3, Figure 5.24 (e) and 

(g) are extremly noisy and do not show significiant peaks worth assigning. This result suggests 

that observations made above correlate with the patient journeys. 

5.3.2.3.3. Development of Disease Profiles 

Through the investigation into individual patient journeys multiple events considered to be 

significant were identified. For example, the development of metastases, relapsing, 

administration of treatment or change of treatment and the diagnosis of disease could be 

identified from the ATR-FTIR spectroscopic results and PCA. 

Due to the strong silicon lattice vibration around 1100 cm-1 in the first three loadings of 

patient 19 (Figure 5.16), accounting for 96.7 % of the explained variance, it was decided that 

there was little or no diagnostic result obtained from the analysis of that patient.  In addition 

to this, the PCA results from patient 51 (Figure 5.18), also suggest the observed 

discrimination of treatment is due to vibrations of the silicon lattice and the novelty 

associated with the SIREs. The loadings plot associated with PC1, of patient 51 showed 

minimal biological information and as a result will also not be taken forward to the 

development of disease profiling. 

5.3.2.3.3.1. Development of a Treatment Spectral Profile  

During multiple patient journeys there were points where patients went from not receiving 

any treatment to having treatment administered. Figure 5.25 is composed of the specific 

loadings from individual patients, stacked on top of each other to highlight the peaks 

responsible for the discrimination between treatment and no treatment, discussed in 

Section 5.3.2.5.2.  

Figure 5.25 shows that each of the loadings has the same overall shape. The tentative peak 

assignments detailed in Table 5.6 and the grey bands highlight where these similarities are 
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originating from. In order to ensure continuity “Fourier Transform Infrared ( FTIR ) 

Spectroscopy of Biological Tissues”  written for the Applied Spectroscopy Reviews by 

Movasaghi et al. 48 was used to tentatively assign peaks. The predominant peaks are due to 

protein structure changes, through the identification of the peaks at 1694 cm-1, 1683 cm-1, 

1635 cm-1, 1553 cm-1 and 1451 cm-1. In addition, changes in the lipid components were 

identified by the carbonyl stretching mode at 1744 cm-1. Finally, more predominately in 

patient 61, is the identification of nucleic acid changes attributed to by the peaks at 1223 cm-1 

and 1114 cm-1.  

Figure 5.25 - Proposed treatment spectral profile 
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The principal components selected for patients 1, 3 and 101 allow for separation between 

visits where the patient goes from having metastatic disease receiving no treatment, to the 

subsequent visits where treatment was being administered. On the other hand, the principal 

component used for the separation of patient 61’s visits split the first and second from the 

third and fourth. At the first visit the patient had no disease, before being diagnosed with 

metastatic disease at visit two, and then going on to receive treatment during visits three 

and four. It is considered that this could be the reason for the additional nucleic acid peaks 

found in the profile of patient 61. This could be investigated further, where the assignment 

of the nucleic acid peaks could be as a result of identifying circulating free DNA, potentially 

indicative of a higher tumour volume, due to the presence of metastatic disease after being 

tumour free. 

Table 5.6 – Tentative assignments for the development of a treatment spectral profile 48 

Wavenumber (cm-1) Tentative Assignments 

1744 C=O stretching mode of lipids 

1694 β-sheet structure of the amide I (in-plane stretching of the C-N 

and in-plane bending on N-H bond) 

1683 C=O guanine deformation N-H in plane 

1635 β-sheet structure of the amide I 

1562 Ring base 

1553 CO stretching, predominately α-sheet of the amide II 

1451 Asymmetric CH3 bending modes of the methyl groups of proteins 

1223 Asymmetric (phosphate I), PO2
- 

1114 Symmetric stretching, P-O-C 

5.3.2.3.3.2. Development of a Metastatic Spectral Profile 

As discussed in Section 5.3.2.3.1, determining a profile for metastatic disease proved 

relatively difficult due to the differences in the organs in which metastasis occurred. However 

as can be seen by Figure 5.26, there are five patients that display very similar loadings plots, 

of those principal components that can distinguish the particular visit where metastatic 

disease was diagnosed.  

The identification of peaks appearing in all the loadings was challenging, therefore the 

identification of peaks which occurred in a majority were tentatively assigned. However, this 

could be due to the fact that patient journeys in this disease profile are relatively varied. For 
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example, both patients 1 and 24 presented with metastatic disease at visit one, were 

provided with treatment, before further metastatic disease was diagnosed. Patients 53 and 

71 presented well, with no disease at visit one, before being diagnosed with metastatic 

disease and both went on to respond well from treatment. Finally, patient 61 had a similar 

journey to patients 53 and 71, where no disease was evident at visit one, treatment was 

administered, although the patient was not responding by the final visit recorded. 

In saying that, the tentative peak assignments can be seen in Table 5.7, highlighted by the 

grey bands in Figure 5.26. Carbonyl stretching of lipids, as well as of the nucleotide bases, 

thymine and guanine, seems to be a distinguishing factor. Predominantly, similarities in the 

amide region have been identified. The protein structures present, identified by the peaks at 

1686 cm-1, 1675 cm-1, 1656 cm-1, 1648 cm-1 and 1639 cm-1, representing the amide I, as well 

as the amide II peaks at 1544 cm-1 and 1517 cm-1. Finally, nucleic acid structures appear to 

be responsible for the identification of metastatic disease through the assignments at 

1117 cm-1, 1086 cm-1, 1076 cm-1 and 1060 cm-1. Again, the assignment of nucleic acid peaks 

could be related to the amount of circulating cell free DNA detectable within the patient 

serum. Multiple research papers have proposed the possibility of using circulating tumour 

cells (CTCs) and circulating tumour DNA (ctDNA) linking the detection rate to the prognostic 

value of these potential biomarkers 49, but with little clinical significance 50.  
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Table 5.7 - Tentative assignments for the development of a metastatic spectral profile 

Wavenumber (cm-1) Tentative Assignments 

1733 C=O stretching (lipids) 

1706 C=O thymine 

1698 C2=O guanine 

1686 Amide I, disordered structure non-hydrogen bonded 

1675 Stretching C=O vibrations that are H-bonded 

Figure 5.26 – Proposed metastatic spectral profile 
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1656 Amide I 

1648 Amide I in normal tissues, for cancer is in lower frequencies 

1639 Amide I 

1576 C=N adenine 

1567 Ring base 

1557 Ring base 

1544 Amide II (bending of N-H, stretching of C-N) 

1517 Amide II 

1504 In plane CH bending vibrations rom the phenyl rings 

1489 In plane CH bending vibration 

1117 C-O stretching vibration of C-OH group of ribose (RNA) 

1094 Stretching PO2
- symmetric (phosphate II) 

1086 Stretching PO2
- symmetric 

1076 Stretching PO2
- symmetric 

1060 Stretching C-O deoxyribose 

 

5.3.2.3.3.3. Development of a Melanoma vs 

Non-Melanoma Spectral Profile 

The investigation into whether the development of a melanoma vs. non-melanoma profile 

was possible led to the identification of three patient principal components. The three 

stacked loadings plot (Figure 5.27) from patients who developed disease throughout the 

course of this project.  It is apparent that there are numerous distinct peaks within these 

loadings suggesting there are multiple contributing factors, detailed in Table 5.8. For 

example, there is lipid contribution resulting from the peaks at 1730 cm-1 as a result of the 

carbonyl stretching and the CH2 bending at 1444 cm-1. Again, protein structure similarities 

also play a large role in the grouping of these patients, the amide I peaks at 1680 cm-1, 1650 

cm-1, 1640 cm-1, 1630 cm-1 in addition to the amide II peak identified at 1545 cm-1. The peak 

at 1396 cm-1 of the CH2 stretching is also attributed to protein structures.  Nucleic acid peaks 

can also be identified; the carbonyl stretching of pyrimidine base at 1666 cm-1, in addition to 

the two peaks at the lower end of the fingerprint region, 1115 cm-1 and 1080 cm-1, assigned 

as phosphate (P-O-C) stretching and stretching of the C-O, within deoxyribose. 

Referring to the individual patient journeys, it is considered that the classification of 

melanoma vs. non-melanoma could potentially be combined with the metastatic profile or 
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with the relapsing profile (discussed in the next section). It is considered that no patient 

within this study are truly disease free, otherwise they would not have been in attendance 

at the melanoma clinic, although this point is discussed further in Chapter 7, Future Work. 

The first principal component loadings of both patients 53 and 71 were used in the 

development of a metastatic profile, so it could be considered that the lower principal 

components used in this profiling are still separating based on the identification of metastasis 

opposed to purely disease. 

Table 5.8 - Tentative assignments for the development of a disease vs. non-disease spectral profile 

Wavenumber (cm-1) Tentative Assignments 

1730 Absorption band of fatty acid ester 

1712 C=O 

Figure 5.27 – Proposed melanoma vs non-melanoma spectral profile 
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1691 Peak of nucleic acids due to the base carbonyl stretching and ring 

breathing mode 

1680 Unordered random coils and turns of amide I 

1666 C=O stretching vibration of pyrimidine base 

1650 C=O stretching vibration of the amide  

1640 Amide I band of protein and H-O-H deformation of water 

1630 Amide I region 

1619 Peak of nucleic acids due to the base carbonyl stretching and ring 

breathing mode 

1575 C=N adenine 

1545 Amide II (bending of N-H, stretching of C-N) 

1532 Stretching C=N, C=C 

1444 CH2 bending of lipids, fatty acids 

1396 Symmetric CH3 bending of the methyl groups of proteins 

1115 Symmetric stretching P-O-C 

1080 Stretching C-O deoxyribose 

5.3.2.3.3.4. Development of a Relapse Spectral Profile 

Finally, the development of a relapsing profile was completed. From Figure 5.28, it is evident 

that the two loadings plot of patients 3 and 62 exhibit similar peaks but with significant 

differences. One of the proposed reasons for this, could be the difference in the individual 

patient journeys. Patient 62 presented with no disease at their baseline visit (one), before 

being diagnosed with relapsed disease at visit two. On the other hand, patient 3 presented 

with metastatic disease at their baseline visit, was deemed clinically worse at visit two, 

before undergoing treatment changes and the diagnosis of new brain metastases. The blood 

profiles of these patients cannot be expected to be similar due to the influence of disease 

and treatment on patient 3 and the lack thereof in patient 62. Although, some similarities 

are seen, shown in Table 5.9 with the tentative wavenumber assignments. As previous, 

protein structures appear to be the biggest contribution, associated by the peaks at 

1687 cm-1 and 1635 cm-1, associated with the amide I as well as the peak 1517 cm-1 due to 

the amide II. The presence of both asymmetric phosphate stretches at 1239 cm-1 and 1228 

cm-1 and symmetric phosphate stretches at 1119 cm-1 and 1104 cm-1 suggest involvement of 

the nucleic acids. Due to the low numbers of relapsing patients that met the criteria set at 
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the start of this section, it is considered for the development of a relapse profile, further 

patients would need to be analysed and investigated.  

 

Table 5.9 - Tentative assignments for the development of a relapse spectral profile 

Wavenumber (cm-1) Tentative Assignments 

1740 C=O 

1687 Amide I (disordered structure-non-hydrogen bonded) 

1678 Stretching C=O vibrations that are H-bonded 

1635 β-sheet structure of amide I 

1555 Ring Base 

1517 Amide II 

1506 In-plane CH bending vibration from the phenyl rings 

1380 Stretching C-O, deformation C-H, deformation N-H 

1239 Asymmetric PO2
- stretching 

1228 PO2
- asymmetric (phosphate II) 

Figure 5.28 - Proposed relapse spectral profile 
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1119 Symmetric stretching P-O-C 

1104 Symmetric stretching P-O-C 

1065 C-O stretching of the phosphodiester and the ribose 

 

5.3.2.4. Prognosis of High-Risk Follow Up Patients 

Following on from the investigation of a metastatic profile, it was explored whether ATR-FTIR 

spectroscopy can discriminate high-risk patients that continued to stay as high-risk from 

those who went on to develop disease. Having the ability to achieve such a discrimination 

could allow for an understanding as to why some patients go on to develop disease, allowing 

for an improved patient follow-up regime. This data set was made up only of high-risk 

patients, categorised as such the details explained in Chapter 1.  

Four categories were determined, based on the longitudinal data provided by research 

nurses and clinicians involved with this study.  

I. Mets: patients already with metastatic disease 

II. No: patients with no disease, who stayed disease free 

III. Progressive: patients with metastatic disease, that spread further within the body 

IV. Yes: patients who had no disease at the baseline appointment, but developed 

disease 

 

Due to the exploratory nature of this research and the multi-facetted classifications 

mentioned above and subsequent low number of patients who meet these clinical criteria, 

PCA was used to determine whether any distinction between the four categories could be 

made. 
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Unfortunately, no separation is evident following PCA, with the first three principal 

components explaining 84.1 % of the total variance Figure 5.29 (a), (c) and I. In addition to 

this, the three loadings plots Figure 5.29 (b), (d) and (f) associated with the first three 

Figure 5.29 – PCA results from the investigation into whether ATR-FTIR spectroscopy had the ability to 
distinguish high-risk patients that continued to stay disease free and those patients who went onto develop 
disease. 

(a) (b) 

(c) (d) 

(e) (f) 
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principal components all have a similar shape, with the largest contribution coming from the 

peak around 1100 cm-1 which can be attributed to the silicon lattice vibrations. 

Despite having the ability to detect minor changes at a molecular level, due to the vast 

disease heterogeneity of these samples, it is evident the ATR-FTIR spectroscopy does not 

have the ability to exclusively determine when a patient will develop metastatic disease 

opposed to continuing to stay disease free. 

5.4. Conclusions 

Through the analysis of 311 melanoma patient serum samples from 110 patients, acquired 

over up to eight repeat clinical appointments this project aimed to revolutionise the clinical 

environment, through population-based discrimination of disease, developing spectroscopic 

precision medicine signatures and the stratification of patients. 

Before exploring the possibility of this, due to the longitudinal nature of the project and the 

way serum samples were obtained and stored, it was vital to address the impact of long-

term storage in a -80 ᵒC freezer. The results from the analysis of human pooled serum, 

suggest there is no impact. The data was analysed using PCA, with the corresponding scores 

and loadings plots being examined to decipher if any differences in biomolecular 

components were detected using ATR-FTIR spectroscopy. By identifying an electrical fault, 

causing the freezer to thaw to -20 ᵒC for a period of around 24 hours, added an extra layer 

of examination to this study. However, no differences between the human pooled serum 

pre- and post-electrical fault was detected. This allowed for any discoveries regarding patient 

samples, to associated with the composition of the serum opposed to the length of time they 

had been stored for.  

The first clinical question investigated through this body of work, was the ability of ATR-FTIR 

spectroscopy to detect whether a patient was BRAF positive or negative. A positive status 

represents the identification of the BRAF gene mutation, commonly the V600E, and is 

involved in directing cell growth, causing tumours to increase in size and potentially 

metastasise. Initial results, using the complete patient set displayed a moderate sensitivity 

of 62.4 % and a low specificity of 34.3 % through RF analysis, as well as PCA displaying 

inherent variance, opposed to class-based discrimination. To detect BRAF mutations, the 

patient must have cancer, as it is a mutation of the tumour, therefore patients who were 

disease free at the time their sample as obtained were removed, and patient with metastatic 
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disease were analysed alone. Little improvement was achieved through PCA, with the 

majority of variance seen attributed, again to the natural variance within patient sample sets. 

The optimum sensitivity and specificity achieved were 77.7 % and 75.0 %, respectively. 

However, this was derived from a single sampling run; by re-sampling the data 96 times 

during RF and SVM, an optimum sensitivity of 40.2 % and an optimum specificity of 81.0 % 

was produced. These results suggest that ATR-FTIR spectroscopy could be useful in the 

determination of BRAF negative patients and assist with identifying those who would not 

benefit from BRAF inhibitor treatment or further genomic testing, saving time and money 

for health services. Although, may not be advantageous for those with a positive BRAF status.  

Despite the use of SMOTE to counteract the imbalanced data set of 23 positive to 45 

negative, it is considered that further analysis could be needed to ensure this is corrected. 

Additionally, the results could be due to patients going through treatment and further 

analysis on a data set with more distinct categories could be beneficial.  

Following on from this, the investigation into whether ATR-FTIR spectroscopy had the ability 

to determine metastatic patients from non-metastatic patients, with the aim of developing 

a metastatic profile allowing the less invasive follow up appointment procedures, was 

investigated. However, similar to those results discussed above, ATR-FTIR spectroscopy 

appeared to have the ability to determine patients that had metastatic disease but was not 

able to identify those with non-metastatic disease in the overall population. The optimum 

sensitivity and specificity achieved was through RF analysis and was 80.5 % and 42.0 %, 

respectively. The absence of non-cancer patients is a potential limiting factor, every patient 

involved in the study had melanoma at some point. It is apparent that the use of ATR-FTIR to 

determine differences between someone who had metastatic disease in the past from 

someone present with the disease at time of analysis was too far beyond the ability of the 

technique. Another factor is the number of different organs involved in the diagnosis of 

metastatic disease, referred to in the Chapter 4.  

Due to the lack of defined categories, the study of individual patient journeys was 

investigated to see if the development of disease profiles could be determined. A patient 

criterion was set to ensure the relevant patients were studied, leading to the analysis of 13 

patients. Following PCA, the interpretation of the scores and loadings plots of individual 

patients was carried out. Through tentative peak assignments and grouping loadings of 

similar shape together allowed the formation of four proposed profiles.  
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I. Treatment 

II. Metastatic 

III. Relapse 

IV. Melanoma vs non-melanoma 

Four patients were used in the development of the treatment profile, all of which exhibited 

similar peaks and shapes. However, one patients’ loadings plot did have a distinctive shape 

from the others, thought to be attributed to the treatment of BRAF inhibitors. The 

determination of the metastatic profile was relatively difficult, thought to be as a result of 

the different organs involved with the metastatic disease. In addition to this, the individual 

patient journeys involved with the metastatic profile were varied, some began with no 

disease and some started with metastatic disease before being diagnosed with further 

metastases, all of which could have impacted the spectra obtained from the analysis of their 

serum samples. The stacked loadings of the melanoma vs non-melanoma profile did not 

appear to be as smooth as the treatment or metastatic profile. The loadings of each of the 

three patients contained a lot more spectral features, indicating that there were numerous 

contributing factors. Only two patients with relapse being identified met the criteria. The 

loadings of these two patients, although looked relatively similar, did not have defining peaks 

in the same area of the spectrum, leading to the conclusion that for the development of a 

relapsing profile, more patients would need to be analysed.  

Throughout the development of all the disease profiles, protein structures, lipid 

contributions and nucleic acid similarities were identified as being invaluable for the 

classification in question. This highlights the confirms the ability of ATR-FTIR spectroscopy at 

identifying minor molecular changes, and through this detection could lead to determining 

the point where a patient starts treatment or develops metastatic disease. Expanding on the 

work carried out as part of this project, developing a spectral database based on each 

classification, allowing confirmation of these findings to be achieved.  

Finally, during the investigation and development of the metastatic profile it was considered 

if ATR-FTIR spectroscopy was able to predict or enlighten clinicians whether a high-risk 

patient continued to stay tumour free, or whether they would go on to develop disease. PCA 

was used to carry out a non-binary classification, although through interpretation of the 

loadings plots, the groupings displayed on the scores plots were assigned as silicon lattice 

vibrations and not because of any biomolecular changes.  
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Concluding, this research project demonstrates the importance of having distinct classes to 

allow for discrimination. The fact that no control category was introduced in any of the 

classification questions, could be the reason for the poor classification results, represented 

by the sensitivity and specificity. The further analysis of individual patients could lead to the 

development of the metastatic, treatment and relapsing profiles. Gaining more information 

from the clinical team, within this project and expanding the patient information could also 

lead to the improvement of results. Lastly, the analysis of the patient plasma samples would 

allow for similar studies to be done using plasma, as well as the furthering the investigation 

into whether ATR-FTIR can differentiate plasma from serum.  

  



 

240 
 

Chapter References 

1. Cancer Reasearch UK. Skin Cancer Incidence Statistics [Online]. Cancer Research UK: 
http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-
by-cancer-type/skin-cancer/incidence#heading-Two. Accessed: 14th April 2018 

2. Donnelly, D. & Gavin, A. Cancer Incidence Trends 1993-2013 with Projections to 
2035. Nothern Ireland Cancer Registry, 89–96 (2014). 

3. Lemech, C. & Arkenau, H.-T. Novel Treatments for Metastatic Cutaneous Melanoma 
and the Management of Emergent Toxicities. Clin. Med. Insights. Oncol. 6, 53–66 
(2012). 

4. Eggermont, A. M. M. & Robert, C. New drugs in melanoma: It’s a whole new world. 
Eur. J. Cancer 47, 2150–2157 (2011). 

5. Jang, S. & Atkins, M. B. Which drug, and when, for patients with BRAF-mutant 
melanoma? Lancet Oncol. 14, e60–e69 (2013). 

6. Feig, B. W & Ching, C. The M.D. Anderson Surgical Oncology Handbook. Lippincott 
Williams & Wilkins (2012). 

7. Smittenaar, C. R., Petersen, K. A., Stewart, K. & Moitt, N. Cancer incidence and 
mortality projections in the UK until 2035. Br. J. Cancer 115, 1147 (2016). 

8. Armstrong, B. K. & Kricker, A. How much melanoma is caused by sun exposure? 
Melanoma Res. 3, 395–401 (1993). 

9. World Health Organization. Sun Protection and Schools: How to make a difference. 
World Health Organization (2003). 

10. Schuchter, L., Shultz, D., Synnestvedt, M., Trock, B, Guerry, D., Elder, D. E. et al. A 
prognostic model for predicting 10-year survival in patients with primary melanoma. 
Ann. Intern. Med. 125, 369–375 (1996). 

11. Mcphail, S., Ives, A., Greenslade, M., Shelton, J., Hiom, S. & Richards, M. Routes to 
diagnosis for cancer – determining the patient journey using multiple routine data 
sets Clinical Studies. Br. J. Cancer 107, 1220–1226 (2012). 

12. Voss, R. K., Woods, T. N., Cromwell, K. D., Nelson, K. C. & Cormier, J. N. Improving 
outcomes in patients with melanoma: strategies to ensure an early diagnosis. 
Patient Relat. Outcome Meas. 6, 229–42 (2015). 

13. Azoury, S. C. & Lange, J. R. Epidemiology, Risk Factors, Prevention, and Early 
Detection of Melanoma. Surg. Clin. North Am. 94, 945–962 (2014). 

14. Tsao, H., Rogers, G. S. & Sober, A. J. An estimate of the annual direct cost of treating 
cutaneous melanoma. J. Am. Acad. Dermatol. 38, 669–680 (1998). 

15. Erdei, E. & Torres, S. M. A new understanding in the epidemiology of melanoma. 
Expert Rev. Anticancer Ther. 10, 1811–1823 (2010). 



 

241 
 

16. Califano, J. & Nance, M. Malignant Melanoma. Facial Plast. Surg. Clin. North Am. 17, 
337–348 (2009). 

17. Filippi, A. R., Fava, P., Badellino, S., Astrua, C., Ricardi, U. & Quaglino, P. 
Radiotherapy and immune checkpoints inhibitors for advanced melanoma. 
Radiother. Oncol. 120, 1–12 (2016). 

18. Gadeliya Goodson, A. & Grossman, D. Strategies for early melanoma detection: 
Approaches to the patient with nevi. J. Am. Acad. Dermatol. 60, 719–735 (2009). 

19. Hu, S., Parmet, Y., Allen, G. & al,  et. Disparity in melanoma: A trend analysis of 
melanoma incidence and stage at diagnosis among whites, hispanics, and blacks in 
florida. Arch. Dermatol. 145, 1369–1374 (2009). 

20. Baker, M. J., Byrne, H. J., Chalmers, J., Gardner, P., Goodacre, R., Henderson, A. et al. 
Clinical applications of infrared and Raman spectroscopy: state of play and future 
challenges. Analyst 143, 1735–1757 (2018). 

21. Kendall, C., Isabelle, M., Bazant-Hegemark, F., Hutchings, J., Orr, L., Babrah, J. et al. 
Vibrational spectroscopy: a clinical tool for cancer diagnostics. Analyst 134, 1029–
1045 (2009). 

22. Walsh, M. J., Singh, M. N., Stringfellow, H. F., Pollock, H. M., Hammiche, A., Grude, 
O. et al. FTIR Microspectroscopy Coupled with Two-Class Discrimination Segregates 
Markers Responsible for Inter- and Intra-Category Variance in Exfoliative Cervical 
Cytology. Biomark. Insights 3, 179–189 (2008). 

23. Gajjar, K., Heppenstall, L. D., Pang, W., Ashton, K. M., Trevisan, J., Patel, I. I. et al. 
Diagnostic segregation of human brain tumours using Fourier-transform infrared 
and/or Raman spectroscopy coupled with discriminant analysis. Anal. Methods 5, 
89–102 (2012). 

24. Gajjar, K., Trevisan, J., Owens, G., Keating, P. J., Wood, N. J., Stringfellow, H. F., et al. 
Fourier-transform infrared spectroscopy coupled with a classification machine for 
the analysis of blood plasma or serum: a novel diagnostic approach for ovarian 
cancer. Analyst 138, 3917–3926 (2013). 

25. Taylor, S. E., Cheung, K. T., Patel, I. I., Trevisan, J., Stringfellow, H. F., Ashton, K. M., 
et al. Infrared spectroscopy with multivariate analysis to interrogate endometrial 
tissue: a novel and objective diagnostic approach. Br. J. Cancer 104, 790–797 (2011). 

26. Baker, M. J., Gazi, E., Brown, M. D., Shanks, J. H., Gardner, P. & Clarke, N. W. FTIR-
based spectroscopic analysis in the identification of clinically aggressive prostate 
cancer. Br. J. Cancer 99, 1859–1866 (2008). 

27. Baker, M. J., Gazi, E., Brown, M. D., Shanks, J. H., Clarke, N. W. & Gardner, P. 
Investigating FTIR based histopathology for the diagnosis of prostate cancer. J. 
Biophotonics 2, 104–113 (2009). 

28. Spalding, K., Board, R., Dawson, T., Jenkinson, M. D. & Baker, M. J. A review of novel 
analytical diagnostics for liquid biopsies: spectroscopic and spectrometric serum 



 

242 
 

profiling of primary and secondary brain tumors. Brain Behav. 6, 1–8 (2016). 

29. Morris, Z. S., Wooding, S. & Grant, J. The answer is 17 years , what is the question : 
understanding time lags in translational research. J. R. Soc. Med. 104, 510–520 
(2011). 

30. Ward, J. H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. 
Assoc. 58, 236–244 (1963). 

31. Hands, J. R., Dorling, K. M., Abel, P., Ashton, K. M., Brodbelt, A., Davis, C. et al. 
Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectral 
discrimination of brain tumour severity from serum samples. J. Biophotonics 7, 189–
199 (2014). 

32. Gray, E., Butler, H. J., Board, R., Brennan, P. M., Chalmers, A. J., Dawson, T. et al. 
Health economic evaluation of a serum-based blood test for brain tumour diagnosis: 
exploration of two clinical scenarios. BMJ Open 8, (2018). 

33. Weber, J., Mandala, M., Del Vecchio, M., Gogas, H. J., Arance, A. M., Cowey, C. L. et 
al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. 
Engl. J. Med. 377, 1824–1835 (2017). 

34. Eggermont, A. M. M., Blank, C. U., Mandala, M., Long, G. V, Atkinson, V., Dalle, S. et 
al. Adjuvant Pembrolizumab versus Placebo in Resected Stage III Melanoma. N. Engl. 
J. Med. 378, 1789–1801 (2018). 

35. Long, G. V., Hauschild, A., Santinami, M., Atkinson, V., Mandalà, M., Chiarion-Sileni, 
V. et al. Adjuvant Dabrafenib plus Trametinib in Stage III BRAF-Mutated Melanoma. 
N. Engl. J. Med. 377, 1813–1823 (2017). 

36. Louveau, B., Tost, J., Mauger, F., Sadoux, A., Podgorniak, M.P., How-Kit, A. et al. 
Clinical value of early detection of circulating tumour DNA-BRAFV600mut in patients 
with metastatic melanoma treated with a BRAF inhibitor. ESMO Open 2, (2017). 

37. Smith, B. R., Baker, M. J. & Palmer, D. S. PRFFECT: A versatile tool for 
spectroscopists. Chemom. Intell. Lab. Syst. 172, 33–42 (2018). 

38. Abdi, H. & Williams, L. J. Principal component analysis. Wiley Interdiscip. Rev. 
Comput. Stat. 2, 433–459 (2010). 

39. Smith, B. R., Baker, M. J. & Palmer, D. S. Chemometrics and Intelligent Laboratory 
Systems PRFFECT : A versatile tool for spectroscopists. Chemom. Intell. Lab. Syst. 
172, 33–42 (2018). 

40. Chawla, N. V, Bowyer, K. W. & Hall, L. O. SMOTE : Synthetic Minority Over-sampling 
Technique. 16, 321–357 (2002). 

41. Andrus, P. G. Cancer monitoring by FTIR spectroscopy. Technol. Cancer Res. Treat. 5, 
157–167 (2006). 

42. Yu, Z., Kastenmüller, G., He, Y., Belcredi, P., Möller, G., Prehn, C. et al. Differences 



 

243 
 

between Human Plasma and Serum Metabolite Profiles. PLoS One 6, e21230 (2011). 

43. Ushasree, U. V., Jaleeli, K. A. & Ahmad, A. A Study on infrared spectroscopy of 
human blood. International Journal of Science, Environment and Technology, 5, 
1189–1192 (2016). 

44. Hudson, K., Lifton, R., Patrick-Lake, B. & Denny, J., The Precision Medicine Initiative 
Cohort Program – Building a Research Foundation for 21 st Century Medicine. 
Precision Medicine Initiative (PMI) Working Group Report. National Institute of 
Health (2015). 

45. National Institute of Health. The Precision Medicine Initiative Leaflet [Online]. 
National Institute of Health. Accessed on: 3rd June 2018 

46. Andrus, P. G. & Strickland, R. D. Cancer grading by Fourier transform infrared 
spectroscopy. Biospectroscopy 4, 37–46 (1998). 

47. Kendall, C., Stone, N., Shepherd, N., Geboes, K., Warren, B., Bennett, R. et al. Raman 
spectroscopy , a potential tool for the objective identification and classification of 
neoplasia in Barrett ’ s oesophagus. J. Pathol. 200, 602–609 (2003).  

48. Movasaghi, Z., Rehman, S. & Rehman, I. Fourier Transform Infrared ( FTIR ) 
Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 43, 134–179 (2008). 

49. Diaz Jr, L. A. & Bardelli, A. Liquid Biopsies : Genotyping Circulating Tumor DNA. J. 
Clin. Oncol. 32, (2014). 

50. Bidard, F.C., Madic, J., Mariani, P., Piperno-Neumann, S., Rampanou, A., Servois, V. 
et al. Detection rate and prognostic value of circulating tumor cells and circulating 
tumor DNA in metastatic uveal melanoma. Int. J. Cancer 134, 1207–1213 (2013). 

 

 

 

 

 

 

 



 

244 
 

Chapter 6 

6.1. Overall Conclusions  

The analysis of biofluids using vibrational spectroscopy has well established potential, 

highlighted by the many proof-of-principle studies showing the capability of techniques like 

ATR-FTIR spectroscopy to enable disease detection, as well as quantification of biomolecules.  

This body of work shows, for the first time how the development of the optimal 

methodology, combined with ATR FTIR spectroscopy can be used to quantify proteins in 

spiked and patient samples, rapidly, economically and with simple sample preparation. 

Linearity values as high as 0.992, in addition to high accuracy and precision demonstrated by 

RMSEV values such as 0.662 ± 0.046 mg mL-1, indicate that quantification of clinically relevant 

molecules can be conducted using this approach. Maintaining the linearity, precision and 

accuracy results (R2 = 0.934 and RMSEV = 1.986 ± 0.778 mg mL-1), while blind testing patient 

clinical samples, illustrates the potential use of this technique within a clinical setting. The 

incorporation of a quantification step in addition to disease differentiation shows great 

promise to enable a dynamic clinical diagnostic platform that can improve the current 

patient diagnostic pathway.  

Additionally, the removal of the air drying, rate determining step through the analysis of 

liquid samples or digitally drying those liquid samples could bridge the gap between 

vibrational spectroscopy and current clinical analyses by allowing high-throughput analysis. 

This thesis provides evidence that the classification performance of liquid samples is 

comparable to that of the air dried samples, when it comes to discriminating cancer from 

non-cancer. The research discussed in Chapter 3 concluded that the use of liquid samples 

could lead to the development of a sensitive (95.4 %) and high throughput test, through 

eliminating the 8-minute drying step involved with air dried samples using ATR-FTIR 

spectroscopy. However, the specificity was greater using the air dried samples, 84.4 % 

compared to the 81.8 % obtained using the liquid samples. Therefore, a two-stage analysis 

methodology was proposed, where analysis of liquid samples would be used to screen for 

cancerous patients, before analysing these samples again in the air dried state. It could also 

be considered that following the health economic assessment discussed in Chapter 5, that 

an 81.8 % specificity was sufficient within a secondary care setting. The use of the QCL did 

not improve classification results although the lower values achieved of 65 % and 79 % 
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sensitivity and specificity were thought to be as a result of the fewer discriminatory 

wavenumbers. Due to the smaller wavenumber range, only protein and nucleic acid peaks 

were identified from the RF analysis as wavenumbers responsible for any discrimination of 

cancer vs non-cancer. It was evident from the ATR-FTIR analysis that lipid contributions were 

present as well as the high level of discriminatory power the lower end of the fingerprint 

region had (below 1200 cm-1).  It is considered that the results could be improved on through 

SMOTE sampling. The novelty of the technique, allows for further developments to be made, 

with the aim of improving the classification results obtained during this research.  

Through the set-up of a longitudinal biobank composed of melanoma patients, a large 

quantity of in depth patient demographic information was obtained, allowing for the analysis 

of 297 melanoma patient serum samples from 110 patients. The samples were acquired over 

up to eight repeat clinical appointments. However, prior to any clinical based investigations, 

due to the longitudinal nature of the project and the long-term storage of the samples, it was 

vital to address the impact of long-term storage in a -80 ᵒC freezer. Following spectroscopic 

analysis of human pooled serum samples, as well as PCA, results suggest there is no impact, 

allowing any discoveries regarding patient samples, to be associated with the composition 

of the serum opposed to the length of time they had been stored for.  

The use of the longitudinal biobank was used to investigate several clinically relevant 

questions. Firstly, the investigation into whether ATR-FTIR spectroscopy had the ability to 

classify the BRAF status of the melanoma patients. Initial results using the complete patient 

set displayed a moderate sensitivity of 62.4 % and a low specificity of 34.3 % through RF 

analysis. In addition, the PCA displayed only inherent variance from the patient population, 

opposed to class-based discrimination. As a BRAF positive status can only be identified 

through the identification of the BRAF gene mutation, it was considered that the poor 

classification results could be improved by only including those patients with cancer. 

Therefore, patients who were disease free at the time their sample was obtained were 

removed, and patients with metastatic disease were analysed alone. 

 Using PCA, the majority of variance seen was attributed to the natural variance seen within 

patient populations. The use of RF, and one re-sampling run achieved the optimum 

sensitivity and specificity of 77.7 % and 75.0 %, respectively. However, when analysis was 

repeated using 96 re-sampling runs were carried out, an optimum sensitivity of 40.2 % and 

an optimum specificity of 81.0 %, from the RF and SVM. It is considered that ATR-FTIR 
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spectroscopy could be useful in the determination of BRAF negative patients and assist with 

identifying those who would not benefit from BRAF inhibitor treatment or further genomic 

testing, saving time and money for health services. Although, this approach may not be 

advantageous for those with a positive BRAF status, as the test does not meet clinical 

sensitivity requirements.  

The use of ATR-FTIR spectroscopy to discriminate metastatic patients from non-metastatic 

patients, with the aim of developing a metastatic profile was then investigated.  Results 

suggested that the metastatic patients could be identified, however non-metastatic patients 

could not. RF was used to achieve the optimum sensitivity and specificity, 80.5 % and 42.0 %, 

respectively. However, the absence of non-cancer patients is a potential limiting factor, in 

addition to the number of different organs involved in the diagnosis of metastatic disease.  

The study of 13 individual patient journeys was investigated to see if the development of 

disease profiles could be determined. Following PCA, tentative peak assignments and 

grouping loadings of similar shape were used to showcase the development of treatment, 

metastatic, relapse and disease vs. non-disease profiles. Throughout the development of all 

the disease profiles, protein structures, lipid contributions and nucleic acid similarities were 

identified as being invaluable for the classification in question, highlighting the ability of ATR-

FTIR spectroscopy at identifying minor molecular changes. 

Finally, the ability to predict whether a high-risk patient continued to, present with no 

evidence of disease, or whether they would go on to develop disease was explored. Results 

from this analysis showed that the groupings displayed on the scores plots, from the PCA, 

could not be assigned to biomolecular changes. It is considered that the closely related 

groups are responsible for the lack of distinction.   

This research project demonstrates the optimum spectroscopic methodology for the 

quantification of clinical parameters, namely protein concentrations, within serum samples. 

Additionally, the potential the analysis of liquid serum samples led paves the way for the 

development of a high-throughput spectroscopic test. Through the establishment a 

longitudinal biobank and the understanding patient demographics it was demonstrated how 

vital it is to have a full knowledge of patient information, allowing for the creation of distinct 

classes, instrumental in the classification results obtained. Finally, the discussion of pre 

analytical factors, led to the conclusion that long-term storage, of 28 months, did not impact 
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the spectral response of serum samples. The analysis of longitudinal melanoma samples 

exhibited the ability of ATR-FTIR spectroscopy to determine patients with a negative BRAF 

status as well as the ability to monitor patient disease and treatment progression. 
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Chapter 7 

7.1. Future Work 

The development of a longitudinal melanoma biobank and then the analysis of samples 

allowed for the investigation into the use of ATR-FTIR spectroscopy for the diagnosis and 

therapeutic monitoring of melanoma. However, classification results achieved were deemed 

not clinically useful, based on a health economic assessment of serum diagnostics for brain 

tumours. To fully understand the usefulness of a secondary phase spectroscopic test for the 

analysis of patient serum, a full economic assessment would have to occur.   

It is considered that the lack of distinct classes could have been instrumental in the 

classification results obtained following the analysis of the melanoma patient samples. Every 

patient recruited as part of this study had cancer at some point, leading to the lack of a 

defined “control” class. During the research project, it was considered that the inclusion of 

control patients from other research projects would allow for more distinct separation. 

However, determining the ability of ATR-FTIR spectroscopy at deciphering the difference 

between cancer and non-cancer was not the goal of this PhD. The problem occurs due to the 

fact that, the multiple clinical questions investigated relied upon the detection of small 

molecular changes, which may not be apparent in a sample set of such heterogeneity. As an 

example, determining the difference between BRAF positive and negative patients in a 

sample set made up of: 

• Melanoma patients with currently no disease 

• Melanoma patients with disease, that have just undergone resection surgery 

• Melanoma patients with disease, receiving no treatment 

• Melanoma patients with disease, receiving treatment 

• Melanoma patients with disease, receiving BRAF inhibitor treatment 

 could be considered almost impossible.  

Therefore, to further understand the results obtained as part of this thesis, further 

collaboration with the clinical team could be used to supplement this research. Further 

exploration of the patient information already acquired could be the next step. This could 

also open the possibility of further studies, through the creation of new class-based 

discrimination. As detailed in Chapter 4, there is wealth of information that could be 

potentially studied. 
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As mentioned, multiple patients underwent resections at some point within this study, 

denoting that they could have in fact been cancer free at the visit following the resection. 

Rather than attempting to categorise patients on a binary basis, the development of profiles, 

indicating significant points in patient journeys could be attempted. This was preliminarily 

investigated within this project, due to the low number of patients used (13), further 

investigation would need to occur, and could be done so using the samples collected 

following the completion of this work. During the development of these disease profiles it 

was identified that through the tentative assignment of nucleic acid bands, that the potential 

detection of circulating tumour DNA could be occurring. Research has already been 

completed displaying the potential for these molecules to act as biomarkers for metastatic 

melanoma, and due to the wide variety of patient samples obtained as part of this study 

these samples could be used to follow concentrations of these biomarkers using alternative 

techniques. 

Additionally, plasma samples were also obtained from each patient, at every visit, providing 

the possibility of creating a whole new sample set made up of plasma samples. The analysis 

of these samples using ATR-FTIR spectroscopy could be used to further investigate the 

possibility of discriminating plasma from serum samples, allowing an expansion of the data 

already recorded, but could also be used to assist with the interpretation of study already 

completed. 

Finally encompassing the entire thesis together is the possibility of using the melanoma 

patient samples to further the findings of Chapters 2 and 3. During the analysis of melanoma 

patient samples using the SIRES, spectra of the liquid samples, prior to batch drying was 

collected. The analysis of this data would allow for another investigation into the use of liquid 

samples for the classification of disease. But as mentioned further work needs to be carried 

out to define these classes before work of this kind could take place. Additionally, again 

during the analysis of the melanoma patient serum samples, 10 % air dried samples were 

prepared and analysed using the SIREs. In addition, the research performed in Chapter 2 and 

3 would need to be repeated incorporating the use of the novel SIREs, which became 

available towards the end of this project. From Chapter 4 it is evident that each patient had 

their total protein and albumin blood concentrations measured. These samples could allow 

for the production of a larger patient data set to further validate the potential need and use 

of a quantitative step within ATR-FTIR spectral diagnostic tests.  
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This work highlights the multiple advantages of using FTIR spectroscopy for the potential use 

within clinics while displaying validation and consideration of pre-analytical factors that 

could jeopardise approval and limit clinical applications. There are many sample 

requirements that must be taken into account in order to validate a research project. An 

appropriate target population needs to be implemented allowing for robust statistical 

analysis of validation data of potential biomarkers to reduce the chances of bias within the 

models. Current challenges with translating serum spectroscopic diagnostics to the clinic, 

demonstrated by the majority of studies performed involving small-scale laboratory-based 

experiments. To enable clinical translation, studies based on large populations are necessary. 

Focussing on procedural and instrumental standardisation would enable regulatory 

requirements to be met. However, when moving from the laboratory to large clinical trials, 

funding issues and gaining regulatory approval can create a valley of death which hinders 

translation of promising techniques.  

Figure 7.1 shows the basic schematic of the different process leading to a diagnostic test 

developing from the laboratory to a clinical environment. Reports suggest that the most 

efficient way to achieve acceptance of work into a clinical environment is to clearly highlight 

the current unmet needs and the requirement for the new clinical and intended uses. 

Presenting sufficient evidence in preliminary studies to support the investment for a large-

scale validation study, followed by the creation of methods with efficient analytical 

performance suitable for use in clinics would allow progression. Finally, the design and 

implementation of clinical trials that allow for the demonstration of clinical usefulness help 

the research project to gain regulatory approval. All steps can be hard to achieve, and the 

involvement of a multi-disciplinary team is essential to ensure the accurate understanding 

of each process.  

Focussing on the future diagnosis of melanoma using spectroscopy methods via minimally 

invasive procedures, would result in quick analysis within a clinical setting, allowing patients 

to be treated earlier and providing a better chance of survival. However, monitoring of 
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melanoma disease can only be revolutionised by producing clinical trial plans and 

government approval.  

 

 

Figure 7.1 – Schematic highlighting the processes 
going from bench to the clinic 
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Appendix 1: Random Forest Top Wavenumber 
The top 100 wavenumbers identified following the random forest analysis, used to classify 

the result discussed in Chapter 3.  

Table A.1 - Top 100 wavenumbers used in the random forest analysis of cancer vs non-cancer, with no sampling 

No Sampling 

Wavenumber (cm-1) 

Air Dried Liquid Water Sub. ILS Approach EMSC Algorithm 

1039.4 1465.6 1081.9 1081.9 1039.4 

1037.5 1039.4 1079.9 1079.9 1415.5 

1461.8 1415.5 1083.8 1083.8 1037.5 

1388.5 1463.7 1465.6 1378.8 1041.4 

1413.6 1390.4 1463.7 1465.6 1465.6 

1035.6 1041.4 1386.6 1376.9 1081.9 

1415.5 1448.3 1095.4 1097.3 1051 

1033.7 1388.5 1388.5 1548.6 1390.4 

1386.6 1378.8 1093.4 1648.8 1413.6 

1197.6 1037.5 1378.8 1039.4 1463.7 

1438.6 1413.6 1078 1394.3 1079.9 

1195.6 1051 1091.5 1413.6 1043.3 

1373.1 1083.8 1461.8 1392.3 1083.8 

1041.4 1081.9 1039.4 1540.8 1386.6 

1390.4 1386.6 1085.7 1386.6 1388.5 

1463.7 1091.5 1376.9 1411.6 1392.3 

1598.7 1093.4 1037.5 1078 1049.1 

1498.4 1392.3 1367.3 1037.5 1035.6 

1596.8 1079.9 1051 1388.5 1378.8 

1411.6 1376.9 1097.3 1523.5 1093.4 

1440.6 1365.3 1004.7 1093.4 1078 

1600.6 1043.3 1365.3 1569.8 1376.9 

1193.7 1461.8 1035.6 1463.7 1153.2 

1049.1 1078 1538.9 1041.4 1151.3 

1436.7 1085.7 1540.8 1546.6 1052.9 

1544.7 1411.6 1413.6 1544.7 1411.6 
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1550.5 1571.7 1049.1 1562 1004.7 

1093.4 1095.4 1411.6 1095.4 1170.6 

1051 1052.9 1546.6 1390.4 1091.5 

1116.6 1619.9 1041.4 1525.4 1461.8 

1394.3 1035.6 1380.8 1467.6 1095.4 

1531.2 1380.8 1525.4 1589 1097.3 

1758.8 1049.1 1560.1 1375 1168.6 

1552.4 1004.7 1390.4 1051 1033.7 

1081.9 1446.3 1168.6 1560.1 1556.3 

1118.5 1467.6 1544.7 1380.8 1562 

1417.4 1621.8 1151.3 1461.8 1338.3 

1079.9 1525.4 1548.6 1402 1375 

1018.2 1473.3 1542.8 1415.5 1527.3 

1760.7 1623.8 1648.8 1664.3 1523.5 

1384.6 1197.6 1589 1049.1 1155.1 

1062.6 1405.8 1394.3 1542.8 1012.4 

1120.4 1012.4 1523.5 1091.5 1172.5 

1525.4 1581.3 1033.7 1151.3 1197.6 

1527.3 1172.5 1415.5 1004.7 1467.6 

1500.3 1569.8 1562 1612.2 1540.8 

1465.6 1587.1 1587.1 1587.1 1380.8 

1091.5 1170.6 1153.2 1606.4 1473.3 

1078 1592.9 1392.3 1623.8 1525.4 

1392.3 1589 1375 1365.3 1448.3 

1375 1089.6 1664.3 1538.9 1394.3 

1074.2 1527.3 1496.5 1604.5 1189.9 

1537 1153.2 1604.5 1020.2 1112.7 

1089.6 1538.9 1467.6 1367.3 1187.9 

1076.1 1097.3 1010.5 1052.9 1571.7 

1114.6 1394.3 1349.9 1153.2 1623.8 

1060.7 1691.3 1112.7 1085.7 1691.3 

1378.8 1417.4 1658.5 1621.8 1110.8 

1031.7 1307.5 1043.3 1014.4 1619.9 
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1016.3 1020.2 1652.7 1527.3 1664.3 

1756.8 1014.4 1089.6 1666.2 1157.1 

1529.3 1338.3 1446.3 1157.1 1122.4 

1108.9 1157.1 1527.3 1043.3 1621.8 

1020.2 1340.3 1448.3 1035.6 1538.9 

1459.8 1531.2 1278.6 1658.5 1160.9 

1479.1 1224.6 1166.7 1448.3 1224.6 

1052.9 1155.1 1602.5 1591 1652.7 

1095.4 1375 1384.6 1650.8 1089.6 

1376.9 1540.8 1564 1417.4 1085.7 

1122.4 1174.4 1006.7 1168.6 1594.8 

1548.6 1658.5 1737.5 1739.5 1251.6 

1199.5 1168.6 1569.8 1112.7 1544.7 

1645 1523.5 1159 1619.9 1446.3 

1542.8 1253.5 1660.4 1297.9 1546.6 

1481.1 1591 1170.6 1099.2 1268.9 

1409.7 1660.4 1338.3 1670 1286.3 

1066.4 1278.6 1340.3 1371.1 1064.5 

1446.3 1652.7 1623.8 1529.3 1405.8 

1058.7 1562 1133.9 1691.3 1307.5 

1087.6 1542.8 1500.3 1012.4 1124.3 

1741.4 1633.4 1529.3 1018.2 1114.6 

1265.1 1033.7 1114.6 1006.7 1596.8 

1083.8 1596.8 1475.3 1446.3 1365.3 

1602.5 1564 1537 1141.6 1739.5 

1186 1286.3 1625.7 1577.5 1020.2 

1483 1498.4 1600.6 1517.7 1209.1 

1467.6 1263.1 1012.4 1022.1 1592.9 

1047.2 1556.3 1160.9 1396.2 1336.4 

1097.3 1222.6 1745.3 1583.3 1099.2 

1056.8 1459.8 1299.8 1496.5 1278.6 

1099.2 1151.3 1598.7 1554.3 1159 

1538.9 1666.2 1157.1 1143.6 1498.4 
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1027.9 1583.3 1047.2 1521.6 1149.4 

1106.9 1409.7 1619.9 1162.9 1583.3 

1641.1 1261.2 1348 1737.5 1243.9 

1739.5 1745.3 1182.1 1251.6 1205.3 

1407.8 1758.8 1280.5 1469.5 1340.3 

1168.6 1195.6 1076.1 1602.5 1417.4 

1616 1166.7 1297.9 1336.4 1650.8 

1594.8 1500.3 1197.6 1286.3 1367.3 

 
Table A.2 - Top 100 wavenumbers used in the random forest analysis of cancer vs non-cancer, with SMOTE 

sampling 

SMOTE Sampling 

Wavenumber (cm-1) 

Air Dried Liquid Water Sub. ILS Approach EMSC Algorithm 

1039.4 1464.6 1079.9 1081.9 1039.4 

1035.6 1038.4 1081.9 1378.8 1037.5 

1037.5 1036.5 1083.8 1079.9 1465.6 

1413.6 1414.5 1078 1376.9 1041.4 

1461.8 1462.7 1465.6 1465.6 1415.5 

1388.5 1391.3 1463.7 1083.8 1413.6 

1415.5 1040.4 1378.8 1411.6 1386.6 

1195.6 1082.8 1095.4 1078 1079.9 

1041.4 1412.6 1093.4 1569.8 1390.4 

1033.7 1090.5 1037.5 1097.3 1463.7 

1438.6 1387.5 1388.5 1375 1388.5 

1390.4 1389.4 1085.7 1546.6 1081.9 

1498.4 1385.6 1390.4 1548.6 1035.6 

1373.1 1080.9 1049.1 1463.7 1153.2 

1552.4 1034.6 1386.6 1544.7 1043.3 

1197.6 1092.4 1091.5 1386.6 1051 

1375 1078.9 1039.4 1394.3 1376.9 

1386.6 1377.8 1041.4 1390.4 1052.9 

1463.7 1447.3 1097.3 1562 1392.3 



 

256 
 

1193.7 1526.3 1461.8 1037.5 1083.8 

1417.4 1196.6 1376.9 1413.6 1461.8 

1550.5 1077 1051 1540.8 1093.4 

1049.1 1375.9 1380.8 1648.8 1097.3 

1598.7 1460.8 1540.8 1093.4 1556.3 

1081.9 1084.7 1538.9 1542.8 1078 

1118.5 1580.3 1367.3 1589 1473.3 

1091.5 1042.3 1365.3 1392.3 1378.8 

1051 1537.9 1548.6 1039.4 1004.7 

1062.6 1524.4 1413.6 1467.6 1170.6 

1531.2 1050 1525.4 1365.3 1525.4 

1079.9 1223.6 1560.1 1523.5 1562 

1120.4 1198.5 1392.3 1168.6 1049.1 

1396.2 1094.4 1122.4 1388.5 1172.5 

1481.1 1364.3 1170.6 1051 1095.4 

1018.2 1472.3 1168.6 1525.4 1380.8 

1436.7 1003.7 1035.6 1560.1 1091.5 

1078 1306.5 1664.3 1402 1168.6 

1064.5 1048.1 1648.8 1380.8 1033.7 

1596.8 1096.3 1151.3 1095.4 1151.3 

1031.7 1622.8 1411.6 1602.5 1529.3 

1529.3 1522.5 1010.5 1367.3 1467.6 

1500.3 1171.5 1569.8 1091.5 1540.8 

1060.7 1374 1375 1035.6 1446.3 

1095.4 1011.4 1546.6 1621.8 1199.5 

1199.5 1690.3 1446.3 1604.5 1014.4 

1058.7 1563 1604.5 1041.4 1411.6 

1527.3 1657.5 1544.7 1461.8 1189.9 

1074.2 1379.8 1112.7 1415.5 1187.9 

1122.4 1663.3 1394.3 1664.3 1085.7 

1047.2 1744.3 1602.5 1085.7 1286.3 

1548.6 1188.9 1340.3 1020.2 1155.1 

1411.6 1393.3 1033.7 1446.3 1569.8 
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1376.9 1158 1197.6 1043.3 1174.4 

1114.6 1152.2 1012.4 1670 1197.6 

1066.4 1555.3 1153.2 1587.1 1159 

1465.6 1618.9 1621.8 1012.4 1664.3 

1483 1688.3 1043.3 1606.4 1691.3 

1108.9 1019.2 1577.5 1591 1538.9 

1076.1 1445.3 1589 1556.3 1619.9 

1600.6 1530.2 1625.7 1160.9 1650.8 

1093.4 1466.6 1004.7 1151.3 1739.5 

1043.3 1528.3 1523.5 1666.2 1045.2 

1110.8 1590 1182.1 1004.7 1338.3 

1378.8 1088.6 1299.8 1527.3 1089.6 

1116.6 1659.4 1415.5 1529.3 1307.5 

1440.6 1416.4 1467.6 1658.5 1012.4 

1089.6 1547.6 1280.5 1554.3 1157.1 

1392.3 1032.7 1160.9 1396.2 1222.6 

1743.3 1339.3 1502.3 1400.1 1448.3 

1544.7 1285.3 1278.6 1619.9 1220.7 

1525.4 1169.6 1658.5 1099.2 1666.2 

1056.8 1186.9 1110.8 1139.7 1394.3 

1149.4 1543.7 1670 1448.3 1375 

1097.3 1582.3 1564 1417.4 1589 

1168.6 1561 1020.2 1141.6 1139.7 

1052.9 1221.6 1159 1143.6 1112.7 

1106.9 1620.8 1396.2 1623.8 1523.5 

1641.1 1757.8 1652.7 1486.8 1224.6 

1016.3 1520.6 1338.3 1052.9 1564 

1020.2 1051.9 1025.9 1475.3 1191.8 

1496.5 1588 1369.2 1592.9 1527.3 

1537 1578.4 1222.6 1652.7 1010.5 

1645 1497.4 1473.3 1371.1 1753 

1538.9 1539.8 1666.2 1112.7 1099.2 

1010.5 1404.8 1024 1403.9 1122.4 
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1172.5 1410.6 1448.3 1585.2 1652.7 

1054.9 1159.9 1618 1739.5 1594.8 

1328.7 1063.5 1612.2 1650.8 1160.9 

1394.3 1337.3 1199.5 1066.4 1066.4 

1760.7 1167.6 1660.4 1581.3 1571.7 

1170.6 1154.1 1562 1517.7 1359.6 

1758.8 1536 1689.3 1423.2 1531.2 

1546.6 1568.8 1496.5 1153.2 1166.7 

1542.8 1150.3 1537 1600.6 1322.9 

1184.1 1408.7 1542.8 1338.3 1365.3 

1602.5 1293 1195.6 1689.3 1024 

1124.3 1545.6 1191.8 1033.7 1110.8 

1029.8 1669 1594.8 1405.8 1591 

1326.8 1605.4 1166.7 1014.4 1141.6 

1083.8 1632.4 1089.6 1157.1 1064.5 
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Appendix 2: AJCC 7th Edition 
American joint committee on cancer (AJCC) melanoma staging, 7th edition discussed in 

Chapter 1. 
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Appendix 3: Additional PCA Plots 
The PCA scores and loadings from PC1, following the analysis of the individual patients 

discussed in Chapter 5. 

Patient 3: 

 

Patient 51:  

 

Patient 62: 

 

Figure A.1 - Analysis of patient 3. (a) PCA scores and (b) PC1 loading 

(a) (b) 

(a) (b) 

Figure A.2 - Analysis of patient 51. (a) PCA scores and (b) PC1 loading 

(a) (b) 

Figure A.3 - Analysis of patient 62. (a) PCA scores and (b) PC1 loading 
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Appendix 4: Random Forest Top Wavenumbers 
The top 100 wavenumbers identified following the random forest analysis, used to classify 

the result discussed in Chapter 5.  

Table A.3 - Top 100 wavenumbers used in the random forest analysis, discussed in Chapter 5 

PRFFECT I  
 

PRFFECT II 

Wavenumber (cm-1) 
 

Wavenumber (cm-1) 

BRAF (All) BRAF (met) 
 

BRAF (met) BRAF (met) + SMOTE Mets vs Non-Mets 

1628 1637 
 

1551 1551 1740 

1657 1631 
 

1692 1744 1743 

1629 1636 
 

1555 1704 1742 

1659 1638 
 

1647 1691 1741 

1658 1647 
 

1744 1641 1640 

1632 1639 
 

1556 1640 1638 

1625 1646 
 

1743 1550 1547 

1687 1635 
 

1552 1549 1739 

1630 1630 
 

1745 1555 1639 

1636 1640 
 

1704 1743 1745 

1660 1624 
 

1746 1647 1636 

1622 1632 
 

1557 1639 1747 

1656 1633 
 

1690 1748 1550 

1637 1634 
 

1554 1745 1549 

1623 1551 
 

1705 1690 1545 

1626 1627 
 

1742 1642 1744 

1039 1641 
 

1641 1638 1637 

1624 1628 
 

1553 1637 1020 

1688 1550 
 

1638 1552 1546 

1685 1625 
 

1639 1557 1746 

1634 1626 
 

1637 1705 1548 

1631 1629 
 

1748 1553 1737 

1683 1552 
 

1741 1556 1643 

1686 1554 
 

1747 1650 1749 

1661 1555 
 

1550 1746 1629 
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1671 1557 
 

1691 1706 1635 

1633 1659 
 

1640 1548 1738 

1621 1643 
 

1751 1089 1022 

1620 1622 
 

1688 1714 1641 

1662 1657 
 

1549 1547 1553 

1663 1553 
 

1694 1634 1019 

1655 1658 
 

1750 1554 1748 

1028 1645 
 

1711 1751 1644 

1666 1744 
 

1650 1689 1551 

1627 1556 
 

1548 1090 1642 

1673 1642 
 

1712 1646 1021 

1693 1683 
 

1546 1709 1023 

1089 1549 
 

1098 1742 1750 

1641 1748 
 

1636 1125 1632 

1684 1558 
 

1689 1729 1630 

1645 1644 
 

1468 1606 1645 

1678 1655 
 

1567 1467 1544 

1643 1623 
 

1730 1715 1651 

1646 1749 
 

1544 1631 1626 

1017 1656 
 

1631 1692 1634 

1635 1649 
 

1564 1544 1555 

1682 1621 
 

1624 1707 1649 

1677 1548 
 

1090 1545 1552 

1690 1654 
 

1709 1651 1735 

1667 1653 
 

1088 1711 1631 

1689 1745 
 

1713 1088 1660 

1665 1619 
 

1626 1659 1658 

1681 1681 
 

1740 1462 1652 

1679 1746 
 

1558 1747 1628 

1745 1751 
 

1091 1636 1736 

1019 1747 
 

1657 1754 1659 

1691 1543 
 

1630 1710 1650 

1664 1547 
 

1728 1123 1655 
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1619 1661 
 

1752 1546 1177 

1744 1686 
 

1125 1749 1633 

1670 1742 
 

1651 1098 1554 

1672 1093 
 

1635 1753 1396 

1654 1561 
 

1642 1097 1627 

1032 1651 
 

1659 1603 1018 

1038 1468 
 

1714 1708 1751 

1557 1469 
 

1707 1643 1542 

1668 1618 
 

1703 1741 1623 

1746 1545 
 

1706 1757 1543 

1040 1682 
 

1096 1627 1665 

1699 1559 
 

1693 1469 1732 

1676 1610 
 

1715 1696 1656 

1018 1616 
 

1749 1632 1400 

1027 1119 
 

1658 1693 1398 

1647 1743 
 

1646 1630 1092 

1041 1101 
 

1547 1730 1662 

1556 1546 
 

1633 1558 1657 

1680 1108 
 

1708 1739 1708 

1669 1107 
 

1687 1752 1176 

1090 1692 
 

1628 1615 1175 

1640 1105 
 

1087 1565 1646 

1751 1544 
 

1753 1022 1017 

1030 1620 
 

1729 1096 1397 

1638 1129 
 

1105 1614 1109 

1091 1652 
 

1100 1105 1625 

1694 1115 
 

1126 1127 1719 

1747 1689 
 

1739 1514 1016 

1029 1539 
 

1362 1750 1557 

1026 1680 
 

1462 1608 1038 

1743 1560 
 

1617 1351 1106 

1133 1650 
 

1566 1618 1556 

1692 1113 
 

1563 1626 1653 
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1649 1684 
 

1089 1621 1093 

1536 1117 
 

1643 1688 1800 

1088 1693 
 

1632 1628 1179 

1008 1097 
 

1648 1756 1681 

1639 1565 
 

1565 1124 1541 

1087 1536 
 

1625 1613 1711 

1615 1750 
 

1634 1087 1114 

1552 1564 
 

1644 1712 1181 

1644 1091 
 

1568 1633 1105 

1551 1648 
 

1661 1660 1705 
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Appendix 5: Melanoma Spectroscopy Study SOP 
Below is the SOP used for the processing of all melanoma patient samples discussed in 

Chapter 4 and 5. 

Melanoma Spectroscopy Study SOP 

Laboratory processing of blood 

 
1. Take 5ml plasma (red-topped) and 5ml serum (brown-topped) blood samples. 

 
2. Leave both samples upright for 30-60 min – this is to allow the serum 

sample to clot.  
 

3. Spin both blood tubes for 15 minutes at 2200g at room temperature. 
 

4. For both samples, label 3x 2ml cryotubes with a permanent marker: 
 

 Patient ID 
 Visit number 
 Date 
 Sample volume 
 Sample type i.e. plasma or serum 

 
Write P or S plus the patient ID on the lid as well. 
 

5. Using a Pasteur pipette, transfer the serum into 1x 1ml aliquot, then split 
the rest equally between the remaining two cryotubes. 
 
Dispose of the blood tube in the clinical waste. 
 

6. Repeat step 5 for the plasma sample. 
 

7. Transfer to the appropriate cryoboxes in the bottom drawer of the metal 
tower in drawer 3 of the -80°C research freezer.  
 
Label the boxes with study name and contact details. 
 

8. Record patient visit details on the ‘Oncology Studies Patient Visits’ 
spreadsheet (Spectroscopy tab).  This includes times of blood taking, 
spinning and freezing. 
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Appendix 6: Patient Demographics 
Blood sample patient demographics from samples used in Chapter 5. 

Table A.4 – Patient demographic information of those discussed in Chapter 5 

Trial Number (PIN) Gender DOB Age Ethnic origin 

001 M 27/09/1947 68 WB 

002 M 12/02/1949 66 WB 

003 M 16/12/1929 85 WB 

004 M 20/06/1994 21 WB 

005 M 17/03/1951 64 WB 

006 M 25/02/1940 75 WB 

007 M 03/03/1949 66 WB 

008 M 07/05/1965 50 WB 

009 M 15/02/1965 50 WB 

010 M 09/09/1957 58 WB 

011 F 11/04/1943 72 WB 

012 M 07/12/1950 65 WB 

013 F 12/06/1950 65 WB 

014 F 17/01/1956 59 WB 

015 M 07/04/1927 88 WB 

016 M 22/04/1969 46 WB 

017 M 16/05/1939 76 WB 

018 F 25/09/1956 59 WB 

019 F 19/12/1954 61 WB 

020 M 09/02/1946 70 WB 

021 M 16/05/1956 59 WB 

022 F 16/07/1933 82 WB 
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023 M 20/05/1955 60 WB 

024 M 16/06/1948 67 WB 

025 M 18/07/1955 60 WB 

026 M 30/03/1953 62 WB 

027 M 04/05/1944 71 WB 

028 M 03/11/1936 79 WB 

029 F 19/03/1935 80 WB 

030 M 10/07/1960 55 WB 

031 F 28/02/1943 73 WB 

032 F 31/01/1966 50 WB 

033 F 20/04/1940 75 WB 

034 F 12/07/1933 82 WB 

035 M 22/05/1982 33 WB 

036 M 07/07/1970 45 WB 

037 F 17/07/1947 68 WB 

038 M 13/08/1946 69 WB 

039 F 06/01/1938 78 WB 

040 F 25/02/1951 65 WB 

041 F 07/02/1936 80 WB 

042 F 02/03/1929 87 WB 

043 F 06/06/1972 43 WB 

044 M 31/12/1933 

 

WB 

045 M 20/03/1953 

 

WB 

046 M 26/05/1943 

 

WB 

047 M 07/12/1952 

 

WB 

048 M 25/08/1944 

 

WB 
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049 M 27/07/1958 57 WB 

050 M 23/05/1949 

 

WB 

051 M 22/06/1960 

 

WB 

052 M 220/4/1948 

 

WB 

053 M 01/05/1952 64 WB 

054 M 25/05/1939 77 WB 

055 M 28/03/1933 83 WB 

056 F 24/10/1962 53 WB 

057 F 05/08/1960 55 WB 

058 M 26/09/1938 77 WB 

059 F 18/09/1976 

 

WB 

060 F 02/04/1944 72 WB 

061 M 22/08/1949 66 WB 

062 M 07/05/1947 68 WB 

063 M 30/12/1984 31 WB 

064 M 17/10/1947 68 WB 

065 F 21/10/1930 85 WB 

066 M 10/01/1925 91 WB 

067 M 09/11/1937 78 WB 

068 F 08/05/1955 61 WB 

069 M 31/12/1946 69 WB 

070 M 30/08/1963 53 WB 

071 F 01/07/1978 38 WB 

072 F 06/02/1946 70 WB 

073 M 03/11/1939 76 WB 

074 M 24/11/1954 61 WB 



 

269 
 

075 F 29/07/1951 65 WB 

076 F 09/11/1942 73 WB 

077 M 21/10/1943 72 WB 

078 F 24/07/1950 66 WB 

079 M 20/11/1942 73 WB 

080 F 08/05/1944 72 WB 

081 M 14/05/1938 78 WB 

082 M  17/12/1961 54 WB 

083 F 08/04/1947 69 WB 

084 F 16/06/1967 67 WB 

085 M 14/09/1948 68 WB 

086 M 07/12/1938 77 WB 

087 M 26/03/1960 56 WB 

088 M 25/09/1935 81 WB 

089 F 21/01/1960 56 WB 

090 M 14/04/1958 58 WB 

091 M 16/06/1936 80 WB 

092 M 07/09/1962 54 WB 

093 M 22/04/1948 68 WB 

094 M 25/09/1941 75 WB 

095 M 27/01/1927 88 WB 

096 M 29/01/1928 88 WB 

097 M 24/07/1936 80 WB 

098 M 06/05/1952 64 WB 

099 M 14/09/1936 80 WB 

100 M 02/08/1938 78 WB 
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101 M 16/04/1964 52 WB 

102 M 06/01/1947 70 WB 

103 M 26/01/1952 65 WB 

104 F 01/05/1935 82 WB 

105 M 19/10/1984 32 WB 

106 F 01/01/1938 79 WB 

107 M 07/09/1950 66 WB 

108 F 06/02/1954 63 WB 

109 M 02/06/1945 72 WB 

110 M 13/08/1972 44 WB 

111 M 30/07/1941 75 WB 
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Appendix 7: Use of Estimate eGFR 

 
Use of Estimated Glomerular Filtration Rate (eGFR) 
CKD may be suspected on clinical grounds (e.g. patients with hypertension, diabetes 

or recurrent UTIs are known to be at increased risk). Detection of early chronic kidney 

disease (CKD) is important as early identification and intervention can slow the 

progression of disease and reduce associated cardiovascular risk  

 

Suspected CKD 

Detection of CKD can be improved using eGFR, as it unmasks minor degrees of renal 

impairment that may be unnoticed by measurement of creatinine alone, due to the 

influences of age and sex on the reference ranges for serum creatinine, eGFR is not 

valid in children (<18 years) and acutely ill patients. Its role is in the detection and 

monitoring of ‘stable’ patients with suspected or established CKD. eGFR should be 

multiplied by 1.2 for African-Caribbean patients. 

 

eGFR greater than 60mL/min/1.73m2 does not exclude stages 1 and 2 CKD. Where 

suspected, urinalysis and other investigations may be appropriate. 

 

Patients with eGFR between 30 and 59 mL/min/1.73m2 on two separate samples 

about 90 days apart are classified as CKD stage 3. 

 

Persistent proteinuria (protein: creatinine ratio (PCR) greater than 100mg 

protein/mmol creatinine) is the best indicator of risk of progression to end stage 

renal disease in patients with early CKD (stages 1- 3). 

All patients with suspected early CKD should have a urine dipstick test for protein; 

PCR should be quantified where results are positive. Urinary albumin estimations 

should be used in diabetic patients. 

 

Further information may be found at www.renal.org/CKDguide/ckd.html  
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