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Abstract

The systems of interest in this study are the spread of epidemics and invasions

from a small propagule introduced into an arena that was initially devoid of the

given species or stage of illness.

In reaction-diffusion models, populations are continuous. Populations at low

densities have the same growth functions as populations at high densities. In

nature, such low densities would signify extinction of a population or of a disease.

This property can be removed from reaction-diffusion models by small changes 1n
the formulation so that small populations become extinct. This can be achieved

by the use of a threshold density or an Allee effect, so there is negative growth at

low densities. Both these alterations were made to the Fisher model, a predator-

prey model and a two stage and a three stage epidemic model.

A semi-numerical method, termed the Shooting method, was developed to predict
the shapes and velocities of these wave fronts. This was found to correctly predict

the velocity, the peak density of the invading stage or species and the width of
the wave front.

It was found that in oscillatory cases of the multi species models, a high thresh-
old can remove the wave train or wake which would normally follow the wave
front, so the wave becomes a soliton. The next step is to investigate probable
causes of persistence behind the initial wavefront. To do this, discrete time and
space versions of the models were formulated so that experiments investigating
persistence can be carried out in a two dimensional arena with less computational
efiort. The formulations were chosen so that at reasonable time and space steps
the discrete models show no behaviour different to that of the reaction diffusion

model, and so that the Shooting method could also be used to make predictions

about these wavefronts.

Three mechanisms of persistence are investigated; environmental heterogeneity,

long range dispersal and self organised patterns.
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Chapter 1

Introduction

1.1 Modelling Spatial Processes

1.1.1 Ecological Applications

The modelling of spatial processes is of interest in an ecological sense as a way of
representing the spatial spread of many species and of diseases, spreading from

a small propagule of a new species or of a stage of an illness not already in the

spatial arena of interest.

The spread of a species can be thought of in 2 different ways. The species may be
exotic to that region, such as a species introduced into an area for exploitation
for man. An example of this is the introduction of the musk rat into Bohemia at
the start of this century for sporting purposes . The spread of the muskrat has
been modelled by van den Bosch et al. (1992). The species may be re-released
into an area in which it has gone extinct. Californian sea otters were hunted to
near extinction in the 1900s. A small population was discovered in 1914 (Bryant
1915), and due to protection laws the population has increased in number and
spatial range (Peterson and Odemar 1969). Lubina and Levin (1988) have used

the data collected concerning this range expansion to parameterise an invasion
model.

The spread of epidemics is also an interesting and important area of study. Eco-




logical epidemics are important in human health terms, as in rabies epidemics
(Murray 1987) and economically, such as the spread of bovine tuberculosis by
badgers (White and Harris 1995a) (White and Harris 1995b). The importance

of modelling in the field of epidemiology is as a method of assessing disease con-
trol strategies. White and Harris (1995a) and White and Harris (1995b) both

vaccination regimes and culling are investigated as control strategies for bovine

tuberculosis in badgers by using model simulations.

1.1.2 Modelling Approaches

There are a number of approaches to ecological modelling. There are random
effects in ecological systems due to variation in the environment and in individ-

uals. Such randomness is taken into account in stochastic models. In stochastic
models, the population is treated as integer individuals. At a given time, these
individuals are attributed a probability of being in a given state. A stochastic
simulation results in a realization of the model. Realizations are different due to
random effects. Deterministic models do not include random effects, and so only
provide information about the trend in the system. In a deterministic model,
the state of the system at any future time can be predicted by the state of the
system at the present time. Populations are treated as continuous, real densi-
ties. Frequently the mean of many stochastic realisations is very similar to the
trend predicted by the deterministic model (Renshaw 1991), so in this thesis it

is assumed that deterministic models provide adequate means for representing

ecological systems.

There are also many approaches to modelling spatial processes. Assuming that
the system is homogeneously mixed over its extent allows the model to be de-
scribed by ordinary differential equations or difference equations, the mean field
approach. The spatial component is important if mixing is not homogeneous
(Levin 1974), as in the case of an epidemic starting from a point innoculum.

Space can be split into one or more colonies, with transfer rates or probabil-

ities between them, the meta-population approach. Reaction-diffusion models




assume that individuals within a population move in a random manner. If this
random motion results in a macroscopic regular motion of the whole population,

the motion can be described as a diffusion process (Skellam 1951). In reaction-
diffusion models, partial differential equations are used to model the growth and
behaviour of the population density. Discrete space and time analogues of the
continuous reaction-diffusion models can be formulated. These discrete models

use update rules to predict the outcome of continuous time models after a finite

time increment.

Reaction-diffusion models are used in this thesis as the species which are modelled

are thought to move in any direction and any distance i.e. diffusively (Skellam
1951).

Interestingly enough, in deterministic reaction-diffusion models, the population
density is a continuous variable; individuals are not considered as discrete entities.
This makes it impossible for the population density to ever reach zero. Normally,
in reaction-diffusion models, low density populations have exactly the same dy-
namics as high density populations. Mollison (1991) showed that the 3 stage
rabies model, a rabid population of 1 individual per quintillion square kilometres
was large enough to re-infect susceptible populations and keep the epidemic go-
ing. At very low densities, stochastic effects become much more important, so
the deterministic assumptions fail (Rand and Wilson 1991). So reaction-diffusion
models need to be modified so that regrowth does not occur from low densities.
Allee (1938) described population decline in low density populations associated
with a lack of reproductive opportunity. An Allee effect in the growth function
can be used to remove the low density populations from the dynamics of a model
(Lewis and Karieva 1993) (Kot et al. 1996). A threshold formulation where any
population of less than the threshold density dies out can be used (Kessler and
Levine 1998) (Brunet and Derrida 1997). In the case of their models a cutoff was

used, where all populations of less than a given density instantaneously become

extinct. This formulation does not work in a continuous model.




1.2 Invasion Models

In (1937), Fisher formulated a reaction-diffusion model for describing the spread
of an advantageous gene. The population described by the model grows logisti-
cally and disperses diffusively. He also devised a calculation for the velocity of the
wave front (see chapter 2 for details). If an Allee effect or a threshold is added to
the growth function of the Fisher model, the velocity of the wave front decreases
and the wave front shortens (Brunet and Derrida 1997). Brunet and Derrida
(1997) touched upon another important concept, that these models cannot be
predicted with Fisher’s calculation as it assumes that low density populations

grow in the same way as high density populations. Brunet and Derrida (1997)
approximated a calculation for the velocity of the Fisher wave with their cutof.

This threshold formulation will not work for continuous time models. Lewis and
Karieva (1993) calculated the velocity of a wave front of a system with Allee
dynamics, created by a cubic term in the growth function. The cubic term in
the growth function cannot easily be attributed to a biological mechanism and
the calculation cannot be modified to fit the growth functions with Allee efiects
formulated in this thesis. A more general calculation for the velocity of a wave
with no regrowth from low densities is needed. In Chapter 2, a semi-numerical
method for predicting the wave shape and the velocity of the Fisher wave with
no regrowth from low densities is devised (Cruickshank et al. 1998). The accu-
racy of this new method, termed the Shooting method, is tested against three
formulations of the Fisher model with no regrowth from low population densi-

ties, one being the addition of a threshold and the other two different Allee effect

formulations.

The methods of removing regrowth from low population densities are then ap-
plied to a 2 component system, a predator-prey model, formulated by Rosenzweig
(1971) from principles developed by Rosenzweig and MacArthur (1963). This
predator-prey model is unstable at high carrying capacities (Rosenzweig 1971)
(Gilpin 1972). The model is made spatially explicit by having diffusively dispers-
ing predators and immobile prey (Gurney et al. 1998) (Cruickshank et al. 1998)



(Gurney and Veitch 1998). The velocity of the predator wave front has been cal-
culated for a predator-prey model Dunbar (1983); Dunbar (1984). In chapter 3,

the reaction-diffusion, predator-prey model is modified to remove regrowth from

low densities of predators, by use of a threshold (Gurney et al. 1998) and an
Allee effect (Cruickshank et al. 1998). Two methods of predicting the wave char-

acteristics of the models are considered, the method devised by (Gurney et al.

1998) for the threshold formulation and the Shooting method (Cruickshank et al.
1998), are compared and tested.

1.3 Epidemic Models

The epidemic models considered in this thesis were both developed to model the
rabies epidemic in European foxes. Rabies is currently sweeping through Europe,
having appeared in Poland in the late 1930s (Anderson et al. 1981) (Murray

1987). Control mechanisms for the epidemic can be investigated by the use of
mathematical models.

A non-spatial model was formulated by Anderson et al. (1981). This model has
two staged of infection; susceptible and infective. Kéillén et al. (1985) formulated

a reaction-diffusion model for the rabies epidemic. This model assumes that
adult susceptibles remain within the same territory after recruitment to the adult
population, so the susceptibles are considered immobile. Infectives either contract
the paralytic form of the disease and die without reinfecting or run in a random

manner, infecting any susceptible contacted, described by the model as diffusion.
The velocity of the wave front can be calculated from Dunbar’s work on a two

component model. The velocity this model predicts for a rabies epidemic is always

much higher than the velocity of the epidemic front travelling through Europe.

The two stage epidemic model ignores an important factor in the course of the

rabies infection. Once infected, there is an incubation period when the fox is
asymptomatic and not infective. Murray et al. (1986) added this third stage

of infection to Kaillén et al.’s model. The incubating foxes are assumed to be



immobile, as the susceptibles are. Murray et al. (1986) and Murray (1989)

describe a calculation for the velocity of the wave front in this 3 stage epidemic

system.

Mollison (1991)’s description of an atto-fox is based on the dynamics of rabies
models. To reduce the impact of the low density populations on the rabies models,

the infectivity of low density population is reduced, both by use of a threshold
and by a more continuous formulation (Cruickshank et al. 1998) are used. The
Shooting method is altered to make predictions about the velocity and shape of

the wave front in the epidemic systems with these formulations.

In chapter 6 there is a case study of the European fox rabies epidemic. Suitable
threshold densities are calculated, based on the likelihood of a fox being infected

at the given density (Cruickshank et al. 1998). van den Bosch et al. (1992)’s idea

that fox territory size depends on population density is also investigated. This

has implications for the diffusion rate and the threshold density of the system.

1.4 Discrete Models

When the dynamics of the predator-prey model are unstable, and the first trough

behind the wave front dips to a density near the threshold density, the invasion
of predators dies out behind the wave front forming a soliton wave (Gurney

et al. 1998) (Cruickshank et al. 1998). The epidemic models with regrowth from
low densities have complicated wakes behind the epidemic wave front (Mollison
1991). If the trough behind the initial wave front falls to a density near that

of the threshold, the epidemic dies out behind the wave front forming a soliton

wave. This raises the question of persistence of the epidemic or invasion behind
the wave front in these-systems.

Mechanisms which may allow the establishment of an invading predator or the

epidemic to reach an endemic state within the system are reviewed in chapter

- 10 and investigated in the following 3 chapters. The continuous models, which

have been used up to this point of the thesis, are very computationally intensive.



Some of the mechanisms considered are only realizable in 2 dimensions (Gurney
et al. 1998) (Hassell et al. 1994), and 2 dimensional simulations of reaction-

diffusion models take long times to run to completion. As 4 mechanisms are to

be investigated, in 3 different systems, it is essential that simulations run quickly.

Discrete time and space analogues of the continuous invasion (Gurney et al. 1998)
and epidemic models (Gurney and Nisbet 1998) are formulated in chapters 7 and
8. Discrete simulations are more computationally efficient and have much shorter
run times than continuous simulations. It is important that the discrete models
do not demonstrate dynamics unseen in the continuous models and that as the

time and space steps increase the solutions of the discrete models diverge slowly

from those of the continuous models.

van den Bosch et al. (1990) extended the work of Fisher Kolmogorov et al. to
calculate the velocity for integrodifference equations to a general invasion so that
advective dispersal may be taken into account. Again, this velocity calculation
is founded on the exponential shape of the toe of the wave front. Kot, Lewis,
and van den Dreissche (1996) considered the velocity of a discrete model with
an Allee effect. The calculation of the velocity was developed for a piecewise
continuous analogue of an Allee effect and, although the calculation successfully
predict the velocity of the wave front of the model it was developed for, it does not
extend well to other models, as shown in chapter 7. The Shooting method can,
however, be used to predict the velocity and shape of the wavefronts of all the

discrete systems as long as the space and time steps are small, as demonstrated
by chapters 7 and 8.

The discrete time and space models are then extended to 2 spatial dimensions
in chapter 9. Circular waves are generated (Gurney et al. 1998) where the wave
spreads out in all directions at the same rate (Skellam 1951). Spiral waves are
known to form in chemical systems in excitable media (Winfree 1972) (Keener
and Tyson 1986) (Kessler and Levine 1989). Models of these systems can be
understood in terms of their geometry and the kinetics of the excitable medium

(Keener and Tyson 1986). The models formulated in this thesis describe systems



with excitable media; there is reduced predation or infection below a threshold

density. Spiral waves can be generated in the 2 dimensional arenas when the
wave front is a soliton wave (Gurney et al. 1998). The circular waves are similar
enough in cross section to the the waves generated in the 1 dimensional model,
so the Shooting method is used to make predictions about the velocity and shape
of the wave front. Spiral waves are not as easy to make predictions about, and

the Shooting method can only be used to predict the scale of the velocity and the

shape of the wave front as opposed to predicting exact values for these quantities.



Part 1

Reaction-Diffusion Models of
Invasions and Epidemics




Chapter 2

Single Species Continuous
Models

Reaction-diffusion models permit populations at very low densities to exist and
grow, a situation which is biologically unrealistic. If the growth of these small
populations is removed from these models, this situation is improved. In this
chapter three formulations which create this effect are examined. The Fisher
model (Fisher 1937) is adapted so that there is no reproduction under a threshold.
This is implemented both by a critical threshold for reproduction and an Allee
Effect (Allee 1938) growth term. A method for analysing the wave front properties

of invasions of organisms with no growth at low densities is then developed.

2.1 Introduction

2.1.1 The Logistic Model

The logistic model describes the density dependent growth of a single population,
N, at time T To achieve logistic growth, the birth process, B(IV), must decrease

and the death process, D(N), must increase as N increases (Renshaw 1991}, so

B(N) = (a, —byN)N and D(N) = (az+ b2 N)N, (2.1.1)

10



where a;, a,, b; and b, are positive constants. The logistic equation is therefore

dN

—~7 = B(N) = D(N) = N{(a1 - ag) = (b +b2) N] . (2.1.2)

In a biological context this equation is usually rewritten in the form

dN N
= T — 2!1!3
dT RN (1 K ) ( )

where R = (a; — ag) is the intrinsic rate of natural increase for growth and

K = (a1—ay)/(b1+b2) is the density of the carrying capacity of the environment,

SO

dN

—=—=0 as N2 K or N0 (2.1.4)

and

N—>K as t—o0. (2.1.5)

2.1.2 The Fisher Model

Now a logistically growing population which disperses in one dimension is consid-
ered, the Fisher model. It was originally intended to describe the invasion of an
advantageous gene into a gene pool, but now it is commonly used to describe an
invasion wave of an exotic or re-invading species (Skellam 1951). The population

disperses diffusively, representing the spread of organisms with low intelligence

or no tropisms. The population at time T and position X, N(X,T) diffuses with
diffusion coefficient ¥. The Fisher model is

oON N 0*N
or =RV (1- %) + V5 (219

To simplify the algebra and increase the speed of computations, the equations
are reduced to a dimensionless or scaled form (Nisbet and Gurney 1982). This
process may also lead to biological insight into controlling groups of parameters.
The scaling process involves multiplying or dividing the model by one or more
parameters, producing dimensionless variables and parameter groups. In this case
there are 6 quantities: the population, the carrying capacity, space, the diffusion

coeflicient, the per capita intrinsic growth rate and time. The carrying capacity,

11



K, has the dimension of the population. Therefore K can be used as the scale
of N, so the scale of population, Ny, is Ny = K. This scaling produces the
dimensionless variable n = N/N,. The per capita intrinsic growth rate, R, has
the dimension of one over time. Therefore, 1/R can be used as the scale of time,
so To = R~'. This scaling produces the dimensionless variable t = T'//Tp. The
diffusion coefficient has the dimension of the diffusion length, so Xy = \/‘I’/_R
can be used as the scale of space. This results in the dimensionless variable
z = X4/R/¥. This choice of scaling produces the dimensionless model

on 0%n

On _ (1 —m) s 2 2.1.7
5 =Ml -n)+ 5 (2.1.7)

One method used to predict the velocity and the shape of the wave front of this
model was suggested by Fisher (1937) and Kolmogorov et al. (1937) and later
extensively ratified by Hadeler and Rothe (1975) and Mollison (1977). To see the
relationship between front velocity and model parameters the leading edge of the
front where n << 1 was investigated. In this case the n® term can be ignored in

comparison with the n term. This linearises equation (2.1.7) to

ot Ox?’

(2.1.8)
A solution is sought in the form n(z) = Ae~M*~*Y) where v is the velocity of the
wave front, A is the exponential lapse rate of the front, A > 0 and A > 0 and
s arbitrary. Substituting this form of solution for n(z) into the linear equation

gives the relationship between the velocity of the wave front, v, and A,

|
e . 2:1:9
V=3 + A (2.1.9)

This suggests that any value of v is possible with A chosen to suit, as long as v

1s larger than a minimum velocity, vy, which occurs when A = 1. For the scaled
Fisher model,

Vg = 2. (2.1.10)

vp 18 the velocity of the wave front as long as the initial condition of the population

has compact support (Fisher 1937) (Kolmogorov et al. 1937).

12



The derivation of this velocity calculation exploits the fact that the population

grows in the same way at low densities as at high densities. If the model is changed

so that there is no in-situ regrowth of non-biological populations, another method

will have to be found to predict the velocity of the invasion wave front.

2.2 Invasions of Populations with no Reproduc-
tion at Low Densities

A situation is considered in the Fisher model that when a population falls beneath

a threshold density, np, there is no reproduction. This removes the problem of

regrowth from low densities from this reaction-diffusion model.

A method to calculate the velocity of a single component reaction-diffusion model
with an Allee effect in the growth function has been devised by Lewis and Karieva

(1993). Their growth function is given by a cubic. No obvious biological mecha-
nism produces such a growth function, so in this chapter Allee effects are achieved

by more biologically realistic mechanisms. Their velocity calculation is specific to

the cubic growth function, so is not applicable to the formulations of the Fisher
model with no regrowth as described below. A new method of analysing the

properties of an invasion wave of with these growth functions is devised.

2.2.1 General Case

A generalisation of the Fisher model is considered, where g(n) is the scaled local

net population growth function, giving

on 0°n
—a'z — g(n) T 555' . (221)

In this section the scaled carrying capacity is referred to as k, so in the scaled

Fisher model, since the carrying capacity is 1, £ = 1. The restrictions on g(n)
are that

9(0) = g(np) = g(k) =0, (2.2.2)

gn) <0 if 0<n<np or n>k (2.2.3)
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and

gin)>0 if np<n<k. (2.2.4)

These restrictions cause the velocity of the wave to decrease from that of the

original Fisher model, so v < vy (Brunet and Derrida 1997).

t=70

t=100

Figure 2.1: Generic behaviour of growth with an Allee effect, with the specific
equation for g(n) given by equation (2.2.40) with a = 1.5 and np = 0.3. (a) net
growth function. (b) typical invasion front generated from a simulation of the
model described by equation (2.2.40) with Az = 1, the time step varying between
At = 0.001 — 0.1 and a numerical integration tolerance of 0.0001. (c) phase
plane analysis with vp = 0.47: solid line shows separatriz implied by inequality

(2.2.10). (d) group of solutions for z > 0 in a moving frame of reference with v
for each run marked.

It 1s assumed that a travelling wave solution exists and that the wave is moving
from right to left in a 1 dimensional arena. The model is transformed into a
moving frame of reference which moves from right to left with velocity —vg. This

allows n to depend only on one parameter 2z, where z = z+wvpt. Equation (2.2.1)

can then be written as a second order ODE,

#n_ dn
d2z? Rz

14

+g(n)=0. (2.2.5)



If = dn/dz, the transformed model can be rewritten as a pair of first order

ODEs, where

dn do

—=¢ and —=vpp—g(n). (2.2.6)

The solution sought requires n — 0 as z = —oo. z = 0 is placed at a point where

n = ng << np so that for z < 0, equations (2.2.6) can be approximated by

dn dp oy = | % 2.2.7
E-_q'& and - =vpd—g'(0)n where ¢'(0)= [dano : (2.2.7)

Equation (2.2.7) has the solution n = nge**, where n — 0 as 2 = —oo, provided
that A > 0. Since ¢'(0) < 0,

v=1 (ot VA=) | 229

so for 2 > 0, equations (2.2.6) are solved with the initial conditions

n(0) =ng and ¢(0)= Ang. (2.2.9)

An inspection of equations (2.2.6) shows that for n to increase with z, ¢ > 0 and
for ¢ to increase with 2,

¢ > 9-@-. (2.2.10)

These conditions can lead to an understanding of the characteristics of the result-
ing solutions in the phase plane. These equations are solved using an adaptive
step RK4 numerical integration algorithm. Az varies between 1 x 10™° and

1 X 1072 and the integration tolerance is 1 x 10~%. The implications of the char-
acteristics of the solutions are illustrated in figure 2.1(c).

If ng is kept constant and A increases from zero, the initial condition moves in
a vertical line in the positive quadrant at n = ny. Above ¢ = 0, n increases, so
the movement is from left to right. Below ¢ = 0, n decreases, so the movement
1s from right to left. When the ¢ = 0 line is crossed the trajectories must move
vertically. The bold line in the figure depicts the curve obtained for ¢ = g(n)/vng.
Above this line, ¢ increases so the movement is from bottom to top, and below

the line g decreases, so the movement is from top to bottom. Trajectories must
move horizontally while crossing this curve as d¢/dz = 0.
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The initial conditions for a set of trajectories, given in equation(2.2.35), with

varying A would lie on a vertical line which would cross the z axis at n = n(0)
and increasing as a function of vp. If the initial conditions lie above the bold

curve then the trajectory initially moves towards the top right. There are 4

possibilities for the direction of movement of the trajectories:

1. The trajectory misses the curve and n — oo monotonically.

2. The trajectory intersects the bold line twice while ¢ > 0 and re-enters the

region where v¢ > g(n) and n — oo monotonically.

3. The trajectory hits the point (k,0), where it stops as this is a steady state.

4. The trajectory intersects the bold line while ¢ > 0 but curves down into the
region where ¢ < 0, intersects the bold line again, then falls back below np.

Eventually, perhaps after some oscillations, it falls into the region where
n < 0.

The first 2 possibilities correspond to vy being greater than the wave front ve-
locity, v. The third possibility corresponds to vp = v and the fourth possibility
corresponds to vgp < v. So there is only one trajectory that leads to the (k,0)

steady state. This has been proved by Cruickshank et al. (1998) (see Appendix
A).

If there is only one trajectory which leads to (k,0), if np is held constant, and
vr is varied, a bisection search can be used to find where vp = v, the velocity

of the wave. A bracket which is known to contain v is chosen; in the case of the
modified Fisher models, this bracket is chosen to be (0 — 2). The centre point
is used as vgr and equation (2.2.6) is solved with the initial conditions described
by equation (2.2.9), and Az and integration tolerance as used previously. When
n>2orn <0then ¢ =0 or % = 0, so the simulation terminates either at
n > 2 orn < 0. This end result can be used as the criterion for the bisection

search. If n > 2 then the mid-point of the bracket becomes the new high end of
the bracketing pair. If n < 0 then the centre of the bracket becomes the low end
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of the bracketing pair. Figure 2.1 (d) shows that when close to v, the trajectories

of the upper and lower bounds of vy run together until k is nearly attained, then

the trajectories diverge. Therefore the criterion for the completion of the search

is that the upper and lower bounds have identical trajectories to the asymptote |
of the wave, where n = k, ¢ ~ 0 and d¢/dz =~ 0.

This method of calculating the velocity of an invading wave in an excitable

medium has been coined the Shooting method.

The models dependent on time and space are numerically simulated to provide

observed results with which to compare the Shooting method.

32
p(z) = .55’.2’:. (2.2.11)

is substituted by the finite difference representation

_ n(z + Az) — 2n(z) + n(z — Az) |

p(z) = N (2.2.12)

where Az is the space step. The model is then solved by a RK4 numerical

integration method with an adaptive time step, At.

In all simulations of models to which the Shooting method is applied in this
thesis, quadratic interpolation is used to find the width of wave fronts to a higher
accuracy than the space step length. The exact times of the passage of the wave
at various positions of the arena, needed for the observed velocity calculations,

are also obtained at higher accuracy than the time step length by quadratic
interpolation.

2.2.2 Invasions with Thresholds

One method to stop reproduction at low population densities is to use a threshold.

The Fisher model is modified so that if a population falls below a density Np,

the individuals in the population stop reproducing, so that when

ON 0‘N
———— e —— |2|13
T G(N)+ ¥ e (2.2.13)
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where

. —DN N < Np 29 14
G(N) _{ RN(1 - N/K) otherwise (2.2.14)

and D is the per capita mortality rate.

This is scaled in the same way as the original Fisher model, so Ip = R™' and
To = K. Np has the dimension of population, so the dimensionless threshold
np = Np/N;. D has the dimension of time, so the dimensionless per capita
mortality rate is d = D/T,. The model then becomes

on 0°n
g - 2.2.15
o =9I+ 55 (22.15)
where
—dn n<np
— . 2.2.16
9(n) { n(l —n) otherwise ( )

Brunet and Derrida (1997) devised an approximate calculation for the velocity
of the wave front of a Fisher model with a small cutoff. The cutoff in this

case is imposed by setting all population below the cutoff density to zero. The
calculation is based on the fact that in their formulation there is a relationship

between the size of the cutoff and the reduction in velocity from vy, s0

71.2

T (2.2.17)

VY —

 d |np || Observed v | Predicted v_

Table 2.1: Comparisons between wave velocities calculated from equation (2.2.17)
and those observed from simulations of the continuous Fisher model with a thresh-
old. In the simulations, d = 0.1, Az = 1, the time step varying between
At = 0.001..0.1 and a numerical integration tolerance of 0.0001.

Equation (2.2.17) is used to calculate the velocity of the wave front in the Fisher
model with a threshold. This calculation only works for small thresholds (Brunet
and Derrida 1997), as is clearly demonstrated in table 2.1. Because of the form

of the cutoff used by Brunet and Derrida, the per capita mortality rate below
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the threshold is not taken into account in the calculation. Their model can only

be simulated in discrete time due to the “setting to zero” nature of their cutoff.

Therefore this calculation cannot be used to predict the velocity of wave fronts

generated by the continuous time Fisher model with a threshold.

The Shooting method can be used to calculate the velocity in this model.As in the

general case, the wave is originally travelling from left to right in a 1 dimensional

arena. The model is transformed into a moving frame of reference with velocity

—vR, with the n dependent only on z = z + vgt, with the wave travelling from
right to left.

(a) —~ o (b)
v=0.56 § g
1 | /3
1 |
- J -
2

r | 0 A _ -
0

O S50 0 10 20

X Z

Figure 2.2: (a)Fisher wave with a threshold travelling from left to right with
velocity v = 0.56, Az = 0.5, the time step varying between At = 0.001 — 0.1
and a numerical integration tolerance of 0.0001. (b)Trajectories of simulations
i a moving frame of reference with d = 0.00001 and np = 0.5. The velocity of
the frame of reference, vg, is as marked. When v =~ 0.56, the trajectories run
concurrently until the (1,0) point is nearly reached, then diverge.

Within the moving frame of reference, 2z = 0 is set where n(0) = ny = np so that
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the dynamics of the model where z < 0 are then described by

d*n dn
il A = 2.2'.18

With z < 0, a solution is sought in the form n(z) = npe*?, so the exponential

lapse rate, A, must be the solution of

M —vpl—d=0. (2.2.19)

As A > 0,

1 [
A = § (’UR - ’U% <+ 4d) . (2.2.20)

This implies that any value of vy is possible if A is chosen appropriately. The
solution is required (by conservation theory) to be continuous in slope and value

at z = (0, so the slope of the solution is related to np and v by

n'(0) = Anp. (2.2.21)

For z > 0, n is the solution of the coupled first order equivalent of the transformed

model,

-c;—z =¢ and g% =v¢p—n(l—-n), (2.2.22)

subject to the initial conditions

n(0) =np and ¢(0)=npA. (2.2.23)

The Shooting method then uses the bisection search algorithm described in sub-

section 2.2.1, where equation (2.2.22) is solved with the initial conditions de-
scribed in equation (2.2.23).

A series of numerical simulations of the Fisher wave with a threshold were carried

out to check the accuracy of the Shooting method’s predictions.

The width of the wave front can also be estimated from this analysis. Figure

2.2 (b) shows that at the end of the bisection search the trajectories of the

upper and lower brackets of vy are identical until n &~ 1. Until this divergence
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nl Predicted Values | Observed Values
-_I_I-

1 x 10~ 1.921
1 x10°% | 1.803
1x10-2 || 1.638
1x10-! | 1.223

2 x 101 | 0.9777
4 x 10~ || 0.6078
5x 10~! || 0.4417
1 x10°° | 1.913
1x10-% || 1.773
1 x107% | 1.575
1x 107" || 1.042
2 x 10~ || 0.7016
4 %101 | 0.1231

Table 2.2: Comparisons between wave properties predicted by the Shooting method

and those observed from simulations of the continuous Fisher model with a thresh-
old. Az =1, the time step varying between At = 0.001..0.1 and an integration

tolerance of 0.0001. v is the wave front velocity and wy is the width of the wave-
front measured from n = 0.1 to n = 0.9.

occurs, the trajectories are following the trajectory of vy = v (Brunet and Derrida

1997) (Kessler and Levine 1998).The width of this region of the solution in the 2

transformed model is the same as the width of the wavefront.

Table 2.2 shows that when the threshold is high the observed velocities and
widths of the fronts of the simulations are not exactly predicted by the Shooting
method. The cause of this is believed to be the presence of the discontinuity in
the growth function which renders the numerical simulation of the untransformed
model inaccurate. The simulations involve numerical integration with variable
time steps. It is possible for these steps to overshoot the exact time when the
population in a given space increment increases or decreases across the threshold.

At low thresholds this effect is reduced due to the low impact of small thresholds
on the properties of the wave front.
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2.2.3 Spreading Populations with a Continuous Allee Growth
Function

A growth function with an Allee effect is negative at high and low population
densities and positive for intermediate population densities, as typified by figure

2.1(a), where there is negative growth where the population n is larger than the

carrying capacity, 1, and where n < np, the threshold value.

One way of achieving such a growth function is to use a model with the per capita
birth rate function showing a Michaelis-Menten type dependency on population
density, with NV}, as the half saturation coefficient and F' is the maximum repro-

ductive rate, while the per capita death rate, D(NN), is linearly dependent on
population density, so

D(N) = N(D, — Dy;N). (2.2.24)
This results in the equation for population growth,
FN
= — D, -D;N| N . 2.2.25

It 1s now assumed that the population, N, disperses diffusively, with the diffusion
coefficient, ¥, so the spatial model is,

ON 2N
=7 = G(N) + U=,

2.2.26
57 (2.2.26)

In equation (2.2.26) B, D; and D, have the dimension of time, T. The scale of
time, Tp, is chosen as Ty = 1/(F — D). The half saturation constant, Nj, has
the dimension of population, N. The scale of population, Ny, is chosen to be
Ny = (F — D,)/D,. The diffusion coefficient, ¥, has the dimensions of space, X,
and time. Xy = /U7y is taken to be the natural scale of space. Then the model
s scaled, producing the scaled variables, t = T'/Ty, n = N/N, and z = X/X,,

and the parameter groups, n, = Ny /Ny and § = D, /(F — D), transforming the
model into

on
Tri— 2I2l27
Ot 9ln) + 63:2 ! ( )
which is the same as equation (2.2.1), where
i L s 2.2.28
[1+6)n+nh 0 n]n ( )
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This has the exterior steady state,

n=0, (2.2.29)

and an interior steady state, n*.

ot = % [(1 — ) + /(1 = np)? - 457%] _ (2.2.30)

n* is the carrying capacity of the system and is equivalent to k in equations
(2.2.2) and (2.2.4), The system can only exist if

14+ni 1

-z (2.2.31)

np, <1l and d< o 5

The steady state, n*, is always locally stable, as is the steady state where but
n = 0.

This model has negative growth when n < np, with

np = % [(1 —np) — /(1 —=np)? - 45nh] . (2.2.32)

The model is transformed into a moving frame of reference with velocity —vg,

moving from left to right, as in the Fisher model with a threshold. This gives the
second order ODE,

d°n  dn n
— —— 1 -0 — = (. 2.2.33
dz? vdz+[( +6)n+nh 0 n]n ( )
If dn/dz = ¢, this can be rewritten as a coupled first order ODE,
dn do n
dn _ a _ —5—nln. 2.2.34
T=¢ ad =1 |1+8)———5=n|n (2.2.34)

For z > 0, n is the solution of equation (2.2.34) subject to
n(0
n(0) <<np and ¢(0)= —-2-)- ('vn +4/v% + 46) (2.2.35)

The Shooting method is then used to predict the velocity and width of the re-

sulting wave front, solving equation (2.2.34) with the initial conditions no =

min(0.001,np/100) and ¢ as described in equation (2.2.35) in the bisection search
algorithm described in 2.2.1.
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d |ny, | Predicted Values || Observed Values
-—_-1—-

0.1]1x10% || 1900 1.800
0.1|1x104 | 1.844 8.2 1.844
0111x10-2 || 1.515 | 7.1 || 1.515
0.1|5x10~2 || 1211 | 66 | 1.211

0.1(1x10"* | 1.101 | 6.7 | 1.101
0.1 |1.3x 107! || 0.9170 | 6.9 | 0.9171
0.1 |1.4x 107! | 0.8888 | 6.9 l 0.8887

1x107 | 1.885 | 84 || 1.885

1% 104 1.814 8.1 | 1.814
1 x 102 1.361 6.6 1.362
5x10~2 | 0.8709 | 6.0 0.8709
1x10°! | 04615| 6.1 0.4614
1.3x 10! || 0.2115{ 6.3 0.2115
1.4x10°1 | 0.1172| 6.5 0.1172

i et fmd el feend ek ped

Table 2.3: Comparisons between calculated wave properties and those measured
from numerical simulations of the Fisher model with a continuous growth function
with an Allee effect. Az =1, the time step varies between At = 0.001..0.1 and a

numerical integration tolerance of 0.0001. v s the wavefront velocity and wy 18
the width of the wavefront measured from n = 0.1 to n = 0.9.

A series of simulations of the Fisher wave with an Allee effect were carried out

to check the accuracy of the shooting method’s predictions.

The width of the wave front between 10% and 90% of n* can be estimated from

this analysis in the same manner as in the threshold formulation.

Table 2.3 shows that the Shooting method correctly predicts the wave front ve-

locities and widths of the simulations to up to 4 decimal places. The excellent
comparison of the wave front widths and velocities of the simulations and those
predicted by the Shooting method holds throughout this set of runs, supporting
the argument in the previous section that the disagreement between the simula-
tions and the Shooting method predictions is caused by numerical inaccuracies

in the simulations of the Fisher model with a threshold and not by an inaccuracy

in the Shooting method.

As ny, is increased, the width of the wave front initially decreases with velocity,

which is expected, as demonstrated in figure 2.4. However, when the velocity

24



0.03

—n h=04
c--- 0,05
002 |
E l
= 001
000 —=
[ 1
0.0
0.0 0.1 0.2 0.3 04 0.5

Figure 2.3: Shape of the continuous Allee growth function with 6 = 0.1.

starts to decrease very rapidly, the wave front width increases again. Figure 2.3
shows that decreasing n; has the effect of decreasing n* and the rate of growth,
and increasing np. Decreasing the rate of growth has the effect of making the
front less steep. At large n;, this is the effect which governs the width of the front.
There are no similar dynamics in the original Fisher model. This formulation is

not a good approximation of the Fisher model with regrowth from low densities

removed. Another Allee model, which has the dynamics of the Fisher model at

high densities should be sought.

2.2.4 Spreading Populations with an Allee Growth Func-
tion which is Continuous in Value but not Slope

A Fisher wave with an Allee effect is sought with growth dynamics similar to those
of the Fisher model at high densities but with no regrowth from low population
densities. The formulation should also minimise errors in numerical simulations

due to discontinuities in the growth function. One compromise that could be

considered is a growth function with an Allee effect which is continuous in value,
but not in slope. This example of a Fisher wave with an Allee effect considers

a population, N, with a linearly density dependent per capita death rate M,

and a per capita fecundity rate B which is a constant, By, at high densities but

20



increases linearly with slope B, at low densities, giving

and
_J By N >(By/B) 29 37
B _{ BN otherwise ' (2:2:37)

If R = By— M, and K = R/M, then these assumptions imply that the unscaled
net growth function G(N) is

RN(1- N/K N 2> (By/ B
G(N) ={ —Mt()N + (é’.—?l)_.Ml)N2 othergvise{ ) ' (2:2.38)

Adopting the same scaling for time and space as in the thresholded version of
the model, and defining the parameter groups a = My/(By — Mp) and np
aM,/(B; — M), the scaled equivalent is

on 0°n

on _ on 2.2.39
which is the same as the general model. In this formulation,

~ | an|[(n/np) —1] n<n,
9(n) = { n(l —n) otherwise (22.40)
where
l14+a
=" 2.2.41
" 1+ (a/f np) ( )

np represents the scaled threshold value and —a is the slope of the growth function
at n = 0.

As in the previous examples, this model is transformed into a moving frame of
reference moving with velocity, vg. The model is then rewritten as a coupled

ODE. z =0 is placed where n = ny << np, so that g(ng) = —a.

The initial population for equation (2.2.6) is chosen to be ny = min(0.001, np/100)
and equation (2.2.8) is used to relate )\ to vp. A bisection search is then con-

ducted in exactly the same manner and using the same criteria as in the previous
example.

Table 2.4 shows that there is a good agreement between predicted velocities,

widths and peak heights of the wavefront and those measured from simulations
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~a |np | Predicted Values | Observed Values
L v ] owe | v | owp

Table 2.4: Comparisons between calculated wave properties and those observed
from numerical simulations of the Fisher model with an Allee effect which is con-
tinuous in slope only. Az = 0.1, the time step varies between At = 0.00001..0.001
and the numerical integration tolerance is 0.00001. v is the wave front velocily
and wy s the width of the wavefront, measured from n = 0.1 to n = 0.9.

in this model. The small difference arises from the discontinuity in the slope of the
growth function. This discontinuity creates an error in the numerical simulations.

The dynamics of high density populations are still those of the Fisher model, so

this model can be compared with the original Fisher model, whilst low density
populations become extinct.

2.3 Discussion

The Fisher model was altered so that populations with very low densities did not
reproduce, ensuring that biologically unrealistic populations did not contribute
to the dynamics of the model. This alteration reduces the velocity of wave front

of the Fisher model (Brunet and Derrida 1997). As np — 0, v — v, as shown
by figure 2.4.

Three formulations of the Fisher model with no or reduced population growth
at low densities were considered. The threshold formulation was discontinuous
In slope and value. Abave the threshold the dynamics were exactly that of the
Fisher model. The first example of an Allee effect was completely continuous but

did not have the same dynamics as the system described by the Fisher model.
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The second example of an Allee effect was discontinuous in slope but not n

value. Above a critical density, n., the dynamics of the model were the same as
the original Fisher model.

Brunet and Derrida (1997)’s calculation for the velocity of a Fisher wave with a
cutoff cannot be applied to the system with a threshold formulated in this chapter.
The calculation can predict the velocity of the wave front at low thresholds, but
does not work for high thresholds. The model formulation the calculation was
developed for is very different from this formulation and the below threshold per

capita mortality rate is not included in the calculation.

A semi-numerical method of predicting the velocity and the width of the wave

front was developed. This was termed the Shooting method. The mode<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>