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Abstract 

The systems of interest in this study are the spread of epidemics and invasions 

from a small propagule introduced into an arena that was initially devoid of the 

given species or stage of illness. 

In reaction-diffusion models, populations are continuous. Populations at low 

densities have the same growth functions as populations at high densities. In 

nature, such low densities would signify extinction of a population or of a disease. 

This property can be removed from reaction-diffusion models by small changes in 

the formulation so that small populations become extinct. This can be achieved 
by the use of a threshold density or an Allee effect, so there is negative growth at 
low densities. Both these alterations were made to the Fisher model, a predator- 

prey model and a two stage and a three stage epidemic model. 

A semi-numerical method, termed the Shooting method, was developed to predict 
the shapes and velocities of these wave fronts. This was found to correctly predict 
the velocity, the peak density of the invading stage or species and the width of 
the wave front. 

It was found that in oscillatory cases of the multi species models, a high thresh- 

old can remove the wave train or wake which would normally follow the wave 
front, so the wave becomes a soliton. The next step is to investigate probable 

causes of persistence behind the initial wavefront. To do this, discrete time and 

space versions of the models were formulated so that experiments investigating 

persistence can be carried out in a two dimensional arena with less computational 

effort. The formulations were chosen so that at reasonable time and space steps 
the discrete models show no behaviour different to that of the reaction diffusion 

model, and so that the Shooting method could also be used to make predictions 

about these wavefronts. 

Three mechanisms of persistence are investigated; environmental heterogeneity, 

long range dispersal and self organised patterns. 
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Chapter 1 

Introduction 

1.1 Modelling Spatial Processes 

1.1.1 Ecological Applications 

The modelling of spatial processes is of interest in an ecological sense as a way of 

representing the spatial spread of many species and of diseases, spreading from 

a small propagule of a new species or of a stage of an illness not already in the 

spatial arena of interest. 

The spread of a species can be thought of in 2 different ways. The species may be 

exotic to that region, such as a species introduced into an area for exploitation 
for man. An example of this is the introduction of the musk rat into Bohemia at 
the start of this century for sporting purposes . The spread of the muskrat has 

been modelled by van den Bosch et al. (1992). The species may be re-released 
into an area in which it has gone extinct. Californian sea otters were hunted to 

near extinction in the 1900s. A small population was discovered in 1914 (Bryant 

1915), and due to protection laws the population has increased in number and 

spatial range (Peterson and Odemar 1969). Lubina and Levin (1988) have used 
the data collected concerning this range expansion to parameterise an invasion 

model. 

The spread of epidemics is also an interesting and important area of study. Eco- 
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logical epidemics axe important in human health terms, as in rabies epidemics 
(Murray 1987) and economically, such as the spread of bovine tuberculosis by 

badgers (White and Haxris 1995a) (White and Harris 1995b). The importance 

of modelling in the field of epidemiology is as a method of assessing disease con- 
trol strategies. White and Harris (1995a) and White and Haxris (1995b) both 

vaccination regimes and culling axe investigated as control strategies for bovine 

tuberculosis in badgers by using model simulations. 

1.1.2 Modelling Approaches 

There are a number of approaches to ecological modelling. There axe random 

effects in ecological systems due to vaxiation in the environment and in individ- 

uals. Such randomness is taken into account in stochastic models. In stochastic 

models, the population is treated as integer individuals. At a given time, these 

individuals are attributed a probability of being in a given state. A stochastic 

simulation results in a realization of the model. Realizations are different due to 

random effects. Deterministic models do not include random effects, and so only 

provide information about the trend in the system. In a deterministic model, 
the state of the system at any future time can be predicted by the state of the 

system at the present time. Populations are treated as continuous, real densi- 

ties. nequently the mean of many stochastic realisations is very similar to the 

trend predicted by the deterministic model (Renshaw 1991), so in this thesis it 

is assumed that deterministic models provide adequate means for representing 

ecological systems. 

There axe also many approaches to modelling spatial processes. Assuming that 

the system is homogeneously mixed over its extent allows the model to be de- 

scribed by ordinary differential equations or difference equations, the mean field 

approach. The spatial component is important if mixing is not homogeneous 

(Levin 1974), as in the case of an epidemic starting from a point innoculum. 

Space can be split into one or more colonies, with transfer rates or probabil- 
ities between them, the meta-population approach. Reaction-diffusion models 
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assume that individuals within a population move in a random manner. If this 

random motion results in a macroscopic regular motion of the whole population, 
the motion can be described as a diffusion process (Skellam 1951). In reaction- 
diffusion models, partial differential equations are used to model the growth and 
behaviour of the population density. Discrete space and time analogues of the 

continuous reaction-diffusion models can be formulated. These discrete models 
use update rules to predict the outcome of continuous time models after a finite 
time increment. 

Reaction-diffusion models are used in this thesis as the species which axe modelled 

axe thought to move in any direction and any distance i. e. diffusively (Skellam 

1951). 

Interestingly enough, in deterministic reaction-diffusion models, the population 
density is a continuous variable; individuals are not considered as discrete entities. 
This makes it impossible for the population density to ever reach zero. Normally, 

in reaction-diffusion models, low density populations have exactly the same dy- 

namics as high density populations. Mollison (1991) showed that the 3 stage 

rabies model, a rabid population of 1 individual per quintillion square kilometres 

was large enough to re-infect susceptible populations and keep the epidemic go- 
ing. At very low densities, stochastic effects become much more important, so 
the deterministic assumptions fail (Rand and Wilson 1991). So reaction-diffusion 

models need to be modified so that regrowth does not occur from low densities. 

Allee (1938) described population decline in low density populations associated 

with a lack of reproductive opportunity. An Allee effect in the growth function 

can be used to remove the low density populations from the dynamics of a model 
(Lewis and Karieva 1993) (Kot et al. 1996). A threshold formulation where any 

population of less than the threshold density dies out can be used (Kessler and 
Levine 1998) (Brunet and Derrida 1997). In the case of their models a cutoff was 

used, where all populations of less than a given density instantaneously become 

extinct. This formulation does not work in a continuous model. 
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1.2 Invasion Models 

In (1937), Fisher formulated a reaction-diffusion model for describing the spread 

of an advantageous gene. The population described by the model grows logisti- 

cally and disperses diffusively. He also devised a calculation for the velocity of the 

wave front (see chapter 2 for details). If an Allee effect or a threshold is added to 

the growth function of the Fisher model, the velocity of the wave front decreases 

and the wave front shortens (Brunet and Derrida 1997). Brunet and Derrida 
(1997) touched upon another important concept, that these models cannot be 

predicted with Fisher's calculation as it assumes that low density populations 

grow in the same way as high density populations. Brunet and Derrida (1997) 

approximated a calculation for the velocity of the Fisher wave with their cutoff. 
This threshold formulation will not work for continuous time models. Lewis and 
Karieva (1993) calculated the velocity of a wave front of a system with Allee 

dynamics, created by a cubic term in the growth function. The cubic term in 

the growth function cannot easily be attributed to a biological mechanism and 
the calculation cannot be modified to fit the growth functions with Allee effects 
formulated in this thesis. A more general calculation for the velocity of a wave 

with no regrowth from low densities is needed. In Chapter 2, a semi-numerical 

method for predicting the wave shape and the velocity of the Fisher wave with 

no regrowth from low densities is devised (Cruickshank et al. 1998). The accu- 

racy of this new method, termed the Shooting method, is tested against three 

formulations of the Fisher model with no regrowth from low population densi- 

ties, one being the addition of a threshold and the other two different Allee effect 
formulations. 

The methods of removing regrowth from low population densities are then ap- 

plied to a2 component system, a predator-prey model, formulated by Rosenzweig 

(1971) from principles developed by Rosenzweig and MacArthur (1963). This 

predator-prey model is unstable at high carrying capacities (Rosenzweig 1971) 

(Gilpin 1972). The model is made spatially explicit by having diffusively dispers- 

ing predators and immobile prey (Gurney et al. 1998) (C ruickshank et al. 1998) 
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(Gurney and Veitch 1998). The velocity of the predator wave front has been cal- 

culated for a predator-prey model Dunbar (1983); Dunbar (1984). In chapter 3, 

the reaction-diffusion, predator-prey model is modified to remove regrowth from 
low densities of predators, by use of a threshold (Gurney et al. 1998) and an 
Allee effect (Cruickshank et al. 1998). Two methods of predicting the wave char- 

acteristics of the models are considered, the method devised by (Gurney et al. 
1998) for the threshold formulation and the Shooting method (Cruickshank et al. 
1998), are compared and tested. 

1.3 Epidemic Models 

The epidemic models considered in this thesis were both developed to model the 

rabies epidemic in European foxes. Rabies is currently sweeping through Europe, 
having appeared in Poland in the late 1930s (Anderson et al. 1981) (Murray 

1987). Control mechanisms for the epidemic can be investigated by the use of 

mathematical models. 

A non-spatial model was formulated by Anderson et al. (1981). This model has 

two staged of infection; susceptible and infective. K&116n et al. (1985) formulated 

a reaction-diffusion model for the rabies epidemic. This model assumes that 

adult susceptibles remain within the same territory after recruitment to the adult 

population, so the susceptibles are considered immobile. Infectives either contract 
the paxalytic form of the disease and die without reinfecting or run in a random 

manner, infecting any susceptible contacted, described by the model as diffusion. 

The velocity of the wave front can be calculated from Dunbar's work on a two 

component model. The velocity this model predicts for a rabies epidemic is always 

much higher than the velocity of the epidemic front travelling through Europe. 

The two stage epidemic model ignores an important factor in the course of the 

rabies infection. Once infected, there is an incubation period when the fox is 

asymptomatic and not infective. Murray et al. (1986) added this third stage 
of infection to Khll6n et al. 's model. The incubating foxes are assumed to be 
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immobile, as the susceptibles are. Murray et al. (1986) and Murray (1989) 

describe a calculation for the velocity of the wave front in this 3 stage epidemic 

system. 

Mollison (1991)'s description of an atto-fox is based on the dynamics of rabies 

models. To reduce the impact of the low density populations on the rabies models, 
the infectivity of low density population is reduced, both by use of a threshold 

and by a more continuous formulation (Cruickshank et al. 1998) are used. The 

Shooting method is altered to make predictions about the velocity and shape of 
the wave front in the epidemic systems with these formulations. 

In chapter 6 there is a case study of the European fox rabies epidemic. Suitable 

threshold densities axe calculated, based on the likelihood of a fox being infected 

at the given density (Cruickshank et al. 1998). van den Bosch et al. (1992)'s idea 

that fox territory size depends on population density is also investigated. This 

has implications for the diffusion rate and the threshold density of the system. 

1.4 Discrete Models 

When the dynamics of the predator-prey model are unstable, and the first trough 

behind the wave front dips to a density neax the threshold density, the invasion 

of predators dies out behind the wave front forming a soliton wave (Gurney 

et al. 1998) (Cruickshank et al. 1998). The epidemic models with regrowth from 

low densities have complicated wakes behind the epidemic wave front (Mollison 

1991). If the trough behind the initial wave front falls to a density near that 

of the threshold, the epidemic dies out behind the wave front forming a soliton 

wave. This raises the question of persistence of the epidemic or invasion behind 

the wave front in these-systems. 

Mechanisms which may allow the establishment of an invading predator or the 

epidemic to reach an endemic state within the system are reviewed in chapter 
10 and investigated in the following 3 chapters. The continuous models, which 
have been used up to this point of the thesis, are very computationally intensive. 
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Some of the mechanisms considered are only realizable in 2 dimensions (Gurney 

et al. 1998) (Hassell et al. 1994), and 2 dimensional simulations of reaction- 
diffusion models take long times to run to completion. As 4 mechanisms are to 
be investigated, in 3 different systems, it is essential that simulations run quickly. 

Discrete time and space analogues of the continuous invasion (Gurney et al. 1998) 

and epidemic models (Gurney and Nisbet 1998) axe formulated in chapters 7 and 
8. Discrete simulations are more computationally efficient and have much shorter 
run times than continuous simulations. It is important that the discrete models 
do not demonstrate dynamics unseen in the continuous models and that as the 
time and space steps increase the solutions of the discrete models diverge slowly 
from those of the continuous models. 

van den Bosch et al. (1990) extended the work of Fisher Kolmogorov et al. to 

calculate the velocity for integrodifference equations to a general invasion so that 

advective dispersal may be taken into account. Again, this velocity calculation 
is founded on the exponential shape of the toe of the wave front. Kot, Lewis, 

and van den Dreissche (1996) considered the velocity of a discrete model with 

an Allee effect. The calculation of the velocity was developed for a piecewise 
continuous analogue of an Allee effect and, although the calculation successfully 

predict the velocity of the wave front of the model it was developed for, it does not 

extend well to other models, as shown in chapter 7. The Shooting method can, 
however, be used to predict the velocity and shape of the wavefronts of all the 
discrete systems as long as the space and time steps are small, as demonstrated 
by chapters 7 and 8. 

The discrete time and space models are then extended to 2 spatial dimensions 
in chapter 9. Circular waves are generated (Gurney et al. 1998) where the wave 
spreads out in all directions at the same rate (Skellam 1951). Spiral waves axe 
known to form in chemical systems in excitable media (Winfree 1972) (Keener 

and Tyson 1986) (Kessler and Levine 1989). Models of these systems can be 

understood in terms of their geometry and the kinetics of the excitable medium 
(Keener and Tyson 1986). The models formulated in this thesis describe systems 
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with excitable media; there is reduced predation or infection below a threshold 
density. Spiral waves can be generated in the 2 dimensional arenas when the 

wave front is a soliton wave (Gurney et al. 1998). The circular waves are similax 
enough in cross section to the the waves generated in the 1 dimensional model, 
so the Shooting method is used to make predictions about the velocity and shape 
of the wave front. Spiral waves are not as easy to make predictions about, and 
the Shooting method can only be used to predict the scale of the velocity and the 
shape of the wave front as opposed to predicting exact values for these quantities. 
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Part I 

Reaction-Diffusion Models of 
Invasions and Epidemics 



Chapter 2 

Single Species Continuous 
Models 

'D - Reaction-diffusion models permit populations at very low densities to exist and 

grow, a situation which is biologically unrealistic. If the growth of these small 

populations is removed from these models, this situation is improved. In this 

chapter three formulations which create this effect are examined. The Fisher 

model (Fisher 1937) is adapted so that there is no reproduction under a threshold. 

This is implemented both by a critical threshold for reproduction and an Allee 

Effect (Allee 1938) growth term. A method for analysing the wave front properties 

of invasions of organisms with no growth at low densities is then developed. 

2.1 Introduction 

2.1.1 The Logistic Model 

The logistic model describes the density dependent growth of a single population, 
N, at time T. To achieve logistic growth, the birth process, B(N), must decrease 

and the death process, D(N), must increase as N increases (Renshaw 1991), so 

B(N) = (al - b1N)N and D(N) = (a2 + b2N)N 1 
(2.1.1) 
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where a,, a2, b, and b2 are positive constants. The logistic equation is therefore 

dT 
dN 

= B(N) - D(N) =N [(ai - a2) - (bi + b2)N] " 
(2.1.2) 

In a biological context this equation is usually rewritten in the form 

dý, 
= RN (1- K (2.1.3) 

where R =- (a, - a2) is the intrinsic rate of natural increase for growth and 
K =- (a, -a2)/(bl+b2) is the density of the carrying capacity of the environment, 
so 

and 

dý, 
-+ 0 as N --- K or N 

N--+K as t --*oo. (2.1.5) 

2.1.2 The Fisher Model 

Now a logistically growing population which disperses in one dimension is consid- 

ered, the Fisher model. It was originally intended to describe the invasion of an 
advantageous gene into a gene pool, but now it is commonly used to describe an 
invasion wave of an exotic or re-invading species (Skellam 1951). The population 
disperses diffusively, representing the spread of organisms with low intelligence 

or no tropisms. The population at time T and position X, N(X, T) diffuses with 
diffusion coefficient IF. The Fisher model is 

ON N) 2N 
OT -RNC1-T +11aX (2.1.6) 

To simplify the algebra and increase the speed of computations, the equations 
are reduced to a dimensionless or scaled form (Nisbet and Gurney 1982). This 

process may also lead to biological insight into controlling groups of parameters. 
The scaling process involves multiplying or dividing the model by one or more 

parameters, producing dimensionless variables and parameter groups. In this case 
there axe 6 quantities: the population, the carrying capacity, space, the diffusion 

coefficient, the per capita intrinsic growth rate and time. The carrying capacity, 
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K, has the dimension of the population. Therefore K can be used as the scale 

of N, so the scale of population, No, is No =- K. This scaling produces the 
dimensionless variable n =- NINO. The per capita intrinsic growth rate, R, has 

the dimension of one over time. Therefore, 1IR can be used as the scale of time, 

so To =- R-1. This scaling produces the dimensionless variable t =- TITo. The 
diffusion coefficient has the dimension of the diffusion length, so Xo =- rT--IR 

can be used as the scale of space. This results in the dimensionless variable 
x =- XVR-IIF. This choice of scaling produces the dimensionless model 

an 
_ n(1 - n) + 

aa n (2.1.7) ät a22' 

One method used to predict the velocity and the shape of the wave front of this 

model was suggested by Fisher (1937) and Kolmogorov et al. (1937) and later 

extensively ratified by Hadeler and Rothe (1975) and Mollison (1977). To see the 

relationship between front velocity and model parameters the leading edge of the 

front where n << 1 was investigated. In this case the n' term can be ignored in 

comparison with the n term. This linearises equation (2-1.7) to 

On 02n 
ät =n+ aX2 

(2.1.8) 

A solution is sought in the form n(x) = Ae-A(1-10, where v is the velocity of the 

wave front, A is the exponential lapse rate of the front, A>0 and A>0 and 
is arbitrary. Substituting this form of solution for n(x) into the linear equation 

gives the relationship between the velocity of the wave front, v, and A, 

v= + (2.1.9) 

This suggests that any value of v is possible with A chosen to suit, as long as v 
is larger than a minimum velocity, vo, which occurs when A=1. For the scaled 
Fisher model, 

vo = 2. (2.1.10) 

vo is the velocity of the wave front as long as the initial condition of the population 
has compact support (Fisher 1937) (Kolmogorov et al. 1937). 
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The derivation of this velocity calculation exploits the fact that the population 

grows in the same way at low densities as at high densities. If the model is changed 

so that there is no in-situ regrowth of non-biological populations, another method 
will have to be found to predict the velocity of the invasion wave front. 

2.2 Invasions of Populations with no Reproduc- 
tion at Low Densities 

A situation is considered in the Fisher model that when a population falls beneath 

a threshold density, np, there is no reproduction. This removes the problem of 

regrowth from low densities from this reaction-diffusion model. 

A method to calculate the velocity of a single component reaction-diffusion model 

with an Allee effect in the growth function has been devised by Lewis and Karieva 

(1993). Their growth function is given by a cubic. No obvious biological mecha- 

nism produces such a growth function, so in this chapter Allee effects are achieved 
by more biologically realistic mechanisms. Their velocity calculation is specific to 

the cubic growth function, so is not applicable to the formulations of the Fisher 

model with no regrowth as described below. A new method of analysing the 

properties of an invasion wave of with these growth functions is devised. 

2.2.1 General Case 

A generalisation of the Fisher model is considered, where g(n) is the scaled local 

net population growth function, giving 
2 

ät = 9(n) + aX 
In this section the scaled carrying capacity is referred to as k, so in the scaled 
Fisher model, since the carrying capacity is 1, k=1. The restrictions on g(n) 

are that 

g(O) = g(np) = g(k) =01 (2.2.2) 

g(n)<O if 0<n< np or n> k (2.2.3) 
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and 

g(n)>O if np<n<k. (2.2.4) 

These restrictions cause the velocity of the wave to decrease from that of the 

original Fisher model, so v< vo (Brunet and Derrida 1997). 
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Figure 2.1: Generic behaviour of growth with an Allee effect, with the specific 
equation for g(n) given by equation (2.2-40) with a=1.5 and np = 0.3. (a) net 
growth function. (b) typical invasion front generated from a simulation of the 
model described by equation (2.2.40) with Ax = 1, the time step varying between 
At = 0.001 -4 0.1 and a numerical integration tolerance of 0.0001. (c) phase 
plane analysis with vR = 0.47: solid line shows separatrix implied by inequality 
(2.2.10). (d) group of solutions for z>0 in a moving frame of reference with vR 
for each run marked. 

It is assumed that a travelling wave solution exists and that the wave is moving 
from right to left in a1 dimensional arena. The model is transformed into a 
moving frame of reference which moves from right to left with velocity -viz. This 

allows n to depend only on one parameter z, where z =- x+ vjzt. Equation (2.2.1) 

can then be written as a second order ODE, 

d2n dn 
ý-2 - vRT + g(n) = 0. (2.2.5) 

zz zz 
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If 0 =- dn/dz, the transformed model can be rewritten as a pair of first order 
ODEs, where 

dz =0 and 
do 

= vno - 9(n) (2.2.6) 

The solution sought requires n -4 0 as z -4 -oo. z=0 is placed at a point where 

n= no << np so that for z<0, equations (2.2.6) can be approximated by 

Ln 
=0 and 

ý-o 
= vRo - g'(O)n where g'(0) = --1 

n=o 

(2.2.7) 
dz dz dn 

Iýg 

Equation (2.2.7) has the solution n= noe, \zl where n0 as z -4 -oo, provided 
that A>0. Since 9'(0) < 0, 

-2 
(vn+ 

vn - 4g'(0)) , 
(2.2.8) 

so for z>0, equations (2.2.6) axe solved with the initial conditions 

n(O) = no and 0(0) = Ano 
. 

(2.2.9) 

An inspection of equations (2.2.6) shows that for n to increase with z, 0>0 and 
for 0 to increase with z, 

> g(n) (2.2.10) 
VR 

These conditions can lead to an understanding of the characteristics of the result- 
ing solutions in the phase plane. These equations are solved using an adaptive 
step RK4 numerical integration algorithm. Az varies between 1x 10-5 and 
1X 10-3 and the integration tolerance is 1x 10-5. The implications of the Char- 
acteristics of the solutions are illustrated in figure 2.1(c). 

If no is kept constant and A increases from zero, the initial condition moves in 

a vertical line in the positive quadrant at n no. Above 0=0, n increases, so 
the movement is from left to right. Below 0 0, n decreases, so the movement 
is from right to left. When the 0=0 line is crossed the trajectories must move 
vertically. The bold line in the figure depicts the curve obtained for 0= g(n)/vR. 
Above this line, 0 increases so the movement is from bottom to top, and below 

the line g decreases, so the movement is from top to bottom. Trajectories must 

move horizontally while crossing this curve as doldz = 0. 
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The initial conditions for a set of trajectories, given in equation (2.2.35), with 

varying A would lie on a vertical line which would cross the x axis at n= n(O) 

and increasing as a function of vR. If the initial conditions lie above the bold 

curve then the trajectory initially moves towards the top right. There are 4 

possibilities for the direction of movement of the trajectories: 

1. The trajectory misses the curve and n -ý oo monotonically. 

2. The trajectory intersects the bold line twice while 0>0 and re-enters the 

region where vo > g(n) and n -+ oo monotonically. 

3. The trajectory hits the point (k, 0), where it stops as this is a steady state. 

4. The trajectory intersects the bold line while 0>0 but curves down into the 

region where 0<0, intersects the bold line again, then falls back below np. 
Eventually, perhaps after some oscillations, it falls into the region where 

n<0. 

The first 2 possibilities correspond to vR being greater than the wave front ve- 
locity, v. The third possibility corresponds to vR =v and the fourth possibility 

corresponds to vR < v. So there is only one trajectory that leads to the (k, 0) 

steady state. This has been proved by Cruickshank et al. (1998) (see Appendix 
A). 

If there is only one trajectory which leads to (k, 0), if np is held constant, and 

VR is vaxied, a bisection seaxch can be used to find where vR = v, the velocity 

of the wave. A bracket which is known to contain v is chosen; in the case of the 

modified Fisher models, this bracket is chosen to be (0 -+ 2). The centre point 
is used as vR and equation (2.2.6) is solved with the initial conditions described 

by equation (2.2.9), and Az and integration tolerance as used previously. When 

*>2 or n<0 then k=0 or k=0, so the simulation terminates either at dz dz 
*>2 or n<0. This end result can be used as the criterion for the bisection 

search. If n>2 then the mid-point of the bracket becomes the new high end of 
the bracketing pair. If n<0 then the centre of the bracket becomes the low end 
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of the bracketing pair. Figure 2.1 (d) shows that when close to v, the trajectories 

of the upper and lower bounds Of VR run together until k is nearly attained, then 

the trajectories diverge. Therefore the criterion for the completion of the search 
is that the upper and lower bounds have identical trajectories to the asymptote 

of the wave, where n e-, d k, 0 e-,, 0 and doldz 01-0 0. 

This method of calculating the velocity of an invading wave in an excitable 

medium has been coined the Shooting method. 

The models dependent on time and space are numerically simulated to provide 

observed results with which to compare the Shooting method. 

P(x) = 
192 

aX2 
n 

is substituted by the finite difference representation 

n(x + Ax) - 2n(x) + n(x - Ax) (2.2.12) P(X) = A. T2 

where Ax is the space step. The model is then solved by a RK4 numerical 
integration method with an adaptive time step, At. 

In all simulations of models to which the Shooting method is applied in this 

thesis, quadratic interpolation is used to find the width of wave fronts to a higher 

accuracy than the space step length. The exact times of the passage of the wave 

at various positions of the arena, needed for the observed velocity calculations, 
axe also obtained at higher accuracy than the time step length by quadratic 
interpolation. 

2.2.2 Invasions with Thresholds 

One method to stop reproduction at low population densities is to use a threshold. 
The Fisher model is modified so that if a population falls below a density NP, 

the individuals in the population stop reproducing, so that when 
2 

öON =T G(N) + q, 
ON 
aX 

(2.2.13) 
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where 

G(N) -DN N< NP (2.2.14) 
RN(l - NIK) otherwise 

and D is the per capita mortality rate. 

This is scaled in the same way as the original Fisher model, so To = R-1 and 

To K. Np has the dimension of population, so the dimensionless threshold 

np NplNo. D has the dimension of time, so the dimensionless per capita 

mortality rate is d =- DITO. The model then becomes 

On a2 n 
57 = g(n) + 5ýj 

(2.2.15) 
t 

where 

g(n) 
dn n< np (2.2.16) 

n(l - n) otherwise ' 

I 
Brunet and Derrida (1997) devised an approximate calculation for the velocity 

of the wave front of a Fisher model with a small cutoff. The cutoff in this 

case is imposed by setting all population below the cutoff density to zero. The 

calculation is based on the fact that in their formulation there is a relationship 
between the size of the cutoff and the reduction in velocity from vo, so 

VV (2.2.17) 
°- 

7r 2 

(In np)2 

d np Observed v Predicted v 
0.1 1x 10-1 1.923 1.926 
0.1 1X 10-3 1.802 1.793 
0.1 1x 10- 1.639 1.535 
0.1 1x 10-1 1.220 0.1385 

Table 2.1: Comparisons between wave velocities calculated from equation (2-2-17) 

and those observed from simulations of the continuous Fisher model with a thresh- 
old. In the simulations, d=0.1, Ax = 1, the time step varying between 
At = 0.001A. 1 and a numerical integration tolerance of 0.0001. 

Equation (2.2.17) is used to calculate the velocity of the wave front in the Fisher 

model with a threshold. This calculation only works for small thresholds (Brunet 

and Derrida 1997), as is clearly demonstrated in table 2.1. Because of the form 

of the cutoff used by Brunet and Derrida, the per capita mortality rate below 
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the threshold is not taken into account in the calculation. Their model can only 
be simulated in discrete time due to the "setting to zero" nature of their cutoff. 
Therefore this calculation cannot be used to predict the velocity of wave fronts 

generated by the continuous time Fisher model with a threshold. 

The Shooting method can be used to calculate the velocity in this model. As in the 

general case, the wave is originally travelling from left to right in a1 dimensional 

axena. The model is transformed into a moving frame of reference with velocity 

-v, n, with the n dependent only on Z =- X+ VA with the wave travelling from 

right to left. 

vß. 56 
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Figure 2.2: (a)Fisher wave with a threshold travelling from left to right with 
velocity v=0.56, Ax = 0.5, the time step varying between At = 0.001 -4 0.1 
and a numerical integration tolerance of 0.0001. (b)Rajectories of simulations 
in a moving frame of reference with d=0.00001 and np = 0.5. The velocity of 
the frame of reference, vR, is as marked. N'hen vg ; z: i 0.56, the trajectories run 
concurrently until the (1,0) point is nearly reached, then diverge. 

Within the moving frame of reference, z=0 is set where n(O) = no = np so that 
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the dynamics of the model where z<0 axe then described by 

d2n dn 
-- vR- - dn = 0. ýZ2 

dz 

With z<0, a solution is sought in the form n(z) = npeAz, so the exponential 
lapse rate, A, must be the solution of 

, 
\2 - vRA -d=0. (2.2.19) 

Asa>0, 
(Va 

+ 
VV-2 

2 R+Z) (2.2.20) 

This implies that any value of vR is possible if A is chosen appropriately. The 

solution is required (by conservation theory) to be continuous in slope and value 

at z=0, so the slope of the solution is related to np and v by 

n '(O) = Anp. (2.2.21) 

For z>0, n is the solution of the coupled first order equivalent of the transformed 

model, 
dn 

z 
(2.2.22) 71=0 and 

d=vO-n(1-n), 

z dz 

subject to the initial conditions 

n(O)=np and 0(0)=npA. (2.2.23) 

The Shooting method then uses the bisection search algorithm described in sub- 
section 2.2.1, where equation (2.2.22) is solved with the initial conditions de- 

scribed in equation (2.2.23). 

A series of numerical simulations of the Fisher wave with a threshold were caxried 
out to check the accuracy of the Shooting method's predictions. 

The width of the wave front can also be estimated from this analysis. Figure 

2.2 (b) shows that at the end of the bisection search the trajectories of the 

upper and lower brackets of vjz are identical until n ý- 1. Until this divergence 
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d np Predicted Values Observed Values 
V Wf V Wf 

0.1 1x 10-5 1.921 8.5 1.923 8.5 
0.1 1X 10-3 1.803 8.0 1.802 1 8.1 
0.1 1X 10-2 1.638 7.3 1.639 7.3 
0.1 1x 10-1 1.223 5.7 1.220 5.7 
0.1 2x 10-1 0.9777 4.4 0.9780 5.0 
0.1 4x 10-1 0.6078 2.9 0.6051 5.0 
0.1 5x 10-1 0.4417 2.3 0.4386 5.0 
1 1x 10-5 1.913 8.5 1.914 8.5 
1 1X 10-3 1.773 7.9 1.778 7.9 
1 1X 10-2 1.575 7.1 1.579 7.1 
1 1x 10-1 1.042 5.1 1.039 5.1 
1 2x 10-1 0.7016 3.7 0.6969 4.2 
1 4x 10-1 0.1231 2.1 0.1018 3.5 

Table 2.2: Comparisons between wave properties predicted by the Shooting method 
and those observed from simulations of the continuous Fisher model with a thresh- 
old. Ax = 1, the time step varying between At = 0.001A. 1 and an integration 
tolerance of 0.0001. v is the wave front velocity and wf is the width of the wave- 
front measured from n=0.1 to n=0.9. 

occurs, the trajectories axe following the trajectory of vR =v (Brunet and Derrida 

1997) (Kessler and Levine 1998). The width of this region of the solution in the z 

transformed model is the same as the width of the wavefront. 

Table 2.2 shows that when the threshold is high the observed velocities and 

widths of the fronts of the simulations are not exactly predicted by the Shooting 

method. The cause of this is believed to be the presence of the discontinuity in 

the growth function which renders the numerical simulation of the untransformed 
Model inaccurate. The simulations involve numerical integration with variable 
time steps. It is possible for these steps to overshoot the exact time when the 

population in a given space increment increases or decreases across the threshold. 
At low thresholds this effect is reduced due to the low impact of small thresholds 

on the properties of the wave front. 
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2.2.3 Spreading Populations with a Continuous Allee Growth 
Function 

A growth function with an Allee effect is negative at high and low population 
densities and positive for intermediate population dens ities, as typified by figure 

2.1(a), where there is negative growth where the population n is larger than the 

carrying capacity, 1, and where n< np, the threshold value. 

One way of achieving such a growth function is to use a model with the per capita 
birth rate function showing a Michaelis-Menten type dependency on population 
density, with Nh as the half saturation coefficient and F is the maximum repro- 
ductive rate, while the per capita death rate, D(N), is linearly dependent on 
population density, so 

D(N) = N(Dj - D2N). (2.2.24) 

This results in the equation for population growth, 

G(N) = 
FN 

_ D, - D2N] N. (2.2.25) [N 
+ Nh 

It is now assumed that the population, N, disperses diffusively, with the diffusion 

coefficient, T, so the spatial model is, 
ON 

= G(N) + IF 
WN 
jqX2' 

(2.2.26) 

In equation (2.2.26) B, D, and D2 have the dimension of time, T. The scale of 
time, To, is chosen as To =- 11(F - Dj). The half saturation constant, Nh, has 
the dimension of population, N. The scale of population, No, is chosen to be 
No =- (F - Dj)ID2. The diffusion coefficient, T, has the dimensions of space, X, 

and time. X0 M VT-TO is taken to be the natural scale of space. Then the model 
is scaled, producing the scaled variables, t =- TITO, n =- NINO and x =- XlXo, 

and the parameter groups, nh -= NhINo and J -= DII(F - Dj), transforming the 

model into 
On 02n 
5t = g(n) + OX2 (2.2.27) 

which is the same as equation (2.2.1), where 

g(n) +)n-6- n] n. (2.2.28) 
n+ nh 
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This has the exterior steady state, 

0, (2.2.29) 

and an interior steady state, n*. 

nh) + J(l 
- 

-nh)2 
- 4Jnh] (2.2.30) 

2 

n* is the carrying capacity of the system and is equivalent to k in equations 
(2.2.2) and (2.2.4), The system can only exist if 

1+n' 1 
nh <1 and J< 

2nh 
h2 (2.2.31) 

The steady state, n*, is always locally stable, as is the steady state where but 

n=0. 

This model has negative growth when n< np, with 

np nh) - nh)2 - 4Jnh] (2.2.32) 
2 

The model is transformed into a moving frame of reference with velocity -vR, 

moving from left to right, as in the Fisher model with a threshold. This gives the 

second order ODE, 

d'n dn [(, 
+)n -&-n] n= 0. (2.2.33) gýi - VTZ + 

n+nh 

If dn/dz = 0, this can be rewritten as a coupled first order ODE, 

dn dO [(l +n T=0 and = VO --6- n] n. (2.2.34) 
z dz ý-+ -nh 

For z>0, n is the solution of equation (2.2.34) subject to 

n(O) << np and 0(0) = 
n(o) 

vR + ýýOR + 45) (2.2.35) 
2( 

The Shooting method is then used to predict the velocity and width of the re- 

sulting wave front, solving equation (2.2.34) with the initial conditions no = 

min(O. 001, np/100) and 0 as described in equation (2.2.35) in the bisection search 
aJgorithm described in 2.2.1. 
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d nh Predicted Values Observed Values 
V Wf V Wf 

0.1 1x 10-1 1.900 8.4 1.899 8.5 
0.1 1X 10-4 1.844 8.2 1.844 8.2 
0.1 1X 10-2 1.515 7.1 1.515 7.3 
0.1 5 x10-2 1.211 6.6 1.211 6.6 
0.1 1x 10-1 1.101 6.7 1.101 6.7 
0.1 1.3 x 10-1 0.9170 6.9 0.9171 6.9 
0.1 1.4 x 10-1 0.8888 6.9 0.8887 6.9 
i ix 10-5 1.885 8.4 1.885 8.3 
1 1X 10-4 1.814 8.1 1.814 8.0 
1 1X 10-2 1.361 6.6 1.362 6.7 
1 5 x10-2 0.8709 6.0 0.8709 6.1 
1 1x 10-1 0.4615 6.1 0.4614 6.3 
1 1.3 x 10-1 0.2115 6.3 0.2115 6.4 
1 1.4 x 10-1 0.1172 6.5 0.1172 6.4 

Table 2.3: Comparisons between calculated wave properties and those measured 
from numerical simulations of the Fisher model with a continuous growth function 
with an Allee effect. Ax = 1, the time step varies between At = 0.001-0.1 and a 
numerical integration tolerance of 0.0001. v is the wavefront velocity and wf is 
the width of the wavefront measured from n=0.1 to n=0.9. 

A series of simulations of the Fisher wave with an Allee effect were carried out 
to check the accuracy of the shooting method's predictions. 

The width of the wave front between 10% and 90% of n* can be estimated from 

this analysis in the same manner as in the threshold formulation. 

Table 2.3 shows that the Shooting method correctly predicts the wave front ve- 
locities and widths of the simulations to up to 4 decimal places. The excellent 
comparison of the wave front widths and velocities of the simulations and those 

predicted by the Shooting method holds throughout this set of runs, supporting 
the argument in the previous section that the disagreement between the simula- 
tions and the Shooting method predictions is caused by numerical inaccuracies 
in the simulations of the Fisher model with a threshold and not by an inaccuracy 
in the Shooting method. 

As nh is increased, the width of the wave front initially decreases with velocity, 
which is expected, as demonstrated in figure 2.4. However, when the velocity 
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Figure 2.3: Shape of the continuous Allee growth function with 5=0.1. 

staxts to decrease very rapidly, the wave front width increases again. Figure 2.3 

shows that decreasing nh has the effect of decreasing n* and the rate of growth, 

and increasing np. Decreasing the rate of growth has the effect of making the 

front less steep. At large nh this is the effect which governs the width of the front. 

There are no similar dynamics in the original Fisher model. This formulation is 

not a good approximation of the Fisher model with regrowth from low densities 

removed. Another Allee model, which has the dynamics of the Fisher model at 

high densities should be sought. 

2.2.4 Spreading Populations with an Allee Growth Func- 
tion which is Continuous in Value but not Slope 

A Fisher wave with an Allee effect is sought with growth dynamics similar to those 

of the Fisher model at high densities but with no regrowth from low population 
densities. The formulation should also minimise errors in numerical simulations 
due to discontinuities in the growth function. One compromise that could be 

considered is a growth function with an Allee effect which is continuous in value, 
but not in slope. This example of a Fisher wave with an Allee effect considers 

a population, N, with a linearly density dependent per capita death rate M, 

and a per capita fecundity rate B which is a constant, BO, at high densities but 
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increases linearly with slope Bi at low densities, giving 

M= Mo + MiN (2.2.36) 

and 
B Bo N> (BoIBI) (2.2.37) 

BjN otherwise 
If R =- BO - MO and K= RIM, then these assumptions imply that the unscaled 

net growth function G(N) is 

G(N) RN(l - NIK) 
2N> 

(BolBi) (2.2.38) 
-MoN + (Bi - MI)N otherwise 

Adopting the same scaling for time and space as in the thresholded version of 
the model, and defining the parameter groups a -- Mo/(Bo - Mo) and np =- 

aM, I(Bi - Mj), the scaled equivalent is 

an a2 n 
5-t = 9(n) + ýýx-j , 

(2.2.39) 

which is the same as the general model. In this formulation, 

g(n) 
an[(n/np) - 1] n<n. (2.2.40) 
n(l - n) otherwise 

where 
n, 

+a (2.2.41) 
1+ (a/np) 

np represents the scaled threshold value and -a is the slope of the growth function 

at n= 

As in the previous examples, this model is transformed into a moving frame of 

reference moving with velocity, vR. The model is then rewritten as a coupled 
ODE. z=0 is placed where n= no << np, so that g(no) P-. o -a. 

The initial population for equation (2.2.6) is chosen to be no = min(O. 001, np/100) 

and equation (2.2.8) is used to relate A to vR. A bisection search is then con- 
ducted in exactly the same manner and using the same criteria as in the previous 

example. 

Table 2.4 shows that there is a good agreement between predicted velocitiesy 
widths and peak heights of the wavefront and those measured from simulations 
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a np Predicted Values Observed Values 
V V WL 

1.5 7-1 -n- 2x 10-r 1.844 1.844 8.20 
1.5 .5 

10-2 1.264 1.264 5.89 
1.5 3x 10-1 0.4699 3.84 0.4696 3.80 
15 2x 10-4 1.809 8.05 1.803 8.05 
15 2x 10-2 1.288 5.97 1.287 5.97 
15 1x 10-1 0.6699 3.99 0.6690 3.99 

150 1X 10-4 1.782 7.94 1.781 7.94 
150 6x 10-3 1.288 5.98 1.288 5.98 

150 4x 10-2 0.5389 3.66 0.5374 3.66 

Table 2.4: Comparisons between calculated wave properties and those observed 
from numerical simulations of the Fisher model with an Allee effect which is con- 
tinuous in slope only. Ax = 0.1, the time step varies between At = 0.00001.. 0.001 
and the numerical integration tolerance is 0.00001. v is the wave front velocity 
and wf is the width of the wavefront, measured from n=0.1 to n=0.9. 

in this model. The small difference arises from the discontinuity in the slope of the 

growth function. This discontinuity creates an error in the numerical simulations. 
The dynamics of high density populations are still those of the Fisher model, so 
this model can be compared with the original Fisher model, whilst low density 

populations become extinct. 

2.3 Discussion 

The Fisher model was altered so that populations with very low densities did not 
reproduce, ensuring that biologically unrealistic populations did not contribute 
to the dynamics of the model. This alteration reduces the velocity of wave front 

of the Fisher model (Brunet and Derrida 1997). As np -+ 0, v -+ vo, as shown 
by figure 2.4. 

Three formulations of the Fisher model with no or reduced population growth 
at low densities were considered. The threshold formulation was discontinuous 

in slope and value. Above the threshold the dynamics were exactly that of the 
Fisher model. The first example of an Allee effect was completely continuous but 
did not have the same dynamics as the system described by the Fisher model. 
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The second example of an Allee effect was discontinuous in slope but not in 

value. Above a critical density, n,, the dynamics of the model were the same as 
the original Fisher model. 

Brunet and Derrida (1997)'s calculation for the velocity of a Fisher wave with a 

cutoff cannot be applied to the system with a threshold formulated in this chapter. 
The calculation can predict the velocity of the wave front at low thresholds, but 

does not work for high thresholds. The model formulation the calculation was 
developed for is very different from this formulation and the below threshold per 

capita mortality rate is not included in the calculation. 

A semi-numerical method of predicting the velocity and the width of the wave 
front was developed. This was termed the Shooting method. The models were 

transformed into a moving frame of reference and a bisection search was used 

to seek the frame of reference velocity so that it was equal to the velocity of 

the wave, therefore predicting the velocity of the wave. Although the frame 

of reference velocity equal to the wave velocity cannot be found, the Shooting 

method can predict the wave velocity to within 1% of the observed values. 

The Shooting method was then used to predict the velocities and wave front 

widths of the three model formulations described above. It was able to do this 

for the completely continuous formulation to 4 decimal places. In the thresh- 

old formulation, the discontinuity in the growth function could not be correctly 

solved by the numerical continuous time simulations used as comparisons for the 

Shooting predictions. This discrepancy between the predictions and the contin- 

uous time and space simulation velocities and front widths increased with the 

threshold density. In the Allee formulation with the discontinuity in slope, this 

also occurred, but to a lesser extent as the density was continuous. 

Figure 2.4 shows that the predictions can be used to further our understanding of 

the dynamics of the wave fronts. The velocities are near vo =- 2 when the threshold 

is very small. The Fisher wave can have a negative velocity at high thresholds, 

which corresponds to the wave retreating. The wave front widths only are affected 
by the threshold when the the thresholds axe very high and the continuous Allee 
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effect model wave front gets wider at high thresholds, showing that the dynamics 

of this model are very different to those of the other 2 formulations. 

Although the Shooting method predictions are best for the continuous Allee for- 

mulation model, the dynamics of the model axe very different from those of the 

original Fisher model, demonstrated by figure 2.4. This model with a continuous 

growth function was used to show that the inaccuracy of the Shooting method 
is due to errors in the numerical simulations rather than errors in the method. 
This formulation will not be applied to other models looked at in later chapters. 

The Fisher model was used in this chapter as a simple model to be used to develop 

a method for predicting the velocity and shape of a wavefront in a reaction- 
diffusion model where there was no growth from low densities. Now more complex 

models should be treated in the same manner. 

2.0 
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I'l. 0 

0.5 

0.0 
1CF, le ici, 

(b) 

- Allee #2 ,\ 
1 #1 t----- Allee #1 
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nP np 

Figure 2.4: Wave characteristics as predicted by the Shooting method. (a) the 
velocity of the 3 Fisher model formulations. (b) the width of the wave front of 
the 3 formulations. In the threshold formulation, d=0.1. In the continuous 
Allee formulation (#1), J=0.1 and in the discontinuous Allee formulation(#2) 
a=1.5. 
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Chapter 3 

The Predator-Prey Model 

Regrowth from unbiologically low population densities has been removed from a 

single species reaction-diffusion model. A method, coined the Shooting method, 
has been developed, so characteristics of invasion waves in this model can be pre- 
dicted. To assess whether the same treatment works for a more complex model, 

now a two species predator-prey model is considered. The prey are immobile and 
the predators disperse. The growth rate of the predator population is reduced at 
low densities, by both addition to the model of a threshold density below which 
the population decreases, and use of an Allee effect. The biological correctness 

of these formulations is assessed. Then the Shooting method is adapted from the 

previous chapter and applied to these models, and the accuracy of the predictions 

made about the characteristics of the resultant wave fronts is determined. 

3.1 Introduction 

The Paradox of Enrichment 

The predator-prey model to be considered was formulated by Rosenzweig (1971) 

from ideas discussed by Rosenzweig and MacArthur (1963). In this model there 

is one predator species, C(T), and one prey species, F(T), at time T. The prey 

grow logistically with intrinsic growth rate, R, to their caxrying capacity, K. The 

predators have a Holling type II functional response with half saturation at H, 
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so the term for the uptake of prey by predators, U(F), is 

U(F) = _U .. 
F 

F+H 

The prey dynamics axe described by 

aF 
- RF (1 

- 
F) 

- U(F)C. 

The predators die with the per capita mortality rate D. Ingested prey axe con- 

verted to predator offspring with efficiency e. This results in the equation for 

predator dynamics, 
19C 

= -U(F) C- DC 
OT 

(3.1.3) 

The model has exterior steady states at (K, 0), where there axe no predators 

present and the prey axe at carrying capacity and (0,0), where there are neither 

predators nor prey present, and an interior steady state when 

F* = 
DH 

C*=r 
F*+H 

1- 
F* 

eU�, - D' 
( 

Um 
)( 

K) 

The interior steady state can only exist if 

K 
DH 

eU,, - D* 

If prey are present and this inequality is not fulfilled, the system will eventually 

reach the ((K, 0) steady state. For a locally stable interior stable state to exist, 

K 
47 < Dl' 

(3.1.6) 

If this condition is satisfied then the system reaches the interior steady state after 
a series of dwnped oscillations. If this condition is not satisfied then the predator 
and prey populations display stable limit cycles. This behaviour was termed the 
"Paradox of Enrichment" by Rosenzweig (1971). By enriching the environment 
for the prey species, the system becomes unstable and limit cycles result. The 

troughs of the limit cycles reaching very low densities would mean catastrophe 
for a real population. 
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3.1.2 Invasions of Predators in the Predator-Prey Model 

It is then assumed that the predators disperse in a one dimensional arena with 
diffusion coefficient (b, and that the prey are immobile. This gives a prey species 
F(X, T) and a predator species C(X, T) at time T and at position X. These 

assumptions result in the model 
OF 

=RF 1- 
F) 

- U(F)C (3.1.7) äT-- 
(K 

and 
ac 

cU(F)C - DC + IF 
&C 

(3.1.8) 
IqX2 

As in the single species model in the previous chapter, the model is then scaled. It 
is important that both equations in the model have the same scales of space and 
time. The scale of time is chosen to be 11R, so To = R-1, the scale of population 
is chosen to be H, so Fo = H, and the scale of space is chosen to be FIFIR, 

so Xo = V/T/R. This gives the dimensionless vaxiables t TITO, f =- FIFO, 

c =- CIFO and x -= XVklqf, and the parameter groups u,, U,,, ITO, d= DITo 

and k =- KIFO. This produces the dimensionless uptake term 

umf UW = -f +11 

and the dimensionless model 
af 

=f -ý U(f)c Ot k) 

and 

cu(f )c - dc + 
92C 

IqX2 

Assuming spatial homogeneity, the exterior steady states are (0,0) and (k, 0) and 
the scaled interior steady state is 

c* -, - : 
ýi 

9 eu�, -d( um 

)( 

which is equivalent to the steady state of the scaled version of the steady state 
of the non-spatial unscaled model. The scaled criterion for both populations to 
be real and positive is 

k>d 
cu,,, -d 
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and for the scaled system to be able to achieve the internal steady state and 

non-oscillatory, 
IEUm+d 

k<i 
Lm -d 

(3.1.14) 

If this condition is satisfied and a travelling wave solution exists, a complicated 
wake structure follows a peak at the wave front which eventually reaches the 
(f, c) steady state, else a series of regular oscillations follow the wave front. 

Dunbar (1983) has already developed a method to predict the velocity and ex- 

ponential lapse rate of the front of the predator-prey model. To do this the 

wave is transformed to a moving frame of reference, where it is dependent only 

on z =- x+ vRt with frame of reference velocity, -vR. Equations (3.1.10) and 
(3.1.11) then become 

d 2C dc 
T+vRä- + (eu(f) - d) c 

ZZ ZZ 

VRýf-- +f, -i u(f)c = dz k) 

If the leading edge of the front is close to the (k, 0) steady state, then the equations 
decouple, with predator dynamics being described by 

d 2C dc 
j- + vRU- + (eu(k) - d) c 
ZZ 

A solution is sought in form c(z) = coe-Iz, which must be non-negative as z -+ 00, 
so that the exponential increase rate, A, is real. Such a solution is possible if A is 

related to the velocity, vR, by 

V, R = A+ eu(k) -d 
A 

(3.1.18) 

There are an infinite number of solutions for vR, if A chosen correspondingly. The 

solution excited depends in the initial conditions. If eu(k) -d>0, there is min- 
imum velocity, vo = 2ý u(k) - d, which occurs when A= Ve-u(k) 

- d. Compact 
initial conditions excite the minimum velocity solution (Dunbar 1983)(Dunbar 
1984). Therefore the velocity and the exponential lapse rate can be calculated 
for this system. 
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3.2 Increased Mortality of Predators at Densi- 
ties beneath a Threshold 

If the system displays limit cycles, the troughs may dip to very low densities. 

The dynamics following behind the first trough can be entirely dependent on 

regrowth from a very low density in a reaction-diffusion model. To stop this 

happening, the growth function of the predator population is altered so that at 
low densities there is negative growth. If reproduction is sexual, a low population 
density may lead to asexual reproduction, self fertilisation or inbreeding, reducing 
the genetic vaxiability of the population and chromosomal breakage, leading to a 

reduction in fitness of the population. To model this, under a threshold density, 

Cp, the predators have an increased mortality rate, DB, which is less than the 

above threshold rate, Do. These values are scaled in the same way as the original 

predator-prey model, so the scaled threshold is cp = CPIFo, the scaled mortality 

rate above the threshold is do = DOIFo and the scaled mortality rate below the 

the threshold is dB = DBIFO. So in equations (3.1.10) and (3.1.11), d becomes, 

d 
do c> cp (3.2.1) 
dB otherwise 

where 
dB> dBm'- U(k) , 

(3.2.2) 

so below the threshold, growth is negative. 

When a threshold is applied to an oscillatory system one of two things can happen 

behind the front. If the threshold is low, the invasion persists and a wave train 

follows the initial invasion wave, as shown in Figure 3.1 (a). If the threshold is 

high enough, the low density populations in the first trough of the wave train 

become extinct, so there is only a single wave of predators from the point of 
introduction, a soliton wave, as shown in Figure 3.1 (c). Once the wave has 

passed through the arena there are no predators within the arena and the prey 

return to carrying capacity. 

Addition of a threshold to the predator growth function reduces the veloCitY Of 
the wave. As dB-+ oo the invasion halts altogether and as du -+ 0, v -4 vo as 
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shown by figure 3.3. 

The development of methods to estimate the properties of waves with small 

. 
thresholds has already been carried out (Gurney et al. 1998). dB can be chosen to 
be very slightly larger than dBm, halting in situ regrowth while keeping velocity 

reduction to a minimum, so the method used for estimating the velocity of the 

non-thresholded case can still be used to describe these waves. 

Predictions about the shape of the wave can also be made. The leading edge of 
the front can still be treated as in the non threshold case. At the trailing edge of 
predator band, the prey density is zero. The predator dynamics can therefore be 

described as in the non threshold model with eu(k) -d replaced with -d. The 

solution sought is of the form eA'z. The front velocity, v, and the exponential 

growth rate A' are related by 
d 

v=5j-A, (3.2.3) 

implying that this part of the wave can travel at any speed as long as Al is chosen 

accordingly. It must travel at the same velocity as the leading edge of the wave, 
so the exponential growth rate in the tail of the wave, At, must be the positive 
solution of 

+ vAt -d= 02 (3.2.4) 

which is 
At = 

Veu(k) 
- Vreu(k) - d. (3.2.5) 

It is now assumed that these equations apply right to the peak of the predator 
outbreak. z=0 where c(z) = c,,, the maximum of the peak, so there is a solution 

of the form 

C(Z) cme-; kcz z>0 (3.2.6) 
cme-xtz otherwise * 

This allows estimation of the characteristic spatial scale of the predator outbreak. 
w, is the distance over which c exceeds 10% of c,,,, so 

In(10) 1 ( Tc + ýl-t )- (3.2.7) 

This gives an approximate relationship between the total consumer population, 
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T,, and cj,,, 
00 1. 

TC c(z) dz c,,, T+ (3.2.8) 1(c 
Tt 

00 
To find c, T,, is assumed to be constant over time, possible only if the totals of 

reproduction and mortality balance, that is dT,, = eut, where ut represents the 

total rate of prey uptake by the predator population. As ahead of the predator 

outbreak the prey is at carrying capacity and behind the predator outbreak the 

prey axe at zero density, a lower bound can be put on ut by assuming that it 

corresponds to the rate the predators engulf unexploited territory multiplied by 

the prey density on the territory, so ut r-. o kvR. 

The prey axe then assumed to increase lineaxly with z, starting from zero at z=0 

and reaching k at the point where c=0.05c,,,, which can be approximated as 

z= 3/A,. Integrating net prey production from z=0 to 3/Ac shows that the 

total prey reproduction in the region is k1 (2, \,, ). Hence ut ; ztý kvc + k1 (2, Q, which 
implies 

dTc = Ek vit +1) (3.2.9) 
2A, 

Using equation (3.2.8) and substituting for At, A, and vR gives 

F, Rd cu(k) +1 (3.2.10) c,,,;:: ý 2ek 
(1 

- U(k) u (k) d Td- 

To calculate the width of the region of prey depletion, the transformed dynamic 

equation (3.1.15) must be reconsidered. When predators are at their peak density, 

the prey have already been depleted to densities below their carrying capacity and 
half saturation level. Hence the scaled production of new prey is approximately 
f and scaled uptake function of the predators is approximately u"'f - Putting 

these back into the transformed equation and remembering that in the region of 
interest c(z) = cne; ktzl 

1 df 
=--- -1+ 

Um 
cme ), t. f dz VR V,, 

(3.2.11) 

This can be integrated to give an approximate closed form solution for f (z) which 

can be used to calculate the distance between the predator peak and the point 
where the prey population returns to k, wf. It is assumed that f (0) = k, so wf 
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is a solution of 
wf 

=1-exp (Umc) Wf ), 
Wfm = 

UMCM 
Wfm Wfm At . 

(3.2.12) 

Provided that u,,, c,,, > 3, the solution of the equation is well approximated by 

wf = wf,,,, as shown by Gurney et al. (1998), so 
umcm 

Wf = At 
(3.2.13) 

-6 
Cp Predicted Valu es IO bserved Valu es 

V CM WC Wf IV Cm W,, I Wf 

0.05 1X 10-2 0.42 3.7 35 76 0.39 3.17 40 61 
0.075 1X 10-2 0.61 4.0 39 109 0.56 3.78 41 98 
0.1 2x 10-3 0.75 4.4 43 142 0.74 4.40 46 145 
0.15 3x 10--1 0.97 5.3 52 216 0.95 5.61 51 229 
0.2 3x 10-6 1.15 6.3 59 300 1.14 6.75 61 323 
0.3 3x 10-7 1.44 8.3 71 489 1.45 8.97 74 532 
0.5 3x 10-7 1.89 12.2 91 938 1.93 

. 
13.29 

, 
94 

. 
1032 

Table 3.1: Comparisons between wave characteristics calculated by equations 
devised by Gurney et al. (1998) and those observed from simulations of the 
predator-prey model with a threshold. Ax = 0.1, the time step varies between 
At 0-00001-0.001, the numerical integration tolerance is 0.00001, k= 20, 
u,,, 2, d=0.05 and dB = 1.3dBm- v is the velocity of the wavefront, cyn is the 
maximum density of predators at the peak of the wavefront, w, is the width of the 
wave front, measured from c=c,,, to c= cm/10, and wf is the recovery time of 
the prey. 

If dB>> dBmthen the above methodology does not work because the assumption 
that the wave is minimally affected by the threshold no longer applies- An exten- 
sion of the Shooting method, developed in chapter 2, can be used to predict the 

characteristics of the waves in this case. The model is transformed into a moving 
frame of reference, moving from left to right with velocity -vR, in the same way 
as the non-thresholded model in equations (3.1.15) and (3.1.2), so again f and c 
are only dependent on z =- x+ vRt. 

If z=0 placed at some point, co, in the front where c << cp and f-k, then 
for all populations to the left of z= 01 

d2c dc 
dz2 URgZ- dc = 0, where d, =- dB - eu(k) > 0. (3.2.14) 
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This implies that for z<0, a solution for c(z) is sought in the form c(z) 

c(O)e, NBZ 
, where the exponential decay rate, AB is 

AB =2 VOR + 4d, ] (3.2.15) 
1 [VR 

+ 
-- 

To the right of z=0, 
d2c 

VR 
dc 

- (cu(f) - do)c =0 (3.2.16) wz- i TZ 

If dcldz =- 0, the transformed model can be rewritten as a triplet of coupled 
first-order ODEs 

dc 0 0, 
L= 

vR0 - (eu(f) - do)c and 
df (p(f) - u(f)c), (3.2.17) 2-z dz dz -vR 

Equations (3.2.17) axe solved, subject to the initial conditions 

c(0) : -- coý d(0) ý ABco and f (0) = k. (3.2.18) 

Figure 3.1 (b) and (d) shows that within the moving frame of reference the 

trajectories of c head monotonically to infinity if va exceeds the velocity of the 

wave front, v, but if vR< v then the trajectory initially dips below zero, as was 
proved for the Fisher model in the previous chapter. A bisection search similar 
to the one described in subsection 2.2.1 can then be used to find v. In this case 
the starting bracket for vR is chosen as (0 -ý vo). If n dips below zero or rises 
above 100 then 0=0, the resulting value of n at the end of the simulation is 

used as the criterion for the bisection search. The bisection search is terminated 

when the high and low ends of the bracket for vR produce identical solutions up 
to the peak of the wave front. 

The Shooting method can also find the peak predator density and therefore the 

width of the front. Figure 3.1 (b) and (d) shows that, as in the single species 
model in Chapter 2, as vR P-%d v, the trajectories of the solutions follow the shape of 
the wavefront, so measurement of the region where 0>0 can be used to predict 
the width of the wavefront. The correct velocity of the wave front, v, can be 

substituted into equation (3.2.5), for At, instead of vo, so an improved estimate 

38 



25 
V=0.72 

----------f 

c 

77 (b) 

u 

0 A 
v 500 0 

0 

25 
x 

v=0.67 
(C) 

----------I--- 

I 

n 

A v 500 
0" 

0 50 
xz 

Figure 3.1: Predator-prey model with a threshold, k= 20, u,, = 2, d=0.05 
and e=0.1. (a) A wave train travelling from right to left with v=0.72 at 
time 350. CP = 10-4. (c) A soliton travelling from right to left with velocity 
v=0.67 at time 350. cp = 10-1. In both these simulations, Ax = 0.5, the time 
increment varies between At = 0.001 -+ 0.1 and a numerical integration tolerance 
of 0.00001. (b) and (d) show equivalent solutions in frames of reference moving 
at different velocities as marked. To obtain these, equation (3.2.17) was solved 
with the initial conditions in equation (3.2.18) and using RK4 with allowed error 
of 10-6. 

of the shape of the back of the wave front can be made. The new estimate of At 

can then be substituted into the calculations for the peak height and the width 
of the soliton wave. The new estimates for the peak height and At can then be 

used in the calculation for the prey recovery width. 

Table 3.2 shows that the velocities of the simulations axe all predicted to within 
1% by the Shooting method. Substitution of the values of v, c. and wf predicted 
by the Shooting method, into the calculations developed by Gurney et al. (1998), 
increases the accuracy of the predictions of the wave front characteristics when 
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Cp Predicted Values I Observed Values I 
VI C. WC Wf IV 

C. WC Wf 

0.05 0.59 2.21 38 59 0.58 2.21 40 72 
0.1 0.55 2.17 36 55 0.54 2.17 37 59 
0.2 0.48 2.09 33 47 0.47 2.08 31 48 
0.3 0.42 2.02 30 42 0.40 2.00 22 40 
0.4 0.36 1.93 27 36 0.33 1.90 17 35 
0.5 0.29 1.84 25 30 0.28 1.81 14 32 

Table 3.2: Comparisons between wave characteristics predicted by the Shooting 
method and those observed from simulations of the predator-prey model with a 
threshold. Ax = 0.1, the numerical integration tolerance is 0.000001, the time 
step varies between At = 0.00001-0.001, k= 10, u.. = 2, c=0.1, d=0.05 
and dB = 0.5. v is the velocity of the wavefront, c, is the maximum density of 
predators at the peak of the wavefront, w, is the width of the wave front, measured 
from c=c,.,, to c=c, 110, and wf is the recovery time of the prey. 

the solution of the system is a soliton. 

The Shooting method predictions should be correct to arbitrary accuracy. The 

discrepancy is due to the discontinuity in both value and slope in the threshold 
formulation of the growth function. This discontinuity causes problems with 
the numerical simulations of the model which are used to produce the observed 
wave characteristics. As it was shown in Chapter 2 that using an Allee effect 
formulation for the Fisher model reduced this error, a formulation of the predator- 
prey model where regrowth from low densities is stopped by an Allee effect is now 

considered. 

3.3 Decreased Prey Conversion Efficiency in Preda- 
tors due to an Allee Effect 

Now a model where the negative growth of populations with low densities is 

achieved by an Allee effect is considered, to reduce the error in the numerical 
simulations. Whereas previously the efficiency of conversion of prey into new 

predators was a constant, 6, in this formulation, the conversion efficiency, E, is 
dependent on the density of predators. If predators never become scarce then 
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E= EO (Cruickshank et al. 1998). If reproduction is sexual then at low densities 

mating is rare, so the conversion efficiency is reduced. To represent this in the 

model, E is proportional to of C up to a maximum, E0, hence the dynamics of 
this system axe described by 

OF (1 F ac a2C 

-6T- :: -- RF - 7ý) - U(F)C and OT = (EU(F) - D)C + IF57X-2 
, 

(3.3.1) 

where 
E Eo C> Cp(EoU,,, ID) (3.3.2) 

DCI(UCp) otherwise 

The steady states axe identical to those of the original predator-prey model (with 

c set to E), described in equation (3.1.4) if 

cp: 5 
RHD(DK + DH - KEoU .. (3.3.3) 

KU .. 
(-EoU,,, + D)2 

R-') VIIQ/R) H and EOH axe identified as the natural scales of time, space, prey 

population and predator population respectively. The model is re-expressed in 

terms of dimensionless variables t =- RT, x =- XVRIIF, f FIH, c =- cl(EoH) 
and the parameter groups k =- KIH, u.. =- U .. IR and Cp cpl(EOH), giving 

Of 
=- 

1) 
- UWC (3.3.4) 

Ot 
f 

(i 
k 

and 

where 

Lc 
= (eu(f) - d)c + 

a2r 
(3.3.5) ýt 

IqX2 

UM = 
umf (3.3.6) 
f+1 

and 

e=1c> cpu,,, /d (3.3.7) 
1 

dc/(u,, cp) otherwise 

This model's spatially homogeneous external steady state is identical to that of 
the non threshold model, and the internal steady state is 

f* =d ä* =, -f (3.3.8) 
um-d '( um 

)( 
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only if 

CP < 
um 

dd1- 
k(u� 

d- 
d» . 

(3.3.9) 

As in the threshold formulation model, if the dynamics are non-oscillatory or the 

threshold density is low, eventually the predator and prey populations reach the 

stable coexistence state throughout the whole arena. If the threshold is large and 
the local dynamics are oscillatory or show weakly damped oscillations, then the 

wave form is a soliton. 

As in the previous section, the model is transformed into a frame of reference 
travelling from right to left with velocity -VR, so that c and f depend only on 

z =- x+ vRt. If 0M dc(z)ldz, equations (3.3.4) and (3.3.5) can be re-expressed 

as 

and 

dO 
= vRg - (eu - d)c, 

dc (3.3.10) 
dz wz- 

df 
=1 [f (1 -f 1k) - uc]. TZ -VR 

If z=0 is placed to the left of the front, where c(z) = co << cp, then for all 

z<0, f (z) =k and hence c(z) = coeAz, where 

v, + Vv,,, 
R +1 14 

2 
(3.3.12) 

Hence for z>0, equations (3.3.11) and (3.3.10) can be solved subject to the 
initial conditions 

c(O) = co, f (0) =k and 0(0) = coA. . (3.3.13) 

Figure 3.2 shows that as in the thresholded formulation in the transformed 
predator-prey model with an Allee effect, if vR is greater than the wave front 

velocity, v, c(z) -+ oo as z increases. If vR <v then c(z) <0 at some value of z. 
Figure 3.2 shows, when vR =, v, and there is a travelling wave solution, the shape 
found must be the shape of the wave front, so estimates of the height of the peak 
and the width of the front can also be attained from the Shooting method. 
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Figure 3.2: Solutions in frames of reference moving at different velocities as 

marked and k= 20, u,,, = 0.2, d=0.05, (a) a wave train with cp = 10-4 (b) 

a soliton with cp = 10'. To obtain these, equations (3-3.11) and (3.3.10) were 

solved numerically with initial conditions as in equation (3.3.13) with an allowed 

error of 10-6. 

co = min(O. 0001, cp110000) is chosen as the starting population for the predator 

population and f (0) =k is chosen as the starting population for the prey popu- 

lation for the bisection search, with 0(0) calculated from equation (3.3.12). v is 

then determined by a bisection search. The bracket for vR is initially chosen to 

be the same as in the threshold predator-prey model, as is the criterion for the 

end of the search. 

Table 3.3 shows that for the predator-prey model with an Allee effect the Shooting 

method is very good at estimating the velocity, peak height and width of wave 

fronts. It can also be seen that at high thresholds the wave front widens. This 

is because at these thresholds, the criterion described by equation (3-3.9) is not 

fulfilled, so the system is no longer oscillatory and a state of coexistence is reached, 

as shown by figure 3.3. 

3.4 Discussion 

Both an Allee effect and a threshold have been used to reduce the regrowth of 

predator populations from very low densities. They successfully removed this 

effect while maintaining the dynamics of the unthresholded model at higher den- 

sities. In the threshold formulation the predators died with an increased mortality 

ell ci 
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k cp Predicted Values Observed Values 
V Cyn I Wf V Cm I Wf 

2.5 0.05 0.5180 7.45 13.8 0.5196 7.45 13.8 
2.5 0.675 0.3653 7.10 10.7 0.3651 7.10 10.5 
2.5 1.622 0.1828 6.62 12.0 0.1826 6.51 12.0 
5.0 0.11 0.5826 12.4 11.1 0.5836 12.4 11.1 
5.0 1.34 0.4099 11.5 8.77 0.4101 11.5 8.75 
5.0 2.86 0.2047 9.92 11.2 0.2040 9.43 11.2 
10.0 0.064 0.6535 22.7 10.7 0.6556 22.7 10.7 
10.0 2.645 0.4357 20.4 7.73 0.4358 20.4 8.0 
10.0 5.29 0.2178 16.9 10.7 0.2184 17.1 10.4 
20.0 0.14 0.6744 43.1 9.463 0.6767 43.7 10.1 
20.0 5.25 0.4494 38.3 7.324 0.4497 38.3 7.7 
20.0 10.14 0.2249 31.0 10.5 0.2197 29.3 10.4 

Table 3.3: Comparisons between wave properties predicted by the Shooting method 
and those observed from simulations of the predator-prey model with an Allee 
effect. Ax = 0.05, the time step varying between At = 0.0000001-0.0001, the 
numerical integration tolerance is 0.0000001, u,,, = 0.2 and d=0.05. v is the 
velocity of the wavefront, qý is the maximum density of predators at the peak 
of the wavefront, w, is the width of the wave front, measured from c= cm to 
c= cm/10, and wf is the recovery time of the prey. 

rate, which describes inbreeding depression in real small populations (Kot et al. 
1996) and in the Allee formulation the conversion efficiency of prey into new 

predators was decreased, describing problems of finding mates in small popula- 
tions of sexually breeding organisms (Gurney et al. 1998). 

These modifications to the original predator-prey model can make a large change 
to the wave form generated. If the system is oscillatory and the density of preda- 
tors in the first trough behind the front is low enough in relation to the threshold, 

the predator population in the trough starts to die with the increased mortality 

rate or becomes less efficient at converting prey to new predators and goes ex- 
tinct. There is no continuation of the wake after this trough, and the invasion 

wave becomes a soliton. Once the soliton has passed through the arena the arena 

returns to a state where there are no predators and the prey are at carrying 

capacity. 

The Shooting method successfully predicts the characteristics of an invasion wave 
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of predators which have negative growth at low densities in a two species predator- 

prey model. As discussed in Chapter 2, the method is more successful for the 
Allee formulation than the threshold formulation due to the discontinuities of the 

growth function. 

Figure 3.3 shows that the Shooting method can be used to investigate the dy- 

namics of the 2 formulations of the predator-prey model. vo = 0.6095, and as the 

threshold tends to zero the velocity neaxs vo. As the threshold increases the wave 
front stops forming. There cannot be a negative velocity in these models as the 

wave is narrow. The peak height predictions show that the predator peak is only 

affected when the threshold is very high and the wave is close to non existence, 

which is to be expected as only low densities are affected by the threshold. In the 
Allee formulation, the wave front gets wider at high thresholds. This is because 

the steady state is changed as inequality (3.3.9) is no longer satisfied and the 

wave has become non-oscillatory. 

Threshold and Allee effect growth function formulations removing regrowth from 

low densities populations for models describing the invasion of an exotic species. 
The Shooting method has been shown to work for these altered models. Maybe 

other models with spreading waves, for instance, epidemic models, should be 

considered for this treatment. 
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Figure 3.3: Wave characteristics as predicted by the Shooting method of both the 
Allee and the threshold formulations of the predator-prey model. (a) shows the 
velocities, (b) shows the peak heights and (c) shows the front widths. The threshold 
results have been rescaled to the same scaling as the Allee effect formulation. In 
the Allee effect formulation model, k=2.5, u,,, = 0.2, d=0.05 and in the 
threshold formulation model, k=2.5, u,, n = 0.2, do = 0.05 and dB = 2. For these 
parameters, vo = 0.6095. 
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Chapter 4 

The Two Stage Epidemic Model 

Having looked at two forms of models where there is an invasion of a species into 

new regions, now a two stage epidemic model is considered. A threshold removing 

reinfection at low densities and a reduction in infectivity at low densities are 

applied to the epidemic model. If this is the case, the Shooting method can then 
be used to predict characteristics of the wave front in the resultant model. 

4.1 Introduction 

4.1.1 The Two Stage Epidemic Model 

The 2 stage epidemic model was developed to describe the transmission of rabies 
in European foxes (Anderson et al. 1981). At a given time, T, there are two 

possible stages of infection; the susceptible stage, S(T), in which an individual is 
healthy and can be infected, and the infective stage, I(T), in which an individual 
is rabid. Susceptibles grow logistically with per capita rate of growth, R, to 

a carrying capacity, K. Infectives infect all susceptibles they contact with per 

capita contact rate B. Once infected, the individual goes on to infect susceptibles, 
and then dies with per capita mortality D. This produces the model 

as 
=RS 1-S)-BIS (4.1.1) 

OT jý 
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and 
0I 

= BIS - DI. (4.1.2) 
&T 

This model has exterior steady states at (0,0), (K, 0) and an interior steady state 

at (S*, P) where 
so =D and P= 

RI- S* (4.1.3) Ww(P- 

For both the infective and susceptible populations to be real and positive, 

K>D (4.1.4) W, 

4.1.2 The Spread of Rabies 

As foxes have territories, and as after recruitment to the adult population they do 

not disperse, susceptibles; are assumed to be immobile. This obviously inaccurate 

assumption can made because in terms of the spread of rabies, it is not the 
dispersal rate of foxes that is important, but the rate of contact between rabid 
and susceptible foxes which causes the spread of the disease. The infectives 

who do not contract the paralytic form of the disease wander aimlessly, and 
so disperse with diffusion coefficient IF (KRI16n et al. 1985). The population 
of susceptibles at position X, is S(X, T), and the local density of infectives is 

I(X, T). As the susceptible equation contains no spatial component, the equation 
for the susceptible population remains as in equation ( 4.1.1) and equation (4.1.2) 

becomes 
ei 

BIS - DI + q, 
a2I 

äi eX2 ' (4.1.5) 

This model is scaled by using R-1 as the natural scale of time, To, K as the 

natural scale of population, So, and VT-IR as the natural scale of space, Xo- 

This process results in the scaled variables s =- SlSo, i =- IlSo, x= XNIR-l-, Q 

and the parameter groups b -= BKITo and d =- DITo, giving the equations 
03 L= 

s(l - s) - bis 
at 

and 
ei 

= bis - ds + 
02i 

ä-t eX2 * 
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The exterior steady states of this model are (0,0), (1,0) and the interior steady 
state is (s* I i*), where 

so =d and i* 
bd (4.1.8) = _T2- 

which is positive and locally stable as long as b>d. If 

d< 

the front has at most one overshoot before settling to the steady state. If not, 
there is a trail of damped oscillations behind the front (Kill6n et al. 1985). 

The same method described in Chapter 3, developed from (Dunbar 1983), allows 
the calculation of the velocity of the wave front, where the introduction of a 
small propagule of infected individuals into an universe previously inhabited by 

susceptible individuals will eventually result in a wave travelling with velocity, 
Vol 

2 Vb- --d. 

With the rabies parameters suggested by KUL et al. (1985), this model always 
has a velocity greater than 242 km yr-1. In nature a rabies epidemic has an 
observed velocity of around 30 to 60 km yr-1. This suggests that this model 
does not accurately describe a rabies epidemic. This idea is explored in the next 
chapter. The wake behind the initial invasion wave can dip to very low densi- 

ties of infectives, densities which are not biologically realistic, and persistence of 
the epidemic behind the wave front could be caused by in situ growth of these 
low density populations rather than through re-invasion of these areas (Mollison 
1991), known as the "Atto-F&' effect. The model is altered so that at very low 
densities of infectives, the individuals do not infect susceptibles locally. This in 
itself will reduce the velocity of the wavefront of this system. Two methods of 
removing reinfection by low density populations from this model are investigated. 
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4.2 Removal, of Infection of Susceptibles by In- 
fectives below a Threshold Density 

The model can be altered so that densities of infectives below a threshold, Ip, 

are no longer infective, so the contact rate becomes a function, B(I), the above 
threshold contact rate is BO and below the threshold B=0. These parameters 
have the dimension of population and are scaled, so ip = IpISO and bo = BolSo, 

and the scaled function is termed b. So the model described in equations (4.1.6) 

and (4.1.7) is modified so that when the density of infectives falls below ip, the 

contact rate of infectives with susceptibles is zero, so in equations (4.1.6) and 
(4.1.7), 

b bo i> ip (4.2.1) 
0 otherwise 

This model has the same internal stationary state as the non thresholded model 
in equation (4.1.8) as long as P> ip. 

If the threshold density is low, the wake of the epidemic front is the same as in 
the non tbresbolded version of the model, and eventually there is persistence of 
the epidemic behind the front and the interior steady state is reached, as shown 
in figure 4.1 (a). If the threshold is increased, low densities of infectives in the 

wake behind the front do not infect susceptibles, there is no persistence of the 

epidemic and the epidemic wave becomes a soliton as shown by figure 4.1 (c) - 
So the persistence of rabies epidemics in this model is created by re-infection of 
susceptibles in areas with an unbiologically low density of infectives. 

In the previous chapter, a method was developed to predict the shape of a whole 
soliton of a predator-prey model; the shape of the leading and trailing edges, 
the time it took for the prey to recover and the maximum density of predators 
in the peak. This method cannot be applied to the 2 stage epidemic model as 
the method relies on the assumption that the prey density falls to f ; z-' 0. In 

an epidemic, the susceptible density rarely falls to zero; this would cause the 

extinction of the infection. Therefore only the Shooting method can be used to 

make predictions about the characteristics of the wave front. 
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The Shooting method is altered so as to make predictions about the wave front 

characteristics of the 2 stage epidemic model. The model is transformed into 

a frame of reference travelling from left to right with velocity -vR and s and i 

depending only on zMx+ vitt. This results in the transformed model 

where 

d 2i di ds 1 C) CA vjj dz + g(i) and Wz- = VR 
[s(l - s) - bsi] (4.2., 22j 

g(i) 
bosi - di i> ip (4.2.3) 
-di otherwise * 

If ý =- dildz then equations (4.1.6) and (4.1.7) can be re-expressed as 

dO di ds 1 
VRO - 9(i), 0 and Tz- = _VR [s(i - s) - bsi] (4.2.4) 

If z=0 is placed where i(z) = ip, for all z<0, s(z) ý- 1 and i(z) = ipexx where 

[vit 
+ 

VOR 
+ Z] (4.2.5) 

2 

Hence, for z>0, equation (4.2.4) can be solved subject to the initial conditions, 

s(O)=l, i(O)=ip and ý(O)=ipA. (4.2.6) 

Figure 4.1 shows that the trajectories of the solutions in the moving frame of 
reference are similar to those of the predator-prey model, so the Shooting Method 
bisection search can be used with the same criteria as used for the predator-prey 
model and equation (4.2.4) solved with initial conditions as set in equation (4-2-6). 

There is again the problem of a discontinuity in the growth function in the sim- 
ulation of the untransformed model, but there is no longer a discontinuity in 
the simulations of the z transformed model, as the simulations are initiated at 
the threshold. The predictions of the Shooting method are more accurate than 
in the predator-prey model formulated with a threshold. To reduce the affbct 
of the discontinuity in the simulation, a formulation in which the value of the 

population is continuous is used instead of a threshold. 
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Figure 4.1: Epidemic waves in the 2 stage epidemic model with a threshold. bo 
30 and d= 20. (a) shows a wave followed by a wake travelling from right to 
left with v=6.24 and ip =1x 10-10, Ax = 1, the time step varying between 
At = 0.001 -+ 0.1 and a numerical integration tolerance of 0.0001. (c) shows a 
soliton travelling from right to left with v=3.04 and ip = 0.01 and Ax = 0.1, 
the time step varies between At = 0.00001 -+ 0.001 and a numerical integration 
tolerance of 0.00001. Frames (b) and (d) show solutions in frames of reference 
moving with the marked velocities for ip =1x 10-10 and ip = 10-6 respectively, 
attained by solving equation (4.2.4)with the initial conditions in equation (4.2.6). 

4.3 Reduced Infection of Susceptibles by Low 

Densities of Infectives 

As there is a small difference between the Shooting method predictions and the 
observed wave front characteristics from simulations for the 2 stage epidemic 

52 



ip Pred icted Values Observed Values 
V tm Wf Vf im Wf 

1x 10-ý' 23.717 0.1531 0.5545 23.349 0.1531 0.5512 
1x 10-7 23.563 0.1530 0.5460 23.349 0.1530 0.5429 
1X 10-6 23.323 0.1530 0.5460 23.237 0.1530 0.5795 
1x 10-5 22.918 0.1529 0.5295 22.906 0.1529 0.5380 
1X 10-4 22.174 0.1526 0.5050 22.171 0.1527 0.5130 
1X 10-3 20.645 0.1519 0.4635 20.655 0.1519 0.4635 
J_ X 10-2 0.1464 0.3640 0.1464 0.3560 

Table 4.1: Comparisons between wave characteristics calculated by the Shooting 
method and those observed from simulations of the 2 stage epidemic model with 
a threshold. Ax = 0.1, the time step varies between At 0.00001 ---0.001, the 
numerical integration tolerance is 0.00001, b= 292 and d 146. v i's the velocity 
of the wavefront, wf is the width of the wavefront and i,,, is the maximum density 
of rabid individuals in the wavefront peak. 

model with a threshold, a growth function is formulated as an alternate to the 
threshold formulation of the 2 stage epidemic model. The growth function is 

continuous in -. -alue but not in slope. 

At high densities of infectives; the force of infection is constant, BO, while at low 
densities the force of infection rises linearly with infective densities (Cruickshank 

et al. 1998). So in equations (4.1.1) and (4.1.5), 

B BO I> Ip(BoKID) 
(DIK)(IlIp) otherwise 

IP is the infective density below which the infective population cannot reinfect. 
The steady state values for this model are the same as those of the original 
unmodified model as described in equation (4.1.3), as long as 

IP :5 
RD(BOK - D) (4.3.2) 3 BýJK2 

Defining scaled variables s -= SIK, i =- IIK, t -= RT, x =- ýR-/T and parameter 
groups bo -= BOKIR, d -= DIR and ip =- IpIK allows re-expression of the model 
as 

19S 
= s(i - s) - bsi and 19i 

= (bs - d)i + 
02i (4.3.3) Yt OX2 

where 
b bo i> (boip/d) (4.3.4) dilip otherwise 
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There are 4 stationary states, (0,0), (1,0), high s* and low i*, low s* and high 

i*. Provided 
ip :5 (dl0o) (1 - d/bo) , 

(4.3.5) 

the high i* steady state is identical to that of the equivalent un-thresholded model, 

so= 
d 

and i* 2 
(4.3.6) 

bo bo 

As long as i* is Positive it is locally stable. 

When local dynamics are non-oscillatory, or ip is small, the behaviour of the 

modified model is unchanged except for a reduction in velocity. If ip is larger 

than the infective density in the first trough behind the initial epidemic in the "no 
threshold" model, then the infective population does not recover from the trough 
but declines asymptotically to zero. The susceptible population then recovers 
to carrying capacity. So in addition to reducing the velocity of the front, the 

post-epidemic state of the system is also changed. 

The behaviour of this system is investigated in a frame of reference moving with 
velocity -vn. Looking for a constant shape solution, assuming that 8 and i 
depend only on z -= x+ vRt and defining O(z) -= di(z)ldz, equation (4.3.3) is 

re-expressed as 
di do 

= vRý - (bs - d)i (4.3.7) TZ dz 

and 
ds 
z T= v-'[s(l - s) - bsi] (4.3.8) 
z 

where b is defined as in equation (4.3.1). If z=0 is placed to the left of the front 

where i(z) = io << ip, then for all z<0, s -,, 1 and hence i(z) = ioexz where 

VV 2 
R 2 

[VR 
+a+ Z] (4.3.9) 

So for z>0 equations (4.3.7) and (4.3.8) can be solved subject to the initial 

conditions 

s(O) =1, i(O) = io and 0(0) = Aio - 
(4.3.10) 

54 



0.5 

N 

nn 

UN. 

0.5 

N 

nn 

CIO 
cc co en 

A 

LA 
LA' 

00 

tA 

W. %, p 

10 05 

Figure 4.2: Vie 2 stage epidemic model with a contact rate varying with slope 
at low densities, with bo = 12 and d=4. Frames (a) and (b) show solutions in 
frames of reference moving with the marked velocities for 5x 10', which forTm 
a wave train, and ip = 10-6, which forms a soliton, respectively, with equations 
(4.3.7) and (4.3.8) solved with the initial conditions in equation (4.3.10). 

In figure 4.2 the solutions produced are reminiscent of those in the threshold 
formulation of the model. They follow the true shape of the wavefront for a 
distance, depending on how close the frame of reference velocity is to the velocity 
of the wavefront. If the frame of reference velocity is less than that of the front 

velocity then the trajectory eventually dips below zero whereas if the frame of 
reference velocity is greater than that of the wave front the infective density 
diverges to oo. 

10 

This allows a bisection search for the wave front velocity. io = min(O. 0001, ipIlOO00) 

is chosen as the starting population for the infective population and s(O) =1 is 

chosen as the starting population for the susceptible population for each run, 

with 0(0) calculated from equation (4.3.10) and solving equations (4.3.7) and 
(4.3.8). The bisection search criteria are again identical to those used for the 

predator-prey model. 

There is a good agreement between the Shooting method and the values observed 
from simulations. There is a difference, which is again due to difficulties of simu- 
lating a model with a discontinuity in the growth function. The effect is reduced, 
as there is only a discontinuity in slope but not in value in this formulation. The 

use of a formulation which is continuous in value to remove infection of suscepti- 
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bo ip Predicted Values Observed Values 
V Wf tm V Wf Im 

4.5 6.7 x 10-1 1.2020 9.82 0.02484 1.1925 9.8 0.02484 
4.5 1.5 x 10-3 0.8156 7.18 0.02469 0.8156 7.2 0.02470 
5 4x 10-5 1.8041 6.32 0.04689 1.80 6.3 0.04689 
5 4x 10-3 1.1808 3.97 0.04399 1.18 3.95 0.04399 
12 4x 10-4 5.0831 2.15 0.3317 5.08 2.15 0.3316 
12 0.033 3 3754 1.35 0.3066 3.38 1.35 0.3068 
40 1.3 x 10 ý 1 . 209 1.06 0.6821 10.204 1.06 0.6822 

. 
40 0.0355 6.60 0.72 0.6542 6.605 0.72 0.6543 

Table 4-2: Comparisons between wave characteristics predicted by the Shooting 
method and those observedfrom simulations of the 2 stage epidemic model with the 
contact rate varying with slope at low densities. Ax = 0.05, the time step varies 
between At = 0.000001-0.0001, the numerical integration tolerunce is 0.0000001 
and d=4 in all runs. v is the velocity of the wavefront, wf is the width of 
the wavefront and im is the maximum density of infectives in the peak of the 
wavefront. 

bles from unbiological densities of rabid individuals has not changed the dynamics 

of the system above the threshold and it has improved the agreement between 

the Shooting method predictions and observations from simulations. Oscillatory 
behaviour is reduced by large thresholds. 

4.4 Discussion 

Figure 4.3 shows that when the threshold is low the velocity tends to vo. When 

the threshold is high the wave becomes a soliton. Because of the soliton shape 
of the wave, it cannot retreat, as this would be equivalent to there being no 
travelling wave solution, so the velocity cannot be negative at high thresholds 

as in the Fisher model. The peak height is only affected by the threshold when 
the threshold is nearly high enough so stop the formation of the wave. The 

width of the wave decreases as the velocity decreases. There is a slight upturn 
in the Allee wave front width just before the wave stops forming as the steady 
state becomes dependent on the threshold density, ip, as predicted by inequality 
(4-3.5). Otherwise the wave characteristics of the 2 models are very similar. 
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The Shooting method accurately predicts the velocities, wave heights and widths 
of the wave front observed from simulations. There is less of a discrepancy for the 
formulation which is continuous in value than in the formulation with a threshold. 
Again this is attributed to the discontinuity in the in both value and slope in the 

threshold formulation growth function, which cannot accurately be modelled in 

the numerical simulations of the model. 

The effective removal of low density populations of infectives from the dynam- 

ics of the model may provide the reduction in velocity necessary for the model 
to correctly predict the correct velocity of an epidemic wave of rabies in Euro- 

pean foxes, but another improvement on the model may also provide this. This 

improvement is based on the life history of the diseased animals and shall be 

discussed in the next chapter. 
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Figure 4.3: Wave front characteristics of both new formulations of the 2 stage 
epidemic model as predicted by the Shooting method. In the both formulations, 
bo = 12 and d=4 (a) shows the predicted velocity of the wave front, (b) the 
height of the wave front peak and (c) the width of the wave front as a function of 
threshold. For these parameters, vo = 5.66. 
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Chapter 5 

The Three Stage Epidemic Model 

In the previous chapter, a2 stage model for a rabies epidemic was considered. 
However, when a fox catches rabies there is an initial latent period when the 
infected individual shows no symptoms and does not infect others. A model 
hoping to describe the dynamics of the disease should include this latent period. 
A3 stage epidemic model was devised by Murray et a]. (1986). The model to be 

considered is very similar to this. 

The growth function of the infectives is altered so that a threshold and a formula- 

tion which is continuous in value but not slope axe used to reduce the infectivity 

of the infectives. The Shooting method is then altered so it can be used for 

this model, and the ability of this method to make predictions about the epi- 
demic wave front of a3 stage rabies model with no reinfection at low densities is 

assessed. 

5.1 Introduction 

5.1.1 The 3 Stage Epidemic Model 

At time T, the dynamics of susceptible foxes, S(T), remains unchanged from 

the 2 stage model, but Q is used as the per capita growth rate parameter. All 

susceptible foxes contacted with rate B becomes latently infected and are asymp- 
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tomatic carriers of the disease. Individuals in the incubating population, I(T), 

have a probability per unit time, L, of becoming rabid. During this latent period 
the mortality rate of incubating individuals is unaffected by the progress of the 
disease and have the die with the per capita mortality rate , M. In the infective 

population, R(T), a fox either contracts the paralytic form of the disease or goes 

on to infect susceptibles. The infectives then die with per capita mortality rate 
D. This produces a model where 

as=QS 1- s BSR, 51; 
(T 

ai 
=BSR-(L+M)I (5.1.2) 5T 

and aR 
= LI - DR. 5T 

The model has two external steady states at (0,0,0) and (K, 0,0) , and has a 

single internal steady state, at (S*, P, R*), where 

S* = 
D(L+Af), *=D and R*=Q(1-S*). WLTWT 

For the internal steady state to exist, 

K> 
DLM 
B 

(-L 

If this inequality is not fulfilled the model returns to the state where there are no 

rabid or incubating individuals and the susceptible foxes are at carrying capacity. 

5.1.2 The Spread of Rabies 

Susceptible and incubating foxes reside in territories after recruitment to the 

adult population, and these territories are assumed to always be filled, so it is 

assumed there is no net movement of non rabid foxes. Once rabid, the fox is 

assumed to run erratically. This is described as diffusion in this model (Murray 

et al. 1986) (Skellam 1951), spreading the disease with diffusion constant XF , so 

equation (5.1.3) becomes 

aR 
=LI-DR+, F 192R 

IOT IqX2 

60 



K is chosen as the natural scale of population, So, Q-' as the natural scale of 
time, To, and VTI-Q- as the natural scale of distance, X0, giving dimensionless 

variables s =- SISO, i =- IISO, r =- RISO, t =- TITO, x =- XIXO and the parameter 
groups I =- LITO, d =- DITO, m MITO and b =- BKITO. This scaling process 
results in the equations 

s(l - s) - bsr, (5.1.7) 

bsr -Q+ m)i (5.1.8) 
t 

and 
Or 82r 

Tt =li-dr+5ýj 

The scaled spatial model has external steady states at (0,0,0) and (1,0,0) and 
an internal steady state at (s*, i*, r') where 

and r*=1(1-s). 

The scaled criterion for the system to reach the internal steady state is, 

b I+m 
j>(I)- (5.1.11) 

The method for determining the velocity of the epidemic wave, vo, in this model 
has been devised by Murray et al. (1986) Murray (1989). The resulting calcula- 
tion for this model is not described here due to mathematical complexity. 

As in the 2 stage epidemic model, there is a wake behind the initial invasion front 

where the population of infectives reaches low densities in the troughs. These 

populations can be too small to be biologically realistic. Dynamics of the wave 
are thought to depend on reinfection of susceptibles by these small populations 
(Mollison 1991). To remove reinfection from low densities of infectives in the 3 

stage epidemic model, a threshold density is chosen, beneath which rabid indi- 

viduals are unable to infect susceptibles in the next section, and then the contact 
rate is varied with slope at low densities in the third section of this chapter. 
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5.2 Removal of Infection of Susceptibles by In- 
fectives below a Threshold Density 

The contact rate, B, becomes a function of population, so that below a threshold 
density, Rp, B #-ý 0, so there is no infection of susceptibles locally. Above the 

threshold, B= BO, BO being constant. Below the threshold the rabid population 
decreases exponentially with per capita mortality rate D after recruitment from 

the incubating population stops. These new parameters have the dimension of 
population, and are scaled to So, so b= BISO, rp = RplSo and bo = BolSo. In 

this situation, in equations (5.1.7) and (5.1.9), 

bo r> rp 
0 otherwise 

As in the 2 stage epidemic model, there are two outcomes of using a tbresbold 
formulation in the 3 stage epidemic model. At low tbresbold densities, as demon- 

strated in figure 5.1 (a), the wake is not affected by the threshold and the rabies 
epidemic persists behind the epidemic front. If the threshold is increased, as in 
figure 5.1 (c), the rabies epidemic dies out in the first trough following the front, 
forming a soliton wave. 

The approximations developed by Gurney et A (1998) for calculating character- 
istics of a soliton wave for a2 species predator prey model cannot be applied to 
the 3 stage epidemic model as there is an extra stage in the system and the calcu- 
lations depend on the assumption that the prey/susceptibles are approximately 
zero behind the initial invasion front. The Shooting method is the only tool that 

can be used to make predictions about the characteristics of the epidemic front. 

As in previous chapters, the equations are transformed into a moving frame of 
reference, moving from right to left with velocity -vR, where z =- x+vRt, resulting 
in the set of equations 

ds 
=1 (s(l - s) - bsr) (5.2.2) TZ 

VR 

di 
=1 (bsr - (I + m)i) (5.2.3) Tz- -VR 
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and 
d2r 

- vit 
dr 

+ (Ii - dr) =0 (5.2.4) 
dz2 wz- 

which can be decoupled into 
dr 

and 
dO 

= vRO- (Ii- dr). (5.2.5) wz- dz 

z=0 is positioned so that z(O) = rp, so for z<0, s ý- 1, i ý- 0 and 

d2r 
- VR 

dr 
- dr = 0. (5.2.6) jZ- 2 dz 

This has a solution r(z) = rpeýz, with r(z) 0 as z -+ -oo provided A>0. 

This requires that 
(vR 

+ VOR (5.2.7) 

For z>0 equations (5.2.2), (5.2.3) and (5.2.5) are solved subject to the initial 

conditions 
s=l, r=rp and ý=Arp- (5.2.8) 

Figure 5.1 (b) and (d) shows that if vit is greater than the wave front velocity, v, 
then the r(z) -+ oo and if vjz <v then the population dips below zero, as in the 
2 stage model. This means that the same bisection search algorithm can be used 
to find v. Also, the closer vq is to v the further the trajectory follows the shape 

of the wave front, so the peak height and wave front width can be estimated. 

v is then determined by the same bisection search as described for the predator- 
prey model, with equations (5.2.2), (5.2.3) and (5.2.5) solved with the initial 

conditions as set in equation (5.2.8). 

The Shooting method can be used to predict the velocity, peak height and width 

of wave front. There is, however a discrepancy between the predicted and the 

observed results. As the threshold density is increased, the accuracy of the pre- 
diction of the width of the wave front decreases. From experiments in Chapter 2 
it is known that this is due to the discontinuity in growth function causing inac- 

curacies in the simulations. This discrepancy can be reduced by using a growth 
function in which the contact rate is a function of slope at low densities, as it is 

continuous in value if not in slope. 
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Figure 5.1: Epidemic waves in the 3 stage epidemic model. bo = 320, d= 146 
1= 26 and in = 1. Fiume (a) shows persistence of the epidemic with rp = 10-10. 
Frame (c) shows a soliton wave with rp = 10-6. In both simulations, Ax = 1, 
the time step varies between At = 0.001 -+ 0.1 and the numerical integration 
tolerance is 0.0001. Frames (b) and (d) show solutions of equations (5.2.2), 
(5.2-3) and (5.2.5) solved with the initial conditions described in equation (5.2.8) 
in jrames of reference moving with the marked velocities respectively. 

5.3 Contact Rate varying with Slope at Low 
Densities 

Now the contact rate is varied to reduce reinfection from unbiological populations 
(Cruickshank et al. 1998). As in the threshold formulation, the contact rate is 

altered so that there is little infection of susceptibles in the locality of very low 

densities of rabid animals. The force of infection BO is assumed to be constant 

n 

U. vl+ 
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bo rp Predicted Values Ob served Values 
V Wf rm V Wf r. 

240 2x 10-5 2.885 0.782 0.01219 2.893 0.786 0.01220 
240 9x 10-1 1.743 0.409 0.01073 1.628 0.428 0.01049 
320 1X 10-4 4.055 0.630 0.02559 4.066 0.632 0.02556 
320 2x 10-3 2.610 0.360 0.02318 2.461 0.376 0.02277 
480 1.5 X 10-4 6.069 0.556 0.04618 6.119 0.561 0.04627 
480 4x 10 3 : 3.846 0.315 0.04221 3.791 0.354 0.04207 
640 1X 10 3 6.662 0.447 0.05897 6.632 0.448 0.05886 
640 6x 10-3 4.649 0.279 0.05460 4.573 0.328 0.05430 

Table 5.1: Comparisons between wave properties predicted by the Shooting method 
and those observed from simulations of the 3 stage epidemic model with a thmsh- 
old. Ax = 0.1, the time steps vary between At = 0-00001-0-001, the numerical 
integrution tolerance is 0.00001, d= 146,1 = 26 and rn =1 in all runs. v is the 
velocity of the wavefront, wf is the width of the wavefront and r,,, is the maximum 
density of rabid individuals in the peak of the front. 

at high densities but at low densities it rises linearlY with small rabid densities. 

OS 
= QS 1- 

S) 
- BSR, '91 = BSR - (L + M)I, (5.3.1) 

OT 5T 
OR 

= LI - DR + (D 
O'R (5.3.2) 

OT OX2 

where 
BO R ý: KBoRpLI(D(L + M)) B (L + AI)DRI(LKRp) otherwise 

(5.3.3) 

if 

R* > KBoRpLI(D(L + M)) (5.3.4) 

then the steady states of the model are the same as those of the unmodified 
model, as described by equation (5.1.4). 

This as scaled in the same manner as the original unmodified 3 stage epidemic 
model, so that in equations (5.1.7), (5.1.8) and (5.1-9), 

b bo r> borpl/d(I + m) (5.3.5) 
dr/rp(l - m/1) otherwise 

When r* is greater than the density at which the contact rate changes, ie 

r* > borpl/d(l + m) , 
(5.3.6) 
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the stationary states are as those of the unmodified scaled model, as described 
by equation (5.1.10). 

Again, the Shooting method can be used to make predictions about characteristics 

of the epidemic wave front. 

Assuming the wave is originally moving from right to left, the model is trans- 
formed into a moving frame of reference travelling from right to left with velocity 

-vR, giving equations (5.2.2), (5.2.3) and (5.2.5), with b as described by equation 
(5.3.5). 

z=0 is placed to the left of the wave front, where r(z) = ro << rp, so that for 

all z<0, s (z) ý- 1, i ; zt,, 0 and 

d2r dr 
- dr =0 ýý - VIITZ- (5.3.7) 

and hence r(z) = roeAz in the tail of the wave front, where A is as in the previous 
section. The equations (5.2.2), (5.2.3) and (5.2-5) are then solved subject to the 

initial conditions 

s=l, ro<<rp and O=roA. (5.3.8) 
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Figure 5.2: Solutions of the transformed 3 stage epidemic model in frames of 
reference moving with the marked velocities. bo = 320 and d= 146,1 = 26 and 
m=1. Frames (a) and (b) show the solutions for rp = 10-'0, which produces a 
wake, and 10-1, which produces a soliton, respectively. 

Figure 5.2 shows that the trajectories in this formulation show the same relation- 
ship between v and vR as in threshold case, so a bisection search can be used to 
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find the velocity of the wavefront, the peak height and the width of the wavefront. 

ro = min(O. 0001, rp/10000) is chosen as the starting population for the predator 

population. determined by a bisection search, with equations (5.2.2), (5.2.3) and 
(5.2.5) solved with the initial conditions as set in equation (5.3.8). 

K Rp Predicted Values ob served Values 
V Wf Rm V Wf Rm 

1.2 1.2 x 10-r- 20.35 23.20 0.004957 20.39 23.24 0.004958 
1.2 2.28 x 10-5 17.61 19.02 0.004873 17.60 19.03 0.004873 
1.2 5.16 x 10-4 10.44 10.87 0.004113 10.37 10.81 0.004104 
4 4x 10-6 85.98 11.92 0.2426 86.14 11.95 0.2427 
4 2.84 x 10-4 76.94 10.5 0.2401 77.26 10.56 0.2398 

.4 
1.396 x 10-2 44.25 6.70 0.2141 

ý 
j 43.81 6.66 0.2127 

Table 5.2: Comparison between predictions made by the Shooting method and 
observations from simulations of the 3stage epidemic model with varying contact 
rate, with BO = 80, L= 13, M=0.5, Q=0.5, D= 73. In the simulations, Ax = 
0.05, the time step varies between At = 0.000001 -+ 0.0001 and the numerical 
integration tolerance is 0.000001. 

Table 5.2 shows that the Shooting method accurately predicts the velocity and 

shape of wave fronts formed by the 3 stage epidemic model with a varying contact 

rate. 

5.4 Discussion 

In this chapter, both threshold and varying contact rate formulations have been 

used to remove unbiological. reinfection of susceptible individuals by tiny fractions 

of rabid individuals in a3 stage rabies epidemic model. This was achieved by 
decreasing the contact rate between susceptible and rabid individuals below a 
threshold or critical level. Both formulations successfully removed the reinfection. 
When rp increases, the epidemic dies out and if rp -4 0, v -+ vo. 

The Shooting method can be used to predict velocity, peak height and wave front 

width of a3 stage epidemic model where there is no regrowth from low densities of 
infectives. There is a lesser discrepancy between the Shooting method predictions 
and the observed characteristics from the varying contact rate formulation than 
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for the threshold formulation, probably due to the discontinuity only being in 

slope instead of in value when the contact rate varies, so creating a smaller error 
in the numerical solutions than in the threshold formulation model. 

Figure 5.3 shows that the threshold and varying contact rate formulations have 

almost exactly the same dynamics. The velocity at low thresholds tends to Vo 

and at high thresholds the wave is stopped as a soliton cannot retreat. The width 

of the wave decreases with velocity. The peak height is laxgely unaffected by the 

threshold until the wave is close to non existence. 

Next, this model is to be applied to the rabies epidemic in European foxes. The 

predictions that the varying contact rate formulation model makes about the 

epidemic axe compared with the velocities and wave forms known to exist in the 

epidemic. 

68 



60.0 

40.0 

20.0 

0-0 '-7 111 
10 le lp 16ý lp le lo-, 

rp 

20 T- 

15 

10 

5 

0 
1( 

0.08 

0.06 

J0.04 

continuous in value 0.02 
ý 

Threshold 

0 ý7 -j- L- 
107 jjý; ()1-5 jq-4 

rp 

rp 

-1 

(b) 

10-1 

Figure 5.3: Predictions made about the wave front of the 3 stage epidemic model 
by the Shooting method. (a) shows the velocity, (b) shows the peak height and (c) 

shows the width of the wave front as a function of threshold. K=2, Bo = 80, 
D= 73, Q=0.5, L= 13 and M=0.5. For these parameters, VO = 5.08. 
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Chapter 6 

Overview of Reaction-Diffusion 
Models of Epidemics and 
Invasions 

6.1 The Shooting Method 

The Shooting method can be used to predict the velocity, the width of the wave 
front and where applicable the peak height of invasion and epidemic waves where 
the dispersing individuals cannot grow from low densities. 

A single species invasion model, a predator-prey model with invasion of preda- 
tors, a two stage epidemic model and a three stage epidemic model have been 

considered. Each model has been altered so there is no population growth at low 

densities. The characteristics of wavefronts in these models can be predicted with 
the Shooting method. In the epidemic models, the threshold and varying con- 
tact rate formulations have near identical wave chaxacteristics. Using the latter 

formulation increases the accuracy of the Shooting method, so this formulation 

is now to be used in preference to the threshold formulation in each model. 

Now the 3 stage epidemic model, with the contact rate varying at low densities, 

is going to be applied to a real system. 
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6.1.1 Accuracy of the Shooting Method 

The completely continuous growth function with an Allee effect, used in Chapter 

2, shows that when the discontinuity is removed, the velocity predictions axe 
accurate to an arbitrary level. Unfortunately this Allee formulation is not suitable 
to be used in these models as it effects the dynamics of the populations at high 

densities as well. For this reason, a formulation which is continuous in value 
but not in slope has been used to reduce discrepancies between the predictions 

and observations from simulations. It is known that the numerical simulations 

of the time and space models miss the threshold. In z transformed models when 
the simulations have a starting population which is lower than the point of the 
discontinuity, it is possible that the discontinuity is also missed. This can be 

checked by reducing the minimum value of Az until the Shooting results converge. 

minimum Az v Wf 

0.5 1.8657 8.5 
0.3 1.8651 8.4 
0.2 1.8652 8.2 
0.1 1.8653 8.3 
0.01 1.8653 8.3 
0.00001 1.853 8.3 

TabIe6-1: Shooting method predictions for the Fisher model with a discontinuous 
Allee effect, with a=1.5, an integration tolerance of 0.00001 and np =1X 10-4 
and varying the minimum Az. v is the velocity of the wave front and wf is the 
width of the wave front from 0.1 to 0.9. 

Table 6.1 shows that the results converge at Az = 0.1. The minimum value of Az 

used in all the variants of the Shooting method was 0.00001, so it is unlikely that 

the Shooting method results axe affected by discontinuities in growth functions. 

6.2 Rabies Epidemics in 1D 

The 3 stage epidemic model described in chapter 5 was formulated to represent 
the rabies epidemic currently spreading through the European fox population 
(Murray et al. 1986) (Murray 1987) (Murray 1989). Now the 3 stage epidemic 
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model with an Allee effect is used, and the velocities predicted by the Shooting 

method are compared those seen in nature. 

To investigate this, a set of parameters for the spread of rabies in European foxes 

was taken from Murray (1989). At first at the velocity of epidemic waves with no 

Parameter Symbol_ Value 
average birth rate a 1 1 yr- 
average intrinsic death rate M 0.5 yr-1 
average duration of clinical disease 11D 5 days 
average incubation time 11L 28 days 
force of infection BO 80 km-2yr-I 
carrying capacity K 0.2 -4 4 foxes km-' 
diffusion coefficient T 200 km2 yr -1 

Table 6.2: Parameters for the 3 stage rabies model for the European fox, taken 
from Murray (1989). 

threshold, Vo, is considered. The velocity calculation from Murray (1989) for the 

3 stage rabies epidemic was adapted to this formulation of the model to estimate 
vo - 

K (kM-2) V (km yr-') 
1.2 22 
1.5 34 
2 51 
3 75 
4 93 

Table 6.3: Velocities for the 3 stage epidemic model, calculated using the method 
described by Murray (1989), with parameters taken from table 6.2. 

The results in table 6.3 are very similar to those obtained by Murray in 1986 

and 1989, so the small changes between the 3 stage epidemic model formulated 

in this thesis produce no large difference from Murray et al. 's 3 stage epidemic 
formulation. Table 6.3 shows that when K is at the higher end of the possible 
scale the predicted velocities axe higher than those observed in nature. This 

suggests that reducing regrowth of unbiological populations, which would reduce 
the velocity of the epidemic wave, may be a good idea. An Allee formulation 

as described in previous chapter is used to effect this as this allows accurate 
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Shooting predictions to be made about the wave characteristics. 
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Figure 6.1: Properties of epidemic fronts as a function of threshold Rp. In the 3 

stage epidemic model with an Allee effect, with parameter's from table 6.2 appro- 
priate to rabies in the European fox population. Curves derived from the bisection 

search method for the given values of K. Points show direct simulation results. 
(a) front velocity, (b) peak rabid density and (c) front width defined as between 
51'o and 95% r,,,. 

A series of runs carried out for the parameters in table 6.2 are shown in figure 6.1. 

In chapter 5 it has been shown that for the parameters given in table 6.2, with a 

threshold of 10-6km-2, the model gives rise to a soliton solution. The predictions 

of the Shooting method show that with a threshold this low the epidemic is only 

a few percent slower than the non-thresholded model. Much higher thresholds 

can cause significant changes in the chaxacteristics of the epidemic. 

To estimate the appropriate threshold for a rabies epidemic, it is assumed that 
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no rabid individual is likely to live for more than double the average lifespan, 10 

days. The diffusion coefficient is difficult to estimate, but Murray (1989) states 
that it is unlikely to lie out with the range, 70 -+ 330 km2yr-'. The root mean 

square displacement of an rabid individual between becoming infected and dying 

must therefore be between 2.8 and 6.1 km. Since the probability distribution of 
this displacement is Gaussian, it seems reasonable to assume that any susceptible 
individual that does not have at least one rabid individual within three times the 

root mean square displacement in safe from infection. This implies that Rp lies 

within the range 1X 10-3kM-2 and 4.5 x 10-3 km -2. 

In the calculation of the contact rate, BO, it is assumed that below a critical value 

of the carrying capacity, Kp, the epidemic wave cannot form. There is a wide 

range of observed values for Kp, from 0.25 -+ lkm-2. BO in Table 6.2 is chosen 

so that the front of the epidemic wave does not form at Kp = 1. As this value is 

at the top of the range for the critical caxrying capacity, the centre of the range, 
Kp = 0.63, is chosen as the best estimate for this study. The force of infection, 

BO is calculated so that the epidemic wave cannot form below Kp. 

As the smallest value of T differs from the highest by a factor of 5, IF = 
150km'yr-' is chosen as the best estimate of T as it differs from both ends 
of the range by a factor of ; ý-. 2.2. 

The top two frames of figure 6.2 show that there is a very wide range of velocities 

and peak heights associated with the uncertainty of the diffusion coefficient. The 

velocities predicted are too high at laxge values of K. Because of the adjustment 

of BO to Kp, the predicted velocities differ little from the original predictions of 
Murray. 

The wide range in velocity associated with changes in the carrying capacity axe 

not observed in nature. To combat this, van den Bosch et al. (1990) suggested 
that as the environment is always full of fox territories, that the diffusion coeffi- 
cient should vary inversely with the carrying capacity, so that 

qfo 
K 
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Figure 6.2: Properties of the epidemic fronts of the 3 stage epidemic model, as 
a function of carrying capacity, K for rabies in European foxes. Solid curves 
show best estimates, dotted curves are from extreme values of the diffusion co- 
efficient. Upper frames have constant diffusion coefficient. T= 150krn2yr-'ý 
Rp = 2.1 x 10-3kM-2, Bo = 221km2yr-'. Lower frames have diffusion coeffi- 
cient proportional to K, with TO = 300km2yr-1, Rp = 1.05 X 10-3 kM-2 and 
Bo = 164kOyr-1. 

where TO is axbitrarily anchored where K=2 in the previous calculations. 

The bottom 2 frames of figure 6.2 show that if the diffusion coefficient varies 
inversely with K, the velocity does not vary with K. For the best estimate of 
T, the velocity of the epidemic remains within the range of velocities observed 
in nature. The graph looks similar to that of van den Bosch et al. 's. The laxgest 

error is that associated with the uncertainty of the diffusion coefficient. 

This suggests that when the 3 stage epidemic model is applied to a rabies epi- 
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demic in European foxes, the main features of the epidemic axe robust to the 

removal of reinfection from low densities. The features such as the wake of the 

epidemic which are not observed in nature are efficiently removed by reducing 
the infectivity of low densities of infectives. 

This representation of a rabies epidemic predicts that behind the initial inva- 

sion the epidemic dies out. The epidemic has been shown to persist in nature. 
The next step in this investigation is to find a mechanism which would allow 
persistence of the epidemic behind the wave front. 
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Part 11 

Discrete and Continuous Models 
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Chapter 7 

Single Species Discrete Models 

7.1 Motivation 

Part I of this thesis showed that in these invasion and epidemic models with 

either an Allee effect or a threshold term in the growth function of the dispersing 

component, the invasion or epidemic does not persist behind the front of the 

wave. As this is known not to be the case in many epidemics and invasions, other 

mechanisms which are not already included in these models must be at work. 

Simulations of the continuous time and space models in 1 spatial dimension take 

many hours and in some cases, days, to run. The investigation of some of these 

mechanisms requires the use of two dimensional spatial axenas (Hassell et al. 
1994). For reaction-diffusion models these two dimensional simulations may take 

days or weeks to run until completion. Testing potential mechanisms of persis- 
tence behind the invasion or epidemic front may require many simulations. A 

faster and more computationally efficient method for testing these mechanisms 

must be used. 

Simulations of discrete time and space models are less computationally intensive 

and take a shorter time to run, as update rules are used to represent the model 
instead of differential equations. Using update rules means that numerical inte- 

gration methods axe not used in simulations. Using discrete models instead of 

continuous models would therefore allow a faster and more efficient investigation 
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of these mechanisms. In order to carry this out, discrete time and space analogues 

of the reaction-diffusion models described in chapters 2 to 5 must be formulated. 

It is important that these discrete models do not show behaviour different to 

that of the reaction diffusion models and that reasonably large time and space 

steps can be taken. These models should also be predictable, for instance by the 
Shooting method. 

From now on in this thesis, continuous time and space models are termed con- 
tinuous models and discrete time and space models axe termed discrete models. 

This chapter looks at dispersal in a discrete time and space framework. van den 

Bosch et al. (1990) devised a calculation of the velocity of discrete time con- 
tinuous space models, generalised so that advection could be taken into account 
in the calculation. Like the Fisher (1937) - Kolmogorov et al. (1937) velocity 

calculation, the exponential shape of the toe of the wave is instrumental to the 

calculation and it therefore cannot be used to calculate the velocity of a wave 

which has no regrowth from low density populations. A method of predicting the 

chaxacteristics of waves in discrete time and space is developed by considering 

a very simple model of invasion (Kot et al. 1996). Then a discrete time and 

space version of the Fisher model with an Allee effect is formulated and the best 

method of predicting the velocity and shape of the Fisher wave is investigated. 

7.2 Distribution Kernel 

A discrete time and space dispersal kernel is sought. In a discrete time and space 

arena in one dimension, 

NX, T = Number of individuals in location X -ý X+ AX at time T. (7-2-1) 

A group of individuals, No, is released from a single location, X=0, at time 

T=0, and at time T+ AT each spatial segment is searched. A proportion p of 

the survivors from the initial population is the total proportion recaptured. 

If p is independent of location, the number of individuals expected to be recovered 
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from segment X is related to the expected number of survivors from the initial 

population (ýNo) by 

Cx = pýNo. (7.2.2) 

If all spatial segments are sampled, then the number of recaptures will be a 
fraction p of the survivors from the original release, that is 

E Cx = pCNo 
all X 

(7.2.3) 

The probability of dispersing into segment of distance J from the release site 

after a single time increment is equal to the proportion of recaptures which occur 
in the segment, so Ci 

ECJ* 
(7.2.4) 

Dispersal kernels, such as described by J, share a number of properties. Each 

survivor must land at exactly one destination. This implies that all valid dispersal 
kernels must satisfy 

E ij 
all J 

(7.2.5) 

For the dispersal kernel being considered here, the dispersal probability is as- 

sumed to fall linearly with the magnitude of displacement as in figure 7.1. This 

is written as 
Jj =0 (1 - aljl)+ , 

(7.2.6) 

where + -= max (X, 0). J,,, =- trunc(l/a) is used to represent the number of 
space increments either side of the origin over which the dispersal distribution is 

non-zero, so 
E Jj =0 [Jm + (1 - aJm)(Jm + 1)]. (7.2.7) 

all J 
This is consistent with equation (7.2.5) if and only if 0 is chosen appropriately. 
As this dispersal kernel only disperses the population over a finite area it approx- 
imates the diffusion term in reaction-diffusion models. 

The mean displacement per time step and the mean square displacement per time 

step of this dispersal kernel are discussed in full by Gurney and Nisbet (1998). 
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Figure 7.1: An example of the tent distribution kernel, described by equation 
(7.2.6) , taken from Gurney and Nisbet (1998). In this case a=0.27,5o J.. 
Dd is only evaluated at integer values of JIAX. 

This kernel is symmetrical about the origin, so the mean displacement must be 

zero. 

The above dispersal kernel is dimensional. The continuous time and space models 

were scaled to increase the speed of computations, so it is only sensible to repeat 
the scaling process to reduce the dimensions of the dispersal kernel. The non- 
dimensional version is of the form 

Jx,, j = 0(l - aXojj I)+ 
. 

(7.2.8) 

To be able to compare the scaled continuous and discrete models, ce =- aXo must 
be chosen to ensure that the spatial variance increases at the same rate in both 

models. The dimensional version of this requirement is, from Gurney and Nisbet 

(1998)1 

2q, 
0E jj12(l - aIJI)+ =1E 

JjJ2(1 - aIJI)+ (7.2.9) 
AT 

all J AT F, (1 - aIJI)+ * 

Working in 1 dimension means that j =- mAx. Equation (7-2.9) is then restated 

as 
2T 

TOW 
_EM2(1_aXOIMIAX)+ (7.2.10) 

X2AX2- E(J-aXOIMIAX)+ 0 
If X0 = VT-TO and a' =- aXoAx then this becomes 

2At 
= 

EM'(l - a'lmi)+ 
Zýý E(l - allml)+ 

which forms a recipe for working out a value of a' appropriate for a given com- 

bination of normalised time and space steps. 
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For further information on this dispersal kernel, refer to Gurney and Nisbet 

(1998). 

7.3 Piecewise Continuous Approximation to the 
Fisher Model with an Allee Effect 

Kot et al. (1996) developed a method for predicting the spread of a wave with 

a simple growth function and a threshold in a discrete time continuous space 

simulation. The organisms have a growth phase, after which they disperse. The 

growth function used is a piecewise constant approximation to the Fisher model 

with an Allee effect (see figure 7.2), where if a population's density is above a 
threshold level the population grows instantaneously to carrying capacity, K, and 
if the population's density is below the threshold density, Np, the population 
instantaneously becomes extinct. A Laplace distribution kernel was used for 

dispersal of the organisms in Kot et al. (1996). 

The method developed in the paper is adapted to a discrete time and continuous 

space system with the piecewise constant growth function and a tent dispersal 

kernel as described by equation (7.2.6), so 
x T+I/Q 

NX, 
T+, &T " P, KJ(X - Y)dY. (7.3.1) 

IXP, 

T-lla 

The wave front lies where N(X, T) = Np, and this position is denoted as X= 

Xp(T). If 1/a is the maximum dispersal distance, then after the next time step, 
the position of the front, Xp(T + AT) must lie within the region 

Xp(T) < Xp(T + AT) < Xp(T) +1 (7.3.2) 
a 

As Xp (T + AT) = Np, 

XP(T) 
Np = 

fxp(T+AT)-l/a 
KJ(X - Y)dY, (7.3.3) 

which after some algebra can be written as 

Np =1K 
(1 

- 
Xp(T + AT) - Xp(T) 2 

(7.3.4) 
2 1/a 
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Figure 7.2: (a) The discrete time Allee Growth function as described by equations 
(7-4-9) -+ (7-4.13). The bold line is the function with regards to population den- 
sity, the diagonal line satisfies NT+, &T = NT, and the dotted line is the piecewise 
constant approximation to the Allee growth function. (b) shows the situation at 
the front of an invasion wave with the piecewise constant growth function. The 
bold line shows the application of the tent distribution kernel to the wave front. 

Rearrangement of this gives the difference in extent of the invasion wave between 

times T and T+ AT, 

Xp(T + AT) - Xp(T) = 1/a 
(1 

- 
V2NpIK) (7.3.5) 

This predicts the new extent of the invasion at the next time step. 

J,,, Np I predicted spread observed spread 
2 0.1 1 _ 1 
3 0.1 2 2 
4 0.1 3 3 
10 0.1 8 8 
10 0.05 8 8 
10 0.01 9 9 
10 0.005 9 9 

Table 7.1: Comparison between observed and predicted spread of the piecewise 
continuous approximation of the Fisher model with an Allee effect over one time 
increment. AT = 11 AX =1 and K=5. 

Table 7.3 shows that the method devised to predict the rate of spread of the 
discrete time and space piecewise-continuous approximation of the Fisher model 

with an Allee effect with the tent dispersal kernel in this section is accurate. 
Trying to predict the shape of this invasion wave is pointless as the shape is 
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known. Now this method of prediction is applied to the discrete time and space 
formulation of the Fisher model with an Allee effect. 

7.4 Invasions of Logistically Growing Popula- 
tions 

7.4.1 The Discrete Logistic Model - Dynamics in Absence 
of Dispersal 

The well known, analytical solution of the logistic model, is written as 

NT+AT --": 
KNT 

NT T r(K - 
NTý 

where 
CRAT (7.4.2) 

where the parameters axe equivalent to those described for in the continuous time 

model described in chapter 2. 

As in the continuous model, there are two steady states, N=0 which is unstable, 
and N=K which is locally stable. 

An Allee effect is used to remove the regrowth of low density populations. As in 

the Fisher model with an Allee growth function, described in subsection 2.2-4, 

the function is continuous in value but not in slope. So again there is a lineaxly 
dependent per capita death rate, D, where 

D= Do + DiN, (7.4.3) 

and a fecundity rate B which is a constant, BO, at high densities but increases 
linearly with slope B, at low densities. With this modification the model becomes 

NT+, &T " 
K'NT (7.4.4) 

NT + r(KI - 
ýV-T) 

where 

e-le, &T 
, 

(7.4.5) 
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K'= (Bi - Dl)lDo NT < N, (7.4.6) 
1 

(Bo - Do)IDI otherwise 

and 
Do NT < N, R'= (7.4.7) 

t 
Bo - Do otherwise 

where 
Ne = 

Bo 
B, 

(7.4.8) 

Using the same scaling process as in the continuous model, this can be scaled to 

where 

and 

where, as in chapter 2, 

nt+, &t =-- 
ntk' (7.4.9) 

nt + -y(kl - nt) 

"Y =e -rlAt 1 
(7.4.10) 

k' np nt < n, (7.4.11) 
11 

otherwise 

r, =I -a nt < n, (7.4.12) 
1 otherwise 

1+a (7.4.13) 
+ a/np 

7.4.2 The Discrete Fisher Model 

Now the model is made explicitly spatial and a scaled dispersal kernel is added. 
The population has a net per capita growth factor, g,,, t, which is the sum of the 

survival probability and the average offspring per individual for the population, 
n.,, t, so from equation (7.4.9) 

9x't = 
k' (7.4.14) 

n-,, t + y(kl - nx, t) 

with y and k' as defined by equations (7.4.10) and (7.4.11). Combining this 

growth term with the dispersal term, given by equation (7.2.8), but scaled by the 

same factor as the continuous model, gives 

n.,, t+At =EJ -g -n- (7.4.15) 
all 33 

X-3, t X-3, t * 
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7.4.3 Prediction of Wave Front Properties using Method 
Developed for Piecewise-Constant Approximation 

The method for making predictions about a discrete time and space wavefront 
as described in section 7.3 is used to predict the velocity of the discrete time and 

space version of the Fisher model with an Allee effect. The wave shape of the 

Fisher model is different to that in the piecewise constant approximation, but the 

wavefront can be manipulated into a similar shape by careful choice of parameter 

values. The wave front is steepened by increasing the threshold, by increasing 

the per capita growth rate and by increasing the size of the space step. A number 

of choices of parameter value are considered. 

Ax np observed v predicted v 
0.25 0.01 1.5761 5 
0.25 0.1 1.0599 3 
1 0.01 1.5789 2 
1 0.1 1.0652 0 
2 0.01 1.5754 1 
2 0.1 0.9214 1 
4 0.01 1.6104 1 
4 0.1 1.1150 

-1 
Table 7.2: Comparisons between wave properties predicted for the piecewise con- 
tinuous approximation of the model and those observed from discrete time and 
space simulations of the Fisher model with an Allee effect, with a=1.5 and 
At = 0.25. 

Table 7.2 suggests that the method devised for the piecewise constant approxi- 
mation of the Fisher model with an Allee effect works better for simulations with 
large Ax and large np, because within this parameter range the wavefront is sim- 
ilax in shape to the piecewise constant approximation. This method is far from 

perfect though. The calculation for the prediction results in 2 roots; if both are 

real and positive then an arbitrary choice has to be made as to which is correct. 
The piecewise continuous approximation only spreads in integers, so again the 

calculation is erroneous when applied to the Fisher model. As the waveform. this 

method was formulated to make predictions about has a very set wave shape, 
this method cannot be used to make predictions about the shape of the wave 
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front. This method only works on specially chosen waves, so this method cannot 
be used generally. There is no obvious way of extending its use. Another method 
for making predictions about the velocity and shape of the wave front must be 

sought. 

7.4.4 Prediction of Wave Properties using the Shooting 
Method 

The Shooting method was devised for a continuous model, so it will only work 
for the discrete model if it is a good approximation to a continuous model. In 

chapter 2 it was shown that there will be an error in the simulations as time 

steps will step over the point were a population transcends from being below n, - 
to above n,. A series of simulations were done to investigate the relationship 
between the discrete model, the time and space steps used, and the continuous 

model. 

Ax At v Wf 

0.25 0.25 1.5761 7.708 
0.25 1 1.4873 7.190 
0.25 2 1.4996 7.719 

1 0.25 1.5789 7.214 
1 1 1.4771 8.246 
1 2 1.5000 7.721 
2 0.25 1.5754 7.098 
2 1 1.4987 7.614 
2 2 1.4707 7.574 
4 0.25 1.6104 7.420 
4 1 1.5385 8.052 
4 2 1.6923 

1 
9.048_j 

Table 7.3: The effects of increasing space and time steps on the velocity and shape 
of the wave front of the discrete Fisher model with an Allee Effect with a=1.5 
and np = 0.01. v is the wave front velocity and wf is the width of the wavefront 
measured from n=0.1 to n=0.9. The Shooting method predicts that v=1.5708 
and wf = 7.071. 

In table 7.3, for up to axound At = 0.5 and Ax = 1, the observations from 

the simulations of the discrete model axe within 10% of the predictions from the 
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Shooting method. Now it is investigated whether this relationship holds up for a 

range of parameter values. 

2.0 

1.5 

O'l. 0 

0.5 

0.0 
ic 

/ a--150 

-4 le le le 

1 
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[30 
8 a=1.5 

13 

6 
&=150 
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2 
lo, le lo, 1CF, icr 

np np 

Figure 7.3: Comparisons between calculated wave properties and those observed 
from simulations of the discrete time and space Fisher model with an Allee effect 
in one dimension, with Ax =1 and At = 0.5. v is the velocity of the wavefront, 
and wf is the width of the wave front, measured from n=0.1 to n-0.9. 

Figure 7.3 shows that for a range of parameter values observed velocities and 

wave front widths of the discrete time and space model axe within 10% of the 

predictions from the Shooting method. This suggests that the discrete model is a 

good approximation of the continuous model and that the Shooting method can 
be used to make predictions about invasion waves generated by the model. 

7.5 Discussion 

A discrete time and space model is needed which is a good approximation of the 

continuous time and space Fisher model with an Allee effect which is continuous 
in value but not in slope. There must be a way in which to make predictions 
about this model. 

A distribution kernel, known to approximate diffusion, was chosen. This was 
based on capture-recapture experiments. Dispersal was assumed to fall linearly 

with distance from the starting location. This dispersal kernel was termed the 
Tent dispersal kernel. 

In order to derive a method to predict the shape and velocity of an invasion wave 
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in the discrete Fisher model, a piecewise constant approximation to the Fisher 

model was considered. A method was adapted from Kot et al. (1996) which 

predicts the velocity of this system. Although the method worked well for the 

model it was devised for, when applied to the Fisher model with an Allee effect, 
it only worked for specific cases, when the Fisher wave was forced into the same 
shape as the approximation. Only the velocity could be predicted. There were 
other complications associated with the calculation of the predictions. So this 

method was rejected as a way to make predictions about the Fisher wave with 
an Allee effect. 

The Shooting method was then used to make predictions about the discrete time 

and space model. It worked for a range of values of space and time steps and for 

a range of a and np. This suggests that within this range of time and space steps 
the model is a good approximation of the continuous time model. 

This exercise was the first step in looking for persistence mechanisms for more 

complex models where the wave becomes a soliton due to the lack of regrowth 
from unbiologically small populations. Now discrete versions of the predator prey 

model and the 2 and 3 stage rabies epidemic models should be formulated. Once 

formulated, methods for predicting the shape and velocity of the wave fronts of 
these models should be sought. 
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Chapter 8 

Formulation of Discrete 
Multi-Component Models 

Now discrete versions of the predator-prey invasion model and the 2 and 3 stage 

rabies epidemic models are formulated. As with the discrete Fisher model in 

Chapter 7, these models have to show no behaviour that is qualitatively differ- 

ent from their continuous counterparts at quite large time and space steps, so 

simulations can be run in as little time as possible. The models also have to be 

predictable. 

In this chapter the formulation of the discrete 2 stage rabies epidemic model is 

gone through carefully, then the discrete formulations of the 3 stage epidemic 

model and the predator prey invasion model are considered briefly as these for- 

mulations have already been partially described by Gurney et al. (1998) and 
Gurney and Nisbet (1998). As the Shooting method was so successful at predict- 
ing the wave characteristics of the discrete Fisher wave, the Shooting method is 

now applied to the multi-component models. 

8.1 Discrete Time 2 Stage Epidemic Model 

It is assumed that the infective population, I, changes slowly compared to the sus- 

ceptible population. Hence, a solution of equations (4.1.1) and (4.1.2) is sought 

which is valid over time scales where the infective population is effectively con- 
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stant. This assumption on its own is not enough to permit a closed form solution 
for the continuous time equation, but extending the assumption so that BI is 

constant over the time scale of interest is a better aid to finding a solution. The 

equation to be solved is 

By defining 

dS 
=RS 1- 

S) 
- BIS. (8.1.1) 

dT jý 

le =- R- BI and K'=- MKIR (8.1.2) 

this can be recast as 

to which the solution is 

dS 
-'- 

9S 
(1 

iT- -- 

S(T) = 
K'S(0) (8.1.4) ýý-(-0)+ (KI -S (0» e- RT » 

KI and R' are either strictly positive or strictly negative but both must have 

the same sign. They can both simultaneously be zero. In this case the equation 
becomes the limit of the system as M -4 0, 

lim S(T) 
KS(O) 

_ RI-W + RS(O)T 
(8.1.5) 

which agrees with solving equation (4.1.1) with R= BI(T). Also, as the time 

step is increased, 

lim S(T) Klif K'>O and M>O (8.1-6) 
T-+oo 0 if K'< 0 and M<0, 

The cumulative infection of susceptibles by infectives; over a time increment has 

to be determined. If U(T) denotes cumulative infection by time T, then again 

working on the approximation that BI is constant over the time scale of interest, 

U(T) = BI(T) I S(x)dx. 

If the case where M=0 is considered, 

U(T) = BI(T) 
T KS(O) 

dx =, 
BI(T)K In 

K+ RS(O)T (8.1.8) fo 
K+RS(5-)-x RIK 
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which can be rewritten as 

U(T) = 
BI(T)K 

In 
S(O)l 

R 
[S(T)j 

In the general case where M :A 0) 

which is 

U(T) = BI(T) 
T K'S(O) 

dx (8.1.10) fo 
S(O) + (KI - 

S(o))C-RIT 

U(T) = 
BI(T)K' [R'T 

- In 
K' (8.1.11) 

RI 
(S(O) 

+ (KI - S(O))e-RF)] ' 

As K'IR'= KIR, this can be rewritten as 

U(T) - 
BI(T)K 

IeT + In (8.1.12) 
R S(T) 

I (S(O))]- 

These short term estimates of S(T) and U(T) allow a discrete time model to be 

written. It is assumed that a fraction ý, of the infectives survive each increment. 
Therefore 

and 

K'ST ST+AT : -- ST + (KT' 
T 

ST)e-RAT 

IT+, &T = (Cl + UT)IT, 

where 
UT = 

BK [(R 
- BIT)AT +In 

(1 
(8.1.15) 

R ST+, &T) 

1 

R- BIT and KT=- K41R. (8.1.16) 

The steady states of the model are (0,0), (K, 0) and (S*, 1*) where 

and P=R(, + BAT B BKAT 

For the existence of the interior steady states (for P to be positive), 

K>1-6 
BAT 

If this inequality is not fulfilled the system will eventually reach the (K, 0) steady 
state. 

92 



if 

AT 
(8.1.19) 

and the time increment is small enough for D' f-%j D in the continuous time model, 
the steady states are essentially identical to those of the continuous time 2 stage 

epidemic model. 

The infective growth function is then modified so that the contact rate varies with 
density at low densities. As in the continuous time model described in section 
3.4, the force of infection, B, is a constant, BO at high densities of infectives, but 

at low densities B vaxies lineaxly with infective density. In equations (8.1.13), 

(8.1.14) and (8.1.13), 

B Bo IT ý: Ip(BoKID) (8.1.20) (DIK)(ITlIp) otherwise 

Equations (8.1.13) and (8.1.14) can then be scaled. K is chosen as the natural 

scale of population and M is chosen as the natural scale of time. The choice of 

scale of time in this model, To = M, is different to that of that in the continuous 

model, R. The mortality rate of rabid animals is very high. The mortality rate 
is therefore chosen as the scale of time in this formulation since the length of 

possible time steps is restricted by a high mortality rate. This scaling process 

produces the new dimensionless variables, s= SlSo, i IlSo and t= TITo and 
the paxameter groups ip = IplSo, r= RITO and bo BOKITO. After scaling, 

the model becomes 

and 

where 

and 

k'st 
St+At t 

st + (k' - st)e-rl, '-t t 

it+, &t : -- (Ci + Ut)it (8.1.22) 

b 

r 

[(r 
- bit)At + In (8.1.23) ut 

(St"t 

rt -= r- bit and Km rt' (8.1.24) 
t/r 

b bo it ý: (boip) (8.1.25) 
itlip otherwise 
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This model has the interior steady state 

S* =16 and bAt bAt 
(8.1.26) 

The scaled dispersal kernel, as described in the previous chapter, is then applied to 

the infective individuals, so if the growth of the infective population is described 

by 

where 

gx, t 6+ Ux, t 1 
(8.1.27) 

Ci 1- At (8.1.28) 

and u.,, t is described in equation (8.1.23), with mobile infectives and immobile 

susceptibles. The update equation for the susceptible population becomes 

Sx, t+, &t -, -ý - 
kx', tsx, t 

At 
(8.1.29) 

sx, t + (kxl, t - sx, t)e-r' 

and the equation for the infective population is 

ix, t+At ý-- 
all 3 

jgx-d, ttx-dt (8.1.30) 

In chapter 7 it was shown that the Shooting method developed for a continuous 
Fisher model with an Allee effect could successfully be used to make predictions 

about the velocity and shape of the wave front of a discrete version of the model. 

Predictions made by the Shooting method about the continuous formulation of 

the model axe compared with observations made from simulations of wave fronts 

in the discrete model. 

Table 8.1 shows that up to around Ax =1 and At = 0.5, the observed wave 
front velocity and shape are within 10% of the predictions made by the Shooting 

method. At cannot be larger than 1 as shown by equation (8.1.28). 

The relationship between the Shooting method predictions and observations from 

the discrete model is tested for a wide range of parameter values. Figure 8.1 

shows that with Ax =1 and At = 0.5, for a range of parameter values the 

Shooting method is still a good method of making predictions about the model. 
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Ax At v Wf im 
0.25 0125 1.9532 2*625 0.4839 
0.25 

ý. 
5 1.6784 3.226 0.4686 

0.25 1 1.4650 3.774 0.4451 
0.5 0.125 1.9440 2.608 0.4830 
0.5 0.5 1.6830 3.200 0.4660 
0.5 1 1.4678 3.771 0.4442 
1 0.125 1.8900 2.614 0.4815 
1 0.5 1.6497 3.081 0.4593 
1 1 1.4509 3.759 0.4383 
2 0.125 1.6452 3.600 0.4334 
2 0.5 1.5497 3.898 0.4744 
2 1 1.5417 3.712 0.4264 

Table 8.1: Effects of increasing space and time steps on the wave front of the 
discrete 2 stage epidemic model with r=1, b=4 and ip = 0.04. v is the wave 
front velocity , i,,, is the maximum density of infectives, in the peak and wf is 
the width of the wavefront measured from 5116 to 9511o i,,,. The Shooting method 
predicts that v=2.0939, i.. = 0.4884 and wf = 2.666. 

This means that the Shooting method can be used to make predictions about the 

discrete 2 stage epidemic model. As the Shooting method was formulated to make 

predictions about the continuous model, it also suggests that with small enough 
time and space steps this model is a good approximation of the continuous time 

model. 

8.2 Predator-Prey Model 

The discrete predator-prey model with no Allee effect or threshold is identical 
to the predator-prey model described by Gurney et al. (1998). In this model is 

assumed that a fraction ýc of the predators survive each time increment, and that 

consuming UT prey items during an increment produces EUT surviving offspring. 
Using the same axguments as in the 2 stage epidemic model for estimating the 

total uptake of prey by predators within an increment and for prey growth, the 

discrete time predator-prey model can be written as 

FT+, &T = 
FTK' 

FT + (KI - 
TT)r 
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Figure 8.1: Comparisons between wave properties predicted by the Shooting 
method and those observed from simulations of the discrete 2 stage epidemic 
model. Ax = 05 , At = 0.125 and r=0.006. v is the velocity of the wave- 
front, i,, is the maximum density of predators at the peak of the wavefront and 
wf is the width of the wave front, measured from 5116 to 951'o of i,,. 

and 
CT+AT : -- (CC + UT) CT (8.2.2) 

where 
UT 

R 
[9AT 

+ In 
(FT+AT)] 

(8.2.3) 

A -- 
UM 

7 k=-R-pCT 
I K' = KkIR (8.2.4) 

FT +H 

and 
IP =- exp (- R'AT) (8.2.5) 

The efficiency for the conversion of ingested prey into predators, E, is a constant, 
EO at high predator densities and at low densities it varies linearly with predator 
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densities, so 
EO CT ý: Cp(EOU,,, ID) 

E DCTI(U,,, Cp) otherwise. 
(8.2.6) 

The model is scaled as in the continuous case in Chapter 4. The spatial scale is 

chosen as X0 =- VfT-IR, as in the continuous model. The scaled dispersal kernel 

(equation (7.2.8)) is then applied to the predator population and the prey axe 
immobile. 

k', tfx, t (8.2.7) fx, t+, &t =-" At fx, t + (kx' v ,t- 
fx, t)e-", t 

and 

g,,, t+At + eu. T, t 
(8.2.8) 

C, T, t+At E Jjcx-j, tgx-j, t 
(8.2.9) 

all j 

where 

ux, t =- vk 
[rx, 

tAt + In 
(fx, 

t+, &t)] 
(8.2.10) 

and 

Vx, t 
um 

r, ', t =1+v.,, t and k. T, t E kr' 
, t. 

(8.2.11) 
fx, t + 1, 

e 
c.,, t > cpuM/d (8.2.12) 

t 
dcT, t/(umcp) othe rwise 

When r' =0 the limit of the expression (8.2.7) must be used, namely 

fx, t+, &t 
kfx, t (8.2.13) 

+ fx, tAt 
The model has exterior steady states at (0,0) and (k, 0), and interior steady 
states at 

where 

d' 
and c* = 

R(f*+l), 
_: 

L 
1 

(8.2.14) ýýdl um 

i- ýC 
d' = At 

(8.2.15) 

As in the 2 stage epidemic model, if the time increment is small enough that 

d' -- d in the continuous model, these steady states axe essentially equal to those 

in the continuous time model. 
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The interior steady state can only exist if 

d' k> 
Um - d' 

(8.2.16) 

The stability analysis carried out by Gurney et al. (1998) shows that the be- 

haviour of the discrete time model is essentially identical to that of the continuous 
time model for small time increments. This means that the discrete time model 
can be used as an approximation to the continuous time model. 

Ax At v Wf Cm 

0.25 0.25 0.7015 11.23 44.28 
0.25 1 0.6809 12.00 46.17 
0.25 2 0.6570 12.94 48.61 

1 0.25 0.7010 11.16 44.12 
1 1 0.2814 12.00 46.10 
1 2 0.6565 12.92 48.57 
2 0.25 0.7082 11.80 45.26 
2 1 0.6790 11.82 45.73 
2 2 0.6586 14.46 48.77 
4 0.25 0.7327 12.26 43.52 
4 1 0.7040 13.46 47.65 
4 2 0.6696 13.87 48.96 

Table 8.2: Effects of increasing space and time steps on the wave front of the 
discrete predator-prey model with an Allee effect with k= 20, u,,, = 0.2,5 = 0.05 
and cp = 0.01. v is the wave front velocity and wf is the width of the wavefront 
measured from 576 to 95% c,,,. The Shooting method predicts that v=0.7089, 
c. = 43.74 and wf = 10.07. 

Table 8.2 shows that with up to Ax =1 and At = 0.5 the observed wave shape 
and velocity is within 10% of the values predicted by the Shooting method. With 

space and time steps larger than this waves that should be solitons can grow at 
low densities and a wave train can form. Again, a range of parameter values are 
considered to see if this good comparison between the discrete invasion waves and 
the Shooting method holds up generally. Figure 8.2 shows that this is the case. 
This means that the Shooting method can be used to make predictions about the 
discrete predator-prey model with an Allee effect. The Shooting method correctly 

predicts the wave characteristics of both the continuous model and the discrete 
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model at'small values of Ax. This suggests that the wave characteristics of the 

2 models are similar. 
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Figure 8.2: Comparisons between wave properties predicted by the Shooting 
method and those observed from simulations of the discrete predator-prey model. 
Ax = 11 At = 0.5, u,,, = 0.2 and d=0.05. v is the velocity of the wavefront, c. 
is the maximum density of predators at the peak of the wavefront and wf is the 
width of the wave front, measured from 575 to 9575 to q, 

8.3 Discrete 3 Stage Epidemic Model 

The formulation of the discrete time 3 stage epidemic model very similar to that 

of the 2 stage epidemic model. The unmodified discrete model has already been 

described in Gurney and Nisbet (1998) but has been repeated here for fullness of 

explanation. ST denotes the susceptible population, IT the incubating population 
and R the infective population at time T. 

ST+, &T 
STK' 

(8.3.1) 
ST + (KI - sT)r 
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UT + ýTWT (8.3.2) 

and 
RT+, &T ý CRRT + (1 

- CT)GIT 
) 

(8.3.3) 

where 

r =- exp(-Q'AT), Q'=- Q-M, K'= KQ'IQ, p =- BRT , (8.3.4) 

the cumulative infection of susceptibles, UT, is 

U 
ýLlt 'AT+ In 

ST 
(8.3.5) TQ 

IQ (ST+, 

&T)l 
) 

and the function for the contact rate is 

B- Bo RT ý: KBoRpLI(D(L + M)) (8.3.6) 
t 

(L + M)DRTI(LKRp) otherwise 

Q is the net growth rate of the susceptible population, ýT is the proportion of 
the incubating population which do not become rabid during a time increment, 
ý, is the proportion of the incubating population which survives an increment in 

time and ý, R is the proportion of the infective population which survives a time 

increm ent. Other parameters are the same as those in the continuous time model. 

The model is then scaled, with the scale of time chosen as To =- D as opposed to 

in the continuous model. This is because of the limitations a large mortality rate 

puts on the possible range of time steps. The populations are scaled to K, the 

carrying capacity. The distribution kernel is then scaled by X0 =- VfT-/D to give 

equation (7.2.8), and applied to the infective rabid individuals. Tile susceptible 

and incubating individuals are treated as immobile. The model then becomes 

Sx, t+At : -- 
k'x, tsx, t 

-qI 
(8.3.7) 

sx, t + (kl, t - s,, t)e x 
where 

px, t -- brx, t, q', t =- q- px, t and k', t -= kqx' xx t/r . 
(8.3.8) 

The proportion of infected individuals who survive a time increment is ýj, and 
the proportion of infected individuals that do not go on to become infectives is &- 
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Hence if the number of susceptible individuals which are infected within a time 

increment is ux, tj using arguments set out in the section about 2 stage epidemic 

models, the growth of the infected population is given by 

ix, t+At : -- Ux, t + ceciix, tl 

where 

_ p.,;, tk Sx, t UX, t =q 
[(q 

- px, t) At + In 
(sx, 

t+At)] 
(8.3.10) 

The proportion of infective individuals which survive a time increment is ý,, so 

the update rule for the change in density of the infective population is 

gx, t+, &t Grx, t + (1 - G)Wx, t (8.3.11) 

rx, t+At E Jjgx_j, trx_j, t 
(8.3.12) 

all j 

where 
b bo r,,, t ý: borpald(I + m) (8.3.13) 

drx, t/rp(i - m/1) otherwise 

If large enough, this model had the exterior steady states (0,0,0) and (1,0,0) and 
the interior steady states 

3*=1G 
Ui + 

r* and r*=q(, _, *). 
bAtýj (ý, - 1) b 

(8.3.14) 

if 
ýjml-mAt and C, =- 1- Atý (8.3.15) 

then these interior steady states axe almost equivalent to those of the discrete 
time model for small At if resealed. 

(8.3.9) 

The interior steady states can only exist if 

1 
1- ýr - Ue + Uicr 

(8.3.16) 
bAtCi (C, - 1) 

Table 8.3 shows that as long as Ax <1 and At < 0.5 observations of the velocity 

and shape of the epidemic wave of the 3 stage epidemic model are within 10% 

of the predictions made by the Shooting method. Figure 8.3 shows that this 
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Ax At vI wf I rm 
0.25 0.125 0.7059-1 7.265 1 0.06067 
0.25 0.5 0.6587 7.075 1 0.06044 
0.25 1 0.5988 6.769 0.05989 

1 0.125 0.7121 7.358 0.06074 
1 0.5 0.6618 7.073 0.06035 
1 1 0.6021 6.754 0.05967 
2 0.125 0.7509 7.806 0.06067 
2 0.5 0.7494 7.452 0.06061 
2 1 0.5989 6.714 0.05950 
4 0.125 0.8537 8.44 0.05810 
4 0.5 0.7891 8.9 0.06194 
4 1 0.7099 7.688 0.05443 

Table 8.3: Effects of increasing space and time steps on the wave front of the 
discrete 3 stage epidemic model with bo = 4.3836, q=0.00684932, m=0.684932, 
1=0.17808 and rp = 10-6. v is the wave front velocity, r,,, is the maximum 
density of rabid individuals in the peak and wf is the width of the wavefront 
measured from 5116 to 957o rm. The Shooting method predicts that v=0.7115, 
r. = 0.06066 and wf = 7.202. 

remains the case for a range of parameter values. Therefore the Shooting method 

can be used to make predictions about the discrete 3 stage epidemic model. As 

the Shooting method was developed for the continuous version of this model, 
it suggests that for small time and space steps the discrete model is a good 

approximation of the continuous model. 

8.4 Discussion 

Discrete time and space versions of the predator-prey, 2 stage and 3 stage epi- 
demic models were formulated. For small time steps the steady states and sta- 
bility of the models showed no new behaviours to those of the continuous model. 
The value of cp which created a soliton wave in the predator-prey model in- 

creased. The Shooting method was shown to be a good method of predicting 
the peak height, the velocity and the width of the wave fronts of the epidemic 

and invasion waves. This suggested that the discrete spatial models were good 
approximations of the continuous models. 
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Figure 8.3:. Comparisons between wave properties predicted by the Shooting 
method and those observed from simulations of the discrete 3 stage epidemic 
model. Ax = 1, At = 0.5,1 = 0.2, q=0.006 and rn = 0.006. v is the ve- 
locity of the wavefront, c. is the maximum density of predators at the peak of the 
wavefront and wf is the width of the wave front, measured from 5115 to 9576 r'. - 

Discrete approximations of the continuous models have been formulated for 1 

dimensional spatial axenas. Before persistence mechanisms for invasions and epi- 
demics which have no regrowth from unbiologically low population densities can 
be investigated, these discrete formulations have to be extended to 2 dimensional 

spatial arenas so all possible mechanisms can be studied. 
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Chapter 9 

Discrete Models in Two 
Dimensions 

In paxt III of the thesis, mechanisms which allow persistence of an epidemic or the 

establishment of the invading species behind the front when the wave form of the 

epidemic is a soliton axe looked for. Some spatial, biological processes are only 

realizable when space is considered to have more than one dimension (Hassell 

et al. 1994). In terrestrial systems, space can be thought of as a2 dimensional 

plane (Hanski 1994). Therefore, 2 dimensional arenas are constructed for the 
discrete spatial models. In this case the arenas axe considered to be a form of 
islands and the boundaries are reflective. 

More than one waveform can be generated in a2 dimensional arena. Plane waves 
axe initialised from a line innoculum of the invading or diseased component at one 

edge of the arena. They are exact 2 dimensional extensions of the 1 dimensional 

waves and are not considered likely to have different dynamics from them. Two 

wave forms, which are not clearly 2 dimensional extensions of the 1 dimensional 

waves, axe going to be considered in this chapter. The first of these is the circular 
wave (Skellam 1951) (Gurney et al. 1998). Circular waves are interesting as any 

compact point innoculum generates a circular wave. The second wave form to 
be considered is the spiral wave (Keener and Tyson 1986) (Kessler and Levine 

1989) (Gurney et al. 1998). The spiral wave is initialised from a very carefully 
set up initial condition. For a spiral to be initialised the wave has to be a soliton. 
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The spiral wave is important when considering the persistence of the invasion or 

epidemic (Hassell et al. 1994). 

This chapter considers how spiral and circular waves are propagated, how they 

relate to the persistence problem, and whether or not predictions can be made 

about their characteristics by the Shooting method. 

The Shooting method was developed to predict the wave front characteristics of 
1 dimensional wave fronts. These chaxacteristics should be the same as those of 
the cross section of a plane wave or a circular wave with a large diameter. In this 

chapter the Shooting method, as developed for the continuous time 1 dimensional 

models, is used to predict the cross sectional wave chaxacteristics of circular waves 

with small diameters and spiral waves in 2 dimensional discrete models. 

9.1 The Two Dimensional Scaled Dispersal Ker- 
nel 

The models used in this chapter axe basically the same as those formulated in 

chapters 7 and 8. The scaling of the parameters used in the dispersal kernel, as 
described in equation (7.2.11), is changed in the 2 dimensional model. The recipe 
for calculating aý uses the same method as in chapter 7 to produce 

2)(1 -2)+ 4At 
=E 

E(rh2+ n- a'JM2+ n 
wZE (1 

- o? �/m- 2+ n2)+ 

and j= (mAx, nAx). The difference in the calculation for a' is due to the 

variance increasing at 4 times the rate of the diffusion coefficient in 2 dimensions, 

as opposed to 2 times, as in 1 dimensional arenas (Gurney and Nisbet 1998). 

9.2 Circular Waves 

A circular wave is formed by any innoculum with compact support of over a 

critical size, dictated by the size of the threshold population. The wave expands 

outwards in all directions at the same velocity when the population is diffusing 
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(Skellam 1951). The shape of the initial condition is chosen by calculating the 

square distance of the grid co-ordinates from the centre of the arena, q2mid, and 
then choosing the initial density (ninit) in the given square with the equation 

ninit --= 
4nmax (1 _ l0q; 2ýidINN)+ (9.2.1) 

where nn,,,,, is the highest expected density of the population, given as the highest 

marked value of the density scale of the axena, and NN is the number of nodes 

along each axis of the square arena. If the value of the equation is negative, the 
density in the square is 0. 

9.2.1 Single Species Model 

In figure 9.1 the simulation was started with the initial condition described by 

equation (9.2.1). As the wave spreads, the populations in the centre reach car- 

rying capacity and the steady state of n=1 spreads out. Figure 9.2 shows the 

time series of the mean density of an area of the axena. The area starts off empty, 
the invasion of the area staxts at t= 130 and by time t= 125 the area is full 

to carrying capacity. By time t= 150 the whole arena is full of organisms at 

carrying capacity. Persistence of the invading organisms behind the wave front 

is not an issue in this model. 

In table 9.1 the velocities and wave front widths observed from the 2 dimensional 

simulations are compared with predictions made by the Shooting method devised 

in chapter 2. The table shows that circular waves have wave characteristics within 
10% of those predicted, so the Shooting method can be used to make predictions 
about circular wave fronts. This also shows, if a cross section were to be taken of 
the wave front, it would be similar in profile to that of the 1 dimensional model. 

9.2.2 The Two Stage Epidemic Model 

An innoculum of susceptibles, described by equation (9.2.1) is added to an arena 
of prey at carrying capacity results in a circular soliton which expands (figure 

9.3), leaving an area in the centre of the circle where the susceptible density 
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Figure 9.1: The discrete Fisher model with an Allee effect in 2 dimensions in a 
350 x 350 arena. a=1.5, TIp = 0.0002, At = 0.25 and Ax -- 2. (a) is a snapshot 
of the spatial distribution at t= 20 and (b) is a snapshot of Ihc. spatial dzsInbuIjojj 

at t= 65. There is a large increase in the spatial range of the population froln 
(a) to (b). 
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Figure 9.2: Time senes of mean density of n in the Fisher model with an Allec 

effect, in a 20 x 20 square arca of the arena. By time 175 the population has 
locally reached its carrying capacity. 

a nT Predicted Values Observed Values 

V Wf V Wf 

1.5 2x 10-1 1.8440 8.198 1.9249 8.742 
1.5 5x 10-2 1.2643 5.888 1.1820 5.715 
150 1x 10-4 1.7824 7.939 1.9108 8.684 
150 6x 10-3 1.2889 5.979 1.4546 6.767 

Table 9.1: Compartsons between calculated wave properties and those measured 
from discrete time and space simulations in 2 dimensions of the Fisher modcl 
with Ax =2 and At = 0.25.7) is the velocity of the wavefront, wf is tile width 
of the wave front, measured from n=0.1 to n=0.9. 

is low and the infective populations become extinct. As the circle spreads, the 

susceptibles in the centre of the arena begin to recover. As the soliton reaches the 

edge of the arena the infectives reflect back into the area of susceptible depleholl 

and dies out. The area of susceptible recovery expands, and eventually the arena 

reaches a state where susceptibles everywhere are at carrying capacity MId OW 

epidemic has died out. Figure 9.11 shows the time series of the invan density of 

susceptibles and infectives in an area of the arena. At t= GO the solium wavv 

enters the area and the susceptible density falls. At t= 80 the soliton wave leaves 

the area and the susceptible density begins to rise, reaching Ow carrying capacity 

across the area at t= 125 . 
So with a circular wave, the epidemic dies out behind 

the wave front as in the I dimensional case. 

The Shooting method as described in chapter 4 is used to pi-(, (Ii(-. t, the wave front, 
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Figure 9.3: The discrete 2 stage epidemic model with an Allec effect in a350 x: 150 

arena. bo = 2, ip = 0.01, r=0.1, At = 0.125 and Ax = 0.5. (a) and (b) are 
snapshots of the spatial distribution of the susceptibles and infcctivcs respcch"of, 41 

at t= 12.5. (c) and (d) are snapshots of the spatial distvibution of susceptibb's 
and infechves at t= 37-5. There is a large increase in thc spatial ranyc of thc 

epZdeTnic from t= 12.5 to t= 37.5. 

109 



1.2 

i 0" 
0.4 

0.2 

0.0 
0 25 30 75 IOD 

0.20 

0.13 

0.101 

0.09 

oloo 
125 

Figure 9.4: Time series of mean density of susceptibles and infectives in the 2 
stage epidemic model in a 20 x 20 square area of the arena. By time 125 the 
susceptible population has locally reached its carrying capacity and the soliton 
wave of infectives has passed out of the area. 

characteristics of circular waves. The observed wave front width, peak height and 

velocity were compared with those predicted by the Shooting method. Figure 9.5 

shows that the observed values axe within 10% of the predicted values, so the 

Shooting method can be used to predict the wave front characteristics. The cross 

section of the circular soliton wave of the 2 stage epidemic model is very like the 

profile of the one dimensional wave. 

9.2.3 The Predator-Prey Model 

An innoculum of predators, described by equation (9.2.1) with half the diameter 

as the previous simulations, so the 10 in the equation was replaced with a 20, is 

added to an arena where the prey are initially at caxrying capacity. This results in 

a circular soliton of predators spreading out from the centre (figure 9.3) (Gurney 

et al. 1998). As the invasion wave moves away from the centre of the axena the 

prey return to carrying capacity in the centre. When the soliton reaches the edge 

of the arena the predators reflect back into the region where prey are scarce and 

the invasion dies out. Eventually the prey recovers to carrying capacity over the 

entire axena. 

Again the Shooting method as described in chapter 3 is used to make predictions 

about the velocity, peak height and width of the wave front of this model, and 
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Figure 9.5: Comparisons between wave properties predicted by the Shooting 
method and those observed from discrete time and space simulations of the 2 
stage epidemic model in 2 dimensions. Ax = 0.5, At = 0.0125 and r=0.05. v 
is the velocity of the wavefront, i,,, is the maximum density of predators at the peak 
of the wavefront, wf is the width of the wave front, measured from i=i,,, * 0.05 
to i= in * 0.95. 

the comparison between the predicted and observed characteristics is shown in 

figure 9.7. The observed values axe within 10% of the predicted values, so again 
the Shooting method can be used to make predictions about the 2 dimensional 
discrete predator-prey model with and Allee effect. 

9.2.4 The Three Stage Epidemic Model 

As with the previous model, the initial state of the arena is that the susceptible 
population is at carrying capacity, and the incubating and infective populations 
initially have the distribution described by equation (9.2.1). A circular soliton 

wave is formed (figure 9.8) and this wave spreads out from the centre of the 
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Figure 9.6: The discrete predator-prey model in a 350 x 350 arena. k=5, cp -- 2, 
d=0.05, u. = 0.2, At = 0.5 and Ax = 1. (a) is a snapshot of the p7-cy and (b) is 
a snapshot of the predators at t =: 210. 

112 



0.8 50 
k-20 (a) 

0.6 k=5 40 
cl k=2.5 0R 

> 0.4 
2( 

0.2 V 

0.0 
k-10 

le le 10F, 10 

CP 
20 L 

k-2.5 
(c) 

15 

k-10 

10 

k-20 

5 
le 16-3 lot lot 

CP 

Figure 9.7: Comparisons between circular wave properties predicted by the Shoot- 
ing method and those measured from discrete time and space simulations of the 
predator-prey model in 2 dimensions. Ax = 0.5 and At = 0.5. u,,, = 0.2 and 
5=0.05. v is the velocity of the wavefront, c, is the maximum density of preda- 
tors at the peak of the wavefiront and wf is the width of the wave front, measured 
from 5116 to 95116 of c,,,. 

arena, leaving an area where there axe no incubating individuals and infectives 

behind it. As the wave spreads away from the centre, the susceptible population 
begins to recover. When the wave reaches the edge of the arena the infectives are 

reflected back into the region of susceptible depletion and the epidemic dies out. 
Eventually the susceptibles recover to carrying capacity over all the arena. 

Again the Shooting method, as described in chapter 5, is used to make predictions 
about the wave front chaxacteristics of circular waves in the 2 dimensional model. 
Figure 9.9 shows that these predictions are within 10% of the observed velocity, 
peak height and width of the front, so the Shooting method can be used to make 

predictions about this model. 

CP 
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Figure 9.8: The discrete 3 stage epidemZc model Zn a 350 x 350 arena. 1 0.2, 

rp = 0.0001, Tri = 0.006, q -- 0.006, bo = 1.5, At = 0.5 and A. x = (a), 

(b) and (c) are snapshots of the susceptible, incubating and infective distributions 

respectively at t= 400. 
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Figure 9.9: Comparisons between calculated wave properties and those measured 
from discrete time and space simulations of the 3 stage epidemic model of circular 
waves, with Ax =1 and At = 0.5.1 = 0.2, q=0.006 and rn = 0.006. v is the 
velocity of the wavefront, rn is the maximum density of predators at the peak of 
the wavefront and wf is the width of the wave front, measured from 51% to 957b 
r"'. 

9.3 Spiral Waves 

Now the spiral wave form is considered. A spiral wave is a self organised pattern 
that forms during very carefully initialised simulations in an excitable medium. 
Spiral waves cannot be generated in the Fisher model as a soliton solution is re- 

quired for a spiral to form; only in the multi-component models with Allee effects 

or thresholds when the thresholds are big enough to cause the wave to become a 

soliton. The velocity of expansion of the spiral wave perpendicular to the wave 
front is compaxed with the velocity predicted by the Shooting method which was 
developed to predict the velocity of wavefronts in continuous, 1 dimensional mod- 

els. The width of the wavefront and the height of the peak of the wave are also 

compaxed with the Shooting method predictions. , 
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9.3.1 The Two Stage Epidemic Model 

The initial condition used to initiate a spiral wave has been termed the assymetric 
half line initial condition, as shown by figure 9.10 (a) and (b). This is formed 
by starting a plane wave of infectives moving from left to right through an arena 
where in the susceptibles axe at carrying capacity. The initial condition used is 
described by equation (9.2.1), with q, ' , id becoming the distance of the grid point 
from the left hand side of the arena squared. When the susceptibles start to 

recover behind the wave front, the top half of the axena is reinitialised so that the 
susceptibles are all at carrying capacity and there are no infectives. This causes 
the infectives to form an "umbrella handle" shape as demonstrated by figure 9.10 
(c) and (d), where the infectives staxt to enter the top half of the arena as well 
as moving from left to right. The tip of the umbrella handle curls down into the 
region of susceptible recovery behind the wave front. As the wavefront moves 
to the right, the region of susceptible recovery spreads to the right and the tip 
follows. The tip also curls upwards as it moves left to right as it creates a region 
of susceptible depletion below it. This curve forms the core of the spiral, figure 
9.10 (e) and (f), which then spreads to fill the whole arena. 

Figure 9.11 shows the time series of the mean density of an area in the top left 

of the arena. At the start of the simulation the soliton used to set up the initial 

condition passes through the area. At t= 120 the first wave of the spiral passes 
through, followed by the second, at t= 165, and so forth. So the epidemic does 

not die out within the axena as in the circular wave. 

Spiral waves are different from the 1 dimensional waves discussed in chapter 8 
in a vaxiety of ways. The spatial arena must be large enough for a fully formed 

spiral to fit into. This may require the use of large space steps. The space steps 
may be laxger than the space steps shown to give a good comparison between 
the 1 dimensional continuous and discrete. models in chapter 8. The wave spins 
slightly, so only the velocity of spread perpendicular to the wave front can be 

measured. This is not directly comparable with the velocity of the 1 dimensional 

wave. Because of these differences, predicting the wave characteristics of spiral 
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Figure 9.10: F67-mation of a spiral wave in the discrete 2 stayc modcl in 
a 350 x 350 arena. r=0.1, ip = 0.01, bo = 2, At = 0.125 and A. x = 0.5. (a) and 
(b) are snapshots of the assymetric half line initial condition for I/,, (, 
and infectives respectively at t= 55. (c) and (d) are snapshots of thc "umbri, 11a 
handle" for the suscephbles and infectives respectively at t 75. (c) and (f) 

are snapshots of the fully formed spiral wave for the s? Lsef, ptZbl(-! s and 
respectively at t= 135. In (e), at the bottom right of the arena, the rcgion of 
susceptible depletion is still recovering rom the passage of the initial plane wave. ý17 
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Figure 9.11: Time series of mean density of susceptibles and infectives of the 
2 stage epidemic model in a 20 x 20 square area of the arena. The population 
densities oscillate as the spiral waves move through the area. 

waves by using the Shooting method is going to be inexact. 

The results of this compaxison are shown in table 9.2. The observations from 

the spiral waves axe all around 10% of the predictions made by the Shooting 

method. So the Shooting method, is able to make reasonable predictions about 
the velocity, peak height and width of the spiral wave front in the 2 stage epidemic 

model. 

b I iT Pred icted Values Observed from Spirals 
V Wf im V Wf IM 

2 
2 

0.005 

1 
0.01 

1.528 
1.395 

4.966 
4.474 

0.1620 
0.1586 

1.370 
1.259 

4.673 
4.109 

0.1404 
0.1411 

Table 9.2: Comparisons between wave characteristics of spiral waves observed 
from simulations of the discrete 2 stage epidemic model in 2 dimensions and 
predictions made by the Shooting method. Ax = 0.5, At = 0.125 and r=0.1. 
v is the velocity of the wavefront, i,,, is the maximum density of predators at the 
peak of the wavefront, wf is the width of the wave front, measured from 576 to 
951'0 Of im- 

9.3.2 The Predator-Prey Model 

In the predator-prey model the spiral wave (see figure 9.12) was initiated from 

an assymetric half line condition as described for the 2 stage epidemic model 
(Gurney et al. 1998). 
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The wave characteristics observed from the spiral waves axe compared with pre- 
dictions made by the Shooting method in table 9.3. The Shooting method pre- 
diets the spiral expansion velocity and peak height well, and the observed width 

of the front is about 10% laxger than the predictions. So the Shooting method 
can be used to make predictions about the characteristics of a spiral wave front 

in this model. 
k CT 1 1 Predicted Values Observations from Spiral 

V Wf Cm V Wf Cyn 
10 

10 
0.3 
1 

0.6114 
0.5463 

9.388 
8.384 

22.34 
21.67 

0.6006 

, 
0.5487 

10.45 
9.420 

23.01 
22.12 

Table 9.3: Comparisons between wave characteristics of spiral waves observed 
from simulations of the 2 dimensional discrete predator-prey model and predicted 
values made by the Shooting method. Ax = 2y At = 0.5, u,, = 0.2 and J=0.05. 
v is the velocity of the wavefront, c,,, is the maximum density of predators at the 
peak of the wavefront and wf is the width of the wave front, measured from 51% 
to 951'0 of c"'. 

9.3.3 The Three Stage Epidemic Model 

Again the spiral wave was initiated by the assymetric half line initial condition. 
In the case of the 3 stage epidemic model, when the condition is created, the 
incubating stage is treated as the infective stage. The spiral formed is shown bY 
figure 9.13. 

The wave front characteristics of the spiral waves are compared with those pre- 
dicted by the Shooting method. Table 9.4 shows that the Shooting method 
predicts the wave front characteristics to around 10%, so the Shooting method 
can be used to make predictions about the wave front chaxacteristics of the spiral 
waves formed by the 3 stage epidemic model. 

9.4 Discussion 

Circular waves can be formed from any point initialisation large enough to form 

a wave in the presence of the given threshold. In cross section, tile circular 
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Figure 9.13: Spiral wave formed by the discrete 3 stage epidemic model in a 
350 x 350 arena. 1=0.2, rp = 0.001, rn = 0.006, q=0.006, bo = 1.5, At = 0.5 
and Ax = 1. (a), (b) and (q) are snapshots of the susceptible, incubating and 
infective distributions respectively at t= 2740. 
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b rT Predicted Values Observations from Spira s 
_ V Wf r,,, V Wf r,,, 
2 
2 

0.001 
0.002 

0.2514 5.759 0.02229 0.2242 5.686 0.01 
0.2075 4.968 0.02091 0.1900 5.306 0.01882 

Table 9.4: Comparisons of observed wave front characteristics from simulations 
of the discrete 3 stage epidemic model of spiral waves and predictions made by 
the Shooting method. Ax = 2, At = 0.5,1 = 0.2, q=0.006 and m=0.006. v is 
the velocity of the wavefront, rm is the maximum density of predators at the peak 
of the wavefront and wf is the width of the wave front, measured from 51% to 951% 
of rM. 

waves are similar in profile to the 1 dimensional waves for all the models. In 

the Fisher model the invading population spreads out to fill whole arena. In 

multi component models where the wave is a soliton, when the wave reaches the 

reflective boundary, the organisms reflect back into the area of resource depletion 

and the invasion or epidemic dies out. So there is still a problem of persistence 

of the epidemic or invasion behind the wave front in the 2 dimensional spatial 

models where the wave propagated is a circular wave. The Shooting method can 
be used to make predictions about the velocity, peak height and width of the 

wave fronts in all 4 of the models considered. 

Spiral waves axe self organised patterns which are formed by using an "asymmetric 

half line" initial condition. The spiral wave has characteristics of the same scale 

as the circular wave, so the Shooting method can be used to predict the scale but 

not exact magnitudes of the characteristics. The spiral may to be too large to fit 

into the given axena. The self organisation of spirals may be a mechanism which 

allows persistence of an epidemic or an invasion behind the wave front; this is 
investigated in the next part of the thesis. 

There can be difficulties forming spiral waves. The space steps have to be large 

enough to allow the arena to fit the spiral in. It has been shown that the point 

of transition between soliton and wave trains is affected by space step size. So 

the spiral may go through phases when it is not a soliton at all points, causing 
the spiral to buckle and eventually break up. This generally happens in the core 

of the wave. 
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Models have been formulated which axe computationally efficient. They are good 
discrete analogues of the continuous models. The arena has been expanded into 

2 dimensions. The Shooting method can be used to make predictions about the 

velocity, wave front width and peak height of both spiral and circular waves. 
The procedures carried out in this part have created the tools which permit a 
thorough investigation into mechanisms which allow persistence of epidemics and 
the establishment of invading species. 
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Part III 

Persistence Mechanisms 
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Chapter 10 

Persistence Mechanisms 

10.1 Introduction 

In the multi-component models used in this thesis, altering the formulation of 
the models, so that there is no growth or infection from low density populations, 

creates soliton waves where no endemic or established state is reached behind 

the wave front. In both epidemics and invasions of exotic species, frequently the 

epidemic or species continues to survive in the area that the wave front has passed 

over. 

A number of biological mechanisms, which have been omitted from the models 
as they stand, axe considered as mechanisms for allowing the epidemic to become 

endemic or the invading species to become established. They shall be described 

in this chapter and then applied to the multi-component models in the following 

chapters of this part. 

The modified Fisher model is not considered in this part of the work; its role in 

this thesis was as a well understood model to be used as a vehicle for devising a 

method of predicting the characteristics of wave fronts with no regrowth at the 

toe. Its job is now complete. In the Fisher model, the invading population does 

not die out behind the wave front. The mechanisms described here are chosen to 

promote the growth of populations behind the wave front and are not going to 
have much impact on the dynamics of the Fisher model. 
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10.2 Environmental Heterogeneity 

10.2.1 Spatial Heterogeneity: Patches 

Frequently, work on spatial heterogeneity looks to understand the effects of habi- 

tat fragmentation on the stability of populations of endangered species (Fahrig 

1992) or on epidemic control regimes (Lloyd and May 1996). Such studies con- 

sider patches of suitable habitat in a matrix of unsuitable habitat. These systems 

axe well described by meta-population models (Hanski 1994) and diffusion models 
(Seno 1991). The results of these studies show that the presence of very suitable 

patches encourages settlement of less suitable or unsuitable matrix. 

Scheffer and de Boer (1995) consider a predator-prey model with the same growth 
functions as the unmodified predator-prey model, as described in chapter 3, but 

the predators axe immobile and the prey disperse diffusively. They found that 

when the predators axe restricted to a patch, and the prey diffuse freely in and 

out of the patch, the oscillatory dynamics of the system are reduced. 

In this thesis, the oscillatory dynamics of the systems, which result in the for- 

mation of soliton wave fronts, axe caused by the richness of the habitat. So, to 

investigate the effects of spatial heterogeneity on the persistence of epidemics or 
invasions behind the wave front, spatial heterogeneity is in the form of patches of 
less suitable habitat within a matrix of suitable h abitat. Inequality (3.1.14) shows 

that in the predator-prey model, if the carrying capacity is low, the dynamics are 

stable. The amplitude of the oscillations in the unstable case increases with car- 

rying capacity. Also, at high thresholds, the system can become non-oscillatory 

with a steady state dictated by the threshold (equation (3.3.9)), as shown by fig- 

ure 3.3. The effect of spatial heterogeneity in the form of a patchwork of different 

carrying capacities throughout the arena on a the predator-prey model with a 

threshold was investigated by Gurney et al. (1998). They showed that new inva- 

sions appeared in low carrying capacity patches if the threshold density was low. 

The wake of the 2 stage epidemic model becomes more oscillatory as the carrying 

capacity is increased, as shown by inequality (4.1.9). This means that at low car- 
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rying capacities, the first trough of the wake is less likely to fall below threshold 

density so the wave does not become a soliton. Also, at high thresholds and low 

carrying capacities the model becomes non-oscillatory (equation (4.1.9))and the 

steady state depends on the threshold (equation (4.3.5)), as shown by figure 4.3. 

The oscillatory nature of the 3 stage epidemic model also decreases with carrying 

capacity and this effects the dynamics of the system in the same way as in the 2 

stage epidemic model. So decreasing the carrying capacity in a patch may create 

an axea of stable dynamics in the axena. 

10.2.2 Seasonal Variation 

White and Harris (1994) showed that contacts between foxes from neighbouring 
territories increased during winter in Bristol foxes as foraging took male foxes 

faxther afield and into the territories of others. Varying the contact rate through- 

out the year may reduce the oscillatory nature of the wake behind the epidemic 
front in the epidemic models, so for part of the year the dynamics may be stable. 

10.3 Long Range Dispersal 

Continuous immigration from outside the arena would allow the invasion or epi- 
demic to persist (Gurney et al. 1998), but the assumption in these models is 

that there is only a finite initial innoculum in the given arena, so this persistence 

mechanism is not investigated. 

Kot et al. (1996) discuss how many organisms disperse leptokurtically. The 

description of dispersal by diffusion does not successfully describe the dispersal 

of these organisms. To compensate for this, they used integrodifference equations 

with long tailed dispersal kernels to represent long range dispersal, so that some 
individuals migrate further than is described by diffusion. In chapter 12, the 

predator-prey model is modified so that occasionally a predator will disperse 

much further than most others. In the 2 stage epidemic case, the occasional 
infective individual travels a longer distance than that described by diffusion. 
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At the end of the journey the infective starts infecting susceptibles locally. This 

process cannot be applied to a rabies epidemic, but it may be possible in other 

epidemics. 

In the 3 stage epidemic model, it is unlikely that rabid fox will live long enough to 

travel further than the distances described by the diffusive term in the model, so 

the rabid population is not chosen to migrate long distances. The model assumes 

that once recruited into the adult population the susceptibles and incubating 

individuals remain within their territories. However, young foxes may embaxk on 
long journeys to find empty territories to inhabit as adults. A young fox may be 

incubating the rabies virus when it embarks on such a journey (Murray 1989). 

The fox then becomes rabid, stops travelling, and infects the local susceptibles. 
Although Macdonald (1980) has shown that young foxes are less likely to be 

infected, this process may still happen occasionally. 

10.4 Self Organised Patterns 

10.4.1 Spiral Waves 

It has already been shown, in chapter 9, that spiral waves form in these models. 
Now the issue is whether or not spirals can be formed by environmental processes. 

Much work has been carried out on host-parasitoid models which form spiral 

waves, e. g. (Hassell et al. 1991)(Comins et al. 1992) (Hassell et al. 1994), but 

the relevance of such pattern formation to ecology is not obvious. No spiral waves 
have been witnessed in ecological systems (Rohani et al. 1997). 

Can a natural process be found to create the half line initial condition? Ro- 

hani et al. (1997) discuss the possibilities for the formation of spirals due to an 

asymmetry , stochasticity or inhomogeneities in the medium. G. Ruxton (pers. 

comm. ) suggested that a river, too wide, deep or fast flowing to be crossed, going 
through a period of drought may be a possible ecological system which could 
form a half line initial condition. This idea is tested in chapter 13. 
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If a spiral were to form in an ecological system, would it be robust to environmen- 
tal and individual heterogeneities as described in the previous sections? Ruxton 

and Rohani (1996) modified the (Hassell et al. 1991) host-paxasitoid model so 
that there were temporal and spatial heterogeneity. They found that spiral waves 
formed in this system were robust to variations in the host's fecundity but not 
to random local extinctions. Gurney et al. (1998) found that spiral waves in a 

predator-prey model with a threshold are robust to random immigration used 
as an approximation to long range dispersal, and robust to spatial heterogeneity 

provided that the soliton is not compromised in any patches. 

The long range dispersal algorithm used in these models moves individuals. This 

would create gaps in the spiral wave, similar to the local extinctions in Ruxton 

and Rohani's work, so the robustness of spiral waves to long range dispersal is 

investigated in chapter 13. Spatial heterogeneity in the form of patches that 

are known to compromise the soliton wave form will also be added to arenas 

which contain spirals to monitor the effects. The interference pattern formed by 

multiple spiral waves may break the spirals up. The interactions of two spirals 
turning in the same direction and the opposite directions axe investigated. 

10.4.2 Small Scale Patterns 

Another form of self-organised pattern arises in this investigation. Self-organised 

patterns on a very small scale are formed when space is heterogeneous (McLaugh- 

lin and Roughgarden 1991) (McLaughlin and Roughgarden 1992) (Gurney and 
Veitch 1998) and, in the case of the predator-prey model, when a spiral is formed. 
These patterns have already been described fully by Gurney and Veitch (1998) 
for the predator-prey model used in this thesis, and shall not be investigated 
further. 
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Chapter 11 

Environmental Heterogeneity 

11.1 Introduction 

Environmental heterogeneity has not so fax been included in any of the three 

models. Two forms of heterogeneity axe considered in this chapter - temporal 

and spatial. The affects of the inclusion of seasonal vaxiation and patches of 

reduced cairying capacity in the models axe investigated in this chapter. 

11.2 Seasonality 

It was observed by White and Harris (1994) that contacts between foxes from 

different territories increase in winter. This seasonal factor was included in the 

model in the form of a contact rate varying sinusoidally throughout the year. 

Figure 11.1 shows that varying the contact rate creates persistence of the epidemic 
behind the front in the 3 stage epidemic model in 1 dimension. When the contact 

rate is reduced the dynamics of the system become less oscillatory, so the trough 
does not dip to low densities which are affected by the threshold. 

The break up of the soliton wave front in a model due to a seasonal factor was 
only observed in the 1 dimensional 3 stage epidemic model., The observed change 
in dynamics was sensitive to the time and space steps chosen. In the other models 
the only observed effect was the periodic decrease in velocity, peak height and 
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Figure 11.1: 3 stage epidemic model with seasonal contact rate. K=2, M 0.5, 
L= 13, Q=0.5, D= 73, IQ = 150, BO = 80 -+ 100, Rp = 0.001, At 0.1 
and Ax = 0.5. (a), (b) and (q) show the spatial distribution of the susceptibles, 
incubating and infective individuals respectively after 5.5 years and (d), (e) and 
(f) at 11 years. 

front width. In 2 dimensional models, a larger innoculum is needed to start an 

epidemic because the epidemic spreads in many directions instead of only 2 in 

the 1 dimensional model. Therefore a larger population is needed to establish 

behind the wave front in the 2 dimensional model to allow the epidemic to persist 
behind the wave front. The incubating stage may have acted as a buffer which 
allowed the effects of if the decreased contact rate to persist when the contact 
rate increased. The predator-prey model was altered so that conversion efficiency 

was seasonal. The predator-prey model will always be unstable for periods of the 

year. 
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11.3 Spatial Heterogeneity 

In this section spatial heterogeneity in the form of patches where the caxrying 

capacity of the susceptibles or prey is reduced is investigated as a persistence 

mechanism. 

11.3.1 The Three Stage Epidemic Model 

A patch of low carrying capacity is placed in the centre of a1 dimensional axena. 
The patch is paxabolic in shape to reduce edge effects. Figure 11.2 (c) and (d) 

shows that when the original soliton first reaches the patch, the rabies epidemic 

survives in the patch as the dynamics are less oscillatory. Wave trains start to 

emanate from either side of the patch. Eventually, as shown by figure 11.2 (e) and 
(f) the coexistence steady state begins to form around the patch. After a long 

time, as shown by figure 11.2 (i) and 0), the entire arena is at the coexistence 

steady state. 

This was then repeated in a2 dimensional arena, as shown by figure 11.3. The 

patch in 2 dimensions is the shape of an inverted Gaussian distribution. Again a 

wave train emanates out from the patch, but instead of the whole arena eventually 

reaching the epidemic steady state, a small scale pattern forms. The pattern 
forms around the patch and then spreads outwards. The simulation was run 

over 2 millenia, and the patterns continued to appear (but reduced in intensity). 

The pattern may be a very long lived transitional behaviour, it may be caused 
by interference from waves reflected by the boundaries, or it may be that the 

equilibrium properties of the system axe different in 2 dimensions from the 1 

dimensional model. 

The interaction of 2 patches of low carrying capacity is now investigated. The 

rabies epidemic survives in the patches as before. When the wave trains form, 

there is interference where they meet and figure 8 shaped waves are formed. 

When the unexplained pattern spreads out from the patches, they form a filled 

in figure 8, and then spreads throughout the whole arena as before. This also 
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Figure 11.2: 3 stage epidemic model with a patch of low carrying capacity in 
1 dimension. BO = 80, D= 73, L= 13, M=0.5, Q=0.5, At = 0.5, 
Ax = 2, Rp =4x 10-1 and K=4 and the minimum value of K in the patch 
of low density is 1.2. (a) and (b) are snapshots of the susceptible and infective 
populations at time 14 years. (c) and (d) are snapshots of the susceptible and 
infective populations at time 27 years. (e) and (f) are snapshots of the susceptible 
and infective populations at time 54 years. (g) and (h) are snapshots of the 
susceptible and infective populations at time 109 years. (i) and (j) are snapshots 
of the susceptible and infective populations at time 164 years. 

demonstrates that above a minimum size, the dynamics are not sensitive to the 

patch size. 

11.3.2 The Two Stage Epidemic Model 

A patch of low carrying capacity is created in the 1 dimensional 2 stage epidemic 

model in the same manner as in the 3 stage epidemic model. Figure 11.5 shows 
that, like the one dimensional 3 stage epidemic model, eventually the whole arena 

reaches the coexistence steady state. 

The experiment is then repeated in a2 dimensional axena (figure 11.6). Again 
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Figure 11.3: 3 stage epidemZc model with one patch of low carrying capacib/ in 
a 301 x 301 arena. BO = 80, D= 73, L -- 13, M=0.5, Q= 0-05, At = 0.5, 
Ax = 21 Rp =4x 10-6 and K=4 and lite minzinum, value of K in the 
patch of low densZty Zs 1.2. (a) and (b) are snapshots of the susceptible and 
infective populations at time 5 years. (c) and (d) are snapshots of lite suscephlble 
and infective populations at time 12 years. (e) and (f) are snapshots of the 
susceptible and infective populations at time 23 years. (g) and (h) arc snapshots 
of the susceptible and infective populations at time 68 years. The arc 
spreading out from the patch of low carryzng capacity. 
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Figure IIA: 3 stage epZdernic model with two patches of low carry'Ing capa(: Ztl/. 
Parameters are the same as in figure 11.3. (a) and (b) arc snapshots of Ihv 

susceptible and infective populations at time 5 years. (c) and (d) are snapshots 
of the susceptible and infective populations at time 12 years. (c) and (f) arc 
snapshots of the susceptible and infective populations at timix 27 years. (g) and 
(it) are snapshots of the susceptible and infective populations at time 137 years. 
The Utfectives spread out from the low carrying capacity patches. 
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Figure 11.5: 2 stage epidemic model with patch of low carrying capacity in 1 
dimension. r=0.01, bo = 2, ip = 10-61 At = 0.10 AX = 1, the unscaled carrying 
capacity is 2 and the minimum carrying capacity in the patch is 1.2. (a) and 
(b) are snapshots of the distribution of susceptibles and infectives respectively 
at time t= 300. (c) and (d) are snapshots of the distribution of susceptibles 
and infectives respectively at time t= 600. (e) and (f) are snapshots of the 
distribution of susceptibles and infectives respectively at time t= 900. (g) and 
(h) are snapshots of the distribution of susceptibles and infectives respectively at 
time t= 1200. (i) and (j) are snapshots of the distribution of susceptibles and 
infectives respectively at time t= 2000. 

the sequence of events is the same as those involved in the whole arena reaching 
its coexistence steady state as in the 1 dimensional, 2 stage epidemic model. 

11.3.3 The Predator-Prey Model 

It is known (see chapter 3) that if inequality (3.1.14) is not satisfied then there is 

no coexistence steady state in the predator-prey model. This poses the question 

of what will happen if a patch of non oscillatory dynamics (where inequality 

(3.1.14)) is satisfied. 
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Figure 11.6: 2 stage epidemic with one patch of low carrying capacity in a 
301 x 301 arena. The infectives are spreading out from the patch of low car- 
ry? ng capacity. r 0.01, bo = 2, ip = 10-6, At = 0.2, Ax = 4, the unscaled 
carrying capacity is 2 and the rrtinimum carrying capacity in the patch is 1.2. (a) 

and (b) are snapshots of the distribution of susceptibles and infectives respectively 
at time t= 280. (c) and (d) are snapshots of the distribution of s? IS(-(., ptzbl(! s and 
infectives respectively at time t= 4000. (e) and (f) are snapshots of the distrl'- 
bution of susceptibles and infectives respectively at time t= 7360. (g) and (h) 

are snapshots of the distribution of susceptibles and infectmes respectively at tilrte 
t= 12000. 
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Figure 11.7 shows that in the 1 dimensional arena, where again the patch is 

parabolic in shape, again the invading organisms establish themselves in the 

patch. Repeated solitons then emanate out from the patch. A complex pattern 
is formed in the patch, a feature of the model described in detail in Gurney and 
Veitch (1998). 
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Figure 11.7: Predator-prey model with patch of low carrying capacity in 1 dimen- 

sion. u,,, = 0.2, d=0.05, cp = 0.1, At = 0.5, Ax = 2, k= 20 and the minimum 
carrying capacity of the patch is 1.5. (a) and (b) are the snapshots of the prey 
and predators respectively at time t= 1000. (c) and (d) are the snapshots of 
the prey and predators respectively at time t= 1500. (e) and (f) are the snap- 
shots of the prey and predators respectively at time t= 2000. (g) and (h) are the 
snapshots of the prey and predators respectively at time t= 2500. (i) and (j) are 
the snapshots of the prey and predators respectively at time t= 4000. Repeated 
solitons are produced from the patch of low carrying capacity. 

The experiment was then repeated in a2 dimensional arena (figure 11.8). Again 

the resultant pattern was repeated solitons emanating from the patch. 

Then a second patch of low carrying capacity to look at the interactions of the 

repeating solitons (figure 11.9). When the solitons meet, there is interference and 
the solitons form figure 8s. As the patches are different sizes this also demon- 

138 



(d) 

ý r-- -, 

(f) 

1i di) i 

c06.7 13.3) 
MEMO 

f03.3 6.7 10 13.3 lo. / 

Figure 11.8: Predator-prey model with one patch of low carrying capacity in a 
301 x 301 arena. u, = 0.2, d=0.05, cp = 0.1, At = 0.5, Ax = 4, k= 20 

and the minimum carryzng capacity of the patch is 1.5. (a) and (b) arf, thc 

snapshots of the prey and predators respectively at time t= 300. (c) and (d) arc 
the snapshots of the prey and predators respectively at time I= 600. (c) and (f) 

are the snapshots of the prey and predators respectively at timc t= 1()()(). (g) 

and (h) are the snapshots of the prey and predators respectMcly at time t= 18,50. 
Repeated solitons are produced from the patch of low carrying capacity. 
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strates that the effect is not sensitive to the size of the patch providing that the 

patch is over a critical size. 

11.4 Discussion 

Temporal heterogeneity , i. e. seasonality in a given parameter value only, created 

persistence of an epidemic behind the wave front in the case of the 3 stage rabies 

epidemic in 1 dimension. This result was sensitive to the space and time steps 

chosen for the simulation. This sensitivity is probably what caused the non- 

occurrence of the effect in the 2 dimensional model. To clarify the effect of 

seasonality, real parameter sets should be obtained for the 2 stage epidemic and 
predator prey models. 

In the epidemic models a persistent, endemic state of the infection spreads out 
from patches of low carrying capacity. In the predator- prey model repeated 

solitons radiate out from the patches. The patches act as sources of infec- 

tion/invasion. This result may have implications for epidemic and wildlife man- 

agement. 

The effects are not affected by the size of the patch, provided the patches are 
larger than a critical size. Multiple patches do not have any great affect either. 
So spatial heterogeneity acts as a robust mechanism which allows reinfection or 

reinvasion behind the original wave front. 

In the predator-prey model, small scale patterns are formed. These small scale 

self-organised patterns have been investigated for predator-prey models by McLaugh- 

lin and Roughgaxden (1991) McLaughlin and Roughgarden (1992) and more 
specifically for the predator-prey model used in this thesis by Gurney and Veitch 
(1998). 
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Figure 11.9: Predator-prey with two patches of low carrying capacity tit a3O I x301 
arena. Para? -neters are the same as in figure 11.8. (a) and (b) arc thv Snapshots 
of the prey and predators respectively at tinte t= 300. (c) and (d) arf. thc 
snapshots of the prey and predators respectively at tinic t= 600. (c) and (f) arc 
the snapshots of the prey and predators respectively at time t= 1000. (y) and (11) 
are the snapshots of the prey and predators respectively at tinu, I= 2000. IVIte-it 
the soldon waves meet, the inte7ference pattern produces figure 8 shapcd wavcs. 
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Chapter 12 

Long Range Dispersal 

12.1 Introduction 

In this chapter the long range dispersal of mobile individuals is investigated as a 

mechanism for allowing the establishment of an invading species or an epidemic 
to become endemic in systems where the initial wave front is a soliton (Gurney 

et al. 1998). This process involves a single individual moving a long distance 

with a higher probability than is suggested by diffusion. In the predator-prey 

model this may involve a pregnant or asexually reproducing organism settling 

away from the wave front. In the 2 stage epidemic model long range dispersal 

involves in infective individual travelling and after a period becoming too ill to 

move on and proceeding to infect susceptibles in the axea it has settled in. In the 

3 stage epidemic model, an incubating individual moves, becomes infective and 

starts to infect susceptibles locally. 

In models with 1 spatial dimension the arena is infinitely thin. To identify an 
individual in an spatial model where density is the dependent variable, an area 
has to be found where 

axea x density =1. (12.1.1) 

Area is not a property of a1 dimensional arena, so to identify an individual, 

an arbitrary width would have to be attributed to the arena. If the migrating 
individual moves ahead of the front in a1 dimensional arena, the new innoculum 
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will send a soliton both forwards and backwaxds (in relation to the movement 

of the initial wave front). The backwards moving soliton will collide with the 

original wave front and the mobile component of the system dies out locally. 

The wavefront immediately moves to the position of the forwards moving soliton 

created by the outlier. This greatly increases the velocity of the wave front. 

Because of these consequences of long range dispersal in 1 dimension, long range 
dispersal has only been investigated in 2 dimensional arenas in this chapter. 

12.2 The Three Stage Epidemic Model 

In this model, it is assumed that the susceptible and incubating populations 

are immobile in the sense that once adult, they have fixed territories. In the 
long range dispersal formulation, it is assumed that a proportion of young foxes, 

setting out to find a territory away from their families, axe incubating rabies. If 

a fox is rabid, it is assumed that it sets off in a random direction, and after a 

short time it becomes infective and staxts to infect the susceptibles, foxes around 
it. 

In the model, an incubating fox is chosen at random. This is done by picking an 

address in the axena by means of a random number generator. An edge of the 

axena (top, bottom, left or right) was then chosen randomly, then the transect 

between the address and the edge of the axena specified is scanned for a maximum 
density of incubating foxes. The direction of the scan (starting either at the edge 

of the axena or at the address) was also chosen at random. If a sizable (10-4) 

incubating fox density is found, the immediate surroundings are searched for 

a fox; the nearest neighbour of highest density is the next looked at, then it's 

nearest neighbour of highest density, until a whole fox is found. Another random 

address is generated in the locality of the original position of the fox, and the 

incubating fox is removed from its original position to the new address, turning 

rabid during its journey. If a whole incubating fox is not found during the search, 

nothing happens. 
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Figure 12.1: (a) and (b) show the distribution of susceptibIcs and infewtives rc- 
spectively of the 3 stage epidennc model with long range dispersal, and (c) and 
(d) show the distribution of susceptibles and infectives respectively, of the ? stayt, 
eptlemic model with no long range dispersal, both at tirrie 15 1 cars in a 30 1x 30 1 
arena. bo = 2.1, q=0.006,1 = 0.2, Tn = 0.006, rp = 0.0001,111 = 1; -)Ok7 112yr 1, 
At 0.5 and Ax =4 in both models. In the model with long range dispf-I-sal, thc 
mammum dispersal distance is 170km. 
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Figure 12.1 (a) and (b) shows the distribution of the rabies epidemic after 15 

years when long range dispersal of incubating foxes occurs. 

If the fox moves ahead of the front, it stafts a new circular wave. The section of 
the wave moving towaxds the original front causes interference with the section 

of front it meets, and the section of the new front moving in the same direction 

as the original becomes part of the original front. This only causes an increase 

in spatial distribution locally, so does not affect the front velocity greatly. Tile 

velocity of the front when there is no long range dispersal, as shown by figure 

12.1 (c) and (d). The velocity of the circular wave is 36 km yr-1 and the velocity 

of the new wave is approximately 60 1cm yr-1, so it is still within the observed 
range of 30 -ý 60 km yr-1. 

If the fox migrates behind the front 2 things can happen. The rabid fox can land 

in the region of susceptible depletion and the localised epidemic will die out. The 

fox can land on the region of susceptible regeneration and a new epidemic starts 
in the centre of the original epidemic. This repeats itself up to and over 100 

years, shown by figure 12.2. Figure 12.3 shows that with no long range dispersal, 

the epidemic would die out within the arena after 20 years and the susceptibes 

return to caxrying capacity within 25 years. 

Obviously for the repeating epidemics to happen it is necessary for incubating 

foxes to migrate long enough distances that they can reach the area of suscep- 

tible recovery within the circle. Other than that there is a question of whether 

persistence of the rabies epidemic is sensitive to the maximum distance the foxes 

travel. Figure 12.4 (a) and (b) shows the same long range dispersal algorithm as 
describes above, but the distance the foxes can travel is greater. The result is 

still qualitatively the same as with the shorter maximum migration distance. 

The algorithm as described above may have a bias as to the positions of foxes 
found. The the use of long range dispersal as a persistence mechanism may 
be dependent on the frequency of finding a whole incubating fox. To test the 

robustness of the mechanism to the algorithm and frequency of finding a fox, a 

slightly different algorithm is used to find the incubating fox. A line in either the 
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Figure 12.3: Time series Of the mean density of susceptibles and infectives in the 
arena. By time 20 years infectives no longer exist within the arena and by time 
25 years the susceptibles have all reached their carrying capacity. The parameters 
are the same as those in figure 12.1. 

vertical or horizontal directions is chosen randomly. A start point and end point 
for a search along the line is then generated. The maximum density of incubating 

foxes is sought along the line, and if it is greater than 10-4, a whole incubating fox 

is sought in the same manner as above. This alteration to the search algorithm 

reduces the frequency of finding an incubating fox as less of the chosen line is 

searched. Figure 12.4 (c) and (d) shows that this change in algorithm does not 

change the success of the persistence mechanism. 

12.3 The Two Stage Epidemic Model 

When thinking about using this model for rabies, having infective foxes dispersing 
long distances does not make biological sense. The 2 stage epidemic model is 
bloody useless as a rabies model; it does not account for the latent period before 

rabies is developed or that some foxes develop the paralytic form of the disease. 
In this chapter it is considered as a more general epidemic model. An infective 
is assumed to be healthy enough to travel long distances when it first contracts 
the disease. After it has travelled a long distance, the infective stops and begins 
to infect susceptibles; around it. 

A whole infective is found in the same manner as the first algorithm describLxl in 
the previous section. A random address within a certain distance of the infective's 
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Figure 12.5: The 2 stage epidemic model with long range dispersal. (a) is a snap- 
shot of the susceptible distribution and (b) ts a snapshot of infective d str but on 
at t 137, in a 301 x 301 arena. r=0.1, ip = 0.005, bo = 2.1, q, = 10, D= 10, 
At 0.125, Ax =2 and the maximum diipersal distance is 30 space steps. 

original position is generated, and the infective is moved to the new address. 

Figure 12.5 shows that long range dispersal works as a mechanism for allowing 

an endemic state to be created behind the initial wave front. 

12.4 The Predator-Prey Model 

In the pi-edator I)rt,, N- niodel it predator migrates a distance longer than that 

associated with diffusion. A predator is chosen in the same manner as described 

for the incubating foxes in the 3 stage epidemic model. A random address within a 
finite distance is then generated and the predator is moved to the chosen address, 

whei-v it establishes itself and starts to feed on the local preN. 

Viigure 12.6 shows that the predator prey model has the same pattern of new 

waves behind the front as tile 3 stage epidemic model. 
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Figure 12.6: Predator-prey model with long range dispersal. (a) is the prey distri- 
bittion and (b) is the predator distribution at time t= 548 in a 301 x 301 arena. 
k= 20, u.. = 0.2, d=0.05, cp = 0.1, R=1, T=0.1, At = 0.5, Ax =4 and 
the maximum dispersal distance is 30 space steps. 
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This has already been done (Gurney et al. 1998) for a very similar model with 
random immigration approximating long range dispersal. The pattern produced 
by random immigration is more broken than that due to long range dispersal. 
This is due to the limitation to the number of migrating predators to the number 
that exist %ithin the arena. 

12.5 Discussion 

Long range dispersal of incubating or infective individuals permits repeated epi- 
demic %-aves to form behind the initial epidemic front in the 2 and 3 stage epi- 
demic models. Long range dispersal of predators in the predator prey model 
allows predators to establish behind the initial invasion front and create repeat- 
ing invasion waves. The mechanism is robust to the maximum distance the given 
individual can disperse, the algorithm used to find the individual which disperses 

and the frequency of long range dispersal events. The resulting pattern is inde- 

pendent of new individuals immigating into the arena. 

The choice of parameters in the 2 stage epidemic and the predator-prey models 
uras arbitrary, and the experiments should be repeated with real parameter sets. 
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Chapter 13 

Spiral Waves 

13.1 Introduction 

It has already been demonstrated that the 3 models considered are able to form 
spiral waves. It has also been shown that spiral waves are a mechanism for 

continuing an epidemic or invasion behind the epidemic or invasion front. No 
spirals have been observed in ecological systems, so this chapter will consider 
a likely ecological mechanism for initiating a spiral wave. Gurney et al. (1998) 

showed that spirals propagated by the predator-prey model with a threshold were 
robust to random immigration and a very fine heterogeneous spatial patchwork, 
so this chapter will also investigate the robustness of spirals to the forms of long 
range dispersal and spatial heterogeneity as described in the previous 2 chapters 
and to interactions with other spirals. 

13.2 Creating the "Assymetric Half Line" Ini- 
tial Condition with an Environmental Pro- 
cess 

A naturally occurring initial condition for a spiral is needed. If an invasion or 
epidemic wave is travelling at one side of the barrier, then the barrier disappears, 

allowing thewave to spread to new virgin territory, an assymetric half line initial 
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Figure 13.1: Spiral waves formed from a periodic river initial condition. (a) 

and (b) are snapshots of the prey and predator distributions respectively of the 

predator-prey model at t= 420. k= 10,0.2, d=0.05, cp = 0.3, At = 0.5 

and Ax =I in a 301 x 301 arena. 

condition would be created. A likely candidate for this barrier is a river (G. 

Ruxton, pers. comm. ). A river may be too wide and deep for the given organism 

to cross. A change in rainfall or temperature may reduce the flow of the river and 

it becomes traversable. Rivers can have seasonal cycles of flow. In this model it 

is assumed that the river is a barrier at the start of the run with the invasion 

or epidemic wave running along one bank, then when the environmental change 

occurs the river becomes periodic, so the river becomes traversable for part of 

each year. In the case of the simulations shown in figures 13.1,13.2 and 13.3 tile 

river becomes periodic when the wave front reaches the centre of the arena. 

Figures 13.1,13.2 and 13.3 show that all 3 of the models form spirals with the 

a, ssymetric half line initial condition created by a river acting as a barrier initially 

then altering so that there is less flow for a period each yeal-. The spirals are 

slightly square in shape due to the periodicity of the river. 
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Figure 13.2: Spiral waves fonned from a periodic river initial condition. (a) and 
(b) are snapshots of susceptibles and infectives of the 3 stage epz*deTnz*(- model at 
hTne 43 years Vn a 301times301 arena. bo = 1.5, q=0.006,1 = 0.2,0.006 

rp = 0.001, At = 0.5 and Ax = 2. 
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Figure 13.3: Spiral waves formed frout a periodic river indial condition ZT1 a 
301 x 301 arena. (a) and (b) are snapshots of susceptib Ics wi i, (I 11'7tf(, (-tZ'? )(, s of thc 
2 stage epidemic model at t= 100. bo = 2, r=0.1, zp = 0.0 1, At = 0.125 and 
Ax = 0.5. 
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13.3 Robustness of Spirals to the Environment 

Now that a plausible natural mechanism for forming a spiral is known, the ro- 
bustness of spiral waves to intrinsic and environmental factors is examined. The 

river has not been included in the models tested for robustness; it is assumed 
that once formed the spirals axe not different from artificially formed spirals. 

13.3.1 Multiple Spirals 

If it is possible for one spiral to form, it should be possible for more than one 
spiral to form. Two solitons meeting cancel each other out as there axe regions of 
resource depletion behind both waves. This raises the question of whether 2 (or 

more) spirals cancel each other out. There are two situations to be considered; 

one where the spirals axe turning in the same direction, and one where the spirals 

axe turning in different directions. 

Figure 13.4 (a) and (b) shows that when the spirals are turning in the same 
direction, as long as the cores of the spirals to not meet, the outer waves of the 

spirals combine to figure 8 shapes, with the cores continuing in the centre. 

Figure 13.4 (a) and (b) shows that when the spirals axe turning in different 
directions, the top of the spirals form half of the 8 shape, and the bottom of the 
left spiral becomes the bottom of the right spiral. 

More than one spiral forming in a small arena does not compromise the integrity 

of the spiral waves. 

13.3.2 Spatial Heterogeneity 

In chapter 11, a patch of low carrying capacity acts as a source for reinvasion of 
the region behind a soliton wave front. If a spiral form in a spatially heterogeneous 

arena, do these reinvasions break the spiral up? This question is investigated for 
both the 3 stage epidemic model and the predator-prey model. 
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Figure 13.4: Interactions between spirals in 301 x 301 arenas. The 3 stage epi- 
demic model with q=0.006, bo = 2.1,1 = 0.2, Tn = 0.006, T-i, = 0.001, At = 0.5 

and Ax = 4. (a) and (b) show tile susceptible and infective distributions at time 
44 years with 2 spirals sptnning in the same direction. (a) and (b) show tile 

susceptible and infective distributions at time 58 years with ) spirals spinning in 

oppostte directions. 
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Figure 13.5: Spiral waves in heterogeneous 301 x 301 arenas. (a) and (b) are 
the susceptible and infective distributions of the "I stage epidemic model at time 
68 years. BO = 80, Q=0.5, D= 73, L= 13, M=0.5, At = 0.5, Ax = 2, 
K=4 and the lowest carrying capacity in the patch is 1.2. (c) and (d) are the 
prey and predator distributions of the predator-prey model at t= 4100. Un = 0.2, 
d=0.057 At = 0.5, Ax = 41 k= 10 and the lowest carrying capacity in the 

patch is 1.5. In the predator-prey model solitons produced from the low carrying 
capacity patch are "cancelled out" by the spiral waves. In the 3 stage (! pzde? ni(- 
Trtodel the Znfechves spread out from the patch, disrupting the spiral. 
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In the 3 stage epidemic model, a patch of low carrying capacity causes an area 

of the epidemic steady state to spread out from the patch, as shown by figure 

13.5 (a) and (b). The spiral wave is broken up by this because there is not a 

region of susceptible depletion behind the secondary epidemic. In the predator- 

prey model, when the soliton waves radiating from the patch meet the spiral, 
there are regions of prey depletion behind the reinvasion wave and immediately 
behind the section of the spiral wave. Both waves die out. As long as the core is 

unaffected by this, the spiral continues with a diffraction pattern around the low 

carrying capacity patch. 

13.3.3 
. 

Long Range Dispersal 

The robustness of a spiral wave to the long range dispersal of incubating individ- 

uals in the 3 stage epidemic model as described in chapter 12 is tested. This has 

already been carried out for a predator-prey model by Gurney et al. (1998) with 

random immigration acting as an approximation of long rage dispersal. The spiral 
is allowed to form a core before the long range dispersal algorithm is applied. 

Figure 13.6 shows that the spiral is robust to the long range dispersal of incubating 

foxes. In a spiral wave, if a fox lands on another part of the wave, the wave returns 
to its original shape. If it lands in a trough the susceptible population is too low 

to sustain a new invasion wave. Therefore long range dispersal does not break 

the spiral up. 

13.4 Discussion 

There are plausible natural phenomena that might give rise to spirals, in this case 

a river which fluctuates periodically. The length of a year in the 2 stage epidemic 

and predator prey models was chosen arbitraxilY and these simulations should be 

run again with parameters observed from nature. 

The spiral waves produced by the 3 stage epidemic model are robust to interac- 
tions with other spiral waves and long range dispersal. The predator prey spiral 
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Figure 13.6: SpZral wave formed by the 3 stage epZderrtic model with long range, 
dispersal startZng at time 41 years. (a) and (b) are the distributions of susceptibles 
and infectives at time 45 years and (c) and (d) are the distributions of susceptible's 
and infectives at time 61 years Zn a 301 x 301 arena. bo = 2.1, q=0.006,1 = 0.2, 

Trt = 0.006, rp = 0.0001, At = 0.5, Ax = 4, and the maximum dispersal distance 

is 1 7Ok7n. 
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wave is robust to the presence of a patch of low carrying capacity as long as the 

core is unaffected. The epidemic spiral wave is not robust to the presence of a 
patch of low carrying capacity because the steady state manages to spread out 
through the spiral. 

All that remains is for a spiral to be observed in a population other than a 
laboratory culture (Rohani et al. 1997). 
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Part IV 

Discussion 
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Chapter 14 

Discussion 

14.1 Thresholds and Allee Effects 

Mollison's atto-individual effect has been effectively removed from the original 

reaction-diffusion models by adding thresholds and Allee effects. At low densities 

deterministic models do not act as an average of stochastic realizations, since at 
low densities stochastic effects axe much more important to population dynamics 

that at high densities (Rand and Wilson 1991). At high densities deterministic 

models act as approximations of stochastic models. So, if the dynamics of unre- 

alistically low density populations are altered so that they can no longer increase 

in reaction-diffusion models, but the dynamics of the high density populations 

axe preserved, the deterministic model should become an approximation of the 

stochastic model. 

A demonstration of the importance of atto-individuals in reaction-diffusion mod- 
els is the formation of soliton waves in the multi component models. In the 

unstable case of the predator prey model, a wave train forms behind the wave 
front. In the oscillatory case of the 2 and 3 stage epidemic models, there is a 
series of damped oscillations behind the wave front. If the growth of populations 
at low densities is the same as that of high density populations, the growth of 
the small populations in the first trough behind the wave front creates the wake 
behind the front. Remove the regrowth of these low density populations, and 
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there is no wake - the wave front becomes a soliton and the invasion or epidemic 
dies out behind the front. This behaviour has important consequences for the 

spreading population and needs careful investigation. 

14.2 Analysis of Wavefronts 

The wave fronts of the original, unmodified reaction-diffusion models with no 
threshold or Allee effect can be analysed (Fisher 1937) (Kolmogorov et al. 1937) 
(Dunbar 1983) (Dunbar 1984) (Murray et al. 1986) (Murray 1989). The threshold 

or Allee effect slows the wave down, and makes the front narrower, so a new 
method must be found to analyse these wave fronts. 

Brunet and Derrida, (1997) devised a calculation for the velocity of the Fisher 

model with a cutoff. The calculation correctly predicted the velocities of Fisher 

wave fronts with low thresholds, but the calculation does not work at high thresh- 

olds. The below threshold per capita mortality rate is not included in the calcu- 
lation. The cutoff formulation used by Brunet and Derrida cannot be simulated 
by a continuous time model. Therefore this calculation was not considered useful 
in this context. 

In the predator-prey model with a threshold, it is assumed that a soliton wave 
front velocity is only minimally effected by the threshold due to a caxeful choice 
of parameters (Gurney et al. 1998). The velocity calculation of Dunbar can then 
be used to predict the width of the wave front and the velocity. It is then assumed 
that the prey nearly die out behind the wave front. This assumption allows the 

prediction of the width of the soliton, the height of the soliton and the width of 
the region of prey depletion. This method cannot be extended to the epidemic 
models as in epidemics, the susceptible population rarely falls to near zero. 

A single component model - the Fisher model - was chosen to develop a method 
of predicting the chaxacteristics of wave fronts which don't have regrowth from 
low densities. This model does not form solitons when a threshold or Allee effect 
is applied, but is used as an easily understandable vehicle. 
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The method devised, termed the Shooting method (Cruickshank et al. 1998), 

involves transforming the model into a moving frame of reference, reducing the 

number of variables the population depends on from 2 to 1. This simplifies the 

model further. A bisection search was developed to find the correct velocity of 
the wave front by searching for the frame of reference velocity which was equal 
to it. This was possible due to the behaviour of the transformed model; if the 
frame of reference velocity is greater than the wave front velocity the trajectory 

of the solution eventually reaches infinity and if the frame of reference velocity is 
less than the wave front velocity the trajectory dips below zero before increasing 

to oo. The closer the frame of reference velocity is to the wave front velocity the 
further the trajectory of the solution follows the shape of the wave front in the 

untransformed model (Brunet and Derrida 1997) (Kessler and Levine 1989). The 

wave front velocity is never found exactly, but can be found to arbitrarily high 

accuracy. If the velocity is known, the shape of the wave front can be traced and 
characteristics such as the wave front width can be estimated. 

The Shooting method was applied to 3 formulations of the Fisher model with no 

regrowth at low densities. When the growth function of the model was completely 

continuous, with an Allee effect achieved by Michaelis-Menten like growth, the 

Shooting method estimates were correct to axbitrary accuracy. Unfortunately, 

this model did not have the same dynamics as the Fisher model at high densities. 

When the growth function was discontinuous, either by the addition of a thresh- 

old to the model or by making mortality lineaxly dependent on density at low 

densities, there were errors created in the simulations by the numerical integra- 

tion process. Once it was confirmed that a working method of estimating wave 
front characteristics of a model with no regrowth from low densities had been de- 

veloped, it was investigated whether it could be applied to the multi-component 

models. 

The Shooting method was then applied to 2 formulations of the predator-prey 
model with no regrowth of the predator at low population densities. In the 
threshold formulation, the Shooting method worked well. In the multi component 
models the height of the peak of the wave front can also be predicted by the 
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Shooting method. The velocity, peak height and front width can all be substituted 
into the calculations for estimating the width of the peak and the region of prey 
regeneration developed by Gurney et al. (1998). The Shooting method also 

worked well for the Allee effect formulation. 

Next, the Shooting method was adapted to 2 formulations of the 2 stage epidemic 

model with no reinfection at low densities. It worked well at making predictions 

about the threshold formulation; as in the single component model the trans- 

formed model was solved with the initial population density at the threshold, so 
the only error occurred in the simulations. The Shooting method also worked for 

the formulations which were continuous in value but not in slope. 

The Shooting method was then applied to 2 formulations of the 3 stage epidemic 

model with no reinfection at low densities. The method worked well for both 

formulations. 

In these models, it was decided that the formulations which are continuous in 

slope and not in value, which were simulated more accurately by the adaptive 
timestep RK4 numerical integration algorithm, should become our formulations 

of choice for the remainder of the thesis. 

14.3 Discrete Models 

Now that predictions can be made about the wave front characteristics of 1 dimen- 

sional continuous models, the next step in investigating the systems where solitons 
formed was finding formulations of the models which were faster and easier to run 
simulations. The forms chosen were discrete analogues of the reaction-diffusion 
models. 

It was important that the discrete models did not show behaviours which were 
not observed in the continuous models and that the models were predictable in 

some way. 

A distribution kernel, based on capture-mark-recapture experiments, where dis- 
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persal probability fell linearly with distance from point of origin, was chosen. 

At first a model which was a piecewise-constant approximation of the Fisher 

model with an Allee effect was investigated. A calculation, adapted from Kot 

et al. (1996)'s work, was developed to predict the velocity of the wave front. 

This method was then applied to the discrete Fisher model with an Allee effect. 
The method only worked well when the Fisher model was forced to behave like 

the piecewise-constant approximation. It did not make any prediction about the 

shape of the wave. The calculation produced 2 roots, and it was not always 

obvious which should be chosen. 

It was shown that for a range of smallish time and space steps the Shooting 

method made good predictions about the Fisher wave front characteristics. The 

Shooting method worked well for a range of parameter values. This was also 

shown to be true for discrete formulations of the multi-component models. One 

problem occurred as the value of threshold which creates a soliton wave in the 

predator prey model increases at laxge time and space steps. 

These discrete analogues of the reaction-diffusion models were extended into 2 

dimensional arenas. Circulax waves were initiated from a compact point innocu- 

lum in all 4 models. In the Fisher model with an Allee effect the wave front 

spread outwaxds from the innoculum at then same rate in all directions. Behind 

the wave front the populations were at carrying capacity. When the wave front 

reached the edge of the arena, the axena remained at carrying capacity. In the 

multi-component models, when the wave was a soliton, the wavefront spread out- 

wards at the same velocity from the innoculum. Behind the front the resource 

component was exhausted by the mobile component, but eventually regrew to the 

carrying capacity and the spreading component died out. When the wave front 

reached the edge of the arena the spreading components were reflected back into 

the region of resource depletion and died out. Eventually the arena reached a 

state when all the resource component was at carrying capacity and the spreading 

component had died out. 

Circular wave chaxacteristics are similar to the characteristics of the 1 dimensional 
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models and can be estimated by the Shooting method to axound 10%. 

Spiral waves were then considered. These only occur in systems where there 

axe soliton waves. The spirals were initiated from an assymetric half line initial 

condition; a plane wave travelling from left to right across the arena is halved so 

the top half of the arena is reinitialised with the resource component at carrying 

capacity and no spreading component. The space step had to be increased in some 

cases to allow a complete spiral to form. The Shooting method also managed to 

predict the shape and velocity of the spiral waves to within 10%. 

Discrete models in 1 and 2 dimensions have been formulated as approximations 

of the continuous models. These models have been shown to be predictable by 

the Shooting method, either exactly, or, as in the case of spiral waves, the scale 

can be predicted. Now these models can be used to investigate mechanisms which 

would allow the persistence of the spreading species behind soliton wave fronts. 

14.4 Persistence behind the Front 

14.4.1 Environmental Heterogeneity 

Spatial heterogeneity worked as a method of allowing epidemics and invasions 

to persist beýind soliton wave fronts. The populations within the low carrying 
capacity patches had less oscillatory dynamics than in the rest of the arena and 
allow the invading species or epidemic to established. These patches then acted 
as sources of the epidemic or invading species within the arena. In the case of the 

predator prey model persistence was in the form of repeating solitons radiating 
out from the patches. In the epidemic models a persistent endemic state of the 

spread out from the patches (the coexistence steady state in the case of the 2 

stage model and a complex, so far unexplained in the 3 stage model). These 

effects happened as long as the patches were larger than a critical size. The 

ability of patches of low carrying capacity to act as local sources of an epidemic 
or invading species has implications for management. 
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The presence of patches produces small scale self organised patterns within a 

reasonable arena size; this is described in detail by Gurney and Veitch (1998). 

A seasonal variation in contact rate is known to alter the dynamics of measles 

models (London and Yorke 1973). European foxes have seasonal contact rates. 
In the epidemic models in this thesis a seasonal contact rate added to the models 
to try and create a time each year when the dynamics are less oscillatory. In the 

predator prey model the conversion rate is made oscillatory. The only model in 

which the inclusion of seasonal effects created the persistence of the epidemic or 
invasion behind the wave front is the 1 dimensional 3 stage epidemic model. The 

effect was dependent on time and space steps chosen but not on the amplitude 
of the seasonal variation. This sensitivity to size and time steps is thought to 
be the reason the same effect was not repeated in the 2 dimensional model. The 

waves of the other models slowed down and widened in response to the seasonal 
term, but persistence was not produced. 

14.4.2 Long Range Dispersal 

Long range dispersal, dispersal of longer distances than axe associated with diffu- 

sion, allows the epidemic or invasion to persist behind the initial wave front. In 

the 3 stage epidemic model long range dispersal was of the form of young incu- 

bating individuals dispersing to find a territory as an adult, and then becoming 

infective. In the 2 stage epidemic it was of the form of an infective individual 

travelling while still relatively healthy. In the predator prey model a predator 
travelled a long distance. The frequency of the long distance dispersal events 

was dictated by the success of the individual finding algorithm, so increased with 

arena population. If , by dispersal, predators or infectives become established 
in the region of resource reco'very behind the wave front, new wave fronts form 

behind the original, so repeating waves pulse through the axena. This effect is 

robust to changing the distance the individual moves (as long as it can jump over 
the region of resource depletion behind the wave front), the frequency of event 

and changing the algorithm for finding whole individuals. 
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14.4.3 Spiral Waves 

It is already known that spiral waves form in the threshold or Allee effect for- 

mulations of epidemic and predator prey model. The interest of spiral waves in 

an ecological context is whether spirals can be formed by a natural process and 

whether they can withstand the rigours of environmental and individual vaxi- 

ability. A river which cannot be crossed, acting as a baxrier while a wave front 

travelled along one side of it, becoming periodically crossable (G. Ruxton, pers. 

comm. ), is a possible mechanism for forming a spiral in an ecological context. It 

formed spirals in all three models. Spiral formation is not sensitive to the length 

of the yeaxly cycle the river is periodic (over a critical length). The spirals axe 

robust to spatial heterogeneity if solitons are emitted by the patch, as in the 

predator-prey model, but not if a wave front with a wake is spreading out from 

the patch, as in the 3 stage epidemic model. Spirals maintain their integrity while 
interacting provided the cores are not affected. Long range dispersal does not 

affect spiral waves as the dispersing individual either lands on the wave itself or 
in a trough, neither outcome altering the spiral dynamics. 

14.5 Conclusions 

The aim of this thesis was to remove a biological inaccuracy from some reaction- 
diffusion models which represent ecological epidemics and invasions. The feature 

to remove from the reaction-diffusion models is the ability for tiny populations 
to grow as large populations do. This was removed from the models by the 

addition of a threshold or an Allee effect, allowing no growth below a certain 
density. It was important that there was some way to predict the dynamics of 
the systems of the models. A semi-numerical method, the Shooting method, was 
then devised to make these predictions. The success of the Shooting method was 

only compromised by the limitations of the numerical integration method used 
to deal with discontinuities in the growth function. 

This initial success threw up another problem to be solved; in models that had 
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oscillatory dynamics in the wake behind the wave front or limit cycles, if the 

trough behind the wave front dipped to densities near those of the threshold, 

the wave died pit behind the front, leaving a soliton wave. Although this may 

occasionally occur in ecological systems, it is far from usual. So mechanisms 

which would allow establishment of the invasion or epidemic behind the front 

were looked for. 

Both intrinsic and extrinsic factors were considered. Mobile individuals may oc- 

casionally travel distances longer than those associated with diffusion. Spatial 

inhomogeneities may cause formation of persisting patterns or local sources for 

the invasion or epidemic. There may be seasonality in the contact or reproduc- 
tive rates of the species concerned. All these ideas had some success at helping 

establishment of the invasion or epidemic behind the wave front. 

So the result of this work is that the models have been modified to be more 
biologically realistic in two ways; by removing regrowth from low densities and 

adding individual and environmental heterogeneities. 

14.6 Further Work 

Time has not permitted certain questions raised by this work to have been fully 
investigated. 

The reaction-diffusion models with no regrowth from low densities are hopefully 

good approximations of stochastic models. The next step is to formulate stochas- 
tic models to allow a direct comparison. 

The initial innoculum in every simulation had to be large enough to spread out 
without falling beneath the threshold. The relationship between the initial con- 
ditions and the thresholds should be worked out, as this has implications both 
for releasing locally extinct species and controlling pest species and epidemics. 
Knowing the minimum size and shape the innoculum has to be to be successful 
would also save computer time as some simulations of high threshold systems 
have to be repeated to find the minimum innoculum. 
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Inaccuracies in the Shooting method axe laid at the door of the numerical in- 
tegration package used to simulate the models. A program should be found or 
developed which restricts the length of time steps so that the discontinuity is not 
over stepped in either the simulations of the original or the transformed mod- 
els. Such a program would be very computationally intensive and would take 
a very long time to run simulations, but is necessary to simulate models with 
discontinuities in value or slope. 

In all the models considered in this thesis, only one component is mobile. This 

is unrealistic in many systems. The properties of wave fronts in systems where 
more than one component is mobile should be considered in a similax way to 
those in the thesis. 

Predicting the threshold value which turns a wave train or wave front with a wake 
into a soliton has not been investigated in this thesis. An attempt was made for 

the predator-prey model by (Gurney et al. 1998), but this was based on many 
assumptions which do not always hold, even for the model it was devised for. A 

bisection search could be written but would not be insightful into the processes 
dictating this change in behaviour. 

The critical patch size and shape has not fully been investigated in the models 
with spatial heterogeneity. The critical period of time the river has to be crossable 
to allow a spiral should also be investigated. 

The spatially heterogeneous 3 stage epidemic model shows that patches of reduced 
carrying capacity of suseeptibles help the epidemic to persist behind the wave 
front. If a4 stage epidemic model were used, would vaccination in patches create 
the same pattern? 

One problem encountered while investigating the affects of long range dispersal, 

spiral formation and seasonality on the predator-prey an 2 stage epidemic models 
was that the choice of spatial and temporal scales was arbitraxy. This may 

mean that observed effects are axtifacts of unrealistic parameterisation. The work 
investigating persistence mechanisms for the 2 stage epidemic and predator-prey 
models should be repeated with real parameter sets. 
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In the last part, patterns were formed which were claimed to be possible results of 
individual and environmental heterogeneities. If these patterns are to be looked 
for in the environment, methods should be found to identify these patterns. 
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Appendix A 
Solutions of 

dn 
TZ 

ý/-o 
= vRo - g(n) dz 

n(O) = no , 

0(0) = 00 (0.0.2) 

axe sought. This is equivalent to 

d10 
= -y(n, vR, 0) 

dn 
O(no) = Oo (0.0.3) 

where 
, y(n, vn, 0) =- vR - 

g(n) (0.0.4) 
0, 

The solution of this system is represented by O(n, vR, Oo) and 0, (v) is defined 

such that O(n, v, 0, (v)) -ý 0 as n --+ 1-. 

Equation (0.0.4) implies that 

Vl > V2 -y(n, vi, 0) > y(n, v2,0) , (0.0.5) 

which in turn implies that, so long as 0(n, vj, 00) 

Vl > V2 =: ý O(n, vi, Oo) > 0(n, V2 , 
00) 

- (0.0.6) 

Now 2 trajectories are considered, the first calculated with phi(no) = 0, (vi) and 
v, R vi, and the second calculated from the same initial condition but with 

VR V2 < v1. The first trajectory hits (1,0). Inequality (0.0.6) shows that while 
the first trajectory is above the N-axis, the second trajectory thus crosses the 

n axis = 0) at or to the left of (1,0). If it hits (1,0) then we know that 
Oc(Vl) Oc(V2)- If it crosses to the left of (1,0) then the phase plane analysis 
shown in Figure 2.1c implies that to cause it to hit (1,0) we must use ail increased 

value of O(no), so oc(vl)< Oc(V2)- Hence, we know that 

Vl > V2 #. Oc(Vl) :5 Oc(V2) 
- (0.0.7) 
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