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Abstract

In this thesis, we concern ourselves with generation of frequency combs in ring and Fabry-
Pérot resonators possessing intracavity fields of; vectorial field components, counterprop-
agating field components or a combination of the two, with a wide range of applications
including telecommunication, spectroscopy and quantum technologies. For counterprop-
agating fields in the ring resonator, we characterise the formation of robust stationary
states formed by light plateaus separated by two local switching fronts. Such states are
due to nonlocal cross coupling and allow for frequency combs to switch from one field to
the other by simply tuning the input laser frequency. Exact expressions for the distance
between fronts and for plateau powers are provided which demonstrate an unusual high
degree of control over pulse and plateau duration upon changes of one of the input laser
frequencies, where light plateaus are generally self-starting for a wide range of parame-
ters. In the Fabry-Pérot resonator, ranges of existence and stability are determined for
dark cavity solitons, where we find that nonlocal coupling leads to strongly detuned dark
cavity solitons when compared with ring resonators. This shift is a consequence of the
counterpropagation inherent to Fabry-Pérot resonators. The existence and stability of
dark soliton solutions are dependent on the size and number of solitons in the cavity due
to nonlocal coupling. Long-range interactions between vectorial dark cavity solitons are
induced by the formation of patterns via spontaneous symmetry breaking of orthogonally
polarised fields. Turing patterns of alternating polarisations form between adjacent soli-
tons, pushing them apart such that a random distribution of solitons spontaneously reach
equal equilibrium distances, which enhances the two-component frequency comb through
the formation of regular soliton crystals (‘self-crystallisation’). This phenomenon gener-
alises to both Fabry-Pérot and ring resonator systems, where in addition, we discuss the
possibility of vectorial dark-bright solitons demonstrating nontrivial breathing dynamics.
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Chapter 1. Introduction

1.1 Motivations

In this thesis, we concern ourselves with the optical Kerr effect. This phenomenon was
first discovered by Kerr [1,2] in 1875 and describes a nonlinear optical effect in which the
refractive index of the medium changes proportionally to the intensity of the applied elec-
tric field. The Kerr effect is responsible for various nonlinear optical phenomena, including
self-focusing, self and cross phase modulation, third harmonic generation, modulation in-
stability and four wave mixing (FWM), of which the latter phenomenon finds itself at
the centre of increasing attention. FWM describes the interaction between different fre-
quency components of light, mediated by the nonlinear medium, leading to the generation
of new frequencies. This redistribution of energy into frequency sidebands leads to the
formation of a coherent set of equally spaced spectral lines around the driving frequency.
The resulting spectra is known as a frequency comb. The generation of optical frequency
combs [3] is an active area of research due to the wide range of practical applications that
span across various fields including telecommunication [4,5], spectroscopy [6,7], quantum
technology [8,9] and in the fundamental studies of complex dissipative structures. In 2006,
critical developments in the area of frequency comb generation won the Nobel Prize in
Physics [10], owing to their importance.

A very high intensity field is required to observe significant contributions from the Kerr
effect. Microresonators provide an exceptional platform for inducing optical nonlinearities
due to their ability to enhance the optical power circulating within the resonator. This is
due to constructive interference between the the cavity mode and the incident field, induc-
ing an intracavity field of significantly higher power then the driving field. Microresonators
are designed to confine light via mechanisms such as whispering gallery modes (WGM)
or Fabry-Pérot resonances, resulting in strong optical confinement to a small mode area.
Such devices allow light to circulate the resonator many times before escaping the cavity,
effectively increasing the interaction length between the light and the material. As such,
nonlinear effects can be achieved at remarkable low driving power. Optical frequency
combs were first observed monolithic microresonators in [11], and have henceforth seen
great interest.

In the temporal domain, frequency combs take the form of a periodic temporal struc-
ture, such as a train of optical pulses. Temporal cavity solitons (TCS) [12, 13] can be
key elements for broadband optical frequency combs [14]. TCSs are a special class of
cavity solitons that originate in dissipative optical resonators under the action of external
driving, diffraction [15, 16] and/or group velocity dispersion [17–23], where generally op-
tical structures may occur in the longitudinal direction (temporal patterns) or along the
transverse directions (spatial patterns). Here, the Kerr effect introduces an intensity de-
pendant refractive index, crucial to the formation of solitons. The change in the refractive
index will be greatest at the peak of the intensity such that, as the light propagates, the
Kerr effect acts to increase the peak intensity and narrow its intensity profile. An electric
field of Gaussian transverse profile will experience a lensing effect, whereby the Kerr effect
induces an optical path similar to a convex lens [25]. In the case of a spatial pattern,
soliton formation occurs due to the balance of Kerr nonlinear interaction (self-focusing)
and diffraction (defocusing) [15, 16]. In this thesis, were restrict our investigation to phe-
nomena in which the transverse components of the electric field do not change significantly

3



Chapter 1. Introduction

in time. In doing so, we may consider the electric field component which evolves over the
longitudinal coordinate. For an optical pulse with temporal profile, the Kerr effect is also
present, as the change in refractive index is largest at the centre of the pulse compared to
the leading and trailing components. Here, nonlinear self-focusing occurs longitudinally,
shortening the pulse duration. Soliton formation is then reliant on the balance of Kerr
nonlinear interaction (self-focusing) and chromatic dispersion (defocusing).

Bright TCSs were first observed in macroscopic fibre ring resonators [17]. Kerr nonlin-
earity is induced in optical silica fibres due to the small mode area of the fibre cross section
and the long interaction length of a spool of fibre. Shortly after, bright TCS were observed
in WGM microresonators [18]. Now, ring resonator geometries are regularly used for the
generation of optical frequency combs via bright TCS. More recently, dark TCSs have
been investigated in the regime of normal group velocity dispersion and observed in fibre
ring [19] and micro-ring [20–23] resonators. As opposed to bright TCSs, dark TCSs form
a localised dip in power on a high power continuous wave background, and can be used
to generate frequency combs with higher power conversion efficiency [23]. In both cases,
light propagation in ring resonators is well described by the longitudinal version of the
Lugiato-Lefever equation (LLE) [24]. The LLE originally described the transverse, dissi-
pative spatial structures in passive optical systems with diffraction and was later adapted
to describe pattern formation along the cavity length [26–28]. Furthermore, the gener-
ation of bright TCSs has recently been experimentally demonstrated in microresonators
with Fabry-Pérot geometry [29]. This has expanded the design space for microresonator
application in frequency comb generation.

1.2 Objectives

This thesis aims to present new and interesting optical phenomenon achievable in exper-
imentally realisable microresonators displaying third order nonlinearity (Kerr effect) via
analytical and numerical methods. We give particular attention to novel methods of fre-
quency comb generation via temporal cavity solitons and patterns in the regime of normal
group velocity dispersion. By considering configurations of ring and Fabry-Pérot geom-
etry, we study temporal pattern formation in intracavity fields composed of; orthogonal
polarisation components, counterpropagating components, or a combination of the two.
We derive microresonator models of generalised Lugiato-Lefever equation form, in which
the interaction of field components presents as self- and cross-phase modulation originat-
ing from the Kerr nonlinearity. Though the derivation and analysis of our models, this
thesis aims to provide analytical and numerical results which forms a theoretical basis to
guide future experimental implementation.

1.3 Layout of the thesis

Chapter 2

We provide a review of the physics of high finesse ring resonators. The material presented
in this chapter will facilitate the results of subsequent chapters, providing the relevant

4



Chapter 1. Introduction

theoretical background required of frequency comb generation in Kerr resonator. We be-
gin with a review of the of whispering gallery microresonator [30,31]. Whispering gallery
modes are presented for cylindrical geometry, while a broader discussion on resonator
geometries and material compositions used in experiment is given. Next we discuss the
operation of micro-ring resonators, and their useful features. A general description of
the the physics of light matter interaction in Kerr nonlinear mediums with normal group
velocity dispersion [32–34] is given, which culminates in a detailed derivation of the longi-
tudinal LLE [28]. This model has been used to great success to describe the propagation of
light in ring resonators. Finally, we discuss the existence and stability of homogeneous and
localised solutions (switching fronts [SF] and dark cavity solitons [DCS]) of the LLE [35].

Chapter 3

We generalise the LLE to include the polarisation properties of the intracavity field fol-
lowing the work of Geddes et al. [36]. The linearly polarised driving laser coupled into
the cavity can be transformed such that the intracavity fields may be resolved into com-
ponents of counter-rotating circularly polarised field components. The now vectorial dark
cavity solitons (VDS) [37] of the ring resonator display features in addition to those seen
for a cavity with a single field due to the possibility of spontaneous symmetry break-
ing (SSB) between polarisation components. SSB of the homogeneous stationary states
(HSS) has been previously investigated in the ring resonator, whereby a linearly polarised
intracavity field suddenly becomes nonlinearly polarised through a small change in control
parameter [38]. Here, we present a SSB Turing instability, found in regimes of the normal
dispersion, which results in the formation of Turing patterns of alternating polarisations on
the high power HSS. SSB of the VDSs result in a useful ‘self-crystallisation’ phenomenon
in which an initially random distribution of VDSs spontaneously form a regular soliton
crystal (RSC) [39]. The formation of soliton crystals was originally performed using phase
gradients to position them into regularly spaced structures [16] and more recently has been
demonstrated through perturbations introduced near avoided mode crossings [40–43], or
an external modulation [44] of the field. The RSC of our system are a result of a self-
organisation mechanism of long range interactions between adjacent VDSs via a SSB of
Turing patterns. We conclude this chapter by characterising the formation of vectorial
dark-bright solitons (VDBS) in regimes of large symmetry breaking.

Chapter 4

We study the interaction of two counterpropagating intracavity field within a bidirection-
ally driven, normally dispersive, ring resonator. This system is described by two globally
coupled integro-partial differential equations of LLE form [45,46]. We use the term ‘global
coupling’ following [47] to describe nonlinear cross terms that couple a point of the res-
onator to all other points in the same resonator via integrals that extend over the round
trip of the cavity. It is the nature of counterpropagation, and the resulting global coupling,
that variations in one field are not necessarily present in the other. Global coupling of the
counterpropagaing fields is found to result in a class of robust stationary states formed by
light plateaus separated by two local(SF). The two SF stationary state forms in only one
of two counterpropagating intracavity fields, leaving the other flat in profile. We provide
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the expressions for the separation of SFs and plateaus power with respect to the control
parameters, and demonstrate an unusually high degree of control over pulse and plateau
duration upon changes of one of the input laser frequencies. Light plateau stationary states
are self-starting from noise over a large range of parameters due to an instability of the
HSSs to inhomogeneous perturbation, resulting from the averaged terms, which allows for
frequency combs to switch propagation direction (moving from one field to the other) by
scanning the frequency of one field. Finally, we show the presence of nonlinear oscillations
of symmetry broken HSS, resulting in a multistability of slow nonlinear oscillations with
SF states and continuous wave outputs.

Chapter 5

We continue our discussion of temporal cavity solitons, but at a difference to the ring res-
onators, we consider a Fabry-Pérot (FP) configuration. Temporal cavity solitons (TCS)
within FP resonators has seen significant interest in recent years, where the generation
of bright soliton in the anomalous dispersion regime has been demonstrated, first studied
theoretically [48, 49] and then demonstrated experimentally in microresonator [29] and
macroscopic fibre resonator [50] settings. The generation of frequency combs produced
by modulational instabilities and Turing patterns have also been demonstrated [51] along
with pulsed driving [52, 53]. In Chapter 5, we model a FP resonator filled with a Kerr
nonlinear medium and investigate the inherent counterpropagation of light under normal
dispersion conditions. We outline the conditions required for the existence of local struc-
tures (switching fronts [SF] and dark cavity solitons [DCS]) and make comparison with the
DCSs of the ring resonator. DCSs are found to be detuning shifted with respect to those
in a ring resonator by the average power of the field over a round trip of the cavity, where
stationary solutions of the FP are described by a modified LLE. Counterpropagation of
light is found to induce nonlocal self coupling corresponding to the averaged power of the
field over the round trip of the cavity. We compare the stationary solutions of the FP
model and their stability with the stationary solutions of LLE [35,54] for the ring resonator
to properly elucidate the effects of the shift in detuning. Nonlocal self coupling of the field
introduces long range interactions between distant DCS. We investigate the effects of these
interactions using oscillatory DCSs, where we present the spontaneous synchronisation of
their oscillations.

Chapter 6

Finally, we consider a high finesse FP resonator as we had previously, but now we gen-
eralise the model in consideration of polarisation effects as described by Pitois el al. [55].
We begin by deriving the integro-partial differential equations of the FP [49], which de-
scribe the two counter-rotating circular polarised fields over the cavity round trip following
from Cole et al. [48]. By performing linear stability analysis on the HSSs of our model,
we identify a codimension-2 bifurcation of two distinct SSB bifurcations corresponding to
symmetry broken HSSs and Turing patterns of alternating polarisations. This bifurcation
structure is found to extend to symmetric vectorial dark solitons (VDS). Due to the pos-
sibility of SSB, the now vectorial temporal cavity solitons [37] display additional features
to those seen for the single field FP [48, 56]. In particular, VDS are found to undergo a
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Turing bifurcation resulting in the formation of patterns of alternating polarisations on
the homogeneous plateau separating adjacent VDSs. We discuss in Chapter 3 the spon-
taneous self-organisation of VDSs due to long rang interactions between adjacent VDSs
mediated by Turing patterns. We generalise the ‘self-crystallisation’ mechanism described
to the FP resonator, and discuss the differences between these two systems in the gener-
ation of regular soliton crystals. We end this chapter by characterising the formation of
dark-bright vectorial solitons, where we present non trivial breathing dynamics of VDBS
originating from nonlocal coupling.
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Chapter 2. Theory of Temporal Cavity Solitons in Ring Resonators with Normal
Dispersion

2.1 Introduction

In this chapter, we review the physics and applications of the ring resonator system to
provide a theoretical and methodological foundation from which we can understand the
results presented in future chapters. This begins in Section 2.2 with a description of the
material properties and geometries of the whispering gallery microresonator platform. In
particular, we highlight the design considerations which make ring resonator geometries
prolific in practice, where a brief overview of the whispering gallery modes (WGM) is
given. An overview of optical ring cavity physics is presented in Section 2.3, where we
discuss the coupling conditions, resonance enhancement and quality factor required for the
enhancement of nonlinear optical effects. The propagation of light in nonlinear dielectric
waveguides is characterised in Section 2.4, where we outline the typical separation of the
transverse mode profile form the longitudinal evolution of the electric field amplitude of the
guided light. In Section 2.5 we provide a description of the ring resonator model and then
in Section 2.6 derive the well-known longitudinal Lugiato-Lefever equation (LLE) from
first principles [28]. This mean field model, originally derived to described the transverse
directions [24], has been use to great success to describe the propagation of light in high
finesse ring resonators along the longitudinal coordinate [26]. Finally, we present typical
solitonic solutions of the (LLE) in Section 2.7 using numerical and analytic methods.

2.2 Whispering gallery mode microresonators

2.2.1 Micro-cavity devises

In general, a ring resonator system is composed of a waveguide that forms a closed loop.
This may take the form of a loop of optical fibre, or a dielectric media composed of a
closed geometry forming a resonant cavity, such as a sphere, disc, etc.. In the latter
case, confinement of the light does not require an internal dielectric boundary, instead
light propagates close to the outer curved boundary as a optical whispering gallery mode
(WGM).

The phenomenon of whispering galleries was first described by Lord Rayleigh in 1912
[57], where he observed that sound waves could travel along curved surfaces with minimal
attenuation, allowing high frequency ‘whispers’ to be heard clearly across large distances.
This effect was notably observed in dome of St. Paul’s Cathedral in London. The physics

Figure 2.1: Example of whispering gallery microresonator geometries, typically found in
practice [3, 31].
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of acoustic whispering galleries were later applied to electromagnetic waves, leading to the
development of optical WGM resonators. In optical WGM resonators, light is confined by
total internal reflection along the boundary of a curved surface at which two dielectrics
materials interface. Dielectric optical resonators can be fabricated in various geometries
and composed of different materials [3, 58]. Cylindrical (a), ring (b), toroidal (c) and
spherical (d) microresonator geometries are shown in Fig. 2.1, where in each case, light is
coupled into the cavity via an evanescent field extending from an adjacent bus waveguide.
Each waveguide shape is capable of storing the electric field with very low loss over the
round trip.

The optical phenomena exhibited by a WGMmicroresonator is dependant on the mate-
rial from which it is fabricated. We consider a resonator made of a Kerr nonlinear material,
which can achieve normal group velocity dispersion. Amorphous silica glasses, such as sil-
icon nitride (Si3N4), are commonly used in integrated photonics and can provide normal
dispersion in the visible and near-infrared regions. In addition, silica microresonator have
been shown to produce strong Kerr effects. Resonators composed of silica glass are rou-
tinely used for the generation of temporal cavity solitons [3,58]. Confinement of the light
is greatly influenced by the ratio of the refractive indices of the core media, composing the
resonator, and the cladding media, surrounding the resonator.

2.2.2 Guided mode solutions

WGM solutions have come to represent the family of optical modes associated with mi-
croresonators in general [59], and are well covered in the literature for spherical [60],
cylindrical [30,61,62], and toroidal [62,63] geometries. Example microresonators of differ-
ent shapes are shown in Fig. 2.1 for disc (a), ring (b), toroid (c), and sphere (d) cavities,
where in each case light propagates azimuthally, confined near the outer curved surface
of the cavity due to total internal reflection. The electric fields of the WGM may be
decomposed into eigenmode solutions of the Schrödinger equation

∇2ψ(x, t) +
n2

c2
∂2t ψ(x, t) = 0. (2.1)

This is obtained directly from the Maxwells equations [33] in the absence of free charges
and currents, where ψ may represent either the electric E or magnetic H field. We assume
a low loss resonator with linear atomic polarisation, whereby the dielectric constant may
be approximated ϵ ≈ n2. In addition, the refractive index n is assumed to be independent
of the cavity coordinates within the medium, such that the optical modes are presumed to
maintain their polarisation as they travel through the waveguide. This significantly sim-
plifies Maxwells wave equation where the modal distribution may be obtained by solving
a Helmholtz equation, as we will show here.

The solutions of the scalar equation (2.1) belong to two distinct classes; transverse
electric (TE) and transverse magnetic (TM). As is conventional for the WGMs of cylinder
geometry; TE modes possess an axial magnetic field parallel to the outermost curved
surface, whereas TM modes possess an axial electric field parallel to the outermost curved
surface. For TE modes, the electric field oscillates within the plane of the cylinder. Hence,
these two classes describe optical modes of orthogonal polarisation. In what follows we
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consider the electric field component of TM solutions.
This thesis concerns itself with microresonators of cylindrical geometry (specifically

micro-ring resonator geometry), in which the height of the resonator is much smaller then
the diameter. In this case the dominant axial guiding mechanism will be the refractive
index change at the boundary. We begin with a micro-disc resonator, where it is useful
to convert to cylindrical coordinates (r, ϕ, h) to obtain solutions for the intensity profile,
with radial distance r from the centre of the resonator, azimuth angle ϕ and resonator
height h. We assume solutions of the form E(x, t) = F (r, h) exp(iω0t − imϕ), such that
we may rewrite Eq. (2.1) as

∂2rF (r, h) +
1

r
∂rF (r, h) + ∂2yF (r, h) +

[
k20n

2 − m2

r2

]
F (r, h) = 0. (2.2)

The separation of variables leads to the introduction of the azimuthal mode number m,
which corresponds to the number of effective wavelengths the field undergoes as it makes
a full revolution around the cavity, and assumes an integer value corresponding to the
resonance condition. In order to resolve the WGM solutions, we make the critical assump-
tion that we may perform a separation of variables F (r, h) = F (r)F (h), applicable for
microresonators presenting a rotationally symmetric cross-sectional area. Form (2.2), we
obtain the radial equation

∂2rF (r) +
1

r
∂rF (r) +

[
k20n

2
eff − m2

r2

]
F (r) = 0, (2.3)

with effective index neff = (n2 − k2y/k
2
0)

1/2 defined by the axial confinement wavenumber
ky. The solutions of the Bessel equation (2.3) are Bessel functions of the first Jm and
second Ym kind. We solve Eq. (2.3) both inside the waveguide medium (core) and in
its surroundings (cladding), implementing the appropriate boundary conditions. Ym is
singular at the origin, and as such, we only consider the well behaved Jm solutions within
the core. Outside of the core, we retain both Bessel functions, which may be expressed in
terms of the Hankel functions H±

m = Jm ± iYm. Hankel functions correspond to inward
H−

m and outward H+
m propagating cylindrical waves, of which, we consider only outward

propagating waves here. Hence, the solutions of Eq. (2.3) may be expressed as [61,62],

F (r) ∝

{
Jm(k0neffr), if r ≤ Ro,

H+
m(k0neffr), if r ≥ Ro,

(2.4)

and the effective index takes the form within the core neff = (n2core − k2y/k
2
0)

1/2 and within

the cladding neff = (n2clad − k2y/k
2
0)

1/2, where ncore, nclad are the indices of the disc media
and cladding, respectively, with the constraint that k0ncore > ky > k0nclad for guided
solutions. Bessel functions of the first and second kind are oscillatory in character, where
Jm describes the oscillation of the electric field radially from the centre of the disc. This
may be illustrated in the asymptotic limit k0neffr ≫ 1, with, [61,64]

Jm(k0neffr) ≈
√

2

πk0neffr
cos{κ(r,m)}, (2.5)
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where κ(r,m) = k0neffr − mπ/2 − π/4. Throughout this thesis, we assume excitation
of the fundamental mode of the resonator. This represents the simplest possible mode
structure, consisting of a single radial oscillation of the electric field envelope located near
the core-cladding boundary, as is commonly implemented in practice. Outside of the core,
the electric field decays exponentially from the resonator as an evanescent field. This is
described by the Hankel function, which can be expressed in asymptotic limit as,

H+
m(k0neffr) ≈

√
2

πk0neffr
exp{iκ(r,m)}, (2.6)

where the effective index takes imaginary form within the cladding neff = i|neff|. The field
outside of the resonator medium is commonly expressed in terms of the modified Bessel
function of the second kind Km ∼ exp(−k0|neff|r)/k0|neff|r, which in general is defined
as H+

m(ix) ≡ im+1Km(x)π/2. This component of the guiding mode is non-propagating,
localised near the core-cladding boundary, and carries zero net power in the direction
perpendicular to the waveguide surface. In the presence of another nearby structure (such
as a bus waveguide), coupling can occur when the evanescent tails of the two waveguides
overlap, and energy can be transferred via optical tunnelling. This is a primary mechanism
by which light is coupled into the cavity in practice.

We note that the asymptotic expressions for the Bessel and Hankel functions are ap-
propriate when the radius of the disc is much larger than the wavelength (k0neffr ≫ 1).
This is generally the case in practice, where typical high-Q microresonator systems have
radii 10-500 µm and are driven by lasers of approximate wavelength 1 µm [3,61].

The axial modes are obtained by solving the equation

∂2yF (y) + k20[n
2 − n2eff]F (y) = 0, (2.7)

which was obtained form Eq. (2.2) along with the radial equation (2.3) during the sepa-
ration of variables, and yields the modal distribution of a slab-like waveguide [61,62]

F (h) ∝


exp(−qh), if h ≥ h0,

cos(ph), if − h0 ≤ h ≤ h0,

exp(qh), if h ≤ −h0,
(2.8)

where p = k0(n
2
core − n2eff)

1/2, q = k0(n
2
eff − n2clad)

1/2, and the core media occupies the
domain |h| ≤ h0, r ≤ Ro, with cladding for |h| ≥ h0, r ≥ Ro. It is clear to see that the
waveguide modes of Eqs. (2.7) are oscillatory within the core, and presents an evanescent
tail outside the core in which the electric field exponentially decays, much like the radial
confinement. Similar to the radial case, light may be coupled into and out of the resonator
via the axial evanescent field, as is common in practice.

In this thesis, single mode operation is assumed. Generally, the number of modes
supported by the cavity is dependant on the confinement of the WGM, where waveguides
possessing a small cross-sectional area and large core–cladding index difference provide
greater confinement of the circulating light. A single mode waveguide only supports the
fundamental mode, in which light is confined to either TM or TE modes, and is charac-
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terised by a single radial oscillation of the electric field within the disc. Disc resonators
are generally multimode by their nature, due to the lack of an inside surface to provide
tight confinement of the WGM. For a micro-disc, the radial confinement of the WGM is
formally equivalent to a potential well V (r) ∼ (m/nr)2 whereby the WGM occupies a
local region of high effective radial index, with

nr =

√
neff − m2

k20r
2
. (2.9)

WGMs do not require an inner surface to complete the confinement of the optical mode.
Instead light is confined near the perimeter of the cavity due to ‘optical inertia’, inhibiting
the field from approaching the centre of the disc. We may define an inner caustic radius
Rinner = m/k0ncore within which the light possess too great an optical inertia to be confined
via total internal reflection. The oscillatory guided mode is bound between the outer
surface of the microresonator and this inner caustic radius. For radii below Rinner, the
electric field may be described in terms of the modified Bessel function of the first kind,
defined as Im(x) ≡ i−mJm(ix), displaying oscillations of decreasing amplitude as r → 0,
where the field is considered to decay evanescently from the inner caustic radius. We
may avoid the exciton of parasitic higher order modes within a micro-disc resonator by
removing the interior of the disc, forming a micro-ring resonator. Should the diameter of
the inside surface be less than the inner caustic boundary, the ring will continue to support
similar whispering gallery modes, but when the radius of the inner surface is greater than
the inner caustic, the electric field is forced to be exponentially decaying, leading to greater
confinement of the optical mode to a smaller mode area. The radial confinement within a
ring can be described as

Fring(r) ∝


Im(k0neffr), if 0 ≤ r ≤ Ri,

AJm(k0neffr) +BYm(k0neffr), if Ri ≤ r ≤ Ro,

Km(k0neffr), if r ≥ Ro,

(2.10)

where Im(k0neffr) governs the electric field form the inner surface Ri to the origin. As
the origin is no longer within the core, we must reintroduce the now well behaved Bessel
function of the second kind into our expression of the electric field within the resonator
core, Ri ≤ r ≤ Ro, with constant coefficients A,B. In addition to suppressing higher order
modes, the interior surface of the ring leads to greater condiment of the fundamental mode
to smaller cross sectional area closer to the outer surface. This leads to stronger light-
matter interaction critical for induing nonlinear optical effects, and reduced losses allowing
light to circulate the cavity for longer.

In general, should the diameter of the ring be significantly larger than the width of
the waveguide [(Ro − Ri) ≪ Ro], we can no longer perform a separation of variables
F (r, h) ̸= F (r)F (h). In such systems, the cylindrical WGM approximation is unsuitable
and we must rely on numerical evaluation of Eq. (2.2) to obtain the modal distribution of
the ring [65]. The inability to perform a separation of variables means the resulting mode
will be hybridised between TM and TE modes. In this thesis, we make the assumption
of qusi-TM or qusi-TE fields. This amounts to the assumption that we may treat the
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intracavity field as TM or TE in approximation, even if the modes are partially hybrid.
Nonetheless, in certain limits the modal distribution may be approximated analyticity. For
the rectangular waveguides commonly produced for photonic integrated circuit technolo-
gies [3], the radial model distribution may resemble a straight slab-waveguide [62] similar
to the y-direction confinement (2.7), whereas the modal solutions of the micro-toroid res-
onator can be studied analytically through perturbative methods [63].

2.2.3 Birefringence and polarisation mode dispersion

Here, our investigation pertains to waveguides that are single mode as discussed in Section
2.2.2. Contrary to the name, a single mode waveguide does in fact display two degener-
ate polarisation modes, TE and TM, which support orthogonally polarised electric field
components [34]. In this thesis, we consider two scenarios; either the waveguide preserves
the linear polarisation of the driving field (Chapters 4 and 5), or the two polarisation
modes are degenerate (Chapters 3 and 6). These two scenarios require different design
considerations.

If we presume an ideal case in which the waveguide cross-section has perfect rotational
symmetry, a linearly polarised electric field will maintain its polarisation as it travels
along the waveguide. In practise, small random variances in the shape of the waveguide
along with stress-induced anisotropy and thermal effects break the symmetry of the cross-
section, such that the polarisation modes are no longer degenerate. The propagation
constant β of each component of the electric field is dependant on its polarisation as a
result. This phenomenon is referred to as birefringence. The polarisation components
within the birefringent waveguide exchange power as they propagate with beat length
LB = 2π/|βx − βy|, where βx, βy are the wavenumbers of the orthogonal linearly polarised
components, and the group velocity dispersion β2 and nonlinear coefficient γ are the same
for both polarisations. This process is particularly important for optical pulses as the
intensity profile of an optical pulse which excites both polarisation modes will broaden as
orthogonal components of the pulse will propagate at different speeds. This is referred to
as polarisation mode dispersion.

One method to ensure the preservation of a linearly polarised state is to fabricate a
strong birefringence in the waveguide. By driving light linearly polarised along the axis of
smallest propagation constant (the slow axis), polarisation fluctuations due to the coupling
between the polarisation modes have negligible effects on the polarisation state. This can
be done by introducing a strong geometrical asymmetry, such as a large aspect ratio for
the rectangular or elliptical cross section. Micro-ring resonators are natural polarisers due
to phase-matching constraints. In particular, birefringence causes the effective refractive
index for TE and TM modes to be different, leading to different resonance conditions for
each polarisation. This is beneficial should we wish for light to maintain its polarisation
as it propagates.

Due to the universality of the generalised Lugiato-Lefever equations presented in this
thesis, the polarisation degenerate models may be used for both macroscopic and micro-
scopic resonators. As of now, polarisation degeneracy has only been observed in optical
fibres [66] and macroscopic fibre resonators [67, 68]. Optical fibres do not have the tight
tolerances of the microresonator which confines light into very a small mode area, allowing
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for easier engineering of polarisation degeneracy.

2.2.4 Propagation losses

The optical losses we consider within the ring resonator system are attributed to material
absorption, the scattering of light, and characteristically of WGM resonators, bending
losses. While losses attributed to absorption and scattering are also present in straight
waveguides, bending losses unique to ring resonators, and generally curved waveguides.

Absorption

Absorption losses occur when a portion of the optical power is converted into heat or
other forms of energy due to interaction with the material composing the waveguide [3].
In this thesis, we consider silica glass waveguides. This material platform is widely used for
optical telecommunication fibres due to their low absorption proprieties. That said, during
the fabrication of microresonators unintentional dopants, defects, or residual fabrication
impurities can contribute to absorption losses. Losses to absorption are responsible for
thermal effects [69,70].

Scattering

As light propagates along a resonator, imperfections in the waveguide can cause light to
couple out of the guided mode. Such imperfections include variations in material compo-
sition or density. This introduces small variation in the refractive index, and is the origin
of Rayleigh scattering [71, 72]. Another mechanism of scattering found in ring resonators
is associated with residual crystalline structure of the glass. Despite our assumptions of
amorphous silica glass, short scale crystalline structures may still be present in the waveg-
uide. Interactions with these crystalline structures may introduce Raman scattering [98]
(inelastic scattering of photons by vibrational modes of the medium) or Brillouin scat-
tering [99] (arises from interaction between light and thermally induced acoustic waves).
Finally, irregularities at the core-cladding boundary due to fabrication imperfections is
another mechanism for scattering. Roughness at the surface of the silica waveguide is
particularly important in integrated photonics and etched structures [45,73–75].

Light scattered by these mechanism will either exit the waveguide, couple to a different
optical mode with the same resonant frequency or couple into the same mode travelling
in the opposite direction.

Bending losses

The bending losses of a waveguide refer to the loss of optical power due to the curvature
of the waveguide. This is due to the fact that components of the light travelling at larger
radius within the waveguide travel a larger distance. For microresonators, this introduces
a caustic radius at which the azimuthal phase velocity of the whispering gallery modes
exceed the speed of light in the cladding, beyond which light escapes the cavity in a radial
direction. If we consider a microresonator with cylindrical geometry, this effect can be
quantified in the radial refractive index [Eq. (2.9)] which increases in value with greater
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Figure 2.2: Light form the adjacent bus waveguide may enter and leave the cavity via the
coupling mechanism (evanescence field for a microresonator, or a beam splitter for a fibre
loop ring resonator, etc.). The coefficients of power transmissivity and reflectivity of the
electric field are shown as T and R, respectively.

radial distance from the centre of the resonator. We may then define the outer caustic
radius at which the guided light radiates as Router = m/ncladk0, beyond which light may
exit the guiding mode. For microresonators, the losses associated with the whispering
gallery modes can be viewed as a tunnelling of the guided field beyond the boundary
formed by the resonator edge and outer caustic radius into a region of lower potential
energy. At Router, the evanescent field protruding from the resonator has azimuthal phase
velocity equal to the phase velocity of the cladding, beyond which the field begins to freely
propagate radially outwards. For high-Q resonator, the evanescent field extends only a
short distance from the surface of the resonator (within a wavelength), and as such the
bending losses are small.

Nonetheless, bending losses impose a limit on minimum possible size for a ring res-
onator, as smaller rings possess greater curvature and therefore higher bending losses.
These losses can be mitigated through the design of the rings geometry and material com-
position. In particular, bending losses can be reduced by selecting a material platform
with a large difference in refractive index between the core and cladding. When the step
in refractive index between core and cladding is very high, we can achieve a strong con-
finement of the electric field within the waveguide, which enables light guiding in bends
with very small radii without fatal radiation losses. Thus the material choice is of vital
importance for microresonator systems.

2.3 Fundamentals of ring resonators

2.3.1 Coupling via evanescent fields

Evanescent field coupling is a key mechanism used to transfer light between optical waveg-
uides and microresonators. As described in Section 2.2.2, the evanescent field is a non-
propagating component of the transverse mode, exponentially decaying outside the core.
By situating the microresonator sufficiently close to the bus waveguide, their evanescent
fields overlap, allowing for energy to transfer from the waveguide to the resonator and
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vice versa within the overlapping region. This allows for tunable coupling by setting the
separation of the waveguide and microresonator. The general relationship between the
incident field E1 and the transmitted field E2 within the bus waveguide, along with the
circulating fields with the ring cavity entering E3 and leaving E4 the coupling region can
be represented in the spectral domain by the scattering matrix(

E4

E2

)
=

(√
R i

√
T

i
√
T

√
R

)(
E3

E1

)
, (2.11)

where the coefficients of refection R and transmission T are real. The coupling coefficients
satisfy the relation T+R = 1, which amounts to the assumption that there are zero losses at
the coupling point. In general, the coupling region extends over a considerable proportion
of the ring. This is particularly true for micro-ring resonators, but here we assume a
singular coupling point without loss of generality by implementing to appropriate phase
matching between the waveguide and resonator as is performed in experimentally. The
driving field can be related to the output field through the relation

E3 = aeiθE4, (2.12)

where 1 − a is the loss of the electric field over a single round trip of the cavity and θ
is the phase acquired over the single round trip. The phase shift can be expressed as
θ = Lnω/c = ωτR which represents the radian frequency over the round trip time τR. As
such, we recognise θ as a normalised frequency detuning between incident field and the
cavity with circumference L and refractive index n. Solving Eqs. (2.11) and (2.12) we
obtain expressions for the fields

E1 = 1, E2 =

√
Re−iθ − a

e−iθ − a
√
R
, E3 =

ia
√
T

e−iθ − a
√
R
, E4 =

i
√
T

1− a
√
Reiθ

. (2.13)

2.3.2 Resonance enhancement

Constructive interference at the coupling point results in a circulating intensity much
larger than the incident field. This effect is reliant on the coherence of the deriving
field. An incoherent driving field will result in a circulating power equal to the incident
power. The significant larger field intensity within the cavity results in dramatically
enhanced nonlinear effects. As such, this coherent excitation of the circulation field is
highly desirable for application as a strong nonlinear response can be obtained with a
driving field of comparatively low input power. The ratio of the incident and circulating
field can be determined by solving Eqs. (2.11) and (2.12), yielding

E3

E1
=

1
√
Taeiθ

1−
√
Raeiθ

(2.14)

with power ratio
|E3|2

|E1|2
=

(1−R)a2

1− 2
√
Ra cos(θ) +Ra2

. (2.15)
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Figure 2.3: Plot of the normalised ratio between incident and circulating field intensities
in a high-Q linear cavity without dispersion. Three resonances are visible with linewidth
∆ωFWHM, located at detuning values θ = 0, 2π, 4π and separated by the free spectral range
∆ωFSR.

The theoretical maximum power ratio between the incident and circulating fields is
achieved when the incident light is resonant with the cavity. Resonant modes correspond
to a phase shift θ that is an integer number m of 2π accumulated over a round trip. As
such, the resonances are distributed as θ = 2πm in the frequency domain as is shown
in Fig. 2.3. Here we can see that successive resonances in the frequency domain are
separated by the free spectral range (FSR) of the cavity defined as ∆ωFSR = 2π/τR. In
the absence of dispersion, these modes are equally spaced in the frequency domain. Under
the ideal conditions of low transmission T ≪ 1, and negligible losses a ≈ 1 the highest
possible power ratio is achieved |E3|2/|E1|2 = (1 +

√
R)/(1 −

√
R) ≈ 4/T . For a power

transmission coefficient of 10% (T = 0.1), the circulating field |E3|2 is 40 times larger than
the incident field |E1|2.

2.3.3 Coupling efficiency

Utilising the field expressions (2.13), we may define the coupling efficiency parameter

η =
|E1|2 − |E2|2

|E1|2

∣∣∣∣
θ=0

=
(1− a2)(1−R)

(1− a
√
R)2

(2.16)

When a system is tuned to resonance, the energy transfer into the resonator becomes more
efficient due to optical impedance matching, maximising power transfer. The strength of
resonance enhancement depends on how efficiently light is coupled into the resonator. If
coupling is poor, insufficient energy enters the resonator, limiting the enhancement effect.

Critical coupling is achieved when the internal losses of the cavity is equal to the loss
due to transmission of the electric field at the coupling point a =

√
R [30,76]. Under such

conditions, the output field E2 is zero at resonance as all of the incident light coupled to
the ring is stored and lost within the resonator. When the critical coupling conditions are
met, the coupling efficacy becomes η = 1. In practice, achieving critical coupling ensures
optimal energy transfer between the bus waveguide and the resonator, maximizing the
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performance of the device.

2.3.4 Cavity finesse and quality factor

The cavity finesse is defined as the FSR of the cavity divided by the linewidth of the
resonance [taken to be the full width at half maximum (FWHM)] with,

F =
∆ωFSR

∆ωFWHM

(2.17)

Using the field expressions (2.13) we may evaluate the FWHM as E4(θFWHM) = E4(θ =
0)/2 by assuming a narrow resonance cos(θ) ≈ 1− θ2/2, yielding

∆ωFWHM =
1

τR
θFWHM =

1− a
√
R

τR
√
a
√
R
. (2.18)

The cavity finesse is then

F = 2π

√
a
√
R

1− a
√
R

(2.19)

The cavity finesse quantifies the intensity build-up within the resonator. Physically, this
quantity represent the number of round trips (up to a factor of 2π) light travels within
the ring, and therefore, the number of times the electric field interacts with the coupling
to the bus waveguide.

The quality factor (Q-factor) is defined as 2π times the ratio between the energy stored
in the resonator at frequency ω and the energy losses over one cycle cycle of the electric
field, which we write as

Q = ω ×
(

energy stored at ω

power loss per cycle

)
= ωκ−1 (2.20)

This, by definition, is related to the exponential decay rate κ of the cavity. The Q-factor
allows us to quantify impact of losses for a resonator system. An alternative definition for
the Q-factor in terms of the resonance linewidth is

Q =
ω

∆ωFWHM

= F ω

∆ωFSR

= ωτR

√
a
√
R

1− a
√
R

(2.21)

The definitions (2.20) and (2.21) are equivalent in the limit of high-Q and allows us to
express the Q-factor in terms of observable parameters and the cavity finesse. Physically
speaking, the Q-factor quantifies effective interaction time of the propagating light with
the cavity. It represents the number of wavelengths light travels within the ring, before
being lost due to the interaction with the cavity interior.

The performance of the cavity is quantified though cavity finesse and Q-factor. These
properties are used to inform the suitability of the microresonator for its required purpose.
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2.4 The propagation of light in nonlinear dielectric waveg-
uides

In this section, we characterise the propagation of light within dielectric waveguides in
the presences of Kerr nonlinearity. We begin our discussion with the scalar Maxwell wave
equation,

∇×∇× E(x, t) + 1

c2
∂2t E(x, t) = −µ0∂2t P(x, t). (2.22)

This equation is derived directly from Maxwell’s equations [32–34] and describes the free
propagation of the electric field within a dielectric medium, where c is the speed of light
in vacuum which is related to the vacuum permittivity ϵ0 and vacuum permeability µ0
through the relation c2 = 1/µ0ϵ0, and P is the induced atomic polarisation of the medium
due to the electric field E at Cartesian coordinate x and time t. Here, we assume the
electric field maintains a linear polarisation.

2.4.1 Nonlinear atomic polarisation

The response of a dielectric medium under the influence of intense electromagnetic fields
becomes nonlinear. This nonlinearity is due to the anharmonic motion of bound electrons
of the medium under the action of the propagating light, and as such, the polarisation
field P induced by the electric dipole moment of the atoms is nonlinear with respect to
the electric field E . The atomic polarisation of the dielectric medium can be generalised
to the expanded form [32,33]

P(x, t) = ϵ0

[
χ(1)E(x, t) + χ(2)E2(x, t) + χ(3)E3(x, t) + · · ·

]
(2.23)

encompassing the relation between the atomic polarisation and the electric field, where
χ(j) is, in general, a tenser of rank j + 1 and represents the jth order susceptibility of
the medium. It is conventional in the study of nonlinear optics two write the atomic
polarisation in terms of its linear and nonlinear components

P(x, t) = PL(x, t) + PNL(x, t). (2.24)

The leading contribution to the total polarisation is the linear polarisation, which we
define as [32,33]

PL(x, t) = ϵ0

∫ t

−∞
χ(1)(t− t′)E(x, t)dt′, (2.25)

which is characterised by the linear susceptibility χ(1), whose effects manifest through the
refractive index n and channel attenuation α, and can be expressed in terms of the real
and imaginary parts of χ(1) with,

n = 1 +
1

2
Re[χ(1)], α =

ω

nc
Im[χ(1)], (2.26)

respectively. Considering terms of the nonlinear polarisation, the susceptibility tensors
of even order vanish in a media possessing an inversion symmetry at the molecular level.
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In silica glass waveguides, commonly used in practice, the second order nonlinear suscep-
tibility χ(2) (and higher order even order terms) have negligible amplitude and may be
neglected. Therefore, the lowest order nonlinear effects found in silica glass waveguides
originate from the third order term (Kerr nonlinearity) [1, 2]. Here, the Kerr nonlinear
term represent the only significant nonlinear contribution, and is responsible for various
nonlinear optical phenomena, including self-focusing, self- and cross-phase modulation,
third harmonic generation, modulation instability and four wave mixing, as we discuss
throughout this thesis. Higher order terms of the nonlinear polarisation are increasingly
small in contribution and are hence considered negligible, such that, the nonlinear polar-
isation can be expressed in terms of the third order susceptibility χ(3) and total electric
field E as [32,33]

PNL(x, t) = ϵ0

∫ t

−∞
dt′
∫ t

−∞
dt′′
∫ t

−∞
dt′′′χ(3)(t− t′, t− t′′, t− t′′′)E(x, t′)E(x, t′′)E(x, t′′′).

(2.27)
Eqs. (2.25) and (2.27) are derived within the electric dipole approximation and assume
that the response of the medium is local. If we further assume that the nonlinear response
is instantaneous, we achieve a significant simplification to the nonlinear response, where the
time dependence of χ(j) reduces to Kronecker delta functions, such that the polarisation
fields become,

PL(x, t) = ϵ0χ
(1)E(x, t), (2.28)

PNL(x, t) = ϵ0χ
(3)E3(x, t), (2.29)

by which we neglect the contributions from the Raman effect (molecular vibration).

2.4.2 Chromatic dispersion

In general, the interaction of light with the bound electrons of a dielectric medium, such
as silica waveguides, is dependant on the optical frequency ω. This phenomenon is charac-
terised by the frequency dependence of the index of refraction n(ω) of the medium. Since
the refractive index varies depending on the frequency, different spectral components travel
through the medium at different velocities c/n(ω). This phenomenon is known as chro-
matic dispersion. As a consequence, an optical pulse will experience a spectral broadening
along the direction of propagation, increasing the FWHM of the pulse. Even in the ab-
sence of nonlinear effects, chromatic dispersion plays a critical role in the propagation of
optical pulses within waveguides.

In practice, the functional form of the chromatic dispersion is not typically known. De-
spite this, we may account for the dispersive effects through an expansion of the frequency
dependant propagation constant β = n(ω)ω/c about the driving frequency ω0, with,

β(ω) = β0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 +
1

3!
β3(ω − ω0)

3 + · · · (2.30)

where

βm =
dmβ

dωm

∣∣∣∣
ω=ω0

for m = 0, 1, 2, 3, . . . . (2.31)
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We neglect higher order terms (m ≥ 3) of the dispersion (2.30) throughout this thesis.
This can be done due to our assumption of a quasi-monochromatic driving field. We
define the dispersion coefficients as β1 = ng/c = (n + ωdn/dω)/c for group index ng
and β2 = dβ1/dω for the group velocity dispersion. The dispersion coefficients β1, β2
characterise the propagation of an optical pulse through the medium, which travels at
the group velocity vg = c/ng = 1/β1, while the pulse broadens as dictated by the group
velocity dispersion β2. Should the sign of the group velocity dispersion be positive β2 > 0,
high frequency components of the optical pulse will travel slower than low frequency
components. This is known as the normal dispersion regime of the medium. Conversely, if
β2 < 0, high frequency components of the optical pulse will travel faster than low frequency
components, in which case, we are operating in the anomalous dispersion regime. The
nonlinear effects exhibited by the medium are greatly effected by the sign of the group
velocity dispersion. Much research has been performed in the anomalous dispersion regime,
but in this thesis, we expand this research by investigating the normal dispersion regime.

2.4.3 Longitudinal waveguide propagation equation

Maxwell’s wave equation can be written in terms of the linear and nonlinear atomic po-
larisations

∇2E(x, t)− 1

c2
∂2t E(x, t) = µ0∂

2
t PL(x, t) + µ0∂

2
t PNL(x, t), (2.32)

where we have used ∇×∇×E ≡ ∇(∇·E)−∇2E = −∇2E (since Gauss’s law reads ∇·E = 0
for dielectric mediums) and the linear and nonlinear polarisation fields are given by Eqs.
(2.28) and (2.29). We begin our derivation by making the following assumptions. We
assume that the light retains its linear polarisation during its propagation along the fibre.
The design considerations of the choice are discussed in Section 2.2.3. Later in Chapter 3
and Chapter 6, we relax this assumption and generalise the polarisation to counter rotating
orthogonal circular polarisations. Next, we assume that the field is quasi-monochromatic.
This corresponds to the assumption that the spectral width ∆ω is of the size ∆ω/ω0 ≪ 1,
which is centred around the driving frequency ω0. Then, the nonlinear polarisation PNL

is assumed to be a small perturbation on the linear polarisation PL, where in practice,
we find that the contribution of the nonlinear term to the refractive index is < 10−6 [32].
Finally, we assume operation within the slowly varying field approximation. This limit
prescribes that the electric field amplitude E(x, t) varies along the longitudinal coordinate
and time coordinate much more slowly than the carrier wave, with∣∣∣∣∂E∂z

∣∣∣∣≪ k0|E|,
∣∣∣∣∂E∂t

∣∣∣∣≪ ω0|E|, (2.33)

where the total electric field for the single frequency ω0 is given by

E(x, t) = 1

2
[E(x, t)e−iω0t + c.c.], (2.34)
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Here we may work with scalar fields due to our assumption of a linear polarised electric
field. Similarly we may write the linear and nonlinear polarisations as

PL(x, t) =
1

2
[PL(x, t)e

−iω0t + c.c.], PNL(x, t) =
1

2
[PNL(x, t)e

−iω0t + c.c.]. (2.35)

where PL(x, t) and PNL(x, t) are slowly varying amplitudes of the atomic polarisation field.
By inserting (2.34) into (2.29), the nonlinear polarisation may expressed in terms of

the electric field envelope E(x, t), with

PNL(x, t) =
1

8
ϵ0χ

(3)
[
3|E(x, t)|2E(x, t)e−iω0t + E3(x, t)e−3iω0t + c.c.

]
. (2.36)

Eq. (2.36) contains terms which oscillate at the driving frequency ω0 but also at the third
harmonic 3ω0. In general, we may neglect the terms of third harmonic generation, which
requires specific engineering to achieve phase matching conditions. Hence, only the first
term of (2.36) is relevant here and the second term is discarded. The nonlinear atomic
polarisation is then

PNL ≈ ϵ0ϵNLE(x, t), where ϵNL =
3

4
χ(3)|E(x, t)|2 (2.37)

is the contribution of the nonlinearity to the dielectric constant.
To continue our derivation, it is useful to switch to the frequency domain. This is

not generally possible due to the nonlinear terms of Eq. (2.32). We work around this by
assuming ϵNL is constant during our derivation. This is a reasonable assumption when
considering operation within the slowly varying wave approximation and the perturba-
tive nature of the nonlinear polarisation. Transforming to the Fourier domain, the wave
equation (2.32) takes the form of the Helmholtz equation

∇2E(x, ω − ω0) + ϵ(ω)k20E(x, ω − ω0) = 0, (2.38)

where k0 = ω0/c and Fourier transform of the electric field is given by

E(x, ω − ω0) =

∫ ∞

−∞
E(x, t)ei(ω−ω0)tdt. (2.39)

The dielectric constant is then

ϵ(ω) = 1 + χ̃(1)(ω) + ϵNL, (2.40)

which is dependant on the intensity of the electric field due to the contributions of the
nonlinear polarisation. The dielectric constant may be used to define the refractive index
ñ and absorption coefficient α̃ with ϵ = (ñ+ iα̃/2k0)

2. Due to the third order nonlinearity
ϵNL, these parameters are dependant on the field intensity, with

ñ = n+ n̄2|E|2, α̃ = α+ ᾱ2|E|2, (2.41)

where the linear refractive index and absorption coefficient are related to the real and
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imaginary parts of χ(1), as seen in Eqs. (2.26), and the nonlinear index coefficient and
two photon absorption coefficient are related to the real and imaginary parts of χ(3), with
n̄2 = 3Re[χ(3)]/8n, ᾱ2 = 3ω0Im[χ(3)]/4nc, respectively. Utilising methods of variable
separation, we write the electric field as

E(x, ω − ω0) = F (x, y)A(z, ω − ω0)e
iβ0z (2.42)

where F is the transverse mode distribution, A is a slowly varying envelope over the
longitudinal coordinate and β0 is a propagation constant we determine later. This amounts
to assuming an electric field solution where the components transverse to the direction of
propagation, taken to be z, accumulates phase uniformly. This allows us to resolve Eq.
(2.38) into two equations with respect to F (x, y) and A(z, ω),

∇2
⊥F (x, y) +

[
ϵ(ω)k20 − β̃2

]
F (x, y) = 0 (2.43)

2iβ0∂zA(z, ω) +
[
β̃2 − β20

]
A(z, ω) = 0 (2.44)

where ∇2
⊥ = ∂2x + ∂2y and we have neglected terms of the second order derivative ∂2zA

as the envelope A(z, ω) is a slowly varying function of z (hence ∂2zA ≪ ∂zA). Here,
A(z, ω) represents the evolution of the pulse envelope along the longitudinal direction,
incorporating the effects of dispersion, nonlinearity, and loss, whereas F (x, y) describes
the stationary transverse mode profile, determined by the resonator geometry and material
properties.

The wavenumber of the fibre modes β̃ is determined by solving the eigenvalue equation
(2.43). This equation can be solved through methods of first order perturbation theory
where we approximate the dielectric constant as

ϵ = (n+∆n)2 ≈ n2 + 2n∆n (2.45)

for small a perturbation ∆n = n̄2|E|2 + iα̃/2k0. Then we may replace ϵ with n2 in
Eq. (2.43), form which we can determine the modal distribution F (x, y) and propagation
constant β using methods outlined in Section 2.2.2, where we consider a single mode
waveguide presenting the fundamental mode. We then reintroduce the small perturbation
∆n to Eq. (2.43), where it is found that ∆n does not change the modal distribution F (x, y)
from the linear case presented in Section 2.2.2, but the propagation constant becomes

β̃(ω) = β(ω) + ∆β(ω) (2.46)

where

∆β =
ω2n(ω)

c2β(ω)

∫∫∞
−∞∆n(ω)|F (x, y)|2dxdy∫∫∞

−∞ |F (x, y)|2dxdy
. (2.47)

With this, we have completed the formal derivation of the propagation equations up to
a perturbation PNL, where Eqs. (2.43) and (2.44) describe the propagation light through
the waveguide in the frequency domain.

We now wish to return to the temporal domain to obtain the propagation equation in
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terms of A(z, t) through means on the inverse Fourier transform defined as

A(z, t) =
1

2π

∫ ∞

−∞
A(z, ω − ω0)e

−i(ω−ω0)tdω. (2.48)

Firstly, we rewrite Eq. (2.44) as

∂zA(z, ω) = i[β̃(ω) + ∆β(ω)− β0]A(z, ω) (2.49)

where we have approximated β̃2 − β20 ≈ 2β(β̃ − β0) and used the relation Eq. (2.46).
As is apparent in Eq. (2.49), different spectral components of the optical pulse accu-
mulate a phase shift as they propagate along the fibre, which is frequency and intensity
dependant. We have discussed this phenomenon previously in Section 2.4.2, where we
recognise that the wavenumber function β(ω) is rarely known and so it is useful to expand
the wavenumber as a Taylor expansion [Eq. (2.30)]. Neglecting cubic and higher order
terms in this expansion due to our assumption of a quasi-monochromatic field, the inverse
Fourier transform of the propagation constant yields

F−1
{
[β1(ω − ω0) + i

1

2
β2(ω − ω0)

2]A(z, ω − ω0))
}
= iβ1∂tA(z, t)−

β2
2
∂2tA(z, t). (2.50)

In a similar fashion, we may perform a Taylor expansion of the perturbation to the
wavenumber ∆β, with

∆β(ω) = ∆β0 +∆β1(ω − ω0) +
1

2
∆β2(ω − ω0)

2 + · · · (2.51)

where

∆βm =
dm∆β

dωm

∣∣∣∣
ω=ω0

for m = 0, 1, 2, 3, . . . . (2.52)

Due to our previous assumption of a quasi-monochromatic field, we may approximate
∆β(ω) ≈ ∆β0 = ∆β(ω0). Hence, by assuming that the modal distribution does not
change significant over the pulse bandwidth and with the previous considerations, we
perform an inverse Fourier transformation of Eq. (2.49) to obtain

∂zA(z, t) + β1∂tA(z, t) +
iβ2
2
∂2tA(z, t) +

α

2
A(z, t) = iγ|A(z, t)|2A(z, t). (2.53)

Here, we renormalise A such that the optical power is given by |A|2, where we introduce
|A′|2 = ϵ0ncAm|A|2/2 with mode area Am =

∫∫∞
−∞ |F |2dxdy, and we have dropped the

prime notation of the field envelope in Eq. (2.53). We define the nonlinear parameter γ
as

γ =
ω0n2
cAeff

, where n2 =
2n̄2
ϵ0nc

. (2.54)

and the effective mode area of the fibre is

Aeff =
(
∫∫∞

−∞ |F (x, y)|2dxdy)2∫∫∞
−∞ |F (x, y)|4dxdy

. (2.55)
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2.5 Modelling the ring resonator

The coupling conditions outlined in Section 2.3.1, and the propagation equation (2.53)
may be used to model the ring resonator system. At the coupling point (z = 0), the
circulating field at the beginning of the m+1 round trip is related to the previous by the
boundary condition

Em+1(z = 0, τ) =
√
TS +

√
ReiθEm(z = 0, τ), for m = 1, 2, 3, . . . , (2.56)

where S is the incident (driving) electric field. The propagation of light over a round trip
of the resonator is governed by the nonlinear Schrödinger equation

∂zA(z, τ) + i
β2
2
∂2τA(z, τ) +

αi

2
A(z, τ) = iγ|A(z, τ)|2A(z, τ), (2.57)

where αi is the intracavity loss and we have performed a transformation to a frame of
reference travelling at the group velocity τ = t − z/vg on Eq. (2.53). Together, these
equations form an infinite dimensional Ikeda map [77] which can be solved through direct
numerical integration. As was first shown by Haelterman [26], this Ikeda map can be
expressed as a single partial differential equation with periodic boundary conditions. By
assuming a high finesse cavity, the losses of the cavity are weak, and the temporal evolution
of the electric field is slow compared to the round trip time τR. To characterise the slow
variations of the field over successive round trips of the cavity, we introduce a new temporal
variable

t̃ = κt, (2.58)

which we call the slow time. This temporal variable governs the field envelopes evolution
at the scale of the cavity photon decay rate κ = α/τR where α = (αi + T )/2 is the total
losses. In caparison, we refer to our longitudinal temporal variable τ as the fast time

τ̃ =
τ

tdisp

√
2α, (2.59)

which governed the evolution of the electric field over a single round trip. τ governs the
temporal structure of dispersive patterns within the resonator, and is normalised by their
characteristic time scale tdisp =

√
|Lβ2|, the dispersion time. The introduction of the slow

time and fast time temporal variables allows us to utilise a mean field approach to define
a purely temporal electric field envelope A(t, τ) over the round trip time 0 ≤ τ ≤ τR,
which evolves in slow time over many round trips of the resonator and possess periodic
boundary conditions. As is shown in [26], this culminate in the well celebrated longitudinal
Lugiato-Lefever equation (LLE)

∂tA(t, τ) = S − (1 + iθ)A(t, τ) + i|A(t, τ)|2A(t, τ)− iη∂2τA(t, τ), (2.60)
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where η = ±1 is the sign of the group velocity dispersion, and we define the normalised
amplitude, input field and detuning as

Ã = A

√
γL

α
, S̃ = S

√
γLT

α3
, θ̃ = (ωr − ω)κ−1, (2.61)

respectively, where ωr is the nearest resonance frequency of the resonator to the driving
frequency, and we have dropped the ‘∼’ for notational clarity in Eq. (2.60).

In this thesis, we consider exclusively high-Q cavities, wherein the electric field ampli-
tude evolves slowly over many round trips. As such, simulating the microresonator system
requires the evaluation of a very large number of round trips, necessary to reach station-
ary state. From a computational perspective, the Ikeda model requires us to compute the
evolution over a single cavity round trip [by direction numerical integration of Eq. (2.57)],
then implement the boundary condition [Eq. (2.56)] to obtain the initial condition for
the next round trip. This is then repeated for the required number of round trips, and
will incur a long computational time in the high-Q limit. Conversely, direct integration
methods of the LLE (Appendix C.2 and C.3) can be appropriately performed using slow
time steps sizes that encompass multiple round trips of the cavity, dramatically speeding
up the computational time. All of the models studied in this thesis are of generalised LLE
form. In the next section (Section 2.6) we provide a first principles derivation of the LLE.

We may also model the ring resonator in terms of the cavity modes by performing the
modal expansion A(t, τ) =

∑
µ aµ(t) exp(iµᾱτ) such that Eq. (2.60) becomes,

∂taµ = δµ,0S − (1 + iθµ)aµ +
∑

µ′,µ′′,µ′′′

δµ,µ′−µ′′+µ′′′aµ′a∗µ′′aµ′′′ , (2.62)

where ᾱ = 2π/τR, aµ(t) is the amplitude of the cavity mode oscillating at frequency ω0 −
ηµᾱ with mode number µ, and δi,j is the Kronecker delta used to implement the four wave
mixing momentum condition µ+ µ′′ = µ′ + µ′′′. Here, we have redefined the detuning as
θµ = θ−ηµᾱ, which quantifies the deviation of the resonance frequencies from a dispersion-
free equidistant frequency grid as a function of the relative mode number µ. This allows
us to explicitly model the formation of frequency comb lines though degenerate and non-
degenerate four wave mixing with straight-forward inclusion of arbitrary dispersion and
linewidth profiles [18,53,78].

2.6 The longitudinal Lugiato-Lefever equation

In this section we derive the equations of the ring resonator following the derivation of
Castelli et al. [28]. This derivation of the governing equations of the ring resonator is given
to rigorously quantify the contributions of physical effects from first principle.

The total electric field can be expressed as

E =
1

2

ℏ√γ⊥γ∥
d

[Ẽ(z, t)e−iω0t+ikz + c.c.] (2.63)

where Ẽ(z, t) is the normalised dimensionless electric field envelope propagating along
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the longitudinal direction z, d is the modulus of the dipole moment and γ∥, γ⊥ are the
relaxation rates of the atomic polarisation and population difference of the two-level atom
system, respectively. As was discussed in Section 2.2.2 and 2.4.3, we assume a modal dis-
tribution which does not change contributively over the slow time, such that, we consider
only the longitudinal evolution of the electric field. The electric field injected into the
cavity can be written as

Ein =
1

2

ℏ
√
Tγ⊥γ∥

d
[S̃e−iω0t + c.c.] (2.64)

where S̃ is the amplitude of the field, which we take to be continuous wave.
In the low transmission limit, was assume that T ≪ 1, α′L≪ 1 (define T and L during

the description of the ring) and define the bistability parameter

C =
α′L

2T
(2.65)

where α′ is the coefficient of absorption, and

|δ0| =
|ωc − ω0|

˜c/L
≪ 1, defining θ =

δ0
T
, (2.66)

where ω0 is the frequency of the input field and ωc is the frequency of the cavity mode
nearest to the input field.

In the low transmission limit, the Maxwell-Bloch equations are (Chapter 11 in [33])

∂tẼ + c̃∂zẼ = −κ[(1 + iθ̃)Ẽ − S + 2CP̃ ] (2.67a)

∂tP̃ = −γ⊥[(1 + i∆)P̃ − ẼD] (2.67b)

∂tD = −γ∥
[
1

2
(ẼP̃ ∗ + Ẽ∗P̃ ) +D − 1

]
(2.67c)

where P and D are proportional to the atomic polarisation and population difference,
respectively, and ∆ = (ωa − ω0)/γ⊥ is the atomic detuning parameter with ωa being the
atomic Bohr transition frequency of the two-level atoms. c̃ = c/nB is the speed of light
in the medium, assumed to occupy the entire length of the cavity. If we consider the
homogeneous stationary solution of Eqs. (2.67), we obtain the well known equation of
optical bistability [33]

|S|2 = |Ẽ|2
[(

1 +
2C

1 + ∆2 + |Ẽ|2

)2

+

(
θ̃ − 2C∆

1 +∆2 + |Ẽ|2

)2
]
. (2.68)

In the dispersive limit, heuristically defined as the limit in which the frequency of the
input field is far detuned form the atomic resonance with |∆| ≫ 1 and |Ẽ|2/∆2 ≪ 1, Eq.
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(2.68) can be approximated as

|S|2 = |Ẽ|2
[(

1 +
2C

∆2
− 2C|Ẽ|2

∆4

)2

+

(
θ − 2C

∆2
− 2C|Ẽ|2

∆3

)2
]
. (2.69)

By describing the the disperive limit in terms of the smallness parameter ϵ with

∆ = O(ϵ−3), |Ẽ|2, |S̃|2 = O(ϵ−2), 2C = O(ϵ−5), θ = θ̃ +
2C

∆
(2.70)

with θ̃ = O(1), θ = O(ϵ−2) we may redefine

S =

√
2C

|∆|3
S̃ = O(1), |E| =

√
2C

|∆|3
|Ẽ| = O(1) (2.71)

such that the homogeneous statiopnary states at order 0 in ϵ is

|S|2 = |E|2
[
1 + (θ − η|E|2)2

]
(2.72)

where η = −|∆|/∆.
We now implement these consideration into the Maxwell-Bloch equations (Eqs. 2.68),

to obtain

∂tE + c̃∂zE = −κ
[
(1 + iθ)E − S +

2C

∆
(P + iE)

]
(2.73a)

∂tP = −γ⊥[(1 + i∆)P −∆ED] (2.73b)

∂tD = −γ∥
[
η∆2

4C
(EP ∗ + E∗P ) +D − 1

]
(2.73c)

where we have introduced the scaled quantities

E =

√
2C

|∆|3
Ẽ, P =

√
2C

|∆|3
∆P̃ (2.74)

Since E,P,D are periodic, E(z = 0, t) = E(z = L, t) etc., we can introduce the model
expansions E(z, t)

P (z, t)
D(z, t)

 =
∞∑

µ=−∞

fµ(t)pµ(t)
dµ(t)

 e−αµ(t−z/c̃) (2.75)

where d∗−µ = dµ and the free spectral range is αµ = 2πµc̃/L. Performing a modal expansion
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of Eq. (2.73) we may express the µ’th modal amplitude as

dfµ
dt

= −κ
[
(1 + iθ)fµ − Sδµ,0 +

2C

∆
(pµ + ifµ)

]
(2.76a)

dpµ
dt

= −γ⊥
[
(1 + i∆µ)pµ −∆

∑
µ′

fµ−µ′dµ′

]
(2.76b)

ddµ
dt

= γ∥

[
η∆2

4C

∑
µ′

(f−µ′p∗µ−µ′ + f∗µ′pµ′−µ) + δµ,0

]
− dµ(γ∥ − iαµ) (2.76c)

where we have defined the atomic detuning at the frequency ω0 + µα

∆µ = ∆− αµ

γ⊥
=
ωa − (ω0 + αµ)

γ⊥
. (2.77)

We may determine the effective variation rates of the dynamical variables by completing
our definition of the dispersive limit by assuming

|αµ|
γ⊥

,
|αµ|
γ∥

= O(ϵ−2) (2.78)

We find that the variation rate of fµ is O(κϵ−1) and the variation rates for the atomic
modal amplitudes are γ⊥|∆| = O(γ⊥ϵ

−3) for pµ, and γ∥∆
2/(2C) = O(γ∥ϵ

−1) for d0 and
αµγ∥ = O(γ∥ϵ

−2) for d0 for dµ̸=0. This suggests that the elimination of the atomic variables
is justified if κ/γ∥ ≈ κ/γ⊥ = O(ϵ), as γ∥ and γ∥ have similar size.

Adiabatic elimination of the atomic variables

We begin by setting the time derivatives of Eqs. (2.76) to zero, to obtain

pµ =
∆

1 + i∆n

∑
µ′

fµ−µ′dµ′ , (2.79)

dµ

(
1− i

αµ

γ∥

)
=
η

2

∆2

2C

∑
µ′′

(f∗−µ′′pµ−µ′′ + fµ′′p∗µ′′−µ) + δµ,0. (2.80)

Inserting (2.80) into (2.79), we get

dµ

(
1− i

αµ

γ∥

)
=
η

2

∆3

2C

∑
µ′,µ′′

(
f∗−µ′′fµ−µ′−µ′′dµ′

1 + i∆µ−µ′′
+
fµ′′f∗µ−µ′−µ′′d−µ′

1− i∆µ′′−µ

)
+ δµ,0 (2.81)
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The terms within the summation may be evaluated as

∑
µ′,ν

(
f∗µ′+νfµ+νdµ′

1 + i∆µ+µ′+ν
+
fµ′+νf

∗
µ+νdµ′

1− i∆ν

)
, (2.82)

=
∑
µ′,ν

f∗µ′+νfµ+νdµ′
2− i(αµ + αµ′)/γ⊥

(1 + i∆µ+µ′ν)(1− i∆ν)
, (2.83)

≈ 2

∆2

∑
µ′,ν

f∗µ′+νfµ+νdµ′

[
1− i

(αµ + αµ′)

2γ⊥

]
(2.84)

where in the first line we have replaced µ′′ with −µ′ − ν in the first term, and we have
replaced µ′′ with µ+ν and µ′ with −µ′ in the second term. Then in the second line we have
used the definition of atomic detuning (2.77) and finally we approximated ∆µ+µ′+ν ,∆ν ≈
∆. We may write (2.81) as

dµ

(
1− i

αµ

γ∥

)
= η

∆

2C

∑
µ′,ν

f∗µ′+νfµ+νdµ′

[
1− i

(αµ + αµ′)

2γ⊥

]
+ δµ,0. (2.85)

The leading terms of Eqs. (2.85) when µ = 0 are d0 and δµ,0 where the nonlinear term is
O(ϵ2). For n ̸= 0, the leading terms of Eqs. (2.85) are the nonlinear terms which are gain
of order O(ϵ2). Hence dµ = 0 at order ϵ0, such that the solutions up to order ϵ2 are

dµ = d
(0)
0 δµ,0 +

∆

2C
d(2)µ +O(ϵ4) (2.86)

where ∆/2C is of order ϵ2 and d
(2)
µ = O(1). Inserting this solution into Eq. (2.85) we

obtain

d
(0)
0 δµ,0 +

(
1− i

αµ

γ∥

)
∆

2C
d(2)µ = δµ,0 + η

∆

2C

∑
ν

f∗ν fµ+νd
(0)
0

(
1− i

αµ

2γ⊥

)
. (2.87)

For µ = 0

d
(0)
0 = 1, d

(2)
0 = η

∑
ν

|fν |2, (2.88)

and for µ ̸= 0

d(2)µ = η
γ∥

2γ⊥

∑
ν

f∗ν fµ+ν . (2.89)

In the non-radiative limit γ∥ = 2γ⊥, the second order corrections have the same form.
Hence, we may write

dµ = δµ,0 + η
∆

2C

∑
ν

f∗ν fµ+ν , (2.90)

Inserting this expression into Eq. (2.79), we obtain

pµ =
∆

1 + i∆n

[
fµ + η

∆

2C

∑
µ′,µ′′

fµ−µ′f∗µ′′fµ′+µ′′

]
(2.91)
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In Eqs. (2.76a), modal amplitudes pµ have prefactor 2C/∆ of order ϵ−2. As such we
evaluate Eqs. (2.91) to order ϵ2. We expand the prefactor of Eqs. (2.91) as

∆

1 + i∆µ
≈ ∆

i∆µ
=

−i
1− αµ/(γ⊥∆)

, (2.92)

≈ −i
(
1 +

αµ

γ⊥∆
+

α2
µ

γ2⊥∆
2

)
, (2.93)

and keep the dominant term −i of the nonlinear terms of order ϵ2. Hence, we rewrite Eqs.
(2.91) as

pµ = −ifµ − i
αµ

γ⊥∆
fµ − i

α2
µ

γ2⊥∆
2
fµ − iη

∆

2C

∑
µ′,µ′′

fµ−µ′f∗µ′′fµ′+µ′′ +O(ϵ3) (2.94)

such that Eqs. (2.76a) reduces to

dfµ
dt

= −κ
[(

1 + θ − i
2C

∆

αµ

γ⊥∆
− i

2C

∆

α2
µ

γ2⊥∆
2

)
fµ − Sδµ,0 − iη

∑
µ′,µ′′

fµ−µ′f∗µ′′fµ′+µ′′

]
. (2.95)

We note the linear and quadratic terms of αµ in Eq. (2.95) express the first and second
order dispersion. We define the modal amplitudes

f̄µ(t) = fµ(t)e
−iαµ

2C
∆

κ
γ⊥

t
(2.96)

such that

df̄µ
dt

= −κ
[(

1 + θ − i
2C

∆

α2
µ

γ2⊥∆
2

)
f̄µ − Sδµ,0 − iη

∑
µ′,µ′′

f̄µ−µ′ f̄∗µ′′ f̄µ′+µ′′

]
. (2.97)

The field variable E(z, t) can be written in terms of f̄µ, with

E(z, t) = f̄µ(t)e
−ᾱµ(t−z/vg) (2.98)

where the linear dispersive term is used to define the group velocity and redefine the free
spectral range

vg = c̃

(
1− 2C

∆2

κ

γ⊥

)
, ᾱ = α

(
1− 2C

∆2

κ

γ⊥

)
. (2.99)

We note that vg ≈ c̃, and ᾱµ ≈ αµ since (2C/∆2)(κ/γ⊥) = O(ϵ2). We now perform
the usual transformation τ = t − z/vg such that the field variable is described by purely
temporal variables F (z, t) → F (τ, t), with

∂tE(τ, t) = κ

[
S − (1 + iθ)E(τ, t) + iη|E(τ, t)|2E(τ, t) + i

2C

γ2⊥∆
3

c̃2

v2g
∂2τE(τ, t)

]
(2.100)
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Introducing the normalised variables

t̄ = κt, τ̄ = τ

√
|∆|3
2C

v2g
c̃2
γ2⊥ (2.101)

we arrive at the purely temporal Lugiato-Lefever equation

∂tE(τ̄ , t̄) = S − (1 + iθ)E(τ̄ , t̄) + iη|E(τ̄ , t̄)|2E(τ̄ , t̄) + iη∂2τ̄E(τ̄ , t̄) (2.102)

In this work we consider normal dispersion regime, which we identify as η = −1. Hense
we may write the normally dispersive LLE as

∂tE(τ, t) = S − (1 + iθ)E(τ, t) + i|E(τ, t)|2E(τ, t)− i∂2τE(τ, t), (2.103)

where we have implemented the normalisation E → E
√
η, S → S

√
η and dropped the

bars on t̄, τ̄ for clarity.

2.7 Stationary solutions of the Lugiato-Lefever equation with
normal dispersion

The stationary solutions of the LLE can be obtained by solving the ordinary differential
equation

0 = S − (1 + iθ)E(τ) + i|E(τ)|2E(τ)− i
d2

dτ2
E(τ). (2.104)

This ordinary differential equation admits solutions that either are homogeneous or in
inhomogeneous in fast time consisting of either Turing patterns and local structures (tem-
poral cavity solitons).

2.7.1 Optical bistability of homogeneous solutions

We first consider the homogeneous stationary solutions of the LLE. These solutions are
stationary in slow time (∂tE = 0) and flat in profile (∂2τE = 0) over fast time such that
Eq. (2.103) may be written as

0 = S − (1 + iθ)E + i|E|2E (2.105)

Multiplying Eq.(2.105) with its complex conjugate, we obtain the well known cubic equa-
tion of optical bistability [as we derived earlier in Eq. (2.72)]

P = H3 − 2θH2 + (θ2 + 1)H (2.106)

with respect to the power of the interactivity field H = |E0|2 and the input power P = S2,
where we assume S is real. The real, Re(E) = U0, and imaginary, Im(E) = V0, components
of the HSSs are then

U0 =
S

1 + (H − θ)2
, V0 =

(H − θ)S

1 + (H − θ)2
(2.107)
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For θ <
√
3, Eq. (2.106) is single valued and monostable. For θ >

√
3, Eq. (2.106) may

present one, two or three real solutions simultaneously. HSS of different power intersect
at two saddle node bifurcations with locations

H± =
1

3
(2θ ±

√
θ2 − 1). (2.108)

Here, a saddle node bifurcation refers to the point in parameter space in which two station-
ary solutions (one stable and one unstable) collide and annihilate as a system parameter
is varied. The beginning and end of optical bistability is marked by these saddle node
bifurcations. Solutions of Eq. (2.106) are plotted in Fig. 2.4 for different parameter values
before and after the onset of optical bistability.

To investigate the stability of the HSS, we introduce the perturbations(
U(τ, t)
V (τ, t)

)
=

(
U0

V0

)
+ ϵ

(
u
v

)
eikτ+Ωt, (2.109)

where Ω indicates growth rate of the perturbation of wavenumber k and |ϵ| ≪ 1. The
corresponding eigenspectrum is then

Ω(k) =
√
1−Q (2.110)

where
Q = 1− 4Hθ + 3H2 + θ2 + 2(2H − θ)k2 + k4 (2.111)

From Eq. (2.110), the instability condition Re(Ω) > 0 is achieved when Q < 0. If one
considers perturbation that are flat in profile (k = 0), we find that solutions satisfying
∂P/∂H < 0 are unstable. Consequently, when Eq. (2.106) presents three solutions si-
multaneously, the middle power solution is always unstable, while the high and low power
HSS are always stable.

Considering perturbation with fast time component (k ̸= 0), we expect growth of a
perturbation of wavenumber k in the normal dispersion regime for

k2− < k2 < k2+, k2± = θ − 2H ±
√
H2 − 1. (2.112)

From Eq. (2.112), we identify the onset of Turing instability instability at H = 1 where
we expect the generation of a Turing pattern of wavenumber k2 = θ − 2. As such, for
θ <

√
3, the single HSS is always stable. For

√
3 < θ < 2, the high and low power HSSs

are stable, while the middle power HSS is always unstable. For θ > 2, the low power HSS
becomes unstable to the formation of Turing patterns, while the middle solution is always
unstable and the high power solution is always stable.

Turing patterns occupy the full fast time domain and as such we must account for
the boundary conditions of the ring resonator. The number of Turing rolls over the
fast time longitudinal coordinate has integer value µ, such that only patterns of discrete
wavenumbers k2µ = (2πµ/τR)

2 may form. With the perturbation of (2.109), we consider
the formation of a pattern with a single frequency component. In general, the formation
of any pattern within the ring can be investigated by considering a perturbation composed
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Figure 2.4: (a) The homogeneous stationary solutions of the Lugiato-Lefever equation;
(blue) before the onset of optical bistability θ =

√
3 − 1/2, (red) at the critical value

of detuning θ =
√
3, (green) after the onset of optical bistability θ =

√
3 + 1/2. (b) A

plot of the resonances for input powers (blue) P = 0.1, (red) P = 3, (green) P = 6. This
demonstrates the increasing tilt of the peak of the resonance for increasing input power. In
each case, dashed lines indicate unstable states, whereas solid lines indicate stable states.
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of the superposition of the frequency components of the ring resonator, with(
U(τ, t)
V (τ, t)

)
=

(
U0

V0

)
+ ϵ
∑
µ

(
uµ
vµ

)
eikµτ+Ωt. (2.113)

The growth/decay rate of each frequency component is given by Eq. (2.110), such that,
frequency components within the interval k2− < k2µ < k2+ [given by (2.112)] possess a posi-
tive real part of the eigenvalue Re(Ω(kµ)) > 0 and grow in amplitude, where the resulting
pattern will be dominated by the critical mode kµ,c possessing the largest eigenvalue.
Consequently, resonators of longer round trip time are more susceptible to Turing pattern
formation as the frequency components have narrower spacing, which are more likely or
guaranteed to fall within the interval of (2.112).

2.7.2 The existence and stability of exponentially localised solutions

In this section we review the various exponentially localised stationary solutions of the
LLE. Such solution approach fixed points [HSSs (2.107)] of the LLE as τ → ±∞. We
begin by writing Eq. (2.104) as the dynamical system

dU

dτ
= Ũ ,

dV

dτ
= Ṽ

dŨ

dτ
= U3 + UV 2 − θU − V (2.114)

dṼ

dτ
= V 3 + V U2 − θV + U − S

with respect to the fast time variable. We consider the solutions of Eqs. (2.114) to evolve in
fast time over the domain −∞ < τ <∞ and introduce the following terminology inspired
by [35, 56, 79–84]. Spatially localised structures of Eqs. (2.114) correspond to homoclinic
orbits, which refers to a trajectory that connects a fixed point of Eqs. (2.114) to itself. The
fixed points of Eqs. (2.114) are obtained by setting dŨ/dt = dṼ /dt = dU/dt = dV/dt = 0
and correspond to the HSSs derived earlier (2.107). We also consider the heteroclinic orbits
of Eqs. (2.114). These trajectories connects one fixed point to another, where due to the
periodic boundary conditions of the LLEs, heteroclinic orbits present as an oppositely
oriented pair over the cavity round trip. We refer to a well separated (noninteracting)
pair of heteroclinic orbits as a heteroclinic cycle.

We now perform a linearisation about the fixed points of Eqs. (2.114) to obtain the
corresponding Jacobian matrix

J =


0 0 1 0
0 0 0 1

V 2 + 3U2 − θ −1 + 2UV 0 0
1 + 2UV U2 + 3V 2 − θ 0 0


(U0,V0)

(2.115)

evaluated at the fixed point U0, V0. This allows us to investigate the stability of the
fixed points which govern the approach of trajectories to and from the fixed points. The
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Figure 2.5: Switching front of the LLE, corresponding to a heteroclinic orbit which connect
two bistable HSSs. The approach to the high HSS has smooth exponential profile, while the
approach to the low power HSS presents an exponentially decaying wave train, governed
by the leading eigenvalue of (2.110). Due to the periodic boundary conditions of the LLE,
switching front solutions present as oppositely oriented pairs over the round trip of the
cavity.

eigenspectrum of this Jacobian can be obtained by solving the characteristic equation

λ4 − 2(2H0 − θ)λ2 + θ2 + 3H2
0 − 4θH0 + 1 = 0, (2.116)

where we obtain the eigenvalues

λ2 = (2H − θ)±
√
(H2 − 1). (2.117)

The characteristic equation is quadratic in λ2 and as such yields four eigenvalues which
present in pairs of equal value with opposite sign if real, or conjugated if complex. The
eigenvalues (2.117) present a complex bifurcation structure, where here we restrict our-
selves to the eigenvalues which govern the solutions of our interest. The nature of the
eigenvalues is primarily related to the term under the square root of Eq. (2.117). We
consider regimes of H0 > 1, H0 = 1 and H0 < 1. For H0 > 1 (and the HSS is stable
in slow time ∂P/∂H > 0) the eigenvalues are λ1,2 = ±q1, λ3,4 = ±q2 if 2H − θ > 0, or
λ1,2 = ±ik1, λ3,4 = ±ik2 if 2H − θ < 0. When H0 = 1, the eigenvalues present as either a
quartet of real numbers λ1,2 = ±q, λ3,4 = ±q for θ < 2 or a quartet of imaginary numbers
numbers λ1,2 = ±ik, λ3,4 = ±ik for θ > 2, and λ1,2,3,4 = 0 for θ = 0. For H0 < 1, the
eigenvalues present as complex λ1,2 = q1 ± ik1, λ3,4 = q2 ± ik2.

The transition over H0 = 1 when θ > 2 constitutes a Hamiltonian-Hopf bifurcation
of the eigenvalues [82, 85], and indicates the onset of oscillation governed by the complex
eigenvalue for trajectories which approach fixed point of power H0 < 1. In Fig. 2.5, we
present a typical heteroclinic orbit of Eqs. (2.114) for θ > 2. We can see a smooth expo-
nential decay of the trajectory towards the high power HSS, as governed by the eigenvalue
for H > 1. At the approach to the low power HSS, we can see exponentially decaying

37



Chapter 2. Theory of Temporal Cavity Solitons in Ring Resonators with Normal
Dispersion

Figure 2.6: (a) Homogeneous stationary solutions (black curve), stable dark cavity soli-
tons (red curves), and stationary heteroclinic cycles (green line, assumes noninteracting
switching fronts) plotted as their average power for S = 2

√
2. (b)-(c) Example dark cavity

soliton for θ = 6 plotted over the cavity coordante (b) and the Argand plane (c). (d)-(e)
Example heteroclinic cycle at the Maxwell point ΘMP ≈ 5.83 [green line in (a)] plotted
over the cavity coordinate (d) and the Argand plane (e). High and low power HSSs are
shown with x’s in (c)-(e).
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oscillations of the trajectory, as governed by the eigenvalue for H > 1. Heteroclinic or-
bits are commonly referred to as switching fronts (SF) due to their dynamical nature.
In general, SF move with constant velocity, where SF of opposite orientation move with
identical speed in opposite directions along the cavity. For a given input power, SF present
a single value of detuning at which they are stationary. This parameter value is known as
the Maxwell point ΘMP. At this parameter value, well separated SFs form a heteroclinic
cycle as shown in Fig. 2.6(d)-(e). In gradient systems the Maxwell point corresponds
to the parameter value where both bistable homogeneous states have equal energy. In
non-gradient system, such as the LLE, Maxwell points and hysteresis can still be possible
even though an expression of the energy cannot be obtained. Although heteroclinic cycles
are only present for a single parameter value in the unidirectional ring resonator, they
are both prolific and robust is bidirectionally driven ring resonators (as well as unidirec-
tional driven ring resonators with backscattering) as we will demonstrate in Chapter 4.
For detuning values θ > ΘMP, SFs move as to expand the domain of the low power HSS,
whereas for θ < ΘMP, SF move as to expand the domain of the high power HSS. As op-
positely oriented switching fronts move through the cavity, they will eventually approach
each other, and interact through their ‘tails’ at the connection with the HSS. When the
tail of the SF exhibits a smooth exponential approach to the HSS, as can be seen in Fig.
2.5 at the connection with the high power HSS, the interaction is purely attractive. This
interaction results in the annihilation of the SF pair. When the tail of the SF exhibits
an exponentially decaying pattern at the approach to the HSS, as can be seen in Fig. 2.5
at the connection with the low power HSS, the interaction through these oscillation may
result in the ‘locking’ of the SFs, which now form a dark cavity soliton (DCS) (homoclinic
cycle). An example DCS is shown in 2.106(b)-(c). DCS solutions are distributed along a
collapse snaking curve [47] in the vicinity of the Maxwell point, where distinct branches of
stable DCSs can be seen in Fig. 2.106(a) (red lines) corresponding to different SF locking
distances (soliton width) of the distinct cycles of the oscillatory tails. Red curves begin
and end at saddle node bifurcations, which connect stable and unstable soliton branches.

The solitonic solutions shown in Fig. 2.6 were obtained through direct numerical
integration of the LLE. We primarily utilised a split-step Fourier integration method as
outlined in appendix C.2, and verified the validity of our results through the Crank-
Nicholson integration method in appendix C.3. Through suitable perturbation of the high
power bistable HSS, a stationary and stable DCS can be induced in simulation, such as is
seen in Fig. 2.6(b). By slowly changing the detuning we may determine the extent of the
stable DCS solution branch, as is plotted as red lines in Fig. 2.6(a). This is repeated for
different sizes of initial perturbation, to yield each of the distinct stable soliton branches.

The soliton shown in Fig. 2.6(b) does not possess a singularity (E = 0) at their
minimum, as is typical for the LLE. Hence, they may be more precisely referred to as grey
solitons. Over the course of this thesis we refer to such solutions as dark solitons, as is
common in the surrounding literature.

2.8 Conclusion

In this Chapter, we reviewed the physics of light matter interaction in dispersive Kerr
media by deriving the nonlinear Schrödinger equation. We then gave a detailed derivation
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of the celebrated Lugiato-Lefever equation, which describes the propagation of light in
ring resonators. Finally, we reviews the conditions required for the existence of localised
solutions (switching fronts and dark cavity soliton) of the Lugiato-Lefever equation.
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3.1 Introduction

In this chapter, we consider the unidirectionally driven ring resonator as was described in
Chapter 2, but here we will take into account the polarisation properties of the interac-
tivity field on the generation of frequency combs. We assume a high finesse ring resonator
composed of a Kerr medium, see Fig. 1, in the normal dispersion regime. A linearly
polarised driving laser is coupled into the cavity, such that the intracavity fields may be
resolved into components of orthogonal polarisations. When considering polarisation com-
ponents, vectorial temporal cavity solitons display features in addition to those seen for a
cavity with a single field, due to the possibility of spontaneous symmetry breaking (SSB)
between polarisation components [37]. The SSB of light within Kerr resonators has been
demonstrated theoretically and experimentally where the intracavity field is composed of
orthogonal polarised components [66–68, 86–91], but also with counterpropagaing com-
ponents [38, 92–97, 100–102], a combination of the two [49, 103, 104], and most recently,
between two, or more, coupled resonators [105–109].

We begin in Section 3.2 by introducing the model governing the copropagation of
orthogonal field components in a ring resonator, as described by Geddes et al. [36]. In
Section 3.3 we review the SSB between homogeneous stationary states (HSS) of orthogonal
polarisation while neglecting group-velocity dispersion, and discuss the universality of this
phenomenon with respect to the systems of counterpropagating fields in ring resonators
and Fabry-Pérot configurations. We then investigate the appearance of Turing instabili-
ties of high power symmetric HSS found in the normal dispersion regime, which results in
the formation of Turing patterns of alternating orthogonal polarisation field components.
In Sections 3.4, we investigate the polarisation properties of vectorial dark cavity solitons
(VDS) in the normal dispersion regime and its effects on the formation of frequency combs.
In particular, we present a useful ‘self-crystallisation’ phenomenon in which an initially
random distribution of VDSs spontaneously form a regular soliton crystal (RSC) in Sec-
tion 3.5, which we first reported in [39]. Cavity soliton crystals were originally invented
in [16] by using phase gradients to position them into regularly spaced structures. In
the case of dispersion, the generation of RSCs has been previously demonstrated through
perturbations introduced near avoided mode crossings [40–43], or an external modula-
tion [44] of the field. Here, instead, we present a new self-organisation mechanism of
long range interactions between adjacent VDSs via a SSB of Turing patterns capable to
controllably generate RSC states. Finally, we characterise the formation of dark-bright
vectorial solitons in Section 3.7.

3.2 Modelling orthogonal polarisation field components in
the ring resonators

In the previous chapter, we have assumed that the intracavity field has preserved the
polarisation properties of the input field, wherein the nonlinear polarisation reduces to

the scalar form PNL = 3ϵ0χ
(3)
xxxx|E|2E (see Chapter 2). In general, the single mode fibres

we consider contain two orthogonal polarisation modes (as is discussed in Section 2.2.3).
Here, we assume that these polarisation modes are degenerate, wherein, the linearly po-
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larised driving laser is coupled into the cavity, such that the intracavity field is resolved
into components of orthogonal polarisations. As has been shown by Geddes et al. [36], a
generalisation to mean field model (the LLE) can be made to allow for a vectorial intracav-
ity electric field in ring and Fabry-Pérot resonators. In particular, the interaction of the
two orthogonal polarisations can be described by the third order nonlinear polarisation

PNL = ε0χ
(3)
xxxx(A(E ·E)∗E +

B

2
(E ·E)E∗), (3.1)

where χ
(3)
ijkl are the elements of the third order nonlinear susceptibility tensor with

A =
χ
(3)
xxyy + χ

(3)
xyxy

χ
(3)
xxxx

, B =
2χ

(3)
xyyx

χ
(3)
xxxx

, (3.2)

and we have generalised the interactivity field into orthogonal linear polarisation compo-
nents E = Exx̂ + Eyŷ. The longitudinal LLE can then be generalised to allow for field
polarisation by considering Eq. (3.1). The evolution of the electric field is given by

∂tE = S − (1 + iθ)E + iA(E ·E∗)E + i
B

2
(E ·E)E∗ − i∂2τE (3.3)

whereE(τ, t) is the slowly varying envelope of the vectorial electric field, S is the amplitude
of the input field, considered to be real and positive, and θ is the input pump detuning
to the near nearest cavity resonance. t is the ‘slow time’ temporal variable describing the
evolution over many round trips of the cavity, while τ is the ‘fast time’ longitudinal variable
describing the evolution over a single round trip of the cavity in the normal dispersion case
with 0 ≤ τ ≤ τR, where τR is the resonator round trip. Here all variables and parameters
are as defined identically for the LLE seen in Chapter 2.

A linear polarised field may be written as a combination of counter rotating (orthogo-
nal) circularly polarised fields. We define fields of left and right handed circular polarisa-
tion as E± = (Ex ± iEy)/

√
2 in terms of the linearly polarised fields. In doing so, we may

transform Eq. (3.3) into the circularly polarised basis to obtain two coupled LLEs

∂tE± = S − (1 + iθ)E± + iA|E±|2E± + i(A+B)|E∓|2E± − i∂2τE±, (3.4)

where we have assumed that the input field is linearly polarised along the x direction as
S =

√
2Sx̂.

Eqs. (3.4) is expressed in a general form, whereby setting the values of A and B we
may model the interaction of the two field components in different nonlinear mediums
[38]. For an isotropic dielectric medium with continuous wave pumping, such as the
silica glass resonators we consider in our study, the coupled LLE model takes the form
[24,26,27,36,38,66,67]

∂tE± = S − (1 + iθ)E± + i|E±|2E± + 2i|E∓|2E± − i∂2τE±. (3.5)

after a renormalisation of the amplitude S and the field intensities |E±|2. In this model,
we have that the detuning and input field of both polarisation components are equal. As a
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Figure 3.1: A ring resonator composed of a Kerr nonlinear medium. Linearly polarised
light is coupled in and out of the resonator via a waveguide. An example intracavity power
profile of a vectorial soliton is shown, presenting a Turing pattern of broken symmetry
between fields of opposite circular polarisation, visible as out-of-phase oscillations in the
background of the dark soliton pulse.

result, Eqs. (3.5) are invariant under the exchange of the + and − indices, the fundamental
symmetry of this system. Hence we refer to stationary solutions satisfying E+ = E− as
symmetric and E+ ̸= E− as symmetry broken.

To support degenerate counter-rotating polarisation components, we assume that the
single mode waveguide which composes the ring resonator possess a rotational symmetry
on its cross section, where in general, we assume the resonator is designed to possess
minimal birefringence (as discussed in Section 2.2.3). We operate in a regime in which
the polarisation mode coupling is dominated by the Kerr effect, which masks the linear
coupling due to birefringence. It has been experimentally demonstrated that the linear
coupling between polarisation modes can be neglected by driving the two polarisation
modes at different carrier frequencies [66–68, 86, 87]. The specific shift in the carrier
frequency is chosen to cancel the birefringence of the waveguide, allowing for degenerate
polarisation modes, as outlined in [66]. As a result, the model used in this section has
been shown to be high accurate in predicting experimental outcomes [67,86]. Spontaneous
symmetry breaking between polarisation modes has so far only be observed in macroscopic
resonator systems [66,67,86] as obtaining perfect polarisation degeneracy in micro-ring and
micro-toroid resonators is extremely challenging due to intrinsic material birefringence
and fabrication induced asymmetries. While true polarisation degeneracy is has yet to
be achieved, such issues are under investigation with a recent observation of near-pure
circularly polarised light in a whispering gallery mode microresonators [110].

Coupled LLE equations (3.5) have been demonstrated to be extremely effective in
describing the interaction of orthogonal polarisation modes in fibre ring [66, 67, 86] and
Fabry-Pérot [68] resonators. Although integrated optical resonators may have very dif-
ferent TE and TM modes, dual combs of polarised light have been realised in doped-
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Figure 3.2: Solutions of Eqs. (3.6) corresponding to the symmetric (black curve with
H+ = H−) and symmetry broken (red curve with H+ ̸= H−) homogeneous stationary
solutions. Dashed lines (solid lines) correspond to solutions which are unstable (stable) to
perturbations neglecting fast time k2 = 0.

silica-glass [111] and silicon nitride [112, 113] microresonators, and successfully described
via coupled LLE in [114, 115]. Hence our analysis applies to a wide class of fibre and
integrated ring resonators.

3.3 Spontaneous symmetry breaking of homogeneous sta-
tionary solutions

3.3.1 Instabilities when neglecting group-velocity dispersion

We first provide a description of the HSSs of Eqs. (3.5). These solutions are obtained from
Eqs. (3.5) by setting all derivatives to zero (∂tE± = ∂2τE± = 0) and taking the modulus
square to obtain two coupled equations

S2 = H3
± − 2(θ − 2H∓)H

2
± + ((θ − 2H∓)

2 + 1)H±, (3.6)

where H± = |E0,±|2 is the power of the HSS E0,± = U0,± + iV0,±, and the real and
imaginary components of the HSS are(

U0,±
V0,±

)
=

(
S

1+(H±+2H∓−θ)2

(H±+2H∓−θ)S
1+(H±+2H∓−θ)2

)
. (3.7)

Eq. (3.6) admits solutions that are either linearly polarised (symmetric solutions with
H+ = H−) or not linearly polarised (symmetry broken solutions with H+ ̸= H−) with
respect to our orthogonal linear polarisation axis x̂, ŷ defined earlier. In Fig. 3.2 we plot
example solutions of Eq. (3.6) for S = 1.03.

The symmetric HSS can be seen in Fig. 3.2 as the black tilted Lorentzian curve and

45



Chapter 3. Symmetry Breaking in Unidirectionally Driven Ring Resonators

are the solutions to the cubic equation

S2 = 9H3 − 6θH2 + (θ2 + 1)H, (3.8)

This equation is of the form of the well known optical bistability curve discussed for the
single LLE (see Chapter 2), where the high power and low power positive slope branches
are stable while the negative slope branch is unstable to homogeneous perturbations (see
then linear stability analysis in the next section) with λ = Ω(k = 0)). The saddle node
bifurcations marking the beginning and end of optical bistability are region correspond to:

HSN =
1

9
(2θ ±

√
θ2 − 3). (3.9)

Symmetry broken HSSs arise as a pitchfork bifurcation of the symmetric HSS, as can
be seen from the red curve in Fig. 3.2. A pitchfork bifurcation refers to the splitting of a
stationary state into multiple stationary states as a parameter is varied. As we move over
this bifurcation point, the symmetric solutions change from stable to unstable, yielding to
a symmetry broken solution of counter rotating circularly polarised field components of
unequal power. We refer to this as a supercritical pitchfork bifurcation. This is an example
of a polarisation induced spontaneous symmetry breaking of the linearly polarised field.
The symmetry broken solutions end with a reverse pitchfork bifurcation restoring the
stability of the symmetric solution. SSB pitchfork bifurcations are located at

HSSB =
1

3
(2θ ±

√
θ2 − 3) (3.10)

such that for the full domain between these two bifurcation, the symmetric solution is
unstable. [38, 96,116]

This sudden change in the stability of the linearly polarised solution as the detuning
is increased is an example of a spontaneous symmetry breaking bifurcation. In general,
SSB refers to a phenomenon in which two or more equal (symmetric) properties of a
system suddenly become unequal (symmetry broken) for a small change in control pa-
rameter. The SSB of light within Kerr resonators has been demonstrated theoretically
and experimentally where the intracavity field is composed of orthogonal polarised com-
ponents [38, 66–68,86–91] where Eqs. (3.5) have undergone extensive investigation in the
absence of fast time effects. It is important to note the mathematical equivalence of this
analysis with other systems discussed in the thesis, as these results hold true not only
for orthogonal polarisations in ring resonators but also counterpropagating fields in ring
resonators [38,96,117], and Fabry-Perot resonators with orthogonal polarisations [36,103].
This universality is conditional on the fact that we neglect group-velocity dispersion in
these instances. SSB is possible in these system due to the nonlinearly induced nonre-
ciprocity between the field components introduced by the self- and cross- phase modula-
tion [38].

3.3.2 Symmetry breaking Turing patterns

In Fig. 3.3(a) we plot solutions of Eq. (3.6) for S = 1.01, τR = 150 when scanning the
detuning θ by changing the frequency of the input laser. For this value of S there are
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Figure 3.3: Solutions of Eqs. (3.5) for S = 1.01, τR = 150. (a) Stable (solid black curves)
and unstable (broken black curves) symmetric homogeneous solutions, and stable (solid
blue curves) and unstable (broken blue curves) symmetric single dark soliton solutions
plotted as their average power. The maximum and minimum power of a stable symmetry
broken Turing pattern are also shown, in red. (b) Turing pattern of alternating polarisation
for θ = 2.94 and (c) the corresponding frequency comb. (d) Power profile of symmetric
dark soliton solutions for θ = 2.8 and (e) the corresponding frequency comb. (f) Power
profile of symmetry broken dark soliton solutions for θ = 2.94 and (g) the corresponding
frequency comb. The black curve in (f) outlines the envelope of the Turing pattern ∝
exp(−

√
Ω(kc)τ) as it approaches the vectorial dark soliton.
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only symmetric HSS (H+ = H−) which are plotted as the black curve. In the parameter
region of our interest there are no symmetry broken HSS solutions. The symmetric HSS
form a tilted Lorentzian curve, where stable solutions are plotted with solid lines and and
unstable solutions as broken lines.

Of key importance is a Turing instability due to a SSB bifurcation of the high power
bistable symmetric HSS typical of regimes of normal dispersion, resulting in the formation
of a Turing pattern stationary states formed of alternating orthogonal polarisations. As
was first described by Alan Turing in his seminal works on chemical morphogenesis [118],
Turing pattern formation, in general, is charactered as the spontaneous formation of pat-
terns from a homogeneous stationary state due to modulation instability in systems gov-
erned by partial differential equations. Here, optical Turing patterns in ring resonators
is a consequence of the balancing of dispersive and nonlinear effects described previously
for soliton formation. The Turing patterns of our study arise in the coupled LLEs (3.5)
through the competition of the Kerr self- and cross-phase modulations through which the
orthogonal field components interact, and is attributed to the normal dispersion regime.
This supercritical bifurcation occurs when increasing the detuning and is plotted as a red
curve depicting the maximum and minimum powers of the Turing pattern for τR = 150
in Fig. 3.3(a). This instability is due to the field interaction through the local self- and
cross-phase modulation and hence are not observed on the high power HSS of a single
LLE [35,79]. The Turing instability can be characterised by considering perturbations on
the HSS E±(τ, t) = E0,± + ϵ± of the form ϵ± = ϵa±e

ikµτ+Ωt, where kµ is the wavenumber
of the perturbation, Ω is the slow time eigenvalue and |ϵ| ≪ 1. We note that the boundary
conditions of the ring resonator impose discrete wavenumbers kµ = 2πµ/τR corresponding
to patterns of µ rolls along the fast time domain. Inserting this perturbation into Eqs.
(3.5), we we obtain linearised equations in terms of ϵ±,

∂tϵ± = −(1 + iθ − ik2µ − 2i|E0,±|2 − 2i|E0,∓|2)ϵ±
+ iE2

0,±ϵ
∗
± + 2iE0,±E0,∓ϵ

∗
∓ + 2iE0,±E

∗
0,∓ϵ∓. (3.11)

We may then write Eqs. (3.11) in terms of the real and imaginary components of the
perturbations ϵ±, giving

Re(∂tϵ+)
Im(∂tϵ+)
Re(∂tϵ−)
Im(∂tϵ−)

 =


−1 A1 0 0
−B1 −1 −C 0
0 0 −1 A2

−C 0 −B2 −1



Re(ϵ+)
Im(ϵ+)
Re(ϵ−)
Im(ϵ−)

 . (3.12)

Here, without loss of generality, we take the homogeneous stationary solutions to be real
[96], such that, we obtain the characteristic polynomial

[(1 + Ω)2 +A1B1][(1 + Ω)2 +A2B2]−A1A2C
2 = 0, (3.13)
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where

A1 = θ − k2µ −H+ − 2H−, B1 = θ − k2µ − 3H+ − 2H−, C2 = 8H+H−,

A2 = θ − k2µ −H+ − 2H−, B2 = θ − k2µ − 3H+ − 2H−.

The growth rate of this perturbation is then

Ω(k) = −1±
√

−A1B1 −A2B2 ±Q

2
, (3.14a)

Q =
√

(A1B1 −A2B2)2 + 4A1A2C2. (3.14b)

These eigenvalues have a similar form to the linear stability analysis of [38,96,116] where
dispersion is neglected (k0 = 0), but now with the crucial dependence on k2µ. From these
eigenvalues we may approximate the Turing wavenumber from the critical wavenumber
with largest growth, Ω(kc). For example, we find a good agreement between the predicted
kc ≈ 0.96 (here kc is approximated form Eq. (3.14) by considering k a continuous variable)
and measured k ≈ 1.01 wavenumber of the Turing pattern shown in Fig. 3.3(b), despite
the value of θ being well above the Turing instability threshold. The spectrum of the
Turing pattern is shown in Fig. 3.3(c). We see a much larger spacing of the frequency
components when compared to the VDS corresponding to the Turing pattern wavenumber.

In the normal dispersion regime, modulation instability of the high power HSS (H± >
1) requires that perturbations on the respective polarisation components are symmetry
broken, ϵ+(kµ) ̸= ϵ−(kµ), whereby modal amplitudes of orthogonal polarisations must, by
necessity, grow out of phase. This is distinct from the decaying oscillations which form
on the low power HSS (H± < 1), upon which dark cavity solitons owe their existence.
Generally, in phase oscillations present in the normal dispersion regime when H± < 1 and
may be induced by symmetric perturbations ϵ+(kµ) = ϵ−(kµ), where the eigenspectrum
(3.14) reduces to the single field linear stability eigenvalues (2.110), under the appropriate
renormalisation. As such, Turing pattern instability for H± > 1 is not present in single
field LLE.

3.4 Spontaneous symmetry breaking of vectorial dark soli-
tons

In the normal dispersion regime, Eqs. (3.5) exhibits VDSs [35]. These solutions are
composed of localised switching fronts which connect the high and low power stable HSSs.
Oppositely oriented pairs of switching fronts can ‘lock’ due to the interaction of local fast
time oscillations close to the lower power HSS and become stationary. This mechanism of
soliton formation was first proposed for spatial solitons composed of diffractive switching
fronts [119–121], but has been demonstrated longitudinally in the ring resonator with a
single field component theoretically [35] (see Chapter 2) and experimentally [19], as well
as in Fabry-Pérot configurations [56] (see Chapters 5 and 6).

We first consider symmetric solitons, and note that at symmetry E+ = E− = E, Eqs.
(3.5) reduce to

∂τE = S − (1 + iθ)E + 3i|E|2E − i∂2τE. (3.15)
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This means that under a re-normalisation of fields E → E/
√
3, S → S/

√
3 the stationary

VDS of our system are analogous to those of the LLE discussed in Chapter 2. A branch
of symmetric solutions of Eqs. (3.5) containing a single VDS is shown in 3.3(a) as the
blue curve (plotted as the average power over a round trip to separate it from the HSS).
At this parameter value (S = 1.01) symmetric VDSs are stable for values of detuning
below the Turing instability, shown in Fig. 3.3(d)-3.3(e). As the detuning is increased,
the VDS symmetric solution undergoes a SSB of the homogeneous background from which
the soliton hangs. This SSB results in the formation of a Turing pattern of alternating
polarisation components and is phenomenologically identical to the SSB of the HSS in the
absence of the VDS.

The frequency comb of a symmetry broken VDS is shown in Fig. 3.3(g). It maintains
a similar spectral envelope to that of the single symmetric VDS [Fig. 3.3(e)] but now it
develops sidebands due to the periodic modulations at the tails. The sideband peaks are
reminiscent of those generated by dispersive waves due to higher order dispersion [122].
Here they are achieved with second order dispersion only and the contribution of the
Turing pattern modulation. The power and separation of these peaks correspond to the
spectral lines of the frequency comb of the Turing pattern, Fig. 3.3(c).

An important property of symmetry broken VDSs is that the amplitude of the Turing
pattern envelope decays as [exp(−

√
Ω(kc)τ)], with Ω(kc) given by Eq. (3.14), from the

place where the VDS tails are close to the unstable symmetric HSS to a saturation value
of the modulated intensity. The black line in Fig. 3.3(f) shows this exponential decay
matching the Turing pattern minima at the tails of the VDS. We have verified that such
agreement persists for a wide range of detunings and input pumps where symmetry broken
VDS are found.

We can compare this Turing instability found on the high power HSS with that found
on the low power HSS (responsible for soliton formation) by considering the fast time
stability. To do so we introduce a perturbation on the longitudinal coordinate U± =
U0 + ϵu±(ζ), V± = V0 + ϵv±(ζ) to Eqs. (3.5) about a symmetric HSS, where we use the
ansatz u± = a±e

λζ , v± = b±e
λζ . We may replace ik with the complex λ in Eq. (3.14) and

set
Ω(−iλ) = 0 (3.16)

to obtain the fast time eigenvalues,

λ2 = [A+B + C ±
√
(A−B − C)2 − 4]/2, (3.17a)

λ2 = [A+B − C ±
√
(A−B + C)2 − 4]/2, (3.17b)

where A = 3H − θ,B = 5H − θ, C = 4H. In Fig. 3.3(a) we see a supercritical SSB
bifurcation of the high power HSS (at θc ≈ 2.86) resulting in the formation of a Turing
pattern. At this bifurcation point, Eq. (3.17) gives four real λ1,2 = ±q1, λ3,4 = ±q2 and
four degenerate imaginary λ1,2 = λ3,4 = ±ikc eigenvalues. The wavenumber kc of the
imaginary eigenvalues correspond exactly with the slow time instability eigenvalue at the
bifurcation. For detuning larger than the bifurcation point, θ > θc, Eq. 3.17 gives four real
λ1,2 = ±q1, λ3,4 = ±q2 and four imaginary λ1,2 = ±ik1, λ3,4 = ±ik2 eigenvalues. Here, the
imaginary eigenvalues correspond to the maximum and minimum unstable wavenumbers
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of the slow time linear stability analysis. Hence they form the bounds of the range of
unstable wavenumbers k1 < k < k2 for the Turing instability in the slow time. For θ < θc
smaller than the bifurcation point, Eq. (3.17) gives four real λ1,2 = ±q1, λ3,4 = ±q2 and
four complex eigenvalues λ1,2,3,4 = ±q ± ik eigenvalues. The Turing bifurcation on the
high power HSS presents as a Hamiltonian-Hopf bifurcation of eigenvalues (3.17b). This
bifrucation occurs with opposite direction with respect to the formation of Turing patterns
that are seen on the low power HSS. Here the leading eigenvalues [Eq. (3.17b)] are purely
imaginary in the domain of Turing instability, which suggests the HSS is unstable in the
slow time (slow time modulation instability).

3.5 Self-crystallisation of temporal cavity solitons

We now consider solutions containing multiple VDSs along the cavity length simultane-
ously. After the SSB bifurcation, such solutions form Turing patterns in the intervals
between VDSs. As the Turing patterns grow, adjacent VDSs are ‘pushed’ apart until an
equilibrium of the pattern’s amplitude is reached on both sides of the VDS, as shown
in Fig. 3.4. The formation of the symmetry broken Turing pattern is hence found to
introduce long range repulsive interaction between adjacent VDSs. Note that the sym-
metric VDSs do not exhibit any long range interactions and the VDSs remain stationary
at arbitrary separation distances (larger than the VDS size).

In Fig. 3.4(a) we start with three symmetric VDSs randomly distributed along the
round trip for S = 1.02, θ = 2.94 and τR = 150. For these parameter values, the homoge-
neous background is unstable to the formation of Turing pattern of alternating polarisa-
tions. The maximum amplitude reached by the Turing patterns in the intervals separating
the VDSs depends on the separation of adjacent VDSs. As the pattern amplitude grows,
the VDS are ‘pushed’ along the resonator until an equilibrium configuration of the pattern
is reached on either side of each VDS. The slow time evolution of the three VDSs is shown
in Fig. 3.4(c) through direct numerical integration of Eqs. (3.5). Here it can be seen that
the VDSs move such as to spread out along the cavity coordinate. This evolution ends
in the stationary state shown in Fig. 3.4(d) composed of VDSs located equidistantly on
the round trip of the cavity and separated by Turing patterns with equal amplitude, i.e.
perfectly regular soliton crystal (RSC).

The formation of such a RSC induced by SSB evolves spontaneously from the initial
condition of three randomly positioned dark solitons. The organisation process corre-
sponds to self-crystallisation from a random distribution of VDSs. The RSCs of our
system are robust to a change in the number of VDS as the repulsive interaction will
redistribute VDS to equidistant locations, as long as the new RSC spacing is shorter than
twice the characteristic Turing patterns saturation length ∆τ , defined as the fast time
distance where the pattern amplitude reaches its maximum value.

As can be seen in Fig. 3.4(e), the RSC produces a frequency comb with a smooth
spectral envelope and a free spectral range three times larger than the frequency comb
of the initial condition, Fig. 3.4(b). In general, a RSC composed of N VDSs produces
a frequency comb equivalent to a single VDS in a cavity with round trip τR/N . The
RCSs emulate smaller cavity sizes, such that with increasing soliton number, a frequency
comb with enhanced power and greater spacing of the spectral lines is obtained. Due to
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Figure 3.4: (a) Initial condition of three symmetric vectorial dark solitons and corre-
sponding comb spectrum (b). (c) Slow time evolution of the initial condition in (a) for
S = 1.02, θ = 2.91 demonstrating the growth of SSB Turing patterns, which propel the
VDSs through the cavity. (d) Final RSC stationary state and corresponding comb spec-
trum (e). (f) Slow time evolution after reducing the cavity detuning to θ = 2.81, below the
threshold for Turing patterns. (g) Final regular VDS crystal with a uniform background
and corresponding comb spectrum (h).

52



Chapter 3. Symmetry Breaking in Unidirectionally Driven Ring Resonators

these features, the spontaneous formation of RSC has many potential applications, such as
satellite communications [123], photonic radar [124] and radio-frequency filters [125,126].
Being a self-organised structure, the RSC of our system offer different ways to generate and
control RSCs than those demonstrated in [40,44]. As was mentioned earlier, regular peaks
in the spectral envelope are due to the Turing pattern wavenumber that is required for
self-crystallisation. Such peaks can be removed at will after self-crystallisation by changing
the control parameters back below the SSB bifurcation, thus leaving a symmetric RSC
with no pattern states between the VDS as shown for example in Fig 3.4(f) and (g).

To demonstrate generality and robustness of the self-crystallisation mechanism de-
scribed above, we show in Fig. 3.5 the asymptotic results of simulations of Eqs. (3.5)
for S = 1.05, θ = 3 instead of S = 1.02, θ = 2.91, and for one to six random VDSs in
the initial condition obtained below the Turing threshold. These six configurations co-
exist and can be smoothly tuned by changes in the detuning θ. A further advantage of
our method with respect to other techniques of generating RCSs, is that when adding
or removing one of the VDSs through an external perturbation, a crystal with an extra
VDS or one less VDS smoothly nucleates via the long range interactions mediated by the
Turing patterns, moving between the VDSs crystals are shown in Fig. 3.5(g), (i) and
(k). On the right hand side of Fig. 3.5, we display the spectra corresponding to these
asymptotic configurations. While periodic self-organised VDSs crystals are shown in (g),
(i) and (k) for four, five, and six VDSs, Figs. 3.5(c) and (e) show that self-crystallisation
may only happen in a section of the full cavity length as explained in the next section.
We note that partial and/or full self-crystallisation has been found within the parameter
ranges of (1.01 ≤ S ≤ 1.06), (2.86 ≤ θ ≤ 3) and (150 ≤ τR ≤ 300) with up to six VDSs
coexisting with Turing patterns. This corresponds to tens of thousands of simulations
and demonstrates the robustness, the wide range of occurrence and reproduction of our
mechanism of self-crystallization of temporal cavity solitons. Note that self-crystallization
is also observed when changing the cross-coupling and the dispersion coefficients here kept
fixed to the values of 2 and 1, respectively.

3.6 Partial self-crystallisation of temporal cavity solitons

Even in the case of a small number of VDSs in a long cavity, such as in Fig. 3.5(c)
and (e), and Fig. 3.6, VDSs are found to move apart until a saturation of the Turing
pattern amplitude is reached in the intervals between them. In Fig. 3.6, five VDSs have
undergone SSB, and spread apart until the VDSs become stationary and produced a local
RSC via self-crystallisation for S = 1.04, θ = 3, (a)-(b) and for S = 1.06, θ = 3, (c)-
(d). The maximum range of the repulsive interaction between VDSs can be investigated
using the growth rate, Eq. 3.14, of the critical wavenumber kc of the Turing pattern
away from the VDS. We are able to estimate the a maximum interaction distance 2∆τ ≈
−2 ln(0.01|Emax|2)/

√
Ω(kc), where we have assumed the VDS interaction disappears when

the Turing amplitude reaches 1% from the maximum amplitude |Emax|2. This predicts a
maximum lattice spacing of 2∆τ ≈ 37 for S = 1.04, θ = 3 and 2∆τ ≈ 31 for S = 1.06, θ = 3
compared to the measured values of 40, and 31 from Fig. 3.6, respectively. The interaction
distance of VDSs can then be controlled by changing the parameters to alter the growth
rate of the Turing patterns. A pair of VDSs will no longer interact should their separation
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Figure 3.5: A single (a) and five crystal states (c), (e), (g), (i), (k) for S = 1.05, θ = 3.0.
The initial conditions are randomly distributed VDSs leading to partial soliton crystals
with two and three VDSs in (c) and (e), and to soliton crystals of four, five, and six VDSs
in (g), (i) and (k), respectively. Panels (b), (d), (f), (h), (j) and (l) show the frequency
comb spectra associated with each of the asymptotic VDS states.
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Figure 3.6: Formation (a),(c) and final partial soliton crystals (b),(d) composed of five
VDSs for S = 1.04, θ = 3 (a)-(b) and S = 1.06, θ = 3 (c)-(d). The VDS can move no closer
than 2∆τ due to the repulsive interactions induced by the Turing pattern. 2∆τ ≈ 40 for
(b) and 2∆τ ≈ 31 for (d). The black curve in (b) follows the Turing pattern envelope
starting from full saturation towards the VDS.
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Figure 3.7: (a)-(b) Power profiles of RSC unit cells for S = 1.02, θ = 2.91, τR = 50N . Two
additional unit cells can be obtained by exchanging the fields E+ ↔ E− in both (a) and
(b). The unit cells are related by a phase shift in the peaks of the Turing patterns of π/2.

be greater than 2∆τ where the mediating Turing patterns reach saturation. By selecting
a suitable cavity length and soliton number N such that N > τR/2∆τ we observe the full
self-crystallisation phenomenon as is shown in Fig. 3.4 and in Figs. 3.5(g),(i),(k).

RSCs are composed of a unit cell which is perfectly repeating over the cavity round
trip. For example, the RSCs of Fig. 3.4(d) and Figs. 3.5(g), (k) are composed of the unit
cell type shown in Fig. 3.7(a) repeated several times over the round trip. The RCS of
Fig. 3.5(i) is composed of a sequence of unit cells of the type shown in Fig. 3.7(b). These
two unit cells possess the fast time symmetries E±(−τ) = E∓(τ) and E±(−τ) = E±(τ)
respectively, and two additional unit cells obtained by exchanging the fields E+ ↔ E− in
Fig. 3.7. As such, there are four possible RSCs, each related by an integer multiple phase
shift of π/2 in the peaks of the Turing pattern. For Fig. 3.4, we find that all four RSCs
are stable and can be reached depending on the initial condition. In general, the systems
selection of one or the other type of cell strongly depends on the number of VDSs in the
crystal and the ratio between the pattern wavelength and the cavity length. This can be
seen in Fig. 3.5 as the crystal type alternates between unit cell type for each additional
soliton.

If we return to Fig. 3.4 we see that the evolution of the three VDSs is composed of
two regimes. For slow time t < 3× 105, the VDSs move apart due to the formation of the
Turing patterns. At slow time t ≈ 3× 105, the three VDSs approach an equal spacing in
the cavity, but here the Turing pattern rolls display a non integer π/2 phase shift with
respect to the stationary unit cells presented in Fig. 3.7. We now see transient dynamics
in which the equidistant VDSs lattice and Turing pattern drift in fast time at different
rates. This drift continues until one of the four stationary configurations is reached. We
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note the possibility of forming ‘defective’ crystals composed of alternating combinations
of these four unit cells, which we leave for future study.

3.7 Vectorial dark-bright solitons

In this section, we investigate cavity soliton solutions of Eqs. (3.5) in parameter regions
displaying strongly symmetry broken HSS. This regime is characterised by one polarisation
field component being largely suppressed by the other (e.g. E+ ≫ E−). In Fig. 3.8(a), we
show the HSSs for S = 3

√
2/3. A notable feature of the HSSs for this larger value of S,

is the formation of the ‘horn’ in the symmetry broken HSSs, where one field approaches
peak power and the other approaches zero amplitude. This horn forms a small region of
optical bistability between symmetry broken HSSs corresponding to the red curve and the
blue curves of Figs. 3.8(a)-(c). Near the peak of the symmetry broken HSS horn, and
with suitable perturbation, we observe the formation vectorial dark-bright cavity solitons
(VDBS). These solutions present as a pair of solitons that occupy the same domain in fast
time where the dark soliton hangs from the dominant field and a bright soliton sits upon
the suppressed low power field.

The formation of VDBS has seen much theoretical investigation over the last three
decades [127–134] in single mode optical fibres. Such systems are governed by coupled
nonlinear Schrödinger equations (NLSE), which have been shown to admit solutions of
dark-bright solitons due to the cross phase modulation between field components. VDBSs
of the NLSE have been observed experimentally in optical fibres between orthogonal po-
larised field [135], as well as matter-wave VDBS solitons, which have been demonstrated
experimentally in two-species Bose-Einstein Condensates [136–138].

More recently, dark and bright bound solitons have been demonstrated experimentally
in microresonators [139, 140]. In previous studies, the generation of VDBS is achieved
though bichromatic input fields allowing for different dispersion coefficients for the two
field components. By selecting appropriate driving frequencies, we may have one input
field operate in the anomalous dispersion regime, generating a bright soliton, while the
second field operates in the normal dispersion regime in which a dark soliton is supported
through cross phase modulation. Dark and bright solitons are bound in the fast time and
copropagate along the microresonator. Bichromatically pumped microresonators have
seen much study for the generation of frequency combs [141–146] where the simultaneous
generation of orthogonally polarised solitons has been demonstrated [112,115].

Here, we present a totally different paradigm for the formation of VDBSs in a ring
resonator. We generate VDBSs of Eqs. (3.5) with monochromatic pumping with both
polarisation field components exhibiting identical normal dispersion. VDBSs of Eqs. (3.5)
are composed of SFs which connect to four different HSSs. These four HSSs form a
bistability curve which is present at the horn for both the dominant and suppressed field,
as we can see in Figs. 3.8(b)-3.8(c), respectively. In Fig. 3.8(d), we show four bistable
VDBS solutions of Eq. (3.5) for S = 3

√
2/3, θ = 6.194. Each solution of increasing width,

represented by a different colour, is composed of a dark soliton which hangs from the upper
HSS and a bright soliton which sits on the low power HSS. In Fig. 3.8(b) we plot the dark
solitons of 3.8(d) as ‘x’. In the dominant field, the switching fronts which compose the dark
soliton connect to the red and blue curves of Fig. 3.8(b). Switching fronts approach the
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Figure 3.8: Solutions of Eqs. (3.5) for S = 2
√
2/3. (a) Stable (solid) and unstable

(dashed) homogeneous stationary states which are symmetric (black curve) or symmetry
broken (red, blue and green curves). Bistable dark-bright vector solitons for θ = 6.194 are
shown in (d). These solutions are composed of switching fronts that connect bistable HSS
in the small region highlighted in (b) and (c), where the location of the solitons of (d) are
marked with an ‘x’. VDBS display collapse snaking behaviour resulting is stable solution
branches, shown in pink in (b)-(c), each corresponding to distinct soliton width.

58



Chapter 3. Symmetry Breaking in Unidirectionally Driven Ring Resonators

Figure 3.9: (a) Dark (red) and bright (blue) vectorial solitons for S = 2
√
2/3, θ = 6.194,

(b) and their corresponding frequency combs.

lower power (blue) HSS displaying a decaying oscillatory trajectory, whilst the approach
to the higher power (red) HSS is smooth. It is the interaction of these oscillations which
introduce a locking mechanism analogous to that described previously for the LLE. The
corresponding bright solitons of Fig. 3.8(d) are marked with a ‘x’ in Fig. 3.8(c). Here, the
switching fronts display a decaying oscillatory trajectory at the connection with the higher
power (blue) HSS, and a smooth trajectory with the lower (red) HSS. The bright solitons
‘mirror’ the dark solitons in profile, exhibiting an identical size and number of peaks, due
to local Kerr cross coupling. VDBSs undergo collapse snaking [35,47], displaying separate
stable VDBS branches corresponding to the distinct VDBS sizes. Stable VDBS branches
are shown in Fig. 6.10(a)-6.10(c) as pink curves. As VDBS solution of Eqs. (3.5) form
around the symmetry broken HSS horn, they are found for much larger input power when
compared to the symmetric dark-dark vectorial solitons of the previous sections.

In Fig. 3.9 we present a VDBS (a) and its corresponding frequency comb (b). VDBSs
produce a duel comb [6, 7, 140, 147] at the output, where the red and blue combs corre-
sponds to the dark and bright solitons of orthogonal polarisation, respectively. These two
combs have identical spectral line spacing, corresponding to the cavity round trip time,
but are symmetry broken in the spectral line power and in the spectral envelope. The
difference in the power of the spectral lines is due to the much higher circulating power in
the polarisation field component supporting the dark soliton when compared to the bright
soliton field component. Modulations in the spectral envelope correspond to the oscilla-
tions on the peak of the bright soliton and trough of the dark soliton. These oscillations
‘mirror’ each other in the field envelope producing displaced modulations in the spectral
envelope.

By slowly changing the parameters, VDBS are found to undergo a Hopf bifurcation.
This results in stable breathing dynamics of the dark and bright solitons. An example
dynamical VDBS is shown in Fig. 3.10 for S = 3.2, θ = 6.85. The power profile of a VDBS
at different points along the oscillatory cycle is shown in 3.10(a). These profiles correspond
to the maximum and minimum of the peak (trough) of the bright (dark) soliton during
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Figure 3.10: Breathing dark-bright vector soliton for S = 3.2, θ = 6.85. (a) Power profile
of VDBS at two points in fast time. (b) Trace of the minimum of the extrema of the dark
(red) and bright (blue) soliton over slow time.

each cycle. A trace of the peak of the bright soliton (blue) and the trough of the dark
soliton (red) is shown in Fig. 3.10(b). We see that the oscillations of the dark and bright
solitons are perfectly synchronised.

3.8 Conclusion

In this chapter we have demonstrated the existence of Turing instabilities due to SSB of
polarisation states, VDS on uniform and modulated backgrounds, long range interactions
of VDS on modulated backgrounds and dark-bright cavity solitons in the same set of Eqs.
(3.5) describing light with two orthogonal polarisations propagating in a ring Kerr cavity.

We demonstrated the formation of a RSC, which is achieved from a random distribu-
tion of VDSs via pattern formation with two field components of orthogonal polarisation.
SSB results in the formation of Turing patterns of alternating polarisation at the tails of
the VDSs. Long range interactions between VDSs are induced and mediated by Turing
patterns, which increase the separation between adjacent VDSs until an equidistant equi-
librium distance is reached and a regularly spaced soliton crystal is formed. Although
long range interactions can also be induced by local soliton oscillations [148] and field
counter-propagation [73, 117], our Turing pattern method offers new degrees of control,
simple implementation, possible generalisation to other systems with two or more inter-
acting components, smooth transitions to crystals of larger or smaller numbers of cavity
solitons and even tuning of the spatial interaction length resulting in localised crystalli-
sation. Moreover, in the regime of a Turing instability, RSCs originate spontaneously
(self-crystallisation) without the need of any perturbation [40–44] and represents a new,
readily implementable, method for RSC formation relevant for applications [123–126].
RSCs produce a frequency comb displaying a smooth spectral profile and increased line
spacing when compared to a random distribution of cavity solitons. As such, a RSC may
be used to emulate smaller cavity sizes while avoiding the experimental limitations of small
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diameter ring resonators.
The same mechanism based on coexisting cavity solitons and Turing patterns can also

lead to partial self-crystallisation in long cavities such as those of fibre loops, allowing
one to build crystal sections with controllable numbers of cavity solitons separated by
intervals of pattern solutions (or flat solutions if one moves the detuning θ back below
the Turing threshold) of, again, controllable length. The frequency combs obtained at
the output of these configurations cannot be obtained from single small ring resonators
of lengths comparable to twice the solitons distance 2∆τ since these are always periodic.
Quasicrystals, crystals with impurities and superpositions (periodic or random) of crystals
of different lengths can be realised in an optical system to simulate and investigate solid
state structures of difficult realisation, i.e. photonic simulations. These come with the
extra benefits of dual-mode operation and correlations. The self-crystallisation mechanism
described in this work is universal in systems displaying temporal cavity soltions and
Turing instabilities and has already been generalised to Fabry-Pérot configurations with
two orthogonal polarisation’s [103] We have also observed self-crystallisation of VDSs in
configurations of ring-resonators operating away from symmetric configurations that better
describe integrated microresonators as those mentioned in [111–115].

Finally, we demonstrated the possibility of VDBS. Such solutions form with suitable
perturbation in regimes of highly symmetry broken HSS, in which the circulating power
in one polarisation field component is much larger then that the other. A dark soliton
forms in the high power polarisation component which is coupled to a bright soliton forms
in the low power component. In our system, VDBS are generated with equal and normal
group velocity dispersion. This is at a difference with previous methods, which make
use of bichromatic pumping of the resonator [140]. This results in a difference in group
velocity dispersion between the field components with one laser operating in the anomalous
dispersion regime, generating a bright soliton, while the second laser operates in the normal
dispersion forming a dark soliton through cross-Kerr interaction with the bright soliton.
In our system, the bright and dark solitons formed of switching fronts which connect to
bistable symmetry broken HSS and lock due to the interaction of oscillatory tails. VDBS
are shown to undergo Hopf bifurcations resulting in slow time oscillatory dynamics.

Dark-dark, and dark-bright (as well as bright-bright [67]) vectorial temporal cavity
solitons are uniquely beneficial for their capacity to produce duel frequency combs, one
comb for each field component. Duel comb generation has seen significant interest for
application in spectroscopy by enabling greater resolution and sensitivity, when compared
with single comb system [6, 7, 147]. Duel combs are typically generated by combining the
outputs of two microresonators. More recently, duel comb generation has been experi-
mentally demonstrated in a single resonator which is bichromatically driven [140]. In our
single ring resonator system, we may generate a duel comb output using a single input
laser.

61



Chapter 4

Counterpropagating Light in
Bidirectionally Driven Ring
Resonators

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Modelling the counterpropagation of light in ring resonators . . . . . . . . . . 64
4.3 Homogeneous steady states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Two switching fronts and dark soliton steady states . . . . . . . . . . . . . . . 73
4.5 Distance of two stationary switching fronts . . . . . . . . . . . . . . . . . . . . 78
4.6 Evolution towards the two switching-front solutions . . . . . . . . . . . . . . . 84
4.7 Oscillatory dynamics and bistability with front stationary states . . . . . . . . . 87
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

62



Chapter 4. Counterpropagating Light in Bidirectionally Driven Ring Resonators

4.1 Introduction

In this chapter, we study the interaction of two counterpropagating input fields in nor-
mally dispersive ring and micro-ring resonators, which is described by two globally coupled
equations of LLE form [45, 46]. We use the term ‘global coupling’ following [47] to de-
scribe nonlinear cross terms that couple a point of the resonator to all other points in the
same resonator via integrals that extend to its full length. The anomalous dispersion case
has been investigated in [149] where the soliton blockade phenomenon was introduced.
We characterise the formation of a novel class of robust stationary states formed by light
plateaus separated by two local switching fronts in only one of two counterpropagating
fields in ring resonators. Such states are due to global coupling between counterpropagat-
ing fields corresponding to the average power, and allow for frequency combs to switch
from one field to the other by simply tuning the input laser frequency. Light plateau
states are self-starting from noise for a wide range of detuning due to an instability of the
homogeneous stationary states along the longitudinal coordinate resulting from the aver-
aged terms. The global nature of these states display an unusual high degree of control
over pulse and plateau duration in one of the fields upon changes of one of the input laser
frequencies.

The primary control parameters considered here are the detunings of the two driving
lasers, where one is presumed constant and the other is scanned. In practice, thermo-
elastic and thermo-refractive effects due to material absorption deform the resonances of
the fields [69,70], compromising our control over the detunings of the counterpropagating
fields. Microresonators composed of silica glass exhibit a positive thermal coefficients,
meaning the refractive index increases with temperature, which results in a redshift of
the resonance frequency. For silica microresonators, typical values of the coefficients of
thermal expansion and thermal-optics are αexp ≈ 5.5 × 10−7K−1 and αopt ≈ 10−5K−1,
respectively, such that, the shift in the resonant frequency due to a temperature change
of ∆T = 1 ◦C is [3]

∆ωthermo

ωr
= (αexp + αopt)∆T ≈ 1.055× 10−5. (4.1)

For a high-Q ring resonator (Q ∼ 108), the thermal shift in the resonance frequency is 1000
time larger than the resonance linewidth, and approximately 1000 times larger than our
detuning scanning domain we present in this chapter. That said, it is generally appropriate
to neglect thermal effects in our models, as we have been done throughout this thesis. The
thermal shift can be incorporate into the laser detuning parameters of our models, which
is appropriate for the bidirectional system as the thermal shifts of the resonances of the
two directions are equal, where the thermal effects are dependant on the total power of
the fields but not the propagation direction. In practice, the bidirectionally driven ring
resonator exhibits a self-stabilisation effect in which the system naturally finds a balance
between the thermal redshift and the detuning of the driving laser, such that, the laser
remains near the resonances position. This is referred to as passive thermal locking [3].

We begin in Section 4.2 by introducing the coupled integro-partial differential equa-
tions, which governs the counterpropagation of light in the ring resonator. In Section 4.3,
homogeneous steady state solutions of the globally coupled equations are investigated and
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shown to undergo several bifurcations when the detunings are scanned. In Section 4.4, we
characterise novel steady state solutions where one field has a homogeneous power while
the other forms either a single dark temporal cavity soliton, single bright temporal cavity
soliton, or power plateaus separated by sharp kinks. These solutions are unusual because
in locally coupled field equations (i.e. no integral terms) fast time variations of the power
of one field are reflected in the other one. It is the nature of the integro-partial-differential
equations and global coupling that variations in one field are not necessarily present in
the other field, leaving it in a homogeneous state. In Section 4.5, we determine the pa-
rameter ranges of the existence and stability of these hybrid solutions with sharp kinks,
derive a semi-analytical expression of the distance of stationary kinks as a function of the
cavity detunings, and compare it successfully with numerical simulations. In particular,
we demonstrate that stationary solutions with two kinks in one of the counterpropagating
fields are strongly related to similar solutions of a single normally dispersive LLE at the
Maxwell point. Such stationary states have been observed with single input laser setups,
where a counterpropagating field is induced by backscattering [73,74], where a connection
with the Maxwell point (see Section 4.4) is also made.

Steep kinks connecting two stable homogeneous solutions in the presence of bistability
have been studied extensively in diffusive systems where they are known as fronts [150],
in nonlinear optics of scalar fields where they are known as switching waves [19, 54, 151],
and in systems with exchange symmetry where they are known as domain walls [120,
121, 152–154]. Here, the system of interest has an exchange symmetry between the two
counterpropagating fields. The hybrid solutions described in Section 4.4 display power
plateaus separated by two kinks and do not reflect this exchange symmetry since one field
is homogeneous and the other one is not. For this reason, we prefer to label the kinks as
‘switching fronts’ (SF) instead of ‘domain walls’ which was preferred in for example [73].
The solitonic (localised) aspect of these solutions is located in the SF and not of course in
the power plateaus. For this reason we also avoid the use of the term ‘platicons’ as being
an unhelpful mixing of the localised aspect of solitons with the extended character of the
homogeneous solutions. In Section 4.6, we derive a semi-analytical description of zero
dispersion SFs, and show that the zero dispersion SF solutions well approximate transient
states with nonzero dispersion as they move towards stable two-SF states. In Section 4.7,
we show the presence of nonlinear oscillations of homogeneous states in a symmetry broken
and global regime similar to those predicted in symmetric regimes [96,97]. We then identify
a multi-stability of slow nonlinear oscillations with SF states and continuous wave outputs
offering an unprecedented variety of states for applications in high-control frequency comb
generation, all optical oscillators, optical computing, time reversal symmetry breaking,
and signal routing in telecommunication systems. Conclusions, connection to experiments
and applications are presented in Section 4.8.

4.2 Modelling the counterpropagation of light in ring res-
onators

We consider the physical setting of a ring resonator driven by two bidirectional continuous
wave (CW) lasers (see Fig. 4.1). Counterpropagating light within nonlinear resonators
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Figure 4.1: A continuous wave (CW) forward (red) and a CW backward (black) beams
counterpropagate in a micro-ring resonator. For a detuning of the forward field smaller
than the detuning of the backward field it is possible to obtain a power output where the
forward field is still CW while the backward field displays two SFs in the intracavity power
(a). This results in a switching output (c) from the backward field and CW output (b)
from the forward field.
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has seen much theoretical study in both ring [45, 46] and Fabry-Pérot [48] geometries.
Skryabin [46] provides a detailed review of the derivation of the equations used to model
this system from first principles. Here, we summarise the important considerations when
modelling counterpropagating fields on timescales of the second order dispersion.

The propagation equation for the total electric field may be derived through similar
means as in Section 2.4, where in this section, a notable difference is the inclusion of field
components propagating on opposite directions. The electric field within the cavity can
be written as a superposition of two counterpropagating fields

E(τ, t) ∝ F̄ (τ, t)eikF τe−iωF t + B̄(τ, t)e−ikBτe−iωBt + c.c., (4.2)

where F̄ (τ, t) and F̄ (τ, t) are normalised envelope functions of the forward and backward
propagating fields, respectively, with input frequencies frequencies ωF ,ωB and propagation
constants kF , kB, where t is the slow time and τ is the longitudinal coordinate (fast time)
along the resonator round trip time τR (−τR/2 ≤ τ ≤ τR/2).

Coupling between forward and backward propagating fields can arise from a number
of different mechanisms within a ring resonator. For example, Rayleigh scattering is
ubiquitous within microresonators [71, 72], and is induced through small variations in
the material composition or density, which introduces small variations in the refractive
index. Rayleigh scattering manifests as a linear coupling between counterpropagating
field components [45], whereby scattered light is coupled into the same mode travelling in
the opposite direction, and has been utilised as a means of generating a counterpropagating
field for the study of localised structures [73]. Linear coupling may also be induced via
scattering at the waveguides boundary, which my be controlled through engineering of the
roughness of the resonators surface [74]. In these cases, the linear coupling coefficient is
considered to be smaller than cavity photon decay rate, where in general, backscattering
can be suppressed through careful engineering [75]. Defects in the waveguide material
may also introduce nonlinear scattering effects, such as, the Raman effect [98] (inelastic
scattering of photons by vibrational modes of the medium) and Brillouin scattering [99]
(arises from interaction between light and thermally induced acoustic waves). Here, we
consider a bidirectional driven ring resonator in which the coupling mechanism between
counterpropagating fields is dominated by the Kerr nonlinearity.

The nonlinear interaction between counterpropagating light can be characterised by
the nonlinear atomic polarisation, which takes the form,

PNL ∝ |E|2E =(|F̄ |2 + 2|B̄|2)F̄ eikF τ + (|B̄|2 + 2|F̄ |2)B̄e−ikBτ + (third harmonic). (4.3)

Forward and backward propagating fields are coupled through self- and cross- phase mod-
ulation originating from the Kerr nonlinearity. Here, the effect of the Kerr nonlinearity is
directionally dependant, with terms proportional to exp(±ikτ). We may define nonlinear
dielectric susceptibilities within the rotating wave approximation as,

ϵFNL ∝ |F̄ |2 + 2|B̄|2, (4.4a)

ϵBNL ∝ |B̄|2 + 2|F̄ |2, (4.4b)

which characterise the shift in resonance due the Kerr effect for light propagating forward
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exp(ikF τ) and backwards exp(−ikBτ), respectively. As the cross-phase modulation is
twice the self-phase modulation, there is a nonreciprocity of the nonlinear effect between
counterpropagating fields. The difference in the shift of refractive index due to the Kerr
effect results in an optical path length that is directionally dependant and has been shown
to result in spontaneous symmetry breaking between the direction of circulating power
[95,155,156] (and is mathematically similar to the polarisations of Chapter 3).

This results in the coupled equations

∂tF̄ + ∂τ F̄ = SF − (1 + iθF )F̄ + i(|F̄ |2 + ν|B̄|2)F̄ − i∂2τ F̄ , (4.5a)

∂tB̄ − ∂τ B̄ = SB − (1 + iθB)B̄ + i(|B̄|2 + ν|F̄ |2)B̄ − i∂2τ B̄. (4.5b)

which has split our single field LLE into two coupled LLEs, one for each counterpropagating
component exp (ikF τ) and exp (−ikBτ), as per the rotating wave approximation. The two
fields of this system are described by mean-field equations with the self- and cross-phase
modulation terms in the Kerr approximation, through which the fields interact. Eqs. (4.5)
possess two distinct retarded times, one for the forward propagating field and one for the
backward propagating field. As such, it is not possible to transform this set of equations
into a rotating frame of reference as we have done previously for the LLE. Dynamics at
the frequency of the free spectral range are prolific in Eqs. (4.5). As such, we must give
careful attention to the different interaction timescales between field components.

We may express the field envelopes as the modal expansions

F̄ (τ, t) =
∞∑

µ=−∞
f̄µ(t)e

iµᾱτ , B̄(τ, t) =
∞∑

µ=−∞
b̄µ(t)e

−iµᾱτ (4.6)

where ᾱ = 2π/τR is the free spectral range of the cavity and µ is the cavity mode number.
To investigate the dynamical at different timescales, we define the new modal amplitudes

f̄µ(t) = fµ(t)e
−iµᾱt, b̄µ(t) = bµ(t)e

−iµᾱt (4.7)

which separates the evolution of the modal amplitudes into functions which vary on distinct
timescales. Inserting the modal expansions (4.6) into Eqs. (4.5), we obtain the modal
equations

∂tfµ =SF δµ,0 − (1 + iθ)fµ + (µᾱ)2fµ

+
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′

[
fµ′f∗µ′′′fµ′′ + 2bµ′′′b∗µ′′fµ′eiᾱ(µ−µ′)t

]
, (4.8a)

∂tbµ =SBδµ,0 − (1 + iθ)bµ + (µᾱ)2bµ

+
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′

[
bµ′b∗µ′′′bµ′′ + 2fµ′′′f∗µ′′bµ′eiᾱ(µ−µ′)t

]
, (4.8b)

where the four wave mixing momentum condition µ+ µ′′′ = µ′ + µ′′ is implemented using
the Kronecker delta δi,j . Our decomposition of the modal amplitudes f̄µ(t), b̄µ(t) yields
functions which evolve over distinct time scales, where, the dynamics of the exponential
term exp−iµᾱt are rapidly varying on the scale of the free spectral range ᾱ, whereas the
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modal amplitudes fµ(t), bµ(t) vary at the scale of the cavity decay time κ−1. In a high
fineness cavity, where the power transmission coefficient is small T ≪ 1, these timescales
are very well separated. If we perform an averaging of Eqs. (4.8) on a timescale that
is longer than the round trip time but shorter than the cavity decay time, we find that
each term in Eqs. (4.8) remains unchanged, except those proportional to rapidly varying
exponentials. On such a timescale, the exponential terms will be non-zero only if µ = µ′.
As a consequence, rapidly varying terms on the scale of ᾱ can be appropriately discarded
should µ ̸= µ′ [45, 46,48,49], and the model equations (4.8) become

∂tfµ =SF δµ,0 − (1 + iθ)fµ + (µᾱ)2fµ

+
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′fµ′f∗µ′′′fµ′′ + 2fµ
∑
µ′

bµ′b∗µ′ , (4.9a)

∂tbµ =SBδµ,0 − (1 + iθ)bµ + (µᾱ)2bµ

+
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′bµ′b∗µ′′′bµ′′ + 2bµ
∑
µ′

fµ′f∗µ′ . (4.9b)

Defining new envelope functions

F (τ, t) =
∞∑

µ=−∞
fµ(t)e

iµᾱτ , B(τ, t) =
∞∑

µ=−∞
bµ(t)e

−iµᾱτ (4.10)

we may elucidate the effect of counterpropagation for timescales up to the second order (or
higher) dispersion. Inserting the envelopes (4.10) into modal equations (4.9), the model
for this system can be written in the adimensional, normalised form as a system of two
integro-partial-differential equations

∂tF = SF − (1 + iθF )F + i(|F |2 + ν⟨|B|2⟩)F − iβ∂2τF (4.11a)

∂tB = SB − (1 + iθB)B + i(|B|2 + ν⟨|F |2⟩)B − iβ∂2τB (4.11b)

Here, we define ‘slow time’ t = αt̃/τR, which governs evolution over several round trips of
the resonator with round trip time τR, and ‘fast time’ τ = τ̃

√
2α/L corresponding to the

longitudinal cavity coordinate over the round trip time, in a frame of reference moving
with the group velocity. F = F̃

√
γL/α and B = B̃

√
γL/α are the complex amplitudes

of the forward and backward counterpropagating fields in the ring resonator of identical
polarisation, with input fields SF = ẼF

√
γLT/α3 and SB = ẼB

√
γLT/α3 for nonlinear

coefficient γ, power transmission coefficient T and total losses α. θF = τR(ωr−ωF )/α and
θB = τR(ωr−ωB)/α are the laser detunings of angular frequency ωF , ωB from the nearest
cavity resonance ωr with round trip time τR. ν is the cross coupling coefficient that is in
general equal to 2 for isotropic media and the last term describes normal dispersion with
a positive dispersion coefficient β.

We define the power averages ⟨|F |2⟩ and ⟨|B|2⟩ as

⟨|F |2⟩ = 1

τR

∫ τR/2

−τR/2
|F (τ, t)|2dτ, ⟨|B|2⟩ = 1

τR

∫ τR/2

−τR/2
|B(τ, t)|2dτ, (4.12)
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Figure 4.2: Powers HF (red) and HB (black) of HSS (4.13a,4.13b) when changing the
detuning θF of the forward field for parameter values SF = SB = 1.47, ν = 2, and the
detuning of the backwards field kept constant at θB = 3.2. The solid (broken) lines
correspond to stable (unstable) HSS, the lines marked with the symbol ‘o’ correspond to
HSS unstable to fast time perturbations, dotted lines correspond to Hopf instability of the
HSS.

which were obtained from the last terms of the modal equations (4.9) following from
Parseval’s theorem. The phase dynamics of the cross-coupling terms evolve with the free
spectral range by the nature of counterpropagation of the two fields. This results in a large
walk-off occurring between the two counter-propagating waves that see each other through
an average intensity (washout effect) [45, 46]. Averaging of the Kerr cross-phase coupling
term is appropriate when operating in the mean field regime. This regime is charactered
by a spectral envelope which evolves on well separated temporal scales. Here, the forward
and backward envelopes are defined over the fast time coordinate τ , which evolve slowly
over many round trips of the resonator in the slow time coordinate t. This is achieved in
practise by ensuring a high Q-factor is achieved by the resonator. The configuration and
parameters used here differ from those used in [73,74] in that we consider energy injection
on both fields. It is important to note that for SF = SB and θF = θB the system of
equations are perfectly symmetric upon the exchange of the forward and backward fields.

In our numerical investigation, we utilise split-step integration as is outlined in Ap-
pendix C.2. As the integral terms are evaluated implicitly for split-step methods, we give
careful attention to the validity of our results by utilising explicit integration methods out-
lined in Appendix C.3. We note that, as the nonlocal Kerr coupling is applicable under
the same conditions as the longitudinal LLE, there are additional constraints on the slow
time step size originating from the integral (Appendix C.1).
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4.3 Homogeneous steady states

The homogeneous steady-state solutions (HSS) of counterpropagating fields are identical
to the two polarisation co-propagating regimes seen in Chapter 3, as cross terms may be
trivially evaluated as ⟨|F |2⟩ = |F |2, ⟨|B|2⟩ = |B|2 for solutions with flat fast time profile.
Eqs. (4.11) can be expressed by the coupled cubic equations

PF = H3
F − 2(θF − νHB)H

2
F + [(θF − νHB)

2 + 1]HF (4.13a)

PB = H3
B − 2(θB − νHF )H

2
B + [(θB − νHF )

2 + 1]HB (4.13b)

where HF = |F |2, HB = |B|2 (the letter H referring to the power of the HSS) while
PF = |SF |2 and PB = |SB|2 correspond to the input powers. The real and imaginary
components of the HSSs are then(

U0,F

V0,F

)
=

(
SF

1+(HF+2HB−θF )2

(HF+2HB−θF )S
1+(HF+2HB−θF )2

)
,

(
U0,B

V0,B

)
=

(
SB

1+(HB+2HF−θB)2

(HB+2HF−θB)S
1+(HB+2HF−θB)2

)
. (4.14)

Counterpropagating fields in ring resonators display spontaneous symmetry breaking of
the HSS for equal detunings. This allows for optical switching between high and low
power counterpropagating field, which has been observed experimentally [155, 156]. This
spontaneous symmetry breaking is mathematically equivalent to the phenomenon of the
previous chapter between polarisation components, conditional that we neglect dispersion,
and much of that analysis is relevant for this system. For our purposes, we consider
symmetry broken regimes with different detunings between for the two input field.

These algebraic equations can be solved numerically for given values of the parameters,
an example of which is shown in Fig. 4.2 for equal pump powers (PF = PB = 2.1609),
where one of the field detunings kept constant (θB = 3.2) while the other (θF ) is changed.
In the vicinity of equal detunings (vertical dashed line) where the equations are symmetric
upon exchange of the forward and backward fields, a bistability regime with a ‘figure 8’
shape exists. Here we expect the ‘middle’ HSS to be unstable (see dashed lines in Fig.
4.2). When increasing the forward detuning θF after the symmetric value 3.2, the figure
of 8 ends in this case at the point where two new HSS are born in a degenerate saddle-
node bifurcation, the lowermost being stable and the intermediate unstable. For values
of θB < 3.2 the saddle-node bifurcation takes place after the end of the figure of 8, while
for values of θB > 3.2 the saddle-node bifurcation takes place before the end of the figure
of 8 leading to a simultaneous presence of 5 different stationary states. After the saddle-
node bifurcation and the end of the figure of 8, multi-stability of homogeneous solutions is
present at large values of the detuning θF until a reverse saddle-node bifurcation restores
a single HSS at very large values of the scanned detuning.

In the asymmetric region for θF > θB we detect Hopf bifurcations of the HSS leading
to oscillations as described in Section 4.7. The two Hopf bifurcations occur on the upper
branches of the HSS (see the vertical dashed lines in Fig. 4.2) and have opposite directions
when increasing the detuning θF , with the amplitude of the oscillation growing from
around θF = 4 and decreasing to zero around θF = 6.3. These forward and backward
Hopf bifurcations are analogous in nature and stability eigenvalues to those described
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Figure 4.3: (a) Powers HF and HB of HSS (4.13a,4.13b) when changing the detuning θF
of the forward field for parameter values SF = SB = 1.47, ν = 2, and the detuning of
the backwards field kept constant at θB = 3.2. Curves of the same colour corresponds to
distinct solutions (HF , HB). The corresponding eigenvalues for each solution are shown
with identical colours. The real (b) and imaginary (c) components of the eigenvalues (4.16)
for k0 = 0 predict instability of the middle solutions (green), and a Hopf bifurcation of on
high power solution (blue). The real (d) and imaginary (e) components of the eigenvalues
(4.22) predict fast time instability on the left (red) and right (blue) hand side of detuning
symmetry, in the field with higher circulating power.
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in [38, 96] where, however, the two detunings where kept equal to each other during the
scan to focus on symmetric HSS.

To investigate the stability of the HSSs, we may perform linear stability analysis on
modal equations (4.9). We introduce a perturbation to the modal amplitudes

fµ = fsδµ,0 + δfµ, bµ = bsδµ,0 + δbµ (4.15)

about the HSSs corresponding to modes fsδµ,0, bsδµ,0. As outlined in appendix A.1, we
arrive at the linear stability eigenvalues

λ(kµ) = −1±
√

−A1,µB1,µ −A2,µB2,µ ±Q
√
2

, (4.16a)

Q =
√
(A1,µB1,µ −A2,µB2,µ)2 + 4δµ,0A1,µA2,µC2, (4.16b)

where

A1,µ = k2µ − θF +HF + 2HB, B1,µ = k2µ − θF + 3HF + 2HB, C2 = 16HFHB,

A2,µ = k2µ − θB + 2HF +HB, B2,µ = k2µ − θB + 2HF + 3HB.

with fast time wavenumber kµ = 2πµ/τR. Due to the presence of the Kronecker delta δµ,0
in the eigenspectrum (4.16), we must consider the cases of µ = 0 and µ ̸= 0 separately.
These two outcomes refer to perturbations that evolve in slow time with a fast time
profile that is either; flat , µ = 0, or exhibits a fast time component, µ ̸= 0. These cases
are notably distinct due to the counterpropagation of fields, and can be understood by
considering a linearisation of the integral terms about the HSS, which takes the form

⟨|ψs + ϵ|2⟩ ∼

{
|ψs + ϵ|2, if ϵ ∝ exp[λ(k0 = 0)t], (µ = 0),

|ψs|2, if ϵ ∝ exp[λ(kµ)t+ ikµτ ], (µ ̸= 0).
(4.17)

where ψs represents the HSS of the forward or backward field and |ϵ| ≪ 1. As we can see,
a perturbation does not survive the integral should it contain a fast time component.

When µ = 0, Eq. (4.16) reduces to eigenvalues which are mathematically identical to
those seen in the absence of fast time within Kerr resonators of ring [38] and Fabry-Pérot
[68] geometries, supporting two fields of orthogonal polarisation. These eigenvalues are
plotted in Fig. 4.3(b)-(c) for the example HSS of Fig. 4.2 and predict the aforementioned
instability of the middle HSS branches, along with the Hopf bifurcations.

When µ ̸= 0, eigenvalues (4.16) take the form

λ(kµ ̸= 0) = −1±
√

−A1,µB1,µ (4.18a)

λ(kµ ̸= 0) = −1±
√

−A2,µB2,µ. (4.18b)

These eigenvalues indicate the growth/decay in slow time of perturbations that are si-
nusoidal in fast time with wavenumber kµ, such that, the HSSs become unstable to the
formation of Turing patterns when Re[λ(kµ ̸= 0)] > 0. By writing −A1,µB1,µ = 1− c1 and
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−A2,µB2,µ = 1− c2 where

c1 = 1− 4HF (θF − νHB) + 3H2
F + (θF − νHB)

2 + 2(2H2
F + νH2

B − θF )k
2
µ + k4µ, (4.19a)

c2 = 1− 4HB(θB − νHF ) + 3H2
B + (θB − νHF )

2 + 2(2H2
B + νH2

F − θB)k
2
µ + k4µ, (4.19b)

the instability condition corresponds to c1,2 < 0. We can expect pattern formation to
occur for the unstable wavenumbers k2µ,− < k2µ < k2µ,+ of the forward field, where

k2µ,± = θF − 2HF − νHB ±
√
H2

F − 1, (4.20)

and in the backward field, where

k2µ,± = θB − 2HF − νHB ±
√
H2

B − 1. (4.21)

Similar to the single field unidirectional case (LLE) these eigenvalues indicate the Turing
instability starting from HF , HB = 1.

There are however further instabilities of the HSS due to the nature of the global
coupling of Eqs. (4.11). In Appendix A.2, we present a linear stability analysis of the
HSSs to perturbations that are inhomogeneous along the cavity round trip time at zero
dispersion on the fast time scale. A new set of stability eigenvalues is found:

λ = −1±
√
−A1B1 (4.22a)

λ = −1±
√

−A2B2 (4.22b)

where A1 = HF + νHB − θF , A2 = HB + νHF − θB, B1 = 3HF + νHB − θF , B2 =
3HB+νHF−θB, withHF andHB being obtained from Eqs. (4.13). These new eigenvalues
are entirely due to the averaged terms of this system which means that local perturbations
result in changes to the unperturbed regions. The lines marked with the letter ‘o’ in Fig.
4.2 correspond to the HSS instability to inhomogeneous perturbations where the real
part of at least one of the four eigenvalues (4.22) is positive. These eigenvalues predict
an instability of the HSS to perturbations which are localised in fast time with nonzero
contribution to the integral terms.

4.4 Two switching fronts and dark soliton steady states

In the counterpropagating system with global coupling described by Eqs. (4.11), we
observe the formation of steady states made of power plateaus separated by SF in one
of the two counterpropagating fields while the second field remains homogeneous, for wide
ranges of the detuning values. In Fig. 4.4, we show the formation of stable SF states when
starting from a narrow (a) or broad (b) perturbation of the HSS for SF = SB = 1.47,
ν = 2, θB = 3.2 and θF = 2.0. We note that the choice of input power was arbitrary,
and similar solutions of stable SFs will exist for input field with similar values, such as
SF = SB = 1.5 or SF = SB =

√
2. In Section 4.3, we showed that in this parameter region,

HSS are unstable to inhomogeneous perturbations. In both cases of broad and narrow
initial perturbations, the system evolves to the same final solution formed by a SF state
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Figure 4.4: Temporal evolution of the backward power towards a stable SF state for
|SF |2 = |SB|2 = 2.1609, θF = 2.0, θB = 3.2 from two different initial conditions with
dispersion β = 1. (a) Initial condition with two kinks at narrow separation. (b) Initial
condition with two kinks at wide separation.
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with a well-defined separation of the two SFs. It is important to note that the SF solutions
do not connect HSS of the Eqs. (4.11) and affect only one of the counterpropagating fields,
the other being homogeneous. They do not correspond to symmetry exchanges of the F
and B fields.

A number of stable asymptotic states are presented in Fig. 4.5 for the same values of the
parameters as Fig. 4.4 but with θF varying from 1.2 to 4.8. In the interval 1.2 < θF < 2.8
the backward (forward) intracavity power is non-homogeneous (homogeneous), Fig. 4.5(a),
while in the interval 3.4 < θF < 4.8 the forward (backward) intracavity power is non-
homogeneous (homogeneous), Fig. 4.5(b). The solid lines correspond to the power profiles
of the field where a dark structure is found while the dashed lines correspond to fully
homogeneous solutions. When the two detunings are close to each other (for example θF
equal to 2.8 or 3.4 in Fig. 4.5) the inhomogeneous field has the shape of a localised dark
soliton. In the interval of 2.8 < θF < 3.4, there are no inhomogeneous stable solutions
and the system relaxes to the HSS seen in Fig. 4.2. This instability of the dark soliton
solution is affected by the dispersion of the field and dark solitons can persist in larger
detuning ranges for β < 1. For the present choice of parameter values there is no bistability
between the two SF states close to detuning symmetry. We will see in Section 4.5 that for
PF = PB = 3, for example, an overlap region where both SF states are stable, exists. In
this overlap region, bistability of SF states is observed where SFs are present in either the
forward or the backward field with the other field homogeneous for the same parameter
values.

For detunings θF < θB below symmetry, there is a wide region of parameter space
where SFs separated by light plateaus are the only stable solutions of the system. Here,
light plateaus within two SFs are self-starting states and there is no need of any pertur-
bation to the system to drive the dynamics towards them.

For θF < θB there are small regions of bistability between HSS and light plateaus within
two SFs. For θF > θB there is a wide region of bistability between low intensity HSS and
light plateaus within two SFs and even tristability with the addition of oscillating HSS. In
all the regions of multi-stability we have found that input pulses made of a square wave of
around twice the background input power, of duration τ̃ and applied for a transient time
t̃ to the field where the light plateaus will appear, results in the formation of stationary
light plateaus within two SFs if the input pump pulse duration τ̃ /τR is of the order of
(1−∆) where ∆ is the final separation of the SFs (see Section 4.5).

When the two detunings are very different from each other, the inhomogeneous field
can take the shape of a localised bright soliton while the other field remains homogeneous.
Bright solitons are in general not stable in the normally dispersive unidirectional system
(LLE) and annihilate each other as the fronts collide. Bright solitons formed by two
SFs are instead stable in counterpropagation due to the robustness introduced by global
coupling but the SFs will still annihilate if they are brought too close to each other. Such
states have been observed in single laser setups [74]. In the limit of zero dispersion, bright
structures can be made arbitrarily narrow when changing the detuning. The dispersion
affects the steepness of SFs and for a given θF , it will determine whether we have a bright
structure of two non interacting SFs or a bright soliton or an annihilation of the two SFs.
For given values of the detunings, bright structures with a minimum full width at half
maximum (FWHM) can be found and their dependence from the dispersion coefficient β
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Figure 4.5: Various SF states for SF = SB = 1.47, ν = 2, β = 1, θB = 3.2. (a) Backward
(forward) field power of steady state solutions, solid lines (dashed lines), for five values
with decreasing distance between SFs θF = 1.2 (blue), θF = 1.6 (magenta), θF = 2.0
(red), θF = 2.4 (green), θF = 2.8 (black). (b) Forward (backward) field power of steady
state solutions, solid lines (dashed lines) for five values with increasing distance between
SFs θF = 3.4 (blue), θF = 3.6 (magenta), θF = 4.0 (red), θF = 4.4 (green), θF = 4.8
(black).

can be established in numerical simulations as shown in Fig. 4.6.
Stable SF states and stable dark solitons are present due to the global coupling of the

two counterpropagating fields. The phase independent interaction of counterpropagating
fields introduced a shift in the detuning of the fields. To this end we define effective
detunings

θ̃F = θF − ν⟨|B|2⟩ (4.23a)

θ̃B = θB − ν⟨|F |2⟩ (4.23b)

that reduce the counterpropagating Eq. (4.11) to a pair of LLEs coupled via their effective
detunings:

∂tF = SF − (1 + iθ̃F )F + i|F |2F − iβ∂2τF (4.24a)

∂tB = SB − (1 + iθ̃B)B + i|B|2B − iβ∂2τB. (4.24b)

Taken separately when ignoring the coupling through the effective detunings, each of these
LLEs displays a Maxwell point for normal dispersion corresponding to a set of parameter
values where solutions made of power plateaus well separated by SFs are stable. For
any other parameter value close to the Maxwell point, SFs are observed to move close
or away from each other. At the Maxwell point and at the Maxwell point only, the LLE
displays a multi-stability of power plateaus solutions with two stationary SFs at arbitrary
separations. In gradient systems the Maxwell point corresponds to the parameter value
where both bistable homogeneous states have equal energy. In non-gradient system, such
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Figure 4.6: Minimum possible FWHM size of bright solitons for different values of the
dispersion coefficient β at parameter values PF = PB = 2.1609, θB = 3.2 where θF is
chosen to provide the narrowest soliton for each value of β. Circles represent the FWHM
values from simulations while the dashed line is a linear fit of the data. Inset: Power
distribution of three bright solitons of minimum FWHM in the backward field while the
forward power remains constant (dashed line) for dispersion values β = 0.1 (black line),
β = 1 (red line) and β = 10 (blue line) with increasing FWHM.

as the LLE, Maxwell points and hysteresis can still be possible even though an expression
of the energy cannot be obtained.

There are very important differences between our SF states and dark solitons due to
global coupling and structures of similar shape in the single LLE with normal dispersion
(at the Maxwell point or close to the Maxwell point) studied theoretically in [35, 54] and
experimentally in [19–21]. For example, the power of the homogeneous field and the power
values of the plateaus before and after the two SFs in the inhomogeneous field are not the
values of the HSS studied in Section 4.3. When the values of the two field detunings are
well separated, stable SF states are not due to locking mechanisms of the tails of the SFs
as for example observed in optical parametric oscillators [120, 121]. However, when the
detunings of the two fields are quite close to each other, dark solitons owe their stability
to the local oscillations in the lower part of the SF as shown in Fig. 4.5 for θB = 3.2 and
θF = 2.8, 3.4 and 3.6.

When increasing the detuning θF while keeping the detuning θB fixed, one observes
first a decreasing separation between the two stable SFs in the backward field, Fig. 4.5(a)
and then, after the symmetric state θF = θB, an increasing distance between the two
stable SFs in the forward field as seen in Fig. 4.5(b). In the latter case, the power of the
homogeneous backward field changes substantially upon variations of θF > θB while the
power of the homogeneous forward field changes only a little upon variations of θF < θB
(see Fig. 4.5a). This effect is a direct result of the effective detunings that contain the
integrals (4.12).
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One very interesting feature when scanning one of the detunings (say θF ) while keeping
the other one fixed by changing the input frequency of one of the two pumps, is that upon
crossing the symmetric state θF = θB, stable SFs and dark solitons switch from one
propagation direction (the backward for θF < θB) to the other (the forward for θF > θB).
This provides the operator of this device to select at will the direction, in which the solitary
structures and, consequently, an optical frequency comb occurs.

In general 2N SFs may coexist within a long cavity. Two examples of stationary states
with four SFs are shown in Fig. 4.7(b)-(c). At stationary state, the upper and lower
power plateaus connected by the 4 SFs have identical power to the plateaus of the two SF
stationary state shown in Fig. 4.7(a). The average power of a 2N SF stationary state is
also identical to the two SF stationary state. This is due to the Maxwell point condition on
the effective detuning. As such the total proportion of the upper and lower plateaus for all
2N SF stationary states are identical. This means that the distance between SFs of each
pair ∆1, . . . ,∆N of 2N SFs sums up to the SF distance ∆ of the two SF stationary state,
∆ =

∑N
n=1∆n. In regions of the fast time instability of the HSS, different SF structures

may form. Fig. 4.7(d)-(e) shows the spontaneous formation of many SFs from an unstable
HSS under the action of noise. The location and separations of SFs of the stationary state
[Fig. 4.7(d)] are random, showing plateaus and dark soliton structures coexisting in the
cavity, and yet satisfying the constraint on the sum of ∆n being ∆.

4.5 Distance of two stationary switching fronts

From numerical simulations we obtain stationary solutions with two stable SFs separated
by a distance ∆. We aim here to obtain an analytical expression of the the distance ∆
when using θF as a control parameter.

We start from the case of two SFs in the backward field for a given value of θB when
changing θF < θB (see Fig. 4.5a). In this case the forward field power |F |2 is homogeneous
and appears to be independent of the detuning θF . Note that this homogeneous value of
the forward power is not the HSS value HF discussed in Section 4.3. For the stationary
solutions we can write:

SF = (1 + iθ̃F )F − i|F |2F (4.25a)

SB = (1 + iθ̃B)B − i|B|2B + iβ∂2τB (4.25b)

where we have used Eqs. (4.23a) and (4.23b). Each solution of the backward field equation
(4.25b) when changing θF has a one to one correspondence with one of the multi-stable
stationary solutions of a single Lugiato-Lefever equation (LLE) at the Maxwell point given
by

SB = (1 + iΘMP)B − i|B|2B + iβ∂2τB (4.26)

where ΘMP is the cavity detuning at Maxwell point which depends on the input power
PB. The functional dependence of ΘMP from PB can be obtained by asymptotic methods
close to the critical detuning value

√
3 for PB ≈ 8

√
3/9 and by variational methods for

PB > 10 [73]. Neither of these approximations is satisfactory in the range 2 < PB < 7 of
values used here (see Fig. 4.8). By computing the Maxwell points numerically (see blue

78



Chapter 4. Counterpropagating Light in Bidirectionally Driven Ring Resonators

Figure 4.7: (a)-(d). Light plateaus stationary solutions obtained from different perturba-
tions of the HSS, displaying either 2 SFs (a), or 4 SFs (b)-(c), or dark solitons and SFs
(d) for PF = PB = 4, θB = 4 and θF = 1.9 (∆ ≈ 0.3). A single wide perturbation gives a
2 SF stationary state (a), two perturbations of equal (b) or unequal width (c) give 4 SF
stationary states. (d) A stationary state resulting from the spontaneous formation of SFs
and dark structures due to small amplitude initial noise. In each case (a)-(d) the average
power of the field, and the plateau powers, are identical. (e) Evolution to a stationary
state with SFs and dark solitons in the backward field (lower) with flat forward field (up-
per) due to noise. The final stationary state is shown in (d).
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Figure 4.8: The detuning ΘMP of a single LLE (4.26) at the Maxwell point as a function
of PB = S2

B. The circles are numerically evaluated points from which we obtain the linear
(Eq. 4.27 in black) and cubic (Eq. 4.28 in blue) fitted curves for the Maxwell point
distribution. The dashed green and dashed red curves correspond to the asymptotic and
variational methods of [73], respectively.

line in Fig. 4.8) we find that a simple linear dependence of ΘMP from PB

ΘMP ≈ η(1 + PB) (4.27)

with η = 0.7 approximates the numerical values much better in the interval of interest (see
black line in Fig. 4.8). Additional terms can be included in the approximation to extend
the range of validity to PB = 10

ΘMP ≈ η(−0.001997P 3
B + 0.006503P 2

B + PB + 1) (4.28)

By using the equivalence between (4.25b) and (4.26) as well as the definition of θ̃B in
(4.23b) we obtain the value of the power of the homogeneous forward field for the SF state
in the backward field:

⟨|F |2⟩ = |F |2 = 1

ν
[θB −ΘMP] ≈

1

ν
[θB − η(1 + PB)] (4.29)

As shown in the numerical simulations of the two SFs for θF < θB = 3.2 in Fig. 4.5(a),
|F |2 is independent of the control parameter θF and its value is just below 0.5 for the
case of PB = 2.1609, in agreement with (4.29). The power YB = |B|2 of the homogeneous
states of (4.26) satisfies

Y 3
B − 2ΘMPY

2
B +

(
1 + Θ2

MP

)
YB − PB = 0 (4.30)

from which it is possible to obtain the values of the plateau powers Y +
B and Y −

B where the
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Figure 4.9: Power YB of the homogeneous solutions before and after a SF for a single
LLE at Maxwell point (4.30). SFs are possible after the onset of bistability at critical
pump power PB ≈ 8

√
3/9 where the higher Y +

B (red) and the lower Y −
B (blue) branches

are stable but the dashed middle solution is unstable. The Maxwell point detunings ΘMP

are approximated by (4.28) for P > 2.1 and by an asymptotic approach for P < 2.1.
The blue circles are homogeneous solutions before and after a SF from the simulation of
(4.11a)-(4.11b).

SFs start and end. Note that since ΘMP does not depend on θF , Y
+
B and Y −

B also do not
depend on θF as shown in Fig. 4.5 for the SF states. Comparison of Y +

B and Y −
B obtained

from (4.30) with the numerical evaluation of ΘMP and with the approximate expression
(4.28) are shown in Fig. 4.9 in the interval of interest for PB between 2 and 10.

It is now possible to obtain an expression for the stationary distance ∆ of the two SFs.
In the zero dispersion case β = 0, the SFs are vertical lines between Y +

B and Y −
B so that

⟨|B|2⟩ = ∆Y −
B + (1−∆)Y +

B

∆ =
Y +
B − ⟨|B|2⟩
Y +
B − Y −

B

(4.31)

However from (4.25a) one obtains:

⟨|B|2⟩ = 1

ν

[
θF − |F |2 ±

√
PF

|F |2
− 1

]
(4.32)

where PF is the forward input power S2
F and |F |2 is given by Eq. (4.29). Hence the

combinations of Eq. (4.30) and Eq. (4.32) provide an expression of the distance ∆ between
the two SFs at zero dispersion via Eq. (4.31) in terms of parameters θF , θB, PF , PB (see
the black line in Fig. 4.10 for PF = PB = 2.1609, θF = 1.4, θB = 3.2). For dispersion
different from zero, the distance ∆ remains unchanged as shown in Fig. 4.10 for β = 5

81



Chapter 4. Counterpropagating Light in Bidirectionally Driven Ring Resonators

Figure 4.10: Power distribution of an inhomogeneousB field exhibiting two non-interacting
SFs with separation ∆ for parameter values PF = PB = 2.1609, θF = 1.4, θB = 3.2 and
dispersion coefficient β = 5 (blue dashed line), β = 1 (red dashed dotted line), β = 0.1
(green line), and β = 0 (black dotted line). Here the fast time (x axis) is normalised to
the round trip time.

(blue line), β = 1 (red line), β = 0.1 (green line). This means the second order dispersion
β affects the steepness of SFs but does not change the pulse duration (SF distance) of the
output for non-interacting SFs.

When using θF as a control parameter, expression (4.31) works very well when com-
pared with the distance of two stationary SFs obtained from the simulations of Eqs. (4.11)
done with β = 1, see left hand side of Figs. 4.11(a)-(b). In particular we note that ∆
is a function of θF only through ⟨|B|2⟩ as expressed in Eq. (4.32). This means that the
distance ∆ decreases linearly with θF with a slope given by [ν(Y +

B − Y −
B )]2. Once the

detuning θF < θB and the input powers PB and PF are chosen, it is possible to obtain ac-
curately the distance of the two SFs from Eq. (4.31) even in the regime of small distances
and locked SFs (dark solitons) as shown in Fig. 4.11.

The conditions of validity of Eqs. (4.29) and (4.32) predict that two stable SFs can
be found in the interval η(1 + PB) < θB < νPF + η(1 + PB), given that 0 < ∆ < 1.
This allows us to determine regions in parameter space where vertical SF form as shown
in 4.11(c)-(d). It is interesting to see that for values of PB > 2.145 where stable SFs in
the backward field are observed even for θF > θB, the predictions of Eq. (4.31) remain in
good agreement with the numerical results (see red lines on the left of Fig. 4.11 (a)-(b)
for PB = PF = 3).

Eqs. (4.29) and (4.31) suggest that precise control over the pulse duration (SF distance)
of the output field is possible by simply changing the laser detuning. This allows for
control over the frequency comb generation efficiency by laser parameters in contrast with
conventional microresonator dark solitons, where the pulse duration is determined by the
dispersion.
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Figure 4.11: (a)-(b) SF separation ∆ when changing the detuning θF for fixed pump
powers PF = PB and detuning θB. Solid black (solid red) lines correspond to simulation
results from (4.11a)-(4.11b) with β = 1 and for PF = PB = 2.1609, θB = 3.2 (PF = PB =
3, θB = 5). (a) is a forward scan and (b) is a backwards scan. The blue dashed lines are
the analytical results of Eqs. (4.31) and (4.36). (c)-(d) Range of detuning values where SF
solutions exist and are stable for the B field (blue region) and for the F field (red region)
or both fields (orange region), (c) PF = PB = 2 and (d) PF = PB = 3.
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We now move to the case θF > θB. In this case it is the backward field B that is
homogeneous and the two stable SFs are found in the forward field F . In this case the
role of Eqs. (4.25a)-(4.25b) is exchanged:

SF = (1 + iθ̃F )F − i|F |2F + iβ∂2τF (4.33a)

SB = (1 + iθ̃B)B − i|B|2B (4.33b)

and one obtains Θ′
MP ≈ η(1 + PF ) as well as:

⟨|B|2⟩ = |B|2 = 1

ν
[θF −Θ′

MP] ≈
1

ν
[θF − η(1 + PF )] (4.34)

In the case of θF > θB, the homogeneous power of the backward field grows linearly with
θF , which agrees with the simulation in Fig. 4.5(b). The form of the equation for the
power YF = |F |2, however, remains basically unchanged from Eq. (4.30),

Y 3
F − 2Θ′

MPY
2
F +

(
1 + (Θ′

MP)
2
)
YF − PF = 0 (4.35)

so that the homogeneous powers Y +
F and Y −

F before and after the SFs are still independent
from θF and, in the case of PF = PB, they have the same values of Y +

B and Y −
B found for

θF < θB since Θ′
MP = ΘMP. Finally,

⟨|F |2⟩ = ∆Y −
F + (1−∆)Y +

F

∆ =
Y +
F − ⟨|F |2⟩
Y +
F − Y −

F

(4.36)

and

⟨|F |2⟩ = 1

ν

[
θB − |B|2 ±

√
PB

|B|2
− 1

]
(4.37)

The distance ∆ depends on θF through ⟨|F |2⟩ and then through |B|2 given in Eq.
(4.34) and (4.37). At difference from the case θF < θB this dependence is nonlinear, the
slope of the curve is reversed and the distance ∆ now grows with the detuning θF . The
agreement of Eq. (4.36) with the numerical simulations as shown in the right hand part
of Fig. 4.11 is again excellent. Similar to the B field case, the conditions of existence of
vertical SFs for the F field is η(1 + PF ) < θF < νPF + η(1 + PF ) given that 0 < ∆ < 1
[see Fig. 4.11(c)-(d)].

4.6 Evolution towards the two switching-front solutions

Despite the one to one correspondence of the SF solutions of the counterpropagating
system and those of the LLE at Maxwell point, the dynamics of front solutions in the
counterpropagating system are different form those seen in the LLE. Here we describe
first the transient evolutions of a two SF solution in the counterpropagating system as the
SFs move towards the unique stationary separation of the fronts.

In Fig. 4.4, we have seen that when the HSS of the counterpropagating system are
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Figure 4.12: (a) Power of the homogeneous states Y ±
B connected by the SFs (solid black

line), homogeneous field powerHF (solid red line), and average power of the field displaying
SFs (dotted black line) versus the front separation is changed. The HSS in the absence
of SFs is given by the dashed blue lines. (b)-(c) Comparison between the zero dispersion
two front solutions using Eqs. (4.38)-(4.39) (dashed blue lines) and evolving two front
solutions from the numerical integration of Eqs. (4.25a)-(4.25b) with β = 0.1 (solid lines)
for shrinking front distance (b) and expanding front distance (c). The dotted black lines
are the initial conditions. Parameter values are PF = PB = 2.1609, θF = 2.0, and
θB = 3.2. The final and stationary front separation (thick red line) is ∆ = 0.31 in both
(b)-(c).
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Figure 4.13: Front separation (a) and front velocity (b) vs slow time while approaching a
SF solution. From the data from Fig. 4.4, we track the front separation relative to the
separation of the final SF solution in (a), use the dimensionless slope of (a) to determine
the front speed in (b). Solid blue line represents the wide initial condition, red dashed line
the narrow initial condition.

unstable to inhomogeneous perturbations, the system relaxes to a SF solution. We con-
sider here initial conditions made of two SFs between two homogeneous states in one field
(the backward one for θF < θB) while the other field is homogeneous across the resonator.
When the front separation is not at the stationary value, the values of the homogeneous
states at the beginning and at the end of each front in the counterpropagating system
depend on the average power of the fields. This means that these values are different from
those at the final front separation at the stationary value. The values of the homogeneous
power before and after a front for arbitrary separations can be calculated by consider-
ing states of the zero dispersion case of Eqs. (4.11), where the second order derivative
with respect to the fast time and the first derivative with respect to the slow time are
neglected. For a two front solution in the B field, the upper and lower homogeneous
solutions separating the SFs can be determined by solving the coupled equations

PB = Y 3
B − (θB − νYF )Y

2
B + [(θF − νYF )

2 + 1]YB (4.38)

PF = Y 3
F − (θF − ν[∆Y −

B + (1−∆)Y +
B ])Y 2

F

+[(θF − ν[∆Y −
B + (1−∆)Y +

B ])2 + 1]YF (4.39)

where Y +
B , Y

−
B are the upper and lower homogeneous solutions of the zero dispersion SF

solution present in the B field (solutions of Eq. (4.39) in a bistable state) with average
power ⟨|B|2⟩ = ∆Y −

B (∆) + (1 − ∆)Y +
B (∆) and ∆ is the front separation. Note that the

expressions for the average powers of front solutions are independent of dispersion. These
solutions are plotted in Fig. 4.12a.

Fig. 4.12(b) and (c) show that two-front profiles that use the solutions of Eqs. (4.38)-
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(4.39) with a given separation ∆ provide excellent approximations to the numerical so-
lutions of Eqs. (4.25a) and (4.25b) with β = 1 during the transients to the the final SF
solution for both cases of shrinking and expanding front separation. The SFs are moving
with opposite velocities and with a well defined distance ∆(t). For each value of the slow
time t and distance ∆(t), the dynamical solution is well approximated by two SFs between
homogeneous states provided by Eqs. (4.39) given a separation distance ∆. Since for each
value of θF there is only one stationary value of ∆, generic separations of the two SFs
separated by homogeneous power from Eqs. (4.39) evolve in time but maintain their shape
with a changing separation leading to different homogeneous powers. As such the front
separation determines the power of homogeneous solutions, which in turn determines the
velocity of the SFs, which in turns changes the front separation. This leads to a front
velocity that depends on the front separation.

Although the shape of the transient solutions are well approximated by two vertical
SFs at every moment in time, the front separation and the front velocity are non-trivial
functions of time as shown in Fig. 4.13. The instantaneous velocity of the SF can be
considered equivalent to the velocity of a SF of an LLE with identical input field, S, and
and effective detuning, θeff, and cavity round trip τR.

4.7 Oscillatory dynamics and bistability with front station-
ary states

Dynamical regimes in ring resonators have been previously studied for homogeneous coun-
terpropagating fields with symmetrical input fields and detunings [96,97]. It was seen that
under the correct conditions, a pair of oppositely directed Hopf bifurcations can occur
when changing the detuning θF = θB, allowing for sustained homogeneous oscillations
that could exhibit period doubling bifurcations, chaos and crisis events. In Section 4.3
we saw oppositely directed Hopf bifurcation for the HSS occurring when changing θF in
an asymmetric regime of different detunings between the two counterpropagating waves
since θB is kept fixed (which can be seen in Fig. 4.2 as the dotted line in the interval
4.02 < θF < 6.33). These Hopf bifurcations affect the highest power HSS resulting in os-
cillations which are bistable with the lowest power HSS. An example of large homogeneous
oscillations in the power of the two fields is displayed in Fig. 4.14(a) from simulations of
Eqs. (4.11).

In the parameter region of Fig. 4.14, the HSS of large powers are unstable not only
to homogeneous oscillations but also to local perturbations on the fast time scale (see the
line marked with ‘o’ in the interval 3.35 < θF < 6.47 in Fig. 4.2). We find that depending
on the initial condition, the system can evolve to either the homogeneous oscillations of
Fig. 4.14(a) or to a SF solution in the forward field with a homogeneous backward field
[see Fig. 4.14(b)] or to a HSS corresponding to low powers. To display the richness of
possible asymptotic states of Eqs. (4.11), we show in Fig. 4.15 the asymptotic trajectories
of oscillating homogeneous fields, the asymptotic trajectories of the SF state and the
asymptotic points of the HSS of low powers in the phase (Argand) plane for the same
parameters of Fig. 4.14. Depending on the initial condition, the micro-ring device can
evolve to any of these three final states generating either large amplitude slow oscillations
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Figure 4.14: Bistability of slow and fast oscillations for parameter values β = 1, PF =
PB = 2.1609, θF = 4.5, and θB = 3.2. (a) Periodic oscillations of the homogeneous powers
of both counterpropagating fields over the slow time. (b) Output power of a SF solution
in the forward field (red line) and homogeneous steady state for the backward field (black
line) over three cavity round trip times.

Figure 4.15: Possible asymptotic states for β = 1, PF = PB = 2.1609, θF = 4.5, and
θB = 3.2 in the phase (Argand) plane. Stable limit cycle trajectories of the homogeneous
forward (red solid line) and backward (black solid line) fields; stable SF solution of the
forward field (blue dashed line) and its homogeneous backward field (blue circle); stable
HSS of low powers (green Xs for forward and backward fields).
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in both fields, or large amplitude fast oscillations in just one field (the forward one) or
no output oscillations at all. This provides the operator with a remarkable number of
output waveforms with possible selection of each one by suitable perturbation of the input
fields (in their amplitude or phase). It is possible to generate light plateau states using a
transient pulsing input field containing sudden step to provide perturbations to the HSS.

When scanning the forward detuning for the parameter values studied here, we do
not observe period doubling bifurcations or deterministic chaos at difference with typical
simulations at parameter symmetry [38, 96, 97]. We observe however sudden crises when
the stable trajectory of the limit cycle can intersect the unstable HSS in the regions of
multiple stationary states. This results in sudden instabilities of the oscillations, which
collapse to the lower stable HSS. In Fig. 4.16 we show simulations of counterpropagating
fields when scanning the detuning θF forwards and backwards. Forward and backward
Hopf bifurcations can be clearly seen in the forward scan at PF = PB = 1.95 in Fig.
4.16(a) where the dotted lines represent the maxima and minima of the oscillating powers
of the homogeneous fields over slow time variations. When increasing the input power,
attractor crises are observed both in the forward (at θF ≈ 5.05) and in the backward
(at θF ≈ 5.62) scans [see Fig. 4.16(b)-(c)] leading to transfers to the low power HSS.
Note however that depending on the initial condition of the backward scan, there is the
possibility of observing no oscillations and no crises as displayed in Fig. 4.16(d).

Fig. 4.16 focuses on homogeneous oscillations and HSS of low powers. The situation
is further complicated by the presence of SF states in the forward field with a homoge-
neous backward field. When changing θF there is a further temporal instability of the
SF solutions which causes the homogeneous states connecting the SFs to start to oscil-
late resulting in the entire inhomogeneous structure to oscillate, along with homogeneous
oscillations of the backward field. For θF < 5.35 these oscillations are damped allowing
for stable SF states, but for 5.35 < θF < 6.25 such oscillations grow, destroying fast time
structures and the system moves to the HSS corresponding to low powers as shown in Fig.
4.17.

The linear stability of SF solutions can be determined at zero dispersion using the
expressions for the average field powers derived earlier in this section. Considering a SF
solution in the backward field with a homogeneous forward field, their average powers are
given by Eqs. (4.32) and (4.35), respectively. As calculated in Appendix A.3 the stability
of the homogeneous states before and after the SFs to fast time (fast time) perturbation
are given by the eigenvalues

λ+B = −1±
√
(ΘMP − Y +

B )(3Y +
B −ΘMP) (4.40a)

λ−B = −1±
√

(ΘMP − Y −
B )(3Y −

B −ΘMP) . (4.40b)

These eigenvalues depend on the pump power only. When changing the detuning θF , the
corresponding SF solution maps into one of the multi-stable two SF solutions of an LLE
at Maxwell point. The homogeneous forward field eigenvalues are

λF = −1±
√

(θ̃F − YF )(3YF − θ̃F ) (4.41)
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Figure 4.16: Homogeneous field powers (black line backward field, red line forward field)
when scanning the detuning θF for fixed detuning θB = 3.2 and fixed equal pump powers
P = PF = PB. Dashed lines correspond to the power extrema during oscillation. (a)
Forward scan for P = 1.95. Limit cycle oscillations are present in the detuning range
4.2 < θF < 5.9. (b) Forward scan for P = 2.1609. Limit cycle oscillations are present
in the detuning range 4.1 < θF < 5.1. (c) Backward scan for P = 2.1609 starting at
θF = 6.4. Limit cycle oscillations are present in the detuning range 5.5 < θF < 6.2. (d)
Backward scan for P = 2.1609 starting at θF = 7.0. No oscillations observed.
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Figure 4.17: Dynamical evolution from an initial condition of a two SF solution in the for-
ward field and a homogeneous solution in the backward field for PF = PB = 2.1609, θF =
5.3, θB = 3.2. Oscillations grow until both fields reach the stable HSS of low powers. (a)
Intracavity power of the forward (upper) and backward (lower) fields over slow time. (b)
Average interactivity power of the forward (red) and backward (black) over slow time.

where θ̃F = θF − ν⟨|Bs|2⟩ is the effective detuning, and depend on θB implicitly through
the integrated power ⟨|B|2⟩.

By using the stability eigenvalues λ±B and λF it is possible to determine instabili-
ties of the SF solutions when the real part of one of these eigenvalues goes from nega-
tive to positive. For example plateau solutions separated by SF are susceptible to Hopf
bifurcations and oscillations of the homogeneous states that are connected to the SFs.
This instability is introduced by perturbations to the SF states that change the average
power of the field as seen in Appendix A.3. For the parameter values used in this work
PF = PB = 2.1609, θB = 3.2, these oscillations grow in the region 5.35 < θF < 6.25
resulting in the collapse of local structures to the HSS.

4.8 Conclusions

We have investigated the effects of global average coupling induced by the interaction of
two input beams counterpropagating in a ring resonator with normal dispersion. In partic-
ular, we find novel stationary states of light plateaus that are separated by two switching
fronts. By controlling the input laser frequency detuning, the propagation direction of the
light plateau states can be switched between clockwise and counterclockwise. We have
derived semi-analytical expressions of the distance between stable switching fronts and
the powers of the plateaus as a function of the detunings. These expressions rely on the
knowledge of the Maxwell point location in the parameter space of the LLE. By using a
numerical fit from LLE simulations, we found excellent agreement between the obtained
formulas and the numerical simulations. Maxwell point locations can also be determined
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by asymptotic or variational approaches [73] but at the detriment of the agreement with
numerical simulations. Apart from being present in only one of the two conterpropagating
fields, light plateaus in our global system are unusual in that they have power values differ-
ent from the homogeneous steady states of the system. Global average coupling introduces
a balancing of areas associated with the two plateau powers resulting in a controllable dis-
tance of two stationary SFs by the detunings which in turn can be tuned by changing the
frequency of the input fields. Robust SF solutions are present for large ranges of detuning
allowing great control over the distance of the two SFs through the laser parameters. This
allows the user to precisely control the pulse duration of the output field, and hence the
frequency comb generation efficiency by changing the input fields detuning. The second
order dispersion determines the steepness of SFs with no effect on the pulse duration
when well separated. This is different from conventional microresonator dark and bright
solitons, whose width is determined by second order dispersion. In addition we find that
changing the laser detuning across the symmetric state results in the SF solutions to dis-
appear from one field and then to reappear in the other field. This results in the SFs
switching direction in the microresonator while scanning a single detuning parameter thus
allowing for a corresponding switch of the beam where a frequency comb is generated.

The analytic description of SF and plateaus extends to transient states, allowing us to
describe the changes of plateau power and SFs separation as they move towards the final
stationary state corresponding to a given SF separation.

We have also investigated oscillations in symmetry broken (θF ̸= θB) counterpropa-
gation. We have identified stable limit cycle oscillations in detuning symmetry broken
regimes, and observed sudden crisis in which the oscillations become unstable due to a
collision with an unstable HSS. Stable oscillatory dynamics coexist with SF solutions for
large ranges of parameter values. We have even identified a multi-stability of oscillations
with SF solutions and the lowest power homogeneous stationary state. Depending on
the initial condition, the micro-ring device can evolve to any of these three final states
generating either large amplitude slow oscillations in both fields, or large amplitude fast
oscillations in just one field or no output oscillations at all. This provides the operator
with a remarkable number of output waveforms with possible selection of each one by
suitable perturbation of the input fields (in their amplitude or phase).

Microresonator systems have undergone much study in recent years. All our predic-
tions have been obtained for realistic parameters with possible experimental verification in
a variety of ring resonator setups, from micro-ring to fibre loops. Frequency comb genera-
tion has also been demonstrated using two lasers for bichromatic pumping of a micro-ring
resonator for the generation of dark bright solitons [140]. A modification to this setup to
incorporate bidirectional pumping should allow for the generation of counterpropagating
SF states. Single input laser setups in the presence of back scattering have indeed pre-
dicted and observed Maxwell point front solutions in micro-ring resonators [73, 74]. Back
scattering of the pump laser results in a counterpropagating field, allowing for a single
laser setup to produce plateaus that can be the result of extending our model to these
configurations.

Configurations of alternating SF and light plateaus in only one field are not just in-
teresting for their fundamental features being related to global coupling of two waves and
integro-partial-differential equations. The robust, highly configurable, and controllable
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SFs solutions of counterpropagating light can be useful in many real world applications
such as all optical oscillators, optical computing, time reversal symmetry breaking, and
signal routing in telecommunication systems. Future considerations for this system include
a pulse driving configuration in one or both of the input fields. The results presented in
this chapter can be further enhanced by polarisation considerations of the counterpropa-
gating fields. This would introduce additional spontaneous symmetry breaking between
polarisation modes similar to those observed in [66,68,157].
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5.1 Introduction

We continue our discussion of dissipative cavity solitons in this chapter, but at a difference
to the ring resonator system described in the previous chapters, here we consider the Fabry-
Pérot (FP) resonator. The FP resonator was originally conceived in 1899 by Charles Fabry
and Alfred Pérot [161] to study fine details in the spectrum of light for application in high-
resolution spectroscopy. They used two parallel and highly reflective mirrors, forming an
optical cavity. Light within the cavity undergoes multiple reflections, back and forth
between the mirrors, where a fraction of the light is transmitted through the mirrors upon
each reflection. The phase sensitive interactions of the forward and backward propagating
interactivity fields result in standing wave resonant modes. This creates sharp interference
fringes that can be analysed to determine spectral components with high precision. When
temporally coherent light is coupled into the cavity, the electric field between the mirrors
may present a resonance enhancement of the optical power due to constructive interference
between the driving field and circulating field. By enclosing a nonlinear medium between
the mirrors, nonlinear optical phenomenon (such as the Kerr effect) may be enhanced at
lower driving powers [162,163].

The generation of temporal cavity solitons (TCS) within FP resonators has seen a
flurry of interest, where in recent years the regime of anomalous group velocity dispersion
has been investigated, first analytically [48,49] and then experimentally demonstrated for
continuous wave [29, 50] and pulsed [52, 53] driving. The generation of frequency combs
produced by modulation instabilities and Turing patterns have also been demonstrated
in FP resonators [51]. We note that dark and bright solitons as well as plateau solu-
tions have also been discussed in compound resonator systems such as the time-delayed
Gires–Tournois interferometers formed by a FP cavity and external mirrors [158,159]. This
has resulted in increasing interest in geometrically linear resonators for the generation of
TCS as the FP cavity can offer additional engineering possibilities when compared to a
ring resonator for tailoring dispersion and allowing for greater control over the bandwidth
and temporal duration of cavity soliton pulses. Such possibilities include the engineering
of the core-cladding index [160], analogous to the engineering of ring resonator geometry,
or the design of the mirror dispersion [29].

This chapter proceeds as follows: In Section 5.2, we introduce the FP resonator, dis-
cussing generally the physics and operation of the cavity for the purpose of enhancing
nonlinear optical effects. This culminates in Section 5.3, where we derive the equation
of the a FP resonator (as first derived in [48]) filled with a Kerr nonlinear medium and
investigate the inherent counterpropagation of light under normal dispersion conditions.
We review the existence and stability of the homogeneous stationary states (HSS) of the
FP configuration in Section 5.4, then investigate the conditions required for the existence
of local structures (switching fronts [SF] and dark cavity solitons [DCS]) in Section 5.5.
We first characterise the bistable homogeneous states (plateaus) from which local struc-
tures hang, and analyse their stability in the fast time, in Section 5.5.1, and in the slow
time, in Section 5.5.2. Solutions containing moving fronts exist and are described in Sec-
tion 5.6.1, where we discuss how the FP configuration results in many unstable stationary
solutions, which are instead stable in the equivalent ring resonator seen in Chapter 4.
Nonetheless, we describe the DCS stationary solutions of the FP resonator in Section 5.6,
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Figure 5.1: A schematic representation of a Fabry-Pérot resonator composed of two mirrors
(red lines) filled with a Kerr nonlinear media, and operating at stead state. The incident
field S is coupled into the resonator via one of the mirrors, with reflection and transmission
coefficients r1, t1. Incident light injected or reflected by the mirror takes contributions
form the circulating field with F1 = t1S − r1B2 and Eref = r1S + t1B2, respectively. The
intracavity field is decomposed into forward and backward propagating components F,B,
which accumulate phase θ as they travel between the mirrors F2 = a exp(iθ)F1, B2 =
a exp(iθ)B1, where a accounts for propagation losses. At the feedback mirror, light may
be reflected back into the cavity B1 = −r2F2, or transmitted out of the cavity Etra = t2F2

with reflection and transmission coefficients r2, t2.

which are found to be detuning shifted with respect to those in a ring resonator by the
average power of the field over a round trip of the cavity, and are described by a modified
LLE. This is a result of an additional nonlocal coupling term exhibited by the FP model
originating from counterpropagation of the intracavity fields. To properly elucidate the
effects of the shift in detuning, stationary solutions of the FP model and their stability are
compared with those of ring resonators with normal dispersion [35, 54], those of FP with
anomalous dispersion [48] and those of counterpropagating light in ring resonators with
normal dispersion [117]. Finally we investigate in Section 5.7 oscillatory DCS solutions
in a FP cavity and discuss the effects of the nonlocal coupling on the oscillating solitons,
homogeneous background, and the interaction of two oscillating DCSs. In particular, the
long range interaction between DCSs is capable of synchronising their oscillations.

Since a single pulse of these local structures can exist within the cavity it is preferential
to label these as cavity solitons even in regimes when they may form trains of pulses. This
is in agreement with the laser case [164].

5.2 Fundamentals of Fabry-Pérot resonators

5.2.1 The Fabry-Pérot cavity

A schematic representation of a FP cavity is shown in Fig. 5.1. It is composed of two
mirrors characterised by reflection and transmission coefficients r1, t1 and r2, t2, respec-
tively, and filled with a Kerr nonlinear media. A continuous wave incident electric field
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S is coupled into the cavity through one of the mirrors, which circulates for many round
trips, and can be decomposed into forward F and backward B propagating components.
Assuming steady state operation, the electric field at different points of the FP system
can be related though the following equations [162], (as discussed further in Fig. 5.1),

F1 = t1S − r1B2, B1 = −r2F2, Etra = t2F2,

F2 = aeiθF1, B2 = aeiθB1, Eref = r1S + t1B2,

where propagation losses are accounted for by the introduction of parameter a and we
have implemented Stokes relations. As light propagates the length of the cavity, through
the nonlinear media, it accumulates phase θ = τRω with frequency ω and cavity round
trip time τR, and may be interpreted as a normalised cavity detuning. Phase may also
take contributions from the refections at the mirrors, which may also be incorporated into
θ [29].

The electric field coupling out of the cavity at each mirror may quantified in terms of
the injected field. By accounting for the contributions from each consecutive reflection as
light circulates the cavity, we define an effective reflectivity coefficient as,

r̃ = r1 − t21r2a
2ei2θ

∞∑
m=1

(r1r2a
2ei2θ)m−1 =

r1 − r2a
2ei2θ

1− r1r2a2ei2θ
, (5.1)

and effective transmissivity coefficient,

t̃ = t1t2ae
iθ

∞∑
m=1

(r1r2a
2ei2θ)m−1 =

t1t2ae
iθ

1− r1r2a2ei2θ
. (5.2)

Here, we have made use of the geometric series
∑∞

m=1 x
m−1 = (1 − x)−1, for x < 1, to

evaluate consecutive refections. These coefficients are complex valued, obeying the relation
|r̃|2 + |t̃|2 = 1 assuming lossless interaction with the cavity mirrors, and are used to relate
the incident field with the two output fields as,

Eref = r̃S, Etra = t̃S. (5.3)

We may then obtain the power transmission and reflections as

|Eref|2

|S|2
=

(
√
R1 − a2

√
R2)

2 + 4a2
√
R1R2 sin

2(θ)

(1− a2
√
R1R2)2 + 4a2

√
R1R2 sin

2(θ)
, (5.4)

|Etra|2

|S|2
=

a2(1−R1)(1−R2)

(1− a2
√
R1R2)2 + 4a2

√
R1R2 sin

2(θ)
, (5.5)

where R1,2 = r21,2, T1,2 = t21,2 and T1,2 + R1,2 = 1. In Fig. 5.2(a), we plot the reflection
and transmission coefficient with respect to the normalised cavity detuning 2θ. Here we
can see that for 2θ = 2πm, where m is an integer, the transmission coefficient is |t̃|2 = 1.
This represent the resonance condition, where the total power coupled out of the resonator
occurs at the feedback mirror. When operating far from resonance, much of the light is
reflected away from the cavity by the coupling mirror |t̃|2 ≪ |r̃|2.
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Figure 5.2: (a) Effective coefficients of refection r̃ (blue) and transmission t̃ (red) for
the output fields Eref and Etra of a Fabry-Pérot resonator. (b) Corresponding ratio of
circulating field power |F1|2 and incident field power |S|2. In both figures, the reflection
coefficients are R1 = R2 = 0.9. These figures demonstrate the resonance enhancement
within the Fabry-Pérot resonator, with resonance condition 2θ = 2πm, where m is an
integer.

5.2.2 Resonance enhancement

When driven by a temporally coherent plane wave electric field, the interaction between
forward and backward propagating fields between the mirrors is phase sensitive. As op-
posed to the ring resonator system, light within the FP cavity exists as standing waves due
to interference of forward and backward propagating fields, innate to the FP boundary
conditions. The total circulating power within the cavity consists of the sum of multi-
ple reflections as light circulates the cavity, such that, the intracavity power is maximized
when all the fields propagate in phase and constructively interfere. This allows the electric
field within the resonator to have significantly greater power than the incident light. We
may characterise the resonance enhancement of the circulating field through the ratio of
the incident field S and circulating field F1, where

F1 = t1S + r1r2a
2ei2θF1 =⇒ F1

S
=

t1
1− r1r2a2ei2θ

, (5.6)

and the intracavity power can be expressed as

|F1|2

|S|2
=

1−R1

(1− a2
√
R1R2)2 + 4a2

√
R1R2 sin

2(θ)
. (5.7)

Resonance enhancement of the intracavity field is achieved at the resonance condition
2θ = 2πm where m is an integer. As can be seen in Fig. 5.2(b), the resonances appear
as peaks separated by integer multiples of 2π where the free spectral range of the cavity
is defined ∆ωFSR = 2π/τR. For a reflectively coefficient of R1 = R2 = 0.9, the maximaim
power of the intracavity field is 10 times the incident field. This is the mechanism by
which the FP resonator may be used to enhance nonlinear optical effects at lower input
power. At resonance with equal reflectivities R1 ≈ R2 = R and negligible losses a ≈ 1,
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the resonance enhancement reduces to |F1|2/|S|2 = (1 − R)−1. From this, it is apparent
from this expression that resonance enhancement increase as R→ 1.

5.2.3 Coupling efficiency

To determine the efficiency in which incident light is coupled into the cavity, we introduce
the coupling coefficient 0 < η < 1. We define this coefficient as the ratio of power coupled
into the resonator through the coupling mirror κ1 ≈ T1/τR and the power lost on each
round trip, with [29]

η =
T1

τRαi + T1 + T2
, (5.8)

where the output coupling rate of the feedback mirror is κ2 ≈ T2/τR and αi represents
propagation losses per unit of fast time. The critical coupling condition for a FP cavity
is achieved when the power output rate at the coupling mirror is equal all other losses.
This corresponds to the optimal coupling efficiency in practice, occurring at η = 1/2,
where the mirror transmissivity coefficients are related as T1 = T2 + τRαi. Should the
out coupling rates of the two mirrors be identical T1 ≈ T2 = T , the coupling coefficient
reduces to η = T/(2T + τRαi) < 1/2. In this case, critically coupling can only be achieved
asymptomatically in the limit of low propagation losses (T ≫ τRαi).

5.2.4 Cavity finesse and quality factor

In Section 2.3.4, we provide definitions for the cavity finesse (F) and quality factor (Q-
factor) for the ring resonator system. The fundamental definitions and physical meanings
of these quantities remain the same and can be evaluated for FP resonator.

The cavity finesse is defined as the ratio of the free spectral range and the linewidth.
We may obtain the linewidth of the FP cavity by setting the transmitted power (5.5)
to one half the resonance peak, |Etra(θFWHM)|2 = |Etra(θ = 0)|2/2, whereby assuming a
narrow resonance, sin(θ) ≈ θ, the linewidth becomes,

∆ωFWHM =
1

τR
θFWHM =

1− a2(R1R2)
1/2

2τRa(R1R2)1/4
. (5.9)

The cavity finesse is then

F =
∆ωFSR

∆ωFWHM

=
πa(R1R2)

1/4

1− a2(R1R2)1/2
. (5.10)

In the context of optical resonators, the Q-factor at frequency ω can be defined in the
limit of high-Q in terms of the finesse as,

Q =
ωr

∆ωFWHM

= F ω

∆ωFSR

=
ωτR
2

a(R1R2)
1/4

1− a2(R1R2)1/2
. (5.11)

The Q-factor and finesse are two key parameters that quantify the performance of a FP
resonator in practice. In this these, we assume light may circulate the cavity many times
before being lost. This corresponds to the high-Q limit (R1, R2 → 1), which has been
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demonstrated experimentally in FP microresonators for the generation bright temporal
cavity solitons [29] where a Q-factor of Q ≈ 4× 106 was achieved.

5.3 The Fabry-Pérot model

We consider a high finesse FP resonator composed of highly reflective mirrors and filled
with a Kerr medium, see Fig. 5.3. The resonator is driven by linearly polarised light, which
is coupled through one of the cavity mirrors into the resonator and the intracavity field is
coupled out upon each reflection. The coefficient of transmissivity of the mirrors is taken to
be small T ≪ 1 (high finesse), in line with experimental realisations [29]. The formation of
TCS in the FP system has undergone extensive theoretical investigation in the anomalous
dispersion regime in [48] where the so called Lugiato-Lefever equation for the Fabry-Pérot
was first derived. Here, we study the normal dispersion regime of the FP. This model is of
integro-partial differential equation form, and was obtained in [48] by uniting the forward
and backward counterpropagating field envelopes into a single envelope, defined over the
full round trip time of the cavity. This travelling wave formalism of the FP cavity allows
for direct comparison with the ring resonator described by the Lugiato-Lefever equation.
In this section, we provide a derivation of this FP model, outlining the motivations and
regimes of validity.

The propagation of the electric field through the Kerr nonlinear media enclosed by
the mirrors may be treated similarly to Section 2.4, with a key distinction that the total
electric field is composed of fields propagating in opposite directions. We may express the
total electric field between the mirrors as

E(τ, t) ∝ F (τ, t)eikτ +B(τ, t)e−ikτ , (5.12)

where F and B are the slowly varying amplitudes of the forward and backward prop-
agating field components, respectively. Much like the ring resonator case, we consider
E(τ, t) to be spectrally narrow so that the evolution of the transverse modal distribution
may be neglected, and we restrict our attention to the evolution of the longitudinal field
components. The interaction between counterpropagating fields may be characterised by
the nonlinear atomic polarisation

PNL ∝ |E|2E = (|F |2 + 2|B|2)eikτ + (|B|2 + 2|F |2)e−ikτ + (third harmonic), (5.13)

where we assume the interaction of counterpropagating fields is dominated by the Kerr
effect. Forward and backward propagating fields are coupled through self- and cross-
phase modulation via the Kerr nonlinearity, where it can be seen that the Kerr effect is
directionally dependant, varying with exponential terms exp(±ikτ) within the rotating
wave approximation. The evolution of the electric field within the FP cavity may be
written as [48]

∂tF + ∂τF = S − (1 + iθ)F + i(|F |+ 2|B|2)F − i∂2τF, (5.14a)

∂tB − ∂τB = S − (1 + iθ)B + i(|B|+ 2|F |2)B − i∂2τB, (5.14b)

where the equation of the total electric field is split into two coupled partial differential
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equations, one for each counterpropagating component exp(ikτ) and exp(−ikτ), defined
over the interval between the mirrors 0 ≤ τ ≤ τR/2. Eqs. (5.14) obey boundary conditions

F (0, t) = B(0, t), F (τR/2, t) = B(τR/2, t) (5.15)

corresponding to reflections at the two mirrors located at τ = 0 and τ = τR/2. The
evolution of the counterpropagating fields of this system are described by Eq. (5.14) in
the mean field (high-Q) limit and interact through self- and cross- phase modulation terms
in the Kerr approximation. Here, τR is the resonator round trip time, S is the amplitude
of the normalised input field, which is considered to be real and positive, and θ is the
normalised detuning of the input to the near nearest cavity resonance (normalisation
given in Section 2.6). We define t as the ‘slow time’ temporal variable describing the
evolution over many round trips of the cavity whilst τ is the ‘fast time’ longitudinal
variable describing the evolution over a single round trip of the linear cavity.

Eqs. (5.14) possess two distinct retarded times, one for the forward propagating field
and one for the backward propagating field. As such, it is not possible to transform this
set of equations into a rotating frame of reference, as we have done previously for the
ring resonator. This has significant implications for numerical simulation, as to complete
a single round trip of the cavity one must; integrate Eq. (5.14a) over the cavity length,
implement the first boundary condition (5.15), then integrate Eq. (5.14b) backwards
over the cavity length, implementing the second boundary condition. In the limit of
high-Q, this will require a significant number of round trips of the resonator to reach
the long timescale at which the mean field amplitudes evolve. This issue is resolved by
implementing a travelling wave formalism to the FP, which allows us to unite the Eqs.
(5.14a) and (5.14a) into a single equation with periodic boundary conditions [48]. This
mean field model allows for temporal steps which encompass multiple round trips of the
cavity, significantly increasing computational speed.

We begin by performing modal expansions of the field envelopes, with,

F (τ, t) =
∞∑

µ=−∞
f̄µ(t)e

iµατ , B(τ, t) =
∞∑

µ=−∞
f̄µ(t)e

−iµατ , (5.16)

where α = 2π/τR the the free spectral range of the cavity and f̄µ(t) is the modal amplitude
with mode number µ. Using these modal definitions, it is possible to expand the domain of
the field envelopes F (τ, t), B(τ, t) over the full round trip of the cavity −τR/2 ≤ τ ≤ τR/2,
which amounts to defining,

F (τ, t) = B(−τ, t), B(τ, t) = F (−τ, t). (5.17)

Consulting the boundary conditions (5.15), we see that the field envelopes now obey
periodic boundary conditions. We note that despite similar equations between the coun-
terpropagating ring (4.5) and FP (5.14) resonators, we do not observe symmetry breaking
phenomena between counterpropagating field of the FP cavity. This is due to the afore-
mentioned boundary conditions (5.15) of the mean field FP. To investigate the dynamics
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of the fields, we decompose the modal amplitude as

f̄µ(t) = fµ(t)e
−iµαt, (5.18)

into functions which evolve of distinct timescales. The modal amplitude fµ(t) evolves
on the timescale of photon decay within the cavity κ−1 = τR/T , where T is the mirror
transmission coefficient. On the other hand, the exponential term exp(−iµαt) evolves at
the timescale of the repetition rate of the cavity α = 2π/τR. In the limit of a high-Q
resonator, we have that T ≪ 1, and the evolutionary timescales of these two functions are
well separated. Inserting the modal expansions (5.16) into Eqs. (5.14a), we obtain the
modal equations,

∂tfµ =Sδµ,0 − (1 + iθ)fµ + (µα)2fµ,

+
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′

[
fµ′f∗µ′′′fµ′′ + 2fµ′′′f∗µ′′fµ′eiᾱ(µ−µ′)t

]
. (5.19)

Here, it can be seen that the rapidly varying exponentials appear only in the final term,
corresponding to the cross-phase modulation. Should we perform an average of Eq. (5.19)
on a timescale greater then the round trip time, but lesser than the photon decay time,
we find that all terms remain uneffected, except those possessing the exponential terms.
For µ ̸= µ′, exponential terms vanish under the averaging. Hence, setting µ = µ′ for the
term containing the exponential function, we obtain

∂tfµ =Sδµ,0 − (1 + iθ)fµ + (µα)2fµ

+
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′fµ′f∗µ′′′fµ′′ + 2fµ
∑
µ′

fµ′f∗µ′ . (5.20)

This amounts to neglecting terms which do not conserve energy, where we note that the
modal Eqs. (5.20) are are in agreement to those used [53]. Introducing the new envelope

ψ(τ, t) =
∞∑

µ=−∞
fµ(t)e

iµατ , (5.21)

we obtain the integro-partial differential equation,

∂tψ = S − (1 + iθ)ψ + i(|ψ|2 + 2⟨|ψ|2⟩)ψ − i∂2τψ. (5.22)

An identical equation is obtained by inserting the modal expansions (5.16) into Eq.
(5.14b). In this formalism, the intracavity field is modelled as a travelling wave of slowly
varying amplitude ψ(τ, t) defined over the domain −τR/2 ≤ τ ≤ τR/2 with periodic bound-
ary conditions. The field of Eq. (5.22) is related to the slowly varying envelopes of the
forward, F (τ, t), and backward, B(τ, t), counterpropagating fields via

F (τ, t) =

∞∑
µ=−∞

fµ(t)e
−iµα(t−τ), B(τ, t) =

∞∑
µ=−∞

fµ(t)e
−iµα(t+τ) (5.23)
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over the domain 0 ≤ τ ≤ τR/2, where the modal coefficients, fµ, are defined as

fµ(t) =
1

τR

∫ τR/2

−τR/2
dτe−iµατψ(τ, t). (5.24)

Eq. (5.22) was obtained under the conditions of a large material detuning, a high-Q
cavity, negligible higher-order dispersion, slowly varying amplitude and Kerr-cubic ap-
proximations (see Section 2.6). We note that the chromatic dispersion in a FP resonator
is not limited to the material dispersion and can take significant contributions form the
mirrors. In particular, the generation of bright temporal cavity solitons demonstrated
experimentally in an integrated FP microresonator observed a chromatic dispersion dom-
inated by the photonic crystal reflectors [29]. When operating in the mean field limit, the
effects of dispersion of different origin may be aggregated into β2 owing to their negligible
effect on the pulse over a single trip of the cavity, and incorporated into the normalisation,
as is done in our model.

The term notated with angled brackets in Eq. (5.22) represents the integral

⟨|ψ|2⟩ = 1

τR

∫ τR/2

−τR/2
|ψ|2dτ (5.25)

corresponding to the average power of the intracavity field over a round trip of the res-
onator. Integral terms of this kind are also present in bidirectionally pumped ring res-
onators [45, 46, 117], as we have discussed at length in Chapter 4, and arises due to the
rapid phase dynamics of cross-coupling terms of the counterpropagating fields, such that
counterpropagating fields see each other through their average intensity. It is appropriate
to resolve the counterpropagating field into the single equation with integral cross-phase
modulation in the limit of a high-Q factor. FP microresonators have been experimental
shown to possess high Q-factors, where in particular, bright temporal cavity solitons have
been experimentally observed in FP microresonators with Q = 4× 106 [29].

This formulation of the FP system allows us to clearly compare the FP solutions with
those of a ring resonator system with a single circulating field. The FP model differs from
the ring by an additional phase shift term (integral cross-phase modulation term) which
may be compensated by a redefinition of the detuning. The connection between the FP
and ring resonator geometries can be understood by writing Eq. (5.22) as the LLE

∂tψ = S − (1 + iθeff)ψ + i|ψ|2ψ − i∂2τψ. (5.26)

We can see that the stationary solutions (∂tψ=0) of the FP [Eq. (5.22)] are also stationary
solutions of the LLE [Eq. (5.26)] with an identical input field S and an effective detuning,

θeff = θ − 2⟨|ψ|2⟩, (5.27)

that is shifted by twice the average power of the intracavity field. The role of effective
detuning in the bidirectionally driven ring resonator was investigated in Chapter 4. The
innate counterpropagation within the FP system results in many of the characteristic
features of counterpropagating TCSs discussed in the previous chapter, but with distinct
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Figure 5.3: Setup: (a) A Fabry Pérot resonator filled with a Kerr medium. A linearly
polarised input field enters the cavity on one side and circulates the cavity for many round
trips, where part of the field is coupled out upon each reflection at the mirrors. (b) An
example field power displaying a DCS is shown.

differences which we discuss in this chapter.

5.4 Homogeneous solutions and fast time dynamics

We now investigate the conditions under which local structures, such as switching fronts
and dark solutions, arise in the FP. We begin by writing Eq. (5.22) as

∂τU = Ṽ , ∂τV = Ũ ,

∂τ Ũ = −(θ − ⟨U2 + V 2⟩)U − V + UV 2 + U3 (5.28)

∂τ Ṽ = −(θ − ⟨U2 + V 2⟩)V + U + V U2 + V 3 − S

where we have set ∂tψ = 0 and U, V are the real and imaginary components of ψ. We
consider the system of Eqs. (5.28) to evolve in fast time τ over a round trip of the
cavity, where we implement a similar formulation to describe local structures as was seen
for the ring resonator in Chapter 2, adopting terminology of [35, 56, 80–84]. Under this
construction, the fixed points U0, V0 of Eq. (5.28) correspond to ∂τU = ∂τV = ∂τ Ũ =
∂τ Ṽ = 0. The exponentially localised structures we consider approach these fixed point
as τ → ±∞. Due to the presence of the nonlocal terms, the fixed points of Eq. (5.28)
depend on the round trip average power of the field and require the full evolution over the
round trip of the resonator for their determination.
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5.4.1 Homogeneous stationary solutions

If we first consider solutions with flat profile over the round trip of the resonator, such
that ⟨|ψ0|2⟩ = |ψ0|2, we obtain the HSSs of the FP cavity. Setting ∂τU = ∂τV = ∂τ Ũ =
∂τ Ṽ = 0 in Eqs. (5.28) with ⟨|ψ0|2⟩ = |ψ0|2 we obtain the HSSs(

U0

V0

)
=

(
S

1+(3H−θ)2

(3H−θ)S
1+(3H−θ)2

)
, (5.29)

where the power of the HSS (H = |ψ0|2) is obtained by solving

H3 − 2(θ − 2H)H2 + {(θ − 2H)2 + 1}H = S2. (5.30)

These stationary solutions are discussed in detail in [48], and briefly discussed in Appendix
B.1, where a more general discussion on the instabilities of the FP resonators is given
in [165].

The HSSs are fixed points of Eq. (5.28) only when the average power over the round
trip is equal to the fixed points power. It is not possible for a solution to start and return to
a fixed point, and have an average power that is equal to that fixed points power (such as
with front and DCS solutions, see Sections 5.6.1 and 5.6.2). As such, local solutions cannot
hang from the HSS since the presence of a nonlocal fast time inhomogeneity changes the
average power of the field, such that the condition required for the HSS fixed point is not
satisfied ⟨|ψ0|2⟩ = |ψ0|2. Hence the HSS of the FP model are a subset of fixed points,
which do not support exponentially localised solutions.

5.4.2 Plateau solutions

The fixed points of Eq. (5.28) relevant to the formation of local structures belong to
solutions composed of flat increments over the round trip of the cavity. To aid our in-
vestigation, we approximate these solutions as two fixed points, of Eq. (5.28), occupying
distinct domains of fast time which are connected by step functions. We refer to these
fixed points as plateaus to distinguish them from the HSSs, as we have done previously
in the ring resonator. These plateau states have uniform powers Yu and Yl different from
the HSSs, existing over a domain of finite sizes 1 − ∆ and ∆, respectively, where ∆ is
a fast time duration 0 ≤ ∆ ≤ 1 parametrising the separation of the step functions and
normalised with respect to the round trip time. The round trip average power is then
given by ⟨|ψ|2⟩ = ∆Yl + (1−∆)Yu. The real and imaginary parts of the plateau solutions
are (

Uu,l

Vu,l

)
=

( S
1+(Yu,l−θ+2∆Yl+2(1−∆)Yu)2

(Yu,l−θ+2∆Yl+2(1−∆)Yu)S

1+(Yu,l−θ+2∆Yl+2(1−∆)Yu)2

)
, (5.31)

where the plateau powers are the solutions of the coupled equations

Y 3
u,l − 2(θ − 2∆Yl − 2(1−∆)Yu)Y

2
u,l

+ {(θ − 2∆Yl − 2(1−∆)Yu)
2 + 1}Yu,l = S2. (5.32)
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When solving Eq. (5.32), there are up to nine possible solutions for each value of the
plateau duration ∆. There exists at most one correct pair of upper and lower plateaus
which may be selected by restricting the plateaus to real solutions that satisfy Yu > Yl,
where at most three pairs of (Yu, Yl) solutions remain. For each of these pairs, one can
evaluate the effective detuning, Eq. (5.27), where only one pair of plateaus will correspond
to the upper and lower HSS of the corresponding LLE, if a solution exists. In this way,
one obtains two plateau powers for each value of ∆ unless the effective detuning is outside
the bistability region of the corresponding LLE. We have used this approximation to great
effectiveness in Chapter 4 to describe and predict stable plateaus solutions connected by
switching fronts in bidirectionally pumped ring resonators [117]. In the FP system, we find
that this approximation is also very effective, but as we will see in Section 5.6.1, solutions
of plateaus connected by switching fronts are dynamical for the FP model for condition
where we expect to find large ranges of stability in bidirectional ring resonators.

To study the stability of the plateaus in fast time, we introduce the linear perturbation
U = U0+ϵu, V = V0+ϵv to the fixed point U0, V0, where we continue with our assumption
of plateaus that exist on discrete intervals in fast time connected by step functions. To
investigate the fast time stability of each plateau, we must appropriately evaluate the
effect of the perturbation on the integral term. In what follows we assume that the
perturbation on the plateau has negligible effect on the average power of the full solution
⟨(U0 + ϵu)2 + (V0 + ϵv)2⟩ = ⟨U2

0 + V 2
0 ⟩. We find that this is a suitable assumption for this

perturbation due to the robustness of the integral term to local inhomogeneity. Hence,
the fast time stability of the plateau states can be understood by considering the Jacobian
matrix

J =


0 0 1 0
0 0 0 1

V 2 + 3U2 − θeff −1 + 2UV 0 0
1 + 2UV U2 + 3V 2 − θeff 0 0


(U0,V0,θeff)

(5.33)

where J is evaluated at a single fixed point of Eqs. (5.28) and θeff is the effective detuning
of the full round trip stationary solution (composed of two fixed points connected by step
functions). This Jacobian provides eigenvalues of the form

λ = ±
√
(2Y − θeff)±

√
(Y 2 − 1) (5.34)

where Y = U2
0 + V 2

0 is the plateau power of the perturbed stationary state. The Jacobian
(5.33) has a similar form to the fast time analysis performed for a LLE [35], where θ
replaces the effective detuning and the plateaus correspond to the HSS. The eigenvalues
of Eq. (5.34) rule the escape from and the approach to plateau states Y± along the stable
and unstable manifolds. Of key relevance is the transition that occurs at plateau power
Y = 1, below which the eigenvalues of Eq. (5.34) become complex. The lower power
plateau typically exist beneath the threshold, Y− < 1, displaying fast time oscillation.
This allows for the structurally stable intersection of stable and unstable manifolds of the
plateau corresponding to the formation of dark cavity solitons [166]. These eigenvalues
are essential in the determination of the presence of local oscillations responsible for the
existence and stability of dark cavity solitons in Section 5.6.2. We note that the higher
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power plateau always has power Y+ > 1 and yields four real eigenvalues for the parameters
that we have considered.

5.5 Linear stability analysis of plateau solutions in slow time

We continue our investigation of the plateau solutions here, but now consider linear
perturbations which evolve in slow time. As in the previous section, we assume so-
lutions formed by two plateaus of higher ψu(τ, t) and lower ψl(τ, t) power coexisting
on a round trip ψ = ψu + ψl and joined by two step functions separated by the nor-
malised duration ∆ in fast time. Inserting this solution into Eq. (5.22), we see that the
plateaus ψu,l interact only through the average power over the round trip of the cavity
⟨|ψ|2⟩ = ∆⟨|ψl|2⟩ + (1 − ∆)⟨|ψu|2⟩ due to our assumption of steep SFs (step functions).
As such, we may rewrite Eq. (5.22) as the two coupled equations,

∂tψu,l = S − (1 + iθ)ψu,l + i(|ψu,l|2 + 2[∆⟨|ψl|2⟩+ (1−∆)⟨|ψu|2⟩])ψu,l − i∂2τψu,l, (5.35)

on distinct domains −1/2 ≤ τ/τR ≤ (∆− 1/2) and (∆− 1/2) ≤ τ/τR ≤ 1/2 which govern
the lower and upper plateaus respectively. Integral terms on each plateau are evaluated
as

⟨|ψl|2⟩ =
∫ τR(∆−1/2)

−τR/2
|ψl(τ, t)|2dτ, ⟨|ψu|2⟩ =

∫ τR/2

τR(∆−1/2)
|ψu(τ, t)|2dτ. (5.36)

Eqs. (5.35) represent an approximate system, whereby introducing a linear perturbation to
the plateaus ψu,l, we may investigate their slow time stability and the conditions required
for the formation of dark solitons which hang from them. In the following sections, our
analysis outlines the conditions required for plateaus to coexist stably, and characterises
the decaying Turing oscillations on the low power plateau required for the formation of
dark solitons in the FP resonator.

5.5.1 Turing pattern instability

First, we investigate the linear stability of the upper and lower plateaus to the growth/decay
of Turing patterns of wavenumbers ku and kl, and slow time growth rates Ωu and Ωl, re-
spectively. We introduce perturbations of the form

ψu,l = ψs
u,l + ϵau,le

iku,lτ+Ωu,lt, (5.37)

where ϵ≪ 1. In the case where the wavenumbers on each respective plateau are periodic,
kl∆τR = 2πnl and ku(1−∆)τR = 2πnu for integers nu,l ̸= 0, the effect of the perturbations
on the round trip average becomes ⟨|ψu,l|2⟩ = ⟨|ψs

u,l|2⟩ = |ψs
u,l|2, and we find that the

growth rates Ωu,l of the perturbations on the higher power and lower power plateaus are
respectively (as derived in Appendix B.2)

Ωu,l = −1±
√
4Yu,lθeff − 3Y 2

u,l − θ2eff − 2(2Yu,l − θeff)k
2
u,l − k4u,l (5.38)
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where θeff = θ− 2⟨|ψs|2⟩ = θ− 2∆|ψs
l |2− 2(1−∆)|ψs

u|2 is the effective detuning shifted by
the average power of the stationary field. The eigenvalues, Eq. (5.38), have a similar form
to that of the HSSs (derived in Appendix B.1) but now with a dependency on the fast
time average. The dependence on the round trip average power is explicit for the plateau
states due to fast time inhomogeneity over the round trip, such that, when Y is equal
to ⟨|ψ|2⟩ (∆ = 0) the eigenvalues of Eq. (5.38) reduce to the eigenvalues of the HSS and
are comparable to the stability eigenvalues of the LLE [35]. The eigenvalues of Eq. (5.38)
predict no instabilities on the higher power plateau (in the normal dispersion regime) and
a Turing instability of the lower power plateau solution starting at the threshold Y = 1
(present for θ − 2⟨|ψs|2⟩ ≥ 2). This results in exponentially decaying oscillations on the
approach to plateaus with power Y < 1. For plateaus with power Y > 1, exponentially
localised solutions approach as a smooth exponential. The critical wave number associated
with the maximum growth is given by k2Y = 2(θ− 2⟨|ψ|2⟩ − 2Yl). The HSS of the FP also
displays a Turing instability starting at the threshold H = 1 when θ − 2H ≥ 2 [48], and
exhibits the critical wave number k2H = 2(θ− 4H). Generally, the average intensity of the
dark plateau solutions is much larger than the lower power HSS, and as such the critical
wave number of the plateau is much smaller than that associated to the HSS, i.e. kY < kH .

5.5.2 Homogeneous instability of plateaus

We now consider a time dependent homogeneous perturbation to the plateaus of the form

ψu,l = ψs
u,l + ϵau,l(t) (5.39)

where we set ∂2τψu,l = 0 in Eq. (5.35). Unlike the previous examples, this perturbation
survives the integral term, ⟨|ψu,l|2⟩ ≠ ⟨|ψs

u,l|2⟩, and as such, gives us further insight into
the effects of the integral on stability. The perturbation (5.39) on the plateau solutions
can be understood by finding the eigenspectrum of the Jacobian matrix

J =


−1− 2UuVu − 4(1−∆)UuVu Au − 4(1−∆)V 2

u

−Bu + 4(1−∆)U2
u −1 + 2UuVu + 4(1−∆)UuVu

−4(1−∆)UuVl −4(1−∆)VuVl
4(1−∆)UuUl 4(1−∆)UlVu

· · ·

· · ·

−4∆UlVu −4∆VuVl
4∆UuUl 4∆UuVl

−1− 2UlVl − 4∆UlVl Al − 4∆V 2
l

−Bl + 4∆U2
l −1 + 2UlVl + 4∆UlVl

 . (5.40)

This governs the evolution of the real and imaginary part of the perturbations (5.39) on
the upper and lower plateaus, which are also expressed in terms of real and imaginary
components ψu,l = Uu,l + iVu,l, and,

Au = θeff − U2
u − 3V 2

u , Bu = θeff − 3U2
u − V 2

u ,

Al = θeff − U2
l − 3V 2

l , Bl = θeff − 3U2
l − V 2

l .
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The effective detuning is now given by θeff = θ− 2∆(U2
l +V

2
l )− 2(1−∆)(U2

u +V
2
u ). Since

the coupling between plateaus through the integral terms is independent of their phases,
the stability of the upper and lower plateaus are independent of their phases. We may use
this fact to assume without loss of generality that the plateau solutions are purely real,
such that, an appropriate Jacobian of perturbation (5.39) is

J ′ =


−1 Ãu 0 0

−B̃u −1 ∆C 0

0 0 −1 Ãl

(1−∆)C 0 −B̃l −1

 , (5.41)

where

Ãu = θeff − Yu, B̃u = θeff − (7− 4∆)Yu, C = 4
√
YuYl,

Ãl = θeff − Yl, B̃l = θeff − (3− 4∆)Yl,

and θeff = θ− 2∆Yl− 2(1−∆)Yu. This is obtained form matrix (5.40) by setting Vu,l = 0,
and possess the identical eigenspectrum

λ = −1±

√
−ÃuB̃u − ÃlB̃l ±Q

2
, (5.42)

Q =

√
(ÃuB̃u − ÃlB̃l)2 + 4∆(1−∆)ÃuÃlC2. (5.43)

These eigenvalues indicate the relative stability of a pair of plateaus coexisting along the
round trip to perturbation which change the average power of the solution. By evaluating
these eigenvalues, we obtain Fig. 5.4, where the stability of plateau states to perturbations
on the average power is presented in the parameter space (θeff , S), where the lower power
plateau has size ∆ = 0.2. This allows for a direct comparison with the solutions of bistable
HSSs, as seen for a ring resonator [35]. We find that near the onset of optical bistability,
plateau solutions in the FP configuration are unstable, as depicted by the yellow zone of
Fig. 5.4. The green zone shows stable plateaus, and the blue zone indicates an absence
of plateau stationary states (solutions of stable HSS). The transition form the green to
the yellow zone corresponds to a transition of the real part of the relevant eigenvalues of
Eq. (5.43) from negative to positive and the plateaus collapsing to the low power HSS.
Hence, we find parameter regimes in which there is a bistability of the HSSs of the FP
model but there are no stable solutions of coexisting plateaus. In regions where plateau
solutions are unstable, the system cannot support exponentially localised structures which
approach them, such as the switching fronts discussed in the next section, and indeed we
do not observe the formation of stable DCSs in these regimes.

5.6 Localised solutions

In the previous sections, we have studied the existence and stability of plateau solutions
connected with a step function. These solutions serve as an approximation to exponen-
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Figure 5.4: Stability of coexisting plateaus in the parameter space of shifted detuning,
θeff , and input field, S, for a fixed duration of the lower power plateau ∆ = 0.2. The blue
region corresponds to stable HSSs of the FP model, whereas the green region corresponds
to two stable plateaus coexisting on the round trip of the resonator, and the yellow region
to two unstable plateau solutions.

tially localised solutions of Eqs. (5.28), that approach flat solutions (fixed points) along
the fast time variable τ . There are two kinds of such solutions: heteroclinic orbits, which
are trajectories that connect two separate fixed points of Eq. (5.28), and homoclinic orbits,
corresponding to a trajectory that leaves and returns to the same fixed point of Eq. (5.28).
The former corresponds to a switching front (SF) solution, while the latter are here asso-
ciated with cavity solitons: bright (dark) cavity solitons when the fixed point corresponds
to the high (low) power plateau. As the boundary conditions of a FP resonator are peri-
odic, SF solutions exist as a pair with opposite orientation in the cavity. Taken together,
and when well separated, they form a heteroclinic cycle. The DCS solutions described
in later sections are themselves composed of oppositely oriented SFs which interact and
lock with each other through local oscillations close to the lower power fixed point, as was
first proposed for spatial solitons composed of diffractive switching fronts [119–121]. An
example of a single SF (heteroclinic orbit) and a DCS (homoclinic orbit) in the (U, V )
plane are presented in Fig. 5.5. These trajectories are anchored to the plateau solutions
discussed in Section 5.4 for a given value of the distance ∆. The blue solid lines in Fig. 5.5
correspond to the family of plateau solutions when changing ∆ while the circles mark the
positions of the HSS.

5.6.1 Switching fronts and their dynamics

To understand the SF stationary states (heteroclinic orbit) and their dynamics within the
FP cavity, we make comparison with similar solutions found in ring resonators, discussed
in Chapter 2. This is done due to the mathematical equivalence of the stationary solutions
or the receptive models, up to a shift in detuning. The HSSs of the FP model are plotted in
Fig. 5.6(a) as blue curves. The HSSs of an equivalent ring resonator model are plotted as
green curves. When comparing these tilted Lorentzian curves, it is very clear that the effect
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Figure 5.5: Examples of (a) SF heteroclinic (black line) and (b) DCS homoclinc (red
dashed line) trajectories of Eqs. (5.28) in the Argand plan where U and V are the real
and imaginary parts of the intracavity field, respectively. Solid blue lines correspond to
upper and lower plateaus when scanning ∆. Circles correspond to HSSs.

of the shift in the detuning is most prominent for high power solutions, resulting in a large
shift at the peak of the resonance. SFs within the FP cavity occur as oppositely oriented
pairs, are generally dynamical, and move with identical speed but opposite directions.
The velocity of SF solutions depend on of the average power of the field which may be
expressed in terms of their separation ∆. A key characteristic of the SF dynamics is the
presence of a turning point, where the velocities of both SFs change sign. An example of
the slow time evolution is shown in Fig. 5.7 for fixed parameters, and an initial condition
near a velocity turning point at ∆ ≈ 0.5. In Fig. 5.7(a) [Fig. 5.7(b)] the SF initial
condition has separation slightly narrower (wider) than at the velocity turning point. We
can see that the SF solutions either move towards each other until they annihilate [Fig.
5.7(a)], or move away from each other until the effective detuning is shifted beyond the
bistability region of the equivalent LLE [Fig. 5.7(b)], and collapses to the HSS.

The velocity turning points of a SF within a FP resonator are plotted in Fig. 5.6(a)
as a solid black line. Each point along the line corresponds to a specific value of ∆
(average power), at which the effective detuning correspond to the Maxwell point of the
LLE (plotted as the dash-dot black line in Fig. 5.6(a). The Maxwell point of the LLE is,
by definition, the unique value of detuning ΘMP (for the chosen driving power) where the
velocity of a non-interacting SF is exactly zero [35,54]. This then constitutes a stationary
state of the FP model at a unique value of ∆, in which effective detuning that is equal
to ΘMP. Hence, the black line of Fig. 5.6(a) corresponds to a projection of the dash-dot
black line via the effective detuning relationship (5.27). Due to the dependence of the
effective detuning on the average power of the field, there exist for each value of detuning
a single separation (∆) of SFs that corresponds to a turning point. The turning point
can be then located semi-analytically given that we know ΘMP, as shown for example
in a bidirectionally pumped ring resonator [117] discussed in Chapter 4. The direction
of the SF motion is then determined by the effective detuning being greater than ΘMP
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Figure 5.6: (a) Solutions of the FP model and equivalent ring resonator model for input
field S = 2

√
2 with round trip time τR = 100. HSSs of the FP (ring resonator) model cor-

respond to blue (green) lines. Dashed curves correspond to unstable HSSs. Stationary SF
solutions are plotted by using their round trip average power for the FP model (black line)
and for the ring resonator model (black dot-dashed line). Stable dark solitons solutions of
different sizes correspond to the red lines and form branches of distinct width. (b) Solu-
tions of the ring resonator model (LLE) plotted with respect to the detuning θeff , which
are related to the FP solutions through the effective detuning relationship, Eq. (5.27).
(c) Solutions of the FP model plotted with respect to the detuning and correspond to a
zoomed in window of (a). (d) Power profile of bistable stationary dark solitons for param-
eters S = 2

√
2, θ = 18, τR = 100 and correspond to the two diamonds in (b). The solid

blue line in (d) corresponds to the highest power HSS, marked with a circle in (b).
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Figure 5.7: (a)-(b) SFs dynamics over slow time, with initial condition near the velocity
turning point of the SF, at separation of ∆ ≈ 0.5, for parameters S = 2

√
2, θ = 12.5. (a)

shows the evolution of two SFs from a square wave initial condition with slightly smaller SF
distance than the turning point, whereas, (b) shows the evolution from an initial condition
with slightly larger SF distance than the turning point. In both cases the SFs move away
from the starting location and eventually collapse to one of the bistable HSSs. (c) SF
velocities corresponding to panels (a) and (b) with black and red curves, respectively.
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[Fig. 5.7(a)] or lesser than ΘMP [Fig. 5.7(b)], or equivalently if the SF separation is greater
than or lesser then the unique value of ∆.

In Chapter 4 it was shown, for counterpropagating light in ring resonators, that there
exists an abundance of stable and robust light plateau stationary states composed of non-
interacting SFs that form in one field, while the profile of the counterpropaging field is flat.
The ring resonator system is described by two equations with similar form to Eq. (5.22),
one equation for the forward field and one for the backward field, and coupled through
nonlocal cross-Kerr interaction. It is interesting to note that, for counterpropagation in
a ring resonator, SFs of a given initial separation move towards (instead of away from)
the velocity turning point [117]. The difference in the direction of the SF motion when
compared with the FP model is due to distinct backward and forward field profiles present
within the ring resonators, that induce nonreciprocal shift in detuning of the two field
components. As such, the motion of the SFs does not explicitly depend on its own average
power, but instead depends on the power of the field with flat profile. However, the stability
of SF solutions in a FP configuration depends critically on its own average power, inducing
a shift in detuning which diverges from the Maxwell point with SF motion, resulting
in SFs solutions that always move away from the turning point (see Fig. 5.7). This
explains why we do not observe the rich phenomenology of stable SFs solutions of the
counterpropagation in ring resonators [117] and why only DCS are achieved through the
locking mechanism originating from the interaction of SF through their oscillating tails,
as described in the next section.

Finally, we note that although SF (heteroclinic) solutions are not stationary in an
FP configuration, the calculations of the plateau solutions in Section 5.4 are still worth
mentioning. During the motion displayed in Fig. 5.7, the solution progresses through the
plateaus corresponding to different sizes of ∆, instant by instant, until the two SF interact
with each other. During the SF motion, the cusp point of the heteroclinic trajectory of
Fig. 5.5(a) moves along the blue curves, that are the plateau solutions of Eq. (5.32). If the
initial ∆ is larger than that corresponding to the velocity turning point, the cusp of the
heteroclinic trajectory moves leftward along the blue solid line until it reaches the HSS
marked by the circle. If the initial ∆ is smaller than the velocity turning point, the cusp
of the heteroclinic trajectory moves rightward along the blue solid line until the SF collide
and annihilate, and the system collapses to the lower HSS (circle closer to the origin of
the axes).

5.6.2 Dark cavity solitons

For a FP resonator in the normal dispersion regime, we observe the formation of DCS
steady states. Such states are composed of two SFs that lock with each other due of
the interaction of fast time oscillations present close to the lower plateau, as shown for
single field ring resonators in [35] and in optical parametric oscillators [120,121]. Bistable
DCS stationary solutions of Eq. (5.22) are shown in Fig. 5.6(d) for parameter values S =
2
√
2, θ = 18, τR = 100. The two dark soliton solutions have different widths corresponding

to distinct cycles of the oscillations which form on the low power plateau. Such solitons
can be obtained by a perturbation of the HSS of suitable width. The results of this thesis
were obtained first through direct numerical integration of Eq. (5.22) via the Fourier split
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Figure 5.8: Approximate difference in detuning between dark soliton solutions of the FP
resonator and equivalent ring resonator models, with respect to the common input field.
The black line corresponds to the SF turning point of the FP model when ∆ = 0. The
dashed line corresponds to the SF turning point when ∆ = 0.1.

step method (Appendix C.2) and then verified using lattice relaxation methods.
It can be seen that the plateau power is different from the high power HSS (blue line in

Fig. 5.6(d), and different for DCSs of different widths. As was discussed in section 5.4, the
plateau power of an exponentially localised state depends on the average power of the field
over the round trip of the cavity, such that, solitons of different width display different
plateau power due to their different average power. The DCSs of Fig. 5.6(d) correspond
to the diamonds in Fig. 5.6(b), where the plateau solutions from which the DCSs hang
correspond to the points on the solid blue curve of Fig. 5.5(b). Note that the bistable
DCSs and the HSSs of the FP model are distributed along the line ⟨|ψ|2⟩ = −θeff/2+ θ/2
as shown in Figs. 5.6(b) and 5.6(c) as a pink dotted line, respectively. In agreement with
the linear stability analysis of Section 5.4, we note that there are no oscillations close
to the higher power plateaus and that the oscillations close to the lower power regions
corresponds to wavenumbers k ≈ 2.7±0.1. This is far from the Turing wavenumber of the
HSS, with kH = 5.99, as expected, but reasonably close to the predicted kY = 3.3. The
latter discrepancy is due to the fact that the waveform resulting from the interaction of
the SFs leads to local deformations of the sinusoidal profiles assumed in the perturbations
of Eq. (5.37). From the predicted value of kY = 3.3, we can estimate the size of the two
DCS of Fig. 5.6(d) to be around ∆′ ≈ 5.7 and ∆′ ≈ 7.6, respectively, which is expressed in
the units used in the figure. These estimates compare reasonably well with the measured
values of ∆′ ≈ 6.7 and ∆′ ≈ 8.5.

DCS solutions are much further detuned than the DCSs of an equivalent ring resonator.
To see this, we plot in Fig. 5.8 the locations of DCSs for a given input power S with respect
to the difference in detuning between the FP resonator θ and an equivalent ring resonator
model θeff . The location of a DCS can be approximated using the SF turning point line,
represented as a solid black line in Fig. 5.6(a), whereby selecting a point along this line,
we may obtain an estimate for a DCS of width ∆. In Fig. 5.8, we plot the DCS solutions
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Figure 5.9: (a) Soliton states containing a single soliton, red line, and two solitons simul-
taneously, black line, for S = 2

√
2,θ = 18. (b)-(c) FP solutions plotted over detuning (or

shifted detuning) with respect to their average power. HSS are plotted as blue, (b), green
(c), where the black curves corresponds to the SF turning point, and stable dark solitons
are plotted as red curves of one soliton, solid line, two solitons, dashed line, and three
solitons, dot-dashed line, present in the cavity. The pink dotted line correspond to the
solutions with θ = 18.

of duration ∆ = 0 as a black curve (corresponding to the intersection of the turning
point line and the high power HSS). The dashed black line in Fig. 5.8 shows solutions
in which SFs are stationary with separation ∆ = 0.1, the approximate size of the DCS
of Fig. 5.6(d). These lines were calculated using the numerical fit of the Maxwell point
of the ring resonator model from [117] [Eq. (4.27) of Chapter 4]. We see that as the
input power is increased the shift becomes larger. Furthermore, the range of detunings
where DCS exist is much larger for the FP model when compared to an equivalent ring
resonator system. For example, the longest DCS solution branch for an FP resonator
spans 16.75 < θ < 19.37, see Fig. 5.6(c), whilst DCS in the equivalent ring resonator
system are present only in the range 5.38 < θeff < 6.43, approximately 2.5 times smaller.

We also note that due to the large average power of DCS solutions, there is a much
larger shift in detuning when compared with the bright solitons, which sit upon the low
power HSS. This means the bright cavity soliton stationary states of the anomalous dis-
persion regime, as described in [48], are far more similar to the ring case, occurring within
a similar parameter interval as θ − θeff is smaller, when compared to the DCSs presented
here for the normal dispersion regime.

The average power of the field is also affected by the number of solitons present in the
cavity, such that, the existence and stability of the solitons depend also on the number
of solitons in the cavity. Fig. 5.9(a) shows two bistable solutions for S = 2

√
2, θ = 18
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corresponding to two simultaneous DCSs and a single DCS in the cavity. We see that the
presence of an additional soliton modifies the low power oscillations and the plateau power.
In Figs. 5.9(b) and 5.9(c) we plot the DCS solutions as red curves with one soliton, solid,
two solitons, dashed, and three solitons, dot-dashed, present in the cavity with an identical
number of fast-time oscillations. With each additional soliton in the cavity, the average
power of the field decreases. As such, solution branches containing a large number of
solitons appear at lower values of the detuning. For detuning θ = 18, input field S = 2

√
2

and τR = 100, we find that states of one and two solitons are possible, but that further
perturbations of the system will not allow the formation of additional solitons, leading
instead to the destruction of pre-existing solitons. This is due to the tilting of the collapse
snaking DCS solutions due to the presence of the integral term [47].

5.7 Oscillatory dynamics of dark solitons

We now investigate the dynamics of DCSs above a temporal instability of Eq. (5.22).
For the case of a ring resonator, Hopf bifurcations are shown to introduce dynamical
instabilities of DCS solutions, resulting in local oscillations of the soliton [35]. In what
follows we demonstrate the effects of the nonlocal coupling of Eq. (5.22) on the dynamics
of oscillatory soliton solutions.

In Fig. 5.10(a) we show an example of an oscillatory solution of the FP model, with
input field S = 2

√
2 and detuning θ = 18. We can see that the temporal dynamics of

the system are not confined to the soliton but extends to an oscillation of the background
plateau. As the soliton moves through its limit cycle oscillation, there is a change in the
average power of the field. Hence, due to the nonlocal self-interaction term, regions of the
cavity far from the soliton exhibit oscillatory dynamics with identical period to that of the
soliton. These oscillations are small due to the small change in average power originating
from the oscillation of the soliton. A trace of the minimum power of the oscillating soliton is
plotted in Fig. 5.11(a), showing stable limit cycle oscillations. In Fig. 5.10(b) we introduce
an oscillating dark soliton to an initial stationary solution containing a stable stationary
dark soliton shown in Fig. 5.6(d). The presence of the oscillating soliton induces small
temporal oscillations in the plateau power and tiny oscillations in the peaks of the pre-
existing DCS. The trace of the minimum power is plotted in Fig. 5.11(b) as a black curve for
the oscillating soliton, and a red curve for the stable soliton. We note that the oscillation
period has decreased form that of Fig. 5.10(a). In Fig. 5.10(c), we show the evolution
of two synchronised breathing solitons. Here we see a larger oscillation amplitude of the
plateau power when compared to the single soliton case, due to the larger change in the
average power of the field resulting from the second oscillating soliton. In Fig. 5.11(c), we
plot the trace of the minimum power of the two oscillating solitons, seen in Fig. 5.10(c),
starting from an unsynchronised initial condition. As the system evolves over the slow
time the soliton phases begin to overlap, resulting in full synchronisation. The resulting
dynamics has now experienced a period doubling with respect to the single oscillating
soliton. In Fig. 5.11(d), we plot the evolution of a single soliton with half the cavity
length, τR = 50, of the previous examples. We see that the dynamics of a single soliton
with τR = 50 is identical to the synchronised dynamics of the two solitons with τR = 100
of Fig. 5.10(c) and 5.11(c). In general we find that the dynamics of N well separated
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Figure 5.10: (a) The limit cycle of a single oscillating soliton. (b) The limit cycle of a
single oscillating soliton and a single ‘stationary’ soliton. (c) The limit cycle oscillations of
two synchronised solitons. Each plot is obtained for identical parameters θ = 18, S = 2

√
2.

The upper panels correspond to the power profile at t = 20, and the lower panels display
the slow time evolution.
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Figure 5.11: Oscillating solutions of the FP resonator with (a) one oscillating soliton in
a FP cavity of length τR = 100, (b) one oscillating soliton and one ‘stationary’ soliton
in a FP cavity of length τR = 100, (c) two oscillating solitons in a FP cavity of length
τR = 100, (d) one oscillating soliton in a FP cavity of length τR = 50, Each plot is obtained
for identical parameters θ = 18, S = 2

√
2.

solitons in a cavity of round trip τR synchronises towards the dynamics of a single soliton
in a cavity of round trip τR/N .

We find that well separated solitons, located such that they do not interact through
the local dynamics at the tails, experience oscillation-phase dependent interaction through
the nonlocal coupling. We note that oscillating solitons of the normally dispersive LLE
interact locally through their tails and as such do not exhibit synchronisation when well
separated in a long cavity [35]. In the FP model, the change in average power of the
field during an oscillation of a single oscillating soliton is small, and as such the change
in the power of the background plateau is also small. By increasing the length of the FP
cavity, we can reduce the effects of soliton oscillation on the average power, such that,
we can approach the LLE dynamics of independent solutions. The dynamics of the FP
model is most distinct from the ring resonator LLE when the cavity length is small or the
number of oscillating solitons is large, where long range interactions are strongest, leading
to synchronisation.

5.8 Conclusions

In this chapter, we have presented the dynamics and stationary states of the Fabry-Pérot
cavity in the normal dispersion regime, characterising solutions of; plateaus, switching
fronts and dark cavity solitons. Through the definition of an effective detuning, we demon-
strated analogies and differences of these solutions with the stationary states of the ring
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Figure 5.12: Bistable frequency combs for parameter S = 2
√
2, θ = 18, 2L = 100. These

spectra correspond to the dark solitons shown in Fig. 5.6(d) with lesser (a) and greater
(b) width.

resonator case. This is due to the mathematical equivalence of the stationary states of
the Fabry-Pérot model and a Lugiato-Lefever equation with identical driving field and a
detuning that is shifted by the average power of the intracavity field over a single round
trip.

We began by discussing the physics Fabry-Pérot system, where we give a derivation
of the integro-partial differential equation which governs the dynamics of the intracavity
field. We then characterise the homogeneous solutions, outlining the conditions required
for exponentially localised solutions to exist, such as switching fronts and dark cavity
solitons. A peculiar feature of the Fabry-Pérot resonator is that the homogenous stationary
solutions cannot support localised structures (as they do in the ring resonator model) but
instead, dark cavity solitons and switching fronts hang from plateau solutions, which are
dependent on the average power of the solution over the round trip time of the cavity.
This is due to nonlocal self-interactions, which induce a shift in the detuning proportional
to twice the average power.

Through an investigation of approximate solutions, formed by two homogeneous plateaus
connected by step functions, we identified a region of plateau instability, near the onset of
optical bistability of the homogeneous stationary states. Hence, local solutions are unsta-
ble for such parameter intervals. This instability is a direct consequence of the nonlocal
self-interaction, and has no analogy in the case of purely local coupling.

Linear stability analysis, with respect to fast time inhomogeneous perturbations, is
shown to predict Turing instabilities on the low power plateaus. This was used to char-
acterise the wavenumber of decaying oscillations of switching fronts on approach to the
plateau, where it was found that the wavenumber is much smaller than those correspond-
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ing to Turing instabilities of the homogeneous stationary state. It is this wavenumber that
rules the local oscillations close to the lower plateau when two switching fronts lock to
form a stable dark soliton.

When compared with counterpropagating light in a ring resonator [117], it turns out
that ‘light plateau’ solutions in a Fabry-Pérot cavity with normal dispersion are generally
unstable. This is due to the motion of switching fronts, which move away from light
plateau stationary states due to the divergence of the effective detuning from the Maxwell
point with switch front motion.

The average power of the field, and hence the shift in detuning, is comparatively
large for the dark solitons of the normal dispersion regime, when compared with the
bright solitons of the anomalous dispersion regime. The large shift results in dark soliton
solution branches that are elongated, occupying a larger domain of detuning values than
an equivalent ring resonator configuration, and found in strongly detuned regimes.

Finally, we investigated the effects of nonlocal coupling on dynamics of oscillatory
solitons. We find that nonlocal self-interaction induces temporal oscillations on the ho-
mogeneous background power. In the presence of two oscillating solitons, we observe
oscillation-phase dependent interaction, resulting in modification and synchronisation of
their oscillation periods. In general, it was found that the dynamics of N solitons in a
cavity with round trip time τR, synchronised to the dynamics of a single soliton with cavity
round trip time τR/N . Furthermore, the dynamics of the system approached that of an
equivalent ring resonator in the limits of a long cavity and small soliton number (small
change in average power).

All of the results presented in this chapter were obtained for parameter values that
are realistically feasible in existing experimental realisations [29]. When these systems
operate at normal dispersion, we expect to see the formation of dark solitons steady
states in experimental verifications. The Fabry-Pérot system allows for additional design
consideration of the cavity properties allowing for control over frequency comb generation.
Example frequency combs of the Fabry-Pérot resonator are shown in Fig. 5.12 which
correspond to the dark solitons of Fig. 5.6(d) and show distinct modulations on the combs,
corresponding to the number of low intensity fast time oscillations of the dark soliton [23].
The engineering of frequency combs can be useful in applications in precision spectroscopy,
LIDAR, and channel generation for telecom systems [3].
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6.1 Introduction

In this chapter, we continue our investigation on the formation of temporal cavity soli-
tons within the Fabry-Pérot (FP) resonator, but at a difference to the previous chapter,
we model intracavity fields of orthogonal polarisations. The system under study is out-
lined generally in Sections 5.2 and 5.3, and is composed of highly reflective mirrors which
encloses a Kerr nonlinear medium operating within the regime of normal group velocity
dispersion. Previously we made the assumption that the intracavity field preserved the
polarisation properties of the driving field, taken to be linearly polarised, thus restricting
the intracavity solutions to the linearly polarised case. Here, we relax this assumption by
considering polarisation mode degeneracy of the waveguide and mirrors, such that, the
cavity may support counter-rotating orthogonal polarisation components. By introduc-
ing polarisation considerations to the FP cavity, the now vectorial (two component [37])
temporal cavity solitons display features in addition to those seen for the single field FP
resonator [48, 56] in Chapter 5. This is due to the possibility of spontaneous symmetry
breaking (SSB) between orthogonal polarisation components, where the SSB of light within
the FP resonator has been demonstrated experimentally when neglecting dispersion [68].
More generally, SSB has been demonstrated theoretically and experimentally in Kerr res-
onators (of ring and FP geometry) where the intracavity field is composed of orthogonal
polarised components [66–68,86–91], counterpropagating components [38,92–97,100–102],
a combination of the two [49,103,104], and most recently, between two, or more, coupled
resonators [105–109].

The design considerations required of the waveguide to obtain degenerate orthogo-
nal polarisation modes has been discussed previously in Section 2.2.3, where we outline
the importance of negligible birefringence (which manifests as a linear coupling between
polarisation modes). In our model, we assume that the input field is linearly polarised,
and may be decomposed within the resonator into counter-rotating circular polarisation
components. This introduces additional constraints, as the waveguide cross-section is
required to possess circular symmetry to support degenerate modes of circular polarisa-
tion. Another source of birefringence, particular to the FP resonator, is a consequence
of imperfections on the high reflectivity mirrors, which form the cavity. For example,
the thin-film deposition process commonly used for fibre FP cavities [68] may lead to
stresses or anisotropic structures, causing the coating layers to exhibit different refrac-
tive indices for different polarisation states. In practice, birefringence originating from
mirror imperfections, and geometric asymmetry of the waveguide, are always present and
must be accounted for. SSB between counter-rotating fields in a FP resonator has been
demonstrated experimentally in [68], where SSB was shown to occur if the linear reso-
nance splitting due to birefringence was below 5% of the cavity linewidth. We assume
in this chapter that the Kerr effect is dominant over the linear coupling of birefringent
interaction, and the latter can therefore be neglected.

We begin this chapter by deriving our model for the FP resonator (Section 6.2), pre-
senting an intracavity field composed of two forward and two backward counterpropagating
fields of orthogonal counter-rotating polarisations [49]. Our model takes inspiration from
the methods of Cole et al. [48], where we combine forward and backward propagating field
equations of common polarisation to obtain a pair of mean field integro-partial differen-
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tial equations, describing fields of counter-rotating circular polarisation over the round
trip of the cavity. Here, the interaction between counterpropagating and counter-rotating
field components is assumed to be dominated by the Kerr effect and modelled following
from Pitois el al. [55]. In Section 6.3 we present the homogeneous stationary states (HSS)
of this system, where we note a mathematical equivalence with the HSSs of the ring res-
onator (seen in Chapter 3 and Chapter 4). Nonetheless, the FP resonator presents distinct
features, where in particular, our linear stability analysis predicts a codimension-2 SSB
bifurcation of the high power bistable HSS. This bifurcation represents a collision between
two SSB bifurcations; a reverse supercritical pitchfork bifurcation resulting in symmetry
broken HSSs, and a forward supercritical pitchfork bifurcation resulting in the formation of
Turing patterns of alternating polarisation components, found innately in the normal dis-
persion regime. This bifurcation structure is found to extend to symmetric vectorial dark
solitons (VDS) in Section 6.4, resulting in a multitude of different symmetry broken VDS
stationary states. Of particular interest is the Turing instability resulting in the formation
of patterns of alternating polarisation on the homogeneous background power (plateau)
from which the VDS hangs. This SSB phenomenon has been previously demonstrated in
the ring resonator (Chapter 3), and was shown to introduce long range interactions between
adjacent VDSs. These long range interactions induce a spontaneous self-organisation of
VDSs, which move from a random distribution over the round trip, to a regular soliton
crystal (RSC) composed of equidistant VDSs over the round trip. In Sections 6.5 and 6.6,
we generalise this ‘self-crystallisation’ phenomenon to the FP resonator and discuss the
differences between ring and FP configurations. Finally, we characterise the formation
of dark-bright vectorial solitons in Section 6.7. Example dark-bright vectorial solitons
are obtained with field components of identical normal group velocity dispersion, and are
shown to undergo a Hopf bifurcation, resulting in non trivial breathing dynamics.

6.2 Modelling the Fabry-Pérot resonator with polarisation
consideration

6.2.1 Derivation of the Fabry-Pérot model with vectorial electric field

Here, we present the derivation of our model for the polarisation degenerate FP resonator,
as first communicated in [49] (and previously for the single field case in [48]). This deriva-
tion takes inspiration from the linearly polarised case [56], where we generalise the single
field FP model by resolving the linearly polarised forward and backward propagating
fields within the cavity into counter-rotating circularly polarised field components. We
then combine the forward F± and backward B± counterpropagating fields of common po-
larisation ‘+’ or ‘−’, such that, the system of four fields and four equations is reduced to
two coupled generalised Lugiato-Lefever equations (LLE), describing the evolution of two
fields ψ± over the full round trip of the resonator, as seen in Fig. 6.1.

The total electric field within the cavity can be expressed in terms of linear polarisation
components,

E(τ, t) ∝ x̂Ex(τ, t) + ŷEy(τ, t) (6.1)
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Figure 6.1: (a) A Fabry-Pérot resonator composed of two highly reflective mirrors filled
with a Kerr, χ(3), nonlinear medium. A linearly polarised input field is coupled into the
resonator, where the forward, F±(τ, t), and backward, B±(τ, t), counterpropagating fields
defined on the domain 0 ≤ τ ≤ τR/2 are resolved into counter-rotating circular polarisation
components ‘+’, ‘−’. (b) An example vectorial dark soliton solution is presented in terms
of the field envelopes ψ±(τ, t), defined over the extended domain −τR/2 ≤ τ ≤ τR/2,
where τR is the cavity round trip time.
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where
Ex(τ, t) = Ex(τ, t) + c.c., Ey(τ, t) = Ey(τ, t) + c.c.. (6.2)

Here, Ex(τ, t) and Ey(τ, t) are the slowly varying envelopes of the electric field polarised
along the x and y orthogonal directions, respectively. As has be shown by Pitois et al. [55],
the interaction of two electric fields counterpropagating in a isomorphic dielectric medium
with Kerr nonlinearity can be described by the third order nonlinear atomic polarisation
along x̂ and ŷ orthogonal directions, with,

Px,y = (χxxyy + χxyxy + χxxyy)|Ex,y|2Ex,y

+ (χxyxy + χxyyx)|Ey,x|2Ex,y + χxyyxE
2
y,xE

∗
x,y. (6.3)

In the case of silica fibres, components of the third order nonlinear susceptibility χijkl are
related as χxxyy = χxyxy = χxyyx = χxxxx/3, such that, Eq. (6.3) reduces to

Px,y = χxxxx(|Ex,y|2Ex,y +
2

3
|Ey,x|2Ex,y +

1

3
E2

y,xE
∗
x,y). (6.4)

Within the FP cavity, fields of orthogonal polarisation contain forward and backward
propagating components, such that, we may write the electric field envelope as,

Ex,y(τ, t) = Fx,y(τ, t)e
ikτ +Bx,y(τ, t)e

−ikτ , (6.5)

where Fx,y(τ, t) and Bx,y(τ, t) are slowly varying amplitudes of the forward and backward
counterpropagating fields polarised along the x and y directions and k is a propagation
constant. By performing the transformation

F±(τ, t) =
1√
2
[Fx(τ, t)± iFy(τ, t)], B±(τ, t) =

1√
2
[Bx(τ, t)± iBy(τ, t)], (6.6)

we may express the forward and backward field envelopes as counter-rotating circularly
polarised fields. Inserting Eqs. (6.6) into the nonlinear atomic polarisation (6.4), the
interaction of the four fields within the cavity F+, F−, B+, B− due to the Kerr effect may
be quantified with the nonlinear atomic polarisation,

P± = χxxxx
2

3

{
|F±|2F± + 2|B±|2F± + 2|F∓|2F± + 2|B∓|2F± + 2B±B

∗
∓F∓

}
eikτ (6.7a)

+
2

3

{
|B±|2B± + 2|F±|2B± + 2|B∓|2B± + 2|F∓|2B± + 2F±F

∗
∓B∓

}
e−ikτ (6.7b)

+ (third harmonic terms).

Eq. (6.7) suggests a nonreciprocal Kerr response with respect to fields of different propa-
gation direction [∝ exp(±ikτ)] and polarisations (‘±’), which may be separated into four
expressions. We obtain the governing coupled equations through the identical procedure
performed many times in thesis, whereby the nonlinear atomic polarisation is inserted
into Maxwell’s equations, where under the assumption that the spectrum of E(τ, t) is
sufficiently narrow so we may neglect dispersive changes in the transverse components of
the electric field. Terms proportional to exp(ikτ) and exp(−ikτ) may be separated into
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distinct equations as per the rotating wave approximation, and again split into equations
of counter-rotating polarisations, such that, incorporating the effects of the pump, losses,
dispersion, and detuning, we arrive at

∂tF+ + ∂τF+ = S − (1 + iθ)F+ − i∂2τF+ (6.8a)

+ i
2

3

{
|F+|2F+ + 2|B+|2F+ + 2|F−|2F+ + 2|B−|2F+ + 2B+B

∗
−F−

}
,

∂tB+ − ∂τB+ = S − (1 + iθ)B+ − i∂2τB+ (6.8b)

+ i
2

3

{
|B+|2B+ + 2|F+|2B+ + 2|B−|2B+ + 2|F−|2B+ + 2F+F

∗
−B−

}
,

∂tF− + ∂τF− = S − i(1 + iθ)F− − i∂2τF− (6.8c)

+ i
2

3

{
|F−|2F− + 2|B−|2F− + 2|F+|2F− + 2|B+|2F− + 2B−B

∗
+F+

}
,

∂tB− − ∂τB− = S − (1 + iθ)B− − i∂2τB− (6.8d)

+ i
2

3

{
|B−|2B− + 2|F−|2B− + 2|B+|2B− + 2|F+|2B− + 2F−F

∗
+B+

}
,

These four equation are of the form of coupled generalised LLE’s (normalisation given in
Section 2.6), which describe field components which propagate forward, F , and backward,
B, in the cavity with right handed, ‘+’, and left handed, ‘−’ circular polarisations within
the usual slowly varying field amplitude approximation. The resonator is driven by a single
linearly polarised input field assumed to be polarised along the x direction as S =

√
2Sx̂,

with detuning to the nearest cavity resonance θ. As usual, t is the ‘slow time’ temporal
variable describing the evolution over many round trips of the cavity, while τ is the ‘fast
time’ longitudinal variable describing the evolution of the four fields over a single round
trip of the cavity. Eqs. (6.8) obey the boundary conditions

F±(0, t) = B±(0, t), F±(τR/2, t) = B±(τR/2, t), (6.9)

upon reflection at the mirrors, located at τ = 0 and τR/2, where τR is the cavity round
trip time. These fields are defined in the interval between the mirrors (0 ≤ τ ≤ τR/2).
In Eqs. (6.8), the nonlinear interaction terms are enclosed in curly brackets. The first
nonlinear term of each equation corresponds to self-phase modulation. The second, third
and fourth terms correspond to cross-phase modulation between each of the four fields,
respectively. The final term of each equation corresponds to an exchange of energy between
fields that are counter-rotating and counterpropagating. This term describes a four wave
mixing phenomenon whose effect appear explicitly in the presence of four field interactions
between counterpropagating and orthogonally polarised fields.

As with the single field FP cavity, it is not possible for us to perform the typical
transformation into a moving frame of reference to eliminate terms which evolve on the
scale of the group velocity (∂τF± and ∂τB±), as done for the ring resonator. This is due to
the existence of two distinct retarded times, between the forward propagation [Eqs. (6.8a)
and (6.8c)] and the backwards propagation [Eqs. (6.8b) and (6.8d)] of equations the FP
cavity.

We now aim to coalesce equations of forward and backward propagating fields of com-
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mon polarisation, following the procedure of [48]. This begins by introducing appropriate
model expansions for the four intracavity fields, with [33]

F±(τ, t) =
∞∑

µ=−∞
f̄±µ (t)eiµατ , B±(τ, t) =

∞∑
µ=−∞

f̄±µ (t)e−iµατ , (6.10)

where α = 2π/τR is the free spectral range of the cavity with round trip time τR and
f̄±µ (t) is the modal amplitude of mode number µ. The expansions (6.10) suggest that the
envelopes F±(τ, t), B±(τ, t) may now be defined over an extended interval encompassing
the full round trip of the cavity −τR/2 ≤ τ ≤ τR/2. This amounts to defining the the field
variables as

F±(τ, t) = F±(−τ, t), B±(τ, t) = B±(−τ, t), (6.11)

over the extended interval. Comparing our original boundary conditions (6.9) with (6.11),
we see that the field variables obey periodic boundary conditions over this extended do-
main. Due to the periodic boundary, it is now possible to express the dynamics of this
system in terms of travelling waves (similar to the ring resonator system) as opposed to
the standing waves characteristic of the FP resonator. We note thay the modal amplitudes
can be obtained through the field amplitudes as,

f̄±µ (t) =

∫ τR/2

−τR/2
dτeiµατF±(τ, t) =

∫ τR/2

−τR/2
dτe−iµατB±(τ, t). (6.12)

Focusing on Eq. (6.8a) for now, we insert modal expansions (6.10) into Eq. (6.8a) to
obtain the modal of equation,

∂tf̄
+
µ = Sδµ,0 − iµαf̄+µ − (1 + iθ)f̄+µ + i(µα)2f̄+µ

+
2i

3

∑
µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′

{
f̄+µ′ f̄

+
µ′′(f̄

+
µ′′′)

∗ + 2f̄+µ′ f̄
+
µ′′′(f̄

+
µ′′)

∗

+ 2f̄+µ′ f̄
−
µ′′(f̄

−
µ′′′)

∗ + 2f̄−µ′ f̄
+
µ′′′(f̄

−
µ′′)

∗

+ 2f̄+µ′′′(f̄
−
µ′′)

∗f̄−µ′

}
, (6.13)

were we have implemented the four wave momentum matching condition µ+µ′′′ = µ′+µ′′

through the Kronecker delta δi,j , which takes the values 1 when i = j and 0 otherwise. In
addition, the continuous wave driving field corresponds to µ = 0, and is notated as Sδµ,0.
We proceed from here by splitting the mode amplitudes into two functions that evolve on
distinct time scales

f̄±µ (t) = f±µ (t)e−iµαt (6.14)
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such that the set of modal equations (6.13) become

∂tf
+
µ = Sδµ,0 − (1 + iθ)f+µ + i(µα)2f+µ

+
2i

3

∑
µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′

{
f+µ′f

+
µ′′(f

+
µ′′′)

∗ + 2f+µ′f
+
µ′′′(f

+
µ′′)

∗ei2α(µ−µ′)t

+ 2f+µ′f
−
µ′′(f

−
µ′′′)

∗ + 2f−µ′f
+
µ′′′(f

−
µ′′)

∗ei2α(µ−µ′)t

+ 2f+µ′′′(f
−
µ′′)

∗f−µ′e
i2α(µ−µ′)t

}
. (6.15)

The exponential function exp(−iµαt), resulting from decomposition of the modal ampli-
tude (6.14), displays rapid dynamics varying on a timescale of the cavity repetition rate
α = 2π/τR. Conversely, the modal amplitudes fµ(t) evolve on the timescale of the photon
lifetime of the cavity κ−1 = τR/T . For the high fineness cavities we consider here, the
power transmission coefficient is small T ≪ 1, and as such, these functions vary on well
separated timescales. In Eqs. (6.15), we can see that rapid dynamics at the timescale
of the free spectral range are prolific, originating from exponential functions which ap-
pear only in terms of cross-phase modulation. In particular, these dynamical terms are
a consequence of the interaction of counterpropagating fields, and appear in the relevant
cross-phase interactions.

For our purposes, we consider dynamics on the time scale of second order (or higher)
dispersion. Should we perform an averaging of Eqs. (6.15) on a timescale that is much
longer than the round trip time but shorter than the cavity photon lifetime, we find that all
terms remain unchanged with the exception of those proportional to the exponential terms
exp[i2α(µ − µ′)t]. Exponential terms satisfying µ ̸= µ′ vanish under the average. Hence,
to characterise the dynamics on the timescale of the dispersive effect, we retain only expo-
nential terms which satisfy µ = µ′ (and equally µ′′ = µ′′′ due to the momentum matching
condition). This condition can be understood as removing terms which do not conserve
energy, and are appropriately discarded [45, 46, 48, 49]. Under these considerations, Eqs.
(6.15) reduce to

∂tf
+
µ = Sδµ,0 − (1 + iθ)f+µ + i(µα)2f+µ

+
2i

3

∑
µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′f+µ′f
+
µ′′(f

+
µ′′′)

∗ +
4i

3
f+µ
∑
µ′

(f+µ′)
∗f+µ′

+
4i

3

∑
µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′f+µ′f
−
µ′′(f

−
µ′′′)

∗ +
4i

3
f+µ
∑
µ′

f−µ′(f
−
µ′)

∗

+
4i

3
f−µ
∑
µ′

(f−µ′)
∗f+µ′ . (6.16)

Finally, we define the new field variables

ψ±(τ, t) =
∞∑

µ=−∞
f±µ (t)eiµατ , (6.17)
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such that we may collapse the modal equations (6.16) into

∂tψ+ = S−(1 + iθ)ψ+ − i∂2τψ+

+i
2

3

{
|ψ+|2ψ+ + 2ψ+

1

τR

∫ τR/2

−τR/2
|ψ+|2dτ

+ 2|ψ−|2ψ+ + 2ψ+
1

τR

∫ τR/2

−τR/2
|ψ−|2dτ

+ 2ψ−
1

τR

∫ τR/2

−τR/2
ψ+ψ

∗
−dτ

}
, (6.18)

where the integral terms follow form Parseval’s theorem

∞∑
µ′=∞

faµ′(f bµ′)∗ =
1

τR

∫ τR/2

−τR/2
dτψaψ

∗
b , (6.19)

where a, b correspond to either ‘+’ or ‘−’ polarisation. An identical result is obtained when
staring from Eq. (6.8b), whereby Eqs. (6.8a) and (6.8b) are now described by a single
integro-partial differential equation (6.18). By following the same steps, but starting
from Eqs. (6.8c) or (6.8d), we obtain identical equation to (6.18) with an exchange of
the polarisation labels + ↔ −. Hence our model of the FP resonator with orthogonal
polarisation field components is

∂tψ± = S − (1 + iθ)ψ± − i∂2τψ± (6.20)

+ i
2

3

{
|ψ±|2ψ± + 2|ψ∓|2ψ± + 2⟨|ψ±|2⟩ψ± + 2⟨|ψ∓|2⟩ψ± + 2⟨ψ±ψ

∗
∓⟩ψ∓

}
.

As we first derived in [49], this system is described by two coupled integro-partial differ-
ential equations, which can be understood as two coupled generalised LLEs [24]. They
describe the evolution of fields ψ±(τ, t) of slowly varying amplitudes and orthogonal polar-
isation over the extended domain −τR/2 ≤ τ ≤ τR/2 with periodic boundary conditions,
where τR is the resonator round trip. The terms of Eqs. (6.20) enclosed in angled brackets
represent integrals in fast time over a single round trip of the cavity

⟨|ψ±|2⟩ =
1

τR

∫ τR/2

−τR/2
|ψ±|2dτ, (6.21)

⟨ψ±ψ
∗
∓⟩ =

1

τR

∫ τR/2

−τR/2
ψ±ψ

∗
∓dτ. (6.22)

Integral terms arise due to counterpropagation of intracavity fields innately present in
the FP configuration and are the result of rapid phase dynamics of cross-coupling terms
between counterpropagating fields, such that they see each other through an average. The
integral of Eq. (6.21) corresponds to the average intracavity power of the field over a round
trip of the cavity. Nonlocal coupling of this kind is also present in bidirectionally pumped
ring resonators [45, 46, 117], (Chapter 4), as well as the single field FP [48, 56] (Chapter
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5). Of particular importance here is the term given in (6.22), which is not explicitly
present in the aforementioned systems. This term corresponds to an energy exchange
between circular components of the fields and is only present for four field interactions of
orthogonal polarisations and counterpropagation [55].

The fields ψ±(τ, t) are related to the four slowly varying intracavity field envelopes of
forward propagation F±(τ, t) and backward propagation B±(τ, t) via the modal expansions

F±(τ, t) =
+∞∑

µ=−∞
f±µ (t)e−iµα(t−τ), (6.23)

B±(τ, t) =
+∞∑

µ=−∞
f±µ (t)e−iµα(t+τ), (6.24)

which defined over the domain over the domain 0 ≤ τ ≤ τR, where the modal coefficients
are evaluated as

f±µ (t) =
1

τR

∫ τR/2

−τR/2
dτe−iµατψ±(τ, t). (6.25)

6.2.2 Equation of the Fabry-Pérot with a single field component

Eqs. (6.20) of the FP are invariant under the exchange of the indices + and −, representing
a fundamental symmetry of the system. Setting ψ+ = ψ− = ψ, the coupled Eqs. (6.20)
reduce to the single equation,

∂tψ = S − (1 + iθ)ψ + 2i(|ψ|2 + 2⟨|ψ|2⟩)ψ − ∂2τψ. (6.26)

Performing the renormalisations; ψ → ψ/
√
2, S → S/

√
2, we obtain the equation of the

FP resonator with a single linearly polarised intracavity field, Eq. (5.22), discussed in
Chapter 5. As a consequence, the symmetric stationary solutions of Eqs. (6.20) are also
stationary solutions Eq. (5.22), up to a renormalisation, and have been described at length
the previous chapter. This similarity does not necessarily extend to the stability of such
solutions, with the possibility of spontaneous symmetry breaking of the now vectorial dark
solitons, which we will discuss in the following sections.

6.3 Homogeneous stationary states

The HSSs of the polarisation degenerate FP cavity can be obtained from Eqs. (6.20) by
setting all derivatives to zero (∂tψ± = 0, ∂2τψ± = 0). This results in the coupled equations

S2 = 4H3
± − 4(θ − 4H∓)H

2
± + ((θ − 4H∓)

2 + 1)H±, (6.27)
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where H± = |ψ±|2, and the real and imaginary parts of the HSSs are(
U0,±
V0,±

)
=

(
S

1+(2H±+4H∓−θ)2

(2H±+4H∓−θ)S
1+(2H±+4H∓−θ)2

)
. (6.28)

These solutions are obtained by recognising that the integral terms can be trivially evalu-
ated as ⟨|ψ±|2⟩ = |ψ±|2, ⟨ψ±ψ

∗
∓⟩ = ψ±ψ

∗
∓ for solutions with flat profile. Eqs. (6.27) admit

solutions that are either linearly polarised (symmetric H+ = H−) or not linearly polarised
(symmetry broken H+ ̸= H−), and allow for the SSB of light within the FP resonator.
This has been demonstrated experimentally within a FP cavity when neglecting fast time
effects [68], where within this regime, the set of equations (6.27) are mathematically equiv-
alent to those discussed in Chapter 3 for the ring resonator with two orthogonal polari-
sation field components [38, 66], or two counterpropagating intracavity fields [38, 96, 117]
discussed in Chapter 4, under the renormalisation H± → H±/2, S

2 → S2/2. Despite the
apparent universality of HSSs between ring and FP resonators, this analogy does not nec-
essarily extend to the stability of these stationary solutions. In the following sections, we
characterise the stability of the HSSs, outlining the different aspects of the SSB bifurca-
tion structure of the HSSs when compared to the ring resonator, with particular focus on
the formation of Turing patterns phenomenologically similar to those described for ring
resonators in Chapter 3.

6.3.1 Linear stability of the homogeneous stationary states

To investigate the linear stability of the HSSs, we perform a linearisation of the modal
amplitudes, whose evolution is governed by the modal equations (6.16), which rewrite here
to include both polarisation equations,

∂tf
±
µ = Sδµ,0 − (1 + iθ)f±µ + ik2µf

±
µ

+
2i

3

∑
µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′f±µ′f
±
µ′′(f

±
µ′′′)

∗ +
4i

3
f±µ
∑
µ′

(f±µ′)
∗f±µ′

+
4i

3

∑
µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′f±µ′f
∓
µ′′(f

∓
µ′′′)

∗ +
4i

3
f±µ
∑
µ′

f∓µ′(f
∓
µ′)

∗

+
4i

3
f∓µ
∑
µ′

(f∓µ′)
∗f±µ′ , (6.29)

where fµ(t) is the modal amplitude with cavity mode number µ and fast time wavenumber
k2µ = (2πµ/τR)

2. The HSSs of Eqs. (6.20) correspond to the modal coefficients

f±µ,s = ψ±
s δµ,0 (6.30)

where δµ,0 is the Kronecker delta. We introduce a linear perturbation to the the counter-
rotating polarisation components of the form

f±µ = ψ±
s δµ,0 + δf±µ , (6.31)
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which is inserted into Eqs. (6.29), yielding the linearised set of equations

∂tδf
±
µ = −(1 + iθ)δf±µ + ik2µδf

±
µ (6.32)

+
2i

3
{(4|ψ±

s |2 + 4|ψ∓
s |2)δf±µ + 4ψ±

s (ψ
∓
s )

∗δf∓µ + (ψ±
s )

2(δf±−µ)
∗ + 2ψ±

s ψ
∓
s (δf

∓
−µ)

∗}

+
4i

3
δµ,0{(|ψ±

s |2 + |ψ∓
s |2)δf±0 + ψ±

s (ψ
∓
s )

∗δf∓0 + (ψ±
s )

2(δf±0 )∗ + 2ψ±
s ψ

∓
s (δf

∓
0 )∗}.

Without the loss of generality, we may assume that the homogeneous stationary solutions
are real. Hence we may express the real and imaginary components of the perturbations
as 

∂tRe(δf
+
µ )

∂t Im(δf+µ )

∂tRe(δf
−
µ )

∂t Im(δf−µ )

 =


−1 −A+ 0 −1

6(1− δµ,0)C
B+ −1 1

2C 0
0 −1

6(1− δµ,0)C −1 −A−
1
2C 0 B− −1



Re(δf+µ )

Im(δf+µ )

Re(δf−µ )

Im(δf−µ )

 , (6.33)

where

A± = −θ + k2µ + 2ψ2
± +

4

3
(2 + δµ,0)ψ

2
∓, (6.34)

B± = −θ + k2µ +
2

3
(5 + 4δµ,0)ψ

2
± +

4

3
(2 + δµ,0)ψ

2
∓, (6.35)

C2 = 64(1 + 3δµ,0)ψ
2
+ψ

2
−. (6.36)

The Jacobian matrix of Eq. (6.33) yields the characteristic equation,

0 = (λ+ 1)4 +

[
A+B+ +A−B− +

1

6
(1− δµ,0)C

2

]
(λ+ 1)2

+A+A−B+B− − 1

4
A+A−C

2 − 1

36
(1− δµ,0)C

2

[
B+B− +

1

4
C2

]
, (6.37)

wherefrom, we obtain the the eigenvalues [49]

λ(kµ) = −1±

√
−A+B+ −A−B− − 1

6(1− δµ,0)C2 ±Q
√
2

, (6.38)

with

Q =

√
(A+B+ −A−B−)2 +A+A−C2 + (1− δµ,0)

C2

9
(3A+B+ +B+B− + 3A−B−).

(6.39)

Due to the presence of the Kronecker delta δµ,0 in the eigenspectrum (6.38), it is apparent
that we must consider separately the cases of µ = 0 and µ ̸= 0. These two outcomes refer
to the scenario in which the perturbation evolving in slow time has a flat profile, µ = 0,
or exhibits a sinusoidal fast time component µ ̸= 0, and are made notably distinct from
each other due to the inherent counterpropagation of fields within the FP resonator. This
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distinction is made most clear when expressed in terms of the field envelopes, where, these
two cases refer to whether or not the the perturbation |ϵ| ≪ 1 of wavenumber kµ survives
under the integral terms, with

⟨(ψa
s + ϵ

a)(ψb
s+ ϵ

b)∗⟩ ∼

{
(ψa

s + ϵa)(ψb
s + ϵb)∗, if ϵ ∝ exp[λ(k0 = 0)t], (µ = 0),

ψa
s (ψ

b
s)

∗, if ϵ ∝ exp[λ(kµ)t+ ikµτ ], (µ ̸= 0).
(6.40)

where we indicate polarisations with a, b = ±. A perturbation will not survive the averag-
ing imposed by the integral terms (originating from counterpropagation) should it contain
a sinusoidal fast time component, and hence, integral terms will not contribute to the
dynamics of the linear perturbation.

In Fig. 6.2(a), we plot example HSSs of Eqs. (6.27) for S = 1.2425, and their corre-
sponding eigenvalues in Fig. 6.2(b)-(c). The eigenvalues of Eq. (6.38) are evaluated for
µ = 0 (k20 = 0) and k2µ = 4.83, respectively. Here, we have selected the value of k2µ to be
the first wavenumber with unstable eigenvalue, where at least one eigenvalue (6.38) has
positive real part, on the high power symmetric HSS when increasing the detuning. This
yields a total of eight eigenvalues, whose real and imaginary parts are plotted in Figs.
6.2(b)-(c), respectively.

When µ = 0, Eq. (6.38) reduces to eigenvalues which, under the appropriate renormal-
isation, are mathematically identical to those seen when neglecting fast time effects in the
ring resonator system with two orthogonally polarised field components (Chapter 3), or
two counterpropagating field components (Chapter 4) [38], and are discussed in detail for
the polarisation degenerate FP in [68] when neglecting dispersion. As such, eigenvalues
(6.38) predict the typical stability when µ = 0, where the middle branch of the tilted
Lorentzian curve (symmetric HSSs) is unstable, while the lower branch is stable, and the
high power HSS is unstable between the SSB pitchfork bifurcations located at

HSSB =
1

6
(2θ ±

√
θ2 − 3), (6.41)

within which, symmetric HSSs move towards symmetry broken HSSs, where the bifurca-
tions (6.41) mark the beginning and the end of the symmetry broken HSS ‘bubble’. We
also see a region of Hopf instability (5.15 < θ < 7.32), for which the symmetry broken
HSSs are unstable to slow time oscillation. This phenomenon has seen much investigation
within the literature for ring resonator systems (possessing mathematically equivalent HSS
and eigenvalues), where further details are outlined in [38].

When µ ̸= 0, the eigenvalues indicate the growth/decay in slow time of perturbations
that are sinusoidal in the fast time with wavenumber kµ. Most notability, these eigenvalues
indicate the appearance of an instability on the high power HSSs, near the peak of the
Lorentzian curve in Fig. 6.2. As we will discuss in the following sections, this instability
may be utilised to predict the onset of SSB Turing patterns of alternating polarisations.

6.3.2 Spontaneous symmetry breaking codimension-2 bifurcation

Here, we restrict our attention to the SSB phenomenon of the high power HSS, where,
the SSB bifurcations of the high power symmetric HSS are shown in Figs. 6.3(a)-(c)
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Figure 6.2: (a) HSSs of Eqs. (6.27) with the corresponding real (b) and imaginary (c)
parts of the linear stability eigenvalues (6.38), where S = 1.2425. Eigenvalues (6.38) are
evaluated for k20 = 0 and k2µ = 4.83, yielding a total of 8 eigenvalues, and plotted above the
axes of symmetry Re(λ) = −1, Im(λ) = 0. Black, blue, and green curves correspond to
the high, middle, and low power symmetric HSSs, respectively. The red curve corresponds
to the symmetry broken HSSs. The zoomed in window in (b) shows the codimension-2
bifurcation point (S, θ)codim−2 ≈ (1.2425, 8.827) on the high power HSS (black curves)
where the real part of the relevant µ = 0 and a µ ̸= 0 eigenvalues are simultaneously zero,
which is indicated with a black diamond.
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for different values of the input field S. In each of these cases, the HSSs [Eqs. (6.27)]
are plotted near the peak of the symmetric Lorentzian curve, where the high power HSS
branch is shown as a black curve, and the symmetry broken HSS as the red curves. We
indicate the stability of the HSSs using the linear stability eigenvalues of the previous
section, Eq. (6.38), and indicate regions of stable and unstable HSSs by solid and dashed
lines, respectively.

Fig. 6.3(a) depicts a region of stable symmetric HSSs (solid black line) flanked by
two oppositely oriented supercritical pitchfork bifurcations, both of which result in the
SSB of the symmetric HSS. For lower values of the detuning, we see a reverse pitchfork
bifurcation in which the high power symmetric HSS become unstable to symmetry broken
HSSs (red curve). This is predicted by the linear stability analysis (µ = 0), where the
higher power symmetric HSS is unstable between to two SSB pitchfork bifurcations (6.41),
as discussed previously. Of particular interest is the appearance of a bifurcation of the
symmetric HSS distinctly associated with the normal dispersion regime. This bifurcation
occurs when increasing the detuning, where the symmetric HSS suddenly becomes unsta-
ble to perturbations of nonzero wavenumber (µ ̸= 0). This results in the formation of a
Turing pattern stationary state composed of alternating field components of orthogonal
polarisation, an example of which can be seen in Fig. 6.4(ii). The maximum and mini-
mum power of the resulting Turing pattern stationary state is shown in Fig. 6.3(a) as the
blue curve. This instability originates with the self- and cross-phase modulation terms of
Eqs. (6.20) that are local in fast time, where generally SSB also requires a nonreciprocal
Kerr response between orthogonal polarisation components. Previously, we charactered a
Turing pattern instability found between orthogonal polarisation components within the
unidirectionally driven ring resonator, in Chapter 3 (Section 3.3.2). The Turing instability
of the FP cavity is analogous to the ring resonator case, where both system possess anal-
ogous mechanisms (nonreciprocal and local Kerr interaction between field components)
allowing for the formation of symmetry broken Turing patterns in the normal dispersion
regime. Despite the mathematically equivalent HSSs, this instability is not observed be-
tween the counterpropagating fields of the bidirectionally driven ring resonator (Chapter
4) due to nonlocal cross-interaction, and consequently, a lack of local cross-interaction,
originating form the counterpropagation of the fields.

We note that the Turing patterns observed here are of travelling wave character. This
is distinct form typical standing wave Turing patterns of the FP cavity, due to phase
sensitive interactions between forward and backward propagating fields. The travelling
wave formalism of the dynamical variables implemented in this chapter allow us to describe
Turing patterns (and temporal cavity solitons) of the FP resonator that are phenomenology
similar to the temporal structures of the ring resonator. In addition, only symmetry
broken perturbations will result in a Turing pattern instability. This is due to the distinct
stability of the single field FP cavity, which do not present Turing instabilities for H > 1.
Hence, symmetric perturbations of nonzero wavenumber return to the symmetric HSS,
with stability indicted in Appendix B.1.

By increasing the power of the driving field, we observe a decrease in the separation
between the two oppositely oriented pitchfork bifurcations until they collide. For this
critical parameter value, of input field S ≈ 1.2425 and detuning θ ≈ 8.827, the appearance
of the Turing instability (µ ̸= 0) perfectly coincides with the reverse pitchfork SSB bifur-
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Figure 6.3: Spontaneous symmetry bifurcations of the HSSs (a)-(c) and vectorial dark
solitons (d)-(f) for τR = 500. Black curves correspond to the high power symmetric HSS
(a)-(c) or high power plateau (d)-(f). Red curves correspond to the power of symmetry
broken HSSs (a)-(c) or symmetry broken plateaus (d)-(f). Blue, green and orange curves
correspond to the maximum/minimum power of Turing patterns of alternating orthogonal
polarisations which bifurcated from the HSSs (a)-(c) or plateaus (d)-(f). (b) and (e) shows
a codimension-2 bifurcation at θ ≈ 8.827 and θ ≈ 8.779, respectively. (a) and (d) show
the bifurcation structure for a driving power less than the codimension-2 value, S = 1.24,
whereas, (c) and (f) show the bifurcation structure for driving power greater than the
codimension-2 value, S = 1.25. Example solutions (i)-(vi) are plotted in Fig. 6.4.
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Figure 6.4: Example symmetry broken Turing patterns (i)-(ii) and vectorial dark solitons
(iii)-(vi) for τR = 500. (i) Turing pattern with unequal amplitudes (S, θ) = (1.25, 8.85). (ii)
Turing pattern with equal amplitudes (S, θ) = (1.25, 8.9). (iii) Symmetry broken vectorial
dark soliton with split plateaus of flat profile (S, θ) = (1.24, 8.63). (iv) Symmetric vectorial
dark soliton with plateau of flat profile (S, θ) = (1.24, 8.75). (v) Symmetry broken vectorial
dark soliton with symmetry broken Turing patterns on the plateau (S, θ) = (1.24, 8.9). (vi)
Symmetry broken vectorial dark soliton with plateaus of split power and Turing pattern
modulation (S, θ) = (1.25, 8.79).

138



Chapter 6. Spontaneous Symmetry Breaking in Fabry-Pérot Resonators

cation (µ = 0) of the symmetry broken HSSs, as can be seen in Fig. 6.3(b). This point is
shown as a diamond in Fig. 6.2(b) where it can be seen that the real part of the relevant
Re[λ(k0 = 0)] eigenvalue transitions from positive (unstable) to negative (stable), and the
relevant Re[λ(kµ ̸= 0)] eigenvalue transitions from negative (stable) to positive (unsta-
ble), simultaneously, as the detuning is increased. This is an example of a codimension-2
bifurcation point, where in our case, both bifurcations correspond to a SSB event of the
symmetric HSS.

Although there exists a mathematical equivalence between the symmetric and symme-
try broken HSSs of the ring and FP resonators, the ring resonator system does not present
a codimension-2 bifurcation. This is attributed to the integral term, which introduce a
large divergence in eigenspectrum between ring and FP models for perturbations with
µ ̸= 0, despite the mathematically equivalent eigenspectrum when µ = 0.

When further increasing the input field to S = 1.25, we see that the two bifurcations
have a cross over, introducing a region of symmetry broken HSSs that are unstable to the
formation of Turing patterns, as can be seen in Fig. 6.3(c). This results in a small interval
of detuning in which the Turing pattern of one field is dominant (orange curve) while the
other one is suppressed (green curve), an example of which can be seen in Fig. 6.4(i).

6.4 Spontaneous symmetry breaking of vectorial dark soli-
tons

6.4.1 Codimention-2 bifurcation of vectorial dark solitons

Here, we investigate the SSB of symmetric (ψ+ = ψ− = ψ) vectorial dark solitons (VDS)
within the FP cavity. As discussed earlier in Section 6.2.2, at symmetry, Eqs. (6.20) reduce
to the single field FP model under the appropriate renormalisation [48, 56]. As a result,
the symmetric stationary solutions of Eqs. (6.20) are equivalent to the stationary solutions
of the FP with a single field component, and are discussed at length in Chapter 5. In the
numerical simulation of Eqs. (6.20), we observe the formation of VDS stationary solutions,
in which, a dark soliton presents in both field components of orthogonal polarisation, oc-
cupying the same domain in fast time. Much like the dark solitons of the single field FP
model, VDSs are composed of oppositely oriented switching fronts (SFs) that connect two
homogeneous solutions (plateaus). SFs become stationary due to a locking mechanism
induced by the interaction of local fast time oscillations on the lower power plateau, as
was first proposed for spatial solitons composed of diffractive switching fronts [119–121],
and demonstrated for temporal cavity solitons in the single field FP [56] in Chapter 5,
and the ring resonator [35] in Chapters 2, 3 and 4. We have previously demonstrated
that exponentially localised solutions (such as dark cavity solitons) within the FP cavity
do not hang from the HSSs, but instead, hang from a plateau solution whose existence
and stability is dependent on the average power of the intracavity field over a round trip
of the cavity. This is a typical feature of the integro-partial differential equations prolific
in this thesis, where nonlocal Kerr interaction is introduced due to the counterpropaga-
tion of intracavity fields found innately within the FP cavity, and also demonstrated for
bidirectionally driven ring resonators [117].
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At symmetry, the plateaus solutions can be found by solving the coupled equations

4Y 3
u,l − 4(θ − 4∆Yl − 4(1−∆)Yu)Y

2
u,l (6.42)

+ {(θ − 4∆Yl − 4(1−∆)Yu)
2 + 1}Yu,l = S2,

where the intracavity field is assumed to be composed of plateaus ψl, ψu connected by
step functions with ψ = ψl + ψu, such that, Yl = |ψl|2 is the power of the lower plateau,
Yu = |ψu|2 is power of the upper plateau, and the average power over the round trip time
can be expressed as ⟨|ψ|2⟩ = ∆Yl+(1−∆)Yu. Here, ∆ is the duration of the lower plateau
normalised to the cavity round trip time 0 < ∆ < 1. This assumption has been used
with great effectiveness to predict the stationary solutions in similar systems, such as in
Chapters 4 and 5.

In Figs. 6.3(d)-(f), we show the SSB bifurcations of the high power plateau when a
single VDS is present in the cavity. VDS solutions were obtained through direct numerical
integration when scanning the detuning θ for different values of the input field S, or meth-
ods of lattice relaxation. The plateau of the symmetric VDS displays SSB phenomenon
analogous to the HSSs discussed earlier, but now is effected by additional contributions
from the VDS to the nonlocal coupling terms.

In Fig. 6.3(d), we show the plateau power of symmetric VDSs, plotted as a black
curve, where an example stable symmetric VDS is shown in Fig. 6.4(iv). We indicated
regions of stable and unstable VDSs as solid and dashed lines, respectively. Similar to the
corresponding HSS bifurcation diagram [Fig. 6.3(a)], stable symmetric VDSs are flanked
by two oppositely oriented pitchfork bifurcations, both of which correspond to a SSB event.
When decreasing the detuning, we encounter the reverse pitchfork bifurcation at θ ≈ 8.71.
This results in a splitting of the plateau power between polarisation components, such
that, one field becomes dominant, and the other suppressed, while continuing to support
the VDS, as shown in Fig. 6.4(iii). The power of the dominant and suppressed plateaus
are plotted as red curves in Fig. 6.3(d) and are associated with the reverse pitchfork
bifurcation of the HSSs. We see that the bifurcation point of the plateau is displaced with
respect to the HSS, occurring for a different value of detuning. This is a consequence of
a shift in detuning θeff = θ − 4⟨|ψ|2⟩ induced by counterpropagation, where due to the
presence of the VDS, the average power within the cavity is smaller [48, 49, 56, 117, 149].
In the limit of a large round trip time of the cavity, we have that ⟨|ψ|2⟩ → H. As a result,
the bifurcation point of the plateau approaches the bifurcation point of the HSS in this
limit.

For larger values of detuning, we encounter the forward pitchfork bifurcation of the
VDS (θ ≈ 8.8). This results in the formation of a fast time Turing pattern on the back-
ground plateau, composed of alternating fields of orthogonal polarisations. For detuning
values greater than the bifurcation point, the symmetric VDS branch becomes unstable to
symmetry broken solutions displaying rapid fast time oscillations of increasing amplitude
with greater distance from the VDS, until a saturation amplitude is reached. An example
of which is shown in Fig. 6.4(v). The maximum and minimum power of the stationary
Turing pattern is shown as a blue curve in Fig. 6.3(d). The formation of symmetry bro-
ken Turing patterns can be similarly understood as originating from the interaction of the
local self- and cross-Kerr modulation of Eqs. (6.20), as was demonstrated earlier for the
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HSS, where again, we note that the Turing pattern bifurcation point has been displace
with respect to the equivalent instability of the HSSs.

In Fig. 6.3(e) we show the SSB bifurcations of the symmetric VDS for S = 1.2444.
At the parameter value (S, θ)codim-2 ≈ (1.2444, 8.78), we see a codimension-2 bifurcation
of the VDS. Here, the reverse pitchfork bifurcation of the plateau perfectly coincides with
the forward pitchfork bifurcation corresponding to the formation of Turing patterns. This
codimension-2 point occurs for different parameter values when compared to the HSSs
due to the shift detuning introduced by the presence of the VDS in the cavity. In general,
the location and existence of these two SSB bifurcations depend on the average power of
the symmetric VDS solution (size and number of VDSs within the cavity). This means
that, while the codimension-2 point of the HSSs occurs at a unique parameter value, the
codimension-2 point of a symmetric VDS occurs at parameter values that is dependant
on the particular symmetric VDS solution.

Further increasing the input field to S = 1.25, we see in Fig. 6.3(f) that the pitchfork
bifurcations have crossed over. This has resulted in an interval of detuning in which one
field component presents a dominant plateau with Turing pattern oscillations, while the
other is suppressed. An example of which is shown in Fig. 6.4(vi).

6.4.2 Linear stability analysis of the plateau for Turing pattern forma-
tion

We may investigate the formation of Turing patterns on symmetric VDS solutions by
approximating the VDSs as two plateaus occupying distinct domains of fast time connected
by step functions ψs = ψs

u + ψs
l . We introduce a linear perturbation to each plateau

ψ±,u(τ, t) = ψs
u + ϵ±,u(τ, t), ψ±,l(τ, t) = ψs

l + ϵ±,l(τ, t) of the form

ψ±,u(τ, t) = ψs
u + ϵa±,ue

ikuτ+Ωut (6.43)

ψ±,l(τ, t) = ψs
l + ϵa±,le

iklτ+Ωlt (6.44)

where ψs
u,l are the plateau solutions of higher u and lower l power, ku,l and Ωu,l are the

wavenumbers and growth rates of the perturbation on the respective plateaus, and |ϵ| ≪ 1.
Inspired by the linear stability analysis previously performed for the HSSs we assume that
the perturbation does not survive the integral terms, such that perturbations (6.43) and
(6.44) obey

⟨(ψs
i + ϵi)(ψ

s
j + ϵj)

∗⟩ = ⟨|ψs|2⟩ = ∆|ψs
l |2 + (1−∆)|ψs

u|2. (6.45)

where i, j = ± indicate the polarisation. This is akin to assuming that the wavenumbers
are periodic on their respective plateau, ku = 2πnu/τR(1−∆), kl = 2πnl/τR∆ with mode
numbers nu,l ̸= 0. Inserting the step function approximation into Eqs. (6.20), we obtain
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separate partial differential equations for each plateau, with

∂tψ±,u = S − (1− iθ)ψ±,u − i∂2τψ±,u (6.46)

+ i
2

3

{
|ψ±,u|2ψ±,u + 2|ψ∓,u|2ψ±,u + 2[∆|ψ±,l|2 + (1−∆)|ψ±,u|2]ψ±,u

+ 2[∆|ψ∓,l|2 + (1−∆)|ψ∓,u|2]ψ±,u + 2[∆ψ±,lψ
∗
∓,l + (1−∆)ψ±,uψ

∗
∓,u]ψ∓,u

}
,

∂tψ±,l = S − (1− iθ)ψ±,l − i∂2τψ±,l (6.47)

+ i
2

3

{
|ψ±,l|2ψ±,l + 2|ψ∓,l|2ψ±,l + 2[∆|ψ±,l|2 + (1−∆)|ψ±,u|2]ψ±,l

+ 2[∆|ψ∓,l|2 + (1−∆)|ψ∓,u|2]ψ±,l + 2[∆ψ±,lψ
∗
∓,l + (1−∆)ψ±,uψ

∗
∓,u]ψ∓,l

}
.

As the perturbations do not survive the nonlocal coupling terms, coupling of the pertur-
bations on the upper and lower plateaus are not phase sensitive. Hence, without loss of
generality, we may consider the higher and lower power plateaus to be real. Inserting the
perturbations (6.43), (6.44), into 6.46, we arrive at the linearised equations

∂tϵ±,u = −(1 + iθ)ϵ±,u + ik2uϵ±,u (6.48)

+ i
2

3

{
4[(ψs

u)
2 + ⟨|ψs|2⟩]ϵ±,u + 2[(ψs

u)
2 + ⟨|ψs|2⟩]ϵ∓,u + (ψs

u)
2ϵ∗±,u + 2(ψs

u)
2ϵ∗∓,u

}
,

∂tϵ±,l = −(1 + iθ)ϵ±,l + ik2l ϵ±,l (6.49)

+ i
2

3

{
4[(ψs

l )
2 + ⟨|ψs|2⟩]ϵ±,l + 2[(ψs

l )
2 + ⟨|ψs|2⟩]ϵ∓,l + (ψs

l )
2ϵ∗±,l + 2(ψs

l )
2ϵ∗∓,l

}
,

which may be expressed as

∂tu
+
u

∂tv
+
u

∂tu
−
u

∂tv
−
u

∂tu
+
l

∂tv
+
l

∂tu
−
l

∂tv
−
l


=



−1 Au 0 C 0 0 0 0
−Bu −1 −Cu 0 0 0 0 0
0 C −1 Au 0 0 0 0

−Cu 0 −Bu −1 0 0 0 0
0 0 0 0 −1 Al 0 C
0 0 0 0 −Bl −1 −Cl 0
0 0 0 0 0 C −1 Al

0 0 0 0 −Cl 0 −Bl −1





u+u
v+u
u−u
v−u
u+l
v+l
u−l
v−l


(6.50)

in terms of the real and imaginary parts of the perturbations ϵ±,u = u±u + iv±u , ϵ±,l =
u±l + iv±l , and we have

Au = θ − k2u − 2(ψs
u)

2 − 8/3⟨|ψs|2⟩, Al = θ − k2l − 2(ψs
l )

2 − 8/3⟨|ψs|2⟩,

Bu = θ − k2u − 10

3
(ψs

u)
2 − 8/3⟨|ψs|2⟩, Bl = θ − k2l −

10

3
(ψs

l )
2 − 8/3⟨|ψs|2⟩,
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Figure 6.5: (a) Shows a VDS solution (black curve) at the codimension-2 point
(S, θ)codim-2 ≈ (1.2444, 8.78). By decreasing the detuning, we observe SSB of the VDS,
where the symmetric solution becomes unstable (dashed black curve) to the symmetry
broken VDS (red and blue curves). (b) corresponds to the saddle node bifurcation mark-
ing the end of the symmetric VDS solution branch. Further decreasing the detuning, we
see the unstable symmetric VDS stationary state has vanished, such that, only the sym-
metry broken VDS remains until the saddle node bifurcation at (c).

C = −4/3⟨|ψs|2⟩, Cu = C − 8

3
(ψs

u)
2, Cl = C − 8

3
(ψs

l )
2.

This analysis yields eigenvalues

Ωu,l(ku,l) = −1±
√
−Au,lBu,l − CCu,l ± (Au,lCu,l +Bu,lC), (6.51)

where (ψs
u,l)

2 are the powers of the higher and lower power plateaus, and ⟨|ψs|2⟩ is the
average power of the intracavity field over a single round trip of the cavity. This method
of linear stability analysis has been utilised previously to good effectiveness [56, 117] in
the presence of integral terms, and we find the linear stability analysis performed here
accurately predicts the onset of pattern instability for symmetric VDSs. We note that
the eigenvalues of Eqs. (6.51) reduce to the eigenvalues of symmetric HSS in the limit
⟨|ψs|2⟩ → |ψs|2, further cementing the connection with the HSSs.

6.4.3 Spontaneous symmetry breaking in the presence of nonlocal cou-
pling

In the bifurcation diagrams of Fig. 6.3(d)-(f), it can be seen that, when decreasing the
detuning, the symmetry broken VDS branches (red curves) exist in an interval that extends
far beyond the end of the symmetric soliton branch. This is phenomenologically atypical
of a SSB pitchfork bifurcation, where the symmetric solution usually persist over the full
domain of the symmetry broken solutions and is unstable, as seen for the symmetry broken
HSSs of Fig. 6.2. In Fig. 6.5(a) we plot the a single VDS at the codimension-2 point
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(S, θ)codim-2 ≈ (1.2444, 8.78). When decreasing the detuning, the VDS moves toward the
symmetry broken VDSs stationary state. If we instead follow the unstable symmetric
VDS, we see the VDS trough increase in power as the detuning is scanned until we reach
a saddle node bifurcation, marking the end of the symmetric VDS solution branch. The
final symmetric VDS is shown with a dashed line in Fig. 6.5(b). The interaction of the
oscillatory tails to which the dark solitons owe their existence is highly dependent on
the power of the lower plateau (the power of the trough), and is highly relevant in the
determination of the the decay rate and wavenumber of these oscillations. Beyond this
value of detuning, the interaction of the oscillatory tails is insufficient to induce the locking
mechanism due to the increasing power of the trough. As can be seen in Fig. 6.5(b), the
stable symmetry broken VDS has diverged from the symmetric solutions and is able to
survive due to the lower value of trough power. By further decreasing the detuning, the
power of the trough of the symmetry broken VDSs rises until the locking mechanism fails,
shown in Fig. 6.5(c), at a similar trough power to the symmetric VDS. This failure of the
locking mechanism is delayed for the symmetry broken solutions due to the slower rate of
increase in the trough power of the VDSs. This phenomenon is a result of the nonlocal
coupling, whose contributions differ between symmetric and symmetry broken solutions,
and acts to displace the existence of the symmetry broken solutions beyond the range of
the symmetric solution branch from which they bifurcate. This results in an extended
range of parameter values where there exists only symmetry broken VDSs, despite having
parameter symmetry between the two field equations (6.20).

6.5 Self-crystallisation of vectorial dark solitons

We now consider a FP resonator containing multiple VDSs simultaneously along the round
trip of the cavity. These solutions undergo SSB bifurcations similar to those discussed ear-
lier for a single VDS. Above the SSB bifurcation point, Turing patterns are observed to
form in the intervals between adjacent VDSs. The growth of Turing patterns induces
motion in the VDSs, wherein adjacent VDSs are ‘pushed’ apart until an equilibrium of
the pattern’s amplitude is reached on both sides of each VDS. Hence, this SSB phe-
nomenon introductions long range repulsive interaction between adjacent VDSs, which
are mediated by the formation of the symmetry broken Turing patterns. In the absence
of Turing patterns, the symmetric VDSs do not exhibit long range repulsive interactions
and the VDSs remain stationary at arbitrary separations along the cavity round trip.
This dynamical process is analogous to the ‘self-crystallisation’ phenomenon described
for the ring resonator with vectorial intracavity field in Sections 3.5 and 3.6. Due to
the absence of counterpropagating fields within the ring resonator, nonlocal coupling is
not the primary source of the long range interaction between solitons in this case, but
instead, VDSs interact locally through the Turing patterns. Here, we demonstrate that
the ‘self-crystallisation’ mechanism may be generalised to FP resonators with orthogonal
polarisations components [103], and as such, is universal in systems displaying tempo-
ral cavity solitons and Turing instabilities under local self- and cross-phase modulation.
We discuss the differences in self-crystallisation in ring and FP resonators and the effects
originating form nonlocal coupling.

The self-crystallisation process of VDSs within the FP resonator unfolds as follows. In
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Figure 6.6: (a) Initial condition of three symmetric vectorial dark solitons and correspond-
ing comb spectrum (b). (c) Slow time evolution of the initial condition (a), for S = 1.25,
θ = 8.8, demonstrating the growth of SSB Turing patterns, which propel the VDSs through
the cavity. (d) Final RSC stationary state and corresponding comb spectrum (e). (f) Slow
time evolution after reducing the cavity detuning to θ = 8.63, below the threshold for Tur-
ing patterns. (g) Final regular VDS crystal with a uniform background and corresponding
comb spectrum (h).
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Fig. 6.6(a), we introduce three randomly distributed symmetric VDSs along the cavity
round trip time. For the parameter values S = 1.25, θ = 8.8, τR = 300, the background
plateau from which the three VDSs hang is unstable to the formation of a symmetry
broken Turing pattern. As the pattern amplitude grows, the VDSs are ‘pushed’ along the
resonator, where the maximum amplitude reached by the Turing patterns in the intervals
between the VDSs depend on the separation of adjacent VDSs. In Fig. 6.6(c), we show
the slow time evolution of the VDSs, where it can be seen that the they move so as to
spread out along the cavity coordinate, until an equilibrium configuration of the Turing
patterns is reached on both sides of each VDS. This results in the stable stationary state
shown in Fig. 6.6(d). This stationary solution is composed of VDSs located equidistantly
on the round trip of the cavity, separated by Turing patterns of equal amplitude, forming
a perfectly regular soliton crystal (RSC).

The formation of a RSC from an initial condition of three VDSs randomly posi-
tioned along the cavity coordinate is spontaneous, induced by SSB of the VDSs. The
self-crystallisation process in the FP resonator unfolds in a similar manner to that of the
ring resonator, wherein the spontaneous self-organisation of VDSs is induced by long range
interactions originating from SSB Turing patterns, and does not rely on perturbations in-
troduced to the LLE model, such as those induced near avoided mode crossings [40], or
through an external modulation of the field [44]. Furthermore, by scanning the detun-
ing back over the Turing instability bifurcation point, Turing pattern modulations in the
intervals between VDSs vanish, as shown in Fig. 6.6(f). This evolution results in the
formation of a symmetric RSC, as shown in Fig. 6.6(g). While the long range interaction
resulting from the nonlocal (global) coupling is always present in the FP resonator, ‘self-
crystallisation relies on the long range (local) interactions of VDSs, mediated by Turing
patterns, and as such, VDSs will not display the self-crystallisation phenomenon below
the SSB Turing pattern bifurcation.

The RSC created by the self-organisation of VDSs produces a frequency comb [Fig.
6.6(e)] with a smooth spectral envelope and a free spectral range three times larger than
the frequency comb of the initial condition [Fig. 6.6(b)]. Regularly occupying peaks
(sidebands) appear in the spectral envelope, due to the contributions from the Turing
pattern wavenumber on the frequency domain, and is required for self-crystallisation. Such
peaks can be removed at will after self-crystallisation by scanning the control parameters
below the SSB bifurcation of the Turing patterns, as shown in 6.6(f), thus eliminating the
contributions from the Turing pattern wavenumber on the frequency domain. In general,
a RSC composed of N VDSs produces a frequency comb equivalent to a single VDS in a
cavity with round trip time τR/N . An important property of RCSs is their capacity to
emulate smaller cavity sizes, such that, with increasing soliton number, a frequency comb
with enhanced power and greater spacing of the spectral lines is obtained. As such, the
formation of RSCs has many potential applications, such as satellite communications [123],
photonic radar [124] and radio-frequency filters [125, 126], where the universality of this
mechanism in ring and FP resonators creates different practical methods for the generation
and control RSCs, distinct from previously demonstrated methods [40,44].
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6.6 Partial crystal formation

Adjacent VDSs experience repulsive interactions due to the growth of Turing patterns
over slow time. The VDSs will remain dynamical until the Turing patterns on both sides
of each VDS reaches a saturation of their amplitudes and becomes stationary. In Fig.
6.7(a), we show the evolution of two VDSs in a long cavity. This results in the formation
of the partial crystal stationary state shown in Fig. 6.7(b). In general, a partial crystal
may be composed of two or more equidistant VDSs in a local region of the cavity, with
the remainder of the cavity occupied by a Turing pattern of constant amplitude. They
are formed when the Turing pattern amplitude reaches saturation before a RSC is formed.
In Fig. 6.7(b), we annotate the VDS spacing of the partial crystal 2∆τ , which is defined
as twice the distance in fast time over which the amplitude of the pattern reaches its
maximum value, and hence an equilibrium is achieved on both sides of the VDSs. We may
used this characteristic length to determine the conditions required for self-crystallisation,
whereby should the VDS number N be sufficient large that 2N∆τ > τR, the system will
evolve towards a RSC, as seen in Fig. 6.7(c) and (d).

In Fig. 6.7(c), we show the evolution of five tightly packed VDSs in a FP resonator
resulting in the formation of a RSC, Fig. 6.7(d). This evolution is split into two stages.
For t < 2× 105, the Turing pattern amplitudes between the tightly packed VDSs is small
(near symmetry) due to the long pattern saturation distance ∆τ . This results in relatively
slow dynamics of the VDSs. The slow dynamics continue until the VDS are sufficiently far
apart to support larger amplitude Turing patterns, at around t ≈ 2 × 105. At this time,
VDS dynamics become significantly faster.

To compare the RSC solutions of the ring and FP resonator, we have selected mathe-
matically equivalent symmetric solitons as an initial condition, with comparable parameter
values SFP = 1.05

√
3/2 = Sring

√
3/2, which makes use of the renormalisation factor be-

tween the symmetric case of the two models. This allows us to appropriately compare
the RSC and partial crystals of Figs. 3.5 and 3.6 of the ring resonator model with the
FP model, shown in Fig. 6.7. If we compare with the analogous long range interactions
of the ring resonator, we find that the pattern saturation distance, with respect to the
round trip time, is larger in the FP cavity. As such, the FP system is more prone to the
slow dynamics of Fig. 6.7(c). Conversely, the greater value of 2∆τ suggest that the FP
resonator is more congruent to the formation of RSCs, with greater robustness to changes
in soliton number, as repulsive interactions will redistribute VDSs to equidistant locations.
This is conditional on the Turing patterns saturation length 2∆τ , which must be less that
the lattice spacing of the RSC. We also note that the Turing pattern wavenumber within
the FP resonator is larger, at around two times greater that the ring resonator. Similarly,
the partial crystal spacing in the FP resonator is approximately two times greater than
the comparable ring resonator.

The RSCs within a FP cavity, such as in Figs. 6.6 and 6.7, are composed of unit cells
which are perfectly repeating over the round trip of the cavity. There are four possible unit
cells, each related by a π/2 shift in the phase of the Turing pattern. In Fig. 6.8 we present
example unit cells for S = 1.25, θ = 8.8. The unit cells possess fast time symmetries
associated with fast time parity with (a) ψ±(−τ) = ψ∓(τ) and (b) ψ±(−τ) = ψ±(τ). Two
additional unit cells are obtained by exchanging the fields ψ+ ↔ ψ− in Fig. 6.8.
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Figure 6.7: (a) Slow time evolution of two VDSs resulting in the formation of the partial
soliton crystal, with power profile (b) and Turing pattern saturation distance ∆τ , for
S = 1.05

√
3/2, θ = 9.1. (c) Slow time evolution of five VDSs form a tightly packed initial

condition, for S = 1.05
√

3/2, θ = 8.9. This evolution results in the RSC stationary state
(d).
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Figure 6.8: (a)-(b) Power profiles of RSC unit cells for S = 1.25, θ = 8.8, τR = 100N , and
soliton number N . Two additional unit cells can be obtained by exchanging the fields
ψ+ ↔ ψ− in both (a) and (b). The four unit cells are related by a phase shift in the peaks
of the Turing patterns of π/2.

As we have previously shown for the single field FP resonator in Chapter 5, the non-
local coupling terms present in systems of counterpropagating light introduce long range
interactions between well separated solitons within the cavity, such that, the existence and
stability of the solitons is dependent on the soliton number [56,117]. The symmetric VDSs
of the two component FP model [Eqs. (6.20)] display identical long range interactions, as
shown in Fig 5.9, which modify the self-crystallisation process. In Fig. 6.9, we plot the
SSB bifurcation diagram of a plateau supporting three VDSs simultaneously within the
cavity for S = 1.24, τR = 500. We see that the symmetric solution undergoes a SSB at
θ ≈ 8.75 resulting in the growth of symmetry broken Turing patterns and the formation
of a RSC. Here, the maximum and minimum power of the stationary Turing pattern is
plotted as the blue curve. For these parameter values, solutions containing three VDSs
may exists as either a symmetry broken RSC, for θ > 8.75, or as a symmetric distribution
along the cavity coordinate, θ < 8.75, (whereby a soliton crystal may be formed from the
random distribution of VDSs by scanning the detuning over θ ≈ 8.75 to induce SSB of
the plateau, leading to the self-crystallisation of the VDSs). Here, solutions containing
three VDSs do not possess the reveres pitchfork bifurcation, as was seen for the single
VDS solutions, which we plot in Fig. 6.9 as grey curves. The location and existence of the
SSB bifurcation required for self-crystallisation is dependent on the soliton number and
size, which shifts the location and stability of stationary solutions, and has become more
prominent due to the increased number of solitons.
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Figure 6.9: Spontaneous symmetry breaking bifurcations for S = 1.24, τR = 500 in the
presence of three VDSs simultaneously within the cavity. The plateau power of the VDSs
is plotted as a black curve. The blue curve shows the maximum and minimum amplitude of
the symmetry broken Turing patterns of alternating polarisation which form in between
equidistant VDSs. The gray curves show the single VDS bifurcations of Fig. 6.3(a).
In both cases, stable and unstable solutions are depicted with solid and dashed lines,
respectively. This demonstrates a non-insignificant displacement of the locations of the
bifurcations when increasing the number of solitons, where in particular, we notice the
absence of the reverse pitchfork bifurcation for the three soliton case.

6.7 Vectorial dark-bright solitons

6.7.1 Vectorial dark-bright solitons in Fabry-Pérot resonators

We now change the focus of our investigation to vectorial soliton solutions of Eqs. (6.20)
which exist in parameter regions displaying strongly symmetry broken HSSs. In Fig.
6.10(a), we show the HSSs for S = 3. A notable feature of the HSSs for this value
of S is the formation of a ‘horn’ in the symmetry broken HSSs, where one polarisation
component is largely dominant, approaching the peak power, and the other is largely
suppressed, approaching zero power (e.g. ψ+ ≫ ψ−). This horn forms a small region
of optical bistability between symmetry broken HSSs corresponding to the red and blue
curves of Fig. 6.10(a)-(c). Near the peak of the symmetry broken HSS horn, and with
suitable perturbation, we observe the formation of vectorial dark-bright cavity solitons
(VDBS). These solutions present as a pair of coupled solitons occupying the same domain
in fast time, where the dark soliton hangs form the dominant field and a bright soliton
sits upon the suppressed low power field, as is shown in Fig. 6.10(d).

VDBS solutions have been demonstrated in a large variety of physical systems, such as
in single mode optical fibres [127–135], was well as two-species Bose-Einstein Condensates
[136–138]. The formation of the VDBSs in each case is reliant on the nonlinear cross-phase
modulation between the two respective field components, where despite the significantly
different physics, these systems are mathematically analogous and governed by coupled
nonlinear Schrödinger equations. In microresonator systems, the generation of VDBSs can
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Figure 6.10: (a) Solutions of the FP cavity for S = 3, τR = 200 are plotted as their average
power over the round trip. The symmetric and symmetry broken HSSs are plotted as the
black and red curves respectively. In the vicinity of θ = 16.6, we plot stable branches
of vectorial dark-bright solitons. This collapse snaking behaviour can be seen near the
dominant symmetry broken HSS (b), corresponding to the dark soliton, and near the
suppressed symmetry broken HSS (c), corresponding to the bright soliton. (d) Bistable
vectorial dark-bright solitons for parameters S = 3, θ = 16.6, τR = 200. Three solutions are
shown, each for identical parameters, presenting different locking distances corresponding
to one trough (dot dashed blue line), two troughs (dashed black), and three troughs (solid
red line), and are indicated in (b) and (c) as x’s.
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be achieved though bichromatic input fields. In particular, the generation of frequency
combs via bichromatically driven microresonators has be widely demonstrated to produce
bright-bright soliton pairs [141–146], where in addition, the simultaneous generation of
frequency combs between fields of orthogonal polarisations has been demonstrated [112,
115]. Recently, vectorial dark-bright solitons have been experimentally demonstrated in
microresonators [139, 140]. This was achieved by appropriately selecting the two driving
frequencies, such that, one of the intracavity fields operates within the regime of anomalous
group velocity dispersion, generating a bright soliton, while the second field operates in
the normal group velocity dispersion regime, which supports a dark soliton through cross-
phase modulation with the bright soliton. Dark and bright solitons are bound in the fast
time due to Kerr interaction and copropagate along the microresonator. In chapter 3, we
discussed the possibility of VDBSs which form between the orthogonally polarised field
components of the ring resonator. This represented a new paradigm for the formation of
VDBSs, as the two field components experience identical normal group velocity dispersion
with identical driving amplitude and detuning to the nearest cavity resonance. In this
section, we consider the formation of VDBSs of orthogonally polarised field components
within a FP resonator described by Eqs. (6.20), where we outline the distinct characteristic
of the FP system.

In Fig. 6.10(d), we show three bistable VDBS for S = 3, θ = 18.6. The dark and
bright soliton of the VDBS are each composed of SFs that connect the two high power
plateaus and two low power plateaus, respectively, within a regime of optical bistability.
In the dominant field, SFs which compose the dark soliton (shown as an ‘x’ in 6.10(b))
connect to plateaus near the red and blue curves of Fig. 6.10(b). The SF approaches the
lower power plateau displaying a decaying oscillatory trajectory, whilst the approach to the
higher power plateau is smooth. It is the interactions of these oscillations on the low power
plateau which introduce a locking mechanism analogous to that described previously for
vectorial dark-dark solitons. The corresponding bright solitons of Fig. 6.10(d) are marked
with an ‘x’ in Fig. 6.10(c). Here, the switching fronts display a decaying oscillatory
trajectory at the connection with the higher power plateau near the blue curve, and a
smooth trajectory on approach to the lower power plateau near the red curve. The bright
solitons ‘mirror’ the dark solitons in profile, exhibiting an identical size and number of
peaks, due to local cross-phase modulation. The three VDBSs of Fig. 6.10(d) display
different locking distances (soliton widths) corresponding to the distinct cycles of the
oscillatory tails, with three (red solid), two (black dashed), and one (blue dash-dot) peaks
(troughs) in the bright (dark) soliton. Typical of systems of counterpropagating field
components, VDBSs do not sit upon the HSSs of this system, but instead hang from
plateaus whose existence and stability is dependent on the size and number of VDBS. It
can be seen that the powers of the plateaus of the three bistable VDBSs are different. This
is attributed to the difference in nonlocal coupling of fields with different soliton widths.

VDBS solutions are distributions along a collapse snaking curve, where we show stable
VDBS solution branches corresponding to the distinct VDBS sizes in Fig. 6.10(b)-(c) as
pink curves. Due to the presence of nonlocal terms, we expect the collapse snaking of the
VDBS solutions to be tilted in parameter space [47,56,117], but due to the counteracting
contributions of the dark and bright solitons to the averaging terms, this effect is small. As
the VDBS solutions of Eqs. (6.20) form around the symmetry broken HSS horn, they are
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Figure 6.11: Dark bright soliton for S = 3, θ = 16.5, τR = 200. Upper panel. One (red)
and three (blue) dark solitons and the HSS (black) of the ψ+ field. Lower panel. One
(red) and three (blue) bright solitons and the HSS (black) of the corresponding ψ− field.

found for much larger input power when compared to the symmetric dark-dark vectorial
solitons of the previous sections.

VDBS solutions of the FP are phenomenologically similar to the VDBSs seen within
the ring resonator, as presented in Section 3.7. We note that it is not possible to project the
solutions of the polarisation degenerate FP resonator onto the solutions of the polarisation
degenerate ring resonator, through the definition of an effective detuning, as we had done
in the previous chapter between the solutions of the single field FP model and single field
ring model. This is due to the four wave mixing integral term Eq. (6.22) [presenting
in the last term of Eqs. (6.20)], which introduces a complex valued integral with linear
cross-coupling between polarisation components. This prevents us form defining a useful
effective detuning. As a consequence, the VDBS stationary solutions of Eq. (6.20) do
not have a one to one correspondence to those seen in Section 3.7 for the ring resonator.
One benefit of the FP resonator for the generation of VDBSs, when compared with the
ring resonator, is that the VDBS branches exist over a much larger range of detuning.
For comparable inputs Sring

√
3/2 = SFP = 3, the solution branch of the FP cavity is

approximately 8.82 times larger.

6.7.2 Nonlocal coupling of oscillating vectorial dark-bright solitons

When slowly changing the control parameters, the VDBS are found to undergo a Hopf
bifurcation, resulting in breathing dynamics of the dark and bright solitons. In the ring
resonator system (Section 3.7), a similar temporal instability is present and results in
stable local dynamics confined to the dark-bright soliton pair. Within the FP cavity,
nonlocal coupling introduces long range interactions between VDBSs, whose effects we
characterise in this section.

The power profile of a single oscillating VDBS is shown in Fig. 6.12(a) at different
points along its dynamical cycle, corresponding to the maximum and minimum power
of the peak (trough) of the bright (dark) soliton. As the dark and bright solitons move
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Figure 6.12: Dynamical solitons for S = 3.2, θ = 18.6. (a) Power profile of a single
oscillating VDBS at two different point in it’s limit cycle, shown as solid and dashed
lines. (b) Trace of the peak (trough) of the bright (dark) soliton of a single VDBS for
τR = 100. (c) Trace of the bright and dark solitons of two VDBS, where different VDBSs
are distinguished by different coloured curves for τR = 200. Nonlocal interactions between
VDBS results in out of phase oscillation. (d) Trace of the bright and dark solitons of three
VDBS, distinguished by different coloured curves for τR = 300. (e) Trajectory of bright
soliton peaks in the Argand plane corresponding to (d). (f) Trajectory of dark soliton
troughs in the Argand plane corresponding to (d). In both cases, the red, blue and green
VDBS follow nontrivial limit torus trajectories.
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through their limit cycle, the dynamics induce a small change in the nonlocal (averaging)
terms of Eqs. (6.20). As a consequence, the temporal dynamics of this system are not
confined to the VDBS but extends to an oscillation over the background plateaus, where
generally, regions of the cavity far from the VDBS exhibit oscillatory dynamics induced by
the Hopf instability associated with the VDBS. Oscillations of the background power have
significantly smaller amplitude when compared to the VDBS peak, as the contribution
of the VDBS dynamics to the nonlinear terms is small. In Fig. 6.12(b) we trace the
maximum and minimum power of the bright and dark soliton respectively, where it can
be seen that the dark and bright solitons are perfectly synchronised in their dynamics.

In Fig. 6.12, example dynamical VDBS solutions are shown for a cavity containing one
(b), two (c) and three (d) oscillating VDBSs simultaneously within the cavity of round
trip times τR = 100, τR = 200 and τR = 300, respectively. Here, we increase the cavity
round trip time for cavities containing a larger number of simultaneous solitons. This is
done to preserve the value of the nonlocal terms of Eqs. (6.20) at stationary state, so as to
elucidate the effects of the nonlocal coupling on the soliton dynamics without effecting the
existence and stability of the VDBS stationary solutions with increasing soliton number.
The interaction of stationary VDBSs is demonstrated in Fig. 6.11, where we show bistable
solutions of the HSS, a single VDBS and three VDBS. It can be seen that the homogeneous
background, along with the extrema of the VDBS, have different powers depending on the
number of VSBS within the cavity, should the round trip time not be adjusted.

In Fig. 6.12(c), we consider two VDBSs well separated within a FP cavity with double
the round trip time (τR = 200). The traces of the maximum and minimum power of the
bright and dark soliton, respectively, are plotted for both VDBSs with red curves for the
‘right’ VDBS and blue for the ‘left’ VDBS. The two VDBSs interact through the nonlocal
terms resulting in stable anti-synchronous dynamics, where the two bright solitons (and
two dark soliton) oscillate exactly π out of phase. In Section 5.7, we investigated the
dynamics of dark solitons of the single field FP, where we found that, in general, the
dynamics of N well separated solitons in a cavity of round trip τR synchronised towards
the dynamics of a single soliton in a cavity of round trip τR/N . This is not the case for
VDBSs of the two component FP. This can be further demonstrated if we consider three
VDBS well separated within a FP cavity with round trip time τR = 300. As before, we
plot the trace of the extrema of three VDBSs in Fig. 6.12(d), distinguished by different
colours. We see that the dynamics of the three oscillating VDBS have become nontrivial.
Plotting the trajectory of the maxima of each bright soliton and the minima of each dark
soliton in the Argand plane, in Figs. 6.12(e) and (f), respectively, we can see that the
VDBSs evolve as overlapping limit torus trajectories.

If instead, we consider the trajectories of two VDBSs for different values of the round
trip time, we can characterise the contribution of the integral terms to the dynamics.
Generally, the strength of the interaction between nonlocally coupled VDBSs is depen-
dent on the number density of VDBSs over the round trip time. The interaction strength
of two VDBSs is weighted by the size of τR with weaker interaction in the limit of large
τR. In Fig. 6.12(c), VDBS display anti-synchronous limit cycle oscillations. When in-
creasing the round trip time, limit cycle oscillation are found to give way to stable limit
torus oscillations, wherein VDBSs oscillate along overlapping trajectories with small pe-
riodic variations in their phase and amplitude over slow time. This overlap of trajectories
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Figure 6.13: A pair of dynamical vectorial dark-bright solitons (VDBS) for S = 3.2, θ =
18.6, τR = 400. Trace of the bright and dark solitons of two VDBS, where different
VDBS are distinguished by different coloured curves. Nonlocal interactions between VDBS
results in desynchronisation of oscillations, resulting in a decreasing amplitude in one of
the VDBSs. As the amplitude approaches zero, the dynamics suddenly return to near
symmetric oscillations.

eventually gives way to VBDSs which evolve along distinct trajectories, as can be seen in
Fig. 6.13 for the round trip time τR = 400. Here, one of the VDBSs display dominant
dynamics (red curve), oscillating with near consonant amplitude, while the second VDBS
exhibits oscillations growing and dying in amplitude (blue curve). We see that the ampli-
tude of the submissive VDBS is dependent on the mismatch of oscillation phase between
the two VDBSs, where the blue VDBS oscillates with large amplitude when in phase with
the red VDBS. As the VDBSs evolve, their oscillations move progressively out of phase,
such that, the amplitude of oscillation approaches zero, at which point the system rapidly
moves back to equal amplitude synchronised oscillation, and the dynamics repeat. These
dynamics should allow for the possibility of periodic switching of the death of oscillation
between the two VBDSs. For even larger cavities round trip times, the dynamics of the
VDBSs return to stable limit cycle oscillation. In such regimes, the two VDBS oscillate
with constant amplitudes of different size and identical frequency, with constant phase
offset. These limit cycle oscillations approach symmetry (identical limit cycle trajectories)
in the limit of large τR. This suggests that VDBSs favour synchronisation in the limit of
large cavity round trip times, anti-synchronous dynamics for short cavity round trip time,
and nontrivial limit torus dynamics for intermediary values.

The distinct dynamical regimes found when increasing τR can be explained by con-
sidering the change in the relative sizes of the real valued nonlocal terms [Eq. (6.21)]
and complex valued nonlocal term [Eq. (6.22)] over slow time. As has been shown in
Section 5.7 for the single field FP model [56], real valued nonlocal terms are associated
with synchronous dynamics, regardless of cavity size. As such, we may attribute anti-
synchronous dynamics to the unique feature of Eqs. (6.20), namely the complex valued
nonlocal term. Oscillations of the dark and bright solitons give opposite contributions to
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Figure 6.14: Dynamical vectorial dark-bright solitons (VDBS) for S = 3.2, θ = 18.6. (a)
Power profiles at two instances in slow time along the VDBS oscillation cycle corresponding
to profiles of one and two peaks. (b) Trace of the off centre trough/peak (green line) and
central trough/peak (black line) of a single VDBS for τR = 200. (b) Trace of the off centre
trough/peak (red) and central trough/peak (blue) of two VDBS for τR = 400. The solid
curve is the first VDBS pair and the dashed curve is the second VDBS. The two VDBSs
oscillate out of phase initially, but synchronise over time due to nonlocal coupling. The
tracking points of the trace are indicated with diamonds in (a).

the average power and hence result in relatively small changes in the real valued integral
terms. For small cavity sizes, the dynamics are dominated by the complex valued nonlo-
cal term (6.22), but as the cavity size increases, the change in (6.22) decreases until the
contribution of the real valued integrals become dominant and synchronous dynamics are
achieved.

This can be further demonstrated by considering the dynamics of a VDBS of larger
width. In Fig. 6.14(a), we present the power profile of a VBDS at two points in its
dynamics cycle, as it oscillates between two peaks/troughs and one peak/trough. This
dynamical VDBS is found for identical parameter values of the antisynchronous VDBSs
of Fig. 6.12(c), which are hence bistable. The trace of the central peak/trough and the
two side peaks/troughs are plotted in Fig. 6.14(b) as black and green curves, respectively,
and show the stable limit cycle oscillation of the VDBS. If we introduce an additional
VDBS into the cavity for τR = 400, we find that the VDBSs move towards synchronous
dynamics, as can seen in Fig. 6.14(c). Comparing the dynamics of Figs. 6.12 and 6.14,
we see that the particular profile of the oscillating VDBSs contributes to whether the long
range interactions result in synchronous or anti-synchronous dynamics. In particular, we
note that the dynamics of Fig. 6.14(c) induces a significantly larger change in the real
valued integral terms, when compared with the single peak VDBSs. This is due to the more
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Figure 6.15: Vectorial dark-dark and dark-bright soliton distribution in parameter space.
Example symmetric vectorial dark-dark solitons are plotted as x’s and vectorial dark-bright
solitons as +’s. Semi-analytical Maxwell point solitons at zero dispersion are shown at
symmetry for ∆ = 0 (black line), ∆ = 0.1 (black dashed line). For a single field equation
(6.52) the semi-analytical Maxwell point solitons are shown for the high power field, with
∆ = 0 (red line), ∆ = 0.1 (red dashed line).

complicated oscillation, resulting in larger variation in the soliton width (pulse duration),
associated with moving between one and two peaks. As such, the synchronous dynamics
are dominant for VDBSs of this profile for much smaller τR.

We note that, although oscillating VDBSs are present in the ring resonator system, as
discussed in Section 3.7, they do not interact when well separated due to the absence of
global coupling, and hence oscillate independently.

6.8 Vectorial cavity soliton distribution in parameter space

As is phenomenologically analogous to the local structures of Chapter 4 and Chapter
5, the soliton solutions of this system are related to the so called Maxwell point of the
LLE [56,117], which allows us to predict the location of VDSs and VDBSs of Eqs. (6.20).
For the LLE, the Maxwell point corresponds to a line in the parameter space (S, θ) at
which SF solutions have zero velocity. This results in a multitude of stationary solutions
composed of noninteracting SFs with arbitrary separations [35, 117]. Due to nonlocal
coupling of field within a FP resonator, the Maxwell point solutions are tilted in parameter
space [47, 56, 117], such that, for each value of the detuning, there exists a single SF
separation at which they have zero velocity. The Maxwell point of the FP model represents
a line in the parameter space (S, θ,∆) corresponding to a turning point in the SF velocity,
which occurs when two SFs have separation ∆. In order to predict the formation of
VDSs, we plot the Maxwell points for SF separations with a typical soliton sizes ∆ = 0
(black solid curve) and ∆ = 0.1 (black broken curve), in Fig. 6.15. These lines were
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calculated numerically assuming step function solutions, where the detuning is given by
θ = ΘMP + 2∆Yl + 2(1 −∆)Yu, where we have used the Maxwell point relationship [Eq.
(4.27)] between S and ΘMP (determined in Chapter 4). Example symmetric VDS solutions
obtains by direct numerical integration of Eqs. (6.20) are shown in Fig. 6.15 as x’s and
demonstrating good agreement with the predicted locations.

Conversely, VDBSs present as highly symmetry broken solutions in which one field is
largely suppressed (ψ+ ≪ ψ− or ψ− ≪ ψ+). This is most prominent with the background
plateau of the bright soliton, as can be seen in Fig. 6.10(d), which approaches zero power.
Due to the large disparity in the power of the fields containing dark and bright solitons,
we can make the assumption that the bright soliton field acts perturbatively on the field
supporting the dark soliton. If we presume that the bright soliton field approaches zero
|ψ−|2 → 0 at all points in the cavity, we my approximate the equation governing the field
supporting the dark soliton as

∂tψ+ = S − (1 + iθ)ψ+ + i
2

3
{|ψ+|2 + 2⟨|ψ+|2⟩}ψ+ − i∂2τψ+. (6.52)

This equations is identical to the single field FP model under renormalisation. Eq. (6.52)
is only an approximation to the field ψ+ of Eqs. (6.20), but nonetheless, if we plot the
corresponding Maxwell points of Eq. (6.52) in Fig. 6.15 (red curve), we may predict the
distribution of VDBSs in parameter space. Example VBDS solutions obtained via direct
numerical integration are indicated with +’s, and can be seen to follow the predictive
curve. +’s appear slightly above this curve due to our approximation |ψ−|2 → 0.

6.9 Conclusion

In this chapter we modelled the propagation of light composed of counter-rotating cir-
cular polarisation components within a FP cavity filled with a Kerr nonlinear medium.
Taking inspiration from the methods of [48], we derived two coupled integro-partial differ-
ential equations, describing the intracavity fields of orthogonal polarisation, which interact
through self- and cross-phase modulation.

Linear stability analysis of our model yielded a bifurcation structure of competing
SSB bifurcations. We presented the SSB bifurcations of the homogeneous stationary
states within the FP cavity, where we characterise a codimension-2 bifurcation point of
the symmetric HSSs unique to the normal dispersion regime. The codimension-2 bifurca-
tion represents a point in parameter space in which the reverse pitchfork bifurcation of the
symmetry broken HSSs and a forward pitchfork bifurcation of a Turing instability collide,
and the real part of the corresponding eigenvalues are simultaneous zero. The SSB of the
HSS associated with the reverse pitchfork bifurcation has been previously demonstrated
experimentally when neglecting dispersion [68]. Here, characterised the forward pitchfork
bifurcation, innate to the normal dispersion regime, which was found to result in the for-
mation of Turing patterns composed of alternating filed of orthogonal polarisation. This
bifurcation structure extends to homogeneous background of a symmetric VDS, resulting
in a multitude of symmetry broken VDS solutions. Of particular interest, is a SSB bi-
furcation of the VDS resulting in the formation of Turing patterns on the homogeneous
background from which the soliton hangs.
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When considering multiple simultaneous VDSs along the cavity round trip, SSB Turing
patterns are found to form in the intervals between adjacent VDSs. As the Turing patterns
grow in amplitude, VDSs are ‘pushed’ along the resonator, increasing their separation until
an equidistant equilibrium distance is reached. In other words, the SSB of VDSs induce
long range repulsive interactions between adjacent VDSs, mediated by the Turing patterns.
The motion of the VDSs represents a spontaneous self-organisation phenomenon, which
results in the formation of a regularly spaced soliton crystal. The ‘self-crystallisation’
of a RSC was previously demonstrated for VDSs of the ring resonator in Chapter 3,
where in comparison, the Turing patterns of the FP resonator present with a higher
wavenumber and longer amplitude saturation distance, which results in an increased range
of the repulsive interaction between VDSs in the FP cavity. Hence, the FP resonator is
more congruent to the formation for RSCs and more robust to changes in solitons number.
RSCs originate spontaneously from a random distribution of VDS, without the need of
a perturbation [40–44], offering new degrees of control, and a simple implementation,
relevant for applications in RSC generation [123–126]. The generalisation of this process
to the FP resonator increases the accessibility of this phenomenon for practical application.
RSCs produce a frequency comb with smooth spectral profile and an increased line spacing
when compared to a random distribution of cavity solitons. As such, a RSC may be used
to emulate smaller cavity sizes while avoiding the associated experimental limitations.

Finally, we characterise the formation of VDBSs. These solutions form in regimes
of highly symmetry broken HSSs, in which, the circulating power in one polarisation
component is significantly larger than that other. With suitable perturbation, a dark
soliton forms in the high power polarisation component, which is coupled to a bright
soliton that forms in the low power component. Previous methods for the generation
of VDBSs make use of bichromatic driving of a ring resonator [140], such that the two
frequency components may operate in distinct regimes of group velocity dispersion, with
one laser operating in the anomalous dispersion regime, generating a bright soliton, while
the other operates in the normal dispersion regime, supporting a dark soliton though
cross-phase modulation. In our system, the bright and dark solitons are formed in regimes
of identical normal dispersion, and are composed of switching fronts which connect two
high power plateaus and two low power plateaus. SFs lock to form solitons due to the
interaction of oscillatory tails which appear on the approach to the plateaus of intermediary
power. VDBS of the FP resonator undergo a Hopf bifurcation when scanning the detuning,
resulting in breathing dynamics. We found that well separated VDBSs, located such
that they do not interact via the local dynamics at the tails, experience oscillation-phase
dependent interaction through the nonlocal coupling. We observed in simulation a pair of
well separated dynamical VDBSs move as to oscillate exactly out of phase with overlapping
limit cycle trajectories. This is unlike the synchronous dynamics of single component dark
cavity solitons of the FP model in Chapter 5. Conversely, in the limit of a large cavity
round trip time, the VDBS dynamics found to approach synchronisation. In general, short
cavities display anti-synchronous dynamics, long cavities display synchronous dynamic,
and intermediate cavities display nontrivial dynamics. These regimes are consequence of
competition between real valued and complex valued integral terms.
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Conclusion

In this thesis, we studied the generation of temporal cavity solitons and frequency combs
in high finesse ring and Fabry-Pérot resonators with; orthogonal polarisation field compo-
nents, counterpropagating field components or a combination of the two. The theoretical
and numerical results presented in this thesis offer interesting phenomenon of for future
experimental consideration at parameter values achievable in current devices.

In Chapter 3, long-range interactions between dark vectorial temporal cavity solitons
were induced by the formation of patterns via spontaneous symmetry breaking of or-
thogonally polarised fields in ring resonators. Turing patterns of alternating polarisations
form between adjacent solitons, pushing them apart so that a random distribution of
solitons along the cavity length move spontaneously towards equal equilibrium distances,
the soliton crystal, without any the need for perturbation from mode crossings or exter-
nal modulation. We seen that enhancement of the frequency comb is achieved through
the spontaneous formation of regularly spaced soliton crystals, ‘self-crystallisation’, with
greater power and spacing of the spectral lines for increasing soliton numbers. Partial
self-crystallisation is also achievable in long cavities, allowing one to build crystal sections
with controllable numbers of cavity solitons separated by intervals of pattern solutions
of controllable length. Finally, we characterised vectorial dark-bright solitons found in
regimes of large symmetry breaking. Such solutions are formed from switching fronts,
which connect two bistable HSSs of high power and two HSSs of low power, locking due
to the interaction of oscillatory tails.

In Chapter 4, we characterised the formation of robust stationary states formed by
light plateaus separated by two local switching fronts in only one of two counterpropagat-
ing fields in ring resonators with normal dispersion. Such states are due to global cross
coupling and allow for frequency combs to switch from one field to the other by simply
tuning the input laser frequency. Exact expressions for the distance between fronts and
for plateau powers were provided in excellent agreement with simulations. These demon-
strate an unusual high degree of control over pulse and plateau duration in one of the
fields upon changes of one of the input laser frequencies. We identified a wide parame-
ter region in which light plateaus are self-starting and are the only stable solution. For
certain values of the detunings we found multistable states of plateaus with switching
fronts, slowly oscillating homogeneous states and non-oscillating homogeneous states of
the counterpropagating fields. Robustness and multistability of these unusual single-field
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front solutions were provided in parameter ranges that are experimentally achievable in a
wide variety of ring resonators.

In Chapter 5, the ranges of existence and stability of dark cavity-soliton stationary
states in a Fabry-Pérot resonator with a Kerr nonlinear medium and normal dispersion
were determined. The Fabry-Pérot configuration introduces nonlocal coupling that shifts
the cavity detuning by the round trip average power of the intracavity field. When com-
pared with ring resonators described by the Lugiato-Lefever equation, nonlocal coupling
leads to strongly detuned dark cavity solitons that exist over a wide range of detunings.
This shift is a consequence of the counterpropagation of intracavity fields inherent to
Fabry-Pérot resonators. In contrast with ring resonators, the existence and stability of
dark soliton solutions are dependent on the size and number of solitons in the cavity. We
investigated the effect of nonlocal coupling of Fabry-Pérot resonators on multiple dark
solitons, and we demonstrated long-range interactions and synchronisation of temporal
oscillations.

In Chapter 6, we generalised the Fabry-Pérot model to include polarisation consid-
erations by resolving the intracavity field into counter-rotating orthogonal polarisations.
Following from Pitois et al. [55], we modelled the interaction of the four intracavity fields
with four partial differential equations (two forward propagating with orthogonal polarisa-
tions, two backward propagating with orthogonal polarisations) coupled through the Kerr
nonlinearity. Inspired form the methods of Cole et al. [48], we then combined forward and
backward propagating field to arrive at two integro-partial differential equations which
model this system. Linear stability analysis of the HSSs revealed a codimention-2 bifurca-
tion, composed of two distinct SSB bifurcations, corresponding to symmetry broken HSSs
and Turing patterns of alternating polarisation. This bifurcation structure extends to the
symmetric VDSs which were found to undergo a Turing bifurcation. Similar to the VDSs
of the ring resonator, Turing patterns of alternating polarisations form between adjacent
VDSs, pushing them apart so that a random distribution of solitons along the cavity length
spontaneously reaches equal equilibrium distances. As such, the ‘self-crystallisation’ mech-
anism may be generalised to the FP model, and utilised for the formation of a regular
soliton crystal. It is found that the wavenumber and amplitude saturation distance of the
Turing pattern were much larger for the FP model. As such, the FP resonator is more
congruent to the formation of robust regular soliton crystals due to a longer repulsive
interaction distances. We concluded this chapter by discussing the formation of VDBSs in
larger symmetry broken regimes. VDBS were found to undergo a Hopf bifurcation when
scanning the detuning, which display nontrivial oscillations due to long range interaction
originating from the nonlocal coupling.
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Appendix A

Linear Stability Analysis of
Counterpropagating Light in Ring
Resonators

A.1 Linear stability analysis of the modal amplitudes

We begin our investigation by performing linear stability analysis on the homogeneous
stationary states. Here, we perform our linearisation about the modal amplitudes of the
counterpropagating model, Eqs. (4.11), which we rewrite here,

∂tfµ = Sδµ,0 − (1 + iθF )fµ + ik2µfµ

+ i
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′fµ′fµ′′(fµ′′′)∗ + 2ifµ
∑
µ′

bµ′(bµ′)∗, (A.1)

∂tbµ = Sδµ,0 − (1 + iθB)bµ + ik2µbµ

+ i
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′bµ′bµ′′(bµ′′′)∗ + 2ibµ
∑
µ′

fµ′(fµ′)∗, (A.2)

where the expansion of the forward and backward field envelopes are defined

F (τ, t) =
∞∑

µ=−∞
fµ(t)e

−ikµ(t−τ), B(τ, t) =
∞∑

µ=−∞
bµ(t)e

−ikµ(t+τ), (A.3)

for modal amplitudes fµ(t), bµ(t) with wavenumber kµ = 2πµ/τR and mode number µ.
Within the modal formalism, the homogeneous stationary states of Eqs. (A.1) and (A.2)
correspond to fµ,s = fsδµ,0, bµ,s = bsδµ,0 where δµ,0 is the Kronecker delta defined as

δµ,0 =

{
1, if µ = 0,

0, if µ ̸= 0.
(A.4)

We introduce a linear perturbation of the form,

fµ = fsδµ,0 + δfµ, bµ = bsδµ,0 + δbµ, (A.5)
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to Eqs. (A.1) and (A.2), such that, we obtain linearised equations in terms of the pertur-
bations δfµ, δbµ with,

∂tδfµ = −(1 + iθF )δfµ + ik2µδfµ

+ 2i{|fs|2 + |bs|2}δfµ + i(fs)
2(δf−µ)

∗ + 2iδµ,0{fs(bs)∗δb0 + (δb0)
∗fsbs}, (A.6)

∂tδbµ = −(1 + iθB)δbµ + ik2µδbµ

+ 2i{|bs|2 + |fs|2}δbµ + i(bs)
2(δb−µ)

∗ + 2iδµ,0{bs(fs)∗δf0 + (δf0)
∗bsfs}. (A.7)

We note that the self-phase Kerr modulation may be expanded as,∑
µ′,µ′′,µ′′′

iδµ,µ′+µ′′−µ′′′(fµ′fµ′′(fµ′′′)∗ − fµ′,sfµ′′,s(fµ′′′,s)
∗}

=
∑

µ′,µ′′,µ′′′

iδµ,µ′+µ′′−µ′′′{fµ′,sfµ′′,s(δfµ′′′)∗ + fµ′,sδfµ′′(fµ′′′,s)
∗ + δfµ′fµ′′,s(fµ′′′,s)

∗}

= i{
∑
µ′′′

δµ,−µ′′′(fs)
2(δfµ′′′)∗ +

∑
µ′′

δµ,µ′′ |fs|2δfµ′′ +
∑
µ′

δµ,µ′ |fs|2δfµ′ ]}

= i{(fs)2(δf−µ)
∗ + 2|fs|2δfµ}, (A.8)

and similarly, the cross-phase Kerr modulation,

2ifµ
∑
µ′

bµ′(bµ′)∗ − 2ifµ,s
∑
µ′

bµ′,s(bµ′s)
∗

= 2ifµ,s
∑
µ′

{(bµ′,s)
∗δbµ′ + (δbµ′)∗bµ′,s}+ 2iδfµ

∑
µ′

bµ′,s(bµ′,s)
∗

= 2ifsδµ,0
∑
µ′

δµ′,0{(bs)∗δbµ′ + (δbµ′)∗bs}+ 2iδfµ
∑
µ′

δµ′,0|bs|2

= 2iδµ,0{fs(bs)∗δb0 + (δb0)
∗fsbs}+ 2i|bs|2δfµ. (A.9)

In particular, it is noted that only the cross-phase Kerr modulation contains terms propor-
tional to the Kronecker delta. This is due to the fact that this term governs the interaction
of counterpropagating components.

Without the loss of generality, we may assume the homogeneous stationary states are
real, such that, we write Eqs. (A.6) and (A.7) in terms of the the real and imaginary parts
of the perturbations, with,

∂tRe(δfµ)
∂t Im(δfµ)
∂tRe(δbµ)
∂t Im(δbµ)

 =


−1 −A1 0 0
B1 −1 δµ,0C 0
0 0 −1 −A2

δµ,0C 0 B2 −1



Re(δfµ)
Im(δfµ)
Re(δbµ)
Im(δbµ)

 , (A.10)
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where

A1 = k2µ − θF + f2s + 2b2s, B1 = k2µ − θF + 3f2s + 2b2s, C = 4fsbs,

A2 = k2µ − θB + 2f2s + b2s, B2 = k2µ − θB + 2f2s + 3b2s.

The characteristic equation of the Jacobian matrix of Eq. (A.10) is,

[(1 + λ)2 +A1B1][(1 + λ)2 +A2B2]− δµ,0A1A2C
2 = 0, (A.11)

form which we determine the eigenspectrum

λ(kµ) = −1±
√
−A1B1 −A2B2 ±Q√

2
, (A.12)

Q =
√
(A1B1 −A2B2)2 + 4δµ,0A1A2C2. (A.13)

The significance of these eigenvalues is discussed in Section 4.3 of the main text.

A.2 Linear stability of homogeneous stationary states to
step function perturbations

Here we investigate the linear stability of homogeneous stationary states Fs, Bs to inho-
mogeneous perturbations in fast time at zero dispersion (β = 0). The nonlocality of the
counterpropagating system means that local perturbations will result in changes to the
unperturbed regions, and therefore have an implicit dependence on the entirety of the field.
It is necessary to track the evolution of the entire field to determine the susceptibility of
the homogeneous stationary states to bifurcation along the longitudinal coordinate. We
do so by considering the field part wise in fast time

F (τ, t) = F1(t)T (τ/τR)T (∆F − τ/τR) + F2(t)T (τ/τR −∆F )T (1− τ/τR), (A.14)

B(τ, t) = B1(t)T (τ/τR)T (∆B − τ/τR) +B2(t)T (τ/τR −∆B)T (1− τ/τR), (A.15)

such that

|F |2 = |F1|2T (τ/τR)T (∆F − τ/τR) + |F2|2T (τ/τR −∆F )T (1− τ/τR), (A.16)

|B|2 = |B1|2T (τ/τR)T (∆B − τ/τR) + |B2|2T (τ/τR −∆B)T (1− τ/τR), (A.17)

where T (τ) represent the Heaviside step function which has value 1 for τ ≥ 0, and 0
for τ < 0, and ∆F ,∆B are the normalised durations in fast time occupied by F1, B1.
The part wise fields F1 and F2 (B1 and B2) represent two separate domains of fast time
which experience different homogeneous perturbations of the same HSS, such that the
perturbation over the round trip is inhomogeneous. We consider a linear perturbation to
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the homogeneous stationary solution of the form

F1(t) = Fs + f1(t), F2(t) = Fs + f2(t),

B1(t) = Bs + b1(t), B2(t) = Bs + b2(t).

The average field powers under this formulation are

⟨|F |2⟩ = ∆F |F1|2 + (1−∆F )|F2|2, (A.18)

⟨|B|2⟩ = ∆B|B1|2 + (1−∆B)|B2|2. (A.19)

The evolution of the F1 and F2 components are not explicitly dependent on each other as
we have neglected dispersion. As such we describe the evolution of the F field as separate
ODEs for F1, F2 (likewise for the B field). Hence this system is described by the four
ODEs

dF1

dτ
= SF − (1 + iθF )F1 + i(|F1|2 + ν[∆B|B1|2 + (1−∆B)|B2|2])F1, (A.20)

dF2

dτ
= SF − (1 + iθF )F2 + i(|F2|2 + ν[∆B|B1|2 + (1−∆B)|B2|2])F2, (A.21)

dB1

dτ
= SB − (1 + iθB)B1 + i(|B1|2 + ν[∆F |F1|2 + (1−∆F )|F2|2])B1, (A.22)

dB2

dτ
= SB − (1 + iθB)B2 + i(|B2|2 + ν[∆F |F1|2 + (1−∆F )|F2|2])B2. (A.23)

Without loss of generality, we adjust the phase of SF , SB such that Fs, Bs are real. We
have that the real and imaginary components of the perturbation evolve as

ḟ1,r
ḟ1,i
ḟ2,r
ḟ2,i
ḃ1,r
ḃ1,i
ḃ2,r
ḃ2,i


=



−1 A1 0 0 0 0 0 0
−B1 −1 0 0 −∆BC 0 −(1−∆B)C 0
0 0 −1 A1 0 0 0 0
0 0 −B1 −1 −∆BC 0 −(1−∆B)C 0
0 0 0 0 −1 A2 0 0

−∆FC 0 −(1−∆F )C 0 −B2 −1 0 0
0 0 0 0 0 0 −1 A2

−∆FC 0 −(1−∆F )C 0 0 0 −B2 −1





f1,r
f1,i
f2,r
f2,i
b1,r
b1,i
b2,r
b2,i


(A.24)

where ḟ = df/dt,ḃ = db/dt and

A1 = F 2
s + νB2

s − θF , B1 = 3F 2
s + νB2

s − θF , C = 2νFsBs,

A2 = B2
s + νF 2

s − θB, B2 = 3B2
s + νF 2

s − θB.

The corresponding eigenvalue equation is then

0 = [(λ+1)2+A1B1][(λ+1)2+A2B2]
{
[(λ+1)2+A1B1][(λ+1)2+A2B2]−A1A2C

2
}
. (A.25)
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Eq. (A.25) yields two distinct sets og eigenvalues, which account for different instability
phenomena. Firstly, this results in the known eigenvalues of homogeneous perturbation
of the homogeneous stationary states [96]

λ = −1±
√
−A1B1 −A2B2 ±Q√

2
, (A.26)

Q =
√

(A1B1 −A2B2)2 + 4A1A2C2, (A.27)

corresponding to eigenvalues (4.16) for kµ = 0. Accompanying these eigenvalues, Eq.
(A.25) yields

λF = −1±
√

−A1B1, (A.28)

λB = −1±
√

−A2B2. (A.29)

These eigenvalues are indicative of instability of either the F field (λF ) or the B field (λB)
due to fast time inhomogeneous perturbations and are a consequence of the global coupling
of the counterpropagating field. Such eigenvalues are not present in locally coupled field,
such as the copropagating fields of Chapter 3. This eigenspectrum is mathematically
identical to those seen for the single field ring resonator (Lugiato-Lefever equation) with
parameter values PF , θ̃F and PB, θ̃B respectively. It is impotent to note that this instability
is predicted with the assumption of zero group velocity dispersion. Nonetheless, this
instability in found to extend into the normal dispersion regime (but not the anomalous
regime). As such, F1 and F2 do not need to be continuous regions of fast time. They
represent the total proportion of the field perturbed below or above the stationary solution,
and as such, the above eigenvalues are appropriate for a perturbation with random fast
time variations (which would have width ∆F ≈ 0.5 on average, assuming equal weighting).
Likewise for the B field.

In the regime of local coupling, the two copropagating fields are coupled by Kerr cross-
phase modulation. As such, a local perturbation of one of the fields will only effect the
corresponding local region of the other field. If we introduce a step function perturbation to
the homogeneous stationary states Fs, Bs with size ∆ of the form F = Fs+fT (τ/τR)T (∆−
τ/τR), B = Bs + bT (τ/τR)T (∆ − τ/τR), the perturbations f, b will evolve identically to
a homogeneous perturbation of the entire field. This results in the eigenvalues given
by Eq. (A.26) of homogeneous perturbation of the homogeneous stationary states [96].
Non-locality in the counterpropagating system introduces an implicit dependence on the
power of the entire field. This allows the system to access inhomogeneous states of the
single LLE, and introduces four additional eigenvalues indicative of instability only in the
presence of an inhomogeneous fast time component.

A.3 Linear stability of plateaus connected by step functions

In numerical simulations, we observe that stationary switching fronts (SF) form in only
one field at any a given time, with the other field remaining homogeneous. Using a
similar framework as in Appendix A.2, we can simply do the analysis by considering a
homogeneous F field with an inhomogeneous B field. We describe the B field as the part
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Figure A.1: (a) Homogeneous stationary solutions when scanning θF with parameter
values PF = PB = 2.1609, θB = 3.2. Distinct solutions branches are indicated by different
colours. The real (b) and imaginary (c) components of the eigenvalues (A.28) and (A.29)
indicate instability of the highest power branch of HSS for θF > θB (blue), and instability
of the sole HSS for θF < θB (red). This instability results in the formation of two SF
stationary states.
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wise function in terms of the higher and lower power homogeneous state B+, B− connected
by the step functions (an approximation of very steep SFs), and the F field as a single
homogeneous function. At zero dispersion we have

B = B−(t)T (τ/τR)T (∆B − τ/τR) +B+(t)T (τ/τR −∆B)T (1− τ/τR), (A.30)

where ∆ is the normalised front separation. Therefore,

|F (t)|2 = |F (t)|2, (A.31)

|B(t)|2 = |B−(t)|2T (τ/τR)T (∆B − τ/τR) + |B+(t)|2T (τ/τR −∆B)T (1− τ/τR), (A.32)

and the average field power is

⟨|F |2⟩ = |F |2, (A.33)

⟨|B|2⟩ = ∆B|B−|2 + (1−∆B)|B+|2. (A.34)

As the B field is part wise and the F field is homogeneous, the evolution of the F,B fields
is described by the three ODEs,

d

dt
F = SF − (1 + iθF )F + i(|F |2 + ν[∆B|B−|2 + (1−∆B)|B+|2])F, (A.35)

d

dt
B+ = SB − (1 + iθB)B

+ + i(|B+|2 + ν|F |2)B+, (A.36)

d

dt
B− = SB − (1 + iθB)B

− + i(|B−|2 + ν|F |2)B−. (A.37)

We introduce a linear perturbation to the system that is longitudinally inhomogeneous in
the B field and homogeneous in the F field,

F = Fs + f, (A.38)

B+ = B+
s + b+, B− = B−

s + b−, (A.39)

where Fs is the stationary homogeneous solution of the F field and B+
s , B

−
s are the two

stationary plateau states connected by the SFs. Without loss of generality, we adjust the
phase of SF , SB such that Fs, Bs are real. We have that the real and imaginary components
of the perturbations evolve as

d

dt



fr
fi
b+r
b+i
b−r
b−i

 =



−1 A 0 0 0 0
−B −1 −(1−∆B)C1 0 −∆BC2 0
0 0 −1 A1 0 0

−C1 0 −B1 −1 0 0
0 0 0 0 −1 A2

−C2 0 0 0 −B2 −1





fr
fi
b+r
b+i
b−r
b−i

 , (A.40)
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where

A = F 2
s + ν⟨|Bs|2⟩ − θF , B = 3F 2

s + ν⟨|Bs|2⟩ − θF , C1 = 2νFsB
+
s

A1 = (B+
s )

2 + νF 2
s − θB, B1 = 3(B+

s )
2 + νF 2

s − θB, C2 = 2νFsB
−
s

A2 = (B−
s )

2 + νF 2
s − θB, B2 = 3(B−

s )
2 + νF 2

s − θB.

This results in the characteristic polynomial

0 = [(λ+ 1)2 +A2B2]
{
[(λ+ 1)2 +AB][(λ+ 1)2 +A1B1]− 2∆BAA1C

2
1

}
+ [(λ+ 1)2 +A1B1]

{
[(λ+ 1)2 +AB][(λ+ 1)2 +A2B2]− 2(1−∆B)AA2C

2
2

}
,

(A.41)

which is composed of the product of terms indicative of fast time instability

Λ±
n = λ+ 1±

√
−AnBn, (A.42)

and eigenvalues indicative of temporal instability (in the curly brackets)

L(±,±)
n = λ+ 1±

√
−AB −AnBn ±Qn√

2
, (A.43)

Qn =
√

(AB −AnBn)2 + (−1)n(1− n−∆B)8AAnC2
n. (A.44)

This expression has similar form to the characteristic polynomial of the HSS seen in
appendix A.2 and will become identical when ∆B = 0, 1. In simulation, we observe
that the SF solutions are susceptible to damped oscillations under perturbation. These
oscillations grow in the range 3.5 < θF < 6.3 and the SF solutions are unstable. This
instability range is predicted by eigenvalues (A.41), which are evaluated numerically in
Fig. A.2.

If we instead consider a perturbation with inhomogeneous fast time component b±(τ, t)
to the stationary plateaus B±

s of the SF solution that does not change the average power
of the field ⟨|B±

s + b±(τ, t)|2⟩ = ⟨|B±
s |2⟩, then the resulting eigenvalues are

λ = −1±
√
−AB, for the forward field,

λn = −1±
√

−AnBn, for the backward field.

These eigenvalues are indicative of the longitudinal stability along the respective plateaus,
and suggests that temporal (longitudinal homogeneous) instability of the stationary states
of counterpropagating fields is observed when the average powers of the fields is perturbed.
Otherwise the fields exhibit an identical eigenspectrum to that of the LLE with effective
detuning as defined in Section 4.5. In particular, the eigenvalues of the SF solution at
stationary separation, as calculated in Section 4.5, are those of a single LLE at Maxwell

170



Appendix A. Linear Stability Analysis of Counterpropagating Light in Ring Resonators

Figure A.2: Real component of eigenvalues of the zero dispersion SF solutions for changing
θF with parameter values PF = PB = 2.1609, θB = 3.2. The six eigenvalues are calculated
numerically (six roots of Eq. (A.41)), where each branch of the blue dot dashed line
represent the real part of a complex conjugate pair of solutions, the red dashed lines are
real solutions.

point,

λ+ = −1±
√

(ΘMP − Y +
B )(3Y +

B −ΘMP), (A.45)

λ− = −1±
√
(ΘMP − Y −

B )(3Y −
B −ΘMP). (A.46)

This is expected due to to the one to one correspondence of the counterpropagating SF so-
lution to the stationary states of the LLE. We note that these eigenvalues are independent
of the detuning values. This is due to the fact that SF solutions of the counterpropagating
system map to a single parameter value (the Maxwell point ΘMP) of the analogues LLE.
When changing θF , we move through the multi-stability of SF states found at the Maxwell
point. The eigenvalues of the forward field are

λ = −1±
√
(θ̃F − YF )(3YF − θ̃F ) (A.47)

where θ̃F = θF − ν⟨|Bs|2⟩ is the effective detuning, which is dependent on the detuning
values (or more specifically the front separation ∆).

A.4 Self starting two switching front stationary states when
scanning detuning

In Fig. A.3, we hold constant θB = 3.2 and scan θF over the point of parameter symmetry
θF = θB. We start in Fig. A.3(a)-(b) by increasing θF , where at θF ≈ 0.9, we see the
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Figure A.3: Scans of the detuning, θF , for S = 1.47, θB = 3.2. Forward (a) and backward
(b) field intracavity power when gradually increasing θF over slow time. Switching front
solutions arise spontaneously due to instability of the homogeneous solutions, where it
can be seen that switching front solutions can be induced to switch propagation direction
by increasing θF over the point of symmetry θF = θB. Forward (c) and backward (d)
field intracavity power when gradually decreasing θF over slow time. No switching front
solutions for θF > θB due to bistability with a stable low power homogeneous stationary
state.

172



Appendix A. Linear Stability Analysis of Counterpropagating Light in Ring Resonators

spontaneous formation of a two switching front (SF) stationary state in the backward
propagating field (b). This value of θF coincides with the beginning of a fast time insta-
bility of the homogeneous stationary state (HSS) as shown in Fig. A.1. As θF is increased,
the separation of the SFs decreases linearly with θF , until the SFs collide and annihilate,
resulting in symmetry broken HSSs. As θF moves over symmetry, the high and low power
HSS suddenly switch fields due to a hysteresis of the HSS near symmetry, before entering
another regime of fast time instability of the HSS at θ ≈ 3.6, as shown in Fig. A.1. This
results in a two SF stationary solution in the forward propagating field. As θF is increased
further, the separation of the SFs increases nonlinearly with θF , until the two SF solution
becomes unstable to slow time oscillations of the plateaus at θF ≈ 5.36, as predicted by
the eigenvalues shown in Fig. A.2. Fig. A.3(a) and (b) demonstrate a change in the
direction of propagation of the frequency comb when scanning the detuning of one of the
fields (θF in this case) over symmetry.

If we now reverse the direction of the scan, in Fig. A.3 (c)-(d), we remain on the low
power HSS branch until we approach parameter symmetry. This reveals a large range of
bistability between the low power HSS and the two SF stationary solutions. The field
remains as symmetry broken HSS until θF ≈ 2.55. Here, we re-encounter the fast time
instability of the HSS, which results in the formation of a two SF stationary state. As θF is
decreased further, the SF separation increases linearly until the SFs collide and annihilate,
and the system move towards the sole homogeneous stationary solution. Comparing (b)
and (d), we see that the interval in which two SF stationary states occupy extends in both
directions outside of the of fast time instability region. This results in a bistability of HSSs
and two SF stationary states in the vicinity of the fast time instability.

A.5 Fast time dynamics of plateau solutions

Here we investigate the conditions required for the formation of exponentially localised
stationary solutions of Eqs. (4.11) which approach plateau solutions (fixed points) as
τ → ±∞. In particular, we wish to describe the heteroclinic cycles (two switching front
stationary solutions) so prolific in the bidirectionally driven ring resonator. We assume
the backwards field has flat profile such that Eqs. (4.11) can be written as

∂τU = Ṽ , ∂τV = Ũ , (A.48)

∂τ Ũ = −(θF − 2YB)U − V + UV 2 + U3, (A.49)

∂τ Ṽ = −(θF − 2YB)V + U + V U2 + V 3 − S, (A.50)

S2 = Y 3
B − 2(θB − 2⟨U2 + V 2⟩)Y 2

B + [(θB − 2⟨U2 + V 2⟩)2 + 1]YB. (A.51)

where the forward field presents the SF solutions with F = U + iV and the backwards
field is assumed homogeneous over the round trip with power YB. To study the stability
of the plateaus in fast time, we introduce the linear perturbation U = U0+ϵu, V = V0+ϵv
to the fixed point U0, V0. We continue with our previous assumption in which plateaus
exist on desecrate intervals over the round trip and connected by step functions. To
investigate the fast time stability of each plateau, we must appropriately evaluate the
effect of the perturbation on the integral term. In what follows we assume that the
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perturbation on the plateau has negligible effect on the average power of the full solution
⟨(U0 + ϵu)2 + (V0 + ϵv)2⟩ = ⟨U2

0 + V 2
0 ⟩. As a result, the perturbation does not effect the

flat backward field. We find that this is a suitable assumption due to the robustness of
the integral term to local inhomogeneity. Hence, the fast time stability of the plateaus
can be understood by considering the Jacobian matrix

J =


0 0 1 0
0 0 0 1

V 2 + 3U2 − θ + 2YB −1 + 2UV 0 0
1 + 2UV U2 + 3V 2 − θ + 2YB 0 0


(U0,V0,YB)

(A.52)

where J is evaluated at a fixed point of Eqs. (5.28). This Jacobian provides eigenvalues
of the form

λ = ±
√

(2YF − θeff)±
√
(Y 2

F − 1), (A.53)

where YF = U2
0 + V 2

0 is the plateau power of the forward field and θeff = θ − 2YB is the
effective detuning of the forward field. This set of eigenvalues has identical form to those
discussed in Chapter 4. As a result, the longitudinal stability of the plateaus is identical
to the stability of the HSSs of the LLE. In numerical simulation, we find that the leading
eigenvalue of (A.53) successfully predicts the approach of a SF solution to the high power
and low power plateaus. In particular, eigenvalues (A.53) present a Hamiltonian Hopf
bifurcation for YF = 1 (θeff > 2). This predicts the decaying pattern which form on the
approach to the low power plateau YF < 1 and a smooth exponential approach to the high
power plateau YF > 1.
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Appendix B

Linear Stability Analysis of the
Fabry-Pérot Resonator

B.1 Linear stability analysis of homogeneous stationary states

Here, we perform linear stability analysis of the HSSs of the single field Fabry-Pérot
model [48]. This is done to facilitate the discussion on the linear stability of the plateaus
solutions, performed in Section 5.5. We begin with the modal equations, which we rewrite
here,

∂tfµ = Sδµ,0 − (1 + iθF )fµ + ik2µfµ

+ i
∑

µ′,µ′′,µ′′′

δµ,µ′+µ′′−µ′′′fµ′fµ′′(fµ′′′)∗ + 2ifµ
∑
µ′

fµ′(fµ′)∗, (B.1)

for modal amplitude fµ(t) with wavenumber kµ = 2πµ/τR, mode number µ and Kronecker
delta δµ,0. These modal amplitudes are related to field envelope ψ(τ, t) via the modal
expansion

ψ(τ, t) =

∞∑
µ=−∞

fµ(t)e
ikµτ (B.2)

defined over the cavity round trip −τR/2 ≤ τ ≤ τR/2. Details of which can be found in
the main text (Section 5.3).

We introduce a linear perturbation of the form,

fµ,s = ψsδµ,0 + δfµ, (B.3)

about the HSS ψsδµ,0. When inserted into Eq. (B.1), we obtain linearised equations in
terms of the perturbation δfµ, with,

∂tδfµ = −(1 + iθ)δfµ + ik2µδfµ

+ 4i|ψs|2δfµ + iψ2
s(δf−µ)

∗ + 2iδµ,0{|ψs|2δf0 + (δf0)
∗ψ2

s}. (B.4)
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We note that the self-phase Kerr modulation may be expanded as,∑
µ′,µ′′,µ′′′

iδµ,µ′+µ′′−µ′′′(fµ′fµ′′(fµ′′′)∗ − fµ′,sfµ′′,s(fµ′′′,s)
∗}

=
∑

µ′,µ′′,µ′′′

iδµ,µ′+µ′′−µ′′′{fµ′,sfµ′′,s(δfµ′′′)∗ + fµ′,sδfµ′′(fµ′′′,s)
∗ + δfµ′fµ′′,s(fµ′′′,s)

∗}

= i{
∑
µ′′′

δµ,−µ′′′ψ2
s(δfµ′′′)∗ +

∑
µ′′

δµ,µ′′ |ψs|2δfµ′′ +
∑
µ′

δµ,µ′ |ψs|2δfµ′ ]}

= i{(ψs)
2(δf−µ)

∗ + 2|ψs|2δfµ}, (B.5)

and similarly, the cross-phase Kerr modulation,

2ifµ
∑
µ′

fµ′(fµ′)∗ − 2ifµ,s
∑
µ′

fµ′,s(fµ′s)
∗

= 2ifµ,s
∑
µ′

{(fµ′,s)
∗δfµ′ + (δfµ′)∗fµ′,s}+ 2iδfµ

∑
µ′

fµ′,s(fµ′,s)
∗

= 2iψsδµ,0
∑
µ′

δµ′,0{ψ∗
sδfµ′ + (δfµ′)∗ψs}+ 2iδfµ

∑
µ′

δµ′,0|ψs|2

= 2iδµ,0{|ψs|2δf0 + (δf0)
∗ψ2

s}+ 2i|ψs|2δfµ, (B.6)

where in particular, notice that only the cross-phase Kerr modulation contains terms
proportional to the Kronecker delta. This is due to the fact that this term governs the
interaction of counterpropagating components.

Without the loss of generality, we may assume the HSSs are real, such that, we write
Eq. (B.4) in terms of real and imaginary parts,(

∂tRe(δfµ)
∂t Im(δfµ)

)
=

(
−1 −A

B + 4δµ,0ψ
2
s −1

)(
Re(δfµ),
Im(δfµ)

)
, (B.7)

where A = k2µ − θ + 3ψ2
s and B = k2µ − θ + 5ψ2

s . The characteristic polynomial of the
Jacobian matrix of Eq. (B.7) is

λ2 + 2λ+ cµ = 0, (B.8)

where
cµ = 1 + k4µ − 2(θ − 4ψ2

s)k
2
µ + θ2 + 15ψ4

s − 8ψ2
sθ − 4δµ,0ψ

2
s(3ψ

2
s − θ). (B.9)

This results in the eigenspectrum

λ(kµ) = −1±
√

1− cµ. (B.10)

For µ = 0, the eigenvalues are

λ = −1±
√
(ψ2

s − θ)(θ − 3ψ2
s) (B.11)

and are mathematically identical to the eigenvalues of the Lugiato-Lefever equation. They
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predict the typical stability of bistable HSSs, wherein solution which satisfy ∂S2/∂H < 0
are unstable. As a consequence, the middle HSS of the tilted Lorentzian resonance is
unstable. In the case of µ ̸= 0, eigenvalues (B.10) become

λ = −1±
√

4ψ2
sθeff − 3ψ4

s − θ2eff + 2(θeff − 2ψ2
s)k

2
µ − k4µ. (B.12)

These eigenvalues were first derived in [48] and predict the onset of modulation instability
at H = 1 (θeff > 2), which is discussed in the main text in the context of plateaus and
exponentially localised solutions (Section 5.5). Eq. (B.12) is written in terms of the
effective detuning θeff = θ−2ψ2

s for clearer comparison with the eigenvalues of Section 5.5.
We note that the eigenvalues (B.10) may be obtained using an analogous perturbation to
the envelope ψ(τ, t) of the form

ψ = ψs + ϵaeikµτ+Ωt (B.13)

as seen in the main text, with wavenumber kµ = 2πµ/τR, growth/decay rate Ω and ϵ≪ 1.

B.2 Linear stability analysis of plateau states connected by
step functions

In Section 5.5, we discuss the growth/decay rate of Turing patterns on the plateau so-
lutions, characterising the approach and exit of exponentially localised solutions to and
from the plateau. Here, we present the derivation of the eigenspectrum 5.38 as presented
in Section 5.5.

As motivated in Section 5.5, we consider with the coupled equations (5.35), which we
rewrite here as

∂tψu,l = S − (1 + iθ)ψu,l + i(|ψu,l|2 + 2[∆⟨|ψl|2⟩+ (1−∆)⟨|ψu|2⟩])ψu,l − i∂2τψu,l. (B.14)

This equation describes the upper and lower plateaus, ψu(τ, t) and ψl(τ, t), occupying
intervals over the round trip time τR of size τR(1−∆) and τR∆, respectively, and connected
by step functions. The integral coupling terms are evaluated over their respective domains
as

⟨|ψl|2⟩ =
∫ τR(∆−1/2)

−τR/2
|ψl(τ, t)|2dτ, ⟨|ψu|2⟩ =

∫ τR/2

τR(∆−1/2)
|ψu(τ, t)|2dτ. (B.15)

We introduce a perturbations

ψu,l = ψs
u,l + ϵu,l(τ, t) = ψs

u,l + ϵau,le
iku,lτ+Ωu,lt (B.16)

to each plateau respectively, where ku,l is the fast time wavenumber acting on the plateaus
with growth/decay rate Ωu,l. The perturbation is assumed to be periodic over the plateau
domain (with ku = 2πnu/τR(1 − ∆) and kl = 2πnl/τR∆), with mode numbers nu,l and
ϵ≪ 1. In this case, we consider perturbations that are sinusoidal (ku,l ̸= 0), such that the
integral terms are evaluated as ⟨|ψu,l|2⟩ = ⟨|ψs

u,l|2⟩ = |ψs
u,l|2. Inserting the perturbations
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(B.16) into Eqs. (B.14) yields the linearised equations

∂tϵu,l = −(1 + iθeff − ik2u,l)ϵu,l + 2i|ψs
u,l|2ϵu,l + i(ψs

u,l)
2ϵ∗u,l, (B.17)

where we have defined the effective detuning θeff = θ − 2∆|ψs
l |2 − 2(1 −∆)|ψs

u|2. As the
coupling between the two plateaus is parametrised by the phase insensitive real number
∆, we may assume that S may be adjusted such that the stationary plateaus ψs

u,l are
mutually real. The real and imaginary components of the perturbations become,

∂tRe(ϵu)
∂tIm(ϵu)
∂tRe(ϵl)
∂tIm(ϵl)

 =


−1 −Au 0 0
Bu −1 0 0
0 0 −1 −Al

0 0 Bl −1



Re(ϵu)
Im(ϵu)
Re(ϵl)
Im(ϵl)

 , (B.18)

where

Au = k2u − θeff + (ψs
u)

2, Bu = k2u − θeff + 3(ψs
u)

2,

Al = k2l − θeff + (ψs
l )

2, Bl = k2l − θeff + 3(ψs
l )

2.

This yields the characteristic equation

[(Ωu + 1)2 +AuBu][(Ωl + 1)2 +AlBl] = 0 (B.19)

with eigenspectrum
Ωu,l = 1±

√
−Au,lBu,l (B.20)

as presented in its expanded form in Section 5.5 (Eq. 5.38).

178



Appendix C

Numerical Methods

In this appendix, we present the integration methods utilised to obtain the numerical re-
sults of this thesis. Simulations were performed using both explicit and implicit methods,
where explicit integration methods allow for the calculation of the next time step from
the current step, whereas, an implicit integration method has the next time step defined
in terms of both the current and future time step. The generalised Lugiato-Lefever equa-
tions of (integro-partial differential equation form) found ubiquitously within this thesis
were evaluated primarily though direction numerical integration via the Fourier split-step
method (Appendix C.2). Although the standard Split-Step Fourier method is explicit
for partial differential equation (such as the single field Lugiato-Lefever equation), in the
presence of counterpropagating field components, this method is implicit in its calculation
of the integral terms. As such, we also implement the explicit Crank-Nicolson method
(Appendix C.3) to verify our results.

C.1 Constraints on simulation step sizes

Before we move onto the integration methods, we consider the constraint on the maximum
step size applicable for both integration methods. To select an appropriate step size in
the slow time and fast time we utilise the Nyquist-Shannon criterion for sampling signals.
The Nyquist-Shannon sampling theorem states that a signal can be perfectly reconstructed
from its samples if it is sampled at a rate at least twice its highest frequency component.
Quantitively, the Nyquist-Shannon criterion for the temporal step is

dt ≤ 1

2fmax
, (C.1)

for largest slow time frequency fmax. The dominant contributions on this timescale are
form the dispersion and Kerr nonlinearity. We must select fmax to accommodate with the
phenomenon we wish to simulate. In general, we may characterise the largest frequency
through the dispersion time, with fmax ∼ 1/tdisp. The dispersion time tdisp =

√
Lβ2

characterises the broadening of a pulse envelope in slow time as it travels the cavity
length L due to chromatic dispersion, where β2 is the group velocity dispersion.

Likewise to insure stability along the longitudinal coordinate, the grid spacing in fast
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time must satisfy the Nyquist-Shannon criterion

dτ ≤ π

ωmax
. (C.2)

Here, ωmax correspond to the frequency of the cavity mode with largest mode number we
wish to simulate.

C.2 Fourier split-step integration method for nonlocally cou-
pled Lugiato-Lefever equations

The split-step Fourier method is commonly used for the numerical integration of nonlinear
partial differential equations with periodic boundary conditions [167–169], such as the
Lugiato-Lefever equation. Here, we adapt the split-step Fourier method for the integration
of coupled integro-partial differential equations which describe counterpropagating fields
F (τ, t), B(τ, t) in a ring resonator (as discussed in Chapter 4), which we rewrite here as

∂tF = SF − (1 + iθF ) + i(|F |2 + ν⟨|B|2⟩)− iβ2∂
2
τF (C.3)

∂tB = SB − (1 + iθB) + i(|B|2 + ν⟨|F |2⟩)− iβ2∂
2
τB, (C.4)

where θF , θB are the cavity detunings, SF , SB are the input field, ν is the coupling between
fields (typically taking the value ν = 2) and β2 is the group velocity dispersion.

We begin by expressing the integro-partial differential equations in terms of linear and
nonlinear operators,

∂tF = [L̂F + N̂F ]F + SF , (C.5)

∂tB = [L̂B + N̂B]B + SB, (C.6)

where

L̂F = −(1 + iθF )− iβ2∂
2
τ , N̂F = i(|F |2 + ν⟨|B|2⟩),

L̂B = −(1 + iθB)− iβ2∂
2
τ , N̂B = i(|B|2 + ν⟨|F |2⟩).

The formally exact solutions to (C.5) and (C.6) over the slow time step dt are

X(τ, t+ dt) = edt(L̂X+N̂X)X(τ, t) + SX

∫ dt

0
e(dt−s)(L̂X+N̂X)ds. (C.7)

following from Duhamel’s principle, where X may represent either F,B and we have as-
sumed L̂X and N̂X are slow time independent. The objective of the split-step method is
to approximate the solution of Eqs. (C.5) and (C.6) by applying linear L̂F,B and nonlinear

N̂F,B operators sequentially to advance the fields F,B in slow time. From Eq. (C.7), we

see that this amounts to the assumption that we may resolve exp(dt[L̂F,B + N̂F,B]) as the

product of exp(dtL̂F,B) and exp(dtN̂F,B). As operators L̂F,B and N̂F,B do not commute,
the exponent separation introduces an error associated with their commutativity, which
may be quantified following from the Baker–Campbell–Hausdorff formula. Considering
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first order contributions O(dt2) over small slow time steps, the contribution of the com-
mutator error is small and we may capture the leading-order dynamics of both operators
as exp(dt[L̂F,B + N̂F,B]) ≈ exp(dtL̂F,B) exp(dtN̂F,B), where further details may be found
in [167,168].

We introduce the discretisation of the slow time and fast time variables, with F (τj , idt) =
F i
j , B(τj , idt) = Bi

j . The field variables are period over the fast time interval 0 ≤ τ ≤ τR
with round trip τR, which is now divided into N equal subintervals as

τj = τR
j

N
, for j = 0, 1, 2, . . . , N − 1, (C.8)

with the corresponding reciprocal space (Fourier space)

kµ =

{
2π
τR
µ, for 0 ≤ µ < N/2,

2π
τR
(µ−N), for N/2 ≤ µ < N.

(C.9)

Linear component

We now begin the split-step integration by selecting the Linear component to advance
forward in slow time. For the small slow time interval dt, the linear equations are

X
i,(L̂X)
j = edtL̂XXi

j , (C.10)

where Xi
j may represent either F i

j , B
i
j . These equation can be solve in the Fourier domain

by defining the discrete Fourier transform

Fµ[Xj ] = X̂µ =
1

N

N−1∑
j=0

Xje
−ikµτj (C.11)

with the inverse discrete Fourier transform

F−1
j [X̂µ] = Xj =

N/2−1∑
µ=−N/2

X̂µe
ikµτj . (C.12)

where, in practice, these transforms can be performed via the fast Fourier transform (FFT)
algorithm. Advancement of Eq. (C.10) in slow time becomes

X
i,(L̂X)
j = F−1

j

{
Fµ

[
Xi

je
L̂Xdt

]}
(C.13)

= F−1
j

{
X̂i

µe
−dt(1+iθX−iβ2k2µ)

}
, (C.14)

where we have made use of the relationship Fµ[∂
2
tXj ] = −k2µX̂µ during the evaluation of

the linear operator.
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Nonlinear component

We now evaluate the nonlinear component with respect to the solutions of the linear

component F
i,(L̂F )
j , B

i,(L̂B)
j by means of the 2nd order Runge-Kutta mehtod [169]. Here, it

is noted that the input fields SF,B are incorporated into the Runge-Kutta nonlinear step.
Generally, the input field may be placed into either linear and nonlinear evaluations, but
incorporating SF,B in N̂F,B offers computational simplicity. This is because the driving
terms are constant in real space but non-diagonal in Fourier space (corresponding to
the central comb line with F [SF,B] = SF,Bδµ,0) and therefore requires and additional

convolution operation each integration time step, should it be incorporated into L̂F,B. The

integral of Eq. (C.7) may be approximated as
∫ dt
0 exp [(dt− s)(L̂X + N̂X)]SXds ≈ dtSX ,

assuming dt is small, such that, we obtain an expression for the future time step as

F i+1
j = F

i,(L̂F )
j + k

i,(F2)
j +O(dt2), (C.15)

Bi+1
j = B

i,(L̂B)
j + k

i,(B2)
j +O(dt2), (C.16)

with

k
i,(F2)
j = dt

[
SF + i

(∣∣∣∣∣F i,(L̂F )
j +

k
i,(F1)
j

2

∣∣∣∣∣
2

+ ν

〈∣∣∣∣∣Bi,(L̂B)
j +

k
i,(B1)
j

2

∣∣∣∣∣
2〉)(

F
i,(L̂F )
j +

k
i,(F1)
j

2

)]
,

(C.17)

k
i,(B2)
j = dt

[
SB + i

(∣∣∣∣∣Bi,(L̂B)
j +

k
i,(B1)
j

2

∣∣∣∣∣
2

+ ν

〈∣∣∣∣∣F i,(L̂F )
j +

k
i,(F1)
j

2

∣∣∣∣∣
2〉)(

B
i,(L̂B)
j +

k
i,(B1)
j

2

)]
,

(C.18)

where

k
i,(F1)
j = dt

[
SF + i

(∣∣∣F i,(L̂F )
j

∣∣∣2 + ν
〈∣∣∣Bi,(L̂B)

j

∣∣∣2〉)(F i,(L̂F )
j

)]
, (C.19)

k
i,(B1)
j = dt

[
SB + i

(∣∣∣Bi,(L̂B)
j

∣∣∣2 + ν
〈∣∣∣F i,(L̂F )

j

∣∣∣2〉)(Bi,(L̂B)
j

)]
. (C.20)

and the integral terms are evaluated as

⟨|Xi
j |2⟩ =

N−1∑
j=0

1

N
|Xi

j |2 −
1

2N
|Xi

0|2 −
1

2N
|Xi

N−1|2. (C.21)

Eqs. (C.15) and (C.16) form the recurrence relations which we use to simulate the coun-
terpropagation of light in ring resonators.

To summarise this split-step Fourier method, we first advance the fields of initial con-
dition F i, Bi at time t = idt according to the linear component [Eq. (C.14)] to obtain

F i,(L̂F ), Bi,(L̂B). We then use F i,(L̂F ), Bi,(L̂B) as initial conditions for the nonlinear com-
ponent, which is solved by Runge-Kutta methods [Eqs. (C.15) and (C.16)] to advance the
fields to next step t = (i+ 1)dt.
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Through a suitable redefinition of k
i,(F1)
j , k

i,(F2)
j , k

i,(B1)
j , k

i,(B2)
j , we use this method

to simulate all generalised Lugiato-Lefever equations seen throughout this thesis.

C.3 Crank-Nicolson integration method for nonlocally cou-
pled Lugiato-Lefever equations

The Crank-Nicolson method is a finite difference method first developed for numerical
evaluation of partial differential equations of the heat-conduction type [170], for which it
is unconditionally stable. Here we adapt this model for use in our models of Kerr resonators
of ring and Fabry-Pérot geometries. We do so to verify the results of the Fourier split-step
integration method of the previous section. Many of the models presented in this thesis
are of integro-partial differential equation form. Integral terms are evaluated implicitly
during the split-step integration. The Crank-Nicolson method allows us to evaluate the
integral terms explicitly allowing us to verify the validly of our results obtained from split
step simulation. Considering a system of general form

∂tu(τ, t) = Φ(τ, t, u, ∂τu, ∂
2
τu), (C.22)

the Crank-Nicolson utilises a combination of the explicit forward Euler step and the im-
plicit backwards Euler step in time t, given by

ui+1
j − uij
dt

= Φi
j(τ, t, u, ∂τu, ∂

2
τu), forward Euler step, (C.23)

ui+1
j − uij
dt

= Φi+1
j (τ, t, u, ∂τu, ∂

2
τu), backward Euler step, (C.24)

where we have introduced the discretisation u(jdτ, idt) = uij , and Φi
j evaluated in jdτ, idt, uij .

Hence, the Crank-Nicolson method can be written as

ui+1
j − uij
dt

=
1

2
[Φi

j(τ, t, u, ∂τu, ∂
2
τu) + Φi+1

j (τ, t, u, ∂τu, ∂
2
τu)]. (C.25)

This represents a second order integration method in time O(dt2) and space O(dτ2).

Crank-Nicolson method for counterpropagating light in ring resonators

First we consider two counter propagating fields in a ring resonator, which evolve according
to the nonlocally coupled LLE’s which we restate here,

∂τF = SF − (1 + iθF )F + i
(
|F |2 + ν⟨|B|2⟩

)
F − i∂2τF, (C.26)

∂τB = SB − (1 + iθB)B + i
(
|B|2 + ν⟨|F |2⟩

)
B − i∂2τB. (C.27)

Focusing on the forward field equation (C.26), the Crank-Nicolson discretisation is

F i+1
j − F i

j

dt
= −i

[
F i
j−1 − 2F i

j + F i
j+1

2(dτ)2
+
F i+1
j−1 − 2F i+1

j + F i+1
j+1

2(dτ)2

]
+ f ij(F,B), (C.28)
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with fast time step τ = jdτ and slow time step t = idt, and

f ij(F,B) = SF − (1 + iθF )F
i
j + i(|F i

j |2 + ν⟨|Bi
j |2⟩
)
F i
j . (C.29)

Although the Crank-Nicolson method in inherently implicit due to the backwards Euler
step (C.24), we may rearrange the terms of Eq. (C.28) to produce an explicit relationship
to evaluate F i+1

j . Rearranging Eq. (C.28), we express the future time step (i+1) in terms
of the current step time step (i), with

i

2(dτ)2
F i+1
j−1 +

[
1

dt
− i

(dτ)2

]
F i+1
j +

i

2(dτ)2
F i+1
j+1 =

− i

2(dτ)2
F i
j−1 +

[
1

dt
− i

(dτ)2

]
F i
j −

i

2(dτ)2
F i
j+1 + f ij(F,B).

which may be expressed as the relations

aF i+1
n + bF i+1

1 + aF i+1
2 = a∗F i

n + b∗F i
1 + a∗F i

2 + f i1(F,B), for j = 1, (C.30)

aF i+1
j−1 + bF i+1

j + aF i+1
j+1 = a∗F i

j−1 + b∗F i
j + a∗F i

j+1 + f ij(F,B), for j = 2, . . . , n− 1,

(C.31)

aF i+1
n−1 + bF i+1

n + aF i+1
1 = a∗F i

n−1 + b∗F i
n + a∗F i

1 + f in(F,B), for j = n, (C.32)

where

a = − i

2(dτ)2
, b =

[
1

dt
+

i

(dτ)2

]
. (C.33)

This allows us to impose periodic boundary conditions, as can be seen in Eqs. (C.30) and
(C.32). Writing Eqs. (C.30), (C.31), (C.32) in terms of matrices, we arrive at

AF i+1 = A∗F i + f i (C.34)

with

b a · · · · · · · · · a

a b a
...

... a b a
...

...
. . .

. . .
. . .

...
... a
a · · · · · · · · · a b





F i+1
1

F i+1
2

F i+1
3
...
...
...

F i+1
n


=



b∗ a∗ · · · · · · · · · a∗

a∗ b∗ a∗
...

... a∗ b∗ a∗
...

...
. . .

. . .
. . .

...
... a∗

a∗ · · · · · · · · · a∗ b∗





F i
1

F i
2

F i
3
...
...
...
F i
n


+



f i1
f i2
f i3
...
...
...
f in


.

Hence, we obtain explicit relations for F i+1 and Bi+1,

F i+1 = A−1A∗F i +A−1f i(F,B), (C.35)

Bi+1 = A−1A∗Bi +B−1f i(B,F ), (C.36)

which we may solve numerically using matrix multiplication methods.
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Crank-Nicolson method for Fabry-Pérot resonators

This integration method may be generalised to any of the system studied in this thesis
through a suitable redefinition of f . For instance, a suitable recurrence relation for the
fields of counter-rotating polarised components of the Fabry-Pérot presented in Chapter
6 is

ψi+1
± = A−1A∗ψi

± +A−1f i±(ψ+, ψ−), (C.37)

where

f i±(ψ+, ψ−) = S − (1 + iθ)ψi
± (C.38)

+ i
2

3

(
|ψi

±|2ψi
± + 2|ψi

∓|2ψi
± + 2⟨|ψi

±|2⟩ψi
± + 2⟨|ψi

∓|2⟩ψi
± + 2⟨ψi

±(ψ
i
∓)

∗⟩ψ∓

)
,

and the matrix A is defined as before. Similarly, for the single field Fabry-Pérot of Chapter
5, we have

ψi+1 = A−1A∗ψi +A−1f i(ψ), (C.39)

where

f i(ψ) = S − (1 + iθ)ψi + i
(
|ψi|2 + 2⟨|ψi|2⟩

)
ψi. (C.40)
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Rev. A, 98, 013831, (2018).

[49] L. Hill et al., Symmetry broken vectorial kerr frequency combs from Fabry-Pérot
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