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ABSTRACT 

The non-linear hyperbolic partial-differential equations 

governing long wave propagation in one and two plan 

dimensions are derived. By application of the Preissmann 

or ' box' finite difference scheme two numerical models 

of long wave behaviour are developed. 

The first, based on the one plan dimensional form 

of the partial differential equations, is intended for the 

solution of flood routing problems in natural river systems. 

The model has two constituent parts. A main channel 

algorithm reproducing flood wave behaviour in the main 

channel of the drainage system and a washland algorithm 

modelling the behaviour of lateral storage ponds on the 

river banks. The main channel algorithm possesses the 

ability to handle: natural channel cross-sections, variable 

distance increments, tributary inflows, calibration with 

both distance and stage, rating curve boundary conditions, 

the formation and drowning of controls and the analysis 

of controls. On completion of development trials the model 

was used to assess the effect a new road embankment 

would have on flood levels in the River Aire in Yorkshire. 

The second, based on* the two plan dimensional partial 

differential equations, employs an alternating direction 

application of the Preissmann finite difference scheme 

to model tide and storm surge behaviour in estuaries 

and coastal seas. Special consideration was given to 

boundary conditions in the model and these include a 
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moving shore line boundary condition permitting the flooding 

and drying of sand flat areas to be modelled and a "weir" 

flow boundary condition, enabling the overtopping of 

obstructions with a width considerably less than the grid 

size of the model to be represented. A practical assessment 

of the model's capabilities was accomplished by simulating 

tide and storm surge propagation in the Firth of Clyde 

and Humber Estuary. 
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h Water depth 

h' Instantaneous variation from mean water 

depth. 
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CHAPTER ONE 

INTRODUCTION 

1.1. 

Recent technological advances have provided the 

means to design and construct civil engineering works 

of greater technical complexity and scale than were previously 

possible. Such projects have the potential to affect the 

environment over distances ranging from their immediate 

vicinity to hundreds of miles. Parallel to this increasing 

technical ability there has been a steady growth in society's 

environmental conscience; awareness of man's increasing 

potential to irreversibly damage his surroundings. Together 

these have placed greater emphasis on the engineering 

profession's responsibility to assess the environmental 

impact of proposed engineering works long before the 

construction phase. 

Civil engineering hydraulics is one branch of engineering 

to which the above statements are particularly applicable. 

As, when proposed works influence flows in rivers and 

seas there is considerable potential for economic and 

environmental damage. Economic damage may result from 

inundation of valuable land or adverse effects on shipping 

lanes or the inshore fishing industry. Environmental 

damage can occur through damage to wild life habitats 

or the loss of a recreational amenity. 

. 
To solve the complex problems of cause and effect 
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posed by alterations to hydraulic flow systems recourse 

is made to physical or numerical modelling. Both of 

these techniques have their own particular advantages 

and disadvantages. In the case of numerical modelling 

the advantages include: flexibility in the sense that 

the structure of the model does not depend on data from 

the prototype, and hence the same basic model can be 

used for entirely different cases, also numerical models 

can be stored easily with minimum costs. Although possessing 

these advantages numerical models are not yet sufficiently 

advanced to totally replace physical models; as only 

by physical modelling can full three dimensional flow 

behaviour and fine geometrical detail be included in a 

study. 

In the early days numerical modelling found application 

only in projects with a large capital expenditure, as 

in these projects the cost of numerical modelling research 

and development are small compa red with the overall 

project cost. Today, however, numerical modelling is 

used for projects with capital expenditure ranging from 

tens of thousands to hundreds of millions of pounds. 

This popularising of numerical modelling results from 

two sources. Firstly, the availability of published inform- 

ation allowing numerical schemes to be developed with 

a small budget by capitalising on research investments 

made for the earlier projects and secondly the increased 

availability and reduced costs of computing facilities. 
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One of the aims of this research project is to build 

on current numerical modelling expertise to provide low 

cost numerical models for the solution of tide and flood 

propagation problems in two plan dimensions. It is hoped 

that the resulting models will be of use to hydraulic 

engineers with access to standard office computing facilities. 

1.2. ECONOMIC ASPECTS OF NUMERICAL HYDRAULIC MODELS 

The commercial considerations governing the internal 

operation of a numerical modelling organisation are presented 

in detail both by Abbott (1979a) and Cunge, Holly and 

Verway (1980). From the point of view of a practising 

engineer the economics can be viewed in a relatively 

simple light. To him a numerical model is an engineering 

tool which should provide reliable engineering information 

at as low a cost as is possible. This applies if he purchases 

a software system to operate on his own inhouse computer 

facilities or if he employs a numerical modelling organisation 

to carry out a study for him. 

The costs incurred when using inhouse ftcil_ities 

to solve a particular problem may be subdivided as follows: 

i. The cost of basic surveying and field 

measurement campaign. This cost exists 

for all studies and its value depends 

to a large extent on local conditions. 

ii. The cost of purchasing or developing 
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the necessary software to solve the problem. 

This can be significantly reduced if 

the model is applicable to a number 

of problems permitting initial development 

or purchasing costs to be discounted 

over a number of applications. Such 

is the economic reasoning behind the 

design system approach Abbott (1976). 

A design system consists of a main computational 

algorithm for the solution of the mathematical 

equations governing the physical problem 

linked to subsidiary programmes for 

data and result processing. The main 

computational algorithm is developed 

with a high degree of flexibility enabling 

it to be applied to as '. ride a range 

of problem types and geometrical configurations 

as possible. The subsidiary programmes 

lower costs by reducing the manhours 

required for data and result processing. 

A flow chart for a general design system 

is shown in Figure 1.1 

The cost of computer time. This cost 

exists for all studies. It can be minimised 

firstly, by the use of efficient programming 

techniques, secondly by careful assessment, 
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at the planning stage, of exactly what 

information is required from the study. 

The advantage for a practicing engineer in adopting 

a policy of using inhouse numerical modelling is that 

after the initial development or purchasing outlay for 

the numerical model has been met his organisation then 

has direct control over charges for any modelling contract. 

Autono;; iy of this kind permits the strategic use of numerical 

models where the engineering firm may choose to subsidise 

numerical model studies for a client in the hope that 

such a study will eventually lead to a much more valuable 

contract. 

If the practicing engineer employs a modelling organ- 

isation to carry out a study on his behalf the cost of 

the operation is outwith his control and will depend to 

a large -extent on economic forces operating within the 

numerical modelling market at that time. 

In most engineering firms numerical modelling studies 

will consist of a mixture of "inhouse studies and external 

numerical modelling contracts. 

1.3. SCOPE OF THE CURRENT RESEARCH 

In the follo:: ing chapters the development and applic- 

ation of two numerical models is described. One for the 

modelling of flood wave propagation in a natural river 

channel and its associated washland areas and the other 

for the modelling of tide and storm surge propagation 
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in coastal waters. 

1.3.1. FLOOD ROUTING MODEL 

The aim of the flood routing model, listed in Appendix 

B, is to provide an estimate of variations in flows and 

water levels during the passage of a flood through a 

natural river system by solving the governing hydraulic 

equations. This requires that the model take account 

of flows both in the main river channel and into and 

out of washland areas. To achieve this two algorithms 

are employed within the model; one for the solution of 

the continuity and dynamic equation in the main channel 

and the other for volume conservation in washland areas. 

The main channel algorithm employs an implicit 

finite difference method to solve the governing equations 

as this permits use of the most economic combinations 

of time and distance increments. In addition to solving 

for flows and water levels along the main channel length 

it was desirable that the model contain the facility for 

handling the following features: 

i. The ability to operate using the 

geometry of the natural river channel. 

11. The ability to use variable distance 

increments between solution nodes. This 

enables easy inclusion of sections of hydraulic 

interest such as bridges and weirs in 

thn numerical schematisation. 
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iii. A facility for handling tributary 

inflows as in many rivers a large percentage 

of downstream main channel flow comes 

from upstream tributary flows. 

iv. Be capable of detecting and analysing 

control sections. This includes both man 

made weirs and natural control sections 

which may be present at low flows and 

drowned out at high flows. An initial 

survey of the technical literature indicated 

that such a requirement may pose computational 

difficulties especially in reaches with 

relativel steep bed slopes, Price and 

Samuels (1980). 

v. Calibration with both distance and 

stage allowing local energy losses at 

meanders and bridge sections to be included 

along with variations in channel roughness 

with water level. 

The use of ? rating curve for the 
vi. 

downstream boundary condition. Through 

this the influence of conditions downstream 

of the model area are included in the 

solution. 

Washland areas -are represented by a number of 



9 

storage pockets on both banks of the main channel, The 

pockets are separated from each other and the main channel 

by a system of flood banks. Flows between the main channel 

and the washlands are calculated from a weir flow equation 

of the form q oc H3'4 . The degree of submergence is taken 

into account by the use of a submergence factor. Within 

each washland compartment waterlevel is calculated by 

an explicit solution of the continuity equation. The use 

of an explicit calculation allows the washland model to 

be contained in a separate routine. This adds to programme 

flexibility as the main channel model can be applied in 

rivers where no washland system exists. Since- individual 

washland compartments may border an appreciable stretch 

of river channel it was thought desirable to accommodate 

'the possibility of simultaneous inflow to and outflow from 

a washland. Such a circumstance may develop, for example, 

at a meander loop. Upstream of the meander the river 

level is relatively high and a proportion of the river flow 

enters the flood plain within the loop of the river. Downstream 

of the meander the river level is significantly lower due 

to head losses within the meander and flow may take place 

from the flood plain to the river at this point. 

Programming of the numerical model was done in 

such a way as to be compatible with an existing programme 

library at the University of Strathclyde. The library provides 

supplementary programmes for the generation of main channel 

section properties from raw survey data, the calculation 
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of starting conditions in the form of steady flow profiles 

an d calibration. 

On completion the flood routing model was used for 

a flood study of the River Aire in Yorkshire. The purpose 

wa s to assess the effect of flood levels when a proportion 

of the existing washland was lost due to the construction 

of a new road embankment. 

1.3.2. TIDAL MODEL 

Intended applications of the model are the simulation 

of tide and storm surge propagation in coastal areas. 

The model, listed in Appendix C, employs an alternating 

direction implicit finite difference scheme to solve the 

long wave equations in two plan dimensions for flows 

and water levels at every point in a numerical grid placed 

over the study area. Solution at every point in a numerical 

grid inevitably increases computational cost above those 

for methods solving flows and water levels at alternate 

grid points. However, it is hoped that the additional 

computer costs incurred will be offset by greater model 

flexibility particularly in the choice of boundary conditions. 

Possible boundary conditions include: 

i. Flow known as a function of time. 

ii. Water level known as a function 

of t irre. 

An expanding boundary condition 

where the solution area may expand over 
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low-lying areas as water level increases. 

Such condition will be particularly 

useful if it is required to assess the 

extent of flooding resulting from a storm 

surge. 

iv. A weir flow boundary condition. This 

condition is of value in circumstances 

where an assessment of flow over an 

obctrnction with a width considerably 

less than the grid size is required. 

Examples of such obstructions are 

sand-bars or causeways. 

For development purposes the model was used to simulate 

tides and storm surges in the Firth of Clyde. The Firth 

of Clyde was chosen because of its highly variable bathymetry 

and the readily available data for both schematisation 

and verification. After completion of testing and calibration 

the opportunity was taken to obtain a direct comparison 

between the adopted alternating direction implicit method 

and a two-dimensional characteristic method. The results 

of Donald (1981) were used as the basis for this comparison. 

Following the satisfactory conclusion of development 

tests in the Firth of Clyde, the model was applied to the 

Humber Estuary. Data for this estuary was available 

to provide direct comparisons between computed and observed 

water levels and velocities. The water level and velocity 
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observations were extracted from published works by the 

Humber Estuary Research Committee and the Hydraulics 

Research Station. In addition the sand flat areas in the 

Humber Estuary permitted testing of the expanding boundary 

condition while the weir flow boundary was tested by simulating 

the over topping of Spurn Head. 
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CHAPTER TWO 

DERIVATION OF LONG WAVE EQUATIONS 

2.1. WATER WAVES 

Water waves are classified into three categories 

according to their "relative depth", which is the ratio 

of water depth to wave length. If the relative depth 

is greater than a half, the waves are called "deep-water 

waves" or "short waves", for which the wave celerity 

is dependent on the wave length only. 

For the "shallow water waves", also called "long 

waves", the relative depth is less than one twentieth, 

and the wave celerity is dependent on the water depth 

only. 

Waves having relative depths between these two 

limits are called "intermediate-depth waves", where the 

wave celerity is dependent on both the wave length and 

the water depth. 

The present concern is with long waves as these 

are the dominant wave form during flood wave, tide and 

storm surge propagation. 

2.2. GENERATION OF "LONG WAVES" IN SEAS 

In sea areas long waves are generated by forces 

acting on the body of water. The resulting waves can 

be classified depending upon the generating forces. These 

are: tidal, meteorological surge and tsunami. 
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2.2.1. TIDES 

Tidal waves are a result of: 

a) The attractive foice of the moon; 

b) The attractive force of the sun; 

c) The attractive force of the earth; 

d) The centrifugal force caused by the 

earth about its axis. 

Of these contributory forces, that of the moon is 

the greatest. If it were not for the effects of the shape 

and depth of the oceans, and the position of islands therein, 

and the shape of the coastlines, the rise and fall of the 

tides would closely follow the movement of the moon round 

the earth, varied to some extent in accordance with the 

momentary position of the moon, the earth and the sun 

in relation to each other. In fact, however, the manner 

in which the tides rise and fall in different seas and 

oceans varies considerably; the period of oscillation of 

the tide in one area differs from that in another, and 

varies from about six to twenty-four hours. 

The combined attractive forces of the moon and the 

sun on the earth's large masses of water have their greatest 

effect when they are in line with the earth, i. e. at new 

moon and full moon, and their least effect when they are 

approximately at right angles to each other, i. e. at the 

first and last quarters of the moon. 

These variations of this force affect the amplitude 

of the wave they produce and hence the range of the tide, 
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i. e. the difference in level between successive high and 

low waters, is also affected. Shortly after full and new 

moon a locality will experience its highest high waters 

and lowest low waters of that lunar month, and the tides 

in this period are called "spring tides". Conversely, 

around the times of first and last quarters of the moon, 

the lowest high waters and highest low waters of that 

lunar month will be experienced, at which period the tides 

are called "neap tides". Between these limits the height 

of successive tides increases or diminishes progressively. 

Spring tides around the British Isles occur from about 

one to one and a half days after full or new moon, and 

neaps occur at about the same interval after the first 

or last quarters of the moon. The time interval between 

successive spring and neap tides is variable, but for practical 

purposes it can be taken as being about seven and a half 

days, i. e. about one quarter of an average lunar month 

of twenty-nine and a half days. 

2.2.2. METEOROLOGICAL SURGE 

A meteorological surge wave is normally produced 

by conditions associated with a depression. An area of 

low pressure over an area of sea will set up a barometric 

slope, by causing a relative rising of the sea surface 

by about 10mm per mb. Appreciable surges are only likely 

to develop on this account when a progressive wave is built 

up by resonance which results from a depression travelling 

at a speed approaching (gh)' 
. Associated strong winds cxxv% 
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also act to increase water level. Amplitudes of surges 

will only be small in deep water but will become magnified 

on account of shoaling effect on entering shallow water. 

2.2.3. TSUNAMI 

Tsunamis have a seismic origin and will thus be 

propagated from a faulted or orogenic area. Coastal 

engineers are usually concerned with tsunami that have 

degenerated into trains of long waves. On account of 

their relative infrequency and unpredictability much remains 

to be learned of their fundamental characteristics. As 

with storm surges the amplitudes of tsunami waves are 

also magnified on entering shallow water. 

2.3. MODIFICATION OF LONG WAVES IN COASTAL AREAS 

Long waves propagating in the open ocean generally 

have an amplitude of less than a metre. On entering 

coastal areas restrictions imposed by the surrounding 

land and the shallower water cause the wave crest to 

steepen and the wave amplitude to increase. 

The steepening of the wave crest is a result of 

wave celerity depending on water depth. It can be shown, 

Doodson & Warburg (1941), that the celerity of any point 

in a wave is equal to: 

C (g(h+3h'))i 

where h is the mean water depth and h' is the instantaneous 

variation above and below this mean. Clearly in shallow 

water high water will be accelerated and low water will 
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be retarded, significantly steepening the wave crest. 

Amplification of wave amplitude in gulfs and estuaries 

results from two distinct causes: 

i. By reason of tendency to resonance. It can be 

shown, Doodson and Warburg, (1941), that in estuaries 

of length less than half a wave-length tidal oscillations 

at the closed end are greater than at the mouth. 

ii. By reason of the changes in the area of the cross- 

section of the channel. As the cross-sectional area diminishes 

the stream must increase to convey the same amount of 

volume and energy as before. This necessarily involves 

an increase in the elevation also. 

2.4. INTERACTION OF LONG WAVES 

Unpredictable surge waves, such as meteorological 

surges and tsunami, will be superimposed on any tide 

that may be present and the two will build up tugether 

in shallow water. If the crest of a surge coincides with 

high water a phenomenal high water will be produced, 

far above the predicted value. Disastrous effects may 

be experienced ashore, such as damage of man made structures 

or the inundation of valuable arable land. 

2.5. DERIVATION OF THE TWO-DIMENSIONAL LONG WAVE EQUATIONS 

Using Newton's laws and the principle of conservation 

of mass it is possible to derive the two-dii, ienbio: al unsteady 

flow equations; which given continuous sets of boundary 

and geometrical data will describe the propagation of long 
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waves in two space dimensions. In the subsequent 

sections these equations are derived relative to a fixed 

co-ordinate system. The Cartesian axes 'X' and 'Y' 

are taken counter-clockwise in an arbitrary horizontal 

plane, with the 'z' axis vertically upward. 

2.5.1. 'THE CONTINUITY EQUATION 

The law of conservation of mass states that the 

mass of fluid flowing across the boundaries into the fluid 

element shown in Figure 2.1 in time 'a t' must be equal 

to the amount by which the mass of the element has increased 

in the same time interval. Let the dimensions of the 

element be p x, o y, and pz and velocities in the 'x', 

'y' and 'z' directions be given by 'u', 'v' and 'W' 

respectively. 

The inflow of mass across face ACGE in time ' at' 
is: 

/-.. ) uozoyot 

where /J is the mass per unit volume of the fluid. By 

Taylor's theoee" the inflow of mass across opposing face 

BDHF in time 'pt' is approximately: 

- [/ouazoynt + 
as X) nxnzayat ] 

Adding the above pair of expressions yields the net inflow 

of mass in the x-direction during 'at'aX 

ax Az aynt 

The net inflow of mass into the volume element is the 

sum of the contributions of the three co-ordinate directions, 

i. e.: 

net flow across 
_[4%u) + 

ailýv) 
+a 

(pw)]axoyozaZEquation 2.1 
all faces in btöx may z 
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If the mass present at time 't' is /Jax ay az then at time 

't+ot', from Taylor's formula, the mass present will be: 

/Dnxnyaz + soxnynznt 

Then, 

net increase of mass 
_ ago ox pyoz at Equation 2.2. 

within element inot at 

In the absence of any creation of mass within the element 

this must be equal to the inflow of mass across the boundaries; 

i. e. Equation 2.1. = Equation 2.2. 

3P ) 
-[ a(pu) .aC 

(pW) ] Equation 2.3. 
at ax 2) y 6z 

Where a fluid may be considered incompressible equation 

2.3. reduces to the volume conservation law of an incompressible 

fluid: 

3u 
F x-- +cb v +C) W=0 Equation 2.4 

C7 -z dy 

2.5.2. THE DYNAMIC EQUATION 

Consider the forces shown acting, in the x-direction, 

on the fluid element in figure 2.2. A double subscript 

convention is used to identify shear stress components; 

the first subscript indicating the direction of the normal 

to the surface on which the shear stress acts, and the 

second, the direction of the component. Assuming all pressures 

to increase in the positive co-ordinate direction, the net 

pressure force on the element is: -3X ex Ay oz. Similarly 

the net shear forces acting in the x-directions are: 

"Ayexaz and 
Zzx 

&Z Ax 46Y. Body forces, in the ax C) 

x-direction, acting on the fluid as a whole, e. g. tide 

generating forces and Coriolis force are represented by 
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the term ax. Summating the above forces and applying 

Newton's second law in the x-direction gives: 

du 1 aX +1 
aß_ 

+ 
ö(-- 

- , x) + ax Equation 2.5. 
Y/ a 

The acceleration term is provided by the differential equation 

for the total change in velocity U. 

du .o dx + dy + dz+z dt 

Similar equations can be derived for the y and z directions. 

Namely: 

dv =P C) y +ý 
( 

+ r%( + a Equation 2.6. 
x y 

_ -1 ýP 
+ý 

(ý' )+1a( e'ý )+ 
dt 75 a Equation 2.7. 

x %ý öY z 

For the problems considered in the present work, 

(flow in rivers and estuaries), vertical compunents of local 

mean velocity are small. In consequence, vertical components 

of force due to changes of momentum and gradients of vertical 

shearing stresses are negligible compared with the force 

due to gravity. 

Equations 2.5. to 2.7. can be simplified to: 

+u ax may /o dx +/ +ý + ax Equation 2.8. 

d 
+u `) v av -1 aP 

+1 
__ 

+1dý+ Equation 2.9. 
at may ' ;T dv /Py 

1az- 
-9 Equation 2.10. 

It is assumed that the density is uniform and consequently 

the pressure is hydrostatic and a linear function of depth, 

i. e. 

p(z) =/ogh + Pa 

where Pa is the atmospheric pressure. In tidal computations, 
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atmospheric pressure is 
-usually assumed to remain constant 

over the problem area, however, pressure variations are 

important in the generation of storm surges. The derivatives 

of pressure in the horizontal directions now become a 

function of water level and atmospheric pressure. 

ýP 
/ý 

äW1 äPa 
öx -/ g+ Tx 

where 
dWX 

is the component of surface slope in the x-direction. 

Equation 2.8 becomes: 

3OX 
+' vtyx/dY +/- 

at ä+ 
V3 _ -P'aÖX 

1 
id -- 

3 
zxAz 

+ ax Equation 2.11 

Likewise, equation 2.9 can be written: 

äv 
+U 

LV 
+ cv_ 

_gäW1 _ 
laPa 1d-C /öx+ 1 ji ax Vy- - -3 P; +/' xy /° 

z // z+ a Equation 2.12 

2.5.3 DEPTH AVERAGED E QUATIONS 

If the bed is at elevation zo above the datum and 

W1-zo = stream depth h equations 2.11 and 2.12 can be 

integrated thrcughout the depth: 

W1 

J (dt + udX + vay)dz = 
zo 

J1w 
1- 

z - -hf 
W1 a 

dz +h 
1 

1 x/öy+atzx/dz)dz h , y 
zo zo zo 

+1 

Wl 
aA hx -gaWl -ýaPa öx ýC) x 

+a+1ý 
x Oh 

ýC /ax dz + 
sx ý° bx 

z 
/ 

z 
yx 

0 o 

are non-linear terms and can only be integrated u 
aX 

and v 25 _y 

over the vertical if their distributions are known. Fortunately 

they are usually much smaller in magnitude than ýu/ät 
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and it is sufficient to assume that: 
ý'(u+v) h C) u au V dz = 01U + ß2V 
zo 

where U and V are depth averaged velocities. Values 

of coefficient J3' have been found for typical variations 

of velocity over the vertical 13' seldom exceeds 1.05 in 

real flows, Henderson (1966). Because of the smallness 

of the terms, however, it is common practice to omit the 

term completely or take ß' = 1. 

Most estuaries are wider by an order of magnitude 

than they are deep, and shear stresses on the vertical 

planes are small except near steep banks and vertical 

walls. yx and t' 
xy are thus usua]y small and can 

be omitted from equations 2.11. and 2.12. 

Dividing by g and rearranging equations 2.11. and 

2.12. become: 

1 c)U+ U aU 
+V 

aU 
+ 

aWl 
+1 dPa 

- 
Tsx 

+Zbx _ äx Equation 2.13 
- 

g cat g dx g ýy jX (mag 0x fgh ugh 

1 c)V + 
dV 

+Vc+ 
LWl 

+1 
ýPa 

_y+ 
Z-by 

_ ay Equation 2.14 

g 6t g äx g dy C) y (°g C) y ugh /ogh 

The continuity equation can also be integrated over 

the depth of the stream: 

wi 

ax+dy+3-)dz=0 
W1 wI 

Putting U=hf 
oudz 

and V=h$ 
ovdz 

and noting that W: zs = dWI/dt and Wz, =0 we get: 

c) (hU) 
+ r)(hV) + 

dWl 
_0 Equation 2.15 

The foregoing is based on the discussion presented 

by McDowell and O'Connor (1977). 
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2.5.4. REPRESENTATION OF SURFACE AND BOTTOM SHEAR STRESSES 
Co 

-o practice is that shear stress at the sea 

bed be expressed in terms of the well known Chezy friction 

coefficient 'C' as used in steady open channel flow. 

Equilibrium between gravitational and resistance forces 

can be expressed as 

L br ° /oghS0 

where tbr is the resultant shear stress proportional to 

the resultant depth averaged velocity (UZ + V2 )2 and 

So is the slope of the water surface. The resultant velocity 

may be deduced from De Chezy's empirical relationship 

namely: 

(U2 + VZ)Z = C(S0h)' 

since h corresponds to the hydraulic radius in a very 

wide channel. From the previous pair of equations; it 

follows that the resultant frictional stress at the sea 

bed is given by: 

_/OE (U2 + V2) /C2 
Also, Also, the components of the resultant frictional stress 

which opposes fluid motion are expressed as follows:, 

ý. 
bx =p8 U(U2 + V2) 2 /C2 Equation 2.16 

by =1g V(U2 + VZ) 2 /C2 Equation 2.17 

The frictional resistance factor 'C' , which is used 

to establish these relationships betwecn squared velocity 

and the bottom stress can be found only by observation. 

This coefficient depends on the roughness of the bottom, 

the bottom material and depth. 
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The horizontal shear force at the free surface of 

the fluid as a result of wind stress, ý" may be determined 

from from an empirical approach similar to that for investigation 

of bottom stress, Muir Wood and Fleming (1981). However, 

for wind stress the medium of flow is air not water. 
h¢n 

A 
X-CUi1 

(ice . 1-1 0. W Fý7 , 
n- ýOwtý Ci1rfc fr 

1 

The components of stressAare expressed wind as: 

Z-sx 
= K, 

a 
WW cos P Equation 2.18 

Z"sy = K/a WW sin P Equation 2.19 

where K is the wind stress coefficient, ,a is the density 

of air and W is the wind speed above the water surface. 

2.5.5. EXTERNAL BODY FORCES 

Body forces a and a include the effects of the 
xy 

earth's rotation and tide generating forces. Tide generating 

forces are negligibly small compared to other terms and 

are generally omitted from actual computations. Consequently, 

the only external force requiring consideration is that 

due to the earth's rotation. The Coriolis acceleration 

components, and the associated inertia forces are induced 

by the rotation of the earth with angular velocity and 

therefore depend on the latitude \/' of the body of fluid. 

The inertia forces in the positive x and y directions 

are %o nv and -1:: >f) u respectively, where .2=2, Z Sin. 

When these forces are integrated with respect to z and 

divided by the total depth h, the final form can be equated 

to the external forces as follows: 

ax = 2V t, J Sin Equation 2.20 

ay =-2U vJ Sin''" Equation 2.21 
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A comprehensive discussion of the coriolis force 

is given by Doodson and Warburg (1941), while a rigorous 

mathematical derivation of the term is presented by Raudkivi 

and Callander (1975). 

2.5.6 THE COMPLETE EQUATIONS 

The equations for long wave motion in two-plan 

dimensions can now be written as: 

ig 
+U C) U+VaU+ dWl 

+1 c) Pa 1V + 9 at 99äy7 ýx 

-C bx t7 
sx 0 Equation 2.22 

g /0-h g/ 0h 

1 aV U ýV VýVý W1 1 ýPa 
9 +9C+ -+-T-Y+iP +fiU+ 

y- 
- -_ hgoh= Equation 2.23 

aW1 (hU) c(hV) 
1 +cx +3'y Equation 2.24 

or setting qX = Uh and qy = Vh 

1c+ (q,, A) ci(/h) + 
(q,. /h) ( x/h) 6Wl 

gt9 öx aY + ax + 

1 )Pa 
_n(q A) + 

-`sx 
_0 Equation 2.25 

gpcx y g/oh g%oh 

1 a(gyih) + (g, /h) a(g /h) + 
(q,. /h) c(gy/h) + awl + s at 9x9 ay ay 

1 c) Pa 
_n (q 1h) +_ g, o ayx g/0 h gfh -0 Equation 2.26 

C) I+ SX 
+=0 Equation 2.27 

where: 
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-Lbx =13g ("hl)Z +( )2 ] 2/C2 

:: 1 
tb 

y= 
/zg hY { 

hx +( ') 
i/C2 

? 'sx =K /0 WW Cos P 

Z'-- 
y=K 

ýJa WW Sin 
s 

2.6 ONE DIMENSIONAL LONG WAVE EQUATIONS 

In systems such as that shown in Figure 2.3 the 

lateral boundaries effectively restrict flow to one space 

dimension. Here the two-dimensional unsteady flow equations 

can be reduced to their one-dimensional form through certain 

simplifying assumptions. These one-dimensional long wave 

equations, also known as the de St Venant equations, are 

presented in the following. 

2.6.1 ONE DIMENSIONAL CONTINUITY EQUATION 

Under the conditions shown in Figure 2.3 the continuity 

equation becomes: 

B pct 
+ C) Q -q1=0 x Equation 2.28 

where 'B' is the section breadth, 'Q' is the average flow 

rate over the section area and 'q' is the average inflow 

or outflow per unit length. 

2.6.2 ONE DIMENSIONAL DYNAMIC EQUATION 

In one dimensional unsteady flow calculations the 

Coriolis acceleration, wind shear stress and variations 
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in barometric pressure are negligibly small, further the 

total change in velocity of time 'dt' is now provided by: 

dt du =X dx + cýu j -t 

giving the one dimensional dynamic equation as: 

du a W1 ciu Cýbx 
dt +gý +uc +ýh =0 

or, 

1 du cý W1 1 ciu2 ? I, x _ g cTt + ýC x +2g 3 +ýgh 0 

Substituting Q= uA provides: 

1a (Q/A) 6 wl 1 (Q/A) Z -'6x + -ý-X ++=0 Equation 2.29 
cx %ogh 

2.7 THE METHOD OF CHARACTERISTICS 

Equations 2.25,2.26 and 2.27 and equations 2.28 

and 2.29 are sets of hyperbolic partial differential equations. 

Such equations can be combined linearly to produce character- 

istic equations. These equations have the property that 

they involve differentiation in one less direction than 

the original equations. For example, in one-dimensional 

unsteady flow, the characteristic equations become ordinary 

differential equations. Further, the characteristic equations 

define paths or surfaces in the solution domain along 

which disturbances propagate. It is this feature which 

provides the analogy between the physical system and 

its characteristic representation. The domain of dependence 

and region of influence for any point are rigorously defined 
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by the method of characteristics and correspond to those 

of the physical prototype. This feature is often quoted 

as being a major attraction when applying the method 

of characteristics to unsteady flow problems. 
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CHAPTER THREE 

A NUMERICAL MODEL FOR LONG WAVE PROPAGATION IN A 

NATURAL RIVER CHANNEL 

3.1 INTRODUCTION 

Man's interest in river flow stems from his need 

to protect human life, property, and economic systems 

from the capriciousness of natural flow events and to 

exploit their potential benefits in terms of energy, agriculture, 

. and navigation. In this overall context, mathematical 

modelling provides a tool by means of which man can 

study and gain an understanding of hydraulic flow phenomena, 

select and design sound engineering projects and predict 

extreme situations so as to be able to provide advanced 

warning of their occurrence and importance. 

A numerical model to predict flow conditions in 

the main channel of a natural river system is developed 

in the following chapter. The main channel, shown 

in Figure 3.1, is considered to be the channel through 

which direct drainage from the system takes place. Particular 

attention is paid to the numerical representation of the 

lateral flow term in the continuity equation as this is 

of importance when linking n model to the washland algorithm 

presented in Chapter Four.. 

When applied to real problems the following numerical 

model will be the main constituent of a suite of programmes. 

The complementary programmes are designed to generate 

data, suitable for use by the main numerical model, from 

raw survey data. This facility will considerably reduce 

the total number of man hours required for the analysis 



32 

DENOTES WASHLAND 
DENOTES BRIDGE 

Qý TYPICAL RIVER BASIN 

DOWNSTREAM 
SECTION 

MIDDLE SECTION UPSTREAM 
SECTION 

Typical slope 
1: 300 

Typical slope 
1: 20000 

by 

C' 

Typical slope 
1: 2000 

LONGITUDINAL PROFILE 

TYPICAL CROSS SECTION 

Figure 3.1 

WASHLAND CHAMAIN NNEL 
WASHLAND 



33 

of flood routing problems. The complementary programmes 

and their interdependence are discussed in Section 5.6 

and illustrated in Figure 5.5. 

3.2 DISCRETIZATION OF THE ONE-DIMENSIONAL LONG WAVE 

EQUATIONS 

The one-dimensional long wave equations define 

values of dependent variables, i. e. flow and water level, 

throughout a continuous flow field. For practical engineering 

purposes it is necessary to solve equations 2.28 and 2.29 

for these variables at predetermined points in space and 

time. As these equations cannot be solved analytically 

approximate methods must be used. Approximate methods 

proceed through the ' process of discretization, where 

the continuous flow field is described in terms of discrete 

values at a finite nurr. 6erýof points. These points at which 

variables are computed are called "grid points" or "nodal 

points". Discretized flow laws can then be solved to 

furnish approximate engineering solutions to the equations. 

Of the discrete 
, methods available the finite difference 

approach is adopted in the present work, this being 

th, af most commonly used in engineering practice, see Cunge, 

Holly and Verwey (1980). The method requires the replacement 

of the partial differential operators in the continuum 

equations by finite difference operators, to give a finite 

difference analogue of the differential equations. The 

finite difference equations are then solved by numerical 

methods. 

At the grid points geometrical information is given 
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to the calculation; rendering their position of considerable 

importance in natural river flood routing computations. 

As, if numerical computations are to include all aspects 

of energy loss by flow passing through a channel, irregularities 

and constrictions such as meanders, weirs and bridges 

must be defined in addition to typical channel cross-sections. 

Inclusion of such features generally requires that irregular 

distance increments be used to position grid points. 

3.3 CHOICE OF FINITE DIFFERENCE SCHEME 

Of the host of available finite difference schemes 

a variation of the Preissman scheme, described by Abbott 

(1979b) was considered the most appropriate in the present 

circumstances. The reasons ct-+e two fold. 

Firstly, the rate of rise of a flood may be said 

to be relatively slow in the majority of circumstances. 

Thus, from the point of view of representing the time 

dependent behaviour of a flood wave, a relatively large 

time increment may be selected in any step-by-step numerical 

computation. Large time steps are desirable from an 

economic standpoint in that a reduced computer time is 

employed. However, modelling of the spatial variations 

of flow parameters requires that relatively close distance 

intervals be chosen between adjacent solution points within 

the computational scheme. Such considerations militated 

against the use of an explicit method of solution of the 

equations of motion and accordingly, for the calculations 

of time dependent variables in the river channel, an 

implicit technique is desirable. 
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Secondly, the scheme solves for both dependent variables 

" at every grid point throughout the solution domain. 

This means that no weighting of differences is required 

for local centering to second-order accuracy with non- 

equidistant grid points, Price (1974) and Abbott and Isonescu 

(1967). Special conditions that relate dependent variables 

at discrete points, such as weir flow and stage discharge 

curves can be conveniently introduced. 

3.4 IMPLICIT FINITE DIFFERENCE SCHEME 

The following variation of the Preissmann finite 

ýcb. e.., a.. 
difference A is applied, see Figure 3.2 Let it be assumed 

that all variables are known at all points of the network 

on the row 't n, which is at time step 'n' and that it 

is desired to find the values of the variables on the 

row 't n+1' that is the computations are advanced to 

the time step tn+1=tn+ot. Choosing a four point 

grid identified by the intersections of the vertical lines 

xI and x +1 
with the horizontal lines tn and t n+l 

, the 

equations of unsteady flow are applied in the finite difference 

form within the four point grid. At the point m, the 

average values and the partial derivatives of a function 

f are represented by: 

f(m) _ 
(1-e) 

2 
(fn + J 

fn )+ j+1 
Q (fn+l + fn+l) 2i j+1 

Equation 3.1 

ýf(m) 
C) x _1[ nx 

(1-(3) (fn - j+1 fn) +0 (fn+l - fn+1)1 Equation 3.2 
j+1 jJ 

of (m) 
d 

1 
= 

n+1 I(f n+l +f ) nn )ý Equation 3.3 - (f +f tot j j+l j j+l 
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In equations 3.1 through 3.3 f may represent Q, W1, Sf 

so that Q, WI, äQ aQLA 
, axl at the point M are 

presented in terms of the values of the variables at the 

four corner grid points. 

With 0=0.5 t his scheme is similar to that used 

successfully by Amein and Fang (1970). More recently 

Price and Samuels (1980) developed a numerical model 

based on the scheme and applied it to the River Lagan 

in Northern Ireland. 

3.5 CONSISTENCY, CONVERGENCE AND STABILITY 

Before a finite difference analogue of the continuum 

equations can be considered of value its properties of 

consistency, convergence and stability must be examined. 

3.5.1 CONSISTENCY 

Consistency can be defined in terms of the local 

truncation error, as defined by Smith (1978). That is, 

if the value of the finite difference terms tends to the 

true value of the partial differential terms as the grid 

lengths tend to zero then the finite difference scheme 

is consistent with the partial differential equations. 

The consistency of the Preissmann scheme described 

in the previous section can be investigated by taking 

Taylor series expansions about the point rn to give: 

f j+l -f jn +e + 
öx (2) +a 

(° Z2 )2 
+0( (°X/2)' ) 

-t (8nt) +a 
(02t)= 

-0( (0ot)3 
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fn _ fn+e - 
äf 

(Ax )+a (nx/2)2 
-0( (Ax/2)3 x -7, j+Z x2 dx 2 

- (Oat) + 
d2 f (0ýt)2 

- O((0 ot)3 ) 

n+l n+e tlf tx)2 
2f (Ax/2 )2 

+0( (° ) fj+l fj+ý + ax (2+ aý 
22)' 

ac c1-e got J-pr 2 
+oc c c1-6)nt)' 

of (°X) + Alf (x/2)2 -o (AX)3 J-x 22 
ýf 

r r, cýºA 4 
ö2 f( (1-0)°t)2 

Tr% 11-V 164 l/ tZ j' 

+O(( (1-O)ot)3 

2 

Substitution of the above terms into equation 3.2 gives: 

aC) f (m) 
- 

6X 
+0 (ox2) Equation 3.4 x 

or equation 3.3 gives: 

of (m) of 
+0 (nt ) Equation 3.5 

t-T 

Clearly, the finite difference operators tend to the partial 

differential operators as ax and nt tend to zero. Further, 

equations 3.4 and 3.5 show the scheme to be of second 

order accuracy in space and first order accuracy in time. 

3.5.2 CONVERGENCE AND STABILITY 

The mathematical foundations for the questions of 

convergence and stability of numerical schemes are well- 
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developed only for linear systems. The results from 

linear theory are used as guidelines to non-linear problems, 

the justification depending on numerical experiments. 

A convergent finite difference scheme is defined 

mathematically as one in which all values of the finite 

difference solution approach the continuum differential 

equation solution as the finite difference mesh size approach 

zero. This condition is linked to stability of a linear 

scheme through the equivalence theorem of Lax: 

Given a properly posed initial-value problem and 

a finite difference approximation to it that satisfies the 

consistency condition, stability is the necessary and sufficient 

condition for convergence. 

Lax and Richtmyer (1956) define stability by requiring 

a bounded extent to which any component of the initial 

data can be amplified in the numerical procedure. 

A local stability analysis for the scheme applied 

to the linearized long-wave equations was undertaken 

by Evans (1977), who concluded that for 9=0.5 the 

scheme has no amplitude error, but does have phase error 

and is thus dispersive. For 0.5 -z 9 1.0 the scheme 

is stable and damping of short-period waves occurs, the 

degree of damping depending on the number of grid points 

per wave length and moves up the wave spectrum as the 

Courant number is increased. In practical terms none 

of this is relevant to river modelling where the number 

of grid points per wave length is very large, and even 

with high Courant numbers there is little phase error. Indeed, 
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Abbott (1974) suggests that "accuracy may actually be 

increased by operating at high Courant numbers, due 

to the solution being continually "refreshed" by the "boundary 

conditions". " 

3.6 FINITE DIFFERENCE CONTINUITY EQUATION 

Leaving aside the lateral flow term for the present, 

replacing the differential operators by the following difference 

operators: 

B aö 
t= 

B'/2nt (W1ý+1 - W1ý) + Bý+1/2ot (W1ý+1 - W1ý+1) 

ýQ 2nx (Qn+1 ' Qn+l) +1 (Qn - Qn) j +l 2 nx j +l j 

gives the finite difference continuity equation: 

Bý/2ot (W1ý+1 - W1ý) + Bý+1/tat (W1ý+1 - W1ý+1) + ta1 x 

(Qj+i - Qj+l) + lox (Qj+l - Qn) =0 

Rearranging: 

(B n/2 at) Wln+l 1 Qn+l +(Bn / n+l +1 n4 
7J . i&. X +1 2ot)Wl7+1 loxQ°G ýj i 

Equation 3.6 

where 

Gý = Bý/2nt W1ý + Bý+1/2nt W1ý+1 + 2o1 x(0n i 

Equation 3.7 

3.6.1 LATERAL FLOW TERM 

In the present study the lateral flow term at any 
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section may consist of two components: 

a) a tributary inflow (Ql) 

In finite difference form this is the average of the known 

tributary flows at times n and n n+l within a reach between 

two nodal points, 

Qlmean = 0.5 (Q1j+l + Qlj) 

b) an overbank lateral flow (ql) 

This is a complicated term to formulate in finite difference 

form, as the lateral overbank flow is a function of both 

channel water level and washland water level. During 

a time increment variations in both of these water levels 

may be large enough to significantly influence the lateral 

flow. Therefore, the finite difference term has two components. 

An initial lateral flow qln and a gradient term compensating 

for variation of lateral flow with river water level, 

Aql/&W1 (Wl +1 
- Wi ). The total lateral flow term then becomes: 

Qltj _ 21 
(Q1 +1 + Q1ý) + (q1 + 0.5 (W(n*ýW(ý ))öx i Awl 

Equation 3.8 

The influence of the washland water level is modelled 

using a submergence factor. Details of this are described 

in the following chapter. 

3.6.2 FINITE DIFFERENCE CONTINUITY EQUATION INCLUDING 

LATERAL FLOW 

Inserting equation 3.8 in equation 3.6 provides 

the complete finite difference continuity equation, 
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(Bý/2nt - nql/AWI) W1ý+1 - -Z1 -, 5x 
Qj+i + 

( Bý+1/2nt) W1ý+1 + 26x Qj+l = G. Equation 3.9 

with G modified to: 

Gj G] +2 (Q1j+i + Q1ý _(°Q/AW1)WIý _2qlý ) 

Equation 3.10 

3.7 FINITE DIFFERENCE DYNAMIC EQUATION 

Ignoring energy losses due to friction for the present 

and replacing the differential operators by the following 

difference operators: 

1a (Q/A) 
-1 

n+l n_ Qn/An n+l n_nn 
9- 2got (Qj /A 

11 
Q]+1/Aj+l Qj+l/Aj+l 

c)W1 -e (Wln+l - Wln+1) + 5 -x x i+1 
(1-0) 

(W1n+1 - W1 n) 

1 (Q 2 /A 2) 0 n+l nn2 n+l n n2 g bx nx 
(Qj+1 Q j+1/2g(Äj+1) - Qj Q j/2g 

(Aj )) + 

((Qý+1Y2. g(Aj+1) -(Qý )2 /2g(Aý)2 iýA 0) 

gives the finite difference dynamic equation: 

1 (Qn+1/An n /An n+l n_nn 
29 Lt - Qj/Aj + Qj+l/Aj+1 Qj+l/Aj+1 + 

G (Wln+l - Wln+l) + 
(1+0) (Wln - Wln) + ox j+l j Ax j+1 j 

2 E) (Qn+l n /(An )- Qn+1Qn/(Ani )+ (1-0) n )Z n'nz; t 
2gex J j+I. j+l JJJ 2gox (Qj+lýýj+l) ý0) )/(Aý))=0 
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Rearranging: 

(-e) Wln+l + (Qn+l/2gAn) (, _I_ - 6Qn/A"ex) +0 Wln+l 
ox ij at ji ox j+1 + 

Equation 3.11a ( Qjn+l 
+1/2gAj+1) 

(at + 8Qj+l/Aj+1A x) = H. 

where 

H -(1-6) (Wln - Wln) +1 (Qn/An + Qn /An )- Ax j +l j 2g ofii +1 j +l 

2g ne) 
((Qj+)/(A j+l)-(Qj)/(Anj) Equation 3.11b 

3.7.1 ENERGY GRADIENT 

In this study an estimate of the energy gradient 

is obtained from Mannings equation for the flow, Q, in 

an open channel under uniform conditions, i. e. the total 

energy line has a constant gradient and is parallel to 

the invert level, 

Q=n R3 Sol 

where A is the channel cross-sectional area, R is the 

hydraulic radius, n is Mannings constant and So is the 

invert or energy gradient. In the non-uniform flow case 

the energy gradient, Sf, is estimated by rearranging 

the above equation: 

Sf = n2 Q2/(A2 R. '3) 

or, 

Sf = Q2 /k2 Equation 3.12 

where k, the conveyance is given by 
2 

k=A R'/n Equation 3.13 
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With reference to Figure 3.2, it is desirable that 

the finite difference term be representative of conditions 

within the region bounded by the lines j j+l, n and 

n+1. That is, some average of Sf , Sf n+1 
, Sf +1 and 

Sf ý+l 
. This creates two prob lems. Firstly, the question 

of calculating an average en ergy gradient through the 

reach. Secondly how to obtain a realistic representation 

of the unknown friction gradients at ti me n+1. 

3.7.2 VARIATION OF ENERGY GRADIENT WITH TIME 

The problem created here is that the friction gradients 

Sf +1 and Sf n+1 are quadratic functions of the unknown 

flow Q n+l and conveyance kn+l , which in turn is a function 

of the unknown water level Wln+l .A variety of alternative 

formulations is possible to overcome this impasse. Three 

possibilities are discussed below. 

a) The simplest formulation is based on the assumption 

that conveyance will not vary significantly during a 

time increment; so that k n+1 may be replaced by kn 

-then linearising the problem in Q +1 by considering 

Qj +1. Qj to be representative of (Q n+1)2. 

Resulting in: 

Sfý+l _ Qj+1Qj/ (kj )z Equation 3.14 

Application of this approxim ation is limited to channels 

where the above assumptions are justifiable. Namely, 

where cross-sectional properties vary gradually with water 
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level and where flow and water level vary little within 

the implicit time increment. 

b) As above, assume conveyance to vary slowly 

with time and replace ký +l by k To linearise the 

problem in Qý +1 assume Qý +1 
= Qý +nQ. Then, 

(Q, +1)Z 
= 

(Q, +A Q)2 

= Qj2+ 2QýnQ +p Q2 

Considering A Q2 to be negligibly small and pc-A . w! S 

oQ = Qj+l - Qj 

gives 
2 

Qj+l 2Q 
IQ j+1 _(Q? 

Z 

, ýn+l may then be represented by ý1] 

Sfý "1 (2QnQn+1 _(Qn2 n2 Equation 3.15 

This approximation is applicable where flow varies 

significantly during a time increment, but is limited 

as variations in section properties with water level must 

be gradual. 

c) The following representation of energy gradient 

it time n+l is linearised in unknowns by the use of 

the differential expression for total change in Sf from 

changes in both flow and conveyance. 

Sf = Q2/k2 

dSf =(2Qn /(kn)) dQ -(ýQn/(kn)) dk 

= 2Sfn ((Qn+1 - Qn),, Qn_ (kn+l_kn)/kn 
J]7]]JJ 



46 

= 2Sfn (Qn+1/Qn _ kn+l/kn) Equation 3.16 JJJJl 

Utilizing 

kn+l _ kn + 
ok (Wln+l _ awl 

Wlný Equation 3.17 J j J J 

equation 3.16 expands to 

dSf = 2Sfn (Qn+l/Qn nk/AWl (Wln+l _ Wln) 
JJJ kn JJ 

Sfý+1 may be written as 

n+l nnn n+l n ok/oWI n. l n Sfý = SfI + dSf = Sfi + 2Sfi (Qi /Qý - (Wl 
_Wfd1) 

Equation 3.18 

This representation is applicable in channels where both 

flow and conveyance vary significantly during a time 

increment. 

3.7.3 VARIATION OF ENERGY GRADIENT WITH DISTANCE 

Since Sf is expressed in the form 

Sf = Q2/k2 

and flows Q and conveyance k are known only at the 

solution nodes,, the problem arises as to how to interpolate 

between them in expressing Sf. Cunge, Holly and Verwey 

(1980) outline a number of methods developed by different 

modellers. These include the following interpolation formulae: 

Sf, = Q2 /(kk; + (1-oc) k; ) (weighted average of k2 ) 

Sf2 = Q2 (Wk? + (l-ac)/ki) (weighted average of Sf) 

Sf= Q2/k; °` k2 (weighted geometric mean of k2 ) 

Sf4 = Q2 /(alk, + (1-o&) k2 )2 (weighted average of k) 

in which a steady flow situation has been assumed ->herc 
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c=a weighting coefficient. Cunge, Holly and Verwey show 

how with a factor of two difference in conveyance between 

two adjacent points and o(= 0.5, the friction slope for 

each reach could vary by some 50% depending on the 

conveyance interpolation scheme chosen. 

During the development of the current scheme it 

was noted that if equal weighting is given to energy 

gradients at both ends of a reach, i. e. oc. = 0.5, steep 

local energy gradients at sections where cross sectional 

area is restricted, see Figure 3.3, have an excessive 

influence on the calculations. In order to reduce this. 

influence to proportions similar to those found in the 

physical system a flexible weighting coefficient is used 

in the numerical model. 

Sfm = OCSfI +o +1Sf3+1 Equation 3.19a 

where 

o-Z j= 
Sfj+1/(Sfj + Sfj+1) Equation 3.19b 

Uj+1 = Sfj /(Sfj + Sfj+l) Equation 3.19c 

Here the weighting coefficient varies from reach to reach 

depending on the relative magnitude of the energy gradients. 

Adoption of such a scheme is justified by the following 

example: 

The equation for total energy E: 

E=z+h+ u2/ag 

can be differentiated with respect to x to give 
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=dX (z +h+ v2 /2g) = -Sf =v2 /CR 

or, 

dx (h + v2 /2g) = So-Sf 

The above equation can be written in finite difference 

form as: 

oHa (h + v2 /2g) 
- So-Sf Equation 3.20 

Ax - Ax 

When flow conditions are known at a point equation 

3.20 can be integrated back up the channel in a stepwrise 

manner. Although not providing an exact solution this 

technique will furnish a reasonable approximation to the 

profile of the energy line in the physical system. 

Consider the case of a trapezoidal channel with 

a base width of 6m and side slopes of 12H : 1V laid 

on a bed slope of 1/1000 and carrying a discharge of 

30m3/s. The channel terminates in a free overfall and 

has a Mannings' roughness coefficient of n=0.025. 

Section properties can be calculated from: 

A= h(6 + 1.5h) 

P=6+2/3.25 h 

B=6+ 3h 

The critical depth hc existing at the free overfall can 

be calculated from: 

Q2B 
ga3 

or on substituting the above section properties 

302 (6+3hc) = gh3 (6+1.5hc)3 
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whence by trial 

h=1.226m 
c 

The numerical integration to a distance of 410m upstream 

of the control is carried out in Table 3.1. The energy 

line profile from this table is plotted in Figure 3.4. 

Consider a reach bounded by j 200m before the free 

overfall to j+l at the free overfall. The friction gradients 

at j and j+1 are 0.0016 and 0.0068 respectively. Calculating 

the factors from equations 3.19b and 3.19c gives 

_ 
(0.0016) 

=0.19 
(0.0016 + 0.0068) 

_ 
(0.0068) 

- 0.81 ýý+1 (0.0016 + 0.0068) 

The total gain in specific energy in passing from j to 

j+l calculated from equation 3.19a is: 

H=- (0.0068 x 0.19 + 0.0016 x 0.81) x 200 + 0.001 

x 200 = -0.32m 

This can be compared with the loss measured from Figure 

3.4 H= -0.3m. If an arithmetic mean were used the 

calculated specific energy loss through the reach would 

be: 

H=- (0.0068 + 0.0016) x 0.5 x 200 + 0.001 x 200 

=-0.64m 

It is obvious that in areas where locally steep 

energy gradients occur use of an arithmetic mean will 

cause considerable errors in computed energy gradients. 

Adoption of the flexible weighting coefficients brings the 

computed energy gradients closer to those of the physical 
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system in this circumstance. 

3.7.4. ENERGY GRADIENT REPRESENTATION 

From an economic view point, within the bounds 

of required accuracy, it is desirable to have representation 

of all terms as simple as possible. Greater complexity 

means greater computational effort. Each of the representations 

given in section 3.7.2 a, b and c and section 3.7.3. 

is of use; the choice depends upon the rate of change 

of boundary conditions and the variation of the channel 

geometry. 

Trial runs showed that for the case of flood propagation 

through a natural channel with steep bed slopes (1: 500 

and greater) the energy gradient representation is particularly 

important during the formation and operation of control 

sections as constrictions of area both natural and manmade 

create large local values of energy -gradient. 

A similar problem prevented Price and Samuels (1980) 

applying their unsteady flow model to the River Rhymney 

in Wales. The average bed slope of this river is 1: 250. 

Later they successfully modelled unsteady flow conditions 

in the middle portion of the River Lagan in Northern 

Ireland with a bed slope of 1: 1700. Although not mentioning 

problems with control sections they relied on a back water 

curve analysis of the upstream and downstream sections 

with bed slopes of 1: 400 and 1: 500 respectively. 

The finite difference form of the energy gradient 

used in the present model is that derived in section 3.7.2. c, 

modified by the factors of section 3.7.3. The complete 



54 

term is therefore: 

Sf = (1-6) (xi Sfý + CK Sfn )+ 0(aýSf n+l +oc. +1Sf j+l ) 

with Sfý +1 and Sfý+i defined by equation 3.18 giving: 

Sf = (1-0) ( ýSfý + ocj+l Sf .n)+ 

2Sfý (p (4kJ/ w WIC 0L°ýý ($fý (W 
1 

oC(Sf.., +2Sfý+(Q; +, 
ýQ+ý (o I Wl; )(WI-DWI+ý)-1 ))1 

1ý1 J )+1 
ki"ý 

Equation 3.21 

3.7.5 FINITE DIFFERENCE DYNAMIC EQUATION INCLUDING 

ENERGY GRADIENT 

Introducing the energy gradient term from section 

3.7.4 into equation 3.11 gives the complete one-dimensional 

finite difference dyridimic equation: 

(- ex 
-(20 ýSfn ok/AWlký) W1n±1 + (1/2gAý 

At - 

eQý/Aý ox) + 20 ýSfn )Qý+i+ (öX -(2A j+1Sf j+l ak/oWlj+l) /kj+l)W(j. j 

+ 1/2gAn (-1 - 9Qn /An px) +ä04c Sfn /Qn ) Qn+l +1 at j+1 j+l ý+ 1 +1 i +1 j+1 

=H J Equation 3.22a 

where 

-ý. Sfn (1 + 26 ( (ok/AW1 /k . 
n)W1n-1 ) -O( Sfn H=HiiIiii j+1 j +l 

(1 26 ( 4k/AWli I W1j+1-1) Equation 3.22b 

j +l 
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3.8 BOUNDARY CONDITIONS 

3.8.1 EXTERNAL BOUNDARY CONDITIONS 

When the finite difference scheme described previously 

is applied between each of the jj solution nodes defining 

the solution domain, a total of 2(jj-1) simultaneous equations 

are obtained. To solve for the 2jj dependent variables 

necessitates that additional boundary equations are available 

at the external boiur'd:. rit s. 

As the type c: f appropriate boundary conditions may 

vary from application to application the ability of the 

model to operate with a variety of boundary conditions 

is an important consideration from the point of view of 

flexibility. Hence during the development of the present 

model care was taken to provide facilities for handling 

all foreseeable upstream and downstream conditions. 

For the upstream boundary these are: 

i Water level as a function of time WL = 0(t) 

ii Flow as a function of time Q= 01(t) 

Possible downstream boundary conditions are: 

i Water level as a function of time Wl = 0(t) 

ii Flow as a function of time Q= 0(t) 

iii Flow as a function of water level Q= O(Wl) 

Any combination of these upstream and downstream boundary 

conditions can be used to provide' an additional pair 

of eg4etions giving a total of 2jj simultaneous equations. 

These are solved for the 2jj dependent variables using 

the modified Gaussian elimination routine described in 

Appendix A. 
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3.8.2 OCCURRENCE OF CRITICAL FLOW 

Before proceeding with the implicit calculations 

to advance the river solution forward to time (n+l) at 

a check is made to determine if critical flow conditions 

exist at any solution node within the model. Existence 

of critical flow is determined by comparing conditions 

of flow, , at each node, with h corresponding relationship 

between water le' el and discharge for a control section. 

The occurrence of critical flow indicates that the flow 

contains the minimum specific energy necessary for it 

to pass through the section. The condition provides an 

unique relationship between flow and water level and 

it is essential that subsequent solutions adhere to this 

relationship as failure to do so implies a violation of 

Newton's second law. 

3.8.3 OPERATION OF CONTROLS 

Once the existence of a control section has been 

determined adherence of subsequent solutions to the minimum 

energy condition is ensured by inserting an internal boundary 

at this section. For example, if a control is found at 

section ' i' in Figure 3.5b then the channel is divided 

into two reaches 1 to i and i+1 to jj, the new boundary 

condition at i being the relationship between ý, %--F. ter level 

and critical flow, i. e. boundary type (iii). For the 

new upstream boundary condition at section i+l the computed 

flow through the control section is used i. e. a boundary 

of type ! ii). 

It is noteworthy that in subsequent solutions controls 
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may form in reaches 1 to i or i to jj. In this case the 

reaches are subdivided further and more internal boundaries 

introduced. 

3.8.4 DROWNING OF CONTROLS 

During the propagation of a flood wave +hrough 

tL main channel it is possible that conditions at a control 

section will cease to be critical. This circumstance arises 

when the influence of a downstream control extends up 

the char. riel and raises the energ, j at the upstream control 

above the critical value. The mathematical mode l tests 

for this occurrence by comparing the total energy at the 

control with the total energy down-stream plus the friction 

losses occurring in the reach between the two. If the 

downstream energy plus the friction loss is found to be 

greater than the critical energy at the control th en the 

control is drowned and the two reaches are joined as shown 

in Figure 3.5a. The implicit solution now takes place 

along the reach from 1 to jj. 
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CHAPTER FOUR 

A NUMERICAL MODEL OF WASHLAND AREAS 

4.1 INTRODUCTION 

In general, engineering flood routing problems require 

that conditions in both the river and its associated washland 

areas be modelled. Many rivers and adjoining washlands 

can be considered to respond to flood discharges in a 

fashion similar to a complex run-of-river regulating reservoir. 

The river channel is segregated from the washlands by 

a system of flood-banks. Interaction between the river 

and its washland areas results from lateral over bank 

flows, which depend on both the main channel and the 

washland water levels. 

Within each washland, individual compartments are 

separated from their neighbours by a complex system of 

cross-banks. 

4.2 DESCRIPTION OF WASHLAND ALGORITHM 

The primary requirements of the washland algorithm 

is that it accurately represents lateral over-bank flows 

and washland water levels. 

4.2.1 CALCULATION OF WASHLAND WATER LEVELS 

Computation of changes in the water level of a washland 

are based upon an explicit solution of the equation of 

conservation of volume. An explicit solution was chosen 

as it was considered that rates of change in the washland 

would be modest compared to those in the main channel. 

Further, an explicit solution can be contained in a separate 
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routine and need only be included in the model when 

topographical features warrant it. An implicit solution 

on the other hand would require modification of the main 

channel finite difference equations. 

The volume conservation equation for a washland 

area can be written as: 

ql = As ddwtp Equation 4.1 

where ql is the total lateral flow to or from the washland 

and As is the surface area of the washland. Equation 

4.1 can be written in finite difference form as: 

Finish 
qlj at/As = AWl Equation 4.2 

j= ]Start 

where qlj is the average lateral flow from reach j during 

a time increment. The sumation is required as the washland 

can be fed from more than one main channel reach, see 

Figure 4.1a. Indeed, the reaches feeding a washland 

need not be consecutive, Figure 4.1b; in this case the 

sumation reads: 

JFinishl JFinish2 
qlj +7'" qlj 

j= JStartl j=JStart2 

4.2.2 CALCULATION OF LATERAL FLOWS 

Flows entering or leaving the main channel to or 

from the washland are dependent upon the level of water 

in the river and in the washlands. Figure 4.2 illustrates 

the types of behaviour which may develop during a flood 

event which exceeds the bank full stage. 

i. Flood level rising in the river with no flow 

into the washland: 
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Overbank flow = 0.0 

The washland may contain water from 

a previous flood. 

ii. River level exceeds bank full level, 

"weir" flow occurs to the washlands and 

the water level in the washland starts 

to rise: 

Overbank flow =0 (river level). 

River level rising; washland level exceeds 

bank level and "submerged weir" flow 

occurs: 

Overbank flow = cýJ (river level, washland level). 

iv. River level starts to fall but is still 

above bank full stage. Then "submerged 

weir" flow to the river occurs: 

Overbank flow =0 (washland level, river level). 

v. River level below bank level; washland 

level exceeds bank level and "weir" 

flow from the washland occurs: 

Overbank flow =0 (washland level). 

Calculation of the magnitude of overbank flows is 

based upon a weir flow equation of the form: 

ql o/- H 
s/1 

x submergence factor 

Bank data is processed to yield tables of lateral flow 

versus water level above bank level. These are stored 
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by the main programme and lateral flows are interpolated 

using the appropriate water levels. Where submerged 

weir flow is anticipat ed to occur the submergence ratio 

(Head downstream/Head upstream) is calculated and a 

submergence coefficient interpolated from a set of stored 

values. The actual flow is therefore established from 

the product of free weir flow and submergence coefficient. 

Since individual washland compartments may border 

an appreciable stretch of river channel it is necessary 

to be able to accommo date the possibility of simultaneous 

inflow to and outflow from the washland. Such a circumstance 

may develop, for exa mple, - at a meander loop (Figure 

4-3). Upstream of the meander the river level is relatively 

high and a proportion of the river flow enters the flood 

plain within the loop of the river. Downstream of the 

meander the river. level is significantly lower due to head 

losses within the river meander and flow may take place 

from the flood plain into the river at this point. 

4.3 DEVELOPMENT OF A WASHLAND ALGORITHM 

Initially, the explicit wasteland algorithm shown 

in flow chart 4.1 " was tried. This calculates the lateral 

flows to and from the washland and interpolates the existing 

washland surface area from stored data. Assuming these 

to represent average conditions, over the time increment, 

equation 4.2 is solved for the change in washland water 

level during the time increment. 

Accuracy of this approach depends upon changes 

in washland water level being small during a time increment, 

hence not influencing average lateral flows. Numerical 



65 

Figure 4.3 
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trials showed that this was not the case under certain 

circumstances, such as where the surface area of any 

washland was relatively small. 

4.4 IMPROVED WASHLAND ALGORITHM 

The object of these improvements is to provide better 

estimates for the average lateral flows, by including 
tA h 

in the algorithm the effec 
c 

anges in the water levels, 

during a time increment, have on the initial lateral flows, 

see Flow Chart 4.2. 

4.4.1 OUTFLOWS FROM WASHLANDS 

It is obvious that any alteration in the water level 

within a washland will alter the head available for the 

production of outflows. To allow for this change the 

average outflow during a time increment is calculated 

from: 
nn 

qlj =i (qlj + qlj + .p 
q1j) Equation 4.3 

where Q ql is the change in lateral outflow during a time 

increment. Now, it can be seen from Figure 4.4 that: 

jql 
-& ql.. 

dWlp rP 

or, 

q-I=dql p oW1p 

Inserting this in equation 4.3 gives: 

D Wlp ) q1J =i (qlj + q13 + dWIp 

Using the above in equation 4.2 and rearranging gives 
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FLOW CHART 4.2 
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A CALCULATE SUBMERGENCE FACTOR 
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the change in washland water level as: 

JFinish 
AWlp= E qlj/ (As/, &t- -i. 2: (aqL] ) Equation 4.4 

j=JStart 
dWIp 

where (dw represents the gradient of the outflows verses over- dWlý out 

bank water level curve and is calculated directly from 

the curve. 

4.4.2 INFLOWS TO WASHLANDS 

Changes in washland water level influence lateral 

inflows through the submergence factor. l'he assumption 

that the main channel water levels remain quasi-constant, 

throughout the time increment, implies that the interpolated 

free flows will also remain constant. Variations in the 

true lateral flow depend on the degree of drowning by 

the washland water level. This is included in the new 

algorithm by using: 

qlj =I 
n (qlj 

. 
n SFj + 

n n+1 
qlj . 

SFj ) 

to calculate the average lateral inflows. The estimate 

for SFF+1 is calculated using a first estimate of the 

final washland water level obtained from applying the 

initial algorithm. 

4.4.3 LATERAL OUTFLOWS STARTING DURING A TIME INCREMENT 

During a time increment a washland water level 

can rise above one or more sections of bank over which 

no initial lateral flow is occuring. In these circumstances 
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it is desirable that the lateral outflow over this section, 

beginning sometime during the time increment, is estimated 

and its effect on the washland water level calculated. 

To accomplish this the final washland water level 

is estimated, from equation 4.4, using the average lateral 

flows existing over the whole time increment. The algorithm 

then compares the estimated washland water level with 

the lowest dry bank level adjacent to this washland to 

determine if a new outflow has arisen. This will occur 

when the estimated washland water level is above the 

bank level, see Figure 4.5. In these circumstances the 

resulting free lateral outflow is obtained by interpolating 

in the water level verses overbank flow curve for the 

reach in question. The proportion of the time increment 

over which this flow occurs is required before its effect 

on the washland water level can be calculated. This 

is obtained, with reference to Figure 4.5, where it is 

seen that "TF", the proportion of time increment that 

the washland water level is above the bank level is defined 

by: 

TF = (WI P+ 1- 
Bl) / (WI P+1 

- Wlp) Equation 4.5 

The new average lateral outflow can now be calculated 

from : 

n +l 
ql =i (0.0 + qlj ). TF 

and its effect upon the washland water level is given 

by: 



B L=Bank level 
WLpý=Estimate of finalwashland level 

WLP '=Final washland level 

W Ln =I nitiQl washland level 

Time factor=(WLPý BL)/(W p-WL 

Figure 4.5 

X Weir-type link 
" River-type link 

Figure 4.6 
Flood plain and river schematization after Samuels 

River 
I Vau 1\Mu IY 



74 

Q Wlp = ql x at/As Equation 4.6 

Hence, the final lateral storage pond water level is equal 

to: 
VNO r%41% 

Wip = Wlpt - AWlp 

The algorithm continues to compare the remaining 

dry sections of the bank, in order of increasing elevation, 

until a bank level above the washland water level is 

discovered; then all new lateral outflows and their effect 

on the final lateral storage pond water level will have 

been accounted 
k. 

- - 

4.5 COMPARISON WITH HYDRAULICS RESEARCH EMBER MODEL 

The details of a numerical model for simulating 

flood propagation through a natural river channel and 

its associated flood plain areas was published by . Samuels 

(1983b). The main channel model used is similar to that 

described by Price and Samuels (1980). A descriptive 

comparison between the flood plain algorithm in this model 

and the current model is given in the following section. 

In Samuels' numerical scheme a different schematization 

of the problem is adopted. Each main channel solution 

node connects with a storage cell on the left and right 

bank flood plain and flood plain cells are connected to 

their neighbours, Figure 4.6. This schematization enables 

the kinematic modelling of flow along the flood plain. 

In the current model individual storage ponds are connected 

to a number of solution nodes but are considered separate 

frcr. ^ each other, hence flow along the flood plain cannot 

I 
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be modelled. In this respect there is scope for further 

development in the current model. 

Samuels reported stability problems arising from 

the calculated lateral flows over the flood banks 

problem also encountered by the author. Different methods 

have been used to overcome this problem. Samuels outlined 

his solution procedure as consisting of the following steps 

for each time increment: 

i. Calculate the discharges and levels at the 

model boundaries from data. 

ii. Estimate and store the mean discharge 

over the banks at each computational 

cell. 

111. Solve the flow equations for the river 

channel. 

iv. Solve the flow equations for the flood 

plain. 

v. Print results if required. 

The stability problems arise at Step ii in obtaining 

an estimate of the mean lateral discharge over the time 

increment. Samuels model calculates the initial lateral 

disharge at time nnt from the weir flow equation. The 

estimate of mean lateral flow, over the time increment 

from nat to (n+l)ot, is obtained using the following steps: 

a) force the magnitude of the initial lateral flow not 

. 
to exceed a global limit. 

ti 



76 

b) include a proportion of lateral flow of previous time 

steps by setting qln = A. qln+ A, q1 n-1+ A, gln-2 

c) look for possible oscillations in water level and reduce 

ql n to eliminate these. 

d) add a small proportion of ql to the result from step(s). 

The limit for step (a) was set to 0.3m3/s/m, and 

the damping parameters A01 A, , A2 in step (b) were 

set to 0.34,0.33 and 0.33 respectively. Using these the'. 

model was successfully applied to the River Trent. A 

modified version consisting of steps (a), (b), (C), (a) 

was found to be more appropriate for the River Avon. 

The current model solved these stability problems by 

a different approach. The solution procedure con sists 

of the following steps: 

i) calculate the discharges and levels at model boundaries 

from data. 

ii) estimate and store the mean discharge over the banks 

at each solution node. 

iii) solve the washland equations 

iv) re-assess the mean discharge over the banks at each 

solution node. 

v) resolve the washland equations 

vi) solve equations for the river channel 

vii) print results. 

A detailed account of each of these steps is given in 

the preceding sections of this chapter. 

It can be seen that the difference between the present 

model and that of Sam uels is the recomputation of the 
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lateral discharges and washland levels by what is in 

effect a single iteration. It is the opinion of the author 

that the major cause of the stability problems is that 

insufficient attention is given to changes in washland 

water levels when operating with a physically realistic 

time increment. The use of this single iteration is an 

attempt to solve the stability problem by bringing the 

numerical procedure closer to the behaviour of the physical 

prototype. 

4.6 INITIAL CALIBRATION AND TESTING 

The flood routing model, see Appendix B, was developed 

with a particular application in mind, that was a flood 

study of the River Aire in Yorkshire. Before proceeding 

with this study initial stability tests and calibration 

runs were undertaken on an upstream section of the River 

Aire from Kildwick to Stockbridge. A sample of the results 

obtained is presented below. 

4.6.1 SYNTHETIC FLOOD RESULTS 

A schematic diagram of the trial channel and its 

washland system is shown in Figure 4.7. Note that for 

low flows control sections exist at solution nodes 11 and 

16. A synthetic inflow hydrograph rising to a peak flow 

of 102m3/s from a base flow of 6m3/s in nine hours and 

decreasing from 102m3/s to 5m3/s in seven hours is shown 

in Figure 4.8. This can be compared with the two outflow 

hydrographs obtained for no washland areas and for washland 

areas with overbank flow calculated using a frictionless 
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weir flow equation. In both runs theta was equal to 

1.0 and a time increment of 900 seconds was used. It 

can be seen that inclusion of the washland adds significantly 

to the attenuation of the flood wave. 

The behaviour of the washland model was assessed 

by a detailed examination of the numerical results. Consider 

first the case of frictionless overbank flow,, (Friction 

factor = 1.0). For illustrative purposes the behaviour 

of two washlands is discussed. Left bank washland number 

2 fed by main channel solution node 3 and left bank washland 

number 6 fed by main channel solution nodes 8,9,10 

and 11. The behaviour of washland 2, during the passage 

of the flood, is shown in Figure 4.9. Figure 4.10 shows 

the variation of the main channel water level at solution 

node 3; as it rises above banklevel 3 flow into washland 

2 begins, and the water level in washland 2 rises, Figure 

4.9. This will be a free lateral lateral flow until approx- 

imately six hours when the washland level rises above 

the bank level. The washland continues to fill until 

the main channel water level falls below the washland 

water level at approximately sixteen hours the lateral 

flow is now reversed and the washland water level begins 

to drain down. Figures 4.11a to 4.11d illustrate the 

behaviour of main channel water levels at solution nodes 

8,9,10 and 11 feeding left bank washland 6. Waterlevels 

at - solution nodes 8,9 and 10 rise above the left bank 

levels at around two hours causing flows into washland 

6, Figures 4.13a to 4.13c. In this case these flows cause 
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washland 6 water level to rise above bank level 11, at 

eight hours, before the main channel water level at solution 

node 11, Figures 4.12 and 4.11d. Hence flow takes place 

out of the washland at solution node 11, Figure 4.13d. 

This behaviour is undoubtedly enhanced by the presence 

of the control section at solution node 11, as the restriction 

to flow imposed by the control will cause high water 

levels upstream. Part of the flood is bypassing the control 

by flowing through the washland. 

The control section at solution node 11 was a permanent 

control and operated as such for the duration of the flood. 

The control at solution node 16 was not and drowned 

after 5.5 hours. The energy levels during operation 

and drowning of this control are illustrated in Figure 

4.14. 

During these initial tests it was discovered that 

some lateral flows into and out of the washlands were 

unrealistically large. To reduce these to a more realistic 

level a percentage reduction factor was introduced to 

account for frictional resistance to lateral flow over the 

flood banks. For the purposes of comparison a run was 

made with all lateral flows reduced by 70% corresponding 

to the friction factor of 0.3 in Figures 4.9 to 4.13. The 

expected effect of this was to reduce lateral flows 

and significantly increase the main channel water levels. 

This can be seen to be true for the main channel water 

levels at solution nodes 3,8,9,10 and 11 in Figures 

4.10 and 4.11. However, the volume of lateral flow into 
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all the washland areas is not decreased as can be seen 

in Figure 4.9, for left bank washland 2. The increase 

in water level at solution node 3 has increased the volume 

flowing into washland 2 even although the potential for 

lateral flow has been reduced by 70%. This indicates 

that each lateral storage pond cannot be calibrated individually 

but that the system as a whole should. be considered during 

calibratich. 

4.6.2 INITIAL CALIBRATION CHECKS 

In addition to the basic checks on behaviour of 

the numerical scheme some initial calibration runs to 

assess the model's ability to reproduce real flow events 

" were undertaken. These used recorded hydrographs at 

Kildwick as the upstream boundary conditions. Comparisons 

are made between recorded and simulated hydrographs 

at Stockbridge. Figure 4.15 shows the comparison between 

the measured and simulated hydrographs for the flood 

event of 30th and 31st December, 1981. The model's sensitivity 

to the value of Manning' s' n' is also illustrated. Hydrographs 

for the storm events of 22nd to 26th October, 1980 and 

26th to 30th October 1980 are shown in Figures 4.16 and 

4.17 respectively. 
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CHAPTER FIVE 

NUMERICAL MODELLING OF THE RIVER AIRE WASHLAND SYSTEM 

5.1 Introduction 

The proposal to construct a new trunk road through 

Airedale in Yorkshire required that consideration be given 

to the environmental impact of the route alignment. Alternative 

routes were the subject of a public enquiry held in 1980 

but all are confined to the valley of the River Aire and 

will occupy part of the river flood plain or washland. 

In particular the stretch of road between Kildwick and 

Stockbridge will run almost entirely within the flood plain. 

To elevate the road above peak flood levels the majority 

of the road is to be constructed on an embankment. Construction 

of the new road will, therefore, result in some loss of 

flood water storage volume either due to direct displacement 

by the embankment or by divorcing washland storage areas 

lying behind the new road. 

Since flooding from the River Aire into these washlands, 

Figure 5.1, is of critical importance in protecting areas 

as far downstream as Leeds from flooding, Yorkshire Water 

Authority (YWA) expressed the view at the public enquiry 

that compensatory washland storage should be provided. 

It was the opinion of YWA that provision of such 

compensatory floodwater storage facilities be made prior 

to road construction in order to avoid the risk of increased 

severity of flooding both downstream and within the washlands 

themselves since some of the best agricultural land in 



FIGURE 5.1a 

Extent of Flooding on 6th January 1982, 
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FIGURE 5.1b 

Extent of Flooding on 6th January 1982, 
Cononley Ings at Shady Lane 
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FIGURE 5.1c 

Extent of Flooding on 6th January 1982 - Upstream 

of Kildwick Bridge 

FIG 'RE 5.1d 

Extent of Flooding on 6th January 1982 - Upstream 

of Silsden Bridge 
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the area lies within the flood plain. The water authority 

saw the new road as having a potentially serious effect 

upon flood levels and proposed the use of a mathematical 

model as a matter of some urgency to establish the effect 

of the new road construction on the washland system and to 

examine alternative compensatory schemes. Such a model 

would also allow the water authority to examine strategies 

for maintenance and improvement works to the river system 

and to assess the full extent of any new developments within 

the valley. As a compensatory scheme could be located 

upstream of Kildwick, the model would extend from Gargrave 

to Stockbridge, a distance of 24km, 8km of which will be 

affected by the proposed trunk road, Figure 5.2. 

5.2 THE RIVER VALLEY 

The River Aire and its adjoining flood plain or washlands 

was visualised to respond to flood discharges in a fashion 

similar to a complex run-of-river regulating reservoir. 

The river channel is segregated from its washland by a 

system of flood-banks. Within the washlands, individual 

compartments are separated from their neighbours by a 

complex system of cross-banks. Each washland compartment 

is drained by a system of drainage ditches, many of which 

have controlled outlets through the embankment. These 

flood plain elements retain large volumes of flood water 

which would otherwise increase the severity of flooding 

downstream. 

The catchment has an overall area of 370km2 above 

the gauging station at Stockbridge. A further major gauging 
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station is located at Kildwick Bridge, the mean flow for 

this station being 5.4m3/s. The river channel experiences 

considerable variations in character over the length of 

the study area with gradients varying between 1 in 480 

and 1 in 25,000. The steeper reaches are generally at 

the upstream end of the study area between Gargrave and 

Skipton. A number of important tributaries enter the River 

Aire and amongst these are Eshton Beck, Broughton Beck, 

Eller Beck and Eastburn Beck. The river is crossed by 

both road and rail bridges at several locations, namely 

at Gargrave, Inghey, Carleton, Snaygill, Cononley, Kildwick, 

Silsden and Stockbridge. 

5.3 MODEL CAPABILITIES 

Following an initial visit to the study area the necessary 

capabilities of the numerical model were identified. The 

model was required to determine the variations of flow 

rate and water level with time throughout the length of 

the defined area of investigation. It was essential that 

the calculations should include all aspects relating to 

loss of energy by the flow in passing through the channel. 

This included the effects of fluid resistance, losses` due 

to irregularities of channel geometry, meanders and the 

like. Also a means of representing additional head loss 

at bridge constrictions was required. 

The model had to be able to detect and analyse a 

control section should it arise anywhere within the study 

area during the course of computations. Control sections 

may be present throughout the period of flood wave propagation, 
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such as Gargrave Weir, or a control may be present at 

low flows and become drowned at higher water levels and 

flow rates. Since a large proportion of the water entering 

Airedale derives from tributary inflows all significant 

tributaries and streams entering the study area were included 

in the model in the form of inflow hydrographs at the 

confluence. Exchanges of water between the River Aire 

and the adjoining washlands were modelled as a series 

of lateral inflows or outflows from the river. The corresponding 

variations in washland water level were calculated throughout 

the period of the flood wave. The influence of the river 

channel downstream of Stockbridge was represented by 

the rating curve for the gauging station at that location. 

5.4 FIELD SURVEY 

Adequate definition of the river channel characteristics 

and those of its adjoining washland storage areas required 

a considerable survey effort. River cross-sections were 

surveyed at intervals of approximately 250 metres, although 

closer distance increments were used where necessary. 

The longitudinal profiles of left and right banks of the 

river were also surveyed. Washland storage areas were 

defined by ground levels measured throughout the extent 

of the flood plain by aerial survey. By means of contouring 

and use of a planimeter the surface area of each storage 

area was determined as a function of water level in the 

washland compartment. Dependent upon the size of individual 

washland compartments it is possible for one compartment 

to extend over a number of river reaches; a reach being 
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defined as the length of river between one cross section 

and the next. 

5.5 NUMERICAL DEFINITION OF THE RIVER BASIN 

It was considered that computation of the channel 

properties and overbank flow characteristics, prior to 

the start of any water surface profile or flood routing 

calculations, would yield some saving of computer time. 

Survey data of the river channel was tabulated in the 

form of co-ordinates spaced around the periphery of the 

cross-section, Figure 5.3. The co-ordinates ' b' and 'h' 

defining points on the section were input to the computer 

together with the location and estimated roughness coefficient 

of the section. Using a data processing programme the 

cross-sectional properties were generated using the method 

described by Smith (1968). These properties were tabulated 

as a function of water level from the invert of the channel 

to the highest anticipated water level. Those properties 

stored for future computations were top width 'B', cross- 

sectional area 'A', conveyance 'K' and the critical flow 

'Qcr'. 

River bank characteristics were established by a 

survey which provided profiles of bank level with distance 

along the bank, Figure 5.4. These were tabulated in 

the form of co-ordinates 'b' and 'h' and input to the 

computer. Assuming the river bank to form an irregular 

weir, the weir discharge was computed for a range of 

water levels extending upwards from th e lowest point of 

the bank. 
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The storage capacity of individual washland areas 

was based on aerial survey information which covered 

the entire study area. The first step was to schematize 

washland areas. Washlands wer. represented as a single 

tier of storage areas on either side of the river, each 

storage area covering from one up to a maximum of five 

river reaches. It was convenient to sub-divide washland 

areas at natural cross-banks, a tributary, or at a road 

crossing the valley transversely. 
. 

In other areas rising 

ground close to the river means that no washland exists 

and this forms a natural boundary to adjacent washlands. 

Fences, walls and hedges were assumed not to act as 

significant barriers to flow in the washland system. A 

minimum size of storage area was set such that a compartment 

would not be completely filled within one time increment. 

Outflow from a storage compartment would normally be 

via a river reach immediately adjacent to that compartment. 

However, it is also possible for outflow to be transferred 

further downstream or bypass round behind the next downstream 

storage compartment. 

Once the washlands had been schematised on this 

basis the storage areas on each side were numbered con- 

secutively starting at the storage area farthest upstream. 

The boundaries of the storage areas were defined on 1': 25000 

aerial survey plans and within each storage compartment 

the surface area was measured, using a planimeter, at 

0.5m intervals, starting at the lowest contour in the washland 

and finishing at the contour nearest to the highest expected 
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flood level. This data was then entered in the washland 

data file. Where no washland exists this is represented 

in the file by inserting a zero at the relevant river reaches. 

Other files could be made up to represent the washland 

system with the road embankment constructed and compensatory 

washland schemes under examination inserted. Initial 

water levels in individual compartments are held in a 

separate file as some compartments may be partially full 

at the start of a flood simulation. 

5.6 ORGANISATION OF PROGRAMMES AND DATA FILES 

Figure 5.5 illustrates the way in which the various 

data files and programmes are used in the model. In 

addition to the main flood routing programme (FLOOD) 

the model uses a suite of programmes for data pre-processing 

(PROM and PROC2), calibration (CALIB, OBANKEDIT and 

FLAIREDIT) and presentation of results (PEAK and PLOT). 

The programme (STARTUP) calculates water surface profiles 

under steady flow conditions and is used to supply initial 

water surface levels for the main programme and for preliminary 

calibration. There are a total of eleven data files. 

Raw channel cross-section data held in the AIRDA file 

is pre-processed into the PRES file for direct input to 

the main programme or the STARTUP programme. Bankheight 

data is similarly pre-processed from the AIREBANK file 

to the OBANK file. Before a full run is carried out water 

surface levels at the start of the run are generated using 

the STARTUP programme together with initial flows (STATQS 

file), channel data (PRES file), the downstream rating 
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curve (STAGE file) and a list of global parameters (PARA 

file) . These initial river levels are merged with initial 

washland water levels (PONDWLS file) to produce the START 

file. Each main run uses the PRES, START, STAGE, OBANK 

and PARA files together with input hydrograph data (FLAIR 

file), washland data (POND file) and overbank flow submergence 

data (SUBCUR file). The results can be output for each 

time increment in terms of river flow, river water level 

and overbank flow at each section together with water 

levels in each washland. Alternatively, these results 

are scanned for peak values or hydrographs plotted at 

selected points. 

5.7 DESCRIPTION OF THE AIREDALE MODEL 

The schematic representation of the Airedale Washland 

system, on which the model is based, is shown in Figure 

5.6. The channel is defined by 142 cross sections from 

Gargrave Bridge to the gauging station at Stockbridge. 

Provisional values of channel roughness coefficient were 

based on site observations of the channel characteristics. 

Mannings 'n' values were generally between 0.03 and 0.035 

but values could be increased locally to take account of 

features such as meanders and bridges. Resulting values 

of channel conveyance would later be adjusted during 

calibration, taking account of river stage as well as longi- 

tudinal variations in roughness. 

The afflux at all of the major bridge crossings had 

been observed by measuring peak flood levels on either 

side of the bridge for a number of recorded flood events 
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and this data proved very useful in calculating loss coefficients 

for the bridges. Loss coefficients were expressed as an 

equivalent value of Mannings 'n' and inserted into the 

data for the appropriate bridge section. At each bridge 

location additional cross sections had been surveyed a 

short distance upstream and downstream of the bridge 

to allow more accurate modelling of the constriction caused 

by the bridge. 

After pre-processing bank height data a reduction 

factor was applied to the tables of overbank flows derived. 

As discussed earlier overbank flows are calculated on 

the basis of a theoretically perfect, streamlined and friction- 

less broad-crested weir. The reduction factor which was 

applied initially takes into account the - losses involved 

in flow over a grassed embankment similar in shape to 

the flood banks in Airedale. The factor could later be 

adjusted during calibration. 

The washland system is represented by 34 storage 

compartments along the left bank and 34 along the right 

bank. The final route of the new trunk road was established 

in November 1982, and this enabled a series of washland 

data files to be made up which represented: 

i. the existing washland system. 

ii. the existing system with the new road 

embankment constructed and divorced 

washlands fully connected through the 

embankment by a system of culverts. 

iii. as ii, but with divorced washlands 
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not reconnected. 

In addition, potential compensatory washland schemes 

could be incorporated by modifying the washland and 

bank height data files. 

In addition to the flow in the River Aire at Gargrave 

for which flow records were available tributary inflows 

were also included for the four major tributaries (Eshton 

Beck, Broughton Beck, Elle r Beck and Eastburn Beck) 

and nine minor tributaries. Rather than model overland 

flow to the river as a unit flow per metre length of river 

these relatively small flows were assumed to enter the 

river at discrete points and were distributed to the nearest 

tributary inflow. 

5.8 FLOOD HYDROGRAPHS 

Flood records and rating curves were available 

for the main gauging stations at Gargrave, Kildwick Bridge 

and Stockbridge. Records of river stage only were also 

available for gauges at Highgate Farm and Snaygill. 

Calibration and prototype runs were based on the following 

flood events for which a considerable amount of additional 

data, in the form of peak water levels both in the river 

and in washlands, had been collected: 

Flood Event 

26th-30th October 1980 

2nd-6th January 1982 

22nd-25th October 1980 

Return Period 

50 years 

7 years 
2 years 

A fourth flood which did not exceed bankfull conditions 

was also used for initial calibration of channel roughness 
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coefficient. 

The combined catchment areas of the tributaries 

is 76% of the overall catchment area upstream of Stockbridge. 

Tributary flows are therefore a major contribution to 

the total flow in the river. The only tributary which 

is gauged is Eller Beck but the data for this gauging 

station wa s of limited use as it is close to the confluence 

with the River Aire and becomes drowned out when water 

levels rise in the main river. It was therefore necessary 

to synthesise hydrographs for the four main tributaries 

and nine minor tributaries using recorded rainfall data 

for the flood events being considered. 

A first attempt to synthesise these hydrographs 

was made using data from the autographic raingauges 

located within or adjacent to the catchment area and 

following the Unit Hydrograph Method outlined in Vol 

1 of the Flood Studies Report. Problems were however 

encountered in distributing the rainfall intensities over 

the individual tributary catchments and it was not possible 

to obtain any clear idea of the movement of the storm 

to accurately predict the respective times at which the 

tributary hydrographs would contribute to the flow in 

the main river. These problems were overcome by making 

use of weather radar data available for the events being 

considered. Comparison of recorded hydrographs with 

those which had been synthesised for the River Aire at 

Gargrave showed that a much closer estimate of the tributary 

hydrographs had been obtained using the radar data. 
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5.9 CALIBRATION OF THE MODEL 

Calibration of the model was based on achieving 

a reasonable correlation between synthesised and recorded 

flow hydrographs at the Stockbridge and Kildwick Bridge 

gauging stations for the three main flood events being 

considered. Stage hydrographs at Highgate Farm and Snaygill 

and additional data on peak water levels assisted with 

calibration. 

The following sequence of adjustments to the various 

data files was adopted for calibration: 

i. Using the STARTUP programme runs 

were carried out under steady flow 

conditions to check and adjust channel 

conveyance values using the CALIB 

programme. 

ii. Commencing with the 50 year flood the 

main FLOOD 'programme was run and 

resulting hydrographs and peak flows/water 

levels compared with recorded-data. 

iii. The best correlation possible was then 

obtained by adjusting the reduction 

factor applied to the overbank flow 

data and further refining the channel 

conveyance values. 

iv. Calibration of the 50 year flood was 

then completed by making adjustments 

to the timing, magnitude and shape 

of the synthesised tributary hydrographs. 



112 

v. Step iv. was then repeated for the 

other floods being considered. 

Whereas adjustment of channel conveyance values 

had the. expected effect of significantly altering channel 

water levels and the time to peak for a particular hydrograph, 

it did not significantly affect peak flow values. Variation 

of the reduction factor applied to overbank flows had 

a relatively small effect in the range 50% to 70%. In 

general a factor of 50% gave the best results. Higher 

reduction factors exceeding 70% had to be applied in 

some cases, however, where trees, bushes or other obstructions 

impeded the flow across the flood banks. It was known 

that for the 50 year flood some of the washlands were 

partially filled as a result of the prece ding 2 year flood. 

Estimates of initial washland water levels were based 

on a preliminary run of the 2 year flood but some further 

adjustment was necessary to obtain a satisfactory final 

calibration with observed peak washland water levels. 

For the 7 year and 2 year floods the washlands were 

assumed to be empty at the start of the flood. Final 

adjustment of the tributary hydrographs was the most 

difficult part of the calibration phase as the timing of 

peak flow and shape of each of the tributary hydrographs, 

particularly those for the four main tributaries, had 

significant effect on the overall calibration. 

Final calibration of the model resulted in the synthesised 

hydrographs at Stockbridge and Kildwick Bridge which 

are shown in Figures 5.7,5.8 and 5.9. The overall 
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fit of the hydrographs was generally considered to be 

good. At Stockbridge the synthesised peak flows are very 

close to recorded peak flows and the overall shape of 

the hydrographs was considered to be satisfactory for the 

purposes of assessing the effect of the new road and 

examining alternative compensatory schemes. 

5.10 EFFECT OF NEW ROAD EMBANKMENT 

The criteria adopted for the design of compensatory 

works stipulated that there should be no detrimental alteration 

to existing flood hydrog raphs at Stockbridge. Design 

would also be to a 50 year flood flow standard. The 

effect of the new road on th e Stockbridge hydrographs, 

particularly the 50 year flood hydrograph, was therefore 

of primary interest. 

The washland data files were adjusted to model 

the final alignment of the new road and on the basis 

that divorced washlands could be fully connected through 

the road embankment the results sumarised in Table 5.1 

were obtained. The corresponding hydrographs at Stockbridge 

for the 50 year and 7 year floods are shown in Figure 

5.10. Although peak flows were increased albeit to a 

lesser extent than might have been expected, the basic 

shape of the hydrographs was not significantly alterated 

by the new road embankments. 

Water levels were shown to be influenced as far 

upstream as Cononley Bridge and peak water ' levels in 

the washlands between Cononley and Stockbridge would 

generally be raised by up to 73mm for the 50 year flood. 
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The average increase in peak water levels was 30mm. 

The 7 year flood resulted in a slightly higher average 

increase in peak washland water levels. This may be 

explained by the fact that some washlands are only partially 

filled and a relatively small increase in the volume of 

flood water stored could result in a relatively large increase 

in water level. With the 50 year flood the increase in 

water level is generally over the entire washland area. 

It was however clear that the extent and possibly the 

frequency of flooding would be significantly increased 

in the farmlands between Cononley and Stockbridge. 

Without further modelling of the river system downstream 

of Stockbridge the precise effect of the increase in flow 

and water level obtained at Stockbridge could not be 

determined for areas further downstream. However, there 

was little doubt that the flooding of the areas downstream 

would be adversely affected, although it is unlikely that 

the rise in water level would be translated as far downstream 

as Leeds. There was also concern that another 50 year 

flood of the same level might have a considerably longer 

duration which would greatly increase the volume of flood 

water which might overtop defences downstream. 

The effect of not reconnecting the washlands which 

would become divorced by the new road was also examined 

using a shortened version of the model which commenced 

at Kildwick Bridge. Runs carried out using this model 

indicated that the increase in peak flow at Stockbridge 

would be about 7.50m3/s for the 50 year flood as opposed 

to 2.85m3/s increase if divorced washlands were fully 
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connected. As a number of culverts are required through 

road embankme nt for land and road drainage purposes 

the necessary increase in the size and distribution of 

these culverts to provide full connection of divorced washlands 

was calculated. Bearing in mind that many of the culverts 

would be dual purpose the cost associated with providing 

full connection was estimated to be significantly lower 

than the cost of extra compensatory storage if divorced 

washlands were not fully connected. 

5.11 CONCLUDING REMARKS 

The model is currently being used to examine and 

assess alternative compensatory schemes. It is, however, 

considered that the usefulness and effectiveness of the 

model has been proved in allowing comprehensive assessment 

of the effect of the new TR65 trunk road to be made. 

As it stands the model may also be used to assess the 

effect of any other new developments which might affect 

the storage capacity of the washlands. Examination of 

strategies for maintenance or improvements to the washland 

system is also possible. 
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CHAPTER SIX 

NUMERICAL MODEL FOR LONG WAVE PROPAGATION IN 

TWO-PLAN DIMENSIONS 

6.1 ENGINEERING ALTERATIONS TO TIDAL WATERS 

Through the ages estuaries and coastal seas have 

been of social and economic benefit to mankind, providing 

a source of food, a means of navigation and a medium 

for the disposal of waste. Thus, it is important that 

before embarking on any engineering alteration to their 

geometry its effect on the tidal regime should be fully 

assessed. Modifications of the geometry of tidal waters 

may cause mean low tide elevations to be depressed appreciably, 

thereby decreasing navigable depths; mean high tide 

elevations or the elevation of surges may be significantly 

raised causing flooding of property and adversely affecting 

the discharge of storm and sanitary sewers; currents 

may be so accelerated that navigation is impeded or possibly 

made hazardous; or currents may be reduced to such 

an extent that shoaling is increased, or takes place where 

there was no shoaling prior to the modification. Changes 

in the tidal regime may also affect the salinity regime . 

The following examples of engineering projects which 

may have significant effects on the regime of a tidal 

waterway were given by Harke-man (1973) : 

i. Excavating a channel for navigation 

in an unimproved waterway 

i i. Deepening or enlarging an existing 

navigation channel 

Training works, such as jetties and iii. 
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dykes. 

iv Barriers for power gen eration, storm 

surge protection or the prevention of 

salinity intrusion 

v. Projects that increase the area of the 

waterway subject to the rise and fall 

of the tide, such as boat basins, lagoons 

and turning basins 

vi. Projects that decrease the area of the 

waterway subject to the rise and fall 

of the tide, such as fills resulting from 

the disposal of dredge spoil, or fills 

made for the purpose of creating land 

for development projects . 

To predict the effect of geometrical alterations on 

long wave propagation in a tidal sea some form of approximate 

analysis must be used. Commonly physical or mathematical 

modelling of the sea area is necessary. For engineering 

problems with large capital investment mathematical-physical 

model combinations are recommended by McDowell and O'Connor 

(1977). The following chapters are concerned with numerical 

solutions to the mathematical modelling approach to this 

problem. 

6.2 ECONOMIC CONSIDERATIONS WHEN NUMERICALLY MODELLING 

TIDAL SEAS 

Economic considerations when numerically modelling 

engineering phenomena have already been discussed in 

Section 1.2 To recap, these indicate the "design system" 
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approach described by Abbott (1973,1976b) 
, to be economically 

attractive. This approach requires that the model be 

highly flexible and contain no numerical stability contraints 

on the choice of time and distance increments. With this 

in mind a numerical model intended to form the core of 

such a design project is developed in the following sections. 

6.3 ALTERNATIVE NUMERICAL METHODS 

Numerical solutions of the long wave equations are 

obtained from either direct difference methods or characteristic 

methods. In direct difference methods finite difference 

approximations to the partial differentials are substituted 

directly into the differential equations providing finite 

difference equations that can be solved numerically. 

With characteristic methods, characteristic equations are 

obtained from linear combinations of the differential equations, 

see Section 2.7, before the substitution of finite difference 

approximations is made. 

6.3.1 CHARACTERISTIC METHODS 

Characteristic equations are produced through linear 

combinations of the original hyperbolic equations 2.25 

to 2.27. The resulting characteristic equations have the 

physical significance of defining paths along which disturbances 

in the solution surface will propagate. In the one-dimensional 

case these paths will take the form of lines in x-t space, 

whereas in the two-dimensional case they form a cone 

in x-y-t space. An approximate solution to the long wave 

equations can be obtained by numerically integrating the 
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characteristic equations along these paths. The integration 

may be performed either on the two-dimensional characteristic 

equations, Townson (1974), Donald (1981), Chowdhury (1982) 

or by an alternating direction algorithm applied to a system 

of one-dimensional, parallel, canalized flows, Balafoutas 

and Abbott (1977). 

When operating a characteristic solution with a rectangular 

space-time grid, desirable in most fluid flow problems, 

numerical stability depends on the interpolation scheme 

used to determine initial conditions on the characteristics, 

Goldberg and Wylie (1983). If Hartree spatial interpolations 

shown in Figure 6.1a are employed, Hartree (1958), then 

the stability criterion is that a Courant number less than 

or equal to one must be used. This is identical to an 

explicit scheme. These restrictions may be overcome by 

adoption of the Vardy spatial interpolations shown in 

Figure 6.1b, Vardy (1977). In effect this scheme adjusts 

the 4x increment to operate at Cr= 1 for each solution 

point. Alternatively, the time interpolation, shown in 

Figure 6.1c, Ellis (1979) and Wylie (1980), can be adopted 

to produce an implicit characteristic solution. If the 

Vardy spatial interpolations or the implicit time line interpola- 

tions are used an unconditionally stable characteristic 

method can be developed. 

The major disadvantage of the characteristic method 

however, is its nonconservative nature, Roach (1972, pp 

33). This is especially evident if it is applied to areas 

where large changes in channel geometry occur, Ellis 

(1970). 
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Figure 61 

a Hartree Spatial Interpolations 

b Vardy Spatial Interpolations 

c implicit Interpolations 
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6.3.2 DIRECT EXPLICIT METHODS 

In explicit finite difference schemes, such as that 

used by Reid and Bodine (1968), Heaps (1969), Flather 

and Heaps (1975), the value of dependent variables at 

one time can be expressed as an explicit function of the 

values of the dependent variables at an earlier time. 

Time steps used in these models are defined by strict 

stability criterion, generally necessitating the use of small 

time steps whenever a fine space grid is required by 

the model. 

6.3.3 ALTERNATING DIRECTION IMPLICIT IVETHODS 

Alternating direction implicit methods or ADI methods, 

were first introduced in companion papers by Peaceman 

and Rachford (1955) and Douglas (1955). Later they were 

applied to two-dimensional long wave equations in the 

multi-operational models of Leendertse (1967) and Abbott 

(1968). The Leendertse scheme solves equations 2.5 to 

2.7 by the application of implicit and explicit finite difference 

schemes alternated in direction over two half time increments, 

whereas Abbott's scheme uses two implicit solutions alternated 

in direction over a time increment. By analysis of amplification 

factors and phase errors Sobey (1970) showed the two 

schemes to be identical. 

To enhance computational efficiency both these schemes 

utilize the tridiagonal algorithm, described by Abbott 

(1979), to solve the implicit finite difference equations. 

Adoption of this algorithm necessitates that values of 
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velocity and depth be defined at alternate grid points 

as shown in Figure 6.2. This data layout has disadvantages 

at model boundaries especially if the boundary condition 

is given as a waterlevel versus flow relationship. This, 

however, has not prevented the schemes being used widely 

in engineering practice, being successfully applied to 

tidal problems by Abbott, Damsgaard and Rodenhuis (1972), 

Grubert (1976) and Liu and Leendertse (1978), among others. 

More recently, the method has been applied to two- 

dimensional flood plain flow by Vreugdenhil and Wijbenga 

(1982). 

6.4 DEVELOPMENT OF AN ALTERNATING DIRECTION IMPLICIT MODEL 

In the present work it was decided to investigate 

the possibility of improving model flexibility by solving 

for flow and water level at every grid point; c. ý desirable 

feature if variable distance increments or rating curve 

relationships were required in a model application. Such 

features are of use when modelling flooding and drying 

of low lying areas or where over topping of sand bars 

and spits is possible. 

The implicit scheme for one-dimensional long wave 

propagation, described in Section 3.4, is adopted as the 

basis of a fractioned step two-dimensional plan numerical 

model for long wave propagation. Originally it was intended 

that the implicit scheme would solve the continuity and 

one dynamic equation, say in the x-direction to give water 

levels and x-flows at the intermediate time step. An 
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Figure 6.2 
Data layout for two-dimension implicit 
schemes of the Leendertse(1967) type and 
Abbott(1968) type. 
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explicit solution of the y-direction dynamic equation would 

then advance y-flows over the same half time increment.. 

In the following half time increment the implicit scheme 

would be employed in the y-direction solving for final 

water levels and y-flows,,. - the explicit scheme would be 

used in the x-direction to solve for x-flows. In numerical 

tests the resulting scheme proved unstable when used with 

a physically realistic time increment. 

In an attempt to overcome this stability problem 

the explicit scheme was replaced by a characteristic 'scheme, 

using Vardy spatial interpolations. By adopting this 

method it was hoped that the advantages of the characteristic 

method in modelling wave propagation speeds could be 

utilized, while retaining overall conservation of mass 

through the implicit scheme. The model operated well 

in cases where estuary beds were approximately level 

or shelfing linearly. However, in areas where large changes 

in bed elevations occurred the failure of the characteristic 

model to conserve volume caused it to be incompatible 

with the conservative implicit stage. The incompatibility 

toot( the form of large fluctuations in flows which eventually 

destroyed the solution. 

Finally, a double application of the implicit scheme 

was adopted for each solution of equations 2.25,2.26 

and 2.27, giving a total of four applications of the implicit 

scheme to advance the solution forward one full time increment.. 
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6.5 ADI MODEL DESCRIPTION 

The solution procedure is based on the idea of dividing 

the two-dimensional computational field into parallel channels 

and of approximating the two-dimensional flow by two 

series of one-dimensional canalized flows parallel to the 

x and y axes. 

The following four step alternating direction implicit 

algorithm, shown in Figure 6.3, is employed to advance 

the solution from time nAt to (n+l) A t, using the finite 

difference scheme described in the next section. 

Firstly, flows in the x-direction are advanced from 

time (n) at to time (n+i) at and a first estimate is made 

for the waterlevels at time (n+i) At; by applying the 

implicit finite difference scheme of equations 2.25 and 

2.27 along each row in the x-direction, with an explicit 

evaluation of the r')qy/dy term in the continuity equation. 

Secondly, flows in the y-direction are advanced 

from time nat to (n+i) ot and the values of water levels 

at time (n+z) At improved; by applying the implicit finite 

difference scheme of equations 2.26 and 2.27 along each 

row in the y-direction using a time centred evaluation 

of the ýqx/ax term in the continuity equation. 

Thirdly, flows in the y-direction are advanced from 

time (n+2) et to (n+l) At and a first estimate for water 

levels at (n+l) at is obtained; by applying the implicit 

finite difference scheme of equations 2.26 and 2.27 along 

each row in the y-direction with an explicit evaluation 

of the ö qx/ öx term in the continuity equation based on 
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conditions at time (n+4) q t. 

Finally, flows in the x-direction are advanced from 

time (n+2) At to (n+l) ot and the value of water levels 

at time (n+1) at are finalized; by applying the implicit 

finite difference scheme of equations 2.25 and 2.27 along 

each row in the x-direction with a time centred evaluation 

of the a qy/dy term in the continuity equation. 

6.6 FINITE DIFFERENCE REPRESENTATION OF THE TWO-DIMENSIONAL 

LONG WAVE EQUATIONS 

The finite difference equations are again based on 

the Preissmann scheme discussed in section 3.4 It should 

be remembered that in the present case the scheme is 

applied over two half time increments as opposed to the 

one time increment in the one-dimensional case. Superscript 

n denotes the number of time increments which have elapsed 

since the initial conditions, while subscripts j and k 

denote x and y ordinates respectively. The symbols used 

are as defined in Chapter Three. 

No linear stability analysis u-mas undertaken as it 

was, expected that stability properties and wave deformation 

characteristics for this ADI scheme -ocAbe similar to those 

for the one-dimensional scheme, see section 3.5. This 

was later confirmed by numerical experiments. 

In the following the application of the scheme to 

solutions in the x-direction is described. Solutions in 

the y-direction are identical under interchange of x and 

Y" 
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6.6.1 CONTINUITY EQUATION 

For the first application of the implicit solution 

in the x-direction, replacing the partial differential operators 

in equation 2.27 by the following finite difference operators: 

aW1/at = (Win k- WIj, k + W1ý+1, k - W1j+l, 
k)/4nt j 

öqx/fix = (qxý+1, 
k qxj k+ qxj+lk- qxj, k)/2At 

äqY/dy = (qyý 
k+1 - qYý k-1 + qYý+lk+l - qYý+l, k-1)/4ay 

gives the finite difference continuity equation: 

(Wi jk+ Wlý+12 )/4, &t - (WI 
ýk 

+Wlý+l, k)/4nt + (qxý+iýk - qxn k)/Zax j 

+ (qxn+l, k - qxn )/2ox + (qYn - qYn + qYj J J. k J, k+l J, k-1 +1 k+l - 

qyj+l, k-1)/44y = 0. 

rearranging, 

W1ý k/4ot + Wln+2 2+ qxj+1, k/2ix - qxj k/2nx 
= Gj Equation 6.1 

where 

Gj = (WIi, k+ W1Jn 
+1, k)/4ot - (qxý+1, 

k - qxj 
ýk)/24x - (qyý 

, k+l 

gyj, k-1 + qyj+l, k+1 qyj+l, k-1)/4, ay Equation 6.2 

In the second application in the x-direction the finite 

difference operators are: 

awe/at = (WIn+j k- Wl . 
k+ Wln+lk 

- Wln+2 )/4et 1 j+l, k 

ýqx/ax = (qXý+l, 
k - qXj k+ qXj+2 - qxj 2 )/lox 
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c)qy/6y =( Yý k+l - qYý +k-1 + qYn+k+l - qY ýn, k- 1 +qyj+l - ), ý+lk+l 

qyj+l, k-1 + qyj+l, k+l qyj+l, k-1)/$ay 

giving the finite difference continuity equation as: 

Win+lAAt + Wln+l /4tt + qxn+l /2&x - qxn+1/tax = Gj Equation 6.3 
j, k j+l, k+1, k jk 

where 

Gj = (W1? k+ Wlý+n+l2 
, k)/4 at - (qxj+l+2 

,k ,k- 
qxj 

, k) 2 ax - (qyj 
,k- +l 

n+l n+f n+21 n+l n+l n+2 qy j , k-1 + qy j k+l - qy j , k-1 + qy j +1, k+l - qyj +1, k-1 + q'j +l , k+l 

qYýn++l2, k-1 MAY 

6.6.2 X-DIRECTION DYNAMIC EQUATION 

Leaving aside barometric pressure, 

and surface friction terms for the present, 

differential operators in equation 2.25 cc 

by the following finite difference operators: 

Equation 6.4 

coriolis, bottom 

the remaining 

be replaced 

6.6.2.1 ACCELERATION TERM 

b(qx/h)/üt = (qXý+l, k/hj+l, k qxn + qxj k/hýk - 

qxi 
, k/hjqk)/4ot. 

6.6.2.2. SURFACE GRADIENT 

WW1/c)x 
= [O(W1j+ +. 2L 1, k -Wln+1 )+ (1-9) (W1ýn+l, k - Wln k)) /ox. 

6.6.2.3 CONVECTIVE ACCELERATION 

Rewriting the partial differential convective acceleration in the 
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x-direction as 6 
U2 the finite difference term is expressed as: 29 

2g ox 
e(gxj+l, k qxj+l, k j+1, k12 qxj k gxj, k/jhj )+ 

22nn 
cl-e) c(gXn 

+1, , Crºn i +l, - (q"ý k: 
ýOl 

j , k»] 

Convective acceleration in the y-direction is expressed 

as: 

2h 
( 

y/h) - 4gay (gYý, k/hý, k)(qxý, k+l/hj, k+l gxj, k-1/hjl, 4 

+( +l , k/h j +l , K(qX j +1, k+l/h j +l , k+l qx j +1, k-1 / hJ*i 
k-i)] 

6.6.2.4 Inserting the above terms in the partial 

differential equation gives the x-direction finite difference 

dynamic equation as: 

1 (qxn+i A- qxn /hn + xn+Z/hn xn /hn ) 4g At +1 k j+1, k j+1, k j+1, k q jk j, k q ý, k jk 

11Z 

+ 2gAx B (qxý+l, 
k xn j+i, k - qx j qxý 

ýk/ihýk) 
) 

zQZ 

+ (1-A) «qxn+1, An+1, 
k) - 

(gxn fAn k) 
J] J" k1" 

+ 4gay 
[ (gYj, k/hý, k)(gxý, k+lAj, k+l gxj, k-1/hj, k-1) + 

(qyj+l, k/hj+1, k)(gxj+l, k+lA j+l, k+1 - qxj+1, k-1Aj+1, k-1ý] 

+16 (Wln+ý - Wln+ý) + (1-8) (Win Wln ), = O. 
ox j+l, k ý, k j+l, k - i, k 
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Rearranging gives: 

nn 
+ 

Gqxj+1. k 
z) xn+z +(1- 

eqxl kz 

4gothý+l, k 2gox(hý+1, ) J+l, k 4gathýýk 2gox(hý 

qxn+z +B Win+2 -e W1 2=Hi Equation 6.5 
jk Ax j+l ,k 

Ex j, k 

Where: 

Hi = g4At 
(qxj+l, k/hj+1, k + gxk/hk) - 2gAx +1 

2 /(hý`', k): 

2 Mn - (qxý'k 
j , k] 4gox 

[ qyj k/hý, k (qxý 
, k+1/hj , k+l 

n /h n gXjk-I j , k-1ý + qyj+l, kýhj+l, k (qXj+1, k+1/hj+1, k+1 

qXj+l, kihj+l, k-1) 
(nxe) (Wlj+1, 

k - Wlj, k) Equation 6.6 

6.6.3 FINITE DIFFERENCE REPRESENTATION OF BOTTOM FRICTION, 

WIND STRESS, CORIOLIS ACCELERATION AND BAROMETRIC PRESSURE 

The following terms are represented explicitly and 

can be taken directly to the right hand side of equation 

6.5 to modify the value of clj. 

6.6.3.1 BOTTOM FRICTION 

The use of the empirical Chezy equation to represent 

the dissipation of energy in tidal flow is discussed in 

section 2.5.4. The resulting expression for frictional 

resistance in the x-direction is: 
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I 
Sfx =U (Vl + UZ)' /Cjh 

An explicit finite difference formulation of this term is 

used in equation 2.25. Namely, 

Sfx = iCgxn ihn )[ (qY ) , bn ý+ (qxn ýýn )yZ Cahn 
,k j+l, k j+l, k j+1, +l +1, j+l, +i, k 

22z22n 

+ (qxn An )I (qyn/(hý + (qxý, k 
,)] 

/C hak 
3, k i ,k 

Equation 6.7 

6.6.3.2 WIND STRESS 

For the present applications the areas over which 

the model is applied are sufficiently small for wind speed 

and direction to be considered constant over the model 

area during a time increment. Wind stress in the x-direction 

is represented by: 
Z 

Swx = Kra Wn. Cos p /gphp 
i 

If at a later date the model were applied to larger 

sea areas it would be little trouble to modify the programme 

to include a number of meteorological sub-areas, such 

as used by Heaps (1969). 

6.6.3.3 CORIOLIS ACCELERATION 

The coriolis acceleration in the x-direction is represented 

in finite difference form by: 

iý =(2i (qYj+l, kýhj+l, k + qY j , kAi ,k 
Equation 6.8 
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6.6.3.4 BAROMETRIC PRESSURE VARIATION 

In the storm surge events modelled in the present 

study barometric pressure variations contribute little 

to the total surge amplitude. It was, therefore, possible 

to represent the variations of barometric pressure in the 

x and y directions as gradients, changing in time, over 

the whole model area giving a barometric pressure term 

of the form: 

öPa/2x 
= (&Pa/ (jj-i) o x)n 

Equation 6.9 

6.6.4 The above finite dii 

is used to advance the 

Wl from time nat to (n+-21-) At 

dynamic equation for time 

with superscripts n and 

respectively. 

Terence x-direction dynamic equation 

dependent variables of qx and 

The finite difference x-direction 

(n+-2L) At to (n+1) at is identical 

n+i replaced by n+2 and n+1 

6.7 SOLUTION OF THE FINITE DIFFERENCE EQUATIONS 

Given appropriate boundary conditi on s application 

of the finite difference scheme to each row of the four 

step solution algorithm results in a set of simultaneous 

equations. The format of these equations is identical 

to those of the one dimensional model, i. e. the coefficient 

matrix is banded with a band width of four. Hence each 

set of simultaneous equations can be solved using the 

modified Gaussian elimination routine described in Appendix 

A. As with the flood routing model the scheme was applied 

Iteration. 
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6.8 BOUNDARY CONDITIONS 

One of the major advantages of the finite difference 

scheme described previously is its flexibility in handling 

boundary conditions. The current model can utilize open 

boundaries, fixed shore line boundaries, moving shore 

line boundaries and possible "weir flow" type boundaries. 

Open boundaries refer to areas on the extremities of the 

numerical model where either flow or water level is known 

as a function of time. All natural shore line boundaries 

can move in that no matter what the elevation of the 

surrounding land it can always be flooded by an extreme 

event. For the purposes of the numerical model, however, 

the shore line boundaries are sub-divided into fixed shore 

line boundaries which maintain the same position irrespective 

of the adjacent water level and moving shore line boundaries 

which expand and contract with the rise and fall of the 

tide, such boundaries enable modelling of flooding and 

drying of sand flat areas. "Weir" type boundaries are 

considered to exist wherever a natural or manmade barrier 

with a width considerably less than the grid scale protrudes 

above the low water level. This boundary condition allows 

overtopping of natural barriers, such as: sand spits 

and bars, or manmade structures such as: causeways 

and jetties, to be modelled. 

6.8.1 OPEN BOUNDARIES 

Open boundaries can be sub-divided into those in 
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which flow is expressed as a function of time or in 

which water level is given as a function of time. In 

each case the value of q or WI at the boundary is either 

given to the model or calculated from some arithmetic 

expression. For flow as a function of time the model 

calculates the boundary water level and with water level 

as a function of time the flow per unit width across the 

model boundary is calculated. In both circumstances 

the component of velocity along the boundary is neglected. 

The effect of this is discussed in section 7.9. 

6.8.2 FIXED SHORE LINE BOUNDARIES 

At fixed shore line boundaries the flow perpendicular 

to the boundary is taken as zero and free slip conditions 

along the boundary are assumed. The value of water 

level at the boundary is calculated. This type of boundary 

is sometimes referred to as a reflecting boundary. 

6.8.3 MOVING SHORE LINE BOUNDARIES 

If the near-shore area is fairly flat then the rise 

and fall of water level associated with tides or storm 

surges will produce a large lateral fluctuation of the 

shore line position. Numerical simulation of this feature 

is possible by allowing the model to adjust the grid point 

system accordingly. 

A survey of models incorporating this feature was 

undertaken by Chowdhury (1982). He reported that the 

methods used may be broadly divided into two categories. 

In one, the coastal boundary is moved across the calculation 
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grid in discrete grid-size steps. The excursion is envisaged 

in terms of a series of discrete movements as if the fluid 

in the last grid-cell accumulates against an imaginary 

vertical barrier. The velocity is assumed to be zero 

normal to this barrier which is then moved simply according 

to the calculated depth of water. Evidently this is a 

kinematic approach. In the second category, no lateral 

boundary condition of zero normal velocity is imposed 

and the dynamic equations are solved to compute the 

velocity components. The shore line is located by extra- 

polating the water level from the last two underwater 

grid points. Chowdhury's own characteristic model uses 

this method. In the present model the first of these 

two methods is employed. The details of the operation 

are described in the following. 

For the flooding stage water accumulates against 

an imaginary barrier until the water level at the last 

under water point is at least equal to some predetermined 

level above the adjacent dry invert level, Figure 6.4. 

The boundary then expands by one distance increment 

to the position shown. The depth at the new solution 

point is assumed equal to the old boundary water level 

minus the new invert level for the first implicit calculation 

at the new boundary. The use of this approximation 

is to prevent excessively high velocities at the front of 

the wave during the flooding stage. No significant error 

in timing of flooding will occur provided the invert level 

is set below its true value by an amount equal to the 
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depth at which flooding is assumed to occur. Likewise 

no continuity error will occur provided the sand flat 

is considered dry at the same depth above the invert 

level. 

It would seem logical to handle the drying phase 

in an analogous fashion. That is, the boundary contracts 

by one distance increment when the depth at the boundary 

drops below a predetermined value. However, if the sand 

flat is approximately level the water level may draw 

down faster at interior points than at the boundary; 

this implies that an interior depth will drop below the 

chosen value before the boundary depth. If the first 

method alone were employed not only would there be the 

possibility of a continuity error occurring but critical 

flow could arise at interior points. Therefore, in addition 

to the boundary depth check it is necessary to test the 

depth at the low water boundary. If this drops below 

the selected value that section is considered to be dry 

and the section from the low water boundary to the present 

boundary is excluded from further implicit calculations. 

Any remaining water on the sand flat could be permitted 

to drain off through the use of a rating curve boundary 

at the low water level. In the following applications 

this proved to be unnecesary as the volume retained on 

the sand flat was not significant, compared to the total 

fluid volume crossing the boundaries during a tidal cycle. 

It should be remembered that in a two-dimensional 
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model as the wetted area expands and contracts in one 

direction new reaches are created and destroyed in the 

other direction. A book-keeping routine is incorporated 

in the model to account for these changes automatically. 

6.8.4 "WEIR FLOW" BOUNDARIES 

In certain circumstances barriers with widths considerably 

less than the numerical distance increment protrude above 

the low water level in an estuary. These barriers can 

be natural, e. g. sand spits and bars, or manmade, e. g. 

causeways and jetties. In most circumstances they will 

be above normal high water, however, they may be overtopped 

during extreme meteorological events. It was considered 

desirable that a facility for modelling such features be 

included at the development stage of the model. A similar 

boundary condition was used by Reid and Bodine (1968) 

for their explicit numerical model of hurricane events 

in Galveston Bay, Texas. Here inclusion of the condition 

in an ADI method is discussed. It is analogous to the 

control section condition used in the one-dimensional model, 

Chapter Three. 

Currently, provision is made for one barrier in 

both the x and y directions; however, there is no reason 

why the number of barriers cannot be increased if the 

need should arise. The position and mean elevation of 

a barrier is stored in a two-dimensional array. This 

permits the barrier to be defined at an angle other than 

along the numerical grid. The mean barrier elevation 
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can be, constant or vary along the length of the barrier; 

Figure 6.5 shows the flood tide condition of flow over 

the barrier from reach (a) to reach (b). Reach (a) is 

therefore solved first. Reach (b) is the downstream reach 

and its upstream boundary condition is the flow out of 

reach (a) over the barrier. On the ebb tide this will 

be reversed. A check for the order of solution of reaches 

separated by a barrier is carried out by the programme. 

When the upstream water level adjacent to the barrier 

is greater than the barrier elevation and the downstream 

water level is less than the barrier elevation flow over 

the barrier is calculated explicitly from: 

qb =± Co h gh Equation 6.10 

Where h is the depth of water upstream of the barrier 

and Co is an appropriate non-dimensional overflow coefficient. 

In the case where the water level on both sides of the 

barrier exceeds the barrier-crest elevation discharge is 

taken as that for a submerged weir) namely 

qb =± Cs h 
Jg 1 W11 - W12 Equation 6.11 

In which h is the depth of water over the crest of the 

barrier, W11 and W12 are the water levels on the two 

sides of the barrier (both of which exceed zb) and Cs 

is an appropriate non-dimensional discharge coefficient 

for the submerged barrier. 

6.9 DATA REQUIREMENTS 

Finite difference equations 6.3 and 6.5 provide a 
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set of simultaneous equations, which given appropriate 

data will describe the variation in flows and water levels 

with time resulting from the influence of tides and storm 

surges. Data requirements include: a bathymetrical 

description of the sea area, initial conditions, boundary 

data and storm surge data. 

6.9.1 BATHYMETRICAL DATA 

A bathymetrical description of an estuary for use 

in the ADI model is obtained in two stages. 

Firstly, a finite difference grid is laid on a topographical 

map of the model area and the position of open boundaries, 

fixed shore boundaries, moveable shore boundaries and 

possible "weir flow" boundaries are established. This 

information is read into the programme by using two 

integer arrays, one defining reaches and boundaries in 

the x-direction, the other in the y-direction. Integer 

arrays for the Firth of Clyde are shown in Figures 6.6a 

and 6.6b. The integers used to define each type of boundary 

condition are as follows: (1) and (2) water level given 

as a function of time, (3) flow given as a function of 

time. This value is used for both fixed shore boundaries 

and specified flow boundaries. (4) moveable shore boundaries 

"Weir flow" boundaries are stored independently; their 

position and crest level are read into a weir boundary 

array. A preprocessing stage of the main programme 

processes this data and stores the number of x-reaches 

to be solved in each y-row and the number of y-reaches 

to be solved in each x-row. Also stored is the integer 

value indicating the type of boundary at the extremities 
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Figure 6.6a 

Array Defining Reaches in the x-direction 
For the Firth of Clyde Model 
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Figure 6.6b 

Array Defining Reaches in the y-direction 
For the Firth of Clyde Model 
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of each reach. 

Secondly, invert levels at each grid point are obtained 

from a hydrographic chart. In choosing invert levels 

it should be remembered that the point is representative 

of conditions over an area oxxny centred on the grid 

point. Hence, a mean level for this area should be adopted. 

Invert levels are given even for permanently dry areas 

as they determine the position at which moving shore 

boundaries cease to expand. 

The bathmetry of the sea area is now defined as 

shown for the Firth of Clyde in Figure 7.1. 

6.9.2 INITIAL CONDITIONS 

The natur e of tidal flow is such that numerical 

calculations are not heavily dependent upon initial conditions. 

Experience has shown, Harleman (1973), that if initial 

conditions of m ean tidal level and zero flows are used, 

only three to eight tidal cycles are required before the 

solution converges to a quasi-steady state condition. 

This property of calculation can be used to genera te realistic 

initial conditions for transient studies. 

6.9.3 BOUNDARY DATA 

Water level variation as a function of time is the 

more commonly used of the open boundary conditions as 

information is readily available in the form of the Admiralty 

Tide Tables and Co-tidal Charts, e. g. Chart No 5058 for 

the British Isles and surrounding sea areas. Flather 

and Heaps (1975) successfully used depth mean current 
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as the open boundary condition for their numerical model 

of Morecombe Bay. A considerable data collection effort 

was required and problems were encountered in ensuring 

the model contained the correct volume of water. It is 

noteworthy that in their conclusions they stress the advantages 

of using a large scale encompassing model to generate 

boundary conditions for a smaller scale model. 

If a numerical model is used to examine the effect 

of proposed geometrical alterations on the tidal regime 

care must be taken with open boundary conditions, as 

input boundary data consists of incoming and reflected 

waves. When estuary geometry is altered the reflected 

wave and hence the boundary conditions will also be 

altered, Liu and Leendertse (1978). 

6.9.4 SURGE DATA 

When modelling storm surge propagation additional 

information is required. This includes increases in water 

level at the model's open sea boundaries, resulting from 

an external surge, together with information on wind 

speed, wind direction and barometric pressure variations 

over the model area. Collection of external surge data 

requires the installation of tidal gauges at open sea 

boundaries. For the British Isles surge data, i. e. wind 

and barometric pressure variations can be obtained at 

six hourly intervals from daily weather charts published 

by the Meteorological Office. Should these intervals prove 

too long for simulation purposes more detailed weather 
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station records can be obtained from the Meteorological 

Office. 
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CHAPTER SEVEN 

NUMERICAL SIMULATION OF TIDE AND STORM SURGE PROPAGATIO N 

IN THE FIRTH OF CLYDE 

7.1 CHOICE OF THE FIRTH OF CLYDE 

The Firth of Clyde was chosen to test the numerical 

scheme's ability to model tide and storm surge phenomena 

for the following reasons: 

Although providing only a modest tidal 

range (approximately 3.1m) the area 

provides a stern test of the model's 

capability to handle highly variable 

bathymetry, see Figure 7.1. 

ii. Tide Tables provide data at coastal 

locations, in sufficient quantity to 

verify the model's performance. 

iii. To capitalize on the efforts of Donald 

(1981) in collecting wind, pressure 

and surge data in the Firth. 

iv. A comparison could be made between 

the results from the ADI method and 

those from Donald's x-y-t characteristic 

model. 

7.2 PHYSICAL DESCRIPTION OF THE FIRTH OF CLYDE 

The extent of the Firth of Clyde encompassed by 

the numerical model is shown in Figure 7.2 The seaward 

limit is defined by a line from Portpatrick to Sanda Island. 

A distance increment of 3000m was considered to provide 

a suitable representation of the bathymetry from Portpatrick in 



F- 
W 

>- 
2 
F- 

m 

W 
0 

J 
U 

U- 
O 

W 

(D w 
HH 
I. L U- 

154 



155 

f\Q S"i 

- toil 
ArM 

Ä1Y 

6ý'ýJJfrbQpQ/ý 
1_d ýer" 

_ 
)U,, LAonxrr eýý 

pU ýp, 
" IrMNNIý - ý'ýJrtSJ[/If ýilliiON 

Surý(ýý \ slu ýL Au. 

Gulfoi Com'r Mu^" 4 NO 9 uNhw BM ADNI 
o Loch 6e" "" 47. c 

Kdmsnn p`` 
Aex 

h mIemenh 
ew 

oknx" ns e14 Lus and Au 
cdisiq p\ hýC: Ný iný 

ý. º) "1114 
816 

, ý\ý Garet ' 
mend BýIlron ) Bimucl" 

V 
� 

dkAun 
! A eM; 

ýý 
ed` 

Aldo nnyý 
ýý`ýýýý 

Ceeern 
U/ 

SwAri MA: p 
LTwer. ý 

1J ` 
SD 

h regt' 
B Hoch r 

/; Alesanlri 
NaN 15)l 

t'9S 
00 

SSA aM is 
46 L Ounoon Gou 

rea o Dombar n 
Jor 

f PonAsiaw SO 
hNKe. ýC 

,p 
19 DruaK 

ZSaam 
, Q Ka 

1 

Srrarnrn 

Glas 
Ilan yss 

go 

Mdn mi 
ea 

ý(yd 
trt , ' srDr 

M MAN 

A N l 
a 

ty 
" 

( 
1elýnale 

td"ac 

J 

ý 

h t /s/et' b, 
y r o mora 

K N 
r ily aaan 

O 
o ns o 0 

l n$ als eIf 0 l J ýý 

/i 

ý: J/oJ 

iý /_ ýr 

ný 

.CK 
M 

II 

Yochwxrnech J 
ý8 a4 

ANaarrh 
Gý 

Ch 
ýfa 6r. sný / si 

uý Ilan Cav'Q 
a 

ý, / 716 
ý^w 

, Y( 6är = 
F. f h 

'awl rodd 

tamNSA ^a, $1 

MacMAýamsn ý. 
\, 

Co. hown 
p N/ 

Jw$nsl fl 

PerMAv wd M. ödK asryý. 

fr1M"r1 
rSwmi 

Ails' ay 
C 0 

K 
, 
COA, yd &. h yN/ 

MMwi 

Nee gor t 
er".. "' 

rmstm t+nemi 
a' "1 7 Gam. h 

TOP 
-" " 1426 tu 

, o _ 

NiKL r Aý t9 lmea 
o ý. \ The 

__ 'ý h 

-ft's 
I Miyn L - 2- 

PwiDaur 

i 
BMNc e" slid N/ 

%ý4n ýKklt 
Loth " ids 1\- ^ý` $6. }1 orr 

Pon L 

= its 
" 

ELFS N0 ý ' 
C, CeM/W 

y 
ý " ,: 

ý y ý( 
}oa 

\ýLom6ert 
" 

ýý 
ý fwn " r . ýcr 

ýprýi oiýunne tuA ewron alt nam 
»t Me Kilbn6e 

, 
`"r. i 

Wen aW 
Sumo 

Ktlbrde C At B, 0" ýme\ a'Gaaýep. 

AI°losi I SI \\ýý_")))t 
/ l; ýp v RAfý 

co° fYlpSol, e lima ock Oared Kesmaeagme 

uwv Sal Newmon,... Bur ,, 
Troll 

T hoof M chMe YMKY 

Pres, wic J/K YA - Ayi . 1045 

Ay W 
Mnle 

" p1 Crr. rail. 

N" WA Cumnuc 

Cy r/ 
New Cumnod Knkonn0 

Paine 
Maden B/adnav Sancuha,. 

ar0ole \ 
AWA 

balmeingroiS. l28 
An 

C-W 

_= 
$\CrrpAava 

Cct fff ýjGs°hamO 
DUMF 71. 

., SonK C.. k F., 
r66! ý0 "Mon. 

'ßc1 
/Il. 

n/K4" 
16 

,SV! 
z 

216 ''ý 8apne Nd 
0, G 

w/ New Gallows "ry 
t 

C/annugrshaYr 
2 

i 

i\ 
e� sealowaY 

Newlon Slewan 
Gslh 

ýY 
c". - 

°ý " 

ýý- Main wgr 
Creesown fleet p' 
\ 

ýý 
onglaM 

- 7Ae o 
chs wort Yccudorg Ma 

4n Bai '" Bar 
Nhff1011 

Pop W1A° Whnhorn 

Ed ae It of WAehore 
Bw. wr 

yý... 

6wMewar C) 

FIGURE 7.2 
THE FIRTH OF CLYDE. 



156 

the south to the mouths of the River Clyde and Loch Fyne 

in the north. Further north, however, the fjordic nature 

of Loch Fyne and Loch Long and the length of the River 

Clyde mean that tidal influences propagate a considerable 

distance upstream in channels with a breadth less than 

that resolvable by the numerical grid. As the primary 

interest in the present study lies in modelling tide and 

storm surge propagation in the main body of the Firth, 

rather than flow details at the upstream extremities Loch 

Fyne, Loch Long and the River Clyde were represented 

within the numerical grid as equivalent water surface 

areas. 

7.3 TIDE PROPAGATION IN THE FIRTH OF CLYDE AND SURROUNDING 

SEAS 

Donald (1981) placed tidal motion in the Firth of 

Clyde in context with the tidal oscillations occurring 

in the surrounding seas. The area is shown in Figure 

7.3, together with the co-range and co-phase lines for 

the M2 tide as computed by Doodson and Corkan (1932). 

The progression of the co-phase lines in the North 

Channel indicate that the Firth of Clyde tides are determined 

by tidal propagation across the coast of Northern Ireland 

from the Atlantic Ocean. Hence, the Firth of Clyde tides 

are in co-oscillation with those in an area of the Atlantic, 

west of the Clyde. This is an interesting feature since 

the orientation of the Firth of Clyde is north-southwards 

and so is more exposed, yet apparently less influenced 

by the tidal oscillations in the Irish Sea. This feature 
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is also evident in the tidal streams shown later in section 

7.9. 

The tidal propagation in the Firth of Clyde itself 

is straight-forward since it is a converging estuary which 

communicates with the North Channel through only one 

open sea boundary. The average spring range varies 

from 2.5 metres at the mouth to 3.1 metres at the head 

of the estuary while the phase difference along its length 

is around thirty minutes. 

7.4 PAST NUMERICAL STUDIES IN THE FIRTH OF CLYDE 

Previous numerical modelling efforts in the Firth 

of Clyde include those of Ellis (1970,1972), who employed 

a one-dimensional characteristic scheme to model tide 

propagation in the River Clyde, the Gareloch, Loch Long 

and Loch Goil. 

More recently, Donald (1981) used a two-dimensional 

characteristic model, based on work of Townson (1974) 

to model. tide and storm surge propagation in the Firth 

of Clyde. Discretization of the present model is similar 

to Donald's model 3. The intention was to draw conclusions 

regarding the relative merits of characteristic and ADI 

methods when applied to tide and storm surge propagation 

problems in coastal seas. 

7.5 BOUNDARY CONDITIONS 

Fresh water inflows and variations in surface areas 

from flooding of sand flats were considered unimportant 
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in the Firth of Clyde. Two boundary conditions are therefore 

required. One relates the normal component of flow 

at the land water boundaries to zero: 

qy =0 

or 

qx =0 

and the other defines boundary water levels as a function 

of time. The open boundary is considered to extend from 

Portpatrick to Sanda Island, see Figure 7.2. Data concerning 

the spring tide ranges along this boundary was taken 

from Admiralty Chart No 5058. Variations between high 

and low water are considered to be of cosine form. Range 

and phase data are read in by the model and the water 

level variations on the boundary are calculated automatically. 

7.6 INITIAL CONDITIONS 

Initial conditions for the first tidal period were 

taken as: zero flows and water levels corresponding 

to mean tidal. level. After a run of three tidal cycles, 

a periodic variation of water level in the estuary had 

been attained. At this point the calculation was terminated 

and the final conditions used as initial conditions for 

all subsequent runs. 

7.7 WAVE DEFORMATION CHARACTERISTICS 

Before proceeding with the calibration process the 

model's sensitivity to choice of time increment and theta 

value was tested. 

Plots of water level verses time at selected positions 
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in the Firth are shown in Figures 7.4a to 7.4i. Four 

values of time increment were used corresponding to average 

Courant numbers of 4,5.7 and 9. The results show 

that although the numerical scheme remains stable for 

high Courant numbers the accuracy of the results is reduced 

in areas of the model. This numerical damping is most 

pronounced in the East Loch Tarbert region, Figure 7.4c, 

where 28% reduction in the computed range is recorded 

by using a Courant number of 9. 

The reason behind this numerical damping can be 

seen from examining the schematization of the Firth in 

Figure 7.4a. In the East Loch Tarbert area the centreline 

of Loch Fyne runs at 45° to the numerical grid. This 

necessitates use of an irregular closed boundary to schematize 

the banks of the loch. The effect of such a feature on 

ADI solutions of the long wave equations has been studied 

by Weare (1979). Weare showed that by using this type 

of schematization effectively a no-slip condition is imposed 

along the model walls. He concluded that care should 

be taken in the application of ADI schemes to ensure 

that the economic advantages of operating at high Courant 

numbers do not override accuracy considerations. 

Using a Courant number of four the influence of 

theta on computed results was assessed by varying its 

value between 1.0 and 0.6. Figures 7.5a to 7.5m show 

comparisons of computed tidal records at selected locations 

within the Firth. It is evident from these that variations 
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have little effect in the present application. Thus, in 

the Clyde sea area a distance increment of 3000m gives 

a sufficiently high number of grid points per tidal wave 

length to prevent numerical damping at high theta values. 

7.8 CALIBRATION 

The Firth of Clyde is a relatively deep inland sea 

area. In the numerical model the depths corresponding 

to mean tidal level are no where less than five metres. 

This implies that long wave propagation in the Firth 

is effected little by friction and that the numerical model 

will be insensitive to variation of the Chezy coefficient. 

This effect was confirmed by numerical experiments. 

A summary of these results is presented in tables 7.1 

and 7.2. Table 7.1 shows a modest variation in range 

as the Chezy coefficient is varied between 100m' Is and 

50m 2 Is. Variations in the time of high water relative 

to Greenock are given in table 7.2. On first inspection 

changes in the times of high water at Sanda Island and 

Portpatrick suggest that the wave speed is sensitive to 

changes in the Chezy coefficient, however, it is important 

that this is placed in context with the rate of change 

of water levels in the Firth. Figure 7.6 shows that the 

twenty minute variation in the timing of high water is 

negl'able when translated to differences in water levels. 

Ultimately, a Chezy coefficient of 100m z /s was chosen 

to represent turbulent energy losses in the Firth. This 

value being in the range of 60m 2 /s to 100m' /s suggested 
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LOCATION RANGES 

Predicted Computed 
(Chezy Co eff i cient) 

1979 100 90 80 70 60 50 

GREENOCK 3.08 3.04 3.03 3.02 3.01 3.00 3.00 

ROTHESAY BAY 3.08 2.91 2.91 2.90 2.89 2.88 2.87 

EAST LOCH TARBERT 3.08 2.78 2.77 2.77. 2.77 2.76 2.75 
LOCH RANZA 2.65 2.81 2.80 2.80 2.80 2.79 2.79 
BRODICK BAY 2.83 2.77 2.77 2.77 2.76 2.76 2.76 

IRVINE 2.77 2.76 2.76 2.76 2.75 2.75 2.74 
AYR 2.56 2.72 2.72 2.72 2.71 2.71 2.71 
GIRVAN 2.68 2.54 2.54 2.54 2.54 2.54 2.53 
CAMPBELTOWN 2.56 2.53 2.53 2.53 2.53 2.53 2.53 
STRANRAER 2.77 2.65 2.64 2.64 2.64 2.64 2.63 

SANDA ISLAND - 2.00 2.00 2.00 2.00 2.00 2.00 

PORTPATRICK 3.44 3.00 3.00 3.00 3.00 3.00 3.00 

Table 7.1 
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LOCATION TIME OF HIGH WATER 

Predicted Computed 

(Chezy Coefficient) 

1979 100m1/s 90 80 70 60 50 

GREENOCK 0 0 0 0 0 0 0 
ROTHESAY BAY +5 -10 -10 -10 -10 -10 -20 
EAST LOCH TARBERT -10 +20 +20 +20 +10 +10 +10 
LOCH RANZA -10 -10 -10 -5 -10 -10 -20 
BRODICK BAY 0 -10 -10 -10 -20 -20 -20 
IRVINE -15 -10 -10 -10 -20 -20 -20 
AYR -20 -10 -10 -10 -20 -15 -20 
GIRVAN -20 -10 -15 -15 -20 -20 -30 
CAMPBELTOWN -15 -10 -10 -10 -20 -20 -30 
STRANRAER -15 -10 -10 -10 -20 -20 -30 
SANDA ISLAND -40(-35) -20 -20 -20 -30 -30 -40 
PORTPATRICK -59(-40) -20 -20 -20 -30 -30 -40 

Table 7.2 
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by Dronkers (1964) for typical estuaries. 

7.9 SIMULATED SPRING TIDES IN THE FIRTH OF CLYDE 

The results from modelling spring tide propagation 

in the Firth of Clyde are shown Figures 7.7a to 7.9. 

Frictional and coriolis effects were included in the numerical 

simulation. A Chezy coefficient of 100m2 Is was used. 

The time increment was 596.0 seconds giving an average 

Courant number of 4. The theta value was set at 1.0. 

Comparisons between computed water levels and predicted 

ranges and phases taken from the Admiralty Tide Tables 

(1983) are shown in Figures 7.7a to 7.71. A harmonic 

cosine function was used to provide the variation between 

high and low water for the predicted values. Figure 

7.5a shows the position of each of these points within 

the estuary. It can be seen that in general a good agreement 

is achieved between the computed and predicted values,, 

the exceptions being East Loch Tarbert where some numerical 

dissipation is evident a 12% reduction in predicted tidal 

range, see section 7.7, and Campbeltown where a phase 

error of thirty-five minutes is recorded. Consulting earlier 

editions of the Admiralty Tide Tables showed that the 

timing of the predicted spring tide at Campbeltown is 

some twenty-five minutes later in the 1983 edition than 

those published in previous editions. If comparisons 

had been made with say the 1979 edition this phase error 

would be reduced to ten minutes. This is considered 

an acceptable error in the present application. 
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Velocity vectors in the Firth are shown " at 2.98 

hourly intervals throughout the tidal cycle in Figures 

7.8a to 7.8e. These can be compared with the velocity 

vectors for the Clyde sea area, taken from the Admiralty 

Tidal Stream Atlas, shown in Figure 7.9. The latter 

have been converted from their published time relative 

to high water Dover to model time. Note that the timings 

do not coincide exactly. A fair agreement is obtained 

between the directions and magnitudes of the computed 

and measured velocities. In general computed velocities 

are slightly less than the measured ones. This could 

be attributed to the computed values being depth averaged 

while the measured values are surface velocities. A further 

point evident from Figure 7.8 is the co-oscillation of 

the Firth of Clyde with an area of Atlantic Ocean rather 

than the Irish Sea, a feature already described in Section 

7.3. Also noticeable in the velocity vector diagrams 

is the effect of solving for one velocity component at 

the open boundaries. The effect of this artificial condition 

appears to be dissipated by the second or third solution 

point. Therefore, provided one is not interested in results 

in close proximity to the boundary this condition should 

not severely restrict the model's use. 

Figures 7.10a to 7.10c show the global variation 

of water level in the Firth. It is stressed that the vertical 

scale in the figures varies, by virtue of the plotting 

routine, and that the figures serve only to illustrate 

the nature of tidal propagation in the Firth of Clyde. 
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7.10 STORM SURGE PROPAGATION IN THE FIRTH OF CLYDE 

7.10.1 DEFINITION OF A STORM SURGE 

Storm surges are sometimes referred to as meteorological 

tides since they are caused by unusually high or low 

barometric - pressures and associated strong or prolonged 

wind speeds. When these conditions differ from the norm 

there are corresponding difference s between the actual 

and predicted tides which, if recorded, become a measure 

of the storm surge. In this way a positive surge is 

associated with a net transport of water towards the shore 

resulting in an increase in tidal level. Naturally enough, 

previous studies have been more concerned with low pressure 

distributions and in simulating positive surges because 

of their importance in flood prediction. 

7.10.2 THE WEATHER CONDITIONS ASSOCIATED WITH MAJOR STORM 

SURGES ALONG THE WEST COAST OF THE BRITISH ISLES 

The intensity of the storm has been found by Harris 

(1966) to be the most important parameter for estimating 

the storm surge produced. The central pressure, the 

pressure gradient across the depression an d the maximum 

wind speed are all valid indices of the storm intensity. 

The central pressure being the most stable of these parameters. 

The location of the peak surge is largely determined from 

the track of the storm and the area a ffected depends 

on both its track near the coast and its size. 

An analysis similar to that of Harris was performed 

by Lennon (1968) for surge events along the west coast 
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N 

of the British Isles. He analysed seven depressions at 

both Liverpool and Avonmouth and noted the similarity 

of . features in the depressions which were responsible 

for producing surges at either or both these parts. He 

concluded that a major surge could be expected along 

the west coast when four meteorological conditions occurred, 

namely if: 

i. -a deepening and well developed secondary 

depression approaches the country from 

the Atlantic Ocean such that its right-rear 

quadrant acts upon the water surface 

en route to the ports. Hence, the ports 

experiencing the greatest surge, lie 

to the right of the path of the, depression. 

ii. fhe speed of approach of the depression 

is of the order of 40 knots. 

a radius of depression up to 150 to 

200 nautical miles is well defined by 

roughly concentric isobars. 

iv. the depression reaches a depth of 50mb 

over the country and is associated 

with a pressure gradient of approximately 

30mb in 250 nautical miles in its right-rear 

quadrant. 

Lennon further concluded that of these four conditions, 

the first pair are more important than the second pair. 

The occurrence of these features in the recorded Scottish 

west coast surge on 7th-9th March 1979 is discussed 

later. 
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7.11 THE STORM SURGE OF 7th-9th MARCH 1979 

During 7th March a depresion (Low C) to the northwest 

of Scotland moved away northeastwards and a new shallow 

depression (Low S) formed on the frontal trough between 

Scotland and Norway. On 8th March a small but deep 

depression (Low R) close to southwest Norway moved steadily 

northeast while another deep depression (Low L) to the 

west of Iceland moved slowly east. Accompanying frontal 

troughs moved close to northern Britain later in the day. 

During the next twenty-four hours the Icelandic depression 

intensified, moving slowly northeast between Scotland 

and Iceland. During 9th to 10th March this depression 

(Low L) moved north, away from east of Iceland, while 

its associated fronts over Britain moved away eastwards. 

During this period pressure remained low north of Scotland. 

As a result of the presence of Low L, a positive 

surge occurred during 8th and 9th March 1979 on the 

west coast of Scotland. The parameters defining the storm 

are as follows, and are comparable with those presented 

by Lennon, discussed previously. 

The maximum surge occurred during 

1800 G. M. T. on 8th till 0800 G. M. T. 

on 9th March. During this time the 

centre of the depression was about 

three hundred nautical miles north 

of the Orkneys. 

ii. During a thirty -hour time interv al the 

depression travelled 820 nautical miles 
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therefore its average speed was 27 knots. 

iii. The radius of depression was measured 

as 100 nautical miles. 

iv. The maximum depth of the depression 

below standard atmospheric pressure 

was 57 millibars. 

7.12 WIND, PRESSURE AND SURGE DATA 

Donald (1981) collected and analysed wind, pressure 

and surge data for his model which encompassed the Firth 

of Clyde and its surrounding sea area for the period 

7th to 9th March 1979. The present numerical model is 

concerned with surge propagation in the Firth of Clyde 

alone. Hence, the relevant data has been extracted from 

Donald's work and is presented in the following section. 

The wind records at Abbotsinch, shown in Figure 

7.11, were taken as being representative of those over 

the model area. A wind stress coefficient, K, of 2. Ox10 

was used and assumed to remain constant over the whole 

range of wind speeds, Abbott (1979, pp 38). Pressure 

differences between Machrahanish and Prestwick and Abbotsinch, 

table 7.3, were taken as representative of the 

d Pa /dx and d Pa/dy terms respectively. A more sophisti- 

cated approach evaluating these terms was considered 

unnecessary in the present case, as Donald's conclusions 

state that the main factor influencing storm surge propagation 

in the Firth of Clyde is the external surge input at the 

: oundary. The external surge elevations used at the 
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TIME ABBOTSINCH PRESTWICK MACHRAHANISH 

7th 
1200 1003.0 1003.0 1000.0 

1800 1006.0 1007.4 1007.7 

8th 
0000 1009.0 1010.3 1009.7 
0600 1005.0 1006.7 1005.1 

1200 999.2 1006.0 1002.4 

1800 989.0 990.9 990.1 

9th 
0000 982.0 983.5 983.6 
0600 980.9 983.1 983.3 
1200 983.1 984.4 985.0 
1800 991.8 993.9 995.2 

0000 1004.5 1001.6 1001.8 

Table 7.3 

THE VARIATION OF BAROMETRIC PRESSURE WITH TIME 

AT WEATHER STATIONS IN THE FIRTH OF CLYDE DURING 
7th to 9th MARCH 1979 

(Pressure in Millibars) 
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extremities of the open sea boundary were those measured 

by Donald's tidal survey at Portpatrick and Campbeltown. 

Between these coastal locations elevations were obtained 

by interpolation. 

These external surge boundary conditions were assumed 

to be independent of conditions in the Firth. As such, 

they were superimposed upon the predicted elevations 

(taken from the Admiralty Tide Tables 1979) at the open 

sea boundary. 

7.13 COMPARISON OF SIMULATED RESULTS WITH RECORDED DATA 

An evaluation of the model's ability to reproduce 

storm surge conditions was made at certain locations corres- 

ponding to the availability of tide records. The records 

from tide gauges situated at Millport and Greenock were 

used for this purpose. Millport and Greenock are located 

at the head of the Firth, see Figure 7.12a. 

Computed tide plus surge elevations are compared 

with the predicted tides in Figures 7.12b to 7.12e. It 

is noted that the storm surge is of insufficient magnitude 

to radically modify the tidal oscillations, as during the 

period of positive surge the phases of recorded and predicted 

tides are very similar. A comparison between the computed 

tide plus surge and the measured tide plus surge is shown 

in Figures 7.13a to 7.13d. It can be seen that a good 

agreement is achieved between the two curves, tide plus 

surge peak water levels being over estimated by around 

0.2m The accuracy of the computed surge can be properly 

assessed by comparing it with the recorded surge as shown 



208 

R. GREENOCK 
I. MIL LPORT 
A. SANDA ISLAND 
D. PORTPATRICK 

FIGURE 7.12 a 
POSITION OF WATER LEVEL HISTORYS 



209 

I- 
2 COMPUTED TIDE AND SLR3E 

+ PREDICTED TIDE 

CJLý 
W 
w 
Z 

I- 

ö 12 
a 
U. 
z 
0 

W 
0 

_2 

2 

w 
w 

f- 
ý0 
1: 12 
0 
CY 
LL 
Z 
0-1 

I- 

> 
w 
0 

-2 

FIGURE 7.12c 
STORM SURGE WATER LEVELS AT PORTPATRICK 
ON THE 7TH TO 9TH OF MARCH 1979 

FI GURE 7-12 b 
STORM SURGE WATER LEVELS AT SANDA ISLAND 
ON THE 7TH TO 9TH OF MARCH 1979 

24 00 

00 

- COMPUTED TIDE AND SURGE 



210 

2 

J) 

L 

J 
I- 
ý0 

612 Q' 
LL 

Z 
C). 

r-- 
c 

w 
0 

_2 

- COMPUTED TIDE AND SURGE 
+ PREDICTED TIDE 

FIGURE 7.12 d 
STORM SURGE WATER LEVELS AT GREENOCK 
ON THE 7TH TO 9TH OF MARCH 1979 

2 

W 
I- 
W 

J 

f- 
ý0 
r- 12 
0 
w LL 

Z 
0-1 

f- 

> 
w 

-2 

FIGURE 7.12e 
STORM SURGE WATER LEVELS AT f1ILLPORT 
ON THE 7TH TO 9TH OF MARCH 1979 

24 00 

02 

-- COMPUTED TIDE AND SURGE 



2 

N 
w 
I- 
w 

F- 

o 
0 12 
w LL 

Z 
O 
,_ -} 

w 
0 

_2 

w 
I- 
w 

I- 

zI 0 
IL 
Z 
O- 

I- 

w 
0 

FI GURE 7.13b 
STORM SURGE 
ON THE 7TH 

211 

- COMPUTED TIDE AND SURGE 

WATER LEVELS AT MILLPORT 
TO 9TH OF MARCH 1979 

F 00 

1 00 

PIGURE7.13a 
STORM SURGE WATER LEVELS AT GREENOCK 
ON THE 7TH TO 9TH OF MARCH 1979 

2- COMPUTED TIDE AND SURGE 



212 

2 

r 
U, 
w 
w 
ul 

I- 

0 
0 12 
w 
U- 
z 
o, 

w 
Cl 

_2 

w 
w 

J 

0 
CY 
IL 
z 
0- 
I- 

w 0 

FI GURE 7.13c 
STORM SURGE 
ON THE 7TH 

WATER LEVELS AT SANDA ISLAND 
TO 9TH OF MARCH 1979 

FIGURE 7.13d 
STORM SURGE WATER LEVELS AT PORTPATRICK 
ON THE 7TH TO 9TH OF MARCH 1979 

1 00 

F 00 

- COMPUTED TIDE AND SURGE 

- rnMPi ITFn TT nG Amn ci onr- 



Z13 

in Figures 7. lLa and b. From these figures it is evident 

the computed surge is more active than the measured 

surge. Most of this discrepancy is probably due to insufficiE t 

external surge data at the model boundaries. As the 

numerical model assumed surge information at Campbeltown 

to be representative of that at Sanda Island and assumed 

external surge elevations to vary linearly between Sanda 

Island and Portpatrick. 

It is considered that these results demonstrate the 

model's ability to simulate storm surges in a near shore 

environment, where wind and pressure variations have 

a minimal effect on surge elevations. However, it is 

stressed that the method of simulation is strongly dependent 

on prior knowledge of the external surge elevations. 

7.14 COMPARISON OF AN ALTERNATING DIRECTION IMPLICIT METHOD 

AND A X-Y-T CHARACTERISTIC METHOD IN THE FIRTH OF 

CLYDE 

Advocates of the method of characteristics often 

stress the method's ability to model the physical properties 

of the hyperbolic continuum equations. Namely, the reproduction 

of domains of dependence and regions of influence. However, 

it should be remembered that the inclusion of non-linear 

terms and an interpolation scheme presents dis cretization 

problems in a finite difference approximation to the character- 

istic equations on a regular x-y-t grid. These can introduce 

volume conservation errors and a degree of numerical 

damping. Further, the characteristic conditions are inherent 
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in direct finite difference approximations to the finite 

difference equations and some schemes, for example, the 

Preissmann scheme, will furnish the exact solution to 

the fully linearized flow equations for a special choice 

of Ax and p t. The above points indicate that whatever 

physical advantages the method of characteristics appears 

to possess in its differential form these may be lessened 

in the realization of a numerical solution. The following 

sections examine to what extent this is true by comparing 

the results of Donald's model three run fourteen with 

those of the author's alternating direction implicit model. 

7.14.1 BASIS OF COMPARISON 

Both models use a similar schematization of the 

Firth of Clyde area, any differences occurring along the 

open sea boundary. Variations of water level with time, 

taken from the Admiralty Co-tidal Chart 5058, are used 

as boundary conditions. Discrepancies in these boundary 

conditions can be seen in table 7.4. Donald's ranges 

at Portpatrick being some 200mm greater than the current 

model ranges. This difference is considered to have negl, 'able 

effect as the Firth is not greatly influenced by tidal 

oscillations in the Irish Sea, see section 7.3. Of greater 

concern is the difference of 150mm at Sanda Island. 

Donald's use of 2.15m as the range at this point would 

appear to be incorrect as his own Figure 6.6 clearly 

shows the range to be 2m. The error, however, does 

not appear to significantly influence results in the interior 

of the model. Possibly aided by the use of a Chezy coefficient 
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LOCATION TIDE TABLES 
1979 

PENDER 
1983 

DONALD 
1981 

GREENOCK 3.08 3.04 3.17 
ROTHESAY BAY 3.08 2.91 2.96 
EAST LOCH TARBERT 3.08 2.78 2.71 
LOCH RANZA 2.65 2.81 2.73 
BRODICK BAY 2.83 2.77 2.78 
IRVINE 2.77 2.76 2.83 
AYR 2.56 2.72 2.82 
GIRVAN 2.68 2.54 2.70 

CAMPBELTOWN 2.56 2.53 2.49 
STRANRAER 2.77 2.65 2.81 
SANDA ISLAND - 2.00 2.15 
PORTPATRICK 3.44 3.00 3.20 

Table 7.4 

COMPARISON OF RANGES 
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I 
of 35m 2 /s in the characteristic model. The alternating 

direction implicit model uses a Chezy coefficient of 100m'/s. 

7.14.2 COMPARISON OF RANGES 

Table 7.4 shows the ranges at a selection of ports 

in the Firth of Clyde from the two numerical models and 

the Admiralty Tide Tables (1979). A good comparison 

is obtained from both models. It is interesting to note 

that for both sets of simulated results the maximum negvtive 

error occurs at East Loch Tarbert and that the maximum 

positive error occurs at Ayr. These errors are probably 

due to schematization effects. Indeed, this is certainly 

the case for the alternating direction implicit model at 

East Loch Tarbert, see section 7.7. 

7.14.3 COMPARISONS OF TIMES OF HIGH WATER 

Comparisons of the times of high water, relative 

to Greenock, are shown for both numerical models and 

the Admiralty Tide Tables (1979) in table 7.5. It can 

be seen that the models produce a similar scatter of results 

at interior points. However, the maximum differences 

occur at Sanda Island and Portpatrick with the alternating 

direction implicit model. In assessing the severity of 

these differences it should be remembered that: 

the current model can only predict 

high water to the near est ten minutes. 

ii. the rate of change of water levels in 

the Firth of Clyde is relatively modest 

with a variation of the order of 10mm 
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LOCATION TIDE TABLES 
1979 

PENDER 
1983 

DONALD 
1981 

GREENOCK 0 0 0 
ROTHESAY BAY 0 -10 -5 
EAST LOCH TARBERT +5 +20 +33 
LOCH RANZA -10 -10 +9 
BRODICK BAY 0 -10 -2 
IRVINE 

-15 -10 -14 
AYR -20 -10 -12 
GIRVAN -20 -15 -32 
CAMPBELTOWN 

-15 -15 -22 
STRANRAER 

-15 -10 -26 
SANDA ISLAND 

-40 -20 -40 
PORTPATRICK -59 -20 -44 

Note : All Time in 'Minutes 

Table 7.5 

COMPARISON OF HIGH WATER TIMES 
RELATIVE TO HIGH WATER GREENOCK 
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occurring over a forty minute period 

at high water. 

iii. the time difference between high water 

at the open boundary and at Greenock 

is an area where the Tide Tables and 

the Co-tidal Chart disagree. The Co-tidal 

Chart gives the difference as thirty-five 

minutes between Sanda Island and Greenock 

at forty minutes between Portpatrick 

and Greenock. 

In the light of the above considerations it is felt 

that the current model has reproduced the time differences 

between high waters with reasonable accuracy. 

7.14.4 CO-TIDAL CHARTS 

A co-tidal chart of the alternating direction implicit 

model results is shown in Figure 7.15. This can be compared 

with Figure 7.16, where the co-range and co-phase lines from 

Admiralty Chart No 5058 are drawn on the numerical 

representation of the Firth of Clyde, and the co-tidal 

chart from Donald's model three run fourteen, shown in 

Figure 7.17. Similarities between the three figures are 

evident. 

7.14.5 CONCLUSIONS REGARDING COMPARATIVE ACCURACY AND 

EFFICIENCY 

From the previous discussion it is clear that the 

two numerical models are comparable with regard to their 

ability to simulate two-dimensional long wave propagation 

and that the physical significance of the method of 



220 

FIGURE 7.15 
SPRING TIDE CO-RANGE AND CO-PHASE 
LINES IN THE FIRTH OF CLYDE. 
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FIGURE7.16 
SPRING TIDE CO-RANGE AND CO-PHASE 
LINES IN THE FIRTH OF CLYDE TAKEN 
FROM ADMIRALTY CHART 5058. 
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FIGUR E717 
SPRING TIDE CO-RANGE AND CO-PHASE 
LINES IN THE FIRTH OF CLYDE TAKEN 
FROM DONALD (1981). 
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characteristics is not a dominant factor when modelling 

two-dimensional tidal wave propagation in an inland sea 

area. 

However, there are considerable differences regarding 

the relative efficiency of each scheme. The time step 

used in characteristic model is restricted to forty-eight 

seconds by a stability criterion; Donald reported that 

twenty minutes of computer time per tidal cycle was required 

to run this model on the ICL 1904S machine at the University 

of Strathclyde. With the alternating direction implicit 

model the time step is limited by accuracy considerations 

to five hundred and ninety-six seconds. Using this time 

step the alternating direction implicit model required 

six minutes of computer time per tidal cycle on the 

1CL 1904S. Therefore, the alternating direction implicit 

model is of the order of three times faster than the 

characteristic model for this particular case. 

Donald gives no figures as to the storage requirements 

of the characteristic model; the alternating direction 

implicit model required around 50k computer words of 

storage for the Firth of Clyde simulation. 
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CHAPTER EIGHT 

NUMERICAL MODELLING OF THE HUMBER ESTUARY 

8.1 Introduction 

The Humber Estuary is one of the major inlets along 

the east coast of England, serving the ports of Hull, 

Immingham, Grimsby and Goo. le. Its use for shipping, 

waste disposal and fishing is of great importance to the 

economic welfare of the region. Annual trade through 

the estuary is very substantial. In 1973 the total was 

about 34 million tonnes, about half of which (18 million 

tonnes) was crude oil and oil refined products. To help 

visualise the scale of this trade, these annual tonnages 

are about two thirds of the corresponding amounts for 

the Thames Estuary. 

In the early sixties increases in the size of ships 

and accelerating development along the banks of the Humber, 

particularly the building of oil refineries, led to proposals 

for a dredged channel through the middle shoal. This 

channel would permit the passage of fully laden oil tankers 

across the shoal to Immingham at neap tides. 

In 1964 the Hydraulics Research Station began a 

detailed investigation of the tidal regime on behalf of 

the Humber Conservancy Board. The object was to discover 

whether the proposed dredged channel could be maintained 

economically with a reasonable amount of maintenance 

dredging and whether this channel would have detrimental 

effects on the approaches to Grimsby Docks. The choice 
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of deposit site was also investigated. Experimental dredging, 

followed by regular surveys, was used to determine the 

extent of siltation and to provide information as to the 

cost of maintaining a full-sized dredged channel. The 

last in a series of reports by the Hydraulics Research 

Station, on the subject, was published in 1968. 

During the period 1964-68 a data collection programme 

for the verification of a physical model of the estuary, 

being built at the British Transport Docks Research Station, 

Hull, was initiated. The information collected during 

this survey was published by the Humber Estuary Research 

Committee in 1974. Among other things the model was 

used to estimate the recirculation performance of cooling 

water works and to predict surface flow patterns for the 

Killingholme Power Station, Hydraulics Research Station, 

1970 and 1974. Recently, increased operating costs have 

led to replacement of the physical model by a numerical 

model developed by Hydraulics Research Limited. 

In 1972 the Humber Advisory Group was formed. 

Its aim was to increase collaboration between various 

organisations concerned with the Estuary. Representatives 

include County and District Councils, River Authorities, 

the North Eastern Sea Fisheries Committee, industries 

including the CBI, the University of Hull, Chambers of 

Commerce, Shipping and Trade, Industrial Water Users 

Association, Yorkshire and Humberside Economic Planning 

Council and the Sports Council. Its terms of reference 

are: 
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a) The reduction of pollution of the Estuary 

and its contribution to pollution of 

the North Sea. 

b) The programme to be prepared by 

the Humber Consultative Committee to 

monitor flows and quality conditions 

of the Estuary. 

c) The protection of the Estuary for 

the passage of migratory fish and as 

a fishery in its own right. 

d) The effect on the Estuary of future 

development on both banks of the Humber, 

including the effect of provision of 

the Humber Bridge. 

e) The function of the Estuary in 

respect of land drainage. 

f) The use of the estuary for amenity 

purposes. 

In 1973 a symposium was held in an attempt to assess 

understanding of the physical, biological and sociological 

features of the Estuary and the way in which these inter-relate. 

The proceedings of this meeting were published by the 

Natural Environment Research Council in 1975. 

8.2 SCOPE OF THE NUMERICAL STUDY 

As may be determined from the prece ding section, 

considerable resources have been spent to fully assess 

the hydraulic behaviour and development potential of the 
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Humber Estuary. The following numerical study is not 

an attempt to provide any new information regarding these 

aspects of the Estuary. The intentions are: firstly, to 

provide a further test of the numerical model of Chapter 

Six by using it in a relatively shallow estuary with a 

greater tidal range than that provided by the Firth of 

Clyde; secondly, to test the flexible boundary condition 

on shoals such as Spurn Bight, Foul Holme Sand and Haile 

Sand Flats; and, thirdly, to test the "weir" flow boundary 

condition by modelling flow over Spurn Head sand spit. 

8.3 PHYSICAL DESCRIPTION OF THE HUMBER ESTUARY 

Figure 8.1 shows the channel configuration in the 

lower Humber and adjoining area of the North Sea. The 

deep water channel approaches the Humber through New 

Sand Hole where depths generally exceed 18m below low 

water of a spring tide and in places exceed 30m. 

South of Spurn Head the approach channel divides 

into two channels and sometimes three separate channels, 

namely, Hawke Road to the north, Haile Channel to the 

south and Bull Channel in the centre. Depths in these 

channels vary between 9m and 17m at low water. 

North of Grimsby these channels encounter "The Middle" 

where natural depths shallow to approximately 8m. In 

1969 a channel was dredged through Sunk Road to give 

a depth of 9m at low water. 

West of Grimsby a single channel system is re-established 

for approximately two miles, with depths greater than 

12m and, in places, 20m at low water springs. The Immingham 
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Oil Terminal has taken advantage of the natural deep 

just east of Immingham Dock Entrance. Opposite the dock, 

the channel is again split into two separate arms by Foul 

Holme Spit -a sand bank which dries at low water springs. 

The channel to the north of the spit has formed since 

the early part of this century. Previously, Foul Holme 

Sand was broader and encompassed Foul Holme Spit; as 

the channel developed through the sand bank so depths 

were reduced in the main channel to the south of the spit. 

Further west the navigation channel swings across 

the Estuary to the Hull water front where low water depths 

of 9m or more are found. South of Hull Road lies Hull 

middle, a broad sand bank which dried at low tide. 

The above description of the lower Humber and adjoining 

North Sea area was given by N. E. Denman (1973). 

8.4 NUMERICAL REPRESENTATION OF THE HUMBER ESTUARY 

Three numerical representations of the Humber Estuary 

were used in the study. Successive models contain refinements 

of the numerical representation of the physical system. 

Figure 8.2 shows the extent of the lower Humber 

estuary included in model one. The model is terminated 

above Hull with a closed boundary. This approximation 

was desirable to reduce computer storage requirements 

and enhance turn round time during the early stages of 

model development. 

A numerical grid with a distance increment of 1000m 

is used. Bathymetry is represented by a series of average 
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depths, taken from Admiralty Chart 109, at each solution 

node. 

The numerical grid is rotated from the normal west-east 

and south-north arrangement to align the physical boundaries 

with the numerical ones. By doing this it was hoped 

to alleviate the time increment restrictions imposed by 

using irregular boundaries, section 7.7. 

Expanding boundary conditions were used to model 

the flooding and drying of the three major sand flat regions. 

These were Spurn Bight, Haile Sand and Foul Holme Sand. 

Chart 109 gave insufficient information regarding sand 

flat levels to permit modelling of the slope. Hence each 

sand flat was modelled as a level area using an approximate 

average level taken from the chart. Smaller sand flat 

areas such as Foul Holme Spit and Hull Middle were considered 

too small to be included in the numerical discretization. 

They were represented as permanently wet areas having 

a depth of around lm at low water springs. 

Open boundary conditions for model one were taken 

from Admiralty Chart No 5058, a cosine variation was assumed 

between high and low water level. These conditions were 

applied along the two legs of the open boundary, see Figure 

8.2. 

8.5 PARAMETER CHOICE 

It was stated in the previous section that in order 

to prevent numerical damping from irregular boundaries 

the numerical grid for the Humber Estuary was aligned 
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along the natural estuary boundaries. Before calibrating 

the model it was thought necessary to test if this had 

been successful and to chose a suitable time increment 

for further calculations. Figures 8.3a to 8.3d show water 

level verses time curves computed using time increments 

varying from 300 seconds to 1200 seconds. These curves 

were computed without sand flat areas. It can be seen 

that variations in time increments have little effect on 

the amplitude of the computed wave. Therefore, aligning 

the numerical grid in this way allows greater freedom 

in the choice of time increment. 

For subsequent calculations flooding and drying of 

sand flat areas will be incorporated in the numerical estuary 

representation. In order that the numerical model should 

provide details of this behaviour a time increment of 600 

seconds was thought to be suitable. 

A theta value of 1.0 was used in all model applications. 

A reasonable choice, as this value did not produce significant 

numerical damping in the Firth of Clyde model using a 

distance increment of 3000 m, and therefore is unlikely 

to cause problems in the Humber Estuary where a distance 

increment of 1000m is used. 

Initial calibration was made by varying the value 

of the Chezy coefficient. A comparison of ranges taken 

from simulations using different friction coefficients is 

given in Table 8.1. Referring to these a Chezy coefficient 
t 

of 100m 2 /s is considered to provide a good first estimate 

of friction losses in the Humber Estuary. 
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LOCATION PREDICTED 

1983 

COMPUTED RANGES 
FOR VARYING CHEZY COEFFICIENTS 

80 90 100 110 120 

BULL SAND 5.8 5.84 5.86 5.87 5.91 5.93 

GRIMSBY 6.3 6.13 6.14 6.13 6.19 6.20 

IMMINGHAM 6.4 6.25 6.29 6.34 6.39 6.40 

HULL 6.6 6.52 6.57 6.65 6.70 6.73 

Table 8.1a 

RANGE COMPARISONS 
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LOCATION 
PREDICTED 

1983 

COMPUTED HIGH WATER TIMINGS 
VARYING CHEZY COEFFICIENTS 

80 90 100 110 120 

BULL SAND -20 -10 0000 

GRIMSBY -3 -10 0000 

IMMINGHAM 0 00000 

HULL +5 00 +10 00 

Table 8.1b 

COMPARISON OF HIGH WATER TIMES 
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8.6 MODEL ONE RESULTS 

Figures 8.4b to 8.4e show comparisons of predicted 

and computed water levels at locations in the Estuary. 

The position of these locations is shown in Figure 8.4a. 

A cosine variation of water level has been used to represent 

the predicted tidal curves. It can be seen that a good 

comparison of tide curves at Bull Sand and Grimsby has 

been achieved. At Immingham and Hull, however, discrepancies 

between the computed and predicted curves are evident. 

The major difference between the curves is that the predicted 

curves are assumed symmetrical while the computed curve 

is influenced by shallow water effects. That is, the speed 

of the tidal wave is significantly faster at high water 

than at low water. More information on the shape of tidal 

curves at Immingham and Hull was required before further 

conclusions regarding these comparisons could be drawn. 

Velocity vectors at hourly intervals during a tidal 

cycle are presented in Figures 8.5a to 8.5m. Velocities 

over the sand flat areas can be seen in Figures 8.5e to 

8.5j. These confirm that the method of including flooding 

and drying of sand flats described in Section 6.8.3 provides 

stable results over one tidal cycle. The magnitude of 

the velocities over the shallow area will, however, be 

affected by the assumption of a minimum depth, computed 

velocities being less than those in the prototype on these 

areas. 

The global variation of water level in the Estuary 

is shown in Figures 8.6a to 8.6m. As with the similar 
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drawings for the Firth of Clyde it is stressed that the 

vertical scale varies from figure to figure and that the 

drawings serve only to illustrate the nature of tidal propagation 

in the Estuary. Figure 8.6d shows the wave front propagating 

over the sand flats. 

8.7 FIELD OBSERVATIONS 

The existence of comprehensive field measurements 

in the Humber Estuary provided the opportunity for a rigorous 

examination of numerical model results. Four comparisons 

were used as the basis of the examination. These were: 

i. Observed and computed tide curves. 

ii. Observed and computed velocity magnitudes. 

iii. Observed and computed velocity directions. 

iv. Observed and computed cubature. 

Observed data was obtained from the following sources: 

i. Hydraulics Research Station, Reports 

Ex 386, Ex 495 and Ex 670. 

ii. Humber Estuary Research Committee, 

Report Hl, 1974. 

iii. Humber Advisory Group, Symposium, 

1973. 

8.8 COMPARISON OF MODEL ONE RESULTS WITH OBSERVED DATA 

Initial examination of observed tidal curves suggested 

that tides at Immingham and Saltend were not significantly 

influenced by shallow water effects as were the numerical 

results from model one. This deduction is reinforced 

by the results of a harmonic analysis of the tides in 
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the lower estuary undertaken by the Hydraulics Research 

Station. This showed the tide in the lower estuary to 

be dominated by the semi-diurnal constituent having two 

nearly equal high and low waters each lunar day. The 

amplitude of the fourth diurnal component for a spring 

tide on 5th April 1966 was less than 0.12m at all observed 

stations seawards of Saltend, compared with a S. 05m amplitude 

of the semi-diurnal component, showing that tide levels 

in the lower estuary are hardly affected by shallow water 

effects. 

Examination of computed velocities from model one 

showed them to be high, while the computed cubature 

at Spurn Head, Grimsby and Immingham was too small. 

These discrepancies were considered to be the result of 

inadequate numerical representation of the bathymetry 

rather than a failure of the numerical scheme. 

8.9 ADJUSTMENT OF THE NUMERICAL BATHYMETRY 

A number of adjustments were made to the numerical 

bathymetry of model one in an attempt to improve the 

above comparisons. The resulting bathymetry constitutes 

model two. Firstly, depths within the model were increased 

by 2m. This was considered to be a reasonable correction 

as chart depths are given relative to the lowest astronomical 

tide and some allowance should be added to bring these 

up to low water spring tide level. Secondly, the estuary 

area west of Hull was included as an equivalent water 

surface area. This was estimated as 49km2 and is too 

large to be omitted from the calculation. Thirdly, sand 
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flat levels were adjusted to improve cubature comparisons 

particularly at Spurn Head. The level adjustments were 

of the order of 0.5m; a realistic adjustment considering 

the difficulty in assessing a mean level and the approximation 

involved in modelling the sand flats as level as opposed 

to sloping shoals. 

8.10 MODEL TWO COMPARISONS 

8.10.1 BASIS OF COMPARISONS 

For the purpose of the following comparisons model 

times and levels were related to prototype times and levels 

in the following way. Time comparisons were obtained 

by assuming computed high water and observed high water 

at Bull Sand to be coincidental. Model datum level was 

related to Ordnance Datum Newlyn by the procedure shown 

in Figure 8.7. 

8.10.2 WATER LEVELS 

Comparisons between computed and observed water 

levels for the spring tide of 5th April 1966 are shown 

in Figures 8.8 to 8.11. 

8.10.3 VELOCITY MAGNITUDES 

Computed and observed velocities are shown in Figures 

8.12a to 8.18a. The location of these comparisons is 

shown in Figure 8.2. Velocity observations were made 

on a number of different days and may be influenced 

by meteorological conditions. To assist in assessing the 

degree of any such influence simultaneous tide curves 

for the nearest port are shown on the figures. When 
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comparing computed and cbserved velocity magnitudes 

it should be remembered that the computed velocities are 

depth averaged and calculated using an average depth 

for the area around the solution node. The largest discrepancy 

between computed values occurs at position P and is due 

to the way Spurn Bight- drains, see Section 8.12. 

8.10.4 CUBATURE COMPARISONS 

Total volumes of flow past Spurn Head, Grimsby 

and Immingham calculated by the numerical model are 

compared with the values published by the Hydraulics 

Research Station in Report Ex 386, see Figures 8.19 to 

8.21. A reasonable agreement is obtained. It is difficult 

to draw further conclusions without knowledge of how 

the Hydraulics Research Station arrived at their estimates. 

8.10.5 NEAP TIDE COMPARISONS 

Further verification of the calibration and bathymetrical 

adjustments was gained by neap tide comparisons. Figures 

8.22a to 8.22d show com puted tide curves compared to 

observed neap tide curves on 27th July 1966. Velocity 

magnitudes are compared in Figures 8.12b to 8.16b. 

Computed neap cubatures are shown in Figure 8.23. 

8.11 MODEL THREE 

The results from model two were considered to show 

a good agreement between computed and observed values; 

however, three further refinements were made to the numerical 

model, Figure 8.24. The ' first of these was to provide 
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a more realistic representation of channel dimensions 

upstream of Hull. This was achieved by retaining the 

same equivalent free surface area but in a longer and 

narrower channel. Secondly, a freshwater inflow boundary 

condition was used at the upstream limit of the model. 

Average daily mean flows taken from the Humber Estuary 

Research Committee, Report H1,1974, were used, see Table 

8.2. The object of these refinements was to test the numerical 

scheme's ability to reproduce shallow water modifications 

to a tidal wave. Finally, the open boundary conditions 

were altered. As discussed in Section 8.4 models one 

and two used known water level conditions along two 

legs, Figure 8.1. In real life the nature of tide propagation 

in the North Sea means that currents sweep down the 

coast and into the mouth of the Humber in a wide arc. 

Haile Sand is the dividing line between this flow and 

the main tidal stream going down the coast. It was 

thought this could be better represented in the numerical 

model by closing the second leg of the boundary, Figure 

8.24. This is similar to the open boundary condition 

used in the British Transport Docks Board physical model 

where a pneumatic tide generator along this leg of the 

open boundary was used to simulate tidal rise and fall. 

8.12 RESULTS FROM MODEL THREE 

In the main body of the Estuary from Spurn Head 

to Hull results from model three were little different from 

those of model two, shown in Figures 8.11 to 8.23. 
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RIVER 
AVERAGE DAILY 

MEAN 

TYPICALLY 

HIGH FLOW 

EXTREME 

HIGH FLOW 

TRENT 98 851 1787 

YORKSHIRE 
54 198 482 

OUSE 

AIRF 37 198 326 

DERWENT 17 57 114 

DON 16 113 284 

WHARFE 19 170 434 

HULL 4 14 23 

Table 8.2 

FRESHWATER FI. O%ýS INTO THE HUMBER (CUMECS) 
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However, velocity magnitudes at position D were increased 

by 21% on the flood tide. This increase brings the computed 

velocities closer to the observed values shown in Figure 

8.16. 

Although the numerical representation of the upstream 

portion of the Estuary has been improved it is still fairly 

crude; a false alignment and estimated depth are used. 

Even with these restrictions model three gave a reasonable 

reproduction of the tidal range at Hessle, Figure 8.25, 

the computed range being 0.114m greater than the observed 

range. Shallow water distortion of the wave has been 

successfully reproduced; the rising limb of the computed 

tidal curve taking a period of 5 hours the same as the 

observed tidal curve, the computed falling limb takes 

7 hours 20 minutes compared with 7 hcurs for the observed. 

The distortion of the tidal wave as it moves up the Estuary 

can be seen from the simultaneous computed tidal curves 

shown in Figure 8.26. 

Comparing model three velocity vectors in Figures 

8.27a to 8.27m with those of model one, Figures 8.5a 

to 8.5m, the changes in flow patterns seaward of Spurn 

Head are evident. The model three flow pattern at times 

2 hours and 9 hours can be compared with the flow patterns, 

obtained from float tracking experiments carried out by 

the Hydraulics Research Station, Report Ex 386,1968, 

for peak flow patterns on the flood and ebb tide, Figures 

8.28a and 8.28b. The general trend of the tidal streams 

has been faithfully reproduced. An area of disagreement 
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occurs during the draining of Spurn Bight. The float-tracking 

experiments show that water tends to leave the Bight 

via a channel close to Spurn Head. The numerical model, 

however, permits the Bight to drain along its full length. 

This effect is also evident in Figure 8.17 for velocity 

magnitudes at position P. The numerical modelling of 

this effect could be improved by a more sophisticated 

representation of the energy gradient over the sand flats 

than used at present. 

During the alterations for models two and three 

the choice of Chezy's C was continually reassessed. 

Table 8.3 shows the ranges, times of high and times of 

low water for values of C, ranging from 60m2 Is to 

120m Z/s. The table confirms the value of 100mi Is as 

providing the best estimate of energy losses in the Humber 

Estuary. Figure 8.29 shows the extent to which friction 

affects the numerical results at Hessle. 

8.13 ASSESSMENT OF MODEL PERFORMANCE 

The foregoing results are considered to show a good 

agreement with the observed values within the bounds 

of approximation of the numerical model. Some obvious 

improvements could be made. Firstly, a better estimate 

of mean sea level could be obtained. Secondly, were 

greater computer storage readily available the model could 

be extended upstream in a more realistic manner, i. e. 

using the correct channel alignment. The advantages of this 

are debatable as upstream of Hull the channel configuration 

is better suited to one plan dimension numerical modelling. 
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LOCATION OBSERVED 

120 

COMPUTED 

110 100 

RANGES 
(VARYING 

90 

CHEZY 

80 

C) 

70 60 

SPURN HEAD 5.8 5.923 5.985 5.868 5.836 5.797 5.749 5.687 

GRIMSBY 6.0 6.174 6.132 6.089 6.035 5.958 5.865 5.739 

IMMINGHAM 6.3 6.524 6.442 6.352 6.230 6.076 5.863 5.598 

HULL 6.8 7.091 6.978 6.839 6.655 6.431 6.145 5.768 

HESSLE 7.0 7.368 7.260 7.114 6.937 6.706 6.413 6.029 

LOCATION OBSERVED 

120 

TIME 
COMPUTED 

110 100 

TO HIGH WATER 
(VARYING CHEZY 

90 80 

C) 

70 60 

SPURN HEAD 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

GRIMSBY +0.30 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

IMMINGHAM +0.45 0.20 0.20 0.20 0.30 0.30 0.30 0.40 

HULL +0.45 0.30 0.40 0.40 0.50 0.50 1.00 1.10 

HESSLE +1.00 0.30 0.40 0.40 0.50 1.00 1.10 1.20 

LOCATION OBSERVED 

120 110 

TIME 
COMPUTED 

100 

TO LOW WATER 
(VARYING CHEZY 

90 80 

C) 

70 60 

SPURN HEAD +6.00 6.00 6.10 6.10 6.10 6.10 6.10 6.10 

GRIMSBY +6.20 6.10 6.20 6.20 6.20 6.20 6.30 6.30 

IMMINGHAM +6.40 6.40 6.50 6.50 6.50 7.00 7.10 7.10 

HULL +7.00 7.20 7.30 7.30 7.40 7.40 7.50 8.00 

HESSLE +7.50 7.50 8.00 8.00 8.10 8.10 8.20 8.30 

Table 8.3 
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Thirdly, more detailed knowledge of sand flat behaviour 

could be included. Knowledge of levels and the rate 

of flooding and drying would be of advantage in enabling 

correct sand flat storage to be modelled. 

8.14 NUMERICAL MODELLING OF A STORM SURGE IN THE HUMBER 

ESTUARY 

It was considered desirable to test the scheme's 

ability to simulate events with a duration longer than 

one tidal cycle in an estuary such as the Humber. Of 

particular interest was the long term numerical stability 

with extreme water levels and a number of successive 

floodings and dryings of the sand flats. The event modelled 

was the so called "Hamburg" surge on 15th to 17th February 

1962. 

Conditions in the North Sea leading to this event 

were described by Heaps (1968) as follows: 

"This event may be regarded as representing the 

class of 'major' North Sea surges. The weather charts 

of Figure 8.30 show that a large deep depression approached 

the west coast of Norway from the direction of Iceland 

and then past south-eastwards over Scandinavia into the 

Baltic. Gale force westerly to north-westerly winds associated 

with the depression, extended over most parts of the North 

Sea impelling water towards its southern and south-eastern 

coasts. As a result, large rises in sea level occurred 

along these boundaries, particularly in the German Bight 

which was directly exposed to the most violent winds. " 



Sld 

FIGURE 8.30 
WEATHER CHARTS FOR 
OF 15'V. TO17+ýFEBRUARY 

THE STORM SURGE 
1962 
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For boundary data the numerical model uses the 

measured surge at Immingham, presented by Heaps (1968), 

superimposed on the predicted tidal range from the Admiralty 

Tide Tables 1968, giving a total water level variation 

of around 6m. The wind stress and barometric pressure 

variations were considered to have a negligible effect 

in an estuary of this type and were dropped from the 

calculation. 

The numerical scheme remained stable throughout 

the calculation, sample results are shown in Figures 8.31 

and 8.33. Figures ß. 31a to 8.31d show the computed 

tide plus surge levels compared with the predicted tide 

levels at locations within the Estuary. Comparisons between 

the computed tide plus surge are given in Figures 8.32a 

to 8.32d. From Figures 8.33a to 8.33d the amplification 

of the surge as it propagates up the Estuary can be 

seen. 

8.15 THE INFLUENCE OF SPURN HEAD ON TIDE PROPAGATION IN 

THE HUMBER ESTUARY 

8.15.1 PHYSICAL DESCRIPTION OF SPURN HEAD 

Spurn Head, the sand and shingle spit that curves 

a good third of the way across the mouth of the Humber, 

is at the present time about 5km long. From its wedge-shaped 

root at Kilnsea it tapers to a neck which, though the 

narrowest, is also the highest, part of Spurn; it rises 

to about 9m O. D. This narrow neck sweeps round to 

a wider, distal portion about two miles long, the seaward 
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side of which is straight, the river side is irregular. 

A section near the northern end which bulges out 

into the river marks the place where the great breach 

of 1849 was sealed. Another bulge into the river right 

at the end gives the spit a broad tip with wide sand 

flats on the inside. The sea side maintains its straightness 

to the tip which slopes steeply down to depths of 25 to 

27 metres. 

Left to natural phenomena Spurn Head is not a permanent 

feature but undergoes cyclic phases of construction and 

destruction. The physical processes of sediment transport 

responsible for this are discussed by De Boer (1964). 

The net result is that approximately every 250 years 

Spurn Head reaches its maximum length. Then destructive 

forces take over, and it is gradually destroyed. Following 

this a new Spurn Head is built further west - than its 

predecessor. In 1849 a destructive phase began with 

a major breach about 320 yards wide and 12 feet deep 

at ordinary high water. Other considerable breaches 

occurred in 1851 and 1856. De Boer suggests that breaching 

on this scale if left to develop would have resulted in 

the destruction of the spit and the beginning of a fresh 

cycle. However, fears for the effect on navigation in 

the estuary led to the breaches being sealed in 1852-56. 

8.15.2 CASES CONSIDERED 

To illustrate the use of the "weir" flow boundary 

condition and the predictive capacity of the numerical 

I 
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model the effect of the decay of Spurn Head on spring 

tide propagation in the Humber has been assessed. 

Three stages of decay of Spurn Head shown in Figure 

8.34 have been considered. These correspond to dates 

around 1770,1830 and post 1850 respectively. For the 

1770 condition, no overtopping of Spurn Head with spring 

tides occurs, the top of the sand spit being 1.5m above 

spring tide level. De Boer (1964) reports that in 1830 

the neck of Spurn Head was overtopped at high water 

springs and during rough weather with easterly winds For this 

case the numerical model levels at two points on the neck 

are 1.5m and 2.0m below high water springs. The "weir" 

flow boundary condition is used in this case to model 

flows over the spit. Calibraticn of the "weir" flow coefficients 

Co and Cs was carried out by a back water curve integration 

assuming a steady flow condition over a 200m wide sand 

bank, the values used are 0.20 and 0.37 respectively. 

For the post 1850 case Spurn Head has been completely 

eroded with only the sand flats of Spurn Bight remaining. 

Cpen boundary conditions are assumed to be unaffected 

by the changes at Spurn Head. 

8.15.3 RESULTS 

Variations in spring tide ranges resulting from 

changes in Spurn Head are given in Table 8.4. It can 

be seen that small reductions in the ranges have resulted 

both with the 1830 and post 1850 configurations. A hydrograph 

of flow over Spurn Head for the 1830 case is shown in 

Figure 8.35. During the calibration of the "weir" flow 
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POSITION RANGES 

1770 1830 Post 1850 

BULL SAND 5.87 5.85 5.73 
GRIMSBY 6.13 6.12 6.01 

IMMINGHAM 6.34 6.33 6.23 

HULL 6.65 6.64 6.55 

Table 8.4 
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equation it was noted that use of high discharge coefficients 

resulted in oscillations appearing in the computed "weir" 

flows. The effect is protably due to insufficient account 

being taken of changes in downstream water level during 

a time increment. In the present example the discharge 

coefficient used was small enough to damp out these 

oscillations. 

8.15.4 MODELLING THE EROSION OF SPURN HEAD 

Historical evidence, de Boer (1964), indicates that 

once Spurn Head is overtopped erosion will occur rapidly. 

It may be possible to obtain an estimate of the rate of 

this erosion by incorporating a sediment transport equation 

in the numerical model. For example, the Engelund-Hansen 

formula developed for an uniform flow case: 

; D! o 3/2 
qb=0.05X5 u2 g ý- 

[ ýo / (ýf'-? 1) Dso Equation 8.1 

could be used. Where qb is the sediment flow rate per 

unit breadth, is the mass per unit weight of sand, 

Dso the sediment diameter below which 50% of the sand 

grains lie and t-o is the bed shear stress equal to ' dS,, 

and So is the surface slope. All parameters in equation 

8.1 can either be measured or obtained from the numerical 

solution, q6 coul d therefore be calculated and used to 

estimate the rate of erosion of the sand spit. 
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CHAPTER NINE 

CONCLUSIONS 

9.1 

Today's civil engineers are looking more to computer 

simulation techniques to solve practical engineering problems 

than ever before. This move to ccmputational methods 

has created a high demand for efficient and reliable 

engineering software. The aim of this research project 

was to go some way to meeting this demand in the field 

of free surface hydraulics. 

This was achieved by the development of computational 

algorithms suitable as the basis of design systems to 

solve problems concerning long wave propagation both 

in river channels and coastal seas. These design systems 

are intended for use by practicing engineers with access 

to standard office computing facilities. Such users require 

that the algorithn s be robust, efficient and have a low 

computer storage requirement. By robust it is meant that 

the models should be free from strict stability restraints 

permitting sensible results to be obtained irrespective 

of Courant number. This necessitates that care be taken 

by the operator to ensure that operating Courant numbers 

are not so high as to impair the accuracy of the results. 

Efficiency is also greatly enhanced by freedcm of choice 

of Courant cumber as physically realistic time increments 

can be used to model variations in flow parameters. 
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9.2 FLOOD ROUTING MODEL 

With the aid of existing library programme facilities 

a design sy stt. m for flood routing in a natural river channel 

and its associated washland areas has been developed. 

Algorithms for the simulation of conditions in the main 

river chanrel and the washland areas were presented 

in previous chapters. 

The main channel algorithm solves the continuity 

and full dynamic equation in one plan dimension using 

a variation of the Preissmann implicit finite difference 

scheme. This scheme was chosen as it provided for easy 

inclusion of natural channel geometry, variable distance 

increments, control sections and a rating curve as the 

downstream boundary condition. The introduction of control 

sections into the scheme presented problems in accurately 

modelling the variation of energy gradient in the vicinity 

of the control section. This problem was overcome by 

modifying erergy gradients by a variable weighting coefficient 

to provide a better simulation of the distance over which 

steep energy gradients act upstream of a control section. 

Tt, e washland algorithm solves the continuity equation 

to estimate the volumes of water entering cr leaving the 

main channel and tr, e water levels in the washlands. 

An explicit solution of the continuity equation was c})osen 

as it was originally thought that rates of change of water 

level in the u ashlands would be modest compared to those 

in the main channel. This proved to be false due to 

the large volumes of flood water which can flow over 
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the river banks for a relatively small head above bank 

level. This poor numerical representation made the model 

prone to instabilities manifest by large oscillations in 

the numerical solution for washland water levels. However, 

it was decided to persevere with the explicit representation 

rather than revert to an impl'c: it one, as ultimately this 

would provide greater model flexibility. Eventually the 

problem was cured by what is essentially a single iteration 

of Ile explicit wasteland solution, initial estimates of 

lateral flows being improved by using first estimates 

of the washland water level. A similar problem was 

encountered by Price (19&3) during the development of 

Hydraulic Research's EMBER model; in this case, the 

problem was solved by introducing smoothing techniques 

into the algorithm to damp out the oscillations. The 

author considers the iterative approach to be more phyE. ically 

realistic than the smoothing technique. 

After development trials the model was used for 

a flood study in a natural river. A description of the 

problem and model results are given in Chapter Five. 

Here it is concluded that the rrodel operated well, faithfully 

reproducing observed flood events before being used as 

a pri_dictive tool to assess the effect of the proposed 

changes to the drainage system. 

X&ough in its present condition the model can 

be used for real situations further developmer"t:; ar' thought 

to be necessary. Firstly, a facility for introducing a 

singular heat. loss prolic. _ :: c-nal to u2/2g a, na-n channel 

solution nodes should be inclLdeci. Such a feature would 
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be cf advantage at constrictions in the main channel, such 

as bridges. At present such features are modelled by 

a local increase in the Manning's roughness coefficient. 

Secondly, further development of the washland algorithm 

to include flows along a flood plain between washlands 

is desirable. This could be achieved by including washland 

to washland flow terms in the washland continuity equation. 

Such an alteration will pose considerable computational 

difficulties and require a major research effort. 

9.3 TIDAL MODEL 

The first steps have been taken towards the development 

of a solution algorithm suitable for use in a design system 

for the solution of two plan dimension tide and storm 

surge propagation problems. The algorithm is shown 

to be stable over a range of Courant numbers although 

care should be taken to ensure ' that result accuracy is 

not affected by operating at excessively high values. 

The scheme's ability to handle flow round islands and 

in basins with highly variable bathymetry is demonstrated 

through the application to the Firth of Clyde. Storm 

surge phenomena have been successfully reproduced albeit 

in a manner highly dependent on prior knowledge of surge 

elevations at the model boundary. Further tests in larger 

sea areas where wind stress and barometric pressure 

gradients have a significant effect are required to assess 

the numerical representation of these terms. 

A comparison between the efficiency of the present 

alternating direction implicit model and an x-y-t characteristic 
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model was undertaken. This showed the present model 

to require considerably less computer time than the 

characteristic model for a given simulation. 

The present algorithm was also used to model conditions 

in the Humber Estuary. In this application it was possible 

to compare computed water levels and velocities with observed 

values. These comparisons indicated that the model accurately 

represented flow conditions within the Humber Estuary 

even at considerable distances upstream where shallow 

water effects are pronounced. The model's flexibility 

in handling boundary conditions was also demonstrated 

by the Humber Estuary application. In addition to the 

normal boundary conditions of flow or water level given 

as a function of time are included a moving shore line 

condition permitting the simulation of flooding and drying 

of sand flat areas, and a "weir" flow boundary condition 

providing a means of modelling the overtopping of sand 

spits and bars during storm surge events. 

Although the scheme has been shown, to accurately 

reproduce the hydrodynamic features of tide and storm 

surge propagation a considerable amount of work remains 

to be carried out before it could be used successfully 

as a commercial model. The first step would be to 

reprogramme the algorithm paying particular attention 

to programme efficiency. On completion the computational 

speed of the model could be compared with a scheme based 

on the Leendertse method which solves the governing equations 
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using an extremely efficient tridiagonal elimination method 

for flows and water levels at alternating grid points. 

It would be expected that the present model would require 

greater computation time. Its economic viability, however, 

would depend on to what extent increased computer costs 

were offset by greater flexibility of boundary conditions. 

Further work is also required on the finite difference 

representation of convective terms. In the Firth of Clyde 

model these terms were considered to have neglic -Ve-effect 

and were omitted from the calculation, while in the Humber 

Estuary model the terms were included in an explicit 

manner. Abbott (1979) and Weare (1976) both show how 

these terms may cause long term stability problems in 

the Leendertse scheme. Careful examination of these terms 

with regard to the present scheme is required before any 

conclusions regarding stability can be drawn. Examination 

of the influence of the 0 parameter is also required. 

In the applications undertaken so far the waves modelled 

have had wavelengths long enough to prevent significant 

numerical dissipation by use of ®=1.0. If it were 

intended to use the model to study long wave phenomena 

with shorter periods, say for example harbour seiching, 

the effect on numerical results of using values less than 

1.0 would need to be determined. 

If the further developments indicated above were 

completed and the scheme were to prove itself as an economic 

concern subsidiary programmes for data and result manipulation 
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could then be developed. A start on this was made in 

the present work where it proved advantageous to develop 

plotting routines to aid in presenting results from the 

Firth of Clyde and the Humber Estuary in graphical form. 
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APPENDIX A 

SOLUTION OF LINEAR EQUATIONS 

A. 1 INTRODUCTION 

Modelling a physical system by an implicit finite 

difference scheme such as equations 3.6 and 3.22 requires 

the solution of a sit of simu: taneous equations, for each 

time increment. The computational procedure for this 

solution is simplified if the simultaneous equations are 

written in matrix notation. That is, 

[R] [S] 
= 

[T] 
Equation A. 1 

where, R is the coefficient matrix, S is the vector of 

unknowns and T is a vector containing constants calculated 

from conditions at the start of the time increment. 

Applying any pair of finite difference equations 

presented in the previous chapters to a solution region 

containing jj solution nodes gives: 

ri r2 r3 r4 

r5 r6 r7 r8 

`R] =I 

rlý r2ý r3ý r4ý 

r5ý r6ý r7j r8 

rl.. 
ýý-1 r2 r3 jj-1 jj-1 r4 jj-1 

r5., 
j, )-1 r6 r7 jj-1 jj-1 r8 ii-1 

and, 



Win+l 
1 

Qn+l 
1 

S Wl j+l 

Qn+l 
J 

Wln+l 
ii 

Qn+l 
JJ 

with, 

G1 

H1 

G. 
J 

T= H J 

G.. 
JJ 

H. 
33 

Equations for evaluation of coefficients r and constant 

G and H are given in Chapter 3 for the one dimensional 

flood routing model and Chapter 6 for the two dimen:,: onal 

tidal model. 

This set of 2(jj-1) simultaneous equations can be 

solved for the 2jj unknowns provided that appropriate 

boundary conditions are available. 

A, 2 BOUNDARY CONDITIONS 

For solution of the simultaneous equation system 
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A. 1, boundary data at the j-1 and j- jj solution points 

are required. This data can be either a given value 

of an unknown or a relationship connecting two unknowns. 

A discussion of appropriate boundary conditions for real 

situations is given in ,. ections 3.8 and 6.8. 

For the present purpose it is sufficient to note 

that by transfer ing the product of the known boundary 

conditions and their coefficients to the right hand side 

vector T, equation A. 1 becomes as shown overleaf. 

A. 3 CHOICE OF NUMERICAL METHOD 

As already stated in Chapter 1, it is important 

that all programming be as efficient as pcssible. This 

is particularly true of the numerical method algorithm, 

as its execution can account for a large proportion of 

the total computation time. It was, therefore, necessary 

to chose, from the large number available, the numerical 

method particularly suited to the solution of equation 

A. 2. 

Adoption of a direct method as opposed to an iterative 

method was decided; the latter being more efficient when 

the: s multaneous equations result in the formation of a 

sparse coefficient matrix, Johnson and Dean Reiss (1977). The 

most efficient direct methods are Gaussian elimination 

and LU decomposition. LU decomposition has special 

advantages when the coefficient matrix is tridiagonal 

in form, Johnson and Dean Reiss (1977) and Abbott (1979). 

l r-. the present case, however, the finite difference formulation 

see Chapters 3 and 6, results in a diagonal coefficient matrix 
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with a band width of four. Hence a Gaussian elimination 

procedure, modified to take advantage of the diagonal 

nature of the matrix, was adopted. 

A. 4 MODIFIED GUASSIAN ELIMINATION ROUTINE 

Guassian elimination is a variable elimination technique 

whereby the variables are eliminated one at a time to 

reduce the original system to an equivalent triangular 

system, from which a solution can be obtained by back 

substitution. In the present case it is possible to take 

advantage of the diagonal nature of the coefficient matrix, 

in equation A. 2 to increase the method's efficiency. 

From examination of the coefficient matrix in equation 

A. 2 it can be seen that the forward reduction may be 

split into units with identical arithmetic for each unit. 

A typical unit is shown below: 

r1 r2 
- 

I ý ý 

r4 r5 r6 ý I ý ý 

0 rlJ{1 r2j+1 

0 r5j+1 r6 

The arithmetic operations for each unit can now be defined. 

Noting that the two zero elements will always exist and 

need not be included in the fcr"ward reduction. The 

arithmetic operations are as follows: 

Cl = -r4I /rlj 

r5. = r5j + Cl x r2ý 

r6ý = r6. + Cl x r3j 
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H. = H. + Cl x G. 

C2 = -rlj+i/r5. 

r2 j +l = r2j+1 +C2 x rE.. 

G. = G. 
,+ C2 x H. 

)+1 ) `ý ) 
Equation A. 3 

C3 = -r5ji 1/r5. 

r6ý+1 = r6j+1 + C3 x r6. 

Hj+l = Hj+l +C3 x H. 

To achieve the forward reduction for a total of 

2(jj-1) simultaneous equations it is require-d that the 

operations defined in equation A. 3 be repeated for 

1 to j= ii-1. Leaving the elimination of the 

r5 ji-1 element to be carried out independently. This 

completed, the original system is now modified to the 

triangular system, equation A. 4. (see overleaf). 

With reference to equation A. 4 it is evident that 

the back substitution also consists of repeatable units. 

A typical unit is shown below: 

r2. r3. r4 )I 
ý 

r7 r8. j 

The arith metic operations for back substitution of this 

unit are: 

Wlj = (Hý-1 + r8.1 x Q. ) /r7 
j-1 

Equation A. 5 
Q. _ J-1 

(G+ r4 xQ r3 x Wl. ) /r2. J`1 . l-1 ) J-1 ) )-1 

Hence, for the back substitution of 2(jj-1) equations it 

is necessary to start the procedure by calculating 
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W1 
I or Qj and Q 

jj_l independently then repeatºng the 

operations de; ir1! d by equation A. 5 from j= jj-2 to 

j=I. 

After these operations the vector Is] 
will contain 

estimates for water level and flow at time (n+1) at. 

A. 5 EFFICIENCY OF MODIFIED GUASSIAN ELIMINATION ROUTINE 

There are a number of aspects which must be considered 

for the practical and efficient implementation of any numerical 

procedure on a computer. Three such aspects that can 

influence the choice of algorithm are storage requirements, 

round-off errors and execution time. 

A. 5.1 EXECUTION TIME 

The execution time required by a method ;s dependent 

upon the number of arithmetic operations required to solve 

the simultaneous equations. Hence a count of the number 

of arithmetic opera ti. ons used by various methods, or indeed 

alternative formulations of the same method gives an estimate 

of their relative efficiency. The subsequent paragraph 

is a count of the number of arithmetic operations required 

by the modified Gaussian elimination routine of 

section A. 3 

A. 5.1.1 OPERATIONS COUNT 

Tv simplify the count consider division as a multi- 

plication and substraction as an addition. 

In the forward reduction phase it can be seen 

from equation A. 3 that hach repeatable unit req'; irt. s 
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ten mu'. tiplications and seven additions. For 2(jj-1) 

simultaneous equations there will be jj-2 such units, 

with a further three multiplications and two additions 

required for the odd elimination. This gives totals of 

(jj-2) x 10 +3 multiplications, and (jj-2) x7+2 additions 

to triangularize the system. 

From equation A. 5 it is ser. n that each unit. for 

batik substitution, requires five multiplications and three 

additions. The (jj-2) repetitions together with the three 

multiplicat: ur. s and one addition to start the Fro(. ¬ss gives 

totals of (jj-2) x5+3 multiplications and (jj-2) 

x3+1 additions. 

Hence for one complete solution, (jj-2) x 15 +6 

multiplications and tjj-2) x 10 4- 3 additions are required. 

This shows a great improvement in efficiency over a standard 

Gaussian elimination, where approximately (jj-1)3/3 multi- 

plications are required for the forward reduction phase 

alorn_. 

A. 5.2 STORAGE REQUIREMENT 

Another aspect afrecting m¬. ýliod efficiency is storage 

requirements. This was minimised in the present case 

by storing only non-zero elements of the coefficient matrix. 

In an array of dimensions C2jj x 4), see Table A. 1. 

For a system consisting of one hundred solution 

points this approach results in 97% reduction in the 

capacity required to stort, the coefficient matrix. 

A. 5.3 ROUND-OFF ERRORS 

The subsequent discussion deals with sound-off errors 
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which arise as a result of the machine truncating numbers 

for storage purposes. They are present with all computational 

methods and can under certain circumstances prow tn 

destroy the solution. 

For (iat: ssian elimination the magnitude of round-off 

errors is a function of both the total number of arithmetic 

operations and the relative absolute values of the elements 

forming the coefficients C1, C2 and C3 in equation A. 3. 

Their effect can be minimised by the use of double precision 

arithmetic and full or partial pivioting techniques, see 

Broyden (1975) and Johnson and Dean Reiss (19%7). 

In the present application it was anticipated that 

no detectable round-off errors would arise. As, in the 

case of open channel flow prebtems, the eleni; nts in the 

coefficient matrix are all approximately the same order 

of magnitude the total number of arithmetic operations 

is relatively sr. _ai]. 
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APPENDIX B 

LISTING OF FLOOD ROUTING MODEL 



PROGRAM(FLCOD) 
349 

INPUT 5=CRO 
OUTPUT 6=LPO 
Etv0 
MASTER MAIN 
DIMENSION CXA(42), WLA(4 ), 

IBNDC(8,100), ENDJ(100), A( 42), 5(42), WLW(42), WC(42), RES(100) 
1, öT(42), EA(42)9E22(42), OX(42), AmAT(100,4) 
2, UJ(42), IFTS(42), X(42), TJ(42), tJ(42), XKJ(42), 
3, JLC(10,42), T(10,42), XA(10,42)9XK(10,42), XF(10,42), 
4WLI(10), TI(10), XA I(10), XKI(10), XFI(10), S=(5), OTJ(5) 
So GLT(42), QL(10,42), DR(10 , 42)9WLL(10,42)9WLR(10942) 
6, QDS(10), CLJ(42), RJ(42), Q(42), DOM(42) 
7, XWL(10,42), RWL(10,42), AWL( 10,42), AWR(10,42), VILLE(11), 
8TF(5), SD(11), WWL(42), wWR(42), AL(42), AR(42), KAL(42), KAR(42) 
S, CL(5,42), KL(5,42), Cý(594"'), KP(5,42), KAEL(2,42), KABR(2,42) 
1, SGKAD(42), GCR(20), CCR(20), ICTRL(20) 

C3MM60N/ELCCKCT/CTl, CT2'CT3 
COMMON/BLOCKC/C1, C2, C3, C4, C5 
CLMMON G 

G 
C READ PARAMETER DATA. 
C 

R; -: AD(591)DT 
1 FORMAT(1FO. 0) 

READ(5,2)JJ, 'N 
2F RMAT(ZIC) 

READCS, b)G TMEETA 
6 FDRMAT(2FO. 0) 

READ( 592)INDX9JNDX 
G 
C READ SECTION PR: PE TIES. 
C 

po 13 J=1, JJ 
REA0(5, e)I, NJ(I), X(1), 1"-TS(I) 

g FýRNAT(2IJ, F3. ü, ýü) 
IPTS(I)=1G 
READ(5,5)(WLD(K, i), T(K, I), XA(K, I), XK(K,? ), YF(K, I), K=1, IPTS(I)) 

S FORMAT(5FO. 0) 

13 CGNTINUE 
C 
C READ QDWNSTR_Ay RAT: It;; CURVE. 

C 
R: AD(5915)CW3S(K), K=19±FT5(JJ)) 

C 
C READ :: VERBANK FLCº. DZTI. 

C 
DG 23 J=2, JJ 
ZEAD(5,24)Z, K 

24 FORMAT(2I0) 
IF(K. GT. O) G2 TO 22 
RE""tD(5925)CM'LL(Kt-), CL(K, i), K=1,10) 
READ(5925)CWL: Z(h. 9: ) 9:; (K, I), K=1 910) 

25 FDRMAT(2PG. 0) 

2.3 CONTINUE 
C 
C READ SUBIERGENCE QATI cuv . 
C 

RýAD(5955)(S. (K), K=1,1C) 
; EAD( 5g55)(ViLLE(K), K=1, lü) 

55 FGRMAT(10F0.0) 
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0. 
C READ IN STORAGE POND DATA. 
C 

07 14 J=1, JJ 
READ(5,12)KAL(J) 

12 FCRMAT(IO) 
IFCKAL(J). EQ. O) GCI: 31 
IF(J. EQ. 1) GOTO 34 
IF(KAL(J). LE. KAL(J-1)) G_TC 3 

34 KAEL(1, KAL(J))=J 
KALJJ=KAL(J) 
READ(5,25)(XWL(K, KAL(J)), tWL(KoKAL(J))gK=1,10) 

3 KABL(2, KAL(J))=J 
31 READ(5,12)KAR(J) 

IF(KAR(J). EQ. O) GOTO 14 
IF(J. EQ. 1)GDTC 36 
IF(KAR(J). LE. KAR(J-1)) GCTD 32 

36 KAB2(1, KAR(J))=J 
KARJJ=KAR(J) 
READ(5,25)(RWL(K, KAR(J)), ACWR(K, KAR(J)), K=1,10) 

32 KABR(29KAR(J))=J 
14 CONTINUE 
C 
C READ IN INITIAL CDNDITI: NS. 
C 

READ(5,15)(WLA(I), T=1, JJ) 
READ(5,15)(QXA(I), I=1, JJ) 
READ(5,15)(wWL(I), I=1, KALJJ) 
REAO(5,15)(wWR(1), I=1, K=RJJ) 

1s FCRMAT(10F0.0) 
C 
C CALCULATE VALUES C' CX EETWEE'd SECTIC'NS. 
C 

Dc 16 J=1, JJ-1 
DXCJ)=X(J+1)-X(J) 

16 CONTINUE 
DSO 18 J=1, JJ 
IF(NJ(J). EG. O) GOT: 1E 

C 
C. READ INFLOW HYDKDGRA=-IS. 
C 

READ(5,4)(BNDC(NJ(J), K), K=1, NN+1) 
18 CONTINUE 

IF(J'4DX. GT. 2) GOTO 7 

C 
C READ DOWNSTREAM, BCU'CARY CCNO; TiONS IF RECUIREC. 
C 

RELD(5,4)(EN0D( ), 'J=1, NN) 

4 FCRMAT(13F0.0) 
7 CT1=1.0/D7 

CT2=0.5YCT1 
CT3=CT2/G 
C1=TtETA 
C2=1.0-THETA 
C4=ü. 5/v 
C3=C1 'C4 
C5=2.01THETA 
1=0 

C 
C ARRANGE TANK SECTI. NS IN CRC: R ELEVATION. 
C 



307 

306 

305 

313 

314 

312 
C 
C 
C 

t' 
C 
C 

c 
c 
c 

17 

20 

26 
C 
C 

DO 305 K=1, KALJJ 
I=1 
00 305 J=K: SL(1, K), KABL(2, K) 
L=I-1 
IF(L. EC. 3) G: 70 306 
IF(WLL(1, J). GT. CL(L, K)) G-'TC 306 
CL(L+I, K)=CL(L, K) 
KL(L+1, K)=KL(L, K) 
L=L-1 
GOTC 307 
I =I+1 
CL(L+1, K)=WLL(19J) 
KL(L+1, K)=J 
CONTINUE 
I=0 
DG 312 K=1, KARJJ 
I=l 
GL 312 J=KABR(1, K), KABP(2, K) 
L=I-1 
IF(L. EQ. O) G. T3 314 
IFCWLR(I, J). GT. CR(L, K)) GDTC 314 
CRCL+1, K)=CR(L, K) 
KR(L+I, K)=KR(L, K) 
L=L-1 
GOTO 313 
I=I+1 
CR(L+I, K)=Y%LR(1, J) 
KR(L+l, K)=J 
CONTINUE 

SET CONTROL IN^ICATOPS FOR SCLUTICN AS ONE REACH. 

ICTRL(1)=1 
ICTRL(2)=JJ 
INDCR=O 
NCTRL=O 

START OF TIME LD P. 

DJ 170 ! T=1 , NN 
N=0 

INTERPOLATE SECTI! N r; CFERTIES FCR USE IN THIS INCREMENT 

DG 17 J=1, JJ 
CALL CDPY(WL_, W'L1, J, IPTS(J)) 
CALL INT_RPCWLZ(J), WLI,: oT: (J), K, P) 
:. J(J)=XA(K, J)+PYCXS(K+1, J)-XA(K, J)) 
3T(J)=T(K, J)+PMCT(K+1, J)-T(K, J)) 
XKJ(J)=XK(K, J)+P-. `"(XKCK+I, J)-XK(K, J)) 
3A(J)=ENRG(wLA(J), DXA(J), AJ(J)) 
SGRAD(J)=(XK(K+i, J)-VK(K, J))/(WLü(K+1, J)-W'LD(K, J)) 
CONTINUE 
IF(JNDX. FJE. 3) G: TC 20 
aNDD(IT)=, ". 03(K)+ýý`(ý: 'SCK+1)-: DS(K)) 
IF(Jr. DX. NE. y) &: i: 2_ 
r. NDu=(ý'aD5(K+I)-: DS(K))/(hit: CK*1, JJ)-WLDCK, JJ)) 
3, NDR=JXA(JJ)-Br1DG- 'WL-'(JJ) 
TIME! (IT-1)0,: 7/3500 

w ITE C&ONDITI: DNS AT ST :; T C= TI"=_ i"+CREMENT. 
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C 

66 

5 

19 

11 

67 

68 

69 
C 
C 
C 

330 

49 

40 

41 

43 

316 

318 

344 

WRITE(6,66) TIME 
F;. RMAT(1H 99HTIME wR5=, F10.3) 
WRITE(6, 'S) 
FCRMAT(1H 922hWATER LEVEL METRES ADD) 
WRIT! (6,11)( LA(J), J=1, JJ) 
WRITE(6t19) 
FCRMATC1H 915HFLQW; ATE CUMECS) 
WRITE(6,11)( XA(J), J=1, JJ) 
FüRM:. T(11 91OF2.3) 
WRITE(6967) 
FORMATClH 923MvfASHLAND LEVEL METERS AC^) 
WRITE(6,68)(WW'L(J), J=1, KALJJ) 
FDRMAT(1H 91OHLEPT BANK 91CF10.3) 
WRITE(6,69)(WWR(J), J=1, r. ARJJ) 
FJRM, ATC1H , 10HRIGHT 94NK, 1OF1G. 3) 

DETERMINE L4TEPAL FLCNS ANC PLNO LEVELS ON LEFT BANK. 

DC 315 K=1, KALJJ 
CALL CDPY(XWL, WLI, K, 10) 
CALL INTERP(WWL(K), WLI, 1O, h, P) 
AL(K)=AWL(RgK)+P; =(AWL(N+1, K)-AWL(ti, K)) 
L=0 
D3 316 J=KAEL(1, K), KABL(2, K) 
IFF(KAL(J). tIE. K) v_TC 316 
L=L+1 
CALL CDPY(WLL, WLI, J, 10) 
IF(WLA(J). GT. WWL(KAL(J)))GDTC 40 
5=1.0 
WU=Nr1L(KAL(J)) - 
ýý=NLACJ) 
GCih 4: 
S=-1.0 
wU=W'LA(J) 
Wi; =WWL(KAL(J)) 
IF(KU. GT. WLI(1))GJTI 43 
CTJ(L)=O. G 
QLJ(J)=G. 0 
DQ(J)=0.0 
GO : TO 316 
CALL INTERP(wU, 4LI, 10, N, D) 
DCj(J. )=S: (CL(N+I, J)-GL(N, J))/CWL! (N+1)-WLI(%)) 
ýTJCL)=SMCQLCN, J)+flYCOL(N. l. J)-WLCN, J))) 
SK=CWD-NLI(1))/(WU-4LI(1)) 
CALL INTERP(SR, S:, 10, N, F) 
3r(L)=VILLE(N)+P; (VILLE(N1 )-VZLL_CN)) 
QLJ(J)=QTJ(L)VS=(L) 
DC(J)=DQ(J)MSr- (L) 
CONTINUE 
SUMQL=0.0 

DO 318 J=KAbL(1, K), K"=_L(2, K) 
IF(KAL(J). t%'E. K) G: TI 31E 
IF(CLJ(J). GT. O. C) G: ='C+GCCJ)r0.: 
SUMUL=SUMQL+CIJ(J) 
CCt4TINU: 
v(LF=-SUM%L/( +L(K)/DT+GC)+�4WL(K) 
L=0 
GW=v. 0 
üäj 340 J=KtcL(1, K)"K. M3L(2, K) 

352 



353 

345 
350 

340 

345 

710 

321 

320 

317 
341 
315 
C 
C 
C 

52 

C 
C 
C 

335 

IF(KAL(J). N=_. K) GOTC 340 
L=L+1 
IF(CLJ(J))353,340,34$ 
SR=(4LF-WLL(1, J))/(WLA(J)-WLL(I, J)) 
GLTw" 350 
SR=(WLA(J)-WLL(1, J))/(WLF-WLL(I, J)) 
CALL INTERP(SR, SD, 10, N, P) 
SF2=VILLE(N)+P*(VILLE(N+1)-VILLE(N)) 
DQ(J)=7J(J)/SF(L) 
QLJ(J)=QTJ(L)' 0.5'`SF(L)+DTJ(L)' SF2 : 0.5 
DQ(J)=0.5*vUJJ(J)rS=(L)+ýW(J)ýSF2) 
SUN! QL=SUMQL+QTJ(L)M0.5? z(SF2-SF(L)) 
IF(QLJCJ). GT. 0.0)GG=GQ+0.5; DQ(J) 
CGNTINUE 
WLF=-SUMQL/(AL(K)/DT+GQ)+WWL(K) 
L=0 
M=KABL(2, K)-KA9L(19K)+1 
IF(WWL(K). GE. WLF) GZT2 ? 41 
DC 319 I=1, M 
J=KL(I, K) 
IF(KAL(J). NE. K) GüT2 319 
IF(CL(I, K). GE. WLF) GDTC 341 
IF(WLA(J). GT. CL(I, K)) GCTO 320 
IF(QLJ(J). GT. 0.0) G3TD 31S 
WRITE(6,710) 
FÜ MATCIH , 41H*----*"L=FT PONC WATERLEVEL 
TF(I)=(WLF-CL(:, K))/(WLF-W6L(K)) 
X3=CL(I, K) 
CALL C0PY(WLL, WLI, J, 10) 
JýCJ)=CQLCZ, J)-ýL<1, J))/ChLIC2)-hLICl)) 
D (J)=DQ(J); =TF(I) 
X1=AL(K)/DT 
X2=0.5".. Dy(J) 
WLF=(WLF'X1+X2*X3)/(X1+X2) 
QLJ(J)=0.5=::: i: (J). ( LFF-X? ) 
G3Tü 319 
IFF(NLF. LE. WLA(J). DK. QLJ(J). GT. O. 3) G? TD 
TF(I)=CWLA(J)-W»L(K))/(WLF-WWL(K)) 
WLF=WLF+ LJ(J) `DT/AL(K) 
QLJ(J)=WLJ(J)MTF(I) 
DQ(J)=DQ(J)MTF(I) 
4LF=11LF-3LJ(J), DT/AL(K) 
CGr4TIi UE 
WI+L(K)=NLF 
CONTINUE 

WRITE LEFT LATERAL FL: WS. 

AECVE BANK. ****) 

219 

WK; T_(6,52) 
FüRMAT(1l+ 927r4 LCMS OV_P LEFT 64%K CUMECS) 
w; IT"c (6r11)(ZLJ(J), J=1gJJ) 

353 

OETE M: WE LAT_PAL ýLCWS ANI oONCC WATER LEVELS ON RIGHT ? ANK. 

D;, 323 K=19KARJJ 
C: +LL CDPY(RWL, WLI9K, 10) 
CALL INT_RP(r'a%(K)"«LI. 1n, tv, 2) 
Ak(K)=AWR(N, K)+PM(AWR(N+19K)-Aý'P(NgK)) 
L=O 
DC 324 J=KAER(I, K), KA_r(2, K) 
1F(KAA(J).!: c. K) G, ;, '3 3'4 



354 
L=L+1 

44 CALL C0PY(WLR, WL:, J, 10) 
51 IF(WLA(J). GT. WWý(KAR(J)))GGTG 45 

3=1.0 
WU=WWR(KAR(J)) 
WC=º4LA(J) 
GGT0 46 

45 S=-1.0 
WJ=WLA(J) 
i, O=WWR(KAK(J)) 

46 IF(WJ. GT. WLI(1))GCTC47 
QTJCL)=0.0 
QRJ(J)=0.0 
JQM(J)=0.0 
GCTO 324 

47 CALL INTERP(4U, WLI, 10, N, P) 
D3MCJ)=SrCCR(N+I9J)-QR(N, J))/(WLI(N+1)-WLI(N)) 
QTJ(L)=Sr(CR(N, J)+P; -(Q (N+I, J)-OR(N, J))) 
SR=(WD-WLI(1))/(WU-wLI(l)) 
CALL INTERP(S;, SD, 10, N, P) 
SF(L)=VILLE(N)+PM(VIILE(N+1)-VILLE(N)) 
D M(J)=DQM(J) SF(L) 
QRJ(J)=QTJ(L)*SF(L) 

324 CONTINUE 
SUMQR=0.0 
GQ=O. 
05 326 J=KAER(1, K), KA3R(2, K) 
IF(KAR(J). twE. K) GOT( 326 
IFCJRJCJ). GT. 0.0) GC=G�+DCM(J); 0.5 
SUMQR=SUMQR+yRJ(J) 

326 CONTINUE 
wRF=-SUM: R/(AR(K)/iT+GC)+wW%(K) 

346 L=0 
Get=0.0 
DO 347 J=KA3R(1, K), K»ER(2, K) 
IF(KAR(J). NE. K) GDTC 347 
L=L+1 
IF(QRJ(J))354,347,351 

354 SR=CWRF-WLnC1, J))/(WLA(J)-'WLR(I, J)) 
30TO 352 

351 SR=CWLA(J)-wLR(1, J))/(WFF-WLk(1, J)) 
352 CALL INT=_RP(SR, S), 1O, N, A) 

SF2=VILLE(N)+PM(VILLE(N+1)-VILLE(N)) 
DQM(J)=DCM(J)/SF(L) 
QRJCJ)=üTJCL)"-0.5ý`S=CL)+�iJ<L)YSý2ti 0. ý 
OýMCJ)=c0.5M000""CJ) rSýCL)+DýMCJ) SF2) r 

SUM QR=SU46R+3TJ(L)==ü. S (S=2-SF (L) ) 
IF( RJ(J). GT. 0.0)GC=G: +0.5MD�M(J) 

347 CONTINUE 
WKF=-5UMCR/(AR(K)/DT+GC)+NW;. (K) 

348 L=0 
M=KA5R(2, K)-KAEK(1'K)+1 
IF( WR(K). G:. WRF) 'JTJ 342 

JO 327 1=1, M 
J=KR(IrK) 
IF(KAR(J). NE. K) GC-13 327 
IF(CR(I, K). GE. WRF) G:, TC 342 
! F(WLA(J). GT. CR(19K)) GOT' 3`-^ 
IFCQRJ(J). GT. O. C) SCTO ? 27 
W; ý: TE(6,711) 

711 FSRMaTC1H , 4TH::::;:;: «-RIGHT POW(, ý, ZTEPLEVEL L LVE E: Ah; KLEVEL"ýý'M ;) 



TF(I)=CWRF-CRC:, K))/CWPP-WVR(K)) 
X3=CR(I, K) 
CALL CCPY(WLR, WLI, J, 10) 
DüM(J)=(QR(29J)-. 'ýR(1, J))/(WLI(2)-WLI(1)) 
0 M(J)=00M(J) TF(I) 
X2=ARCK)/DT 
X&1=0.5YDQM(J) 
.I RF=(WRF*. X1+X2; X3)/(XI+x_) 
QRJ(J)=0.5*DDM(J). *CWRF-X3) 
GOTO 327 
IF(WRF. LE. WL. (J). D?. CRJ(J). GT. 0.0) GDTO 327 
TF(I)=CWLA(J)-NwR(K))/(wRF-WWRCK)) 
WRRF=WRF+QRJ(J)M: T/AR(K) 
QRJ(J)=;; RJ(J)*TF(I) 
DOM(J)=0QM(J)=: TF(I) 
WARF=WRF-QRJ(J)='DT/AR(K) 
CONTINUE 
. WR(K)=W'RF 
CONTINUE 

WRITE RIGHT LATERAL FLEWS. 

WRITE(6,53) 
FORMAT(1H 928FFLOWS OVER RIGHT SANK CUNECS) 
WRITE(6,11)( RJ(J), J=1, JJ) 

JJJ 

CALCULATE TOTAL LATERAL PLCw INCLUCING TRIBUTARY IF NECESSARY. 

DO 332 J=1, JJ 
QLT(J)=GLJ(J)+QRJ(J) 
IF(DQ(J). GT. 0.0)DQ(J)=0.4 
Ir(DiM(J). LT. G. G)D? (J)=I CJ)+DIM(J) 
IF(NJCJ). LT. 2) GQTO 332 
QLT(J-1)=WLT(J-1)+0.5=( NDC(NjCJ)*! T)+BNDC(NJ(J)tIT+1)) 
CONTINUE 

JETE M: N_ IF ANY EXISTING CDNTRCLS DOWNED OR, IF ANY NEW CONTROLS FDRMEDI 

N=1 
JA=ICTRL(? i) 
JAJ=ICTRL(N+1) 
IF(JAJ. E . JJ) GCTC 2? 0 
S1=GXA(JAJ)/XKJ(JAJ) 
51=S1*S1 
S2=CXA(JAJ+1)/XKJ(JAJ+1) 
SZ=S2 S2 
F1=52/(S1+S2) 
F2=S1/(S1+S2) 
E S=EACJAJ+1)+ýX(JýJ)=: =Cr1ý=S1+ý2; ¶2) 
Ec = A(JAJ) 
IF(EJS. LT. ECR) GJTC 31C 
WRITE(6,25)JAJ 
FM. AT(1M r21iOCCNT L C; CW ED AT J=, I3) 
L=N 
L=L+1 
ICTRL(L)=ICTPL(L+1) 
GCR(L)=%2CR(L+1) 
CCR(L)=CCR(L+1) 
IF(I'TRL(L). E:. JJ) GOT: 2S0 
GZTO 220 
NCPTL=UUC, TRL-1 



JA=JAJ 
GOTO 211 

310 CALL CCPY(WLD, HLI, JAJ, IPTS(JAJ)) 
CALL INTERP(WLA(J, J), WLI, IPTS(JAJ), K, P) 
CCR. =XF(K, JAJ)+p. 'eCXý: (K+:, JAJ)-X=(K, JAJ)) 
OCR=DCFzc0.9 
GCR(N+1)=0.9tiCXF(K+1, JAJ)-XF(K, JIJ))/(WLC(K+1, JAJ)-WLD(K, JAJ))- 
CCR(N+1)=OCR-GCk(N+1)ýWLA(J_J) 

280 IAI=JAJ-1 
IF(JA+I. Eý. JAJ) GOT;; 180 
00 180 J=JA+1,: zI 
CALL CCPY(WLD, NLI, J,: PTS(J)) 
CALL INTERP(WLA(J), WLI, IPTS(J), K, P) 
QCR=XF(K, J)+P'(X=(K+1, J)-XF(K, J)) 
QCR=0.9rQCR 
IF(C, CR-©XA(J). GE. 0.01) GCTO 180 
NRITE(6,7)J 

7 FGRMATCIH 119HCRITICLL FLOW AT J=, I3) 
GCRT=0.9M(XFCK+1, J)-XF(K, J))/(WLý'(K+1, J)-WLDCK, J)) 
CCRT=OCR-GCRT--WLA(J) 
INDCR=1 
NCTRL=NCTRL+1 
L=NCTRL+1 

260 ICTRL(L+1)=ICTRL(L) 
GCR(L+1)=GCR(L) 
CCR(L+1)=CCR(L) 
L=L-1 
IF(J. LT. ICTRL(L)) G'-TO 260 

270 ICTRL(L+1)=J 
GCR(L+1)=GCKT 
CCR(L+1)=CCRT 

180 CGNTINUE 
IF(JAJ. EO. JJ) GLTC 290 
N=N+1 
6JTD 210 

290 N=0 
190 N=N+1 

JA=ICI L(t! )+1 
: F(JA. E . 2)JA=1 
JAJ=ICTRL(N+1) 
; AJ=JAJ-JA 
IF(IAJ. NE. 0) C'-TO 200 
N=N+1 
JAJ: ICI L(tN+1) 
IAJ=JAJ-JA 

200 JAJJ=IAJf=2 
JAJJJ=(IAJ+1)*2 

C 
C CALCULATE R. H. S. V_CTOP. 
C 
140 CALL AANDL(DT, D)(, WL4 ,; XC, OLT, D2, _A, A,., AJ, =T"XKJ"AJq 

1IAJ, JA, SGRAO) 
CALL VECT(A, E, RES, JAJ, JAJJ, JQJJJ) 

C 
C FCRM CCEFFIC: ENT MATP_X. 
C 

CALL F7RM(yXG, aJ, AyKT, JrJJ, J"1, "X, ZT, XKJ, A'J9-: }, S"RAD) 
IF(ICTPL(N). _, I. l) GCT_ 21 
aNDi1=0XA(JA-1)+�LTCJA-l&) 
i1; J=Z 
G TO 22 
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, 21 9ND1=3NDC(1, IT) 
IND=INOX 

22 IF(ICTRL(N+1). EW. JJ) GCTC 400 
JN0=4 
OCTO 42 

400 6ND2=5UD (IT) 
JNC=JNDX 
vCR (N+1)=5NG 
CCR(N+1)=ENCý 

42 CALL bCUND(AMAT, PES, IND, JND, E. %D1,5N02, JAJJ, GCR(N+1), CCR(N+1)) 
C 
C SC"LVE BY GAUSSIAN EL: MINATIO . 
C 

CALL GAUSS(AMAT, RES, JAJJ, JND, GCR(N+1), CCR(N; 1)) 
CALL SWITCH(RES, INC, Jt1G, END1, BND2, WLW, WC, JAJ, JZ 

1, JAJJ, JAJJJ) 
D. C. 130 J=JA, JAJ 
WLA(J)=WLW(J) 
QXA(J)=W0(J) 

130 C0NTINUE 
IF(JA. NE. 1) 4DTC 300 
WLA(1)=WL (l) 
QXA(1)=W0(1) 

300 IF(JAJ. ED. JJ) GOTD 170 
GOTD 190 

170 CONTINUE 
STOP 
EN0 
SU-ROUTINE AANDE(DT, DX, WL, QU, OL, D L, E, A, E, AE, ET, YKJ, AJ 

1, IAN, IA, SGRAD) 
DIMENSION WL(42), CU(42), E(42), XKJ(42), AJ(42), 

1ET(42), DX(42), A(42), c(42), AE(42), AC(42), CL(42) 
2, SGRA3(42), OCL(62) 

C%N&MON/ELZCKCT/CT1, C72, ýT? 
CCMMCN/BLý-'CKC/Ci, C29C3, C4, C5 
C: MMON G 
J=: A-1 
DC 45 K=1, IAN 
J=J+1 
DXI=1.0/DX(J) 

6 A(K)=CWL(J)-BT(J)+WL(J+1)'. =? T(J+1))==CT2 
1-G. SMCX: YCGU(J+1)-CUCJ))+CGLCJ)-DOLCJ)*WLCJ) 
1/2.0)MGXI 

QD=00(J) 
Gc=QU(J+1) 
S1=ý0ý=. wýD/CXKJ(J)'=XKJ(J)) 
S2=Gý=I_/CXKJCJ+1)ýXKJ(J+1)) 
Fi=S2/(S1+S2) 
FZ=S1/(S1+S2) 
3(K)=(CU(J)/AJ(J)+ U(J+1)/AJ(J+1))=: CT2+C2ýcXICB (J)-E(J+l)) 

1-F1-C 1.0-C5 (1 . 0-SS 'A0(J)=ýS, L(J)/XKJ( J)))'=S1 
2-r'2 C1.0-C5'(1. G-SIS: aC(J+1)'WL ( J+1)/XKJ(J+1)))*S2 

45 CONTINUE 
30 RETURN 

ENO 
SUBROUTINE" VECT(t, S, C9141% 9 ti'AWN , 'JANNN) 
DIMENS: -'N A(42), 2-(A-`), C(13C) 
J=0 
Dº. 20 N=1, NAP'i! i, 2 
J=J+1 
C(ri)=A(J) 
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CCN+1)=3(J) 
20 CONTINUE 
30 RETURN 

END 
SUBROUTINE F: RV(C2, A2, XNAT, hANN, I; A, DX, ET, XKJ, AJ, DCL, SGRAD) 
DIMENSION : 2(42), A2(42), X4AT(100,4), DX(42)95T(42) 

1, SGRAD(42), D2L(42), XKJ(42), AJ(42) 
COMMON/ELDCKCT/CT19CT2, CT3 
COMMON/ELJCKC/C1, C2, C3, C4, C5 
J=NA 
NN=NA NN-1 
K=NA-1 

20 03 30 N=1, Nt1,2 
K=K+1 
S1=32(J)-v2(J)/CXKJ(J)PXKJ(J)) 
SZ=C2(J+1)ß: 2(J+1)/(XKJ( J+1): e*XKJCJ+1)) 
F1=S2/(S1+SZ) 
F2=S1/(S1+S2) 
DX. I=1.0/DX(K) 
Al=AJ(J) 
CA=02(J)Y(C3YýXI/(A1*A1)) 
CC=F1YC5r02(J)/CXKJ(J)ýxKJ(J)) 
C0=-F1rC5: ýSGRaD(J),;; 2CJ) 2(J)/(XKJ(J)'XKJ(J)*XKJ(J)) 
XMAT(N, 1)=CT2; `"5T(K)-C�L(K); 0.5="CXI 
XMAT(N, 2)=-0.5DXI 
XMATCN, 3)=CT2r: TCK+1) 
J=J+1 
XMAT(N, 4)=0.5MDXI 
I=N+1 
A3 AJ(J) 
CV -Q (J)YCC3"`JX. /(Mr; A3)) 
Cc=F2MC5ýJ2(J)/(XKJ(J)MXKJ(J)) 
CF=-!: 2MC5MSG( J)2(J)": 2(J)/(XKJ(J) I-XKJ(J)==XKJ(J)) 
XMAT(it l)=-C1, -" XI+Cý 
XMAT (I, 2)=CT3/.: 1-CA+CC 
XMAT( I, 3)=C1'DX: +CF 
XMAT(I, 4)=CT2/A3+CE+CE 

30 C0NTINU_ 
40 RETURN 

END 
SUBROUTINE 53U"JD(a, C, IND, JK'D, 3ND1, END2, NANN, GCR, CCR) 
DIMENSION A(100,4), C(100) 
IF(IN: ). E: ). 2) GOT2 10 
CC1)=CC1)-A(1,1)y5NC1 
C(2)=C(2)-A(2,1): ' ND1 
A(1,1)=ß: (1,2) 
A(192)=A(1,3) 
A(1,3)=AC1,4) 
A(2,1)=A(2,2) 
A(2,2)=A(2,3) 
A(2,3)=A(2,4) 
GDTO 30 

10 C(1)=C0)-A(1,2)r_N:, 1 
C(2)=C(2)-A(2,2); =-N01 
A(l, Z)=A(1,3) 
A( 1,3)=A(194) 
A(2,2)=A(2,3) 
A(2,3)=A(Z, 4) 

30 J=NANN-1 
IF(JND. GT. 1) GOTO 
C(J)=C(J)-A(J'3)Y_l. 02 
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C(NANN)=C(NANN) -A(PAWh)*FND2 
A(J, 3)=A(J, 4) 
A(NANN, 3)=A(NANN94) 
GOT O 60 

50 IF(JND. GT. 3) GCT3 20 
C(J)=C(J)-A(J, 4)*5N02 
C(UUANN)=C(NANN)-A(NANU, 4), -BND') 
GCTC 60 

20 A(NANN+1,3)=-GCR 
A(NANN+194)=1.0 
C(NANN+l)=CCR 

60 RETURN 
END 
SUBROUTINE GAUSS(AqCqNANNpJN'LPtGCRpCCR) 
DIMENSION A(100,4), C(100) 
IF(NANN. EQ. 2) GOTG 40 
COEF=-A(2,1)/A(1,1) 
A( 2,1)=0.0 
A(2,2)=A(2,2)+A(1,2),. CDEF 
A(2,3)=A(2,3)+A(1,3), CCEF 
C(2)=C(2)+C(1): CJEF 
COEF=-A(3,1)/A(2,2) 
A(3,1)=0.0 
A(3,2)=": (3,2)+A(2j3); COcc 
C(3)=C(3)+C(2); C3E 
CCEF=-A(4,1)/A(2,2) 
A(4,1)=0.0 
A(4,2)=A(4,2)+A(2,3); ~CC; F 
C(4)=C(w)+C(2); C3cr- 
NN=NANN-3 
IF(NN. LT. 3) G0TC 13 
03 10 K=39NN,: 
! =K+1 
J=K+2 
L=K+3 
COEF=-A(I, 2)/A(K, 2) 
ACI, 2)=0.0 
A(I, 3)=A(I, 3)+A(K, 3)MCr, F 
A(I, 4)=A(I, 4)+A(K, 4);: CGFF 
C(I)=C(I)+C(K)'COEF 
CDEF=-A(J, 1)/A(I, 3) 
A(J, 1)=0.0 
A(J, 2)=A(J, 2)+A(I, 4)"=CCc= 
C(J)=C(J)+C(I)*CCE 
CC-A(L, 1)/A(1,3) 
A(L, l)=0.0 
A(L, Z)=A(L, 2)+A(., 4)-ýCCEF 
C(L)=CCL)+C(I)ý=C3EF 

10 CONTINUE 
L=NAUU 
J=NANN-1 
C.. E F--A (L, 2) /A (J' 2) 
AL, 2)0.0 
A(L, 3)=A(L, 3)+A(J, 3)-CC_c 
A(L, 4)=A(L, 4)+A(J, 4)-:: C. r.: c 
C (L)=C(L)+C(J), =C3EF 
IF(JND. LT. 4) G_TD 50 
CCCF=-A(L, 3)/L(L+1,3) 
A(L, 4)=L(L"4)+CCE A(L41,4) 
CTEMý'=CC( L)+CDE FMCCL+1))/A CL, 4) 
C(L+l)=(C(L+1)-CTE"tP:;: A(L+1, »))/, +(L+1,2) 
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C(L)=C(L+1) 
C(L+1)=CTEMP 
C(L-1)=(C(L-1)-C(L)*A(L-1,3)-C(L+1)*A(L-1,4))/A(L-1,2) 
GGTD 70 

60 C(NANN)=C(NANN)/A(NANN, 3) 
C(NANN-1 )= (CCNANN-1)-C(t4ANN)ý'A(NANt1-1 , 3) )/A (NLNN-1,2 ) 

70 K=NANN-2 
IF(K. EC. 2) GJTC 30 

20 C(K)=(C(K)-C(K+1); a(K, 4))/A(K, 3) 
K=K-1 
C(K)=(C(K)-C(K+1)wI(K, 3)-C(K+2)ýA(K, 4))/A(K, 2) 
K=K-1 
IF(K. EQ. 2) GDTC 30 
GGTD 20 

30 C(2)=CC(2)-C(3)ß=a(2,3))/A(2,2) 
CC1)=CCC1)-CC2) A(1,2)-C(3»:: ( 1,3))/A(1,1) 
o0TD 50 

40 A(3,2)2A(3,3) 
A(3,3)=A(3,4) 
CLEF=-A(2,1)/4(1,1) 
A(2,2)=A(2,2)+C3=_FzA(1,2) 
A(2,3)=A(2,3)+CCEF. -A(1,3) 
C(2)=C(2)+CGEF=C(1) 
CDEF=-A(2,2)/A(3,2) 
A(2,3)=A(2,3)+C: EF; t(3,3) 
CTEMP=(C(2)+CDEF C(3))/A(2,3) 
C(3)=(C(3)-A(29')YCTEUP: /A(3,2) 
C(2)=C(3) 
C(3)=CTEMP 
CC1)-CCC1)-M(1,3)YC(3)-. (1,2) CC2))/AC1,1) 

50 RETURN 
END 
Su RJUTINE S4ITCF'( ES, INDsJND, 3.371, EºJ 2, WL, Qt%N, II, N4', N) 
DIMENSION R_S(100), 4L(4_), C(42) 
IS=NN-1 
JJ=2 
DC 10 I=II+1, IS 

riL(I)=RES(JJ) 
JJ=JJ+2 

10 CONTINUE 
JJ=3 
DC 20 I=II+I9IS 
Q(I)=2ESCJJ) 
jj=JJ+2 

20 CONTINUE 
IF(IND. EQ. 2) GCTG 30 
WL(II)=5N01 
QC-, I)=RES(1) 
GDTO 40 

30 WL(II)=R. --S(l) 
GCZI)=END1 

40 I F(JND. GT. 1) GOT: 50 
WL(NN)=3ND2 
: (NN)=RES(NNN) 
GÖTZ 60 

50 IFCJND. GT. 3) C: Ta 70 
WL(NN)=RES(UNN) 
Q(NN): 5NC2 
GOTO 60 

70 Q(NN)=KES(NNN'1) 
WL(NN)=RES(NNN) 



60 RETURN 
END 
FUNCTION ENn^G(WL, J1, A1) 
CLMMJN/6L3CKC/C1, C', C3, C49C5 
ENRG=NL+(D1-01)/(41; A1), C4 
RETURN 
END 
SUBROUTINE C3PY(FqýIplqlPTS) 
DIMENSION F(10,42), FI(10) 
DO 10 K=1, IPTS 
FI(K)=F(K, I) 

10 CONTINUE 
RETURN 
END 
SUBROUTINE INTERP(X, XF, IPTS, J, P) 
DIMENSION XF(10) 
IF(X. LE. XF(1) ) GC TO 10 
IFCX. GE. XF(IPTS)) GO TC 11 
DD 12 I=2, IPTS 
IF(X. LT. XF(I)) GO TO 13 

"12 CONTINUE 
10 J=1 

P=0.0 
GO TO 14 

11 J=IPTS-1 
P=1.0 
SC TO 14 

13 J=. -1 
P=(X-XF(I-1))/(XF(I)-x=(: -1)) 

14 RETURN 
END 
FIN: SM 
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APPENDIX C 

LISTING OF TIDAL MODEL 



aO2 

7O 

6üi 

363 
Ef.. '. =C17111,1), EN: ) C(1,1), EKLD(47,1), 

LZ(4 7,19. -)#S(»7), ýF(47t1S)rwLVSTIN(4r-'60), XUS(47), 
f.. . C=, C), 1EL :: Z (17)95F1TX(Z917), k=LC6(47919) 

: N_r. Si_r. XNA WE S(12,1G), ICC: PDS(12,2), AEFV(12,2) 
Cti_r(12,2)tVSX(:, 2CC), VSY(°, 200)tVSC(o, 200) 

CC"'k'CN/cLCCK4/L'S(47), GS(47), UF(47), C=(47), VS(47) 
C ="""C'; /: L--CKS/FS('7), EF(47) 
C: N0=N/ELCCKC/C1, C2, C3, C4, C5 
: _v"": ': /CT/CT1, CT2, CT3 
C:. MM-"'q/CX/CX19CX29CX39Cx4, GXS, CXE9CX79CXS, CX9 
C_"'ý*_'. /CY/CY1, CY2, CY?, CY4, CY., CYE, CY7, CYP, CY9 
C;. 0v-N _LCCKJ KK NN, NANt. 
CZ; C14L0, CKCXYT 
CCN'. /CL2CKF/L(47)9F(47) 
C,: ""N3tý/ELCCKG/L" T(5'., 4), RESC96) 
C2wv2. /SCUNCX/IN2X(47,4)9 JNCX(4794)1JSTART(47,4)9JFINISh(4794) 

Lt "STt': T(I-7,4), x"FINII$1(47,4),: xTYPE(47,4), hXKEACh(47) 
C: "' "C' /ECUNCY/IAýYC19,4), JN Y(15,4), KSTARTC19,4), KFINISN(15,4) 

YIV 5(1�4), r. 1ý : eCý(1 5)9LS7A T(1S, 4), LFINISh(15,4) 
CAN"'Ct; /C: p; CL/hLý(47,19), CAC47,1S), GXL(47,15), CYA(47,19) 
C: "+_"; /C2NC? /hL? (47,19), C_('7,19), GXB(47,15), ýY. ý(67,19) 
C`M"1J}; /GR1L/Iih CX (4 7,1 S), IL P ICY (6.7,19) 

C. CNON /F` F CY/FL(47t15)fF5(47,15) 
+. to 

=: G. C1, ß `)JJtKK, NN, N Mrx, NVr'AX, NP15 
)G9TNETA, EXhL 

C: S, Ch, XLAT, CFCA, C25NWAT, CENAIIS, WCCEF9 
)(CSý: TXC: tJ), J: I, JJ)t: =1,2) 

Xf_AT=XL AT: 0.0174: 3: 
CC==2"C»_"'FGt-='S IN( XL AT)/1; 
C -= C r, =C1 
h: L;, (59707)((CA(K, J), J=1, JJ), K=1, KK) 
n.: CC5,7; tii)CCCY:. CK, J)t.; =:,. 1J), K=1, KK) 

7 7C. 7)(('X=CK, JJ=19 JJ. ), K=1, KK) 
-: 'Zý(i9707)((Z(KtJ)tJ=1tJJ), 'M=1, KK) 
:. L:. C(5,70_)({X'ý L=º+(K, J`�J=l, JJ)9K=1, KK 
: L3(5,70? )((Sý(K, J), J=1, JJ), K=1, KK) 

LýCC°, ýü2)C{IG? I2X(K, J)sJ=1ºJJ), K=1, KK) 
; E:. ( , X02)((IC=ICY(K, J), J=1, JJ), K=1, KK) 

: ýS)CCxKýý55Ct;, LL=1 NTS) 
-M-T(10L3) 

. iEýýC5,70')(Cý'c=VC",, L), 1=1,2), ý=1, r\PTS) 
r_Z": AT(24 ) 
:Z cA0(: t5^9)C( I000rCS(N9L)9L=1,2), tß=1, NPIS) 

: VS 
2= : Ca 2CC(':, L), L=1,2 

,r'... ý X" ! V"I 

v1 2= 0.5 CT1 

CT? =: Tom/ 

XI 
CXTETCx1 
Cx4=(:. 0-TI- : TA)»CXI 

CY1=1. C/"Y 
-r[=0 c°. CYI 
: y=T-'ElA: C Y1 
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CY4=C1.0-T1-ET=)ý`CY1 
CY5L5Y1 
CC=ý_T 
Cx6=CC CX3 
Cx7=CC-"Cx 
cX.: =0.5tCXC Cý. 5=0"! v'C. X7 

CYe =CCtCY? 
CY7=CC-CY» 
C,.. =C. 5., CYf 
CYS=C. SY_Y7 
C1=1.0/C 
Ctý=0.5'C1 
C3=0.125*C2 
C4=CXZ*C2 
r5=C 3 C2 

º! ýS=PLCAT(NN) rCT/3tC0"C 
! 4: S:. =NK/I'JC; S*1 
TI"E=O. 0 
a: iIT_C:, 7GE)JJ, KK, K; SC 

7 05 ýJr. MAT(3i , 2FE . 1) 
70t F;, º"MAT(:: 4) 

SIT=C'-f23)TIME 
ITE(2,12)((Da(K, J), J=1, JJ), K=1, KK) 

ti;: TSC: f 12)CC: YACN9JJ1, JJK19KK 
wýiTE( , 12)(0X=CK, J), J=1fJJ), K=1fKK) 
DC 13 K=19KK 
C: 13 J=1, JJ 
; %LA(xfJ)='ýt(K, J)*2(K, J) 

2. Ct, TI: L_ 
ý:. IT_Ct, ==). LAC' 7910) 

1, K 1fkK 

-AS'TlZT(K r: )=J1TCPT(K fI) 
I- SI- CK, ')=J=INIS-CK, 
1') J=JSTLOT(K, I), J9I'vIS-(K, I) 

'-(KfJ)=EK=C(WL6(K, J)fC)A(K, J)fCYA(KtJ)fLA(KfJ)) 

_ýCK, 
J)=L`SCK, J) 

1:! 4LE 
J=1IJJ 

: )L 6E : =1, %YR=_ACH(J) 

LSTL: T(J,: )=K5TL; T(J,: ) 

LF: NISo *CJ, I)=KFýNIS CJ,: ) 

6f C. NTI". LE 

C_ 170 : T: P=1, NK f2 
.ý 3C5 J=1 f JJ 
I:.: RCJ)=1 
: rC. -: x(Sý. *X(lfJ)). _.. 0) CUT_ 205 
I (wL: CS -? TXC1 fJ)fJ)" ý1. Sý: TX(2, J). AºVD. 

LLS(STX(I J)fJ). =T"WLs(SP1TY(1fJ)-1, J)) IC 
305c: 1. NIE 

A .0 

ýý 
Yº A ýý L 

Cº 
fýfýA LL 

) 

, f"ý _: ýLL Lýý. S("ýX"'CYfKY"SX, fTj . J"" y 

131 _ T. (: f 1000)I';, " 

C77 TIG= "Ný ý171. 

: =G 

ýti=x2==ý"Cý+ýN:: =: '. C?.: 415-27'-2.0`CCT'FLZ AT( IT IN)+33600.0) 
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t/'. S000.0) 

ITE(E, ý- )ENDX2 
33 605 J=1,17 

CJ 91J, 
6G C3F. T. NL_ 

DC 2001 J=1947 
ENC3(J91)=EKJX2 

2331 CGº. T_INLE 
1y3 :: C 301 K=19KK 

I9(NXRE. CH(K). EC. O)C2TC 301 
C ACn(K)+1 

:; Z 300 : =1, NXRELCº-(K) 
t: ý=tiD-1 

=wC1=0.0 
IF(I'. X(K, I). LT. 2) : ND1=°N CCK, 1) 

r. C2=0.0 
IýCJtiJX(K, i). LT. 3) ßr: ^, 2=ENCC(K, 1) 
IF(IXTYPE(K, T). LT. 3) GCTC 320 
J'IST=J"INIS'4(K, I)-JSTAPT(K, I)+1 
: AJ=J3IST-1 
JAJJ=IAJM2 
33 310 J=JSTLrT(K, I)9JFINIStw(K, I) 
: ýCGACK, J). LT. 0. eý) ý. RI1EC6, E001)K, j 

6061 ü'. h'AT(21y, 12r CEPT-S ZEzº0) 
Zýa .CK, J). LT. C" )MRIIECE, X)DACK, J) 
XJS(J)=XFLC (K,.! ) 
uscJ)=: XA(K, J) 

(J)=L(K, J) 
: F(J)=MLA(K, J) 
ES(J)=EA(K, J) 

=CJ)=ýýCK"J) 
v (J)=a YA (K" 

1 J) 

, +S(J)=CYA(K, J)/CA(K, J) 
SCJ)=S=(K, J)="`: XL(K, J)/: A(KsJ)-CCR; VSCJ) 

i-,; C;, _Fýý_=""^Iý N: 'ýCS="'e=`SIrýCWItv. LCIR)/CGýDEý. kAT:: CACK, J)) 
, VDY/CG= Er,; % 9T) 
VS(J)=VS(J)`2/(2.0MG) 

310 C? f. T: N LE 
CALL A-%3 (IAJ, 's, K, JSTOCT(K, I), JxII`ISh(K, I), XUS, S) 
C. LL VECT(JAJJ, JAJJJ) 
C. +LL F R(l, JLJJ, JSTART(K, I)) 
CALL S: Ly: -(: N?. iX(K, I)"JKCx(KEN D1NC2, JAJJ) 
CALL . ºLSS(JAJJ) ,, 
CALL SNITC' (I%: X(K, I), JNCX(K, I), ENC1, °_IC2, 

iJSTAPT(K, I)9J9: 1ISr(K, I), JDJJ)" 
L cT. 30 

32C' __0 J=JSTº. RT(K, I), JFINIStiCK, I) 
150 

=CJ)='_ý: ^ýCJ, 1) 
DT3 330 

350 3: (J): EP 3ECJ, 1) 

3? rrýTINLE v 
__ 

4'0 J=JSTAý1(K,: ), JF: AISECK, I) 

=ýýC+rJ)=ALE(K, J)-Z(K, J) 

_CK, J)==_'': ýGC'L: CK, J), CxECK, J), Crk(K, J), 3 (K, J)) 

Jyý TINIL _ 
c 3uC 

360 _. 
33" J=JST. ZT(K�), JP: h:! rC! ',: ) 

;; ýý CK, J)=: %CJ) 



ý: CK, J)=-nýýCº. LtCK,.: ), GxtCK, J)rGYý(K, J), DE(K, J)) 
LE 

:: ý Ems1 J=J! TART(K, ), JF: ti: S>O(K,: ) 

L2=J4I 
LI=J-1 
: "r(J. `_r.. JSTLkT(Ký: )) (&rTC 900 

'21 : 2O 
53 L1J 

P=2. Q 
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SGT:, 920 
91C L2=J 

F=1.0 
9G0 X=LD%(K, J)=CDXACK, L2)-CxA(K, Ll)+CX? (K, L2)-CXE(K, Ll))/(FYDXw2.0) 
S2I CDtiIIINL: 
300 CC'. T1toLE Lr 

301 -ZNTI'NLE- 
250 CC 31 J=1, JJ 

-(r: YR_AC'(J). EC. 0) GCTO 31 
IF(ICI4(J). LT. O) I=NYFEAC1(J)+1 
IF(I:: KCJ). C. T. 0) i=G 

lF(ICDIZ(J). GT. 0) I=1+1 
I=C:. _C. O. =R. I. OT. tiYýEýCN(J)) C-ETC 31 

W ITE(6,9000)K, J 
QCCC F3q#NAT(2I4,17rEVE; S=D SCLUTI0P) 

Et: C1=0. C 
IFCJ. CC. A)ý'ýG1=C. 0 
: ICJ. _C.:. =t: C1=0. Ci 
IF(J.: C. E")E 1=C. 0 
IFCJ. =C. 7):!. C1=G. 0 
: F(: 'YCCJ, I). LT. 3) . ": D1=ý dC=CJ, 1) 

0.0 
IF(J': -Y( J, I). LT. 3) =1C2Nýý'E(J, 1 ) 
I (IYTYC_CJ, +). LT.: ) GCTC 370 
: ý(SDIiXC1, J).: G. 0) ü2Tý 1020 
: ý(»L=CSýITX(1, ý), J). GT. SýITXC2, J). ^1R. 

C4L. (SPLTX(1, J)-1, J). OT. SPITX(2, J)) G OTC 1010 
GCT_ 1020 

10 10 IF(J'ýDY(J,. ). =ý:.:. sND. 1CIKCJ). EC. -1) 5%'C2=CYE(SFITX(I, J), J) 
: =CJ': 3YCJ, I)..:. S. An . IC°IR(J). fC. 1. ANC. aLACSPITX(19J), J). 

C;. T. SOITX(2, J)) E'ýD2=0.? ==( LA(SPITX(1, J)-1, J)-SCITXC2, J))= 
CS; ýTCStiCML=CStI? Xt1, J)-1, J)-cCITxt2, J))) 

iF(J'12Y(J, i). E . S. =P^. ICIýc(J). E:. 1. ANC. wL:. '(SPITX(1, J), J). 
;,,, E. s iTXC2, J)) ? vC2=0. L2=CNLý(SFITXCl, J)-1, J)-SPITX(Z, J))ý 
ýýýKTC.: C«LýCS: ITX(I, J)-1, J)-º+'LD(SP? TX(1, J), J))) 

: I=(J). =C. -1. ANC. WLA(SPITX(1, J)-1, J). 
CLT. S=: TX(2, J)) =''C1=-0.3': C6LA(StITX(19J), J)-SPITX(2, J)); = 
CS: FTC =ý CAL: (SPITxC1, J), J)-SFITXC2, J))) 

f.; E"c=: Tx(2, J)) E ':: 1=-X3.42=: ChL"4(SZITX(I, J), J)-SPITX(2, J))' 
ES: ýTCý : =(:. LL"(ca; ixC1, J)rJ)-º, Lý(Sc: TXC1, J)-1, J))) 

". =(Ir: 2YCJ, '-).:,:. 5. =n_. I:: ýCJ). EC. 1) _NC1=: Y: (ScITXC1, J)-1, J) 
03`:.,: ýT=Kci`ý: S`+CJ, T)-KýTC«T(J, I)ý= 

ST-*1 

x ý(v)=r=Lý . (P., J) 
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(K)=: ý(K, J) 
F(P)=I+LA(K, J) 

_S( K)=! L( K9J) 
)F(K)=CA(K, J) 

UF(r)=CYA(KtJ) 
VSCK)=: XF(K, J)/CE(K, J) 
S(K)=Sr(K,,; ):: YA(KtJ)/CA(K, J)+CCR="VS(K) 

L-OýC_"c=F*CEKA!; hCS*t2-`CCS( »'IACCIG)/(G, CENMAT *CA(K, J)) 

+LlýF=YCY/(G:: EP. T) 

VS( K)=VS('c)x: "Y2/(2. C; ":: ) 
CZ t. TIr. LE 
CALL ALtCE(IAKt2, J, KST. T(J, I), KFIKISH(J, I), XUS, S) 

8G CALL VECT(KAKK, KAKKK) 
CALL FCRM(2tKAKK, KS7ART(J, I)) 
CALL 5CUNC(INCY(JtI), JNCY(J, I), ENDI, ENC2, 

LKAKK) 
'F(J. 'E. 13)GCTC 605 

O C: LL GALSS(KAKK) 
CALL SWITC'(IKCY(J, I), JhL^Y(J, I), ENC1tENL2, 

CicSTAOT(Jt: ), KFIlIS1-(J, I), KAKK) 
GOT: 65 

370 CC 3E0 K=KSTAZT(J,: ), KFINISH(J, I) 
IF(: Y7YREE(J, I). E2.2) GCTC 3SO 
CF(K)=: t. GCCK, 1) 

,:. OT: 3EC 

.30 r(KE!: DID (K, 1) 
36(} C 

;C 7=0 K. =KSTAKT(J, I), K=:. ISw(J, I) 
º+LECK tJ)=CFCK) 
S: CKtJ)=üýCK)-: CKtJ) 
, Y_E(K, J)=C. 0 
EcC! ctJ)=.;: 4GCMt. (K, J), CXE(K, J), GYECK, J), CSCK, J)) 

('c, J)/GECK t J) 
: '=LY=CktJ)/C_CK, J) 
ccCýc tJ)=SC=TCU; L+V, v)/CCýx: rECKtJ)) 

73 i CC; ýT: ". LE 
; T: 3C 

dS CC- f K=KSTART(J, I), KFINISN(J, I) 

. iL'CR, J)=: F(K) 
; Y_(<tJ)=UF(K) 
3B(K, J)=hLE(K, J)-Z(K, J) 
E (K, J)==N? G( LE(K, J), CXE(K, J), CYS(K, J), CE(K, J)) 
u=lw'XECKtJ)/C: (K, J) 
Y=: YS(K, J)/CE(K, J) 
$ýCK t J)=Sýý. T(Uýýý+J V)/CCN CýCK, J)) 

EG C2%T: N LE 

;,:. T= 3C 
31 IW=hT-NLE 

T_NE=FLG4T(IT: N)': ; 
11=: TIM+1 

EA: (1Ctý. )SýRGE2 
r. týý: R=h? ýýC:.: t" C 01745 

2=2?. 0+4 ` S? hC. 141 5327=2.0=: (CTMFLCAT(IT)+? 1S0C. 0) 

,; "ITE(tt')_%VX2 
-; CC'S J=1,27 r. 

'vý C T: NLE 



z: 2JOC J=1, '7 368 

S%CC(J91)=_ NDX2 
2000 C:, F. T1NL- 

J:! »01 J=1, JJ 
: F(r. "nEACH(J). _,:. 0) CCTC 401 
: ý(Iý: ýCJ). LT. 0) I=KYFEACH(J)+l 
1F(IüIc(J). CT. O) I=C 

'. 00 I; -(I:, Ir(J). LT. 0) I=: -1 
: F(IC: RCJ)"CT. 0) I=I+1 
. =(1. EC. 0. C°. I. GT. *YýE: CHCJ)) CCTC 401 
I=(IC: ýCJ). LT. C) h ITECý, E000)K, J 
=Nc1=0.0 
IF(J. _C. 4)Ei: C1=C .0 
IýCJ.: ý. S)! N 1=C. 0 
IF(J. EC.. ')END1=0.0 
IF(J. _C:. 7)E C1=C. C 
: FCI!, YCJ,: ). LT.? ) EN01=E CA(J, l) 
ýr. &. 2=0.0 
IFCJýýýY(J, I). LT. 3) E' D2=cNCE(J, 1) 
IF(IYTYP_(J,. ). LT.? ) CCTC 420 
IF(S°: TX(l, J). EC. 0) GOTC 1040 
IF(ALACS°ZTX(1, J), J). CT. S°: TX(2, J). CR. 

.. ºLA(S°ITX(I, J)-1, J). CT. SPITX(2, J)) GOTE 10: 0 
�T0 1040 

10: U IF(J'vCY(J, I). EG. S. br. C.: C1 (J). EC. -1) _NC2=CYA(SPITX(1, J), J) 
ZýCJ: CYCJ, I). EE:. sLl., ICI (J). EC. 2. ANC. I, LACSPITXCI, J), J). LT. 

s': S°ZTX(2, J))BN7'2=0.3ft(WLA(SDITX(19J)-19J)-S; ITX(29J))M 
S,:. T(CNLrtSý:? x(l, J)-1, J)-S%: TXC2, J))) 
IfCJ'gCYCJ, I). E:. S. eºýý. ICIR(J). EC. I. ANC. WLA(SPITX(I, J), J). 

C5_. S°: Tx(2, J)) Fr: C: =:. 42:: (aLA(SP: TX(1, J)-1, J)-SPITX(2, J))' 
cSC; TCv=: CwLA(S°: TX(1, J)-l, J)-wLA(SPITX(I, J), J))) 

ýF(I'ý0YCJ, 1)...:. 5. AKC. I, CIR(J). EC. -1. AKC"WLA(S°ITx(1, J), J). LT. 
LS=ITYC2, J)) Eº%C1=-C.? K( LL(S°ITX(1, J), J)-SFITX(2, J))M 
LS%-. PT(CwC6LA(S°I7X(I9J), J)-SPITX(2, J))) 

FCI iYCJ, I). _C.:. ýsýC. ICIt(J). EG. -i"APC"WLACSPITX(1, J)-1, J). 
E; =. S°ITXC2, J)) Erg: 1=-v. L2: `"Cr. LA(S°ITXCI, J), J)-S°ITXC2, J))ý 
CS;. 1'T(: ='(WLL(SPITX(1, J), J)-i4Lt(CPITX(1, J)-1, J))) 

: F(. 1%DY( J, I:.:. 5. =ýýC. I ZPCJEC. I) ? NCI=CYA(SFITX(1, J)-1, J) 
10;. 0 KC. ST=KFZNIS~(J, Z)-KSTA;. T(J�)41 

T4K=KZIST-1 

^,: 41J K=(SI l IkISýj(J, I) 
XuS(K)=x LCW(K,.: ) 
USCK»2Y? CK, J) 
ýSCK)=ýE(K, J) 

SCýc)=__CK, J) 
ýFCK)=CSCK, J) 
;; =tKCYECK, J 
AS(K)=: XSCK, J)': E(K,. )) 
SCK)=;, t(K, J), CYCK. 1)/C_ K, J)+CCZ*VSK) 

C-wCC: F=": CEN 4Ic: NCcý. =c=rC-0S( w'InCCIP)/(C; CEKWAT*: A(K, J)) 
T -* T) 

41 P. T. 7NL 
C.. LL AL'ýC? CI: kSTt=T(J, IKIr. ISr'(J, I), XUS, S) 
C.. LL V_CTCK. KKL. 'I' .) 
C_LL ýCn"ýC2, KýKºc, ýC_T_? T(J, I)) 

JN: Y(J,: ), °º. º1, ENC2 

CALL G=l ýýCK: ýK ) 



369 
CALL Sw: TCý(. s, ýtCJ,: ), JsýYCJ,: ), ýNCi, C2, 

. RS TL'T(J, 1), KF: AISr(J, I), KAKK) 
; LT: 460 

420 : ý:, 41-40 K=KST: 4T(J, i), KF: NISt(J, I) 
I=(IYTYYE(J, I). E,;. 2) GCTG 4: 0 
3 Cv. )=cýýC(K, 1) 
G3T3'. 0 

450 DF(K)=EtiOC(K91 
430 CZ; NTINLE 

440 K=r. ST4«7(J, I), KFIt: I$H(J, I) 
hLZ(X, J)= =(c) 
ýL(K, J)=GACK)-ZCK, J) 

, JYA(K, J)=O. O 
C4CK, J`_hkGCaLt(K, JXE(K, JCYAKJ0AKJ 

443 C3FTINLE 
iCTD '. CC 

460 G3 630 K=KSTA1(J, I), KFINIS'(J, I) 
%LL(K, J)=ZºF( ) 
; Y4(K, J)=LiF(K) 
J: '(k", J)='ULA(K, J)-1(K, J) 

rCK, J)==hýL(ýtýCK, J), CX: CK, J)ýCY4CK, J)ýGACK, J)) 
830 C0 TZNUE 

L_1 X31 K=KSTLýT(J, I), KFIN: Sk(J, I) 
L2=K+1 
L1=X-1 

IF(K. =:. KSTc«TCJ, I)) GCTZ, S30 
ZrCR. EC. K=Itý: SýCJ,: )) : LT_ 940 

930 LI K 
X=1-. 0 
. nU. 950 

y .ü L2=K 
=1 .3 

=0 X^L:. o(K9J)=CCY? (L2,.; )-CL YEz (L1, J)+CYr(L2, J)-CYA(L19J))/(F* C, Y* 2.0) 
c Or 

4C0 
T :; LE !\ . 1\ ". Ctl ýL 

2; 3 DZ 101 K=19KK 
IFCt. XZEAC11(K). EC. G) G3T3 101 
11L=%XREACH(K)+1 

=(1 t XCK, i). LT. 3) : N31==_t. 000K, 1) 

I (JIýJXCK, 1)"LT. 3) 
_% 0 2=CNCC(K, 1) 

iF(IXTYcE(r, '1). LT. 2) GE7: 470 
JCIS': =JFIP. 1SrCKrI)-JSTIRT(K, I)*1 
IkJ=J:: ST-1 

51.0 J=JST:. T(K, I Jt.: SK, I) 
XUS(J)=Xý: LChCK,,; ) 
u (J)=. X°_(K, J) 
L-; (J)=C=(R, J) 
EFCJ)=hL=CK, J) 
ES(J)=_E(K, J) 
L"=(J)=2(K9J) 
u; (J)=CXi(K, J) 

S: J)=SýCK, J)=°: ýcCK, J)/LECK, J)-CCý'ýVSCJ) 
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L-,. ": E 'CES: I: Z*hIN: S"ýý2ý`SItiCýZACCIý)/(G; OEKiýAT tA(K, J)) 
(. 4C;: ?Y ix/(GtLEf, 6rT) 

C"'r, T: ". UE 
CALL ýýýýC°-CIýJ, 1, K, JSTCýT(k, I), JFIýISF'CK, 1), XUS, 5) 

140 CALL v'_CT(J. 'JJ,.; AJJJ) 

CLLL r: Ry(1, JAJJ, JS7APT(k., I)) 
CaLL : i:. CCItiCx(K, I), JtiCY(K,. ), ENO 19BNC2, JAJJ) 
CALL GAUSS(JAJJ) 
CALL 56: TCrCIr; CýCK,: ), Jý"^x(K, I), chCl,? ºýC2, 

LJSTA; T(K, 1)'JF: t: SI-(K, I), JAJJ) 
G:. TQ : 2S 

470 CC 460 J=JSTAýT(K, I), JFIAISP(K, I) 
IF(IXTYPE(K, I). EC. 2) GCTC 490 
SF(J)=Er. CA(J, 1) 
G`TC 4$C 

490 GF(J)=`NCE(Jfl) 
480 Cc"T_NLEE 

CC 740 J=JSTART(K, I), JF: NISr(K, I) 
WLA(K, J)=0r(J) 
0 (K, J)=WLA(K, J)-Z(K, J) 
Qx-'(KtJ)=0.0 
EA(K, J)=Et"FOChLA(KfJ), CXA(K, J)fCYA(K, J), DA(K, J)) 
s=CxA(K, J)/CA(K, J) 

V=CYA(K, J)/iA(K, J) 
$F(K, J)=SCRT(I,., L4V" V)/(Cw- CA(K, J)) 

74.0 CD;: T1NL_ 
G .. C1 CIO 

135 ý:. 130 J=JST; PT(KtI), JF: AISF(K, I) 
MLAC':, J)=C=CJ) 
ýxA(K, J)=Uc(J) 
.: -(R, J)=i: LA(K, J)-Z(K, J) 

_=A(c, 
J)=Eº: =GC +LA(K, J), CXACK, J), CYA(K, J), DACK, J)) 

V=: Y 
+(K, 

J)/C"(K 
1J 

) 

sr(K, J)=5.: PT(u;. ; +V v(KJ) 
130 :, ZTI': LE 
100 ct. ý. TIM.! E 

101 CüPTIM. E 
. SPuZ0: =0.0 

S302 1=2,10 
CTEw==SCgT(CxA( ,: )ý... 24CYa( 3E, 1)- =`2) 

FY1LT. 0. CTEr'a=; TENF 
tjL=N+CTE' 

iFC: V SICCSTCKTENP P 
YAC$ý 0 CSTCaCSTýP+GTENa 

80J3 C3%T: t: LE 
=C. C' 

DZ ; 30: 
TT(CXA(24, I+CYA(24, I)=: w2) 

'=CCVA). LT. 0.0)2TE"c=CTEMF:. -1. C 

ZY=C24. ' ). LT. 0 C. :: TN=: GTC1., CTEVF 

_-(: 
"(C`'f: ). GT. 0 C): _T: =: cTCz+_T: MP - 

001 : rt. TLE 

; TEr"r=S::, T yA(17, I)=. 2+YL: 72 
YA(17f1). LT. 0.0 CTENc=CT0 

.T 
('vG(1? ýý). LT. ý. G): 1Ti!, =C: Tý'ýýT-MCI 
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FC=Yi. ( 17CT. 0 CITCC=101TCF"C7EM. P 

e00 CCAT; 'LE 
"+ýITE(11, )CSFLýt.,. Cý: N, CIMM 
D[, ESO r. UM=1, r. FTS 

"ýLVSTäMC! ýIUN,. T/2)=NL: +(7CCQhCS(NI; M, l )t ICCOrýCSCNUN. r2)) _CC1i'M, 'IT/2)=CYGC32,10+t. (; M) 
6.3 CZNT: LE 

- 0_ ES5 hUM=1, t. VS 
VSY (t+Uý'tIT/2)=CYGC Ii. CCý, Uý', 1 ), IC:. (NLM9 2))/QAC ICC(NUM, 1) P ICCCNUM. t 2 
YSX('ýS,; yrIT/2)=CXý(ICCCNUN, 1), ICCCº'ily, 2))/DCCICL'CNUM, tl), ICG'CNU! "r2 
YSCCt. 'JM,: T/c')=S: F'T(ýSY(tJU"! �'/2)^ý 2+V$X(NUN, IT/2)MMZ) 

5?: c.. r TL_ 
TINE=FLCAT(IT); CT 
Fn1=FLCLT(ITIN)/FLrCTCINCh$) 
FZý2=PLCAT(IT)/FLDA7(INCF'$) 
It1=ITIY/: NCRS 
I; 2=ZT/INCZS 
XR1==LCAT(IW'1) 
Xh2=FLC . T(' R2) 
IF(X=1. LT. FýI. GRC. Xý2. LT. =F2) GET, " 170 

23 Fä; MMT(F10.3) 
11 FChP=TC10FE. 3/7F¬. 
12 =CýV44TC10c7.2/7F7.2) 

vi PITE(!, 23)TIý'E 

wýITE(? tl2)0(0A(k, J)tJ=19JJ)rK=19KK) 
r wýIT_C?, I2)000YG(K,,! ), J=1rJJ), K=1, KK) 

: =: T_C:, 12)C(CXG(K, J), J=1, JJ), K=1, KK) 
17C0 CStiT_r+LE 

«: ITE(11, '=)CSTCN, CS7_R 
NRITE(Il, w);: CTCA, GG7CP 
'; ITE(11, Y)�ITCt`, CIT_P 
;: =. iTE(4,24. )PN: TS, Ntv'/29 DT:;: 2 

2'. =ý, ýNST(2: 4, F?. 1) 
7&0 N=1, KPTS 

.. KITECGr701)(Xý. ýME (r, L), L=1,1C) 
70: TC10A 
7Cs CZ Tl%. LE 

vC 720 'ý=1, NDTS 
hKIT. C<r704i(LE VCti, L)rL=1,2) 

704 FCF. M. TC213) 

72ü C-'P. T: '. Lc 
ü:. 710 t. =1, t, PTS 
6; ITE(4,702)(ICCOP'Z(N, L), L=192) 

" : 702 =:; v=T(215) 
-710 CCKTI; tiC'E 

- -- 693 L=1, N PT5 
I( 122)( LV_TI 'CLrN)"%=1914 TT) 

FLtN4T10PE 3 

by0 CC'. TIt4UE 
691 L=1, L 

iTECG, 22)CC1(LN=1, NTT 
691 C0NTINLE 

Cz 695 L=19PVS 

,;: T=(2,22)(VSY(L, ii), t1=1, NA/2) 
.; ý. TEC2,2Z)CVSXCL, h), N=1, ". p: /2) 
:: =. T=_C2,22)(VSCCL, ý. ), N=1,! r'r. /2) 

695 CCO.. T114UE 

..;; T=C7,707)000ýCK,,; ), J=1tJJ), K=1, KK) 
. ý=T: C7,7^7)CCCYýCK, J), J=1, JJ), K=1rKK) 
; : T=(7,707)(CCVICK, J), J=1, JJ), K=1, KK) 



WnIT: (7,707)C(I(K, J), J=:, JJ), K=1, KK) 
372 

707 =:. ýMaTC10F?.? /7ýn. 2) 
»KZT-(7,70S)C(XFLC'%(K, J), J=1, JJ), K=1, KK) 
vi; ZIT_(7,70E)((SF(K, J), J=1, JJ`., K=1, KK) 

703 ; TCSC1i.: 5: 16.6, /"2C16. f 
STL*' 
E t: C 
SU2; CLTINE ! AKC_(IsA, IZ, M+, ISTAýT, IfINISh, XLS, S) 
DIN_l: S7 N XLS('. 7), SC47) 
CCr"'Cti/CT/CT1, CT2, CT' 
CLr'C". /CX/Cx1, Cx2, Cx3, Cx49Cx=, CX6, CX7, CXF, CX9 
C24`'_': /CY/CYI, CYZ, CY:, CYý, CYS, CY6gCY7, CYP, CY9 
CDNYCt+/'LCCKA/LS(47), CSC47), UP(47), DF(47), VS(47) 
CCFYCN/ELCCK /E5(47), EF(47) 
CCr'""CN/ELCCKF/. (47),? ('7) 
C . 1i " "ý 

.1 
"\ l" 

U=C 
:G TC 10 
D;, 20 K=ISTAýT, IFIKISH-1 
t-t +. 1 
A(%)=(_"r(K)+=F(K+I))-CT2-CY2==CUS(K+1)-US(K)) 

C-CXjS(K)+XLS(K+I))YC. 5 
3(%)=CUS(K)/CS( K")+LS(K+1)/CS(K+I))hCT3+CYfr; (ES(K)-ESCK+1 

E. &(V-: (Q-VS(K+1))= CY? -CS(K)+S(K+1)); 0. 
Zit C ""ii L 

GDTC 30 

IG , JC 40 K=ISTA: T, IFINIS, -1 

A() =CEF(K)+E"(K+1))zCT2-CX2==CUS( K+1)-US(K)) 
C-(XUSCK)+XU=CK+2))=0.5 

(!. )=CL"S(K)/DS(K)+US(K+1)/CS(K+1))-CT3+CX4; CES(K)-ES(K+1)) 
i+CVSCK)-V5(K+l))=ýCX: -C5(K)+S(K+1))Y0"5 

NTINILE 

Su_ CUTINEE VECTIKK, NL, N 
C;; ros_N/ELC'CK=/: (47), EC47) 
CCNNCN/ELCCýG/ý'ATC5ý", 4),; ESC94) 
J=C 
Z) 2 20 r1A2 
J=J+1 

ES C": )=aCJ) 
R=_SCti+i)=E(J) r 

ß. 2C CCP. TINL E 

- 30 RETI; 

SUUEn=,! TINE FCRNCII, ti1, hK91STaFT) 
C`kv2ti/CX/CX1, CX2, CX_, CX4, CXF, CXE, CX7, CXE, CX9 
CCv-, =t4/CY/CY1, CY29CY39CY49CYE, CY5, CY79CYR, CY9 
C_wo_%/CT/CT1, CT2, C73 
_CN16*_"J/_LCCKC/C1, 

C2, C?, C4, C5 

" ;, CwM_ºr/ELCCKC/LSC47), DSC47), UýC47), DFC47), NSC47) 
=_LCCKG/:: NaT(S4r4)rýSS(94) 

JcTtGT 

1) GCT: 20 

CA: - (J)/(C=CJ):: -^F(J))e: C 
:. ," "T( ., 1)=CT2 
; -; 7( #2)=-C V2 
: r"=' ('l 93 )=C72 
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J=J41 
ýMI? (`:, -4 )=CYO 

C: = F (J)/(CF(J) 0FCJ)) Cf 
k! r! A1(I, 1)=-CY3 
AMAT(I, 2)=CT3/CF(J-1)-C9 
AMAT(I, 3)=CY3 
AMAT(I,. )=-'-'T3/CF(J)+C= 

10 C;. ATIr. L E 
: TC AC 

20 JL 30 A=1, AA, 2 
CI, =UF(. i)/(CF(J):: CF(J)): CL 
AMATO , 1)=CT2 
AMAT(w, 2)=-Cx2 
LMAT(":, 3)=CT2 
J=J+1 
AvAT(N, 4)=CX2 
I=A+1 
Cf=U=CJ)/CLýCJ)Yr. c C J) )z: Cc 

AM: T(I, 2)=CT3/CF(J-1)-CA 
AMAT(I, 3)=CX3 
AMAT(1,4)=CT3/CF(J)+C? 

30 COAT:? 1L= 

% 
SUE 2UTiý+: c, ý, Uý. CCIAC, JRr, CtiC1, _AýJ2, AAAh) 
C;, *w'? c; /? LCCKGiAP A1(5£ 4), QFS(94) 
; FCI': ý. vý. 2) CCI ic 
ß;. S(1)=KFS(I)-ANcI(1,1)`ENC1 
ý: SC? )=ý-SC2)-AyýTC2,1)ý=cNCl 
AWZTC1, ")=AWATC1,2) 

?) at; LTC1,2)=AMAI(It 
AMATC1,3)=A? TC1,4) 

;, uýI(2,3)=AP ATC2,4) 
":.. TZ 3C 

1.0 ýfS(1)= =SC2)-AMATC1,2)= 3N: 1 
R=5C2)=R_ES(2)-ý"'ý1(2,2)-:: ENrI 
MMMTCI, ý)=a MaT Ci, 3) 
AMATC1,? )=AMATC1,4) 
; N. 4TC2,2)=A'A1C2,3) 

cTC2,3»APATCZ, 4) 

; FCJ. -C. 1) C" :. ýC 
L_- 
s'=4 

S'-iT: 30 
7C. L=2 

E {, ICJ%': �ýýý"? ) CCTC SC 
ESCJ)=? ES(J.!, L)J* 'C2 

;. SCN' t. )=; ES(1%AN, I(NtNN, L) CKD2 
, r:: T(J, L)=CFZT(J, "') 

T(N . NP , L)=zP 'ft TCNß! \N, N) 

ü 60 

Sti = ýSCJ)=? = SC J)-ýNLTCJ, "')ý=°tv C2 
SC'. aM., =SCN N+a)-cM. tTCNAKN, w) BNC2 
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; u-K2,; T. '1_ c-L5Scr. chN) 
C: V~C! J/. - L. CCKv/A AT(Sti, 4 ;; c S (94) 
IF(t. LrR. =_Z. 2) ýCTC EO 
C:! EF=-AfOAT(2,1)/A"AT(1,1) 
AMLT(2,1)=C. O 
: ""; tTC2,2)=ýWA1(2,2)4AM 1(1,2)=CCEF 
AMLT(2,2)=L"17(2,? )+A"LT(1,3)'CCCF 
zES(2)=R5S(2)4zFS(I)wCC=c 

ýý= F=-. A! 'AT (? ý 1)/ANAT C"Z ) 

MCT32)=-"aTCý, 2)+ýMýTC:,. ) CCEF 

- S( )K=S(: )ýC: S(2L 

CCCF=-bPAT(4,1)/AN'A7(2,2) 
AMATC4,1)=0.0 
Af4LT(.., 2)cANAT(4,2)+AMAT(2,3), CCCF 
ýES(')=k_S(4)4 E5(2)=: CCEF 
NN=NANN-3 
: FC*. *':. CT. 1) GET-- 4.0 
Cý, EF=-AMAT(A, 2)/ANATC_, 2) 
AN. T(4 , -)=AY: T (4,3)+AMIT( 3,3)==CLEF 
n_4Z (4)=RCS(4)4 ES(1)wCCEF 

,; CT: 50 
40 DC 10 K=3, titv, 2 

: =K+I 
J=K+- 
L=K4_' 

=TCI, 2)/ANAI(K, 2) 
V.; e1(1,? )=0. [º 
Aý, ETC. ý')=AýcTCI, 3)+cYAT(K,? ): xC_EF 
AACT(i, '. )=ANATCI, 6)+AvLTCK, 4)s: CCEF 
RES(I)=2ES(I)+PES(K)'N'CCEF 
C. º=ý=-A ATCJ, 1)/LM: ICi,? ) 
; MAI(J, 1)=C. O 
LY: TCJý2)=ýN, ý7CJr=)+«MGTCiý4)=; =CLEF 
ýESCJ)=ý: SCJ)+ýESC: )=: ýCCEF 

Ar: AICL, 1)=C. 0 
^'ATCL, 2)=t"'eTCL, 2)*A'A`TCi, 4)=. CCEF 

SCL)=2ESCL)+4ESCICC_F 
10 CCAT_NL E 

C: EF=-A'AT(L'2)/AMAT(J, 2) 
AMATCL, 2)=0.0 
Aý'ATCL', 3)=40AT(L, 3)4AMATCJ, 

_3): CLEF 
TES(L)=F=SCI)+KESCJ)==CLEF 

:C `_cCºýA! ýA)=ýESCý. ANr; )/L AI(NANN, °) 
4: SCº"AA!. -1)=CK: _(NANN-1)-P. ES(N4NN)YAYAT(NANN-193))/AMAT(NANN-192) 
K-ý. LN J-2 
: FCf,. _C. 2) GLTC 30 
nE5(K)=CR_SCK)-FEScK+1)=rA AT(Kf4))/A! "AT(K, 2) 20 
K=K-1 
ýESCý)=(K_SCK)-; ESCK; l)=: 'A""AT(K, 3)-GEC(K+2)ý AMA7(K, 4))/ANATCK, 2) 
K=K-1 
iF(K. _.. 2) GC C 30 
Gº:? _ 2C 
ýcSCc)=Ch: SC2)-º.. SC? )=6ýGTC2,3))/GNATC2.2) 30 

: c(1)=Ca_SC1)- =SC2)=:: ýAT(1,2)-ýES(3)=oMA1(1,3))/AATC1.1) 
s=T- 7C 

'_0 t! AT(Z, 1)/=MAT(: 
1,0 TC2,: )+Aý'rTCEF 

rESC2)=L_SC. 16)+'.. SC1)='CC_ 
; _S(2)=h=SC2)/tyATCi, 2) 



ý: EC1)=CRESCI)-ýESC2); =: `'4TC1,2))/ýwGTCl, l) 

70 ETUczt%l 

SU: G_UTiº:: Sw? TCº+(It , JttC, `-t. L1, END29ISTAPT, IFINISt1, r, NN) 
C: 'N2r /EL, ýCK4/LS(-- ) tCS(L7), UF(47), CF(47)"VS(47) 
CC"NC'v/ELCC* G/tFv-IT(5ý, ý) " FS94) 
JJ=Z 
JC 1': I=: ST4RT+1, Iý: t: TC. "-1 
JF(: )='. _SCJJ) 
JJ=JJ+Z 

ip CTIM. 
JJ=3 

: =ISTýýT+I, IFINISº--1 JJ 20 
UF(I)=rl ESCJJ` 
JJ=,. J+: 

'Q C F. Tltvý: = 

: F(ir. G_.? ") &CTC C 
º(ISTLn7)=E Cl 

Uº(: ST4; T)=; ZES(1) 

; 3T_ 4C 
3U CFC. _T: P T)=; cSt1 

Ur(IST4ýT)=_t: Cl 
:. ý : ýCJtýý. GE.? ) CCTO SC 

F(IFInIS')=EnC2 
uF(I=INISri)=; ES(hr: ". ) 

, ZT: 5G 
7G . ̂. =Clrit"iSý)=RESr: t.! ý) 

1? F(I=I IS")=; ': L? 
60 cU 

N E". 2v(NL, C1 

CCwý^ý': /; LýCKC/Cl, C2, C3, C4, C: 
-- r rrýr1/ 

_1.1!: =wL4 Cat-""ý'. ) '+C:. +r- ): ýC 

: TL'--' 

375 

j;;: CUT I' E ? CUNCS(. XM4X 9%1Y4. X, TI 
CL4CKL/JJ, KK , t. ri, Nt, t. 
C1owNC1; /: CUNCX/IhDX(47,6), JtiCX(47,4), JSTART(47,4), JFINISh(47,4) 
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