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Abstract

Cyclotron resonance masers (CRMs) are important devices for the generation
of high power electromagnetic radiation in the millimetre and sub-millimetre
region of the electromagnetic spectrum. In these devices, an electromagnetic
wave is amplified by its interaction with a beam of relativistic electrons gyrating
in a magnetostatic field. This thesis presents the results of novel theoretical
investigations into the physical processes which occur in a CRM amplifier.

The basis of these investigations was a system of universally scaled evolution
equations which describe the linear and nonlinear evolution of the CRM interac-
tion. These equations involve a minimum number of free parameters and allow
a general analysis of the interaction. By considering various limits of the free
parameters, the physical processes which occur in the steady-state limit were
identified and studied using numerical analysis and an extensive linear analysis
based on the method of collective variables.

Neglecting the recoil of the electrons, it was shown that the universally scaled
evolution equations could be written as a set of Hamilton’s equations. The be-
haviour of this Hamiltonian system was investigated via a phase space analysis
for some specific cases of the free parameters. In addition, it was shown that it is
possible to approximately describe the evolution of the electromagnetic field up

to saturation in a CRM amplifier by an analytically solveable Landau-Ginzburg

equation.

Including slippage effects, it was shown that for electron beams with relativis-

tic axial velocities, in addition to the steady-state evolution of the electromagnetic

vin




field, superradiant field evolution could also occur. Superradiant phenomena were
studied using an heuristic dissipative model, an extensive linear analysis and a
nonlinear numerical analysis. The existence of weak superradiance, involving
short electron pulses and low radiation intensities, and strong superradiance,

involving long electron pulses and high intensity spikes of radiation, was demon-

strated.
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Chapter 1

The Cyclotron Resonance Maser

1.1 Introduction

The cyclotron resonance maser (CRM) is a class of device based on the interac-
tion of electromagnetic waves with electrons oscillating in static magnetic fields,
that is, on stimulated emission. A typical trajectory of an electron moving in a
static magnetic field is shown schematically in figure 1.1. The electrons behave as
excited classical oscillators, so the CRM is a type of ‘classical’ electron maser. As
a classical electron maser, the CRM is distantly related to quantum mechanical
devices such as masers and lasers and to conventional microwave electron beam
tubes such as the klystron and the travelling wave tube (TWT). Since the CRM
possesses the merits of both quantum and conventional devices, the natural fre-
quency range of the CRM is, not surprisingly, located between the natural ranges
of both related classes i.e. the domain of the CRM is expected to be found in the

millimetre and sub-millimetre wave region of the electromagnetic spectrum.

The electromagnetic waves in a CRM will interact strongly with electrons

1



which satisfy the resonance condition

w — k"v” ~ 3%5 s=1,2,... (1.1)

where w. /7 is the oscillation frequency of the electrons, w. being the nonrelativis-

tic cyclotron frequency

BBU

me

We =

(1.2)

~ the relativistic factor, s the cyclotron harmonic and vy the drift velocity of the
electrons. w and ky are the frequency and longitudinal wavevector component
of the electromagnetic wave. Unlike conventional microwave devices, where the
phase velocity, v,, of the electromagnetic wave is made to match the drift velocity
of the electrons using a slow wave structure, the phase velocity of the electromag-

netic wave required for cyclotron resonance to occur is arbitrary. This allows the

use of fast waves with v, > ¢ so the interaction can take place in a smooth walled
waveguide. The great advantage of this over conventional microwave devices 1s
that the shortest attainable radiation wavelength of, for example, a TWT is de-
termined by the period of the slow-wave structure. As this period is decreased,
the manufacture of the slow-wave structure becomes more difficult and the power

handling capabilities of the device are severely limited. The use of a smooth

walled waveguide allows high power generation of radiation at millimetre and

sub-millimetre wavelengths.



als
A

Figure 1.1: Electron gyrating in a static magnetic field.

1.2 Spontaneous Cyclotron Radiation

Consider a relativistic electron gyrating in a static magnetic field with velocity
V = v, 4V}, as shown in figure 1.1, but with no stimulating radiation present. In
order to calculate the spontaneous emission spectral intensity, a known standard
formula for radiation from a moving point charge will be used [1]. The energy

emitted per electron per unit frequency per steradian is

/dt k x (f{ : {,) -l—:-!-exp [zw(t — fcr(t)/c)]

where k = k/|k| and v = v /|v| are unit vectors in the direction of the radiation

2

d*] N e?w?
dQdw 1673

(1.3)

wavevector and the electron velocity respectively. It is assumed here that only the
components of the electron velocity that are perpendicular to the axial magnetic

field contribute to the radiation. If the integration variable is changed from ¢ to




Z using

z

=1+ —

Uil
then

?I €& (o 12 (1.4)
dQdw  47A? \ € '
L ) .... l
x sin’ ©y / dz-t-’—eXp [i(w/v")z—i(w/c)k.ri_(z) —z'(wc/'yo)k.iz]
0 |

where O is the angle between the radiation wavevector, k, and the transverse
velocity of the electron, v, , L 1s the distance travelled by the electron and z is a

unit vector in the direction of the magnetic field. The transverse velocity can be

represented as

_1
2

v, ({,we-*'(“’c/ Yo )t + {,: ei(“’c/ ‘Yo)t)

so substituting this result into (1.4) and multiplying by the electron injection

rate I /e in order to obtain the spectral radiation intensity of a beam of electrons

results in the equation [2]

Vu

Y|

21 e ] (pc.)‘/’ L?

—————— = -— — QY 2
dQddw 4mAle i Ok

sinc® (g) (1.5)

f = (u—/ﬂ - k") L (1.6)

Ui

€o

where 8 is

The spectral intensity as a function of both detuning (Aw = (w—w./v0—kyvy)/vy)

and the distance travelled by the electrons, L, is shown in figure 1.2.

This spontaneous emission is due to the oscillation of the electrons in a static

field. The presence of an electromagnetic wave in this system will induce stim-

ulated emission and absorption processes. In a CRM, the stimulated emission



Spectral intensity /(arb. units)

Figure 1.2: Spontaneous spectral intensity (arbitrary units) as a function of de-

tuning Aw and L.

may exceed the stimulated absorption, resulting in amplification of the electro-

magnetic wave. Various methods of analysing this gain process are described in

chapter 2.

1.3 Evolution of the CRM

Early experimental studies of the interaction of electromagnetic radiation with
gyrating electrons 1n a static magnetic field were a natural outgrowth in the de-
velopment of the TW'T. The first experimental results were produced by Pantell
3], Chow and Pantell (4], Bott [5, 6] and Feinstein [7]. All these devices were
steady-state oscillators, utilising low voltage (~10kV), low current (~1mA) elec-

tron beams with total millimetre-wave power output of < 1W. Following the



theoretical investigations of Gaponov [8], a substantial experimental and theoret-
ical research effort was developed in the former USSR, resulting in devices which
could produce output powers of ~10kW continuous wave (CW) with 40% efhi-
ciency at frequencies of ~40GHz. This stimulated research at several laboratories
in the USA, especially at Varian, Massachusetts Institute of Technology (MIT)
and the Naval Research Laboratory, Washington.

Advances in the field of pulse-power technology in the early 1970s resulted in
the development of several systems based on cold cathodes which could generate
short pulses (sub-us) of electromagnetic radiation at multi-megawatt power lev-
els [9, 10, 11]. These systems were generally termed Electron Cyclotron Masers
(ECMs). The next significant step was the development of the three electrode,
thermionic cathode magnetron injection gun (MIG) in the former USSR [22],
which allowed the generation of high current electron beams with substantial
transverse energies. This stimulated research into long pulse (> 1us) and contin-
uous wave (CW) high power ( 2100kW) systems. Such systems, which have usu-
ally been oscillators utilising a single cavity, have been termed gyromonotrons or
gyrotrons [28]. Initial experiments using the MIG were at conventional microwave
frequencies (< 30GHz) [12, 13, 14]. Subsequent experiments by Voronkov {15]
and Gold [16], involving radiation generation at frequencies of ~ 30GHz at power

levels of ~ 20MW moved the operating regime of the gyrotron outwith the bound-

aries of conventional microwave devices.

At short wavelengths (< 1mm), it is necessary to operate gyrotrons at harmon-

ics of the cyclotron frequency (i.e. s > 1 in (1.1)) due to the difficulties involved



in generating large static magnetic fields {17, 18]. To increase the operation ire-
quency without operating at harmonics of the cyclotron frquency, Bratman et al.
suggested the concept of the cyclotron autoresonance maser (CARM) [19], the

principles behind which will be discussed in the next section and chapters 3 and

4. Experimental studies of the CARM are still on a proof of principle basis, with

the main centres of activity being at Nizhny Novgorod in the former USSR and
MIT in the USA. Recent results from Nizhny Novgorod include the development
of a CARM oscillator using a Bragg resonator which can generate power levels of
50MW at a wavelength of 4.4mm (frequency of 68.1GHz), or 30MW at a wave-
length of 6mm (frequency of 50GHz) [21]. Recent developments at MIT include
the operation of a long pulse CARM oscillator producing 1.9MW of output power
at a frequency of 28GHz [20].

The possible applications of CRM devices span a wide range of technologies.
The plasma-physics community has already taken advantage of recent advances
in producing high power micro- and millimetre waves in the areas of RF plasma
heating, for magnetic confinement fusion studies, as lower hybrid heating (1-8
GHz) and electron cyclotron resonance heating (28-140GHz), plasma production
for numerous difterent processes and plasma diagnostic measurements as collective
Thomson scattering or heat pulse propagation experiments [22, 23]. Recently,
gyrotron oscillators were also successfully utilised in material processing (e.g.
advanced ceramic sintering, surface hardening or dielectric coating of metals and

alloys) as well as in plasma chemistry [24]. Other applications which await the

development of novel high power sources include deep space communication, high



resolution radar, radar ranging in planetary science, drivers for next-generation

high-gradient linear accelerators and technological applications.

1.4 Classification of CRM Devices

The basic principles of CRM devices are discussed in several books and review
articles (25, 26, 27, 28, 29, 30]. This section will contain an outline description of
these principles for several types of CRM devices most relevant to the aims of this

thesis. The simple descriptions of the interactions given here will be elaborated

on in a full general description in chapter 3.

1.4.1 The Gyromonotron or Gyrotron

The gyrotron is essentially the simplest type of CRM in terms of both theory and
experiment. The electromagnetic waves propagate almost perpendicular to the

direction of the magnetic field i.e. k; > kjyj, so the Doppler shift is small and the

resonance condition (1.1) reduces to

which 1s shown schematically on a dispersion diagram in figure 1.3 for the case
of fundamental resonance (s = 1). The gain mechanism is due to bunching in
phase due to the relativistic mass dependence of the cyclotron frequency, which
will be discussed in detail in chapters 2, 3 and 4. The neglect of the Doppler shift
means that axial velocity spread, which can be as much as 10% depending on

the type of beam formation system being used, does not affect the interaction,
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Figure 1.3: Dispersion relation for the gyrotron interaction.

so fairly poor quality electron beams may be used. Normally, gyrotrons utilise
only weakly relativistic electron beams (< 100kV), with large transverse energies
i.e. vy/yy > 1. Cyclotron harmonic operation reduces the required magnetic
field for a given frequency by a factor s. Gyrotrons are almost always operated

as oscillators, using either a cylindrical open resonator or a quasi-optical mirror

resonator [31], as shown in figure 1.4.

1.4.2 The Cyclotron Autoresonance Maser

In a gyrotron with a highly relativistic beam, the dependence of the cyclotron

frequency on the electron energy is very strong. An efficient interaction will cause
large variations in v and consequently larger changes in the cyclotron frequency

we/~y than in the mildly relativistic case. It is therefore desirable to identify
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Figure 1.4: Diagram showng (a) a conventional open resonator and (b) a quasi-

optical mirror resonator.

the condition under which an electron that loses energy remains in synchronism
with the electromagnetic wave. A possibility for achieving such synchronism is
to utilise the interaction of electrons with electromagnetic waves propagating at
a phase velocity close to the speed of light i.e. almost parallel to the axis of
the cylindrical waveguide. In this case, the Doppler shift is large and the appro-
priate resonance condition is (1.1). This is illustrated on a dispersion diagram
in figure 1.5. lf v, = ¢, the increase in cyclotron frequency due to extraction
of beam energy (decrease of v) nearly compensates the decrease in the Doppler
shifted term, as will be demonstrated in section 3.4. Therefore, if the resonance
condition is initially fulfilled, it will continue to be satisfied during the interac-

tion. This phenomenon is called autoresonance and CRM devices operating in

10
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Figure 1.5: Dispersion relation for a CARM interaction.

the relativistic Doppler-shifted regime are called cyclotron autoresonance masers
(CARMs). The CARM is an extremely attractive device because of its high fre-
quency operation and because of the fact that it extracts energy from both the
transverse and axial motion of the electron beam, making efficient interaction a
possibility.

Experimentally, CARMs are much more complex devices than gyrotrons, for
a number of reasons. Firstly, the strong dependence of the interaction on the
Doppler shift means that high quality electrons beams must be used, with axial
velocity spreads of Awvy/vy<2% in order to come close to realising the potential
efficiency of the interaction. In addition, the second intersection of the beam

line with the waveguide mode gives rise to a relativistic gyrotron interaction

or a backward wave interaction, which can grow parasitically and disrupt the

11
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Figure 1.6: Dispersion relation for a gyro-TWT interaction.

CARM interaction with the wave. In order to avoid this, careful mode selection
i1s necessary to allow the CARM interaction to progress while suppressing the
other interactions. The CARM interaction is convective in nature, so it can be
used in an amphfier configuration or, using external feedback e.g sandwiching the

interaction region between Bragg reflectors, in an oscillator configuration.

1.4.3 The Gyro-TWT Amplifier

From a theoretical point of view, the gyro-TWT differs from the CARM only in
regimes of operation. The gyro-TWT utilises a moderately relativistic electron
beam to interact with a fast waveguide mode near the grazing interaction of the

dispersion diagram, as shown in figure 1.6. In the gyro-TWT regime, v, > ¢, so

the axial bunching mechanism is too weak to be of any significance.
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The general theory described in the following chapters is concerned only with
Interactions which give rise to convective instabilities 1.e. instabilities which prop-
agate in space (in the laboratory frame of reference) and consequently is most
relevant to the gyro-TWT and CARM amplifier configurations. The absolute

nature of the gyrotron instability makes it unsuitable for such an analysis.

1.5 CRM Research at Strathclyde University

CRM research has taken place at Strathclyde University since around 1980,
when relativistic electron beam experiments were first performed {32]. Initial

CRM experiments developed at Strathclyde operated at relatively low frequen-

cies (= 12GHz), with further development to higher frequencies resulting in a

step-tunable CRM capable of operating in the range 35-200GHz (33, 34]. Much
of this work owed its success to the development of a CRM electron beam source
based on a field emission, field immersed, cold cathode configured within a two
electrode diode. An electron beam of duration & 400 ns was produced via plasma
flare emission at the cathode tip. Due to the pulsed nature of the plasma flare cold
cathode, initial devices used conventional, water cooled copper wound coils driven
by RC networks to generate the intra-cavity magnetic field. These could produce
quasi-static intra-cavity fields of up to 4T, with rise times of =~ 120us. Later

designs utilized a superconducting magnet which could generate static magnetic

fields of up to 11T.

The main thrust of research through the 1980s was concerned with increasing

output powers and the frequency tunability of the device. In order to achieve this,
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a great deal of work was done on the focussing of the electron beam around the
cathode region and the design of the cavity [33]. This resulted in the generation of
peak powers of &~ 1MW at frequencies of ~ 100GHz with step-tunable operation
via discrete mode excitation [34].

Around 1990, work began on the first of several projects concerned with elec-
tron beam formation in the CRM. Until this time, all the experiments at Strath-
clyde had utilized a stainless steel cold cathode, emitting electrons due to plasma
flare emission {33]. Development of a thermionic cathode opened up the possibil-
ity of eventual CW operation and resulted in the construction of a fully opera-
tional gyrotron using a MIG-type cathode operating at frequencies of 20-45GHz
at power levels > 1MW [35, 36]. In addition, a novel type of gyrotron cathode
using field emission arrays (FEAs) was developed and successfully used as an
electron source in a working gyrotron to generate microwave radiation. This type
of cathode allows much greater control over the electron beam than conventional
gyrotron cathodes and could be used to generate very short electron pulses at
high repetition frequencies of ~ 1kHz {37, 38].

The experiments described above all involve CRM oscillator/gyrotron devices.
At the time of writing, a CARM oscillator experiment is under construction which
when operational will be the first CARM of any type to be built outside the former
USSR or the USA. The aim of the project is to generate output powers of &~ SMW
at frequencies of 12-20GHz, with a Doppler upshift factor of around 4-7 [39]. As

the quality of the electron beam is so important for CARM devices, electron beam

diagnostics are also currently an active area of research.
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1.6 Novel Aspects of CRM Theory

The new developments in the theory of the CRM which form the major part of

the work in this thesis can be summarised as follows :

1. Starting from the Lorentz equation of motion for a relativistic electron and

Maxwell’s equations, a set of nonlinear, coupled differential equations was
derived to describe both the linear and nonlinear evolution of the interac-
tion between a beam of electrons and a single TE or TM waveguide mode
in a CRM amplifier such as a gyro-TWT or CARM, chapter 3. These
equations were universally scaled, which simplified both the analysis of the
interaction and the interpretation of the results produced. The number of
free parameters involved in the universally scaled set was just three : p,

the fundamental CRM parameter, v, the free energy parameter and 4, the
detuning between the electrons and the wave. Using this universally scaled
set of equations, the CRM interaction was studied far into the nonlinear

regime over a wide range of the parameter space and the different saturation

mechanisms were identified.

2. Using a rigorous linear analysis, the linear growth of the instability was stud-
ied using a linearised set of universally scaled evolution equations, chapter 4.
The method of collective variables, which has not previously been applied
to CRM-type devices, was used to derive a dispersion relation which deter-

mines the linear behaviour of the system. Using this dispersion relation, a

threshold condition for linear instability to occur was derived. Above this
threshold, an expression for the growth rate of the electromagnetic field was

15



found and compared with the results of other linear theories. The linear
growth of the instability was found to consist of two distinct regimes : the
low-gain regime, where the ‘partial waves’ which correspond to the roots
of the dispersion relation interfere, and the high-gain regime, where the
amplitude of the electromagnetic field grows exponentially. In the low-gain
regime, it was found that Madey’s relations between the stimulated emis-
sion (gain), spontaneous emission and the energy spread of the electrons,

originally derived for the FEL, could be reproduced.

Using the linear analysis, it was also possible to identify the different bunch-
ing mechanisms responsible for wave amplification and the condition for
autoresonance to occur. The condition for instability to occur at autores-

onance was derived and the resulting growth rate of the instability was

evaluated.

. When the fundamental cyclotron parameter is very small i.e. p € 1, the
resulting set of universally scaled equations are found to have a number of
interesting properties. Firstly, it was found possible to state the equations
of motion for the electrons and the electromagnetic field as a system of

Hamilton’s equations. This enabled a phase space analysis of the CRM

to be carried out, chapter 5. Such an analysis was performed for the case
where the evolution of the field is negligible and also for the case where the
field evolution evolves self-consistently with a single particle. The former
is representative of the situation in a low-gain oscillator close to saturation

while the latter has relevance to experiments involving pre-bunched electron
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beam:s.

The second feature of the universally scaled equations when p < 1 1s that
it was found possible to describe the linear and nonlinear evolution of the
electromagnetic field using collective variables which are a generalisation
of those variables used in the linear analysis of the interaction, chapter 5.
This greatly reduced the number of equations to be solved and describes the
interaction in a similar way to the equations which are used to describe the
polarisation, population difference and field amplitude and phase in atomic
lasers. Using this collective variable description, it was shown that it is
possible to describe approximately the evolution of the electromagnetic field
up to saturation by an analytically solveable Landau-Ginzburg equation,
chapter 5. This allows quantities such as the saturation intensity, which
usually have to be evaluated via the numerical solution of a large set of

coupled differential equations, to be evaluated analytically.

. The analysis of the CRM interaction in an amplifier has almost always been
carried out in the steady-state limit, sometimes referred to as the limit of
stationary oscillations. This is equivalent to assuming that an electron pulse
of infinite extent i1s taking part in the interaction, with each part of the
electron pulse evolving identically. In contrast, if finite length electron and
radiation pulses are assumed, and the propagation velocity of the radiation

pulse is not equal to the electron axial velocity, it can be shown that there
1s another gain mechanism which can occur : superradiance, chapter 6. It

was shown that this superradiant emission is due to a spontaneous emission
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process which results in intensities scaling as n?, in contrast to the steady-

/

. . o, * 4/3 . .
state regime, where intensities scale as n.'~, where n. is the electron density.

The existence of two types of superradiance was demonstrated for a CRM
utilising a highly relativistic electron beam : weak superradiance, which
occurs when the electron pulse length is shorter than a pre-defined cooper-
ation length, and strong superradiance, which can occur for electron pulses

much longer than a cooperation length due to a portion of the electron

pulse emitting superradiantly. Peak intensities for weak/strong superra-

diant pulses are less/greater than the peak intensity which occurs in the

steady-state regime.

The superradiant instability in a CRM system was initially predicted using
a dissipative model which heuristically described the effect of radiation es-
caping from the electron pulse. This analysis allowed the identification of
a cooperation length, the size of which relative to the electron pulse length
determines the importance of superradiant effects on the radiation field
evolution. A more rigorous linear analysis was then used to identify the
conditions for a superradiant instability to occur, and the resulting growth
rates of such an instability. The nonlinear evolution was analysed using a
set of coupled nonlinear partial differential equations. It was shown that
under certain conditions, this set could be reduced to a self-similar set of
ordinary differential equations. A condition for the effect of free energy

depletion effects to be negligible during superradiant evolution was derived.

Numerical simulation of superradiant phenomena produced evidence that
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strong superradiance could occur in CRM devices. The effect of free-energy

depletion effects on this strong superradiance was analysed and discussed.
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Chapter 2

Cyclotron Resonance Maser

Theory - A Review

2.1 Introduction

This chapter contains a brief description of some of the methods which have been
used to investigate the CRM interaction, ranging from the very first theoretical

analyses at the end of the 1950s to those those still in use at the present day.

2.2 Quantum Mechanical Analysis

The first theoretical papers to demonstrate the existence of an amplifying mech-
anism for free-electron gyro-radiation were those by Twiss [40] in 1958 and both

Schneider [41] and Gaponov {8] in 1959. The approach used by Twiss and Schnei-

der was quantum mechanical whereas that of Gaponov was classical.

The starting point of the quantum-mechanical analysis is an expression de-
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scribing the energy levels of a relativistic electron in a uniform magnetic field.

The derivation of this expression, which was not given in either {40] or [41], will

be described below.

Consider the classical Hamiltonian for a relativistic electron with charge e =

le| and rest mass m, in a static magnetic field, given by
H = —ed + (m¥c* + (P + eA)?)"? (2.1)

where c¢ 1s the speed of light in vacuo, P 1s the canonical electron momentum, A

is the vector potential and ® is the scalar potential. Defining

= 2.2
u= =X 2.2

and letting ® = 0, then the Hamiltonian becomes
H = (m®c* + m2u?)!/2, (2.3)

It will be assumed for simplicity that the electron only has transverse momentum,
1.e. u = u  and the vector potential has only transverse componentsie. A = A,

consistent with an electron in a uniform magnetic field.

The operators which represent space and momentum are {42]

i A

XY,Z

P, P, P,

respectively, so the following commutation relations can be applied, using the
notation [A, B] = AB — BA :
(X, B =[Y,R] =(Z,P]=ih
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as the vector potential is a function of space only i.e. A;,, = Ax,y,z(]? Y, 2).

The operator equivalent of (2.2) can be written as

Us

(2.4)

U,

(2.5)

U.

I
o

(2.6)

so the commutation relation [17,,, f]y] becomes

1

2
me

~ 7 (A P+ (B, Al (2.7)

Uz, Uy

((15_.._, — eﬁa,)(f’y — efiy) — (1'3,, — eﬁy)(f’x —~ eﬁ,,.))

This expression can be further reduced using the rules [42]
dF(X)

dX
dG(Y)

P, G(Y)] = —ith——=
[y (Y)] v %

[Pzaﬁ‘("}z)] = —th

where F (X’ ) and G(f’) are arbitrary operators, resulting in

[f‘; {';] _if‘.‘i %. _ A,
oy m2 \ X 8Y
—ihe -

—-B. (2.8)

e

where B, = (0A,/0X — dA./8Y) is the operator representing the axial magnetic

held. If the the magnetic field vector is written as

B — (0, 0, Bo)
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then (2.8) can be written as

EBO
We =
m.
so (2.8) can be rewritten as
A s 1hw,
U, U] = — ot (2.9)

The Hamiltonian (2.3) written in terms of operators 1s

1/2

H= (m§c4 + m2e? (173 + 17;)) (2.10)

which can be written in a form related to that of a one-dimensional harmonic

oscillator using the operators
A mg A - . mﬂ A
Q — \/ hchy S — "’ hcha: (2.11)

A A m s

[Qa S] = _hwc [UmUy] = 1.

such that

Substituting for U, and U, in H using (2.11) produces

. 1/2

A = (m2c + mecthw (8 + Q%)) (2.12)

so if the so-called destruction operator, &, and creation operator, af, are defined

as

i = -—2-(Q +18) &t = _E(Q —i%) (2.13)




then

ata = }2-(@ —iS)(Q +15)
= % (% + % +14[Q,5))
< e

SO

N,

Q* + $* =2ata+ 1. (2.14)
Substitution of this result in (2.12) results in

H = (m2c* + mec*hw(2d%a + 1))1/2

which can be further reduced to

* ) 1/2
H = (mfc“ + 2m.c*hw, (N + %))

due to the fact that [42]

N

ila=N

where N is the number operator. It can be shown that that this operator has
integral eigenvalues which are greater than or equal to zero [42].

The eigenvalue equation

ﬁl‘l’) — Enlql)

where |¥) is an eigenvector of H, results in the expression for the energy of the

nth quantum level i.e.

1/2
E. = m.’ (1 + if:; (n + —;—)) (2.15)
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so the energy spacing between the nth and the (n + 1)th levels is

E'n.+1 - En ~ hwc (1 — N hwc ) (2.16)

m,c?

to first order of Aw./m.c?. This means that as the electron energy is increased, the
spacing of adjacent levels becomes smaller, as shown schematically 1n figure 2.1.
This unequal level spacing allows the probability for stimulated emission to exceed
that for absorption and consequently gain can occur {41]. For non-relativistic

electrons, (2.15) reduces to the famous expression derived by Landau [43],

E, = hw, (n+}2—)

In this case, the levels are equally spaced and no gain can occur. This gain
mechanism is therefore a purely relativistic effect. In addition to a change in its
mass, the electron will also undergo recoil, as it emits a photon of momentum %k
i.e. its longitudinal momentum will decrease by an amount khky. This recoil lies
behind the gain mechanism in conventional travelling-wave tubes (TWTs).

Although the quantum mechanical approach is of historical interest, having

proved extremely useful in demonstrating the existence of the gain mechanism,
it is of little use in the design of physical devices. As the frequencies involved
are in the microwave region of the electromagnetic spectrum, an electron will
emit many (~ 10°) photons before its interaction with the stimulating radiation

becomes negligible, in contrast to devices such as atomic lasers, where the atom

can emit only a single photon before its interaction with the stimulating radi-

ation effectively ceases. This means that the levels can be assumed to form a

continuum and the gain mechanism in CRMs can be described classically. The
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N+ 1

Energy

Figure 2.1: Schematic diagram of the energy levels for a relativistic electron in a

static magnetic field.

gain mechanism due to the relativistic mass change manifests itself classically as
azimuthal bunching i.e. bunching in the gyro-angle ¢, = w./v t whereas the elec-

tron recoil results in longitudinal or axial bunching. Some classical approaches

are described in the following sections.

2.3 Fluid Theory

One of the most fruitful methods of analysing the CRM interaction in the linear

regime has been the use of fluid theory, where the electron beam is treated as
a charged relativistic fluid. The procedure is basically to calculate the response
of the fluid to temporal and spatial perturbations, and work out the conditions

under which the perturbed system becomes unstable. The origins of this method
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lie in analyses of travelling wave tube devices by Pierce [44].

One of the first applications of fluid theory to CRM devices was performed by
Lau [45], in which the CRM system was represented as a rotating annular electron
fluid enclosed in a metallic waveguide, as shown in figure 2.2. By perturbing
the electron beam, and self-consistently calculating the electromagnetic fields
generated via Maxwell’s equations, Lau was able to show that the system was
unstable and that this CRM instability was of negative-mass type. The negative-

mass nature of the instability i1s easily shown by considering the rate of change

of the cyclotron frequency

so as the electron mass (ym,.) increases, its angular velocity decreases and vice-
versa. Lau also showed that for electron beams of finite thickness, the cyclotron
maser instability could be interpreted as an instability of the shear flow of the

relativistic electron fluid. i.e. instability due to the angular velocity of the electron

beam changing in the radial direction.

One of the main advantages of using fluid theory in an analysis of the CRM
instability 1s that it is entirely self-consistent, and an analysis resulting in a single
dispersion relation can simultaneously describe a number of different phenomena,
which can then be 1solated by taking specific limits. In this respect it is similar to

plasma kinetic theory but as fluid theory is macroscopic i.e. it is not concerned

with the distribution function of the electrons in momentum space, it is often

simpler to apply and interpret. Examples of such ‘unified’ fluid theories describing

several effects are those by Lau [46] and Lashmore-Davies [47] which between
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Electron beam
Waveguide

wall

Figure 2.2: Fluid model of CRM interaction

them describe the gyrotron, diocotron, peniotron, CARM and harmonic auto-
resonant peniotron (HARP) instabilities including coupling between TE and TM

waveguide modes. The results of Lashmore-Davies for the Doppler-shifted CRM

interaction for both TE and TM modes in the limit of weak space charge are

most relevant to the analysis which will be described in the following chapters.

The spatial growth rates for TE;,, and TM;,, waveguide modes involved in such

an 1interaction are

1/3
oz = B3 (ki vdows 1 217
2 \ 8k ‘l’o‘vno ¢ (1-1/x2,) JE(x4in)
/3
\/_ ( 2 2 2 ('Ug )2 1 !
aT™M = = —wiv “ — - 2.18
9 8k"c4 pY10 70 v" J'g(Xln) ( )

where w, is the plasma frequency, xi. satisfies J;(x1») = 0 and X}, satisfies

J1(x1n) = 0. These growth rates are valid for the case of an axis encircling beam
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when stabilising terms are neglected, the beam and the waveguide mode are close

to resonance (w = w./vo + kjvjo) and k;r; < 1, so that the transverse mode

profile is approximately uniform over the electron gyro-orbit.
The self-consistent nature of the fluid theory makes it ideal for studying effects

which occur when the beam density is large. It has been shown by several authors

146, 47, 48|, that for a fully self-consistent analysis of these effects in Doppler-
shifted CRM type devices, it is necessary to include both TE and TM modes and
the coupling between them. The reason for this can be deduced from geometical
considerations. The aximuthal bunching effects characteristic of the gyrotron
instability provide a source for an azimuthal and hence transverse or TE type
electric field. In contrast, axial bunching effects provide a source for a longitudinal
or TM type electric field. As both types of bunching occur simultaneously in
Doppler-shifted CRM devices, both types of mode will also be simultaneously
generated. In this respect, the CRM is a more complicated device than, for

example, the FEL, which at the fundamental level is inherently one-dimensional,

with its gain mechanism due to an axial bunching effect only.

2.4 Kinetic Theory

The other method which has been used most predominantly for the study of the
CRM ineraction in the linear regime is that of plasma kinetic theory [49, 50, 51,

52]. This is a microscopic theory which involves the simultaneous solution of the
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Vlasov equation

af uxB\ of
oty J__:( TS )'5;_0 (219)

where f = f(r,u,t) is the electron distribution function, with Maxwell’s equa-
tions usually via transform techniques to form a dispersion relation.

Although this method usually requires more algebraic manipulation than fluid
theory, 1t has an advantage in that it can be used to study the effect of different

electron momentum distributions in the beam. This is particularly useful when

analysing the effect of velocity spread on the growth of the interaction, as this

can often have a dramatic effect on the growth rate of the instability, possibly
stabilising 1t altogether. Among the first to use this method to analyse the
CRM instability were Ott and Manheimer [49], who studied the interaction in a
planar geometry, where the electron beam is sandwiched between two conducting

surfaces, all of which are assumed infinite in one dimension (figure 2.3). As they

assumed a cold electron beam, their result agreed with that for the TE mode
(2.17) obtained from fluid theory to within a geometrical factor. Later papers
extended the theory to include the effects of cylindrical geometry [50], guiding
centre motion [53}, TE-TM mode coupling [54] and ohmic losses in the waveguide
walls [55].

The dispersion relation describing the CRM instability for the geometry shown

in figure 2.2 and for the case of a cold electron beam interacting with a TE,.,,

waveguide mode is {56]

Y0

2
(wz-kcz—k )( —.s——k”v"o) =
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Figure 2.3: CRM interaction in planar geometry
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+ %Jf_m_l(kJ_RO)J;(kJ.rL)J;-I(kJ-rL)
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+ 3J2 pi(kLRo)(kirr)d (ki)

where Rj is the guiding centre radius and r;, is the Larmor radius of the electrons.
The first term on the RHS of (2.20) has a destabilising effect and the second has
a stabilising effect. This stabilising term places a lower limit on the transverse
energy of the beam below which no instability will occur. If it assumed that

the interaction takes place at the fundamental cyclotron harmonic (s = 1) and
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kyrp < 1, the constants H,, and Q,,, simplify considerably to

Hlm ~ (k.LRO)

~ 12
i
1

le ~ "2' _1(k.LR0)

and the threshold condition can be written as

4 2 w3vyod k
o> o lodm—1 (kL Ro)

“T kL krgeJ2 (kL Ru) ( R )

It will be shown 1n chapters 3 and 4 that this threshold is due to depletion of the

(2.21)

transverse momentum of the electron beam. Far from this threshold, the spatial

growth rate of the interaction is just that obtained from fluid theory (2.17).

2.5 Nonlinear Theory

Although a linear theory is sufficient to ascertain whether instability will occur
and what the growth rate of the instability will be, in order to calculate or
estimate accurately quantities such as the maximum electromagnetic power which
can be produced by the system, a nonlinear theory is required.

Among the first nonlinear analyses of the CRM interaction was that of Spran-
gle and Drobot [51], which studied the temporal evolution of the interaction be-
tween electrons in a sheet electron beam and an electromagnetic wave in a planar
waveguide in a reference frame moving at the electron longitudinal velocity. After
analysing the linear regime of the interaction using a plasma kinetic approach, the
nonlinear evolution of thel interaction was studied. The saturation of the inter-
action was found to depend critically on how far the unstable system was above

the threshold (2.21), resulting in two different types of saturation. Close to the
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threshold, the electromagnetic field intensity would increase at the expense of the

transverse electron energy until the instability threshold was no longer satisfied,

and wave growth was halted. Far above the threshold, however, the saturation
of the instability was found to be due to the electrons bunching in phase until no
further bunching was possible. The electrons then began to debunch, absorbing

energy from the radiation field and saturating the instability. These saturation

mechanisms will be discussed in more detail in section 3.4.

Most of the nonlinear analyses of CRM-type devices involve the simultaneous
solution of the Lorentz equation of motion with Maxwell’s equations.- Depending
on the particular system being studied, certain approximations can be made
to ssmplify the equations, but the result 1s always a set of coupled nonlinear
differential equations which are then numerically integrated. In a full three-
dimensional analysis, it is necessary to simultaneously solve five equations for

each (macro)electron involved in the integration, one each for the phase difference

between the electron and the wave, transverse momentum, axial momentum, and

the co-ordinates of the guiding centre (Ryp,8) {57, 58]. Although a full three-

dimensional analysis is useful, it requires a large amount of computation and
does not readily lend itself to a basic understanding of the physical processes
occurring in the interaction. Full three dimensional analyses are usually used in
the design of specific devices with a given set of design parameters.

In order to obtain a general understanding of the physics involved in the

nonlinear regime of the interaction, the large number of equations used in a three-

dimensional analysis has to be reduced using various assumptions, e.g. that the
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guiding centres of the electrons remain approximately stationary. This approach
has been used by Bratman et al. [19] resulting in a set of 2N differential equations,
which describe the evolution of the energy and the phase difference between the
electron and the wave, for NV particles undergoing an interaction with a mode of
a high diffraction-Q) cavity. The high-Q) factor of the cavity means that the axial
structure of the mode will be determined by the shape of the cavity rather than
the motion of the electrons, removing the need to solve Maxwell’s wave equation
i.e. the electron and field evolution equations are not solved self-consistently.
The power output from the cavity is found by calculating the power lost by the
electrons at the end of the interaction region. The CRM amplifier has also been
studied in this way [59], but Maxwell’s wave equation must also be solved for this
case, as the motion of the electrons acts as the source term for the generation of
the electromagnetic field i.e. a self-consistent calculation is required. This results

in the number of differential equations to be solved being increased by two (field

amplitude and phase) if the field is assumed to be evolving slowly or four (field

amplitude, phase and first derivatives) if not.

A slightly different approach to the nonlinear analysis of the CRM interaction
which has been applied to the case of a high-Q oscillator operating close to cutoff is
that employed by Nusinovich [60] [62], which involves assuming that the evolution
of the mode amplitude and phase in the cavity is small in the time taken for the
electrons to cross the interaction region. A set of ‘slow’ equations can then be
derived describing the evolution of the mode amplitude and phase on a time

scale much longer than the transit time. This method has been used to describe
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multimode effects, such as the growth of parasitic modes [60, 61} and parametric

effects [62].

2.6 Conclusions

A brief description of some of the theoretical methods used to study the CRM
interaction has been given in this chapter. Some, such as the quantum me-
chanical analysis, are now only of historical interest, while others, such as three-
dimensional numerical simulation, are tailored towards an engineering approach
to device design rather than physical investigation. It will be shown in the fol-
lowing chapters however, that there is scope for further theoretical investigation

of the physical processes involved in the CRM interaction.
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Chapter 3

Universally Scaled Evolution

Equations

3.1 Introduction

Starting from the Lorentz equation of motion for an electron in an electromag-
netic field and Maxwell’s equations, i1t is possible to derive a set of universally

scaled equations which describe the linear and nonlinear interaction of a beam of

relativistic electrons with a TE or TM waveguide mode. A universal scaling of the
evolution equations reduces the number of free parameters and hence the number
of solutions to a minimum. In addition, a truly universal scaling should be based
on physically significant quantities e.g. growth rates etc. The universally scaled

set of equations considerably simplify both the analysis of the interaction and the

physical interpretation of results.
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3.2 TE Mode Interaction

The cylindrical components of the electric (E) and magnetic (B) field of a TE,,,

cold cylindrical waveguide mode are

E, = "'"%F(Z)DTEJm(k_LT)ei(wt—ma) + c.c. (3.1)
1k : i(wt—m)

Ey = TF(Z)DTEJm(k_LT)e 7 + c.c. (3.2)

E, = 0 (3.3)
ky d -

B, = —233' Fdiz)DTEJ:n(kJ_r)e'(wt-me) + c.c. (3.4)

m dF -
By = —-217%- diz) DrgJm(kyir)e'@t=m 4 c.c. (3.5)
2 .
B, - %F(z)DTEJm(k_Lr)e‘(“"mo) e (3.6)

where: Drgp = (Jm (X' ) V(X2 — mz))_ is a mode dependent constant,
x... is the nth root of J) (kL R,) = 0, w is the radiation frequency, k. is the
component of the wavevector perpendicular to the waveguide axis and (r, ) are
polar co-ordinates with respect to the waveguide axis as shown in figure 3.1. F(2z)

is a complex field amplitude with the dimensions of voltage and is of the form
F(2) = |F(3)]e =t

where |F(z)| and £(2) are slowly varying functions of z and k is the component

of the wavevector parallel to the waveguide axis. The fact that |F(2)| and &(z)

are slowly varying means that

¢ d|F|
-CE << k" "'a;— < <L anFI
withﬂ the result that
dF(z) : -
~ k —tkuz
dz 2 "F,(z)e
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where F,(2) = |F(2)|e*(® is a slowly varying function of z. Substituting for F

and dF'/dz in terms of F, in (3.1..3.6) gives

E, = —';“n;Fs(z)DTEJm(kJ_T)ei‘I'+C.C. (3.7)
iki— / t W
Ea — TF,(Z)DTEJm(kJ_T)C + C.C. (38)
E, = 0 (3.9)
k
B, = —--lE, (3.10)
9,
k
By = —-”-E,- (3.11)
W
ki ¥
B, = Z;F_,(Z)DTEJm(kJ_T)e + c.c. (3.12)
where
¥V =wt —mb — k"z (3.13)

3.2.1 Electron Equations of Motion

Figure 3.1 shows the model used to describe the motion of an electron. The
electron gyrates about the guiding centre (Ro,0p) with momentum both per-
pendicular and parallel to the waveguide axis. Note that in the absence of any
interaction of the electron with an electromagnetic wave, the guiding centre po-
sition, momentum and cyclotron frequency of the electron will all be constant.
It is assumed that when an electromagnetic wave is also present, these quanti-

ties vary slowly i.e. they vary on a timescale large compared to the cyclotron

period 27+ /w.. Using complex notation, the transverse position of the electron
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Waveguide
wall

Figure 3.1: Diagram of an electron orbit
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1s represented by
ri =re’ = Roe'® + rpe's

where r is the Larmor radius of the electron orbit, and ¢, is the electron gyro-

angle which 1s defined as

6, = 5 — tan™ (“—) (3.14)

Uy
where u = (uy, u)) = v, v is the electron velocity and 4 is the relativistic factor.

The perpendicular component u; can be written in complex notation as
u; = u, + iuy - Z'UJ_CMQ (315)

where (3.14) has been used and u,; = |u,|. It is assumed from here on that the
guiding centre co-ordinates remain approximately constant for any given electron,
as they play no significant role in the CRM interaction. Motion of the guiding

centre in a radially non-uniform electromagnetic field can itself cause amplifica-

tion of an electromagnetic wave. An example of a device which employs this gain

mechanism is the peniotron [47].

The Lorentz equation of motion for an electron in both electric and magnetic

fields is

du__ u“du € uxb
&t~ ydz m, (E+ Y ) 3-10)

where e is the magnitude of the electron charge and m. is the rest mass of

the electron. The interaction length z is used here as the independent variable.

Splitting this equation into perpendicular and parallel components gives

dll_L - S | 1

dz m.y et gl B)L) 10
du" e 1

-2;'_ = *;z—ﬁu—“* (I.l X B)” (318)
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as By = E, =0 for a TE,,,, waveguide mode.

Analagous with (3.15),

E,

E:+:E, ,E;=0 (3.19)

B,

B, + iBy . B" = By + B, (320)

where B, is the static magnetic field. It is now possible to write the perpendicular

component of the Lorentz equation as two equations

E.cos ¢, + E, sin ¢, + 2~( By + B,)
w % _ & ¢ TR T (3.21)
dz Ujjme uy _
+ —(Bzsin ¢, — B, cos ¢,)
—FE.sin¢, + E, cos ¢
dup ey g VIS (3.22)
dz U uy .
+ (B cosgy + Bysin P, )
and the parallel component of the Lorentz equation as
du” € Uy .
— = ——= (B, sin ¢, + B, cos ¢,) (3.23)

dz Me Uy

where (3.15) has been used and E,, E,, B, and B, are found using the relations

E, E, E,

= cos 0 — sin 6 (3.24)
B:r Br Bﬁ
E, E, By

= sin@ + cos 0 (3.25)
By Br Be

which lead to

E, = —k.|F(z)|DrE X
(% m(kyr)cos (¥ 4+ &) cosf — J, (kyr)sin (¥ + £)sin 9)
L
By = —k.|F(z)|DrE %
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(kﬁ; m(kir)cos (¥ +€)sind + J, (kpr)sin (¥ + §) cos 9)
1

kik
B, = —L|F(2)|DrE x
(-I-E-n-; m(kLr)cos (¥ +¢)sin@ + J,, (kyr)sin (¥ + £) cos 9)
1
kik
By = - :J"IF(Z)IDTE X

(k_m_ m(kir)cos (¥ +¢)cosl — J, (krr)sin (¥ + £) sin 9) .
IR

Using the Bessel function relations

m

—Jm(z)

I ()

(Jm-1(z) + Jm41(2)) (3.26)

I

DN == DI =

(Jm-1(2) = Im+1(2)) (3.27)

then these equations can be further reduced to

E - kllF(Z)IDTE v
° 2
(Jm—1(kpr)cos (¥ + 0 + &) + Jmsr(kpr) cos (¥ — 0 + £))
E = ki |F(z)|DrE y
v o 2
(Jm_l(k_LT') sin (‘I’ + 9 + 6) — Jm+1(k_|_1‘) Sill (\IJ — 9 + {))
B. = L |F(:)\Drs x
(Jm_l(kJ_r) sin (\I’ -+ @ + 6) — Jm+1(k_|_1") sin (\I’ -6 <+ f))
B, = ——=|F(z)|Dsz x

(J-1(ksr)cos (¥ + 0 + &) + Jmy1(krr)cos (¥ — 6 +§))

The equation for B, 1s

k2
B, = —L:L-IF(Z)IDTEJm(kJ_r) cos (¥ + ¢)
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Substituting for E,,E,,B;,B, and B, in the equations of motion (3.21),(3.22) and

(3.23) results in the following equations of motion :

dog
dz

d’U,J_

dt
dz .

X (3.28)

Upu|me
Jm-1(kyr)cos (¥ + 0 — ¢, + )

+ Jm+1(k_|_r) COS (W — @ + (}39 -+ E)

+54 5| F(2)| Drpdm (kL) cos (¥ + €)

+2u
ey ki Drg|F(2) (kuuu __1) y
UM, 2 WY

Jm_l(kJ_T‘) sin (\I' -+ 6 — (ﬁg + 6)

(3.29)
— Jmpr(krLr)sin(V — 0 + ¢, + £)
Jm—1(krr)sin (¥ + 0 — ¢, +
€U k;_:‘" |F(z)\DTE 1( .Lr) S1n ( é £) (330)
et — Jmpa(kr)sin (¥ — 0+ ¢, +€)
A (3.31)

bt |

where the evolution equation for ¢t has also been given. The next stage in the

analysis involves the use of Graf’s addition theorem [63], which in its general form

states that

where

COSs ™ Y o COS N«
I (w) = Y Jmin(u)Jn(v) (3.32)
sin MY n=—00 SIn nQ
w’ = u’+v? - 2uvcosa
U—VCOSQA = WCOS
vsina = wsiny
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Figure 3.2: Graf’s addition theorem

and w,u,v,a and x are defined in figure 3.2. From a comparison of figure 3.2 and

figure 3.1, it can be seen that

w==k;r, u

1
o
=
Q

I
o
t,
b~

Equation (3.32), written in complex form, becomes

Jm(kyr)e™ = Z Jmin(ki Ro)Jo(kyiry)e™

N=—00
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Expanding a and x, the complex conjugate of this is

Jn(kir)e™™ =} Jmin(kiRo)Ja(kyrp)e™ " eindog i minite
= Z (_l)n m+n(kJ.R0)Jn(kJ_T'L)ein¢ge_i(m'l'“)a“ (333)
Similarly,

Z (— 1 )nJm'l'ﬂ-l (k.LRO)Jn(kJ_TL)ein% e-i(m+““1)9o

Jm-1(kpr)e 1)

Joms1 ( kor) e~ Hm+1)8 i (=1)" Jm+n+l( k, Ro) Jﬂ( kU‘L) ein®g o —i(m+n+1)6o
S0
Jm_l(klr)e‘('l""e"’b”m — Jm_l(k_Lr)ei(wt-(m-l)e-k,,z-¢g+£)
= i (=1)"Jmtn—1(ks Ro)Jn(kLrr)e™-
Ims1(kor)el¥—0Féetl) = 3::.0:(1:: Lr)ellwi=(m+1)6-kyz+dg+¢)
= i (—1)*Jm4ns1(kL Ro)Ju(kiry)e™™
where
Q. = wit+(n—1)¢, —kyz—(m+n—1)8 + ¢ (3.34)
A = wt+(n+1)¢—kyz—(m+n+1)o+¢ (3.35)

The real and 1maginary parts of this pair of equations provide the terms used in

the equations of motion (3.28..3.30) i.e.

Im-1{krr)cos (¥ + 0 — ¢, + &) Z (—1)*Jmin-1(ksL Ro)Jn(kiryr) cos 2_

Jmoa(kir)sin (U +60 —@g+&) = > (=1)"Jmyno1 (ks Ro)Jn(kore)sin Q-
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0

Jms1(kpr)cos (¥ — 0 + ¢ +¢) > (=1)"Jmins1(ksRo)Jn(kLrr) cos Qs

Jm+1(k_L7‘) sin (\IJ — 6 -+ (ﬁg -+ {) = z (-1)nJm+n+1(kJ_Ro)Jn(kL7'L) s1n Q+

Substituting these terms in (3.28..3.30) gives

do, €
dz - u.Lu"mc X (3-36)
Z (-l)nJm+n-1(k.LRo)Jn(k_|_‘rL)COS Q..
ki Dre|F(z)] (M B 1) n=—oco
2 WY 00
+ Z (-l)nJm'i'n-l-l(kJ.RO)Jn(kJ_fL)COSQ+
+4 22| F(2)|D1E Y (=1)"Jmin(ksRo)Jn(kLrr) cos Qo
u, B
p B
du, _ __ev kiDrelFG)| (R _ G
dz UM, 2 Wy
Z (=1)"Jmen-1(kiLRo)JIn(kyrr)sinl_.
oo (3.37)
_ Z (-l)ﬂJm+n+1(kJ‘Ro)Jn(k_|_fL)sin0+
du" - EU | k_,_k"
dz Meuy 2w |F(z)|Drg %
Z (—=1)"JImen-1(kLRo)Jn(kory)sin_
"o (3.38)
T Z (_l)u m+n+1(k.LRO)Jn(kJ_‘rL) SiIlQ+
where
QD = wl + nég _ kllz o (m + n)90 +€ (3-39)

As this analysis is concerned with evolution over a large number of cyclotron
periods, these equations will now be averaged over a cyclotron period. In order

to do this, the gyro-angle ¢, is split into a quickly varying part ¢§f ) and a slowly
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varying part ¢\* i.e.
bg =05 + ¢ (3.40)

where ¢§f ) = w.t /70 and w. = eBy/m. is the nonrelativistic electron cyclotron
frequency. Averaging over a cyclotron period involves integrating the equations
of motion with respect to qﬁ_gf ) over the interval 0 to 2r. The slowly varying
variables and their derivatives are assumed to remain approximately constant

over this interval.

Consider equation (3.36) for d¢,/dz. Using the relation (3.40) this can be

written as
d¢.(qs) We i €Y
= — (1 — '—-) + X
dz | Yo UL UYL

o0
Z (=1)*JImyn—1(kLRo)JIn(krrr)cosf)—

Drglf(a) (1) or®

2 Wy oo

-+ Z (=1)*Jmyns1(kLRo)JIn(koirr)cosy

Nos 00

” o0
+22|F(2)|Dre Y (=1)"Im4n(ksRo)Ja(kire) cos Qo

n=—00

where (3.34), (3.35) and (3.39) are now given by

0. = (w+(n—-l)$5)t-—k”z+(n—1)¢_(q’)-(m+n-1)90+£
0
0, = (w+(n+1)%)t—-k"z+(n+1)¢_g’)—-(m+n+1)9o+5
and {3y = (w+nf-’:£)t—k”z+n¢_(q’) —(m+n)90+£
0

When averaging this equation over a cyclotron period, it must be remembered
that u,, vy, 7, c,b;’), |F| and £ are slowly varying by definition. In addition, it

1s a.s__sumed that the electrons and the wave are close to resonance at the sth
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cyclotron harmonic 1i.e.

We

Ww—-—38$— — k"v” ~ ( (3.41)
Yo
This means that the quantity
We We Uy
W~ 88—t ~kyz = (w —s— — ky—=)\t
( ,m) 1z = ( ol s )

is also slowly varying. Therefore on averaging over a cyclotron period only the
terms in the summation which have trigonometric arguments containing (3.41)
will remain as the other terms will give rise to quickly varying terms which average

to zero. Consequently, averaging the equations of motion (3.36..3.38) over a

cyclotron period produces

(s)
d¢s” _ @ (1 _ :r_) L, (3.42)
dz u| Yo UL UM

~ BDoglFE (B — 1) (1)~ (b Ro) %

Wy

(J-s41(krrr) + J-p-1(kirL)) cos (¢ + £)

+ WEF(2)|Drg(—1)"*Jm-s(kLRo)Js(kyrL) cos (6 + £)

duy _ ey kiDrelF()| (k) 1\es
dz  yym, 2 (w'y 1)( 1)™" Jm-s(kLFo) X
(J—ap1(kirr) — J_y_1(kyry)) sin (¢ + &) (3.43)
du" _ €U,y k_l_k" —s
B = Ture o DrslFEI(=1) " Tnmy (ki Ro) X
(J_,.H (kJ_TL) — J_,_l(k_LTL)) sin (¢ -+ f) (3.44)

where the variable ¢ has been defined to be

¢ =(w—s—=)t—kyz — 343" — (m — )b, (3.45)

dz




equations (3.42..3.44) can be further reduced to

i _ 1 (w_;ﬁ _ ﬂzm)
dz Y Y Y

_ su”:Zm Jm—s(kyRo)J_s(kLr)(~=1)"ks Drg|F(2)| cos (6 + £) X
S [k _ ) 12..’2.]
[ . ( o~ 1) + — (3.46)
duy ey m B )
E = —'u"mekJ_DTEIF(Z” ( Y 1]} x
Jm—s(kLRo)J.,(kirr)(—=1)* sin (¢ + &) (3.47)
% = t:::; k:k“ Drg|F(2)|Jm-s(kLRo)J" ,(kirr)(—1)*sin (¢ + &) (3.48)

It i1s now assumed that the interaction is occuring close to the fundamental

cyclotron resonance i.e. s = 1. Therefore

U
W ﬁ.{_k"__!.l_
Y Y
knu W
>l &~ =
Wy Y

In addition, it 1s assumed that the transverse variation of the electromagnetic

mode amplitude is negligible over the electron gyro-orbit i.e.

kirp <<1 (349)

This is an experimentally desirable condition as it allows the electron beam to
be positioned on a maximum of the transverse mode profile, maximising the
beam-wave coupling. This is more easily achieved for low order modes e.g. TEg
than high-order modes e.g.TE22 ¢, where the transverse mode profile is highly
complicated. The use of (3.49) allows the Bessel functions in (3.46..3.48), with

kiry as their argument, to be replaced by the corresponding small argument

expansions

1 1
Jo1(kyry) = _'é'k.l.T'L J (kyiry) =~ -3
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- The above approximations and the relation u; = w.rr allow the equations of

motion (3.46..3.48) to be written as

do

dz

du_._

dz

duy

dz

¥ (w L we k"un)
y) ~ Y

_______2UJ_ZL‘|J|m,w ky Drg|F(2)|Jm-1(kyLRo) cos (¢ + &) (3.50)
QT:eUHQJk'L IF(z)lDTEJm"I(kLRO) sin (é + E) (3.51)
Q;ut-;lwk-'-k” |F(2)| DrgJm-1(kL Ro) sin (¢ + &) (3.52)

These equations constitute the electron equations of motion for a slowly varying

interaction between a relativistic electron gyrating in a static magnetic field and

a TE,, waveguide mode at the fundamental cyclotron harmonic in the limit

kirp << 1.

3.2.2 The Electromagnetic Field Evolution Equation

The electromagnetic field evolution equation is derived here for the case of a

single TE,,.,, waveguide mode. The field evolution is described by Maxwell’s wave

equation

For a TE,.. mode, E, = 0, so

(

1 9

v

2 3t2) Ei(r,t) = po—F7— mib& J — eV, (:—:) (3.53)

where n, is the electron number density.

It can be seen from (3.7) and (3.8) that the electric field can be expressed as

E.(r,t) = R (Ey(r)er—h?)) =

1
5 (E_L(r) Hwt=kyz) 4 c.c. ) (3.54)
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where E; = Fi(z,t)emn, €nn = €r1, + €ply and

e, = —?DTEJm(klr)e_ima (3.55)
es = tkyDrgJ (kyir)e ™™ (3.56)

where 1, and 1y are unit vectors in the radial and azimuthal direction respectively

such that i,, iy and i, form a right hand set. The complex field amplitude F s(2,1)

describes a slowly varying pulse envelope such that

L) ¢ o 051
l?-%f’—t)l < |k Fy(2,t)] (3.58)
(3.59)

and the quantities e,,, are orthogonal mode vectors i.e.

/ emn'e:n‘n' dA = bmm:Onn

where the integration is over the cross-sectional area of the waveguide and 6, is a
Kronecker delta. In addition, the transverse mode vectors satisfy the Helmholtz
equation

(V2 + k) eman(r, ) = 0. (3.60)

If (3.53) is multiplied by e™*“* and integrated over wt from 0 — 27 then

2 27 |
7r (V'*’ = -35-(%5) Fy(z,t)e *1%e,., = uo / Q‘-’-%—?-Qe“‘m d(wt)
0

where the transverse derivative of the electron density has been neglected. The
RHS of this expression can be simplified by integrating by parts, assuming that

J,(r,t) is periodic in wt with period 27. The resulting equation is

| 32 ‘ ' 27 _
(V2 — -c-igt—z) F,(Z, t)e"'k“’emﬂ ~ zpow/ J_L(r,t)e"“’t d(wt). (3.61)
0
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The LHS of (3.61) can be simplified using the fact that F,(z,t) is a slowly varying

function. This means that

0° 1 9? -
> Y t(wt—kyz) ~
(822 c? 3t2) Filz,t)e

] 6 W a "'-’2 t(wt—kyz
[—2zk|| (5 + W-B_Z) + (5 — kﬁ)] F,(z,t)e( t=kye) (3'62)

so using (3.60) and the fact that the dispersion relation for a cold cavity waveguide

mode 1s

w2

— =k + k& (3.63)

C

the LHS of (3.61) can be written as

1 9° - 0 1 0 -
2 — —— -‘k"z . k —tk"z
T (V = 3t2) Fy(z,t)e € 2wk (32 + _vg _Bt) Fs(z,t)e €nn

(3.64)
where v, = kjc?/w is the group velocity of the waveguide mode. If the indepen-

dent variables are now transformed using

2

=2z , t'=t—— (3.65)
Yi

then the differential operator in the wave equation becomes

d 120 0 1 0
(5; + ;;5;) 87 vgﬁ(l —#) o’ 1300
where § = vy /v,.

The second term in (3.66), which gives rise to effects due to the relative

propagation of the radiation with respect to the electrons, can be neglected if

the velocity difference between the radiation and the electrons is not appreciable

during the interaction. In this himit, only the space dependence is left in the
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differential operator in (3.64) i.e.
0 10 d
('6"; + ;:'5;) ~ o (3.67)
so it 1s possible to follow the ‘steady-state’ evolution of the system as it moves

through the interaction region. For now, and for the analysis of chapters 4 and

5, only the steady-state limit will be considered. The inclusion of propagation

or slippage effects in the analysis of the CRM interaction will be described in

chapter 6.

Performing scalar multiplication of (3.61) with e} after (3.62) and (3.67)

have been applied, and integrating over the cross-sectional area gives

- 2r
_27rik" dF:g‘:’t) e kIz = szPO/A,/o Ji(r,t).e*(r,0) dA d(wt)

where the mode subscript has been dropped as only a single mode interaction

is considered. The current density J,(r,%) is represented by a collection of N

electrons 1.e.

N
Ji(r,t) = —e) vii(r,t)6(r —r;)

j=1

SO

) _
/ J.(r,t).e"(r,0) dA = €3 vi;.e"(r;,0;)8(z - z;).
A

i=1

The delta function in z can be rewritten as

- w
: e v} V)5 '

so multiplying both sides of (3.61) by e**I* and rearranging reduces the full wave

equation to a single difterential equation for the slowly varying complex field

amplitude F,(z,1),
dF, wlugecnV 15-€*(r;,0;) _. ..
E e : .
dz 27l'k" =1 v"J- ( )
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Each electron is considered to carry a partial current of
ew
I, = —
7 2n

so the total current is represented by

therefore (3.68) can be written as

dFy,  wpol [vyi.e _. . &
— t(w ||z)
dz ki < o > (3.69)

N
where (...) = -}{,-z (...).
=1
All that remains now is to evaluate the v, .e* term. Expressing v; and e* as

Vi =vd, +vglyg €= el + eglg
where
Vr = VyC080 4+ vysinf | vg=—v,sinf + vy cosb

and e,, eg are given by (3.55) and (3.56) respectively, the product v, .e* becomes

ot = k. Dot (vz cos § + vy sin 6) (—f‘;Jm(klr))
1.6 = RLLUTEEC

+ (—v.sinf+ v, cos@) (—2J, (kir))

Using the fact that the velocity components can be written as
ve = —|vilsing, v, = |vy|cose,
and the Bessel function relations (3.26) and (3.27) then

v, .etetwt-kiz) - _."_’E.J.;.Q.gfﬂ (Jm1 e~i(¥+0=6) _ g e-i('l'-0+¢,))
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The application of Graf’s theorem (3.32) to this expression results in the field

evolution equation (3.69) becoming

dF(z) _ _iwpolkiDre
e T (3.70)
Z (—1)" """"‘l(kJ-RO)Jn(k_LrL)e‘m-
<m = >
v o0 |
I — Z (_l)nJm+“+1(k-LRO)Jn(k_LT'L)e_tQ"“

n=—0oo

where ()_ and (1, are defined in (3.34) and (3.35). After averaging over a cy-

clotron period, and making use of (3.27) then (3.70) becomes

dFs(Z) o z.f-‘-’l-tok.LI)TEJWI.--'J(k-l--lzzﬂ) -3+1 <u-|- ’ -t
dz — - k" ( 1) J,(kJ_TL)e

where ¢ has been defined in (3.45). Using the conditions that s = 1 and k,r; <<

1, the evolution equation for the complex field amplitude finally reduces to

dF,(z) _ _iwpok. DrgJm-1(ksRo) <g£ e-£¢>
dz 2k U

This is the steady-state evolution equation for the slowly varying complex ampl-
tude of a TE,,,, waveguide mode due to its interaction with a beam of relativistic
electrons gyrating in a static magnetic field. The interaction is assumed to occur

at the fundamental cyclotron harmonic and the transverse variation of the mode

profile is assumed to be negligible over the gyro-orbit of the electrons.

3.2.3 Scaling the Evolution Equations

From the results of the two previous sections, the full set of electron and field

evolution equations are

de; —_ . 4 G
dz = B 2u_|_ju||,-m,w

ky Dre|F(2)|Jm-1(ky Ro) cos (¢; + £) (3.71)
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duJ_,- _ €W, . |
rrali ___2m¢u||jw ki |F(2)|DrgJm-1(k1 Ro)sin (¢; + £) (3.72)
duy; euy; L
dz 2m U W kikylF(z)|DreJm-1(kyRo)sin(¢; + &) (3.73)
() sk Drpellult) (14 ) -
dz 2k, u :
where
-1 Yy iy
¢’J' = {.I.th —_ k”Z + tan (u—) — (m — 1)90 — 5 (375)
VW We
pj = o=~k 3.76
J Wy ouy (3.76)
and ;] = 1..N (3.77)

In order to find dp/dz, 1t is necessary to find dv/dz. This is achieved using the

relation

2 u2
U,

— b S|
Y= 1+c2+02

and the equations (3.51) and (3.52). The result is

dy ekiuju
dz - 2‘1"1’&.,,02 Uy

|F(2)| DreJm-1(kLRo)sin (¢; + £) (3.78)

It is immediately obvious on comparing (3.78) with (3.52) that

d W

du” IS:“C2 |
This interesting relation can be explained physically by considering an electron

emitting a photon of energy hw and axial momentum khky. Consequently the

energy and axial momentum of the electron will also change by these amounts

1.e.



From the definition (3.76), the rate of change of p can now be shown to be

dp 02 k”wc d’y W dv“
dz ~ wuﬁ dz vl'*; dz (3.79)

Note that if the rate of change of 4 and v are of the same sign, the two terms in

(3.79) are of opposite sign. This expression can be rearranged to give

dp l k2 du"
dz  y (ku )_3? (3.80)

where (3.73) and (3.78) have been used. Note that on comparing terms in (3.79)
and (3.80), the k% /k; term in the bracket of (3.80) arises from the change in 4,
whereas the p term in the bracket of (3.80) arises from the change in v. This is

an important point which will be returned to in section 3.4 and chapter 4.

Defining the variables

= _ P
2 =2koz , p= T
u’ — ..t.fi . u’ — _tﬂ!..
T uge " Ujlo
p ek"kco .
A = mDTEJm-l(kJ.Ro)tF:(Z)

where ko = w./ujo i1s the ‘cyclotron wavenumber’ and the subscripts 0 indicate

initial values at z = 0 then the evolution equations (3.71..3.74) and (3.80) can be

written as
dé; , . kic 1 1 _id;
—_— S e IRdad :
dz’ pj =1 k"kcouJ.o uijuﬁj (A e - ) (3 8 )
dp; ~ kicuio Uy ; ( ki )
ap; e %) . A’ ‘¢J + C.C 3 82
dz — khud, in Ueyk 7 ( ) o
duﬂ_, k ? 3¢,
= k“kwum u"J ( A'e’®i + c.c.) (3.83)
4::lu“J _ _klcujouy; (A'e*% + c.c.) (3.84)
dz' kao“uo “IIJ



o — 2 Uio u.L —td
d>! 32mccp0DTE l(k-l-R‘D) < € > (385)

It has been assumed here that there are no spreads in the electron’s perpendicular

or paralle]l momenta 1.e. u;o and ujg are the same for all electrons. These
equations will now be rescaled so that all coefficients are equal to one. To do

this, the following set of variables are used
2=z p=cp UL=cu| Y= cauy A =csA’

where the ¢;, + = 1..5 are constants which will be defined so as to leave the
evolution equations in the simplest scaled form possible. Writing the equations

(3.81..3.85) in terms of these variables produces

do. 1 k? 1 Y
..ij. (——-—) ﬁj — 2 (__i_i{ci) e (A6'¢J - C.C.)
dz C1C2 kjkouio 165/ Uijty;

g_pé;i- [ Kkicuio cacq \ Gy (Aewj +c_c_)
dz 2k kfouﬁo C1C3C5

k2 2 -3 . . oo
n ( 1CUI0 Cy )pJ:;.LJ (Aetéj +C.C.)

kcoullo C1C3Cs u"j
di ; - (_.{c_if_ff__) 1 ( Ae'éi ¢ c.c.)
dE k"kcou_w C1Cs ‘&"J'
di; = ——-—kiw"‘o % Usj (ﬁe"‘r"'JF + c.c.)
df kcoullo C1C3Cs ﬁ":

=Yy — =€
dz C1C3 u"

where J =

The sets of coefficients are now chosen to be equal to 1, which produces the

following set of simultaneous equations

|
powad

C1C2

kic c3cq
kukoou.l.o C1Cs

[
-

28



which have the solutions

1
Cy3 — —
Ul

1
Cyg =
Ujio

CQCE
3, 2
2k||kc0u“0 C1C3Cs

2 2
kicujo cj

kiculo

2 , 2
koUijo €1€3Cs
2
kic
k“kcou 10 C1Cs

2
C4

C3Cq

2

2 .2
kcﬂ"uo C1C3Cs
C5C4

—J

C1€C3

__k
2k koo
1

1

k“kiu.sl_ol ' cf = _1_(
4k3c J 172

L Lo

kiC‘Ulo _}_
4k kS, T3

|

Therefore the set of evolution equations becomes

d9;
d
ap;
ds
dis, ;
ds
aily;

dz

dA

dz

where

X 1
—l J - 1= -
Uy ;U)\;
. Uy ;
= (p; 1)'@-
|7
1 /. .
= ——— (Ae'd” + c.c
Ll IF;
= ---t-f:i'-’- (Ae“”' + c.c
L |

09

(3.86)

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)



Notice from (3.87..3.89) that there is a functional relationship between the vari-

ables p, uy and uj 1.e.

Hj _dp ydi A g 3.92
— - —Uu)géau; = ——au .
i (5= 1) jouL = —z=rauy (3.92)

where 5, uj0 and uyo are the values at z = 0 of p, 4, and 4 respectively. At

first glance, it would appear that the set of equations (3.86..3.90) is universally
scaled as it contains no free parameters. The solution to these equations therefore
depends only on the values of the dependent variables at z = 0. However, it will
be shown that this set of equations is related to another set with a different
scaling which 1s much more physically significant. A number of approximations

will now be used to simplify (3.86..3.90) in order to deduce the nature of this true

universal scaling. The approximations will be justified using physical arguments

in section 3.4.

Consider the case where |p|, [§| << 1. This means that

A Y ﬁ S y-

i, % do /1 +222(5— ) (3.93)
Ujo

R Yo (3.94)

Assume that the term under the square root is =~ 1 i.e. 4, = 4;o. Under these

conditions, the set of five equations (3.86..3.90) reduces to the set of three which
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are

i?:i P — 1= 1 (Ae‘¢1—cc)

dz U1 oU|jo

ap; = U.Lo (Aew’ + c.c. )
dz "0

i _ Ui o-isy)

dz iy

Assuming for the moment that the second term in d¢;/dz is negligibly small, and

introducing the variables

i _
dz Ps
Bi o _(Be_L ) (e 4cc) (3.95)
dz uuo Kl Kg
f& — uy0 Ks (e7%)
dz ﬁuo K,
Setting
- &2[3
E*Q-K?lxﬁ =1 = A= o
;‘:I‘O'Q'TK{'Z =1 Kz —_ ﬁwlg
4.0
Substituting for 4,0 and 4y from (3.91) gives
3 $
4k2u_|_0c 3 k3/2 001/2
K= | ———J K, = (2—-L—J‘/2 (3.96)
( kiuuo ) kﬁﬂkl 5/2
and the set of equations (3.95) is
;i _ -
iz P
‘ d_' - .,
-a% = - (Ae‘é’ + c.c.) (3.97)
dA y
— = ()
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which are exactly the same equations used to describe the high gain Compton
FEL [64]. From a linear analysis of these equations, such as the one which will

be performed in chapter 4, it can be shown that the exponential growth rate, g,

of the wave field i1s

The constant K; will now be renamed p, and termed the ‘Fundamental CRM

Parameter’ analagously to the ‘Fundamental FEL Parameter’ [64]. Therefore,

using (3.96),

i
3

k
p= ( ' umﬂoI DTEJ:z-l(kJ-RO)) (3.98)

12
8m, ki u"[,

The constant K3 is
1 k" u2 -% P ":'
K; = p (-———fé’-) = (£) (3.99)

where v has been defined as

It is now possible to write the ‘hat’ variables ( * ) defined in (3.91) solely in terms

- of p and v 1.e.

™ | AN

)%u‘,’, (3.101)
A = (-’-’-) A (3.102)

L~ I~
N—’
o

=~

'_"
_E:

1
;|

Using these definitions, the set of five equations (3.86..3.90) can be written in

terms of the universal scaling parameters p and v :

d¢; _ _ . p

= P;j—1
- 9 - -
dz U ),

(ﬁe"éf — c.c.)
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— Utj r 2 1¢
dt_t_Lj U = ih-
dz Uj|; ( e T ec )
— — e — A t¢.’
dz P; (A% + c.c.)

=W
TiEN
]
i
-d
5|8
o
1
©.
v

1.e.

Uro Ufio

and u = p/v. Note that %, and iy are no longer scaled with respect to any beam

or mode parameters such as I or Drg. It is this which has brought p and u out

explicitly in the equations. An analysis of these equations and a description of

the physical significance of the universal scaling parameters p, 4 and so v will be

performed in section 3.4.

3.3 TM Mode Interaction

The cylindrical components of the electric (E) and magnetic (B) field of a TM,,,,,

cold cylindrical waveguide mode are

k ky c?
E, = ‘LZ:: Go(z)DrmJ,, (kJ_r)e“I’ + c.c. (3.103)
kyc? -
E, = -ﬂ;rgJ Go(2)DrpgJm(koir)eY + c.c. (3.104)
kic W
E, = o Go(2)Drpdm(kyir)e'™ + c.c. (3.105)
B, = —-Eli-giEa (3106)
B, = k"c’ —F. (3.107)
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S
|
o

(3.108)

where:
DTM — (\/EanJ:n(an))_l (3109)

is a mode dependent constant, xmn is the nth root of J,(kL Ry) = 0 and G,(z)
is a slowly varying complex field amplitude with the dimensions of current which

has the form
G.(z) = |G,(2)]e**) (3.110)

where |G,(z)| and £(z) are slowly varying functions of z. All other symbols have

the same meaning as for the TE mode.

Equations (3.103..3.108) are analogous to (3.7..3.12) of the TE mode analysis
of section 3.2. The derivation of the electron equations of motion and the electro-

magnetic field evolution equation for a TM,,, mode follows that for TE,,, mode

almost identically.

3.3.1 Electron Equations of motion

The components of the Lorentz equation in this case are

d'l.l_L € 7 1

dz _me;‘-[l- (E-L N 7(u g B)L) 3.1
du" . € (u X B)")

dz = m, uy (E" T Y (3.112)

Writing the components of the Lorentz equations in terms of ¢,, u, and v, and

using the vector relations (3.19), (3.20),(3.24) and (3.25), the equations of motion

can be found to be

dby _ _&

X (3.113)
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k_Lk CzDTMIGa(zn (1 a UNW ) Jm—l(klr) Sin (‘P + 6 - ¢g + 6)
2w

—  Jms1(krr)sin (¥ — 6 + ¢, + §)

s
du, ey kikyc?Druy|Gs(2)| (1 U|jw )
—— = e — e e —_— X
dz U |Me 2w ‘yk||c2
Jm-l(klr) COS (‘I' + 6 — éﬂ + ‘f)
(3.114)
+ JImiar(kir)cos (¥ — 0+ ¢, +¢)
duyy ey
'E; = meullkJ_IG,(Z)'DTM X
" Jm—1(kyr)cos (¥ + 60 — ¢, + £)
2y
+ Jmsr(kir)cos (¥ —0 + ¢, + £) (3.115)
— ’-’-:fz-Jm(k_Lr) cos (U + §)
dt ¥
o = ;ﬁ (3.116)
- Graf’s theorem can now be used to simplify these equations, as
Im(krr)cos (¥ +§) = Z (—1)"Jman(kL Ro)Jn(krry) cos Qo
Jm-1(kir)cos (W +0—¢,+ &) = Z (=1)"Jmn-1(kL Ro)Jn(kyrr) cos -
Jo-a(kir)sin(U+60—¢,+&) = ) (=1)"Jmen-1(kLRo)Jn(kiry)sin Q_
Tmir(kir)cos(¥ =0+ ¢5+€) = ) (=1)"Jmins1(ksRo)Jn(kire)cos Dy
Imtr(kor)sin(¥ — 0+ ¢, +§) = Z (—1)"Imins1(kL Ro)Jn(kyry)sin

where, as for the TE mode interaction,

lp = wt+n¢9—-k“z—(m+n)90+£

0 = wt+(n-—l)é,—k“z—(m-l-n—l)ao-l-f
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Ay = wt+(n+1)dg—kyz—(m+n+1)0+ &

Again, the gyro-angle is split into quickly and slowly varying parts and the equa-
tions of motion are averaged over a cyclotron period. Using the Bessel function
relations (3.26) and (3.27), and making the same assumptions as for the TE mode

case 1.e.

kirp <<1 , s=1

where s 1s the cyclotron harmonic, then

dgy’ We (1 7 )
dz U Yo

ki D kyc? :
- + e?zt_._nif‘G (2)|Jm-1(kLRo) ( Jlu; - 1) sin (¢ + §)
ky c?
.‘% — 2m (z)|Jm_1(klRo)( "u"" ) cos (¢ + €)
dyy  eyuy k; k% c? wc)
dz 2um,w, w, DrMIGa(2)Jm-1 (ks Fo) ( W wos(9+2)
where

W
(w o ) 1K ¢g (m ) 0

as before. The bracketed term in duy/dz can be altered using the dispersion
relation for the waveguide mode and the condition for operation close to resonance

as follows

Using this relation and the fact that

dz u o =

then the equations of motion become
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_ E%_%IG’(Z)IJ’“"I(’CLRO) (’ﬁ:’ - 1) sin(é+¢)  (3.117)
B b DruGu (e (ko) (T 1) cos 6+ ) (118
%ﬂ = ;fn* k::" Dra|Gs(2)|J -1 (kL Ro) X
(’2:" - 1) cos (¢ + &) (3.119)
Evaluating dv/dz using (3.118) and (3.119), it is found that
o = o DG (e s (s Ro) (T = 1) cos (64 8

so that on comparison with (3.119), it is clear that

dy _ w dy)
dz k"c:2 dz

as expected. The consequence of this relation is that on integrating each side,

W

7= % = g (U = Ui) (3.120)
which can be rearranged to give
k||c2'y 1 k||62
W - 1= ZI-I- (T’Yo — "uo) (3.121)
Defining p as
W W
p=————k
u W :
then

dp 1 [k? du
p _ 1 (.._L. _ p) du
so the final form of the equations of motion is therefore

d
-;g = p (3.122)

ek_L -DTM ( k||02

2m.u W

"o — u..n) 1Go(2)|Jimt (ko Ro) sin (6 + €)
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_(.i._P_ 6k_|_k||DTM (knCz ) %

Bz - oma, \w T e
k2
Toa (ks Ro) 221G () (ﬁ[ —p) cos (4-+¢) (3.123)
|
d kyc?
G T g keDu ("Icl;%_""“) "
1
u—ans(Z)\Jm-l(k.LRo) cos (¢ + €) (3.124)
du e ki k ky c?
2 oo ()
G(2)IJ -l(klRo)%l-*I-cos(ws). (3.125)

These equations constitute the slowly varying electron equations of motion for a
relativistic electron gyrating in a static magnetic field interacting with a TM,,,,
waveguide mode at the fundamental cyclotron harmonic. The transverse variation

of the mode profile is assumed to be negligible over the electron gyro-orbit.

3.3.2 The Electromagnetic Field Evolution Equation

As for the TE mode interaction, the electromagnetic field equation 1s derived

for the case of steady-state evolution. The starting point of the derivation 1is

Maxwell’s wave equation

2 l_@i) _ o od(,t) (n,(r,t))
(V 2 912 E(I‘, t) = Ho ot eV €0

where n. here represents the number density of the electrons. Consider the com-

ponent of the wave equation parallel to the waveguide axis

,_ 190 _, 9J:(r,t) e Onr?)
(V = 3t2) E.(r,t) = po o o 9z (3.126)

From (3.105), it is clear that E, can be represented by
E,(r,t) = % (Go(2)ex(r, 0419 4 c.c.)
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where

B e

&

e.(r,0) = .DTMJm(kJ_T)e_ime (3.127)

which satisfies the Helmholtz equation
(Vi + k) e (r,0)=0

. This means that (3.126) becomes

0Jy(r,t) e One(r,t)
6t €o 32

(3.128)

2
(V2 — -1--6——) l (Gs(z)ei(“""k“’) + c.c.) e.(r,0) = po

Performing a scalar product of this equation with e and integrating over the
cross-sectional area of the waveguide, the LHS of (3.128) can be simplified using

Lommel’s integral [65]

m2

Re 2 R:J 12 2
/ TJm(kJ_T)dT T Jm(k_LRw) +1{1-— 12 R? ) Jm(k.l.-Rw)]
0 1w

R .,
"2_"'] ;(an)

as Xmn = kiR, for a TM,,, mode and Jn,(xmn) = 0. As the complex field
amplitude G,(z) is slowly varying, (3.128) can be further simplified using the

approximation (3.62) and its complex conjugate. This means that (3.128) can be

written as
kic2 2( ., dG4(2) (wi=k )R2 )
— s W uz) £y 1 _
271'( » DTM) 3k" dZ € 4+ c.c 5 Jm(an) -
8Jy(r,t) e On.(r, t)) )
/A (PO ot ¢ Oz ez(ra e)dA (3129)

where the steady-state limit has been assumed.

If the current demsity Jy(r,t) and the electron number density n.(r,t) are

assumed to be of the same form as the electric field i.e.
1 .
Jir,t) = 3 (Jjalr, t)e =512  c.c.) (3.130)
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ne(r,t) = %— (es(r, 1) =517 4 c.c.) (3.131)

where Jj;(r,t) and n.(r,t) are slowly varying functions of z and ¢ such that

oJys(r, t | aJy(r,t)|

| ! )‘ < |wdips(r,2)) I—"E.,%——); < [Rydis(rs2)
cS t c3 t

on 6(tr ) & |wnes(r,t)| on (r )I < |k"n.,,(r,t)|

then the partial derivatives on the RHS of (3.129) can be approximated by

2008 o (e, (3.132)
@%gli) —ikynes(r, 1) (3.133)
50
0Jy(r,t) _edp(rit) _  dy(¥) _ekydp(¥)
770t T 09z PTap T dp
= wuo-;— (1 — kiir) (iJys(r, t)e 51 4 c.c.)

where ¢ = wt — k)2 and the relations n, = —J/(evy) and 1/(poeo) = ¢* have

been used. Using (3.121), equation (3.129) can be written as

k2 20 dG,(2) R?
27 ( _:Jc DTM) (—zk" d;EZ) etlwt—kiz) 4 c.c) -i‘lJ'z(xm,,) = (3.134)
k c’ - t(wt—kyz) .
—Wo ] ;I; -—:’—-70 — ujo | (¢J(r, 2)e ¥+ c.c.)ei(r,0)dA
A

Multiplying both sides of (3.135) by e™*“* and integrating with respect to wt over

the interval 0 to 27, leads to

B R
—47r zk" (——'DTM) > Jz(xmn)

3

dG,(z)
dz

kyjc?
Kok (T% ~ ‘"u°) Jyo(r, )™
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To evaluate the slowly varying compoment of the current density, it is necessary
to multiply both sides of (3.130) by e™*“* and integrate over wit in the range
0 — 27. Rearranging then gives

1 T

J"s( ) — J"(r,t)e‘i“" d(wt). (3_135)

T Jo

As for the TE mode interaction, the current density J;(r,t) is represented by a

collection of NV electrons i.e.
N
Jy(r, 1) = —ez'v",-(r, t)6(r —r;)
1=1
Expressing the delta function as

5(1‘ — rj) = M&(e — 51)5(2 — Zj)

r

and using the fact that
§(z — z;) = —b(wt — wt;)

then the integral (3.135) becomes

L[ (e £)em d(wt) = -—Z

T Jo

or = "’)5(9 — ;)e"

=1

Using (3.127) for e,, the definition of the current

N

I=) I;=
=1

and the definition of Dr)s, (3.109), then the differential equation for the slowly

varying complex amplitude G,(z,1) is

- dGs —#on2 klc J‘m(k-l-r) —s(wt—kyz
2 = Tk D™ (_Iw_""’"“"") <__e . )>' \3-130)
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From Graf’s theorem,

']1"-"1-(k-'-T')"':”--iq’JE = Z (_l)n m+n(kJ.RO)Jn(kJ.rL)e-i(wt_k“z_n%-(m+n)90)

so splitting ¢, into quickly and slowly varying parts, averaging (3.136) over a

cyclotron period and specifying that

1 kirp <<1

S

allows (3.136) to be written as

dG,(z —uolk,w?® [ kyc? |
dz( ) N 2(::‘]:“1:;:'0 (_”_-70 - ullﬂ) Drmdm-1(ky Ro) <‘E£6_'¢> (3.137)

W

This 1s the steady-state evolution equation for the slowly varying complex ampli-
tude of a TM,,, waveguide mode due to its interaction with a beam of relativistic
electrons gyrating in a static magnetic field. The interaction is assumed to occur
at the fundamental cyclotron harmonic and the transverse variation of the mode

profile is assumed to be negligible over the gyro-orbit of the electrons.

3.3.3 Wave Group Velocity and Electron Axial Velocity

It is immediately noticeable that all the equations of motion and the wave equa-
tion for the TM mode interaction contain the term vgyo — ujo, where v, = c*kyj/w
is the radiation group velocity. This implies that if the electron axial velocity is

equal to the radiation group velocity, then the electrons and the radiation do not
interact. The physical reason for this can be deduced by considering a frame of

reference, K’, in which the electron has only transverse momentum i.e. one which

travels at a speed of vy parallel to the waveguide axis relative to the laboratory
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frame, K. The electric and magnetic fields of the wave in K are E = (E,, Ey, E,)
and B = (B,, By, B,) respectively. Similarly in K’, the electric and magnetic
fields are E' = (E/,E;, E!) and B’ = (B!, By, B!) respectively. The relations

between the electric field components in the two frames are given by

E:. =~(E, — ‘v“Bg) : E; = v(FEq + v"B,) ; E; =k,

Using (3.103..3.107), the components of E’ are therefore

|

Ef = ( - ;;)Ef
ro— o1

E, = ( vy)Ea

E; = F,

Therefore if v = v,, there is no transverse electric field in K’. Consequently, the

rate of energy exchange is zero because

d
-(% x E'V = Elvl. + Elv, + Elv, =0

as E_, E, and v; are all zero. Therefore no interaction occurs between the electron

and the radiation field when vy = v,.

3.3.4 Scaling the TM Mode Evolution Equations

The full set of electron and field evolution equations are

dg; _
% - ), (3.138)
. ek D kyc? "
-+ 246 L TM ("L— 0 — UH()) Jm-—l(k_LRo) (G,Cw’ -— C.C.)
MeUy;Uj; \ W
: ki k
Z 4dm.w, W



2
- 1("7.L-RO)U-LJ (k PJ) (G et®s + C. C) (3139)

ujj; \ &y
du_._J € k C
1, kaDTM (—"70 = ‘uuo) X
1 " -
"t;"" m—l(k.L RO) (Gsew" + C-C-) (3140)
Il;
du), e kiky kyc
dz  4m, w, Dru (_w_% ~te J X
Jm-l(kJ.Ro)%il (G,,e“f + c.c.) (3.141)
Ils
dG,(Z) . -—pOIk_sz k||02 )
dz Il 2c2k||kcou||0 W 10 “io %
U .
DrpgJm-1(kL Ro) <-‘-‘:IIT6-‘¢> (3.142)

where ¢; and p; have the same definition as for the TE mode interaction and
7 =1..N. It has again been assumed that there is no spread in the perpendicular
or parallel momenta of the electronsi.e. u ¢ and u)q are the same for all electrons.
From this point on, the procedure for scaling the evolution equations is identical to

that which was performed for the TE mode interaction in section 3.2.3. Defining

/

Zf=2kcoz . P='-'£—

2k
ro_ ML N
L Ujo “I i
) ek 1 _{CLCi B ) a
A = ~ Bmochy uno( 0~ Yo DryJm-1(kLRo)G,(2)
then (3.138..3.142) become
do; , k3 c 1 ' ids
— = p;— A'e'™ —c.c. (3.143
dz I k"kco‘u"g uf,_j ‘l'lj ( ) )
dp; k.l.cu-l-o k2 u’ JRTE
dz ~  khud, (2kllkc0 _p’) "'ﬁ: A Fee) 1)
dutl-.f kic ’ l¢
) du;,. cuiatt . .
1% L“%l0 *L; T Y
; = - ——(Ae™ +cc 3.146
dz kgouﬁo U ( ) ( )



dA’ epolw?® u,g (k||c2 )2
= o 3L2 Yo — Ujo ] X

&

-3;}- 32m,c3 kzo Ulo

D%MJ;-I(MRa(ife-“) (3.147)

Note that (3.143..3.146) are identical in form to (3.81..3.84). Therefore, from the
scaling process used for the TE mode interaction, the following variables can be

used

A ’ A ’ P / A /
=61z , p=eCp , UL =cC3u; , Y =cqy , A=csA

and the constants ¢;, 2 = 1..5 can be defined by setting the coefficients in the
resulting set of equations to 1. Therefore, as for the TE mode interaction, the

set of equations i1s

é'?:i = Ppj—1z 1,_ (Aewf — c.c.)

dz | uJ_J-_u"_,-

dﬁj {t_Lj (* . g

B = (p; —1)=2L (Aei* )

E (p; — 1) ﬁﬁj e’ + c.c

du;Lj — —-‘1— (Ae"d”' -+ C.C.)
dz u||5
ﬂi = -—3_}—" (1&8‘-¢j -+ C.C.)

dz u"j

d!i <ﬁ_L —t'¢>

7. = = €

dz U

where
n k3 A k
t= bz , p=gp
i
.-. kpk? u® 4 - 1 [ u k2 1 %
iy =& (e )y g =1 (58R8) y (3.148)
1

A~ _ 1 ks cu 1 4
A T v ( s, 75) A

and the only difference from the TE mode case is in the definition of J which in

this case i1s

Iw? kyc? ‘
= Stole” i (-—'—'—vo _ “llo) D2, J2._, (ks Ro). (3.149)



Following the analysis of the TE mode interaction, these equations can be rewrit-

ten 1n terms of the variables

_ , __ P
z=K,z |, = —
1 P K,
- U - u
u_|_=uf,_=—-'l-:— . u||=u‘|'|———”—
Ulo Yo
A= K,A

where K; and K, have been defined in (3.96). Consequently, the constant K,

will be renamed prps, which 1s found to be

using (3.149). The constant K, then becomes

o - (220

vV

where v is given by (3.100). Note that unlike p, the definition of » is independent
of the mode type. As for TE modes, the ‘hat’ variables ( ° ) can be written in

terms of p and v 1.e.

The set of evolution equations for both TE and TM modes is therefore

déj - &= . M A 1P+

= = P tﬁlﬁ" (A% — c.c.) (3.151)
i dI_’J . = ﬁ_LJ rORL T

= = (pp; — 1) ﬁﬁj (Ae*® +c.c.) (3.152)
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dﬁ_]_j I - sz
= —2— (Ae'® .C. .
ddf i (Ae'® + c.c.) (3.153)
ﬁ”j - E_-_'-_.l_ A 1d;
&z Pans (A +ec) (3.154)
dz < ay ¢ > (3.155)

where u = p/v, p = prg for a TE mode interaction and p = pras for a TM mode
interaction.

It has been shown that the interaction between a relativistic beam of electrons
gyrating and drifting in a uniform magnetic field and a TE,,, or TM,,,, waveguide
mode can be described by the same set of universally scaled evolution equations.
The difference between the two interactions is incorporated into the analysis by

using different definitions of the p parameter for each case.

3.4 Analysis of the Scaled Equations

In this section, the universally scaled equations derived in the previous sections

will be used to investigate the physical processes which occur during the CRM

interaction in the steady-state regime.

3.4.1 Constants of the Motion

It is possible to obtain a constant of the motion relating the scaled electromagnetic
field intensity to the axial momenta of the electrons by averaging (3.154) over a

range of ¢ from 0 to 27, which results in

(4|



_dA* .. dA

AP
P~ dz

where (3.155) has also been used. Consequently,
d ry 2 —
= (PlAI" + (7)) =0

so the constant of motion relating the scaled axial momentum of the electrons to

the electromagnetic field intensity is

plA[® + () = plAo|” +1 (3-156)

as A = Ap and @ =1 at Z = 0. Using (3.121), (3.156) can be rearranged to give

_ _ v -1
o (12 = | Aot = =1, (3.157)

and v, = *k/w is the group velocity of the radiation.
From (3.152..3.154), there is a functional relationship between the variables
p, 6y and @ which is just (3.92) written in the new scaling i.e.

1 ﬁﬁ 1 14y ,_
— .:.....d- = —=Unditt: = ——_—-du 3.158
15, P = —pudiL = -y (3.158)

This means that #; and p can be written in terms of the axial momentum g,

and two of the five evolution equations become redundant. The interaction can

therefore be described by the three evolution equations

- dé 1 1 1 . I T i
) a G

Ys N PSPy 1+ 2 (g, — 1)
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di, 1+ 2 (@, —-1)

- 195
= = P i (Ae? + c.c.) (3.160)
dA L+ 2 (g —-1) _
- = <—-—p_——6"'¢ (3.161)
dz U
Note that i) can be expressed in terms of 4, 1.e.
_ V, _o
U = —(u_L - 1) + 1 (3.162)

2

The parameter v = p/u therefore determines the amount of axial momentum
change relative to the perpendicular energy change of the electron.
Substituting for %) in (3.156) produces a constant of motion relating the per-

pendicular momenta of the electrons to the electromagnetic field intensity :

p (AP — |Ao?) = -3 ((5) — 1) (3.163)

From (3.157), it is clear that the efficiency will be maximised when (%) = 0

1.e. when the transverse energy of the electrons is exhausted. If this occurs, the

efficiency will be

Yo Y 4
mazr — T py 3.164
L vy (Y0 — 1)2 ( )

Consequently, sufficiently small values of v will limit the energy of the electron

beam available for transfer to the radiation field. For this reason, v is termed the

‘Free Energy Parameter’. It is now apparent why v does not depend on whether

a TE or TM mode is involved in the interaction. Note that, from the definition

of v,

2

Tmas = 262 (70 — 1) (we/70)

This suggests that for a given set of beam parameters, if all the transverse electron

energy is exhausted, interactions which involve a large Doppler shift (e.g. CARM,
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where w >> w./v0) will be more efficient than those involving small Doppler shifts

(e.g. gyrotron, where w = w./v0). As this is that which would occur if every

particle gave up all its transverse energy to the field, it is sometimes termed the

‘single particle efficiency’ and denoted by 7,, {19]. The actual efficiency of the

interaction is then

3.4.2 The Meaning of p

From (3.157), it can be seen that the limit p << 1 corresponds to the limit of
low efficiency. The reason for this is apparent from (3.154), which when p << 1
implies

iy =~ 1 (3.165)

so clearly very little energy is being extracted from the axial motion of the elec-
trons. 1.e. the ‘recoil’ of the electrons is negligible. The energy extraction is

therefore almost exclusively from the perpendicular energy of the electrons. A

consequence of (3.165) is that the functional relation between p and %; becomes

iy = +1/142u(p - 6) (3.166)

where 6 = f:'(f = () i1s the initial detuning from resonance. The set of equations

(3.151..3.155) can then be reduced to

dg;

- : M yORT ¥
- e (Ae™ — c.c. 3.167
_ az ~ BT 1+2#(ﬁj—5)( o mee) (167
dn. . =
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% = (VT 2u(—0)) (3.169)

For the purposes of numerical integration, it is better to rewrite (3.167..3.169) in

terms of #; using (3.166) to give

= § —i— (Ae'® — c.c. .
7 % + zﬁ“ (Ae c.c.) (3.170)
dﬁ.LJ 2 .10,
= = —Hk(AP +e c.) (3.171)
dA .
—‘g = (@, e”*?) (3.172)

Averaging (3.168) over ¢, it 1s possible to find a constant of the motion for

this set of equations as

8D~ (AWVTF G =) + A (VT 25 - D))
_dA* - .dA
B (A iz A -5)
d|A|?
dz

where (3.169) has also been used. Consequently,
d ,, 12 -
= (14F + () =0
so that
A + (B) = | Ao]* + & (3.173)
as A = Ay and p = § at Z = 0. Multiplying both sides of (3.173) by p and using

(3.157) then it is easily shown that

Vio Yo

p(6— () (3.174)

so the energy change of the jth electron is proportional to p(p; — é;) in the limit
p << 11i.e. in this limit, the change in the detuning of the electron (5; — §;) is

directly proportional to the energy change of the electron.
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In addition to the energy conservation relation, there is also a phase-dependent

constant of motion. If b is used to represent the source term of the wave equation

b= <\/i+T;.t('ﬁ——5)e'“’> (3.175)

then the evolution equations (3.167..3.169) can be used to show that

d .. w_ - /-dp\ _ id(p?)
o= (47D~ Ab") =1 <sz> =57 (3-176)
so the constant of the motion 1s
(52) r [ A% AL\ _
5t (A*b — Ab*) = constant (3.177)

This constant is actually the Hamiltonian of the system and will be discussed in

more detail in section 5.1.

Consider now the effect of relaxing the limit p << 1. This implies that the
axial momentum and hence the energy of the electrons can now vary apprgcia.bly,
leading to higher efficiencies. One method of increasing p is to increase the beam
current and consequently the electron density of the beam. However, when the

electron density of the beam is large, it becomes necessary to include the effect
of space charge forces on the interaction. Unfortunately, although the problem of
space-charge effects can be tackled more readily in devices such as the FEL [66]
where the space charge forces depend on the relative positions of the electrons

in only one dimension (z), this is not the case for CRM-type devices where the
space charge forces also depend on the transverse position of the electrons. For
this reason, the analysis described here neglects high-beam density effects, as

they require a full three-dimensional treatment.
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When p « 1 and 5 > 0, the sign of the factor pp — 1 in (3.152) becomes
important. Comparing (3.152) with its unscaled equivalent (3.80), and recalling
the significance of each term in the bracket of (3.80), it is clear that the 1 in
pp — 1 arises from the change in the electron energy, whereas the pp arises from
the change in the axial velocity of the electron. In chapter 2, it was shown that
changes in v resulted in azimuthal bunching, whereas changes in v resulted in ax-
ial bunching. The sign of pé — 1 therefore determines which bunching mechanism
is dominant. If pé = 1, dp/dz will be zero. This means that § remains constant,
even while the energy of the electron is changing. Note that for a significant
energy exchange to occur, é cannot be very large, so this effect cannot occur for
small values of p. i.e. the variation of the axial momentum of the electron plays
a crucial role. As p is a constant under these conditions, if the electron and the
field are initially close to resonance, they will remain close to resonance for as

long as free energy depletion effects remain small. The condition

p5 =1 (3178)

is therefore the condition for exact autoresonance to occur, where the change

in the cyclotron frequency of the electron (w./v) due to the variation of the

relativistic electron mass is exactly compensated by the change in the Doppler
shift (kjuy/v) due to the variation of the axial momentum of the electron. The

product pé = é so (3.178) can be written in unscaled variables using (3.91) as

W k2
— — — koo = == 3.179
w =~ Fivio k, Vjio ( )

When averaging the evolution equations in sections 3.2 and 3.3 over a gyro-

period to make the resultant equations slowly varying, it was necessary to use
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the condition

W= = fyvyo & 0 (3.180)
Yo

so for consistency (3.178) can only be satified for waveguide modes which prop-
agate close to the waveguide axis i.e. k; < k. The axial electron velocity must
remain finite as this analysis i1s concerned with convective instabilities only, i.e.
those which propagate in space. Note that (3.179) implies that it is only possible
for autoresonance to occur at exact resonance in free space (k; = 0). Devices
which operate using a relativistic electron beam gyrating in a uniform magnetic

field in free space are termed ‘nonwiggler FELs’ [67, 68]. For autoresonance to

occur in a system where the radiation field i1s contained within a waveguide, a

positive detuning 1s necessary.

3.4.3 The Meaning of u

When the limit ¢ << 1 is applied, it can be seen from (3.153) that

~{
l...
&

(3.181)

Therefore, the perpendicular momentum of the electrons remains approximately

constant. The equations (3.167..3.169) in the limit 4 << 1 are

do.

dc:’;: = 5, (3.182)
dp; Y

_31;_:, e _(Ae‘é.? + c_c.) (3-183)
dA -



Note that these equations were derived in section 3.2.3, after several approxima-

tions were made. 1.e.

18] <<1 (3.185)
* , A
2—:&9(5— 6) << 1 —| << 1 (3.186)
Uto uju )

Writing the ‘hat’ variables ( “ ) in terms of p and u using (3.101), the conditions
(3.185) and (3.186) correspond to the limits p << 1 and g << 1 respectively. On
inspection of equations (3.182..3.183), it can be seen that the number of electron
variables has been reduced to just two: the phase or position of the electrons

in the ponderomotive potential due to the combined action of the electron mo-
tion in the guiding magnetic field and the wave field, and the energy change
of the electron. It is possible under certain conditions to reduce the equations
of motion for several other beam-wave devices e.g. Compton FELs, Cerenkov

masers and Smith-Purcell lasers to exactly the form of (3.182..3.184) [69]. The

gain-mechanism i1n all these devices is due to electrons bunching in phase due
to the action of the electromagnetic field and collectively losing energy to the
field. The special property of equations (3.182..3.184) is that there are no free
parameters, so for the initial conditions of § = 0 and |Ao|* < 1, there is only one
solution, which is shown in figure 3.3. The value of the scaled electromagnetic
field intensity at saturation is |A|? =~ 1.4. It has already been shown in (3.157)

that

o (JA]* = |Ao|*) x n o ——

where Ur and U, are the energy densities of the electromagnetic field and the

electron beam respectively. The beam energy density is proportional to the elec-
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Figure 3.3: Solution to equations (3.182..3.184)
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tron number density, n., which can be shown to be proportional to p* from (3.98)
and (3.150). Consequently, at saturation, where |A|> ~ 1 and |4o|* <« |A|?, the

electromagnetic field intensity I,,; varies as

It x p* n4/3 (3.187)

This simple deduction demonstrates the usefulness of the universal scaling in
determining the physical relationship between different quantities.

Consider now the effect of relaxing the limit on u. Inspection of (3.153) shows
that the perpendicular momentum of any electron may vary appreciably from
its initial value. From equations (3.167) and (3.168) it can be seen that as the
field amplitude grows then for an electron which 1s giving up its perpendicular
energy to the field, as #; decreases the second term in (3.167) will cause d¢;/dz
to become large. The electrons losing transverse energy to the field therefore tend
to fall out of resonance and their energy exchange with the field becomes small.
This loss of resonance does not occur for electrons which are absorbing energy
from the field. This effect is termed ‘Free Energy Depletion’ [51] as it is due to the
exhaustion of the free energy of the beam which drives the interaction. From the
simple arguments above, it is obvious that free energy depletion has a detrimental
effect on the amplification of the radiation. As u determines the importance of
free energy depletion effects, it is named the ‘Depletion Parameter’. The second

term in (3.167) is sometimes called the ‘force bunching’ term as it is proportional

to the field amplitude. The first term is called the ‘inertial bunching’ term as it is
related to the variation of the relativistic mass change and the axial momentum

variation of the electron.
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Figure 3.4 shows the evolution of an initially monoenergetic, resonant (§ = 0),
unbunched electron beam for the case where free energy depletion effects are
negligible (4 << 1). The electrons can be seen to bunch in phase (¢ = ¢ + £)
as the interaction progresses. These bunched electrons then lose energy to the

wave until saturation is reached when the bunched electrons reach the bottom of

the potential well. After saturation, the electrons trapped in the potential well
oscillate about the potential minimum. In the FEL literature, these oscillations
are called ‘synchrotron oscillations’ [70]. Figure 3.5 shows the evolution of a beam
of electrons for the same initial conditions as that of figure 3.4 with the exception
that free energy depletion effects are not negligible (4 = 0.5 in this case). It can
be seen that although the electrons begin to bunch in phase and lose energy to
the wave, they only lose a relatively small amount of energy before the free energy
depletion effects cause the bunched electrons to disperse, effectively halting the

energy exchange. From the relation between %, and pin the limit p < 1, equation

(3.166), it is clear that there is a lower limit on 5 of

1
Pmin = o — *§; (3188)

which corresponds to the value of 5 when %, = 0. The limit is clearly seen in
figure 3.5, where g = 0.5 and 6 = 0, 50 ppin = —1.

The effect of different values of u for the same p parameter on the radiation
field evolution is seen from numerical solutions to equations (3.151..3.155) for a

case where the electrons and the electromagnetic field are resonant (§ = 0) in

figure 3.6. To obtain these solutions, a collection of N particles, (N = 50 in the

cases shown here), were spaced equally in ¢ over the range 0 to 27 and the field

88



(a) : z=0 (b) : 2=3.5

Figure 3.4: Electron evolution when free energy effects are negligible (x4 < 1).
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(a) : z=0 (b) : z=4.5

1 = 1 »
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amplitude was set at a small value (|A| = 1072 here) at 2 = 0. As u is increased,
it can be seen that changes occur in several regions of the field evolution : At the
beginning of the interaction, the field intensity remains approximately constant
when Z < 1 for small values of y. This phenomena is called ’'lethargy’ and will be
treated in more detail in chapter 4. As u 1s increased, the field intensity decreases
in this region before increasing and entering the region of exponential growth. It
can be seen from the graphs that another effect of increasing u is to decrease the
rate of exponential growth and the value of the field intensity at saturation. A
plot of the saturation intensity against x4 is shown in figure 3.7 for the conditions
used to obtain graphs (a)..(c) in figure 3.6. The other main effect of increasing
£ which can be seen from these graphs is that the synchrotron-type oscillations
which occur after saturation for small values of 4 become less pronounced, with
both their amplitude and regularity decreasing. This is due to the fact that at

saturation, the electrons which have lost energy to the field no longer oscillate
about the bottom of a potential well as was the case for 4 << 1 as their phase

‘velocity’ d¢/dz increases as they lose energy, making trapping impossible.

3.4.4 Axial Momentum Depletion

Consider the relation between the axial momentum change of an electron and

the change in its perpendicular energy, which is found by rearranging (3.162) and

states that

=L =2, (3.189)
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Figure 3.6: Field intensity evolution for different values of 4 : (a) u = 0.01, (b)
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Figure 3.7: Plot of saturation intensity against u for p <« 1
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If p > 2u, then @) < 4% and it becomes possible for % — 0 and become negative.
i.e. the electron can slow down, stop and begin to move backwards. This causes
the solution to the evolution equations to be numerically unstable as the integra-
tion is with carried out with respect to z. This was found to occur when p20.4.
In an attempt to avoid this problem in a numerical integration, any electrons
whose axial momentum approaches sufficiently close to zero is ‘switched off’ and
makes no further contribution to the evolution of the radiation field. This is jus-
tified physically because an electron travelling in the opposite direction to that of

the field propagation will be massively out of resonance with the electromagnetic

field.

3.4.5 Energy and Momentum Spreads

The derivation of equations (3.151..3.155) was carried out for the case of no
spread in the electron energies or momenta. For the case where spreads in these

quantities exist and the interaction involves a TE mode, these same equations

can be used if a different definition of %, and 4y is used i.e.

g, = Uy iy = Ui
(G1o) (&y0)
The definitions of p and v then become
e ki (uio)? 2 72 }
P = Sm, -Ei- (u||0)3 ”OIDTEJm—I(k.LRO) (3-190)
ky (uypo)®
= T 3.191
v keo (upo)? ( )
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The constant of motion (3.156) is unchanged for the case of momentum spreads

but (3.163) becomes

p (|A]> — |Ao|*) = -g— (1 + W) (3.192)

where 0%, is the variance of the initial distribution of transverse electron mo-

menta. In addition, the relation between the scaled field intensity and the inter-

action efficiency, n, becomes

p (1A]? = |Aof?) = (t:TO)((?o) ~ 1)n (3.193)

= (=)

An attempt was made to apply this type of scaling to interactions involving

where 7 1s now defined as

TM modes and electron beams with spreads in energy and momentum. However,

due to the presence of the (vyy0; — ujo;) terms in (3.138..3.142), the averaging

over the initial distributions was found to be inhibitively complicated.

3.5 Conclusions

It has been shown in this chapter that starting from the Lorentz equation of

motion for an electron in an electromagnetic field and Maxwell’s equations, it
is possible to derive a system of universally scaled equations which describe the
processes which occur in a CRM amplifier in the steady-state regime. Using
this universally scaled set, rthe number of parameters is reduced to just three, p,
the fundamental cyclotron parameter, v, the free energy parameter, and §, the

detuning parameter. p and v are then combined to form the depletion parameter,
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p. By considering various limits of these parameters, the different phenomena
which occur in CRM amplifiers were studied. In the limit where the variation of

the transverse and axial momentum of the electron beam was very small, the set
of evolution equations reduced to a set which had no free parameters. This set of

equations can also be used to describe the gain mechanism in several other types

of electron beam-wave devices such as the high-gain Compton FEL, the Cerenkov

maser and the Smith-Purcell laser.
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Chapter 4

Linear Analysis of the CRM

Interaction

4.1 Introduction

In this chapter, the linear regime of the CRM interaction in the steady state limit
1s analysed using the scaled evolution equations derived in chapter 3. The linear
analysis described in this chapter is performed using a different method from the
conventional plasma theoretical approaches which were reviewed in chapter 2.

The results of the differing analyses will be discussed and compared.

4.2 Linear Analysis

The linear analysis described here uses the method of ‘Collective Variables’ [71]

and is performed for the case of no spread in the electron energy or momenta.
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For convenience, the following variables are introduced :

¢ = ¢— 6z (4.1)
p = p—46 (4.2)
A = Ae?? (4.3)

The evolution equations (3.151..3.155) are linearised about their equilibrium val-

ues

which corresponds to a boundary condition of an unbunched beam with no field

excitation at Z = 0. Linearising around their equilibrium values the dependent

variables are

¢; = &+ (4.4)
P;' = pff,-l (4.5)
ty; = 14uUj (4.6)
gy, = 1+, (4.7)
A = A (4.8)

where all subscripts ‘1’ refer to small changes from equilibrium. The linearised
evolution equations are obtained by substituting (4.4..4.8) in (3.151..3.155) and

neglecting all terms of second order and above. The resultant linear equations
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are

o= = P in(Ale%e —c.c)
d:? = (96-1)( €' +C-C)
di;;’l = —p (Aie‘¢ff° + C-C)
B = p (Ao to)
fzd—éi = —1 <¢>ie"‘¢5> + <ﬁue"£¢3> - <’7Il13

Defining the collective variables as

the following can be easily obtained from (4.9..4.13) :

db
dz
dP
dz
dU;
dz
udl
dz
dA

dz

|

—iP— A
(p6—1)A
—uA
—pA

b-l-U_L—U"'Fi(SA

(4.9)
(4.10)
(4.11)

(4.12)

(4.13)

(4.14)
(4.15)
(4.16)
(4.17)

(4.18)

(4.19)
(4.20)
(4.21)
(4.22)

(4.23)

where terms proportional to (e""“) have been dropped and A} has been writ-

ten simply as .A. Laplace transforming this set of equations using the standard
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Laplace transform :

X(s)= | X(z)e7"dz (4.24)
gives
sb = —iP—puA (4.25)
sP = (p6—1)A (4.26)
sU, = -N«Z (4.27)
Sffn = —pA (4.28)
sA— A, = 3+(7L—(7||+£6¢3 (4.29)

where the boundary conditions by = P, = Uy = U = 0 and A(z = 0) = A
have been utilised. Equations (4.25..4.29) can now be rearranged, reducing the

system of equations to a single equation for j(s) 1.e.

. s2 Aq
Als) = s3 — 1082+ (2u — p)s — (1 — péb) (4.30)

When inverted, this expression describes the steady-state evolution of the elec-

tromagnetic field in the linear regime. The inverse Laplace transform of (4.24) is

defined as
1 o+t00 N )
X(z) = — X(s)eds (z2>0) (4.31)
272 O =100
where o is greater than the real part of any of the singularities of the integrand.

Introducing the change of variable

A — ——z's | (4.32)

then the inverse Laplace transform of (4.30) becomes

AR =~ [ AQ)eMdr (5> 0) (4.33)

27 —00=1$0
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where the transformed field variable expressed in terms of A is

—iA% A4,

AN = oo o+ (1= 9)

(4.34)

As the denominator of A()) is a cubic, the integrand of (4.33) has three simple

poles, so the integral becomes the sum of the residues multiplied by 27: i.e.

Az ef}tkf

A(Z) = Ao;m (k # 15 m) (4.35)

where A; 23 are the roots of the denominator of equation (4.34) which forms the

dispersion relation
AN =+ (p=2u)A+(1—-p8)=0 (4.36)

The above analysis can be repeated for the alternative set of boundary conditions

which correspond to a small initial bunching of the electron phases and zero initial
fieldie. Ag=FPo=Uo=Upp=0and bp = (e"‘“) # 0. The expression for the

resultant field amplitude in this case is

As A x e**% for both the above cases, the system will be unstable if the

dispersion relation has complex roots. These roots will always occur as a complex

conjugate pair. Complex roots will occur when

8% — 6 + 2p%86° + 10p8%u — 9p6—

27
6°u* —96u+p° — 6p°u +1204" — 84+ — > 0. (4.38)
The exponentially growing term will be
A(2) o exp (|3(As(9, p, 4)})Z) (4.39)
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where $(A3(6, p, 1)) is the negative imaginary part of the complex conjugate pair
of roots which occur when (4.38) is satisfied. At resonance (6 = 0), and when
both p and u are < 1 i.e. when the variation of both the perpendicular and the
axial momentum of the electrons is small then |(A3(6, p, 1))| = v3/2 and using

the definition of Z given in (3.101), (4.39) can be rewritten as

V3K

A(z) o exp (Y32

so the spatial growth rate of the field amplitude is

V3 Kk}

The significance of the scaling of Z 1s now apparent : the interaction distance

has been scaled with respect to the growth rate of the exponential instability at

sl

resonance in the limit p and 4 € 1 i.e. Z o« gz. Substituting for p using the
definition (3.98) for a TE mode interaction or (3.150) for a TM mode interaction,
the expressions for the spatial growth rate of the instability for an axis-encircling
beam (Ko = 0) in terms of unscaled variables, (2.17) and (2.18), are reproduced.

If it is assumed that the electrons and the field are resonant (6 = 0), the

condition for the system to be unstable, from (4.38) becomes

27\ §
w-r<(3)

This shows the different nature of p and u with regard to the linear stability of the
system: increasing p has a stabilising effect on the interaction whereas increasing

p has a destabilising effect. Whereas p represents the growth rate of the field

amplitude, x can be interpreted as the decay rate of the transverse energy of the

102



beam. A plot of |3(A3(d,p, 1))| at resonance for different values of p and u is

shown 1n figure 4.1.

4.2.1 The Low Efficiency Limit

When p — 0, the axial momentum of the electrons remains approximately con-
stant. From (3.157), the efficiency n varies as 5 o p|A|?, this condition implies
that the efficiency of the interaction will be small.

The full expression for the electromagnetic field amplitude in the linear regime

(4.35) can be written in the more compact form

AZ) = Aoy cre™ (4.41)
k=1
I S m
where Ck = e = )0 = ) (k#1%# m)

The scaled field intensity in the linear regime is therefore the product of (4.41)
with 1ts complex conjugate. In the low effeciency limit p &= 0, where the recoil of

the electrons is negligible, the dispersion relation (4.36) becomes
A —60%-2ud+1=0 (4.42)

where it has been assumed that we are close enough to resonance so that pé < 1.
A plot of |(X3(9, p, 1))| for various values of § and p is shown in figure 4.2. Note

that the maximum occurs when 4 = 0 and 6 = 0. The threshold condition which

6 and u must satisfy for instability to occur is

27
& + 8%u® +96u + 843 < T (4.43)

which has been obtained by taking the limit p — 0 in (4.38). From this, the value
of 4 above which the system 1s linearly stable at resonance is pr = $/27/32.
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Similarly, the threshold value of é above which the system is linearly stable is

ot = /27/4 at u = 0.
For the special case of resonance and g = 0, the three roots of the cubic (4.42)

are

/\lﬁ—l . )\gﬁ ) A3$E——Z

va. V3,
2

and the scaled intensity |A|? and field phase £ vary with Z as

\AIZ(E) ~ |A0|2 [4 cosh? (ﬁf) + 4 cos (EE) cosh (éf) + 1 (4.44)
9 2 2 2
dé | Ao)? cosh v/3z+ V3 sin (%2) sinh (@2)
PR 9] AJ2 (4.45)

— COS (-‘2—2) cosh (ﬁf)

2

The scaled intensity |A(Z)|* as calculated from the the linear solution for the
electromagnetic field (4.41) is plotted against Z in figure 4.3 for a resonant beam
(6§ =0) and for p = 0.01 and four values of g : (a) 0.01 (b) 0.4 (c) 0.7 and (d)]1.
Graph (a) is approximately that which would be produced by the expression
(4.44). In all the graphs, the intensity remains close to or less than its initial
value near Z = 0, due to interference between the three terms of (4.41). Each

term can be considered as a partial wave, one of which is growing, one is decaying
and the other is purely oscillatory. This interference of the three partial waves is

termed ‘lethargy’ [71].

The gain function is defined as

AP(Z) — Aol

G(Ea 51 f-‘) = lAOP

(4.46)

As G ~ 1 in the region where lethargy occurs, it is also called the ‘low-gain

regime’ as opposed to the ‘high-gain’ regime where G > 1 and the field intensity
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is growing exponentially. The length of the low gain regime or ‘lethargy length’,
L;, can be evaluated approximately as the distance travelled before the amplitude

of the exponentially growing term increases to e times its initial value. i.e.

1

Li~ —————
I |9(A3(6, P, ﬂ'))|

(4.47)

For z < L,;, the system is in the low-gain regime, and for z > L;, the system is in the
high-gain regime. From figure 4.3, it can be seen that for significant values of 4,
the intensity actually decreases from its initial value before increasing. For large

values of 4 ~ 1, it becomes clear that this dip i1s actually part of an oscillation in

the field intensity: for u < ur, the growth rate of the field is significantly smaller
than for u < 1 so the period of lethargy 1s increased. For curve (d), ¢ > ur,
so the system is stable as all the roots of the dispersion relation are real and 1t
never enters the high-gain regime i.e. L; — oo.

Consider now how the gain function (4.46) varies with detuning, §. For the

case of 4 ~ 0 and z/v/é < 1, the expressions for the field intensity (4.44) and

the rate of change of field phase can be calculated from (4.44) [71}

AI2(Z2) = |Ao)? [1 + '(-;43 (1 — cos 6Z — %zsin 52')] (4.48)
-3—5_-_- = (;ﬁ;) (cos 6z + 6zsinéz — 1) (4.49)

so the gain function when g &~ 0 and 2/v6 € 1 is

G(z,6) = :—3 (1 — cos 6z — %E sin 62’) (u=0, % < 1). (4.50)

From (4.49) it is seen that the phase evolution is small i.e. |d{/dZ| < 1. Equa-

tion (4.50) is the expression for the small-signal or interference gain which was
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Figure 4.3: Plots of | A} against Z for p = 0.01 and (a)p = 0.1, (b)x = 0.4 (c)

u=0.7 and (d)p = 1.
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originally derived by Madey for FELs [72]. It can be rewritten as

_ 2 d . ,[A
G(z,0) = XY IND Sinc (?) (4.51)

where A = 6z. Rewriting Z and ¢ in unscaled variables

_ ki k“ 1 ( W, )

then

so, on comparison with (1.5), it can be seen that

4?1

G x m (4.52)

‘which means that the small-signal gain is proportional to the derivative of the
spontaneous emission spectrum. The gain function G(Z,4, ) from (4.46) and
(4.41) is plotted against § at various stages of the field evolution for a case where
p <€ 11n figure 4.4(a..d). Figure 4.4(a), where z < 1, shows the asymmetric gain
curve which is characteristic of a Madey-type gain process and is described by
(4.50). Note that at 6 = 0, the gain is approximately zero. As Z increases, the
system undergoes a transition from the low-gain to the high-gain regime, and the
value of 6 at which maximum gain occurs approaches zero. Figures 4.5(a..d) and
4.6(a..d), show equivalent graphs to those in figure 4.4 for cases where y = 0.2
and u = 0.8 respectively. The effect of finite free-energy depletion on the low-
gain regime can be seen from a comparision of figures 4.4(a),4.5(a) and 4.6(a).

As p is increased, the maximum of the gain curve is reduced and shifted to larger

6, so that the gain function is negative at 6 = 0. In addition, the magnitude
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of the maximum positive gain for a given u becomes less than the maximum
negative gain. It is noticeable for all values of x that in the low-gain regime,
the maximum of the gain function occurs for positive 6 whereas in the high gain
regime, it has been shown that maximum gain occurs when é &~ 0. This is similar
to the Compton FEL.

This contrast between the low and high-gain regimes can be explained using
the constant of motion (3.177) and the wave equation (3.169). Combining these

two expressions and using the definition of the gain function (4.46) produces
2 112 %S 2d£0 1 12
(p%) =4 (\AI ~ | Ag| ) + 26| Aol*G (4.53)

where, as previously, p’ = —§ o< Y—~0 and { is the slowly varying radiation phase
i.e. A = |A|e¥. The subscript ‘O’ represents values at 2 = 0. This expression
relates the energy spread (p'?), the field intensity |A|? and the field phase variation

d€/dz and is valid in the linear and nonlinear regimes. The energy conservation

relation (3.173) can now be used to obtain the variance

o’(p")

(p") -
(u-u?“"f leP‘“") + 26| Aof*G — | Aol*G?

from which the inequality

d§ ] 2 42
&2 T (4]A2] — 26| Ao)*G + | Ao|*G?) (4.54)

follows. For the case where there is no initial field excitation (|Ao|?> = 0) and no

detuning (6 = 0), (4.54) reduces to

(4.55)
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Figure 4.4: Plots of G against 6 as the interaction evolves for u = 0.01: (a)

< Ly, (b) 2Ly, (c) 2> Ly, (d) 2> L.
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Figure 4.5: Plots of G against 6 as the interaction evolves for u = 0.2: (a) z < L,

(b Z= L, (c) 2> Li, (d) Z> L.
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Figure 4.6: Plots of G against é as the interaction evolves for u = 0.8: (a) z € L,

(b) z = Ly, (c) 2> L, (d) z > L.
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which means dé/dZ is always positive. In order to see the significance of this
result, consider the phase of the electron with respect to the electromagnetic field,

denoted by q. This is just the trigonometric argument in (3.167) and (3.168) i.e.

=+

From the definition of ¢, (3.45), when free energy depletion is negligible (z < 1),

it 1s possible to write

7 = constant X (w — %ﬁ - kuv") +£ (4.56)

where " = d/dz. Consider first of all the case where the phase evolution of the
electromagnetic field is negligible (dé/dt =~ 0). This is the case described by
(4.48) and (4.49). From (3.168), in a resonant and randomly phased electron
beam, approximately half of the electrons will absorb energy (7/2 < ¢ < 37/2)
and half will lose energy (0 < ¢ < /2 and 37 /2 < ¢ < 27), and the electrons will
bunch slightly about a point where there is no energy exchange with the radiation
field(¢ = 37/2), resulting in no net gain. When the evolution of the radiation
phase is significant (|¢| > 0), then (4.56) shows that the effective frequency of the
wave is w+£. It has been shown in (4.55) that £ is always positive, so ¢ is increased
by the field phase evolution. Consequently, resonant electrons will bunch around
a phase corresponding to gain, resulting in instability. The crucial difference
between the low and high gain regimes is therefore the significant evolution of
the phase of the electromagnetic field in the high gain regime.

When free energy depletion effects are present (u > 0) the above scenario is
complicated by the presence of the second term in (3.167), which makes an ad-

ditional contribution to ¢. This term disrupts the bunching mechanism by being
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larger for those electrons which are losing energy to the field. The symmetry be-
tween the number of particles gaining and losing energy at resonance is therefore

lost, and a net negative gain will occur even when the field phase evolution is
negligible, as shown in figures 4.5(a) and 4.6(a). The field phase evolution will'
cause the electrons to bunch about a point corresponding to gain, but the size of
this gain becomes smaller as free energy depletion effects increase.

Another interesting feature of the gain-spread relation (4.53) in the low-gain

regime (|df/dZ| < 1) becomes apparent when it is differentiated with respect to

the detuning §, producing the relation [71]

1 0 -
555 (P") = —|A'G (4.57)
This is Madey’s gain-spread relation [72], which states that the system cannot

undergo gain without the simultaneous introduction of an energy spread in the

electron beam.

4.2.2 The High Efficiency Limit and Autoresonance

For values of p 4« 1, the variations in the axial momenta of the electrons are
not negligible. The difficulty in investigating this regime as extensively as that
where p < 1 is that the parameter space is now three-dimensional i.e. (p, 4, é) so
quantities such as growth rates cannot readily be plotted over the entire parameter
space on one graph. It is still possible however to extract useful information from

the results of the linear a.nalySis in this regime, the most significant of which are

described below.

The linear behaviour of the system when p &£ 1 must be investigated using
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the full dispersion relation (4.36). Figures 4.7(a..d) show regions of instability

(I1S(A3(p, £,6))| > 0) in the (p, ) plane for several values of . On examination of

figure 4.7(a), where g < 1, it can be seen that for p &~ 0 there is only one region of
instability, which occurs when 6 < 67 = W As p increases however, another
region of instability appears for values of 6 > 1/p. These two distinct regions
of instability will be termed region 1 and region 2 respectively. As p increases
further, the two regions of instability eventually merge. Figures 4.7(b..d) show the
effects of increasing u i.e. increasing the depletion rate of the beam’s transverse

energy. It can be seen from these figures that region 1 is significantly affected by

the increase of u, with the most obvious effect being a decrease in 67 at p = 0.
The value of |(A3(p, 4, 6))| is also reduced, particularly at small values of p. In
contrast, the effect of changing u appears less significant on region 2.

In order to explain the graphs shown in figure 4.7, it i1s necessary to recall
the discussion of the (pé — 1) term in section 3.4. It was shown there that

the sign of this term determined the type of bunching mechanism which was

occurring. When pé < 1, the azimuthal bunching mechanism due to changes in v
is dominant, whereas when pé > 1, the axial bunching mechanism due to changes
in vy is dominant. Region 1, where pé < 1, is where the azimuthal bunching
mechanism dominates the axial bunching mechanism, with most energy being
extracted from the transverse motion of the electrons. Consequently, x, which

represents the depletion rate of the transverse energy of the electrons, will have

a large effect on the interaction, as was seen in section 4.2.1. In contrast, region

2 in figures 4.7(a..d) occurs when pé > 1, so the axial bunching mechanism
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