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Abstract 

Cyclotron resonance masers (CRMs) are important devices for the generation 

of high power electromagnetic radiation in the millimetre and sub-millimetre 

region of the electromagnetic spectrum. In these devices, an electromagnetic 

wave is amplified by its interaction with a beam of relativistic electrons gyrating 

in a magnetostatic field. This thesis presents the results of novel theoretical 

investigations into the physical processes which occur in a CRM amplifier. 

The basis of these investigations was a system of universally scaled evolution 

equations which describe the linear and nonlinear evolution of the CRM interac- 

tion. These equations involve a minimum number of free parameters and allow 

a general analysis of the interaction. By considering various limits of the free 

parameters, the physical processes which occur in the steady-state limit were 

identified and studied using numerical analysis and an extensive linear analysis 

based on the method of collective variables. 

Neglecting the recoil of the electrons, it was shown that the universally scaled 

evolution equations could be written as a set of Hamilton's equations. The be- 

haviour of this Hamiltonian system was investigated via a phase space analysis 

for some specific cases of the free parameters. In addition, it was shown that it is 

possible to approximately describe the evolution of the electromagnetic field up 

to saturation in a CRM amplifier by an analytically solveable Landau-Ginzburg 

equation. 

Including slippage effects, it was shown that for electron beams with relativis- 

tic axial velocities, in addition to the steady-state evolution of the electromagnetic 

viii 



field, superradiant field evolution could also occur. Superradiant phenomena were 

studied using an heuristic dissipative model, an extensive linear analysis and a 

nonlinear numerical analysis. The existence of weak superradiance, involving 

short electron pulses and low radiation intensities, and strong superradiance, 

involving long electron pulses and high intensity spikes of radiation, was demon- 

strated. 
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Chapter 1 

The Cyclotron Resonance Maser 

1.1 Introduction 

The cyclotron resonance maser (CRM) is a class of device based on the interac- 

tion of electromagnetic waves with electrons oscillating in static magnetic fields, 

that is, on stimulated emission. A typical trajectory of an electron moving in a 

static magnetic field is shown schematically in figure 1.1. The electrons behave as 

excited classical oscillators, so the CRM is a type of `classical' electron maser. As 

a classical electron maser, the CRM is distantly related to quantum mechanical 

devices such as masers and lasers and to conventional microwave electron beam 

tubes such as the klystron and the travelling wave tube (TWT). Since the CRM 

possesses the merits of both quantum and conventional devices, the natural fre- 

quency range of the CRM is, not surprisingly, located between the natural ranges 

of both related classes i. e. the domain of the CRM is expected to be found in the 

millimetre and sub-millimetre wave region of the electromagnetic spectrum. 

The electromagnetic waves in a CRM will interact strongly with electrons 
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which satisfy the resonance condition 

u'-kllvll^ sw` s=1,2,... (1.1) 
7 

where wc/y is the oscillation frequency of the electrons, we being the nonrelativis- 

tic cyclotron frequency 

eBo 
we= - me 

(1.2) 

-y the relativistic factor, s the cyclotron harmonic and vIl the drift velocity of the 

electrons. w and k1l are the frequency and longitudinal wavevector component 

of the electromagnetic wave. Unlike conventional microwave devices, where the 

phase velocity, vp, of the electromagnetic wave is made to match the drift velocity 

of the electrons using a slow wave structure, the phase velocity of the electromag- 

netic wave required for cyclotron resonance to occur is arbitrary. This allows the 

use of fast waves with vp >c so the interaction can take place in a smooth walled 

waveguide. The great advantage of this over conventional microwave devices is 

that the shortest attainable radiation wavelength of, for example, a TWT is de- 

termined by the period of the slow-wave structure. As this period is decreased, 

the manufacture of the slow-wave structure becomes more difficult and the power 

handling capabilities of the device are severely limited. The use of a smooth 

walled waveguide allows high power generation of radiation at millimetre and 

sub-millimetre wavelengths. 
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Bo 

Figure 1.1: Electron gyrating in a static magnetic field. 

1.2 Spontaneous Cyclotron Radiation 

Consider a relativistic electron gyrating in a static magnetic field with velocity 

v= vl +vII, as shown in figure 1.1, but with no stimulating radiation present. In 

order to calculate the spontaneous emission spectral intensity, a known standard 

formula for radiation from a moving point charge will be used [1]. The energy 

emitted per electron per unit frequency per steradian is 

2 z2 

dSZdw 167x3 
f 

dt kxkcx 'ý) IV1 
exp 

[iw(t 
- 

k. r(t)/c)] (1.3) 

where k= k/lkl and v= v/Ivl are unit vectors in the direction of the radiation 

wavevector and the electron velocity respectively. It is assumed here that only the 

components of the electron velocity that are perpendicular to the axial magnetic 

field contribute to the radiation. If the integration variable is changed from t to 
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z using 

z to+ - 
Vil 

then 

d_I 
_ 

ez µo1/z 
_ (1.4) 

dfldw 47rAz eo 
r2 L 

x sinn Ok J dzvl exp 
[i(w/v11)z 

- i(w/c)k. rl(z) - i(wc/yo)k. zz] 
o vll 

where Ok is the angle between the radiation wavevector, k, and the transverse 

velocity of the electron, vl, L is the distance travelled by the electron and z is a 

unit vector in the direction of the magnetic field. The transverse velocity can be 

represented as 

VI _ 
(Výe-4(t�ah0)t + V* ei()cI Yo)tl 

so substituting this result into (1.4) and multiplying by the electron injection 

rate Ile in order to obtain the spectral radiation intensity of a beam of electrons 

results in the equation [2] 

z 1/2 Ls d21 eI 
sin 2 Ok v" 

sinc 2 
(e) 

(1.5) 
d1 dw 47r . 12 eC eoµo) 4 Vil 2 

where 0 is 

(w-wc/io-kll)L 
(1.6) 

vll i/ 

The spectral intensity as a function of both detuning (Ow = (w-w, /-yo-kllvll)/vll) 

and the distance travelled by the electrons, L, is shown in figure 1.2. 

This spontaneous emission is due to the oscillation of the electrons in a static 

field. The presence of an electromagnetic wave in this system will induce stim- 

ulated emission and absorption processes. In a CRM, the stimulated emission 
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Figure 1.2: Spontaneous spectral intensity (arbitrary units) as a function of de 

tuning and L. 

may exceed the stimulated absorption, resulting in amplification of the electro- 

magnetic wave. Various methods of analysing this gain process are described in 

chapter 2. 

1.3 Evolution of the CRM 

Early experimental studies of the interaction of electromagnetic radiation with 

gyrating electrons in a static magnetic field were a natural outgrowth in the de- 

velopment of the TW'VT. The first experimental results were produced by Pantell 

[3], Chow and Pantell [4], Bott [5,6] and Feinstein [7]. All these devices were 

steady-state oscillators, utilising low voltage (-1OkV), low current (-1mA) elec- 

tron beams with total millimetre-wave power output of < 1W. Following the 
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theoretical investigations of Gaponov [8], a substantial experimental and theoret- 

ical research effort was developed in the former USSR, resulting in devices which 

could produce output powers of -1OkW continuous wave (CW) with 40% effi- 

ciency at frequencies of --40GHz. This stimulated research at several laboratories 

in the USA, especially at Varian, Massachusetts Institute of Technology (MIT) 

and the Naval Research Laboratory, Washington. 

Advances in the field of pulse-power technology in the early 1970s resulted in 

the development of several systems based on cold cathodes which could generate 

short pulses (sub-µs) of electromagnetic radiation at multi-megawatt power lev- 

els [9,10,11]. These systems were generally termed Electron Cyclotron Masers 

(ECMs). The next significant step was the development of the three electrode, 

thermionic cathode magnetron injection gun (MIG) in the former USSR [22], 

which allowed the generation of high current electron beams with substantial 

transverse energies. This stimulated research into long pulse (» 1µs) and contin- 

uous wave (CW) high power (ý 100kW) systems. Such systems, which have usu- 

ally been oscillators utilising a single cavity, have been termed gyromonotrons or 

gyrotrons [28]. Initial experiments using the MIG were at conventional microwave 

frequencies (K 30GHz) [12,13,14]. Subsequent experiments by Voronkov [15] 

and Gold [16], involving radiation generation at frequencies of , 30GHz at power 

levels of « 20MW moved the operating regime of the gyrotron outwith the bound- 

aries of conventional microwave devices. 

At short wavelengths (< 1mm), it is necessary to operate gyrotrons at harmon- 

ics of the cyclotron frequency (i. e. s>1 in (1.1)) due to the difficulties involved 
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in generating large static magnetic fields [17,18]. To increase the operation fre- 

quency without operating at harmonics of the cyclotron frquency, Bratman et al. 

suggested the concept of the cyclotron autoresonance maser (CARM) [19], the 

principles behind which will be discussed in the next section and chapters 3 and 

4. Experimental studies of the CARM are still on a proof of principle basis, with 

the main centres of activity being at Nizhny Novgorod in the former USSR and 

MIT in the USA. Recent results from Nizhny Novgorod include the development 

of a CARM oscillator using a Bragg resonator which can generate power levels of 

50MW at a wavelength of 4.4mm (frequency of 68.1GHz), or 30MW at a wave- 

length of 6mm (frequency of 50GHz) [21]. Recent developments at MIT include 

the operation of a long pulse CARM oscillator producing 1.9MW of output power 

at a frequency of 28GHz [20]. 

The possible applications of CRM devices span a wide range of technologies. 

The plasma-physics community has already taken advantage of recent advances 

in producing high power micro- and millimetre waves in the areas of RF plasma 

heating, for magnetic confinement fusion studies, as lower hybrid heating (1-8 

GHz) and electron cyclotron resonance heating (28-140GHz), plasma production 

for numerous different processes and plasma diagnostic measurements as collective 

Thomson scattering or heat pulse propagation experiments [22,23]. Recently, 

gyrotron oscillators were also successfully utilised in material processing (e. g. 

advanced ceramic sintering, surface hardening or dielectric coating of metals and 

alloys) as well as in plasma chemistry [24]. Other applications which await the 

development of novel high power sources include deep space communication, high 
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resolution radar, radar ranging in planetary science, drivers for next-generation 

high-gradient linear accelerators and technological applications. 

1.4 Classification of CRM Devices 

The basic principles of CRM devices are discussed in several books and review 

articles [25,26,27,28,29,30]. This section will contain an outline description of 

these principles for several types of CRM devices most relevant to the aims of this 

thesis. The simple descriptions of the interactions given here will be elaborated 

on in a full general description in chapter 3. 

1.4.1 The Gyromonotron or Gyrotron 

The gyrotron is essentially the simplest type of CRM in terms of both theory and 

experiment. The electromagnetic waves propagate almost perpendicular to the 

direction of the magnetic field i. e. kl » k1j, so the Doppler shift is small and the 

resonance condition (1.1) reduces to 

WC 

'Y 

which is shown schematically on a dispersion diagram in figure 1.3 for the case 

of fundamental resonance (s = 1). The gain mechanism is due to bunching in 

phase due to the relativistic mass dependence of the cyclotron frequency, which 

will be discussed in detail in chapters 2,3 and 4. The neglect of the Doppler shift 

means that axial velocity spread, which can be as much as 10% depending on 

the type of beam formation system being used, does not affect the interaction, 
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N 

Fast cycl 
mods 

Figure 1.3: Dispersion relation for the gyrotron interaction. 

so fairly poor quality electron beams may be used. Normally, gyrotrons utilise 

only weakly relativistic electron beams (< 100kV), with large transverse energies 

i. e. vl/vll > 1. Cyclotron harmonic operation reduces the required magnetic 

field for a given frequency by a factor s. Gyrotrons are almost always operated 

as oscillators, using either a cylindrical open resonator or a quasi-optical mirror 

resonator [31], as shown in figure 1.4. 

1.4.2 The Cyclotron Autoresonance Maser 

In a gyrotron with a highly relativistic beam, the dependence of the cyclotron 

frequency on the electron energy is very strong. An efficient interaction will cause 

large variations in ry and consequently larger changes in the cyclotron frequency 

we/ry than in the mildly relativistic case. It is therefore desirable to identify 
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(a) (b) 

Figure 1.4: Diagram showng (a) a conventional open resonator and (b) a quasi- 

optical mirror resonator. 

the condition under which an electron that loses energy remains in synchronism 

with the electromagnetic wave. A possibility for achieving such synchronism is 

to utilise the interaction of electrons with electromagnetic waves propagating at 

a phase velocity close to the speed of light i. e. almost parallel to the axis of 

the cylindrical waveguide. In this case, the Doppler shift is large and the appro- 

priate resonance condition is (1.1). This is illustrated on a dispersion diagram 

in figure 1.5. If vp c, the increase in cyclotron frequency due to extraction 

of beam energy (decrease of y) nearly compensates the decrease in the Doppler 

shifted term, as will be demonstrated in section 3.4. Therefore, if the resonance 

condition is initially fulfilled, it will continue to be satisfied during the interac- 

tion. This phenomenon is called autoresonance and CRM devices operating in 

10 
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Figure 1.5: Dispersion relation for a CARM interaction. 

ku 

the relativistic Doppler-shifted regime are called cyclotron autoresonance masers 

(CARMs). The CARM is an extremely attractive device because of its high fre- 

quency operation and because of the fact that it extracts energy from both the 

transverse and axial motion of the electron beam, making efficient interaction a 

possibility. 

Experimentally, CARMs are much more complex devices than gyrotrons, for 

a number of reasons. Firstly, the strong dependence of the interaction on the 

Doppler shift means that high quality electrons beams must be used, with axial 

velocity spreads of AvII/vIl ý 2% in order to come close to realising the potential 

efficiency of the interaction. In addition, the second intersection of the beam 

line with the waveguide mode gives rise to a relativistic gyrotron interaction 

or a backward wave interaction, which can grow parasitically and disrupt the 
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Figure 1.6: Dispersion relation for a gyro-TWT interaction. 

CARM interaction with the wave. In order to avoid this, careful mode selection 

is necessary to allow the CARM interaction to progress while suppressing the 

other interactions. The CARM interaction is convective in nature, so it can be 

used in an amplifier configuration or, using external feedback e. g sandwiching the 

interaction region between Bragg reflectors, in an oscillator configuration. 

1.4.3 The Gyro-TWT Amplifier 

From a theoretical point of view, the gyro-TWT differs from the CARM only in 

regimes of operation. The gyro-TWT utilises a moderately relativistic electron 

beam to interact with a fast waveguide mode near the grazing interaction of the 

dispersion diagram, as shown in figure 1.6. In the gyro-TWT regime, vp » c, so 

the axial bunching mechanism is too weak to be of any significance. 
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The general theory described in the following chapters is concerned only with 

interactions which give rise to convective instabilities i. e. instabilities which prop- 

agate in space (in the laboratory frame of reference) and consequently is most 

relevant to the gyro-TWT and CARM amplifier configurations. The absolute 

nature of the gyrotron instability makes it unsuitable for such an analysis. 

1.5 CRM Research at Strathclyde University 

CRM research has taken place at Strathclyde University since around 1980, 

when relativistic electron beam experiments were first performed [32]. Initial 

CRM experiments developed at Strathclyde operated at relatively low frequen- 

cies (ý 12GHz), with further development to higher frequencies resulting in a 

step-tunable CRM capable of operating in the range 35-200GHz [33,34]. Much 

of this work owed its success to the development of a CRM electron beam source 

based on a field emission, field immersed, cold cathode configured within a two 

electrode diode. An electron beam of duration ,. 400 ns was produced via plasma 

flare emission at the cathode tip. Due to the pulsed nature of the plasma flare cold 

cathode, initial devices used conventional, water cooled copper wound coils driven 

by RC networks to generate the intra-cavity magnetic field. These could produce 

quasi-static intra-cavity fields of up to 4T, with rise times of : 120µs. Later 

designs utilized a superconducting magnet which could generate static magnetic 

fields of up to 11T. 

The main thrust of research through the 1980s was concerned with increasing 

output powers and the frequency tunability of the device. In order to achieve this, 
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a great deal of work was done on the focussing of the electron beam around the 

cathode region and the design of the cavity [33]. This resulted in the generation of 

peak powers of ,: 1MW at frequencies of 100GHz with step-tunable operation 

via discrete mode excitation [34]. 

Around 1990, work began on the first of several projects concerned with elec- 

tron beam formation in the CRM. Until this time, all the experiments at Strath- 

clyde had utilized a stainless steel cold cathode, emitting electrons due to plasma 

flare emission [33]. Development of a thermionic cathode opened up the possibil- 

ity of eventual CW operation and resulted in the construction of a fully opera- 

tional gyrotron using a MIG-type cathode operating at frequencies of 20-45GHz 

at power levels > 1MW [35,361. In addition, a novel type of gyrotron cathode 

using field emission arrays (FEAs) was developed and successfully used as an 

electron source in a working gyrotron to generate microwave radiation. This type 

of cathode allows much greater control over the electron beam than conventional 

gyrotron cathodes and could be used to generate very short electron pulses at 

high repetition frequencies of "^.: 1kHz [37,38]. 

The experiments described above all involve CRM oscillator/gyrotron devices. 

At the time of writing, a CARM oscillator experiment is under construction which 

when operational will be the first CARM of any type to be built outside the former 

USSR or the USA. The aim of the project is to generate output powers of 5MW 

at frequencies of 12-20GHz, with a Doppler upshift factor of around 4-7 [39]. As 

the quality of the electron beam is so important for CARM devices, electron beam 

diagnostics are also currently an active area of research. 
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1.6 Novel Aspects of CRM Theory 

The new developments in the theory of the CRM which form the major part of 

the work in this thesis can be summarised as follows : 

1. Starting from the Lorentz equation of motion for a relativistic electron and 

Maxwell's equations, a set of nonlinear, coupled differential equations was 

derived to describe both the linear and nonlinear evolution of the interac- 

tion between a beam of electrons and a single TE or TM waveguide mode 

in a CRM amplifier such as a gyro-TWT or CARM, chapter 3. These 

equations were universally scaled, which simplified both the analysis of the 

interaction and the interpretation of the results produced. The number of 

free parameters involved in the universally scaled set was just three : p, 

the fundamental CRM parameter, v, the free energy parameter and ö, the 

detuning between the electrons and the wave. Using this universally scaled 

set of equations, the CRM interaction was studied far into the nonlinear 

regime over a wide range of the parameter space and the different saturation 

mechanisms were identified. 

2. Using a rigorous linear analysis, the linear growth of the instability was stud- 

ied using a linearised set of universally scaled evolution equations, chapter 4. 

The method of collective variables, which has not previously been applied 

to CRM-type devices, was used to derive a dispersion relation which deter- 

mines the linear behaviour of the system. Using this dispersion relation, a 

threshold condition for linear instability to occur was derived. Above this 

threshold, an expression for the growth rate of the electromagnetic field was 
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found and compared with the results of other linear theories. The linear 

growth of the instability was found to consist of two distinct regimes : the 

low-gain regime, where the `partial waves' which correspond to the roots 

of the dispersion relation interfere, and the high-gain regime, where the 

amplitude of the electromagnetic field grows exponentially. In the low-gain 

regime, it was found that Madey's relations between the stimulated emis- 

sion (gain), spontaneous emission and the energy spread of the electrons, 

originally derived for the FEL, could be reproduced. 

Using the linear analysis, it was also possible to identify the different bunch- 

ing mechanisms responsible for wave amplification and the condition for 

autoresonance to occur. The condition for instability to occur at autores- 

onance was derived and the resulting growth rate of the instability was 

evaluated. 

3. When the fundamental cyclotron parameter is very small i. e. p«1, the 

resulting set of universally scaled equations are found to have a number of 

interesting properties. Firstly, it was found possible to state the equations 

of motion for the electrons and the electromagnetic field as a system of 

Hamilton's equations. This enabled a phase space analysis of the CRM 

to be carried out, chapter 5. Such an analysis was performed for the case 

where the evolution of the field is negligible and also for the case where the 

field evolution evolves self-consistently with a single particle. The former 

is representative of the situation in a low-gain oscillator close to saturation 

while the latter has relevance to experiments involving pre-bunched electron 
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beams. 

The second feature of the universally scaled equations when pK1 is that 

it was found possible to describe the linear and nonlinear evolution of the 

electromagnetic field using collective variables which are a generalisation 

of those variables used in the linear analysis of the interaction, chapter 5. 

This greatly reduced the number of equations to be solved and describes the 

interaction in a similar way to the equations which are used to describe the 

polarisation, population difference and field amplitude and phase in atomic 

lasers. Using this collective variable description, it was shown that it is 

possible to describe approximately the evolution of the electromagnetic field 

up to saturation by an analytically solveable Landau-Ginzburg equation, 

chapter 5. This allows quantities such as the saturation intensity, which 

usually have to be evaluated via the numerical solution of a large set of 

coupled differential equations, to be evaluated analytically. 

4. The analysis of the CRM interaction in an amplifier has almost always been 

carried out in the steady-state limit, sometimes referred to as the limit of 

stationary oscillations. This is equivalent to assuming that an electron pulse 

of infinite extent is taking part in the interaction, with each part of the 

electron pulse evolving identically. In contrast, if finite length electron and 

radiation pulses are assumed, and the propagation velocity of the radiation 

pulse is not equal to the electron axial velocity, it can be shown that there 

is another gain mechanism which can occur : superradiance, chapter 6. It 

was shown that this superradiant emission is due to a spontaneous emission 
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process which results in intensities scaling as n',, in contrast to the steady- 

state regime, where intensities scale as n4. /3, where ne is the electron density. 

The existence of two types of superradiance was demonstrated for a CRM 

utilising a highly relativistic electron beam : weak superradiance, which 

occurs when the electron pulse length is shorter than a pre-defined cooper- 

ation length, and strong superradiance, which can occur for electron pulses 

much longer than a cooperation length due to a portion of the electron 

pulse emitting superradiantly. Peak intensities for weak/strong superra- 

diant pulses are less/greater than the peak intensity which occurs in the 

steady-state regime. 

The superradiant instability in a CRM system was initially predicted using 

a dissipative model which heuristically described the effect of radiation es- 

caping from the electron pulse. This analysis allowed the identification of 

a cooperation length, the size of which relative to the electron pulse length 

determines the importance of superradiant effects on the radiation field 

evolution. A more rigorous linear analysis was then used to identify the 

conditions for a superradiant instability to occur, and the resulting growth 

rates of such an instability. The nonlinear evolution was analysed using a 

set of coupled nonlinear partial differential equations. It was shown that 

under certain conditions, this set could be reduced to a self-similar set of 

ordinary differential equations. A condition for the effect of free energy 

depletion effects to be negligible during superradiant evolution was derived. 

Numerical simulation of superradiant phenomena produced evidence that 
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strong superradiance could occur in CRM devices. The effect of free-energy 

depletion effects on this strong superradiance was analysed and discussed. 

19 



Chapter 2 

Cyclotron Resonance Maser 

Theory -A Review 

2.1 Introduction 

This chapter contains a brief description of some of the methods which have been 

used to investigate the CRM interaction, ranging from the very first theoretical 

analyses at the end of the 1950s to those those still in use at the present day. 

2.2 Quantum Mechanical Analysis 

The first theoretical papers to demonstrate the existence of an amplifying mech- 

anism for free-electron gyro-radiation were those by Twiss [40] in 1958 and both 

Schneider [41] and Gaponov [8] in 1959. The approach used by Twiss and Schnei- 

der was quantum mechanical whereas that of Gaponov was classical. 

The starting point of the quantum-mechanical analysis is an expression de- 
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scribing the energy levels of a relativistic electron in a uniform magnetic field. 

The derivation of this expression, which was not given in either [40] or [41], will 

be described below. 

Consider the classical Hamiltonian for a relativistic electron with charge e= 

e and rest mass me in a static magnetic field, given by 

H= -e4ý + (m2, c4 + c2(P + eA)2) 1/2 (2.1) 

where c is the speed of light in vacuo, P is the canonical electron momentum, A 

is the vector potential and 4' is the scalar potential. Defining 

P+eA 
u= (2.2) 

me 

and letting 4=0, then the Hamiltonian becomes 

H= (m2C4 + m2c2U2)1/2. (2.3) 

It will be assumed for simplicity that the electron only has transverse momentum, 

i. e. u= ul and the vector potential has only transverse components i. e. A= Al, 

consistent with an electron in a uniform magnetic field. 

The operators which represent space and momentum are [42] 

X, Y, Z 

Px, Py, P. 

respectively, so the following commutation relations can be applied, using the 

notation [A, B] - AB 
- 

BA : 

[X, Pz] = [Y, Pv] = [Z, PZ] = ih 
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[P., Py] = [P., PZ] _ [Pu, P., ] =0 

[Axe Ay] = [Ax, Az] = [Ay, Az] =U 

as the vector potential is a function of space only i. e. A.,, y, Z = AX, y, Z(X, 1", 2). 

The operator equivalent of (2.2) can be written as 

Px+eAx 
(2.4) Üs = M, 

Üy 
= 

P, + eAy (2.5) 
m 0 

Üz =0 (2.6) 

so the commutation relation [Us, Ub] becomes 

[Us, Uv] = me 
((Ps 

- eA )(Pý - eA) - (Pv - eÄv)(P. - eAr)) 

!2 ([Äy, P. ] + [Pu, A. ]) (2.7) 

This expression can be further reduced using the rules [42] 

[Ps, r(X)] _ -ihd d fC 
) 

X 

[, by, G(k)] = -ih 
d ä( ) 

where F(X) and d(k) are arbitrary operators, resulting in 

ih 
, Uvý =-2 

aAm 
_ 

öÄx It T" 
OX- of, 

= -i .e BZ (2.8) 
m2 

where f3-. = (8Äy/a± -OA /o1) is the operator representing the axial magnetic 

field. If the the magnetic field vector is written as 

B=(0,0, B0) 
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then (2.8) can be written as 

[Ui, U, J 
_- 

, 
-e 

B0 

[Üy, ÜZ] =0 

[Uz, UT] = 0. 

The definition of the non-relativistic cyclotron frequency is 

eBo 
we _ 

me 

so (2.8) can be rewritten as 

AWC 
[U. (2.9) 

m , 

The Hamiltonian (2.3) written in terms of operators is 

H= (mc4 + mýc2 
(Ü2 +. 

))i/z (2.10) 

which can be written in a form related to that of a one-dimensi onal harmonic 

oscillator using the operators 

Fzz &Y Fa. (j- (2.11) 

such that 

02, 
hW C 

Substituting for Us and Uy in H using (2.11) produces 

1/2 ft = 
(mc4 + mec2hwc(S2 + Q2)) (2.12) 

so if the so-called destruction operator, ä, and creation operator, ät, are defined 

as 

&= 
12 (Q + iS) at =2 (Q - iS) f 

(2.13) 
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then 

ätä =2 (Q - is)(Q + is) 

=2 
(Q2 

+ S2 + i[Q, s)) 

=2 
(Q2 + S2-1) 

so 

Q2 + S2 = 2ätä + 1. (2.14) 

Substitution of this result in (2.12) results in 

ýc4 + mec2hwc(2ätä + 1))112 H= (mI 

which can be further reduced to 

H= (mc4 
+ 2mec2ýiwc 

\N 
+- 2))1/2 

due to the fact that [421 

ätä =N 

where k is the number operator. It can be shown that that this operator has 

integral eigenvalues which are greater than or equal to zero [42]. 

The eigenvalue equation 

HIT) = EnI%F) 

where IT) is an eigenvector of ft, results in the expression for the energy of the 

nth quantum level i. e. 

2hw 1/2 

E�=m, c2ý1+mý(n-ý2)) (2.15) 
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so the energy spacing between the nth and the (n + 1)th levels is 

En+i - E,, hwc 
(1 

-n 
Aw` ) 

meC2 
(2.16) 

to first order of hw, /mec2. This means that as the electron energy is increased, the 

spacing of adjacent levels becomes smaller, as shown schematically in figure 2.1. 

This unequal level spacing allows the probability for stimulated emission to exceed 

that for absorption and consequently gain can occur [41]. For non-relativistic 

electrons, (2.15) reduces to the famous expression derived by Landau [43], 

En=twýln+2). 

In this case, the levels are equally spaced and no gain can occur. This gain 

mechanism is therefore a purely relativistic effect. In addition to a change in its 

mass, the electron will also undergo recoil, as it emits a photon of momentum Ilk 

i. e. its longitudinal momentum will decrease by an amount Ilke. This recoil lies 

behind the gain mechanism in conventional travelling-wave tubes (TWTs). 

Although the quantum mechanical approach is of historical interest, having 

proved extremely useful in demonstrating the existence of the gain mechanism, 

it is of little use in the design of physical devices. As the frequencies involved 

are in the microwave region of the electromagnetic spectrum, an electron will 

emit many (_ 10$) photons before its interaction with the stimulating radiation 

becomes negligible, in contrast to devices such as atomic lasers, where the atom 

can emit only a single photon before its interaction with the stimulating radi- 

ation effectively ceases. This means that the levels can be assumed to form a 

continuum and the gain mechanism in CRMs can be described classically. The 
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n+1 

n 

n-1 

Energy 

Figure 2.1: Schematic diagram of the energy levels for a relativistic electron in a 

static magnetic field. 

gain mechanism due to the relativistic mass change manifests itself classically as 

azimuthal bunching i. e. bunching in the gyro-angle ¢9 . w, , 
/y t whereas the elec- 

tron recoil results in longitudinal or axial bunching. Some classical approaches 

are described in the following sections. 

2.3 Fluid Theory 

One of the most fruitful methods of analysing the CRM interaction in the linear 

regime has been the use of fluid theory, where the electron beam is treated as 

a charged relativistic fluid. The procedure is basically to calculate the response 

of the fluid to temporal and spatial perturbations, and work out the conditions 

under which the perturbed system becomes unstable. The origins of this method 
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lie in analyses of travelling wave tube devices by Pierce [44]. 

One of the first applications of fluid theory to CRM devices was performed by 

Lau [45], in which the CRM system was represented as a rotating annular electron 

fluid enclosed in a metallic waveguide, as shown in figure 2.2. By perturbing 

the electron beam, and self-consistently calculating the electromagnetic fields 

generated via Maxwell's equations, Lau was able to show that the system was 

unstable and that this CRM instability was of negative-mass type. The negative- 

mass nature of the instability is easily shown by considering the rate of change 

of the cyclotron frequency 

d wý dy 
dt -y 

= -`''` dt 

so as the electron mass (yme) increases, its angular velocity decreases and vice- 

versa. Lau also showed that for electron beams of finite thickness, the cyclotron 

maser instability could be interpreted as an instability of the shear flow of the 

relativistic electron fluid. i. e. instability due to the angular velocity of the electron 

beam changing in the radial direction. 

One of the main advantages of using fluid theory in an analysis of the CRM 

instability is that it is entirely self-consistent, and an analysis resulting in a single 

dispersion relation can simultaneously describe a number of different phenomena, 

which can then be isolated by taking specific limits. In this respect it is similar to 

plasma kinetic theory but as fluid theory is macroscopic i. e. it is not concerned 

with the distribution function of the electrons in momentum space, it is often 

simpler to apply and interpret. Examples of such `unified' fluid theories describing 

several effects are those by Lau [46] and Lashmore-Davies [47] which between 
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Waveguic 
wall 

Figure 2.2: Fluid model of CRM interaction 

? ctron beam 

them describe the gyrotron, diocotron, peniotron, CARM and harmonic auto- 

resonant peniotron (HARP) instabilities including coupling between TE and TM 

waveguide modes. The results of Lashmore-Davies for the Doppler-shifted CRM 

interaction for both TE and TM modes in the limit of weak space charge are 

most relevant to the analysis which will be described in the following chapters. 

The spatial growth rates for TE1, a and TMI,, waveguide modes involved in such 

an interaction are 

22 

9TE _2 

1/3 
k. vlo wp 1 (2.17) - 2 8kII7O 

IID v2 cz (1-1/X; 2 In) 'ý1 (Xin) 
)1/3 

w2w2 2V2 9Z1 9TM =2 8kilc4wpvlo7o 
(VII 

- 1/j'i(Xlri) (2.18) 

where wp is the plasma frequency, Xi� satisfies Ji(Xl�) =0 and Xi� satisfies 

ýiýx1 )=0. These growth rates are valid for the case of an axis encircling beam 
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when stabilising terms are neglected, the beam and the waveguide mode are close 

to resonance (w we/yo + kllvllo) and kjrL « 1, so that the transverse mode 

profile is approximately uniform over the electron gyro-orbit. 

The self-consistent nature of the fluid theory makes it ideal for studying effects 

which occur when the beam density is large. It has been shown by several authors 

[46,47,48], that for a fully self-consistent analysis of these effects in Doppler- 

shifted CRM type devices, it is necessary to include both TE and TM modes and 

the coupling between them. The reason for this can be deduced from geometical 

considerations. The aximuthal bunching effects characteristic of the gyrotron 

instability provide a source for an azimuthal and hence transverse or TE type 

electric field. In contrast, axial bunching effects provide a source for a longitudinal 

or TM type electric field. As both types of bunching occur simultaneously in 

Doppler-shifted CRM devices, both types of mode will also be simultaneously 

generated. In this respect, the CRM is a more complicated device than, for 

example, the FEL, which at the fundamental level is inherently one-dimensional, 

with its gain mechanism due to an axial bunching effect only. 

2.4 Kinetic Theory 

The other method which has been used most predominantly for the study of the 

CRM ineraction in the linear regime is that of plasma kinetic theory [49,50,51, 

52]. This is a microscopic theory which involves the simultaneous solution of the 
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Vlasov equation 

T+ y"D{ me - 
(E+ u 

-1 

B) 
. au 0 (2.19) 

where f=f (r, u, t) is the electron distribution function, with Maxwell's equa- 

tions usually via transform techniques to form a dispersion relation. 

Although this method usually requires more algebraic manipulation than fluid 

theory, it has an advantage in that it can be used to study the effect of different 

electron momentum distributions in the beam. This is particularly useful when 

analysing the effect of velocity spread on the growth of the interaction, as this 

can often have a dramatic effect on the growth rate of the instability, possibly 

stabilising it altogether. Among the first to use this method to analyse the 

CRM instability were Ott and Manheimer [49], who studied the interaction in a 

planar geometry, where the electron beam is sandwiched between two conducting 

surfaces, all of which are assumed infinite in one dimension (figure 2.3). As they 

assumed a cold electron beam, their result agreed with that for the TE mode 

(2.17) obtained from fluid theory to within a geometrical factor. Later papers 

extended the theory to include the effects of cylindrical geometry [50], guiding 

centre motion [53], TE-TM mode coupling [54] and ohmic losses in the waveguide 

walls [55]. 

The dispersion relation describing the CRM instability for the geometry shown 

in figure 2.2 and for the case of a cold electron beam interacting with a TE, ri. 

waveguide mode is [56] 

\2 (w2 - klc2 - klc2 w-3- kllvllo )_ 
70 
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Figure 2.3: CRM interaction in planar geometry 

w2k2 v2 /w 
i lo 1-yo 

Hsm s yö kllvllo 
ryav2 

ck2 Qsm, 2.20) 
10 1 

/ m2 
where K, = JJ (kl R-) I1-2 

R2 \ kl 
w 

Hsm = (Js-m(kiRo)Js(kirL))2 

Js 
m(k1Ro)Js(kjrL)Js'(klrL) 

+ 2Js m-i(kIRo)J; 
(kirL)J: 

-i(kirL) Qs+ri = Hsm +kl rL 
- 

2Js 
m(klRo)Js(klrL)Jýý( lrL) 

+ 2Js m+I(kiRo)j; 
(k£rL)J; 

+l(kirL) 

where Ro is the guiding centre radius and rL is the Larmor radius of the electrons. 

The first term on the RHS of (2.20) has a destabilising effect and the second has 

a stabilising effect. This stabilising term places a lower limit on the transverse 

energy of the beam below which no instability will occur. If it assumed that 

the interaction takes place at the fundamental cyclotron harmonic (s = 1) and 
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klrL « 1, the constants H�n, and Qsm simplify considerably to 

Hlm 
1Jm-i(klRo) 

1 
Ql, n 

1 
Jm-l(kl&o) 

and the threshold condition can be written as 

v4 0>4 
wpwc vI of -, 

(k1R0) 
(2.21) 1(p2 27 klkllyöC2jml k llyu) 

( 
1-k) R? 

It will be shown in chapters 3 and 4 that this threshold is due to depletion of the 

transverse momentum of the electron beam. Far from this threshold, the spatial 

growth rate of the interaction is just that obtained from fluid theory (2.17). 

2.5 Nonlinear Theory 

Although a linear theory is sufficient to ascertain whether instability will occur 

and what the growth rate of the instability will be, in order to calculate or 

estimate accurately quantities such as the maximum electromagnetic power which 

can be produced by the system, a nonlinear theory is required. 

Among the first nonlinear analyses of the CRM interaction was that of Spran- 

gle and Drobot [51], which studied the temporal evolution of the interaction be- 

tween electrons in a sheet electron beam and an electromagnetic wave in a planar 

waveguide in a reference frame moving at the electron longitudinal velocity. After 

analysing the linear regime of the interaction using a plasma kinetic approach, the 

nonlinear evolution of the interaction was studied. The saturation of the inter- 

action was found to depend critically on how far the unstable system was above 

the threshold (2.21), resulting in two different types of saturation. Close to the 
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threshold, the electromagnetic field intensity would increase at the expense of the 

transverse electron energy until the instability threshold was no longer satisfied, 

and wave growth was halted. Far above the threshold, however, the saturation 

of the instability was found to be due to the electrons bunching in phase until no 

further bunching was possible. The electrons then began to debunch, absorbing 

energy from the radiation field and saturating the instability. These saturation 

mechanisms will be discussed in more detail in section 3.4. 

Most of the nonlinear analyses of CRM-type devices involve the simultaneous 

solution of the Lorentz equation of motion with Maxwell's equations. Depending 

on the particular system being studied, certain approximations can be made 

to simplify the equations, but the result is always a set of coupled nonlinear 

differential equations which are then numerically integrated. In a full three- 

dimensional analysis, it is necessary to simultaneously solve five equations for 

each (macro)electron involved in the integration, one each for the phase difference 

between the electron and the wave, transverse momentum, axial momentum, and 

the co-ordinates of the guiding centre (140,90) [57,58]. Although a full three- 

dimensional analysis is useful, it requires a large amount of computation and 

does not readily lend itself to a basic understanding of the physical processes 

occurring in the interaction. Full three dimensional analyses are usually used in 

the design of specific devices with a given set of design parameters. 

In order to obtain a general understanding of the physics involved in the 

nonlinear regime of the interaction, the large number of equations used in a three- 

dimensional analysis has to be reduced using various assumptions, e. g. that the 
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guiding centres of the electrons remain approximately stationary. This approach 

has been used by Bratman et al. [19] resulting in a set of 2N differential equations, 

which describe the evolution of the energy and the phase difference between the 

electron and the wave, for N particles undergoing an interaction with a mode of 

a high diffraction-Q cavity. The high-Q factor of the cavity means that the axial 

structure of the mode will be determined by the shape of the cavity rather than 

the motion of the electrons, removing the need to solve Maxwell's wave equation 

i. e. the electron and field evolution equations are not solved self-consistently. 

The power output from the cavity is found by calculating the power lost by the 

electrons at the end of the interaction region. The CRM amplifier has also been 

studied in this way [59], but Maxwell's wave equation must also be solved for this 

case, as the motion of the electrons acts as the source term for the generation of 

the electromagnetic field i. e. a self-consistent calculation is required. This results 

in the number of differential equations to be solved being increased by two (field 

amplitude and phase) if the field is assumed to be evolving slowly or four (field 

amplitude, phase and first derivatives) if not. 

A slightly different approach to the nonlinear analysis of the CRM interaction 

which has been applied to the case of a high-Q oscillator operating close to cutoff is 

that employed by Nusinovich [60] [62], which involves assuming that the evolution 

of the mode amplitude and phase in the cavity is small in the time taken for the 

electrons to cross the interaction region. A set of `slow' equations can then be 

derived describing the evolution of the mode amplitude and phase on a time 

scale much longer than the transit time. This method has been used to describe 
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multimode effects, such as the growth of parasitic modes [60,61] and parametric 

effects [62]. 

2.6 Conclusions 

A brief description of some of the theoretical methods used to study the CRM 

interaction has been given in this chapter. Some, such as the quantum me- 

chanical analysis, are now only of historical interest, while others, such as three- 

dimensional numerical simulation, are tailored towards an engineering approach 

to device design rather than physical investigation. It will be shown in the fol- 

lowing chapters however, that there is scope for further theoretical investigation 

of the physical processes involved in the CRM interaction. 
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Chapter 3 

Universally Scaled Evolution 

Equations 

3.1 Introduction 

Starting from the Lorentz equation of motion for an electron in an electromag- 

netic field and Maxwell's equations, it is possible to derive a set of universally 

scaled equations which describe the linear and nonlinear interaction of a beam of 

relativistic electrons with a TE or TM waveguide mode. A universal scaling of the 

evolution equations reduces the number of free parameters and hence the number 

of solutions to a minimum. In addition, a truly universal scaling should be based 

on physically significant quantities e. g. growth rates etc. The universally scaled 

set of equations considerably simplify both the analysis of the interaction and the 

physical interpretation of results. 
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3.2 TE Mode Interaction 

The cylindrical components of the electric (E) and magnetic (B) field of a TEmn 

cold cylindrical waveguide mode are 

Er 
2rF(z)DTEJm(klr)e'(we-me) + c. c. (3.1) 

Ea =Z 21 
F(z)DTE Jý(klr)ei(wt-me) + c. c. (3.2) 

Ez =0 (3.3) 

_k 
dF(z) 

Br 
2w dz 

DTEJm(1clr)e=("-me) + c. c. (3.4) 

im dF(z) '(wt-me) B9 = DTE"I,,, (klr)e + c. c. 2 
(3.5) 

rw dz 
2 

BZ = 
2w 

F(z)DTEJm(k. Lr)et(-'-me) +c. c. (3.6) 

1 

where: DTE _ 
(Jm (XImn) ý(Xýmn - m2)) is a mode dependent constant, 

x' is the nth root of J;,, (k1R,,, ) = 0, w is the radiation frequency, kl is the 

component of the wavevector perpendicular to the waveguide axis and (r, 0) are 

polar co-ordinates with respect to the waveguide axis as shown in figure 3.1. F(z) 

is a complex field amplitude with the dimensions of voltage and is of the form 

F(z) = JF(Z)le-i(kut-4(z)) 

where I F(z)I and fi(z) are slowly varying functions of z and kil is the component 

of the wavevector parallel to the waveguide axis. The fact that IF(z)l and e(z) 

are slowly varying means that 

TZ 
I« 

k1l 
I dI II 

<< klilFl 

with the result that 

dF(z) 
-ikllF, (z)e-: kNz 
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where F, (z) = IF(z)le'«(Z) is a slowly varying function of z. Substituting for F 

and dF/dz in terms of F. in (3.1.. 3.6) gives 

Er 
2r 

F'(z)DTEJm(klr)e'% + c. c. (3.7) 

k'' 
Ea =ZF, (z)DTEJJ (klr)e'' + c. c. (3.8) 

Ez =0 (3.9) 

B,. = -k"E9 (3.10) 
w 

Be = 
kli 

Er (3.11) 
w 

2 
BZ = 

2w 
F, (z)DTEJm(kir)e'*+c. c. (3.12) 

where 

'= wt - mO - kllz (3.13) 

3.2.1 Electron Equations of Motion 

Figure 3.1 shows the model used to describe the motion of an electron. The 

electron gyrates about the guiding centre (R o, O) with momentum both per- 

pendicular and parallel to the waveguide axis. Note that in the absence of any 

interaction of the electron with an electromagnetic wave, the guiding centre po- 

sition, momentum and cyclotron frequency of the electron will all be constant. 

It is assumed that when an electromagnetic wave is also present, these quanti- 

ties vary slowly i. e. they vary on a timescale large compared to the cyclotron 

period 2iry/wc. Using complex notation, the transverse position of the electron 
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Figure 3.1: Diagram of an electron orbit 
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is represented by 

rl = re 'o Roeieo + rLeto9 

where rL is the Larmor radius of the electron orbit, and 09 is the electron gyro- 

angle which is defined as 

ý9 =2- tan-1 
(uv) 

(3.14) 

where u= (u1, u1j) = ryv, v is the electron velocity and -y is the relativistic factor. 

The perpendicular component ul can be written in complex notation as 

ul = ux + iuy = Zu I eto9 (3.15) 

where (3.14) has been used and ul = IulI. It is assumed from here on that the 

guiding centre co-ordinates remain approximately constant for any given electron, 

as they play no significant role in the CRM interaction. Motion of the guiding 

centre in a radially non-uniform electromagnetic field can itself cause amplifica- 

tion of an electromagnetic wave. An example of a device which employs this gain 

mechanism is the peniotron [47]. 

The Lorentz equation of motion for an electron in both electric and magnetic 

fields is 

du_ull du__ e (E+uxB) 
(3.16) dt y dz m, 

J 

where e is the magnitude of the electron charge and me is the rest mass of 

the electron. The interaction length z is used here as the independent variable. 

Splitting this equation into perpendicular and parallel components gives 

du. L 
'e II 

(E1 
+ (u x B)1) (3.17) 

dull 
__e1 (u x B)II (3.18) 

dz me uil 
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as Ell = E, z =0 for a TE,, n waveguide mode. 

Analagous with (3.15), 

El = Ez + iEy , Ell =0 (3.19) 

Bl = BB + iBv ' BII = Bo + B= (3.20) 

where Bo is the static magnetic field. It is now possible to write the perpendicular 

component of the Lorentz equation as two equations 

dý9 
_ 

e-y Ex cos 09 + E. sin 09 + 
4(Bo 

+ Bz) 
ul dz U(3.21) JIme + L(BTsinO9-By cos O9) 

dul 
_ 

ery -Ex sin 09 + E,, cos O9 

dz uJIme u 
(3.22) 

+ ý(Bxcos0. +B. sin 0. ) 

and the parallel component of the Lorentz equation as 

dull 
_e 

ul (B, sin 09 + B. cos ý9) (3.23) 
dz me ull 

where (3.15) has been used and E, Es, Bz and B. are found using the relations 

Es Er Ea 
= cos 9- sin 0 (3.24) 

Bx Br Be 

El, Er EB 
= sin 6+ cos 6. (3.25) 

By Br Be 

which lead to 

Ex = -klIF(z)IDTE x 

(Jm(kir)cos(W 
k+e)cos0-J, 

', (klr)sin(W+ý)sin0 f 
1 

Ea+ = -kl I F(z)I DTE X 
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(IF+ )sin9+J(klr)sin(IQ + )cos9I (Jm(kir)cos 
Bz = 

klkll 
IF(z)IDTE X 

w 
(Jm(kir)cos 

(W +) sinO + J(kjr)sin(W +) cos oI 
1 

By = -kam 
IIIF(z)IDTE X 

k 
J"`(klr)cos(%F+cos0-J,,,, (klr)sin('Y+. )sin0 f. 

C 

1r 

Using the Bessel function relations 

x Jm(x) =2 (Jm-, (x) + Jm+l(x)) (3.26) 

J., 
' 
(x) =2 (Jýºi-ý(x) - J+ºL+ý(x)) (3.27) 

then these equations can be further reduced to 

Ex = 
klIF(z)IDTE 

x 
2 

(J�a_1(k1r) cos (lQ +6+ ý) + J,,,, +1(klr) cos ('Y -9+ )) 

Ev 
klIF(z)IDTE 

X y2 

(J�+_i(klr) sin ('I' +0 +') - J,,, +1(klr) sin (%I -0+ ý)) 

Bx =k 
II I F'(z)IDTE X 

(J,,, 
_i(kir) sin ('' +0+ 4) - J, º. +1(klr) sin (' -0+ ý)) 

By _ -kill IF(x)IDTE x 

(Jm-i(kir)cos (W+0+ý)+J+n+, (klr)cos (xP -0+ý)) 

The equation for BZ is 

z 
Bz = 

kw 
I F(z)I DTEJm�(klr) cos (' + e) 
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Substituting for EX, EY, BZ, BY and Bz in the equations of motion (3.21), (3.22) and 

(3.23) results in the following equations of motion : 

d¢9 
_ 

ery 
x (3.28) 

dz ulullme 

/ k1DT21F(z)I 'l m-1(klr)cos(IQ +9-o9+ 
1 kllull 

- 11 
wov J+ 

Jm+i(klr)cos(hY-9+q5s+ý) 

+ýI F(z) I DTEJm (klr) cos (T + 

dul 
_eyk. IDTEI F(z)I 

2 
(kilull 

wy -1x 

Jm-i(klr) sin (tiF +9- 49 + 
(3.29) 

- J,,, +1(klr)sin(W-6+o9+e) 

dull 
- 

eul klkll Jm-1(klr) sin (%Y +0- o9 + C) 

dz muI 
F(z) I DTE (3.30) 

e II 
- 

Jm+l(klr)sin (''-0+49+ 

dt 
-7 

(3.31) TZ ull 

where the evolution equation for t has also been given. The next stage in the 

analysis involves the use of Graf's addition theorem [63], which in its general form 

states that 

cos mx °O cos na 
Jm(W) _ Jm+n(u)Jn(v) (3.32) 

sin mX n=-O0 sin na 

where 

w2 = u2 + v2 - 
2uv cos a 

u-vcosa = wcosa 

vsina = wsinX 
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V 

Figure 3.2: Graf's addition theorem 

and w, u, v, a and X are defined in figure 3.2. From a comparison of figure 3.2 and 

figure 3.1, it can be seen that 

w= kjr, u= k1Rp, v= kjrL 

a= it-09+9a 

X= 0-00 

Equation (3.32), written in complex form, becomes 

00 
J.. (klr)eimc Jm+n(kjRo)Jn(klrL)eina 

l 
n=-oo 
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Expanding a and X, the complex conjugate of this is 

00 
Jm(1c1T)e-imo E= Jm+n (k1Ro)Jn(k 

. rL)e-iniinOge-i(m+n)Bo l 

n=-00 
00 

_ (-1)nJm+n(kjRo)Jn(klrL)e=nok9e-=(m+n)B0 (3.33) 

n=-00 

Similarly, 

00 

'Jm-1(k1T)e-ý("+-1)6 => (-1)nJm+n-1(k11W)Jn(kirL)ein098-4(m+n-1)B0 

n=-oo 
00 

Jm+l( 
1ý, 

1e-i(m+l)B _ (-1)nJm+n+l(k1R0)Jn(k1TL)etnoye-i(m+ni. 1)O0 
1 

n=-oo 

so 

s('y+e-ßy+f) - 
i(mt-(m-1)B-kýýz-ýy }ý) Jm-1(klr)e 

- 'Jm-1(%Clr)e 

00 
_E (-1)nJm+n-l(kiRo)Jn(kirL)ein_ 

n=-oo 
Jm+l (klr)ei(*-B+0y+0 - Jm+l( i(mt-(m+1)B-kli z+Og+f) 

- 
ýC1T)6 

00 
_ 

1] (-1)nJm+n+l(k1Ro)Jn(kirL)eiCt+ 

n=-oo 

where 

St- = wt +(n-1)¢9-kllz-(m+n-1)9o+ß (3.34) 

a4. = wt + (n + 1)cb9 - kjjz - (m +n+ 1)Oo +. (3.35) 

The real and imaginary parts of this pair of equations provide the terms used in 

the equations of motion (3.28.. 3.30) i. e. 

Jm-1(klr)cos (W+0-09+e) = 

Jm_1(klr)sin('I'+0-¢9+ý) = 

00 
E (-1)nJm+n-1(k1Rp)Jn(kirL) cos fl- 

n=-oo 
00 

E (-1)" Jm+n-1(k1Rp)Jn(kirL) sin fZ_ 
n=-oo 
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Jm+i(klr)cos (W -0 ß-o9+ý) = 

J, +i(klr)sin (W -B+49+ý) = 

00 
(-1)nJm+n+l(klR0)Jn, (kirL) COS II+ 

n=-oo 
00 

E (-1)nJm+n+l(k1R0)Jn(kirL) sin12+ 
n=_oo 

Substituting these terms in (3.28.. 3.30) gives 

d¢9 e-y x dz u . uJIme 
3.36 

00 E 
(-1)"Jm+n-i(ktRo)Jn(k rL)cosfl- 

E(lT, "+(z)( ! pA n=-oo 
00 

+E (-1)nJm+n+s(k. LRo)Jn(k . rL)cosft+ 

n=-oo 
00 

+ 3!. L. k2 I F(z) I DTE E (-1) Jm+n(kiRp)Jn(kirL) COS 

n=-oo 

+ uQ 

dul e-I k1DT2I F(z)I (k i_ 1) x dz uJImý -y 
00 E 

-1)nJm+n-1(k1Ro)Jn(k1rL) sin Q- 

" -°° 00 (3.37) 
-E (-1)'Jm+n+l(k1Ro)Jn(kirL)sin1+ 

n=-oo 

dull 
- 

eul klklj 
ýF, (z)I DTE X 

dz mull 2w 
00 

(_l)"Jm+n-l(k1Ro)J, ti(kirL) sin S- 
n=0-000 (3.38) 

-E (-1)"Jm+n+l(kiRo)Jn(kirL)sinfl+ 
n=-00 

where 

SZo=wt+nu9-kllz-(m+n)Oo+e (3.39) 

As this analysis is concerned with evolution over a large number of cyclotron 

periods, these equations will now be averaged over a cyclotron period. In order 

to do this, the gyro-angle 09 is split into a quickly varying part ¢9f and a slowly 
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varying part 0(s) i. e. 

+ 0(s) (3.40) 

where 09f) = wct/yo and w. = eBo/me is the nonrelativistic electron cyclotron 

frequency. Averaging over a cyclotron period involves integrating the equations 

of motion with respect to 0(, f) over the interval 0 to 21r. The slowly varying 

variables and their derivatives are assumed to remain approximately constant 

over this interval. 

Consider equation (3.36) for do9ldz. Using the relation (3.40) this can be 

written as 

do 
_ 

wc 1_ ry + e-y 
x 

g 

dz U11 70 ulullme 
00 

E (-1)nJn+n-1(k1Ro)Jn(k17, L)coaG- 
k1DTIF(z)I (L_ 

11 n=-00 2 
00 

+Z (-1)nJn+n+i(kjRo)Jf(kt*L)cosil+ 

n--oo 
00 

+ ry` -k2L-IF(z)I 
DTE E (-1)nJm+n(kiRo)Jn(klrL) cos SZQ 

L 
n--oo 

where (3.34), (3.35) and (3.39) are now given by 

S2_ _ (w+(n-1)`'-°)t-kliz+(n-1)4)-(m+n-1)9o+e 
-to 

SZ+ _ (w+(n+1)'c)t-kllz+(n-; -(m+ n+1)Oo+ý 

and ! Zo = (w + nwC-)t - kiiz + nq9) - (m + n)Oo +s 
'Yo 

When averaging this equation over a cyclotron period, it must be remembered 

that u1, u1j, ry, O9'), IFI and ý are slowly varying by definition. In addition, it 

is assumed that the electrons and the wave are close to resonance at the sth 
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cyclotron harmonic i. e. 

w- sw` - k, Ivll -e 0 
'Yo 

This means that the quantity 

(w-sWC )t-kllz=(w-sw -kl,! 
±i)t 

'Yo 'yo 'Y 

(3.41) 

is also slowly varying. Therefore on averaging over a cyclotron period only the 

terms in the summation which have trigonometric arguments containing (3.41) 

will remain as the other terms will give rise to quickly varying terms which average 

to zero. Consequently, averaging the equations of motion (3.36.. 3.38) over a 

cyclotron period produces 

() /\ d09 
_ 

c"'-` I 1-1 f+ ey 
x (3.42) 

dz ull \ yo/ ulullme 

- 
k1DT2IF(Z)I (! IuA 

- i) (-1)-8Jm-a(k1Rp)x 
UPY 

(J-d+i(klrL) + J-, 
_i(kjrL)) cos (0 + ý) 

+I F(z)I DTE(-1)-s Jm-, (kjRo)J_, (kjrL) cos (0 + 4) 

dul e'Y k1DTEIF(z)I (ii. ii 
_ 1) (_1)-3 Jm-s(k1. Ro) x dz ullmý 2 wy J 

(J-s+, (ki- rL) - J-, 
- 1 (kjrL)) sin + (3.43) 

dull 
- 

eul klkll 
DTEI F(z)I (-1)-a Jm_, (k1Ro) x dz ullme 2w 

(J_a+l (kirL) - J_"-I (kjrL)) sin (0 +) (3.44) 

where the variable 0 has been defined to be 

=(w-sto)t -kilz-sq9') -(m-s)8o , to 

Using the Bessel function relations (3.26) and (3.27), and the fact that 

Oý+) 

d II 

(w 7o) 
- kll -s 

ddz 

(3.45) 
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equations (3.42.. 3.44) can be further reduced to 

dý 
_ 

-y (w 
- swc - 

kllull ) 
l\ J dz Uli 77 

-s 
ery J, 

_, 
(k1Ro)J-, (kirL)(-1)3k1DTEI F(z)) cos (0 + 4) x 

ulme 
[___S (kllull 

1) + (3.46) 
k1rL wry J -y 

du. L 
z ally 

k1DTEIF(z)1 
(ll! Ji 

- 1) x d 

J, 
-s(k. 

RO)4$(1CiTL)(-l)s Sin (0 + ý) (3.47) 

dull 
_ 

eul k1k1IDTEIF(z)IJ+ºº-, 
(k1Ro)Jý, (kjrL)(-1)'sin +e) (3.48) 

dz ullme w 

It is now assumed that the interaction is occuring close to the fundamental 

cyclotron resonance i. e. s=1. Therefore 

kllýIl 
_1 

we 
wry 7 

In addition, it is assumed that the transverse variation of the electromagnetic 

mode amplitude is negligible over the electron gyro-orbit i. e. 

k1rL «1 (3.49) 

This is an experimentally desirable condition as it allows the electron beam to 

be positioned on a maximum of the transverse mode profile, maximising the 

beam-wave coupling. This is more easily achieved for low order modes e. g. TEO, 

than high-order modes e. g. TE22,6, where the transverse mode profile is highly 

complicated. The use of (3.49) allows the Bessel functions in (3.46.. 3.48), with 

k jrL as their argument, to be replaced by the corresponding small argument 

expansions 

J i(k1rL) -2k1rL J'i(kjrL) . `: -2 
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The above approximations and the relation ul = wcrL allow the equations of 

motion (3.46.. 3.48) to be written as 

d0 ry 1w 
- 

w` 
- k11 ull 

dz Uli -y 7l 

+ ew k1DTEI F(z)I Jm_l(k1Ro) cos (4 + s) (3.50) 
2ulullmew 

dul 
_ 

ewc kl I F(z)I DTEJm_l(k. LRo) sin (0 + 4) (3.51) 
dz 2meuliw 

dull 2mu 
k1kIIIF(z)IDTE'jm sin + (3.52) (ý ý) ) 

euIIw 

These equations constitute the electron equations of motion for a slowly varying 

interaction between a relativistic electron gyrating in a static magnetic field and 

a TEmn, waveguide mode at the fundamental cyclotron harmonic in the limit 

k1rL « 1. 

3.2.2 The Electromagnetic Field Evolution Equation 

The electromagnetic field evolution equation is derived here for the case of a 

single TE�,,, waveguide mode. The field evolution is described by Maxwell's wave 

equation 
(V2 

_1 
ö2 OJ(r, t) 

cZ ate) E(r, t) = go at +V (V. E(r, t)) 

For a TEmn mode, Ea = 0, so 

(V2 c2 

1 a2 

.L ätz 
E. L(r, t) = µoaJ 't) - e01 (\ E/ ) (3.53) 

o 

where ne is the electron number density. 

It can be seen from (3.7) and (3.8) that the electric field can be expressed as 

E1(r, t) = 
(El(r)ei(wt-kpz)) 

=1 
(Ei(r)ei(wt-kNz) 

+ c. c. 
) (3.54) 
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where El = F. (z, t) e tn, e�,,, = e,. i,. + eeie and 

er = -mDTEJm(klr)e-, me (3.55) 
r 

ee = zk1DTE J'(k jr)e-: me (3.56) 

where i, and iB are unit vectors in the radial and azimuthal direction respectively 

such that i,., le and iz form a right hand set. The complex field amplitude F, (z, t) 

describes a slowly varying pulse envelope such that 

aF 

at at, 
t) I« 

IwF, (z, t)I (3.57) 

aFs(z, t)I 
K ik,, F, (z, t)l (3.58) az 

(3.59) 

and the quantities emn are orthogonal mode vectors i. e. 

J emn"e*. InrdA = brn»ºlsnn' 

where the integration is over the cross-sectional area of the waveguide and Spq is a 

Kronecker delta. In addition, the transverse mode vectors satisfy the Helmholtz 

equation 

(Di + kI) emn(r, 0) = 0. (3.60) 

If (3.53) is multiplied by e'=a't and integrated over wt from 0 -º 27r then 

7r 
(V2 

_C 
19 

2) 
Fs(z't)e-ikilzemn ti AoJ 

2a8J , t) 
e_iwr d(wt) 

lo 
d( wt) 

where the transverse derivative of the electron density has been neglected. The 

RHS of this expression can be simplified by integrating by parts, assuming that 

J j(r, t) is periodic in wt with period 2ir. The resulting equation is 

1 Ö2 2a 

(V2 _ 
c2 at2) 

F. (z, t)e-ikil semn : i/Locv 
%J 

j(r, t)e-iw: d(wt). (3.61) 
Jo 
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The LHS of (3.61) can be simplified using the fact that F3(z, t) is a slowly varying 

function. This means that 

a2 1 ä2 
t)ei(ýt-kuz) TZ-2 - 

C2 
ýt2) Fs(z' 

II 
(+)+ (- 

k) 
] 

Fs(z, t)e`t-kN(3.62) 
[-2ik z 

II 

so using (3.60) and the fact that the dispersion relation for a cold cavity waveguide 

mode is 

w2 
C2 

=k+ kj (3.63) 

the LHS of (3.61) can be written as 

1 49 i 
(V2 zC 

Üt2 
F, (z, t)8-tkh12emn -21rikll 

0+v 
it Fs(z, t)e-skll'emn 

9 

(3.64) 

where vD = kllc2/w is the group velocity of the waveguide mode. If the indepen- 

dent variables are now transformed using 

'z z=z t'=t-- (3.65) 
Vil 

then the differential operator in the wave equation becomes 

1 (az +9 at) -' 
az, 

- v9ý(1-, Bat, (3.66) 

where 0= vll/v9. 

The second term in (3.66), which gives rise to effects due to the relative 

propagation of the radiation with respect to the electrons, can be neglected if 

the velocity difference between the radiation and the electrons is not appreciable 

during the interaction. In this limit, only the space dependence is left in the 
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differential operator in (3.64) i. e. 

1a ýa d 
TZ +v öt dz 

(3.67) 
9 

so it is possible to follow the `steady-state' evolution of the system as it moves 

through the interaction region. For now, and for the analysis of chapters 4 and 

5, only the steady-state limit will be considered. The inclusion of propagation 

or slippage effects in the analysis of the CRM interaction will be described in 

chapter 6. 

Performing scalar multiplication of (3.61) with em,, after (3.62) and (3.67) 

have been applied, and integrating over the cross-sectional area gives 
21r 

-21rikýý 
dF'dz't) 

e-ik, l: = 
zWý o IA Jl(r, t). e`(r, 9) dA d(wt) 

O 

where the mode subscript has been dropped as only a single mode interaction 

is considered. The current density J1(r, t) is represented by a collection of N 

electrons i. e. 
N 

Jl(r, t) = -eEvl; (r, t)b(r - rj) 
j=l 

so 

JA Jl(r, t). e`(r, 9) dA = -eEvl;. e`(r;, 9; )S(z - z; ). IA 
N 

j_1 

The delta function in z can be rewritten as 

S(z - zj) = 
S(t aZ tý) 

= 
S(t - ti) 

=w S(wt - wti) 
de; 1 viii V02 

so multiplying both sides of (3.61) by euI9IZ and rearranging reduces the full wave 

equation to a single differential equation for the slowly varying complex field 

amplitude F. (z, t), 

dF, w2a 0e 
N 

yj,. e*(r» ei) 
e(3.68) dz 2irk11 

=1 
V113 
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Each electron is considered to carry a partial current of 

I' 
2 

so the total current is represented by 

N 

I= 1I; = 2e`ß' 

therefore (3.68) can be written as 

dF, 
_ 

wµol / vl. e' 
e-, (. t-k,,: ) 

\ 
3.69 

dz kll vIl / () 

N 

where (... ) .1E(... ). N 
j=1 

All that remains now is to evaluate the v 1. e* term. Expressing vl and e* as 

vl = Vrir + veie e= eri, + ei 

where 

v,. = vs cos 0+ vy sin 0, ve = -vs sin 0+v, cos 0 

and e, ee are given by (3.55) and (3.56) respectively, the product vl. e* becomes 

(vs cos 0+ vv sin 0) (_Jm(kir)) 

vl. e = k1DTEeimB 
. 

-}- (-vssin9+vycos9)(-iJm(kjr)) 

Using the fact that the velocity components can be written as 

vx =-I Vl I Sin 0g Vy =I Vl I COs 09 

and the Bessel function relations (3.26) and (3.27) then 

V1. e*e-i(1t-kllz) _ 
ik1DTEI y. 1I (J,, 

-le-i(1Y}B-ýy) 2/ 
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The application of Graf's theorem (3.32) to this expression results in the field 

evolution equation (3.69) becoming 

dF, (z) 
dz 

2CJ/LLOI kL DTE 
x 

2k11 

I l 

(3.70) 

00 
E (-1)nJm+n-1(kl pW_) Jf(kirL)e-if2- 

n=-oo 
00 

E (-1)nJm+n+1(k1Ro)Jn(kirL)e-si2+ 

n=-oo 

where L. and St+ are defined in (3.34) and (3.35). After averaging over a cy- 

clotron period, and making use of (3.27) then (3.70) becomes 

dF3(z) 
_ 

iwµokiDTEJm-s(k1Ro) 
(_1)-a+i ul J(kirL)e-tlk 

dz kll Uli a 

where 0 has been defined in (3.45). Using the conditions that s=1 and k. LrL « 

1, the evolution equation for the complex field amplitude finally reduces to 

dF3(z) 
_ 

iwßokiDTEJm-1(k. LR) ul :k 
dz 2k11 Uli 

e 

This is the steady-state evolution equation for the slowly varying complex ampli- 

tude of a TEmn, waveguide mode due to its interaction with a beam of relativistic 

electrons gyrating in a static magnetic field. The interaction is assumed to occur 

at the fundamental cyclotron harmonic and the transverse variation of the mode 

profile is assumed to be negligible over the gyro-orbit of the electrons. 

3.2.3 Scaling the Evolution Equations 

From the results of the two previous sections, the full set of electron and field 

evolution equations are 

d0j 
= P. i + ewc k1DTEI F'(z)lJm_1(kiRo) cos (ci + e) (3.71) 

dz 2u1j ullj'm. w 
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duj 
_ 

ewe k. LI F(z)I DTEJm_l(k1Ro) sin (q5i + (3.72) 
dz 2meull iw 

dull. i eul' k1kIII F(z)I DTEJm-l(k1Ro) sin (ci +) (3.73) 
dz 2meulljw 

d 
ä(z) - 

zWµok1DTE m-1(k1Ro) (U1jj, 
) (374) 

II II 

where 

Oj = wti - kliz + tan-1 (! ) - (m - 1)90 -2 (3.75) 

y'w w` k 3.76 

and j=1.. N (3.77) 

In order to find dp/dz, it is necessary to find dry/dz. This is achieved using the 

relation 
2z 

1+ + 
11 ull 

and the equations (3.51) and (3.52). The result is 

dry 
_ 

eklul ul I F(z)IDTEJm_l(k1Ro) sin (oJ + ý) 
z 

(3.78) 
dz 2m, c ull 

It is immediately obvious on comparing (3.78) with (3.52) that 

_w 
d- 
dull klIC2 

This interesting relation can be explained physically by considering an electron 

emitting a photon of energy hw and axial momentum hike. Consequently the 

energy and axial momentum of the electron will also change by these amounts 

i. e. 

m, c20ry = 71w 

Ory 
Zull = 

56 

m, Dull = Ilkll 

w 
kllc2 



From the definition (3.76), the rate of change of p can now be shown to be 

dp 
+ c2 kl Iwo dry w dvll 

dz wu,, dz v11 dz (3.79) 

Note that if the rate of change of y and vIl are of the same sign, the two terms in 

(3.79) are of opposite sign. This expression can be rearranged to give 

dull dp 
_1 

2I 
dz dz u 

(t, 

II 
(3.80) 

where (3.73) and (3.78) have been used. Note that on comparing terms in (3.79) 

and (3.80), the kl/k1l term in the bracket of (3.80) arises from the change in -Y, 

whereas the p term in the bracket of (3.80) arises from the change in vjj. This is 

an important point which will be returned to in section 3.4 and chapter 4. 

Defining the variables 

z'=2koz ' p' 2p ,o 

UI 
u10 

ull 
UI10 

' ekllk0 iF, z A= DTEJm_l(kiRO) ( 
8m. cklw 

where kc = w, lullo is the `cyclotron wavenumber' and the subscripts 0 indicate 

initial values at z=0 then the evolution equations (3.71.. 3.74) and (3.80) can be 

written as 

dz' 
- 

pj -2 kllk 
ou2io 

uilu' . 
(Aýe''j - c. c. ) (3.81) 

IIj 
dp. 
dz' --k 

lo uij 
k2 u2 u' 2 

( kip 
- ') (A'e'01 + c. c. ) 2k k pi (3.82) 

Ilo Ili II 
ý dz j z 

kcoulo u. IIk I 
(A'e'0J + c. c. ) (3.83) 

II 
dalli 

dz' __ 

klcuio U'lj 
(A'e`O' + c. c. ) kýu1 uI 

(3.84) 
10 lj 
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; . (3.85) 
d/ 

327 
e 

cpoDTEJm-i(kiR0) ulo 

(U11 

It has been assumed here that there are no spreads in the electron's perpendicular 

or parallel momenta i. e. ulo and u1jo are the same for all electrons. These 

equations will now be rescaled so that all coefficients are equal to one. To do 

this, the following set of variables are used 

z= Clz P= C21 ul = C3u1 ü11 = Cqui' A= C5A' 

where the c;, i=1.. 5 are constants which will be defined so as to leave the 

evolution equations in the simplest scaled form possible. Writing the equations 

(3.81.. 3.85) in terms of these variables produces 

do' 1i klc c3c4 1 (ACi 
- c. c. dZ 

(C1C2) 
P' 

(11O 

C1Cg uljf1II. 1 

dPi (_kcu10 C284 ulý (Aei + c. c. di 2kllkc3oullo clc3c5 ullj 
(k110 C4 Pýul7 (Äe`01 + C. C. 2 2 kcoujj0 C1C3C5 ii 

Ili 

düli k2 C c3c4 1 
dz kllkcoulo c1c5 'IIi 

(Ae'O'j + c. c. 

düllj ki lo !? (Ae' + c. c. 2 2 dz kcoulo CiCcCS ü11, 

dA 
- 

c5c4 J) 
ül 

e_tm dz 
(c1 

c3 

(u 

II 
e 

where J= 
32m, cµoDTEJm-1(k1Ro) uo. 

The sets of coefficients are now chosen to be equal to 1, which produces the 

following set of simultaneous equations 

=1 Cl C2 

kl2 c C3C4 
=1 kilkcoulo tics 
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k1CUlp C2C4 
= 1 

2k11 k3 U2 CO 110 C1C3C5 

2 k1 10 
2 C4 

= - 
1 

k2 ull0 C1C3C5 

k1C C3C4 
_ 

1 
kllkcou10 cic5 

kf 2 CU LO C4 
= 1 

u2 k2 
CO 110 C1C3C5 

C5C4 J 
C1 C3 

which have the solutions 

ki 
Cl _ 

2k ko 
C2 -k 2kII kc 

C3 = 

(kII k 
10 

114 

J C9 _1 
ulo ki ll C 

J 
uI UP 4k 3C J/ 2 ckllkco 

1 k1 cuio 1! 

C5 =- 
ullo 4k11 k- Js 

Therefore the set of evolution equations becomes 

dOj A 1 
- dz e' - c. c. p; - 

( i� 
ul; ülli 

z 
- (P; - 1) ! --Li 

(Ae' + c. c. d III 
dül; 

__1 
(AeiIj + c. c. 

) 
di üll; 

düll; 
- 

ül& (Äe`Oi + c. c. 
) 

dz üll; \ 
dA ü1 
di - 

(fill 

where 
k2 
kN z 

1 ýk k3y ýusý 14i 
ul - "Ho 

( 
40c J) ul 

1 k°cto 1 A' A= 
UNO 

(4kuk'ý 
Jam) 
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1! fill =2 ek1k0 J) U1 

(3.86) 

(3.87) 

(3.88) 

(3.89) 

(3.90) 

(3.91) 



Notice from (3.87.. 3.89) that there is a functional relationship between the vari- 

ables p, ü1 and ü11 i. e. 

ui 11 dp 
= -ä11dä1 =- 

ull dä11 (3.92) 
ü. L(P-1) ul 

Integrating produces the following : 

ül = üio + 2üIlo 
(1 - r) 

(1-ä)^ 
fill = (1 _ P) ullo 

where S, äi10 and ü110 are the values at z=0 of p, ül and fill respectively. At 

first glance, it would appear that the set of equations (3.86.. 3.90) is universally 

scaled as it contains no free parameters. The solution to these equations therefore 

depends only on the values of the dependent variables at z=0. However, it will 

be shown that this set of equations is related to another set with a different 

scaling which is much more physically significant. A number of approximations 

will now be used to simplify (3.86.. 3.90) in order to deduce the nature of this true 

universal scaling. The approximations will be justified using physical arguments 

in section 3.4. 

Consider the case where [J, ISI « 1. This means that 

ül . ': ü10 1+2 uzý° (p - 
b) (3.93) 

ulo 

üll -- üllo (3.94) 

Assume that the term under the square root is .1i. e. ül ülo. Under these 

conditions, the set of five equations (3.86.. 3.90) reduces to the set of three which 
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are 

dj 
ou (Ae'0j 

- c. c. = P. i -iü 
o 1 II 

dPj 
=_ 

ülo (Ai + dz u1 10 
dÄ 

_ 
ülo (e_; O' ) 

dz u110 

Assuming for the moment that the second term in d03/dz is negligibly small, and 

introducing the variables 

z= K1 p= jfl A= K2Ä 

then the three equations become 

do; 
dz _ p' 

dpj 
_ 

fi. 1.0 1 (A, -`O2 -F c. c. ) dz ülo K12 K2 

dA 
_ 

ülo K2 Ce_i TZ 
\ ullo Kl / 

Setting 
{t2/3 

2, L+Q 1 -1 K, -i UP 

ü K=1 K2 
1 =dis 

10 

Substituting for ülo and ü110 from (3.91) gives 

(4kuioc zks/zuz cl/z Kl = 
k2 J K2 =2 

/z Ilo 
5/2 

Jý/z 
1 Ilo kll klu' 

Lo 

and the set of equations (3.95) is 

a' = Pý 

dz =- (Ae'o' + c. c. ) 

dA 
dz 

(3.95) 

(3.96) 

(3.97) 
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which are exactly the same equations used to describe the high gain Compton 

FEL [64]. From a linear analysis of these equations, such as the one which will 

be performed in chapter 4, it can be shown that the exponential growth rate, g, 

of the wave field is 

9 =z =Klz = 
k1 

Kiz 
222 kll 

The constant Kl will now be renamed p, and termed the `Fundamental CRM 

Parameter' analagously to the `Fundamental FEL Parameter' [64]. Therefore, 

using (3.96), 

The constant K2 is 

2 

p 8me k2ý u3°µOIDTEJm-i(k1Ra) 

3 
(3.98 

.L 110 

i 
k1l 2 -ý 1 

K2 = p4 kco u30 - 
Cvl 4 (3.99) 

Ilo 

where v has been defined as 

V= 
ký uz° (3.100) 

110 

It is now possible to write the `hat' variables (" ) defined in (3.91) solely in terms 

of p and v i. e. 

Z z=- P=PP 
P 

_v1v, ) U, 1 (3.101) ul = \P/ 
u1 Uli =P( p 

A= (-1 
A (3.102) vP/ 

Using these definitions, the set of five equations (3.86.. 3.90) can be written in 

terms of the universal scaling parameters p and v: 

d0J 
i_l ü (Ae`4' - c. c. ) 

Il. i 
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(PPj - 1) ü2ý (Ae''j + c. c. ) 
II, 

duly (Ae'Oj + c. c. ) dz Ulu 
dull] 

-uli 'Oj p ýý9e + c. c. ) dz Ulu 

-Tz ( II 

where for consistency, u1 and u,, have been redefined as ül and ü11 respectively 

i. e. 

ul Uli 
ul __ ulo 

Uli - 
ulo 

and µ= p/v. Note that ü1 and ü11 are no longer scaled with respect to any beam 

or mode parameters such as I or DTE. It is this which has brought p and it out 

explicitly in the equations. An analysis of these equations and a description of 

the physical significance of the universal scaling parameters p, y and so v will be 

performed in section 3.4. 

3.3 TM Mode Interaction 

The cylindrical components of the electric (E) and magnetic (B) field of a TMmn 

cold cylindrical waveguide mode are 

E,. = -i 
kl ý 

G, (z)DTMJJ (klr)e`* + c. c. (3.103) 

EB 
2rw 

G'(z)DTMJm(klr)etw + c. c. (3.104) 
2 

Ez = 
k2w 

Gs(z)DTM J . (klr)ei* + c. c. (3.105) 

B, =-w E9 (3.106) klIca 

Be =wz Er (3.107) klIc 
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BZ =0 (3.108) 

where: 

DTM = (V f71XmnJm(Xmn))-1 (3.109) 

is a mode dependent constant, Xm, n is the nth root of J�, (k1R,,, ) =0 and G, (z) 

is a slowly varying complex field amplitude with the dimensions of current which 

has the form 

G, (z) = IG. (z)le=((=)) (3.110) 

where IG, (z)l and ý(z) are slowly varying functions of z. All other symbols have 

the same meaning as for the TE mode. 

Equations (3.103.. 3.108) are analogous to (3.7.. 3.12) of the TE mode analysis 

of section 3.2. The derivation of the electron equations of motion and the electro- 

magnetic field evolution equation for a TM,,,,, mode follows that for TEmn, mode 

almost identically. 

3.3.1 Electron Equations of motion 

The components of the Lorentz equation in this case are 

dui., 
= -m. 

ü (E.. 
+ 

1(u 
x B)1 (3.111) 

II 
dull. (+ (u x B)111 

(3.112) 
dz me uII "1 

J 

Writing the components of the Lorentz equations in terms of 0.9, ul and ull, and 

using the vector relations (3.19), (3.20), (3.24) and (3.25), the equations of motion 

can be found to be 

dO9 
= 

ery 
x dz uluIImC 

(3.113) 
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I kikIjC2DTMIGS(=)I ,l 
Jm-i(klr) sin(* +9- ¢9 + 

20, ll -fkUc2 J 
J,,, +i(klr)sin ('Y-9+qg+. ) 

7 

dul ey k1kliC2DTMI G, (z)I ullw 

dz ullme 2w 

(1 
- -ykl, c2) 

x 

Jm-1(kir)cos (l@ +0- Og+e) 
(3.114) 

+ J, +i (klr) cos (IP- 0+ 09 + 4) 

dull 
mek. 

LICa(z)I DTM X 
dz 

Jm-i(klr)cos ('Y+0-O9+4) 
2-y 

+ Jm+i(klr)cos (e -0+x, +4) (3.115) 

-kJ, (klr)cos(%Y+f) 

dt 
_y dz Uli 

(3.116) 

Graf's theorem can now be used to simplify these equations, as 

J. (klr)cos ('+e) = 

Jm-j(kir) cos (T+ 0- o9 + ý) = 

J�, 
-i(klr) sin (' +9- 49 -i- k) = 

Jm+i(klr) cos (W -9}4+ e) _ 

Jm+1(kir) sin (T- 0+ Og + e) = 

00 
E (-1)"Jm+n(k. LRo)Jn(k, LrL) cos S2o 

n=-oo 
00 

E (-1)nJm+n_l(k1Ro)Jn(kirL) cos St- 
n=-oo 

00 
E (-1)nJm+n-l(k1Ro)Jn(kirL) sin fl_ 

n=-oo 
00 

E (-1)nJm+n+l(k1, Ro)Jn(kirL) cos I. 
} 

n=-oo 

00 E (-1)" Jm+n+l(klRo)Jn(klrL) sin 11+ 

n=-oo 

where, as for the TE mode interaction, 

SZo = wt + nO9 - kilz - (m + n)Oo -j- 

SZ_ = wt+(n-1)09-kilz-(m+n-1)Oo+t 
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St+ = wt +(n+1)¢9-kliz-(m+n+1)9o+ß. 

Again, the gyro-angle is split into quickly and slowly varying parts and the equa- 

tions of motion are averaged over a cyclotron period. Using the Bessel function 

relations (3.26) and (3.27), and making the same assumptions as for the TE mode 

case i. e. 

kjrL «17s=1 

where s is the cyclotron harmonic, then 

dz u11\ 'Yo) 

+ ek1DTM 
2ulme wull 

I G'(z)I J'�-i(k1R0) 
(kllc2-l 

1) sin (0 + 

dul 
_e 

klic27 
I cos (0 + ') dz 2m 

k1DTMI Gs(z)I Jm-1(k1Ro) 
(wu 

- 1l 
II 

dull 
- 2u 

DTMI Gs(z)I Jm-i(k1Ro) 
(kc2 

- cos (0 + C) 
llm, wc 

where 

0= (w-w`)t-kliz-¢g')-(m-1)Oo 
7o 

as before. The bracketed term in dull/dz can be altered using the dispersion 

relation for the waveguide mode and the condition for operation close to resonance 

as follows 

k2 c2 
- 

w` 
=w- 

w` 
- 

kll ý- k11ull kllc2'Y 
-1 W77w7 wall 

Using this relation and the fact that 

dO , ), (C-) d (, ) 

dz U11 
w- 

wo-kýý- 
dz 

then the equations of motion become 

d¢ 
_ 

ryw w' 
- kll 

dz U11 Uli 
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(kIIc2. v 
- 

ek1DT MIG., (z) IJ, n-, (k1Ro) - sin (+ (3.117) 2ulme wuli / 
d2\ 

k1DTMI Gs(z)I J,, º,, -1(klRo) 
(k 

-1I cos (0 + ý) (3.118) 
d1- 2mß wull 
dull 

- 
eu1 k1kII 

DTMI G3(z)I J, 
-1(klRo) X dz 2me w, 

Ckllc y_ 1) cos(0+ (3.119) 
wall 

Evaluating d7/dz using (3.118) and (3.119), it is found that 

I cos (0 + 4) 
dz 2m 2w 

DTMI G9(Z)I Jm-i(k1Ro) 
(h1c2'y 

I- 
1\ 

so that on comparison with (3.119), it is clear that 

dy w dull 
dz kllc2 dz 

as expected. The consequence of this relation is that on integrating each side, 

w 
'Y - Yo = (Uli - ullo) (3.120) 

kllc2 

which can be rearranged to give 

I1c2ry 
-1=1 

(kllC2'(0 
- ullo J (3.121) 

wull Uli wl 

Defining p as 

'1w "C 
Uli ullkII 

then 

dp 1l- 
dull 

()±a 
dz 

so the final form of the equations of motion is therefore 

do 
_ dz P (3.122) 

_ 
ek1DTM (k11c2 

II 
70 - ull°) IG'(z)IJm_i(k1Ro) sin (0 + 2m. ulu w 
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dp 
_ 

ek. LkIIDTM (kllc2 
dz 2m ww 

y0 - uil° Jx 
ec 

2 

J�, -, 
(k. LRo) 

ü2 IGs(z)I 
(kl 

- p\ ) cos (ý -ý ý (3.123 
II II / 

dul 
_e k1DTM 

(kllc2 
) dz 2me w 

7'0 - ullo x 

III IG$(z)IJ, 
n-i(k1Ro) cos (0 + 4) (3.124) 

dzll 2e 
kwkll 

DTM 
(kllI 2 

^/0 - Ullo) x 

G8(z)I Jm_1(k1Ro)ul cos (ý + ). (3.125) 
Uli 

These equations constitute the slowly varying electron equations of motion for a 

relativistic electron gyrating in a static magnetic field interacting with a TM�,,, 

waveguide mode at the fundamental cyclotron harmonic. The transverse variation 

of the mode profile is assumed to be negligible over the electron gyro-orbit. 

3.3.2 The Electromagnetic Field Evolution Equation 

As for the TE mode interaction, the electromagnetic field equation is derived 

for the case of steady-state evolution. The starting point of the derivation is 

Maxwell's wave equation 

Cz1 
ä21 

E(r, 
0(r, t) 

ev 
(11. t)) 

O-, t) = µo at - 

where n. here represents the number density of the electrons. Consider the com- 

ponent of the wave equation parallel to the waveguide axis 

z_1 a2 8JZ(r, t) e ön, (r, t) Cý 

cz 8t2) EZ(r't) = µ° at co 8z 

From (3.105), it is clear that E, s can be represented by 

Es(r, t) _ 
(G, (z)es(r, 9)e'ý"'t'kýZý + c. c. ) 

(3.126) 
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where 
Z 

e, (r, 0) = 
klc2 

DTMJm(klr)e-'"' (3.127) 
w 

which satisfies the Helmholtz equation 

(V + kl) eZ(r, 0) =0 

. This means that (3.126) becomes 

(V2 

c öt2) 2 `G3(z)e'("t-kllt) 
+ c. c. ) e, (r, 0) = µ. 

aJ1Bt't) 

- 
CO 

an (r, t) 

(3.128) 

Performing a scalar product of this equation with ez and integrating over the 

cross-sectional area of the waveguide, the LHS of (3.128) can be simplified using 

Lommel's integral [65] 

22 

J rJm(klr)dr = 2. 

fJim(k. 

L&) + 
(1 

-k 
R2l Jm(k1R, ý, )l 0L\1 w/ 

Rw, 
i2 

2 m(Xn+n) 

as x,,,,, = kl R,,, for a TMmn, mode and Jm (X,,,, a) = 0. As the complex field 

amplitude G, (z) is slowly varying, (3.128) can be further simplified using the 

approximation (3.62) and its complex conjugate. This means that (3.128) can be 

written as 

22 
21r 

k 
-L DTM 

2 
-ik11 

dä (z) 
e'(wt-kHz) + c. c 

2w 
J'm(Xmn) _ 

/' ýµo aJýöt, t) 
_oe 

an (, t)1 
e: (r, 8)dA (3.129) JA 

J 
where the steady-state limit has been assumed. 

If the current density J11(r, t) and the electron number density ne(r, t) are 

assumed to be of the same form as the electric field i. e. 

1 i(wt-k z) JII(r, t) =2 (JII. (r, t)e p+c. c. ý (3.130) 
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ne(r, t) _2 
(nC8(r, t)e`ý"t-kýýZý + C. C. 

) (3.131) 

where J11, (r, t) and nes(r, t) are slowly varying functions of z and t such that 

8J11s(r, t) öJll, (r, t) 
öt « IwJlls(r, t) oz «I kIIJII, (r, t)l 

öne. r, t)I «ýwný, (r, t)ý 
l an, (r, t)I « Ikllnea(r, t)I 

then the partial derivatives on the RHS of (3.129) can be approximated by 

aJI I. (r, t) 
N iwJýý3(r, t) 

at 
(3.132) 

On,, (r, t) 
-iklln, s(r, t) (3.133) 

öz 

so 

8JII(r, t) e öp(r, t) 
= 

dJll( ) ekll dp(i) 
µo at eo äz wµo dý + 

eo dpi 
ýý f) (iJll, (r, t)eiýý, t-kpz) + c. c. ) 

II 

where 0= wt - kuz and the relations ne = -JII/(evII) and 1/(µo60) = c2 have 

been used. Using (3.121), equation (3.129) can be written as 

\z 
2a 

kw 2c 
DTMJ-(. kdGs(z)i_kIIz ll)+ c. c) 

2w 
J'Z(Xm�) 

1 (kllý 1 
-wµo 

JA 

ull w 
'Yo - ullo) (iJ09(r, t)eý(L t-khz) + c. c. ) es(r, 9)dA 

Multiplying both sides of (3.135) by e-`Wt and integrating with respect to wt over 

the interval 0 to 2ir, leads to 

z2z () 
-4, r2ikll 

ýkw 
DT 

ý 2v' 
J'2(Xmn)d 

dzz 

iwµo 
ýkýw 

70 - ullo) Jlla(r, t)eikpz 
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To evaluate the slowly varying compoment of the current density, it is necessary 

to multiply both sides of (3.130) by e-t"t and integrate over wt in the range 

0 -+ 2ir. Rearranging then gives 

Jlt) =1 
f21 

JII(r, t)-ýý,: d(wt). 
ý 

(3.135) 

As for the TE mode interaction, the current density Jl(r, t) is represented by a 

collection of N electrons i. e. 

N 

J11(r, t) = -eEvllj(r, t)6(r - rj) 
j=l 

Expressing the delta function as 

6(r : ILL, ) 6(9 - zz) 
r 

and using the fact that 

ö(z-z, )= w S(wt - wta) 
V"3 

then the integral (3.135) becomes 

1 21r N_ % 
J0(r, t)e-t' d(wt) = --Eý(r 

r 

rj) 6(e - Oj)e-""c,. Jo 
j=1 

Using (3.127) for e, the definition of the current 

N New 
I_ -1I'_ 2w 

; _l 

and the definition of DTM, (3.109), then the differential equation for the slowly 

varying complex amplitude G. (z, t) is 

dG3 
_ -µoIwz k11c2 l 

DTýt 
w- 

ullý/ 
(Jm(lcir)_i(wt_kNz)) 

Ull 
(3.136) 
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From Graf's theorem, 

00 
Jm(kir)e- ki =E (-1)n. jm. Fn(k1Ro). 1n(k. LrL)e-i(", 

t-kllz-nm9-(m+n)6o) 

n=--oo 

so splitting 09 into quickly and slowly varying parts, averaging (3.136) over a 

cyclotron period and specifying that 

s=1 kjrL«1 

allows (3.136) to be written as 

dGs(z) 
- 

-µolklw2 ýkllc2 l ul sýý 
dz 2c2kllkýullo w 

ryo - ullo/ DTMJm-l(klRo) 
\ Uli 

(3.137) 

This is the steady-state evolution equation for the slowly varying complex ampli- 

tude of a TM�,,, waveguide mode due to its interaction with a beam of relativistic 

electrons gyrating in a static magnetic field. The interaction is assumed to occur 

at the fundamental cyclotron harmonic and the transverse variation of the mode 

profile is assumed to be negligible over the gyro-orbit of the electrons. 

3.3.3 Wave Group Velocity and Electron Axial Velocity 

It is immediately noticeable that all the equations of motion and the wave equa- 

tion for the TM mode interaction contain the term v97o - U1)o, where v9 = c2kll/w 

is the radiation group velocity. This implies that if the electron axial velocity is 

equal to the radiation group velocity, then the electrons and the radiation do not 

interact. The physical reason for this can be deduced by considering a frame of 

reference, K', in which the electron has only transverse momentum i. e. one which 

travels at a speed of vil parallel to the waveguide axis relative to the laboratory 
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frame, K. The electric and magnetic fields of the wave in K are E= (Er, EB, Ez) 

and B= (BT, Be, BZ) respectively. Similarly in K', the electric and magnetic 

fields are E' = (Er, EB, EZ) and B' = (B,, Be, B=) respectively. The relations 

between the electric field components in the two frames are given by 

Er = 7(E* - vIIBe) ' 
Ee = 'Y(Ee + vIIB*) , EZ = E_ 

Using (3.103.. 3.107), the components of E' are therefore 

ET = (1-vll)ET 
v9 

El B= (1-v")E9 
v9 

El = EE 

Therefore if vjj = v9, there is no transverse electric field in K'. Consequently, the 

rate of energy exchange is zero because 

dt 
a E'. v' = E' v, + E'yvy + Eiv's =0 

as Ez, E, and vz are all zero. Therefore no interaction occurs between the electron 

and the radiation field when V11 = vs. 

3.3.4 Scaling the TM Mode Evolution Equations 

The full set of electron and field evolution equations are 

dq' 
dz = Pi (3.138) 

ek1 DTM kll c2 

C 7o - ullo\ J J, n-1(k1Ro) 
(G3e''' - c. c. ) +Z 

4m. u1, ull; w/ 
dpi 

__ 
ekIk1IDTMt k1Ic2 

dz 4mýw, 

(w 
'to - ullo Jx 
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a ( 
J, 

-I 
(kýRo) 2' (III - Pj) (Gsetmi + c. c. ) (3.139) 

Ili \ 
dul; 

_e klDTM 
kilc2 ) 

ry0 - ull°X dz 4m, 
(w 

1 
Jm_l(k. LRo) (G3e`O' + c. c. ) (3.140) 

uni 
(2 ddzl' 

4me e 

kw 11 DTrr (klw 70 - ullo) x 

Jm_1(k. LR°)u' (G, etO'+c. c. ) (3.141) 
uIIi 

dG, (z) 
- 

-jz°Iklw2 Ikllc2 ) 
dz 2c2kllk oulio w 

70 - ull °J x 

DTMJm_1(k1Ro) ` ul 
e-'ý) (3.142) 

\ Uli 

where tj and p; have the same definition as for the TE mode interaction and 

j=L. N. It has again been assumed that there is no spread in the perpendicular 

or parallel momenta of the electrons i. e. ulo and u1jo are the same for all electrons. 

From this point on, the procedure for scaling the evolution equations is identical to 

that which was performed for the TE mode interaction in section 3.2.3. Defining 

z' = 2koz , p' = 2kß 
Uli 

ul 
u10 

ull 
Ull° 

- 
ekll 1 (kilý 

/ `4 __ 8meckl uHo w 
_, j0 - uII° DT M, m-1(k1Ro)Ga(x) 

then (3.138.. 3.142) become 

2 dk 
kau 

1 (A'e'O' - c. c. ) (3.143) 
II IIo ul; uII, 

ýA e+c. c. ) (3.144) 
dp; kicula ki ui . iOj 
dz' kýu2 

C2kllký 
- P' 

u12 IIo III 
2 dz 

k kýulo u' 
(A'e`Oj + c. c. ) (3.145) 

II lu 
!! U k2 jc"10 ulJ +m 
dz' k2 u2 u' 

ýA e+c. c. ) (3.146) 
CO Ilo II, 
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dA' eµolw2 ulo k11c2 2 

dz' _ 32mec3k2 uo 

(w 
ry0 - UP x 

.0 II 

DTMJm-i(k1Ro) ul (3.147) 
uI1 

Note that (3.143.. 3.146) are identical in form to (3.81.. 3.84). Therefore, from the 

scaling process used for the TE mode interaction, the following variables can be 

used 

C1Z 7 i1 - Cd 7 2L1 = C34L1 ' till = C4uIII 
' `4 = CSA' 

and the constants c;, i=1.. 5 can be defined by setting the coefficients in the 

resulting set of equations to 1. Therefore, as for the TE mode interaction, the 

set of equations is 

dO' 
dz 

1 (Ae' 
- c. c. 

u ü li lli 
dfij 

-1) 
ü2' (Ae'3 + c. c. dz Ih 

dä11 
=1 

(Ae'41 + c. c. 
) 

dz uI, \ 
dülli 

= 
ulj (Ae'm' + c. c. 

) 
dz ülli 

dA 
_ 

ül 
-=o 

\ 
dz u1I 

where 
1k 

zP= kP 
k1i 

=nrk1 
IcýýusO 1 1: u, _1u. LO 11 u/ 

(3.148) 
} 

up 
1` 4k'ýe J) 1 till =2 ck k,:. JI 11 

1 
1 k° cut 

_o 
1"i A A= 

upo 4k1k'ý 7 

and the only difference from the TE mode case is in the definition of J which in 

this case is 

e/4o1w2 U. LO kl1c2 222 
J= 7o - ullo DTMJm-., (k1Ro)" (3.149) 

32mec3ke, 2 ; w ullo 
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Following the analysis of the TE mode interaction, these equations can be rewrit- 

ten in terms of the variables 

z =K11 ,p= 
Ki 

1 ul I uII 
u1 =U 1= ulo , üll = U11 = 

olio 

A= K2Ä 

where Kl and K2 have been defined in (3.96). Consequently, the constant Kl 

will be renamed PTM, which is found to be 

PTM =e 
w2 

µolu° 
(kliC2ryo 

-1) 
2 

DTM 
l II 

Jm-i(k1Ro) (3.150) 8m. c2 kk2 U3 0 Wu 110 / 

using (3.149). The constant K2 then becomes 

K2 - 
(PTM1 i 

vI 

where v is given by (3.100). Note that unlike p, the definition of v is independent 

of the mode type. As for TE modes, the `hat' variables (" ) can be written in 

terms of p and v i. e. 

z 
z P=PP 

P 

ul - 
Cpul 

, Uli 
pP 

ull 

Ä- 
\P)! 14 

The set of evolution equations for both TE and TM modes is therefore 

d' 
= P. i - ill 

II 
(Ae'O' - c. c. ) (3.151) 

dzi = (PP' - 1)u" (A`41' + c. c. ) (3.152) 
ib 
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dul' (Ae"' + c. c. ) (3.153) 
dz Ili 

diillj 
_ 

ul' (Aet + c. c. ) (3.154) 
dz Il, 
d`4 

= 
ül (3.155) 

\ II / 

where µ= p/v, P" PTE for a TE mode interaction and p= PTM for a TM mode 

interaction. 

It has been shown that the interaction between a relativistic beam of electrons 

gyrating and drifting in a uniform magnetic field and a TE,,,,, or TM,,, waveguide 

mode can be described by the same set of universally scaled evolution equations. 

The difference between the two interactions is incorporated into the analysis by 

using different definitions of the p parameter for each case. 

3.4 Analysis of the Scaled Equations 

In this section, the universally scaled equations derived in the previous sections 

will be used to investigate the physical processes which occur during the CRM 

interaction in the steady-state regime. 

3.4.1 Constants of the Motion 

It is possible to obtain a constant of the motion relating the scaled electromagnetic 

field intensity to the axial momenta of the electrons by averaging (3.154) over a 

range of ý from 0 to 27r, which results in 

dell) 
__ _p Ä(ü-L - 

e`0) + Ä-(ul e 'ý)) 
dz III Uli 
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(Äddi 
+ `4* dz 

) 

_ 
diiAl2 

P dz 

where (3.155) has also been used. Consequently, 

d 
;i (plýl2 + (, all)) =o 

so the constant of motion relating the scaled axial momentum of the electrons to 

the electromagnetic field intensity is 

PIAI2 + (II) = PIAoI2 +1 (3.156) 

as A= Ao and ü11 =1 atz = 0. Using (3.121), (3.156) can be rearranged to give 

p (IAI2 - IAoj 2) = 
Ilo 

('Yoryo 1)77 
(3.157) 

V 

where n is the interaction efficiency, defined as 

7o - (, y) 

and v9 = c2kll/w is the group velocity of the radiation. 

From (3.152.. 3.154), there is a functional relationship between the variables 

p, ül and ü11 which is just (3.92) written in the new scaling i. e. 

-2 

PP1 1 ülldp = -µä11dä1. _ --ä11dä11 (3.158) 

This means that Ül and p can be written in terms of the axial momentum ü1j, 

and two of the five evolution equations become redundant. The interaction can 

therefore be described by the three evolution equations 

d4j 
_1 6- 

1) 
+1 -i 

µ (Ae`'O" - c. c. )(3.159) 
dz üil; lpP 

üili 1+p Fu- 
-1ý 
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2l 
dü l+ý ýull; 1J 

II; 
di 

(Ae"'j + c. c. ) (3.160) 
ull; 

s dA 
_1+ 

(fill 
- 1) 

e_ým (3.161) 
dz fill 

Note that fill can be expressed in terms of u1. i. e. 

üýý =2 (mal - 1) +1 (3.162) 

The parameter v= p/µ therefore determines the amount of axial momentum 

change relative to the perpendicular energy change of the electron. 

Substituting for ü11 in (3.156) produces a constant of motion relating the per- 

pendicular momenta of the electrons to the electromagnetic field intensity : 

P (1A12 -1A012) = -2 ((i) -1) (3.163) 

From (3.157), it is clear that the efficiency will be maximised when (ü) =0 

i. e. when the transverse energy of the electrons is exhausted. If this occurs, the 

efficiency will be 

77ma= = 
vll° 7o v 
v9 ('Yo - 1) 2 

(3.164) 

Consequently, sufficiently small values of v will limit the energy of the electron 

beam available for transfer to the radiation field. For this reason, v is termed the 

`Free Energy Parameter'. It is now apparent why v does not depend on whether 

a TE or TM mode is involved in the interaction. Note that, from the definition 

of v, 

r/max = `2c2 ('ye 1) (w /'Yo) 

This suggests that for a given set of beam parameters, if all the transverse electron 

energy is exhausted, interactions which involve a large Doppler shift (e. g. CARM, 
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where w»w, /-yo) will be more efficient than those involving small Doppler shifts 

, 
/%). As this is that which would occur if every (e. g. gyrotron, where w wc 

particle gave up all its transverse energy to the field, it is sometimes termed the 

`single particle efficiency' and denoted by 71, p 
[19]. The actual efficiency of the 

interaction is then 

77 = i1sp (1 - (iii) 

3.4.2 The Meaning of p 

From (3.157), it can be seen that the limit p«1 corresponds to the limit of 

low efficiency. The reason for this is apparent from (3.154), which when p«1 

implies 

üll 1 (3.165) 

so clearly very little energy is being extracted from the axial motion of the elec- 

trons. i. e. the `recoil' of the electrons is negligible. The energy extraction is 

therefore almost exclusively from the perpendicular energy of the electrons. A 

consequence of (3.165) is that the functional relation between p and ül becomes 

ül =1+ 2µ(p - 6) (3.166) 

where 8= p(z = 0) is the initial detuning from resonance. The set of equations 

(3.151.. 3.155) can then be reduced to 

di Nj= 
P' -t1 f- 2µ(P - s) 

(Ae'#j - c. c. ) (3.167) 
d 

Lpj 
dz =-1+ 2fý(pi - 8) (Ae`#1 + c. c. ) (3.168) 
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dA 
- 

(VI-1 2µP 
dz 

(3.169) 

For the purposes of numerical integration, it is better to rewrite (3.167.. 3.169) in 

terms of ül using (3.166) to give 

2_ d-O' 
= 

u12µ 1+S-i 1j (Ae''' - c. c. ) (3.170) 

dulj 
= -µ (Ae=Oi + c. c. ) (3.171) 

dz 
dA 

= (üle-`o) (3.172) 
dz 

Averaging (3.168) over 0, it is possible to find a constant of the motion for 

this set of equations as 

d(p) (A(/i { 2µ(P - b)e`O) + A*( výl 1+ 2µ(P 
dz - b)e 'ý>1 

- _\Aa +A*d 
/ 

_ 
dIA12 

dz 

where (3.169) has also been used. Consequently, 

TZ (IA 12 + (p)) =o 

so that 

IAI2 + (p) = iA012+6 (3.173) 

as A= AO and 6 at x=0. Multiplying both sides of (3.173) by p and using 

(3.157) then it is easily shown that 

9 
vigo ýý 

yý 
1) 

(3.174) 

so the energy change of the jth electron is proportional to p (p, - Sj) in the limit 

p«1i. e. in this limit, the change in the detuning of the electron (pj - S; ) is 

directly proportional to the energy change of the electron. 
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In addition to the energy conservation relation, there is also a phase-dependent 

constant of motion. If b is used to represent the source term of the wave equation 

i. e. 

b= (T+ 2µ(P - 6)e-'o) (3.175) 

then the evolution equations (3.167.. 3.169) can be used to show that 

d 
(A`b-Ab`)=il p\=2d(jz) (3.176) 

di di 

so the constant of the motion is 

(2 2) 
+i (A` b- Ab') = constant (3.177) 

This constant is actually the Hamiltonian of the system and will be discussed in 

more detail in section 5.1. 

Consider now the effect of relaxing the limit p«1. This implies that the 

axial momentum and hence the energy of the electrons can now vary appreciably, 

leading to higher efficiencies. One method of increasing p is to increase the beam 

current and consequently the electron density of the beam. However, when the 

electron density of the beam is large, it becomes necessary to include the effect 

of space charge forces on the interaction. Unfortunately, although the problem of 

space-charge effects can be tackled more readily in devices such as the FEL [66] 

where the space charge forces depend on the relative positions of the electrons 

in only one dimension (z), this is not the case for CRM-type devices where the 

space charge forces also depend on the transverse position of the electrons. For 

this reason, the analysis described here neglects high-beam density effects, as 

they require a full three-dimensional treatment. 
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When p It 1 and p>0, the sign of the factor pp -1 in (3.152) becomes 

important. Comparing (3.152) with its unscaled equivalent (3.80), and recalling 

the significance of each term in the bracket of (3.80), it is clear that the 1 in 

pp -1 arises from the change in the electron energy, whereas the pp arises from 

the change in the axial velocity of the electron. In chapter 2, it was shown that 

changes in -y resulted in azimuthal bunching, whereas changes in vIl resulted in ax- 

ial bunching. The sign of pö -1 therefore determines which bunching mechanism 

is dominant. If pb = 1, dpldz will be zero. This means that p remains constant, 

even while the energy of the electron is changing. Note that for a significant 

energy exchange to occur, 6 cannot be very large, so this effect cannot occur for 

small values of p. i. e. the variation of the axial momentum of the electron plays 

a crucial role. Asp is a constant under these conditions, if the electron and the 

field are initially close to resonance, they will remain close to resonance for as 

long as free energy depletion effects remain small. The condition 

pö=1 (3.178) 

is therefore the condition for exact autoresonance to occur, where the change 

in the cyclotron frequency of the electron (w/y) due to the variation of the 

relativistic electron mass is exactly compensated by the change in the Doppler 

shift (kilull/ry) due to the variation of the axial momentum of the electron. The 

product p8 =6 so (3.178) can be written in unscaled variables using (3.91) as 

We k2 
w- 

, to - 
kllvllo - kll vllo (3.179) 

When averaging the evolution equations in sections 3.2 and 3.3 over a gyro- 

period to make the resultant equations slowly varying, it was necessary to use 
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the condition 

w-wc-kll"Ilo~0 (3.180) 
1o 

so for consistency (3.178) can only be satified for waveguide modes which prop- 

agate close to the waveguide axis i. e. kl « k1j. The axial electron velocity must 

remain finite as this analysis is concerned with convective instabilities only, i. e. 

those which propagate in space. Note that (3.179) implies that it is only possible 

for autoresonance to occur at exact resonance in free space (k1 = 0). Devices 

which operate using a relativistic electron beam gyrating in a uniform magnetic 

field in free space are termed `nonwiggler FELs' [67,68]. For autoresonance to 

occur in a system where the radiation field is contained within a waveguide, a 

positive detuning is necessary. 

3.4.3 The Meaning of µ 

When the limit µ«1 is applied, it can be seen from (3.153) that 

ül-1 (3.181) 

Therefore, the perpendicular momentum of the electrons remains approximately 

constant. The equations (3.167.. 3.169) in the limit µ«1 are 

dO; 
= dz -P' 

(3.182) 

Lpj 
dz = -(Ae`4" + c. c. ) (3.183) 

dA 
(3.184) dz 
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Note that these equations were derived in section 3.2.3, after several approxima- 

tions were made. i. e. 

IPI, ýbý «1 (3.185) 

2üllo (p _ 
S) «1, ü«1 

(3.186) 
10 I) 1 

Writing the `hat' variables (" ) in terms of p and p using (3.101), the conditions 

(3.185) and (3.186) correspond to the limits p«1 and µ«1 respectively. On 

inspection of equations (3.182.. 3.183), it can be seen that the number of electron 

variables has been reduced to just two: the phase or position of the electrons 

in the ponderomotive potential due to the combined action of the electron mo- 

tion in the guiding magnetic field and the wave field, and the energy change 

of the electron. It is possible under certain conditions to reduce the equations 

of motion for several other beam-wave devices e. g. Compton FELs, Cerenkov 

masers and Smith-Purcell lasers to exactly the form of (3.182.. 3.184) [69]. The 

gain-mechanism in all these devices is due to electrons bunching in phase due 

to the action of the electromagnetic field and collectively losing energy to the 

field. The special property of equations (3.182.. 3.184) is that there are no free 

parameters, so for the initial conditions of 6=0 and IAoI2 < 1, there is only one 

solution, which is shown in figure 3.3. The value of the scaled electromagnetic 

field intensity at saturation is JA12 %Z 1.4. It has already been shown in (3.157) 

that 
U 

p(tAl2-1A012)«'7aUB 

where UF and Ub are the energy densities of the electromagnetic field and the 

electron beam respectively. The beam energy density is proportional to the elec- 
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Figure 3.3: Solution to equations (3.182.. 3.184) 
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tron number density, n., which can be shown to be proportional to p3 from (3.98) 

and (3.150). Consequently, at saturation, where 1A12 -1 and jA012 < 1A12, the 

electromagnetic field intensity I, at varies as 

Iaut OC p4 OC t1.4/3 (3.187) 

This simple deduction demonstrates the usefulness of the universal scaling in 

determining the physical relationship between different quantities. 

Consider now the effect of relaxing the limit on µ. Inspection of (3.153) shows 

that the perpendicular momentum of any electron may vary appreciably from 

its initial value. From equations (3.167) and (3.168) it can be seen that as the 

field amplitude grows then for an electron which is giving up its perpendicular 

energy to the field, as ül decreases the second term in (3.167) will cause dOj/dz 

to become large. The electrons losing transverse energy to the field therefore tend 

to fall out of resonance and their energy exchange with the field becomes small. 

This loss of resonance does not occur for electrons which are absorbing energy 

from the field. This effect is termed `Free Energy Depletion' [51] as it is due to the 

exhaustion of the free energy of the beam which drives the interaction. From the 

simple arguments above, it is obvious that free energy depletion has a detrimental 

effect on the amplification of the radiation. As p determines the importance of 

free energy depletion effects, it is named the `Depletion Parameter'. The second 

term in (3.167) is sometimes called the `force bunching' term as it is proportional 

to the field amplitude. The first term is called the `inertial bunching' term as it is 

related to the variation of the relativistic mass change and the axial momentum 

variation of the electron. 
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Figure 3.4 shows the evolution of an initially monoenergetic, resonant (S = 0), 

unbunched electron beam for the case where free energy depletion effects are 

negligible (µ « 1). The electrons can be seen to bunch in phase (q =0+ ý) 

as the interaction progresses. These bunched electrons then lose energy to the 

wave until saturation is reached when the bunched electrons reach the bottom of 

the potential well. After saturation, the electrons trapped in the potential well 

oscillate about the potential minimum. In the FEL literature, these oscillations 

are called `synchrotron oscillations' [70]. Figure 3.5 shows the evolution of a beam 

of electrons for the same initial conditions as that of figure 3.4 with the exception 

that free energy depletion effects are not negligible (µ = 0.5 in this case). It can 

be seen that although the electrons begin to bunch in phase and lose energy to 

the wave, they only lose a relatively small amount of energy before the free energy 

depletion effects cause the bunched electrons to disperse, effectively halting the 

energy exchange. From the relation between ül and p in the limit p«1, equation 

(3.166), it is clear that there is a lower limit on p of 

Pmn =-1 (3.188 

which corresponds to the value of p when ül = 0. The limit is clearly seen in 

figure 3.5, where µ=0.5 and 5=0, so p. j,, = -1. 

The effect of different values of it for the same p parameter on the radiation 

field evolution is seen from numerical solutions to equations (3.151.. 3.155) for a 

case where the electrons and the electromagnetic field are resonant (5 = 0) in 

figure 3.6. To obtain these solutions, a collection of N particles, (N = 50 in the 

cases shown here), were spaced equally in 0 over the range 0 to 2ir and the field 
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Figure 3.4: Electron evolution when free energy effects are negligible (µ < 1). 
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Figure 3.5: Electron evolution when free energy effects are significant (µ It 1). 
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amplitude was set at a small value (JAI = 10-2 here) atz = 0. As µ is increased, 

it can be seen that changes occur in several regions of the field evolution : At the 

beginning of the interaction, the field intensity remains approximately constant 

when 2<1 for small values of µ. This phenomena is called 'lethargy' and will be 

treated in more detail in chapter 4. As p is increased, the field intensity decreases 

in this region before increasing and entering the region of exponential growth. It 

can be seen from the graphs that another effect of increasing µ is to decrease the 

rate of exponential growth and the value of the field intensity at saturation. A 

plot of the saturation intensity against it is shown in figure 3.7 for the conditions 

used to obtain graphs (a).. (c) in figure 3.6. The other main effect of increasing 

µ which can be seen from these graphs is that the synchrotron-type oscillations 

which occur after saturation for small values of it become less pronounced, with 

both their amplitude and regularity decreasing. This is due to the fact that at 

saturation, the electrons which have lost energy to the field no longer oscillate 

about the bottom of a potential well as was the case for µ«1 as their phase 

`velocity' d4/dz increases as they lose energy, making trapping impossible. 

3.4.4 Axial Momentum Depletion 

Consider the relation between the axial momentum change of an electron and 

the change in its perpendicular energy, which is found by rearranging (3.162) and 

states that 

ü0 -1_p (3.189) 
12 ül -µ 
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If p> 2µ, then fi < ül and it becomes possible for ü11 -> 0 and become negative. 

i. e. the electron can slow down, stop and begin to move backwards. This causes 

the solution to the evolution equations to be numerically unstable as the integra- 

tion is with carried out with respect to z. This was found to occur when pý0.4. 

In an attempt to avoid this problem in a numerical integration, any electrons 

whose axial momentum approaches sufficiently close to zero is `switched off' and 

makes no further contribution to the evolution of the radiation field. This is jus- 

tified physically because an electron travelling in the opposite direction to that of 

the field propagation will be massively out of resonance with the electromagnetic 

field. 

3.4.5 Energy and Momentum Spreads 

The derivation of equations (3.151.. 3.155) was carried out for the case of no 

spread in the electron energies or momenta. For the case where spreads in these 

quantities exist and the interaction involves a TE mode, these same equations 

can be used if a different definition of ül and ü is used i. e. 

_ 
UI 

_ 
UI, 

ýl _ Zu1o) ull ýu110) 

The definitions of p and v then become 

k2 2 

8mß k1 (ul10)3 po1D2E'Jm-l(k1Ro) (3.190) 
. 
2L T 

V_ 
kll (ulo)2 

(3.191) 
k0 (u110)2 
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The constant of motion (3.156) is unchanged for the case of momentum spreads 

but (3.163) becomes 

(IAI2 - 1A012) =2 (1 + DLO _ )2ii) 
(3.192) 

where a2 0 is the variance of the initial distribution of transverse electron mo- 

menta. In addition, the relation between the scaled field intensity and the inter- 

action efficiency, i, becomes 

P (1AI2 - 1Ao1Z) 
(ullo) 

((-Yo) - 1)71 (3.193) 

where 77 is now defined as 

70 ( 7) 
(7o) -1 

An attempt was made to apply this type of scaling to interactions involving 

TM modes and electron beams with spreads in energy and momentum. However, 

due to the presence of the (v9yo1 - ullo3) terms in (3.138.. 3.142), the averaging 

over the initial distributions was found to be inhibitively complicated. 

3.5 Conclusions 

It has been shown in this chapter that starting from the Lorentz equation of 

motion for an electron in an electromagnetic field and Maxwell's equations, it 

is possible to derive a system of universally scaled equations which describe the 

processes which occur in a CRM amplifier in the steady-state regime. Using 

this universally scaled set, the number of parameters is reduced to just three, p, 

the fundamental cyclotron parameter, v, the free energy parameter, and 6, the 

detuning parameter. p and v are then combined to form the depletion parameter, 
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p. By considering various limits of these parameters, the different phenomena 

which occur in CRM amplifiers were studied. In the limit where the variation of 

the transverse and axial momentum of the electron beam was very small, the set 

of evolution equations reduced to a set which had no free parameters. This set of 

equations can also be used to describe the gain mechanism in several other types 

of electron beam-wave devices such as the high-gain Compton FEL, the Cerenkov 

maser and the Smith-Purcell laser. 
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Chapter 4 

Linear Analysis of the CRM 

Interaction 

4.1 Introduction 

In this chapter, the linear regime of the CRM interaction in the steady state limit 

is analysed using the scaled evolution equations derived in chapter 3. The linear 

analysis described in this chapter is performed using a different method from the 

conventional plasma theoretical approaches which were reviewed in chapter 2. 

The results of the differing analyses will be discussed and compared. 

4.2 Linear Analysis 

The linear analysis described here uses the method of `Collective Variables' [71] 

and is performed for the case of no spread in the electron energy or momenta. 
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For convenience, the following variables are introduced : 

0' = ¢-S2 (4.1) 

p' =p-ö (4.2) 

A' _ Aei6Z (4.3) 

The evolution equations (3.151.. 3.155) are linearised about their equilibrium val- 

ues 

(e'=. kö) =0 

Pjo = 0, Ü LjO = 1, ulljo =1b .7 

A0' =O 

which corresponds to a boundary condition of an unbunched beam with no field 

excitation at z=0. Linearising around their equilibrium values the dependent 

variables are 

0j = 'Yjo + Oji (4.4) 

11j = p'j1 (4.5) 

ZL1j =1+ uljl (4.6) 

ullj =1+ filf11 (4.7) 

A' = A'1 (4.8) 

where all subscripts `1' refer to small changes from equilibrium. The linearised 

evolution equations are obtained by substituting (4.4.. 4.8) in (3.151.. 3.155) and 

neglecting all terms of second order and above. The resultant linear equations 
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are 

dO',, 
= pjl - iµ(A' e, ojo 

- c. c. ) dz (4.9) 

dp'1 
- (pb - 1) (Aeo + c. c) (4.10) 

dz 
düz 1= 

-µ 
(Aie`0j° +c. c) (4.11) 

diii, ji (Ae"o + c. c) (4.12) 
dz 

d1= -z 
(e `ý0) + (u11& )- (üiiie) + i5A, (4.13) 

Defining the collective variables as 

b= -i 
(ale-`ýý) (4.14) 

P= Cpie-'ýý } (4.15) 

Ul = 
(üile-'ýý (4.16) 

Uli = 
(ü, 

iie) (4.17) 

(4.18) 

the following can be easily obtained from (4.9.. 4.13) : 

db 
dz - -iP - µA (4.19) 

dP 
dz _ - (pö - 1)A (4.20) 

dUl 
dz (4.21) 

dUll 
dz - -pA (4.22) 

dA 
dz = b+Ul-UII+ibA (4.23) 

where terms proportional to (e-i2 ) have been dropped and Ai has been writ- 

ten simply as A. Laplace transforming this set of equations using the standard 
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Laplace transform : 

f X(s) = 
00 

X(z)e-'Zdz (4.24) 

gives 

sb = -iP - µA (4.25) 

sP = (p6 - 1)A (4.26) 

sUl = -µA (4.27) 

sÜ11 = -pA (4.28) 

sA - Ao = b+Ül - 
O+ i6A (4.29) 

where the boundary conditions bo = Po = Ufo = Up =0 and A(z = 0) = Ao 

have been utilised. Equations (4.25.. 4.29) can now be rearranged, reducing the 

system of equations to a single equation for A(s) i. e. 

A(s) = 
s2Ap 

s3 - ibs2 +(2y - p)s - i(1 - pb) 
(4.30) 

When inverted, this expression describes the steady-state evolution of the elec- 

tromagnetic field in the linear regime. The inverse Laplace transform of (4.24) is 

defined as 

1 /c+ioo X(z) = 2ýi J __ý 

X(s)e'zds (z > 0) (4.31) 

where o is greater than the real part of any of the singularities of the integrand. 

Introducing the change of variable 

A_ -is (4.32) 

then the inverse Laplace transform of (4.30) becomes 

1r-ýo 
A(z) =2J Ä(A)e`a'dA (z > 0) (4.33) 

00-to 
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where the transformed field variable expressed in terms of A is 

-ia2Ao (4) A(ý) = A3 - Sý2+ (p - 2µ)a + (1 - pö) . 34 

As the denominator of A(a) is a cubic, the integrand of (4.33) has three simple 

poles, so the integral becomes the sum of the residues multiplied by 27ri i. e. 
32 

A(z) = AoE (a 
- . ýketýkZ- .ý 

(k 0 154 'n) (4.35) 
k=1 k ! )( k m) 

where A1,2,3 are the roots of the denominator of equation (4.34) which forms the 

dispersion relation 

. \3-5X2+(p-2µ))-F(1-p5)=0 (4.36) 

The above analysis can be repeated for the alternative set of boundary conditions 

which correspond to a small initial bunching of the electron phases and zero initial 

field i. e. Ao = Po = Ulo = Ullo =0 and bo = (e'`00) 34 0. The expression for the 

resultant field amplitude in this case is 

3 Ake. aki 

A(z) -ZbE(Ak 
- \1) (Ak - \,, ) 

(k'6 1 '4 m) (4.37) 

As Aa e'l`A; £ for both the above cases, the system will be unstable if the 

dispersion relation has complex roots. These roots will always occur as a complex 

conjugate pair. Complex roots will occur when 

64 p-83+2p2b2+10pb2µ-9pb- 

s2 p2-96Ei+p3-6p2lA+ 12pß2-8143+ 
27 

> 0. (4.38) 

The exponentially growing term will be 

, 
A(z) a exp (I3`(a3(b, p, µ)I)z) (4.39) 
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where s() (ö, p, µ)) is the negative imaginary part of the complex conjugate pair 

of roots which occur when (4.38) is satisfied. At resonance (b = 0), and when 

both p and µ are «1i. e. when the variation of both the perpendicular and the 

axial momentum of the electrons is small then ý (A3(S, p, µ))I = V312 and using 

the definition of z given in (3.101), (4.39) can be rewritten as 

A(z) a exp ( 
32II kz 

pz) 

so the spatial growth rate of the field amplitude is 

v'3- ki 
-2 kll P (4.40) 

The significance of the scaling of z is now apparent : the interaction distance 

has been scaled with respect to the growth rate of the exponential instability at 

resonance in the limit p and µKIi. e. z oc gz. Substituting for p using the 

definition (3.98) for a TE mode interaction or (3.150) for a TM mode interaction, 

the expressions for the spatial growth rate of the instability for an axis-encircling 

beam (RD = 0) in terms of unscaled variables, (2.17) and (2.18), are reproduced. 

If it is assumed that the electrons and the field are resonant (b = 0), the 

condition for the system to be unstable, from (4.38) becomes 

2µ-p< 
27 (4) 

This shows the different nature of p and it with regard to the linear stability of the 

system: increasing µ has a stabilising effect on the interaction whereas increasing 

p has a destabilising effect. Whereas p represents the growth rate of the field 

amplitude, µ can be interpreted as the decay rate of the transverse energy of the 
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beam. A plot of 1 (A3(b, p, p))j at resonance for different values of p and p is 

shown in figure 4.1. 

4.2.1 The Low Efficiency Limit 

When p -+ 0, the axial momentum of the electrons remains approximately con- 

stant. From (3.157), the efficiency i7 varies as 71 oc plAI2, this condition implies 

that the efficiency of the interaction will be small. 

The full expression for the electromagnetic field amplitude in the linear regime 

(4.35) can be written in the more compact form 

3 

A(z) = AoEcke'4f (4.41) 
k=1 

A2 
k(k 

7' 1 m) where Ck = (\k 
- 

AJ)(Ak - 
SA, 

n) 

The scaled field intensity in the linear regime is therefore the product of (4.41) 

with its complex conjugate. In the low effeciency limit p. 0, where the recoil of 

the electrons is negligible, the dispersion relation (4.36) becomes 

A3 - &A2 - 21a +1s. 0 (4.42) 

where it has been assumed that we are close enough to resonance so that pb < 1. 

A plot of I (A3 (ö, p, µ)) I for various values of 6 and µ is shown in figure 4.2. Note 

that the maximum occurs when p=0 and 6=0. The threshold condition which 

6 and µ must satisfy for instability to occur is 

63+62,12+9611+8113 < 47 (4.43) 

which has been obtained by taking the limit p -' 0 in (4.38). From this, the value 

of it above which the system is linearly stable at resonance is µT = '/25T/-32. 
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Similarly, the threshold value of 6 above which the system is linearly stable is 

5T= 3 27/4 atµ=0. 

For the special case of resonance and µ 0, the three roots of the cubic (4.42) 

are 

A, ; zt -1 , 
A2 ti 

2i, 
A3 

.:: -2i 

and the scaled intensity JAI2 and field phase ý vary with x as 

i 
Aý2(z) 

9I [4c0sh2 

($) z+4 cos 
(2 

x) cosh ($) z+1 (4.44) 

dý Iýýa 
[cosh 

V+ sin (ZZ) sinh 
(4z) 

(4.45) 
dz 91A12 

- cos (Z z) cosh 
(4z) 

The scaled intensity IA(z)12 as calculated from the the linear solution for the 

electromagnetic field (4.41) is plotted against z in figure 4.3 for a resonant beam 

(b = 0) and for p=0.01 and four values of p: (a) 0.01 (b) 0.4 (c) 0.7 and (d)1. 

Graph (a) is approximately that which would be produced by the expression 

(4.44). In all the graphs, the intensity remains close to or less than its initial 

value near z=0, due to interference between the three terms of (4.41). Each 

term can be considered as a partial wave, one of which is growing, one is decaying 

and the other is purely oscillatory. This interference of the three partial waves is 

termed `lethargy' [71]. 

The gain function is defined as 

G(zý b, ý) = 
IAI2(IAoI2IAo12 

(4.46) 

As G-1 in the region where lethargy occurs, it is also called the `low-gain 

regime' as opposed to the `high-gain' regime where G>1 and the field intensity 
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is growing exponentially. The length of the low gain regime or `lethargy length', 

LI, can be evaluated approximately as the distance travelled before the amplitude 

of the exponentially growing term increases to e times its initial value. i. e. 

1 
`~I (x3(89 P, µ)) 

(4.47) 

For iý L1, the system is in the low-gain regime, and for i> L1, the system is in the 

high-gain regime. From figure 4.3, it can be seen that for significant values of µ, 

the intensity actually decreases from its initial value before increasing. For large 

values of µ-1, it becomes clear that this dip is actually part of an oscillation in 

the field intensity: for µ µT, the growth rate of the field is significantly smaller 

than for µ<1 so the period of lethargy is increased. For curve (d), µ> µT, 

so the system is stable as all the roots of the dispersion relation are real and it 

never enters the high-gain regime i. e. Li -+ oo. 

Consider now how the gain function (4.46) varies with detuning, 6. For the 

case of y0 and z/s/ « 1, the expressions for the field intensity (4.44) and 

the rate of change of field phase can be calculated from (4.44) [71] 

IA12(2) _ IA012 
[1 

+311 -cos Sx - 
2z 

sin özý (4.48) 

=I 
1'4012 

f (cos b: -+S sin bz -1) (4.49) 
dz \b21AJ2 

so the gain function when 1.0 and i/Vb- <1 is 

G(z, ö) =s 
(1_cos_sin&i) 

(µ "^.: 0, zK 1). (4.50) 

From (4.49) it is seen that the phase evolution is small i. e. I de/dz I<1. Equa- 

tion (4.50) is the expression for the small-signal or interference gain which was 
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originally derived by Madey for FELs [72]. It can be rewritten as 

/ 3d 
G(z, b) =-2 d(0/2) since 

where 0= 62. Rewriting z and ö in unscaled variables 

I 

L2 '0' 
pz '6 ki pvllo 

(to 

'Yo - 
kllvllol 

then 

z A= (-w/o k(I 
vllo 

so, on comparison with (1.5), it can be seen that 

d2I 
Ga 

d12dw 
(4.52) 

which means that the small-signal gain is proportional to the derivative of the 

spontaneous emission spectrum. The gain function G(z, 6, µ) from (4.46) and 

(4.41) is plotted against 6 at various stages of the field evolution for a case where 

IL <1 in figure 4.4(a.. d). Figure 4.4(a), where z<1, shows the asymmetric gain 

curve which is characteristic of a Madey-type gain process and is described by 

(4.50). Note that at 6=0, the gain is approximately zero. As z increases, the 

system undergoes a transition from the low-gain to the high-gain regime, and the 

value of 6 at which maximum gain occurs approaches zero. Figures 4.5(a.. d) and 

4.6(a.. d), show equivalent graphs to those in figure 4.4 for cases where µ=0.2 

and u=0.8 respectively. The effect of finite free-energy depletion on the low- 

gain regime can be seen from a comparision of figures 4.4(a), 4.5(a) and 4.6(a). 

As p is increased, the maximum of the gain curve is reduced and shifted to larger 

ö, so that the gain function is negative at 6=0. In addition, the magnitude 
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of the maximum positive gain for a given µ becomes less than the maximum 

negative gain. It is noticeable for all values of µ that in the low-gain regime, 

the maximum of the gain function occurs for positive ö whereas in the high gain 

regime, it has been shown that maximum gain occurs when 6 0. This is similar 

to the Compton FEL. 

This contrast between the low and high-gain regimes can be explained using 

the constant of motion (3.177) and the wave equation (3.169). Combining these 

two expressions and using the definition of the gain function (4.46) produces 

(p'2) =4 
(lA12dý 

- IA°I2 
dx0) + 261AO12G (4.53) 

where, as previously, p' = p-ö oc ry- yo and ý is the slowly varying radiation phase 

i. e. A= IAIe`{. The subscript `0' represents values atz = 0. This expression 

relates the energy spread (p'2), the field intensity JA 12 and the field phase variation 

da/dz and is valid in the linear and nonlinear regimes. The energy conservation 

relation (3.173) can now be used to obtain the variance 

ýZ(P/2) = (P, 2) - (P )2 

=4 
(IAI2 ä- IÄ012 d0) 

+2SIA0I2G- Ä014G2 

from which the inequality 

d> 
4I 

1 21 
2( 

(41A - 2bý140IZG + IAoI4G2) (4.54) 

follows. For the case where there is no initial field excitation (1A0 2= 0) and no 

detuning (b = 0), (4.54) reduces to 

4, IA21 
dz -4 

(4.55) 
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which means dýldz is always positive. In order to see the significance of this 

result, consider the phase of the electron with respect to the electromagnetic field, 

denoted by q. This is just the trigonometric argument in (3.167) and (3.168) i. e. 

q=ýý-ý 

From the definition of 0, (3.45), when free energy depletion is negligible (µ K 1), 

it is possible to write 

q= constant x 
/w 

- 
w` 

- kllvll) + (4.56) 

where '- d/dz. Consider first of all the case where the phase evolution of the 

electromagnetic field is negligible (dtldt . 0). This is the case described by 

(4.48) and (4.49). From (3.168), in a resonant and randomly phased electron 

beam, approximately half of the electrons will absorb energy (ir/2 <q< 37r/2) 

and half will lose energy (0 <q< ir/2 and 3u/2 <q< 27r), and the electrons will 

bunch slightly about a point where there is no energy exchange with the radiation 

field(q = 3ir/2), resulting in no net gain. When the evolution of the radiation 

phase is significant (IýI > 0), then (4.56) shows that the effective frequency of the 

wave is w+ý. It has been shown in (4.55) that is always positive, so 4 is increased 

by the field phase evolution. Consequently, resonant electrons will bunch around 

a phase corresponding to gain, resulting in instability. The crucial difference 

between the low and high gain regimes is therefore the significant evolution of 

the phase of the electromagnetic field in the high gain regime. 

When free energy depletion effects are present (p > 0) the above scenario is 

complicated by the presence of the second term in (3.167), which makes an ad- 

ditional contribution to q. This term disrupts the bunching mechanism by being 
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larger for those electrons which are losing energy to the field. The symmetry be- 

tween the number of particles gaining and losing energy at resonance is therefore 

lost, and a net negative gain will occur even when the field phase evolution is 

negligible, as shown in figures 4.5(a) and 4.6(a). The field phase evolution will 

cause the electrons to bunch about a point corresponding to gain, but the size of 

this gain becomes smaller as free energy depletion effects increase. 

Another interesting feature of the gain-spread relation (4.53) in the low-gain 

regime (Ids/d2 j« 1) becomes apparent when it is differentiated with respect to 

the detuning b, producing the relation [71] 

2 ö6 
(p 2/ ~ -IAoI2G (4.57) 

This is Madey's gain-spread relation [72], which states that the system cannot 

undergo gain without the simultaneous introduction of an energy spread in the 

electron beam. 

4.2.2 The High Efficiency Limit and Autoresonance 

For values of py1, the variations in the axial momenta of the electrons are 

not negligible. The difficulty in investigating this regime as extensively as that 

where p«1 is that the parameter space is now three-dimensional i. e. (p, p, 6) so 

quantities such as growth rates cannot readily be plotted over the entire parameter 

space on one graph. It is still possible however to extract useful information from 

the results of the linear analysis in this regime, the most significant of which are 

described below. 

The linear behaviour of the system when p It 1 must be investigated using 
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the full dispersion relation (4.36). Figures 4.7(a.. d) show regions of instability 

(1(A3(p, µ, S))l > 0) in the (p, 6) plane for several values of A. On examination of 

figure 4.7(a), where p«1, it can be seen that for p :: 0 there is only one region of 

instability, which occurs when 6< 6T =3 27/4. As p increases however, another 

region of instability appears for values of 6> 1/p. These two distinct regions 

of instability will be termed region 1 and region 2 respectively. As p increases 

further, the two regions of instability eventually merge. Figures 4.7(b.. d) show the 

effects of increasing µ i. e. increasing the depletion rate of the beam's transverse 

energy. It can be seen from these figures that region 1 is significantly affected by 

the increase of p, with the most obvious effect being a decrease in öT at p=0. 

The value of s(A3(p, µ, 6))l is also reduced, particularly at small values of p. In 

contrast, the effect of changing µ appears less significant on region 2. 

In order to explain the graphs shown in figure 4.7, it is necessary to recall 

the discussion of the (p5 - 1) term in section 3.4. It was shown there that 

the sign of this term determined the type of bunching mechanism which was 

occurring. When pö < 1, the azimuthal bunching mechanism due to changes in -y 

is dominant, whereas when p6 > 1, the axial bunching mechanism due to changes 

in vIl is dominant. Region 1, where pb < 1, is where the azimuthal bunching 

mechanism dominates the axial bunching mechanism, with most energy being 

extracted from the transverse motion of the electrons. Consequently, µ, which 

represents the depletion rate of the transverse energy of the electrons, will have 

a large effect on the interaction, as was seen in section 4.2.1. In contrast, region 

2 in figures 4.7(a.. d) occurs when pö > 1, so the axial bunching mechanism 
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is dominant, with most energy being extracted from the axial motion of the 

electrons. Increasing the depletion rate of the transverse energy of the electrons 

will have less effect in this region. 

Consider now what happens when the azimuthal bunching mechanism and the 

axial bunching mechanism balance each other exactly i. e. pö = 1. It can be seen 

from (3.152) that this results in the scaled mismatch from resonance p remaining 

constant, so the interaction is said to be autoresonant under these conditions. 

When this occurs, the roots of the cubic dispersion relation (4.36) become Al =0 

plus the two roots of the quadratic equation 

x2 -1A+ (P - 211) = 0. (4.58) 

Although the autoresonance condition does not automatically imply that p It 1, 

to satisfy this condition for small values of p requires a large value of b, so the 

electrons have a large detuning with respect to the field and the energy exchange is 

small. In order to get close enough to resonance to enable significant amplification 

of the electromagnetic field, it is therefore necessary to use values of p It 1. For 

the field amplitude to undergo exponential growth, the roots of (4.58) must be 

complex, which occurs when 

4p3 -2 p2µ -1>0 (4.59) 

The threshold value of It above which no instability will occur can be calculated 

from this and is found to be 

4p3 -1 
pT = 8pz (4.60) 
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For p»3 1/4, µT : p/2. When p» 2µ, (4.59) reduces to 

p> 2-3 0.63 (4.61) 

Far above this threshold, the imaginary part of the complex root is 

ýt ti p2 

Now, as the electromagnetic field varies as 

Aa exp 1 (J13)Ix 

in the linear regime, the definition of z can be used to obtain g, the exponential 

growth rate of the instability. The result is 

pi k1l (4.62) 

Note that the exponential growth rate of this instability varies as p3/2 x 11/2 

whereas the exponential growth rate of the instability which occurs when pc1 

varies as p oc I1/3, where I is the beam current. The crucial difference between 

the two interactions is the evolution of p. When pb # 1, p' varies as the electron 

energy changes, which leads to phase bunching of the electrons. However, for 

pb = 1, no phase bunching will occur, even though the axial velocity and the 

energy of the electrons may be either increasing or decreasing. Equation (3.151), 

which describes the rate of change of phase of the jth electron, can be integrated 

simply if p6 =1 and free-energy depletion effects are small (µ < 1), producing 

the result that 

OJ =Ojo+bz Vj 
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so phase bunching clearly cannot occur. The mechanism responsible for am- 

plification of the electromagnetic field can be deduced from an examination of 

the source term in the wave equation (3.155) and the axial momentum equation 

(3.154). It is clear from these equations that an electron whose axial momentum 

is decreasing becomes more strongly coupled to the field whereas an electron gain- 

ing axial momentum becomes less strongly coupled to the field. If the electron 

phases do not change too rapidly, i. e. 6 is small, then a large exchange of energy 

can occur between the electrons and the field. If pt1, then the second term in 

the phase evolution equation (3.151) and the perpendicular momentum equation 

(3.153) can no longer be neglected. The effect of these terms increases as ü0 de- 

creases, causing the electron phase to change and its perpendicular momentum to 

decrease, resulting in a reduction of the coupling and hence the energy exchange 

between the electron and the field. It is therefore clear that terms which are 

proportional to a act to stabilise the instability. This type of instability where 

no phase bunching occurs also arises when a beam of relativistic electrons in a 

uniform magnetic field interacts with an electromagnetic field in free space. This 

is the interaction which occurs in a `non-wiggler FEL'. It has been studied previ- 

ously using a single particle small signal analysis [67] and a Vlasov linear analysis 

[68]. The result obtained for the spatial growth rate, g of the field amplitude in 

[68] was 
_ 

wp ylo 
g 

70 CVIlo 

where wp is the plasma frequency. Note that 

9a wp a J1/2 (4.63) 
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in agreement with (4.62). This scaling of the growth rate reflects the fact that the 

instability at exact autoresonance and the instability in a NWFEL do not arise 

from phase bunching, but from depletion of the axial momentum of the electron 

beam. 

4.2.3 Conclusions 

In this chapter, the scaled evolution equations derived in chapter 3 were linearised 

and analysed using the method of collective variables, which has not previously 

been used in the analysis of CRM-type devices. The analysis resulted in a dis- 

persion relation which governs the linear behaviour of the system. From the 

dispersion relation, a threshold for instability to occur and growth rates of the 

electromagnetic field amplitude were derived. Neglecting the variation of the 

electron axial momentum, (p « 1), a detailed study of the linear growth of the 

electromagnetic field was performed in both the low and high gain regimes. In 

the low-gain regime, it was shown that Madey's relations relating the stimulated 

emission, the spontaneous emission and the energy spread of the electrons could 

be obtained. The role of the phase evolution of the electromagnetic field in the 

high-gain regime was also demonstrated. 

When significant variations in the electron axial momentum were also con- 

sidered (p It 1), it was shown that another region of instability appeared for 

pb > 1, and was due to the axial bunching mechanism dominating the azimuthal 

bunching mechanism. The effect of µ on this instability was found to be less sig- 

nificant than for the azimuthal bunching instability. The condition for instability 
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to occur at exact autoresonance (pö = 1) was found and the resulting growth 

rates showed a dependence of J1/2 as opposed to 11/3 when p«1. This reflects 

the fact that the instability at exact autoresonance arises from depletion of the 

axial momentum of the electron beam as opposed to bunching of the electrons in 

phase. 
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Chapter 5 

Further Aspects of the 

Steady - State CRM Interaction 

5.1 Hamiltonian Theory of the CRM 

Interaction 

5.1.1 Introduction 

In a low-efficiency cyclotron resonance maser, the dynamics of the electrons and 

the electromagnetic field of a single TEmn or TMm� waveguide mode can be 

described using the scaled evolution equations (3.167.. 3.169) : 

doj 
= Pi -Z 7r+ 2ý Pi - b; ) 

(Ae'ý' - c. c. ) (5.1) 
di 

diii 
dz =-1 -- b, )(Ae`O' + c. c. ) (5.2) 

dÄ 
dz 

(iJi 
_ 22µ(P - b)e '0} (5.3) 
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N 
where j=1.. N and (.. ) . 1/Ny. The set of equations (5.1.. 5.3) are valid in 

i 
the limit p«1. An initially monoenergetic electron beam has been assumed. 

The equations (5.1.. 5.3) can be written in Hamiltonian form : 

OH . OH 
öpj öýj where j=O.. N (5.4) 

with respect to the Hamiltonian 

N2 /ý2 NN 
H= p2 

+lN 
(pö 

+ 2µ pj' cos OJ + 00 1+ 2µp'ß sin 
i=1 a-1 . i=1 

45 
- 2(ßö2 +P ö) (5.5) 

where 0' =0- bz and p' =p-6 are the canonical position and momentum 

variables respectively and '*' indicates d/d2. Note that the field has been 

defined in terms of the canonical variables 0o and yo where : 

00 '= 2 (Aeia + c. c. ) Po = -i 
2 (Aeýa - c. c. ý (5.6) 

Another constant of evolution of equations (5.1.. 5.3) is (3.173) 

(p)+JAI' =6+JA012=O (5.7) 

which corresponds to conservation of energy. For the remainder of this Hamilto- 

nian analysis, the scaled energy variable p'' will just be written as p;. 

5.1.2 Electron Dynamics Neglecting Field Evolution 

Consider first of all the dynamics of electron evolution in an electromagnetic field 

whose amplitude and phase are independent of z. This corresponds to the case 

of a CRM operating in a high-Q cylindrical cavity, where the electromagnetic 
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field profile is determined primarily by the cavity structure alone and not by the 

interaction with the electron beam. The radiation power output from the cavity 

is assumed to be equal to that lost by the beam, this being a small proportion of 

the radiation power in the cavity. With no field evolution, there is no collective 

interaction between electrons via the field and each electron trajectory is indepen- 

dent of the others. It is then possible to drop the electron index subscript j and 

consider the evolution of a single representative particle. Consider the resonant 

case where there is no initial detuning between the wave and the particle (6 = 0). 

Defining the canonical variable 

9= 0+ýo (5.8) 

the Hamiltonian (5.5) transforms to 

i 
H=2 +2IAo( 1 +2µpsinq (5.9) 

and the evolution equations, from equations (5.4), (5.7) and (5.9), are 

2 01/2 
p+ 

µ+ 
µp 

sin q (5.10) 

p= -201/2 1+ 2µp cos q (5.11) 

As both p and q are real there is a lower bound on the value of p such that for 

any particle trajectory p> -1/2y. Physically this is because when p= -1/2p 

the transverse momentum of the particle is zero, uncoupling it from the wave. 

From (5.11), stationary points in phase space will occur at q= ir/2 and 

q= 3ir/2 for values of p which satisfy 4=0. Using the variable 

x=1 -+2#p (5.12) 
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and equation (5.10), stationary points will occur at values of p corresponding to 

real positive roots for x of 

x3 -x+ 4µZ&/2 =0 for q= 7r/2 (5.13) 

x3 -x- 411 201/2 =0 for q= 37r/2 (5.14) 

From an analysis of the discriminant of equations (5.13) and (5.14), it is possible 

to show that the topology of the phase space (q, p) depends upon the size of the 

depletion parameter j relative to a critical value µ, where 

1 

µ` = 
(1OL)"4 

(5.15) 

Note that when it = 0, the evolution equations (5.10) and (5.11) reduce to 

those of a simple pendulum (except for a constant phase factor). 

At q= 3ir/2 there is an elliptic stationary point for all values of it. For p<µ, 

this point is bounded between p=0 in the limit µ -º 0 and p= 1/6µ as p -* µ,. 

On increasing p above its critical value then the elliptic point has ap> 1/6p. 

At q= 7r/2 and for y<j there are two stationary points. One is elliptic and 

bounded by the values -1/2µ <p< -1/3µ, the other hyperbolic and bounded 

by 0>p> -1 /3p. The left hand values on the bounds of p are for the limit 

µ -º 0 and the right hand for the limit it -4 IA, 

As it approaches its critical value from µ<p., both stationary points converge 

to the value p= -1/3µ where they annihilate in a bifurcation at p=p, 

At q= 7r/2 and for µ>µ, there are no stationary points. 

Examples of these phase spaces for the constant field case are shown in fig- 

ores 5.1 (a.. d). Note that for the case of µ µc ., 
figure 5.1 (a), the elliptic 

stationary point at q= ir/2 is outwith the scale of the figure. 
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5.1.3 Self-Consistent Single Particle and Field Evolution 

The phase space for the case of a single particle interacting self-consistently with 

the field will now be analysed. This case may be a useful first approximation 

to a CRM operating with a beam of pre-bunched electrons where the bunch 

length is less than the radiation field wavelength. These are sometimes referred 

to as compact electron bunches. Such pre-bunching of electron beams is becom- 

ing more feasible with the advent of fast-switching photo-cathodes [73] and field 

emission array (FEA) cathodes [37,74], both of which are under development at 

Strathclyde University (see chapter 1). 

A similar single particle analysis has been performed for the Compton FEL 

[75] where it = 0. By considering y>0a richer particle phase space topology 

results. 

It is possible to eliminate the field variables using the constant of motion (5.7) 

i. e. 

IAI_A 

It is again assumed that the system is at resonance (S = 0), and the canonical 

variable is defined as 

q= q+ 

The Hamiltonian (5.5) then transforms to 

(5.17) 

s 
H=2+ 21+2µp A-psinq (5.18) 

Using (5.4) and (5.18), the evolution equations become 

+ µp 4=p+ 2µ 
+ µp 

sin q- VS --p sin q (5.19) 
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p= -2 1+2µp 0-pcosq (5.20) 

As in the previous constant field case, p= -1/2µ is a lower bound corre- 

sponding to the zero of transverse electron momentum. There is now also an 

upper bound, p=0, corresponding to zero field amplitude. 

Stationary points will occur when q= 7r/2 and q= 37r/2 for 4=0. Using the 

variable 

__ 
1+ µp 

y (5.21) 

and equation (5.19), the stationary points will occur at values of p corresponding 

to real positive roots for y of: 

y4-Dy3+y-4112 =0 for q= 7r/2 (5.22) 

y4 + Ay3 -y- 4µ2 =0 for q= 3ir/2 (5.23) 

The quartic nature of these equations indicates that the phase space may be 

more complex than that of the constant field case of the previous section. 

An analysis of the discriminant of equation (5.23) shows that there can only 

be one elliptic stationary point at q= 3ir/2 for any value of it or A. 

By performing a similar analysis of the discriminant of equation (5.22) for 

points with q= r/2, a map of regions of parameter space (0, µ), can be produced, 

as shown in figure 5.2. Each region of this map represents phase spaces with 

different characteristics: In region (a) three stationary points exist, one hyperbolic 

point situated at a value of p between two elliptic points, and in regions (b).. (d) 

there is only one elliptic point. 

On moving from region (a) to (c) the upper elliptic and hyperbolic points 

annihilate in a bifurcation leaving only the lower elliptic point. On moving from 
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region (a) to (b) it is the lower elliptic and hyperbolic points which similarly 

annihilate leaving the upper elliptic point. The only difference between regions (c) 

and (d) is that in region (d) there is only the one (lower) elliptic point for all 

values of µ. The phase spaces for the different regions are shown in figure 5.3. 

Also shown in figure 5.3 (d) is the point where 0= 22/3 and p= 2-5/3, that 

is the point where all regions converge. It occurs when the quartic (5.22) has an 

inflexion point which is also a triple root. It can be seen that at both q= ir/2 

and q= 37r/2 there are elliptic points at p=0. More generally when 0= 1/21A 

the phase space has reflection symmetry about the line p=0. 

Also of interest is the case where µ=0, which corresponds to the case of the 

high gain Compton FEL. From figure 5.2, it can be seen that when 0> (27/4)1/3, 

the system is in region (a), so the above analysis predicts that the region of phase 

space at q= ir/2 should consist of an hyperbolic point situated between two 

elliptic points. However, from (5.22), it can be shown that in the limit 14 -º 0 

the lower elliptic point has ap -+ -oo. For u=0 and on decreasing 0 from a 

value of 0> (27/4)1/3 
, the upper elliptic and hyperbolic points converge and 

annihilate in a bifurcation when 0= (27/4)1'3. The phase space then shows no 

stationary points at q= ir/2 for 0< (27/4) 1/3 except for the inaccessible elliptic 

point at p= -oo. This concurs with previous studies of the single particle model 

of the high gain Compton FEL [75]. 

By finding the turning points of (5.22), it is possible to find the range of values 

of y that the stationary points at q= ir/2 in regions (a), (b) or (c) will have as a 

function of A. This is shown in figure 5.4. For A> 22/3 it is seen that there are 
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three different ranges: 

"0<y< ym2, a(A) defines the range of y within which a lower elliptic point 

may be found 

" y�,;,, (0) <y< ymax(0) defines the range of y within which an hyperbolic 

point may be found 

" y.. in(A) <y< oo defines the range of y within which an upper elliptic 

point may be found 

For a given value of p and 0 figure 5.2 determines the stationary points 

that will exist. The ranges of p within which these stationary points will lie is 

determined by the ranges of y from figure 5.4 and the substitution of these ranges 

and the value of µ into equation (5.21). 

It will now be shown how the bounds on p i. e. -1/21& < p: 5 A play a further 

role in the phase space topology. Recall that the lower bound on p results from 

the complete depletion of transverse electron energy and that the upper bound 

results when the electron has depleted all radiation field energy. 

When p=A and p= -1/2µ the values of the Hamiltonian are H= Ho 

L\2/2 and H=H. = 1/8µe respectively. It will be seen that these two contours 

behave as separatrices in that they separate regions of phase space rotation and 

libration. Unlike true separatrices however neither passes through a stationary 

point. 

Consider first the case where there is only one elliptic point at q= 7r/2 (regions 

(b), (c) and (d) of figure (5.2)). At q=0 and ir, the Hamiltonian has the value 
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H= p2/2 and so for p=A, H= Ho and for p= -1/2p, H=H,. Two distinct 

phase spaces result depending upon whether H. < Ho. Figure (5.5a) shows the 

contours H,, and Ho for H. > Ho and figure (5.5b) shows the same contours 

for H,, < Ho . For Hµ > Ho it is seen that the Ho and H,, contours are similar 

in form except for the region pýA. It appears that the H,, contour `attempts' 

to close at q=0 and it in a similar way to the Ho contour. It cannot do this 

however as for these values of q, the value of p would be greater than its allowed 

maximum of A, and so the contour distorts to that shown in the figure. In a 

similar way when H,, < Ho the Ho contour cannot close at q=0 and zr as the 

value of p would be less than its allowed minimum of p= -1/2µ resulting in a 

similarly distorted contour. 

By defining: 

Ho = 2Vsingo (5.24) 

which specifies the contour on which the particle at p=0 and q= qo will lie, it 

is possible to summarise the above results for the case where there is only one 

elliptic point at q= ir/2 (regions (b), (c) and (d) of figure (5.2)): 

For H,, > Ho then if 

9 Ho > H., the particle will librate about q= 7r/2 

" Ho < Ho, the particle will librate about q= 3ir/2 

9 Ho < Ho < Hµ, the particle will rotate with an average phase flow towards 

negative q 

For Hµ < Ho then if 
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" Ho > Ho, the particle will librate about q= it/2 

" Ho < Hµ, the particle will librate about q= 3ir/2 

" Hµ < Ho < Ho, the particle will rotate with an average phase flow towards 

positive q 

For the special case of Ho = H,, then the phase space is symmetric about 

the line p=0 and the particle will either librate about q= ir/2 for Ho > Ho or 

about q= 3ir/2 for Ho < H. There will be no regions of phase flow rotation. 

The presence of an hyperbolic point at q= ir/2 (region (a) of figure (5.2)) re- 

suits in a more featured phase space. The value of the Hamiltonian corresponding 

to the separatrix of the hyperbolic stationary point is defined as 

z 
Hh = 

p2 +21+ 2µph D- Ph (5.25) 

where ph is the p co-ordinate of the hyperbolic point i. e. (7r/2, Ph). This is found 

from the roots of the quartic (5.22). 

There are six possible relative values for Hh, H. and Ha (neglecting equali- 

ties). The phase spaces of these three contours are shown in figures 5.6 (a.. f) for 

the six relative values: 

(a)Hh<HH<HH, (b)Hh<Ho <Ho, (c)HA<Hh<H,,, 

(d)HP<Hh<Ho, (e)HH<Ho, <Hh, (f) Ho <Ho<Hh. 

Some features to note from these figures are that if Hµ < Ho then the phase 

flow of rotational orbits accessible (as the particle can only move on contours 

which cross p= 0) to the particle will have on average an increasing q. Conversely 
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if Hµ > Ho then the phase flow of rotational orbits will have on average a 

decreasing q. Also note that if Hh > Ho then the upper orbit of the seperatrix of 

the hyperbolic point will be homoclinic, and if Hh > H,, then the lower orbit of 

the seperatrix of the hyperbolic point will be homoclinic. Otherwise seperatrix 

orbits of the hyperbolic point are heteroclinic. 

5.1.4 Complete Transverse Energy Depletion for Self- 

Consistent Particle-Field Evolution 

It can be seen from the analysis of the previous section that if Ho = H,,, then it is 

possible for the particle to attain a value of p= -1/2µ i. e. complete depletion of 

its perpendicular momentum. For this value of Ho, the value of qo is from (5.24) 

qo = sin-1 
(16µ2ý) 

(5.26) 

For 16µ2V > 1, the region of interest is 0< qo < 7r/2, as for these values of 

qo the particle will initially lose energy. The contour approaches p= -1/2µ at 

q=0 so 0<q< ir/2 at all times. The analysis which follows will yield an 

expression for the interaction length required for the particle to exhaust all of its 

perpendicular energy. 

Firstly, equations (5.18) and (5.20) for H and 0 will be restated. As in the 

last section, the analysis is performed for the case of a particle interacting self- 

consistently with the field : 

s 
H= 2+ 2 1+ 2µp 0- p sin q (5.27) 

p= -2f1 + 2µp 0-p cos q (5.28) 
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From (5.27), 

sin q= 
2H-p2 

41 + µpý 
(5.29) 

Now 

cos q=1- sine q (5.30) 

where the positive root applicable to the region of interest 0<q< it/2 has been 

taken. Substituting (5.29) into (5.30) gives 

cos q= 
16(1 + 2pp)(0 - p) - (2H - p2)2 ) (5.31 

41 + µpvE --p 

Substituting for cos q into (5.28) gives 

dp 
= -1 16(1 + 2µP)(0 - p) - (2H - p2)2 d 

(5.32) 
z2 

This is a general differential equation for p in the interval 0<q: 5 ir/2 in terms 

of the control parameters A, It and H. 

It is now possible to separate variables and by specifying that H= Hµ, p(x = 

0) =0 and p(z = L) = -1/2µ, an expression for L, the scaled interaction length 

required for complete transverse energy depletion of the particle, is obtained: 

-2 

1/zµ 

L=1 
dp 

o Q(P) 
(5.33) 

where: Q(p) = (1I2µ + P)(32µ(A - P) - (1l2µ + P)(1/2µ - P)2) (5.34) 

This integral can be reduced to an elliptic integral using standard transformations, 

the precise transformation depending on the roots of Q(p) 
, which is a quartic 

polynomial in p. From (5.34), it is seen that p= -1/2p is always a root of Q(p). 

In addition, from (5.31) it is clear that any roots of Q(p) are also zeros of cos q, 

i. e. values of p at which the contour H,, intersects q= it/2 or 3ir/2. This limits 

the number of cases to be considered to just two : 
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(i) Q(p) has two real roots a2 <0< al and two complex roots b+ is and 

b- ic, where c>0. 

(ii) Q(p) has four real roots a4 <0< a3 < a2 < al. 

In both cases, p= -1/2µ must be the smallest real root as paths with p< -1/2µ 

are not physical. 

Case (i): Q(p) has two real roots and two complex roots 

As p= -1/2µ is always a root of Q(p), this case implies that there is one 

other value of p at which the contour H. intersects q= 7r/2 or 3ir/2. Examples of 

these are shown in figures 5.5 (a and b) and 5.6 (a, d, e and f). The transformation 

of the integral (5.33) in this case involves the variables [76] : 

cos 61 a1-p 
tan 0/2 = 

Vc0502p-a2 (5.35) 

k= sin 
01 02 

(5.36) 
2 

cos 91 cos 02 
D- - C 

tan 01 = 
a' -b (5.37) 

c 

tan 62 az -b 91,9s acute (5.38) 
c 

where: a2(= -1/2µ) <0< al are the real roots and b+ic, b-ic are the complex 

roots. The transformed integral then becomes 

L= -2D / 
dO 

(5.39) 
V1 --k2 sin 4 

Splitting this integral into two over the limits [0o, 0] and [0, ir], where 00 = O(x = 

0), and using the relation: 

F(k, r) = 2F(k, r/2) = 2K(k) (5.40) 
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where F(k, 0) is an incomplete elliptic integral of the first kind and K(k) is a 

complete elliptic integral of the first kind, yields the result: 

L=2 cos 61 cos O2 
(2K(k) - F(k' Oo)) (5.41) 

C 

cos 91 al where tan 0o/2 = 
cos 02 (-a2) 

(5.42) 

and the definitions of k, 91 and 02 are given in (5.36), (5.37) and (5.38) respec- 

tively. 

Case (ii): Q(p) has three positive real roots and one negative real root 

As p= -1/2Ei is always a root of Q(p) , this implies that there are 3 other 

values of p at which the contour H. intersects q= ir/2 and 3ir/2. Examples of 

these are shown in figure 5.6 (b and c). Here only the case where H. > Ho is 

considered (figure 5.6 (c)) otherwise the contour H. which intersects p= -1/2µ 

does not intersect the line p=0 making it inaccessible to the particle. The 

transformation for this case involves the variables [76] : 

sine 0_ 
(al_a3' (P - a41 (5.43) 
\a3 - 04/ \ai -pJ 

k_ (5.44) 
ýa3 - a1- a2 V a1-a3J az - a4 / 

2 
D= 

(al - 03)(a2 - a4) 

where: a4(= -1/2µ) <0< a3 < a2 < al are the four real roots of Q(p). As 

before, the limits of the transformed integral are found by substituting the limits 

of the original integral into (5.43) which leads to 

f 
L= -2D 

0 d¢ 
(5.45) J I0 1- k2 sin 
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Rearranging this equation yields the result 

=4 L 
(al - a3)(a2 - a9) 

F(k, ýo) (5.46) 

1 
T(C14 

al-a3) 
where co = sin- (5.47) 

al - a2 ) 

5.1.5 Conclusions 

The dynamics of a CRM within the limits kl rL «1 and p<1 have been 

analysed using a fully Hamiltonian method for two specific resonant cases: no 

field evolution and self-consistent field evolution with a single particle. 

In the case of no field evolution, it was found that the size of the depletion 

parameter, p relative to a critical value uc significantly changes the topology 

of the phase space around q= it/2. This description will be valid for a CRM 

oscillator operating in a high-Q cylindrical cavity where the electromagnetic field 

profile is fixed. 

In the case of self-consistent field evolution with a single particle, a map of 

the parameter space (0, Ei) was constructed and regions of this map associated 

with specific characteristics of the corresponding phase space (q, p). The results 

of this analysis in the limit of µ=0 concur with those from similar studies of 

the high gain Compton FEL. The effect of the bounds on the transverse electron 

energy on the topology of the phase space was also investigated. Finally, an ana- 

lytical expression in terms of elliptic integrals for the interaction length required 

to deplete all of a single particle's transverse energy was obtained. These inves- 

tigations may be of use in describing the evolution of both electrons and field in 

a pre-bunched electon beam configuration. 
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5.2 A Landau-Ginzburg Equation for the CRM 

5.2.1 Introduction 

The linear and nonlinear evolution of the interaction between a beam of relativis- 

tic electrons gyrating in a uniform magnetic field and a TE�ti� or TM,,,,, cylindrical 

waveguide mode is described by the system of equations (3.167.. 3.169), when the 

recoil of the electrons is small (p K 1) and klrL < 1. In the linear regime, these 

equations have been used to derive a dispersion relation, the roots of which deter- 

mine growth of the electromagnetic field in the linear regime (see section 4.2.1). 

Analysis of the nonlinear regime however has up to now required a numerical in- 

tegration of 2N +2 coupled equations describing the evolution of the phases and 

energies of N»1 electrons together with the evolution of the complex electro- 

magnetic field amplitude. The aim of this section is to show that the evolution of 

the interaction can be approximated far into the nonlinear regime by a set of only 

three complex equations and that these equations can be further used to derive a 

Landau-Ginzburg equation which describes the evolution of the electromagnetic 

field up to saturation. This Landau-Ginzburg equation has the useful property 

of having a full analytical solution. 

5.2.2 A Collective Variable Description of the CRM 

The method of collective variables was successfully used to analyse the CRM 

interaction in the linear regime. In this section, it will be shown that this method 

may be generalised to describe the nonlinear regime also. The starting point of 
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the analysis is the set of 2N+2 equations (3.167.. 3.169), which describe the CRM 

interaction when p«1: 

dO' = Pi -21F2 
i(P2 

c. c. ) (5.48) 

dp' 
= -11F+ 2µ(pj - 5) (Ae'"" + c. c. ) (5.49) 

dz 
dA 
TZ = 

(s/i + 21L(P - 6)e-'# > (5.50) 

Using the variables originally defined in (4.1.. 4.3) i. e. 

01=0-6i , p=p-6 , A'=Aea: 

the equations (5.48.. 5.50) can be written in the more compact form 

d= pi-i 1+2 
(A'e`6j - c. c. ) (5.51) 

dp' 
_-1+ 2µp (A'e`4 r' + c. c. ) (5.52) 

dz 
dA' (y'f+2izp'&")+i8A' (5.53) 
dz 

As shown in section 3.4, the equations (5.51.. 5.53) have two constants of evolu- 

tion : 

(p') + IA'12 = IAO12 (5.54) 

(P'2) 
- i(A' (. /f2ip' + e'W ý) 

- c. c. ) - b1A'12 _ 2 

-i(Aö 
(e) 

- c. c. ) - b1Aö12 (5.55) 

which correspond to conservation of energy and the Hamiltonian of the system 

respectively. 

This set of equations can be further simplified by defining a complex variable 

Ui = 
V1 + 2µpß e'O' (5.56) 
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which enables the set of evolution equations (5.51.. 5.53) to be written as a set of 

two complex equations 

d' 
= 2µu. 1 (1U112 - 1) - 2µA'' (5.57) 

d= 
(U*) + iiA'. (5.58) 

Defining the variables 

b= (u*) 'P= 
(IuI au*) 5.59) 

it is easily shown using (5.57) that 

db i (P - b) - 2µA' (5.60) 
dz 2µ 

ddP 
_ _2µ (U*lu12(1U12 -1» 

-4µA' (IuI2) - 2µA'* (u*2) (5.61) 

The variables b and P are analogous to the `bunching parameter' and `energy 

modulation parameter' of FEL theory [77]. 

The last term in (5.61) is a second harmonic term, proportional to (C-24' ) 

and, as with [77], will be neglected from now on. In order to close the set of 

equations (5.58), (5.61) and (5.60), it is necessary to use the following ansatz 

((i - (P ))2U*) "' ((Pl - (Pl ))2) ýU ) (5.62) 

which is exact if the p' have a Gaussian distribution. This can be rearranged to 

give 

(pI2U*) = (P2) (U*) +2 (P(U*) (Pý) -2 (P! )2 (U*) (5.63) 

It can be seen that if µ=0i. e. U= e'0' then (5.62) reduces to the ansatz 

used in [77] to facilitate a collective variable description of the FEL. Using the 
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definition of U, the constants of motion (5.54), (5.55) and ansatz (5.62) then it 

is possible to write d2/dz in terms of b, 2 and A' only, so closing the system of 

equations (5.58), (5.60) and (5.61) to 

db 
(P - b) - 2µA' (5.64) 

dz 2µ 
dP 

-- 
2µ (1 - 4iIA'12)(P - b) + 4µ(A'1b12 - A' b2) 

+ 41tiIA'14b - 41AA' + 8p2IA'12A' 

- 4µib (IA'I2 - IAOI2) b- 4µ(Aöbo - c. c)b (5.65) 

dA' 
dz =b+ i6A' (5.66) 

where bo = b(z = 0) and Aö = A'(z = 0). Figures 5.7(a) and 5.7(b) show 

how IA'12 varies with z from a numerical integration of the original equations 

(5.48.. 5.50) and from a numerical integration of the collective variable equations 

(5.64.. 5.66) respectively for the case where 6=0 and p=0.1. Figures 5.8(a) 

and 5.8(b) show equivalent graphs to those in figure 5.7 for the case where 6=0 

and p=0.8. It can be seen that there is good agreement between these results 

through to saturation, justifying the use of (5.62) and the neglect of terms varying 

as (e-2im' ). 

5.2.3 Derivation of a Landau-Ginzburg equation 

Successive differentiation of (5.66) and the use of (5.64) and (5.65) transforms the 

set of collective variable equations to a single third-order nonlinear differential 

equation describing the electromagnetic field evolution, 
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Figure 5.7: Plot of IA'12 vs z for 8=0 and p=0.1. (a) numerical solution 

of equations (5.48.. 5.50) (b) numerical solution of collective variable equations 

(5.64.. 5.66) (c) analytical solution of equation (5.74) 
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Figure 5.8: Plot of IA'12 vs x for b=0 and µ=0.8. (a) numerical solution 

of equations (5.48.. 5.50) (b) numerical solution of collective variable equations 

(5.64.. 5.66) (c) analytical solution of equation (5.74) 
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' 

dA - ib 
dA 

+ 2µdä - iA' = (5.67) 

dA' 2 d' \2 
dz- iSA' I - 2iA' 

I 
di - iSA'I + 2iA'` 

(4.. 

+ 2iIA'I2 
dz 

'+ 
21A'14 

(ä- 
i8A') + 2i62JA'12A'. 

It has been assumed that AO is negligibly small and bo = 0. It will be shown 

here that this equation can be reduced to the form of a Landau-Ginzburg equation 

with complex coefficients. The methods used will be similar to those used in [78]. 

Neglecting all the nonlinear terms in (5.67) it is found that the field evolves 

as 

A'(z) ,: a exp(-ikx) (5.68) 

where k is that complex root of the dispersion relation 

k3 + £k2 - 2µk -1=0 (5.69) 

such that k= kT +iki where ki > 0. It is easily checked using the variable A= -k 

that this dispersion relation is identical to (4.42) which was obtained from a linear 

analysis of the full set of equations (3.151.. 3.155) in the limit p<1. 

Using (5.68) to evaluate the nonlinear terms in (5.67) and using the further 

assumption that the complex amplitude a is a slowly varying function of x, an 

approximate evolution equation for a can be obtained [79]: 

ä- 
i(3k + ö) 

dz- 
(3k2 + 2k6 - 2µ) 

da 
= (5.70) 

- 2i(k + 6)(2k + k* + 8)aja12e2k; s - 2i(k + ö)alal4e4k;: 
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Neglecting all derivatives of a higher than the first and considering only the 

cubic nonlinear term it is possible to write the equation for a as 

dz ~ -ce2k'zala12 (5.71) 

where 

c-G+ ic, - -2i 
(k + Z)(2k + k` + b) 

(5.72) 
3k2+ 25k - 2µ 

This allows an equation for the original field variable A' to be written using (5.68) 

as 

dA' 
= _ikA' - cA'IA'12 (5.73) TZ 

which is a Landau-Ginzburg equation with complex coefficients and has the same 

form as the corresponding equations describing the saturation process and the 

phase transition in atomic lasers [80]. It can be shown from (5.73) that the 

corresponding equations for the scaled field intensity I= IA'12 and phase f where 

A' _ IA'Ie'E are 

dI 
T= 21(ki - c, I) (5.74) 

d- -k,, - c; I. (5.75) 

From the form of (5.74) it is apparent that c, is analogous to the self-saturation 

coefficient of atomic laser theory [80]. 

The method of solution of (5.74) will now be described. As (5.74) is a first 

order separable differential equation, it can be integrated directly to give 

I di 
z 2c, 

fo 
I(k; /c,. -I) 

(5.76) 
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where Io = I(z = 0). The integrand on the RHS can now be split using the 

method of partial fractions i. e. 

I (k; /c,. - I) k, " 

0 
(I - k; /c,. )) 

which results in (5.76) becoming 

z=1 In 
I (Io-k; /c, ) 

Ui 
(10 

(I-k; /cr) 

This can be rearranged to give an expression for the scaled electromagnetic field 

intensity as a function of z, allowing a direct substitution for I in (5.75) and 

integration resulting in an expression which describes the field phase evolution 

as a function of z. The equations which describe the field intensity and phase 

evolution are 

_ 
k1Ioesk; Z 

I(z) 
(ki - C, IO)(1 + e2kil) 

(5.77) c1 
k, -Cr 0 

ý(z) = -k, i - 
2G In 

(1+(e21'_1))+eo 
(5.78) 

where ýo = C(z = 0). It is clear that as z -º oo then 

I-+ 
k` 

--. >-k, -k'c'" (5.79) 
cr dz cr 

The solution of (5.74) is shown in figures 5.7(c) and 5.8(c) for p=0.1 and 

I& = 0.8 respectively. Note that because the Landau-Ginzburg equation has only 

been used to model the evolution of the exponentially growing wave, its solution 

does not display the region of `lethargy' at the beginning of the interaction, 

as this is caused by interference of the growing, decaying and oscillatory waves 

corresponding to the three roots of the dispersion relation (5.69). As discussed 

in section 4.2.1, this is most pronounced for cases of large p for which the linear 
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growth rate of the amplified wave is significantly smaller than those where p 0. 

Figure 5.9 shows the variation of the saturation intensity predicted by (5.79) with 

µ for the case of exact resonance (b = 0). This is therefore an analytical prediction 

of the effect of free energy depletion on the saturation intensity of a cyclotron 

resonance maser. The intensity at the first saturation peak is also plotted in 

figure 5.9 as calculated from a numerical solution of equations (5.48.. 5.50). Note 

that as it -> 0 the saturation intensity predicted by the analytical result (5.77) 

approaches 1.5. The linear instability threshold for µ of (27/32)1/3 .: s 0.95 can 

also be observed. The elegance of the Landau-Ginzburg model is evident given 

the simplicity of the equations and their excellent agreement of results with those 

from the full numerical integration of equations (5.48.. 5.50). 

5.2.4 Conclusion 

It has been shown that it is possible to describe the evolution of the electron 

and field dynamics of a low-efficiency cyclotron resonance maser up to saturation 

of the field amplitude using three complex collective variable equations. Using 

this description, it is possible to reduce the equation for the field evolution to a 

Landau-Ginzburg equation with complex coefficients. Analytical predictions of 

the effect of free energy depletion on the saturated field intensity show good agree- 

ment with corresponding numerical calculations. The Landau-Ginzburg form ob- 

tamed here shows that the evolution of the electromagnetic field up to saturation 

in a cyclotron resonance maser can be described by the same equation used to 

model the field evolution in an atomic laser. 
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Figure 5.9: Plot of saturation intensity vs p for 6=0. (a) numerical solution 

of equations (5.48.. 5.50) (b) analytical solution of equation (5.74) in the limit 

z --> 00 
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The results are remarkable from two points of view. Firstly, the simplicity of 

the Landau-Ginzburg equations when compared with the complicated set from 

which they were derived and secondly the similarity between atomic lasers and 

cyclotron resonance masers through the Landau-Ginzburg equation given the 

obvious differences between them. 
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Chapter 6 

Superradiance in the CRM 

6.1 Introduction 

The previous chapters in this thesis have all been concerned with the evolution 

of the electromagnetic field in the steady-state regime, where the slowly varying 

envelope of the radiation is dependent on one variable only i. e. the spatial dimen- 

sion z. This limit corresponds to the assumption of an infinitely long electron 

pulse of uniform density, so that one section of the electron beam, and hence 

radiation, evolves identically with all other sections as the interaction progresses. 

The relative slippage of the radiation pulse through the electron beam, which 

will occur when the axial velocity of the electrons and the group velocity of the 

radiation are not equal, is neglected, as in chapter 3. The radiation intensity 

in this regime was shown in chapter 3 to scale as n! '3, where n, is the electron 

density. This chapter is concerned with a quite different regime to that described 

above, the superradiant regime, in which the radiated intensity may be propor- 

tional to the square of the electron density. This regime will be shown to be due 
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to cooperative synchrotron emission and is critically dependent upon the effects 

of slippage. 

Radiation intensities scaling as n. 2 may also arise from coherent synchrotron ra- 

diation emitted by electrons which have been pre-bunched by an external source. 

The radiation fields emitted by these electrons sum up coherently to give the n. 2 

scaling. This is superradiance as defined by Dicke [81] i. e. spontaneous emission 

from a coherently prepared system. Strictly speaking, this chapter is concerned 

with a different phenomenon. Ideally, the electrons enter the beginning of the in- 

teraction in an unprepared state i. e. unbunched and with no input signal, so that 

the intensity of the (spontaneously) emitted radiation is initially proportional to 

ne. On interacting with this radiation, the system evolves in such a way that 

the electrons emit radiation with an intensity proportional to n. 2. This behaviour 

is a self-organizing phenomenon, whose atomic analogy has been called super- 

fluorescence [82]. In this chapter, references will be made to `superradiance' in 

this latter sense i. e. radiation intensity scaling as n. 2 from a self-bunched system. 

This change of terminology from Dicke is historical in order to keep the same 

terminology as the same superradiant effect from FEL theory [83]. 

The essential difference between the superradiant regime and the usual steady- 

state regime is the effect of slippage. As the interaction progresses, the radiation 

slips ahead or behind the electron pulse by a distance L,. If the length of this 

`slippage region' is much less than the electron pulse length and the interaction 

started from a noiseless initial state (i. e. no electron `shot noise' or noise over 

the radiation pulse), the radiation field amplitude will be approximately uniform 
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over the entire length of the pulse. This is the steady-state regime, as described 

in previous chapters, where the field evolution does not depend on the position 

in the electron pulse, but only on the (scaled) interaction length z. However, it 

is now feasible using new types of cathode such as photocathodes [73] and field 

emission arrays [37,74] that the opposite situation can occur, where the slippage 

length is greater than the length of the electron pulse. In this case, steady-state 

evolution cannot occur and slippage effects dominate the field evolution. 

It is not sufficient however, to consider only the length of the slippage re- 

gion and the electron pulse when deciding whether steady-state or superradiant 

emission is taking place. The gain must also be taken account of, so the elec- 

trop pulse is defined as being `short' or `long' with respect to a `co-operation 

length', defined as the slippage which occurs in one gain length. A gain length 

is defined as the distance over which the field intensity increases by a factor of 

e -/2 in the linear regime. This nomenclature is similar to that used in describing 

co-operative processes in atomic systems [84]. Note that even in the long-pulse 

limit there is always a region at the trailing/leading edge of the electron pulse, 

depending on whether the radiation group velocity is larger/smaller than the 

electron axial velocity, which will evolve as a short electron pulse because there 

is no radiation entering from one side of it and all emitted radiation propagates 

in the other direction (see figure 6.1). For positive slippage (v9 > vII), this region 

will be at the rear of the electron pulse, whereas for negative slippage (v9 <v II), 

it will be at the front of the electron pulse. The weak superradiant emission from 

this region of the electron pulse will be amplified as it propagates through the 
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remainder of the electron pulse, resulting in a spike of radiation with an inten- 

sity much greater than the steady-state saturation value. This phenomenon is 

termed `strong' superradiance to distinguish it from the superradiance emitted 

by short electron pulses, which is termed `weak' superradiance. The terms weak 

and strong are used to reflect the fact that the peak intensities are respectively 

smaller and greater than those of the steady-state regime. 

Consider an observer in a frame travelling at the axial velocity of the electrons 

so that in this frame, the gyrating electrons have only transverse momentum. As 

the electrons are emitting spontaneously, the amount of radiation emitted in 

the backwards direction (-z) will be approximately equal to that emitted in 

the forward direction. In order to neglect this backward wave interaction, it is 

necessary to impose the condition that the electrons are travelling at relativistic 

axial velocities with respect to the laboratory frame, so that on transforming 

to the laboratory frame, the intensity of the backward travelling radiation is 

negligible compared to the forward. This condition, coupled with the critical 

dependence on the relative slippage between the electrons and the radiation, 

suggest that the CARM is the type of CRM device which is most likely to give 

rise to superradiant phenomena (see figure 1.5). 

6.1.1 Definition of Parameters 

Consider an electron pulse and a radiation pulse envelope, travelling with ve- 

locities vil and v9 respectively. After a time interval At, the difference between 

the distance travelled by the radiation pulse and'the electron pulse, termed the 
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Figure 6.1: Diagram showing slippage regions when (a) 6<1 and (b) 6>1. 
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slippage length L� will be 

L3 = 
(1; ß)t 

(6.1) 

where 

,ß= 
vii 

. (6.2) 
9 

Note that if Q<1, L, >0 and the radiation pulse slips ahead of the electron 

pulse. Conversely, if ,ß>1, La <0 and the radiation pulse slips behind the 

electron pulse. Consequently, the two cases are termed positive slippage and 

negative slippage respectively. 

Using the resonance condition (3.41) and the dispersion relation for a cold 

waveguide mode (3.63), the factor (1 - /3)/13 can be rewritten as 

1-ß 
- 

c2kll 
ß Wv11 

c2 k0w21ý+kw2 

kokll - kl 
= ki + kl' (6.3) 

Using the variables X and a, defined as 

z 
X= 

kl 
(6.4) 

ko 
k2 

ac =k (6.5) 
1 

it is possible to write (6.3) as 

1-ßkco (1-X) 
(6.6) ß kll (1 + acX2). 

Note. that if X=1, no slippage will occur between the electron pulse and the 

radiation pulse i. e. vil = v9. From (6.1) and (6.6), when the electron pulse travels 
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a distance of one cyclotron wavelength or period AO = 2ir/kco, the slippage length 

will be 

l 
(1-X) 

(6.7) III 
(1+acX2 ) 

If the interaction distance z is represented as NN cyclotron periods i. e. z= NýAO 

and the electron pulse length as Nb slippage lengths i. e. Lb = Nb1� the ratio of 

the slippage length to the electron pulse length, which will be termed the slippage 

parameter, is given by 

Nb (6.8) 

Note that if S>1, the radiation pulse will have slipped a distance greater than 

the entire electron pulse length and there will be no steady-state region. 

In chapter 4, the linear solution for the electromagnetic field in the steady- 

state limit was found in (4.39) to evolve as 

Aa exp (I ̀  (A3(Pi µ))I z) = exP (kk 
IP 

I3`(. Xs(P, µ))I x) (6.9) 
I 

where A3(p, µ) is a complex root of the full dispersion relation (4.36). The gain 

length is therefore the value of z for which the argument of the exponential is 

f /2 i. e. 

L9 =kp= 21r 
pX (6.10) 

Note that the limits p --º 0, µ -+ 0 and 6 -º 0 have been taken in this expression, 

so that I9(A3(p, µ))l -+ / /2. This is equivalent to neglecting the effect of 

variations in i11 and fill. This assumption is reasonable even for significant values 

of p and a because the parameters being defined in this section are concerned 

with electrons which are emitting spontaneously. i. e. those on the trailing edge 
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of the electron pulse when Q<1 and on the leading edge of the electron pulse 

when /3 > 1. The amount of radiation emitted from these electrons will be 

relatively small, when compared with the electrons in the body of the pulse which 

amplify the spontaneously emitted radiation, so ül and U11 will remain almost at 

their initial values. As the spontaneously emitted radiation slips over the other 

electrons and is amplified, the effects of depletion of either the transverse or axial 

momentum become more important. Therefore, just as the radiation intensity is 

uniform over the electron pulse length in the steady-state regime, but non-uniform 

in the superradiant regime, so the effects of momentum depletion are uniform 

over the electron pulse length in the steady-state regime, but non-uniform in the 

superradiant regime. 

The slippage which occurs in one gain length is termed the cooperation length 

and will be defined as 

Lc = 
(ß\L 

ß 
ß) 

a 

- 
1-X ) all 

(6.11) 
1+ aýX2 

) 
21rpX 

The co-operation length can be interpreted as the minimum distance between 

which electrons may interact cooperatively via the radiation field. The ratio of 

the cooperation length to the electron pulse length determines the importance of 

superradiant effects on the field evolution, so the `superradiant parameter' K is 

defined as 

K 
Lb 2lrpXNb 

(6.12) 

where Lb = Nbl3 has been used. Note that the superradiant parameter K can 
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also be interpreted as the slippage parameter S per unit gain i. e. 

K=G (6.13) 

where G, the unsaturated gain, is the argument of the exponential in (6.9) i. e. 

G= 
kLPz 
kll 

*G= 2irpXN,, (6.14) 

As we are only interested in the case of high gain i. e. G>1, then (6.13) im- 

plies that S= GK > K. The definition of K means that the long pulse limit 

corresponds to K«1 (Lb » L, ) and the short pulse limit corresponds to Ký1 

(Lb Lc). 

6.1.2 Dissipative Model of Weak Superradiance 

The effect of the relative slippage between an electron pulse of length Lb and a 

radiation pulse can be shown without introducing a description involving partial 

differential equations using a simple dissipative model [85]. This model introduces 

a loss term into the wave equation, which represents radiation escaping from the 

electron pulse into vacuum and undergoing no further interaction. This loss term 

will be proportional to the rate of slippage (slippage per unit distance travelled 

by the electron pulse), which from (6.1) is (1 - ß)/ß, and inversely proportional 

to the length of the electron pulse Lb. The unscaled wave equations for the 

TE and TM mode interactions (3.74) and (3.142) can therefore be generalised 

heuristically to include the effects of slippage i. e. 

d ä. (z) 
= 

iw/LokiDTE m-l(k1Ro) (e_i) 
_ k, F, (z) (6.15) 

II II 
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dG, (z) 
_ -µolk. wÖ (kll c2 

ullo x dz 2c2kllk ull w 
ryo - 

DT MJ. -1(k1Ro) 
( 

Uli 
e-`ý) - kzG3(z) (6.16) 

where 

ki = 
(i P) 1 

P Lb* 

When the scaling procedures of sections 3.2.3 and 3.3.4 are followed, both (6.16) 

and (6.16) reduce to 

)- k1Ä (6.17) 
dA 

= (Uli 
/ 

where the scaled loss term is defined as 

(1 - X) aid 1( 
ki _ X(1+c X2)27rpLbý 

6.18) 

It is sufficient for now to assume that any variations in the transverse and axial 

momentum of the electrons are very small i. e. ül = fill . 1. The effects of 

significant variations in these quantities will be discussed in forthcoming sections. 

Rewriting the electron pulse length as Lb = Nbl� it can be seen on comparing 

(6.18) with (6.12) that ki is equivalent to the superradiant parameter K. 

If the loss term is small, or more specifically, 1/kt > zf, where xf is the scaled 

interaction length of the amplifier, the radiation will remain inside the electron 

pulse for almost the whole interaction. This is the usual steady-state amplifier 

limit, which has been analysed in the previous chapters. In the opposite limit 

i. e. 1/ki < if the radiation is rapidly escaping from the electron pulse. The 

effective interaction length between the electrons and the radiation is now 1/k,, 

and in this case, the interaction `switches off' with a decay constant for the field 

amplitude of 1/k,. Equations (3.182.. 3.184) can be rewritten including the loss 
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term in the wave equation resulting in 

dO' 
= P; (6.19) 

dz 
dp' 

=+c. c. ) dz 
(6.20) 

dA kjý4 (6.21) 
dz z 

The electromagnetic field variables can be adiabatically eliminated by setting 

dA/dz =0 in (6.21). The complex field amplitude can then be expressed as 

- 
(ek' ) 

r 
(6.22) 

As the set of equations (6.19.. 6.21) have only one free parameter i. e. k, then for 

a given value of ki , 
(e''O) will have the same value at saturation. This means 

that from (6.18), 

JAI' a p2 

so the unscaled radiation intensity at saturation, Iaat, varies as 

Iaat a P4JAI2 a p6 « n. (6.23) 

This scaling of the saturation intensity is therefore proportional to the square 

of the number of emitters as opposed to the n4.! $ dependence which was derived 

from the analysis of the steady-state evolution in section 3.4. The relation (6.23) 

is characteristic of a superradiant emission process. 

If the set of equations (6.19.. 6.21) are linearised following the procedure of 

chapter 4 and the electromagnetic field is eliminated using (6.21), the equation 

describing the evolution of the linearised bunching parameter b= -i(4e) is 

d&b_ i 
b 

d2k! 
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which has the solution 

_ b= bo exp 
1+ 

2k 

i1z 
(6.24) 

so the linear solution diverges on a length scale (with respect to z) of 1/A, where 

As =1 (6.25) 
2ki 

It is now possible to state the conditions under which superradiant effects should 

be observed, that is, that the (scaled) length scales of the incoherent decay 1/k,, 

the superradiant pulse 1/a, and the interaction length if should be ordered as 

follows: 

1K1« 
if (6.26) 

ki A. 

Using (6.18), it is possible to rewrite the above with respect to the length of the 

electron pulse i. e. 

/ký (1 - X) 2/3 
Lb <G 21/3L� < kl (1 +a X2)z) 

(6.27) 
i 

where Lc is the co-operation length as defined in (6.11). From the discussion in the 

introduction, these are therefore the conditions under which weak superradiance 

should occur. 

6.2 Linear Theory 

In this section, a linear analysis of the CRM interaction including the effect of 

the relative slippage between the electron pulse and the radiation envelope will 

show the existence of two distinct regions of the electron pulse within which the 

electromagnetic field evolves in a quite different manner. This analysis is based 

on a similar linear analysis of superradiant evolution in FELs [86]. 

167 

<: ý 



; ýýýý: 

In order to describe the CRM interaction for electron pulses, the ordinary 

differential equations (3.151.. 3.155) derived in chapter 3 must become partial 

differential equations. This is achieved by replacing d/dz by 

d81 
dz - 8z +Q ýt for electrons (6.28) 

ä äz + at for radiation. (6.29) 

where the scaled length and time variables are defined as 

z=, t= 
L2 lpz pvgt (6.30) 

kli kll 

so the generalised set of evolution equations describing the CRM interaction in- 

volving electron pulses is 

Cz+Qat)ý'j = 

Ui +Qt)Pi _ 
a 1a (Fz +Qýt ulj = 

1a ýa FZ + 
,9 at ulli = 

aa, Gii+N) 
A= 

6.31 pj -i uluII 
(A'e', ýi - 

(P(pp + b) -1) 
ü2' (A'e'"i + c. c. ) (6.32) 

lu 

(A'e`mj + c. c. ) (6.33) 
uni 

-pulj (A'e`, ýi + c. c. ) (6.34) 
IIj 

C ul e'`ýýý + ibA' (6.35) 
Uli 

N. 

where: j=1.. Ne, (... ) =NE..., öx, p' =p-ö, A' = Ae1a, and 

ýB = vjj/v9. This set of equations will now be linearised using exactly the same 

methods which were employed for the case of steady-state evolution in chapter 4. 

Linearising the dependent variables about their values at equilibrium (i = 0) 

and using the set of collective variables defined in (4.14.. 4.17), the set of linear 

equations can be written as 

(az +äb= -iP - µA (6.36) 

168 

i'. 
Lý' 

fýa .... 



ýä + ät P= (pb - 1). 4 (6.37) 

ä7z ät=) 

(äz + Qä, ) U� = -PA (6.39) 
(äz+at)A = b+Ul-UII+iSA (6.40) 

where, as in chapter 4, terms proportional to (e-'20) have been dropped and Ai 

has been written simply as A. 

If the new independent variables z' and t are defined as 

z =z ,t =x -Qt (6.41) 

then t represents the position with respect to the rear of the electron pulse when 

,B<1 and the front of the electron pulse when ,0>1 so 

a 
__a 

a 
az az- + at- 

at - -ß ai, 

and the set of linear equations (6.36.. 6.40) becomes 

8b 
= -iP - µA FZI (6.42) 

aP 
= (Ps -1)A öz' 

(6.43) 

_ -pA (6.44) 
Oui 
ail 
Bull 

_ -pA (6.45) 
ä, z: -' 

)A. 
= b+U -vii+=5A (6.46) 

The boundary conditions are assumed to be 

A(z'=0, t) = Ao(t) (6.47) 
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b(z' = 0, tom) = bo(t) (6.48) 

P(z' =0, t) = Ul(z'=0, t)=Uýý(x'=0, t)=0 (6.49) 

so (6.42.. 6.46) can be Laplace transformed using the standard Laplace transfor- 

mation 
00 

J X(z', t)e-'zýdz' (6.50) 

resulting in 

sb - bo(t) = -il> - µ, Ä (6.51) 

sP = (pö - 1)Ä (6.52) 

sÜl = -µÄ (6.53) 

3Üll = -pÄ (6.54) 

SÄ -. 4o(t)+(1-ß)dA(S; t) 
= b+Ü -U11+i8A (6.55) 

which can be reduced to a single equation in the transformed field amplitude 

Ä(s, t') 
. 

dA( ý 
t') 

_ li0 
ý)sZ.. 

4(s, t) °11 
,8 

(bot) 
+ Aoit )l 

) 

where 

A(s) =is3+bs2-i(p-2p)s+1-pö. 

The differential equation can be rewritten using (4.32) to give 

dA(A, t) 
+ 

i_(a) Ä(x, t) =1_ 
ibo(t) 

(6.56) 
di' (1-Q), \Z 1-/ 

(A0(7) 
A) 

where 

A(A) =A3-dal+(p-2p))ß+1 -p6. (6.57) 
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Equation (6.56) is a first order linear ordinary differential equation, which has 

the general solution 

Ä(A, t) = exp 
(_ i0(a)t 

(1 _ß)Äz 

)x 
(6.58) 

eX 
1 . Ao(t") - ibo(i) 

di" +C If p( (1-ß)a2)1_ß 
(A) 

where C is an arbitrary constant whose value is fixed by the initial condition on 

F. 

For simplicity, the case which will be considered here is that where there is 

no field excitation and constant bunching at z' =0i. e. 

Ao(t) =0, bo(i) = bo (6.59) 

which makes the evaluation of (6.58) straightforward. The result is 

Ä(a, t) _- 
b0A (i_exp ((1 i (A)t' ll 

+C exp -i 
() )t l 

6.60 
-ß)A2)l (1 -ß)A2). 

() 

Note that when P=0, 
, 
Ä(A, 0) = C. Now A(z', t' = 0) is a constant, so 

8A(-7', t= 0) 
_ 0. 

äx' 

Laplace transforming this relation results in 

sA(s, 0) - A(0,0) =0 

A(s, 0) = 
A(O , 0) 

_ -2.4(0,0) (6.61) 

so 

i 
A(0' 0) 

=0 (6.62) 

as , Ao(0) =0 was assumed in (6.59). The solution for the transformed electro- 

magnetic field amplitude in (6.60) is therefore 

A(ý't) O a) 
(1 

- exp (-c' 
- ß)ý 

)) (6.63) s 
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for the boundary conditions (6.59). 

It is now possible to perform an inverse Laplace transform on (6.63), where 

the inverse Laplace transform is defined as 

a+ioo 

oo-ia X(a, t )eiada (z' > 0) 2ý 
oo-ia 

(6.64) 

where the path of integration lies below all the singularities of the integrand in 

the complex plane. Applying this to (6.63) results in 

i, to, AeiaiI EA (A 

A(z/t) 
21r 00 0(a) 

C1 
- exp 

(-ý2 
)fl)tý //A 

(6.65) 
is 

If 1' and t' are rewritten in terms of the original scaled variables 2 and t, (6.65) 

can be rewritten as the sum of two terms i. e. 

A(z, = A1(z) + A2(z, t). (6.66) 

The first term in (6.66) is space (z) dependent only and is given by the residues 

of the three simple poles X1,2,3, which are the roots of the cubic equation 

0(a)=A3-ba2+ (p-2µ)a+(1-pb)=0 (6.67) 

so A, (i) is just the solution of the steady-state problem (4.37). A, (g) will be 

renamed Ass(z) from now on, where 

3 

Ass(x) -abo 
- )(Aký- a 

(k # 15& m). (6.68) 
k=1 `ak ali)( k m) 

The second term in (6.66) is both space (z) and time (t) dependent. From (6.65), it 

can be seen that A2 (i) 0 is given by the residues of the same three simple poles 

172 



. 11,2,3 and by the residue of the essential singularity at A=0. The expression for 

A2(2,0 is therefore 

oo-ia _ ý)A2 + iA )dA (6.69) Az(z>> _f oý) exp 
(-t 

(1 27r - oo-ia 

It is useful at this point to introduce the variables zl and z2 where 

z1= 11Q (z - Qý (6.70) 

zZ= (6.71) 

and 

z=xl+Z2 (6.72 

Note that 2 and z2 have been normalised to the cooperation length i. e. 

: _i 
(x - vIlt) (6.73) 

l ßL 

zz - 
(vgt - Z) (6.74) 

L 

The variables zl and z2 allow the argument of the exponential in (6.69) to be 

rewritten as 

io (Aý i (ý)Q) 
+ iaz' = -z0(ýA)z1 + iAi =- A2 zi + iazi + iAxz. 

If the definition of 0(A) is used, this results in (6.69) becoming 

,, 
4s 

ý -to 
exp 

r/p- 21A 1- P61 
exp J (z, - 21r te(a) 

IiI bxl -A zi - AZ l (iA 2)dA. 
0o io l 

(6.75) 

Consider now the integral in (6.75) over the complex plane, which is shown 

schematically in figure 6.2. From the definition of the inverse Laplace transform 

(6.64), the line : 3°()) = -or must lie below all the singularities of the integrand in 
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order for the integral to converge. If A is split into real and imaginary parts, the 

term exp (i. z2) in (6.75) becomes 

exp (iA 2) = exp (iarz2) exp (-atze) (6.76) 

where A, = R(A) and a= = (\). There are therefore two possible paths which 

can be used to complete the contour over which the integral is performed, depend- 

ing on whether z2 >0 or 22 < 0. If z2 < 0, then it is necessary that a; -º -oo 

so that the contribution from the infinite semi-circular section used to close the 

path of integration tends to zero as the path radius tends to infinity i. e. path 

ABCA in figure 6.2. As this path does not enclose any singularities, the integral 

in (6.75) will be zero. The resultant field amplitude from (6.66) will therefore be 

A(z, = Ass (2; ) when z2 <0 (6.77) 

Conversely, if z2 > 0, then (6.76) suggests that ); -> +oo to ensure that the 

contribution from the infinite semi-circular section used to close the path tends 

to zero i. e. path ABDA in figure 6.2. This path encloses the three simple poles 

which are the roots of 0(a) =0 and the essential singularity at A=0. From 

(6.75) it can be seen that 

A2(z17z2) = -Ass(: ) + AsR(zl, z2) when Z2 >0 (6.78) 

where ASR arises from the essential singularity alone. The resultant electromag- 

netic field amplitude is therefore given by (6.66) to be 

A(z1, z2) = AsR(zl, z2) when Z2 >0 (6.79) 

where 

ý t6ý1 AsR(zi, zz) - 2zr eXp 
(C1Z1 + a2 - J1 z2/ J 

dA (6.80) 
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X 
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Ic 

X- simple pole 
"- essential singularity 

Figure 6.2: Schematic diagram of the complex plane showing singularities and 

possible paths of integration. 
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The contour r is a counterclockwise path which encloses the singularity at A=0 

but does not enclose any of the simple poles, and the coefficients co and cl have 

been defined as 

co=1-pb , cl=p-2µ (6.81) 

Equation (6.80) means that when zl >0 and z2 > 0, the electromagnetic field 

evolution is due to a different process from that which produces steady-state 

evolution i. e. due to superradiance. From the definitions of zl and z2, it can be 

seen that the region where this process occurs is the slippage region, which is 

the part of the electron pulse which does not overlap with the original radiation 

pulse. The slippage region for the case of positive slippage (Q < 1) and negative 

slippage (/3 > 1) is shown in figure 6.1. 

In order to evaluate (6.80), the new variables x, C, 0 and c, defined as 

x= (c0 2)'/3 (6.82) 
! 22 1l 1/3 

C=I zl Ia (6.83) 
\/ 

1/3 

= cl 
1 zl1 (6.84) -Cä z2 

l 

1/3 2/3 

Zi Co 
-- 

)- 
b3 -S 

ýzi ýý ýý + cl 
(Zi 

coý 
+ zl (6.85) Olý) = -7 

will be used. Equation (6.80) now becomes 

bo 
i6S1 

(_ 1/3 

AsR(xl7 12 )= 
tie \zl ýo/ rý 

ý (() exp 
L- 

x ýý +- c) dC (6.86) J 
where r' encloses C=0 but does not enclose any of the simple poles. Each term 

in the integrand can now be expanded as a power series in C and simple poles 
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found. The exponential terms are expanded using 

Zn °° 
E eZ = 

n_o 
n! 

where Z is an arbitrary complex number. Therefore 

6 

exp (ix() _E 
011 

a! 

(t 
Ca 

a=0 
00 

-ix), 
exp 

ix (___ 
/ -2b C b2/ 

=_b! 
6_0 

exp 
(-Lex) 

= 
00 (-i£x)`ý. 

-C 
Cc! c=O 

so 

E \1 00 00 00 (-116}c(i, )a+6-hcEcra-26-c 

exp 
[-ix 

(2 +'5 - (JJ -; 
Zý Jl 

all bi cl 

b (6.87) 
a=0 b=0 c0 

Before expanding 1/0(C)in (6.86), it must be split up using the method of partial 

fractions i. e. 
1_ C1 C2 C3 

o lC-Ci) 
+ (C-C2) + 

lC-C3) 
(6.88) 

where 01,2,3 are the three roots of 0(C) = 0. The three constants Cl, C2 and C3 

can be found by multiplying both sides of (6.88) by, & ((). Rewriting (6.88) as 

13 Ck 1 

o(C) - Cý (1- C/Ck) k=l 

it can be seen that the Laurent expansion 
1 °O 

EZ" (IZk < 1) 
1-Z 

n--0 
(6.89) 

will be useful. The condition IZI <1 or IC/CkI <1 Vk is always satisfied because 

the contour of integration in (6.80) and (6.86) encloses the origin of the complex 

plane but does not enclose any of the simple poles at C= 01,2,3. Therefore 

00 
Ci 

( C, C2 
+ 

C3 

d-0 
(6.90) 
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where 

C1 
(C' 

- b2)(ý1 - (3) ' 
C2 

- ((2 
- (1)((2 - 13) 

' 
C3 

(C3 
- bl)(C3 - (2). 

(6.91) 

Using (6.87) and (6.90) the full series expansion of the integrand is therefore 

(Z2 
+E-C_ (6.92) 

ý(C) exp -ice 
1 

°O (C C2 C3 1 
-1)b+c(ix1)a+b+cecra-2b-c+d+1 

-1(llb +1 
+ 

(3+1 a! b! c! rd+l 
+ 

(2 
a, b, c, d=O 11 b 

so the integral of (6.86) is just 21ri x the coefficient of C-1 from (6.92). When the 

coefficient of ' is -1, then from (6.92), 

d=-a+2b+c-2 (d>0) 

The coefficient of (-1 is therefore 

00 00 00 ( 1)b+C+l(zx)a+e+-EC 
E 1: 1: F(a, b, c) 

a! b! c! 
(6.93) 

a=0 b=0 C=Cmi. 

where 

3 

F(d, b, c) (bk - C! )(Ck - bm) ck °+ b+e-i (k #1# m) (6.94) 
k, l, m_1 

and 
0 if 4-2b+2<0 

Cmin = 

a-2b+2 otherwise 

The linear solution for the complex electromagnetic field amplitude in the slippage 

region (il >0 and i2> 0) is therefore 

= ib? 
1 

etaal ASR(zi, xz) 
(z! 

C) 
00 00 00 

xE F(a' b' c) (6 . 95) ýE 
a! b! c! 

) 
a=O b=o ýe�ýin 
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It is not a simple matter to extract physical information from the series so- 

lution for ASR. This is more easily accomplished using an asymptotic solution, 

obtained by approximating the contour integral (6.86) using the saddle-point 

method [87]. The expression (6.86) can be rewritten in the form 

ASR(x) = r, 
f 

X«) exP (x 
.f 

(O)d( (6.96) 
r 

where 
1/3 

K= 
bo 

e; sz, z2 1 
(6.97) 

2ir Ei co 

X K) =C ý(C) (6.98) 

f(0 = i(c- 
2-Z). (6.99) 

The integral (6.96) can be approximated in the limit of large IxI. Physi- 

tally, this limit means that the region of the electron pulse under observation 

is far behind the radiation pulse emitted atz = 0. The approximation involves 

continuously deforming the contour of integration so that the only significant 

contribution to the integral comes from the regions of the complex plane near 

the points which satisfy f'(() = 0. It can be shown that these points are neither 

maxima nor minima of f (() but saddle-points [87]. Expressing (' and f (() as 

C= Cr +' ZCi f1ýý 
' 

frlbrv 
biý 

+ ZJilýrv ýiý 

then the exponential function in the integrand of (6.96) can be written as 

exp (xf(()) = eisf`exfT 

which except for x and f; constant is a rapidly oscillating function which averages 

to zero along sections of the path I� where fi is varying. The integrand will be 

large when f, is algebra. icall y large. 
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At least two curves of constant f, may be drawn through a saddle point. In 

the sectors between these curves, f, will be alternately greater and less than at 

the saddle point itself. In order to keep large values of f,. in as short a section 

of the path as possible, the path should avoid the sectors where where f,. is 

greater than at the saddle point and keep to the sectors where f,. is less than at 

the saddle point as much as possible i. e. the path taken should be the path of 

steepest ascent and descent through the saddle point. It can be shown that this 

path is that along which f; is constant [87]. If C. is a saddle-point, f (C) can be 

expanded in the form 

C)2f/#(Ca) ý' ... 

and the direction of the path will be such that (z-z, )2f"(C, ) is real and negative. 

The integral (6.96) can now be reduced to [87] 

ASR(x) 
fýý 

r 
icX (C, ) exp (xf (C. )) (6.100) 

The saddle point around which the dominant contribution occurs, C. is the root 

of f'(C) =0 such that the product R (f (C)) x is positive, so that (6.100) is an 

exponentially growing function. 

From the definition of f (() in (6.99), it is easily found that 

fýlbý-iý1+ 

b3+ýZJ 

so the three saddle points are the roots of 

(3+E«+2 =0. (6.101) 

From (6.99) and (6.100) it is clear that for the superradiant intensity JASRI2 to 

undergo exponential growth, the saddle point C. must be complex. The condition 
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for C. to be complex can be obtained from (6.101) and is found to be 

s>-3 

which is equivalent to 
(P - 2/x)3 zi > -27. (1-p5)2z2 

(6.102) 

(6.103) 

Note that as well as being dependent on the parameters p, µ and 6, the threshold 

condition (6.103) is dependent on il and 12 i. e. whether or not the system is 

linearly unstable is dependent on the position in the electron pulse. 

6.2.1 Superradiant Evolution When p --> 0 and µ -º 0. 

When the condition (6.102) is satisfied, the three stationary points correspond 

to a growing exponential term, a decaying exponential term and an oscillatory 

term. For large x, the growing exponential term will dominate the other two. 

When p -º 0 and y -º 0, then e -+ 0, so that the threshold condition for C, to be 

complex is satisfied for all values of F,, zz >0 and x -º (zlxz)1/g. From (6.101), 

and the definition of f (C), (6.99), the exponentially growing term corresponds to 

C. = 21/3 exp (-iir/3). The linear solution for the complex field amplitude can 

now be approximated for large x as 

AsR 
boil 

exp (ibxl) exp 
((/+i) 

2 
ý3 

-4 (6.104) 
x3/2Q(_ 1,2) 3ý 

where 

nw(zi, x2)-ßb(221) 
2/3 

exp(3)-2z1 (6.105) 
/s 
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so the exponential growth rate of the electromagnetic field amplitude in the su- 

perradiant regime when p -+ 0 and µ -4 0 is 

3s 
9SR = 25/3 

2 

3vf3- k2 p p2/3 
(Z 

- v11t)1/3(Vgt - Z)2/3. (6.106) 
25/3 kll (1 

- 
9) 

Note that this is also the asymptotic growth rate of the instability when cl = 0, 

even if p It, 1 and p yK 1. It is immediately noticeable that the growth rate of the 

superradiant signal does not depend upon the detuning 6, contrary to the case of 

the steady-state signal Ass. This is a consequence of the different natures of the 

singularities of the inverse Laplace transform integral in the steady-state region 

(0(A) = 0) and in the slippage region (A = 0). A diagram of the electromagnetic 

field evolution is shown in figure 6.3 for a case of positive slippage (ß < 1) and a 

fixed i< 11K. The field intensity is plotted against zi. It can be seen from this 

figure that there are two distinct regions of evolution, labelled (a) and (b), in the 

area occupied by the electrons i. e. 0< xl 5 1/K. In region (a), i< il < 1/K, 

the field intensity is independent of the position in the pulse (xi) and is just that 

due to the steady-state evolution of the field i. e. the field amplitude is a function 

of z only, which is constant in this case. In region (b), 0< zi <x or il >0 and 

Z2 > 0, so this is the slippage region, as il =z is the point in the electron pulse 

reached by the radiation emitted by the tail of that pulse at the beginning of the 

interaction. The field amplitude evolution in this region is described by (6.104) 

and is not uniform over the electron pulse due to the slippage effects. Region (c), 

where 1/K < il <2+ 1/K, shows the radiation escaping from the front of the 

electron pulse into vacuum. This radiation no longer undergoes any interaction 
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-ý 
(b) 

Figure 6.3: Plot of IA12 against zl when S<1. 

with the electrons, and is a record of the steady-state evolution. Figure 6.4 shows 

a case where the slippage parameter S>1. This means that the initial radiation 

pulse has slipped over the entire electron pulse. It can be seen from this figure 

that there is now no steady-state region. If ß>1, then these figures would 

again be obtained with the only difference being that the relative positions of 

the different regions would be reversed, as the slippage region would occur at the 

front of the electron pulse and the radiation would escape from the electron pulse 

tail. 
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Figure 6.4: Plot of IAj2 against ii when S>1. 

6.2.2 The Effect of Free Energy Depletion on Superra- 

diant Phenomena 

In this section, the effect of depletion of the transverse momentum of the electron 

pulse on the superra. dia. nt evolution of the electromagnetic field will be studied. 

It is sufficient that we consider the limit p -º 0 in order to analyse these effects. 

In this limit, the parameter I becomes 

1/3 

,... ý'äý'E' . 

and the threshold condition for the electromagnetic field intensity to asymptoti- 

cally undergo exponential bairn, given in (6.102), reduces to 

22 8 /13 
27 
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which can be rewritten in terms of il and z using (6.72) 

_z zi <1+ (2p)3 
(6.108) 

3 

Consider a fixed point in the interaction i. e. constant 2 and the growth rate of the 

superradiant instability at different points in the electron pulse. The case of pos- 

itive slippage will be assumed for simplicity. The inequality (6.108) suggests that 

the system is always unstable at the trailing edge of the electron pulse (Ii = 0) 

but that points in the pulse with zl >0 are closer to the instability threshold. 

If il is increased further, the instability will eventually disappear when the con- 

dition (6.108) is no longer satisfied. Physically, this can be explained as follows 

: as there is no radiation entering the rear of the electron pulse, the electrons 

there are emitting spontaneously, and no significant depletion of their transverse 

momentum occurs. In contrast, electrons further forward in the electron pulse in- 

teract with and amplify radiation which was emitted from those electrons behind 

them in the pulse and undergo significant depletion of their transverse momen- 

tum, consequently reducing the growth rate of the radiation field amplitude. In 

section 6.3, this effect will be seen to be important for long electron pulses, where 

strong superradiance can occur. 

6.2.3 Superradiant Evolution When pZ1: 

Autoresonant Superradiance 

Relaxing the limit on p imposed in the previous two sections, it can be seen from 

(6.82) that the case where 

co =o=> pa=1 
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requires a slightly different set of variables to be used, as x has been defined as 

being proportional to co. The condition pS =1 was shown in chapters 3 and 4 to 

be that for which autoresonance occurred. The following analysis will therefore 

enable an expression to be found describing the superradiant evolution of the 

electromagnetic field amplitude when autoresonance occurs. 

The starting point of the analysis will be (6.80), which when co =0 becomes 

ASR(-;; l1 12) _ 
bo 

ei6il Q 
(A) 

exp 
[-ix .1- x22) ] dA (6.109) 

where A,, (A) = \2 - (1/p)A + cl. Defining the new set of variables 

Cl 
= 

Clzl (6.110) 
2 2 Z 

xa = Clzlz2 (6.111) 

2 Ace«a) =z Dal) (6.112) 
d z' 

the expression (6.109) becomes 

AsR(zi, z2) =T eib, l - Cizl exp [-ix. fa(So)]dýý (6.113) 
27r z2 r ýa(ýa) 

where 

fa(bc) _ Za 
1- 

ba. 

The integral in (6.113) can be evaluated as before using the saddle-point method, 

where the saddle points are those which satisfy fa(C) = 0, which in this case 

are C. = ±i. The value which corresponds to exponential growth of the field 

amplitude is C. = -i, so using only this value, the exponential growth rate of the 

electromagnetic field amplitude at autoresonance, ga, is shown to be 

9a = 2xa =2 ((P - 2li)21z3)h/2 (6.114) 
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with the necessary condition that p> 2µ. Note that this growth rate is pro- 

portional to 11 22/21 whereas the growth rate of the instability when co 36 0 is 1 

1 
/3 Z-2 2/3 proportional to z1 

A critical difference between this instability and that of sections 6.2.1 and 6.2.2 

is that when autoresonance occurs (pS = 1), and free-energy depletion effects are 

small, the bunching does not evolve at all (see (6.36) and (6.37)), at least in the 

linear regime, but stays fixed at its initial value. Amplification of the spontaneous 

radiation is due to the depletion of the axial momentum of the electron beam. 

6.3 Nonlinear Theory 

This section is concerned with the nonlinear evolution of superradiance. In order 

to study this regime, it is necessary to use a set of partial differential equations 

(PDEs) which are a generalisation of the ordinary differential equations used 

in the analysis of the steady-state regime. Such a set of equations is shown in 

(6.31.. 6.35) but it is possible to write this set in terms of z1 and i2 using (6.72) and 

the fact that zl and z2 are the characteristics for the electrons and the radiation 

respectively. This means that 

a 18 a 
dz +Q at azz 

aaa 
dz + at az1 

so the set of coupled PDEs which will be used in the nonlinear analysis of super- 

radiance is 

822 (il, 22) = Pi (6.115) 
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-zl; (ziý z2)i! Ili(z19z2) 
(A'(zl' zz)etý; (ýý, ýý) - c. c. ) 

azzpj(zi' z2) _ 
(P(P; (zi, z2) + S) 

- 1) 
u 

3( 1 

zZ) 

Il. iý E2) 

X (Aý(z1, z2)e'ý; (zý, =a) + c. c. ) (6.116) 

0 
Üli(211 z2) _ z2) 

(A'(zl z2)e`0; (21tZ2) + c. c. ) (6.11? ) 
Ili z 

2 
ü11 (z1, z2) _ -P ulý(z(il 

j 
i2) 

l, zz) 
(A'(zl' 22)etý; (Zi, ýs) + c. c. ) (6.118) 

II 
a 

7A'(-;; � i2) = 
ul(zl9 i2) 

e-tlk(; 1 2) + i6A'(3; li i2) (6.119) 
(zl 

( 

u11(1, z2 ) 

6.3.1 Self-similar Solution for Weak Superradiance 

Recalling the expression for the superradiant field amplitude in the linear regime 

when p-0 and p -i 0, which from (6.104) is 

ASR -- 
b0zz 

exp (ibzl) exp 
2 ((v'+ 

i) 
x 22/3 3/2Q( 

19 Z) 37f / 

it is possible to extend the results of the linear analysis in the short pulse limit 

using the following ansatz on the electron and field variables [90] : 

A' = zl exp (ibzl)Ai(y) (6.120) 

0j, = oii(y) - bxi (6.121) 

P; = zlplj(y) (6.122) 

The partial differential equations (6.115.. 6.119), which reduce in the limit p -º 0 

to 

azZýý(ziýzs) 
%ulý(z 

, zz)(A'(zi, 
2)e`ýýýiý, c. c. 16.123) 

özZPý 
(zig zs) + c. c. ) (6.124) 

19 
azz 11(21)z2) (6.125) 
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021 
A, (zi, z2) = ('(ii, 22)e-'O(=ß, z2)) + i5A'(zi, zs) (6.126) 

can be rewritten in terms of the new independent variables 

il = zl (6.127) 

y= x312 = zix2 (6.128) 

as a set of ordinary differential equations i. e. 

d-i; 
d= Pi; 

y 

-iµ 
zl (A'ie'44i 

- c. c. 
) (6.129) 

ül 
dP14 

_ -, il 
(Aci + c. c. (6.130) 

dy 
dä1' (Ae", + c. c. 

) (6.131) 
y 

2 ddyl 
+ Al = 

Cüle-'mi (6.132) 

Note that the free energy depletion terms are proportional to µ xi, so they can 

be made negligible either by imposing the condition that p -' 0 as in the case of 

steady-state evolution or by making zl --> 0 i. e. observing a point near the rear 

of the electron pulse. This is further evidence that free-energy depletion effects 

are not uniform over the extent of the electron pulse. 

Figure 6.5 shows a plot of I Ai (y) IZ against y for several values of µ as calculated 

from (6.129.. 6.132) when i= 1/K (the front of the electron pulse) and bo = 

0.01. The detrimental effect of the free energy depletion terms on the radiation 

amplification can be clearly seen. 

It is therefore possible to obtain a condition for free energy depletion effects 

to be negligible over the entire electron pulse during a superradiant process by 
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Figure 6.5: Plot of JA1(y) 12 against y when zi = 1/K = 0.5, bo = 0.01 and 

(a)µ = 0.01 (solid line), (b)µ = 0.5 (dashed line), (c)µ =1 (dotted line). 

imposing the condition that they be negligible at the leading edge of the pulse 

i. e. when zi = 1/K. This implies p/ Ii <1 or 

K» µ2. (6.133) 

It will be shown that when this condition is satisfied, the resulting equations 

describe a. superra. dia. nt process where radiated intensities are proportional to the 

square of the electron density and arise from spontaneous emission. 

Consider equations (6.129.. 6.132) in the limit µ zl <Ii. e. 

dOl) 
= Pig (6.134) dy 

dp', (Ae""; + c. c. 
) (6.135) dy 

y d. Ai 
+ Ai 

dy \ 
(6.136) 
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Note that by defining the variable w= y2, (6.136) can be written as 

dw 
(Aiw) bi 

so that by integration, 

l fW 
Ai =w bi (w) dw' (6.137) 

0 

where bi is the average of the bunching parameter with respect to w. 

The solution of (6.134.. 6.136) will not depend on zl and 6, but only on the 

initial conditions Ai(0) = (e-'15I 1(0)) and piJ = 0. The independence of AI(y) 

from xi and S, has two important consequences. First, the scaling IA'J = ziJAi I 

implies that IA'12 oc p2 from (6.70). This was shown in section 6.2 to imply that 

the unscaled field intensity varied as 

2 'sat « n. 

signifying superradiant emission. 

Second, the phase factor exp (iSzl) in (6.120) forces the signal to oscillate at 

the spontaneous frequency w, _ ie, + klivll, regardless of the assumed frequency w. 

In fact, following the chain of field variable transformations, the unscaled electric 

field, E, varies as 

Ea Eo exp (iwt) a A' exp (iwt - ibz) a Ai exp [(iwt - ibis) 

where (6.72) and (6.120) have been used. Now 

622= w -w, t -vl 11Q V, 9 N 

so if ß<1, the radiation phase is proportional to exp (iw, t). Hence the factor 

exp (iözl) shifts the carrier frequency of the signal from w to the spontaneous 

191 



frequency w,. The solution of (6.134.. 6.136) therefore describes a superradiant 

process, with intensity scaling as n. and with the frequency w, of spontaneous 

emission. The situation for /3 It 1 is not so straightforward as the waveguide 

plays a greater role in the interaction. 

6.3.2 Modelling Superradiant Effects in the Nonlinear 

Regime 

In this section, the computer code used to numerically solve the coupled nonlinear 

PDEs (6.115.. 6.119) will be described. This code is a modified version of one 

originally used to model slippage effects in FELs which was written by Dr B. W. J. 

McNeil [88,89]. At present, this code can only be used to model positive slippage 

effects. The use of this code is sufficient to prove the principles of the nonlinear 

evolution of a superradiant CRM instability. The construction of a code to model 

nonlinear superradiant effects specific to a CRM is an area of future work. 

The code models the interaction of an electron pulse and a radiation pulse 

by discretizing the pulses into intervals of width equal to the slippage length per 

cyclotron period, I., as defined in (6.7). If the spatial width of each interval is 

equivalent to a change in 0 of 27r for the electrons, then each interval can evolve 

independently i. e. the average in (6.119) is taken only over the electrons in one 

interval. The relative slippage between the electrons and the wave can then 

be represented by shifting the radiation intervals with respect to the electron 

intervals. 
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;,: ý, 

z=N, A, o 

z=2irpXNN 

Oz = 2ic pX 

Ozl = Az = 2ir pX for 22 = constant 

Oz2 = Oz = 2ir pX for il = constant 

Representing the interaction distance z as 

the scaled interaction distance z can then be written as 

so the change in z over one cyclotron period will be 

Furthermore, as z= il + 22, il and 22 change by steps of 2R pX per cyclotron 

period along the characteristics z2 = constant and il = constant respectively, as 

The characteristics il = constant and z2 = constant correspond to Oz = vl, Ot 

and Liz = v90t respectively. 

From the definitions of zi and x2, (6.70) and (6.71), it is noticeable that if 

t= constant, then Ail = Oz2 = 2ir pX corresponds to a `static' distance of 

Ox = 01, along the electron pulse and Az = 1, along the radiation pulse. Hence 

for ß"1, the `natural' unit length in which to discretize both the electron pulse 

(6.138) 

(6.139) 

and the radiation pulse is 2irpX i. e. 1,. 

Consider the phase change caused by a change of 2a pX in xl for constant t i. e. 

i: 

ýý3.:.:.? =ý?::. 

a `static' change of Oz = 01, along the electron pulse. Neglecting slowly varying 

terms, the phase of the electron with respect to the wave can be expressed as 

0 . ̂. e wt - 0,9 - kliz. (6.140) 
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where 49 is the electron gyro-angle. As the electrons are propagating in the z 

direction, it is convenient to express the electron gyro-angle as 

O9-koz (6.141) 

so the change in the electron phase is given by 

0o = wOt - (ko + kll)Oz" (6.142) 

If At =0 and Oz = 91, then 

0ý = (ko +k11)ß13 = (k + kll) 1-X 27r 
1 Ce XX2 III 

(6.143) 
c 

where (6.7) has been used. This means that for IL I= 2ir, the condition 

1-X=1 (6.144) 

must be satisfied i. e. the condition I0¢I = 21r can only hold if X --+ 0, which 

corresponds to the limit of free space or v9 = c. In a waveguide, this condition 

cannot be satisfied exactly, so interpolation is necessary, as the electrons in one 

interval of the electron pulse will be interacting with two separate intervals of the 

radiation pulse. As the code used to produce the numerical results of this section 

was originally written for a free-space FEL, no such interpolation is performed. 

Unfortunately, although the interpolation is unnecessary for cases where X<1, 

such values of X mean that the gain per cyclotron period 2a pX is very small 

(p <G 1 is also assumed for the calculations of this section). In order to simulate 

high-gain (G > 1), it is therefore necessary to integrate over a very large number 

of cyclotron periods and use a very large number of intervals for both the electron 
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and light pulses. The amount of computer memory required for such an integra- 

tion is therefore extremely large, and outwith the capabilities of the system on 

which the code was run. The results produced from numerical integration were 

therefore produced using values of X large enough that the computer memory 

limitations allowed the code to be run. With regard to this, these results should 

be considered as an approximation to the results which would be obtained if the 

proper interpolation techniques were used. They are included to illustrate the 

principles of radiation evolution including slippage effects rather than accurately 

predict, for example, peak radiation intensities. 

The partial differential equations are integrated with step size Ail = Az2 = 

2irpX per cyclotron period, repeated through N. cyclotron periods, so that the 

total integration interval is 27rpX NN i. e. the total unsaturated gain when p -º 0 

and p -> 0. After each integration step, the electron pulse is allowed to slip 

behind the radiation pulse by one slippage length 1s so that at the end of the 

integration, the total slippage length will be L, = Nl,. 

In section 3.4.4, some difficulties of integrating the steady-state equations 

(3.151.. 3.155) when significant depletion of the axial momenta of the electrons 

occurred were discussed. As the partial differential equations (6.115.. 6.117) are 

directly related to the steady-state equations, it is obvious that similar problems 

can also occur in the numerical integration of (6.115.. 6.118). To avoid these 

difficulties, the results presented in this section will be for cases where p<1. 
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6.3.3 Weak Superradiance 

The code described in section 6.3.2 was used to integrate the equations (6.115.. 6.119) 

for the case of weak superradiance, where short electron pulses are used i. e. 

Lb ý L.., so Ký1. A typical graph showing the scaled radiated intensity IA'I2 

plotted against z for fixed zl = 1/K is shown in figure 6.6 for p=0.01 and 

several values of µ. It can be seen that the emitted radiation consists of a large 

superradiant pulse followed by a number of substantially smaller pulses, similar 

to a nonlinear ringing effect. The shape and relative size of the pulses are similar 

to those of figure 6.5 which were calculated using (6.129.. 6.132). Similar to the 

steady-state regime, it can be seen that increasing it has a detrimental effect on 

the amplification of the radiation. The peak intensity of the first pulse and the 

value of z at which it occurred have been plotted against p and it in figures 6.7 

and 6.8 for values of G such that the superradiant parameter K lies in the range 

1<K<10. 

The superradiant scaling (A'I; 
at oc p2 can be seen in figure 6.7 for it -º 0, as 

the gradient of the IA'I; 
Qt vs p plot is . ̂s 2 on a logarithmic scale. However, when 

A is significant this scaling occurs only for very small values of p i. e. for large 

values of K. This supports the use of (6.133) as the condition under which free- 

energy depletion effects may be neglected. When both p and it are significant, 

the scaling of the peak intensity begins to `level off' towards the steady-state 

case where JA'1; 
at = constant. This can be explained by considering the effects 

of slippage on saturation. As the electrons in the slippage region of the electron 

pulse are interacting with spontaneously emitted radiation of low amplitude, they 

196 



0.16 

0.14 

0.12 

0.1 

0.08 
JA'12 

0.06 

0.04 

0.02 

0ý 
0 

Z 

Figure 6.6: Plot of IA'I2 against for zl = 1/K, p=0.001, X=0.16 and (a) 
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Figure 6.7: Plot of peak scaled intensity against p and p for 1<K< 10. 
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will not undergo saturation effects, and will emit continuously. For large values of 

,u however, saturation effects due to free energy depletion begin to occur at much 

smaller values of the field amplitude, i. e. closer to the rear of the electron pulse, 

leading to steady-state type behaviour even if Lb < Lc. If y is large then the 

system will only behave truly superradiantly for pulses very much shorter than 

the cooperation length. i. e. when K>1. The transition from weak superradiant 

behaviour to steady-state type behaviour can be seen more clearly in figure 6.9 

where IA'I; 
at 

is plotted against p2 and p on a linear scale. The superradiant 

evolution, where IA'I; 
at oc p2 can be seen where the IA'1; 

at vs p2 curve is linear. 

The range of the superradiant parameter in this case is 0.5 <K<5. 

6.3.4 Strong Superradiance 

This section is concerned with superradiant processes which can, under certain 

conditions, occur in long electron pulses. Numerical analysis of this regime in 

FEL amplifiers revealed that very large amplitude spikes of radiation could be 

produced [89]. A brief description of the spiking mechanism will be given for the 

case where p --+ 0 and p -º 0, which results in the CRM equations (6.115.. 6.119) 

reducing to those of the high-gain Compton FEL i. e. 

ä O; (il, z2) = P; (6.145) 

öz2P' 
(zi, zs) _ -(A'(zi, za)eid; (l', l2) + c. c. ) (6.146) 

8z1 
A(zizz) _ 

{e-tý'(ý, ýý)ý + i6A'(2i, z2) (6.147) 

The effect of free energy depletion effects on the generation of radiation spikes 

will then be demonstrated by relaxing the limit on it. For simplicity, the case of 
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Figure 6.9: Plot of peak scaled intensity against p2 and it for 0.5 <K<5. 
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positive slippage will again be assumed. 

The spiking behaviour is thought to be due to the amplification of the super- 

radiant pulse which originates in the rear of the electron pulse ,0<z- vIlt < Lb, 

as this region always evolves as a short electron pulse. This is due to the fact 

that no radiation enters the trailing edge of the electron pulse. The superradiant 

pulse propagates forwards, being amplified as it travels through the remainder of 

the electron pulse. 

Consider the case of a long pulse (K « 1) and high gain (G > 1) so that 

S= GK - 1. The following analysis is concerned with the evolution in the 

slippage region 0< zi <z for a fixed point in the interaction i. e. constant z. 

From the asymptotic expression for the electromagnetic field in the linear regime 

when p -+ 0 and µ -+ 0, (6.104), the scaled field intensity can be expressed in 

terms of y= x3/2 = zl(z - xl) as 

IAsR12 a exp [3v (Y)3/2 ] (6.148) 

when y»1. The variable y as a function of zl for a fixed z has a maximum 

value of 2(z/3)312 at zl = z/3 i. e. at one third into the slippage region from the 

trailing edge of the electron pulse. As y is zero at the edges of the slippage region 

i. e. zl =0 and zl = z, the linear expression (6.148) describes a pulse with a 

maximum at zl = z/3. The behaviour of the peak intensity of the pulse can be 

found by substituting zl = z/3 in (6.104). The result is 

I 12y 
exp () (6.149) I ASR I peak 

- 

b0 

4Trx5 

so the superradiant pulse grows exponentially in amplitude as it propagates 
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through the electron pulse. The asymptotic expression above loses its validity 

at resonance (b = 0). 

An example of strong superradiance is shown in figure 6.10 which shows the 

scaled intensity of the radiation pulse plotted in a `window' which travels at the 

group velocity of the radiation. For the case of positive slippage, the electron 

pulse travels backwards in this window. The radiation evolution is plotted for 

different points in the interaction (N, = z/. Aco is the number of cyclotron periods 

travelled). The position of the electron pulse is denoted by the dashed line. The 

horizontal axis in the figure is marked in units of 2irpX. As the interaction 

progresses, the three regions of field evolution shown schematically in figure 6.3 

can be clearly seen: the region of superradiant evolution at the rear of the electron 

pulse, the flat steady-state region and the region in front of the electron pulse, 

where the radiation has escaped into vacuum. The build-up of the superradiant 

spike to intensities much larger than that of steady-state region is clearly visible. 

If the limit on p is now relaxed, the set of equations used to describe the system 

is (6.123.. 6.126). For the part of the pulse where zl < 1/µ2, the free energy 

depletion terms will be negligible and a superradiant pulse will be generated, as 

was shown above. However, as the pulse propagates throught the electron pulse, 

the free energy depletion terms become significant, and disrupt the amplification 

of the radiation. 

This disruption of the amplification can be demonstrated using the same pa- 

rameters as those used to create the graph in figure 6.10 but for a different value 

of µ. Figures 6.11 and 6.12 show the field evolution when it = 0.5 and p=1 re- 
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spectively. As expected, the increased significance of free energy depletion effects 

has a strong effect on the peak intensity of the radiation spikes. When µ=0.5, 

and NN = 100 the intensity of the superradiant spike is roughly the same as the 

steady-state intensity, but the spike is still growing at this stage, whereas the 

steady-state region has saturated long before. More conclusive however is the 

case where µ=1, shown in figure 6.12. For this value of µ, the steady-state re- 

gion of the pulse cannot undergo exponential growth as µ<0.95 for steady-state 

instability when 6=0 and p«1. However, the superradiant evolution at the 

rear of the electron pulse is still unstable, giving rise to a very 'clean' spike of 

radiation. The amplitude of this spike is still far less than that when µ<1. The 

effect of free energy depletion on strong superradiance is therefore to reduce the 

peak intensity of the spikes of intense electromagnetic radiation, but by increas- 

ing µ to a value outside the instability threshold for the steady-state region, the 

superradiant evolution can be made to grow without the simultaneous growth of 

the steady-state region. 

6.4 Conclusions 

It has been shown in this chapter that in addition to the usual steady-state 

interaction in a CRM, where the radiation intensity is only dependent on the 

distance through the interaction region, there is another type of interaction which 

can occur if the relative slippage between the electron pulse and the radiation 

pulse is significant. It was shown that this interaction involves a non-uniform 

distribution of the radiation field over the electron pulse. The effect of this is for 
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the radiation to evolve superradiantly, so that peak intensities scale as the square 

of the electron density, n., as opposed to the steady-state scaling of n4. "3. The 

analysis carried out in this chapter was specific to the case of a beam of electrons 

travelling at relativistic electron velocities. This condition and the critical role 

of slippage imply that the type of device which is most likely to give rise to 

superradiant phenomena is most likely to be a CARM. 

The concept of the cooperation length was introduced using a simple but ef- 

fective dissipative model, which demonstrated the conditions under which one 

would expect to observe superadiant phenomena. A rigorous linear analysis then 

produced general expressions for the rate of growth of the electromagnetic field, 

shown to be proportional to (ziz2)1/3. It was also shown that free-energy deple- 

tion effects gave rise to a threshold condition for instability, similar to the case of 

steady-state evolution. A crucial difference between the threshold condition for 

superradiant instability and that for steady-state instability was that the super- 

radiant instability threshold was dependent on the position in the electron pulse. 

This implies that free-energy depletion effects are non-uniform over the extent of 

the electron pulse. 

Superradiant evolution was also shown to occur when the condition for exact 

autoresonance was satisfied. The special features of this instability were that it 

required p> 2µ and the spatial growth rate was proportional to (2iz2)h/2. The 

radiation amplification mechanism for this autoresonant superradiance was found 

to be due to depletion of the axial momentum of the electron beam, as opposed 

to a bunching in phase. 
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Using a computer code, the nonlinear evolution of superradiance in the CRM 

was studied for the case of positive slippage under the condition p 1. It was 

found that there there were two superradiant regimes: weak superradiance, which 

involved short electron pulses and produced low radiation intensities 
, and strong 

superradiance, which involved long electron pulses and large radiation intensities. 

The effect of free energy depletion on both these regimes was studied. For the 

case of weak superradiance, it was shown that the partial differential equations 

used to analyse the nonlinear regime of the interaction could be reduced to a set 

of self-similar ordinary differential equations. A result of this reduction was a 

general condition for the neglect of free energy depletion effects when analysing 

weak superradiance i. e. K» µ2. For the case of strong superradiance, it was 

found that when free energy depletion effects were negligible, large intensity ra- 

diation spikes were produced in the slippage region of the electron pulse, due 

to amplification of the superradiant pulse originating at the trailing edge of the 

electron pulse as it propagated through the remainder of the pulse. The inclusion 

of free energy depletion effects caused the intensity of the spikes to be decreased, 

but the trailing region of the electron pulse was found to always emit superra- 

diantly, even if free-energy depletion effects were so large that the steady-state 

region underwent no significant evolution. 
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Chapter 7 

Conclusions and Future Work 

7.1 Conclusions 

The theoretical studies described in this thesis have produced a series of new 

and significant results in the field of CRM theory. The most significant of these 

results are described below : 

7.1.1 Universally Scaled Evolution Equations 

It was shown in chapter 3 that it is possible to derive from first principles a set 

of universally scaled evolution equations which describe the linear and nonlinear 

evolution of the CRM interaction between a beam of relativistic electrons and a 

single TE or TM waveguide mode. The universal scaling was found to simplify 

both the analysis of the interaction and the interpretation of the results produced. 

The number of free parameters involved in the universally scaled set was just 

three : p, the fundamental CRM parameter, v, the free energy parameter and 
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S, the detuning between the electrons and the wave. The parameters p and v 

were combined to form the depletion parameter, p. Using this universally scaled 

set of equations, the CRM interaction was studied far into the nonlinear regime 

over a wide range of the parameter space for the case of steady-state evolution 

of the radiation field, where the relative slippage between the radiation and the 

electrons is negligible. 

Among the results obtained from the universally scaled equations was an 

identification of the different saturation mechanisms and the conditions under 

which they occur: phase trapping, due to electrons bunching to an optimum level 

in phase before de-bunching, was shown to occur when p<1 and µ<1 and 

free energy depletion, due to the effect of depletion of the transverse momentum 

of the electron beam was shown to occur when µ It 1. 

In the limiting case where p«1 and it < 1, the evolution equations were 

shown to reduce to a set where no free parameters are present which also describes 

the interactions which occur in a number of other beam-wave devices such as the 

high-gain Comption FEL, the Cerenkov maser and the Smith Purcell laser. 

The form of the universally scaled equations enabled the identification of the 

condition for exact autoresonance to occur i. e. pS = 1. The concept of autoreso- 

nance and the effect it has on the electron and field evolution was analysed and 

discussed. 
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7.1.2 Steady State Linear Theory 

Using a rigorous linear analysis, the linear growth of the instability was studied 

using a linearised set of universally scaled evolution equations, chapter 4. The 

method of collective variables, which has not previously been applied to CRM- 

type devices, was used to derive a dispersion relation which determines the linear 

behaviour of the system. Using this dispersion relation, a threshold condition for 

linear instability to occur was derived. Above this threshold, an expression for 

the growth rate of the electromagnetic field was found and compared with the 

results of other linear theories. 

The linear growth of the instability was found to consist of two distinct regimes 

: the low-gain regime, where the `partial waves' which correspond to the roots of 

the dispersion relation interfere, and the high-gain regime, where the amplitude 

of the electromagnetic field grows exponentially. In the low-gain regime, it was 

found that Madey's relations between the stimulated emission (gain), spontaneous 

emission and the energy spread of the electrons, originally derived for the FEL, 

could be reproduced. 

Using the linear analysis, it was also possible to identify the different bunch- 

ing mechanisms responsible for wave amplification and the condition for autores- 

onance to occur. The condition for instability to occur at exact autoresonance 

was derived and the resulting growth rate of the instability was evaluated. 
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7.1.3 Hamiltonian Theory of the CRM 

In section 5.1, it was shown that it is possible to state the equations of motion for 

the electrons and the electromagnetic field in a CRM as a system of Hamilton's 

equations when the recoil of the electrons is negligible i. e. p<1. This enabled 

an analysis of the CRM interaction in the steady-state limit in terms of phase 

space. This phase space analysis was performed for two particular cases : 

1. the case where the evolution of the field is negligible, similar to that in a 

low-gain CRM high-Q oscillator close to saturation. 

2. the case where the field evolution evolves self-consistently with a single 

particle, similar to the interaction involving a perfectly pre-bunched electron 

beam and a waveguide mode. The relevance of this case to experiments 

lies in the development of new cathodes capable of generating very short 

electron pulses at high repetition rates. 

For both cases, the evolution of the phase space with the variation of parameters 

such as µ and the initial field intensity was studied. 

7.1.4 A Landau-Ginzburg Equation for the CRM 

In section 5.2, it was shown that another feature of the universally scaled equa- 

tions when pK1 is that it is possible to describe the linear and nonlinear evolu- 

tion of the electromagnetic field using collective variables which are a generalisa- 

tion of those variables used in the linear analysis of the interaction in chapter 4. 

This was shown to greatly reduce the number of equations to be solved, resulting 
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in a description of the linear and nonlinear regime of the CRM interaction using 

three complex equations. These equations describe the interaction in a similar 

way to those used to describe the polarisation, population difference and field 

amplitude and phase in atomic laser theory. 

Using this collective variable description, it was then shown that it is pos- 

sible to approximately describe the evolution of the electromagnetic field up to 

saturation by an analytically solveable Landau-Ginzburg equation. This allows 

quantities such as saturation intensities, which usually have to be evaluated via 

the numerical solution of a large set of coupled differential equations, to be eval- 

uated analytically. In addition, it demonstrates that the evolution of the electro- 

magnetic field up to saturation in a cyclotron resonance maser amplifier can be 

described by the same equation used to model the field evolution in an atomic 

laser. 

7.1.5 Superradiance in the CRM 

It was shown in chapter 6 that in addition to the usual steady-state interaction in 

a CRM, where the radiation intensity is only dependent on the distance through 

the interaction region, there is another type of interaction which can occur if the 

relative slippage between the electron pulse and the radiation pulse is significant. 

Under certain conditions, this slippage can cause the radiation to evolve super- 

radiantly, so that peak intensities scale as the square of the electron density, n., 

as opposed to the steady-state scaling of n4/3 

The conditions under which one would expect to observe superradiant phe- 
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nomena were deduced using a dissipative model. It was found using this model 

that the length of the electron pulse relative to a cooperation length determined 

the importance of superradiant effects in the field evolution. 

A rigorous linear analysis produced general expressions for the rate of growth 

of the electromagnetic field. It was shown that free-energy depletion effects gave 

rise to a threshold condition for instability, similar to the case of steady-state 

evolution. A crucial difference between the threshold condition for superradiant 

instability and that for steady-state instability was that the superradiant insta- 

bility threshold was dependent on the position in the electron pulse. This implies 

that free-energy depletion effects are non-uniform over the extent of the electron 

pulse. A superradiant instability was also shown to occur when the condition 

for exact autoresonance was satisfied. The radiation amplification mechanism for 

this autoresonant superradiance was found to be due to depletion of the axial 

momentum of the electron beam, as opposed to a bunching in phase. 

The nonlinear evolution of superradiance in the CRM was studied using a 

computer code for the case of positive slippage under the condition p<1. It was 

found that there there were two superradiant regimes: weak superradiance, which 

involved short electron pulses and produced low radiation intensities , and strong 

superradiance, which involved long electron pulses and large radiation intensities. 

For the case of weak superradiance, it was shown that the partial differential 

equations used to analyse the nonlinear regime of the interaction could be reduced 

to a set of self-similar ordinary differential equations. A result of this reduction 

was a general condition for the neglect of free energy depletion effects when 
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analysing weak superradiance i. e. K» µ2. For the case of strong superradiance, 

it was found that when free energy depletion effects were negligible, large intensity 

radiation spikes were produced in the slippage region of the electron pulse, due 

to amplification of the superradiant pulse originating at the trailing edge of the 

electron pulse as it propagated through the remainder of the pulse. The inclusion 

of free energy depletion effects caused the intensity of these spikes to be reduced. 

It was shown that growth of a superradiant spike occurred even when the value 

of µ was so large that steady-state instability could not occur. 

It can be seen from these summaries that the aim of the thesis, to find and 

study novel aspects of CRM theory, has been achieved. 

7.2 Future Work 

Given the accomplishments of this thesis, summarised in the previous section, 

the main areas of future work will be as follows : 

1. The extension of the range of validity of the universally scaled evolution 

equations, via the relaxation of some of the approximations used in their 

derivation in chapter 3. This would enable analysis of the CRM interac- 

tion involving cyclotron harmonics, non-uniformity of the waveguide mode 

across an electron gyro-orbit, multiple waveguide modes and large beam 

density effects. The last two in this list are interconnected due to the fact 

that large beam-density effects give rise to the simultaneous excitation of 

TE and TM waveguide modes. 
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2. The extension of the Hamiltonian theory described in section 5.1 to include 

a description of the CRM interaction in terms of action-angle variables. 

The use of action angle variables makes it simple to identify the frequency 

of any periodic motion without finding a complete solution to the motion 

of the system. This will be relevant to the type of oscillations which the 

electrons perform after saturation. 

Other areas of the Hamiltonian analysis which are open to further inves- 

tigation include the derivation of a Hamiltonian valid when p It, 1, and a 

thorough investigation of the many-particle Hamiltonian, particularly with 

regard to the transition from ordered motion to chaotic motion and its 

behaviour in different regions of parameter space. Another situation of in- 

terest, also possibly leading to chaos would be the self-consistent evolution 

of two or more waveguide modes with a single particle. 

3. The extension of the analytical description of the CRM interaction to in- 

clude the simultaneous nonlinear evolution of all three partial waves, as 

opposed to just the exponentially growing partial wave. This, coupled with 

the inclusion of higher order nonlinearities, could provide interesting results 

with regard to the saturation of the CRM instability. 

An analytical description of the nonlinear evolution of the interaction when 

pI would also be of interest. 

4. Further investigation of superradiant instabilities in CRM-type interactions, 

particularly in the nonlinear regime. It has already been mentioned in 

chapter 6 that although the modified FEL code used in the analysis of the 
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nonlinear evolution of superradiance was extremely useful, in order to ac- 

curately model slippage effects in a waveguide, interpolation techniques are 

required. Similar to the case of steady-state evolution, it should be possible 

to extend the analysis of superradiant effects to include the effect of mul- 

tiple waveguide modes. As different waveguide modes have different group 

velocities however, the relative slippage of the electron beam with respect to 

each mode is not equal. The analysis of section 6.3 would therefore require 

modification. 

In addition to improvements in the numerical simulation of superradiant 

effects, it should be possible to approximate analytically the evolution of a 

superradiant pulse and the effects of free-energy depletion on it for the case 

of weak superradiance, as was achieved for the case of steady-state evolu- 

tion. Such an analytical description has already been found for superradiant 

evolution in atomic systems and FELs [90]. 

With the construction of a CARM oscillator at Strathclyde University, an 

exciting area of research would be the extension of the analysis of chapter 6 

to describe the interaction which would occur in a CRM oscillator. This 

would be invaluable in determining the optimum conditions under which 

superradiant radiation evolution could be observed experimentally. No su- 

perradiant evolution, as defined here, has been identified experimentally in 

any form of electron beam device to date. 
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