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Abstract

We develop quantum models capable of describing laser action from the fundamental

limit β = 1 to the thermodynamic limit β → 0. By including the variables that

describe incoherent and coherent emission we are able to fully characterise the laser

threshold as a function of the pump power independent of system size. The case of

the so-called “thresholdless” laser where β = 1 is examined and through bifurcation

analysis the true laser threshold is found. The model equations are solved analytically

as is the equation for the second-order intensity correlation. We show cases where

antibunching is predicted and observe that there is a distinct path of emission for

lasing devices as the pump is increased: from thermal to antibunching to coherent. We

exploit antibunching regime that preceding the lasing regime by proposing a simple

experimental setup capable of producing up to 3 dB photon number noise reduction in

comparison with coherent emission. There is moderate output power in the range of

pW and we show that effects due to pump fluctuations are negligible. We also show

that in the thermodynamic limit our model is capable of recovering the classical laser

threshold for macroscopic lasers.
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Université Côte d’Azur. I would also like to thank Prof. Giampaolo D’Alessandro at

the University of Southampton. I am extremely grateful to every one of you for your

support.

xii



Chapter 0. Acknowledgements

1



Chapter 1

Introduction

The advent of the laser, which is an acronym for Light Amplification by Stimulated

Emission of Radiation, has been instrumental to the advancement of modern science

and technology. It’s applications range from laser cooling atoms in the formation of

Bose-Einstein condensates to manipulating small particles with optical tweezers [4]. In

recent years a lot of attention has been given to nanolasers with semiconductor quantum

dots (QD) as the active material. These nonolasers have dimensions on the order of

the wavelength of the emitted light resulting in a low modal volume, and along with

high Q-factors allow for strong light-matter coupling.

From a research point of view nanolasers offer attractive opportunities to study

exotic behaviours in a new quantum limit. It has been shown that these devices display

non-classical photon statistics for few emitters such as photon anti-bunching [5, 6].

And a unique characteristic of these devices is that the signature of a lasing threshold

disappears [1, 7]. A result of this thresholdless lasing behaviour is that the criteria for

lasing has to be reexamined as it is no longer clear when the light emission changes from

thermal to coherent. Typically, the input-output curves (I-O) of lasers show the classic

s-shape with a well defined laser transition but for nanolasers this disappears and the

input-output curve is linear with an ill-defined transition. This can be characterised

by the spontaneous emission factor, β, which is the ratio between the spontaneous

emission rate into the dominating lasing mode to the total decay rate. For nanolasers

β → 1 and for standard macroscopic lasers β ≈ 10−5 − 10−8.

2



Chapter 1. Introduction

The motivation behind understanding these devices better is not just academic.

Nanolasers with QD gain media have potential for use in future applications where

they can be integrated with electronics i.e. on-chip devices and optical interconnects.

This desire is driven by the reduced power consumption and low footprint these de-

vices promise. Therefore, a better understanding of nanolasers is paramount if we are

to continue with the miniaturization and enhancement of the technologies that govern

our world. In this thesis, a theory to describe photon statistics in nanolaser regimes

and predict a laser threshold in the nanolaser limit is developed using semiconduc-

tor quantum dots (QDs) as the active medium. Specifically, we employ self-assembled

Stranski–Krastanov quantum dots, which offer significant advantages over traditional

quantum wells due to their strong 3D carrier confinement and high emission efficiency.

These QDs are embedded in semiconductor materials, where interactions between lo-

calized carrier states and those in the wetting layer enable fast scattering processes,

making them ideal for efficient electrical pumping—key for optoelectronic applications.

By investigating nanolaser behavior, particularly in the few-emitter limit, we aim to

explore non-classical light generation, an essential aspect for quantum information tech-

nologies. This choice of QDs not only allows us to probe the crossover from classical to

non-classical light sources but also sets the stage for understanding their role in advanc-

ing quantum technologies. In the following chapters, we will build on this foundation,

analysing nanolaser operation, coherence properties, and emission characteristics in

greater detail.

In Chapter 2 section will focus on the unique behaviours shown by QD nanolasers.

This will be highlighted by the need to extend our analyses of the laser dynamics in

order to better understand emission properties and potential limitations of the devices.

To do this a simple rate equation model will be investigated which can be derived from

a master equation using well-founded approximations. And it will be shown how this

model is capable of predicting features displayed experimentally.

In Chapter 3 we develop the system Hamiltonian and introduce the concept of the

cluster expansion which allow us the construct the equations of motion. We derive the

models in terms of correlation functions and then as expectation values (EVs).

3



Chapter 1. Introduction

In Chapter 4 we discuss the flluctuations in the coupling strength between e.m.

field in the cavity and QDs which can be ascribed to the positioning relative to the

local field value and inhomogeneous broadening of the QD ensemble.

InChapters 5 andChapters 6 we look at the results of our model before proposing

a simple scheme to take advantage of the quantum light predicted by the model. Finally,

Chapter 7 concludes the thesis.

4



Chapter 2

Overview of lasers

In 1916 Albert Einstein laid the foundations for the laser with the concept of stim-

ulated emission in the paper titled - “On the Quantum Theory of Radiation”. This

mechanism of producing radiation from excited atoms or emitters prompted Charles

Townes and Arthur Schawlow to start working on the maser - microwave amplification

by the stimulated emission of radiation - which was the precursor of the laser and used

alkali vapour as the gain medium [8]. The maser worked off of the same basic principles

as the laser except from the fact that it did not produce radiation with wavelengths

in the visible spectrum. The first device capable of producing visible radiation was

developed by Theodore Maiman in 1960 whilst working laser at Hughes research lab

in America [9]. The overall device size was small enough to fit in a human hand and

consisted of a solid-state gain material of ruby crystal which was optically excited by a

flashlamp and feedback was provided from two mirrors at either end of the cavity. At

the time it was dubbed as a “solution looking for a problem” with many failing to see

its usefulness.

2.0.1 Advances and Applications

Since the first solid-state ruby laser there has been an explosion in terms of the variety

of gain medium used as the active material as well as the geometry of the resonators

required to provide feedback. Not long after the first demonstration of the solid-state

ruby laser the gas laser was introduced - the gas in question was a helium-neon vapour.

5



Chapter 2. Overview of lasers

Gas lasers were the first to to work of off the principle of converting electrical energy into

coherent radiation. Some of the advantages of gas lasers compared with their solid-state

counterparts include: rapid heat dissipation from the resonator; lower cost as the active

material is relatively inexpensive; it is almost impossible to damage the gain material;

and, there is a higher volume of the active material which ensures maximum overlap

with the modal volume thus greater conversion efficiency. Although the gas laser has a

number of advantages it have failed to dominate in applications. This is in part thanks

to the inability of the gas laser to minatuarize. Solid state lasers on the other hand have

seen rapid minituarization over the last few decades. This has opened up the path for

solid state lasers to be integrated with opto-electronic systems and utilised in optical

fibre telecommunication where the traffic is expected to grow rapidly in the coming

years. Micro- and nano-lasers can also operate in exotic regimes where non-classical

light is observed. This has various potential applications in continuos-variable quantum

information processing [10] as well as gravitational wave detection [11].

Nowadays, one cannot set their gaze upon an object without it either being man-

ufactured with the aid of a laser or casing a laser within. Lasers are ubiquitous in

todays society and their usefulness does not stop at barcode scanners or lighting dis-

plays. It is not just the active materials that have changed dramatically but also the

dimensions of the devices. Pushing the limits experimentally and theoretically has al-

ways been a major driving force in creating devices at the cutting edge of technology -

this force permeates all science. This is perhaps most apparent in the evolution of the

laser which has seen huge advances, with a ferocious pace, in both macroscopic and

micro-and nanolasers.

From its genesis the laser has been fundamental in reshaping and revolutionising

sources of medical treatment. The highly coherent and concentrated radiation produced

by a laser makes it ideal for destroying tumours and eye surgery both of which require

high level precision not thought possible before the introduction of the laser.

Lasers are also helping to usher in a new era in astronomy in the form of gravitational

wave astronomy. In 2016 the first detection of gravitational waves was detected at LIGO

- Laser Interferometer Gravitational-wave Observatory [12]. The interferometer itself

6
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consists of two 4 km long arms with mirrors at both end where a laser beam being

split down each arm. If a gravitational wave passes through the site it will cause a

disturbance in space-time by stretching one arm and squeezing the other, this will

cause an interference pattern to be observed. The mount by which the arms are moved

is 1000 times smaller than the nucleus of an atom which illustrates the precision needed

to be capable of detection. This would not be possible without lasers.

Another large laser based collaboration is taking place at the National Ignition

Facility (NIF). The facility is three times the size of a football field and houses a

chamber where the collective energy of many lasers is directed towards a small cell of

hydrogen fuel with the goal being to achieve fusion ignition. The powerful lasers are

attempting to recreate the conditions at the centre of the sun where hydrogen atoms

are fused together to create helium atoms giving off huge amounts of excess energy in

the process.

2.0.2 VCSELs

The first major breakthrough towards laser miniaturisation came in the from of the

VCSEL [13, 14] (vertical cavity surface emitting laser). The VCSEL was developed in

the 1980’s paving the way for extreme miniaturisation in lasers, and at the time boasted

the smallest active material volumes ever constructed. The first VCSELs active region

consisted of single or stacked quantum wells, but since then many many different gain

materials have been used such as quantum dots (QDs) [15] and organic semiconductors

[16]. The laser resonator is composed of two distributed Bragg reflector (DBR) mirrors

where the active material is sandwiched between them. The DBR mirrors achieve

very high reflectivity by layering or alternating materials with different refractive index

next to one another; this layered structure comes at the cost of increased thickness of

the device. However, the high reflectivity results in large Q-factors and long photon

lifetimes within the cavity.

There are obvious benefits in the reduced dimensions of smaller lasers such as in-

creased speed compared with electronics. Electronic components depend on electrons

travelling through the wires encountering resistance slowing them down, whereas, pho-

7
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tons emitted from micro- and nanolasers travel at the speed of light virtually unimpeded

allowing for faster signal transmission. In the case of optical-interconects it can reduce

interconnect energy by eliminating the charging of electrical lines. However, there are

complex trade off’s to be made when considering the applications of a potential device.

For example, depending on what the laser device is being developed for it may be ad-

vantageous to have low photon lifetime or long photon lifetime within the cavity [17].

If the device is to sustain low-power operation then a long photon lifetime is desirable.

This is in order to reduce the material gain needed to achieve threshold.

2.1 Overview of theory

Typically, three- or four-level models are employed to investigating lasers [18], how-

ever, it is possible for them to be reduced to two-levels via adiabatically eliminating

the additional levels. If we assume the decay rates of the additional levels are fast

compared with the lasing levels they can be adiabatically eliminated. Alternatively, to

approximate a two-level system we can think about this in terms of the frequency of

the light-field interacting with the lasing levels. In a classical picture the light incident

on an atom will induce dipole oscillations. Dipoles are created when incoming light

causes the electrons and nucleus to separate polarising the atom in the process. The

dipoles are then forced to align in the direction of the propagating light field and begin

radiating at the frequency of the incoming field. If the frequency of the field is resonant

with an optical transition or natural frequency of the atom then the dipole oscillations

will be large and the light-matter interaction will be strong. If, however, the angular

frequency of the light does does not match a natural frequency of the atom the dipole

oscillations will be small and the light-matter interaction will be weak. Therefore, to a

good approximation we can neglect the other levels of the atom as they are said to be

off-resonance.

When we think of two-level systems like this it is normally in terms of an atomic

species, however, two-level models of this kind can be used to model semiconducting

QD nanolasers [19]. In this case decay from the excited to the ground state can be

viewed as the re-combination of an electron from the conduction band with a hole from
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the valence band.

If we start from a two-level system in free space initially in an excited state then

there is a finite probability it will decay to the lower state. In the process of doing so

a photon will be released in a random direction with energy equal to the separation

between the two levels, known as spontaneous emission. Although our system may

seem isolated it is in fact coupled to the electromagnetic field in its vacuum state -

the vacuum field. As a result we can think of spontaneous emission as a stimulated

emission event triggered by a perturbation from the vacuum field. These perturbations

stem from the inherent fluctuations of the vacuum field known as quantum fluctuations.

2.1.1 Quantum fluctuations

The quantum harmonic oscillator is the basis for the quantum theory of light. The

electromagnetic field can be described as an infinite set of harmonic oscillators with the

energy of each state given by

En =

(
n+

1

2

)
ℏω (2.1)

where ω is the angular frequency of the light, ℏ is Planck’s constant, and the index

n = 0, 1, 2, ... [20]. From Eq. (2.1) when n = 0 the energy of the quantum oscillator

is E0 = 1
2ℏω, this is known as the zero-point energy of the oscillator. This shows that

with no photons present there is still a residual energy. This residual energy comes from

the vacuum state, |0⟩ (given here in Dirac notation). Fluctuations in the energy of the

electromagnetic vacuum field are what give rise to the zero-point energy of the vacuum

state. Consider an evacuated cavity with a volume V and at a temperature where the

thermal energy is significantly lower than the quantum energy of the oscillator. In this

instance the zero-point energy can be equated to the electromagnetic energy within the

mode volume. The resulting magnitude of the vacuum field is then given by

Evac =

(
ℏω
2ϵoV

)1/2

(2.2)

where V is the cavity volume and ϵ0 is the electric permittivity of free space [20] . From

Eq. (2.2) it is clear that the amplitude of the vacuum field fluctuations is greater for
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small cavities.

These vacuum field fluctuations can be understood in terms of Heisenberg’s inde-

termination principle which states

∆E∆t ≥ ℏ
2

(2.3)

where ∆E is the uncertainty in the energy and ∆t is the uncertainty in the time.

From Eq. (2.3) one can see that for the inequality to hold true a large uncertainty

in the energy results in a very small uncertainty in the time (and vice versa). This

means that pairs of massive particles can come into existence for an extremely brief

moment before annihilating one another. These extremely short-lived particles are

known as virtual particles. As a result of this uncertainty in the energy, the vacuum is

constantly writhing and seething with short-lived virtual particles coming into and out

of existence. This process has been likened to a “quantum foam”. It is the fluctuations

of the electromagnetic field in its vacuum state that cause the quantum phenomenon

of spontaneous emission by perturbing the upper state of an emitter.

By putting our system inside a cavity we can either enhance or inhibit spontaneous

emission. The cavities most commonly used in the production of nanolasers are called

Fabry-Perot resonators. These consist of two highly reflective mirrors with one mirror

with some small transmissivity allowing for light output, and their volume is around

that of the wavelength of the emitted light cubed. When a photon is emitted sponta-

neously in free space it will travel in a random direction. However, if we introduce a

cavity with curved mirrors we are able to keep the photon inside the cavity for many

round trips. And by using cavities with high Q-factors can increase the amount of time

the photon interacts with the QD. When a light field is present inside the cavity it will

bounce around and interfere constructively giving rise to resonant modes of the cavity

where the fields amplitude is greatest. The properties of these resonant modes play

an essential role in determining the emission spectra of lasers. By placing a QD on a

node of a resonant mode we can enhance the light-matter interaction or inhibit it by

placing it off-resonance. The presence of vacuum field fluctuations not only triggers

spontaneous emission but results in some interesting quantum phenomena such as the
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Casimir effect [21]. The Casimir effect occurs when two metallic plates are placed close

to one another resulting in a force - the Casimir force - pushing the two plates together.

Vacuum fluctuations born out of virtual particles that arise from the uncertainty prin-

ciple have many wavelengths. When the two plates come together particles with larger

wavelengths cannot exist between them. Therefore, there will be a difference in en-

ergy density between the two plates compared with outside the plates resulting in an

attractive force between the two plates.

Another consequence of these fluctuations is the Lamb shift of the hydrogen atom.

The interaction between vacuum fluctuations and the electron of hydrogen causes the

2s1/2 state to have a slightly higher energy than the 2p1/2 state. This results in a shift

of the corresponding spectral lines of hydrogen.

Intrinsic to the electromagnetic field is its fluctuations in the case when there are

no photons present. It is the fluctuations of the vacuum state that explain why the

coupling of a two-level system such as the hydrogen atom with this quantised field

alters its properties. Thus, without knowledge of quantum fluctuations and its origins

we would not be in a position to explain the rich and exotic behaviours it brings about.

2.2 Experimental markers and how to identify a laser

One particular aspect of the laser that is surprisingly still debated to this day is the

laser threshold. In particular, the laser threshold of high-β lasers. So much so that

it in response, more than 60 years after the first laser was demonstrated and almost

40 years since laser miniaturisation took off in the 1980s, there are still articles being

published asking the question “what is laser threshold?” [22]. An early effort was made

by Rice and Carmichael to view threshold in terms of the Fano factor [23], a method

that required knowledge of the photon statistics. As a result, there is an active effort to

consolidate the criteria on how to recognise lasing and to help separate true lasers from

devices masquerading as lasers. There are four key criteria given in [24]: (1) narrow

spectral linewidth; (2) the output beam has high directionality; (3) the emission is

characteristic of the active material and resonator geometry; and (4) there is to be a
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clear threshold for both the intensity and linewidth as a function of the pump. The first

three key points are easily verified experimentally, but it is the latter point regarding

clear thresholds for the intensity and linewidth that becomes ambiguous for small lasers.

For macroscopic lasers, identifying the laser threshold is not a particularly difficult

task. If one were to inspect the intensity as a function of the pump on a log-log plot,

then one would observe an S-shaped curve which is characteristic of low-β lasers. The

S-shaped curve is composed of a lower branch at low pump values and an upper branch

at high pump values that run parallel to one another and are connected by an almost

discontinuous jump for large lasers. This jump between the two branches is typically

proportional to the reciprocal of β; the point of inflection where the upper and lower

branch meet is considered to be the location of the threshold. In a similar fashion,

the reduction in linewidth as the pump is increased for macroscopic lasers exhibits

a definite threshold. We can, however, call into question the validity of using the

linewidth as an indicator of lasing. A reduction in linewidth is synonymous with the a

laser operating well above threshold, but a low bandwidth filter is capable of spectrally

filtering thermal light. In this case there is certainly a reduction in the linewidth of the

device, yet, there are tools we can use that will betray the fact that the radiation is

not coherent. Nevertheless, according to the above criteria macroscopic devices do not

pose a significant challenge when identifying laser action.

As β approaches unity it becomes more difficult to identify the position of the laser

threshold due to the fact that the characteristic S-shaped curve becomes smoother

until, in the ultimate limit of β = 1, it becomes a straight line. At that point, there

is no information to be extracted from the I-O curve and it appears as though the

threshold is at zero pump value. This is where the terms “thresholdless” [7] and “zero-

threshold” [25] lasers come from. There are some cases where taking the first and second

derivatives of the I-O curves highlights the response around threshold, i.e. a sharp peak,

but ultimately in the limiting case of high-β this is washed out and no extra information

is forthcoming. There is a subtlety between zero-threshold and thresholdless that is

worth remarking.

In the case of a zero-threshold, what is meant is that there is no threshold and the
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emission is coherent from the zero-pump power, i.e. always coherent with no losses to

overcome. It was pointed out in [23] that the equation that shows this behaviour was

derived in the thermodynamic limit and as such should not be applied in the limit of

high-β. In the case of thresholdless this means that due to the smoothing out of the I-O

curve the threshold region spreads out to the point that there is no clear cut threshold

location but a broad region of the pump where the emission slowly becomes coherent.

In this limit, then, it is not viewed as a second-order phase transition which is only

well defined in the thermodynamic limit. This begs the question: how can a true laser

threshold be defined in the limit of β = 1?

2.2.1 If not I-O then what?

In terms of experimental evaluation of the laser threshold, one technique that relies on

computing correlation functions has proved extremely useful in the limit β → 1. The

most widely measured being the first-order and second-order correlation functions.

The former is used as a measurement of the coherence time of the device (as well as

measuring the visibility of interference fringes) and thus gives information based on

the linewidth of the emitted radiation, while the latter is used to identify the type of

light that is being emitted. As discussed above, linewidth measurements on their own

are not always the best measure of laser threshold. Therefore, it is the second-order

intensity autocorrelation function, g(2)(τ), that is employed to find the laser threshold

of small lasers where knowledge of the type of light being emitted is indispensable in

determining lasers from laser-like LEDs [15].

The most general expression of the second-order intensity correlation is given by:

g(2)(τ) =
⟨I(t)I(t+ τ)⟩

⟨I(t)⟩2
, (2.4)

where I(t) and I(t + τ) are the intensities at time t and t + τ , respectively; τ is the

delay time between the measured intensities. It was the famous Hanbury Brown-Twiss

experiments, first used as stellar interferometers, that led to the idea of the second-

order correlation function. The set up is consists of an input beam from a source which
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is met by a 50 : 50 beam splitter sending the beam down two different paths. The

two distinct outputs are detected by photomultiplier tubes (PMT) and sent into an

electronicmultiplier–integrator, where the intensity correlation is proportional to the

two photocurrents. A delay τ is also introduced to one of the beams by way of change

the length of one of the paths. However, it is the second-order intensity correlation at

zero delay time which is used experimentally.

Light can be separated into three categories given by the different limits of g(2)(0),

see Fig. 2.1. Thermal light is identified by photons that bunch together where g(2)(0) >

1, i.e. the light emitted from a broadband source such as an incandescent lightbulb.

Whereas, perfectly coherent emission of time-independent intensity and phase is defined

by g(2)(0) = 1; it is clear from Eq. 2.4 that when τ = 0 the measured result is g(2)(τ =

0) = 1 when I(t) is constant. The third and final type of light is defined by g(2)(0) < 1

which is forbidden in the classical interpretation of light, thus is known as quantum

light. Values of g(2)(0) < 1 can only be understood if one ignores the classical view

of light being an electromagnetic wave and instead treats the emission as a beam of

individual photons. A characteristic trait of quantum light is the apparent ability of

photons to space themselves out, this has come to be known as photon antibunching.

The first experimental observation of the quantum phenomenon of antibunching was

by Kimble et al. in 1977 [26]. Recently, experiments using micropillar lasers with

semiconductor QDs have observed antibunching, where the effective number of QDs

interacting with the cavity mode was estimated to be 15 [27].

It is instructive to consider the statistical information of the different types of

light in the photon interpretation in Fig. 2.1; an important subtlety is conveyed in

the following. Let us first consider the photon statistics of a perfectly coherent beam

of light. In this case, the photons are arranged randomly within the stream and as

a result obey Poissonian statistics. Poissonian statistics have the property that the

relative fluctuations around the average value are given by:

∆n

⟨n⟩
=

1√
⟨n⟩

, (2.5)

14



Chapter 2. Overview of lasers

Figure 2.1: Schematic illustration of the three different types of light when viewed as a
stream of photons and the values of g(2)(0) taken by them. Knowledge of the temporal
evolution of the photon stream helps one determine the type of emission being emitted.

where ∆n and ⟨n⟩ is standard deviation and average photon number, respectively.

From Eq. 2.5 it is clear to see that in the limit of large average photon numbers the

relative fluctuations are reduced dramatically (classical limit) compared with small

average photons where the flucuations are large (quantum limit). Super-Poissonian

statistics have the property of ∆n >
√
⟨n⟩ and sub-Poissonian statistics have the

property that ∆n <
√
⟨n⟩. Therefore, classical thermal light which has large photon

number flucuations, i.e. bunching, is associated with having super-Poissonian statistics

and antibunched light, which has intrinsically less noise than a coherent source, is

associated with sub-Poissonian statistics. However, an important point of note is that

sub-Poissonian photon-counting statistics need not imply photon antibunching, but can

in fact be accompanied by photon bunching as was shown by Zou and Mandel [28].

From the above discussion it is clear that identifying the laser threshold for devices

in the limit of β → 1 is a difficult task and that one cannot rely on any single experi-

mental tool or marker. Instead, several characteristic traits such as linewidth reduction,

g(2)(0) = 1 and high beam directionality are needed simultaneously. However, the dif-
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ference between measurements mentioned aboove in the thermodynamic limit and the

limit in which β → 1 is that in the former there is a second order phase transition, i.e.

there is a finite vlaue of the order parameter at which the state changes equivocally.

In the case of small lasers there is no second-order phase transition as it is not defined

- it can only be defined for infinite system sizes. Thus, even with all the simultaneous

markers the true laser threshold is washed out and ill-defined, we can only see the

effects after coherence builds up in the system. Nevertheless, is has been well known

since the early 1960s that the difference between thermal and coherent light is that

in the latter the average value of the coherent field amplitude is non-zero, whereas in

the case of the former it is exactly zero [29]. This precise and well defined definition

of laser threshold opens the opportunity to be exploited and could provide an exact

mathematical description of the laser threshold in small lasers without ambiguity.

2.3 Modelling

An important question one should ask is the following: In solving a particular system

of equations, or model, what information can be gained? There are various types of

models currently employed to better understand lasers and the effects of their operation.

These include rate equations (REs) [1, 7, 23, 30, 31], a master equation approach [23]

and cluster expansion quantum elcetrodynamics models [5,15,31] (CEQED). How much

information can be captured from them depends on their level of sophistication, i.e.

whether or not statistical information about the emission can be drawn etc. Therefore,

from an applications point of view, this information is crucial and can determine which

approach is best suited to the problem.

The very first lasers were described incredibly well mathematically by the eminent

Maxwell-Bloch equations which constitute a semiclassical theory; the field is treated

classically and the matter quantum mechanically. They were table-top devices and

as such came well within the jurisdiction of the thermodynamic limit, i.e. β → 0.

In this limit, there is no ambiguity concerning second-order phase transitions and the

Maxwell-Bloch equations show clearly a definite laser threshold at finite pump energy.

However, what they do lack is the capability of describing the incoherent emission
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that precedes the laser threshold. This is because the photon number solution is zero

below threshold; the non-zero coherent photon field emerges through a transcritical

bifurcation only for pump powers above threshold. As such, when it comes to cavity

quantum electrodynamics it is the REs that have been used historically.

An important remark is that it is possible, under certain conditions, to recast the

Maxwell-Bloch equations into an equivalent set of REs. In semiconductors the rate of

dephasing of the medium polarisation is typically many orders faster than the other

dynamical variables and as such can be adiabatically eliminated, thus reducing the sys-

tem dimension to that of the REs [23]. However, a crucial difference is that the reduced

Maxwell-Bloch equations ignore the quantum fluctuations associated with spontaneous

emission.

In the limit of small lasers, where the spontaneous emission factor approaches unity,

β → 1, the REs have found usefulness thanks to their simplicity, and their intrinsic

ability to describe the incoherent and coherent portions of the radiation within the

cavity. They can be considered the simplest mathematically, but are nevertheless very

powerful. However, they cannot tell us where the location of the laser threshold is. It

could be argued that this is not entirely true as in the macroscopic case its location

can be discerned from the almost discontinuous jump between the upper and lower

branches of the response curve. In want of other markers, this technique is typically

used experimentally, however, laser threshold has more than one signifier as we have

discussed and using the inflection point of the response curve is not always possible,

e.g. where β → 1 and in this case RE that include Langevin forces have been shown

to account for the transition to lasing via g(2)(0) [1].

Below, we introduce the approach of a master equation from a quantum Hamiltonian

before giving a simple analysis of a set of rate equations containing noise enabling them

to access the photon statistics.

2.3.1 Master equation approach

In order to describe the dynamics of the two-level cavity system we can use a Master

equation. This comprises of a density matrix describing the evolution of the two-level
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system and the Jaynes-Cummings Hamiltonian that describes the interaction between

said system and one resonant cavity mode. This describes the dynamics of a reversible

process which is given by the von Neumann equation

∂

∂t
ρ = − i

ℏ
[HJC , ρ], (2.6)

where ρ(t) is the density matrix and HJC is the Jayens-Cummings Hamiltonian. For

the device to work as a laser it must have a channel from which photons from the cavity

can escape. To capture the losses the cavity system is coupled with the environment.

This is achieved by the inclusion of the Lindblad terms which act as the coupling to

the environment within the Markov approximation. The Markov approximation states

that the environment relaxes back to its thermodynamical equilibrium and provides

a response to the system before any other event takes place. So the decays depend

only on the density matrix of system at time t. The coupling of the system with the

environment can be seen schematically in Figure .(2.2). The master equation is thus

in the general Lindblad form given by

∂

∂t
ρ(t) =

i

ℏ
[HJC , ρ(t)]− Lpρ(t)− Lγρ(t)− Lκρ(t). (2.7)

The Lindblad operators in Eq. (2.7) are

Lκρ =
κ

2
(a†aρ(t) + ρ(t)a†a− 2aρ(t)a†), (2.8)

which describes the cavity decay, and

Lxρ =
N∑
i=1

xi
2
(Γ(i)

x

†
Γ(i)
x ρ(t) + ρ(t)Γ(i)

x

†
Γ(i)
x − 2Γ(i)

x ρ(t)Γ(i)
x

†
), (2.9)

where together Lpρ(t) and Γ
(i)
p = σ†

i describe the pumping mechanism from the ground

to excited state. Emission into non-lasing modes is represented together by Lγρ(t) and

Γ
(i)
γ = σi.

From the master equation it is possible to derive simple rate equations which can
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Figure 2.2: The two-level system on the left is coupled to the environment shown as a
reservoir on the right.

be generalised to N-emitters. Using Eq. 2.7, it can be shown that the expectation value

evolution of an operator is

d

dt
⟨A⟩ = 1

iℏ
⟨[A,HJC ]⟩+

κ

2

〈[
a†, A]a+a†[A, a]⟩+

∑
xϵP,γ

N∑
i

x(i)

2
⟨[Γ(i)†

x , A]Γ(i)
x +Γ(i)†

x [A,Γ(i)
x ]⟩

(2.10)

where a† (a) creates (destroys) a photon in the cavity mode, σ†
i (σi) raises (lowers) an

electron in the i’th emitter and Γ
(i)
x = σi. Using Eq. 6 we can write equations for the

average photon number ⟨a†a⟩, inversion ⟨σ†
iσi⟩ and photon assisted polarisation ⟨σia†⟩

d

dt
⟨a†a⟩ =

N∑
i

2giIm[⟨σia†⟩]− κ⟨a†a⟩, (2.11)

d

dt
⟨σ†

iσi⟩ = Pi⟨σiσ†
i ⟩ − 2giIm[⟨σia†⟩]− γi⟨σ†

iσi⟩, (2.12)
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(
d

dt
+

1

2
(Pi + γi + κi)

)
⟨σia†⟩ = igi(⟨σ†

iσiaa
†⟩ − ⟨σiσ†

i a
†a⟩). (2.13)

Where κ is the cavity decay rate, γ is the decay rate into non-lasing modes, and P is the

pumping rate. gi is the light-matter coupling between the i’th emitter and the cavity

mode, and can be measured experimentally by fitting experimental data to the model.

It From here we note that if the polarisation of the material decays on a timescale that

is much faster than the other dynamic variables then we can adiabatically eliminate the

polarisation, i.e. set its time derivative to zero, d⟨σia
†⟩

dt = 0. At this point once Eq. (2.13)

is rearranged the equation for the polarisation is substituted into the equations for the

photon number and inversion. Thus, we are left with two rate equations able to describe

the systems dynamics that agree very well with the results of the master equation [19].

2.3.2 Rate equation analyses

As shown in the previous section we can derive a set of RE from a completely quantum

approach, under approximations, using a master equation which involves coupling our

cavity system with the environment. Although powerful, on their own RE lack the

ability to describe photon statistics; in order to describe lasing and the laser threshold

it is neccessary to have access to the photon statistics like g(2)(0). However, by including

Langevin noise terms [1,32] the important statistical information about the system can

be recovered. The model outlined in [1] does not consider QDs, but rather two-level

emitters. In the rest of this section I shall refer to general emitters, but note that this

model can be applied to discrete two-level QDs.

As mentioned before there is a potential technological use for nanolasers in telecom-

munications, therefore, much time and effort is spent on understanding the properties

and limitations of these devices. It is important that the question of weather we are

gaining or losing performance by reducing device size is answered as the viability of

these devices could be impacted. If reducing size comes at a cost of increasing the noise

of these devices then this would make them impractical for use in telecommunications.
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The rate equations for the photon number, np, and the inversion, ne, are

dne

dt
= γp(no − ne)− γr(2ne − no)np − γtne + Fe, (2.14)

dnp

dt
= γr(2ne − no)np + γrne − γcnp + Fp, (2.15)

where γc is the decay rate of the cavity mode, γr is the light-matter coupling strength,

and γp is the pumping rate. The total decay rate is γt = γr + γbg, where γbg is the

decay into background, or non-lasing modes. The first term on the RHS of Eq. (2.14)

is the pump rate into the upper laser level and the second and third terms give the

rates of stimulated and spontaneous emission, respectively. The third term on the

RHS of Eq. (2.15) is the decay rate of photons out of the cavity mode and Fe and Fp

are the stochastic Langevin forces [32]. To understand the role of the Langevin terms

consider the average value ⟨F (t)⟩ = 0, i.e., it takes on negative and positive values just

as often and thus the time average is 0 - this is also true of the statistical average. The

term ⟨F (t)F (t− τ)⟩ = 0. ⟨F (t)⟩ can be likened to a random number generator and is

characterised as a memoryless proccess resulting in no correlation relative to an earlier

values, e.g., ⟨F (t− τ)⟩. Since F (t) and F (t− τ) fluctuate randomly with respect to one

another this also leads to the following result ⟨F (t)F (t− τ)⟩ = 0. The Langevin terms

above correspond to the inherent random fluctuations in the lasers physical processes

and are key to understanding intensity noise of the laser as well as linewidth. With the

added noise terms it is possible to explore statistical information about these devices

such as the RIN, Fano factor and the intensity correlation, g(2)(0), all of which give

valuable information about the performance of the device. In particular g(2)(0) is useful

quantity in this new regime where thresholdless lasing occurs.

By solving equations Eq. (2.14) and Eq. (2.15) either analytically or by integrating,

the steady state values of the photon number and the inversion are found. From here

we can plot the photon number as a function of the pump rate for different values of

the spontaneous emission factor, β. This allows for a comparison of standard lasers

with nanolasers. When β = 1, as is the case for nanolasers, there is only one mode

available for the photons couple to - the lasing mode. This is a result of the low modal
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Figure 2.3: Number of emitters: 20 (yellow), 200 (red) and 20000 (blue). The pump
rate has been scaled with the number of emitters in order to compare the curves better.
This figure was produced by recalculating the top panel of Fig. 3 in [1].

volume restricting other cavity modes. From Fig. 2.3 we can see that for β = 1 the

input-output curve approaches that of a straight line. When comparing the yellow

curve with the other curves it is clear there is no distinct threshold which comes in the

form of a kink in the curve. This is the route of term thresholdless lasing. A lot of

debate has surrounded the community in how we classify such lasers as one of the long

standing criteria for a laser was the existence of a threshold.

When the spontaneous emission factor is small, as it would be for a typical macro-

scopic laser, there is a pronounced s-shaped curve. Comparing the transition curves

best illustrates this point. For 200 emitters (red), there is smooth trajectory as a func-

tion of the pump which contrasts with that of the curve corresponding to the 20000

emitter (blue) device. The blue curve shows a pronounced s-shape with a large jump in
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Figure 2.4: Four different devices with different number of emitters. The yellow, red
and purple curves show devices that make a laser transition. The blue curve shows how
too few emitters means lasing cannot occur. This figure was produced by recalculating
Fig. 5a in [1].

the output over a very short pump rate. The abrupt transition is almost a discontinuous

jump and behaves effectively as a switch in this phase transition.

The new feature of thresholdless lasing means we must extend our analyses of

the laser dynamics due to the uncertainty in the the laser threshold in the input-

output curves. In order to do this we look at the intensity correlation function, g(2)(0),

which can give us important information on the photon statistics of the system. This

statistical information is obtained through the inclusion of the Langevin forces in Eqs.,

i.e., Fe and Fp. If g
(2)(0) > 1 then this would correspond to photons bunching together,

i.e. thermal light. For the light to be considered chaotic the intensity autocorrelation

function must take values closer to g(2)(0) ≈ 2. This is a manifestation of their Bosonic

nature and in this case the light displays super-Poissonian statistics. If g(2)(0) = 1
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the emission would be purely coherent corresponding to a laser and when g(2)(0) < 0

this means the photon statistics are sub-Poissonian resulting in photon anti-bunching,

a purely quantum phenomenon with no classical counterpart. Figure 2.4 shows the

intensity correlation as a function of the pump rate for four different devices which

have different numbers of emitters. The blue curve is of particular interest as it has a

clear dip but never actually reaches a value of one. This is significant as it tells us this

device which only has 10 emitters does not emit coherent light and this result has also

been observed experimentally [15]. Therefore, the simple rate equations are powerful

as they are able to predict and reproduce behaviours of nanolasers. To understand this

result better we can see how adding emitters to the cavity affects the interaction with

the field. The light-matter coupling scales as γr = γr
√
N . Therefore, it is clear that by

increasing the amount of emitters the interaction with the field is stronger. The other

curves in Fig 2.4 highlight this point by showing that increasing the number of emitters

means the device is capable of lasing as g(2)(0) = 1.

The relative intensity noise (RIN) is given by

RIN =
⟨∆n2

p⟩
⟨np⟩2

, (2.16)

where ⟨∆n2
p⟩ is the variance of the photon number, and ⟨np⟩ is the expectation value

of the photon number. The RIN can help us understand the quantum noise properties

of the devices under consideration. As stated before, the noise amplitude is important

if nanolasers are to be used in telecommunications. Figure 2.5 shows the RIN as a

function of the pump for the same four devices considered in Fig 2.4. As the pump rate

increases the RIN for all four devices decreases. This trend continues for the 30, 90

and 270 emitter devices, however, when there are only 10 emitters the RIN levels out

and stops decreasing. Thus, devices with fewer emitters have greater RIN compared

to those devices which have greater numbers of emitters and increasing the pump rate

further does not change the RIN. Inspecting Figs 2.4 and 2.5 reveals to us the region of

the pump where the lasing transitions begin for the three lasing devices; this region is

also where the RIN curve of the non-lasing device diverges from the other curves. This
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behaviour illustrates that the noise amplitude is significantly reduced for the lasing

devices compared with the non-lasing device which is in agreement with the g(2)(0)

approaching 1. Again, the RE with added Langevin forces continue to be a valuable

tool in analysing statistical information that sheds light on the noise and emission

properties of nanolasers.

Figure 2.5: RIN for the same four devices with different emitter numbers. The RIN
for the 10 emitter device diverges from the other lasing devices who RIN continue to
decrease as the pump is increased. This figure was produced by recalculating Fig. 5b
in [1].

2.4 Conclusion

Nanolasers have potential future applications as useful devices if they are integrated

with current technology. Reduced size along with low power consumption and footprint

are just some of the advantages they offer. RE employed to model small lasers can
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be derived from a quantum master equation and display results in line with more

rigorous and sophisticated approaches. The phenomenon of thresholdless lasing has

been discussed and understood in terms of the small modal volumes and spontaneous

emission factors close to unity. It has also been shown that the inclusion of Langevin

forces in RE gives statistical information of the system and this can be directly applied

to look at the g(2)(0) and the RIN. For devices which have few emitters, we have seen

that lasing is not possible and only by including more emitters in the cavity can lasing

be achieved. These are just some of the important properties investigated and the

knowledge gained will lead to a better understanding of nanolasers for future study.

The models considered in this chapter lack coherent variables like the coherent field

and standard polarization. This means that for the RE, we have to extend them to

include Langevin forces to increase their reach into photon statistics, shedding more

light on the onset of lasing. However, the limitations of these models become apparent

when attempting to identify the crucial transition point— the emergence of a nonzero

coherent field amplitude signifying lasing threshold. In the following chapter, we’ll

explore a novel approach that directly integrates these previously neglected coherent

variables. By doing so, we not only bridge the gap between incoherent and coherent

emission regimes but also gain the capability to pinpoint the exact moment when lasing

begins. This shift in perspective will illuminate the entirety of the lasing process, from

the incoherent pre-threshold state to the coherent emission regime above laser threshold.
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Model derivation

3.1 Incoherent and coherent variables

Semiconductor quantum models for QD nanolasers that are capable of describing the

photon number above and below laser threshold have been developed in recent years

[31]. They are in stark contrast to the classical Maxwell-Bloch equations which only

describe emission above laser threshold. Although these new quantum models describe

the photon number across both incoherent and coherent emission regimes, they are

not able to directly identify the onset of lasing, i.e., when a nonzero coherent field

emerges. In order to resolve this problem, extensions to the models are made which see

higher-order correlations introduced allowing for access to the photon statistics. With

the photon statistics it is possible to describe the type of emission and hence observe

the transition from incoherent to coherent emission. The discussion so far illustrates

that there is a need to track the evolution of the coherent processes explicitly via their

expectation values. At the level of the Maxwell-Bloch equations the equivalent coherent

variables are the coherent field amplitude and the medium polarisation amplitude.

The coherent variables are implicit in the previous models (see Section 3.3 on how to

extract them through the cluster expansion) and as such they cannot directly observe

the lasing threshold which corresponds to the emergence of a nonzero coherent field

amplitude. The models derived within this chapter differ with respect to previous

models in that they consider the coherent and incoherent variables separetley [5,15,31].
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3.2 The structure of the system Hamiltonian

The photon operators of the system Hamiltonian obey the Bosonic commutation rela-

tions

[bi, bj ]− = 0 = [b†i , b
†
j ]− (3.1)

[bi, b
†
j ]− = δij (3.2)

and the carrier operators obey the Fermi anti-commutation relations

[ci, cj ]+ = 0 = [c†i , c
†
j ]+ (3.3)

[c†i , cj ]+ = δij . (3.4)

where δij is the Kronecker delta. The Bosonic operators b and b† correspond to single-

particle operators and it can be shown that N Bosonic operators are formally equivalent

to 2N Femi operators under the specific requirements that the compound Fermi oper-

ator is symmetrical with respect to creation and annihilation operators [33], i.e., they

contain equal numbers of creation and annihilation operators. This is true also for

Fermionic operators which are mixed as in the case of the standard polarisation v†c.

Therefore, we refer to the coherent filed operator b, carrier number c†c, and standard

polarisation v†c as single particle operators; and, the photon number operator b†b and

photon assisted polarisation bc†v correspond to two particle operators.

The structure of the system Hamiltonian takes the form

H = Hfree +Hint (3.5)

where Hfree corresponds to the non-interacting part and Hint to the interacting part

of the Hamiltonian. The non-interacting part of the Hamiltonian is itself made up of

contributions from the free electromagnetic field HE and free electrons in the quantum
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dot HQD

Hfree = HE +HQD. (3.6)

The free photon energy part of the second quantized Hamiltonian is given by

HE = ℏ
∑
q

νq

(
b†qbq +

1

2

)
(3.7)

where νq is the frequency of a photon in the q-th mode and the quantum mechanical

operators bq, b
†
q annihilate and create a photon in the q-th mode, respectively. The sum

over q takes into account lasing and non-lasing modes.

The free electron part of the Hamiltonian describes charge carries in the conduction

and valence band states with respective energies ϵc,n and ϵv,n in the n-th quantum dot

HQD =
∑
n

(
εc,nc

†
ncn + εv,nv

†
nvn

)
(3.8)

where cn, c
†
n and vn, v

†
n are the annihilation and creation operators, respectively, for

conduction and valence electrons of the n-th quantum dot.

The full two-particle light-matter interaction is described by

Hint = −iℏ
∑
n,q

[
gnq

(
bqc

†
nvn + bqv

†
ncn

)
− g∗nq

(
b†qv

†
ncn + b†qc

†
nvn

)]
(3.9)

with gnq corresponding to the light-matter coupling strength between a photon in the

q-th mode and the n-th quantum dot. The total system Hamiltonian is thus

H = ℏ
∑
q

νq

(
b†qbq +

1

2

)
+
∑
n

(
εc,nc

†
ncn + εv,nv

†
nvn

)
(3.10)

−iℏ
∑
n,q

[
gnq

(
bqc

†
nvn + bqv

†
ncn

)
− g∗nq

(
b†qv

†
ncn + b†qc

†
nvn

)]
.

It should be noted that this is a simplified system Hamiltonian for a semiconduc-

tor as in reality the Hamiltonian should also contain contributions from phonon and

Coulomb interactions between charge carriers. However, at sufficiently low tempera-

tures ≈ 4K these interactions are weak enough such that they may be neglected [5].
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One final remark on the structure of the system Hamiltonian concerns the two-

particle operators coming from the interaction part of the Hamiltonian: b†qc
†
nvn and

bqv
†
ncn. Quantum mechanically, operators of the former kind describe a process where

a photon in mode q is created in conjunction with an electron being destroyed in the

valance band and subsequently created in the conduction band of the n-th quantum dot.

The reverse process is true of the latter operator term. Processes of this kind do not

conserve energy thus we eliminate them from the interaction Hamiltonian. The elimi-

nation of these terms is know as the rotating wave approximation (RWA). Therefore,

the final form of the system Hamiltonian is

H = ℏ
∑
q

νq

(
b†qbq +

1

2

)
+
∑
n,q

[(
εc,nc

†
ncn + εv,nv

†
nvn

)
(3.11)

−iℏ
(
gnqbqc

†
nvn − g∗nqb

†
qv

†
ncn

)]
.

3.3 The Cluster expansion

The intrinsic nature of light-matter interaction and it is structure within the system

Hamiltonian leads to an infinite hierarchical coupling to higher order terms which is a

characteristic problem of many-body interactions. This coupling to higher order terms

dictates that the quantum dynamics follow from

iℏ
d

dt
⟨N̂⟩ = E[⟨N̂⟩] + P [⟨N̂ + 1⟩] (3.12)

where the functionals E and P describe coupling to terms of the same and higher

order, respectively [33]. Therefore, we must find a way to systematically truncate the

infinite system of ordinary differential equations. This is achieved through expressing

the dynamics in terms of correlation functions which are obtained through the cluster

expansion.
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3.3.1 Pure Bosonic operators

An expectation value ⟨...⟩ can be expressed in terms of all possible combinations of

lower operator products. For example, the expectation value of a four-particle operator

takes the form ⟨ÔÔÔÔ⟩ and can be expanded in the following way12

⟨ÔÔÔÔ⟩ = δ⟨ÔÔÔÔ⟩+ ⟨Ô⟩δ⟨ÔÔÔ⟩+ ⟨Ô⟩⟨Ô⟩δ⟨ÔÔ⟩+ δ⟨ÔÔ⟩δ⟨ÔÔ⟩ (3.13)

+⟨Ô⟩⟨Ô⟩⟨Ô⟩⟨Ô⟩

where Eq.(3.13) contains the purely correlated part, singlet-triplet, singlet-doublet,

doublet-doublet and singlet contributions, respectively. These cover all possible fac-

torisations for a four-particle expectation value which is the lowest order needed to

investigate the photon statistics. Implicit in this notation, however, is the fact that one

must consider all possible realisations of the operator positions; for bosons this is not

too cumbersome, but this is not true of fermions when there are more than two, i.e. in

the case of pure carrier expectation values. The easiest and cleanest way to implement

the cluster expansion is to first prepare all strings of operator products into normal or-

der where all creation operators on the left and all annihilation operators on the right

of the expectation value. Once this is done label the operators as such ⟨Ô1Ô2Ô3Ô4⟩ in

order to keep track of each one throughout the expansion. Another important point to

note is that when expressing the different ‘clusters’ keep the order of the numbers, e.g.

δ⟨Ô1Ô3⟩δ⟨Ô2Ô4⟩. g(2)(0) is obtained through the intensity correlation δ⟨b†b†bb⟩

g(2)(0) = 2 +
δ⟨b†b†bb⟩
⟨b†b⟩

2

, (3.14)

1Here the δ is dropped in front of single-particle expectation values as there is no distinction between
itself and the correlated part

2Ô represents any single-particle operator either bosonic or fermionic
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where ⟨b†b⟩ is the expectation value of the photon number [5, 31]. The full cluster

expansion of the intensity correlation is

⟨b†1b
†
2b3b4⟩ = δ⟨b†1b

†
2b3b4⟩+ ⟨b†1⟩δ⟨b

†
2b3b4⟩+ ⟨b†2⟩δ⟨b

†
1b3b4⟩+ ⟨b3⟩δ⟨b†1b

†
2b4⟩+ ⟨b4⟩δ⟨b†1b

†
2b3⟩

(3.15)

+⟨b†1⟩⟨b
†
2⟩δ⟨b3b4⟩+ ⟨b†1⟩⟨b3⟩δ⟨b

†
2b4⟩+ ⟨b†1⟩⟨b4⟩δ⟨b

†
2b3⟩+ ⟨b†2⟩⟨b3⟩δ⟨b

†
1b4⟩

+⟨b†2⟩⟨b4⟩δ⟨b
†
1b3⟩+ ⟨b3⟩⟨b4⟩δ⟨b†1b

†
2⟩+ δ⟨b†1b

†
2⟩δ⟨b3b4⟩+ δ⟨b†1b3⟩δ⟨b

†
2b4⟩

+δ⟨b†1b4⟩δ⟨b
†
2b3⟩+ ⟨b†1⟩⟨b

†
2⟩⟨b3⟩⟨b4⟩.

The extra terms arise from all the possible permutations of the operators. Dropping

the subscripts we get

⟨b†b†bb⟩ = δ⟨b†b†bb⟩+ 2⟨b†⟩δ⟨b†bb⟩+ 2⟨b⟩δ⟨b†b†b⟩+ ⟨b†⟩⟨b†⟩δ⟨bb⟩ (3.16)

+ 4⟨b†⟩⟨b⟩δ⟨b†b⟩+ ⟨b⟩⟨b⟩δ⟨b†b†⟩+ δ⟨b†b†⟩δ⟨bb⟩+ 2δ⟨b†b⟩δ⟨b†b⟩+ ⟨b†⟩⟨b†⟩⟨b⟩⟨b⟩.

3.3.2 Pure carrier expectation values

In the case of expectation values which consist solely of fermionic operators it is not

enough to simply group them into two’s and carry out the expansion as if they were

bosons; we must also take care to deal with the possible permutations between creation

and destruction operators. Using the same notation from the book of Kira and Koch [33]

we can write the cluster expansion of a two-particle fermionic expectation value as

⟨k†p†lm⟩ = ⟨k†p†lm⟩singlets + δ⟨k†p†lm⟩ (3.17)

The difference lies in the treatment of the singlet part; if this were purely bosonic we

could easily factorise it into two singlet expectation values, e.g.

⟨b†b⟩ = δ⟨b†b⟩+ ⟨b†⟩⟨b⟩, (3.18)
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but for fermions we need to cycle through all possible combinations of destruction and

creation operators too. Thus

⟨k†p†lm⟩singlets = ⟨k†m⟩⟨p†l⟩ − ⟨k†l⟩⟨p†m⟩ (3.19)

where the minus sign is due to the fact that we have swapped the operators which obey

anti-commutation relations. Inserting equation Eq. (3.19) into equation Eq. (3.17) gives

⟨k†p†lm⟩ = ⟨k†m⟩⟨p†l⟩ − ⟨k†l⟩⟨p†m⟩+ δ⟨k†p†lm⟩ (3.20)

3.3.3 Example of a mixed expectation value with more than two

fermionic operators

The expansion of an operator like ⟨b†c†v†vc⟩ does not require any more rules than have

already been discussed. This is a three-particle expectation which means we need to

consider the extra ways we can group the operators. Symbolically we have

⟨ÔÔÔ⟩ = δ⟨ÔÔÔ⟩+ ⟨Ô⟩δ⟨ÔÔ⟩+ ⟨Ô⟩⟨Ô⟩⟨Ô⟩. (3.21)

The purely correlated part is trivial and there is no need for any factorisation. As the

bosonic operators commute with the fermionic operators, to deal with the singlet part

we have to factor out the bosonic operator and apply the same methods as were used

in Eq. (3.19) which results in

⟨b†c†v†vc⟩singlets = ⟨b†⟩⟨c†c⟩⟨v†v⟩ − ⟨b†⟩⟨c†v⟩⟨v†c⟩. (3.22)

At this point, we have the purely correlated part and the singlet contributions which

leaves the singlet-doublet correlations to construct. If we notice that right hand side

of equation Eq. (3.22) contains all possible single-particle expectation values we can

combine these to construct the singlet-doublet terms. For example, ⟨b†⟩⟨c†c⟩⟨v†v⟩ is
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made up of three distinct terms which we can use to build ⟨Ô⟩δ⟨ÔÔ⟩:

⟨b†⟩δ⟨c†v†vc⟩, (3.23)

⟨c†c⟩δ⟨b†v†v⟩, (3.24)

⟨v†v⟩δ⟨b†c†c⟩. (3.25)

These terms will have positive sign because they come from the positive part of the

singlet factorisation, whereas the term ⟨b†⟩⟨c†v⟩⟨v†c⟩ has a minus sign in front therefore

the terms it contributes will also have a minus sign. Putting all this together we get

⟨b†c†v†vc⟩ = δ⟨b†c†v†vc⟩+ ⟨b†⟩⟨c†c⟩⟨v†v⟩ − ⟨b†⟩⟨c†v⟩⟨v†c⟩+ ⟨b†⟩δ⟨c†v†vc⟩ (3.26)

+ ⟨c†c⟩δ⟨b†v†v⟩+ ⟨v†v⟩δ⟨b†c†c⟩ − ⟨c†v⟩δ⟨b†v†c⟩ − ⟨v†c⟩δ⟨b†c†v⟩.

3.4 The Heisenberg Equation

Now that the system Hamiltonian is known and we have a systematic truncation scheme

in place we can calculate the equations that govern the quantum dynamics using the

Heisenberg equation of motion

iℏ
d

dt
Ô =

[
Ô,H

]
−

(3.27)

where Ô corresponds to any system operator of interest. It is helpful to utilise the

linear additivity property of the commutator in order to express the commutator in the

Heisenberg equation as a linear superposition of the free and interacting parts of the

system Hamiltonian [
Â,

∑
i

Bi

]
−
=

∑
i

[
Â, Bi

]
−

(3.28)

where the sum is over the interacting and non-interacting parts of the system Hamil-

tonian. Thus, giving

[
Ô,H

]
−
=

[
Ô,HE

]
−
+
[
Ô,HQD

]
−
+
[
Ô,Hint

]
−
. (3.29)
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Using the fact that the Bosonic photon operators commute with the Fermi electron

operators simplifies the computation of the commutators in Eq. (3.29). This leaves us

with the easier task of evaluating the following commutators

[
bq, H

]
−
=

[
bq, HE

]
−
+
[
bq, Hint

]
−

(3.30)

[
c†v,H

]
−
=

[
c†v,HQD

]
−
+
[
c†v,Hint

]
−

(3.31)[
c†c,H

]
−
=

[
c†c,HQD

]
−
+
[
c†c,Hint

]
−

(3.32)

The single particle operators form the basis of the quantum dynamics and all higher

order operators are derived from them.

To derive the Heisenberg equations for the fundamental single-particle operators -

b, c†v and c†c - we start by evaluating their commutators in Eqs.(3.30-3.32) utilising

the Bosonic commutation and Fermionic anti-commutation relations. For bq, we set

q = s where s is the index of the lasing mode

[
bs, HE

]
−
= ℏνsbs (3.33)

for the non-interacting part and

[
bs, Hint

]
−
= iℏ

∑
n,q

g∗nqv
†
ncnδqs (3.34)

= iℏ
∑
n

g∗nsv
†
ncn

for the interacting part of the system Hamiltonian. Substituting these results into the

Heisenberg equation for bs and dividing through by iℏ we get

d

dt
bs = −iνsbs +

∑
n

g∗nsv
†
ncn. (3.35)

where bs is now the field operator of a coherent laser field coupled to the standard

polarisation operator. Eq.(3.35) clearly illustrates that the Heisenberg equation for the

coherent field operator is driven by the polarisation of an ensemble of n quantum dots.
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Applying the same methods the derivation of the Heisenberg equation for the standard

polarisation and population operators follow in a similar fashion Thus, one obtains the

full set of single-particle operator equations

d

dt
bs = −iνsbs +

∑
n

g∗nsv
†
ncn, (3.36)

dtv
†
l cl = −iνεlv

†
l cl +

∑
q

gql[2bqc
†
l cl − bq], (3.37)

d

dt
c†l cl = −2ℜ

∑
q

gnsbqc
†
l vl, (3.38)

where νεl =
εc,l
ℏ is the resonant frequency of the emitters. These equations are very

important and useful as all higher-order Heisenberg equations can be constructed from

them; all one has to do is apply the chain rule. This is faster and more efficient than

calculating the commutator of a higher-order operator.
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3.5 Heisenberg equations of two particle operators

The Heisenberg equations for all operator terms up to the two-particle level, excluding

two-particle fermionic terms, are:

dtbs = −iνsbs +
∑
n

g∗snv
†
ncn, (3.39)

dtv
†
l cl = −iνεlv

†
l cl +

∑
q

gql[2bqc
†
l cl − bq], (3.40)

dtc
†
l cl = −

∑
q

[gqlbqc
†
l vl + g∗qlb

†
qv

†
l cl], (3.41)

dtb
†
sbs =

∑
n

[gsnbsc
†
nvn + g∗snb

†
sv

†
ncn], (3.42)

dtbsc
†
l vl = −i∆νbsc

†
l vl + g∗l c

†
l cl −

∑
q

gql[2b
†
qbsc

†
l cl − b†qbs]−

∑
n̸=l

g∗snc
†
l v

†
nvlcn, (3.43)

dtbsc
†
l cl = −iνsbsc

†
l cl −

∑
q

[gqlbsbqc
†
l vl + g∗qlb

†
qbsv

†
l cl]−

∑
n ̸=l

g∗snv
†
nc

†
l cncl, (3.44)

dtbsbs = −2iνsbsbs + 2
∑
n

g∗snbsv
†
ncn, (3.45)

dtbsv
†
l cl = −i(νs + νεl)bsv

†
l cl + gsl[2bsbsc

†
l cl − bsbs]−

∑
n̸=l

g∗snv
†
nv

†
l cncl, (3.46)

where ∆ν = νεl − νs is the detuning between the cavity mode photons and the emit-

ters. We excluded the equations for two-particle fermionic operators, responsible for

supperadiant effects, since we are focusing on regimes where the medium polarisation

is large compared to the other decay rates of the system [34]. From these equations it

is possible to arrive at two different types of models; one for expectation values and

one for correlations.

It is important to bring attention to the operator terms bsbs and bsv
†
l cl and their

equations. In Section (3.2) it was made clear that the RWA resulted in the terms which

do not conserve energy being neglected from the interaction part of the Hamiltonian.

However, the same operator terms arise out of the system Hamiltonian Eq. (3.11) and

as a result we do not neglect them.
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3.5.1 Dissipation and pump

We include dissipation directly at the level of the Heisenberg equations via the Lindblad

formalism. It is important to note that the order in which dissipation and pump is

added is crucial if one is to preserve mathematical consistency between the correlation

and expectation value models; only then can a simple change of variables allow for the

transformation from one to the other.

3.6 Cluster Expansion Nonlinear QED Models - CNQED

In the following there are six systems of equations; three where the variables are in terms

correlations and their equivalent in terms of expectation values (EVs). The correlation

models are derived first from the Heisenberg equations which explicitly contains the

conservative and dissipative parts. Only after the system is expressed solely in terms of

correlations is the pump added phenomenologically. The only route to the expectation

value models is through a change of variables where the cluster expansions in the tables

(given below) are used. This is the only way to ensure the two models are equivalent

and consistent mathematically.

3.6.1 Coherent-Incoherent Model

The algorithm to derive the model in terms of correlations is as follows:

1. Derive the Heisenberg equation for the variable of interest - if the variable is

described by an operator greater than the single-particle operators then use the

Eqs. (3.36-3.38) to construct it.

2. Take the expectation value of all operator terms.

3. Apply the cluster expansion and neglect the purely correlated part if bigger than

a two particle correlation, e.g. terms like δ⟨ÔÔÔ⟩ are neglected.

The system variables of the first model we will consider come from the operators appear-

ing explicitly in the system Hamiltonian and their singlet factorisation: b, v†c, c†c, b†b

and bc†v. Table 3.1 gives an overview of the EVs that appear at this level; their cluster
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expansions are given in Table 3.2. Following the steps in the above algorithm leads to

the corresponding Coherent-Incoherent model (CIM), named so on the account of the

incoherent and coherent terms appearing explicitly,

dt⟨c†l cl⟩ = r(1− ⟨c†l cl⟩)− (γnl + γnr)⟨c†l cl⟩ − 2Re[gl(δ⟨bc†l vl⟩) + ⟨b⟩⟨c†l vl⟩], (3.47)

dtδ⟨b†b⟩ = −2γc⟨b†b⟩+ 2Re
∑
n

gn(δ⟨bc†nvn⟩+ ⟨b⟩⟨c†nvn⟩), (3.48)

dtδ⟨bc†l vl⟩ = −(γ + γc + i∆ν)δ⟨bc†l vl⟩+ g∗l [⟨c
†
l cl⟩+ δ⟨b†b⟩(2⟨c†l cl⟩ − 1) (3.49)

− |⟨v†l cl⟩|
2],

dt⟨b⟩ = −(γc + iν)⟨b⟩+
∑
n

g∗n⟨v†ncn⟩, (3.50)

dt⟨v†l cl⟩ = −(γ + iνεl)⟨v
†
l cl⟩+ gl[2⟨b⟩⟨c†l cl⟩ − ⟨b⟩], (3.51)

where γc is the cavity decay rate, γnl is the decay rate into non-lasing modes, γnr is the

non-radiative decay rate, g is the light-matter coupling strength between the emitter

and cavity mode, and r is the pump rate per emitter. The total pump rate is given

by
∑

N r, where the sum is over the number of emitters. Figure 3.1 shows a system

schematic with key parmeters from the model as well as important physical processes.

The cluster expansion is an efficient way to break the coupling to higher-order

correlations, but it does introduce nonlinear terms which are absent for the equivalent

EV based system. Fortunately, there is a way to revert back to the EV based model

and restore the linearity of the system, however, as already discussed this must be done

carefully in order to preserve mathematically consistency between the two models.

Table 3.3 gives the identities for the three-particle EVs truncated at the two-particle

level. Using these identities we can transform the above correlation based model into
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𝛾!

𝛾"#

𝑔

Figure 3.1: The two-level system on the left is coupled to the environment shown as a
reservoir on the right.

the equivalent EV based model

dt⟨c†l cl⟩ = r(1− ⟨c†l cl⟩)− (γnl + γnr)⟨c†l cl⟩ − 2Re(gl⟨bc†l vl⟩), (3.52)

dt⟨b†b⟩ = −2γc⟨b†b⟩+ 2Re
∑
n

gn⟨bc†nvn⟩, (3.53)

dt⟨bc†l vl⟩ = −(γ + γc + i∆ν)⟨bc†l vl⟩+ g∗l [⟨c
†
l cl⟩+ ⟨b†b⟩(2⟨c†l cl⟩ − 1)] (3.54)

+ ⟨c†l vl⟩
∑
n̸=l

g∗n⟨v†ncn⟩

dt⟨b⟩ = −(γc + iν)⟨b⟩+
∑
n

g∗n⟨v†ncn⟩, (3.55)

dt⟨v†l cl⟩ = −(γ + iνεl)⟨v
†
l cl⟩+ gl[2⟨b⟩⟨c†l cl⟩ − ⟨b⟩]. (3.56)

Fig. 3.2 compares the correlation based model Eqs. (3.47-3.51) with the EV based

model Eqs. (3.52-3.53) for different numbers of QDs. The parameter values used taken

from [5] are normalised with respect to the nonradiative decay rate, γnr = 109s−1.

The perfect overlap between both sets of curves clearly demonstrates the mathematical

equivalence between the two models.
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Particle order Bosonic Fermionic Mixed

1 ⟨b⟩ ⟨c†c⟩, ⟨v†c⟩ N/A

2 ⟨b†b⟩ ⟨c†l v
†
nvlcn⟩, ⟨v†nc†l cncl⟩ ⟨bc†v⟩

3 None None ⟨b†bc†c⟩, ⟨bbc†v⟩, ⟨b†bv†c⟩

Table 3.1: Operator expectation values appearing in the CIM.

EV Cluster expansion

⟨b†b⟩ δ⟨b†b⟩+ ⟨b†⟩⟨b⟩

⟨bc†v⟩ δ⟨bc†v⟩+ ⟨c†v⟩⟨b⟩

⟨c†l v
†
nvlcn⟩ δ⟨c†l v

†
nvlcn⟩+ ⟨c†l cn⟩⟨v

†
nvl⟩ − ⟨c†l vl⟩⟨v

†
ncn⟩

⟨v†nc†l cncl⟩ δ⟨v†nc†l cncl⟩+ ⟨v†ncl⟩⟨c†l cn⟩ − ⟨v†ncn⟩⟨c†l cl⟩

⟨b†bc†c⟩ δ⟨b†bc†c⟩+ ⟨b†⟩⟨b⟩⟨c†c⟩+ ⟨c†c⟩δ⟨b†b⟩

⟨bbc†v⟩ δ⟨bbc†v⟩+ ⟨b⟩2⟨c†v⟩+ 2⟨b⟩δ⟨bc†v⟩

⟨b†bv†c⟩ δ⟨b†bv†c⟩+ ⟨b†⟩⟨b⟩⟨v†c⟩+ ⟨b⟩δ⟨b†v†c⟩+ ⟨v†c⟩δ⟨b†b⟩

Table 3.2: Table containing all cluster expansions of the EV in Table 3.1. All Bosonic
operators are assumed to act on the cavity lasing mode s thus the subscript is dropped.

EV Lower order EV products

⟨b†bc†c⟩ ⟨c†c⟩⟨b†b⟩ − 2⟨b†⟩⟨b⟩⟨c†c⟩
⟨bbc†v⟩ 2⟨b⟩⟨bc†v⟩ − ⟨b⟩2⟨c†v⟩
⟨b†bv†c⟩ ⟨b⟩⟨b†v†c⟩+ ⟨v†c⟩⟨b†b⟩ − ⟨b†⟩⟨b⟩⟨v†c⟩

Table 3.3: Table containing the three-particle EV expanded as lower order expectation
value products. The cluster expansion is applied first and then all correlations are
recast in terms of EV using the identities given in Table 3.2.
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Figure 3.2: Plotting the photon number as a function of the pump for the correlation
(black solid) and EV (red dashed) models. Parameter values: γ = 104, γnr = 1, γc = 10,
γnl = 1400 and g = 70.

3.7 Model including the operator term bc†c

In this section the CIM is expanded to include the EV and correlation of the operator

product of the field and carrier population, bc†c. This is a mixed two particle operator

that does not appear in the system Hamiltonian. The extended correlation based CIM
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is thus given by the following system of equations

dt⟨c†l cl⟩ = r(1− ⟨c†l cl⟩)− (γnl + γnr)⟨c†l cl⟩ − 2Re[gl(δ⟨bc†l vl⟩+ ⟨b⟩⟨c†l vl⟩)], (3.57)

dtδ⟨b†b⟩ = −2γcδ⟨b†b⟩+ 2Re
∑
n

gnδ⟨bc†nvn⟩, (3.58)

dtδ⟨bc†l vl⟩ = −(γ + γc − i∆ν)δ⟨bc†l vl⟩+ g∗l [⟨c
†
l cl⟩+ δ⟨b†b⟩(2⟨c†l cl⟩ − 1) (3.59)

− |⟨v†l cl⟩|
2 + 2⟨b†⟩δ⟨bc†l cl⟩],

dt⟨b⟩ = −(γc + iν)⟨b⟩+
∑
n

g∗n⟨v†ncn⟩, (3.60)

dt⟨v†l cl⟩ = −(γ + iνεl)⟨v
†
l cl⟩+ gl[2δ⟨bc†l cl⟩+ 2⟨b⟩⟨c†l cl⟩ − ⟨b⟩], (3.61)

dtδ⟨bc†l cl⟩ = −(γc + γnr + iνs)δ⟨bsc†l cl⟩ − gl⟨b⟩δ⟨bc†l vl⟩ − g∗l [⟨v
†
l cl⟩δ⟨b

†b⟩ (3.62)

+ ⟨c†l cl⟩⟨v
†
l cl⟩],

where δ⟨bc†c⟩ enters into the system by coupling to the standard and assisted polari-

sations. Once more, the operator EVs and corresponding cluster expansion are found

in Table 3.4 and Table 3.5, respectively. By inspecting Eq. (3.62) we can see that the

decay rate for δ⟨bc†c⟩ is on the same order as that of the coherent field amplitude ⟨b⟩.

This is orders of magnitude smaller than the decay rate of the polarisation thus we

cannot neglect it on the grounds that it decays much faster than the other variables.

Using the identities given in Table 3.6 we recast Eqs. (3.57) - (3.62) into the equiv-
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Particle order Bosonic Fermionic Mixed

1 ⟨b⟩ ⟨c†c⟩, ⟨v†c⟩ N/A

2 ⟨b†b⟩ ⟨c†l v
†
nvlcn⟩, ⟨v†nc†l cncl⟩ ⟨bc†v⟩, ⟨bc†c⟩

3 None None ⟨b†bc†c⟩, ⟨bbc†v⟩, ⟨b†bv†c⟩

Table 3.4: Table containing all of the EV that appear in the model truncated at the
two-particle level where ⟨bb⟩ and ⟨bv†c⟩ are neglected.

alent EV based model

dt⟨c†l cl⟩ = r(1− ⟨c†l cl⟩)− (γnl + γnr)⟨c†l cl⟩ − 2Re(gl⟨bc†l vl⟩), (3.63)

dt⟨b†b⟩ = −2γc⟨b†b⟩+ 2Re
∑
n

gn⟨bc†nvn⟩, (3.64)

dt⟨bc†l vl⟩ = −(γ + γc + i∆ν)⟨bc†l vl⟩+ g∗l [⟨c
†
l cl⟩+ ⟨b†b⟩(2⟨c†l cl⟩ − 1) (3.65)

− 4⟨b†⟩⟨b⟩⟨c†l cl⟩+ 4Re(⟨b⟩⟨b†c†l cl⟩)] + ⟨c†l vl⟩
∑
n̸=l

g∗n⟨v†ncn⟩,

dt⟨b⟩ = −(γc + iν)⟨b⟩+
∑
n

g∗n⟨v†ncn⟩, (3.66)

dt⟨v†l cl⟩ = −(γ + iνεl)⟨v
†
l cl⟩+ gl[2⟨bc†l cl⟩ − ⟨b⟩], (3.67)

dt⟨bc†l cl⟩ = −(γc + γnr + iνs)⟨bsc†l cl⟩ − γnl⟨b⟩⟨c†l cl⟩ − gl[2⟨b⟩⟨bc†l vl⟩ − ⟨b⟩2⟨c†l vl⟩] (3.68)

− g∗l [⟨v
†
l cl⟩(⟨b

†b⟩ − ⟨b†⟩⟨b⟩) + ⟨b⟩⟨b†v†l cl⟩] + ⟨c†l cl⟩
∑
n ̸=l

g∗n⟨v†ncn⟩.

Fig. (3.3) illustrates once again that the correlation based model is mathematically

equivalent with EV based model. However, it is also clear to see that a strange artefact

is now present in the intensity response which now displays a dip. This makes it

apparent that although we cannot ignore this term, it is not enough on its own and we

will see in the following section that other terms are needed to correct the dip shown

in the intensity.
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EV Cluster expansion

⟨b†b⟩ δ⟨b†b⟩+ ⟨b†⟩⟨b⟩
⟨bc†c⟩ δ⟨bc†c⟩+ ⟨c†c⟩⟨b⟩
⟨bc†v⟩ δ⟨bc†v⟩+ ⟨c†v⟩⟨b⟩
⟨c†l v

†
nvlcn⟩ δ⟨c†l v†

nvlcn⟩+ ⟨c†l cn⟩⟨v
†
nvl⟩ − ⟨c†l vl⟩⟨v

†
ncn⟩

⟨v†nc†l cncl⟩ δ⟨v†
nc

†
l cncl⟩+ ⟨v†ncl⟩⟨c†l cn⟩ − ⟨v†ncn⟩⟨c†l cl⟩

⟨b†bc†c⟩ δ⟨b†bc†c⟩+ ⟨b†⟩⟨b⟩⟨c†c⟩+ ⟨c†c⟩δ⟨b†b⟩+ ⟨b†⟩δ⟨bc†c⟩+ ⟨b⟩δ⟨b†c†c⟩
⟨bbc†v⟩ δ⟨bbc†v⟩+ ⟨b⟩2⟨c†v⟩+ 2⟨b⟩δ⟨bc†v⟩
⟨b†bv†c⟩ δ⟨b†bv†c⟩+ ⟨b†⟩⟨b⟩⟨v†c⟩+ ⟨b⟩δ⟨b†v†c⟩+ ⟨v†c⟩δ⟨b†b⟩

Table 3.5: Table containing all cluster expansions of the EV in Table 3.4 where the
terms in bold are thrown away at first sight in line with our approximations. All
Bosonic operators are assumed to act on the cavity lasing mode s thus the subscript is
dropped.

EV Lower order EV products

⟨b†bc†c⟩ ⟨c†c⟩⟨b†b⟩+ ⟨b†⟩⟨bc†c⟩+ ⟨b⟩⟨b†c†c⟩ − 2⟨b†⟩⟨b⟩⟨c†c⟩
⟨bbc†v⟩ 2⟨b⟩⟨bc†v⟩ − ⟨b⟩2⟨c†v⟩
⟨b†bv†c⟩ ⟨b⟩⟨b†v†c⟩+ ⟨v†c⟩⟨b†b⟩ − ⟨b†⟩⟨b⟩⟨v†c⟩

Table 3.6: Table containing the three-particle EV expanded as lower order expectation
value products. The cluster expansion is applied first and then all correlations are
recast in terms of EV using the identities given in Table 3.5.

Figure 3.3: Plotting the photon number as a function of the pump for the correlation
(black solid) and EV (red dashed) models where the term δ⟨bc†c⟩ (⟨bc†c⟩) is not ne-
glected. Parameter values: γ = 104, γnr = 1, γc = 10, γnl = 1400, g = 70 and N = 21.
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3.8 All two-particle terms (except pure carrier terms)

Finally, we include the models in terms of correlations and EVs where the operator

terms bb and bv†c and their equations of motion are included. At the operator level,

i.e., the system Hamiltonian, terms like this and their complex conjugates are neglected

as under the RWA. However, they appear explicitly in the Heisenberg equation for bc†c

and implicitly through the three-particle operator terms; the cluster expansion of the

higher order terms reveals them. Although these terms are not present in the system

Hamiltonian they are present in the conservative part of the Heisenberg equations and

through the Lindblad dissipative terms one can see that their losses are the same as the

photon number and assisted polarisation, thus there can be no grounds for neglecting

them due to rapid decay processes.

Using Table 3.7 and Table 3.8 the model, in terms of correlations, is then

dt⟨b⟩ = −(γc + iν)⟨b⟩+
∑
n

g∗n⟨v†ncn⟩, (3.69)

dt⟨v†l cl⟩ = −(γ + iνεl)⟨v
†
l cl⟩+ gl[2δ⟨bc†l cl⟩+ 2⟨b⟩⟨c†l cl⟩ − ⟨b⟩], (3.70)

dt⟨c†l cl⟩ = r(1− ⟨c†l cl⟩)− (γnl + γnr)⟨c†l cl⟩ − 2Re[gl(δ⟨bc†l vl⟩+ ⟨b⟩⟨c†l vl⟩)], (3.71)

dtδ⟨b†b⟩ = −2γcδ⟨b†b⟩+ 2Re
∑
n

gnδ⟨bc†nvn⟩, (3.72)

dtδ⟨bc†l vl⟩ = −(γ + γc − i∆ν)δ⟨bc†l vl⟩+ g∗l [⟨c
†
l cl⟩+ δ⟨b†b⟩(2⟨c†l cl⟩ − 1) (3.73)

− |⟨v†l cl⟩|
2 + 2⟨b†⟩δ⟨bc†l cl⟩],

dtδ⟨bc†l cl⟩ = −(γc + γnr + iνs)δ⟨bsc†l cl⟩ − gl[⟨c†l vl⟩δ⟨bb⟩+ ⟨b⟩δ⟨bc†l vl⟩] (3.74)

− g∗l [⟨b†⟩δ⟨bv
†
l cl⟩+ ⟨v†l cl⟩δ⟨b

†b⟩+ ⟨c†l cl⟩⟨v
†
l cl⟩],

dtδ⟨bb⟩ = −2(γc + iν)δ⟨bb⟩+ 2
∑
n

g∗snδ⟨bv†ncn⟩, (3.75)

dtδ⟨bv†l cl⟩ = −[γ + γc + i(ν + νεl)]δ⟨bv
†
l cl⟩+ gl[δ⟨bb⟩(2⟨c†l cl⟩ − 1) (3.76)

+ 2⟨b⟩δ⟨bc†l cl⟩]− g∗l ⟨v
†
l cl⟩

2,

where ∆ν = ∆ε − ν and the new variables enter the equation for δ⟨bc†c⟩ (shown in

bold). For the last time we make use of the identities in Table in order to transform
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Particle order Bosonic Fermionic Mixed

1 ⟨b⟩ ⟨c†c⟩, ⟨v†c⟩ N/A

2 ⟨b†b⟩, ⟨bb⟩ ⟨c†l v
†
nvlcn⟩, ⟨v†nc†l cncl⟩, ⟨v

†
nv

†
l cncl⟩ ⟨bc†v⟩, ⟨bc†c⟩, ⟨bv†c⟩

3 None None ⟨b†bc†c⟩, ⟨bbc†v⟩, ⟨b†bv†c⟩, ⟨bbc†c⟩

Table 3.7: Table containing all of the EV that appear in the model truncated at the
two-particle level where two-particle carrier terms are neglected.

between models. The EV based model is thus given by

dt⟨b⟩ = −(γc + iν)⟨b⟩+
∑
n

g∗n⟨v†ncn⟩, (3.77)

dt⟨v†l cl⟩ = −(γ + iνεl)⟨v
†
l cl⟩+ gl[2⟨bc†l cl⟩ − ⟨b⟩], (3.78)

dt⟨c†l cl⟩ = r(1− ⟨c†l cl⟩)− (γnl + γnr)⟨c†l cl⟩ − 2Re(gl⟨bc†l vl⟩), (3.79)

dt⟨b†b⟩ = −2γc⟨b†b⟩+ 2Re
∑
n

gn⟨bc†nvn⟩, (3.80)

dt⟨bc†l vl⟩ = −(γ + γc + i∆ν)⟨bc†l vl⟩+ g∗l [⟨c
†
l cl⟩+ ⟨b†b⟩(2⟨c†l cl⟩ − 1) (3.81)

− 4⟨b†⟩⟨b⟩⟨c†l cl⟩+ 4Re(⟨b⟩⟨b†c†l cl⟩)] + ⟨c†l vl⟩
∑
n̸=l

g∗n⟨v†ncn⟩,

dt⟨bc†l cl⟩ = −(γc + γnr + iνs)⟨bsc†l cl⟩ − γnl⟨b⟩⟨c†l cl⟩ − gl[2⟨b⟩⟨bc†l vl⟩ (3.82)

− 2⟨b⟩2⟨c†l vl⟩+ ⟨c†l vl⟩⟨bb⟩]− g∗l [⟨b†⟩⟨bv
†
l cl⟩ − 2⟨b†⟩⟨b⟩⟨v†l cl⟩

+ ⟨v†l cl⟩⟨b
†b⟩+ ⟨b⟩⟨b†v†l cl⟩] + ⟨c†l cl⟩

∑
n̸=l

g∗n⟨v†ncn⟩+ r⟨b⟩(1− ⟨c†cl⟩),

dt⟨bv†l cl⟩ = −[γ + γc + i(ν + νεl)]⟨bv
†
l cl⟩+ gl[⟨bb⟩(2⟨c†l cl⟩ − 1)− 4⟨b⟩2⟨c†l cl⟩ (3.83)

+ 4⟨b⟩⟨bc†l cl⟩] + ⟨v†l cl⟩
∑
n̸=l

g∗n⟨v†ncn⟩,

dt⟨bb⟩ = −2(γc + iν)⟨bb⟩+ 2
∑
n

g∗sn⟨bv†ncn⟩. (3.84)

From Fig. 3.4 we can see that the additional terms bb and bv†c and their equations

have resulted in a correction of the dip which was caused by considering only bcc as an

addition to the CIM.
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Figure 3.4: Plotting the photon number as a function of the pump for the correlation
(black solid) and EV (red dashed) models where the correlations (EVs) of the two-
photon like terms bb, bv†c are included. Parameter values: γ = 104, γnr = 1, γc = 10,
γnl = 1400 and g = 70.

EV Cluster expansion

⟨b†b⟩ δ⟨b†b⟩+ ⟨b†⟩⟨b⟩
⟨bc†c⟩ δ⟨bc†c⟩+ ⟨c†c⟩⟨b⟩
⟨bc†v⟩ δ⟨bc†v⟩+ ⟨c†v⟩⟨b⟩
⟨c†l v

†
nvlcn⟩ δ⟨c†l v†

nvlcn⟩+ ⟨c†l cn⟩⟨v
†
nvl⟩ − ⟨c†l vl⟩⟨v

†
ncn⟩

⟨v†nc†l cncl⟩ δ⟨v†
nc

†
l cncl⟩+ ⟨v†ncl⟩⟨c†l cn⟩ − ⟨v†ncn⟩⟨c†l cl⟩

⟨b†bc†c⟩ δ⟨b†bc†c⟩+ ⟨b†⟩⟨b⟩⟨c†c⟩+ ⟨c†c⟩δ⟨b†b⟩+ ⟨b†⟩δ⟨bc†c⟩+ ⟨b⟩δ⟨b†c†c⟩
⟨bbc†v⟩ δ⟨bbc†v⟩+ ⟨b⟩2⟨c†v⟩+ ⟨c†v⟩δ⟨bb⟩+ 2⟨b⟩δ⟨bc†v⟩
⟨b†bv†c⟩ δ⟨b†bv†c⟩+ ⟨b†⟩⟨b⟩⟨v†c⟩+ ⟨b⟩δ⟨b†v†c⟩+ ⟨b†⟩δ⟨bv†c⟩+ ⟨v†c⟩δ⟨b†b⟩
⟨bbc†c⟩ δ⟨bbc†c⟩+ ⟨b⟩2⟨c†c⟩+ 2⟨b⟩δ⟨bc†c⟩+ ⟨c†c⟩⟨bb⟩
⟨bb⟩ δ⟨bb⟩+ ⟨b⟩2
⟨bv†c⟩ δ⟨bv†c⟩+ ⟨b⟩⟨v†c⟩
⟨v†nv†l cncl⟩ δ⟨v†

nv
†
l cncl⟩+ ⟨v†ncl⟩⟨v†l cn⟩ − ⟨v†ncn⟩⟨v†l cl⟩

Table 3.8: Table containing all cluster expansions of the EV in Table 3.7 where the
terms in bold are thrown away at first sight in line with our approximations. All
Bosonic operators are assumed to act on the cavity lasing mode s thus the subscript is
dropped.
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EV Lower order EV products

⟨b†bc†c⟩ ⟨c†c⟩⟨b†b⟩+ ⟨b†⟩⟨bc†c⟩+ ⟨b⟩⟨b†c†c⟩ − 2⟨b†⟩⟨b⟩⟨c†c⟩
⟨bbc†v⟩ 2⟨b⟩⟨bc†v⟩ − 2⟨b⟩2⟨c†v⟩+ ⟨c†v⟩⟨bb⟩
⟨b†bv†c⟩ ⟨b⟩⟨b†v†c⟩+ ⟨v†c⟩⟨b†b⟩ − 2⟨b†⟩⟨b⟩⟨v†c⟩+ ⟨b†⟩δ⟨bv†c⟩

Table 3.9: Table containing the three-particle EV expanded as lower order expectation
value products. The cluster expansion is applied first and then all correlations are
recast in terms of EV using the identities given in Table 3.8.

3.9 Overview of chapter

In this chapter we have derived the system Hamiltonian and introduced the cluster

expansion which allows for the systematic truncation of the equations of motion, decou-

pling them from higher-order correlations. The Heisenberg equations for all two-particle

operator terms (excluding pure carrier operators greater than the single-particle level)

have been given along with two types of models which are mathematically equivalent:

(1) a correlation based model; and (2) an EV based model. We have illustrated that

operator terms typically neglected, i.e. bc†c, bb and bv†c, cannot be ignored as made

clear by their rate of dissipation. Nevertheless, the order in which these terms are

included, or not, is important. By only including the correlation (EV) term δ⟨bc†c⟩

(⟨bc†c⟩) resulted in a surprising dip in the intensity as a function of the pump which

is not accounted for. However, by including the operator terms neglected in the sys-

tem Hamiltonian due to the RWA we recover the results of the CIM where the dip in

intensity is corrected.

49



Chapter 4

Identical Emitters - A

Justification

In the following chapters we assume that the coupling strength between the field and

emitters is constant therefore all emitters N are modelled as being identical. In this

brief chapter, the justification for this approximation is made.

Fluctuations in the coupling strength between e.m. field in the cavity and QDs

can be ascribed to two different sources: 1. QD positioning relative to the local field

value – which can be further decomposed into longitudinal and transverse distribution

position –, and 2. QD spectral inhomogeneous broadening.

See Appendix D for simulations accounting for non-identical QDs.

4.1 Longitudinal positioning errors

We consider as an example a micropillar configuration (VCSEL-style) to fix the ideas.

The technology is quite well established and a good example of the layers and their

construction can be found in [35]. Quantum Dots are grown onto a wetting layer, made

up of a Quantum Well (QW) with typical thickness < 2nm, and occupy themselves

a layer of typical thickness tQD ≈ 0.9nm [35] (other authors give up to 1.5nm [36],

but the order of magnitude remains). Thus, we can estimate a total thickness for the

combination QW/QD layer to be of the order of 3nm (others give 5nm for multiple
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superposed layers) – Fig. 7 in [37]). Four layers would add to approximately T4 ≈

20nm, depending on the specific realizations, i.e., ±10nm around the peak of the field

amplitude.

The cavity length, for a vacuum wavelength λ0 = 1µm in GaAs (n ≈ 3.3), is

L = λ0
2n ≈ 150nm (the factor 2 in the denominator stems from the half-wavelength,

standard cavity configuration), while the positioning uncertainty is at the monolayer

level (M ≈ 3 Å [38]). The error in the e.m. field strength, since the positioning is near

the maximum, will be given by ∆z
L , where with ∆z we denote the generic positioning

error.

Thus, we can examine three sources of longitudinal error:

a. Layer positioning: M
L ≈ 0.002, which provides a negligible error (O(10−6)).

b. QD layer thickness:
(
tQD

L

)
≈ 0.007, whose repercussion onto the field amplitude

is < 5× 10−5.

c. Multiple QD layer thickness:
(
T4
2L

)
≈ 0.07, which amounts to a change in relative

field amplitude < 5×10−3. Notice that we have considered four consecutive QWs

in the example. Typically, this is done to obtain a larger amount of output power

and, so far, it has not been used for nanolasers. Each QW will support a number

NQD. This is the number to which we refer in the transverse positioning analysis,

which holds for any QW. Thus, we can think of the multiple QWs as supports

which permit a multiplication by NQW (number of QWs) of the number of QDs

on each wetting layer. The “cost” in positioning error due to the additional layers

remains negligible compared to the transverse positioning and can be considered

a good strategy to increase the output power. It must also be noted that this

scheme of stacking multiple QW can be scaled up by increasing the length of the

cavity and distributing them on the different antinodes of the cavity mode. The

implementation will dictate this strategy, i.e., it may be counter productive to

increase the length of the cavity, thus the half wavelength restriction is kept; in

this case the more QW that are stacked will increase the amount of off-resonance

QDs. The final scheme implemented will depend greatly on the application of the
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device.

4.2 Transverse positioning errors

The second source of coupling fluctuations is related to the transverse positioning of the

QDs, due to the transverse shape of the intracavity electromagnetic field. Micropillar

cavities (but the same holds for Photonic Crystals – PhC) operate on a single transverse

mode (well-approximated by a Gaussian distribution) for diameters up to and beyond

3µm (high-quality commercial VCSELs are fabricated and sold with an excellent trans-

verse field distribution by Philips-Ulm [39], for instance, with a diameter which can be

estimated around 5 or 6µm).

The important question is to know what the typical inter-QD distance may be to

figure out how many QDs can be placed inside the modal volume.

Ref. [40] answers this question by indicating a QD density of the order of 1010cm−2

(value confirmed by other sources, as well [41]). This provides an estimate for the

QD surface density σQD ≈ 102µm−2 (i.e., an interdot distance dQD ≈ 100nm), with a

corresponding linear density µQD ≈ 10QDµm−1.

Defining the diameter for the intensity of the gaussian beam rI , we can extract from

it the radius of the field rb [42]:

rb =

√
2

2
rI . (4.1)

where the beam radius is given by the usual defintion rb =
1
e2
. Given the surface density

of QDs (σQD) or its equivalent linear density (µQD), we can compute the radius of the

area occupied by the QDs as follows:

rd =

√
NQD

µQD
. (4.2)

As mentioned at the beginning of this section, the e.m. field in small cavities is well-

approximated by a transverse, 2D gaussian function extending over the plane of the

QDs. We are going to use the gaussian shape to compare the maximum deviation of
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the field strength (relative to its on-axis value) by using the unnormalized Gaussian

G(r) = e
− r2

2r2
b , (4.3)

where r describes the distance from the optical axis and whose maximum is G(r =

0) = 1. The value of the gaussian at the outer edge of the disk occupied by the QDs

gives therefore a direct ratio of the local field strength to the maximum one, on-axis,

and estimates the maximum deviation in field strength experienced by the QDs across

the surface.

Three quantities can be easily plotted: rd(NQD), G(rb) and G(NQD), where the lat-

ter uses simultaneously Eq. (4.3) and the inverted Eq. (4.2). Of course, the underlying

assumption is that the QDs are homogeneously distributed across the allowed section.

Fig. 4.1 shows that up to NQD ≈ 100 the error is of the order of a few percent

(4% for 100 QDs). Whereas, the error grows much larger when we reach 1000 QDs.

One has to keep in mind that it is possible, for the future, to consider multiple QW

layers supporting the same QD density (NQW = 5 has already been implemented, even

though for larger power applications).

4.3 Inhomogenous broadening

Technological developments have strongly improved the size homogeneity of QDs, thus

leading to closer resonance frequencies and providing samples with a good degree of

homogenous broadening. While in the early 2000s it was possible to observe wavelength

(or energy) spreads of the order of 10%, current realizations are capable of obtaining

≳ 60% of QDs in a frequency interval which is within 0.4% of the common resonance

wavelength (or frequency) [43] . Furthermore, Fig. 1d in [43] shows that the largest

relative spread in wavelength (or frequency) observed in experimental samples is ∆λ
λ ≈

0.007. This implies that we can expect fluctuations in coupling which may be of this

order of magnitude, due to the differences in central resonance frequency of the different

QDs.

One additional point of interest comes form the comparison between experimentally
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Figure 4.1: Top Left: radius rb of the area occupied by the QDs as a function of
their number, NQD, for a linear density µQD = 10QDµm−1 ; Top Right: relative
value of the Gaussian field distribution (representing the electric field amplitude for
the fundamental TEM00 mode) at the radius rb, relative to its maximum at rb = 0;
Bottom Centre: relative value of the Gaussian field distribution G(NQD) at the edge
of the area occupied by the QDs as a function of the QD number (NQD).
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estimated NQD,e and the corresponding one entered in a model which reproduces the

experimental results, NQD,m. This comparison suggests that 70% of the QDs are within

the homogeneous width of the transition [44] and interact with the field. The remainder

30% does not effectively participate in the interaction. In other words, the effective QD

number interacting with the field Neff ≈ 0.7×NQD,e. This situation can arise due to

differences in QD size and shape mean that they cannot couple strongly with the cavity

mode. However, the rapid progress of technology promises improvements on relatively

short timescales, thus lending further credibility to the realization of samples with high

spectral homogeneity.

4.4 Conclusion

In summary, we can safely conclude that the coupling coefficient does not suffer from the

longitudinal positioning of the QDs. Likewise, the transverse fluctuations in coupling

constant remain in the range of a few percent for most of the reasonable configurations.

In step with the rapid advancements in technology and engineering we can safely assume

that the majority of the QDs can be considered as effective emitters, i.e. interacting

with the intra-cavity field. Thus, in the following Chapters we assume that all QDs are

identical.
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Chapter 5

Thermal, Quantum Antibunching

and Lasing Thresholds from

Single Emitters to Macroscopic

Devices

Mark Anthony Carroll derived the model equations, carried out their analytical anal-

yses and wrote the code to produce the figuers. Reprinted with permission from [3]

Copyright 2021 by the American Physical Society.

In this Chapter we start from the fully quantized Hamiltonian developed in Chap-

ter 3 for an ensemble of identical emitters coupled to the modes of an optical cavity,

we determine analytically regimes of thermal, collective anti-bunching and laser emis-

sion that depend explicitly on the number of emitters. The lasing regime is reached

for a number of emitters above a critical number—which depends on the light-matter

coupling, detuning, and the dissipation rates—via a universal transition from thermal

emission to collective anti-bunching to lasing as the pump increases. Cases where the

second order intensity correlation fails to predict laser action are also presented.

Optical cavities containing emitters with discrete energy levels such as atoms, ions

or quantum dots, have proved extremely effective both as a tool to investigate fun-
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damental properties of light-matter interaction and as a way to produce light with

engineered statistical properties. Historically, the earliest optical cavities contained

very large numbers of emitters to overcome losses and occupied macroscopic volumes.

Significant improvements in cavity quality have led in recent years to micro and nano

cavities [17] that provide detectable fields even with very few emitters and promise

commercial applications with uses ranging from components on integrated circuits to

medicine [45]. Their small size comes with the benefit of lower energy consumption

and increased energy efficiency, making them attractive for extreme miniaturization.

Although the basic quantum interaction process between the cavity modes and the

emitters is the same for all cavities, different approximations of the expectation val-

ues of light-matter interaction and photon number (correspondiong to the classical

intensity) lead to two classes of models: one for micro and nano systems, the other

for macroscopic systems. In the latter, e.g. the Maxwell-Bloch semi-classical models

for macroscopic systems [46], the only expectation values considered are those of the

emitters’ raising and lowering operators, representing excitation and de-excitation of

an electron, and of the cavity mode creation and destruction operators, representing

emission and absorption of a photon. The expectation values of the destruction and

creation operators correspond to the complex amplitude of the classical coherent field

and its complex conjugate. Similarly, the expectation values of raising and lowering

operators correspond to the amplitude of the medium polarization and its complex

conjugate. Macroscopic models neglect correlations among these operators, both in the

intensity and in the photon-matter coupling, also called the photon-assisted polariza-

tion. This approximation allows one to predict the threshold for laser emission, but is

not suitable for the analysis of non-lasing emission because photon-assisted polarization

is essential to model correctly spontaneous emission [33]. Quantum models for micro

and nano lasers take the exact opposite approach: they consider only the correlations

and neglect the expectation values [5, 15, 31, 33] corresponding to the amplitudes of

the classical coherent field and polarization. With this approximation non-lasing emis-

sion can be modelled, but it is not possible to identify the onset of lasing. The same

problem also affects rate equation models of micro- and nanolasers that add average
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spontaneous emission to coherent emission, i.e., adding phenomenological terms for

spontaneous emission to RE can describe emission above and below the laser thresh-

old, but the threshold itself cannot be identified [1, 7, 23]. A key parameter related to

the size of the system is the spontaneous emission factor, β, defined as the ratio of the

spontaneous emission rate into the lasing mode to the total spontaneous emission. β−1,

proportional to the number of electromagnetic modes in the cavity volume, thus char-

acterises the system size. In macroscopic systems β ≪ 1, while β = 1 is the nanoscale

limit, in which only the lasing mode remains accessible to spontaneous and stimulated

emission. For this value of β the output power linearly follows the input power, and for

this reason this laser is considered “thresholdless” [7, 22]. This regime poses questions

on how to define the laser threshold [23] and identify coherent emission [24], which we

address unambiguously in this text.

Starting from a fully quantized Jaynes-Cummings Hamiltonian in the Heisenberg

picture, Eq. 3.11, we derive a model for the emission of any number of identical two-level

emitters coupled to one mode of the cavity [47, 48]. However, we do not approximate

the expectation values of intensity and light-matter interaction, including the variables

of both macroscopic and nano lasers, and apply dynamical system methods defined

for systems of any dimension [49] to identify the laser threshold. Analytical solutions

seamlessly connect single emitter devices with devices containing millions of emitters,

predicting where the thermal, quantum and coherent emission regimes lie with respect

to one another. While the extent and existence of these regions in the space of pa-

rameters depend on the number of emitters, we find two universal features that are

common to all lasing devices. The first is that lasing, when possible, is reached via a

universal sequence of transitions as the pump is increased. The emission of the non-

lasing state evolves continuously from thermal (with second order intensity correlation

1 < g(2)(0) ≤ 2) to anti-bunching (with 0 ≤ g(2)(0) < 1) until the laser threshold

is crossed and the non-lasing state becomes unstable. A coherent laser field, due to

a lasing collective state, appears at this threshold and its amplitude increases as a

function of the pump. This is the same instability predicted for macroscopic laser by

Maxwell-Bloch models. However, in these models the total field before the instability is
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zero, while in our theory before the threshold only the coherent field is zero, while the

incoherent field is non zero. The second universal feature of lasers is that the emerging

coherent field has a well defined frequency: our model shows that neither the number of

emitters nor the effective cavity volume (β factor) influence the frequency value, which

remains a general feature of the cavity-emitter interaction. We give examples where

the measurement of g(2)(0) cannot identify laser emission.

We consider identicalemitters with two energy levels and one electron, and assume

that all transitions conserve the electron spin. This model applies to atoms and ions

with suitable energy level structure, and also to shallow quantum dots (possessing two

localized levels) at temperatures low enough to neglect Coulomb and phonon inter-

actions. Assuming that detuning and coupling coefficients with the mode are identi-

cal [15, 40] is justified by numerical simulations for emitters with 10% random varia-

tions of detuning and coupling coefficients. In these simulations all emitters’ variables

– started from random initial conditions – after a transient converge to common values

that match extremely well those obtained using the same parameters and expectation

values for all emitters, see SM Fig. 2.

In the following c†, v†, b† (c, v, b) are operators that create (annihilate), respectively,

an electron in the upper energy level (conduction level in quantum dot terminology),

in the lower energy level (valence level), and a photon in the laser mode. We take the

expectation values of the Heisenberg equations for each operator in the Hamiltonian,

truncating the resulting infinite hierarchy of coupled differential equations by keeping

only correlation functions that appear in the cluster expansion of the Hamiltonian [33,

47]. The variables of the model are the expectation values of carrier population, ⟨c†c⟩,

mode destruction operator, ⟨b⟩, and emitter lowering operator, ⟨v†c⟩, and the intensity

and photon-polarization correlations, δ⟨b†b⟩ and δ⟨bc†v⟩. These correlations appear

through the cluster expansions ⟨bc†v⟩ = δ⟨bc†v⟩ + ⟨b⟩⟨c†v⟩ and ⟨b†b⟩ = δ⟨b†b⟩ + ⟨b†⟩⟨b⟩

of terms in the Hamiltonian. Note that the equations for ⟨b†⟩, ⟨c†v⟩, ⟨b†v†c⟩ are the

complex conjugated of the equation for ⟨b⟩, ⟨v†c⟩, ⟨bc†v⟩, so they are not explicitly

59



Chapter 5. Thermal, Quantum Antibunching and Lasing Thresholds from Single
Emitters to Macroscopic Devices

included in the model. The model equations are

dt⟨c†c⟩ =− (γnl + γnr)⟨c†c⟩+ r(1− ⟨c†c⟩)

− 2Re[g(δ⟨bc†v⟩+ ⟨b⟩⟨c†v⟩)], (5.1)

dtδ⟨bc†v⟩ =− (γc + γ + i∆ν)δ⟨bc†v⟩+ g∗[⟨c†c⟩

+ δ⟨b†b⟩(2⟨c†c⟩ − 1)− |⟨v†c⟩|2], (5.2)

dtδ⟨b†b⟩ =− 2γcδ⟨b†b⟩+ 2NRe(gδ⟨bc†v⟩), (5.3)

dt⟨b⟩ =− (γc + iν)⟨b⟩+ g∗N⟨v†c⟩, (5.4)

dt⟨v†c⟩ =− (γ + iνε)⟨v†c⟩+ g[⟨b⟩(2⟨c†c⟩ − 1)], (5.5)

where r is the pump rate per emitter (the one for the whole system is Nr), with non

resonant pump photons absorption and carrier transport effects approximated via an

injection rate [15]. ν is the frequency of the resonant mode and νε is the resonant

frequency of emitters, ∆ν = νε − ν is the detuning between the field and emitter, g

the light-matter coupling strength and N the number of emitters. The decay rates

for the laser mode, γc, the population, γnr, and polarisation, γ, introduce dissipation.

The dissipative part of these equations can be obtained by considering Lindblad terms

describing the coupling to a Markovian bath [50,51]. γnr is due to non-radiative transi-

tions, while the additional decay rate for the population, γnl, results from the adiabatic

elimination of rapidly decaying non lasing modes [52]. The spontaneous emission factor,

β, is related to the cavity losses by

β =
γl

γnl + γl
, (5.6)

where γl is the rate of spontaneous emission into the lasing mode. γl is found from the

system parameters

γl =
2|g|2

ℏ(γc + γ)
(5.7)

and its derivation is given in [31]. The expectation value of lower level population, ⟨v†v⟩

has been eliminated using ⟨c†c⟩+ ⟨v†v⟩ = 1. The variables ⟨b⟩ and ⟨v†c⟩ correspond to

the amplitudes of the coherent field and the medium polarization of semi-classical mod-
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Figure 5.1: I/O curves: Intensity, ⟨b†b⟩ = δ⟨b†b⟩+ ⟨b†⟩⟨b⟩, and coherent field amplitude
for different N above and below Nc versus pump for β = 1 (γnl = 0), (a) and (b); and
β = 7 × 10−4 (γnl = 1.4 × 1012s−1 and γl = 9.68 × 108s−1), (c) and (d). Laser and
anti-bunching thresholds are marked by red stars and crosses, respectively. The purple
triangles mark the anti-bunching threshold where we include higher order correlations
(this shows our approximation to be valid). Note that a laser threshold is found even
for a “thresholdless” device (green line in (a)). Parameters: γ = 1013s−1, γc = 1010s−1,
γnr = 109s−1, and g = 7× 1010s−1. Losses are kept constant in all figures.

els of macroscopic lasers and were previously neglected in nanolasers. The imaginary

coefficients in their the equations show that they have fast oscillations with frequency

of the order of that of the cavity mode. Hence, we call them “fast” and the remaining

variables “slow”.

The non-lasing stationary state is found by setting to zero the fast variables and the

time derivatives in Eqs.(5.1-5.3). This state exists for all values of the control parame-

ters and its emission evolves continuously from thermal to anti-bunching. The boundary

between these two regimes is identified by the curve g(2)(0) = 1. We find a very good
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analytical approximation of the g(2)(0) = 1 curve assuming that the correlations used

here are independent of higher order correlations [5], so that g(2)(0) ∼ 2 + A/B, see

Appendix C. We determine the stability of the non-lasing state by deriving the equa-

tions that govern the evolution of small perturbations in the linear regime. We find

that the perturbations of the fast variables are decoupled from the perturbations of

the slow variables allowing us to determine analytically the stability of the non-lasing

state. The non-lasing state is stable for ⟨c†c⟩ < ⟨c†c⟩th and unstable for ⟨c†c⟩ > ⟨c†c⟩th
where

⟨c†c⟩th =
1

2
+

γcγ

2N |g|2

[
1 +

(
∆ν

γc + γ

)2
]

(5.8)

is the laser threshold. Because ⟨c†c⟩ < 1, lasing can only happen when the number of

emitters satisfies the condition

γcγ

|g|2

[
1 +

(
∆ν

γc + γ

)2
]
≤ N. (5.9)

The laser frequency is determined using trial solutions ⟨b⟩, ⟨v†c⟩ ∝ e−iΩ in Eqs.(5.4,5.5).

The laser frequency is then the determined by finding the Ω that solves these equations

and is

Ω = ν +
γc∆ν

γc + γ
. (5.10)

A few points are worth highlighting. Firstly, the laser frequency Ω is independent of

the number of emitters, N . Secondly, the threshold can be calculated for any values of

the decay rate γnl, including the so called “thresholdless” case γnl = 0. Third, neither

⟨c†c⟩th nor the critical number of emitters necessary to lase depend on β. However, the

value of the pump per emitter required to reach ⟨c†c⟩th depends on β and decreases as

β increases. The analytical solution for r is found by solving Eq. C.9 for the pump r

at threshold, |⟨b⟩| = 0, we get the following equation

r ≥ (N |g|2Γ2
c + γ∆Γ)(2|g|2Γ2

c +∆ΓΓn)

∆Γ(N |g|2Γ2
c − γ∆Γ)

(5.11)

where Γc = γ + γc , ∆Γ = γc(Γ
2
c + ∆ν2), Γn = γnl + γnr, Γt = 3γc + γ and ∆Ω =
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Figure 5.2: Phase Diagrams: thermal, anti-bunching and lasing regimes correspond to
the white, yellow and blue regions, respectively. Where β = 1 and g = 1011s−1 in (a);
β = 7× 10−4 and g = 1011s−1 in (b); β = 1 and g = 7× 1010s−1 in (c); β = 7× 10−4

and g = 7× 1010s−1 in (d). For large g the thermal region that extends to large pump
values vanishes, and for a lasing a device with β = 1 the anti-bunching regime exists
over greater values of the pump.

∆ν(1 − γc
Γc
). Imposing the physical conditions that r is positive and the denominator

of Eq. 5.11 cannot be zero. When r is equal to the term on the right hand side in

Eq. 5.11 marks the lasing threshold. We find the condition that satisfies the physical

constraints of r to be the inequality

N >
γ∆Γ

|g|2Γ2
c

(5.12)

which is the same condition given in chapter 5 that states for a lasing threshold to exist

there must be a critical number of emitters. If the condition in Eq. 5.12 is fulfilled then

there is the solution for |⟨b⟩| and it grows in the shape of a pitchfork bifurcation.
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In Fig. 5.1a and Fig. 5.1b the intensity and coherent field versus pump for a β = 1

device are shown. The different number of emitters correspond to values above (blue

and olive curves) and below (black curves) the critical number, Nc, required for a laser

using Eq.(7). Below Nc, the minimum integer that satisfies Eq.(5.9), the coherent field

amplitude is always zero and the intensity saturates at high pump. Above Nc, ⟨b⟩ ≠ 0

emerges through a pitchfork bifurcation. The emergence of a pitchfork bifurcation also

coincides with the growth of the intensity and a clear qualitative difference is apparent

between the curves corresponding to lasing and non lasing devices. The I/O curve for

40 quantum dots (Fig. 5.1a) illustrates the impossible task of determining the laser

threshold for a β = 1 device, identifiable only through the fast variables. Comparison

of these thresholds with standard estimates is given in SM Fig. 4. Notice that all

graphs plot pump for a single quantum dot. Thus, comparison between devices with

different N requires multiplication of each horizontal scale by N . Variations in the I/O

similar to those shown in Fig. 5.1a for N = 21 and N = 40 can be obtained with the

same value of N and changing the detuning. This is observed in experiments where

detuning decreases the effective number of quantum dots interacting with the field.

See SM Fig. 6 for the effect of detuning. Experiments have obtained this kind of I/O

response through cavity or thermal tuning [53–55]. While so far explained only through

ad-hoc calculations, here the continuous transformation with change in characteristic

I/O shape emerges thanks to self-consistent modeling.

Fig. 5.1c and Fig. 5.1d show the intensity and coherent field for a device where

β ≪ 1. One clear difference is that the intensity profile is no longer linear and there

is the characteristic s-shaped I/O curve. Notable is the appearance of the bifurcation

at the knee of the upper branch of the I/O curve, rather than at the inflection point

(as from [23]). This points to a substantial contribution from the incoherent emission

to the intensity growth before the bifurcation and highlights the difficulty intrinsic in

determining threshold through the I/O curve.

Fig. 5.2 shows the analytic solutions of g(2)(0) = 1 and the laser threshold as

functions of the pump and N for different values of g and β. For a device capable of

lasing there is a well defined path of emission as the pump increases (vertical cut in
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Figure 5.3: g(2)(0) versus pump for different N and β where the coloured regions
correspond to the same in Fig. 5.2. In (a) and (c) β = 7 × 10−4; and in (b) and (d)
β = 1. Note the large range of pump values in (a) and (b) where g(2)(0) is smaller, but
very close to 1, making g(2)(0) difficult to use as an experimental indicator of lasing.
All curves in (a) converge to the same value for larger pump values not shown. All
curves are obtained for g = 7× 1010s−1 thus lasing occurs for N = 21.
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the graph): from thermal to anti-bunching; then from anti-bunching to lasing. This is

independent of the value of β. Fig. 5.2a and Fig. 5.2c show an anti-bunching regime

that exists for a large region of the pump and extends from nano- to macroscopic lasers

with β = 1. Anti-bunching has been observed in an experiment with a high cavity Q

micropillar containing N ≈ 15 pumped quantum dots [27] and in numerical simulations

of quantum dot nanocavities [5], [56]. The observation is consistent with our prediction

(Fig. 5.3), which shows stronger anti-bunching close to Nc; an increase in N reduces the

range and amplitude, thus making an experimental observation much more difficult (no

anti-bunching was in fact observed upon doubling of the quantum dot number [27]).

Fig. 5.3a shows the three regimes for lasers with β = 7×10−4. Although anti-bunching

is present in macroscopic lasers, g(2)(0) is so close to unity that it becomes very difficult

to distinguish between a laser and a device emitting anti-bunched light, thus stressing

that g(2)(0) is not a sufficient indicator of laser action. We show in Fig. 3 of the SM a

comparison of Eqs. (1-5) with the master equation given in [23] and a cQED model [15].

In conclusion, we have derived a model that includes coherent and incoherent emis-

sion and derived analytically thresholds that separate thermal, anti-bunching and lasing

emission regimes from single emitter to macroscopic devices. We predict the qualitative

differences between the I/O curves of the photon number above and below threshold

and find analytically the number of intracavity emitters necessary for laser action to

occur. We identify a universal route leading from thermal to coherent emission, through

a collective anti-bunching regime that always precedes lasing. The coherent laser field

always emerges from a bifurcation with a well defined threshold and has a frequency

independent from the number of emitters. Interferometric measurements of the co-

herence time [57, 58] (g(1)(τ)) – equivalent to detecting the existence of a well-defined

frequency at the bifurcation – can in principle be used to unambiguously identify las-

ing in all devices. This also holds for β = 1 (or close to this boundary), where the

I/O characteristics cannot carry useful information and measurements of g(2)(0) are

poor indicators of lasing, leading to wrong conclusions on the existence or position

of the laser threshold. The accurate characterization of the coherence properties of

nanolasers holds promise for quantitative predictions to be used in a variety of applica-
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tions, ranging from telecommunications and optical chips [59], to the spectroscopic use

of nanosources [60], nanosensing [61] and biophysical applications [62]. These applica-

tions can greatly benefit from a detailed understanding and predictive power of designs

where control in the number of quantum dots (now technologically feasible [43, 63])

coupled to effective coupling allow for tailored emission properties. In addition, at the

micro and nano scale this new theory can be used to investigate the interaction of

emitters with nanostructures and arrays of particles [64–68] and obtain predictions for

new effects emerging from quantum interactions.
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Chapter 6

Photon-number squeezing in

nano- and microlasers

Mark Anthony Carroll derived the model equations, carried out their analytical analyses

and wrote the code to produce the figures. Reproduced from [69], with the permission

of AIP Publishing.

Based on the theoretical predictions inChapter 5 where antibunching was observed

below the laser threshold at the nano- and microscale, we analyze the amount of photon

number squeezing in the laser emission. Up to 3 dB photon number noise reduction is

obtained in comparison with coherent emission, with output power in the range of pW

and with negliable effects due to pump fluctuations. It is acknowledged that power in

the nW range is of interest and whilst more output power is always welcomed, it should

be noted that the photon number described here comes for ‘free’ and is an encouraging

start into the investigation of non-classical emission described by the model outlined

in Chapter 5. The scheme requires a moderately high Q cavity and holds promise for

the construction of a simple and effective photon-number squeezed source.

A squeezed state of light involves a reduction of quantum noise in one quadrature

below the standard quantum limit whilst preserving the minimum uncertainty prod-

uct due to increased quantum noise in the other quadrature. In this chapter photon

number squeezing, or amplitude squeezed light is discussed. Photon number squeezing

occurs when the noise in the uncertainty of the photon number is reduced at the ex-
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pense of enhancing the phase noise - as outlined above this is the trade-off between the

two quadratures that ensures the minimum uncertainty product is preserved. Under-

standing squeezing is acutely important in applications that are noise-sensitive. Mea-

surement systems are eventually limited in their performance by the presence of noise,

whose reduction benefits metrology, quantum imaging, optical communications and

measurements, gravitational wave detection, quantum information, etc. [10, 11,70–72].

The strongest efforts to reduce photon number noise through light squeezing have been

concentrated onto the single emitter regime, with a record fluctuation reduction of

about 3 dB in single Quantum Dot resonance fluorescent emission [73].

Photon number squeezing was investigated early on [74, 75] for its relative ease of

implementation and for its compatibility with a large photon flux. Numerous imple-

mentations, based on direct photon number squeezing [76] on pulsed nonlinear schemes

with up to 1010 photons [77,78], or superadiant effects [79,80] have been predicted but

they often produce only a low amount of squeezing (fraction of a dB). More recently,

squeezing has been obtained from a set up based on cold atomic samples but at the

cost of a complex realization [81].

Clustering of emitters or entangled photon ensembles represent another way of

producing multiphoton squeezed states for sophisticated computing or cryptographic

applications [82–84]. Polaritons in the strong coupling regimes have produced a good

amount of squeezing and hold promise as sources of light for continuous variable quan-

tum information encoding and cryptography [85]. Advanced nonlinear resonator con-

cepts [86–88] now enable the realisation of interesting and flexible schemes which could

find use in integrated devices. However, all previous schemes require rather complex

experimental setups and recently interest is developing for sources where intensity noise

can be reduced with simpler schemes [89,90] (and references therein). The device which

we propose provides below-threshold squeezing and is based on a nanostructure. Thus,

in spite of an output power lower than what has been previously obtained, it offers sev-

eral advantages: small footprint and thermal load, thus enabling on-chip integration;

avoidance of multimode anticorrelations which, while providing squeezed light [91],

render the photon stream not usable for numerous applications [92]; avoidance of feed-
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back schemes [93–95] and of cooling requirements [96, 97]. The intrinsic integrability

of the proposed source into optical chips offsets its intrinsic low photon flux, since vir-

tually all photons can be used in a guided structure. In addition, giant nonlinearities

emerging in nanostructures [98], metamaterials [99], plasmonics [100] and quantum in-

terference [101] hold strong promise for the exploitation of weak signals in integrated

structures.

In line with these developments, the recent quantum-dot based Coherent-Incoherent

model (CIM), where the coherent and incoherent field components are independently

described [3], predicts from first principles the existence of a pre-threshold regime where

photon antibunching, thus squeezing [102], is naturally observed.The CIM model has

been derived under the experimentally verified conditions [103] that the decay rate of

the material polarization is much larger than that of the photons in the cavity. In this

case it is well known [34] that the emitters are independent from each other and that

correlations between emitters are negligible even close to laser threshold. The pump

range in which antibunching appears is broad enough to promise experimental accessi-

bility and the resulting degree of squeezing sizeable enough to warrant consideration.

Antibunching has been experimentally observed and modeled [27] for a low number of

emitters. In this letter we predict that squeezing with large photon number occurs at

extremely low power supply for nano and micro laser with emitter numbers up to 103

in the anti-bunching region [3]. The advantage of this prediction is that the photon

antibunched behaviour appears to naturally precede lasing, in a cw regime of operation,

without the need for any special experimental arrangements and promises to provide

photon fluxes comparable or larger than those of more complex, pulsed techniques.

In order to introduce the ideas, we generalize the relationship between average and

variance in a Poisson process by introducing a sub-Poissonian coefficient a:

⟨∆n2⟩ = a⟨n⟩ , (6.1)

with n photon number, ⟨⟩ temporal average and ⟨∆n2⟩ corresponding to the variance,

where a subpossonian statistics, i.e. squeezed emission, emerges for a < 1. In order
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to connect squeezing to antibunching we introduce this modified distribution into the

definition of the zero-dealy second-order autocorrelation function

g(2)(0) =
⟨n2⟩ − ⟨n⟩

⟨n⟩2
= 1− 1− a

⟨n⟩
. (6.2)

Photons are antibunched when g(2)(0) < 1, so that g(2)(0) is a standard measure of the

degree of antibunching. Solving equation (6.2) for a, we notice that it linearly depends

on the average photon number ⟨n⟩. As the photon number grows, the apparent degree

of antibunching is reduced for a same reduction in the relative fluctuation eq. (6.1) as

illustrated in Fig. 6.1. Thus, even though the antibunching may appear to be small, it is

possible to maintain a good amount of photon number noise reduction, thus squeezing

since g(2)(0) < 1 (see Refs. [104–106] and references therein), in the photon number

for macroscopic signals. These qualitative considerations point to a potential interest

even in a moderate amount of antibunching emerging from the model [3].

The main interest of the scheme is its intrinsic simplicity and the potential for

effective photon number squeezing with considerable large photon numbers. The fact

that a below-threshold nanolaser may spontaneously emit photon streams in a more

ordered fashion than an equivalent coherent source [107] hints to potential interest for

a variety of applications. Indeed, in this configuration there is no need to destroy

phase coherence to reduce photon number noise, contrary to what is required of above-

threshold lasers.

We test the idea by using a quantum model [3], derived using the cluster expan-

sion technique [33, 47], that includes both coherent and incoherent field components;

previous cluster expansion based models neglect the expectation values of the coher-

ent variables [5, 15,31].Its key feature resides in the univocal determination of a lasing

threshold irrespective of cavity characteristics (even for β = 1, the fraction of spon-

taneous emission coupled into the lasing mode), thus establishing a clear boundary

between the squeezed and coherent emission regime. The medium is assumed to be an

ensemble of identical but independent two-level emitters coupled with a single cavity

lasing mode. We remember that the rapid polarisation dephasing permits one to omit

inter-emitter correlations [31, 34]. The incoherent dynamical variables are the popula-
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Figure 6.1: Subpoissonian coefficient a (defined in eq. (6.1)) as a function of the value
of g(2)(0) for different values of the average photon number ⟨n⟩.
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Parameter Value Description

g 7×1010s−1 Light-matter coupling strength
γc 7× 109s−1 Cavity decay rate
γ 1013s−1 Dephasing rate of active medium
γnr 109s−1 nonradiative decay rate
γnl 1.4× 1012s−1 Decay rate into the nonlasing modes
β 7× 10−4 Spontaneous emission factor

Table 6.1: Parameters that appear in the model used to compute g(2)(0), equation (6.3).
The values in this table are used in all figures unless stated otherwise.

tion density of the excited state, ⟨c†c⟩; the photon assisted polarisation of the medium,

δ⟨bc†v⟩; and the number of photons, δ⟨b†b⟩. These are coupled to the coherent variables,

i.e. the electric field amplitude ⟨b⟩ and the classical polarisation ⟨v†c⟩.

The lasing threshold exists only if the total number N of emitters in the cavity is

larger than a critical value Nc. If this condition is fulfilled, then at sufficiently large

pump values a stable coherent field begins to grow inside the cavity. This has also been

confirmed in a standard rate equation model that includes stochastic noise terms [1] as

well as experimentally [15].

Using this model we have computed the intra-cavity value of

g(2)(0) =
⟨b†b†bb⟩
⟨b†b⟩2

(6.3)

expressed in terms of field creation and destruction operators, as a function of the

model parameters summarised in table 6.1. The important parameters that control

and characterise squeezing are the pump parameter per emitter, r, the number of

emitters, N , the cavity decay rate, γc and the light-matter coupling strength, g. The

remaining system parameters are the decay rate of the medium, γ; the non-radiative

decay rate, γnr; and the decay rate into non-lasing modes, γnl. The latter controls β,

where the ultimate limit of β = 1 corresponds to γnl = 0.

From here on, we concentrate on parameter values which match a microlaser, simply

because we aim at obtaining macroscopic amounts of output power. The findings,

however, generally hold for all devices down to the extreme nanoscale, with features
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Figure 6.2: The intensity autocorrelation function versus pump r for different paired
values of the cavity losses γc and number of emitters N above the critical number Nc

required for lasing. In order to meet the condition for lasing, as the cavity losses increase
so to must the number of emitters, therefore N = {21, 150} and γc = {7× 109s−1, 7×
1010s−1} for the solid and dashed curves respectively. simulations were performed on
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which only change quantitatively. In Fig. 6.2 we plot the steady state values of g(2)(0) as

a function of the pump for two different lasing devices. As the pump increases the two

photon statistics (depending on the device) enter three different regimes: from super-

Poissonian (thermal light) to sub-Poissonian (squeezed light), and, then, to Poissonian

(coherent light) – in the good cavity limit (γc < g, solid line); when cavity losses are

equal to the coupling strength (dashed line) the antibunching becomes negligibly small

and disappears entirely in the bad cavity regime (γc > g, not plotted). The anti-

bunching region shows a sensitive dependence on the number of emitters as there is

only a small window of pump values for which squeezing can occur and this becomes

narrower as the number of intra-cavity emitters increases [3]. As we later show, this

constraint does not strongly affect the scheme’s implementability.

Concentrating on γc < g, we remark that while squeezing is possible with a very

small number of emitters, provided the coupling g is sufficiently strong, a substantial

amount of power is obtained only from devices which are capable of passing the laser

threshold [3], i.e. with N > Nc. We thus concentrate on this regime keeping the

remaining values of table 6.1 fixed, as their influence on the final result is only minor.

To estimate the photon number noise reduction we directly compute the relative

fluctuation of the photon number,

⟨∆n⟩
⟨n⟩

=

√
⟨b†bb†b⟩ − ⟨b†b⟩2

⟨b†b⟩
. (6.4)

which can be transformed into an expression containing g(2)(0) by the normal-ordering

[47] of ⟨b†bb†b⟩:

⟨b†bb†b⟩ = ⟨b†b⟩+ ⟨b†b†bb⟩, (6.5)

where Eq.(6.5) follows from standard application of Bosonic commutation relation.

Now, substituting the equation for g(2)(0)

g(2)(0) =
⟨b†b†bb⟩
⟨b†b⟩2

(6.6)
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into Eq.(6.4) we arrive at

⟨∆n⟩
⟨n⟩

=
√

⟨b†b⟩−1 + g(2)(0)− 1. (6.7)

As expected, noise reduction appears for g(2)(0) < 1. It is also important to note

that as N increases g(2)(0) approaches 1 and we recover the relative fluctuations of the

classical limit, i.e. 1/
√
n.

However, the presence of antibunching ensures a more regular temporal distribution

of photons than the random occurrences of coherent emission [107], thus squeezing,

which we quantify by defining an attenuation coefficient

AdB = 20 log10

(
⟨∆n⟩
⟨n⟩

)
, (6.8)

and comparing its value [108] to the one which characterizes coherent emission (g(2)(0) =

1).

We first consider the case of an ideal pump with no fluctuations and evaluate the at-

tenuation at the minimum of g(2)(0), i.e., where squeezing is greatest. Fig. 6.3 compares

the noise attenuation as a function of the emitter number (black circles) to the reference

coherent field emission (red circles) obtained by imposing g(2)(0) = 1 in eq. (6.7). The

inset shows the difference between the two. The best squeezing, -3 dB, for N = 13, just

below the critical number of emitters required for lasing, N = 15, for the parameters

used in Fig. 6.3. We see that even with 100 emitters there is still approximately 1.5 dB

of squeezing. This is obtained with standard laser parameter values. With some tech-

nological efforts in the realization of dedicated devices and some optimization better

results can be obtained.

The case just considered neglects pump fluctuations. However, incorporating them

is of vital importance if we are to understand the viability of potential devices. Pump

stabilization has been one of the first means of obtaining squeezing [109, 110] and

technology is capable of achieving stability values well below 1% for the currents needed

to pump a small device. We therefore consider a maximum amplitude fluctuation in

the pump by ±1% and observe its influence on the photon number noise reduction.
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Figure 6.3: Squeezing as a function of N . The black curve is obtained from equation
(6) at the minimum of g(2)(0) calculated from the CIM, whereas the red curve shows
squeezing for a coherent field. The inset shows how much squeezing is gained compared
to a coherent field with the same photon number.
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Figure 6.4: Left panel: Spread in squeezing of the antibunching and coherent sources
in Fig. 6.3 due to ±1% fluctuations in the pump as a function of N (taken above Nc).
Right panel: Output power (black) and pump current (red) as a function of N > Nc.
All points are evaluated at the minimum of g(2)(0). The driving current is calculated
as follows: rminγnrNe, where rmin is the value of the pump at the minimum of the
g(2)(0) curve and e is the electron charge.
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Fig. 6.4 shows the absolute noise reduction (as in the main panel of Fig. 6.3) for

the below-threshold laser (orange shaded area) and for a coherent signal (green shaded

area). The lower curve delimiting the region corresponds, for both cases, to a positive

1% fluctuation – enhancing the amount of power – while the upper one represents the

boundary set by a negative 1% fluctuation. In either case, the spread increases from

something extremely small at when the number of emitters is at the minimum value,

N = 15, to a sizeable fluctuation for N = 100. The fact that the antibunched curves

lie below the coherent ones signal the fact that a large part of the contribution to the

fluctuation originates from the change in photon number, rather than in a modification

in the amount of antibunching (cf. inset in Fig. 6.3). Only the differentially larger

growth of the fluctuation in the below-threshold laser (upper bound of the fluctuation,

corresponding to the steeper part of the antibunching curve – inset of Fig. 6.3) is to be

attributed to come to a change in the amount of antibunching. Since we have considered

a rather large pump fluctuation, compared to what is technologically feasible, and the

laser injection current can be controlled to a much better degree, it is reasonable to

consider the influence of pump noise negligible.

The right panel of Fig. 6.4 displays the absolute amount of current needed to pump

the laser at the optimum antibunching value as a function of the emitter number. The

injected current is is, at N = 15, about 40 µA (red symbols) and, as already mentioned,

can be easily stabilized to better than 1%. The accompanying outcoupled output power

(black circles – computed on the basis of the intracavity photon number, cavity losses

and photon energy at λ = 1 µm) is about 0.7 pW (i.e., ≈ 107 photons) around the

intracavity -3dB squeezing level, and grows to ≈ 5 pW for 100 emitters (and ≈ 1.5 dB

squeezing). Given that better pump stabilization is achievable, we have checked the

results with pump fluctuations of the order of 0.1%. The stability is greatly improved

and the output power can grow to 50 pW with 1000 emitters with ≈ 1.25 dB squeezing

still gained compared to a coherent source .

It is important to remark that the conditions we have examined here correspond to

a “good cavity” device (Q ≈ 2×104, following the definition of Ref. 48), as observed in

Ref. 39 with a number of quantum dots consistent with the numbers used in this work.
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Larger photon fluxes can be obtained by increasing the cavity losses (thus decreasing

Q) provided the coupling factor g is correspondingly increased. Since we have used

a standard value for g, routinely achieved in technological realizations, there is some

margin for improvement there. It is likely that a careful choice of parameters and

technological efforts may improve by one order of magnitude the power expected at the

output of the device.

In summary, a recent model, which treats the incoherent and coherent parts of the

field for lasers to describe the emission of Quantum-Dot based small-scale (nano- and

micro-) lasers, predicts the appearance of photon emission with antibunched statis-

tics before the lasing threshold [3]. Following the lead that this more regular photon

emission produces reduced fluctuations, we have analyzed its properties with realistic

physical construction parameters of a microlaser in the intent of obtaining a macro-

scopic output. The model predicts up to 3 dB photon-number squeezing with little

influence of pump fluctuations, compared to the noise floor of an equivalent coherent

field and output power approximately 0.7 pW. The squeezing is naturally produced

by the physical interaction, without the need for any external action, since – contrary

to standard squeezing of coherent output – below threshold there is no macroscopic

phase to be degraded. It is important to note that the calculations and simulations

performed in this chapter are limited in scope with respect to only considering the noise

inside the cavity. As a result, developments of this investigation include its extension to

nanolasers to explore the exploitation of the same phenomenon at low photon numbers

as well as work to include mode partition noise on the output coupler [111] which is

fundamental to understand the models true utility applied to real applications.
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Multi-electron model

We extend on a previously derived microscopic model, where the system comprises of

more than one electron [5, 31], to include the coherent field and standard polarisation.

The changes with respect to Eqs. (5.1)-(5.5) are: ⟨c†c⟩ is replaced by ⟨c†c⟩2 in Eq. (5.2)

and −γnl⟨c†c⟩ is replaced by −γnl⟨c†c⟩2 in Eq. (5.1). These changes take place at

the level of the cluster expansion and are a byproduct of the non-vanishing operator

expectation value ⟨c†l v
†
ncnvl⟩ which is also the source term of spontaneous emission. In

the case of the single electron system, two annihilation operators applied to the same

state yield zero. Subsequently, we get

d

dt
⟨b⟩ = −(γc + iν)⟨b⟩+Ng∗⟨v†c⟩ (7.1a)

dt⟨c†v⟩ = −(γ − iνϵ)⟨c†v⟩+ g∗⟨b†⟩(2⟨c†c⟩ − 1) (7.1b)

d

dt
⟨c†c⟩ = r(1− ⟨c†c⟩)− γnl⟨c†c⟩2 − γnr⟨c†c⟩ (7.1c)

− 2ℜg(δ⟨bc†v⟩+ ⟨b⟩⟨v†c⟩)
d

dt
δ⟨bc†v⟩ = −(γc + γ − i∆ν)δ⟨bc†v⟩+ g∗

[
⟨c†c⟩2 (7.1d)

+ δ⟨b†b⟩(2⟨c†c⟩ − 1)− |⟨c†v⟩|2
]

d

dt
δ⟨b†b⟩ = −2γcδ⟨b†b⟩+ 2Nℜgδ⟨bc†v⟩ (7.1e)

where the afore mentioned nonlinear terms are now included.

The two sets of equations constitute the single-electron CNQED, Eqs. (5.1)-(5.5),
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and the multi-electron CNQED, equations (7.1a-7.1e), models.

7.1 Linear Stability Analysis

It is well known that a non-zero coherent field is one of the criteria required to identify

laser emission, therefore, a non-lasing device will have zero coherent field amplitude.

The single electron CNQED and multi electron CNQED models are therefore ideal to

investigate the stability properties of the zero solution of the variables associated with

laser emission, namely the coherent field amplitude and standard polarisation. Their

zero solutions will be stable if the device is not capable of laser action. Using linear

stability analysis (LSA) we study the dynamics of small perturbations around the zero

solution of ⟨b⟩ and ⟨v†c⟩ for both models. If the perturbation grows then the fixed

point is unstable and if it decays asymptotically then the fixed point is a stable one.

The bifurcation point where this solution becomes unstable is the laser threshold and

its existence is the condition for the device to be able to lase.

We see that the imaginary coefficients of the coherent field amplitude ⟨b⟩ and the

standard polarisation ⟨v†c⟩ are of the order of the frequency of the cavity field mode

and therefore oscillate rapidly with respect to the other dynamical variables. Thus,

we call the variables associated with coherence “fast” and the remaining incoherent

variables “slow”. We group the coherent and incoherent variables in two groups, c =

{⟨b⟩, ⟨b†⟩, ⟨v†c⟩, ⟨c†v⟩} and i = {⟨c†c⟩, δ⟨b†b⟩, δ⟨bc†v⟩, δ⟨b†v†c⟩}, respectively and write

the two CNQED models, Eqs. (5.1)-(5.5) and Eqs. (7.1a-7.1e), more compactly as

di

dt
= F (i, c), (7.2)

dc

dt
= G(i, c), (7.3)

where G(i, c) and F (i, c) are non-linear vector functions of i and c whose components

are the right-hand side of both models studied. For instance, G⟨b⟩(i, c) and G⟨v†c⟩(i, c)

are the right-hand sides of the equations evaluated at the solution i, c. The linear
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dynamics of small perturbations ηi,ηc of a fixed point solution i, c is given by

d

dt

 ηi

ηc

 =

 ∇i ⊗ F(i, c) ∇c ⊗ F(i, c)

∇i ⊗G(i, c) ∇c ⊗G(i, c)

 ηi

ηc

 . (7.4)

Each block in the matrix on the right-hand side of Eq. (7.4) is of dimension 4×4 and is

the Jacobian with respect to the i and c variables; ⊗ denotes the outer product between

the column vector of the derivative operators and the row vector of the nonlinear

vector functions. For any solution with c = 0 one has ∇i ⊗ G(i, 0) = 0, so that the

perturbation of the coherent variables decouple and their dynamics is given by

d

dt
ηc = ∇c ⊗G(i,0)ηc =

 J 0

0 J†

ηc, (7.5)

where

J =

 ∂⟨b⟩G⟨b⟩(i, 0) ∂⟨v†c⟩G⟨b⟩(i, 0)

∂⟨b⟩G⟨v†c⟩(i, 0) ∂⟨v†c⟩G⟨v†c⟩(i, 0)

 (7.6)

=

 −γc g∗N

g(2⟨c†c⟩ − 1) −(γ + i∆ν)

 .

This matrix depends on the system parameters and the excited state population. It is

important to note that the structure the stability matrix is the same for both single

and multi electron CNQED models, however, since J depends on the excited state

population the eigenvalues are different.

In order to investigate the stability of the fast variables zero solution we look for the

condition that satisfies Re(λ) > 0. Noting that the physical range of the excited state

population is 0 ≤ ⟨c†c⟩ ≤ 1 and substituting for ⟨c†c⟩ = 1 we find that the condition

for an instability to exist is

N >
γγc
|g|2

[
1 +

( ∆ν

γ + γc

)2]
. (7.7)

For an instability to exist the number of quantum dots must be greater than the critical
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number given by Eq.(7.7). This critical number is independent from the spontaneous

emission factor, β, and applies to both the CIM and multilevel model. Physically this

means that the minimum number of quantum dots needed for lasing with the losses and

detuning. Although the condition for an instability to exist is independent of the pump,

this does not mean that a device will automatically operate as a laser if N is above

the critical number; one must make also sure that sufficient pump power is provided so

that the laser threshold is surpassed, as we will see in the following discussion.

7.2 Discussion of results

Armed with the knowledge of where the instabilities exist we now investigate how the

dynamics of the systems are affected below and above the instability threshold. The

cluster expansion of ⟨b†b⟩ results in a sum of two terms; the fluctuating part and the

modulus squared of the coherent field amplitude, i.e., ⟨b†b⟩ = δ⟨b†b⟩ + ⟨b†⟩⟨b⟩. Since

⟨b⟩ = 0 when the device is not operating as a laser, at the level of the cluster expan-

sion the photon number is given exclusively by the fluctuating part of the expansion.

Fig. 7.1 illustrates the affect of including the fast variables, which have been neglected

historically, for the CIM and the multilevel model presented in the previous section.

For an instability to exist for the parameter considered here, N > 20. Below the criti-

cal number, as the pump increases the photon number saturates and the coherent field

amplitude remains zero, confirming the absence of laser emission. For a number of

quantum dots just above the minimum number for lasing, i.e. 21, there is a clear jump

in photon number accompanied by an emerging non-zero coherent field amplitude, i.e.

a pitchfork bifurcation. Since the photon number is given by

⟨b†b⟩ = δ⟨b†b⟩+ |⟨b†⟩|2 (7.8)

we can see from Fig. 7.1 that the initial growth in photon number is due to incoherent

emission. The device containing double the number of quantum dots required for

an instability to exist (red curve) passes the laser threshold before the device with

fewer quantum dots. Its I-O curve also has a more pronounced s-shape displaying a
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steeper transition from lower to upper branch. This does not make it easier to identify

the laser threshold as the bifurcation occurs far from the inflection point here. It

becomes apparent as N increases that the differences between the models begin to

show. The multilevel model reaches threshold for lower values of the pump and as

a result the fraction of incoherent emission making up the initial growth in photon

number is reduced. Although the photon number diverges between the models as N

increases, the critical number of emitters needed for an instability to exist does not

change; only the pump power required to excite the instability changes.

These results highlight the need for the fast variables that describe the coherent

processes of the laser. The position of the laser bifurcation with respect to the I-

O curves show that it is not sufficient to simply visually inspect I-O curves as this

will lead to the incorrect identification of the lasing threshold. Without the coherent

variables it would be impossible to accurately locate the laser threshold and comment

on the composition of the photon stream leaving the cavity.

7.3 Threshold dependence on detuning

From the LSA, we find that Eq. (7.7) can be recast in terms of ∆ν and that the

instability only exists if the following condition imposed on the detuning is met

∆ν < (γc + γ)

√
N |g2|
γγc

− 1. (7.9)

This condition states that there is an upper bound to how far the detuning of a lasing

device can be pushed before the coherent field becomes zero. Forcing ∆ν to be real

yields the following condition

N ≥ γγc
|g|2

(7.10)

which is the stability condition at resonance for the critical number of emitters needed

to lase. Fig. 7.2 illustrates the two regions, deliminated by equation (7.9), where the

lower and upper regions correspond to the regimes where the coherent field is non-zero

and zero, respectively. As this condition comes directly from the LSA it is general with
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Figure 7.1: The coherent field amplitude (top left), photon number fluctuation (top
right) and average photon number (bottom centre) as a function of the pump, re-
spectively for the CIM (solid) and the multilevel model (dashed). The three devices
considered are above - N = 21 (green) and N = 40 (red) - and below - N = 20 (black)
- the critical number of emitters needed to achieve lasing.
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Figure 7.2: The system detuning ∆ν as a function of the number of quantum dots,
N , for lasing devices. The lower region corresponds to physical values of the detun-
ing whereas the upper region corresponds to unphysical values of ∆ν, i.e., where the
coherent filed is zero. The x-axis starts from N = 21; all devices corresponding to
1 ≤ N < 21 for the parameters considered are not capable of lasing.

respect to the both the single and multi electron models. For all lasing devices there

is a limit to the amount of detuning present between the cavity and the transition

frequency of the emitters. This increases as the number of emitters increases. Once

the detuning is substantial enough such that we are in the upper region of Fig. 7.2 any

coherent field dies out and there is no lasing.

7.4 Threshold dependence on β

From the analytic solution of the coherent field amplitude (see Appendix B) we are

able to extract the solution to the value of the pump at laser threshold. Thus, we

are able to understand how the pump threshold changes as a function of the system

size characterised by β. Fig. 7.3 illustrates how the pump threshold changes as a

function of β for different devices with changing N . As we move from the macroscopic,

or thermodynamic, limit towards the microscopic limit we see that the input power
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Figure 7.3: Left: The pump threshold for the CIM (solid) and multilevel model (dashed)
as a function of the spontaneous emission factor, β, for different numbers of emitters
N=(21:black, 102:green, 103:red). Right: I-O curve for a lasing device with N =
40 quantum dots for different values of β. The black (red) stars identify the laser
bifurcation for the CIM (multilevel model).

required to reach the laser threshold for all devices decreases with a clear delimiting

region between the thermodynamic and CQED limits occurring at the microscopic

regime β ≈ 10−3. For any value of β the pump required to reach the laser threshold

decreases as the number of emitters increases.

The right panel of Fig. 7.3 depicts the I-O curves for lasing devices, N = 40, where

β decreases from the ideal nanolaser limit to typical macroscopic lasers. As we move

towards the thermodynamic limit, but still firmly in the regime of small lasers we see

that the characteristic s-shaped I-O curve begins to appear but that it is still smoothed

out to the point that identifying the lasing threshold with confidence is still small.

However, through LSA we know that the lasing bifurcation occurs at the knee of the

upper branch signalling that all of the growth in the photon number comes as a result

of incoherent emission. Reducing β still we see that well into the macroscopic laser

regime the bifurcation point moves down from the upper branch and ultimately settles

at the inflection point of the I-O curve. Thus, we find that the CIM confirms that the

laser threshold of macroscopic devices occurs at the inflection point of the s-shaped

curve on a log-log plot.

In summary, this chapter has highlighted that there are no significant differences

between the single- and multi-electron models. Through LSA we have seen that the
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condition required for instabilities to exist is the same for both models. Only when the

two models are compared as functions of the pump do we see that the multi-electron

model reaches threshold sooner than the single-electron model. For QD numbers just

above the critical number the difference is not large, however, as the number of QDs is

increased an appreciable difference between pump value at threshold emerges. We have

also seen that in the thermodynamic limit the classical interpretation of laser threshold

is recovered, i.e. the lasing bifurcation moves from the knee of the upper branch of the

I-O to the inflection point.
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Conclusion

In conclusion, we have identified a gap in the theoretical modelling of nanolasers and

developed a new class of quantum models that are capable of describing very well the

behaviour of low- and high-β devices. Historically, REs have been used in the area of

QED to model small lasers due to their simplicity and ability to describe emission above

and below laser threhosld, but they fall short of being able to identify the threshold

itself. Semiclassical approaches have been used to describe macroscopic lasers and are

capable of identifying the laser threshold. However, they cannot give us any information

about the incoherent emission below threshold. The models developed in Chapter

3 combine the unique features of the REs and semiclassical equations by including

the variables needed to describe both incoherent and coherent emission. And as a

result they have allowed us to observe the true laser threshold mathematically through

bifurcation analysis in Chapter 5. This has allowed us to lay to rest the question

regarding “thresholdless” lasers since even in the fundamental limit β = 1 there is a

clear and well defined threshold. Without the inclusion of the coherent variables it

would not be possible to observe the lasing bifurcation.

The usefulness of the CIM model does not stop at identifying the true laser thresh-

old. We have also shown that it is capable of observing antibunched light below the laser

threshold. Thus, in Chapter 6 we presented a simple experimental scheme that could

take advantage of this quantum signature of light. The benefit of the antibunched light

predicted by the CIM comes from the fact that it comes for “free”. This is meant in
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the sense that the antibunching is naturally produced compared with typical squeezed

sources which are gained at the cost of complex experimental setups in order to degrade

the macroscopic phase of the coherent source, i.e. above laser threshold.

Finally, we have also shown in Chapter 7 that the classical description of laser

threshold is recovered by the CIM. For macroscopic lasers in the thermodynamic limit

there is a sharp and almost discontinuous jump between the branches on the I-O plot

which is taken to be the point of inflection of the I-O curve. It was shown that the

laser bifurcation moves from the knee of the upper branch of the I-O curve towards the

inflection point in the thermodynamic limit.
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Non-identical emitters

A.1 The equations for non-identical emitters

The free energy and the light-matter interaction are given, in the Heisenberg picture,

by the fully quantized Hamiltonian [5]

H = ℏ
∑
q

νq(b
†
qbq +

1

2
) +

∑
q,n

[εc,nc
†
ncn + εv,nv

†
nvn − iℏ(gnqbqc†nvn − g∗nqb

†
qv

†
ncn)], (A.1)

where νq is the frequency of the q − th mode of the laser cavity, bq, b
†
q are the

destruction and creation operators for q − th mode photons. εc,n and εv,n are the

energies of the electors in the conduction and valence level in the n− th quantum dot

and cn, c
†
n and vn, v

†
n are creation and destruction operators, respectively, for conduction

and valence electrons of the n− th quantum dot. The equations for ⟨c†ncn⟩, δ⟨bqc†nvn⟩,

δ⟨b†qbq⟩, ⟨bq⟩, and ⟨v†ncn⟩ are:
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dt⟨c†l cl⟩ = −γnr⟨c†l cl⟩+ r(1− ⟨c†l cl⟩)− 2
∑
q

Regql(δ⟨bqc†l vl⟩+ ⟨b⟩⟨c†l vl⟩), (A.2)

dtδ⟨bqc†l vl⟩ = −[γq + γ + i(νq −∆εl)]δ⟨bc†l vl⟩+ g∗ql[⟨c
†
l cl⟩ (A.3)

+ δ⟨b†qbq⟩(2⟨c
†
l cl⟩ − 1)− ⟨c†l v⟩⟨v

†
l cl⟩],

dtδ⟨b†qbq⟩ = −2γqδ⟨b†qbq⟩+ 2
∑
l

Regqlδ⟨bqc†l vl⟩, (A.4)

dt⟨bq⟩ = −(γq + iνq)⟨bq⟩+ g∗qlN⟨v†l cl⟩, (A.5)

dt⟨v†l cl⟩ = −(γ + i∆εl)⟨v†l cl⟩+
∑
q

gql[⟨bq⟩(2⟨c†l cl⟩ − 1)], (A.6)

where the dissipative terms are obtained with a Lindblad formalism [50, 51]. Ne-

glecting intensities and field amplitudes of the non resonant modes q ̸= 0 and elimi-

nating adiabatically the correlations δ⟨bqc†l vl⟩, we find that non resonant modes can be

accounted for by the additional decay rate for the population γnr. Assuming that only

one mode is resonant with the cavity and the N emitters coupled to the laser mode are

identical [15,40], leads to the simpler equations given to Eqs. (5.1) - (5.5) in Section 5,

which give the dynamic of the system after a temporal transient in which the emitters’

variables are equalized.
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Effect of two-particle fermion

incoherent variable

In the Comment [2], the authors claim that the laser threshold identified in Ref.

[3] using a new coherent-incoherent model (CIM) is “unattainable” when the term∑
n̸=l δ⟨c

†
l vlv

†
ncn⟩ is added to the equation for the photon assisted polarization δ⟨bc†v⟩.

Moreover, they identify the classical polarization |P |2 with
∑

n,l⟨c
†
l vlv

†
ncn⟩ and on this

basis claim that neglecting
∑

n ̸=l δ⟨c
†
l vlv

†
ncn⟩ violates the quantum to classical corre-

spondence.

In this reply we show that: 1) the claim that the threshold is “unattainable” for

the model in [2] is factually wrong, the threshold exists and is observable; 2) correctly

taking into account terms of the order of
∑

n̸=l δ⟨c
†
l vlv

†
ncn⟩ and the spatial nonlocality of

this sum confirms that the CIM model provides accurate values of the laser threshold.

We reiterate that in nanolasers, terms like
∑

n̸=l δ⟨c
†
l vlv

†
ncn⟩ account for collective

effects (CE) like superradiance, which, for the majority of devices, are not observed

because of strong dephasing due to high carrier density screening [31]. It is shown

in [34] that in the limit of strong polarisation dephasing (γc/γ) ≪ 1 (where γc and

γ are the cavity decay and dephasing rates, respectively) the correlations describing

CE are negligible and that CE are only important in low-Q cavities where (γc/γ) ≥ 1.

Our model [3] matches the parameters of (GaAs-based) QDs most commonly used in

nanolasers, with a very rapid decay of the intrinsic polarization [103] and negligible
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polarization correlations.

We start our rebuttal from the claim that |P |2 corresponds to
∑

n,l⟨c
†
l vlv

†
ncn⟩. By

imposing normal ordering on the operators we find

∑
n,l

⟨c†l vlv
†
ncn⟩ = ⟨c†l cl⟩ −

∑
n,l

⟨c†l v
†
nvlcn⟩ (B.1)

where ⟨c†l cl⟩ is the excited state population and
∑

n,l⟨c
†
l v

†
nvlcn⟩ is the sum of the expec-

tation value of the product of polarisations between QDs placed in different positions,

which is a spatially nonlocal term. As the classical polarization is a local function of

position in the Maxwell-Bloch equations that is independent of the population, the pres-

ence of the population and of the nonlocal term above demonstrates that
∑

n,l⟨c
†
l vlv

†
ncn⟩

does not correspond to |P |2. The term that corresponds to the amplitude squared of

the local polarization from the Maxwell-Bloch equations is instead the term |⟨v†c⟩|2,

present in our model (see Eq. (2) in [3]) but arbitrarily and inconsistently removed

from Eq. (1) in [2].

As for the equation for expectation value ⟨c†l v
†
nvlcn⟩, the correct form is

dt⟨c†l v
†
nvlcn⟩ = −(2γ + i∆ε)⟨c†l v

†
nvlcn⟩

+g∗ls
[
⟨b†sv†ncn⟩(1− 2⟨c†l cl⟩)

−2⟨v†ncn⟩⟨b†sc†l cl⟩+ 2⟨b†s⟩⟨c†l cl⟩⟨v
†
ncn⟩

]
+gns

[
⟨bsc†l vl⟩(1− 2⟨c†ncn⟩)

−2⟨c†l vl⟩⟨bsc
†
ncn⟩+ 2⟨bs⟩⟨c†ncn⟩⟨c†l vl⟩

]
(B.2)

where the coefficients gns depend on the cavity-mode field at the position of the QDs

[112]. The phase difference between QDs is not an issue in those terms containing

products of coupling coefficients and polarization operators that belong to the same

QD, as there is a phase invariance that allows one to eliminate the phases from the

coupling coefficients. However, this is no longer the case for the driving terms in

Eq. (B.2) that, as a result of the spatial nonlocality mentioned above, include products

of the coupling coefficient of the l-th QD with the operators v†ncn that correspond to
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the polarization of the n-th QD. Neglecting these phase differences, as done in [2],

means assuming that all QDs are identical, and that they lie on the intersection of an

equiamplitude and an equiphase surface that depend on the cavity-mode field [112].

For vector solutions of Maxwell’s equations, this is an extremely strict condition, which

cannot be satisfied by all QDs especially in presence of physical boundary conditions.

We show in Fig. B.1 the effect of these assumptions on the position of the laser

threshold and confirm the full validity of our model in [3]. The bifurcation point

at the lowest value of pump (blue star) is obtained with the CIM, the one at the

highest (black star) with the CIM plus the Eq. (1) given in [2]. Note that even in this

case the bifurcation is present, although the model ignores a large number of terms

of comparable size and, as a result, is unbalanced and unstable after the bifurcation.

Including consistently [3] the same order variables as done in Eq. (B.2), but keeping

the non physical assumption of [2] that all QDs have coupling coefficients with the

same phase and amplitude, stabilizes the dynamic after the bifurcation and moves the

threshold to the red star point in Fig. B.1. This is already much closer to the CIM

threshold than to the version of the theory suggested in [2]. Assuming that amplitude

and phase of the coupling coefficients are identical on only 90% of the QDs moves the

threshold significantly closer to the CIM (red diamond). Finally, assuming that only

50% of the QDs have virtually the same coupling coefficients puts the bifurcation (red

cross) very close to that of the CIM. In summary: bifurcations leading to coherent

fields can always be observed, and the model of [3] is correct and of wide application

contrary to what is claimed in [2].

We conclude our rebuttal of the Comment’s analysis of Eq. (2) of our Letter by

noting that neglecting δ⟨b†bc†c⟩ and δ⟨b†bv†v⟩ is the standard procedure with cluster

expansions [47] truncated at the two-particle level where these terms are perturbative

[31]. There is a further misunderstanding about the emission after the bifurcation

in [3]. The bifurcation analysis carried out in [3] does not mean that the coherent field

immediately takes over, only that a fraction of the photon field emerges with a coherent

phase and single frequency.
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Figure B.1: Photon number versus pump for 40 QDs where the laser threshold of the
CIM plus the equation given in [2] (black star) and CIM [3] (blue star) are shown.
The red star corresponds to the bifurcation in the model which accounts for the vari-
ables ignored in [2]; the red diamond (red cross) shows the bifurcation point assuming
that only 90% (50%) of the QDs have coupling coefficients with the same phase and
amplitude. All parameter values are the same as in Ref. [3].
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Analytic solutions

We present the analytic results of the non-lasing and lasing solutions. The following

notation is used throughout: Γc = γ + γc , ∆Γ = γc(Γ
2
c + ∆ν2), Γn = γnl + γnr,

Γt = 3γc + γ and ∆Ω = ∆ν(1− γc
Γc
). Parameter definitions are: light-matter coupling,

g; cavity decay rate, γc; polarisation dephasing, γ; non-radiative decay, γnr; non-lasing

decay, γnl; detuning, ∆ν; and the number of emitters, N .

C.1 Non-lasing solutions and g(2)(0)

The photon number is given solely in terms of the system parameters:

δ⟨b†b⟩ = 1

8|g|2γcΓc
{−(Γn + r)∆Γ − |g|2Γc[2γc +N(Γn − r)] + F 1/2} (C.1)

where F is

F = (NΓc|g|2 +∆Γ)
2Γ2

n − 2(NΓc|g|2 +∆Γ)((NΓc|g|2 −∆Γ)r − 2|g|2γcΓc)Γn

+(NΓc|g|2 −∆Γ)
2r2 + 12γcΓcg

2(NΓc|g|2 +
∆Γ

3
)r + 4|g|4γ2cΓ2

c . (C.2)

The carrier density can then be given as a function of the photon number:

⟨c†c⟩ = 1

Γn + r

(
r − 2

γcδ⟨b†b⟩
N

)
. (C.3)
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Of the three fundamental variables within the non-lasing solutions the photon polari-

sation is the only complex variable and we give it in terms of the carrier density ⟨c†c⟩

and photon number δ⟨b†b⟩

δ⟨bc†v⟩ = g∗(Γc − i∆ν)

Γ2
c +∆ν2

[
⟨c†c⟩+ δ⟨b†b⟩(2⟨c†c⟩ − 1)

]
. (C.4)

The equation for g(2)(0) is given by

g(2)(0) = 2 +
δ⟨b†b†bb⟩
δ⟨b†b⟩2

(C.5)

where A = δ⟨b†b†bb⟩ and B = δ⟨b†b⟩2 from chapter 5. As seen from Eq. C.5, in order

to calculate g(2)(0) one must solve higher order correlation functions up to the four-

particle level of the type δ⟨b†b†bb⟩. These higher order correlations couple to the photon

assisted polarisation through the three-particle carrier-photon correlation δ⟨b†bc†c⟩. As

an approximation we neglect correlations greater than two-particles from the dynamics

of ⟨c†c⟩, δ⟨b†b⟩ and δ⟨bc†c⟩. This turns out to be a very good approximation as can be

seen from the purple triangle markers in Fig. 1 of chapter 5. With the aforementioned

approximation we find analytically the solution to δ⟨b†b†bb⟩ as a function of the carrier

density and photon number

δ⟨b†b†bb⟩ = C

D
(C.6)

where

D = {(2γc + γnr)[Ng2Γt(2⟨c†c⟩ − 1)− γc(∆ν2 + Γ2
t )] (C.7)

− 4g2Γtγc(2δ⟨b†b⟩+ 1)}(∆ν2 + Γ2
c)

2
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and

C = 4|g|2Γt

{
4|g|2NΓ2

c(2γc + γnr)(δ⟨b†b⟩2⟨c†c⟩2 + δ⟨b†b⟩⟨c†c⟩2) + [2γc(Γ
2
c +∆ν2)2

−4|g|2NΓ2
c(2γc + γnr)]δ⟨b†b⟩2⟨c†c⟩+ |g|2NΓ2

c(2γc + γnr)⟨c†c⟩2 + 2γc(∆ν2

+Γ2
c)

2δ⟨b†b⟩3 + [γc(Γ
2
c +∆ν2)2 + |g|2NΓ2

c(2γc + γnr)]δ⟨b†b⟩2

+[−2|g|2NΓ2
c(2γc + γnr) + γc(∆ν2 + Γ2

c)
2]δ⟨b†b⟩⟨c†c⟩

}
(C.8)

C.2 Analytic laser solutions

The Modulus of the Coherent field (solution exists only when |⟨b⟩| ≥ 0) is given by

|⟨b⟩| = 1

γ|g|∆Γ

[
(N |g|2Γ2

c − γ∆Γ)∆Γr − (N |g|2Γ2
c + γ∆Γ)(∆ΓΓn + 2|g|2Γ2

c)

4(N − 1)
(γ2 +∆Ω2)N

] 1
2

(C.9)

where the expectation value of the coherent field is defined as ⟨b⟩ = |⟨b⟩|e−i(Ωt+ϕ); the

phase ϕ is undetermined and there are in principle an infinite set of solutions. Note

that for Ω ̸= 0 the bifurcation is a Hopf bifurcation; however, e−iΩt can be factored

out and the bifurcation reduced to a pitchfork bifurcation. The steady state solution

of the carrier density is

⟨c†c⟩ = 1

2

(
1 +

γ∆Γ

N |g|2Γ2
c

)
(C.10)

and the standard polarisation of the medium is defined as

⟨v†c⟩ = g

γ + i∆Ω
⟨b⟩(2⟨c†c⟩ − 1). (C.11)

The solution of the intensity correlation is

δ⟨b†b⟩ = N

2γc

[
r − (Γn + r)⟨c†c⟩ − 2|g|2γ

γ2 +∆Ω2
|⟨b⟩|2(2⟨c†c⟩ − 1)

]
, (C.12)
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and the solution to the photon assisted polarisation is

δ⟨bc†v⟩ = g∗

Γc + i∆ν

[
⟨c†c⟩+ δ⟨b†b⟩(2⟨c†c⟩ − 1)− |⟨v†c⟩|2

]
. (C.13)

C.3 The value of the pump at the laser threshold

C.4 Phase diagrams with detuning

In Fig. C.1 the affect of detuning is shown for devices with different values of β. In both

cases we find that increasing the detuning shifts the value of Nc towards larger values

of N . This is confirmed by inspecting the numerator in Eq. 5.12 where increasing the

detuning results in a larger value of N to satisfy the physical conditions put in place

for r.

(a) (b) (c)

(d) (e) (f)

Figure C.1: Phase diagrams for devices with changing detuning and spontaneous emis-
sion factor β = 1 (a)-(c), and 7 × 10−4 (d)-(f). The detunings are in (a) and (d),
∆ν = 1012s−1; (b) and (e), ∆ν = 1013s−1; (c) and (f), ∆ν = 2× 1013s−1. Common to
both values of β is the increase of Nc as the detuning increases, and in both cases we
find that the extent of the anti-bunching regime as a function of the pump is reduced.
Parameters: γ = 1013s−1, γc = 1010s−1, γnr = 109s−1, and g = 7× 1010s−1. The white
region corresponds to the thermal regime; yellow to the anti-bunching regime; and blue
to the lasing regime.
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Numerical tests

A comparison between the analytic solutions and the numerical steady state values in

Fig. D.1 shows a perfect agreement indicating that the numerical simulations are on

firm ground.

Following on from this in Fig. D.2 we give the steady state solutions of the photon

number versus the pump rate r for two cases: the first assumes all emitters to be

identical and as such only requires one equation for each variable for N emitters, Eqs.

(1-5) in chapter 5(solid lines); and in the second case we modify the model to include N

equations for ⟨c†c⟩, ⟨v†c⟩ and δ⟨bc†v⟩ (dashed lines). In the latter case, we include values

for the detuning ∆ν and coupling coefficient g that are varied by up to 10% of the values

used to obtain the solid curves (the random numbers used were drawn from a uniform

distribution). In both cases, which are initiated with random initial conditions, after a

temporal transient the variables steady state values converge establishing a collective

state.
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Figure D.1: Comparison of the analytic (solid lines) and numerical (dashed lines) results
of the intensity versus pump rate r for different numbers of emitters. Parameters:
β = 7 × 10−4, γnl = 1.4 × 1012s−1, γl = 9.68 × 108s−1, γ = 1013s−1, γc = 1010s−1,
γnr = 109s−1 and g = 7× 1010s−1.
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Figure D.2: Intensity as a function of the pump rate for five quantum dots where in the
lower branch g = 7× 1010s−1 (β = 7× 10−4) and in the upper branch g = 25× 1010s−1

(β = 9× 10−3) . The dashed lines are obtained from simulations where g and ∆ν are
varied randomly up to 10% of the values used to obtain the solid lines. Parameters:
γ = 1013s−1, γc = 1010s−1, γnr = 109s−1, γnl = 1.4× 1012s−1 and ∆ν = 1012s−1.
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Comparison with rate and master

equation models

We make here a direct comparison between Eqs. (5.1) - (5.5) in Section 5 with a fully

quantized master equation [23] and a cQED model [15] for the case of β = 1 . Under the

condition of β = 1 the results of the master equation are calculated via Eq. 8a and Eq.

36 from [23]. The main difference between Eqs. (5.1) - (5.5) and the master equation

given in [23] is that the master equation derives from the two rate equation variables,

intensity and excited carrier number, and does not include the medium polarisation.

Without the polarisation there are only correlations between the carrier number and

intensity, whereas we have correlations between the field and polarisation of the medium

which leads to the anti-bunching. Fig. E.1 shows a comparison of the intensity obtained

through Eqs. (5.1) - (5.5) of chapter 5 with a fully quantized master equation. The

divergence between the red and the blue curves in Fig. E.1a for low pump rate can be

accounted for by noting that in [15] the term responsible for spontaneous emission is

nonlinear whereas in Eq. (2) of chapter 5 it is linear resulting from the assumption of

two-level emitters.

In Fig. E.2 we show the intensity versus pump above and below threshold. Using the

usual procedure of linear extrapolation of the intensity down to zero and comparing the

value of the laser threshold with that obtained from Eqs. (5.1) - (5.5) in chapter 5. The

red star marks the position of the lasing threshold calculated from Eqs. (5.1) - (5.5) from
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(a) (b)

Figure E.1: Comparison of the intensity between a fully quantized master equation and
Eqs. (5.1) - (5.5) in Section 5 where β = 1. Parameters: g = 7× 1010s−1, γ = 1013s−1,
γc = 1010s−1, γnr = 109s−1 and N = 40.

chapter 5 and the blue triangle marks where the linear extrapolation of the intensity

crosses zero. There are two points to note: the value of the laser threshold predicted

from linear extrapolation occurs at the point of initial rapid growth of photons; and,

the position of the red star occurs after this rapid growth in photon number.

Finally, in Fig. E.3 we compare the intensity versus pump highlighting the differ-

ences between Eqs. (5.1) - (5.5) in chapter 5 with and without the fast variables and

rate equations derived from Eqs. (5.1) - (5.5). In order to derive rate equations we

consider only the slow variables and insert the adiabatic solution of the photon assisted

polarisation into the equations for the carrier population and intensity. The rate equa-

tions and the model with only the slow variables produce almost identical values of the

intensity. The inclusion of the fast variables changes slightly the intensity, with the

change being more significant for larger values of the decay of the medium polarisation,

γ, with respect to the cavity decay rate, γc. The key role that the fast variables play, is

that without them it is not possible neither to define a laser threshold nor to determine

the well defined lasing frequency that is established after this bifurcation.
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Figure E.2: Linear plot of intensity versus pump rate r (black) and the extrapolated
fit (red) where β = 7× 10−4. The red star marks the position of the lasing bifurcation
and the blue triangle shows where the linear extrapolation of the intensity crosses
zero. Parameters: g = 7 × 1010s−1, γ = 1013s−1, γc = 1010s−1, γnr = 109s−1, γnl =
1.4× 1012s−1 and N = 40.
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Figure E.3: Comparison of the intensity versus pump for three cases: rate equations; the
model with only slow variables; and the model with slow and fast variables. Parameters:
g = 7 × 1010s−1, γ = 1013s−1, γc = 1010s−1, γnr = 109s−1, γnl = 1.4 × 1012s−1 and
N = 21. The equations corresponding to ignoring the fast variables are Eqs. (5.1) -
(5.3); with the fast variables computed with Eqs. (5.4) - (5.5).
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Lasing and non-lasing decay rates

Performing an adiabatic elimination of the photon-assisted polarisation where q ̸= s

allows us to formally introduce the decay rate into non-lasing modes [31]. The steady

state solution of the photon-assisted polarisation describing non-lasing modes is given

by

δ⟨bqc†l vl⟩ =
g∗ql

γq + γ − i∆ν

[
⟨c†l cl⟩+ δ⟨b†qbq⟩

(
2⟨c†l cl⟩ − 1

)
− |⟨c†l vl⟩|

2
]
. (F.1)

This can be simplified by noting that spontaneous emission will be the dominant mode

in which photons are generated, thus we can neglect the term proportional to the photon

number in the non-lasing mode. In the same vein, we neglect coherent processes which

are also negligible in this regime therefore the standard polarisation also drops out of

the above equation

δ⟨bqc†l vl⟩ =
g∗ql

γq + γ − i∆ν
⟨c†l cl⟩. (F.2)

Extracting the lasing mode from the sum in the equation for the carrier population

yields

d

dt
⟨c†l cl⟩ = −γnr⟨c†l cl⟩ − 2ℜgns

(
δ⟨bsc†l vl⟩+ ⟨bs⟩⟨v†l cl⟩

)
− 2ℜ

∑
q ̸=s

gnqδ⟨bqc†l vl⟩ (F.3)

where we again set to zero coherent processes which are negligible within the non-

lasing mode. Substituting the steady state photon-assisted polarisation in to the above
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equation results in

d

dt
⟨c†l cl⟩ = −(γnl + γnr)⟨c†l cl⟩ − 2ℜgns

(
δ⟨bsc†l vl⟩+ ⟨bs⟩⟨v†l cl⟩

)
(F.4)

where we define the decay rate into non-lasing modes as

γnl =
2

ℏ
ℜ
∑
q ̸=s

|gql|2

γq + γ − i∆ν
. (F.5)

The carriers in the system are generated by an incoherent pump injection directly into

the excited state by means of thermalisation of the upper states. Thus r is the pump

rate per emitter and Nr is the total pump rate of the system

d

dt
⟨c†l cl⟩ = −(γnl + γnr)⟨c†l cl⟩+ r(1− ⟨c†l cl⟩)− 2ℜgns

(
δ⟨bsc†l vl⟩+ ⟨bs⟩⟨v†l cl⟩

)
. (F.6)
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