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Abstract 

An effective solution for the geologic disposal of nuclear waste, with no environmental risk 

(i.e. avoidance of harmful release of radioactive material), is a fundamental issue for the 

environment protection, and for the future continued reliance on nuclear power. Although 

geological disposal is considered as the best option, there are still elements of risk to be 

addressed, such as glacial retreat, which could impact the safety performance of a geological 

disposal facility.  

In this project two consecutive annual cycles of a reservoir in the Swiss Alps are used as a 

small scale analogue of the glacial retreat cycles, in order to investigate the response of granitic 

rock (as a host rock to a geologic disposal facility) to significant load changes. Assuming that 

the reservoir’s stress changes cause the fractured and weakened rock slopes to slip, I chose to 

use microseismic monitoring as a tool to monitor the reservoir induced seismicity. A seismic 

network was deployed in the tunnels adjacent to the reservoir and recorded continuously 

ground movement over a 3.5-year period (Nov 2014 – Aug 2018).  

In order to be able to detect microseismic slips in the acquired real field dataset I explore 

various algorithms from the literature and develop my own methodology. The two main 

problems my research focuses on are the length of the dataset (big data issues) and the signal 

to noise ratio of the events I want to detect (small magnitude events in a varying noisy 

background). My results show, albeit not all of the seismic signals were possible to locate or 

characterise, that the reservoir unloading increases the frequency of occurrence of 

microseismic events for a short time period in the region surrounding the reservoir. It is 

possible therefore that the construction of a geologic disposal facility will have a similar effect. 

However, the magnitudes of the induced events are very small and hence unlikely to have a 

significant effect as part of a safety case for a geologic disposal facility. 



 

The contributions of this thesis can be summarised to: (i) using a reservoir as a small-scale test 

site analogue for exploring the seismic hazard in radioactive deep geologic disposal facilities 

due to glacial retreat; (ii) sensor deployment design and sensor data cleaning with noise 

characterisation for microseismic monitoring over several years; (iii) proposal of a new 

algorithm (NpD) for detecting potential seismic signals under not well-constrained conditions 

and without requirement of a priori knowledge about the expected signal frequencies and 

amplitudes; (iv) the NpD detection algorithm and acquired 3.5 years dataset are made freely 

available; (v) detailed discussion of onset time picking and hypocentre localisation 

methodologies, where again novelty lies in using, comparing suitability and adjusting a number 

of well-known approaches for the purposes of my project; (vi) compilation of a seismic 

catalogue related to the dynamic response of the rock mass to reservoir drainage. 

     



 

 

Abbreviations 

Above sea level (a.s.l.) 

AIC-wav (onset time determination 

algorithm proposed in the present study) 

Akaike Information Criterion (AIC) 

Analogue to Digital (A/D) 

Artificial neural network (ANN) 

Coordinated Universal Time (UTC) 

Edge-preserving smoothing (EPS) 

Electromagnetic (EM) 

European Geosciences Union General 

(EGU) 

Geologic disposal facility (GDF) 

Global Positioning System (GPS) 

Grimsel Test Site (GTS) 

Hertz (Hz) 

International Seismological Centre (ISC) 

Joint Energy Ratio (JER) method 

Kraftwerke Oberhasli AG (KWO) 

LASMO (LArge Scale MOnitoring) 

Long Term Diffusion (LTD) 

Long-term Cement Studies (LCS) 

Modified Coppens’s method (MCM) 

Modified Energy Ratio (MER) 

Nagra (National Cooperative for the 

Disposal of Radioactive Waste) 

Non-parametric detection algorithm (NpD) 

Power Spectral Density (PSD) 

Quartile (Q) 

Radioactive Waste Management (RWM) 

Ratio of the peak eigenvalues (PER) 

Reservoir Induced Seismicity (RIS) 

Root-Mean-Square (RMS) 

Samples per second (sps) 

Short Time Average over Long Time 

Average (STA/LTA) 

Signal to Noise Ratio (SNR) 

Swiss Seismological Service (SED) 

Three-dimensional (3D) 

Time intervals (TI) 

TOPological INVersion (TOPINV) 

Underground Research Laboratory (URL) 

Virtual Field Optimization Method 

(VFOM) 





i 

 

Contents 

Contents ...................................................................................................................................... i 

List of Figures ............................................................................................................................ v 

List of Tables ............................................................................................................................. x 

Chapter 1 Preface.................................................................................................................. 1 

1.1 Introduction ................................................................................................................. 1 

1.2 Glacier retreat and hydromechanical changes ............................................................. 2 

1.3 Research question and objectives ................................................................................ 4 

1.4 Novel research contributions ....................................................................................... 6 

1.5 Academic outputs ........................................................................................................ 6 

1.6 Thesis structure ........................................................................................................... 7 

Chapter 2 A field analogue for glacial retreat ...................................................................... 9 

2.1 Introduction ................................................................................................................. 9 

2.2 A field analogue for Glacier retreat........................................................................... 12 

2.3 Reservoir Induced Seismicity.................................................................................... 13 

2.4 Lake water level data................................................................................................. 15 

2.5 Geological and Tectonic background ........................................................................ 17 

2.6 Summary ................................................................................................................... 22 

Chapter 3 Microseismic monitoring ................................................................................... 25 

3.1 Introduction ............................................................................................................... 25 

3.2 Seismic sensors ......................................................................................................... 26 

3.2.1 Seismic network deployment ............................................................................. 29 

3.2.2 Surface arrays..................................................................................................... 30 

3.2.3 Borehole sensor .................................................................................................. 34 

3.3 Seismic Data .............................................................................................................. 35 

3.4 Pre-processing ........................................................................................................... 36 

3.5 Maintenance and operation ....................................................................................... 37 



 

3.5.1 Data downloading, transfer and back-up ........................................................... 38 

3.5.2 Downhole sensor ................................................................................................ 39 

3.5.3 Gaps in the Data recordings ............................................................................... 41 

3.6 Preliminary investigation of data noise ..................................................................... 41 

3.6.1 Noise related to hydroelectric activity ............................................................... 44 

3.6.2 Noise related to construction activities .............................................................. 47 

3.6.3 Noise related to water induced seismicity ......................................................... 48 

3.6.4 Noise related to large seismic events ................................................................. 49 

3.6.5 Noise related to landslides ................................................................................. 50 

3.7 Network design analysis............................................................................................ 52 

3.8 Summary ................................................................................................................... 58 

Chapter 4 Analysis of recorded microseismic data: Event detection ................................. 61 

4.1 Introduction ............................................................................................................... 61 

4.2 Event detection literature review............................................................................... 62 

4.2.1 Automatic detection in the time domain ............................................................ 62 

4.2.2 Automatic detection in the frequency domain ................................................... 63 

4.2.3 Automatic detection in the time-frequency domain ........................................... 66 

4.2.4 Discussion on detection algorithms ................................................................... 67 

4.3 Onset time picking literature review ......................................................................... 68 

4.3.1 Discussion on onset time picking algorithms .................................................... 72 

4.4 Event detection in the present study .......................................................................... 75 

4.4.1 Spectral characterisation of background noise .................................................. 76 

4.4.2 The NpD event detection algorithm ................................................................... 81 

4.4.3 Detected events: Microseismicity or local noise? .............................................. 84 

4.4.4 Demonstration of efficiency of the NpD algorithm ........................................... 85 

4.4.5 Detected events .................................................................................................. 90 

4.4.6 Comparison of NpD with other approaches ....................................................... 95 

4.5 Onset time picking in the present study .................................................................... 99 

4.6 Discussion ............................................................................................................... 101 

4.6.1 NpD algorithm ................................................................................................. 101 

4.6.2 Partially effective automated onset time determination approaches................ 103 

4.6.3 Detections ........................................................................................................ 109 

4.7 Summary ................................................................................................................. 110 

Chapter 5 Analysis of recorded microseismic data: Seismic Source Location ................ 113 

5.1 Introduction ............................................................................................................. 113 

5.2 Velocity profile ....................................................................................................... 113 



iii 

 

5.3 Localisation literature review .................................................................................. 114 

5.3.1 Non-iterative location methods ........................................................................ 115 

5.3.2 Iterative location methods ................................................................................ 118 

5.3.3 Localisation discussion .................................................................................... 119 

5.4 Seismic source parameters literature review ........................................................... 121 

5.4.1 Magnitude ........................................................................................................ 121 

5.4.2 Corner frequency ............................................................................................. 123 

5.4.3 Source spectrum and model-fitting approaches ............................................... 123 

5.4.4 Instrument response ......................................................................................... 126 

5.5 Location determination in the present study ........................................................... 126 

5.6 Source parameters in the present study ................................................................... 130 

5.7 Discussion ............................................................................................................... 139 

5.7.1 Localisation of events ...................................................................................... 139 

5.7.2 Comparison with geochemistry ....................................................................... 141 

5.7.3 Partially efficient automated locations of events ............................................. 144 

5.7.4 Parameters that influence the source mechanisms estimates ........................... 152 

5.8 Summary ................................................................................................................. 154 

Chapter 6 Discussion and further work ............................................................................ 156 

6.1 Research overview .................................................................................................. 156 

6.2 Safety case for a radioactive waste disposal facility ............................................... 163 

6.3 Novelty / key contributions of research .................................................................. 164 

6.4 Further work ............................................................................................................ 165 

Chapter 7 Conclusions ...................................................................................................... 167 

References .............................................................................................................................. 171 

Appendix A ............................................................................................................................ 181 

A.1 Conversion from raw data to ASCII ....................................................................... 181 

A.2 Conversion from ASCII to .mat files ...................................................................... 181 

A.3 Correction of files start time and length .................................................................. 182 

A.4 Reconfiguration of .mat files from cell to structure arrays ..................................... 182 

A.5 NpD algorithm......................................................................................................... 182 

A.6 AIC-wav algorithm .................................................................................................. 184 

A.7 Conversion for VFOM ............................................................................................ 184 

A.8 Conversion for GISMO ........................................................................................... 184 

A.9 TopInv conversion................................................................................................... 185 



 

A.10 Source parameters ................................................................................................... 185 

Appendix B ............................................................................................................................ 187 



v 

 

List of Figures 

Figure 1: Glacial cycle; sketch reproduced from https://www.gfz-potsdam.de/en/section/earth-

system-modelling/topics/solid-earth-dynamics/glazial-isostatic-adjustment-gia/ ..................... 3 

Figure 2: Panoramic picture of the general area where the GTS sits. Insets show the location of 

the GTS in Switzerland (in an orange dot) and a photograph from inside the main tunnel. Figure 

adapted from http://www.grimsel.com/gts-phase-vi/lasmo/lasmo-project-perimeter-gts-layout

.................................................................................................................................................. 10 

Figure 3: Map illustrating the tunnels within the GTS (AU, BK, EM, FRI, GS, HPA, MI, MOD, 

NM, UR, US, VE, WT) with the corresponding experiments that take place within these (Majer 

et al., 1990b). Figure reproduced from LASMO (2016). ......................................................... 11 

Figure 4: Interaction concept of LASMO project .................................................................... 13 

Figure 5: Annually repeated pattern caused by snow melt and rainfall effect in the Grimsel area 

lakes height data over several consecutive years (2009 – 2017). Lake water level data are given 

in elevation (in meters) above sea level. With red ovals are noted the two periods that the 

Raeterichboden lake was drained due to maintenance works of KWO. .................................. 15 

Figure 6: The two drainage and natural refill cycles of Raeterichboden lake due to KWO’s 

maintenance works along with photographs taken during the first cycle. ............................... 17 

Figure 7: Figure reproduced from Schneeberger et al. (2017). Surface fault map with faults 

grouped by strike orientation (group A, B, C). Fault exposure lines are dashed over uncertain 

areas and are labelled in cases where a connection to GTS exists. Lower hemisphere equal area 

projection with planes poles grouped according to strike. ....................................................... 20 

Figure 8: (a) Figure reproduced from Schneeberger et al. (2017). Petrographic underground 

map. (b) Structural mapping (1:1000) of the underground rock laboratory (GTS) with faults 

grouped according to their strike. Indicated labels correspond to surface fault labelling and 

represent ‘maximum a posteriori’ interpolation. ..................................................................... 21 

Figure 9: Geological mapping of Gerstenegg tunnel ............................................................... 22 

Figure 10: (i) Geophones: a 3D (left) and a 1D vertical (right) short-period seismometer. Figure 

reproduced from Lennartz-electronic.de (2015) (ii) Downhole seismometer HS-1-LT mini . 28 

Figure 11: Location of seismic network on map (public.geo.admin.ch & swisstopo, n.d.), where 

the tunnels are noted with green and the sensors positions with red (South array: S1:4 and North 

array N1:4, where 4 corresponds to the 3D sensors). The triangular area that the seismic 

geometry offers best coverage is denoted with orange dashed lines. ...................................... 30 



 

Figure 12: (i) Surface arrays’ seismometer and (ii) black casings for long-term protection ... 31 

Figure 13: (i) Datalogger, fiber optics central box and battery were placed in a box to be 

protected from humidity and (ii) GPS antenna ........................................................................ 32 

Figure 14: (i) Dummy used to ensure free passage throughout the borehole and (ii) Deployment 

of downhole sensor .................................................................................................................. 34 

Figure 15: Final network map of the communication network................................................ 39 

Figure 16: Illustration of the amount of noise included in the borehole channels. Even with 

extensive filtering the borehole sensor did not seem to have been triggered by any of the events 

that the seismic arrays were detecting. .................................................................................... 40 

Figure 17: A 3.1 M earthquake as recorded by Strathclyde's microseismic network. The 

epicentre of the earthquake was 90.48 km away from GTS (Swiss Seismic Network). 

Waveforms as recorded by the borehole sensor (a) and the South array (c). The representation 

of the vertical components (CH1-3) in the time – frequency domain (spectrograms) show 

clearly the occurrence of the event (b, d for the borehole and South array respectively). The 

colour scale visible in the spectrograms indicates the amplitude of a particular frequency at a 

particular time with red being the highest magnitude and blue the lowest. ............................. 42 

Figure 18: Recognition of different levels of background noise.Here you can see 20mins 

sections for 4 different hours within a day at the sensors at location 1. Figure a shows high, 

fluctuating noise levels up to 10Hz, visible harmonics of mains power (17.5&25Hz), figure b 

has less amplitude but still intense background noise up till 8Hz, figure c has noise from 4 to 

8Hz, distinct harmonics of mains(17.5&25Hz), while figure d is the least noisy from the files 

shown, with background noise at only 5Hz. ............................................................................ 43 

Figure 19: Patterns encountered in the recordings as seen in the spectrograms. ..................... 43 

Figure 20: (a) Locations of the hydroelectric stations described in Table 1, the microseismic 

arrays and the borehole sensor. (b) Machine room Grimsel 2 power plant. 

(http://www.grimselstrom.ch/electrical-energy/power-plants-and-dams/power-plants/). ....... 44 

Figure 21: Full days of seismic data: 7th November of 2014 (a, b), 8th November of 2014 (c, 

d), 14th November of 2014 (e, f) as recorded by the vertical component of the 3D sensor of the 

northern (a, c, e) and southern (b, d, f ) arrays and corresponding pumping data from KWO.

.................................................................................................................................................. 46 

Figure 22: Gerstenegg area with location of man-made far-field perturbations. Figure adapted 

from LASMO Team (2016). .................................................................................................... 48 

Figure 23: Figures reproduced from www.seismo.ethz.ch. (a) Earthquakes with a magnitude of 

1 or more in Switzerland between 1975 and 2014. The size of the circles indicates the local 

magnitude (ML) of the earthquakes. The thick black line shows the location of the deep cross 

section (see b; only quakes within the gray rectangle were used for the profile). (b) Vertical 

cross section through Switzerland documenting the depth distributions of earthquakes. In 

orange circes is surrounded the area around the GTS.............................................................. 50 

Figure 24: (a) Low‐gain vertical‐component record from station SEP. (b) Broadband vertical‐

component record from station CDWR. .................................................................................. 51 

Figure 25: Shadow space for network geometry: Gerstenegg and main access tunnels (in dotted 

lines) act as a barrier shadowing the aligned receivers; a and b show the EW and NS views 

respectively of the 3D model. The color scale demonstrates how many receivers are affected 

by the shadow caused by Gerstenegg and main access tunnels. .............................................. 54 



vii 

 

Figure 26: Comparison of shadows for 4 different cases of network geometry. For this amalysis 

sensors were assumed to be placed on the east and west side of the Gerstenegg tunnel (a and b 

respectively) and on the east and west side of the main access tunnel (c and d respectively). 

The color scale demonstrates how many receivers are affected by the shadow caused by 

Gerstenegg and main access tunnels. ....................................................................................... 56 

Figure 27: Model of the performance of the seismic network configuration in regards to its 

magnitude threshold (color scale) as a function of distance. Inset shows the magnitude 

isosurface of ML-4. .................................................................................................................. 58 

Figure 28: Figure adapted from Akram and Eaton (2016) paper, demonstrating the performance 

of various algorithms in picking P-arrivals on field data. According to the pick error pie charts 

in the [−2 ms, 2 ms] error interval Irving‘s method (14%), Akazawa’s method (12%), JER-AIC 

(14%), ZTR’s method (16%), and S/L-Kurt (12%) perform better than the other methods that 

were tested. .............................................................................................................................. 75 

Figure 29: Calculation of the Noise PSD for one hour of data recorded by the vertical 

component of the 3-component seismometer of (a) the North and (b) the South array. The 

histograms of the PSD values at frequencies 30 Hz and 85 Hz and the value of a characteristic 

upper bound (here the 75th percentile) are shown as an example. These values are then used as 

the Noise PSD values at 30 Hz and 85 Hz frequencies, respectively. The values of the 

characteristic upper bound for all frequencies constitute the Noise PSD (bottom plots in (a) and 

(b)). All histograms are for data from the same day and hour. ................................................ 78 

Figure 30: (a) Temporal variation of background noise and (b) spatial variation of background 

noise ......................................................................................................................................... 79 

Figure 31: Schematic demonstrating NpD methodology......................................................... 82 

Figure 32: Hour 1: Filtered waveform and visually identified events are shown with vertical 

lines. ......................................................................................................................................... 87 

Figure 33: Hour 2: Filtered waveform and visually identified events are shown with vertical 

lines. ......................................................................................................................................... 87 

Figure 34: Hour 3: Filtered waveform. Hour with no visually identified events. ................... 88 

Figure 35: Detected events after the application of the NpD algorithm to the whole passive 

seismic data set (1st November 2014 - 12th August 2017), along with the changes of the water 

level in Raeterichsboden lake. Events detected from the borehole sensor, the North and the 

South array are presented with black, green and red dots, respectively. ................................. 91 

Figure 36: Detected events from the North and the South array, presented with green and 

red dots, along with the changes of water level of Raeterichsboden and Grimsel lakes (blue and 

magenta). With red ovals the periods that either of the 2 arrays has reported a significant 

increase in detections are noted. With red arrows the end of the two drainage periods of 

Raeterichboden lake are noted. ................................................................................................ 92 

Figure 37: Boxplots for 3 different time periods (01/2015 - 03/2015, 07/2015- 10/2015 and 

07/2016 - 10/2016) for the South and North array (shown in red and green respectively). The 

mean value is represented with a square and the maximum and minimum values with horizontal 

lines. A horizontal line within the boxplot represents the median while the range of each 



 

boxplot is from the 25th till the 75th percentile. The whiskers are calculated with 1.5 coefficients.

 ............................................................................................................................ 94 

Figure 38: Reported earthquakes per month within an area of 30km radius from the GTS for 

the period Nov 2014 – Aug 2017. Data retrieved from the International Seismological Centre 

(ISC). With a blue line Raeterichsboden lake height levels are noted. .................................... 94 

Figure 39: Velocity vs time for the filtered waveforms of (a & b) 15/03/2016, 18:00-19:00, (c 

& d) 15/03/2016, 19:00-20:00, and (e & f) 16/03/2016, 05:00-06:00 as recorded from the North 

and South array respectively. With vertical lines the events detected by the NpD algorithm, the 

PSD technique and the STA/LTA algorithm are noted. .......................................................... 98 

Figure 40: Detected events that could not be located accurately: 26 Nov 2014, 15:28:01 .... 100 

Figure 41: Figure showing the time periods with particular interest within which manual 

picking of events was undertaken. Manual picking also occurred on the dates shown with red 

arrows. .................................................................................................................................... 101 

Figure 42: Landslides were generally a bug for NpD as they were picked as more than one 

distinct event (initial crack and main body of landslide). ...................................................... 102 

Figure 43: Example of automatically picked P and S wave arrival times at the recordings of 

the North array for a detected event. Red lines: P wave arrival time. Blue lines: S wave arrival 

times. .......................................................................................................................... 105 

Figure 44:  Onset time picked events of (i) North and (ii) South array (to be sent for location) 

excluding events located within the Gerstenegg tunnels (150m distance form sensors crossing 

line), along with the changes of the water level in Raeterichsboden lake. Events detected from 

AIC-wav and the NpD algorithm are presented with dark green/red dots and green/red x-s, 

respectively. Seasonal variation is a sign of localised seismicity. ......................................... 106 

Figure 45: Cases the AIC-wav methodology (i) works well in picking the P- and S- onset 

times; (ii) works well in picking only the P-wave; and (iii) fails to correctly identify the phases 

of the signal. In all (i), (ii) and (iii) the three. The axis in all waveforms is in data points while 

y-axis is in velocities (m/s). The range of the x axis is not common for all graphs so that the 

waveform shape is visible in all cases. .................................................................................. 108 

Figure 46: Figure reproduced from Stork et al. (2014) demonstrating the extrapolation of the 

seismic moment and corner frequency parameters from the fitting of the displacement spectrum 

of a seismic event. .................................................................................................................. 125 

Figure 47: Locations of all manually repicked  P- and S- waves events. Events that 

correspond to 2014 and 2016 are shown with red and yellow balloons respectively. ........... 128 

Figure 48: Histogram of error values for located events (sum of absolut residuals) ........ 128 

Figure 49: Location of manually picked events ................................................................ 129 

Figure 50: Event that its phases could not be visually picked, although detected by NpD and 

AIC-wav algorithms. .............................................................................................................. 130 

Figure 51: Sensitivity analysis for the estimation of Qp ........................................................ 132 

Figure 52: Example of source-spectrum model fitting for an event. Blue curve shows the 

displacement spectrum for the P-wave arrival, after application of a Butterworth windowing 

function. The red curve shows the best-fitting Brune source model, with parameters 

summarized in the inset box. ................................................................................................. 132 



ix 

 

Figure 53: Schematic of geometric parameters of a seismic event ........................................ 133 

Figure 54: Moment magnitude (a), fault slip (b) and slip patch area (c) estimates for 36 events 

(Mean  estimates of all sensors from the North array). In darker shaded bars are shown the 

estimates while in lighter the standard deviations ................................................................. 135 

Figure 55: Moment magnitudes of events whose source parameters were estimated from both 

arrays ...................................................................................................................................... 139 

Figure 56: Plane fitting for a number of the located events presented as an orange dotted line. 

The plane agrees with the fractures reported by Schneeberger et al. (2017) and Stillings (2020).

................................................................................................................................................ 140 

Figure 57: Figure adapted by Stillings (2020), representing microseismic tunnels (grey lines), 

fault traces (red lines) and the lithological contact at the surface between Aar Granite (purple) 

and Grimsel Granodiorite (green). The epicentres of the detected events are numbered and 

shown in yellow circles. The stereonet, at the top right corner of the figure, shows orientations 

of open fractures in the GTS and other tunnels. ..................................................................... 143 

Figure 58: Locations obtained with VFOM algorithm using all P- and S-wave arrival picks as 

determined from AIC-wav workflow for the year 2016. The events are denoted with balloons 

of different colours as an indication of their depth, ranging from the shallowest in red (-1.34 to 

-1.29km a.s.l.) to the deepest in blue (-1.89 to -1.84km a.s.l.). The events seem to nicely fit the 

fractures reported by Schneeberger et al. (2017). .................................................................. 146 

Figure 59: Comparison of locations for the 2016 events obtained with VFOM with different 

combinations of the input parameters (no of sensors, lev, dtp): (i) locations for the parameters 

(8 sensors, 0.2, 0.01) are shown with pins and (8 sensors, 0.2, 0.2) with balloons and (ii) 

locations for the parameters (8 sensors, 0.2, 0.01) are shown with pins and (6 sensors, 0.2, 0.01) 

with rhombi. ........................................................................................................................... 147 

Figure 60: Mutliple events 26 Nov 2016, ~08:13:01. Signals arrive first at the North Array, 

then at the South Array. Calculated location from VFOM is not consistent with this. ......... 148 

Figure 61: Comparison of locations estimated by TOPINV algorithm using just  P-wave 

arrivals as input and both phases. .......................................................................................... 149 

Figure 62: (a) Inter-cluster correlation index used for clustering of the events, and (b) spread 

of events per clusters over time ............................................................................................. 150 

Figure 63: (a) Stack of the traces and the number of events per cluster, and (b) all traces from 

the biggest cluster (#1) plotted together and aligned. ............................................................ 151 

Figure 64: 3D representation of events. In the figure we can also see the sensors and with a 

mesh grid surface the ground surface. ................................................................................... 151 

file://///ds.strath.ac.uk/idrive/CivilEng/Research-LASMO/thesis/Marianna%20Kinali%20PhD-post-viva%20thesis.docx%23_Toc43827608
file://///ds.strath.ac.uk/idrive/CivilEng/Research-LASMO/thesis/Marianna%20Kinali%20PhD-post-viva%20thesis.docx%23_Toc43827608
file://///ds.strath.ac.uk/idrive/CivilEng/Research-LASMO/thesis/Marianna%20Kinali%20PhD-post-viva%20thesis.docx%23_Toc43827608
file://///ds.strath.ac.uk/idrive/CivilEng/Research-LASMO/thesis/Marianna%20Kinali%20PhD-post-viva%20thesis.docx%23_Toc43827608
file://///ds.strath.ac.uk/idrive/CivilEng/Research-LASMO/thesis/Marianna%20Kinali%20PhD-post-viva%20thesis.docx%23_Toc43827608


 

List of Tables 

Table 1: Technical characteristics of data loggers ................................................................... 28 

Table 2: Coordinates of sensors (see Figure 11 for their respective locations) ....................... 33 

Table 3: Description of the hydroelectric stations for which data were provided by KWO 

(http://www.grimselstrom.ch) .................................................................................................. 45 

Table 4: Descriptive statistics for temporal and spatial subparts of nonparametric analysis .. 80 

Table 5: Hour 1: 15 March 2016, 18:00 – 19:00. Comparison of results for different values of 

the parameters of Noise PSD percentile and local time window length. ................................. 89 

Table 6: Hour 2: 15 March 2016, 19:00 – 20:00. Comparison of results for different values of 

the parameters of Noise PSD percentile and local time window length. ................................. 89 

Table 7: Hour 3: 16 March 2016, 05:00 – 06:00. Comparison of results for different values of 

the parameters of Noise PSD percentile and local time window length. ................................. 90 

Table 8: The parameters used for the STA/LTA, PSD technique and NpD methods. ............ 96 

Table 9:  Summary of detections using the STA/LTA, the PSD and the NpD algorithms 

for hours 1, 2 and 3, for both North and South arrays. ............................................................ 97 

Table 10: Overview of formulas of the estimated source parameters ................................... 133 

Table 11: Overview of the source parameters (mean values for all North array sensors) ..... 137 

Table 12: Overview of the source parameters (mean values for all South array sensors) ..... 138 



Kinali M. PhD Thesis  University of Strathclyde 

1 

 

Chapter 1 Preface 

1.1 Introduction 

Radioactive waste is produced as a by-product from a range of activities, i.e. power generation, 

medical, industrial, research. The UK alone generates about 200 million tonnes of nuclear 

waste from households and other industries per year (Ripper, 2017). Most of the radioactive 

waste is produced by the decommissioning of nuclear power reactors.  

Although there are a number of different options investigated for long-term disposal of 

radioactive waste, such as sea disposal, sub seabed disposal, deep well injection and even 

disposal in outer space, there are two commonly accepted disposal options. Near-surface 

geological disposal (at ground level or at depths of tens of metres below ground level), which 

is implemented in countries as UK and USA, Finland and Sweden for Low Level Waste and 

Scotland for Intermediate Level Waste; and deep geological disposal (at depths between 200m 

and 1km for mined repositories or between 2km and 5km for boreholes), which is official 

policy in several countries, while in the UK and Canada the site selection process has 

commenced (International Atomic Energy Agency, 2018).  

Resulting in an effective solution for the geologic disposal of nuclear waste, with no 

environmental risk (i.e. avoidance of harmful release of radioactive material), is a fundamental 

issue for the environment protection, and for the future continued reliance on nuclear power. 

Although geological disposal is considered the best option, there are still elements of risk that 

need to be addressed and that may be of natural origin (e.g. glacial retreat, variation  of earth  

orbital  parameters,  tectonics and  meteorite impact)  or  of  human  origin (non-detected  

features,  sealing  defects, human  intrusion and war effects) (Tshibangu K and Descamps, 
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2011). Out of the aforementioned elements of risk which are least understood is the impact of 

glacial retreat (Talbot, 1999), or load changes above a geologic disposal facility (GDF), and 

research is needed to provide further knowledge. 

1.2 Glacier retreat and hydromechanical changes 

The greatest natural threats to the integrity of the geological barriers of deep geological disposal 

facilities are due to rapid retreats of ice sheets (Talbot, 1999). There is a number of studies 

related to deep geological disposal facilities’ performance assessments, which have identified 

glaciation/deglaciation capable of causing major impact on the long-term performance of the 

repository system (e.g. Boulton et al., 1999; Hedin and Kautsky, 2000). In particular, Boulton 

et al. (1999) developed an ice sheet model to simulate the ice sheet behaviour in time and space 

and concluded in the following: that coupling occurs between ice sheet dynamics and 

permeability; hydrofracturing and shear fracture may be widespread beneath the ice sheet; and 

that even intact granitic rocks can be fractured beneath the divide zone. Hedin and Kautsky 

(2000) conducted a post-closure safety assessment for a deep repository of spent nuclear fuel 

in granitic bedrock and concluded that in general the prospects are very good, i.e. the isolating 

capacity of the repository is not threatened in terms of thermal, hydrological, mechanical and 

chemical evolutions.  

The actual phenomenon is explained as follows: as ice overrides the terrain, it acts as a direct 

glacial vertical loading to the ground surface, compressing the underlying geological media. 

Thinning and retreat of an ice sheet removes the load, allowing media to dilate. But the 

mechanical effects of glacial retreat are not solely attributed to this direct compression / 

dilatation. Flexural loading (i.e. stresses resulting from flexure or bending of the lithosphere 

under ice weight) appears capable of causing comparable or greater stress changes (Neuzil, 

2012). Flexure lowers the ice sheet and the land surface elevation which in effect reduces the 

effective hydraulic head imposed by the ice sheet (Bense and Person, 2008). In addition, the 

surface rebound that follows the ice retreat results in changing the topographic gradient which 

drives the groundwater flow. The glaciation cycle – ground dynamics is demonstrated in Figure 

1. 
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Figure 1: Glacial cycle; sketch reproduced from https://www.gfz-potsdam.de/en/section/earth-system-

modelling/topics/solid-earth-dynamics/glazial-isostatic-adjustment-gia/ 

Taking a closer look at the medium, when this is porous and is loaded or unloaded small 

changes occur in its pore water volume, which result in pore water pressure changes. During 

glaciation the evolution of the subsurface hydraulic head follows the growth (mostly driven by 

precipitation rates) or decay (driven by rising temperatures) of the ice sheet (Chan et al., 2005). 

During ice-sheet growth rapid rise in hydraulic head, high transient hydraulic gradients and 

groundwater velocities 2–3 orders of magnitude higher than under non-glacial conditions are 

observed (Chan et al., 2005). Upon ice-sheet decay, hydraulic heads decline as a result of the 

unloading and the ground surface elevation increases as a result of isostatic readjustment 

(Bense and Person, 2008). Residual elevated heads may be preserved for 10,000s in the cases 

of low-diffusivity rocks (Chan et al., 2005). 

How does the glacial phenomenon however cause failure? As per Grämiger's et al. (2017) 

simulations, glacial cycles, as purely mechanical loading and unloading phenomena, produce 

moderately restricted new damage. However, ice load fluctuations may increase the criticality 

of fractures, which may in effect increase the efficacy of fatigue; i.e. an already weakened rock 

slope is more susceptible to damage from glacier loading and unloading and may fail 

completely. Grämiger et al. (2017) found also that damage kinematics is controlled by 

discontinuity geometry (size, spacing and connectivity) and the relative position of the glacier. 

It has been considered by scientists that because the amount of loading during ice sheet growth 

and decay is effectively equal, its effects would balance out (e.g. Corbet and Bethke (1992)), 

https://www.gfz-potsdam.de/en/section/earth-system-modelling/topics/solid-earth-dynamics/glazial-isostatic-adjustment-gia/
https://www.gfz-potsdam.de/en/section/earth-system-modelling/topics/solid-earth-dynamics/glazial-isostatic-adjustment-gia/
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however this hypothesis has been proven wrong by Tarasov and Peltier (1997). Their research 

showed that the ice sheet decay is usually more rapid than the growth of an ice sheet. Hence, 

even if the resulting mass equilibrium is achieved, the imbalance of rates of unloading and 

reloading may still affect the dynamics of the underlying structures. 

1.3 Research question and objectives 

Glacial stress changes are expected to occur, due to glacial cycles, whilst waste in the GDF 

remains radioactive, i.e. due to the long-lived nature of radionuclides (e.g. transuranic wastes 

remain hazardous for 1000 years https://www.nrc.gov). Therefore, it is crucial to consider the 

effect these stresses would have, being exerted on the repository and the surrounding rocks. 

This study focuses on exploring the response of a radioactive disposal facility to glacial retreat, 

using as a small-scale analogue the draining and refilling of a reservoir. The host rock studied 

here has granitic characteristics.  

The reservoir is situated in the central part of the Swiss Alps, an artificial lake called 

Raeterichsboden. The lake was drained and let to refill with rainwater and snowmelt twice in 

the period of two years. There was an opportunity to monitor the lake level changes of this 

particular reservoir and their effect on the surrounding granitic rocks because of the convenient 

positioning of an adjacent underground research laboratory and its access tunnels which 

allowed for the deployment of monitoring equipment. 

Based on literature (e.g. Talwani (1997) and Chan et al. (2005)), it is assumed that the load 

changes of the lake during its unloading will induce seismicity and change flow pathways 

because of the stress redistribution with no time delay. It is also assumed that during the lake’s 

reloading, the groundwater head rises with a time delay governed by flow rates causing 

seismicity.  

In order to be in position to detect the instances this reservoir induced seismicity occurs, 

continuous monitoring of the reservoir’s surrounding area is needed. The reservoir water level 

changes (as an analogue to glacial retreat changes) are expected to increase the criticality of 

fractures, i.e. already weakened granitic fabric will potentially fail, resulting in small cracks 

opening or closing, or critical slopes slipping. This material failure will be transmitted as 

https://www.nrc.gov/
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seismic signals of small magnitudes through the medium in the surrounding rocks. One 

potential way to capture this small magnitude induced seismicity through continuous 

monitoring of an extended area is through microseismic monitoring and analysis. 

Microseismic monitoring refers to the recording and detection of small in magnitude (less than 

ML 3) earthquakes. It was mainly developed in the framework of the Test Ban Treaty (late 

1950s) for the monitoring of the relaxation of the rock mass after nuclear weapon testing 

(Kinali et al., 2018; Lee and Stewart, 1981). In such a demanding environment, microseismic 

monitoring proved to be a powerful tool, tuned to detect weak seismic signals in low signal-to-

noise ratios (SNR; Kinali et al., 2018). Induced (RIS) or Triggered Seismicity (RTS) mainly 

consists of sequences of microearthquakes with magnitudes ML 3 or less. Unless there are 

specific concerns of the occurrence of RIS/RTS, the phenomenon is usually monitored by 

existing national seismic networks with completeness magnitudes usually down to M = 2 or 1. 

Microseismic monitoring based on temporary installations has the potential to provide missed 

information on the occurrence of shocks with magnitudes ML=0 or even less than that (e.g. 

Pytharouli et al. (2011)). Hence, its applications have expanded into a wide range of projects 

related to RIS/RTS including the monitoring of rockslides and landslides (Helmstetter and 

Garambois, 2010; Torgoev et al., 2013; Yfantis et al., 2014), the monitoring of fracking 

processes (Maxwell, 2011),  reservoir monitoring for geological CO2 (Zhou et al., 2010) and 

radioactive waste disposal (Young and Martin, 1993). A microseismic monitoring 

configuration mainly consists of short-period seismic arrays, with the components 

(seismometers) placed in a grid or triangular geometry, depending on their number. 

The objectives of my research are as follows: 

 Find a suitable field analogue to represent glacier retreat. 

 Deploy microseismic instrumentation and be in charge of any on site works and 

troubleshooting. 

 Collect microseismic data to describe the hydromechanical behaviour of the rock mass 

at the field site. 

 Develop a methodology for the analysis of these data. 
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 Investigate the inflicted geomechanical responses (if any) to the lake load changes. 

1.4 Novel research contributions 

The key contributions of the thesis are listed below:  

 A small-scale test site of a reservoir is chosen as an analogue for exploring the 

seismic hazard in radioactive deep geologic disposal facilities due to glacial retreats; 

this is described in Chapter 2. 

 Although sensor deployment design and sensor data cleaning with noise 

characterisation for micro-seismicity monitoring is not an unmapped area, in this 

PhD this is explored in detail and for an extended period of several years; this is 

described in Chapter 3. 

 A new algorithm (NpD) for detecting potential seismic signals under not well-

constrained conditions and without requirement of a priori knowledge about the 

expected signal frequencies and amplitudes is proposed in Chapter 4.  

 The NpD algorithm and the data set are open source.  

 Although there are various onset time picking algorithms suggested by researchers 

(e.g. Irving‘s method, Akazawa’s method, JER-AIC, e.t.c. (Akram and Eaton, 

2016)) the novelty of this research lies by using, comparing suitability and 

adjustment of a number of well-known approaches from the literature in 

conjunction for real field data and for microseismic events detection purposes 

(Chapter 4).  

 A seismic catalogue related to the dynamic response of the rock mass to reservoir 

drainage is presented in Chapter 5.      

1.5 Academic outputs 

The outputs of this research are listed as follows: 
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 NpD algorithm was published as: M. Kinali, S. Pytharouli, R. J. Lunn, Z. K. Shipton, 

M. Stillings, R. Lord, S. Thompson; Detection of Weak Seismic Signals in Noisy 

Environments from Unfiltered, Continuous Passive Seismic Recordings. Bulletin of the 

Seismological Society of America; 108 (5B): 2993–3004. doi: 

https://doi.org/10.1785/0120170358. The algorithm is open source and is described in 

Chapter 4. 

 Part of the project was presented in the Geology of Geomechanics conference (Oct. 

2015) in London (https://www.geolsoc.org.uk/expired/Geology-of-Geomechanics-15). 

 The NpD algorithm was presented (PICO presentation) in the European Geosciences 

Union General (EGU) Assembly 2018 in Austria, which was an international 

conference hosting 15,075 scientists from 106 countries (https://www.egu2018.eu/). 

 Quarterly and annual reports detailing the progress of the research for Nagra (National 

Cooperative for the Disposal of Radioactive Waste; currently unpublished). 

 A seismic catalogue related to the dynamic response of the rock mass to reservoir 

drainage is presented in Chapter 5 and Appendix B.      

 The 3.5 years long dataset is freely available upon request. The dataset can be used for 

signal analysis purposes and / or for exploring the seismicity in the Grimsel area. 

1.6 Thesis structure 

The thesis is following the structure that follows: Chapter 1 is a general introduction to the 

subject and also defines the research questions, novelty contributions, and research outputs. 

Chapter 2   discusses the use of a reservoir as a field analogue for exploring the response of 

deep geologic radioactive disposal facilities to glacial retreat. In the chapter, further 

information of the geology of the investigated area is also provided. Chapter 3 offers a 

description of the site activities (e.g. sensors deployment, maintenance and operation of the 

seismic network, preliminary noise investigations) as well as the seismic instrumentation used 

in the present study. Chapter 4 includes the literature review explored with reference to 

detection and onset time determination of microseismicity, methodology used and approaches 

https://doi.org/10.1785/0120170358
https://www.geolsoc.org.uk/expired/Geology-of-Geomechanics-15
https://www.egu2018.eu/
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that were tested and were partially/not effective. Chapter 5 includes the literature review 

explored with reference to deriving seismic source locations and source parameters and 

application in the present study. Chapter 6 is the discussion on the work performed, as well as 

the novelty contributions, limitations and future improvements from the aspect of methodology 

proposed and results. Chapter 7 summarises the conclusions of the research. Appendix A 

includes various algorithms written for this research and Appendix B includes the seismic 

catalogue with seismic and reservoir induced events.
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Chapter 2 A field analogue for glacial retreat 

2.1 Introduction 

For the safety case consideration of a deep radioactive waste repositories research and 

monitoring are on-going (IAEA, 2001). The LASMO project (LArge Scale MOnitoring; 

January 2003 to 2018) is a monitoring program, established by Nagra, which investigates 

potential monitoring techniques for the safety assessment of such repositories. The scientific 

work was undertaken in the Underground Research Laboratory (URL) called Grimsel Test Site 

(GTS; “LASMO” (n.d.)). The GTS was established in 1984 and has hosted a wide range of 

repository-relevant research ever since. LASMO project benefits therefore from 30 years of 

GTS research.  

The location of the GTS is in a catchment, in the Swiss Alps (Figure 2), where a number of 

hydroelectric power plants, owned and operated by Kraftwerke Oberhasli AG (KWO; 

grimselstrom.ch), are embedded. Out of eight in total storage lakes, two of them are located in 

the direct vicinity of the GTS: Lake Grimsel in the south and Lake Raeterichsboden in the east 

with peak water levels of 1,909 and 1,767 m asl respectively (Figure 2).  

The GTS tunnels are located at depths from 1,727 m above sea level (a.s.l.) to 1,732 m a.s.l., 

while the GTS sits approximately 450m beneath Juchlistock mountaintop (see also Figure 2), 

37m below the top of Raeterichsboden lake and 200 – 600m away laterally on the western side 

of the reservoir. Figure 2 shows the location of the GTS site and one of the main tunnels. 
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Figure 2: Panoramic picture of the general area where the GTS sits. Insets show the location of the GTS in 

Switzerland (in an orange dot) and a photograph from inside the main tunnel. Figure adapted from 

http://www.grimsel.com/gts-phase-vi/lasmo/lasmo-project-perimeter-gts-layout  

The GTS tunnelling system spans more than 1 km in length and the average diameter of the 

tunnels is 3.5m. The central GTS facilities can be reached via an access tunnel from a northern 

entry (Gerstenegg tunnel) which reaches up till one of KWO's electrical power plants (Grimsel 

II; Figure 3). In Figure 3 the branching tunnel system of the GTS, the central facilities and the 

access tunnel are clearly visible. Projects undertaken by various research groups are also noted 

down on the map in the respective areas that each of them takes place. Finally, some 

information in regards to the geological setting of the GTS area and mapped shear zones are 

also provided. 

 

1: Grimsel Test 

Site                         

2: Raeterichsboden 

lake                      

3: Grimsel lake    

4: Juchlistock 

~1km 
N 

http://www.grimsel.com/gts-phase-vi/lasmo/lasmo-project-perimeter-gts-layout
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Figure 3: Map illustrating the tunnels within the GTS (AU, BK, EM, FRI, GS, HPA, MI, MOD, NM, UR, US, 

VE, WT) with the corresponding experiments that take place within these (Majer et al., 1990b). Figure reproduced 

from LASMO (2016). 

 



Chapter 2: A field analogue for glacial retreat 

 

2.2 A field analogue for Glacier retreat 

A natural analogue is an important means of validation of long term geologic disposal of 

radioactive waste because it allows for the examination of processes that occur over geological 

timescales rather than the short timescales of the usual desk analysis (Chapman et al., 1984). 

For this PhD, the planned construction works of KWO, which led to the unloading of 

Raeterichsboden lake twice in a period of two years, as well as the conveniently located 

underground GTS tunnels rendered the lake as an ideal natural analogue for glacier retreat. 

Figure 4 summarises the interaction concept among geomechanics, hydrogeology and 

geochemistry caused by the unloading and reloading of Raeterichsboden lake. The LASMO 

project combines geomechanical and hydrogeochemical findings from different research 

teams. The structural geology and hydrogeochemistry monitoring of this site was conducted 

by Raphael Schneeberger as part of his Masters and PhD in the University of Bern. Stress 

measurements and internal rock anisotropy research was conducted by Staš, L from the 

Institute of Geonics (UGN) of the Czech Academy of Sciences while measurements of 3D 

displacements by Josef Stemberk. Mark Stillings as part of his PhD in Strathclyde University 

explored the groundwater composition and the water-conducting features in the GTS. The 

aforementioned research, along with my PhD which explores the reservoir induced seismicity, 

will eventually all be bound together in a geosphere model. In the following paragraphs I will 

expand a bit more on the aforementioned interactions that influence RIS, i.e. the water level 

changes and the geology of the surrounding area. 
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Figure 4: Interaction concept of LASMO project  

2.3 Reservoir Induced Seismicity 

Seismic triggering has a causal relationship with water level changes in large reservoirs 

(Simpson et al., 1988). Reservoir induced seismicity may follow the impoundment, large water 

level variations, or filling at a higher water level than the level achieved until then (Talwani, 

1997). In general, induced seismicity is initiated because of a complex interaction mechanism 

between the pre-existing stress regime, the increase of the elastic stress, and the cumulative 

effects of increased pore pressure from elastic and diffusion mechanisms (Roeloffs, 1988).  

RIS can be attributed to two processes of stress adjustment: the direct effect of loading, which 

increases the elastic shear stress and the pore pressure; and the effect of diffusion of pore 

pressure from the reservoir into the hypocentral zone (Gupta, 2002). In the first case the 

response is rapid, consists of low magnitude, shallow seismic events occurring below or in the 

immediate vicinity of the reservoir area, while in the latter the response is delayed and may 

extend well beyond the reservoir confines (≥ 10km), not show an immediate correlation with 

major changes in reservoir level and be associated with large magnitude earthquakes, at deeper 

depths (Simpson et al., 1988).  
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Both water loading and pore pressure diffusion produce stress changes in the underlying faults 

(Lei et al., 2013, 2008). When the stress of a fault accumulates to the peak strength of a new 

rupture, a small stress disturbance can accelerate ruptures to trigger earthquakes (Alt and 

Zoback, 2017). As per Costain et al. (1987), in most cases RIS is attributed to a small stress 

increase triggering the release of large pre-stress, i.e. a pore pressure stress increase triggering 

failure along a pre-existing fault already tectonically stressed close to failure, rather than 

because of a great stress increase, since the deepest reservoirs add stress loads of up to 20 bars. 

RIS has been reported by various researchers to be affected by the stress state of faults, 

hydraulic properties of fault rocks and connectivity of fluid pathways (Lei et al., 2008; 

Roeloffs, 1988). Roeloffs (1988) and Zoback and Harjes (1997) claim that the induced stresses 

are very small in cases of RIS and only affect the ambient stress field. Simpson (1976) suggest 

that RIS is more often encountered in strike-slip or normal faulting. Talwani (1997) report that 

the location of induced seismicity is governed by the nature of faulting below and near the 

reservoir. Finally, RIS has been observed to continue for years in some reservoirs, depending 

on the frequency and amplitude of lake-level changes, reservoir dimensions and 

hydromechanical properties of the substratum (Roeloffs, 1988). Gupta et al. (1972a), (1972b), 

and Simpson and Negmatullaev (1981) claim that the rate of increase of the reservoir water 

level, duration of loading, maximum levels achieved and duration of retention of high levels 

are factors influencing the frequency and magnitude of triggered earthquakes.  

According to previous research by Gupta (2002), for the majority of the cases that reservoir 

induced seismicity has been reported, the magnitudes of the events are less than 4 ML; i.e. in 

95 sites globally (as per 2002 data) there were 4 cases of magnitudes more than 6 ML, 10 cases 

of magnitudes between 5 and 5.9 ML; 28 cases of magnitudes between 4 and 4.9 ML, and 53 

cases of  magnitudes less than 4 ML. Most of the RIS reported in the vicinity of Hsinfengkiang 

reservoir in eastern Chine in 1962 (Gupta, 1992) occurred near intersections of major faults 

and in rock masses with interbedded weak layers and their focal depths were shallow, i.e. 1 to 

11km. The most seismically active areas and the strongest shocks location were reported to be 

in the vicinity of the dam where the water depth was deepest (Gupta, 1992).  
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2.4 Lake water level data 

The water level data of Grimsel and Raeterichsboden lakes in the Grimsel region were provided 

by Nagra. Water level measurements are taken every 15 minutes. The graphs in Figure 5 show 

the water levels of the lakes expressed in metres above sea level over several years. The 

annually repeated pattern caused by snow melt and subsequent rainfall causing in turn drop 

and rise of the lakes’ water levels is obvious in the figure. Keusen et al. (1989) observed 

periodical variations of water inflow in the GTS within the sphere of influence of Grimsel lake 

due to the effects of the snow-melt. The high lake levels in the second half of each year are 

controllably lowered by KWO to account for the snow melt in the year to follow.  

 

Figure 5: Annually repeated pattern caused by snow melt and rainfall effect in the Grimsel area lakes height data 

over several consecutive years (2009 – 2017). Lake water level data are given in elevation (in meters) above sea 

level. With red ovals are noted the two periods that the Raeterichboden lake was drained due to maintenance 

works of KWO. 

With red ovals are noted the two periods that the Raeterichsboden lake was drained due to 

maintenance works of KWO and is also shown in Figure 6 in greater detail. Data exhibited 

include the period from 01.09.2014 00:00 to 01.09.2017 00:00. The maximum and minimum 

storage levels of Raeterichsboden lake within that time are 1763m and 1689m a.s.l. 
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respectively. As can be observed from the graph, the lake was controllably drained, gradually 

and not during the course of a single / couple of days and the level of the lake reached only 

during the day of the final drainage its minimum level (i.e. in the case of the first drainage 

period: 1703m a.s.l.). During the rest of KWO’s maintenance works the taps remained open 

and the level of the lake remained at a constant elevation of 1712m and 1689m a.s.l. 

respectively for the first and second cycles. Some of the fluctuations observed in the graph are 

caused due to collection of water samples from productive boreholes within the GTS, together 

with flow rate measurements for other active GTS projects. Other fluctuations can be attributed 

to weather conditions (rain, snowfall, etc.). Under the graph there are two photographs of the 

lake, taken on the 07.11.2014 (right before the first drainage) and 05.05.2015 (during the 

refilling period). 

The effect that the annual and smaller frequency variations of lake levels have on hydraulic 

head measurements around the GTS has been documented in the course of various experiments, 

for instance in the Long Term Diffusion experiments at the GTS (LTD; Havlova et al. (2013)), 

the Long-term Cement Studies (LCS; Sarout et al. (2012)); see also Figure 3 for locations of 

experiments. In the aforementioned experiments, direct correlation is difficult due to the 

additional head variation caused by earth tide effects. Overall, the similarity of hydraulic head 

responses to the lake levels changes observed in different experiments conducted in different 

parts of the GTS suggests a coupled mechanical response to the loading of the Juchlistock 

(LASMO Team, 2016; see also Figure 1). 
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Figure 6: The two drainage and natural refill cycles of Raeterichboden lake due to KWO’s maintenance works 

along with photographs taken during the first cycle. 

2.5 Geological and Tectonic background 

The Grimsel Test Site is located within the granitic formations of the Aar Massif (Konietzky, 

1995). Majer et al.(1990) studied the major structures at the surface above the Grimsel 
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laboratory. According to his paper, the geology comprises of magma - formed granite, 

granodiorite and dyke rocks (lamprophyres). Along the tunnels deformation structures, such as 

ductile shear zones, brittle faults, fracture systems and water pathways are visually evident. 

Both granite and granodiorite are foliated and the foliation strikes northeast, and dips steeply 

to the southeast. The foliation is defined by a grain-scale fabric combination of biotite and 

mylonite. Another steeply-plunging linear fabric element within the foliation is defined by 

elongated feldspar grains (Majer et al., 1990). 

The hydrological important rock structures are the: S-zones, K-zones, and lamprophyres 

(Nagra (1985)). The S-zones are fracture-bearing shear zones, which generally dip parallel to 

the foliation (Keusen et al., 1989). The K-zones are fracture zones that generally strike west or 

northwest, cutting the host rock fabric. The lamprophyres are dikes, dipping steeply and 

generally striking west or northwest. The lamprophyres are highly discontinuous and are 

widely distributed. The leakage of water from the shear zone indicates that it is hydrologically 

active. There are also exfoliation joints present, suggesting subcritical fracturing conditions but 

also greatly varied orientations of near-surface stresses, possibly attributed to thermal or 

cryogenic stresses, or even a combination of processes (Ziegler et al., 2013; 2014a and b). 

More recently, Schneeberger R. developed a surface fault map of the area surrounding the GTS 

through combination of fieldwork data and published maps (Baumberger, 2015; Keusen et al., 

1989; Vouillomaz, 2009; Wehrens, 2015; Wicki, 2011). The map can be seen in Figure 7 

(Schneeberger et al., 2016). The faults are categorised in different groups according to their 

orientation. Group A are mainly steep SE-plunging stretching-lineations resulting from ductile 

shearing with an average orientation (dip azimuth / dip) is 149o/74o. Group B are mainly steep 

S-dipping faults with mean orientation of 178o/72o. Group C are SW-dipping faults with an 

average orientation of 196o/72o. Group C faults coeval with group B and are subparallel to 

meta-basic dykes and often co-occur spatially with the latter. Along individual faults the 

standard deviation among multiple orientation measurements of the mean dip azimuth and dip 

is below 15° and 10° respectively. Generally, a greater number of faults are observed in the 

southern area (Figure 7). In the Figure the fault exposure lines that cross the GTS are labelled 

(also discussed in Figure 8b). The fault lines over uncertain areas are mapped as dashed lines.  
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Detailed underground mapping resulted in a lithological (Figure 8a) and structural map of the 

GTS (Figure 8b). Meta-basic dykes occur as three distinct groups. The two northern groups 

have a NW-SE strike, while the southern one strikes E-W. Numerous dykes are filled with an 

Alpine foliation or by localized ductile and brittle deformation, i.e. shear zones and fault 

gouges. As seen in Figure 8b faults occur along three NE-SW (Group A), two E-W (Group B) 

and two NW-SE (Group C) trending groups, leading to a heterogeneous strain distribution. 

Group A faults have an average 16m spacing and can be further subdivided into moderately to 

steeply dipping faults (between 45 and 75°) and subvertically dipping ones (>80°). Faults in 

the Central Aar Granite area (northern part) seem to preferentially localize along pre-existing 

anisotropies, i.e. brittle fractures or meta-basic dykes, hence form centimetre-sized discrete 

faults (inset in Figure 7 and 8). On the contrary, faults in the Grimsel Granodiorite area 

(southern part) form metre-sized strain gradients (inset in Figure 7 and 8). 

Overall, the faults can further be discriminated to: 8 major group A faults (dip<80o) and 23 

relay structures, 6 major group B faults and 7 relay faults, and 6 major group C faults and 32 

relay structures (Schneeberger, 2017). Were all faults to be combined that would yield an 

average spacing of 25.4m. The lengths of the mapped lineaments range from 5m to 1941m. 

Faults in the GTS area converge with depth. 
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Figure 7: Figure reproduced from Schneeberger et al. (2017). Surface fault map with faults grouped by strike 

orientation (group A, B, C). Fault exposure lines are dashed over uncertain areas and are labelled in cases where 

a connection to GTS exists. Lower hemisphere equal area projection with planes poles grouped according to strike.  
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Figure 8: (a) Figure reproduced from Schneeberger et al. (2017). Petrographic underground map. (b) Structural 

mapping (1:1000) of the underground rock laboratory (GTS) with faults grouped according to their strike. 

Indicated labels correspond to surface fault labelling and represent ‘maximum a posteriori’ interpolation. 

During one of my field trips to the GTS (16th till the 23rd of March 2015) I also proceeded in 

mapping the great features of the Gerstenegg tunnel along with another Strathclyde PhD 
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student. At the time no geological map of Gerstenegg was available. The mapping of the 

features was thought at the time that it would enable me to link detected events with potential 

re-activation of the weak zones in the Gerstenegg tunnel and/or mapped geological features in 

the GTS. The map (Figure 9) was then to be digitised but this work was superseeded by 

Schneeberger et al. (2017). 

 

Figure 9: Geological mapping of Gerstenegg tunnel 

2.6 Summary 

In this chapter, I introduced the chosen small-scale field analogue to glacial retreat: the drainage 

and refilling of Raeterichsboden lake in the Swiss Alps (subsection 2.2) which is one of the 

novelty contributions of this PhD. The reason why RIS has been chosen as an analogue to 

glacial retreat induced seismicity was explained as follows: both RIS and glacial retreat induced 
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seismicity have been documented to follow water level variations, in a similar way, because 

both phenomena cause the same two processes of short-term stress adjustment: the direct effect 

of loading and pore water pressure changes (subsection 2.3). In particular in this project, the 

planned construction works of KWO, which led to the unloading of Raeterichsboden lake twice 

in a period of two years, as well as the conveniently located underground GTS tunnels rendered 

Raeterichsboden lake as an ideal reservoir to monitor for RIS. 

In this chapter it has also been explained, based on literature, that RIS is governed by the nature 

of faulting below and near the reservoir; hence the geology of the surrounding area of 

Raeterichsboden lake was investigated and is presented in subsection 2.6. As an overview, the 

area is governed by granitic rocks with 3 main groups of fractures, A, B, and C, dipping 

southeast, south and southwest respectively. The majority of the faults are in the south of the 

Raeterichboden lake and GTS. Not all fractures that are contained within these groups are of 

the same size, i.e. group A consists of 8 major faults (dip<80o) and 23 relay structures, while 

group B from 6 major and 7 relay, and finally group C from 6 major and 32 relay. 

The granitic rocks’ response to Raeterichsboden lake’s water level changes is going to be 

monitored using microseismic monitoring, as already suggested in subsection 1.3; this is 

further discussed in the following chapter.
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Chapter 3 Microseismic monitoring  

3.1 Introduction 

Microseismic monitoring was selected as the optimum approach to monitor the effect of the 

Raeterichsboden Lake levels variations to the surrounding rocks for a number of reasons: 

(a) it allows for the recording of very weak events of energy dissipation; 

(b) it is a continuous monitoring method; 

(c) data can be transmitted in real-time from the monitoring site to the University premises, 

i.e. staff on-site are required only for the seismic sensors installation and regular 

maintenance; 

(d) data can be analysed automatically by software routines; 

(e) seismometers can be easily and rapidly deployed at a close proximity to the reservoir to 

record events;  

(f) seismometers are easily retrievable; and finally 

(g) the necessary equipment was already purchased for a previous PhD student by Strathclyde 

University and was readily available for this application. 

Establishing a new microseismic network can be quite challenging and its intended goal largely 

defines the optimal technical design for it, i.e. detection of tectonic earthquakes or 

microseismic events, for a short time period or an extended amount of time. Not every design 

serves equally well for all applications and potential factors to consider are: the type of sensor 

(seismometer and/or accelerometer) and number of components per station; seismometer 

characteristics (sensitivity, dynamic range, frequency range of operation); number of sensors; 

network configuration, i.e. number of sensors and layout; communication infrastructure 
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availability, i.e. processes for data transmission, storage, GPS (Global Positioning System) and 

power availability; and site selection. The network design for the present project will be 

discussed in the following subchapters. 

3.2 Seismic sensors 

Traditionally, accelerometers have been considered for strong motion only and broadband 

seismometers for weak motion. However, the latest generations of accelerometers are nearly 

as sensitive as standard short-period seismometers down to frequencies of 1 Hz and have a 

large dynamic range (up to more than 110 dB). At the same time, broadband sensors have a 

larger dynamic range. In terms of signal processing, there is no difference in using a 

seismometer or an accelerometer and correcting digital data for differences in the instrument 

response can make the signals look identical. 

Surface arrays and downhole sensors have different advantages / disadvantages (e.g. see Eisner 

et al. (2010)) and it is common practice to combine their use in field to counterpart their 

shortcomings, i.e. borehole sensors / arrays suffer from lateral positioning accuracy while array 

sensors from low Signal to Noise Ratio. In this project, the deployed microseismic 

instrumentation consisted of 2 short-period surface arrays (Lennartz electronic GmbH) and a 

downhole 3D seismometer (IESE, Auckland University, New Zealand). The sensors were 

deployed and monitored seismic activity for a period of 3.5 years.  

Each of the short-period surface arrays consists of one three-directional component and three 

single component seismometers (Figure 10(i)), with a flat response between 1 and 80 Hz and 

an eigenfrequency of 1 Hz. The 3D seismometer is of a diameter of 97mm and a height of 

68mm, while the vertical component is of a diameter of 85mm and a height of 55mm. The 

downhole, three-directional component sensor (Figure 10(ii)) is a sonde designed for 

permanent installations in high-pressure environments and has a flat response between 6 to 100 

Hz and an eigenfrequency of 4.5 Hz. The sensor has an exterior casing of stainless steel, weighs 

30kg, a height of 1.07m and a diameter of 88mm. The maximum depth it can be deployed is 

245m.  
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The sensors are designed to have a flat frequency response over a given bandwidth, which can 

be read as a prescribed frequency range. Events with bandwidths outside of the flat frequency 

response will be distorted by the instrumental response and yield unreliable magnitude 

estimates if they are detected at all. The bandwidth of the instrument needs to capture a robust 

estimate of the spectral plateau (the high-frequency decay) and not just the corner frequency 

(Baig and Urbancic, 2010). This last requirement practically means being able to sample at a 

rate that is about a factor of 8 greater than the corner frequency. For microseismic events, with 

magnitudes down to -2, corner frequencies can be 500 Hz and therefore sample rates of 4000 

Hz are needed. In this project, there was the additional restriction of data storage and data 

handling, i.e. since the anticipated duration of monitoring would reach 3.5 years, it was thought 

practical to choose a small sampling rate of 250Hz. That would yield a total of 13,500,000 data 

points per hour and 1.1826E11 per year. Hence, with an 80Hz flat response and 250Hz 

sampling rate, the detectable microseismic events would be expected to be of a 31Hz corner 

frequency and up till -1.49 magnitudes. Overall, the seismic sensors fit the purposes of the 

present research since their sensitivity targets weak motion and since I am aiming to capture 

the immediate responses of the granitic rocks to the reservoir changes (i.e. low magnitude, 

shallow seismic events occurring below or in the immediate vicinity of the reservoir area, as 

discussed in subchapter 2.2). 

In regards to their actual physical connections, in the case of the arrays, all three single 

component seismometers need to first connect to a data distributor and then, via a single 

geophone cable, to the data logger. The 3D surface and downhole sensor connect straight to 

the data logger. The data logger can operate either with a battery or connect directly to the 

mains. The data logger is also connected to a GPS antenna (continuously or whenever needed) 

for its internal clock mechanisms to remain synchronised. For all connections Lennartz-

supplied cables, mating female connectors, open wires or prolongation cables were used. 

The data loggers used for the surface arrays were the units AC16 and BD57 and for the 

downhole sensor the B961. Both surface arrays data loggers have in-built the same Analogue 

to Digital (A/D) converters, their sensitivity is 400 V/m/sec but AC16 unit has bit weight equal 

to 4.9E-8 V/counts while BD57’s is 8.6E-8 V/counts. B961 unit has a smaller sensitivity equal 
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to 70 V/m/sec and its bit weight is 2.761 μV/count (see also Table 1). These technical 

characteristics are needed for the conversion of the raw data (in counts) to ground velocity 

(m/s) (see Appendix A). 

Table 1: Technical characteristics of data loggers 

 North array South array Borehole sensor 

A/D converter RT505 RT505 RT649 

Sensitivity 400 V/m/sec 400 V/m/sec 70 V/m/sec 

Bit weight 8.616e-08 V/counts 4.945e-08 V/counts 2.761e-6 V/counts 

 

Figure 10: (i) Geophones: a 3D (left) and a 1D vertical (right) short-period seismometer. Figure 

reproduced from Lennartz-electronic.de (2015) (ii) Downhole seismometer HS-1-LT mini 
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3.2.1 Seismic network deployment 

In theory, the minimum amount of records / readings for the source location determination is 

four, i.e. three p-arrival times and one S-arrival time; hence the number of sensors (15 channels 

in total) was considered adequate for microseismic monitoring (Joswig et al., 1992).  

Apart from the number of the sensors, the geometry of the network determines the accuracy of 

location in different directions. The two arrays and the 3-D borehole sensor were to be deployed 

in three distinct areas forming a triangle. The process of site selection began with choosing 

potential locations for sensors deployment, as close as possible to Raeterichsboden Lake and 

within the tunnels under the jurisdiction of Nagra. The suggested locations had further 

limitations of tunnels accessibility, for instance equipment were not allowed to be deployed in 

the access tunnels. In addition to the above, the estimated events locations within the triangular 

area defined by the sensors would be more accurate than those outside the seismic network; 

hence the sensors were spread as far away from each other as the tunnels allowed. 

Physical aspects such as the geology of the area and sources of cultural noise were also taken 

into consideration for the choice of the seismic network location. As per the first consideration 

point, the lithology and the existence of faults in the host material are liable to affect the seismic 

wave velocity anisotropy and the splitting of the surface waves. The location of the seismic 

network was chosen so that it lies within tunnels of granite (while further away from the 

sensors, but within the planned monitoring area, there are areas of granodiorite). Exposed faults 

were taken into consideration for the deployment of the seismic arrays so that the chosen 

locations were free of fracture zones. As per the second consideration point, anthropogenic 

noise, i.e. excessive bursts or spike-type, man-made seismic noise, results in high trigger 

thresholds and therefore poor event detectability. It was deemed necessary therefore to locate 

deploy the sensors in the least active tunnels.  

Taking all the above into consideration I deployed the instrumentation between the 29th and 

30th of October 2014 (see plan view in Figure 11). In particular, the two surface arrays were 

deployed within the Gerstenegg tunnel and the downhole sensor in the vertical borehole 

"Bohrung 3" (GS 84.041A) with grid ref (46.58°, 8.32°) in the GTS tunnel. The triangular 
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coverage area was approximately 340m2 (marked with orange dashed lines in Figure 11). This 

network geometry does not offer good hypocentral coverage by the arrays sensors given that 

they were deployed in approximately the same depth; a limitation that the borehole sensor 

would counterbalance. The Gerstenegg tunnel was used neither by KWO nor by Nagra stuff, 

hence minimising obstruction and anthropogenic noise levels. However, within the GTS 

tunnel, where the borehole sensor was deployed, the anthropogenic noise levels were expected 

to be high given the numerous projects that were simultaneously in operation. This was a 

situation that could not be avoided and it would be part of the project to find ways to mitigate 

noise in seismic detection. 

 

Figure 11: Location of seismic network on map (public.geo.admin.ch & swisstopo, n.d.), where the tunnels are 

noted with green and the sensors positions with red (South array: S1:4 and North array N1:4, where 4 corresponds 

to the 3D sensors). The triangular area that the seismic geometry offers best coverage is denoted with orange 

dashed lines. 

3.2.2 Surface arrays 

The surface sensors were placed upright on top of circular concrete pillars constructed on the 

tunnel floor of diameter 30 cm and height 30 cm (Figure 12 (i)). Both arrays had a 135metres 

N4 
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N2 
N3 

S4 
S1 
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aperture while the radial distances between successive sensors were at 45m. The two arrays 

were approximately at 1km distance from each other.  

The sensors were connected to geophone cables which were mounted on the tunnel walls. Then 

the best possible levelling was achieved by adjusting the three foot screws of the sensors so 

that the bull's eye bubble located on top of each sensor was centred. With the sensors in place, 

oriented, and levelled, and with the cables connected on the sensors side, the cables to the data 

logger side were attached.  

 

Figure 12: (i) Surface arrays’ seismometer and (ii) black casings for long-term protection 

The LE-xD sensors are remarkably insensitive to (gentle) temperature and air pressure 

variations. Consequently it was not considered necessary to construct complicated styrofoam / 

copper foil / glass jar contraptions to seal the sensors. They are also supposed to be completely 

protected against dust and low pressure jets of water. However, and since water leakage 

(droplets) from the tunnel walls and ceiling was observed, plastic casings and insulating tape 
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for all cable connections were considered essential for the long-term proper functioning of the 

seismometers.  

The data logger (black device in Figure 13) was connected to an external power supply. 

Considering that the nominal input voltage was 12 V DC and typical current drains at 12 V DC 

were: LE-1D: 3 mA, LE-3D: 8 mA, 6 channel data logger: 0.17A, power consumption 

calculations led to a choice of a rechargeable Pb-acid battery of 12V and 38Ah. 

 

Figure 13: (i) Datalogger, fiber optics central box and battery were placed in a box to be protected from humidity 

and (ii) GPS antenna 

Each of the data loggers was in turn connected to a GPS antenna (Figure 13(ii)), mounted on a 

pillar outside the north exit of the Gerstenegg tunnel to achieve accurate timings and 

synchronisation. The GPS signal was transferred in the tunnels via fiber optics (Figure 13). 

The measured powered consumption with the GPS use was 107Wh at 13oC. Hence for the 

proper function of the surface array system the batteries needed to be changed twice per week. 

On the 5th of December 2014 a special control circuit was attached at the sensors network and 

the GPS fiber optics converter. The circuit allowed a twice per day synchronisation of the GPS 

extending the use of the batteries from 3.5 days to 10 days. On the 23rd of December new 

electricity lines were installed in the Gerstenegg tunnel to stop relying on batteries because the 

long term viability of this plan was deemed non sustainable. 
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The exact coordinates of the sensors, as derived by Nagra’s surveying team, are given in Table 

2. The coordinates are given in CH1903 (Easting and Northing in metres, as measured by the 

Swiss coordinate system) and WGS84 (latitude and longitude in degrees), and elevation, 

measured on top of the pillars, is given in metres above sea level. The Swiss coordinate system 

is a geographic coordinate system used in Switzerland by the Swiss Federal Office of 

Topography. The geodetic datum CH1903 uses as fundamental point the old observatory of 

Bern (latitude: 46°57′3.9″N, longitude: 7°26′19.1″E (WGS84)) and corresponds to the 

coordinates 600,000 Easting and 200,000 Northing. WGS84 is the standard U.S. Department 

of Defence definition of a global reference system for geospatial information and is the 

reference system for the GPS. 

The three directional component sensor and the data distributor were north-oriented with the 

use of known survey points and bearings. The survey z-coordinate of the borehole sensor is 

also presented in the table and is the measurement in the top of the borehole (ground level of 

the GTS tunnel at that position). 

Table 2: Coordinates of sensors (see Figure 11 for their respective locations) 

Sensors 

CH1903 
 

WGS84 

Easting 

(m) 

Northing 

(m) 

Elevation 

from sea 

level (m) 

Latitude 

(decimal 

degrees) 

Longitude  

(decimal 

degrees) 

S4 668222 158947 1743.36 N46.5783 E8.3286 

S1 668251 158913 1744.29 N46.5780 E8.3290 

S2 668280 158878 1745.20 N46.5777 E8.3294 

S3 668309 158844 1746.07 N46.5774 E8.3298 
      

N4 667635 159910 1721.57 N46.5870 E8.3211 

N1 667650 159868 1722.32 N46.5867 E8.3213 

N2 667666 159825 1723.22 N46.5863 E8.3215 

N3 667681 159783 1723.95 N46.5859 E8.3217 

 

Borehole 

 

667445  

 

159197 

 

1729.72 

 

N46.5806 

 

E8.3186 
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3.2.3 Borehole sensor 

Prior to the deployment of the downhole sensor a sand layer was formed at the bottom of the 

borehole to facilitate good coupling between the borehole sensor and the walls of the borehole. 

The sensor sat at the bottom of the borehole in a practically vertical position (considering its 

dimensions and that the inner diameter of the hole is 146 mm) and part of it was surrounded 

by sand. Borehole depth measurements took place prior to the addition of the sand layer and 

after (171.40 m and 166.60 m respectively). Lowering a dummy (Figure 14(i)) down the 

borehole before attempting to lower the sensor convinced us that of the unobstructed passage 

and retrieval of the sensor. 

 

Figure 14: (i) Dummy used to ensure free passage throughout the borehole and (ii) Deployment of downhole 

sensor 

After ensuring the operation of the downhole sensor with the use of a multimeter, the sensor 

was lowered carefully in the borehole (Figure 14(ii)) and was kept under tension with the use 

of ropes for three days. Based on the depth of the borehole, its diameter and the density of the 

sand used, this was the estimated time period required for the sand to settle. Till then, the ropes 

played the role of a stabiliser to ensure the borehole sensor remained vertical in the centre of 
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the borehole. After that time period an extra cable was fed into the borehole and the sensor 

assumed its final position.  

The downhole sensor was connected to a three channel data logger (B961) which was in turn 

connected to external power. The borehole lied within the main GTS tunnels which had electric 

lines already in place hence in this case the data loggers were directly charged by a battery 

which in turn was continuously connected to a charger and the charger to the mains. 

GPS was not possible to be used in the GTS tunnel, therefore timings were kept using the in-

built clocks of the data logger. A synchronisation with the GPS once per two weeks was 

deemed to have a non-linear drift from real time which varied from μsec to msecs, a drift that 

was considered feasible to be taken into account and corrected on the data of interest. Power 

black-outs and bad weather conditions that did not allow the synchronisation to happen as 

planned increased the clock drift at times. See also subchapter 3.5.2 for more details. 

Additional calibration checks and a procedure to later allow for the orientation of the horizontal 

components of the borehole sensor took place: hammer hits were recorded by both the arrays 

3D seismometer and the borehole using the same data logger. 

3.3 Seismic Data 

All desired acquisition parameters were assigned and communicated to the seismometers with 

the use of a PFC_130 (Palm Field Controller). The parameters used for the continuous 

acquisition recordings were: 

(i) gain was set as high = 32 in the case of the surface arrays sensors and unity for the 

borehole sensor. Higher gain increases the amplitude of signals, hence increases the 

SNR making the signals more easily detectable. The borehole sensor, given that it 

is deployed deep within a borehole does not suffer from environmental and cultural 

noise hence there was no need for a high gain. 

(ii) sampling rate = 250 samples per second (sps). 
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The data acquisition was initiated on the 4th of November 2014, 4 days prior to when the water 

level in Lake Raeterichsboden was at its lowest for the 2014 drainage period (see Figure 5). 

The seismometers were set to record data continuously. Raw data were stored digitally as 

counts in hourly files, with counts being a measure of electric current (voltage).  The sampling 

rate was 250 Hz (i.e. sampling time step = 0.004s) which resulted in 900,000 data points per 

channel per hour, 15 channels in total. 

Given that the data collection period was approximately 3.5 years, it was early understood that 

the visual check would only constitute a way of understanding the signals recorded in the area 

and that a more automated way of processing would be needed for the actual data analysis and 

features identification. A suitable platform for signal analysis was believed to be MATLAB, 

mainly because of the vast database of forums and relevant online information availability.  

3.4 Pre-processing 

The data acquired were in need for pre-processing, i.e. (i) the transformation of raw data 

(measured in counts) to ASCII format so that they can be read and further processed using 

MATLAB, (ii) conversion of the counts in velocities and (iii) the formation of data series 

(timings assigned to all data points and formation of data series matrices). All relevant 

algorithms for this stage can be found in Appendix A. Additional algorithms were created 

along the progress of the project to make the data series more easily manipulated by the relevant 

detection or onset time picking algorithms. For instance, it was observed that the raw data 

collected from the South array had a time lag in the start times of the hourly records. Also, the 

data record start time was floating, with a non-steady change period. To address this issue the 

‘fixStarts1’ script was created. 

Another script that was deemed necessary was the conversion of the timeseries from cell arrays 

that were used for the initial codes to structure arrays that were necessary for the use of Archie-

West supercomputer. Archie-West was used in order to accelerate data analysis by taking 

advantage of multicore processors through parallel computing. NpD algorithm is an example 

code that takes full advantage of the processing power of Archie-West; i.e. parallel for-loops 



Kinali M. PhD Thesis  University of Strathclyde 

37 

 

(parfor command) and special array types (structure arrays). All aforementioned algorithms 

can be found in Appendix A. 

3.5 Maintenance and operation 

There were several field visits in the GTS. The first one (September 2014) was a reconnaissance 

visit; the second (22nd October - 2nd December 2014) was mainly for the deployment and 

monitoring of the network to ensure smooth operation and efficient and undisturbed data 

acquisition. Further works, such as the protection of the array sensors, the survey of the sensors’ 

position coordinates, checks to define the desired frequency of the borehole sensor’s GPS 

synchronisation and the frequency of the surface arrays’ batteries and data disks change, were 

performed. During the third and fourth visit to the GTS (16th till the 23rd of March 2015 and 

8th till the 16th of June 2015) the main activities that took place are listed as follows: 

 Correlation of specific patterns, which were repeatedly identified in the recordings 

during the preliminary analysis, with possible man-caused activities; time was spent at 

the sensor locations recording various activities/ambient noise and noting the 

corresponding timings (see also paragraph 3.6). The purpose of the noise sources 

investigation was to understand the acquired dataset and determine the needs (pre-

processing, signal analysis techniques / tools) for my project.  

 Inspection of the hardware connections and the conditions under which the sensors 

were operating. Main reasons for concern were humidity in the tunnels, rockfalls or 

displacements / disorientations of the sensors from potential KWO or Nagra works 

during my absence. During these inspections the cables of the surface arrays were 

replaced (initial positioning as shown in Figure 12) so that they were hanging from 

strings at a safe distance from the rest of the electricity cables to minimise effects of 

potential electromagnetic interference. 

 Repetition of all the necessary operations that, in my absence, the Nagra staff 

undertook; these were repeated to ensure the correct operational process (GPS 
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synchronisation of the downhole sensor, disks change and download; see also 

paragraphs 3.5.1 and 3.5.2.1). 

3.5.1 Data downloading, transfer and back-up  

In the beginning of the project the recorded data were stored in two 8Gb disks (placed within 

each data logger) which needed to be replaced after six weeks of data recordings, and then 

downloaded and transferred via ftp.grimsel.com (Nagra’s cloud server). For the long-term 

operation this procedure was substituted by the data transfer with the use of a cloud server 

(weconnect.westermo.com). In particular, this solution required the installation of Ethernet 

cables (for the upload of the data to the cloud service) and specialised software, i.e. RTPD and 

RTCC by REFTEK (for the transmittance / download at a university computer). This solution 

allowed for central data gathering and almost real-time back-up on the university’s facilities 

and hence minimized the risk of data loss. Since August 2015 the real-time communication 

with all the data loggers was effective. The simplified schematic display of the final network 

map for the connection between all data loggers in the GTS and the Strathclyde computer can 

be seen in Figure 15. 

ftp://ftp.grimsel.com/
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Figure 15: Final network map of the communication network 

3.5.2 Downhole sensor 

3.5.2.1 GPS synchronisation malfunction 

As already mentioned GPS was not possible to be used in the tunnel. As the installation of new 

lines was too expensive to be considered as an option, timings were kept using the in-built 

clocks of the data logger, re-synchronised every two weeks. The procedure followed was to 

disconnect the data logger from the sensor, connect it to the GPS antenna and take it outside 

from the tunnels until it connected with the satellites signal and reinstall it to the sonde again. 

The times would be noted down and the internal clock health files would inform of the time 

drift.  

Past experiments of Pytharouli, S. suggested a non-linear drift from real time which would vary 

from μsec to msecs, a drift that was considered feasible to be taken into account and corrected 

on the data of interest. Indeed in the beginning that was the case but as power black-outs and 

bad weather conditions did not allow the synchronisation to happen as planned the clock drift 

at times increased to seconds.  
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3.5.2.2 General malfunction 

During the visual inspection of the first 3 months of data recordings, the recordings of the E-

W horizontal channel of the downhole sensor showed consistently high frequency and low 

amplitude noise. Some tectonic earthquakes were still noticeable as can be seen in Figure 16 

but lower magnitude ones could be masked.  

Initially, the downhole cable was coiled around a drum, which stood on a tripod. After 

discussions with colleagues I thought that the high noise levels were a result of the 

electromagnetic (EM) interference of the power installation and the coiling of the cable, hence 

I readjusted the cable’s positioning, however without any positive effect on the recordings. 

Tests using a multimeter were conducted during a GTS visit and after discussions with the 

manufacturing company and guided testing of the sonde’s components, we concluded that the 

internal components of the 3rd channel were damaged. Hence, the data acquired by the BH 

sensor were not included in further analysis. 

 

Figure 16: Illustration of the amount of noise included in the borehole channels. Even with extensive filtering the 

borehole sensor did not seem to have been triggered by any of the events that the seismic arrays were detecting. 
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3.5.3 Gaps in the Data recordings 

Gaps in the data were unavoidable during the project’s duration and were mainly caused 

because of power shortages in the tunnels. The greatest in duration data gap, of approximately 

one month, occurred while the connection to the cloud server (Westermo) was in progress (June 

- July 2015). During cable routing routes on February 8th 2016 in Gerstenegg tunnels the 

sensors were found to have been knocked off their positions. Ten days of data were discarded 

as a result of this accident and even after the sensors were put back in place and oriented (the 

first 2 days), some recordings were still showing perturbed signals. Testing of post-accident 

data showed there was no permanent damage to the sensors.  

3.6 Preliminary investigation of data noise 

A preliminary analysis took place in order to achieve a first understanding of the data obtained 

and check the effectiveness of the microseismic monitoring network. Signal processing 

MATLAB algorithms, for the spectral analysis of the data were developed and the data 

(04.11.2014 – 11.12.2014) were scanned to identify any microseismic events related to the 

drainage of Raeterichsboden Lake. Most of the initial attempts led to identification of tectonic 

earthquakes, as that presented in Figure 17, located further away from the Grimsel area at 

distances > 20 km. 

These earthquakes were verified using the published earthquake lists of the Swiss Seismic 

Network. The identification of small tectonic earthquakes demonstrated that the sensors were 

able to successfully record small seismic events even at long distances (1.6 M at 127 km).  
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Figure 17: A 3.1 M earthquake as recorded by Strathclyde's microseismic network. The epicentre of the earthquake 

was 90.48 km away from GTS (Swiss Seismic Network). Waveforms as recorded by the borehole sensor (a) and 

the South array (c). The representation of the vertical components (CH1-3) in the time – frequency domain 

(spectrograms) show clearly the occurrence of the event (b, d for the borehole and South array respectively). The 

colour scale visible in the spectrograms indicates the amplitude of a particular frequency at a particular time with 

red being the highest magnitude and blue the lowest. 

The first two weeks of data were visually checked in great detail to identify noise patterns. 

From this visual check, it is very clear that there are variations in the background noise, even 

within a single hour of data. Figure 18 shows spectral plots for four 20 minute intervals, all 

taken within a single day for a single sensor (at the South array). Apart from the mains power 

interference which is visible in all plots, Figure 18a shows high amplitude, fluctuating noise 

levels up to 10Hz, and visible harmonics of the mains power (i.e. lines at 17.5&25Hz); Figure 

18b has a lower amplitude, but still intense background noise up till 8Hz; Figure 18c has noise 

between 4 and 8Hz, with distinct harmonics from the mains (17.5&25Hz); and Figure 18d 

shows very little noise, almost all of which is at frequencies less than 5Hz. 
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Figure 18: Recognition of different levels of background noise.Here you can see 20mins sections for 4 different 

hours within a day at the sensors at location 1. Figure a shows high, fluctuating noise levels up to 10Hz, visible 

harmonics of mains power (17.5&25Hz), figure b has less amplitude but still intense background noise up till 

8Hz, figure c has noise from 4 to 8Hz, distinct harmonics of mains(17.5&25Hz), while figure d is the least noisy 

from the files shown, with background noise at only 5Hz. 

Throughout the visual check of the data, similar reoccurring patterns were observed at many 

recorded waveforms. See some typical encountered patterns in Figure 19. 

 

Figure 19: Patterns encountered in the recordings as seen in the spectrograms. 

It became obvious that in order to effectively distinguish valuable data, containing 

microseismic information and geological information of the medium, from random noise and 

the response of the sensor/recorder, the potential noise sources had to be identified and are 

further analysed as follows. 
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3.6.1 Noise related to hydroelectric activity 

KWO is one of the leading hydroelectric companies in Switzerland with 9 power plants 

containing 26 turbines in total, 11 of which are in the area of the GTS and potentially affect the 

recordings. The hydroelectric stations in the vicinity of the GTS are presented in Table 3. The 

locations of the hydropower stations, alongside those of the seismic arrays, are shown in Figure 

20(a) and an example of machines in Grimsel 2 power plant is shown in Figure 20(b). The 

turbines are set on and off on a water-demand basis and do not operate on steady hours nor 

fixed durations.  

 

Figure 20: (a) Locations of the hydroelectric stations described in Table 1, the microseismic arrays and the 

borehole sensor. (b) Machine room Grimsel 2 power plant. (http://www.grimselstrom.ch/electrical-energy/power-

plants-and-dams/power-plants/). 

  

http://www.grimselstrom.ch/
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Table 3: Description of the hydroelectric stations for which data were provided by KWO 

(http://www.grimselstrom.ch) 

Handeck 1 Water for the power plant comes from the Gelmer Lake situated 550 metres 

above the plant. The power plant has 4 Pelton turbines. Pelton turbines have 

natural frequencies of about 580Hz (Shelke, 2017). 

Handeck 2(HA2) An underground plant that is used to produce peak energy and to regulate 

the grid. It also contains 4 Pelton turbines. 

Handeck 3 Complex power plant that fulfills a number of different functions. Water can 

be moved from Lake Raeterichsboden to the Handeck reservoir or sent over 

to the Gadmen valley. Water can also come from the Gadmen valley and 

then be pumped up to Lake Raeterichsboden. The runner wheels can be 

used as both pump and turbine. 

Grimsel 1 A double Pelton turbine (Oberaar machine group) uses the gradient between 

the Oberaar and Raeterichsboden Lakes (around 530 m) and a 32 MW 

turbine (Grimsel) uses the gradient between the Grimsel and 

Raeterichsboden Lakes (around 140 m). 

Grimsel 2(GR2) Contains 4 machine groups, each with a pump and turbine wheel on the 

same shaft, and uses the gradient between the Oberaar and Grimsel Lakes. 

Water is pumped, using surplus grid electricity, from the Grimsel 2 pump 

storage plant to a lake at higher elevations where it is stored to produce 

electricity at a later date. 

Due to the proximity of some of the hydroelectric plants, I investigated whether noise caused 

by the pumps activity in the area, had a straightforward effect on the data, that could be 

removed. A short period of data for the hydroelectric stations described in Table 3 was provided 

by KWO for comparison with the recordings.  

Figure 21(a-f) shows the seismic data for four full days between the 8th and 14th of November 

as recorded by the vertical component of the 3D sensors of the North and South arrays. Also 

plotted on the graphs are the data provided by KWO. GR2 corresponds to Grimsel 2 pumps 1, 

2 and 3 (Ma1, 2 and 3 respectively), while HA2 corresponds to the pumps of Handeck 2. 

Negative values correspond to pumping, positive values represent energy production. All 

values higher than -500 and less than 0 imply operation of the transformer only (i.e. no 

generator). GR2 has pumps/turbines that rotate (i.e. there are positive and negative values) 

which will produce significant ground vibration. 

http://www.grimselstrom.ch/
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Visual analysis of Figure 21 shows that there is no clear one-to-one relationship between the 

pump data and the seismic recordings. However, some conclusions can be drawn. There seems 

to be only one pump that has a consistent effect on noise recordings – machine 1 at Grimsel 2. 

 

Figure 21: Full days of seismic data: 7th November of 2014 (a, b), 8th November of 2014 (c, d), 14th November 

of 2014 (e, f) as recorded by the vertical component of the 3D sensor of the northern (a, c, e) and southern (b, d, 

f ) arrays and corresponding pumping data from KWO. 
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During most periods of pumping and production from this turbine the seismic data become far 

noisier. This is denoted by the change in the amplitude of the seismic recording visible in all 

plots of Figure 21. For example, in Figure 21(e) the amplitude of the seismic recording is almost 

double during hours 0:00 and around 06:00 (when GR2 Ma1 is active) compared to the 

amplitude during the hours between 06:00 and 15:00 (when GR2 Ma1 is not active). There 

may also be an effect of switching off and on this pump, evident by a gradual decrease or 

increase in the amplitude of the seismic recording respectively (as seen in Figure A4(d), for 

example). This visual analysis of the data in Figure 21 shows that it is unlikely that KWO’s 

operational data could be used to support the removal of high amplitude seismic noise. Even 

in the case of Grimsel 2, machine 1, a comparison of different days shows that the effect is not 

straightforward.  

3.6.2 Noise related to construction activities 

To increase water flow capacity, between the power plant in Handeck and Raeterichsboden 

lake, a new water bearing tunnel was excavated 50 m south of the existing tunnel (box a in 

Figure 22). This was the main reason for the 1st drainage of Raeterichsboden lake, in the winter 

of 2014-2015; the construction of the inlet and connection with the lake. Significant vibrations 

were observed at a monitoring station (location shown on map with a red asterisk) between 

28.01.2015 and 21.02.2015 with maximum velocities of nearly 63 mm/s (LASMO Team, 

2016). A small niche was excavated approximately midway in Gerstenegg tunnel (box b in 

Figure 22) between the 10th of February and the 5th of March 2014. A drill-and-blast excavation 

of an access tunnel was initiated south of Grimsel Pass in the summer of 2015, followed by the 

excavation of a cavern in winter 2015/16 (LASMO Team, 2016). The blast induced ground 

vibrations varies greatly depending on the parameters of rock mass, explosive characteristics 

and blast design (Khandelwal and Singh, 2006). TBM vibrations during excavation, for 

instance, have been reported to have dominant frequencies in the 300-500 Hz range (Mooney 

et al., n.d.). 
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Figure 22: Gerstenegg area with location of man-made far-field perturbations. Figure adapted from LASMO Team 

(2016). 

3.6.3 Noise related to water induced seismicity 

Another source of seismicity that could be regarded as noise for the purposes of my 

experiments is the water induced seismicity and in particular seismicity induced by forced fluid 

injection at depth, i.e. hydrofracking (Phillips, 2000; Zoback and Harjes, 1997). The In-situ 

Stimulation and Circulation (ISC) test was a geothermal research project directed by the ETH 

Zurich aiming to improve the understanding of geomechanical processes underpinning 

permeability creation during hydraulic stimulation and related induced seismicity. The project 

started in the second half of 2015 site and consisted mainly of intensive field work, such as 

drilling and borehole investigations in the GTS tunnels (Figure 3) while drilling continued in 

the beginning of 2016. The stimulation and fluid circulation phase in pre-existing and 

stimulated fractures followed in 2017. The pulse used in hydrofracking can vary from 100 to 

several 1000s Hz. 

Naturally induced pore pressure changes which lead to seismicity have also been reported by 

researchers: by seasonal groundwater recharge (Roth et al., 1992; Saar and Manga, 2003), 

seasonal snow melt or variations in precipitation (Jiménez and Garcı́a-Fernández, 2000; Kraft 
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et al., 2006; Lorraine et al., 1997). All the above types of triggered earthquakes are usually of 

small magnitudes (M<2; Husen et al., 2007).  

3.6.4 Noise related to large seismic events 

The Swiss Seismological Service (SED) at ETH Zurich monitors earthquake activity since 

1975 and currently has one of the densest seismic networks worldwide. The GRIMS station is 

the SED’s closest station to the GTS (Grimsel Pass) and it includes a broad-band station and 

an accelerometer. The SED data are freely available on seismo.ethz.ch website. Currently, the 

lowest magnitude of a seismic event that can be reliably detected by the SED Network and 

pinpointed across Switzerland is 2.0.  

Figure 23a, reproduced from the SED website presents historical data for the recorded 

earthquakes in Switzerland between 1975 and 2014. The earthquakes are represented by circles 

of different sizes depending on the local magnitudes of the events. Figure 23b is the cross-

section AA’ (noted in Figure 23a) showing the distribution of the events in depth. From the 

orange circles, which flag the GTS area, we can observe that, in particular during the 1975-

2014 period, earthquakes of magnitude up till 3ML were detected. The vertical cross section 

documents that during the same period the earthquakes in the GTS area reach up till 12km 

depth.  

Water induced seismicity can also be triggered by the passage of low-frequency, large-

amplitude surface waves of distant earthquakes (Husen et al., 2004; Prejean et al., 2004) hence 

it is valuable to be aware of the tectonic occurrences in the area of experiments.  
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a  

b  

Figure 23: Figures reproduced from www.seismo.ethz.ch. (a) Earthquakes with a magnitude of 1 or more in 

Switzerland between 1975 and 2014. The size of the circles indicates the local magnitude (ML) of the earthquakes. 

The thick black line shows the location of the deep cross section (see b; only quakes within the gray rectangle 

were used for the profile). (b) Vertical cross section through Switzerland documenting the depth distributions of 

earthquakes. In orange circes is surrounded the area around the GTS.  

3.6.5 Noise related to landslides 

The reported frequency content of landslide induced signals varies with study. More specific, 

in the cases of rockslides and during failure the frequency content, as per Wust-Bloch (2010), 

varies between 10Hz and 75Hz with most of the seismic energy concentrated above 20Hz. 

Senfaute et al. (2009) reported that signals with frequencies between 100Hz and 1000Hz are 

observed before crack formation, while the actual rock fall events produced signals with 

frequencies below 100Hz. Got et al. (2010) recorded signals with frequency content below 

http://www.seismo.ethz.ch/
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120Hz with dominant frequencies around 25Hz, and between 40Hz and 50Hz, and Levy et al. 

(2011) reported frequencies between 10Hz and 80Hz for rock thrown manually from the cliff. 

Rockslides have frequency content below 100Hz with few reported events above 50Hz 

(Helmstetter and Garambois, 2010). Debris flows have frequency content between 10Hz and 

150Hz with larger events producing lower frequencies (Huang et al., 2007). There are also 

some studies that reported aseismic landslide deformations (e.g. Spillmann et al. (2007)). 

Small seismic arrays are able to record landslides kilometres away from their deployment area 

they were meant to monitor. Walter et al. (2012), for instance, reported that seismic arrays 

consisting of short-period (1Hz) seismometers were able to record a 15,000m3 rock fall 5,000m 

away from the monitoring area, while Moran et al. (2008) reported that a large rockfall 

(50,000m3 to 100,000 m3) was recorded by two seismic arrays deployed 400m and 13,400m 

away from the location of the event. 

The waveform of a landslide recording in Washington as recorded by two sites is shown in 

Figure 24. The rockfall, which corresponded to a shallow earthquake of 3.1 magnitude, and the 

associated recordings from two different sites: the SEP with a short-period 3D seismometer, 

situated at 0.4km distance from the source and the CDWR with a broadband seismometer, 

situated at 13.4km, consisted of complex, large amplitude signals of several minutes duration 

as can be seen below.  

 

Figure 24: (a) Low‐gain vertical‐component record from station SEP. (b) Broadband vertical‐component record 

from station CDWR. 
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3.7 Network design analysis 

Not every seismic network design serves equally well for all applications and the intended goal 

of the network should inform the design. In this PhD there were a number of restrictions which 

influenced greatly the developed methodology.  

One of them was the budget restriction which resulted in using specific instrumentation; the 

borehole and seismic arrays were already purchased for landslide monitoring experiments. The 

ideal instrumentation fit for detection of microseismicity would be able to capture a frequency 

range between 1 and 10,000Hz. This is because the bandwidth of the instrument needs to 

capture a robust estimate of the spectral plateau that includes the corner frequency and the high-

frequency decay. To be able to cover such a wide range of frequencies a combination of sensors 

such as the one attempted for the present study, i.e. typical downhole 15 Hz geophone with flat 

responses in the expected frequency ranges for events between Mw -3 and Mw -1 (the IAGE 

sonde was 4.5Hz) as well as 4.5Hz near-surface arrays sensors to detect higher magnitude 

(>Mw-1), lower frequency events, are usually preferred. 

Microseismic events of -2ML may have 500Hz corner frequencies and therefore the 

corresponding sample rates should be 4kHz (8 times greater; rule of thumb). In this case, and 

because: 

 the experiment was meant to last for years, 

 one hour of raw data with sampling rate of 250Hz results in 34.5MB, 

 the storing facilities were some terabytes in a local University PC, 

I decided to use the 250Hz sample rate out of the 2 settings that I had as options (the other 

being 1000Hz). Although the majority of microseismic studies suggest using 2-4kHz for short-

term monitoring, when these relate to long-term continuous monitoring STA/LTA triggering 

is preferred or the sampling drops to lower rates, e.g. 500Hz (Goertz-Allmann et al., 2014). 

The latter seemed like a practical solution albeit I would miss locating microseismic events of 

small magnitudes; smallest detected event was -1.2ML. This was expected (see also Chapter 

3.2) from the literature review I conducted which predicted that sensors with 80Hz flat response 

maximum detected frequencies of 31Hz which translates to magnitudes of up till -1.49ML. 
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Another restricting factor to the accuracy of estimated locations is the geometry of the network 

used. The network configuration used in this study was the best solution given the restrictions 

of tunnels availability and accessibility. The malfunction of the borehole sensor hindered the 

accurate locations of events in the E-W direction since without it there was no longer enough 

lateral spread of sensors. Another limitation of the network geometry because of the borehole 

sensor malfunction is the not so good hypocentral coverage by the arrays sensors given that 

both arrays were deployed at approximately the same depth. In order to investigate the number 

of sensors that would be able to capture an event should it occur in different locations at 

different angles around the sensors, InSite seismic processing software was used.  

InSite’s analysis tool, that determines shadow space, estimates the number of sensors visible 

for each point of a user-defined search grid, using direct line of sight through solid material 

(Itasca Consulting Group, 2015). In other words, the parameter that affects event detectability 

depending on the source orientation in this case is the tunnels. The output model of this 

investigation that examines shadow space in a 4km 3D search grid is presented in Figure 25. 

Both Gerstenegg and main access tunnels were used in this model (shown in dashed lines in 

the figure), while the sensor arrays are placed at the eastern wall side of the Gerstenegg tunnel. 

It is evident from the model that Gerstenegg tunnel is acting as a barrier and shadows the area 

on the west and between the two arrays, reducing the maximum number of receivers that can 

record an event should it occur there to 4 (light green colour). There is only a thin corridor 

within which just 3 sensors can record an event (cyan colour). There is also a shadow caused 

from the main access tunnel, rendering all events occurring to the west of the tunnel (GTS area) 

more difficult to be recorded by the arrays sensors, i.e. maximum number of receivers that can 

record these falls to 4 for a distance of at least 2km from the arrays. As is derived from the 

model, there is no shadowing caused on the east side of Gerstenegg tunnel and all 8 sensors 

can record the events. This can be explained from the orientation of the sensors (all are oriented 

towards the North) and the relevant position of the tunnel (gap) which is to their west.  
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Figure 25: Shadow space for network geometry: Gerstenegg and main access tunnels (in dotted lines) act as a 

barrier shadowing the aligned receivers; a and b show the EW and NS views respectively of the 3D model. The 

color scale demonstrates how many receivers are affected by the shadow caused by Gerstenegg and main access 

tunnels. 

The shadow space modelling was further expanded in 3 additional different cases of network 

geometry (Figure 26), i.e. I assumed the receivers were situated on the west side of the 

Gerstenegg tunnel (b; left and right hand side show the same model from a different angle: N-
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S and E-W) and on the east and west side of the main access tunnel (c and d respectively), and 

compared the caused shadow to that of my experiments’ network geometry (a; east side of 

Gerstenegg tunnel). The search grid is set once more to a 4km 3D grid space. The model outputs 

demonstrate that the network geometry (a) causes shadow to less areas than (b). That can be 

explained as in case (a) both Gerstenegg and the main access tunnel limit the receivers visibility 

to the west side of the array while in case (b) Gerstenegg causes some shadow to the east of 

the receivers and at the same time the main access tunnel limit the receivers visibility to the 

west. In (b) it seems that the only area that is less affected than in (a) is the area to the southwest 

of the south array. 

Similarly, when the receivers are situated on the east side of the main access tunnel (c), their 

detectability is affected slightly less than if they were on the west side of the same tunnel (d) 

as in both cases the shadow caused to the west of the arrays is of similar impact while in the 

latter case there is some additional shadowing caused to the northeast and the southeast of the 

receivers (influence of the main access). It seems that when the receivers are situated in the 

main access tunnel the area between Gerstenegg and the main access is no longer shadowed as 

when they are placed within Gerstenegg. The area to the west of the main access tunnel is 

always shadowed in all cases tested with minor differences as per the intensity of the effect. 

Therefore, it seems that the location chosen for the arrays to be placed suited the needs of my 

PhD as it provides good coverage to the northeast of Gerstenegg (where Raeterichsboden lake 

lies). My work wold have potentially benefited if further arrays were to be deployed on the 

main access tunnel (to cover the area between Gerstenegg and main access tunnel). This 

modelling is using straight lines with the dimensions of the tunnels but remains an 

approximation of reality, since the tunnels network is much more complicated and caused 

shadows are believed to extend further and impact on the recording capabilities of the sensors. 
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Figure 26: Comparison of shadows for 4 different cases of network geometry. For this amalysis sensors were 

assumed to be placed on the east and west side of the Gerstenegg tunnel (a and b respectively) and on the east 

and west side of the main access tunnel (c and d respectively). The color scale demonstrates how many receivers 

are affected by the shadow caused by Gerstenegg and main access tunnels. 

Further array analysis, using the InSite software, took place to investigate the magnitudes 

threshold that the chosen network configuration would be able to capture. InSite’s analysis 
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tool, that determines magnitude sensitivity, calculates the minimum theoretical moment 

magnitude for an event to be successfully detected at each point in a user-defined monitoring 

space (cube of 4km edge). The analysis uses seismological theory, generalised scaling relations 

and waveform processing principles (e.g. Gibowicz and Kijko, 1994). It is assumed that at least 

four arrival time picks are required to calculate a location and that all sensors have an equal 

noise threshold. The input parameters are the attenuation factor Q = 650, the average crustal 

density Ro = 2800kg/m3, vp = 5.4km/s, and vs=2.9km/s. The default InSite value of unity was 

used for the SNR - lower SNRs would yield lower magnitude sensitivity values. 

The magnitude threshold distribution over the monitoring space is presented in Figure 27 as 

projections of the calculated iso-surfaces, while the inset shows the isosurface of ML-4 

calculated by InSite; all points on the iso-surface are of the same magnitude. The model exhibits 

that the magnitude threshold of up till -3Mw is 0.4km (green shaded), i.e. such small events can 

be detected only in the close proximity of each array. As per previous shadow modelling those 

are the same areas that are affected by the tunnels shadows rendering the detection of such 

magnitudes even more difficult. Events up till -2.30Mw can be detected to a distance of up till 

0.8km around each array and after 1km detectability falls to magnitudes of -1.58 and higher. 

Overall, this magnitude coverage satisfies the needs of my PhD.  

Another topic for discussion is the general deployment area: the microseismicity because of 

the lake heights variations and associated stresses was assumed to occur beneath the reservoir 

and in its exact vicinity. By deploying the sensors on its west side within the tunnels, I, by 

default, undermined the accuracy of locations occurring in the east side of the reservoir. A more 

precise location of events would be feasible provided the deployment of sensors was 

surrounding the lake and the GTS tunnels; i.e. a denser seismic network that included more 

than 8 stations in more than two locations and in various depths/elevations. However, the fact 

that the site is in the Swiss Alps and neither myself nor Nagra’s staff were in position to guard 

or maintain sensors situated outside of Nagra’s jurisdiction (GTS or Gerstenegg tunnels) on a 

permanent basis for such a long time and with less than optimal weather conditions. In addition 

to the above deploying sensors in a location that far away from power and internet availability 

rendered such a scenario non feasible. 
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Figure 27: Model of the performance of the seismic network configuration in regards to its magnitude threshold 

(color scale) as a function of distance. Inset shows the magnitude isosurface of ML-4. 

3.8 Summary 

In this Chapter I have detailed the works undertaken with reference to the seismic network 

deployment, maintenance and operation, pre-processing of acquired data, as well as some 

preliminary investigation of seismic noise which served as a basis of understanding some of 

the problems I had to tackle within my PhD. Although sensor deployment design and sensor 

data cleaning with noise characterisation for micro-seismicity monitoring are not unmapped 

areas, in this PhD they are explored in detail and for an extended period of several years and 

are two of the novelty contributions of this research. 

In particular, it was discussed that the seismic network design depends on the scope of the 

application but, since it influences greatly the localisation of events, the researcher should 

invest time in choosing a seismic configuration that suits their project’s needs. There are always 

going to be limitations in the seismic network design, for instance, in this particular application, 

the available instrumentation consisted of two surface arrays (of three 1-D sensors and one 3-

D sensor each) and a borehole 3-D sensor, while the availability of locations for sensors 

deployment was limited by external constraints such as accessibility and jurisdiction. Because 
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of the borehole sensor’s malfunction the final number of sensors that were used in this project 

were eight while the total number of channels were twelve. 

The pre-processing of the acquired data was also presented, i.e. the transformation of raw data 

to a format that could be read and processed using MATLAB, the conversion of the data from 

counts in velocities, the formation of data series, the corrections of time lags in the start times 

of the hourly records, the conversion of the timeseries from cell to structure arrays.  

A preliminary visual observation of the acquired data was undertaken to allow for an 

understanding of the noise sources that influenced the recordings and check the effectiveness 

of the microseismic monitoring network. Various reoccurring noise signals of different 

frequencies and amplitudes were evident in the recordings. The sources of noise that were 

frequent in the area were related to hydroelectric activity, to construction activities, 

hydrofracking experiments, large seismic events and landslides. The identification of small 

tectonic earthquakes, which were also found in the Swiss Seismic Network database, confirmed 

that the sensors were able to successfully record small seismic events even at long distances. 

The network design analysis demonstrated that the Gerstenegg tunnel is shadowing the area on 

its west and between the two arrays, while the main access tunnel on its west (GTS area). Both 

tunnels act as a barrier, rendering all events occurring in the areas to the west of and between 

the deployed arrays more difficult to be recorded. No shadowing was observed on the east side 

of Gerstenegg tunnel. The tunnels shadowing is expected to affect the recording and 

localisation of events. Further analysis indicated that sensors arrays, provided more were 

available, could be deployed in the main access tunnel to allow for better recordability in the 

area between Gerstenegg and the main access tunnel. The magnitude threshold analysis 

demonstrated that magnitudes of up till -3Mw can be detected only in the close proximity of 

each array (0.4km) which coincides with the area that suffers from the Gerstenegg tunnel’s 

shadowing. At longer distances the detectability falls to magnitudes of -2.30Mw (0.8km) and -

1.58 (after 1km). 

In the following chapter, I am discussing about the research undertaken and the methodology 

followed to detect all recorded events and to determine the onset time of the signals’ phases. 
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Chapter 4 Analysis of recorded microseismic data: 

Event detection 

4.1 Introduction 

After the collection of a vast dataset (each hour of data comprises of 10.8*106 data points for 

all the channels of both surface arrays) in varying background noise conditions, the need for 

automated algorithms that would successfully process such a dataset became evident.  

As per Kinali et al. (2018), the high sensitivity of a microseismic monitoring system is also its 

main caveat. Seismometers record every vibration of the ground that is caused by any type of 

sources, at distances that can extend to tens of kilometres depending on the site conditions and 

the energy emitted by the seismic source. In addition, instrumental self-noise is present at all 

times. As a result, it can be extremely difficult to distinguish between the microseismicity that 

is of interest to a project and everything else. Such circumstances may be less problematic for 

projects such as hydro-fracturing, where the likely location and time of occurrence of 

microseismicity is known a priori. But for the vast majority of applications, this is not the case 

and peaks in ambient noise can be mistakenly regarded as microseismic events. A false increase 

in the recorded frequency of microseismic events will bias project results. Furthermore, manual 

verification of each event will result in significant data processing time, yet neglecting 

verification can lead to other adverse economic impacts; for example, unnecessary road 

closures due to the false triggering of an early warning system for landslides. By contrast, 

relaxing event detection criteria to avoid false alarms can result in excess risk, with 

microseismic events remaining undetected. Monitoring for longer than a couple of days and 
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with a sampling rate between 200 – 250 Hz (a range adequate for the needs of most projects 

requiring microseismic monitoring) leads to vast datasets that are not cost effective for visual 

inspection and require a computational detection approach.  

The following sections of the present chapter are structured as follows: Section 4.2 is a brief 

literature review of available detection algorithms while Section 4.3 further describes the 

existing onset time picking algorithms (i.e. detection algorithms that can be used for accurate 

locations). The methodology used for detection and onset time determination of potential 

seismic events of interest in the present study are then presented in Sections 4.5 and 4.6. 

Sections 4.2 and 4.4 include text published as part of the Kinali et al. (2018) paper. The paper 

presents the NpD algorithm using 3 hours of data and not the full data set of passive seismic 

data acquired between 1st November 2014 and 12th August 2017 which is presented in 

subsection 4.4.5.  

4.2 Event detection literature review 

A number of automatic detection approaches have been developed that work in the time or 

frequency domain or both e.g., Freiberger, 1963; Gibbons and Ringdal, 2006; Goforth and 

Herrin, 1981; Joswig, 1990; Küperkoch et al., 2010; Vaezi and Van Der Baan, 2014, and are 

further discussed as follows.  

4.2.1 Automatic detection in the time domain 

The most widely used event detection algorithm at present is the STA/LTA (Bormann, 2012) 

which operates in the time-domain. The ratio of two moving averages STA/LTA is computed 

continuously at each time t for recorded data xt:  

𝑆𝑇𝐴𝑡 =  
1

𝑁𝑆
∑ 𝑦𝑛
𝑡+𝑁𝑆
𝑛=𝑡          (eq. 1) 

𝐿𝑇𝐴𝑡 =  
1

𝑁𝐿
∑ 𝑦𝑛
𝑡+𝑁𝐿
𝑛=𝑡          (eq. 2) 

where STA is the NS-point Short-Term Average, LTA is the NL-point Long-Term Average and 

the parameter yt denotes a characteristic function (CF) yt = g(xt). The characteristic function 
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CF is chosen so that it enhances any signal changes in the time-series; common CF choices 

include energy (𝑥𝑡
2) (McEvilly and Majer, 1982), absolute value (|xt|) (Swindell and Snell, 

1977) and the envelope function (√𝑥𝑡
2 + 𝑥̅𝑡

2, where 𝑥̅ is the Hilbert transform) (Earle and 

Shearer, 1994), or even higher-order statistics where skewness and kurtosis are calculated in 

the sliding windows (Saragiotis et al., 2002; Küperkoch et al., 2010). The raw data are 

demeaned and then the ratio STA/LTA is compared to a user-selected threshold: when the ratio 

exceeds the user-selected threshold, an event is detected. The end time of the event is defined 

by the time when the ratio falls below a detrigger threshold (also chosen by the user). Ns should 

be chosen approximately equal to the dominant period of the events the algorithm aims to 

trigger. LTA is a measure of background noise variations, so NL should be set to some value 

longer than the period of the lowest frequency seismic signal of interest. The STA, LTA 

windows are usually chosen as non-overlapping (Trnkoczy, 2002).  

A different approach is suggested by Stewart (1977). This method uses a high-pass non-linear 

filtering process, to determine whether a seismometer is operating within acceptable limits of 

noise before its data are accepted to be used. If accepted, the algorithm sets some requirements 

for detection and tentative confirmation in the time domain, i.e. setting different lower bounds 

for the triggering threshold, the SNR; the number of times the waveform exceeds the triggering 

threshold; the consecutive time the waveform stays within the threshold; and the maximum 

amplitude of the waveform once the signal is detected.  

4.2.2 Automatic detection in the frequency domain 

Most algorithms in the frequency domain use Fourier transforms. One of the first 

mathematically based signal detectors is the one proposed by Freiberger (1963) who developed 

the theory of maximum likelihood by applying an approximate comparison of spectral 

densities, based on the Toeplitz approximation forms, for the detection of Gaussian signals in 

Gaussian noise.  

Goforth and Herrin (1981), in order to overcome the challenge of a varying non-normal 

background noise, developed an automatic seismic signal detector based on the Walsh 
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transform, which is a series of rectangular waveforms with amplitudes of +1 or -1, instead of 

the sines and cosines of Fourier. Once the data are filtered in the time domain, segmented in 

overlapping windows and transformed, the Walsh coefficients are assigned a weight such that 

the noise spectrum is whitened and the expected signal is isolated. The values of the weights 

need to be chosen by the analyst, after manual inspection of the appropriate noise segments. At 

each time window, the current sum of the absolute values of the weighted Walsh coefficients 

is compared to a threshold,  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =  𝑉50 + 𝐾( 𝑉75 −  𝑉50),        (eq. 3) 

where 𝑉50 is the median of the distribution of previous 512 values,  𝑉75 is the 75th percentile of 

the distribution of previous values, and K is the arbitrary constant set by operator. If the current 

value exceeds the threshold, it results in a signal detection; if not, the current sum is ranked 

among the previous number of predefined values and the oldest sum is discarded. 

Michael et al. (1982) modified the Goforth and Herrin approach to develop a real-time event 

detection and recording system for the MIT Seismic Network. Their algorithm uses the power 

spectrum to remove the effects of phase shifts and instead of the Walsh coefficients (energy 

spectrum) they use power Walsh coefficients (i.e. the Walsh coefficients are squared and each 

pair is summed). They also add a minimum duration that the coefficients need to be above 

threshold; an event termination criterion; and accept events only if they are correlated by at 

least three stations.  

Vaezi and Van de Baan (2014, 2015) developed an algorithm for the detection of induced 

microseismicity during hydrofracturing. They compared the moving average Power Spectral 

Densities (PSDs) of small segments of their data record to the averaged background noise PSD 

of quiet segments of their data record, resulting in the picking of all signals that stand out in a 

statistical sense from background noise. The PSD of a signal refers to the spectral energy 

distribution per unit time and is simply the representation of the signal in the frequency domain 

(Press et al., 2007), measured in squared magnitude units of the time series data per unit 

frequency. The outcome of this comparison, i.e. the normalized misfit 𝑢𝑡(𝑓), is calculated by 

the following equation (eq.4) and for a clearer depiction of the events, only the positive values 

are kept:  
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𝑢𝑡(𝑓) =  {
𝑃𝑆𝐷𝑛

𝑡 (𝑓)−𝑃𝑆𝐷̅̅ ̅̅ ̅̅ (𝑓)

𝑠𝑡𝑑(𝑓)
, 𝑖𝑓 𝑢𝑡(𝑓) > 1

0                   , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
       (eq. 4) 

where 𝑠𝑡𝑑(𝑓) is the standard deviation at frequency f computed from the PSDs of the noise 

segment 𝑃𝑆𝐷𝑚
′ (𝑓), 𝑃𝑆𝐷𝑛

𝑡(𝑓)are the PSDs of small segments of the original data x(t) estimated 

(eq.5), using rolling (overlapping) windows of predetermined length L, and 𝑃𝑆𝐷̅̅ ̅̅ ̅̅ (𝑓) is the total 

average PSD of the quiet sections of the data x'(t) (eq.6). To isolate only the quiet sections they 

discarded all the absolute amplitudes greater than a multiple of the original record’s root-mean-

square (RMS) amplitude.  

The individual moving average PSDs are estimated using Welch’s modified periodogram 

method as follows: 

𝑃𝑆𝐷𝑛
𝑡(𝑓) =  {

𝑎|∑ 𝑥𝑛(𝑡𝑙)𝜔(𝑡𝑙)𝑒
−𝑗2𝜋𝑓𝑙𝐿

𝑙=1 |
2

𝑓𝑠𝐿𝑈
  𝑖𝑓 𝑓 = 0, 𝑓𝑁𝑦𝑞

2𝑎|∑ 𝑥𝑛(𝑡𝑙)𝜔(𝑡𝑙)𝑒
−𝑗2𝜋𝑓𝑙𝐿

𝑙=1 |
2

𝑓𝑠𝐿𝑈
  𝑖𝑓 0 < 𝑓 < 𝑓𝑁𝑦𝑞

 , 𝑛 =  1, 2, … ,𝑁  (eq. 5) 

where a is a scale factor that accounts for variance reduction which depends on the type of the 

taper w, fNyq is the Nyquist frequency in Hz, fs is the sampling frequency in Hz,  j =√−1 and 

U is the window normalization constant that ensures the modified periodograms are 

asymptotically unbiased and is given by: 𝑈 = 
1

𝐿
∑ 𝜔(𝑡𝑖)

2𝐿
𝑖=1 .   

The average PSD estimate is calculated by averaging the PSD estimates of the quiet data 

record: 

PSD̅̅ ̅̅ ̅(f) =
1

M
∑ PSD′m(f)
M
i=1         (eq. 6) 

where 𝑃𝑆𝐷𝑚
′ (𝑓) denotes the PSD estimate of the mth noise segment as a function of frequency 

f and is given by eq.5 where instead of the original data x(t) I are now using the quiet data 

record x'(t). 

The triggering criterion can either be the summation of the positive misfits (𝑢𝑡(𝑓)) over the 

total number of frequencies and normalized by division with the standard deviation, or the 
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summation of the squared positive misfits over the total number of frequencies normalized by 

division with the standard deviation. When the triggering criterion exceeds a user-selected 

threshold an event is declared. 

Shensa (1977) had developed a methodology to adapt to a dynamic noise environment with a 

variety of (weak) signals with widely different spectra. He computed the PSDs of small 

segments of the data and depending on the relation between noise and signal he developed 3 

algorithms: (a) the average power detector, for signals that exceed noise uniformly over a 

relatively broad frequency index range when both noise and signal are stable; (b) the maximum 

deflection detector, for signals that exceed noise over at least one narrow frequency band; and 

(c) the average deflection detector, for signals that exceed background noise uniformly over a 

relatively wide frequency index range when both signal and noise are unstable. The relevant 

detectors are formed accordingly: 

𝐷𝑒𝑡𝑎  =
1

𝑁
∑ 𝑃𝑆𝐷𝑖(𝑘)
𝑛2
𝑘=𝑛1

−𝜇

𝜎
, 𝑁 =  𝑛2 − 𝑛1,      (eq. 7) 

𝐷𝑒𝑡𝑏  = max [
𝑃𝑖(𝑘)−𝜇(𝑘)

𝜎(𝑘)
 (𝑘 = 0),

𝑃𝑖(𝑘)−𝜇(𝑘)

𝜎(𝑘)
(𝑘 = 1),… ,

𝑃𝑖(𝑘)−𝜇(𝑘)

𝜎(𝑘)
 (𝑘 = 𝑁)] (eq. 8) 

𝐷𝑒𝑡𝑐  =
1

𝑁
∑

𝑃𝑖(𝑘)−𝜇(𝑘)

𝜎(𝑘)
 ,

𝑛2
𝑘=𝑛1

𝑁 = 𝑛2 − 𝑛1,      (eq. 9) 

where index range 𝑛 1 ≤  𝑘 ≤  𝑛2, μ and σ the mean and standard deviation, respectively. The 

parameters μ and σ must be estimated from noise-only data sections (i.e. no signal present). 

4.2.3 Automatic detection in the time-frequency domain 

Algorithms that work in the time-frequency domain are also common. Joswig (1990) proposed 

a pattern recognition technique using characteristic event features in spectrograms. His 

algorithm defines a knowledge base of images of the typical earthquakes and noise bursts in 

the time-frequency domain, using Fourier transforms, each of which is defined by a matrix and 

a scaling factor (to account for magnitude differences). The sonogram-detector matches 

patterns for the events that are above a user-defined set of thresholds and provides one message 

per detected event stating the detection time, the maximum pattern fit and maximum amplitude 

of the detected event.  
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Another pattern recognition technique was proposed by Bodenstain and Praetorius (1977) 

aimed at the automatic detection of electroencephalogram signals (0.5 – 30Hz signals). 

According to their research, the data record can be segmented into elementary patterns (e.g. 

seismic signals and transients) using linear predictive filtering, leading to the extraction of 

features (power spectra and the signal’s time structure) which in turn can be combined 

(clustering procedures, classification) so that they represent the seismic signal as a whole. 

During the last years, wavelet transforms have increasingly been preferred over Fourier 

transforms. The main reason being the simultaneous time- and frequency-domain localization 

of the wavelets, in contrast to the only frequency-domain localization of the standard Fourier 

transform, or the frequency-time resolution trade-off of the Short-time Fourier transform which 

depends on the width of the window function used (Ching et al., 2004; Sifuzzaman et al., 2009). 

Anant and Dowla (1997) use polarization and amplitude information contained in the wavelet 

transform coefficients of the signals to construct "locator" functions that identify the P and S 

arrivals. High-pass and low-pass filters are used (wavelet and scaling filters respectively) which 

must belong to a perfect reconstruction filter bank. 

4.2.4 Discussion on detection algorithms 

All detection algorithms have advantages and shortcomings with no algorithm being clearly 

optimal under all source, receiver, path and noise conditions (Withers et al., 1998). The most 

widely used event detection algorithm at present is the STA/LTA (Bormann, 2012) which 

operates in the time-domain. STA/LTA is an excellent onset time detector for adequately high 

SNR events; a condition that may not be true in the case of weak microseismic events. Also, 

the method can lead to false triggers unless the data used are optimally filtered to minimize the 

effect of noise; this is difficult to achieve in a varying noise background. In fact, in all 

algorithms where bandpass filtering is part of the detection process (STA/LTA or Goforth’s 

and Herrin’s algorithm), some kind of a priori knowledge on the expected signals is assumed. 

The choice of the filter to be used is important, as inappropriate filtering can result in the 

removal of useful information from the data.  
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The method by Vaezi and Van de Baan (2014) was found to outperform the STA/LTA 

technique by detecting a higher number of weak events while keeping the number of false 

alarms at a reasonable level (Vaezi and Van Der Baan, 2015). It requires, however, some pre-

processing where all noise bursts or transients that may exist in the data are removed. It also 

assumes stationary noise that follows a normal distribution and, therefore, employs the mean 

and standard deviation as statistical tools. Although this might be a good approximation for 

recordings with high SNR, it is not the case for seismic data with low SNR. In such cases, the 

average PSD is not representative of the central tendency of noise and as such any detection 

criteria based on deviation from the mean could lead to a large number of ‘false’ detections. 

This is particularly important where long, continuous recordings are available as it can 

significantly increase the processing time and bias the results. 

4.3 Onset time picking literature review 

There is a number of onset time picking methods in the literature and they can be classified in 

categories as single-level methods (e.g., window-based: energy-ratio methods and non-window 

based: Akaike information criterion), multilevel or array based methods (e.g., crosscorrelation 

approaches), and hybrid methods that combine a number of single-level methods (e.g., 

Akazawa’s method). Some detection methods are also used for onset time picking. Some of 

these onset time picking methods are presented as follows. 

Representative single – level window based methods are STA/LTA (discussed in the previous 

subsection) and modified energy ratio (MER) method introduced by Han et al. (2009). MER 

method is defined as the ratio of energies of the window that follows a test point over that of 

the preceding window. Both windows are of equal length. Both methods rely on ratio 

calculations, differing only on the positions and lengths of windows and ratios used for the first 

arrival determination. For the STA/LTA method, the first arrival times are picked at the rising 

slope maximum of the STA/LTA ratio while for the MER method, at the MER peak.  

Modified Coppens’s method (MCM), as introduced by Sabbione and Velis (2010), calculates 

the energy ratio of the seismic trace within two nested windows: a fixed, leading and selected 

a priori window and an increasing with time window. MCM assumes the window preceding 
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the event includes only noise while the one that follows includes noise and signal. Sabbione 

and Velis use edge-preserving smoothing (EPS) as part of their methodology and determine 

the first-break onset of the signal as the maximum derivative of the filtered energy ratio. 

A widely used non-window based methodology for onset time determination is presented by 

Maeda (1985) who uses the Akaike Information Criterion (AIC; Akaike (1974). AIC is a 

technique that estimates the likelihood of a model to predict/estimate the future values. A good 

model is the one that has minimum AIC among all the other models. Maeda computes AIC 

directly from the time series: 𝐴𝐼𝐶 (𝑘) = 𝑘 log 𝑣𝑎𝑟{𝑥(1, 𝑘)} + (𝑁 − 𝑘 − 1) log 𝑣𝑎𝑟{𝑥(𝑘 +

1, 𝑁)}, where k ranges through all samples of the input microseismic waveform and 𝑣𝑎𝑟{𝑥}is 

the variance function and considers as onset time arrival the position that AIC is minimised.  

Higher order statistics (kurtosis) can be another effective tool in the signal identification 

process with the assumption that the noise in the input data is close to a Gaussian distribution 

and the signal is non-Gaussian. Saragiotis et al. (PAI-K, 2002, 2004) propose a single level 

non-window based algorithm where the characteristic curve is formed from the kurtosis values 

on a sliding window for the entire input waveform length and the arrival time is picked on the 

maximum slope of the characteristic kurtosis curve. The arrival times are picked on the 

maximum slope of the local maxima in the corresponding P- and S-wave intervals. 

Array-based methods such as the crosscorrelation method presented by Irving et al. (2007) 

require a known, manually picked arrival time at a reference (or pilot) waveform. All receiver 

levels in the array are then crosscorrelated with the pilot waveform and aligned using the lag 

value. The stacked aligned waveforms form a new reference waveform which is then again 

crosscorrelated with all waveforms and the process is repeated until the alignment matches 

user’s specifications.  

Another crosscorrelation workflow is presented by De Meersman et al. (2009). They use a 

location software to coarsely identify the P- and S- phases of microseismic events, group them 

in multiplet groups, and then apply cross-correlation in each multiplet to refine the picking of 

the phases. Multiplets are signals originating from the same fault and by the same mechanism 

(Geller and Mueller, 1980). Therefore, they have similar waveforms and, once identified, can 
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be used to more accurately obtain the location. Within each multiplet, waveforms are aligned, 

using the known picks and are rescaled to equalize to the pre-event noise level. A really small 

pilot waveform window is then used, centred on the picked arrival and correlated with all 

waveforms to update the time-shift. The maxima of the crosscorrelation functions indicate the 

corrections needed to optimally realign the waveforms in relation to the pilot waveform. This 

process is repeated until the time lag converges to a value that is less than a user-defined 

threshold value. 

Numerous hybrid approaches exist that merge single-level algorithms in different 

combinations. Anant and Dowla (1997) combine a wavelet transform method with polarization 

attributes to pick onset time arrivals (AD’s method). In particular they compute the wavelet 

decomposition of single station, three component seismograms and, for each component and 

scale, the eigenvalues from the covariance matrix generated on a sliding window. Using the 

largest and intermediate eigenvalues Anant and Dowla estimate a rectilinearity function (a 

metric that measures the degree of linear polarization of a wave) for each scale. Then, a 

composite rectilinearity function is developed, which is an interscale comparison of 

rectilinearity, and the position that it reaches its maximum is denoted as the P arrival time.  

A hybrid approach that combines the Akaike Information Criterion with autoregressive series 

is the method presented by Leonard (2000). His AIC algorithm is based on the concept that 

microseismic signals are nonstationary and can be approximated by dividing the waveform into 

locally stationary segments, where each segment is treated as an autoregressive process. The 

order of the AR process required to resolve the detail of the spectra is higher for a complex 

signal than for the preceding noise (Leonard and Kennett, 1999). He initially bandpass filters 

the data and then calculates a foreword AR process before the beginning of the signal (just 

noise) and applies an error prediction filter to the whole data window which removes this noise. 

The inverse process then follows: an AR model of the signal plus noise, based on a data section 

starting after the initial pick estimate, is calculated and an error prediction filter is applied to 

the data in the opposite direction. This removes the signal from the data. The joint AIC is 

calculated from the two AR-filtered time series and its minima is considered the onset time. 

The AIC function provides a measure of the fit of the autoregressive model. The optimal 

separation of the two stationary time series (noise and signal plus noise) is indicated by the 
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time index associated with the minimum value of AIC (Ahmed and Sharma, 2007; Tronicke, 

2007).  

Zhang et al. (2003) (ZTR’s method) aims to detect singularity with multiscale wavelet analysis 

and application of AIC. The methodology is based on the idea that while significant features 

in the signal are retained over several scales (of the wavelet decomposition), random noise or 

other incoherent features disappear. Zhang’s method applies a soft thresholding scheme, 

instead of filtering, to reduce noise in the seismogram, and then decomposes the wavelet and 

computes AIC on each scale. A preliminary arrival time is declared on scale two of the 

decomposition only if the AIC values for all scales are close to each other and inside a user-

specified interval. AIC is then reapplied on the data components in a window surrounding the 

preliminary pick and the arrival time is denoted as the time AIC reaches its minimum. 

Another window-based hybrid method is presented by Akram et al. (2013) and combines two 

energy ratios to enhance signal coherency and improve confidence in arrival time picking of 

low S/N microseismic data (Joint Energy Ratio (JER) method). At the i-th time sample the 

energy ratio is defined as 𝐸𝑅{𝑖} =
∑ 𝑥𝑗

2𝑖+𝑤
𝑗=𝑖

∑ 𝑥𝑗
2𝑖

𝑗=𝑖−𝑤

 and the ratio of the peak eigenvalues (PER) as 

𝑃𝐸𝑅{𝑖} =
𝜆1𝐴

𝜆1𝐵
, where 𝜆1𝐴 and 𝜆1𝐵 are the peak eigenvalues in windows after and before the i-

th sample, respectively. This is followed by the computation of STA/LTA and JER at the ith 

time sample: 𝐽𝐸𝑅{𝑖} = 𝑃𝐸𝑅𝑛𝑜𝑟𝑚{𝑖}𝑆𝐿𝑛𝑜𝑟𝑚{𝑖}, where 𝑃𝐸𝑅𝑛𝑜𝑟𝑚and 𝑆𝐿𝑛𝑜𝑟𝑚 are PER and 

STA/LTA normalized by their respective maximum value. The onset time arrival corresponds 

to the JER curve local maxima. The JER algorithm combined with AIC, for the latter to work 

more efficiently, is presented as a methodology by Akram (2014; JER-AIC).  

Tan et al. (2014) present a joint STA/LTA-polarization-AIC method (TYFH’s method). They 

compute the STA/LTA ratio for the input data and the degree of polarization in a sliding time 

window. Another function is computed from the degree of polarisation according to Moriya 

(2008; polarisation function), whose local maxima indicates the arrival time. Both STA/LTA 

and polarisation are normalised and their product is denoted as a new picking function. 

Likelihood functions of the autoregressive series of the waveform are computed and 
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normalised and finally multiplied with the picking function. The maximum of the resulting 

response curve is considered the signal’s arrival time.  

Akazawa’s method (2004) combines STA/LTA and AIC to pick the onset time arrival. He 

computes a cumulative envelope function of the input waveform and then STA/LTA on the 

function. Two rounds of AIC application then follow: (i) firstly, AIC is applied on the envelope 

function in the interval between the first index and the one associated with the maximum 

envelope value (Emax) and then (ii) AIC is repeated on the shorter interval between the index 

associated with the minimum value of the previous AIC application and the index Emax. The 

time index associated with the minimum value of the 2nd application of AIC is considered as 

the arrival time.  

Hybrid methods combining high order statistics and other single level methods are documented 

by many researchers. For instance, Galiana-Merino et al. (2008) pick P-wave arrivals using a 

kurtosis-based criterion in the stationary wavelet domain. Li et al. (2014) propose a short-term 

kurtosis and long-term kurtosis ratio (S/L-Kurt) based approach. The arrival times are picked 

on the maximum slope of the local maxima in the corresponding P- and S-wave intervals.  

More sophisticated methods of onset time picking are the neural network approaches. Dai and 

MacBeth (1995) propose an artificial neural network (ANN) according to which they use the 

vector modulus of three-component seismic recordings as the network input and employ a 

discriminant function (the trained ANN output) to define the onset time arrival. They use nine 

P waves and noise segments to train the ANN. The ANN can be improved by adding or 

adjusting the training data. Wang and Teng (1995) propose two variations of ANN for real-

time earthquake detection: type A (AND-A) which uses the recursive STA/LTA time series as 

input data, and type B (AND-B) which uses moving window spectrograms. Zhao and Takano 

(1999) present an ANN approach for broadband seismic detection which combines the results 

from three backpropagation neural networks: a long, a mid- and a short term.  

4.3.1 Discussion on onset time picking algorithms 

There is a plethora of studies that have attempted to identify the best onset time picking 

algorithm. Mitchell et al. (1998) compare selected trigger algorithms for automated global 
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seismic phase and event detection and conclude that no algorithm is clearly optimal under all 

source, receiver, path and noise conditions. Sharma et al. (2010) also reach a similar 

conclusion, i.e. out of the presently known and used real time trigger algorithms, from the very 

simple amplitude threshold type to the sophisticated pattern recognition, adaptive methods and 

neural network based approaches, none of these perform optimally on all data sets, but that 

there are some, which provide more accurate and precise picks. 

The reason why none of the onset time picking algorithms seem to perform optimally in all 

cases lies on two facts: that (i) all algorithms present dependencies on specific parameters 

depending on the general category they belong to and (ii) the signals that need to be picked 

may vary greatly in waveform shape, amplitudes, coherency due to the existence of noise and 

duration.  

In respect to the individual algorithms parameters, the accuracy of the window based methods 

for instance, i.e. STA/LTA, depends on the length of the time window used and the predefined 

user-set threshold (Trnkoczy, 1999). With MER and MCM, which are again window-based, 

energy ratio methods, the results are still affected by the length of the time window but also by 

the shape of the waveform. In all three algorithms the window size should be greater than a 

few periods of the microseismic signal to avoid false picks that arise from noise fluctuations 

and to pick the signal changes properly. A window size of approximately (2-3)𝜏𝑑𝑜𝑚, where 

𝜏𝑑𝑜𝑚 is the apparent dominant period of the signal, is recommended for STA/LTA and MER 

while for MCM (1-3)𝜏𝑑𝑜𝑚 (Akram and Eaton, 2016). LTA window should be between 5 and 

10 times the size of the STA window for optimal performance. MCM requires additionally an 

EPS filter and the window that is used is not a fixed length one as in the previous cases. JER 

algorithm depends on window size parameters (since part of its methodology is based on 

STA/LTA) and on the window size for peak eigenvalue ratio (which is recommended to be 

approximately (2-3)𝜏𝑑𝑜𝑚. As expected, single level non-window based algorithms such as the 

kurtosis-based algorithms (PAI-K and S/L Kurt) have improved accuracy as compared to 

STA/LTA.  
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Crosscorrelation methods, such as IKK’s method, are semi-automated because they require the 

user’s selection of the pilot traces and of the window size and can be cumbersome for large 

data sets. The choice of the optimal pilot waveform is critical for the success of a 

crosscorrelation method (Bagaini, 2005) and it can be (i) the waveform with a high SNR, (ii) a 

synthetic waveform produced from the stacking of all receivers’ waveforms, or (iii) it can 

iteratively be updated each time and substituted by the waveform with the highest SNR. The 

correlation window size in cases of large deviations in the estimations of the initial picks should 

be ≤10𝜏𝑑𝑜𝑚 while in cases of small deviations it should be chosen as≤3𝜏𝑑𝑜𝑚.  

AIC along with an autoregressive model requires the choosing of the model order, which is 

estimated by trial and error. The algorithm also requires picking on rotated data or initial 

estimates of the arrival windows to perform optimally (Zhang et al., 2003). Because the AIC 

picks are based on the global minimum of the checked data window, this should be a small 

time interval containing the arrival of one signal only; in cases of multiple arrivals the algorithm 

underperforms (Zhang et al, 2003).  

Algorithms that are based on wavelets require selection of a single wavelet function and a 

number of decomposition levels and are computationally expensive because of the latter. ZTR 

is based on the interactive selection of the wavelets function and decomposition levels needed 

and the window size (Zhang et al, 2003).   

Real time microseismic analysis requires algorithms that combine simplicity, computational 

speed and enough precision to reach meaningful locations of events. That is the reason why the 

most popular algorithms are STA/LTA and MER. In post processing scenarios and in the times 

we live in that processors have made data processing a much easier task, precision and a small 

number of parameters are a priority. In particular in the present study that aims to analyse real 

field microseismic data I chose to rely on the findings from the comparative study by Akram 

and Eaton (2016). According to their research, statistical, hybrid, and multilevel 

crosscorrelation methods are more efficient in terms of accuracy and precision, however, the 

performance of the algorithms is not found to be consistent between the field data and the 

synthetic data records comparison. For instance, S/L-Kurt outperforms the PAI-K algorithm 

on field data, but not on pseudo-synthetic data; this is attributed by the authors to the weak P-

waves and complex waveforms of the field data.  
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In Figure 28 the percentages of pick errors within a [-2, 2] ms error range are illustrated for 14 

different algorithms and for field microseismic three component data. The pick errors are 

obtained by subtracting the manual picks from the automatic picks. According to the pick error 

pie charts the best performing algorithms are Irving’s method, Akazawa’s method, JER-AIC, 

ZTR’s method and S/L Kurt.  Lesson learnt from this research is to enhance the S/N of the data 

using noise reduction techniques, such as wavelet-based denoising approaches. Akram and 

Eaton also recommend that an interactive quality-control process should follow any automatic 

picking workflow to ensure the quality of arrival-time picks.  

 

Figure 28: Figure adapted from Akram and Eaton (2016) paper, demonstrating the performance of various 

algorithms in picking P-arrivals on field data. According to the pick error pie charts in the [−2 ms, 2 ms] error 

interval Irving‘s method (14%), Akazawa’s method (12%), JER-AIC (14%), ZTR’s method (16%), and S/L-Kurt 

(12%) perform better than the other methods that were tested. 

4.4 Event detection in the present study 

For the event detection in the present study a new algorithm is proposed. This is partly based 

on the observation that microseismic events have been found to represent stronger spectral 

content over a frequency band that depends on the nature of the event, than that of background 

noise (Vaezi and Van Der Baan, 2014). According to this, a microseismic event can be regarded 

as an outlier, i.e. a data value or values that are outwith an expected range which represents the 

noise. The challenge is to define the upper bound of this range when no a priori knowledge of 

the expected signal (in terms of amplitude and frequency content) is available. 
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In statistical analyses, for populations that are normally distributed, the detection of outliers is 

usually based on the 3σ criterion, where σ is the standard deviation of the data (Barnett and 

Lewis, 1994). Any values that are outwith the ±3σ range are considered outliers. This range 

includes 99.7% of the data. For populations that are not normally distributed though, this 

criterion could lead to erroneous results as the mean is not necessarily the best quantity to 

describe the central tendency of the data. Even if the PSD values are indeed normally 

distributed for one hour of data, it does not guarantee that this will be the case for the full 

duration of the data set. A robust method for the characterization of the background noise and 

the determination of an upper bound for the noise PSD value is required. 

4.4.1 Spectral characterisation of background noise 

Background seismic noise can result from numerous sources: natural perturbations, e.g. tides, 

tectonics, seasonal changes, etc., and man-made perturbations. Perturbations can have a 

periodic or transient nature; their durations may differ from instantaneous bursts to elevated 

noise that lasts for hours, days or even months; in the case of seismic arrays, noise amplitudes 

may vary between seismometers at different locations. Investigations of the seismic noise in 

hydrofracking sites have shown that noise has nonstationary properties, correlated in both time 

and space (e.g. Chambers et al. (2010)). Despite this, most detection algorithms assume 

normality for the noise distribution (e.g., Vaezi and Van der Baan (2014) and (2015)).  

The following methodology allows for the determination of a characteristic level of 

background noise in the frequency domain through examination of the statistical distribution 

of its PSD spectrum. First, I determine whether the background noise followed a normal 

distribution in order to choose appropriate statistics and then check if there are significant 

temporal or spatial variations in background noise. Knowing the distribution allows for the 

determination of the appropriate statistics, i.e. parametric or non-parametric, to be used in 

further analysis.  

I therefore compute the individual PSDs for Nw non-overlapping (to ensure that the data 

between segments are statistically independent) segments of duration tl for the frequency range 

0 - Nyquist frequency, fNyq using the Welch’s modified method (Welch (1967)). The PSD is 

calculated at discrete frequencies within this range. The total duration of the data set is then 
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Nw×tl. In general, the duration of an individual segment should include at least two full cycles 

of the expected signal. I suggest a duration of 0.5 to 2 seconds is adequate for microseismicity 

due to shear failure (Obert and Duvall, 1967). For research on other types of microseismic 

events, such as those induced during a landslide, segments with longer durations are 

recommended. Upon completion of the PSD calculations for each individual segment, there 

are Nw PSD values for each discrete frequency in the range 0 - fNyq. To determine normality in 

the PSD values for a specific frequency, graphical methods, i.e. histograms, probability plots 

and boxplots, can be used. An alternative to graphical methods are normality tests such as 

Shapiro-Wilk test S-W (Razali and Wah, 2011) and Kolmogorov-Smirnov K-S test (Massey, 

1951).  

If the normality check results in normally distributed PSD values for each frequency of the 

PSD spectrum, then a mean PSD value and a standard deviation (σ) for each specific frequency 

can be calculated. The Noise PSD (i.e. the characteristic upper bound) value for each individual 

frequency can then be specified by applying the ± 3σ criterion or any other suitable combination 

between the mean and the standard deviation as an upper threshold, e.g. mean ± σ. 

If the normality testing reveals a non-normal distribution, an upper bound for the background 

noise can be determined using non-parametric statistics, i.e. percentiles. I recommend that a 

high percentile, between 75 and 90, is chosen, based on the 3σ criterion. The Noise PSD is then 

defined by the chosen percentile PSD value at each discrete frequency f. 

As discussed, to determine appropriate statistics for the analysis I first assess the assumption 

of normality for the distributions of all PSD values for the frequencies within the interval 0 – 

125 Hz. I compute the PSDs, for all non-overlapping 2 second time windows within quiet hours 

at the frequency range (0-125 Hz). Hours outside of the GTS working hours, during which no 

tectonic events were reported by the Swiss Seismological Service catalogue 

(public.geo.admin.ch and swisstopo, n.d.), are randomly chosen to be used for this analysis. To 

determine if random samples of independent PSD observations are normally distributed, 

different graphical methods (histograms, probability plots and boxplots) and the Shapiro-Wilk 

test S-W (Razali (2011)) and Kolmogorov-Smirnov K-S test (Massey (1951)), were applied. 

Here I present indicatively, random hours within 04/11/2014 and 16/05/2015. Both S-W and 
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K-S tests reject the null hypothesis of normality in all cases checked (p<0.05). In fact, the noise 

PSD histograms are negatively skewed with positive kurtosis; examples for the frequencies of 

30 and 85 Hz for the vertical component of the 3-component sensor in the North and of the 

South Array, located approximately 1km apart, are presented in Figure 29a and 2b respectively. 

The histograms are clearly not derived from normally distributed data, hence non-parametric 

statistics for noise characterization are appropriate. Also, the histograms for each sensor are 

different, hence background noise at each sensor is not the same. Figure 29a and 2b also show 

the two Noise PSDs derived for the same hour, using a characteristic upper bound of the 75th 

percentile. The value of the 75th percentile for each frequency and how this is related to the 

noise PSD is clearly annotated on the figure. 

 

Figure 29: Calculation of the Noise PSD for one hour of data recorded by the vertical component of the 3-

component seismometer of (a) the North and (b) the South array. The histograms of the PSD values at 

frequencies 30 Hz and 85 Hz and the value of a characteristic upper bound (here the 75th percentile) are shown 

as an example. These values are then used as the Noise PSD values at 30 Hz and 85 Hz frequencies, 

respectively. The values of the characteristic upper bound for all frequencies constitute the Noise PSD (bottom 

plots in (a) and (b)). All histograms are for data from the same day and hour. 

(a) 

(b) 



Kinali M. PhD Thesis  University of Strathclyde 

79 

 

In Figure 30 we observe examples of the PSDs plotted against the frequency range used for the 

temporal and spatial comparisons of the background noise. The temporal subpart is composed 

of upper Noise envelopes of different hours for one of the seismometers, while the spatial 

subpart comprises of upper Noise envelopes of different seismometers. Just by visual 

observation of the Figure 30a it is evident that the noise is different not only for different days 

but also for different hours within the same day. As it concerns the spatial variation, Figure 30b 

shows the PSD spectrum of one hour of data obtained from the seismometers of the North and 

South array. It can be seen that the spectra differ even for the seismometers of the same array 

(distances between adjacent sensors less than 50 m). 

 

Figure 30: (a) Temporal variation of background noise and (b) spatial variation of background noise 

For the temporal subpart I perform an observational study for 4 independent time intervals (TI) 

(TI 1:4, see inset of Figure 30a). TI1 is the Noise envelope for hour 15:00-16:00 on the 

04/11/2014 (working hour), TI2 for hour 21:00-22:00 on the same day (out of working hours, 

diurnal variation), TI3 for hour 15:00-16:00 (same as TI1) on the 05/11/2014 (monthly 

variation) and TI4 for hour 15:00-16:00 (again same hour) on the 16/05/2015 (annual 
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variation). For the spatial subpart a cross-sectional study for 3 independent TIs (TI 1:3, see 

inset of Figure 30b). TI1 is the Noise envelope for a vertical seismometer of the North array 

for hour 15:00-16:00 on the 04/11/2014, TI2 is for a vertical seismometer of the South array 

(temporal variation between arrays) while TI3 is the Noise envelope for the 3D vertical 

seismometer of the South array (temporal variation between different sensors within one array).  

At both temporal and spatial analysis subparts the Kruskal-Wallis test (Chan and Walmsley, 

1997) is applied. In both the temporal and spatial analysis the [medians (Q1, Q3)] are found to 

be significantly different between TIs at the level of significance 0.05 (see Table 4 for the 

descriptive statistics of each subpart).  

Table 4: Descriptive statistics for temporal and spatial subparts of nonparametric analysis 

 Median Q1 Q3 

 Temporal subpart 

TI1 -175.24 -179.32 -171.46 

TI2 -175.26 -179.14 -171.62 

TI3 -181.14 -183.63 -165.34 

TI4 -179.89 -182.17 -175.94 

 Spatial subpart 

TI1 -179.16 -181.54 -173.43 

TI2 -175.24 -179.32 -171.46 

TI3 -172.56 -177.08 -168.62 

 

This analysis of the background noise demonstrate extremely large, highly unpredictable 

variations in background noise both between sensors and between consecutive hours/days on 

a single sensor. No repeatable pattern are determined. 
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4.4.2 The NpD event detection algorithm 

The NpD event detection algorithm (Non-parametric detection) enables microseismic events 

to be discriminated without any prior filtering of the data.  

The algorithm is an alternative detection approach for data sets with low SNR. It is based in 

the frequency domain by searching and detecting any changes in the PSD spectrum of the data 

recordings compared to the Noise PSD. 

The algorithm is described on the basis of continuous recordings 𝑥(𝑡) of any duration, though 

1-hour durations provide computational and time efficiency. The algorithm is executed in two 

Steps in order to minimize the computational time required. At the first step, (Step 1) a scan is 

performed to identify time segments that could potentially contain a microseismic event (or 

any other signal of interest in the more general case). Only those time segments that are picked 

in Step 1 are further investigated to detect potential microseismicity, or rejected altogether. The 

procedure is demonstrated in the schematic in Figure 31 and described in detail below: 
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Figure 31: Schematic demonstrating NpD methodology 

 

4.4.2.1 Step 1- Calculation of the excess energy over a continuous data record 

Following the background noise spectral characterization methodology described in the section 

4.4.1, the Noise PSD for each data record 𝑥(𝑡) is calculated. The individual time segment 

duration tl to which the data record is divided, is chosen large enough to be able to 

accommodate the energy of a microseismic event or a representative energy section of a long-

Step 1 

Step 2 
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period long-duration event (Das and Zoback, 2011) whilst at the same time small enough to be 

able to pick closely-spaced events. It is not necessary for the NpD algorithm to include full 

cycles of the expected signal. 

Next, the Noise PSD is subtracted from the PSD of each individual time segment forming a set 

of differences. Within each one of the Nw individual time segments, only the positive 

differences are kept and summed. This sum is termed excess energy which, for each individual 

time segment starting at time t, is given by:  

𝑃𝑆𝐷_𝑒𝑥𝑐𝑒𝑠𝑠𝑛
𝑡 = {

∑ (𝑃𝑆𝐷𝑛
𝑡 (𝑓) − 𝑁𝑜𝑖𝑠𝑒 𝑃𝑆𝐷(𝑓))

𝑁𝑦𝑞
𝑓=0 , 𝑖𝑓 𝑃𝑆𝐷𝑛

𝑡 (𝑓) − 𝑁𝑜𝑖𝑠𝑒 𝑃𝑆𝐷(𝑓) > 0

0                            ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          
,       (eq. 10)

  

where 𝑛 = 1,2, . . , 𝑁𝑤 

The total number of non-zero only, excess energy values, described here as N1, is equal to or 

less than the number Nw of the individual time segments that the data record is split to. The 

results of this process can be graphically presented as a scatterplot with each point’s 

coordinates being pairs of (PSD_excessn
t, t), with t being the start time of the nth individual 

time segment.  

Not all N1 excess energy values are accepted. In data records with highly variable background 

noise, the detection procedure described so far might result in a number of incorrect detections 

that do not correspond to events. In order to minimize this possibility, I introduce a threshold 

value and only accept those (PSD_excessn
t, t) pairs for which the excess energy is above this 

threshold.  

The threshold is determined based on the statistical properties of the excess energy values over 

the duration of the data record analysed; more specifically, the first (Q1) and third quartiles 

(Q3) of the excess energy values. I then define the threshold value as: 

Threshold = Q3 + 0.5×IQR,               (eq. 11) 

where IQR = Q3 – Q1. 
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For the detection of outliers using the quartile values, a commonly used threshold is given by 

Q3 + 1.5×IQR, with the 1.5 factor justified by the standard normal distribution and leading to 

a probability of 99.3% for correctly detecting no outliers (Sun and Genton (2012)). I adopt the 

value 0.5 as a more conservative threshold. 

Only N2 (out of the total N1) excess energy values are eventually above the Threshold and these 

are processed in the next Step of the analysis (Step 2). This reduces the calculation time 

significantly. 

4.4.2.2 Step 2 - Calculation of the excess energy over a local time window 

Step 2 is exactly the same as Step 1, but now the Noise PSD refers to a local time window 

rather than the duration of the full data record 𝑥(𝑡). This local time window, has a 

predetermined length and is centred around the starting time t of each of the N2 individual time 

segments that fulfilled the criteria of Step 1. The total number of local time windows used in 

Step 2 is N2 and as a result the methodology of Step 1 is repeated N2 times in Step 2: A Noise 

PSD and then the excess energy and Threshold are calculated for each one of the N2 local time 

windows as described previously.  

The times corresponding to the excess energy values that are higher than the Threshold for each 

of the local time windows in Step 2 constitute the approximate times where a potential event 

occurred. 

4.4.3 Detected events: Microseismicity or local noise? 

A detected potential event from Step 2 could still represent local noise, e.g. steps, drilling noise 

or even an instrumental glitch. This possibility can be minimized by combining the NpD results 

from multiple seismometers, for example, from a whole array (voting scheme; Trnkoczy 

(1999)). A real microseismic event, irrespectively of how small it is, should be recorded by 

neighbouring seismometers. This is not the case for a local noise burst that is usually recorded 

by the seismometer closest to it, nor for a mechanical glitch.  
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The number of seismometers that are required to have recorded the same event depends on the 

application and the distance between them. A time delay between seismometers for the same 

event should also be considered. 

To avoid having multiple true positives (i.e. correctly identified events) corresponding to 

different phases of the same event (i.e. different peaks in the same microseismic waveform), I 

decided to ‘clean-up’ consecutive events that are detected in consecutive PSD time segments. 

Consequently, only the first arrival from the consecutives is considered a trigger. This decision 

was verified during a sensitivity analysis for several hours of data, to ensure that it does not 

result in missed true positives.  

4.4.4 Demonstration of efficiency of the NpD algorithm 

Three hours of microseismic data recordings from the North array over two consecutive days 

are chosen to test the sensitivity of the algorithm to two input parameters: the percentile used 

for the calculations of the Noise PSD (Step 1) and the length of the local time window (in Step 

2): Hour 1: 15/03/2016   18:00 - 19:00 (UTC); Hour 2: 15/03/2016   19:00 - 20:00 (UTC); and 

Hour 3: 16/03/2016   05:00 - 06:00 (UTC). 

Hours 1 and 2 are chosen because after visual inspection were found to contain a number of 

potential microseismic events. Hour 3 is chosen as a ‘quiet hour’ with no events visually 

confirmed. I located a random selection of the visually observed events to confirm that they 

are indeed events occurring in the surrounding area (within 8 km from the arrays). Three of 

them were subsequently found in the Swiss Seismological Service catalogue 

(http://www.seismo.ethz.ch/en/earthquakes/switzerland/all-earthquakes/), having magnitudes 

down to ML -0.6. 

The visual inspection took place prior to applying the NpD algorithm. For the visual inspection, 

a bandstop, bidirectional two-pole Butterworth filter was applied to all Hours to remove the 

AC effect (the arrays were connected to the mains for power supply), as well as a high-pass 2 

Hz filter to suppress ambient noise. This was only done for the purpose of visually picking 

potential events. For the NpD algorithm I used raw data.  

http://www.seismo.ethz.ch/en/earthquakes/switzerland/all-earthquakes/
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Figure 32 and Figure 33 show plots of the filtered waveforms of Hours 1 and 2. The vertical 

lines above the waveforms indicate the visually observed events that are expected to be 

detected by the algorithm. I then apply the NpD algorithm for various combinations of 

percentiles within the range 75 – 95 (for the calculation of the Noise PSD) and local time 

window lengths. Table 5 and Table 6 show the best outputs from the sensitivity analyses for 

these two hours, for each of the arrays individually. The number of the visually observed events 

is represented by the Actual no of events parameter. The number of events that the algorithm 

detects is represented by the Detected events parameter. Those events amongst the detected 

events that are also within the actual no of events, i.e. visually observed, are the True positives. 

The ratios 𝑅1 = 
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 𝑒𝑣𝑒𝑛𝑡𝑠 ∙ 100% and 𝑅2 =  

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑎𝑐𝑡𝑢𝑎𝑙 𝑛𝑜 𝑜𝑓
 𝑒𝑣𝑒𝑛𝑡𝑠 ∙ 100% were 

formed to investigate the efficiency of the various combinations of parameters, where R1 is the 

equivalent of precision in computer science, and R2 is the equivalent of recall/sensitivity. 

Ratios R1 and R2 were introduced to quantify the tendency of the algorithm to trigger false 

positives, e.g. noise mistakenly picked as an event, and their detection efficiency, respectively. 

R1 and R2 take values between 0 and 100%. A high value for R1 would indicate a small amount 

of false positives, while for R2, a high value indicates high detection capability. Using these 

ratios the most efficient combination of parameters was chosen to be the one for which both 

R2 and R1 are at their highest values. From R1 and R2 we can derive an f1 score which is the 

harmonic mean of precision and sensitivity, i.e., f1=2.(R1.R2)/(R1+R2). 
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Figure 32: Hour 1: Filtered waveform and visually identified events are shown with vertical lines. 

 

Figure 33: Hour 2: Filtered waveform and visually identified events are shown with vertical lines. 
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Figure 34: Hour 3: Filtered waveform. Hour with no visually identified events. 

As shown in Table 5 and 6, all {percentile, local time window} combinations yield quite high 

R2 ratios (>84%), depending on the location and hour. The differentiating factor is the R1 ratio. 

Upon checking other combinations of parameters from the two Tables we also see that the R1, 

R2 ratios do not vary drastically within a particular hour and array. This means that the 

assumption that we can treat seismic events as outliers and the choice of a dynamic threshold 

which adapts well to the statistical properties of each examined segment work well. In the case 

Hour 3 (Figure 34), the hour for which no visually observed events existed, the low number of 

events that the algorithm detected was acceptable (Table 7).  
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Table 5: Hour 1: 15 March 2016, 18:00 – 19:00. Comparison of results for different values of the parameters of 

Noise PSD percentile and local time window length. 

 

Table 6: Hour 2: 15 March 2016, 19:00 – 20:00. Comparison of results for different values of the parameters of 

Noise PSD percentile and local time window length. 

 

Noise PSD 

percentile:

Local 

window:
150 300 450 150 300 450 150 300 450 150 300 450

North Array
Detected 

events:
34 34 34 37 37 37 38 37 36 37 37 36

True 

positives:
31 30 29 32 32 32 32 32 32 32 32 32

R1 91% 88% 85% 86% 86% 86% 84% 86% 89% 86% 86% 89%

R2 91% 88% 85% 94% 94% 94% 94% 94% 94% 94% 94% 94%

f1 91% 88% 85% 90% 90% 90% 89% 90% 91% 90% 90% 91%

South Array
Detected 

events:
28 29 28 28 29 28 28 29 28 27 29 29

True 

positives:
25 25 25 24 25 25 25 25 25 25 25 25

R1 89% 86% 89% 86% 86% 89% 89% 86% 89% 93% 86% 86%

R2 93% 93% 93% 89% 93% 93% 93% 93% 93% 93% 93% 93%

f1 91% 89% 91% 87% 89% 91% 91% 89% 91% 93% 89% 89%

Actual No of 

events:  27

70 75 80 85

Actual No of 

events:  34

Noise PSD 

percentile:

Local 

window:
150 300 450 150 300 450 150 300 450 150 300 450

North Array
Detected 

events:
30 30 31 30 31 32 29 32 31 28 35 32

True 

positives:
18 18 18 18 18 18 18 18 18 18 18 18

R1 60% 60% 58% 60% 58% 56% 62% 56% 58% 64% 51% 56%

R2 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

f1 75% 75% 73% 75% 73% 72% 77% 72% 73% 78% 68% 72%

South Array
Detected 

events:
20 24 25 20 24 29 20 28 31 23 32 34

True 

positives:
16 16 16 16 16 16 16 16 16 16 16 16

R1 80% 67% 64% 80% 67% 55% 80% 57% 52% 70% 50% 47%

R2 84% 84% 84% 84% 84% 84% 84% 84% 84% 84% 84% 84%

f1 82% 75% 73% 82% 75% 66% 82% 68% 64% 76% 63% 60%

85

Actual No of 

events:  18

Actual No of 

events:  19

70 75 80
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Table 7: Hour 3: 16 March 2016, 05:00 – 06:00. Comparison of results for different values of the parameters of 

Noise PSD percentile and local time window length. 

 

For this project, the combination of parameters that best suited my data for identifying as many 

seismic events with the least possible false positives was the 75th percentile for the calculation 

of the Noise PSD (Step 1) and a 300 second duration for the local time window (Step 2 of the 

NpD algorithm) as this combination demonstrated consistently high f1 values. 

4.4.5 Detected events 

The full data set of passive seismic data acquired between 1st November 2014 and 12th August 

2017 was scanned using the NpD algorithm resulting in more than 241,000 detections. Figure 

35 shows the number of detections per day over the whole monitoring time period, along with 

the changes of the water level in the Raeterichsboden lake over the same time period. The 

black, green and red markers show detections at the South, North and borehole arrays 

respectively. Power failures or mechanic malfunctions of any of the sensors in each of the 

arrays resulted in broken data records. Some of the data, even for several consecutive days, 

were corrupt and could not be processed (discussed in 3.5.3). Since the NpD algorithm uses all 

sensors of each array to identify events, lack of or corrupted data even for just one sensor results 

in the data gaps visible in Figure 35 (Jun.-Jul. 2015, Jan.-Feb. 2016 and Mar.-May 2017). That 

could be future work, i.e. to modify the NpD algorithm so that it detects events with variable 

numbers of events and then assigns weights to the results depending on the number of sensors 

that successfully detected the potential event. 

Several features can be observed from Figure 35 and are discussed in more detail in the 

following paragraphs: 

 the numbers of events detected by each of the individual arrays are broadly consistent, 

Noise PSD 

percentile:

Local 

window:
150 300 450 150 300 450 150 300 450 150 300 450

Detected 

events:
3 2 2 3 3 3 5 3 3 6 5 3

True 

positives:

Detected 

events:
8 7 9 8 7 12 8 9 15 9 11 15

True 

positives:

North Array 

Actual No of 

events:0 0

South Array 

Actual No of 

events:0 0

70 75 80 85
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 an anomalously high number of events are detected by the North and South arrays in early 

2015, which may be as a result of reservoir drainage and refilling,  

 the number of events appears to peak annually in the summer months (possibly related to 

the increase in glacial meltwater and consequent increase in reservoir levels, e.g. Johnson 

et al. (2017) and Roth et al. (1992),  

 a peak in event numbers may be associated with reservoir drainage. 

 

Figure 35: Detected events after the application of the NpD algorithm to the whole passive seismic data set 

(1st November 2014 - 12th August 2017), along with the changes of the water level in Raeterichsboden lake. 

Events detected from the borehole sensor, the North and the South array are presented with black, green and red 

dots, respectively. 

Figure 36 shows the number of detected microseismic events per day over the whole 

monitoring time period, along with the changes of the water level in both the Raeterichsboden 

and Grimsel lakes over the same time period. All undertaken and presented analysis from here 

onwards will focus on the seismic data collected at the two surface arrays as explained in 

previous chapter. Hence the black and green markers show events detected at the South and 

North arrays respectively, while the borehole data (shown in Figure 36) were omitted from this 

graph. Additionally in Figure 36 are noted with red ovals, the periods that either one or both 

arrays have reported a significant increase in detected event frequency. Marked with red arrows 
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in Figure 36 are noted the end days of the two drainage periods of Raeterichsboden lake. It is 

obvious that the two seismic arrays express increases in detections at the same times. 

Regardless whether these end up to actually be microseismic events (to be confirmed by the 

next step of the analysis), the two arrays seem to be consistently triggered. 

Grimsel lake is at a greater distance from the GTS (1km to the south of the mid-point between 

arrays) than Raeterichsboden lake (60m to the east) but is of greater volume and hence the lake 

height differences (caused mainly due to hydropower management operations and temporal 

variations, e.g. from rain, snow) could potentially have some contributory effect to the number 

of recorded microseismic events. Of the two arrays, detection of events by the South array is 

most likely to be influenced by seasonal variations in the water level of Grimsel lake, since this 

array is situated approximately equidistant from both lakes. This is confirmed by analysis of 

the data in Figure 36 with the high frequencies of microseismic events in August-Oct of each 

year being predominantly recorded by the Southern array. Apart from the seasonal variations 

apparent in Figure 36 we also observe an increase in the number of events detected by the 

Northern array, possibly associated with lake drainage (11/2014 – 03/2015 and 02/2016).  

 

Figure 36: Detected events from the North and the South array, presented with green and red dots, along with 

the changes of water level of Raeterichsboden and Grimsel lakes (blue and magenta). With red ovals 

the periods that either of the 2 arrays has reported a significant increase in detections are noted. 

With red arrows the end of the two drainage periods of Raeterichboden lake are noted. 
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A quantitative analysis of the detected events during the time periods denoted in Figure 37 by 

the first three oval circles (01/2015: 03/2015, 07/2015: 10/2015 and 07/2016: 10/2016) is 

shown in Figure 37. For this analysis box plots were created for the aforementioned time 

periods and are shown in the figure in red and green for the South and North arrays respectively. 

Also plotted in Figure 37 is a box plot of daily event frequency for all of the remaining time 

periods (i.e. all the data not within the first three red ovals). In the plot, the mean value is 

represented with a square and the maximum and minimum values with horizontal lines. A 

horizontal line within the boxplot represents the median while the range of each boxplot is from 

the 25th till the 75th percentile. The whiskers are calculated with 1.5 coefficients and the outliers 

are represented with Xs. It can be visually observed that there is a clear difference between the 

statistics for the background seismicity (pair of box plots on the right hand side of the plot), the 

detected seismicity during the period of lake drainage (the first pair of box plots) and the peaks 

attributed to seasonal variations (middle two pairs of box plots). It is confirmed by the boxplots 

also that of the two arrays, the South array is more influenced by seasonal variations, which 

was previously attributed to its relevant location (equidistant) to lakes Grimsel and 

Raeterichsboden. 

To investigate whether similar seasonal variations in event frequency are apparent in the 

regional seismicity (i.e. the larger magnitude events detected by the Swiss seismic network) I 

used data from the International Seismological Centre (ISC; isc.ac.uk) database. A bar chart of 

the number of events per month within a 30km radius from the GTS is presented in Figure 38. 

The lake height changes for Lake Grimsel are also shown in blue for comparison. The 

frequency of these larger magnitude events also exhibits some seasonal variation, but the 

pattern is not as clear. This is to be expected, since larger events are likely to be deeper and 

hence less affected by variations in the surface water and groundwater pressure heads.  
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Figure 37: Boxplots for 3 different time periods (01/2015 - 03/2015, 07/2015- 10/2015 and 07/2016 - 10/2016) 

for the South and North array (shown in red and green respectively). The mean value is represented 

with a square and the maximum and minimum values with horizontal lines. A horizontal line within 

the boxplot represents the median while the range of each boxplot is from the 25th till the 75th 

percentile. The whiskers are calculated with 1.5 coefficients. 

 

 

Figure 38: Reported earthquakes per month within an area of 30km radius from the GTS for the period Nov 

2014 – Aug 2017. Data retrieved from the International Seismological Centre (ISC). With a blue 

line Raeterichsboden lake height levels are noted. 
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Of course to attribute the source of increase of event frequency to the lake drainage or refilling 

is not an exact science. As discussed in literature, a seismic response can be the result of 

previous unloading and reloading of the reservoir expressed with a time delay. Or it may be 

the case that the response to the lake load change in years 2014-2016 is expressed during the 

next years and is not part of the events I am to analyse. It is also possible that the unloading / 

reloading does not have a direct effect on the granitic rocks which would potentially need a 

stress change higher than historic stress changes to respond in turn by demonstrating seismic 

activity / discharge of energy. Let’s not forget that the Grimsel area has been a highly 

investigated area and hence the surrounding rocks have developed some sort of tolerance to 

continuous stresses changes as part of different experiments and is not responding in the same 

way that a more virgin granitic environment would have. It may well also be that this increase 

of events is not at all an effect of the lake load changes; it is essential to first locate the events 

and then proceed with interpretations since the source locations, regardless of their accuracy 

(but always within acceptable limits), will shed some light and inform on seismicity trends. 

4.4.6 Comparison of NpD with other approaches 

In order to check the effectiveness of the NpD algorithm I compare its performance to that of 

the most commonly used detection algorithm, namely STA/LTA, and the algorithm suggested 

by Vaezi and van der Baan (2014).  

For the comparison, I choose the same three hours (15/03/2016, hours 18:00-19:00 and 19:00-

20:00 and 16/03/2016, hour 05:00-06:00 shown respectively at Figure 32, Figure 33 and Figure 

34) from the GTS data set with varying background noise levels and with, and without, events. 

Table 8 shows the parameters used for each of the three detection methodologies used in the 

comparison. The detection thresholds in all methods are selected in such a way as to give the 

best balance between false positives and missed events for each algorithm. The minimum event 

duration parameter for the STA/LTA method is the minimal time length between the time of 

an event triggering and detriggering. The minimum event separation parameter specifies the 

minimal time length between the end of a previous event and the beginning of a new event. 

The STA and PSD window lengths are kept the same and equal to 0.5s to allow for a valid 
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comparison of the algorithms. The same applies for the LTA window length and local window. 

The consecutive events cleaning parameter presumes that when the output peaks are 

consecutive within distances of 0.5s they correspond to the same event. All algorithms have 

been implemented in a multi-channel strategy in which events are detected only if they are 

detected by all vertical channels of each array. 

Table 8: The parameters used for the STA/LTA, PSD technique and NpD methods. 

STA/LTA parameters  PSD technique parameters NpD parameters 

STA window length 0.5s  PSD window length 0.5s  
Individual 

time segment 

duration 

 0.5s 

Minimum event 

duration 
0.005s  Window overlap 50%  Noise PSD  75th 

Minimum event 

separation 
0.5s  

Minimum event 

separation 
0.5s  

Consecutive 

events 

cleaning 

 0.5s 

LTA window length 5mins  _   Local window  5mins 

STA/LTA detection 

threshold 
2.5  

PSD detection 

threshold 
0.50  

Dynamic 

detection 

threshold 

 Q3+0.5IQR 

 

Results are summarized in Figure 39 and Table 9. Figure 39 shows the filtered (bandstop 48-

52 Hz to remove the AC effect) waveforms of the three hours examined previously, both as 

recorded from the North (a, c, & e) and the South Array (b, d & f). The vertical lines show the 

detection times obtained by the STA/LTA, PSD and NpD algorithms (see inset for details). 

From just visual inspection, it is noticeable that the STA/LTA detects very few events and the 

PSD algorithm detects many more events than the NpD. In Table 9 we can see the breakdown 

of these detected events to true and false positives. The ratios R1 and R2 are once again used 

to quantify the fraction of the total number of detected events that were visually observed (R1) 

and the fraction of the visually observed events that were detected (R2). 
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Table 9:  Summary of detections using the STA/LTA, the PSD and the NpD algorithms for hours 1, 2 and 3, for 

both North and South arrays. 

 

 

  

STA/LTA 

algorithm
PSD Picker

NpD 

algorithm

Detected 

events:
4 123 37

Hour 1: 

15/03/2016, 

True 

positives:
4 32 32

18:00 - 19:00 R1 100% 26% 86%

R2 12% 94% 94%

f1 21% 41% 90%

Detected 

events:
3 102 29

True 

positives:
3 24 25

R1 100% 24% 86%

R2 11% 89% 93%

f1 20% 38% 89%

Detected 

events:
12 97 31

Hour 2: 

15/03/2016, 

True 

positives:
3 18 18

19:00 - 20:00 R1 25% 19% 58%

R2 17% 100% 100%

f1 20% 32% 73%

Detected 

events:
13 140 24

True 

positives:
1 16 16

R1 8% 11% 67%

R2 3% 47% 84%

f1 4% 18% 75%

Hour 3: 

16/03/2016,  

Detected 

events:
1 1 3

05:00 - 06:00
True 

positives:
0 0 0

Detected 

events:
3 15 7

True 

positives:
0 0 0

North Array

Actual No of events:  34

South Array

Actual No of events:  27

North Array

Actual No of events:  18

South Array

Actual No of events:  19

North Array Actual No of 

events: 0

South Array Actual No of 

events: 0
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Figure 39: Velocity vs time for the filtered waveforms of (a & b) 15/03/2016, 18:00-19:00, (c & d) 15/03/2016, 

19:00-20:00, and (e & f) 16/03/2016, 05:00-06:00 as recorded from the North and South array respectively. With 

vertical lines the events detected by the NpD algorithm, the PSD technique and the STA/LTA algorithm are noted. 

As seen from Table 9, the STA/LTA algorithm is outperformed by both the PSD picker and 

the NpD algorithm as its ability to detect events, when using unfiltered recordings is 

(b) (a) 

(c) (d) 

(e) (f) 
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significantly smaller (small values of the R2 ratio). The NpD algorithm also outperforms the 

PSD picker. For those hours containing events, the NpD algorithm detects the same number of 

true events as the PSD picker. However, the value of the R1 ratio is consistently higher for the 

NpD algorithm than the PSD picker, indicating that the number of false positives from the NpD 

algorithm is significantly smaller. The harmonic mean of precision and sensitivity f1 is, 

therefore, consistently higher in the case of NpD, i.e. for instance, in the North array, 90%, 

41%, 21% are the f1 percentages for NpD, PSD Picker and STA / LTA respectively in the case 

of Hour 1, and 73%, 32%, 20% in the case of Hour 2. 

In the last tested hour, where there are no seismic events, the STA/LTA, PSD and NpD 

algorithms detected 1, 1 and 3 at the North and 3, 15 and 7 false positives respectively. For this 

hour, the STA/LTA is the best performing algorithm, with the smallest number of false 

positives. However, the other two hours show that this is at the cost of missing large numbers 

of small events with amplitudes close to noise level (low SNR). If a seismic array is deployed 

for decision-making processes, such as an early-warning system for landslides, then visual 

validation of detected events may be required by the operator (e.g. if road closure results in a 

long detour). This manual quality control is a time-consuming procedure. The very low number 

of false positives that my NpD algorithm detects, by comparison to the STA/LTA and PSD 

detection algorithms, ensures that expensive operator time is minimized. 

4.5 Onset time picking in the present study 

In this PhD I chose to manually pick the arrival times (further discussion on this is provided in 

Chapter 4.6). Manual picking of the arrival times involves an extensive amount of pattern 

recognition and the final decision is partly subjective. The researcher visually inspects the 

amplitudes changes and waveform frequency changes. It is very important to pick the first 

breaks in a consistent and, as possible, objective way. For the visual inspection of the data 

records within the time periods of interest RTQT_View from REFTEK was used. The data in 

counts were filtered with a recursive Butterworth bandstop filter for the frequencies between 

48 and 52 Hz. 
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Manual picking of P and S waves proved to be not just time consuming but also very 

challenging. The sampling rate of 250Hz proved to not be adequately high to differentiate the 

arrival time differences of certain signals between seismometers. In Figure 40 for instance, we 

can see that there is a sequence of events lasting approximately 7.5s. However, the exact P- 

and S-waves arrival times cannot be recognised as the boundaries of each signal are mixed 

within the coda. Out of this sequence it is possible to estimate only for 2 events approximate 

epicentral distances from the 3D seismometer of the North Array being less than 200 m (using 

the single location method) with magnitudes ML -0.28 and -0.78.  

 

Figure 40: Detected events that could not be located accurately: 26 Nov 2014, 15:28:01 

I manually re-picked individual events, identified with NpD algorithm, within periods of 

particular interest (seen in Figure 41). These time periods are chosen with specific criteria in 

mind: the chosen dates followed either after the unloading of Raeterichsboden Lake (see grey 

shaded areas), were two days before and after the times that a PH peak was detected in the PH 

measurements, or within the specific hours that a stress peak was detected in the Czech 

measurements (see orange arrows). These dates were expected to be the most probable for a 

microseismicity reaction to a stress change. They were also the ones that I could combine the 

scientific findings with the LASMO hydrogeological research conducted. 
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Figure 41: Figure showing the time periods with particular interest within which manual picking of events was 

undertaken. Manual picking also occurred on the dates shown with red arrows. 

4.6 Discussion 

4.6.1 NpD algorithm 

In this chapter I presented a new algorithm for the detection of microseismic events at 

environments with low SNR. The main advantage of my approach is that it does not require 

any pre-filtering of the data as would be the case for detection of weak signals with most other 

methodologies. Pre-filtering assumes a priori knowledge of the expected microseismic signals 

which is seldom the case for passive monitoring applications. As a result, pre-filtering could 

remove information from the recordings, discarding it as noise, especially in cases of low SNR 

data. Avoiding pre-filtering altogether, minimizes the possibility of information loss in these 

low SNR recordings. 

Another advantage of the NpD algorithm is that it is suitable for non-stationary background 

noise since the upper bound to the spectral amplitude of background noise, above which an 

event is detected, varies over both space and time; significant differences were observed in 

hourly noise characteristics between sensors 1km apart. The approach is also equally effective 

with non-parametric data i.e. an assumption of normality is not required.  
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Although considerable effort was put to avoid having multiple NpD peaks for the same signal, 

i.e. consecutive events in consecutive PSD time segments were “cleaned up” and only the first 

arrival from the consecutives was considered a trigger, it was observed, that in the cases of 

landslides for instance (see Figure 42) this was ineffective. The initial crack (inset) is perceived 

as a separate event to the main body of the landslide and NpD triggers multiple peaks for an 

individual event in this occasion. This could be a topic to be investigated in the future in order 

to minimise detections of non microseismic events; a potential way to deal with this is to 

explore classification algorithms (e.g. machine learning, neural networks, etc.). 

 

Figure 42: Landslides were generally a bug for NpD as they were picked as more than one distinct event (initial 

crack and main body of landslide). 

The NpD algorithm is a powerful microseismicity detection tool but its output does not include 

accurate onset times for the detected events. Its accuracy depends on the duration of the 

individual time segments to which each recording is divided. For windows of duration 0.5 

seconds, such as those used in this case study, it means that the onset time is within a 0.5 second 

frame centred around the estimated NpD time of the ‘event’. For a more accurate determination 

of the onset time, the NpD would need to be combined with other existing automated picking 

algorithms, such as autoregressive techniques (Kong, 1997; Leonard and Kennett, 1999; Oye 

and Roth, 2003). Another idea for further improvement of the NpD code is to explore whether 

minor tweaks can turn it from a detection code to an onset time determination code. Potential 

ideas to explore would be to check the efficiency of wavelet decomposition instead of Fourier 

transform as wavelet decomposition does not compromise time for frequency accuracy. Also, 
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another recommendation would be to record timeseries with a high sampling rate which would 

allow for smaller windows hence greater accuracy in the detections. 

Such a deviation between the real arrival and the P-wave picking of the NpD algorithm would 

produce highly inaccurate locations of events. To be able to successfully identify the onset time 

of the thousands of events detected by the NpD algorithm is not an easy task given the 

complexity of the coda and the weak S and sometimes P phases. The quality of the P phase 

picking is related to the near-surface structure, source type, and S/N ratio (Sabbione and Velis, 

2010). Hence, the initial onset time picking attempts (prior to proceeding with the manual 

picking of the onset times) focused on automated approaches. 

4.6.2 Partially effective automated onset time determination approaches 

An initial attempt to use an already available commercial software, InSite, from IMaGE 

(http://www.itasca-image.com/software/insite) proved unsuccessful. InSite, as other available 

off-the-shelf software, cannot be applied to continuous recordings; it works with seismic 

recordings acquired using ‘triggered’ as opposed to ‘continuous’ mode. As a consequence, the 

seismic data form a set of signal waveforms, each saved in a separate file, or in the same file 

but with a header before it. That would demand an enormous amount of disk storage space for 

the thousands of detected events. Therefore, this option was rejected. 

Instead, an algorithm was developed in R studio programming language; a hybrid approach, 

with a simple formulation and parameter settings, that combines single and multilevel based 

existing methodologies for the accurate picking of the P and S arrival times. The algorithm is 

very similar to the workflow presented by Zhang et al. (2003) but was tweaked to fit my real 

field microseismic data needs (see chapter 4.6.2.2). The workflow used, called AIC-wav, is 

presented as follows.  

The post-acquisition processing algorithm AIC-wav takes small windows (approximately 3 

seconds duration) around the times of potential events derived by the NpD algorithm. To these 

windows of data (velocity values), a discrete wavelet transform (Daubechies wavelet transform 

filter of length 2) with 2 levels of decomposition is applied (Percival and Walden 2000).  

http://www.itasca-image.com/software/insite
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Following this, the Akaike information criterion (AIC) of the wavelet coefficients for each of 

the vertical channels and for all scales is computed. To circumvent the border effect of the 

window, I define a border-effect region at both ends of the time window within which region 

AIC is not computed. For each detected event, the P time onset should coincide with the time 

of occurrence of the minimum AIC value. If this P onset time lies within a range of 50 data 

points (i.e. 0.2 seconds) in all vertical channels of each array, the P time onset value is accepted. 

If not, then the event detected by the NpD is rejected as not having a discernible P-wave.  

The same procedure is repeated for the S-wave, using a smaller window that starts from the P 

wave onset time up till the end of the original window, avoiding the border effect region. Once 

again, the time of occurrence of the minimum AIC value is identified as being the S wave onset 

time in each of the two horizontal channels of the 3D sensor (as these detect S-waves more 

strongly). If the S wave onset time lies within 50 data points (i.e. 0.2 seconds) range in both 

horizontal channels recordings, then the event is considered potentially locatable. As a last step 

for each array, the S onset times are checked for consistency against the waveforms recorded 

at the three one-component vertical sensors of the same array. 

4.6.2.1 AIC-wav results 

The AIC-wav worked exceptionally well in cases that the signal was visually distinct to noise. 

By way of example, the automatic P and S picks determined for a single NpD-detected event 

recorded at the North array is shown in Figure 43. The waveforms of the detected event, as 

recorded by all 6 channels of the North array, are shown in black for a time window that spans 

approximately 400 sample points (1.6 seconds). The top three plots correspond to the three 

vertical component sensors, while the last three correspond to the channels of the three-

component sensor (top: vertical, second last: horizontal North-South, last: horizontal East-

West). The arrival times for the P and S waves are shown with red and blue vertical lines, 

respectively. Note that while the y-axis represents velocity (m/sec), the x-axis is number of 

samples rather than time. As expected, the P and S waves reach each individual sensor at 

slightly different times consistent with the direction of travel from the earthquake source. 



Kinali M. PhD Thesis  University of Strathclyde 

105 

 

 

Figure 43: Example of automatically picked P and S wave arrival times at the recordings of the North array 

for a detected event. Red lines: P wave arrival time. Blue lines: S wave arrival times. 

The full record (1st November 2014 - 12th August 2017) was scanned to determine P and S 

wave arrival times at all sensors. Out of the 281,351 and 239,280 potential events detected by 

the NpD for the North and South array respectively, a total of 29,214 events (North array) and 

22,820 events (South array) were the output of AIC-wav workflow. Figure 44 demonstrates the 

output of the AIC-wav algorithm. 

It is important to highlight that in the case that P- and S- onset times were not able to be 

consistently picked for all vertical sensors and one horizontal of each array the AIC-wav 

algorithm was programmed as such that would not return any results. 
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Figure 44:  Onset time picked events of (i) North and (ii) South array (to be sent for location) excluding 

events located within the Gerstenegg tunnels (150m distance form sensors crossing line), along with the changes 

of the water level in Raeterichsboden lake. Events detected from AIC-wav and the NpD algorithm are presented 

with dark green/red dots and green/red x-s, respectively. Seasonal variation is a sign of localised seismicity. 

4.6.2.2 AIC-wav workflow variations 

Using an hour of data with manually pre-picked events, different variations of the workflow 

presented above were explored and dismissed due to ineffectiveness. These included: 

 checking between the pick times at scale 1 and scale 2 are within 24 samples and those 

between scales 2 and 3 within 48 samples, and then declare the pick at level 2 as a P-

wave arrival (Zhang, 2003). Having checked the three details obtained, it was found 
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that in the third stage detail seismic noise was more coherent (Hafez et al., 2010) and 

the algorithm recognized P-wave arrivals only in high S/N ratios.  

 using correlation among the pilot waveform of one of the horizontal channels and 

waveforms of the vertical sensors, in each array, for the correct identification of the S 

waves. This approach did not work effectively in all cases because the S/N ratio of 

some of the channels was not high enough to allow for the correct time lag to be 

determined.    

 applying AIC on autoregressive series (forward and backward) instead of using wavelet 

decomposition to correctly pick the P- and S- wave onset times (Oye and Roth, 2003). 

This approach worked effectively only in high S/N ratios. 

 applying AIC on the raw rata instead of using wavelet decomposition to correctly pick 

the P- and S- wave onset times. This approach correctly identified more P-wave picks 

than AIC-wav but the error between manual picks and algorithm picked picks was 

greater.   

 using bandstop recursive filter 48-52Hz (EM interference in Switzerland due to the 

mains frequency is at 50Hz) before following the rest of the workflow. A really small 

subset of the events was picked in this case. I expected that to happen given that 

bandstop filtering is not that effective when signal and noise bandwidths overlap. 

 using denoising or soft thresholding as in Zhang (2003) which decreases the distortion 

of the P-wave but affects its amplitude in a lesser extent before following the rest of the 

workflow. Results in this case were similar as in the bandstop filter, as many of the 

visually identified events were discarded by the algorithm. 

4.6.2.3 Quality assessment of AIC-wav onset time identifications 

Quality check (through visual checks) performed in the identified onset times of AIC-wav 

workflow, indicated that although AIC-wav worked better than all other used workflows, it 

does not identify the onset times optimally in all occasions. In Figure 45 we can visualise 

different cases that the AIC-wav methodology (i) works well in picking the P- and S- onset 

times; (ii) works well in picking only the P-wave; and (iii) fails to correctly identify the phases 
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of the signal. In (iii) the algorithm failed to correctly identify the S wave onset time of the 

horizontals hence the vertical was also affected by this. In reality the signal has lost the P wave 

and the picked as S wave should have been picked a bit later – this one that is picked is actually 

a misidentification of the S-wave as a P-wave arrival. This misidentification of the first arrival 

has also been observed by Ge (2005); his analysis showed that in a sample of 434 picked events, 

S-wave arrivals account for the 41% of the total picks while outliers account for the 10%. 

Potential misidentifications like the aforementioned would introduce significant and 

systematical errors in further analysis. Overall, AIC-wav workflow allows more confidence in 

the automatically picked P-waves rather than the S-waves. 

 

Figure 45: Cases the AIC-wav methodology (i) works well in picking the P- and S- onset times; (ii) works 

well in picking only the P-wave; and (iii) fails to correctly identify the phases of the signal. In all (i), (ii) and 

(iii) the three. The axis in all waveforms is in data points while y-axis is in velocities (m/s). The range of the 

x axis is not common for all graphs so that the waveform shape is visible in all cases. 
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4.6.3 Detections 

With regards to the events detections, it should be considered that part of the seismic response 

may be attributed to an annually recurring hydrologically related causal mechanism. An annual 

cycle of detected seismicity has also been reported by Wolf et al. (1997) for networks in British 

Columbia and Alaska and was attributed solely to the seasonal variations. In particular, the 

researchers observed two pulses, one between the months of May and July, and another one 

between late August and October. Statistical analysis demonstrated that there is a clear 

difference between the statistics for the background seismicity, the period of lake drainage and 

the peaks due to seasonal variations. Regional seismicity was also checked for seasonal 

variation and it was found that it also exhibits some, but the pattern is not as clear as with the 

detected seismicity by the NpD algorithm. This is to be expected, since larger events are likely 

to be deeper (e.g. Mousavi et al., (2016)) and hence less affected by variations in the surface 

water and groundwater pressure heads. 

It has been reported in the literature that seismicity is affected by the rate of water level 

increase, duration of loading, maximum levels reached, and the period for which the high levels 

are retained (e.g. Gupta et al. (1972b)) and that it occurs when the reservoir levels reach new 

maximum levels (e.g. by Simpson and Negmatullaev (1981)). It is therefore possible that the 

unloading / reloading does not have a direct effect on the granitic rocks which would potentially 

need a stress change higher than historic stress changes to respond in turn by demonstrating 

seismic activity / discharge of energy. Since in this case study I only had two cycles of loading 

and reloading and during which the reservoir loading reached similar height levels with similar 

reload rate, the aforementioned statements could not be verified.  

As per Gupta (2002), the seismicity induced by the lake level changes is likely to continue, 

year after year, or after a few years gap, depending upon the state of stress at the seismogenic 

fault and the level of stimulus provided. Hence the effect of these 2 cycles of Raeterichsboden 

lake’s drainage and refilling may affect the surrounding rocks the later years during which there 

would not be any monitoring to capture them. As it may well be the case that a seismic response 
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captured by my sensors is the result of previous unloading and reloading of the reservoir, 

expressed with a time delay. 

Peaks in event numbers may be attributed to reservoir drainage. Also, the event numbers 

recorded by the Southern array may be attributed to the lake levels changes of both 

Raeterichsboden and Grimsel lakes given the array’s location. To be able to confirm what is 

the triggering mechanism for the microseismicity the events will need to be located. If the 

events are caused by the unloading / reloading of the lake(s) then their hypocentres are expected 

to be either underneath the lake(s) or at their immediate vicinity. It is not however clear which 

kind of mechanism controls the seismicity; i.e. it can be either a rapid response to the reservoir 

loading or a delayed response to the unloading, according to Simpson et al. (1988). These 

authors proposed that rapid response is generated as a result of the instantaneous effect of 

loading (or unloading) and the delayed effect of pore‐pressure diffusion. Talwani (1997) 

mentioned that the seismicity observed after impoundment is related to both mechanisms. 

Later, Talwani et al. (2007) mentioned that pore‐pressure diffusion is primarily responsible for 

the build-up of fluid pressures and the onset of seismicity. 

4.7 Summary 

To conclude, in this Chapter I have detailed the researched literature review and methodology 

followed for detection and onset time determination of potential microseismicity. A novel 

research contribution presented in the chapter includes the NpD algorithm which was also 

published as Kinali et al. (2018) and is an open source algorithm for the detection of signals. 

The algorithm works well under not well-constrained conditions and without requirement of a 

priori knowledge about the expected signal frequencies and amplitudes. The efficiency of the 

NpD algorithm has been proven through the comparison with other well-known approaches. 

The full data set of passive seismic data acquired between 1st November 2014 and 12th August 

2017 was scanned using the NpD algorithm resulting in more than 241,000 detections. Some 

observations with reference to the acquired detection dataset as compared to the lakes water 

levels variations are summarised as follows: (i) the numbers of events detected by each of the 

individual arrays are broadly consistent, (ii) an anomalously high number of events are detected 
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by the North and South arrays in early 2015, which may be as a result of reservoir drainage and 

refilling, (iii) the number of events appears to peak annually in the summer months (possibly 

related to the increase in glacial meltwater and consequent increase in reservoir levels, e.g. 

Johnson et al. (2017) and Roth et al. (1992), and (iv) a peak in event numbers may be associated 

with reservoir drainage.  

It was also discussed that it is possible that (i) the unloading / reloading of Raeterichsboden 

lake does not have a direct effect on the granitic rocks which would potentially need a stress 

change higher than historic stress changes (see also Gupta et al. (1972b)) to respond, (ii) the 

effect of these 2 cycles of Raeterichsboden lake’s drainage and refilling may induce delayed 

microseismicity response (Gupta, 2002), in the years that monitoring would no longer be in 

place, (iii) a seismic response captured by the sensors during this application may be the result 

of previous unloading and reloading of the reservoir, expressed with a time delay, (iv) the 

Southern array may be capturing weak events due to the lake water levels changes of both 

Raeterichsboden and Grimsel lakes because of its location, and (v) it is not clear which 

mechanism controls the seismicity; i.e. is it a rapid response to the reservoir loading or a 

delayed response to the unloading (see also Simpson et al. (1988)). 

For the onset time picking of this application, I decided to proceed with the manual picking of 

the phases only for periods of interest. This involved an extensive amount of pattern recognition 

and great effort to pick the first breaks in a consistent and, as possible, objective way. For the 

visual inspection of the data records within the time periods of interest RTQT_View from 

REFTEK was used and the data in counts were filtered with a recursive Butterworth bandstop 

filter for the frequencies between 48 and 52 Hz (to remove the Swiss EM caused by power 

lines). The manual picking of P and S waves proved to be challenging because of the 250Hz 

sampling rate which proved to not be adequately high to differentiate the arrival time 

differences of certain signals between seismometers. The chosen time periods were the most 

probable dates for a microseismicity reaction to a stress change. 

Finally, novelty in the present chapter lies in using, comparing suitability and adjusting a 

number of well-known onset time determination approaches from the literature, resulting to 
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proposing a methodology (i.e. AIC-wav) that works well for high SNRs and allows more 

confidence in the  P-waves’ onset time determination but requires further work.  

Having detected accurately the picks of the events of interest, the next chapter is focusing on 

their localisation and their source parameters determination.  
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Chapter 5 Analysis of recorded microseismic data: 

Seismic Source Location 

5.1 Introduction 

The precision of earthquake locations, as per Pavlis (1992), is governed by the source-receiver 

configuration (e.g., Eisner et al. (2010)), the complexity of the velocity model (e.g., Blias and 

Grechka (2013)), and accuracy of the arrival-time picking. Wuestefeld et al.(2018) add to these 

the choice of the location approach. While we have already discussed about the source-receiver 

configuration and the onset time determination, the rest of the parameters are going to be 

analysed in the present chapter as follows: Section 5.2 discusses about the velocity profile used 

in the analysis, Sections 5.3 and 5.4 include the literature review regarding localisation methods 

and source parameters considered to result in the methodology used in the present study 

(Sections 5.5 and 5.6 respectively). 

5.2 Velocity profile 

The local geology in seismic monitoring is reflected through the chosen velocity model. Wave 

velocities are attributed to different geological materials, i.e. a typical granite may have 

velocities 𝑣𝑝 = 4.5 − 6𝑘𝑚/𝑠  and 𝑣𝑠 = 2.5 − 3.3𝑘𝑚/𝑠 (Bourbie et al., 1992). In general, 

velocities are higher in rock formations than in soft soils, in saturated than dry ones and increase 

with effective pressure. The pressure dependence results from the closing of cracks, flaws, and 

grain boundaries, which elastically stiffens the rock mineral frame. 
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Every velocity model has intrinsic uncertainty and errors associated with event location will be 

passed on to any subsequent interpretation, such as the source mechanism (Usher et al., 2013). 

Hence the choice of the velocity model is of some importance, which in turn poses some 

questions to the researcher: can the subsurface reliably be approximated by a 1D velocity 

model, or is a 3D model required? How many layers are appropriate? Is anisotropy required 

(e.g., Wuestefeld et al., 2011), and to what degree? 

Taking into account previous seismic explorations in the GTS area and the velocity profiles 

researchers used in these occasions I chose an initial homogeneous 1D model. The 𝑣𝑝 and 𝑣𝑠 

values used in the GTS literature showed small variations: Majer et al. (1990) used 5.4 and 

2.9km/s respectively and Blumling et al.(1992) 5.3 and 3.06km/s respectively. Then a 

sensitivity analysis was performed, using selected earthquakes, detected and located by the 

Swiss Seismological Service, and locating them using various combinations of 𝑣𝑝 and 𝑣𝑠 

values. The average 𝑣𝑝 and 𝑣𝑠 values (i.e. 𝑣𝑝 = 5.4𝑘𝑚/𝑠 and 𝑣𝑠 = 2.9𝑘𝑚/𝑠), that minimised 

the residual between known and calculated locations, were the velocity values used for the 

location of the events in the present study. 

The chosen values are within the reported range of wave velocities for a typical granite, i.e. 

𝑣𝑝 = 4.5 − 6𝑘𝑚/𝑠  and 𝑣𝑠 = 2.5 − 3.3𝑘𝑚/𝑠 (Bourbie et al., 1992). A layered model was not 

deemed necessary in the present experiment because, according to Angus et al.(2014), in 

surface microseismic monitoring the influence of vertical velocity variation is less problematic 

than for downhole monitoring. Also, Usher et al.(2013) reported that differences between 

plausible velocity models result in 0.0035 seconds uncertainty in the P-waves arrival times 

picking and 0.0085 seconds in S‐waves, which is equivalent to circa 20m in location difference. 

Since the present research is not a hydrofracking experiment, but instead the monitoring covers 

an area of kilometres, such an accuracy uncertainty was deemed acceptable. 

5.3 Localisation literature review 

The location problem consists in correctly estimating four unknown parameters that best fit a 

set of arrival times of seismic waves at different receivers: the hypocentre coordinates of the 

starting point of the rupture process (x,y,z) that caused the seismic event and the corresponding 
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origin time (t). The arrival time function for each sensor can be described in mathematical form 

with the formula: 

∫
1

𝑣
𝑑𝑠

𝑠𝑖
= 𝑡𝑖 − 𝑡0

ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑚𝑒𝑑𝑖𝑢𝑚
⇒                 √(𝑥𝑖 − 𝑥)

2 + (𝑦𝑖 − 𝑦)
2 + (𝑧𝑖 − 𝑧)

2 = 𝑣(𝑡𝑖 − 𝑡),           (eq.12) 

where 𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 are the coordinates of each triggered sensor𝑖,𝑡𝑖 the triggered arrival time and 𝑣 

the propagation velocity of the medium. 

The formula for the homogeneous medium is the simplest form of the arrival time function and 

depending on the velocity model (i.e. 3-D, anisotropic medium) the equation can become much 

more complicated. More information on the velocity determination approach used in the 

present study is provided in Chapter 5.2. 

There are a number of methods that attempt to find the global minimum of the arrival time 

function. The most commonly used method to solve the system is to minimize the sum of the 

square differences of the equation. Thus, the location problem is transformed into optimizing 

an objective function, i.e. determining the smallest misfit between the theoretical and observed 

arrival times. 

The literature review that follows is by no means extensive but rather a general overview of 

commonly used approaches. It serves the purpose of showing the logic behind the selection of 

the approach followed for the present research. The presented methods are categorised into 

non-iterative and iterative methods. 

5.3.1 Non-iterative location methods 

Non-iterative methods address the aforementioned non-linear problem of hypocentral 

determination employing a direct analytical linear approach. Their main limitation is their 

inflexibility to adapt to different velocity models; i.e. they can only operate with a constant 

velocity model for all sensors, which could lead to large localisation errors (see also Chapter 

5.2). 



Chapter 5: Analysis of selected microseismic data: Seismic Source Location 

 

5.3.1.1 Single station location 

A simple approximation to the solution of the seismic location problem can be provided using 

a single three-component station (Bormann, 2012). Assuming known 𝑣𝑝 and 𝑣𝑠 getting the 

measurements of the 𝑡𝑝 and 𝑡𝑠 from the waveform, we can determine the angle defined from 

the North, the station and the epicentre counting clockwise (backazimuth). The epicentral 

distance can now be estimated as 𝐷 = (𝑡𝑠 − 𝑡𝑝)𝑣𝑝𝑣𝑠/(𝑣𝑝 − 𝑣𝑠) and the origin time can be 

calculated as 𝑡𝑜 = 𝑡𝑝 − 𝐷/𝑣𝑝. The single station location is a purely epicentre determination 

method, i.e. we can only estimate the epicentre and not the source depth. 

5.3.1.2 The circle / sphere and the hyperbola method 

Another simple, graphical location approach that uses recordings from at least three stations is 

the circle method (Stamps and Smalley, 2006). After calculating the epicentral distance (D) as 

indicated in Chapter 5.3.1.1 for all sensors, circles are drawn with centres each station and radii 

the epicentral distances. The seismic location is bounded within the common area of all three 

circles with a best estimation (X) the crossing of chords which connect the crossing points of 

circle pairs. For a homogeneous velocity model the hypocentre (H; focal depth) can be given 

using the epicentral distances as radii of spheres in three dimensions; i.e. focal depth can be 

calculated from the equation: 𝐻 = √𝐷2 − 𝑋2 (Yfantis et al., 2014). In the case of a non-

homogeneous model, the seismic waves would be refracted at the boundaries of the different 

geological materials and the spheres would be deformed, rendering this method valid only for 

homogeneous velocity models.  

In the same logic lies another location method (Pujol and Smalley, 1990; Pujol, 2004), which 

fits quadratic surfaces (hyperbolas) instead of spheres to the observed arrival times. The 

method needs two-station combinations to operate and a minimum of four stations to yield a 

solution, creating 6 hyperboloids in total (i.e. 1+2+3 two-station combinations). The definition 

of the hyperbola is given by: 𝑑1 − 𝑑2 = 𝑣(𝑡1 − 𝑡2), where the known parameters on the right 

side of the equation are the medium velocity and the  P-wave arrival times recorded at two 

seismometers, while the unknown parameters at the left side are the epicentral distances of the 
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sensors. The centre of the area created from the intersection of all hyperboloids coincides with 

the event epicentre. 

5.3.1.3 Inglada’s method 

Inglada’s method is based on the graphical sphere method but attempts to solve the location 

problem through a direct analytical approach. The concept is that the seismic source will lie in 

a single point of the intersection of 4 spheres; i.e. the wavefront of four sensors (Inglada, 1928). 

Arrival time data and a constant velocity model are used as input data in eq. 12. Only a 

minimum number of sensors is used in this method, equal to the number of the unknowns in 

the arrival time equation (i.e. four) and because of this requirement no optimization method 

can be applied (Ge, 2003a). 

5.3.1.4 USBM 

Another mathematical solution to the location problem is given with USBM method, developed 

in the 1970s by researchers in the United States Bureau of Mines (e.g. Leighton and Duvall, 

1972). The algorithm calculates the distance for n+1 (i.e. five in the case of a homogeneous 

model) sensors, where n is the number of the unknowns in the arrival time equation, and solves 

the non-linear system by linearizing it with a set of mathematical tricks; i.e. the origin time 

unknown parameter is eliminated by subtracting the distance of one of the sensors from the 

rest, then squaring and subtracting the distance of another sensor out of the rest of them etc.  

5.3.1.5 Arrival order approaches 

This type of approaches is extensively used and is based on the assumption that the traveltime 

of an event is monotonic with distance, hence the order that the signal arrives in the different 

sensors is a valid equivalent of epicentral distance (Ge, 2003a). These approaches provide a 

better idea of the relative seismic source location based on the first tiggered station; i.e. out of 

two sensors receiving the signal, the one that is triggered first is the one closer to the source of 

that signal. The source location can be further constrained in smaller zones since the procedure 

can be repeated depending on the number of triggered sensors. To better estimate the radial 
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direction of the signal, a ratio of the observed arrival time difference between two sensors over 

a theoretical limit (computed as the ratio of the inter-sensors distance over the velocity) is used. 

If the ratio is closer to zero, the source tends to be equidistant from the sensors while if it is 

closer to one, it is closer the first sensor. 

5.3.2 Iterative location methods 

Iterative location methods are trial and error processes which assume an initial location and 

calculate an initial source to sensors set of travel times based on a known velocity model. The 

travel times are then compared to the recorded ones. With each iteration the misfit gets smaller 

until it reaches to a user defined threshold. Iterative methods can be further divided into: 

5.3.2.1 Derivative approaches 

This category hosts one of the most widely used location algorithms: Geiger's approach (1910), 

that solves the non-linear source determination problem by minimizing residuals between 

observed and predicted travel times of various phases. Geiger’s method needs as input data an 

initial solution, observed and arrival times and partial derivatives of the arrival time function. 

The partial derivatives are Geiger’s way of assessing the non-linear behaviour of arrival time 

functions and are used as a correction vector. In derivative methods, the final solution is 

reached through a continuous updating process of the initial trial solution, i.e. by adding the 

correction vector derived from each iteration to the next one. The least squares solution to a 

system of equations is the location the problem converges to. It sometimes occurs that the 

system does not converge which is a sign of instability of the associated mathematical system 

which traces back to a poor network geometry for locating the specific event.  

Another derivative method, similar to Geiger’s is Thurber’s method (Thurber, 1985) with the 

only difference relying on Thurber using the second degree of Taylor polynomials (i.e. the first 

and second partial derivatives instead of just the first ones) as the correction vector. Hence, 

Thurber’s solution is geometrically represented by the extreme of a quadratic function. 
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5.3.2.2 Sequential or grid-search approaches 

In these approaches (e.g. Saltogianni and Stiros (2012a,b, 2013, 2015)) the user defines a search 

volume and grid spacing. For each of the grid points the residual between theoretical observed 

arrival times is calculated (Wuestefeld et al., 2018). A finer grid would give a more accurate 

solution. An alternative to this is to start with a coarser grid and continue with the further 

refinement of the monitoring area in smaller ones (nested grid) as the search continues (Lomax 

et al., 2000). Another alternative to the typical grid search approach is the directed grid search 

(Sundhararajan et al., 1998). The source location search starts with a grid space of 8 nodes and 

the grid moves towards the node with the smallest gradient of the objective function. Grid 

searches are considered to have reached a global minimum when either a user defined 

maximum number of iterations or a user defined threshold residual is reached. 

5.3.2.3 Simplex algorithm 

Simplex algorithm is a curve fitting technique, developed by Wolfe (1965) and introduced into 

source location application by Prugger and Gendzwill (1988). The method first associates each 

point in space to its error (between observed and theoretical travel times) creating an error 

space and then searches for the point with the minimum error. The first step is to set an initial 

Simplex figure: a geometric figure with one more vertex than the dimension of space it is used 

in; i.e. for a two-dimensional space that would be a triangle and so on. Next, the errors for the 

vertices are calculated (usually L2 or L1 norm are used for this), and then the Simplex figure 

moves into space (through reflection, expansion, contraction and shrinkage). A series of error 

comparisons between all vertices begins, leading through a series of substitutions to a status of 

accepted convergence (Ge, 2003b). 

5.3.3 Localisation discussion 

Location approaches combine advantages and shortcomings. The single station location is an 

epicentre determination method that offers the advantage to locate an event using a single 3-D 

station. At the same time however, the method uses, as input data, a sensitive and error-
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provoking parameter, amplitude values, which depend greatly on material properties 

(attenuation) and local geological conditions (site amplification). Also, the S-waves arrival 

time determination is difficult because S-waves usually overlap with the P-wave coda 

(Helmstetter and Garambois, 2010). This phenomenon is attributed to the near-field effect; i.e. 

when the wavelengths are large relative to the source–receiver distance, the P-wave, S-wave 

and surface wave phases can be intertwined (O’Brien et al., 2011). The circle / sphere location 

method and the hyperbola method are strictly for homogeneous media location methods. 

According to Chen et al.(2016), Inglada’s method and USBM are not suited for microseismic 

monitoring since in the first case only a minimum number of sensors is used and no 

optimization method can be applied to the algorithm (because of the requirement of the 

algorithm for equal number of sensors and equations), while the latter is unstable in cases of 

large picking errors (LPEs). Using optimisation and more than the minimum number of sensors 

for seismic inversion allows for errors and uncertainties minimisation. Arrival order methods 

are simple and easy to use but are based on the assumption that all sensors are triggered by the 

same type of wave which may not be the case. They also do not estimate pin-point locations, 

which is the focus of microseismic applications (with acceptable errors that vary depending on 

the scope of the investigation), but rather a more general source location of the seismic wave. 

They are a good approximation however in cases when sufficient sensors for pin-point location 

are unavailable (Ge, 2003a) or for validation of estimated locations by other algorithms.  

Derivative approaches effectiveness is greatly dependent on the sensor array geometry. If the 

initial set up of the sensors is not optimal, that may have great impact on the mathematical 

model stability which in turn causes divergence. In the grid-search approaches there is a trade-

off between computation time and location accuracy, which depends on the grid resolution. In 

the nested grid approach in particular there is the danger that the initial coarse grid model 

calculations might miss the global minimum and in that case the algorithm will yield as a 

solution a local minimum. Simplex algorithm is flexible to deal with complicated velocity 

models (i.e. multiple velocity layers). In addition to this arrival time functions used in the 

method can be established during the data processing while in derivative methods they need to 

be established prior to the analysis. 
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Non-iterative methods are simple and easy to use in that they require little interaction from 

users. A common problem with these methods is the assumption of a single velocity, which 

severely restricts their applications. Iterative methods, because of their flexibility in dealing 

with different velocity profiles and arrival time functions, approach more realistically a great 

majority of source location problems. As is derived from the above, selecting an appropriate 

location method involves weighing the advantages and disadvantages of approaches in terms 

of accuracy requirements and data limitations. With these remarks in consideration, the 

location problem shifts in the accuracy of arrival times determination and a velocity model 

representative of the under study area.  

5.4 Seismic source parameters literature review 

5.4.1 Magnitude 

Magnitude is one of the most fundamental parameters used to quantify an earthquake and is 

basically a logarithmic measure of its size based on instrumental measurements. Magnitudes 

are commonly derived from ground motion amplitudes and periods or from signal duration 

measured on instrumental records.  

Currently there is not a uniform scale of measurement because of differences in 

instrumentation, data reduction methods, magnitude formula, station distribution, etc. 

Relations between different magnitude scales have been proposed by various researchers in 

order to maintain continuity and uniformity of the results. Most of the, proposed over the years, 

magnitude scales are empirical and lacking in that they do not relate magnitude to a physical 

model. The exception is moment magnitude, introduced by Hanks and Kanamori (1979), which 

can be used to bridge waveform amplitudes to the seismic moment.  

Richter (1935) introduced the first magnitude scale to seismology. He developed the local 

magnitude scale ML for describing the relative strengths of earthquakes in California, and 

related the amplitude of a waveform recorded with a particular instrument (a Wood-Anderson 

seismograph) at a given distance from an event to the strength of the event (Baig and Urbancic, 
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2010). The term local refers to the fact that the scale is tailored to a particular region with 

slightly different calibration curves (to account for differences in seismic attenuation, geology, 

etc.) when applied to other regions. 

Gutenburg and Richter (1936) used the amplitude of teleseismic 20s surface waves to derive a 

magnitude scale for crustal earthquakes (surface-wave magnitude scale MS). To arrive at a 

relatively standardized magnitude measurement, different calibrations needed to be employed. 

ML and MS scales agree at ML=6 because these magnitudes events were used for calibration. 

Since ML is determined from the maximum amplitude on a Wood-Anderson seismogram, the 

predominant period of the waves used is usually 0.1-3 sec. In contrast, MS is usually determined 

from the maximum amplitude of surface waves with a period of about 20 sec. 

Later, Gutenberg (1945b) introduced a body-wave magnitude, mB, which is computed from the 

amplitude and the period of seismic body waves. In this scale, the maximum amplitude of a 

wave group corresponding to various seismic phases such as P, PP, and S were used for the 

determination of the magnitude. For this measurement, various types of seismographs, 

including short- and long-period mechanical and some electro-magnetic instruments, and 

periods of waves ranging from 0.5 to 12 sec were used. The two scales, mB and MS, agree over 

the magnitude range of the events used for the calibration (i.e. 6.5-7 MS). 

Since these initial magnitudes determinations, a number of similar magnitude scales have been 

introduced in the literature and can be summarized as: 

Magnitude = log10 (Amplitude) + Correction Factor                          (eq. 13) 

where the correction factor depends on distance and sometimes the period of the waveform. A 

study conducted by Bormann et al. (2009) discussed the interrelations between different 

magnitude scales to earthquake data recorded in China. There are a couple problems with such 

magnitude scales: (i) they are empirical, i.e. there is no tie to a physical model which means 

that a single magnitude cannot be explicitly related to specific fault parameters; (ii) they are 

saturated for the large earthquakes. 

 Kanamori (1977) and Hanks and Kanamori (1979) developed the moment magnitude scale to 

address these shortcomings. The seismic moment M0, is based on a model assuming shear 
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displacement of a planar fault, and is the product of the shear modulus, μ, the average slip on 

the fault, 𝑑̅, and the area of the fault, A. By measuring the energy, E, in the waveforms, they 

related this quantity to the seismic moment through the approximate relation:  

𝑀0 = 𝜇𝑑𝐴 ≈
𝐸

20000
                 (eq. 14) 

and then developed a scale from this measurement that roughly matched the unsaturated part 

of the magnitude scale. Although this scale was developed specifically for large earthquakes, 

its range of applicability extends all the way down into the microseismic realm. 

5.4.2 Corner frequency 

Because of the band-limited nature of seismic signals, the recording system is an important 

consideration in any discussion of magnitude. The corner frequency fc of an event is empirically 

related to the magnitude of the event. The relationship arises from the relationship of seismic 

moment to the area of a fault surface: a larger fault surface area gives rise to a larger wavelength 

and therefore lower frequency signals. The corner frequency can thus be viewed as the 

characteristic or natural frequency of the event.  

Microseisms in the magnitude range of -3 to 0, give rise to corner frequencies in the range of 

approximately 50 to 500 Hz as they occur on fractures with dimensions of 10s of centimetres 

to a few metres. Microseisms with magnitudes of 0 to 5, occur on larger faults (10s to 100s of 

metres) leading to low corner frequencies in the range of 1 to 50 Hz. The largest earthquakes 

may cause slips on fault planes on the order of 1000 km, resulting in very low corner 

frequencies (in the scale of mHz). 

5.4.3 Source spectrum and model-fitting approaches 

The signal from three component sensors can be inverted for seismic moment by assuming a 

model for the source shape and relating that to a rupture area and an amount of slip. Simple 

models of fault slip such as the Brune model (Brune, 1970) or the Haskell model (Haskell, 

1964) that assume a circular and a rectangular fault respectively, provide relationships between 
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spectral (corner frequency 𝑓𝑐, low-frequency plateau Ω𝑜) and source parameters (slip area and 

seismic moment).  

Details of theoretical source spectra depend on model-dependent constants and are thus 

different for circular and rectangular faults but also for different models of circular faults. 

Brune (1970) stipulates that frequency response of the signal is flat until the corner frequency 

fc is reached, at which point, the amplitude falls off as f −2, although other models yield high 

frequency asymptotes of f −2.5 or f-3 (unilateral rupture, e.g. Haskell, 1964). Real fault ruptures 

may have any other shape and can only be approximated by these models. Generally small 

earthquakes are approximated by circular fault models (Bormann, 2012). 

The chosen fitting algorithm solves for Ω𝑜, fc and Q simultaneously and therefore allows for 

further investigations into source parameters. Figure 46 explains the extrapolation of the first 

two elements in a simple manner: (a) and (b) refer to the time domain while (c) to the frequency 

domain (fast Fourier transform FFT). The moment function M0(t) is the increase in moment 

caused by an earthquake slip along a fault. To estimate M0 in the time domain, the seismogram 

must be converted to displacement and integrated over the length of the pulse (b). In the 

frequency domain (c) and at low frequencies the spectral amplitude becomes constant and is 

proportional to seismic moment (~M0). At high frequencies the spectra show a decay that falls 

off as f-2 to f-3. Plotted on a log-log scale the spectrum can be approximated by two straight 

lines. The corner frequency fc is the break-point of the asymptotes (straight-line Bode plot). The 

low-frequency plateau Ω𝑜 is estimated and used directly in the calculation of seismic moment 

as this relates to the area of slip on the fracture plane (the area under the displacement curve). 

The spectral characteristics of recorded seismic waves, however, are strongly influenced by the 

attenuation properties of the medium as the signal travels from the hypocentre to the geophone. 

In order to obtain reliable estimates of the source spectrum, the estimation of the attenuation 

quality factor, Q is therefore needed (Eaton, 2011). In general, as depth increases, the rock 

becomes harder and more rigid. Both Vp and Vs increase, Vp/Vs decreases, and there is less 

attenuation (higher Q factor; Xu and Stewart (2006)). To estimate Q we can fit models built 

with different attenuation factors and the slope of the best fitting straight line on a log-log plot 

versus frequency can be used (Xu and Stewart, 2006).  
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Figure 46: Figure reproduced from Stork et al. (2014) demonstrating the extrapolation of the seismic moment and 

corner frequency parameters from the fitting of the displacement spectrum of a seismic event. 

Also entering the equation are geometrical spreading 1/r, wave-speed v (either 𝑣𝑝 𝑜𝑟 𝑣𝑠), the 

density of the rock 𝜌, and a factor R for the radiation pattern.  

𝑀0 =
4𝜋𝜌𝑣3𝑟𝛺𝑜

𝑅 
= 𝜇𝑑 𝐴                (eq. 15) 

Boore and Boatwright (1984) developed a rough estimate for R if one cannot adequately 

determine the radiation pattern of the moment tensor, 0.52 for P waves and 0.63 for S waves. 

The right side of the equation relates to parameters of the faulting process: μ is the shear 

modulus of the rock, d̄ is the average displacement of the fault, and A is the area of the fault. 

The product d̄A is termed geometric moment and can be determined directly from the zero 

spectral asymptote of the source in a seismogram, respectively by integrating over the area 

underneath the resituated broadband displacement P and/or S waveforms recorded in the far-

field of the source. The value for the rigidity μ, however, has to be assumed. 

With seismic moment, measured in Nm, we can then determine moment magnitude from the 

following formula (Havskov and Ottemoller, 2010): 



Chapter 5: Analysis of selected microseismic data: Seismic Source Location 

 

𝑀𝑤 = 2/3 𝑙𝑜𝑔10𝑀0 − 6.1               (eq. 16) 

In contrast to the empirical relations discussed earlier, this definition links magnitude to the 

properties of the fault. The constants in the above relation ensure that moment magnitude falls 

in a range that is comparable to other magnitude scales and makes it a logical choice for use 

with microseisms.  

5.4.4 Instrument response 

The sensor's response consists of a set of zeros which can be thought of as the number of 

integrations, poles which shape the corners of the response, and a constant gain factor to 

convert from a voltage output to a ground motion (V / (m/s)). The second stage is a cascade of 

filters to convert from an analog signal to a digitized sample. Typically digitizers will initially 

record the signal with a digitization on the order of 36,000 samples per second. A series of low 

pass filters and decimations then convert that analog signal to the output sampling rate. This 

cascade of filters has its own set of poles, zeros, and scalar constants. The full response is then 

a product of all filter pole-zero-constant and the sensor pole-zero-constant. Haney et al. (2012) 

described a general method for causal instrument correction, applicable to data from a wide 

range of seismometers. Their Matlab codes are available online as rm_instrum_resp.m 

(https://github.com/ChrisBail/PSPicker). 

5.5 Location determination in the present study 

The TOPological INVersion (TOPINV) algorithm (Saltogianni and Stiros, 2012a,b, 2013, 

2015) uses a deterministic search in an n-dimensional grid and does not assume any constraints 

a priori. 

The inverse problem is defined as: 

𝑓(𝑥) − 𝑙 = 𝑣,                 (eq. 17) 

where 𝑣 is an unknown error, 𝑙 = {𝑙1, . . , 𝑙𝑚} are the m observations (i.e. difference between 

time of arrival of the S- minus the  P- wave) and vector 𝑥 = {𝑥1, . . , 𝑥3} the unknown 

parameters, namely in this case Easting, Northing and depth of the hypocenter. 

https://github.com/ChrisBail/PSPicker
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Saltogianni and Stiros (2013) transformed eq.1 into: 

|𝑓 − 𝑙| < 𝑘𝜎,                 (eq. 18) 

where σ is the standard deviation of the observations 𝑙 and k, the only unknown parameter in 

this search process, is an optimization factor. For any k, a cluster of grid points, all of which 

satisfy all of the m inequalities (eq.18), is identified using a Boolean approach. The process is 

repeated until the optimal value of k, that satisfies certain user defined criteria, is obtained. An 

optimal subset of grid points is then identified as calculated solutions. The optimal estimator 

of the algorithm is computed from the first and second statistical moments of the coordinates 

of the potential solutions and is accompanied by its variance-covariance matrix.  

The accuracy of the solution depends on the geophysical model; i.e. the accuracy of the user 

defined velocities, the quality of the observations, and the density of the grid. Saltogianni and 

Stiros (2015) found the algorithm works well even in low SNR, however it is a slow algorithm, 

limited by the number of grid points. A potential alternative to overcome this issue is the use 

of nested grids (D’Auria et al., 2006). 

The TOPINV grid-search algorithm was used to locate events for both P- and S- wave times 

and only for the detected events for which at least 5 out of the 8 seismometers of the two surface 

arrays were triggered. In total, out of 168 events that their phases were re-picked, 70 

microseisms were located using the TOPINV algorithm (successfully converged). This small 

percentage of convergence is attributed to the dimensions of the grid used for the analysis, i.e. 

the sources of the re-picked events would have been outside of the limits of the grid and 

therefore the scope of my research (not RIS). The location estimates had an average fit error, 

i.e. the sum of the absolute residuals, of less than 143 m. In Figure 47 we can see the locations 

of the events and in Figure 48 a histogram with the error values of the locations. The events 

depicted with red balloons are the ones that occurred in 2014 while with yellow balloons in 

2016. We notice that the majority of events have errors of 0.05 to 0.15km. Figure 49 

demonstrates the in-depth spatial distribution of the events. All events are distributed between 

-2.9 km and 7.8 km asl which roughly translates (based on Google earth vertical ground 

profiles) to 282m above ground surface up till 10km below ground surface.  
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Figure 47: Locations of all manually repicked  P- and S- waves events. Events that correspond to 2014 and 

2016 are shown with red and yellow balloons respectively. 

 

Figure 48: Histogram of error values for located events (sum of absolut residuals) 
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Figure 49: Location of manually picked events 

I then further explored the periods before the times that drops in PH levels were identified in 

laboratory experiments (Stillings, 2020). In particular, I examined the full hours of data, for the 

North Array sensors only, for the following 3-day periods: 

 24.11.2014 from 13:00 to 26.11.2014 13:00 

 05.02.2016 from 12:00 to 07.02.2016 12:00 

 08.02.2016 from 10:00 to 10.02.2016 10:00 

 26.02.2016 from 07:00 to 28.02.2016 07:00 

 06.03.2016 from 10:00 to 08.03.2016 10:00 

 11.03.2016 from 13:00 to 13.03.2016 13:00 

 18.03.2016 from 11:00 to 20.03.2016 11:00 

As now in this check, I visually scrutinised the waveforms, I found cases of events that were 

picked by the NpD algorithm but I was not able to visually identify the phases, as the one 

shown in Figure 50. The event’s phases can be visually picked in the North array but only for 

one of the seismometers of the South array.  
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Figure 50: Event that its phases could not be visually picked, although detected by NpD and AIC-wav 

algorithms. 

Further details on this analysis is provided in Chapter 5.7.2. 

5.6 Source parameters in the present study 

The workflow followed in the present study to determine the source parameters of the events 

is presented as follows. An appropriate time window is chosen to perform M0 calculations. The 

start of the time window is the arrival time for the P- or S-waves and the end of the time window 

is at 2+ cycles of the P- or S-waves, while the signal is visible above the noise level. This is to 

maximize the event energy included in the calculation while minimizing the contribution of 

other sources of energy (Stork et al., 2014). 

The calculated spectrum is then corrected through deconvolution with the complex instrument 

response function (response of the velocity seismometer and anti-aliasing filter of the recorder; 

(Haney et al., 2012)). A hanning taper is applied to both the start and end of the raw seismogram 

prior to instrument correction. The length of the taper is the smaller of the following two values: 

10 percent of the entire length of the data or the longest period desired. 
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For each component, velocity spectra for signal and noise are computed by taking the Fourier 

transform of the windowed trace, normalized such that absolute units are preserved. 

Displacement spectra for individual components are then computed by dividing velocity 

spectra by iω. Because the receivers are at the surface, a free-surface correction (factor F) is 

also applied to the data (Aki and Richards 2002). Furthermore, the spectrum is corrected for 

attenuation, exp(iωt/2Qp). Brune source parameters for all analysed events were computed 

using a procedure similar to Pytharouli et al. (2011).  

In particular, the value of Qp value was estimated through sensitivity analysis (see Figure 51), 

i.e. for different displacement spectrums the Brune fitting curves using various values for Qp 

were estimated. QP for values around 650 (purple model fit) seemed to provide consistently 

better model fits hence that was the value kept for the rest of the analysis. The parameters that 

were used for the estimation of the attenuation quality factor can be seen on the right hand side 

of the figure. Greater attenuation values result in too low inferred corner frequencies; however, 

uncertainties in Q have insignificant effects on the magnitude estimations, which depend only 

on the low-frequency displacement asymptote. 

Using the attenuation factor that was derived from the aforementioned sensitivity analysis, an 

estimate of the low-frequency plateau is obtained by taking the difference between the average 

signal and noise amplitude. Corner frequency is determined by finding the optimum fit between 

observed and modelled displacement spectra. The methodology by Pytharouli et al., (2011) 

uses Nelder-Mead algorithm to achieve the best fit between observed and modelled spectra. 

An example of a model fitting of an event is given in Figure 52, while in the insert the Brune 

source model parameters are summarised. 
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PARAMETERS USED FOR QP ESTIMATION: 

Radiation coefficient for P waves R = 0.52 

(Boore and Boatwright, 1984); 

Average crustal density Ro = 2800kg/m3 

(Edwards et al., 2010); 

Hypocentral distance  hypod= 5983.318m; 

P-wave velocity = 5400 m/s;  

Pi = 3.141592; 

Free surface amplification F = 2 (Edwards et 

al., 2010) for normally incident SH waves. 

𝑓𝑐, 𝑀𝑜𝑎𝑛𝑑 Ω0 were estimated from the model 

optimization. 

 

Figure 51: Sensitivity analysis for the estimation of Qp 

 

Figure 52: Example of source-spectrum model fitting for an event. Blue curve shows the displacement spectrum 

for the P-wave arrival, after application of a Butterworth windowing function. The red curve shows the best-fitting 

Brune source model, with parameters summarized in the inset box.  

The parameters 𝑀𝑜  
and fc are the basic spectral data from which the source parameters are 

estimated. Event and material data required for further calculations are the epicentral distance 

Δ, the source depth h, the rock density ρ, the P-wave velocity vp, and the averaged radiation 

pattern R for  P-waves. Respective values are given under Figure 53 below. Using these and 

the equations listed in Table 10 below, the required source parameters can then be calculated. 

Radiation coefficient for P waves R = 

0.52; 

Average crustal density Ro = 

2800kg/m3 (Edwards et al., 2010); 

P-wave velocity = 5400 m/s;  

Free surface amplification F = 2; 

𝑓𝑐, 𝑀𝑜𝑎𝑛𝑑 Ω0 were estimated from the 

model optimization. 

𝑄𝑃 = 650. 
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Figure 53: Schematic of geometric parameters of a seismic event 

 Table 10: Overview of formulas of the estimated source parameters 

ESTIMATED PARAMETER EQUATION REFERENCE 

Seismic moment M0 
𝑀0  =  4 𝜋 𝑟𝑜 𝑣𝑃

3 Ω0 ℎ𝑦𝑝𝑜𝑑/(𝐹 𝑅) (in  

N*m)  

(Keilis-Borok and 

Monin, 1959) 

Moment magnitude Mw 𝑀𝑤 = 2/3 log10𝑀0 − 6.06  

Source / fault radius 𝑟𝑜  =  2.34𝑣𝑃/(2 𝜋 𝑓𝑐) (in m) (Brune, 1970) 

Stress drop (circular rupture) Δσ = 
7𝑀0

16𝑟𝑜
3 ∗ 10

−6 (in MPa) (Brune, 1970) 

Source duration 𝑇𝑑 = 1/𝑓𝑐 (in sec)  

Area of rupture plane Area = 𝜋𝑟𝑜
2 (in m2)  

Fault slip 
Displacement = 𝑀0/(33𝑒

9 ∗ 𝐴𝑟𝑒𝑎) (in 

m) 
 

Fault length Length = 2𝑟𝑜  (in m)  

Out of a total of 70 manually re-picked and located events, I was able to analyse further and 

estimate the source parameters of only 36. An overview of the inferred source parameters for 

the 36 analysed events of the North array and the 24 of the South array is presented in Table 

11 and Table 12 respectively. All of the events of the South array are a subpart of the analysed 

events from the North array.  

For visualisation purposes the results of the North array are also shown in the form of bar 

charts, in particular in Figure 54(a) we can see the mean moment magnitudes, in (b) the 

p-wave velocity  

source depth  

epicentral distance  

hypocentral distance  

incidence angle  

free surface 

amplification  

averaged radiation 

pattern 

vp = 5.4km/s  

h 

Δ 

r = √(ℎ2 + 𝛥2) 

i = arc cos(h/r) 

Sa for p-waves 

R = 0.64 for p-

waves 
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displacements and (c) the size of the slip patch areas, all of the above accompanied by their 

standard deviations (lighter shaded bars). The mean of the estimates from all receivers (per 

array) is reported in the tables and figures as a way to provide increased confidence in 

estimates. As we can see in Figure 54(a), there are some events with standard deviations greater 

than actual values.  

Hypocentral distances sampled by this set of events span a range from ∼3.31 to ∼34.85 km 

(considering both arrays). Inferred corner frequencies exhibit a high degree of scatter as they 

fall within the range 8.78 ≤ fc ≤ 109.58 Hz with corresponding low frequencies of 1.13E-8 and 

1.35E-9Hz. Calculated seismic moments and moment magnitudes fall within the range of 

7.81E+8≤ M0 ≤ 4.11E+12 and −0.23 ≤ Mw ≤ 2.41 respectively; this range reflects a sampling 

bias towards larger magnitudes, due to the focus of detection for this experiment. Fault lengths 

range from 25.45m to 469.35m, source radii range from 12.73m to 234.68m while the areas of 

the patches that slipped vary from 177,721 to 514.43m2.  

In Figure 55 the magnitudes of the events whose mechanisms were estimated from both arrays 

are demonstrated as spheres on Google Earth map. The spheres are coloured in 3 different 

colours according to the events magnitudes. For events whose moment magnitudes are less 

than 1, between 1 and 1.5, and above 1.5 the colours red, yellow and green are assigned 

accordingly. The moment magnitudes are the averaged values between the two arrays. It is 

interesting to see the concentration of the lowest magnitudes events around a specific area. 

The located events are presented as part of a seismic catalogue along with seismic events within 

a 50km radius around the sensors arrays mid-point and for the duration of the project, i.e. Oct 

2014 – Aug 2017. The seismic events were extracted from the Swiss Seismological Service 

catalogue that includes known earthquakes in Switzerland and its neighbouring countries 

(http://www.seismo.ethz.ch/en/earthquakes.xml). The seismic catalogue can be found in 

Appendix B. It can be observed that this research’s detected events don’t form part of the Swiss 

catalogue and constitute an addition. This strengthens the case with regards to the detected 

events being reservoir induced and not of tectonic origin. 

http://www.seismo.ethz.ch/en/earthquakes/switzerland/all-earthquakes/#ft_00011.xml
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Figure 54: Moment magnitude (a), fault slip (b) and slip patch area (c) estimates for 36 events (Mean  estimates 

of all sensors from the North array). In darker shaded bars are shown the estimates while in lighter the standard 

deviations 

a b 

c 
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Table 11: Overview of the source parameters (mean values for all North array sensors)  
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Table 12: Overview of the source parameters (mean values for all South array sensors) 
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Figure 55: Moment magnitudes of events whose source parameters were estimated from both arrays 

5.7 Discussion 

5.7.1 Localisation of events 

The time periods that were explored for RIS (after the 2 unloading periods of Raeterichsboden 

Lake) were expected to be the most probable for a microseismicity reaction to a stress change 

to happen provided the response was rapid. In case that microseismicity occurred as a result of 
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the delayed effect of pore‐pressure diffusion then it would be expected to occur later on, 

timewise. 

By simply observing the fractures reported by Schneeberger et al. (2017) and Stillings (2020) 

it is clear that the detected events could be easily accommodated by these fractures. An 

approximate plane has been drawn that fits a number of the located events and is shown in 

Figure 56 with an orange dotted line as an extension to the mapped fractures to the events. The 

heading of the plane approximation is at 50o. Four of the events that fit to the plane occurred 

in DOY 75 of 2016 and in two consecutive hours. Their inferred corner frequencies fall within 

the range of 33.75 ≤ fc ≤ 78.15Hz, while the calculated seismic moments and moment 

magnitudes fall within the range of 1.89E+10≤ M0 ≤ 2.9E+10 and 0.77 ≤ Mw ≤ 0.91. Fault 

lengths range from 64m to 174m, source radii range from 32m to 87m while the areas of the 

patches that slipped vary from 4,885 to 27,821m2.  

 

Figure 56: Plane fitting for a number of the located events presented as an orange dotted line. The plane agrees 

with the fractures reported by Schneeberger et al. (2017) and Stillings (2020). 

It has been reported that events with bandwidths outside of the flat frequency response are 

distorted by the instrumental response and yield unreliable magnitude estimates if they are 

detected at all. Since my instruments flat frequency is 80Hz, and I have indeed provided source 

estimates for events with corner frequencies above this frequency, the updated list with events 
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that yield reliable magnitude estimates is limited to events No 1, 5, 6, 8, 11, 12, 13, 14, 15, 19, 

20, 21, 22, 23, 24, 36. 

The solutions of the seismic inversion are out of the network, as expected from the shadowing 

analysis presented in Section 3.7, i.e. because of the tunnels acting as a barrier and shadowing 

the areas to the west of and between the arrays the recordability of seismicity occurring in these 

areas was evidently diminished. It has to be noted as well that it is possible that events located 

towards the edges of the grid are actually outside the grid at further distances and that the 

algorithm confused the global minimum and yielded as a solution a local minimum, hence the 

well resolved areas are those within a grid volume lesser than the one used for the localisation 

by a couple of grid points. This exclusion would event 1 as a not RIS event as it is located at a 

distance of 34km away, towards the north, from the north arrays’ sensors. 

5.7.2 Comparison with geochemistry 

In order to contribute to the LASMO project (see also Figure 4) and specifically to explore the 

relationship between geochemical findings and microseismicity I ran some additional analysis 

in specific periods that alkalinity drops (during November 2014 and February 2016; Stillings 

(2020)) were detected during groundwater sampling in the GTS. In particular, I visually 

inspected 48 hours of data prior to the each recorded pH drop occurrence. Only those events 

that simultaneously satisfied certain criteria were considered: events that demonstrated 

impulsive P-wave arrivals; events that were detected by either all 3D channels or by four 1D 

channels; events whose P- and S- wave arrival times had a maximum of 0.3s time difference. 

While the first two criteria were imposed to ensure the events can be properly located, the latter 

was to limit down events within a pre-chosen area of 2km radius around the GTS. Any events 

with greater S-P time differences were assumed to have occurred further than 2km away and 

were not expected to be liable for pH changes in the GTS. In total, ten events that satisfied the 

aforementioned criteria were located (three in 2014 and seven in 2016). 

The detected events are shown, as yellow circles, in Figure 57. Out of these, events (1) and (4)-

(8) were located using P- and S- wave arrivals from all vertical components of the North array 

only. These events had less than 0.5 sec durations and were part of a ‘sequence’ of short 
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duration events (inter-event distances of less than 1 sec) of 13 seconds total duration (Stillings, 

2020). Events (9)-(10) were located using the P- and S- wave arrivals from all seismometers 

of both arrays. All of the above events were located using the algorithm proposed by 

Saltogianni and Stiros (2013). Origin times were estimated by Wadati plots using the P- and S-

p arrival times. The remaining two events ((2) and (3)) were located using single-station 

location (Bormann, 2012) and the recordings of the 3D seismometer only.  

The vp/vs ratio was calculated, using the arrival times of p and s phases for all events that were 

detected by at least 4 seismometers, and demonstrated a variance of up till 2%. Errors in 

location because of the  P-wave picking inaccuracy (i.e. 2 sampling points ~±0.008 sec) reach 

up to approximately 270 m (assuming vp=4.5km/sec and a maximum epicentral distance of 1 

km). Errors due to the location method used reach up to 50m.  

The local magnitude relationship for Switzerland was used to estimate local magnitudes for the 

events, as suggested by Fäh et al. (2011) and the resulting local magnitudes ranged between -

1.2 and 1.04. The source dimensions were calculated as per Brune (1970). Corner frequencies 

for events (1)-(8) were within the range 13 and 20 Hz, corresponding to rupture patches of radii 

between 21 and 38 m, while events (9)-(10) had corner frequencies 96 and 100Hz, respectively, 

corresponding to rupture patches of radii 8 and 9m respectively. The estimated slip patch 

fracture surface areas for these events are 1,300 - 6,350 m2 (Stillings, 2020). 
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Figure 57: Figure adapted by Stillings (2020), representing microseismic tunnels (grey lines), fault traces (red 

lines) and the lithological contact at the surface between Aar Granite (purple) and Grimsel Granodiorite (green). 

The epicentres of the detected events are numbered and shown in yellow circles. The stereonet, at the top right 

corner of the figure, shows orientations of open fractures in the GTS and other tunnels.  

Fracture sets previously mapped in the area (Schneeberger et al., 2017), striking NE-SW and 

NW-SE, have sufficient length to host seismic events of these magnitudes and are also visible 

within the GTS cutting the tunnels and boreholes (stereonet in Figure 57; Stillings (2020)).  

By observing the events on this map we can see that most of the locations are either on mapped 

fractures or in their close vicinity. All the located events are very small and likely hosted on 

fractures (rather than major faults). Hence, it is not possible to match events to individual 

geological features as fracture density in the area is large. Analysis of the stereonets of fracture 

orientations indicates it is likely that they occur on the set of SW-NE oriented fractures that are 

observed to extend beneath the reservoir and are several kilometres in length. 
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Overall, these experiments demonstrated a causal relationship between the formation of new 

cracks seismically induced and the short-lived pH drops observed in GTS groundwater Stillings 

(2020). In other words, when a microseismic event occurs, a pH drop occurs in the groundwater 

within this slip patch and is propagated by a pressure rise through the fracture network to the 

sampled boreholes. 

5.7.3 Partially efficient automated locations of events 

5.7.3.1 Automated location using VFOM and AIC-wav 

As part of the search for an automated way to locate the events of interest, by using the AIC-

wav picks and not the manually picked events, I explored the virtual field optimization method 

(VFOM; Li et al.(2015)) as a location algorithm. VFOM optimizes a continuous and virtually 

established objective function and searches for the intersection of hyperboloids, determined by 

sensor pairs, in the 3D-space. The method claims to eliminate location errors caused by large 

picking errors (LPEs) with the assumption that all pairs of hyperboloids, except for those 

related to the LPEs, will intersect at the source. Many factors can cause LPEs, for instance a 

50 Hz power line interference can lead to LPEs both in P-wave picking and S-wave picking, 

especially for arrivals with low SNR (Li et al., 2015). 

VFOM introduces a function called closeness basis (CB) to describe the proximity of a point 

to all pairs of hyperboloids. Following the method’s assumption, the sum of all CBs at the 

source should be greater than at other positions; this is the location determination. VFOM 

employs the Quasi-Newton algorithm (Métivier et al., 2014), a two gradient-optimization 

method, and the iterative process is repeated for various initial values.  

User-defined input parameters include a homogeneous single-layered velocity profile, the 

number of sensors that need to be triggered for an event to be considered as valid, the estimated 

picking errors ranges that the input  P- and S-wave arrivals contain (dtp and dts respectively), 

and the confidence level for the general picking quality and array display (lev). Because the 

VFOM is based on the information of sensor pair, i.e., the double difference, the minimum 

number of sensors that can be used for acceptable event location is 5. However, in this case no 

LPEs are allowed in the data. If the number of sensors is set to 6, one sensor containing LPEs 
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may not influence the result significantly. Depending on the picking quality and array display 

lev parameter may range from values close to 1 (optimal) to 0 (worse cases). 

There are two iteration-stopping criteria that can be used i.e., the SC-A and SC-B. SC-A is a 

measure of the picking quality, obtains more stable and accurate results in the 40% of the cases 

with errors in the scale of 20m while refuses to yield results if unreliable. SC-B ensures VFOM 

always yields a solution, with the majority of the errors lying again in the scale of 20m but with 

some reaching more than 50m.  

The researchers tested the method using synthetic and real-field mining data that suffer from 

systematic LPEs, caused from uncertainties in the velocity profile and the arrival picking times. 

The method was checked against velocity uncertainties of 2km/s range, systematic errors of 

4ms and LPEs of 0.2s with different probabilities. Overall, VFOM yielded more accurate and 

stable solutions against traditional location methods using arrival times with different 

probabilities of LPEs, both in the case that it was applied to P- and S-wave arrivals but also 

when it was applied to P-wave arrivals only. VFOM showed similar sensitivity in cases when 

the S-wave was mistakenly identified as a P-wave. With these optimistic findings in 

consideration VFOM was deemed as an optimal location algorithm to combine with the picks 

of the events from AIC-wav algorithm. 

VFOM algorithm runs in Wolfram Mathematica programming language and was kindly 

provided by Wang, Z. Additional codes were written by me in MATLAB to automatically feed 

all AIC-wav results (.tsv files) into the particular input format VFOM required (see also 

Appendix A). The optimal VFOM parameters were set to fit the needs of my data: at least 

three sets of sensors had to be considered for an event to be considered valid, the picking errors 

for P- and S- wave were estimated to be in the range of ±0.01s, and lev parameter was set equal 

to 0.2. SC-A stopping criterion was used, to ensure accuracy of locations. 

Locations for all three years were estimated using VFOM. By way of example Figure 58 

demonstrates on Google Earth all the locations as estimated using VFOM algorithm, for the 

events of year 2016 whose P- and S- wave picks were determined using AIC-wav. The events 

are denoted with balloons of different colours depending on their depth, ranging from the 



Chapter 5: Analysis of recorded microseismic data: Seismic Source Location 

 

shallowest shown in red (-1.34 to -1.29km a.s.l.) to the deepest in blue (-1.89 to -1.84km a.s.l.). 

The fractures reported by Schneeberger et al. (2017) in Figure 7 are also drawn in the map. 

Fractures of different orientations are denoted with different colours. The events seem to nicely 

fit the fractures reported by Schneeberger et al. (2017). 

 

Figure 58: Locations obtained with VFOM algorithm using all P- and S-wave arrival picks as determined from 

AIC-wav workflow for the year 2016. The events are denoted with balloons of different colours as an indication 

of their depth, ranging from the shallowest in red (-1.34 to -1.29km a.s.l.) to the deepest in blue (-1.89 to -1.84km 

a.s.l.). The events seem to nicely fit the fractures reported by Schneeberger et al. (2017). 

After the events were located, using the aforementioned parameters, a trial and error location 

process followed to test the sensitivity of the locations. During this test the values of the 

estimated picking errors for  P- and S- wave were adjusted and values from ±0.1s to ±0.005s 

were used, while for lev parameter I checked values in the range of (0.2,0.8) with a step of 0.1. 

VFOM was also used with the option of using P-waves only. All combinations of parameters 

resulted more or less in the same image: a cloud of located events around Gerstenegg tunnel 

and more or less events further away, some of which coincided with fractures.  

By way of example Figure 59 shows comparisons of the sensitivity of the VFOM-obtained 

locations of the 2016 events, using only P-waves, using different combinations of the input 

parameters, i.e. the number of sensors, estimated picking errors of the P- wave arrivals (dtp) 
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and confidence level (lev). In particular, the figure demonstrates locations for the parameters 

(i) (8 sensors, 0.2, 0.01) shown with pins and (8 sensors, 0.2, 0.2) with balloons and (ii) (8 

sensors, 0.2, 0.01) shown with pins and (6 sensors, 0.2, 0.01) with rhombi. The locations results 

seem quite stable. 

  

 

This consistency gave birth to doubts: either the input data were indeed stable which would 

mean by extension that there were not LPEs in my dataset (a scenario dismissed by default 

only by taking into account the 50Hz EM interference) or VFOM was not yielding unbiased 

locations. Indeed, if we examine one of the located events shown in Figure 60 (the first one of 

this series of events) we witness a discrepancy. According to the waveforms on the left-hand 

side of the figure, the signals are first recorded by the North array (top six waveforms) and then 

by the South which yields the expectation that their origin would be towards the North array 

(Chapter 5.3.1.5 Arrival order approaches). The arrays are indicated on the right hand side of 

the figure with yellow dots. The located event however is located really close to the South array 

(position shown with a pin and a yellow arrow) which constitutes a paradox. The illustrated 

example was not the only inconsistency found within the located data and that was the reason 

why my confidence in the algorithm was shaken. 

Figure 59: Comparison of locations for the 2016 events obtained with VFOM with different combinations of the 

input parameters (no of sensors, lev, dtp): (i) locations for the parameters (8 sensors, 0.2, 0.01) are shown with 

pins and (8 sensors, 0.2, 0.2) with balloons and (ii) locations for the parameters (8 sensors, 0.2, 0.01) are shown 

with pins and (6 sensors, 0.2, 0.01) with rhombi. 
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Figure 60: Mutliple events 26 Nov 2016, ~08:13:01. Signals arrive first at the North Array, then at the 

South Array. Calculated location from VFOM is not consistent with this. 

 

5.7.3.2 Automated location using TOPINV and AIC-wav 

As an alternative approach, I checked one of the LPEs intolerant versions of the commonly 

used grid search algorithm (i.e. TOPINV), with the AIC-wav picks, even if the LPEs yielded 

problematic locations, if these were of small scale, they could be tolerated. TOPINV algorithm 

was applied for the AIC-wav picked events in a grid with spacing of 0.05km in all three 

dimensions and using only the P-wave time arrivals of all 8 stations. The process was then 

repeated using both phases time arrival information. The 3-dimensional grid of points chosen 

is assumed that surrounds the real solution. Then, for each grid point and all triggered sensors, 

an error tolerance of 0.05km is assigned to the corresponding measurement. The algorithm is 

repeated for all grid points, and the common section of the sets of grid points is defined. From 

this subset of grid points, the estimate with the minimum RMS is chosen as the estimate of the 

optimal solution. A number of AIC-wav outputs were located using both approaches. The aim 

of this check was to see whether the issue of the LPEs that arose from the use of AIC-wav, 

identified mainly in the S-wave arrivals, could be overcome by the use of TOPINV algorithm 
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using just the P-wave arrivals. One of the comparison visualisation figures produced can be 

visualised in Figure 61. 

 

Figure 61: Comparison of locations estimated by TOPINV algorithm using just  P-wave arrivals as input and both 

phases. 

Figure 61 clearly illustrates that there can be great discrepancies in the outputs of TOPINV 

algorithm when the input data are just the  P-wave phases as compared to when both phases 

arrivals are used. Particularly in this figure we can see two events locations as located by the 

algorithm. In the first case there is 1km distance between the locations estimated using just the 

P-wave and both phases, while in the second case there is a 24km discrepancy. Such an error 

in location estimations does not provide confidence.  

5.7.3.3 Automated location using clustering, VFOM and AIC-wav 

As another alternative, and again with the purpose of using the automatically picked AIC-wav 

picks, I decided to use clustering (similar to De Meersman et al. (2009)) and see if the LPEs 

still influence in a major way the results. For this analysis, I used the GISMO toolbox 

(Thompson and Reyes, 2018) a free, available online, seismic data analysis toolbox for 

MATLAB. I had to write the necessary algorithms in MATLAB for conversion of my data in 
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the input format that GISMO required, i.e. waveform objects. I chose an adequately high inter-

cluster correlation index (0.80, shown with a red vertical line in Figure 62(a)) and cross 

correlated all waveforms, i.e. 0.6s duration cropped traces around the AIC-wav detected events. 

In Figure 62(a) we can see the hierarchical cluster tree relationship between traces for the South 

array sensors and for all years. The cluster tree relationship was then trimmed into discrete 

clusters of events (15 in total). The events per cluster and over time can be seen in Figure 62(b).  

  

Figure 62: (a) Inter-cluster correlation index used for clustering of the events, and (b) spread of events per clusters 

over time 

In Figure 63(a) we can see the stack of the traces for each cluster as well as the number of 

events that were included per cluster. All traces from the largest cluster (#1, 7 events in total) 

are plotted together with the stack of the traces in Figure 63(b). Finally, in Figure 64 we can 

visualise the spatial distribution of the clustered events. We can see that all events are below 

the ground surface (shown with a mesh grid) and within the boundaries of the sensors of the 

North and South array. 

At first glance, the clustering of events seemed to provide a solution to the LPEs. However, 

quality control over the events included within the clusters proved that previously recognised 

as actual microseismic events were ignored, i.e. they were not included within any cluster. 

Signals within clusters were in fact either part of longer signals (clusters 1, 4, 6, 10 and 11 were 

actually precursors of landslides), or symmetrical signals that could either be attributed to 

mechanical glitches or just noise. 

a b 
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Figure 63: (a) Stack of the traces and the number of events per cluster, and (b) all traces from the biggest cluster 

(#1) plotted together and aligned. 

 

 

Figure 64: 3D representation of events. In the figure we can also see the sensors and with a mesh grid surface the 

ground surface. 

 

a b 
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5.7.4 Parameters that influence the source mechanisms estimates 

There are a number of factors that influence the source parameters estimates. 

 Mw  estimates may vary depending on the method chosen to compute Mo. According to 

Stork et al. (2014) who compared five different methods: time domain estimate, Brune 

model estimate, Boatwright model estimate, directly measured Ω0 with spectra not 

corrected for Q and with spectra corrected for Q; can demonstrate discrepancies of up 

to 0.6 units. The greatest differences were reported between the time and frequency 

domain estimates of Mw when the latter combined correction for attenuation. Q-

corrected spectra Mw estimates were found to be larger than the values estimated from 

uncorrected spectra. 

 Another parameter that affects the source parameters estimates is the radiation pattern 

correction. Stork et al. (2014) compared the Mw values estimated using R calculated 

from the focal mechanism solutions given in Rutledge et al. (2004) to the ones using 

the average values for the radiation pattern (0.44 for P-waves and 0.60 for S-waves) 

and witnessed that differences can reach up till 1.1 magnitude units. The greater 

discrepancies were reported in cases of larger events that S-waves were used for their 

Mw estimates. This effect occurs because the larger events are reported by a greater 

number of more distributed sensors. Some of these sensors are closer to a node in the 

S-wave radiation pattern than the P-wave radiation pattern. This highlights that the 

radiation pattern correction is particularly important if the receiver is situated near a 

node in the radiation pattern because R changes very rapidly with a small change in 

fault plane solution or event location. To account for this discrepancy it is advisable 

that averaged values of P- and S- phases should be used and these should be averaged 

over all sensors available for an event. 

 Another discrepancy occurs when estimates are based on measured energy from a P- 

rather than an S- phase. In particular, S-wave estimates are observed to be larger than 

P-wave estimates. The maximum difference between the P- and S-phase estimates can 

be up till 0.8 units. This discrepancy between P- and S-phase estimates arises largely 

because of the aforementioned radiation pattern coefficients errors. The estimates from 

S-waves are expected to be more reliable because usually the SNR for S-waves is 
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higher, although, depending on the proximity of the receiver to the event, the S-wave 

arrival could be affected by scattered P energy. 

 The length of the window used for estimating the values of Mw is another factor that, if 

inappropriately chosen, can cause errors in the estimates. Mw values were estimated 

using time windows picked individually for each recording. Stork et al. (2014) found 

that the P- and S- phase estimates may have outliers of up to 0.4 units, which occur 

because of the impulsive nature of the arrivals. This is because longer time windows do 

not contribute significant extra event energy but instead cause a reduction in the SNR 

of the time window used for Mw estimations. 

 The P- and S- arrival time separation is another parameter that restricts the analysis. 

That is, at a sampling rate of 250Hz the minimum ts-tp that could be analysed was 

0.04s, allowing for 10 data samples within that window. In cases of time windows with 

less than 20 sampling points, the length of the window chosen to perform Mo 

calculations is not sufficient to maximise the event energy while minimising the 

contribution of other sources of energy, rendering the estimation of the frequency 

spectrum liable to underestimation (Stork et al., 2014). In general, P-phase values are 

more affected by this parameter than S-phases, which is expected because the S-phase 

time windows are longer.  P-phase estimates at a sampling rate of 250 Hz may be up to 

0.3 units smaller than those at 1000 Hz.  

 Before a magnitude estimate is even attempted, pre-existing work may affect the 

accuracy of any Mw estimates. Any errors in the velocity model, the rock density and 

the source location will propagate into the Mw estimates. For instance a 10% error in 

the velocity, distance and density values would cause a 22% error in Mo estimates. An  

error of such  degree in a 108 Nm Mo could affect Mw estimate by 0.1-0.2 magnitude 

units (Stork et al., 2014). Apart from the geophysical parameters, the quality of the 

signals could also affect the estimates. However the work of Stork et al. (2014), having 

examined ratios of 1.5, 3, 5, 10 SNRs showed that there was not a discernible influence 

in Mw estimations (<0.1 units) provided noise can be separated from the signal.  

Regarding the velocity profile, based on the findings of Angus et al.(2014) and Usher 

et al.(2013) who claimed that the influence of vertical velocity variation is less 
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problematic in surface microseismic monitoring than in downhole monitoring, and that 

differences between velocity models result in location differences of circa 20m, 

respectively, I decided to use a single layered velocity model in my case study. Since 

the present research is not a hydrofracking experiment, but covers instead an area of 

kilometres, I figured that such an accuracy uncertainty would be deemed acceptable. 

Hence, I chose a homogeneous 1-D velocity model based on velocity data from 

previous experiments conducted in the GTS area and optimised my selection by 

minimising the residuals between theoretical and actual locations of documented 

tectonic earthquakes’ locations. 

Although the velocity errors are not expected to affect on their own greatly the location 

and source parameters results, the cumulative effect of errors caused by the combination 

of onset time picking accuracy, velocity profile, location technique, source – receiver 

configuration, anisotropy may end up in large variances from the true conditions. The 

location estimates had an average fit error, i.e. the sum of the absolute residuals, of less 

than 143 m. For the purposes of my experiments that needed to cover a large area such 

errors were accepted as satisfactory. 

 Finally, uncertainties in the estimates can occur because of the assumptions of the 

analysis. For instance Brune source model assumes that the events have pure double-

couple mechanisms which may not be the case for my events. Also, magnitudes were 

calculated using spectra corrected for frequency - independent Q. In fact, it is likely that 

Q is frequency dependent (e.g., Campillo et al., 1985; Oye et al., 2005), but this is not 

thought to significantly affect the results. 

5.8 Summary 

To conclude, in this Chapter I have presented the literature review researched for localisation 

and source parameters determination of detected microseismicity and the methodology that 

was followed.  

In particular, taking into account previous seismic explorations in the GTS area and the velocity 

profiles researchers used in these occasions I chose a homogeneous 1D model, performed some 
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sensitivity analysis using earthquakes reported by SED and recorded by my sensors, and 

resulted in accepting 𝑣𝑝 = 5.4𝑘𝑚/𝑠 and 𝑣𝑠 = 2.9𝑘𝑚/𝑠 as the velocity values to be used for 

the localisation process. 

I then chose to use TOPINV algorithm to locate the manual re-picks of the onset phases of my 

data (Section 4.5). The TOPINV grid-search algorithm was used to locate events for both P- 

and S- wave times and only for the detected events for which at least 5 out of the 8 seismometers 

of the two surface arrays were triggered. In total, out of 168 events that their phases were re-

picked, 70 microseisms were located using the TOPINV algorithm (successfully converged). 

This small percentage of convergence is attributed to the dimensions of the grid used for the 

analysis, i.e. the sources of the re-picked events would have been outside of the limits of the 

grid and therefore the scope of my research (not RIS). The location estimates had an average 

fit error, i.e. the sum of the absolute residuals, of less than 143 m. 

The source parameters of the located events were calculated assuming the Brune source model 

(pure double-couple mechanisms). As an overview, the hypocentral distances sampled by this 

set of events span a range from ∼3.31 to ∼34.85 km (considering both arrays). Inferred corner 

frequencies exhibit a high degree of scatter as they fall within the range 8.78 ≤ fc ≤ 109.58 Hz 

with corresponding low frequencies of 1.13E-8 and 1.35E-9Hz. Calculated seismic moments 

and moment magnitudes fall within the range of 7.81E+8≤ M0 ≤ 4.11E+12 and −0.23 ≤ Mw ≤ 

2.41 respectively; this range reflects a sampling bias towards larger magnitudes, due to the 

focus of detection for this experiment. Fault lengths range from 25.45m to 469.35m, source 

radii range from 12.73m to 234.68m while the areas of the patches that slipped vary from 

177,721 to 514.43m2. 

Novelty in the present chapter lies in using, comparing suitability and adjusting a number of 

well-known location determination approaches from the literature and resulting in the 

production of a seismic catalogue related to the dynamic response of the rock mass to reservoir 

drainage (Appendix B).
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Chapter 6 Discussion and further work 

The present chapter is an overview of the research undertaken, highlighting the novelty 

contributions and key findings on the various topics researched within this thesis, as well as 

further work. 

6.1 Research overview  

In chapter 2, I introduced the chosen small-scale field analogue to glacial retreat: the drainage 

and refilling of Raeterichsboden lake in the Swiss Alps (subsection 2.2). The reason why RIS 

has been chosen as an analogue to glacial retreat induced seismicity was explained as follows: 

both RIS and glacial retreat induced seismicity have been documented to follow water level 

variations, in a similar way, because both phenomena cause the same two processes of short-

term stress adjustment: the direct effect of loading and pore water pressure changes (subsection 

2.3); hence the short-term response to ice thickness fluctuations is similar to water reservoir 

induced fluctuations. In particular in this project, the planned construction works of KWO, 

which led to the unloading of Raeterichsboden lake twice in a period of two years, as well as 

the conveniently located underground GTS tunnels, rendered Raeterichsboden lake as an ideal 

reservoir to monitor for RIS. The stress changes in a reservoir have been reported to be 

followed by a rapid rock response, i.e. low magnitude, shallow seismic events, occurring below 

or in the immediate vicinity of the reservoir area. The pore water pressure changes, on the other 

hand, are followed by a delayed rock response and may extend well beyond the reservoir 

confines (≥ 10km), not show an immediate correlation with major changes in reservoir level 

and be associated with large magnitude earthquakes, at deeper depths (Simpson et al., 1988).  
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However, a glacier may consist of a 1km thick ice load, while the reservoir load head of 

Raeterichsboden lake is 74m. The stress release of 0.74MPa (74m) only triggered small 

microseismic events (−0.23 ≤ Mw ≤ 2.41). In the case of a 10MPa load change, i.e. glacial 

unloading, it may be the case that large magnitude events could be triggered as well as more 

frequent microseismic events (ML≥2.5; Sauber and Molnia (2004)). However, glaciers melt 

slowly during the warm months and then refreeze during the cold ones, so a rapid unloading of 

10MPa is highly unlikely.  

The faults in the Grimsel area have been examined by various researchers but here the findings 

of Raphael Schneeberger were taken into consideration (Section 2.6; Schneeberger et al., 

2017). As an overview, the area is governed by granitic rocks with 3 main groups of fractures, 

A, B, and C, dipping southeast, south and southwest respectively. The majority of the faults 

are in the south of the Raeterichboden lake and GTS tunnels. Not all fractures that are contained 

within these groups are of the same size, i.e. group A consists of 8 major faults (dip<80o) and 

23 relay structures, while group B from 6 major and 7 relay, and finally group C from 6 major 

and 32 relay. However, as per Costain et al. (1987), in most cases RIS is attributed to a small 

stress increase triggering the release of large pre-stress, i.e. a pore pressure stress increase 

triggering failure along a pre-existing fault already tectonically stressed close to failure, rather 

than because of a great stress increase. Hence, all fractures are susceptible to microseismicity, 

while only the size of the fracture slip will inform the magnitude of the event. In the Grimsel 

area, the transfer of stresses originating from an induced microseismic event can be facilitated 

through water conduits at large distances since the region is dominated by granitic rocks with 

an interconnected network of fractures of lengths of a few hundred metres. This may not be the 

case if the host rock is impermeable for instance, and in which case any transfer of stresses in 

a wider region would not be permitted, hence the energy dissipation would have to be in the 

immediate vicinity of the reservoir. 

In chapter 3, the monitoring approach was presented and the reasons why it was chosen as 

such were explained. In particular: microseismic monitoring was selected as the optimum 

approach for a number of reasons: (i) it allows for the recording of very weak events of energy 

dissipation, i.e. microseismicity; (ii) it is a continuous monitoring method, therefore 
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appropriate for a 3.5years continuous monitoring application; (iii) data can be transmitted in 

real-time from the monitoring site to the University premises, i.e. staff on-site are required only 

for the seismic sensors installation and regular maintenance; (iv) there is a great availability of 

automated software routines; (v) seismometers can be easily and rapidly deployed at a close 

proximity to the reservoir to record events; (vi) seismometers are easily retrievable; and finally 

(vii) the necessary equipment was readily available for this application. 

The optimal seismic network configuration depends on the type of sensors, the size of the 

seismic network, and the geometry; all of the above are determined based on the scope of the 

application. The seismic network configuration influences greatly the localisation of events, 

hence the researcher should invest time in choosing a seismic configuration that suits their 

project’s needs. There are always going to be limitations in the seismic network design, for 

instance, in this particular application, the available instrumentation consisted of two surface 

arrays (of three 1-D sensors and one 3-D sensor each) and a borehole 3-D sensor, while the 

availability of locations for sensors deployment was limited by external constraints such as 

accessibility and jurisdiction. With reference to the type of sensors, given that in this 

application the goal was to record microseismicity, the readily available sensors owned by the 

University of Strathclyde were deemed satisfactory, as their sensitivity (80Hz) targets weak 

motion. With reference to the size of the network, the minimum amount of records / readings 

for the source location determination is four (Joswig et al., 1992), hence the number of sensors 

(15 channels in total) was considered adequate for microseismic monitoring.  

Surface arrays and downhole sensors have different advantages / disadvantages (e.g. see Eisner 

et al., (2010)) and it is common practice to combine their use in the field to counterpart their 

shortcomings. Borehole sensors / arrays suffer from lateral positioning accuracy while array 

sensors from low SNR because of the environmental noise that exists in the surface and the 

signal attenuation (mostly of the s-wave). Conversely, surface arrays demonstrate high lateral 

positioning accuracy and borehole sensors / arrays higher depth resolution accuracy. As there 

was a specific budget for this application, there was not the availability to purchase further 

instrumentation hence the two arrays and the borehole sensor had to be positioned in a 

triangular relevant positioning to achieve a good hypocentral and lateral coverage of seismic 

locations. The best estimates of the seismic locations would be for events originating from 
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within this triangular area (see also 5.3.1.2). Because of the borehole sensor’s malfunction 

however the triangular positioning was no longer feasible and the experiments proceeded with 

a final number of eight sensors (six 1Ds and two 3Ds; i.e. a total number of twelve channels). 

The pre-processing of the acquired data comprised of the transformation of raw data to a format 

that could be read and processed using MATLAB (i.e. the majority of the codes were written 

in this language, incl. NpD algorithm) R studio (AIC-wav) and Mathematica (VFOM), the 

conversion of the data from counts in velocities, the formation of data series, the corrections of 

time lags in the start times of the hourly records, the conversion of the timeseries from cell to 

structure arrays.  

The preliminary visual observation of the acquired data which was undertaken to allow for an 

understanding of the noise sources that influenced the recordings and check the effectiveness 

of the microseismic monitoring network is also presented in Chapter 3. Various reoccurring 

noise signals of different frequencies and amplitudes were evident in the recordings. The 

sources of noise that were frequent in the area were related to hydroelectric activity, to 

construction activities, hydrofracking experiments, large seismic events and landslides. The 

identification of small tectonic earthquakes, which were also found in the Swiss Seismic 

Network database, confirmed that the sensors were able to successfully record small seismic 

events even at long distances. 

The network design analysis (again presented in Chapter 3) demonstrated that the Gerstenegg 

tunnel is shadowing the area on its west and between the two arrays, while the main access 

tunnel on its west (GTS area). Both tunnels act as a barrier, rendering all events occurring in 

the areas to the west of and between the deployed arrays more difficult to be recorded. No 

shadowing was observed on the east side of Gerstenegg tunnel. The tunnels shadowing is 

expected to affect the recording and localisation of events. Further analysis indicated that were 

there additional sensors arrays deployed in the main access tunnel they would allow for better 

recordability in the area between Gerstenegg and the main access tunnel. The magnitude 

threshold analysis demonstrated that magnitudes of up till -3Mw are detectable only in the close 

proximity of each array (0.4km) which coincides with the area that suffers from the Gerstenegg 
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tunnel’s shadowing. At longer distances the detectability falls to magnitudes of -2.30Mw 

(0.8km) and -1.58 (after 1km). 

In Chapter 4 the researched literature review and methodology followed for detection and 

onset time determination of potential microseismicity was presented. In particular, to detect 

weak seismic signals in not well-constrained conditions and without requirement of a priori 

knowledge about the expected signal frequencies and amplitudes, I developed the NpD 

algorithm. The main advantage of my approach is that it does not require any pre-filtering of 

the data as would be the case for detection of weak signals with most other methodologies. As 

a result, pre-filtering could remove information from the recordings, discarding it as noise, 

especially in cases of low SNR data. Avoiding pre-filtering altogether, minimizes the 

possibility of information loss in these low SNR recordings. 

Another advantage of the NpD algorithm is that it is suitable for non-stationary background 

noise since the upper bound to the spectral amplitude of background noise, above which an 

event is detected, varies over both space and time; significant differences were observed in 

hourly noise characteristics between sensors 1km apart. The approach is also equally effective 

with non-parametric data i.e. an assumption of normality is not required.  

The efficiency of the NpD algorithm has been proven through the comparison with other well-

known approaches (STA/LTA and PSD picker). However, although considerable effort was 

put to avoid having multiple NpD peaks for the same signal, i.e. consecutive events in 

consecutive PSD time segments were “cleaned up” and only the first arrival from the 

consecutives was considered a trigger, it was observed, that in the cases of landslides for 

instance this was ineffective. The initial crack is perceived as a separate event to the main body 

of the landslide and NpD triggers multiple peaks for an individual event in this occasion. The 

NpD algorithm is a powerful microseismicity detection tool but its output does not include 

accurate onset times for the detected events. Its accuracy depends on the duration of the 

individual time segments to which each recording is divided. For windows of duration 0.5 

seconds, such as those used in this case study, it means that the onset time is within a 0.5 second 

frame centred around the estimated NpD time of the ‘event’.  
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The full data set of passive seismic data acquired between 1st November 2014 and 12th August 

2017 was scanned using the NpD algorithm resulting in more than 241,000 detections. Some 

observations with reference to the acquired detection dataset as compared to the lakes water 

levels variations are summarised as follows: (i) the numbers of events detected by each of the 

individual arrays are broadly consistent, (ii) an anomalously high number of events are detected 

by the North and South arrays in early 2015, which may be as a result of reservoir drainage and 

refilling, (iii) the number of events appears to peak annually in the summer months (possibly 

related to the increase in glacial meltwater and consequent increase in reservoir levels, e.g. 

Johnson et al. (2017) and Roth et al. (1992), and (iv) a peak in event numbers may be associated 

with reservoir drainage.  

It was also discussed that it is possible that (i) the unloading / reloading of Raeterichsboden 

lake does not have a direct effect on the granitic rocks which would potentially need a stress 

change higher than historic stress changes (see also Gupta et al. (1972b)) to respond, (ii) the 

effect of these 2 cycles of Raeterichsboden lake’s drainage and refilling may induce delayed 

microseismicity response (Gupta, 2002), in the years that monitoring would no longer be in 

place, (iii) a seismic response captured by the sensors during this application may be the result 

of previous unloading and reloading of the reservoir, expressed with a time delay, (iv) the South 

array may be capturing weak events due to the lake water levels changes of both 

Raeterichsboden and Grimsel lakes because of its location, and (v) it is not clear which 

mechanism controls the seismicity; i.e. is it a rapid response to the reservoir loading or a 

delayed response to the unloading (see also Simpson et al. (1988)). 

For the onset time picking of this application, I decided to proceed with the manual picking of 

the phases only for periods of interest. This involved an extensive amount of pattern recognition 

and great effort to pick the first breaks in a consistent and, as possible, objective way. For the 

visual inspection of the data records within the time periods of interest RTQT_View from 

REFTEK was used and the data in counts were filtered with a recursive Butterworth bandstop 

filter for the frequencies between 48 and 52 Hz (to remove the Swiss EM caused by power 

lines). The manual picking of P and S waves proved to be challenging because of the 250Hz 

sampling rate which proved to not be adequately high to differentiate the arrival time 
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differences of certain signals between seismometers. The chosen time periods were either dates 

following the unloading of Raeterichsboden Lake, or two days before and after PH 

measurements peaks, or within the hours of Czech stress peaks. These dates were expected to 

be the most probable for a microseismicity reaction to a stress change. 

In Chapter 5 the literature review researched for localisation and source parameters 

determination of detected microseismicity and the methodology that was followed were 

presented.  

In particular, taking into account previous seismic explorations in the GTS area and the velocity 

profiles researchers used in these occasions, I chose a homogeneous 1D model, performed 

some sensitivity analysis using earthquakes reported by SED and recorded by my sensors, and 

resulted in accepting 𝑣𝑝 = 5.4𝑘𝑚/𝑠 and 𝑣𝑠 = 2.9𝑘𝑚/𝑠 as the velocity values to be used for 

the localisation process. 

I then used TOPINV algorithm to locate the manual re-picks of the onset phases of my data. 

The TOPINV grid-search algorithm was used to locate events for both P- and S- wave times 

and only for the detected events for which at least 5 out of the 8 seismometers of the two surface 

arrays were triggered. In total, out of 168 events that their phases were re-picked, 70 

microseisms were located using the TOPINV algorithm (successfully converged). This small 

percentage of convergence is attributed to the dimensions of the grid used for the analysis, i.e. 

the sources of the re-picked events would have been outside of the limits of the grid and 

therefore the scope of my research (not RIS). The location estimates had an average fit error, 

i.e. the sum of the absolute residuals, of less than 143 m. 

The source parameters of the located events were calculated assuming the Brune source model 

(pure double-couple mechanisms). As an overview, the hypocentral distances sampled by this 

set of events span a range from ∼3.31 to ∼34.85 km (considering both arrays). Inferred corner 

frequencies exhibit a high degree of scatter as they fall within the range 8.78 ≤ fc ≤ 109.58 Hz 

with corresponding low frequencies of 1.13E-8 and 1.35E-9Hz. Calculated seismic moments 

and moment magnitudes fall within the range of 7.81E+8≤ M0 ≤ 4.11E+12 and −0.23 ≤ Mw ≤ 

2.41 respectively; this range reflects a sampling bias towards larger magnitudes, due to the 

focus of detection for this experiment. Fault lengths range from 25.45m to 469.35m, source 
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radii range from 12.73m to 234.68m while the areas of the patches that slipped vary from 

177,721 to 514.43m2. 

Overall, the seismicity appears to respond to the variations in the volume of the reservoir with 

a small time delay. This observation agrees with Talwani (1997), who states that in most cases 

seismic activity is induced by positive lake‐level changes, and with Gupta et al. (1972b), who 

observed that in different case studies seismicity increases significantly within a short time 

after water loading. The detected events are characterized by a pattern different (through visual 

observation of their waveforms) from the known tectonic seismic events in the region and are 

located at distances less than 10km away from the reservoir. These observations favour a 

hypothesis for non-tectonic origin; hence the located events suggest that they can be reservoir 

induced. The fact that the detected events are not reported within the Swiss Seismic Database 

(see also seismic catalogue within Appendix B) strengthens this theory with reference to RIS. 

6.2 Safety case for a radioactive waste disposal facility 

In terms of the safety case consideration of a deep geologic disposal facility primary 

implications can be summarised as follows: 

 Overall, glacial loading, through its reservoir analogue was found to induce seismicity, 

albeit not all of the seismic signals were possible to locate or characterise. Research 

showed that whilst reservoir induced seismicity occurred due to load changes, the 

magnitudes of events were very small (−0.23 ≤ Mw ≤ 2.41) and hence unlikely to have 

a significant effect on the groundwater velocities and radionuclide transport 

calculations, as part of a safety case for a GDF. Further evidence to support this 

conclusion is that despite the occurrence of these frequent small microseismic events, 

neither pressure changes nor changes in major/minor ion chemistry have been observed 

in the GTS boreholes during, in-between or after the reservoir drainage or refilling 

periods (Stillings, 2020). Indeed, it may be the case that whilst the reservoir unloading 

increased the frequency of occurrence of microseismic events for a short time period in 
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the region surrounding the reservoir, these events would have naturally occurred 

anyway and that reservoir unloading simply focussed them into a shorter time window. 

To test this hypothesis, however, a longer background microseismic monitoring period 

is required. 

 The research has shown that relatively small changes in load (0.74MPa) and in 

groundwater water pressure can trigger frequent small microseismic events. 

Consequently, it is possible that GDF construction may have a similar effect (since it 

will change water flows and the rock mass load in some locations). The research here 

demonstrates that it is possible to identify and locate these events, even within quite 

seismically noisy environments. Hence, it would be advantageous to implement 

microseismic monitoring during both site investigation (in order to obtain baseline 

event data for low magnitude events) and subsequently during construction. Ideally, 

monitoring would be deployed using a dense network of surface and borehole-based 

seismometers, which would allow events to be accurately located and potentially, the 

orientations and extent of fractures that host such events to be determined (Pytharouli 

et al. 2011; Urbancic and Mountjoy (2011)). Microseismic analysis could then still be 

applied to understand how microseismicity evolves after and during the GDF 

development. Use of shadow space modelling would inform on network configuration 

and optimal network geometry. 

6.3 Novelty / key contributions of research 

The key contributions of my research as these were discussed within the thesis are:  

 A small-scale test site of a reservoir is chosen as an analogue for exploring the 

seismic hazard in radioactive deep geologic disposal facilities due to glacial retreats; 

as described in Chapter 2. 

 Although sensor deployment design and sensor data cleaning with noise 

characterisation for micro-seismicity monitoring is not an unmapped area, in this 

PhD this is explored in detail and for an extended period of several years; as 

described in Chapter 3. 
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 A new algorithm (NpD) for detecting potential seismic signals under not well-

constrained conditions and without requirement of a priori knowledge about the 

expected signal frequencies and amplitudes was proposed in Chapter 4.  

 The NpD algorithm and the data set are open source.  

 Although there are various onset time picking algorithms suggested by researchers 

(e.g. Irving‘s method, Akazawa’s method, JER-AIC, e.t.c. (Akram and Eaton, 

2016)) the novelty of this research lies by using, comparing suitability and 

adjustment of a number of well-known approaches from the literature in 

conjunction for real field data and for microseismic events detection purposes 

(Chapter 4).  

 A seismic catalogue related to the dynamic response of the rock mass to reservoir 

drainage was presented in Chapter 5 (Appendix B). 

6.4 Further work 

As already discussed, although considerable effort was put to avoid having multiple NpD peaks 

for the same signal, this was not possible in all occasions (e.g. in the cases of landslides). This 

could be a topic to be investigated in the future in order to minimise detections of non 

microseismic events; a potential way to deal with this is to explore classification algorithms 

(e.g. machine learning, neural networks, etc.). 

Also, the NpD algorithm is not an onset time determination algorithm with its accuracy 

depending on the size of user selected windows. Potential further work ideas on this include: 

(i) combination of NpD algorithm with other automated picking algorithms, such as 

autoregressive techniques (Kong, 1997; Leonard and Kennett, 1999; Oye and Roth, 2003), (ii) 

check the performance of the algorithm by incorporating wavelet decomposition instead of 

Fourier transforms, and (iii) record timeseries with a high sampling rate which would allow for 

smaller windows hence greater accuracy in the detections and downsample for data storing 

reasons. 
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AIC-wav is an algorithm developed for the automated accurate picking of the P and S arrival 

times and was developed in R studio programming language; a hybrid approach, with a simple 

formulation and parameter settings, that combines single and multilevel based existing 

methodologies. The AIC-wav worked exceptionally well in cases that the signal was visually 

distinct to noise. However, in cases when the signal has lost the P wave, the algorithm 

misidentifies the S-wave as a P-wave arrival. This misidentification of the first arrival has also 

been observed by Ge (2005). Overall, AIC-wav workflow allows more confidence in the 

automatically picked P-waves rather than the S-waves and can constitute further work to 

resolve the S-wave misidentifications. Provided this is resolved, AIC-wav algorithm will be 

providing automated onset times as efficiently as an observer’s manual picks within a one data 

per second range accuracy. 

Both algorithms’ effectiveness when used with other than seismic signals can also explored as 

future work. It is believed that they are going to be performing well in other signal processing 

science fields, for instance to capture ECG signals, or for monitoring of wind turbines.
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Chapter 7 Conclusions 

Resulting in an effective solution for the geologic radioactive waste disposal with no 

environmental risk is a paramount issue for the future reliance on nuclear power. Although 

geological disposal is considered as the best option, there are still elements of risk to be 

addressed, such as glacial retreat which could impact the safety performance of the GDF. 

Damage kinematics has been reported to be influenced by the discontinuity geometry and the 

relative glacier position. 

Glacial stress changes are expected to occur whilst the waste is still radioactive. Due to the 

long-lived nature of radionuclides there is a need to consider the effect these stresses would 

have, being exerted on the repository and the surrounding rocks. For this thesis I explored the 

response of granitic rock, as a potential host rock to a radioactive disposal facility, to glacial 

retreat. According to Zhang et al. (2019) a consensus on how fluids trigger earthquakes has not 

been reached and although numerous papers explain the role of fluids, the long-term dynamic 

mechanism that fluid plays in stress transformation and strength changes of the fault zone 

remain inexplicable, mainly because actual fault zones are complex, and the fluid - stress 

mechanism needs to be investigated for different fault zones. 

My findings from this PhD in terms of the implications for a GDF are summarised as follows: 

A reservoir is a suitable small scale field analogue to represent glacier retreat: To investigate 

the response of granitic rock to glacial retreat I used the draining and refilling of 

Raeterichsboden lake as a small scale analogue to 2 glacial cycles during 2 consecutive years. 

There was an opportunity to monitor the lake level changes of this particular reservoir and their 

effect on the surrounding granitic rocks because of the convenient positioning of the GTS 
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which allowed for the deployment of monitoring equipment. The analogy glacier / reservoir 

was found appropriate for researching the safety considerations of a GDF. For the detection of 

such events the NpD algorithm can be used, modified with a classification algorithm (e.g. 

machine learning or neural networks).  

Further experiments can be undertaken to establish the long-term microseismic effects that a 

couple or annually repeated load stress / relief cycles may cause to the GDF’s barriers / 

surroundings since the two cycles of unloading / reloading may have repercussions in the 

seismicity in the following years that the experiments and the monitoring took place. 

Microseismic monitoring is an efficient tool to monitor the effects of glacial retreat to the host 

rock: Microseismic monitoring was chosen as the optimum tool for my research since it is 

proven to detect and locate extremely weak geological processes. The seismic sensors are 

easily deployed (and retrieved) and record continuous data remotely for an extended time 

period. Two microseismic arrays and a borehole sensor were deployed for my case study to 

cover a triangular coverage area of approximately 340m2. Specific consideration should be 

given prior to the deployment for the network geometry; the tunnels shadowing and expected 

magnitude threshold should be estimated to allow for the optimal network configuration.  

I would also recommend that the sensors of each array are not placed in one straight line (should 

the site allow) but in star shape or grid designs. Also, a borehole array would be preferred to a 

single borehole sensor to complete the network design. And the sensors should surround the 

area that is to be monitored (should the site allow). Borehole sensors / arrays suffer from lateral 

positioning accuracy while array sensors from low SNR because of the environmental noise 

and the signal attenuation (mostly of the S-wave). Conversely, surface arrays demonstrate high 

lateral positioning accuracy and borehole sensors / arrays higher depth resolution accuracy. 

Hence a combination of the two types of arrays would complement the advantages and 

minimise the disadvantages of each. 

Another note that I would like to point out is in regards to the sampling frequency. Although 

consideration was given in this study to accurately account for the frequency content of the 

signals that I was expecting to record and eliminated the potential for alias frequencies by 

selecting a sampling rate at least twice the Nyquist frequency (sampling theorem), this seemed 
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to be rather a small sampling rate for the needs of my case study. In fact I should have 

oversampled at a rate of 8 or even 10 times the Nyquist frequency to allow for extraction of 

information from the reconstructed waveform (such as P- and S- wave arrival times). 

Oversampling is capable of improving resolution and SNR however increases dramatically the 

data storage requirements and the algorithms analysis speed (more time to process). 

Assessment of the developed methodology for the analysis of the acquired data: MATLAB and 

R studio codes were written for the detection, onset time determination and location of the 

events. The newly proposed detection algorithm NpD was also published in Bulletin of 

Seismological Society of America. NpD algorithm can successfully detect even low SNR 

events but can further be improved by applying a classification algorithm, fiddling with the 

sampling rate or using wavelet decomposition instead of Fourier transforms.  

The onset time determination AIC-wav needs further refinement to be able to capture both 

phases of signals in an accurate manner; currently, it allows more confidence in the 

automatically picked P-waves rather than the S-waves. This occurs because of the 

misidentification of the S-wave as a  P-wave arrival in cases that the P-wave is lost in the coda, 

a misidentification also reported by Ge (2005) to occur in 41% of the total picks. Multiple 

workflows were tried out to be able to automatically accurately pick P- and S-waves but that 

ended up fruitless and led to the location of manually selected events.  

Owing to the plethora of detection / onset time determination / location algorithms, limitations 

of time and equipment, it has not, by any means, been possible to test all aspects of the 

methodology developed by researchers whose work was explored during my literature review 

and I cannot deny that other methodologies, for instance neural network techniques, might have 

been more effective in identifying accurately signals.  

Overall, I believe that I have successfully addressed the objectives of my thesis and have added 

one more pebble of knowledge in this fluid-stress complex dynamic relationship research.  To 

summarise, the key contributions of the thesis as these were discussed and proven within my 

thesis are:  
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 A small-scale test site of a reservoir is chosen as an analogue for exploring the 

seismic hazard in radioactive deep geologic disposal facilities due to glacial retreats; 

as described in Chapter 2. 

 Although sensor deployment design and sensor data cleaning with noise 

characterisation for micro-seismicity monitoring is not an unmapped area, in this 

PhD this is explored in detail and for an extended period of several years; as 

described in Chapter 3. 

 A new algorithm (NpD) for detecting potential seismic signals under not well-

constrained conditions and without requirement of a priori knowledge about the 

expected signal frequencies and amplitudes was proposed in Chapter 4.  

 The NpD algorithm and the data set are open source.  

 Although there are various onset time picking algorithms suggested by researchers 

(e.g. Irving‘s method, Akazawa’s method, JER-AIC, e.t.c. (Akram and Eaton, 

2016)) the novelty of this research lies by using, comparing suitability and 

adjustment of a number of well-known approaches from the literature in 

conjunction for real field data and for microseismic events detection purposes 

(Chapter 4).  

 A seismic catalogue related to the dynamic response of the rock mass to reservoir 

drainage was presented in Chapter 5.      
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Appendix A  

In this Appendix, the codes written for this research are listed. The command in subchapter 

A.1 runs in CMD (i.e. command prompt), in A.6 runs in R studio while in the rest of the 

subchapters operate in Matlab. All mentioned codes (subchapter A.2 onwards) can be found in 

Strathcloud Sharefile in the link provided: https://strathcloud.sharefile.eu/d-

sfd42fe4480d40b48. 

A.1 Conversion from raw data to ASCII 

Using RT_ASC.exe, run in command prompt the command: for /r %v in (1\*) do RT_ASC.exe 

%v, and all folders containing raw files are converted in ASCII files. Each raw file generates 

as many ASCII files as the sensors that were attached to the data logger; i.e. six in the case of 

BD57, three in the case of BD961, per hour of data. 

A.2 Conversion from ASCII to .mat files 

The algorithms, written in MATLAB to convert, in an automated way, ASCII (.atr files) to 

MATLAB variables include the main script, called main.m, which calls functions importfile.m 

and parser.m. All .m files need to be within the same folder as the ASCII files. Function 

parser.m uses the following theoretical background and manufacturer provided info. The raw 

numerical data from the A/D chips are measured in counts. The A/D volts per count (Bit 

Weight) is measured by REFTEK and stored in each A/D board when built. To convert the 

waveforms amplitude from counts to ground velocity we need to use the formula: Ground 

https://strathcloud.sharefile.eu/d-sfd42fe4480d40b48
https://strathcloud.sharefile.eu/d-sfd42fe4480d40b48
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velocity = [Amplitude * Bit Weight] / [Gain * Sensitivity], where bit weight, gain and 

sensitivity vary depending on the data logger (see also Table 1 for values). 

A.3 Correction of files start time and length 

A script, called fixStarts1.mat, calls functions ts_split.m and ts_append.m and fixes the files 

that, because of some malfunction, are not 1-hr duration files that start from the beginning of 

the hour. The script splits three consecutive hours in bits (ts_split.mat): 

a. 1st hour: from the beginning of the file until 60 minutes 

b. 1st hour: after the 60 minutes (beginning of 2nd hour) until the end of the file 

c. 2nd hour: from the beginning of the file until 60 minutes 

d. 2nd hour: after the 60 minutes (beginning of 3rd hour) until the end of the file 

e. and so on 

and concatenates every two bits (ts_append.mat); i.e. b and c make a full hour file starting from 

the beginning of the hour. These malfunctions were observed only in the South array recordings 

(LOC1). 

A.4 Reconfiguration of .mat files from cell to structure arrays 

This is a script to automatically convert all .mat files from cell arrays to structure arrays to 

increase functionality and enable a more easy manipulation of the data (reconfig.mat). Both 

cell and structure arrays allow you to store data of different types and sizes. Structure arrays 

contain data in fields that you access by name while cell arrays by numeric indexing. The 

further complicated codes became the simpler the data storing tools I used had to become, 

hence I converted all my data in structure arrays.  

A.5 NpD algorithm 

Appendix A.5  has been published as Kinali et al. (2018). 
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The NpD algorithm is going to be distributed as an open-source detection algorithm. The 

algorithm steps (Step 1 and 2) have been automatized in the form of a code that runs in Matlab 

environment. The raw seismic data are converted from ASCII format to MATLAB files using 

simple algorithms. In this step the files are named: sensor_year_DOY_hour_min_ sec_μs_ 

channel, where sensor can be either LOC1, LOC2 or BH, DOY is the day of the year, the μsec 

have an accuracy of four digits and channel can be CH1:6. Then the mat files are pre-processed 

before fed into the algorithm: the counts are converted to ground velocity within the passband. 

Faulty files are dismissed (e.g. files that due to electrical malfunction of the sensors recorded 

some minutes instead of a full hour data record) during this step. The data are filtered with just 

a band-stop recursive Butterworth filter at 48-52Hz to remove the mains electromagnetic 

interference which is prevalent. No further filtering has been applied. The mat files are also 

demeaned and fed into the algorithm as structure arrays. Each structure array contains four 

fields: data (900000 data points), date (character array in the form of ‘dd-mmm-yyyy 

HH:MM:SS.mmmm' which indicates the beginning of the file), sensor (e.g. ‘LOC2’) and 

channel (e.g. ‘CH1’).  

The output of the code contains the variable ‘FinalRslts’ which is a structure array with 3 fields: 

names (character array in the form of ‘DOY_HH’), times (the times from the beginning of the 

hour the potential events are detected, in sec), timesForXcel (the times from the beginning of 

the hour the potential events are detected, in MM:SS:mmm). The variable ‘listingTotal’ is 

another useful output variable of the code listing the full names of the files checked from the 

code. The output variables ‘Step1_all_values’ contains two column cells: the second column 

encloses the file checked while the first the values of misfits and corresponding times of all 

data points during the first step of the algorithm. The output variables ‘Step1_above_threshold’ 

follows the logic of ‘Step1_all_values’ only this time the first column cells enclose the values 

of misfits and corresponding times of only the data points that successfully passed the first step 

of the algorithm. The output variable ‘PredictedEventsIndivChannel’ follows the previous 

logic and contains all values of misfits and corresponding times of only the data points that 

successfully passed the second step of the algorithm. This variable is different from the 

‘FinalRslts’ because the former refers to individual channels (the voting scheme has not yet 

been applied), neither has the consecutive events cleaning. 
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NpD algorithm includes the script Script_final.m which calls functions: function1_08_2017.m 

and function2_08_2017.m, meta_analysisFinal.m, and removalOfExcessPeaks.m. 

A.6 AIC-wav algorithm 

As presented in Chapter 4, AIC-wav algorithm takes small windows around the NpD potential 

events times and uses Daubechies wavelet transform filter of length 2 with 2 levels of 

decomposition and the Akaike information criterion (AIC). The code runs in R studio 

programming language and includes script P_wave.R which calls util.R. The outputs are in the 

form of .tsv files. 

A.7 Conversion for VFOM 

As discussed in Chapter 5, VFOM algorithms which run in Wolfram Mathematica 

programming language were kindly provided by Wang, Z but needed the potential events to be 

fed into the codes in a particular input format. For this a script in Python was written 

(script.py.), which uses information in the filename and creates a folder tree within which we 

will store the data files as per VFOM requirements. Once the folders are created then a code 

named CompareTSV_VFOM_code_2014.m which uses readTSVFile.m compares the 2 arrays 

TSV outputs from AIC-wav and gets the common potential picks. 

A.8 Conversion for GISMO 

To conduct the analysis presented in Chapter 5, I used the seismic data analysis toolbox for the 

cluster analysis in MATLAB (GISMO). GISMO requires the data to be input as waveform 

objects and for that the necessary conversion algorithms were written: openWaveform.m or 

fullWaveform.m. 
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A.9 TopInv conversion 

The TOPological INVersion (TOPINV) algorithm (Saltogianni and Stiros, 2012a,b, 2013, 

2015) was translated in Matlab and adapted for the purposes of the current research and the 

matlab function for that can be found in Sharefile (locode.m). 

A.10 Source parameters 

The script modelfit.m. which calls functions Brunewright.m and fitfun2outputfcn.m and 

fitfun2.m are also included in Sharefile. modelfit was written by Stella Pytharouli in Matlab 

and fits Brune (1970) and Boatwright (1980) model using the Nelder/Mead algorithm and was 

modified for the needs of this project. The script calculates the model values for the values of 

the frequency and plots the spectrum and the fit. It then computes the source parameters and 

creates a matrix with their values. Brunewright.m was also written by Stella Pytharouli while 

fitfun2outputfcn.m and fitfun2.m are freely available by the Mathworks.Inc.





Kinali M. PhD Thesis  University of Strathclyde 

187 

 

Appendix B  

Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2014 Nov 13 16:51:17 0.80 'Unterschaechen UR' 1.00 46.84 8.85 

2014 Dec 06 22:26:04 0.20 'Goeschenen UR' 2.10 46.68 8.49 

2014 Dec 07 09:34:27 0.30 'Simplon Dorf VS' 1.00 46.18 8.03 

2014 Dec 13 23:13:33 0.90 'Brig-Glis VS' 7.40 46.30 7.98 

2014 Dec 16 13:28:17 1.00 'Goeschenen UR' 5.40 46.67 8.50 

2014 Dec 17 00:43:17 0.40 'Goeschenen UR' 5.50 46.68 8.50 

2015 Jan 04 02:37:01 0.60 'Gadmen BE' 2.00 46.68 8.34 

2015 Jan 16 04:54:06 0.70 'Reckingen VS' 9.00 46.51 8.28 

2015 Jan 17 15:18:56 0.50 'Altdorf UR' 6.00 46.89 8.66 

2015 Feb 12 17:11:28 0.80 'Muerren BE' 3.00 46.53 7.99 

2015 Feb 23 00:30:30 0.80 'Fusio TI' 8.50 46.42 8.54 

2015 Mar 01 22:00:06 1.30 'Engelberg OW' -0.60 46.85 8.38 

2015 Mar 04 13:01:06 0.50 'Olivone TI' 5.80 46.53 8.89 

2015 Mar 12 22:45:59 1.80 'Altdorf UR' 8.20 46.90 8.60 

2015 Mar 19 04:49:44 0.50 'Reckingen VS' 2.00 46.44 8.28 

2015 Mar 19 21:01:34 0.80 'Bosco/Gurin TI' 5.40 46.34 8.54 

2015 Mar 29 22:59:38 0.60 'Brienz BE' 3.00 46.72 8.08 

2015 Mar 29 23:43:22 0.90 'Brienz BE' 3.00 46.72 8.08 

2015 Mar 31 01:47:44 1.50 'Altdorf UR' 7.00 46.88 8.60 

2015 Apr 18 03:37:51 0.40 'Unterschaechen UR' 5.70 46.90 8.78 

2015 Apr 20 06:59:11 0.80 'Brig-Glis VS' 7.20 46.31 8.00 
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Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2015 May 01 20:06:27 0.70 'Simplon Dorf VS' 5.10 46.25 8.10 

2015 May 06 00:47:27 1.70 'Reckingen VS' 7.90 46.46 8.18 

2015 May 07 07:24:13 1.20 'Amsteg UR' 9.10 46.81 8.64 

2015 May 08 19:17:12 1.00 'Amsteg UR' 6.20 46.80 8.63 

2015 May 16 11:54:01 0.90 'Reckingen VS' 2.00 46.55 8.20 

2015 May 25 03:17:14 0.60 'Brig-Glis VS' 2.70 46.30 7.98 

2015 Jun 04 11:33:06 1.20 'Amsteg UR' 8.50 46.80 8.64 

2015 Jun 08 11:57:12 0.30 'Oberwald VS' 7.10 46.61 8.34 

2015 Jun 13 01:04:10 1.00 'Bosco/Gurin TI' 2.00 46.35 8.41 

2015 Jun 13 22:48:44 0.80 'Oberwald VS' 5.30 46.61 8.31 

2015 Jun 13 22:48:45 0.80 'Oberwald VS' 5.50 46.61 8.32 

2015 Jun 16 00:57:53 0.70 'Reckingen VS' 7.50 46.51 8.22 

2015 Jun 18 15:06:48 0.50 'Oberwald VS' 7.10 46.62 8.35 

2015 Jun 18 15:09:01 0.70 'Oberwald VS' 6.00 46.63 8.36 

2015 Jun 18 15:41:34 0.30 'Oberwald VS' 7.10 46.62 8.35 

2015 Jul 12 08:07:34 0.80 'Reckingen VS' 3.80 46.45 8.36 

2015 Jul 12 22:07:03 1.10 'Unterschaechen UR' 7.40 46.84 8.80 

2015 Jul 13 16:18:20 1.50 'Cevio TI' 12.10 46.23 8.64 

2015 Jul 19 11:39:39 0.60 'Spiez BE' 4.60 46.66 7.69 

2015 Jul 20 22:01:37 0.80 'Oberwald VS' 8.40 46.57 8.40 

2015 Jul 29 17:12:58 1.00 'Unterschaechen UR' 9.60 46.84 8.85 

2015 Jul 29 18:06:20 1.20 'Bosco/Gurin TI' 7.50 46.40 8.53 

2015 Aug 18 07:10:10 2.10 'Soerenberg LU' 7.70 46.83 8.08 

2015 Aug 18 17:04:12 0.90 'Muerren BE' 1.00 46.52 7.80 

2015 Aug 25 19:40:35 0.80 'Binn VS' 3.30 46.28 8.20 

2015 Aug 26 16:25:41 1.50 'Oberwald VS' 5.30 46.58 8.36 

2015 Aug 26 21:02:52 0.80 'Reckingen VS' 2.00 46.42 8.29 

2015 Sep 05 20:47:52 1.20 'Brione (Verzasca) TI' 3.00 46.36 8.81 

2015 Sep 07 17:13:41 1.60 'Brig-Glis VS' 9.20 46.36 8.06 

2015 Sep 10 06:51:25 0.70 'Visp VS' 7.30 46.36 7.89 
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Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2015 Sep 15 06:15:53 1.10 'Bosco/Gurin TI' 5.10 46.38 8.41 

2015 Sep 18 16:07:58 1.00 'Reckingen VS' 3.60 46.54 8.16 

2015 Sep 27 21:00:11 0.40 'Bosco/Gurin TI' 3.00 46.36 8.41 

2015 Oct 02 13:44:27 1.00 'Unterschaechen UR' 3.20 46.83 8.84 

2015 Oct 05 11:27:07 0.80 'Unterschaechen UR' 2.10 46.84 8.80 

2015 Oct 05 14:41:22 0.80 'Binn VS' 7.30 46.35 8.15 

2015 Oct 06 16:44:47 0.80 'Fusio TI' 10.20 46.41 8.55 

2015 Oct 08 19:34:53 0.50 'Binn VS' 2.00 46.36 8.26 

2015 Oct 10 01:14:37 1.00 'Binn VS' 2.00 46.28 8.17 

2015 Oct 17 20:11:06 0.50 'Visp VS' 5.60 46.28 7.95 

2015 Oct 23 18:44:53 0.90 'Bosco/Gurin TI' 9.30 46.35 8.47 

2015 Nov 01 18:06:06 1.00 'Fiesch VS' 7.00 46.35 8.10 

2015 Nov 04 21:18:19 1.10 'Reckingen VS' 5.80 46.45 8.36 

2015 Nov 12 16:59:01 0.60 'Goeschenen UR' 5.60 46.68 8.50 

2015 Nov 16 00:55:25 0.70 'Goeschenen UR' 2.70 46.68 8.52 

2015 Nov 18 07:16:53 0.80 'Goeschenen UR' 2.00 46.68 8.51 

2015 Nov 19 06:41:47 0.70 'Meiringen BE' 2.00 46.71 8.18 

2015 Nov 22 06:19:41 0.10 'Goeschenen UR' 5.90 46.68 8.49 

2015 Nov 22 06:33:23 0.50 'Goeschenen UR' 5.60 46.68 8.50 

2015 Nov 24 18:49:28 0.40 'Goeschenen UR' 5.20 46.67 8.50 

2015 Nov 26 23:56:54 0.40 'Brig-Glis VS' 7.30 46.29 7.95 

2015 Dec 03 03:56:39 0.70 'Binn VS' 6.30 46.37 8.17 

2015 Dec 06 11:59:42 -0.10 'Realp UR' 9.20 46.62 8.42 

2015 Dec 09 00:36:18 0.10 'Goppenstein VS' 5.00 46.38 7.81 

2015 Dec 09 11:12:04 0.30 'Goppenstein VS' 6.80 46.38 7.82 

2015 Dec 15 04:55:00 -0.10 'Oberwald VS' 1.20 46.61 8.37 

2015 Dec 15 20:32:31 0.40 'Muerren BE' 3.00 46.54 7.91 

2015 Dec 17 03:49:45 2.00 'Brienz BE' 5.80 46.75 8.07 
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Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2015 Dec 18 10:00:38 1.60 'Oberwald VS' 10.50 46.51 8.36 

2015 Dec 20 07:39:34 1.50 'Brienz BE' 4.80 46.75 8.07 

2015 Dec 23 18:18:06 0.80 'Unterschaechen UR' 2.00 46.84 8.80 

2015 Dec 23 21:13:23 -0.10 'Realp UR' 7.20 46.59 8.45 

2015 Dec 24 15:25:58 0.80 'Bosco/Gurin TI' 2.10 46.35 8.45 

2015 Dec 26 00:32:17 0.40 'Unterschaechen UR' 2.00 46.83 8.81 

2016 Dec 18 07:51:08 0.40 'Realp UR' 5.00 46.65 8.49 

2016 Dec 18 01:32:12 0.80 'Realp UR' 6.10 46.65 8.48 

2016 Dec 17 23:38:21 0.30 'Realp UR' 5.60 46.65 8.48 

2016 Dec 17 17:30:26 0.30 'Realp UR' 7.00 46.65 8.47 

2016 Dec 17 17:22:38 0.50 'Kandersteg BE' 3.00 46.53 7.73 

2016 Dec 11 17:27:18 -0.10 'Oberwald VS' 7.10 46.60 8.40 

2016 Dec 02 16:14:42 0.90 'Fiesch VS' 7.40 46.37 8.06 

2016 Nov 28 08:01:48 0.50 'Goeschenen UR' 4.90 46.68 8.50 

2016 Nov 11 12:29:20 1.20 'Brione (Verzasca) TI' 3.70 46.33 8.76 

2016 Nov 03 21:19:41 0.20 'Goeschenen UR' 4.50 46.68 8.50 

2016 Nov 03 20:02:36 0.60 'Unterschaechen UR' 2.00 46.82 8.77 

2016 Oct 29 05:16:41 0.80 'Faido TI' 6.10 46.58 8.77 

2016 Oct 26 04:45:49 0.40 'Brig-Glis VS' 7.60 46.30 7.95 

2016 Oct 16 19:46:13 0.60 'Goeschenen UR' 3.50 46.68 8.50 

2016 Oct 11 07:08:50 0.90 'Unterschaechen UR' 2.00 46.84 8.85 

2016 Oct 08 02:31:59 2.60 'Fusio TI' 4.00 46.40 8.55 

2016 Oct 03 07:24:53 0.90 'Goeschenen UR' 5.90 46.68 8.49 

2016 Oct 03 06:43:43 3.20 'Goeschenen UR' 4.90 46.67 8.51 

2016 Sep 29 02:17:50 0.40 'Goeschenen UR' 4.10 46.68 8.50 

2016 Sep 26 02:06:02 0.40 'Goeschenen UR' 3.00 46.68 8.50 

2016 Sep 25 04:23:03 0.80 'Goeschenen UR' 3.00 46.68 8.50 

2016 Sep 23 12:58:07 0.90 'Goeschenen UR' 3.00 46.68 8.50 

2016 Sep 18 21:14:05 0.70 'Visp VS' 6.30 46.27 7.94 

2016 Sep 18 21:12:30 0.90 'Bosco/Gurin TI' 9.50 46.41 8.53 
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Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2016 Sep 14 13:54:30 1.10 'Domodossola I' 10.90 46.18 8.31 

2016 Sep 12 00:31:56 0.90 'Muerren BE' -0.20 46.51 7.79 

2016 Sep 06 00:46:16 1.00 'Muerren BE' 3.40 46.49 7.87 

2016 Aug 19 01:59:14 0.80 'Grindelwald BE' 3.00 46.62 8.09 

2016 Aug 12 16:51:49 1.00 'Beckenried NW' 10.70 47.00 8.47 

2016 Aug 10 13:50:46 0.60 'Fusio TI' 9.30 46.43 8.55 

2016 Aug 10 11:15:37 -0.30 'Oberwald VS' -1.90 46.57 8.35 

2016 Aug 05 23:11:54 1.70 'Brunnen SZ' 2.30 46.95 8.66 

2016 Aug 03 14:48:40 1.90 'Fusio TI' 8.60 46.41 8.54 

2016 Jul 31 03:47:18 1.10 'Beckenried NW' 1.80 46.90 8.44 

2016 Jul 19 04:11:11 0.70 'Goppenstein VS' 7.70 46.38 7.82 

2016 Jul 18 23:04:34 0.70 'Binn VS' 5.30 46.36 8.22 

2016 Jul 12 16:26:38 0.80 'Grindelwald BE' 0.40 46.58 8.02 

2016 Jul 09 04:24:55 0.60 'Frutigen BE' 4.40 46.60 7.68 

2016 Jun 17 12:06:45 2.70 'Frutigen BE' 7.30 46.60 7.70 

2016 Jun 10 22:29:59 0.90 'Sarnen OW' 0.30 46.90 8.35 

2016 May 23 10:47:27 0.30 'Brig-Glis VS' 1.90 46.35 8.05 

2016 May 14 18:29:01 0.40 'Goeschenen UR' 3.90 46.68 8.50 

2016 May 14 18:04:45 0.40 'Goeschenen UR' 3.40 46.68 8.50 

2016 May 14 16:40:10 0.50 'Goeschenen UR' 4.60 46.68 8.50 

2016 May 04 23:36:19 0.80 'Visp VS' 2.70 46.26 7.91 

2016 May 01 09:36:48 1.20 'Brione (Verzasca) TI' 2.10 46.38 8.84 

2016 Apr 30 14:18:54 1.20 'Biasca TI' 8.50 46.37 8.88 

2016 Apr 28 18:04:07 0.30 'Brig-Glis VS' 4.30 46.31 8.02 

2016 Apr 21 12:23:57 1.70 'Amsteg UR' 4.50 46.79 8.72 

2016 Apr 15 00:50:01 1.00 'Brig-Glis VS' 7.10 46.31 8.08 

2016 Apr 12 06:36:03 1.00 'Unterschaechen UR' 2.20 46.83 8.80 

2016 Mar 31 23:51:44 0.20 'Goeschenen UR' 5.90 46.68 8.50 
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Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2016 Mar 30 19:39:19 2.10 'Binn VS' 5.90 46.40 8.21 

2016 Mar 28 19:43:26 0.70 'Oberwald VS' 6.90 46.61 8.36 

2016 Mar 27 20:02:50 1.40 'Visp VS' 6.60 46.27 7.94 

2016 Mar 15 19:06:04 0.70 'Oberwald VS' 7.60 46.60 8.36 

2016 Mar 15 18:56:06 -0.60 'Oberwald VS' 6.50 46.59 8.35 

2016 Mar 15 18:55:48 0.00 'Oberwald VS' 7.50 46.61 8.36 

2016 Mar 15 18:44:06 0.00 'Oberwald VS' 7.50 46.61 8.36 

2016 Feb 28 11:49:13 0.10 'Unterschaechen UR' 2.00 46.85 8.81 

2016 Feb 28 04:55:54 1.40 'Unterschaechen UR' 5.50 46.84 8.80 

2016 Feb 27 12:08:23 0.40 'Reckingen VS' 7.30 46.43 8.38 

2016 Feb 27 01:10:46 1.50 'Unterschaechen UR' 2.00 46.83 8.80 

2016 Feb 24 23:54:51 1.40 'Reckingen VS' 5.50 46.44 8.38 

2016 Feb 20 06:22:07 1.00 'Faido TI' 2.00 46.56 8.77 

2016 Feb 18 03:03:02 1.70 'Fusio TI' 8.80 46.41 8.55 

2016 Feb 17 02:58:14 0.30 'Graechen VS' 2.00 46.23 7.92 

2016 Feb 09 03:07:55 0.80 'Muerren BE' 2.00 46.54 7.92 

2016 Feb 04 22:39:30 0.50 'Oberwald VS' 8.50 46.53 8.28 

2016 Feb 02 21:48:48 0.10 'Bosco/Gurin TI' 7.40 46.36 8.46 

2016 Feb 02 07:50:54 1.50 'Bosco/Gurin TI' 5.00 46.35 8.45 

2016 Jan 31 05:44:09 0.80 'Binn VS' 2.00 46.33 8.19 

2016 Jan 23 20:23:12 0.40 'Reckingen VS' 2.10 46.44 8.33 

2016 Jan 21 19:47:20 1.30 'Muerren BE' 3.30 46.54 7.91 

2016 Jan 21 18:48:29 0.10 'Oberwald VS' 6.30 46.60 8.34 

2016 Jan 15 20:34:05 0.70 'Grindelwald BE' 2.00 46.63 8.09 

2016 Jan 15 01:14:17 0.80 'Visp VS' 7.70 46.27 7.94 

2016 Jan 11 06:40:29 1.00 'Brig-Glis VS' 4.90 46.31 8.03 

2016 Jan 10 07:35:55 1.40 'Binn VS' 7.60 46.28 8.14 

2016 Jan 02 11:48:46 0.30 'Goeschenen UR' 3.00 46.68 8.50 

2016 Jan 02 10:42:44 3.10 'Muerren BE' 6.90 46.53 8.00 

2016 Feb 28 04:56:02 2.38 Event 1 1.86 46.75 8.32 
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Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2016 Mar 07  21:16:23 1.11 Event 2 1.38 46.62 8.42 

2016 Mar 08 11:22:47 1.03 Event 3 6.50 46.60 8.32 

2016 Mar 08 11:36:16 1.12 Event 4 2.29 46.62 8.40 

2016 Mar 14 12:13:13 1.58 Event 5 -0.28 46.61 8.38 

2016 Mar 15  18:37:35 1.10 Event 6 0.50 46.61 8.40 

2016 Mar 15  18:41:03 0.97 Event 7 7.14 46.60 8.36 

2016 Mar 15  18:44:36 0.83 Event 8 6.73 46.60 8.37 

2016 Mar 15  18:45:52 1.17 Event 9 0.71 46.62 8.40 

2016 Mar 15  18:45:29 0.91 Event 10 7.08 46.60 8.36 

2016 Mar 15  18:48:45 0.88 Event 11 7.28 46.60 8.36 

2016 Mar 15  18:48:53 0.72 Event 12 6.45 46.60 8.37 

2016 Mar 15  18:49:43 0.85 Event 13 7.22 46.60 8.36 

2016 Mar 15  18:54:16 1.08 Event 14 5.85 46.60 8.38 

2016 Mar 15  18:56:08 1.33 Event 15 1.95 46.62 8.40 

2016 Mar 15  19:07:27 1.26 Event 16 1.81 46.62 8.40 

2016 Mar 15  19:22:29 1.15 Event 17 3.33 46.61 8.40 

2016 Mar 15  19:23:00 1.12 Event 18 2.90 46.62 8.40 

2016 Mar 15  19:52:46 0.82 Event 19 7.28 46.60 8.36 

2016 Mar 15  20:18:08 1.23 Event 20 0.34 46.62 8.40 

2016 Mar 16 01:41:59 0.78 Event 21 7.28 46.60 8.36 

2016 Mar 16 15:38:45 1.26 Event 22 2.70 46.59 8.43 

2016 Mar 21 10:42:57 1.29 Event 23 7.29 46.59 8.35 

2016 Apr 06 15:18:00 1.16 Event 24 9.97 46.62 8.45 

2017 Aug 13 23:25:56 0.60 'Brig-Glis VS' 3.30 46.28 7.95 

2017 Aug 12 15:08:04 -0.20 'Oberwald VS' 1.50 46.56 8.24 

2017 Aug 09 20:26:55 0.50 'Realp UR' 7.80 46.63 8.46 

2017 Jul 30 05:59:35 1.50 'Reckingen VS' 7.20 46.47 8.17 

2017 Jul 19 23:13:25 1.20 'Oberwald VS' 2.90 46.59 8.36 



Appendix B 

 

Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2017 Jul 18 04:39:47 0.70 'Goeschenen UR' 4.70 46.67 8.50 

2017 Jul 17 01:25:39 0.40 'Goeschenen UR' 3.70 46.68 8.50 

2017 Jul 08 03:43:26 0.70 'Muerren BE' 6.30 46.47 7.83 

2017 Jul 07 07:12:46 1.20 'Stansstad NW' -0.90 46.96 8.32 

2017 Jun 20 01:52:10 0.90 'Kandersteg BE' 0.30 46.49 7.79 

2017 Jun 15 17:01:29 0.60 'Oberwald VS' 7.80 46.59 8.33 

2017 Jun 03 01:09:43 0.30 'Kandersteg BE' -0.50 46.47 7.72 

2017 May 22 13:34:04 0.40 'Goeschenen UR' 5.50 46.68 8.49 

2017 May 13 10:29:55 0.40 'Muerren BE' 6.00 46.47 7.83 

2017 May 09 22:46:33 -0.10 'Goppenstein VS' 6.70 46.41 7.85 

2017 Apr 30 21:10:45 0.60 'Visp VS' 6.10 46.30 7.84 

2017 Apr 29 13:01:42 0.30 'Goeschenen UR' 5.40 46.66 8.65 

2017 Apr 29 00:44:09 0.90 'Visp VS' 6.70 46.30 7.84 

2017 Apr 29 00:32:27 0.20 'Visp VS' 6.30 46.30 7.84 

2017 Apr 29 00:21:54 1.00 'Visp VS' 6.40 46.31 7.84 

2017 Apr 12 20:36:13 0.70 'Fiesch VS' 8.10 46.37 8.07 

2017 Apr 12 02:59:31 1.20 'Goeschenen UR' 7.00 46.67 8.51 

2017 Apr 11 09:11:26 1.20 'Brione (Verzasca) TI' 2.00 46.37 8.81 

2017 Apr 07 19:21:59 0.30 'Gadmen BE' 2.70 46.78 8.31 

2017 Apr 07 14:32:23 1.00 'Brione (Verzasca) TI' -0.40 46.32 8.78 

2017 Apr 06 23:56:46 0.50 'Realp UR' 8.50 46.61 8.45 

2017 Mar 20 10:34:53 0.70 'Domodossola I' 2.20 46.17 8.31 

2017 Mar 17 17:02:59 0.70 'Binn VS' 2.00 46.30 8.12 

2017 Mar 14 23:21:27 0.30 'Brienz BE' 5.80 46.79 8.05 

2017 Mar 14 03:07:12 0.80 'Faido TI' 2.20 46.57 8.75 

2017 Mar 07 01:53:49 0.60 'Grindelwald BE' 3.00 46.52 8.07 

2017 Mar 06 12:17:54 1.30 'Reckingen VS' 6.00 46.54 8.18 

2017 Mar 03 22:16:51 1.00 'Reckingen VS' 5.40 46.49 8.12 

2017 Feb 28 03:25:23 0.70 'Brione (Verzasca) TI' 9.30 46.32 8.86 

2017 Feb 19 12:17:00 0.60 'Fiesch VS' 8.10 46.44 8.09 
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Year 

UTC (Month/Day 

HH:MM:SS) Magnitude Location Depth Latitude Longitude 

2017 Feb 17 09:01:07 1.20 'Muerren BE' 3.00 46.56 7.96 

2017 Feb 15 15:39:08 1.40 'Frutigen BE' 6.50 46.60 7.69 

2017 Feb 15 05:34:03 0.00 'Goeschenen UR' 3.20 46.68 8.50 

2017 Feb 13 12:02:03 0.10 'Oberwald VS' 7.50 46.60 8.40 

2017 Feb 13 10:55:19 0.10 'Oberwald VS' 7.20 46.59 8.39 

2017 Feb 13 10:46:21 0.40 'Oberwald VS' 7.90 46.59 8.40 

2017 Feb 13 10:46:13 0.00 'Oberwald VS' 7.10 46.60 8.39 

2017 Feb 13 10:43:00 0.00 'Oberwald VS' 6.80 46.60 8.39 

2017 Feb 12 10:10:44 -0.20 'Oberwald VS' 7.30 46.59 8.38 

2017 Feb 11 21:10:11 -0.20 'Oberwald VS' 7.00 46.60 8.39 

2017 Feb 09 10:10:16 1.90 'Brienz BE' 6.10 46.78 8.06 

2017 Feb 02 00:05:18 0.40 'Goeschenen UR' 5.50 46.68 8.50 

2017 Jan 27 11:20:52 1.40 'Cevio TI' 13.30 46.25 8.63 

2017 Jan 20 01:08:38 0.40 'Kandersteg BE' 2.00 46.53 7.74 

2017 Jan 19 18:08:03 1.30 'Kandersteg BE' 2.00 46.53 7.74 

2017 Jan 19 11:21:16 0.70 'Domodossola I' 9.80 46.19 8.34 

2017 Jan 13 09:04:04 0.80 'Goeschenen UR' 4.00 46.68 8.50 

2017 Jan 13 06:13:13 2.50 'Goeschenen UR' 5.00 46.67 8.51 

2017 Jan 12 08:41:46 0.40 'Goeschenen UR' 4.10 46.68 8.50 

2017 Jan 11 16:28:38 0.00 'Goeschenen UR' 3.80 46.68 8.51 

2017 Jan 09 09:54:51 0.50 'Goeschenen UR' 5.70 46.68 8.51 

2017 Jan 07 03:52:17 0.70 'Binn VS' 6.60 46.37 8.17 

2017 Jan 04 18:18:32 0.60 'Unterschaechen UR' 3.90 46.88 8.76 

2017 Jan 04 17:01:36 1.90 'Unterschaechen UR' 6.80 46.89 8.76 

2017 Jan 01 08:36:21 0.50 'Realp UR' 7.60 46.60 8.44 

 


