

An Investigation of Automated Visual

Inspection System Design for Defect

Detection

Chenhao Ran

This thesis is submitted to the Department of Design, Manufacturing and Engineering

Management, University of Strathclyde, for the degree of Doctor of Philosophy.

i

COPYRIGHT STATEMENT

The copyright of this thesis belongs to the author under the terms of the United Kingdom

Copyright Acts as qualified by the University of Strathclyde Regulation 3.50. Due

acknowledgement must always be made of the use of any material contained in, or derived

from, this thesis.

AUTHOR’S DECLARATION

This thesis is the result of the original research. It has been composed by the author and has

not been previously submitted for examination which has led to the award of a degree.

Signed: Data: 09/04/2025

ii

Acknowledgement

First and foremost, I would like to express my deepest gratitude to Professor Xiu-Tian Yan,

whose unwavering support and guidance have been instrumental throughout my PhD journey.

His invaluable advice and the opportunities to engage in diverse research projects have greatly

expanded my horizons in the world of research. I am deeply grateful to Professor Yan for

providing me the opportunity to pursue my PhD at the University of Strathclyde, and for his

invaluable help in securing funding that has supported my stipend and living expenses.

I would also like to thank Dr Andy Wong, who became my supervisor in the fifth year of my

PhD. His unwavering support, patience and dedication were invaluable in helping me to

navigate the final stages of my thesis with confidence.

I would like to thank my colleagues in my lab and the department of Design, Manufacture and

Engineering Management, Dr. Leijian Yu, Dr. Beiya Yang, Dr. Baixiang Zhao, Dr. Muhammad

Siddiqui, Dr. Amr Ahmed, Dr. Quang Le, and particularly Dr. Cong Niu, whose assistance in

research and life has been immeasurable. I would also like to thank Ms. Youhua Li for her

insightful advice, extending beyond academia. I would like to thank Mr. Duncan Lindsay, Mr.

Dino Bertolaccini, Mr. Jim Mitchell, and all the technical colleagues who have provided

essential support for my research.

I am very grateful to the Scottish Research Partnership in Engineering (SRPe) programme and

Stellantis (formerly PSA Group) for their financial support.

Lastly, I express my eternal gratitude to my friends and family, whose love and understanding

have been the cornerstone of my academic pursuits.

iii

Publications

Minor Revision

[Chapter 5] C. Ran, X. Yan, ‘Real-time Zero-Shot Wheat Head Disease Detection Algorithm

Based on Domain Transfer and Anomaly Detection’, Computers and Electronics in Agriculture,

2024.

Working Paper

[Chapter 4] C. Ran, O. Guezet, X. Yan, ‘A Novel Hierarchical Knowledge Transfer DE-Net

for Real-Time Crack Classification’, Automation in Construction, 2025.

[Chapter 6] C. Ran, X. Yan, B. Zhao, E. Nougaredeb, ‘A Comparative Study of Vision-based

Car Engine Surface Anomaly Detection’, IEEE Transactions on Instrumentation and

Measurement, 2025.

Published

[Chapter 7] X. Yan, N. Oumer, M. Li, C. Ran et al., ‘Vision enabled smart manipulations for

in-space construction’ 71st International Astronautical Congress (IAC), Virtual, PP. 1-10,

2020.

iv

Abstract

Non-destructive testing (NDT) methods are in high demand for defect detection across various

industries, as they ensure the integrity and safety of materials and products without causing

damage. Among NDT techniques, automated visual inspection (AVI) systems have gained

significant attention due to their potential for efficient, accurate, and non-invasive defect

detection. AVI systems offer a powerful solution by leveraging advanced imaging and artificial

intelligence (AI) technologies to identify defects in real time. Based on defect localisation

precision, defect detection tasks can be categorised into four levels: image-level, object-level,

pixel-level, and 3D-level. Each of these levels necessitates distinct designs and techniques.

The key challenges include coarse localisation and limited interpretability at the image level,

object segmentation and ambiguity in defining object boundaries at the object level, fine-

grained localisation and computational complexity at the pixel level, and the integration of

spatial information with high computational cost at the 3D level. Despite their potential,

several challenges hinder their industrial implementation, including the accuracy-efficiency

trade-off, limited computational resources in practical applications, and data scarcity for

training deep learning models. This thesis investigates the design and development of AVI

systems for defect detection across four different localisation precision levels and diverse

industrial applications. Through a systematic design methodology, this research addresses key

challenges by optimising system architecture, data acquisition methods, and the detection

algorithms to meet the specific requirements of each industrial application.

The key components of the AVI system design are comprehensively reviewed, including data

acquisition, defect detection, and system design methodologies. Regarding the defect detection

methods, a universal perspective on defect detection techniques is provided and the state-of-

the-art methods are compared. Based on the literature review findings, several knowledge gaps

are identified, including the absence of a comprehensive design methodology for AVI systems,

challenges in real-time detection on devices with limited computational resources, and under-

exploration of the anomaly detection methods in AVI systems.

The first contribution of the research is to develop a novel comprehensive design methodology

to resolve the identified challenges of the AVI system design, with a focus on defect detection

method development. Central to this methodology is a design process model, where the design

evolves from an abstract and qualitative concept to a specific and quantitative embodiment,

and finally a complete AVI system. This design methodology also emphasises the development

v

of defect detection method through a detailed algorithm selection and optimisation process,

which can be tailored according to the availability of target data.

The second contribution is the implementation of the comprehensive design methodology in

developing four AVI systems in different application domains. By adopting the proposed

design methodology, four AVI systems are designed and developed in four case studies,

targeting different defect localisation precision levels and diverse industrial applications. The

first case study emphasises the accuracy-efficiency trade-off in computationally resource-

constrained devices, while the other three case studies address the challenges posed by data

scarcity. In the first case study, an image- and pixel-level concrete wall crack detection system

is designed, incorporating a novel training strategy for agile development of AI models along

with a novel model architecture. The second case study explores object-level detection of

wheat head diseases, employing zero-shot learning and domain adaptation techniques to train

an anomaly detection model without utilising any disease data. The third case study shifts to

pixel-level car engine surface defect detection. It includes a comparative analysis to examine

the impact of data collection configurations, anomaly characteristics, and anomaly detection

methods. Based on these findings, the most suitable defect detection algorithm is selected and

optimised. The fourth case study presents a 3D-level spacecraft anomaly detection system,

illustrating the design of both image acquisition system and software platform for a modular

spacecraft inspection system. These four case studies collectively demonstrate how the

proposed design methodology can be implemented to address distinct requirements and

challenges of each industrial application in a systematic manner.

vi

Table of Contents

Acknowledgement ... ii
Publications ... iii
Abstract ... iv
Table of Contents .. vi
List of Figures ... ix
List of Tables ... xiii
List of Acronyms... xiv
1. Introduction .. 1

1.1. Motivation ... 1
1.1.1. Industry Demand for Non-destructive Testing 1
1.1.2. Non-destructive Testing Technologies for Defect Detection 1
1.1.3. Automated Visual Inspection for Defect Detection 2

1.2. Research Aims and Objectives .. 4
1.3. Research Methodology.. 5

1.3.1. System Design and Development .. 5
1.3.2. Defect Detection Method ... 5
1.3.3. Dataset and Experimental Setup .. 6
1.3.4. Evaluation Metrics ... 6
1.3.5. Analysis and Optimization ... 6

1.4. Thesis Structure ... 6
2. Literature Review of Automated Visual Inspection System and Defect Detection 9

2.1. Introduction ... 9
2.2. AVI System ... 10

2.2.1. Data Acquisition .. 10
2.2.2. Defect Detection .. 16
2.2.3. System Design Methodology ... 21
2.2.4. Summary .. 25

2.3. Defect Detection Methods ... 25
2.3.1. Method Taxonomy ... 26
2.3.2. Defect Similarity Detection ... 28
2.3.3. Classification-Based Detection .. 29
2.3.4. Anomaly Detection .. 34
2.3.5. Comparison and Discussion ... 39
2.3.6. Summary .. 48

2.4. Knowledge Gaps ... 49
3. Design Methodology for AVI System .. 50

3.1. Introduction ... 50
3.2. AVI System Design Process .. 51

3.2.1. Task Clarification ... 51
3.2.2. Concept Design .. 52
3.2.3. Embodiment Design... 53
3.2.4. System Verification and Validation .. 56

3.3. Methodology Validation .. 57
3.4. Summary ... 58

4. The First Case Study: Image- and Pixel-Level Concrete Crack Inspection 60
4.1. Introduction ... 60
4.2. Task Clarification .. 62

4.2.1. System Requirements and Specifications .. 62
4.2.2. Related Works .. 63

4.3. Concept Design ... 65

vii

4.3.1. System Architecture ... 65
4.3.2. GUI Design .. 68
4.3.3. Evaluation Criteria ... 69

4.4. Crack Classification .. 69
4.4.1. Hierarchical Knowledge Transfer Training Strategy 70
4.4.2. DE-Net ... 73
4.4.3. Experiments and Results .. 75

4.5. Crack Segmentation .. 82
4.5.1. Segmentation Model Candidates ... 82
4.5.2. Experiments and Results .. 84

4.6. System Validation and Verification ... 92
4.7. Summary ... 93

5. The Second Case Study: Object-Level Wheat Head Disease Detection 95
5.1. Introduction ... 95
5.2. Task Clarification .. 96

5.2.1. System Requirements and Specifications .. 96
5.2.2. Related Works .. 96

5.3. Concept Design ... 97
5.4. Wheat Head Detection .. 98

5.4.1. YOLOv8 Model ... 98
5.4.2. Domain Adaptation and Transfer Learning 100
5.4.3. Experiments and Results .. 101

5.5. Wheat Head Disease Detection ... 105
5.5.1. Algorithm Candidates .. 105
5.5.2. Experiments and Results .. 107

5.6. System Validation and Verification ..112
5.7. Summary ..113

6. The Third Case Study: Pixel-Level Car Engine Surface Anomaly Detection114
6.1. Introduction ..114
6.2. Task Clarification ...115

6.2.1. System Requirements and Specifications115
6.2.2. Related Works ...116

6.3. Concept Design ..117
6.4. Dataset Establishment ..118

6.4.1. Image Collection ...118
6.4.2. Image Synthesis ... 121
6.4.3. Datasets with Synthetic and Real Anomalies 122

6.5. Synthetic Anomaly Analysis ... 123
6.5.1. Anomaly Detection Algorithm Candidates 123
6.5.2. Experiment Setup ... 125
6.5.3. Image and Pixel Level Analysis ... 125
6.5.4. Anomaly Level Analysis .. 132

6.6. Real Anomaly Analysis ... 135
6.6.1. Image and Pixel Level Analysis ... 135
6.6.2. Anomaly Level Analysis .. 137

6.7. Model Optimisation .. 139
6.7.1. Feature Extractor .. 140
6.7.2. Background Removal... 140
6.7.3. Image Tiling ... 141

6.8. Summary ... 143
7. The Fourth Case Study: 3D-Level Spacecraft Anomaly Detection 145

7.1. Introduction ... 145

viii

7.2. Task Clarification .. 146
7.2.1. System Requirements and Specifications 146
7.2.2. Related Works .. 146

7.3. Concept Design ... 148
7.4. Dataset Establishment ... 149

7.4.1. Hardware Configuration .. 149
7.4.2. Data Collection .. 149

7.5. Object Pose Estimation ... 155
7.5.1. Algorithms for Object Pose Estimation ... 155
7.5.2. Small Satellite Model Pose Estimation .. 161
7.5.3. Engineering Feature Block Pose Estimation 166

7.6. Modular Spacecraft Inspection ... 169
7.6.1. Algorithm Selection and Optimisation .. 169
7.6.2. Test Procedures .. 172
7.6.3. Stereo Camera based Pose Estimation ... 172
7.6.4. RGB-D based Anomaly Detection ... 175
7.6.5. Metal Cover ... 178

7.7. Summary ... 180
8. Conclusion and Future Work .. 181

8.1. Introduction ... 181
8.2. Key Findings ... 181

8.2.1. AVI System Design Methodology ... 181
8.2.2. The First Case Study: Concrete Crack Inspection 182
8.2.3. The Second Case Study: Wheat Head Disease Detection 183
8.2.4. The Third Case Study: Car Engine Surface Anomaly Detection ... 184
8.2.5. The Fourth Case Study: Modular Spacecraft Anomaly Detection . 184

8.3. Contribution to Knowledge ... 185
8.3.1. Overall Contributions to Knowledge ... 185
8.3.2. Case Study Specific Contributions .. 186

8.4. Limitations and Future Work .. 186
8.4.1. AVI System Design Methodology ... 186
 The First Case Study: ... 187
8.4.2. Concrete Crack Inspection ... 187
8.4.3. The Second Case Study: Wheat Head Disease Detection 188
8.4.4. The Third Case Study: Car Engine Surface Anomaly Detection ... 188
8.4.5. The Fourth Case Study: Modular Spacecraft Anomaly Detection . 189

References .. 190

ix

List of Figures

Figure 1.1. Organisation of the thesis. ... 7
Figure 2.1. Illustration of typical illumination modes including (a) bright field forward

lighting, (b) dark field forward lighting, (c) coaxial forward lighting, (d) scattering

forward lighting of dome structure, and (e) back lighting. (redrawn from [57]) ... 12
Figure 2.2. Example image of ROC curve with AUCROC of 0.99 for car engine anomaly

detection. .. 20
Figure 2.3. French’s design process model (redrawn from [125]) 22
Figure 2.4. Phal-Beitz design process (courtesy of [126]) ... 22
Figure 2.5. Yan’s design process model for concurrent mechatronic system and

manufacturing/assembly design process model (courtesy of [127]) 23
Figure 2.6. V-model in the VDI guideline 2206 (modified from [128]) 24
Figure 2.7. Design process of AVI system proposed by [31] ... 24
Figure 2.8. An illustration of LBP histogram extraction for a 3x3 image patch 31
Figure 2.9. Examples of defect edge detection based on Gabor filters (courtesy of [38])

 ... 32
Figure 3.1. Design process model for concurrent hardware and software development for

AVI system ... 50
Figure 3.2. Flowchart for basic defect detection algorithm selection and optimisation. 56
Figure 4.1. Head mounted based crack inspection procedure. 67
Figure 4.2. The application framework for crack inspection on HoloLens 2 68
Figure 4.3. GUI design for crack inspection. ... 69
Figure. 4.4. Scheme of hierarchical knowledge transfer training strategy. 73
Figure. 4.5. Knowledge transfer path of the proposed training strategy. 73
Figure. 4.6. Architecture of dilated expansion block. .. 74
Figure. 4.7. Block architecture of (a) ResNet, (b) MobileNetV2, (c) MobileNetV3 and (d)

DE-Net ... 75
Figure. 4.8. Sample crack images for crack classification ... 76
Figure. 4.9. Sample non-crack images for crack classification 77
Figure. 4.10. Accuracy comparison of three models against parameter number trained on

CIFAR-100. .. 78
Figure. 4.11. Accuracy comparison of three models against inference CPU latency on

CIFAR-100. .. 78
Figure. 4.12. Validation accuracy with/without pretrained weights on ImageNet. 79
Figure. 4.13. Knowledge distillation results comparison for different teacher-student pairs

on CIFAR-100. ... 80
Figure. 4.14. Results comparison of crack dataset in chart with different training strategy.

 ... 82
Figure 4.15. Crack segmentation models using different heads (a) U-Net, (b)

DeepLabv3+, (c) LR-ASPP. ... 84
Figure 4.16. Sample crack images for crack segmentation. ... 85
Figure 4.17. Average F1 score for self-dataset test of different segmentation heads and

backbones. .. 87
Figure 4.18. Average F1 score for cross-dataset test of different segmentation heads and

backbones. .. 88
Figure 4.19. The U-Net self- and cross-dataset test F1 score comparison. 89
Figure 4.20. Example prediction results of four segmentation heads on different datasets,

the dice score of segmentation is shown below the predicted masks. 90
Figure 4.21. Example prediction results of U-Net trained on different datasets. 91

x

Figure 4.22. The classification (left) and segmentation (right) results for GUI test. 92
Figure 4.23. Postprocess of crack mask (left) morphological close and (right)

skeletonization. .. 93
Figure 5.1. Disease detection model training and prediction ... 98
Figure 5.2. Illustration of domain adaptation and transfer learning on three datasets. 101
Figure 5.3. Example wheat head detection results with GWHD and YOLOv8n-pretrain

 ... 102
Figure 5.4. Examples of wheat head detection in WHBD using YOLOV8n-pretrain. 103
Figure 5.5. Detection result of a sample image with clustered wheat heads in WHBD

using YOLOV8n-pretrain with (left) original image size and (right) resized to half

height.. 104
Figure 5.6.Example wheat head detection results with FHBS and YOLOv8n pretrain.

 ... 105
Figure 5.7. Illustration of disease detection by anomaly detection. 106
Figure 5.8. Histogram of Hue values for positive and negative samples in WHBD. ... 108
Figure 5.9. Feature embedding visualisation of WHBD. The feature embeddings are

extracted from the first 7 layers of the YOLOv8n model. 109
Figure 5.10. Distribution of anomaly scores on WHBD using embedding-based methods.

 ..110
Figure 5.11. The classification of different severity of the disease in WHBD. 111
Figure 5.12. Feature embedding visualisation of FHBS. .. 111
Figure 5.13. Distribution of anomaly scores on WHBD using embedding-based methods.

 ..112
Figure 6.1. The three different viewpoints of the combustion engine for defect detection

 ..116
Figure 6.2. Sample images of different filter conditions: no filter, filter rotated at 0, 45,

90, 135 degrees, from left to right. ..118
Figure 6.3. Sample images of engine block with different exposure times of 100 ms, 200

ms, and 400 ms under ceiling lights. ...119
Figure 6.4. Sample images of an engine block with three lighting conditions: lights from

the ceiling, one LED from left-hand side, and two LEDs from the left and right-hand

side. ...119
Figure 6.5. Example images taken for different faces of engine head and engine block.

 ... 120
Figure 6.6. Image collection setup for the engine head with two cameras and two LEDs.

 ... 120
Figure 6.7. Sample images of engine under without (left) and with (right) anomalies.121
Figure 6.8. Sample synthetic anomaly image (left) and label (right) for engine block

generated by the NSA method ... 121
Figure 6.9. Sample synthetic anomaly image (left) and label (right) for the engine block

generated by the Perlin noise image. ... 122
Figure 6.10. Sample synthetic anomaly image (left) and label (right) for engine block

generated by random polygons. ... 122
Figure 6.11. Model comparison with respect to image and pixel level metrics. 126
Figure 6.12. Model performance comparison on engine head and engine block. 127
Figure 6.13. Model comparison under different filter conditions: F0-no filter, F1-filter

rotated at 0°, F2-45°, F3-90°, F4-135°. .. 128
Figure 6.14. Comparison of models under different filter conditions and tested on dataset

with the same filter condition or dataset with all filter conditions. 128
Figure 6.15. Model comparison on different exposure levels: Exp0-under exposure,

Exp1-normal exposure, Exp2-over exposure. .. 129
Figure 6.16. Model comparison on different exposure level and tested on dataset with the

xi

same exposure level or dataset with all the exposure levels. 130
Figure 6.17. Model comparison under different lighting conditions: Light0-ceil light,

Light1-one LED from left, Light2-two LEDs from left and right. 131
Figure 6.18. Model comparison on different lighting conditions and tested on dataset with

the same lighting condition or dataset with all the lighting conditions. 131
Figure 6.19. Comparison of the anomaly characteristics of NSA, Perlin, and Polygon

datasets, regarding anomaly size, brightness, and contrast. 133
Figure 6.20. The anomaly score in relation to the anomaly size for different datasets (left)

and anomaly detection models (right). ... 134
Figure 6.21. The anomaly score with respect to the anomaly brightness for different

datasets (left) and anomaly detection models (right). .. 134
Figure 6.22. The anomaly score with respect to the anomaly contrast for different datasets

(left) and anomaly detection models (right). .. 135
Figure 6.23. The anomaly score with respect to the anomaly size (left), anomaly

brightness (middle) and anomaly contrast (right). The fitted lines of anomaly score

from synthetic anomalies and real anomalies are compared. 138
Figure 6.24. PaDiM prediction results on a sample image with different image sizes. 139
Figure 6.25. Background removal result using SAM and bounding box prompt for image

with anomaly (left) and corresponding anomaly map (right). 141
Figure 6.26. Prediction results of image patches containing anomalies by image tiling.

 ... 142
Figure 6.27. Sample false positive predictions for good images using the image tilling

method.. 143
Figure 7.1. CAD of the three modules for vision system, including (a) small satellite

model, (b) engineering feature block, and (c) modular spacecraft. 149
Figure 7.2. Vision system setup for small satellite model. ... 150
Figure 7.3. Sample image of small satellite captured by HikVision stereo cameras. .. 150
Figure 7.4. Vision system setup for EFB model image capture. 151
Figure 7.5. Sample EFB image of stereo image pair from HikVision Camera. 152
Figure 7.6. Sample EFB image of RGB and depth from Revopoint camera. 152
Figure 7.7. CAD model of modular satellite components including (a) satellite frame, (b)

interface, and (c) cover with anomaly. ... 153
Figure 7.8. Vision system setup for modular satellite model image capture using three

sets of cameras. .. 154
Figure 7.9. Sample modular satellite image with surface anomaly from HikVision stereo

cameras. ... 154
Figure 7.10. Sample modular satellite image with surface anomaly from Revopoint RGB-

D camera. ... 154
Figure 7.11. Sample modular satellite image with surface anomaly from DataVideo PTC

stereo camera. .. 154
Figure 7.12. Hourglass model for satellite key points detection. 156
Figure 7.13. Comparison of reconstruction results of three parameter combinations. 162
Figure 7.14. The coordinate system of the vision system for the small satellite model.

 ... 163
Figure 7.15. Point cloud merge result using the 4th, 5th, and 6th viewpoints. 163
Figure 7.16. Key points selected for the small satellite model. 164
Figure 7.17. Comparison of key point prediction (green dots) with the ground truth (red

dots).. 165
Figure 7.18. The CAD model (grey) is transformed using matrix from PnP and compared

with the point cloud (red points). ... 165
Figure 7.19. The CAD model (grey) is transformed using matrix from ICP with initial

pose from PnP and compared with the point cloud (red points). 166

xii

Figure 7.20. The CAD model (grey) is transformed using matrix from ICP without initial

pose and compared with the point cloud (red points) showing 90 degree rotation

error. ... 166
Figure 7.21. Comparison of edges extracted from EFB before (left) and after (right) NFA-

based filter. ... 167
Figure 7.22. The ground truth edge generated from CAD and the extracted and filtered

edge from image. ... 167
Figure 7.23. Ground truth edge (right) and matching error (right) overlayed on the left

camera image after alignment by solving PnP. The red colour means higher matching

error. ... 168
Figure 7.24. Results of edge-based registration for the upper left (left) and lower right

(right) parts of EFB. ... 168
Figure 7.25. The EFB point cloud from the stereo reconstruction (left) and the RGB-D

camera (right). .. 169
Figure 7.26. Pose estimation of EFB through ICP registration. 169
Figure 7.27. Workflow of satellite anomaly detection. .. 170
Figure 7.28. Workflow of the segment 3D extraction node. .. 171
Figure 7.29. Workflow of 3D segment matching node. ... 171
Figure 7.30. Workflow of model inlier extraction node. .. 172
Figure 7.31. Module detection pipeline for stereo images including (a) image line

segment detection, (b) 3D line segment fitting, (c) 3D line segment matching, and

(d) model inlier extraction.. 173
Figure 7.32. Comparison of point cloud reconstruction and pose estimation for a

HikVision camera using different illumination. ... 173
Figure 7.33. Single modular spacecraft pose estimation using the HikVision stereo

camera. ... 174
Figure 7.34. Two modules pose an estimation of different configuration using a HikVision

stereo camera. .. 174
Figure 7.35. Three modules pose estimation of different configuration using HikVision

stereo camera. .. 175
Figure 7.36. Far view mode pose estimation of single module using DataVideo stereo

cameras. ... 175
Figure 7.37. Close view mode pose estimation of single module using DataVideo stereo

cameras. ... 175
Figure 7.38. Comparison of point cloud reconstruction and pose estimation for the

Revopoint camera using different illumination. ... 176
Figure 7.39. Surface anomaly detection results using Revopoint camera including (a) no

damage, (b) surface protrusion, (c) surface recess, and (d) one undamaged and one

with surface recess. .. 177
Figure 7.40. Results of the detection results using RevoPoint camera, including (a)

undamaged, (b) protrusion of the interface, (c) recess of the interface, and (d) one

undamaged and one with recess of the interface. ... 178
Figure 7.41. Two modules pose estimation using a Revopoint camera. 178
Figure 7.42. Three modules pose estimation using Revopoint camera. 178
Figure 7.43. Left camera images (top) and reconstructed point cloud (bottom) of modular

spacecrafts with metal cover from HikVision stereo cameras. 179
Figure 7.44. RGB images (top) and point cloud (bottom) of modular spacecrafts with

metal cover from RevoPoint camera. ... 179

xiii

List of Tables

Table 2.1. Categorisation of defect types and their 2D and 3D visibility11
Table 2.2. Comparison of 2D data collection methods .. 13
Table 2.3. Comparison of 3D data collection methods .. 14
Table 2.4. Publicly available datasets for defect detection .. 15
Table 2.5. Typical definition of confusion matrix .. 19
Table 2.6 Taxonomy of defect detection method ... 27
Table 2.7. A unifying view and comparison of defect detection methods...................... 40
Table 2.8. Comparison of CNN classification-based defect detection methods 44
Table 2.9. Comparison of anomaly detection method on MVTec AD dataset regarding to

pixel AUROC (%) .. 48
Table 3.1. Comparison of case studies for methodology validation 57
Table 4.1. Specification of DE-Net Architecture ... 75
Table 4.2. Data composition for crack classification training .. 76
Table 4.3. Comparison of teacher and student model size ... 77
Table 4.4. Knowledge distillation results of different teacher-student pairs on CIFAR-100

 ... 79
Table 4.5. Results of crack dataset with different training strategy 81
Table 4.6. Data composition for crack segmentation training .. 85
Table 4.7. Comparison of segmentation models with different segmentation heads 86
Table 4.8. Segmentation results of different segmentation heads and datasets 88
Table 4.9. Efficiency comparison of different segmentation heads. The accuracy of each

model is the maximum average F1 score for self-dataset test................................ 91
Table 5.1. Comparison of different YOLOv8 models .. 99
Table 5.2. Performance comparison of models trained on the GWHD dataset. 102
Table 5.3. Performance comparison of WHBD models for wheat head detection 103
Table 5.4. Performance comparison of YOLOv8 models on FHBS for wheat head

detection. .. 104
Table 5.5. Performance comparison of different disease detection algorithms on WHBD

 ..110
Table 5.6. Performance comparison of different disease detection algorithms on FHBS

 ..112
Table 5.7. Processing time (ms) of the head disease detection model on Jetson Nano .112
Table 6.1. Evaluation of NSA method on real anomaly dataset using different synthesis

method.. 136
Table 6.2. Evaluation of anomaly detection models on a real anomaly dataset. 136
Table 6.3. Evaluation of anomaly detection models on real anomaly dataset with image

augmentation. The red digits indicate decrease and green digits indicate increase.

 ... 137
Table 6.4. Comparison of using different feature extractors for the PaDiM model. 140
Table 6.5. Model improvements for real anomaly dataset. The red digits indicate decrease

and green digits indicate increase. ... 143
Table 7.1. Illumination configuration for EFB image capture 151
Table 7.2. Values for parameter tuning of stereo matching algorithm 162
Table 7.3. The comparison of edge-based model registration 168
Table 7.4. Comparison of point cloud quality from three camera sets 176
Table 8.1. Comparison of case studies for methodology validation 182

xiv

List of Acronyms

AI Artificial Intelligence

AVI Automated Visual Inspection

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

DOF Degree of Freedom

GAN Generative Adversarial Network

GPS Global Positioning System

ICP Iterative Closest Point

ML Machine Learning

PID Proportional Integral Derivative

ROS Robot Operating System

1

1. Introduction

1.1. Motivation

1.1.1. Industry Demand for Non-destructive Testing

A defect is an anomaly, inconsistency, or imperfection in the physical appearance or structure

of an object, which deviates from the established design specifications, standards, or quality

thresholds [1-3]. Non-destructive testing (NDT) is a group of measurement techniques used to

evaluate the integrity and quality of materials, components, or systems without causing any

damage [4]. The primary goal of NDT is to detect defects, irregularities, or imperfections such

as cracks, voids, corrosion, or internal flaws that may compromise the safety, performance, or

longevity of the object being tested. Industries such as aerospace, automotive, manufacturing,

construction, and agriculture place a high emphasis on quality assurance, prioritising the safety,

reliability, and performance of their products and infrastructure.

The growing demand for NDT techniques is driven by several factors, including increased

quality standards, cost efficiency, safety and reliability, automation and digitalisation, and so

on [5]. The identification of defects prior to their manifestation as failures can prevent the

necessity for costly repairs, product recalls and periods of downtime. In critical industries such

as aviation, nuclear power, and infrastructure, it is of paramount importance to ensure the

structural integrity of components to guarantee public safety [6]. Non-destructive methods

provide a reliable means of detecting flaws that could potentially result in catastrophic failure,

thereby enhancing the safety of products in service [7]. The integration of non-destructive

testing (NDT) with automated systems is becoming increasingly prevalent in the context of

Industry 4.0 [8]. Automated NDT systems are capable of inspecting large volumes of

components with high precision, enabling real-time data collection and analysis. Digitalisation

of inspection processes, which is enabled by these systems, has the effect of reducing human

error and allowing for predictive maintenance and continuous monitoring of product quality.

These factors contribute to the increasing adoption of advanced NDT technologies.

1.1.2. Non-destructive Testing Technologies for Defect Detection

NDT is an essential methodology employed across various industries to detect defects by

various techniques, such as ultrasonic [9], thermography [10], tomography [11], machine

vision [12], etc.

2

The ultrasonic method tests the defect by analysing the propagation of ultrasonic waves

through the target, therefore can detect the internal flaws of the tested parts. The detectable

defect size depends on the wavelength of ultrasonic wave, which is typically larger than 600

μm [9]. It usually requires physical contact with the target to obtain precise results, which may

slow down the detection speed. Besides, to generate a 2D view of the target, several ultrasonic

beams and corresponding receivers are needed, leading to an increased level of the system

complexity [13].

The thermography method detects the temperature difference on the surface with an infrared

(IR) camera. The temperature of the target can either be natural or heated by laser [10] or eddy

current [14]. With the active heating, the internal defect is revealed by the surface temperature

and thus can be detected [15]. Similar to the vision-based method, the thermography method

is easy and fast to implement with IR camera, and the detectable size depends on the camera

resolution. However, the applications are limited to materials and defects that are sensitive to

temperature.

The tomography method can obtain a series of 2D images derived from the X-ray absorption

signal after penetrating the target. A 3D model can be created from these images with post-

processing algorithm [16]. X-ray micro computed tomography (microCT) can achieve

resolution as high as 6 μm to detect the internal defect [17]. Although it has the highest defect

sensitivity, the X-ray adaption imposes strict requirements on the installation, safety, and also

the budget. Generally, it is not suitable for on-site inspection.

The machine vision NDT technique, often referred to as automated visual inspection (AVI),

focuses on detecting defects by analysing the surface appearance of the inspected object. This

method employs advanced imaging technologies to capture detailed images. The smallest

detectable defect size depends on the resolution and focus of camera and distance to the target,

and can be as small as 30 μm [12]. By leveraging automated systems, this approach enhances

inspection efficiency and accuracy, making it a valuable tool in quality control processes

across various industries [18].

 Among the four methods, the vision-based method is the most accessible solution for defect

detection with any off-the-shelf commercial camera. It also has the least processing time which

is efficient for on-site real time inspection with relatively high accuracy. Therefore, this thesis

will explore the application of AVI for defect detection.

1.1.3. Automated Visual Inspection for Defect Detection

3

Originated from manual inspection, visual inspection mimics human vision by scanning the

target for visible defects, including surface imperfections such as cracks and dents, as well as

shape anomalies such as misalignment and scale errors. AVI systems have a wide range of

applications across various industries, significantly improving quality control and defect

detection processes. In the manufacturing sector, AVI systems are used to inspect products for

surface defects, dimensional accuracy, and assembly integrity, ensuring that only high-quality

items reach the market [19]. In the automotive industry, they are used to examine components,

such as engine parts and body panels, to detect flaws that could affect vehicle performance

and safety [20]. With advances in artificial intelligence and machine learning, AVI systems

continue to evolve, allowing real-time analysis and decision-making, ultimately improving

efficiency and reducing costs in various applications [21].

Following common practices in computer vision [22-24], the defect detection task can be

categorised into different precision levels based on the defect localisation precision, including

image-, object-, pixel-, and 3D-level defect detection. The image-level detection methods

report if defects are presented in the image. It focuses on identifying overall issues such as

improper shapes, colour inconsistencies, or significant surface defects [25]. Object-level

defect detection focuses on specific objects within an image and evaluates their quality or

integrity. Object-level detection identifies the presence of defects related to distinct items, such

as identifying flaws in a specific component or part of a product [26]. Pixel-level defect

detection involves analysing individual pixels in an image to identify defects. This high-

resolution approach enables the detection of very small imperfections, such as scratches, dents,

or variations in colour [27]. 3D level detection focuses on capturing and analysing three-

dimensional information about an object or surface. This approach allows for the identification

of spatial anomalies, surface irregularities, or structural defects that may not be visible in 2D

images [28]. In practice, each level of defect localisation precision necessitates the deployment

and combination of various technologies.

Development of AVI systems faces several challenges [29, 30], such as accuracy-efficiency

trade-off, data scarcity, environment variability, integration with existing infrastructure, etc. A

significant challenge in AVI system design is the absence of a comprehensive design

methodology that systematically guides the entire development process. Existing approaches

often focus on individual components without providing an integrated framework that

considers the interdependencies among these components [31-33]. This fragmented approach

can lead to suboptimal system performance, inefficient resource allocation, and limited

adaptability across different application domains. Therefore, establishing a comprehensive

4

design methodology is essential to address these issues, enabling a more holistic and efficient

development of AVI systems.

Another significant issue is the accuracy-efficiency trade-off. While advanced algorithms,

particularly those leveraging deep learning, can achieve high accuracy in defect detection, they

often require substantial computational resources and processing time, which can be

impractical in real-time applications [34]. This trade-off is particularly essential in many AVI

systems with limited computational resources and specific system requirements, which can

hinder the complexity and performance of the algorithms used [35].

Furthermore, the lack of defect images for training deep learning models also hampers the

model's ability to generalize across various defect types, leading to lower accuracy and

robustness in real-world applications. As obtaining diverse and representative datasets is

crucial for developing robust algorithms capable of detecting various defects under different

conditions [36]. However, the research of anomaly detection techniques is still in a relatively

early stages of research and has been focusing on public datasets [37]. Their deployment in

real-world AVI applications is still underexplored.

This work is motivated by the previously discussed challenges and focuses on the design and

development of AVI systems for a range of defect detection tasks, from image level to 3D level,

across distinct application areas. By adopting the proposed design methodology, the unique

requirements of each inspection application are systematically addressed through system

designs and the development of defect detection methods.

1.2. Research Aims and Objectives

In practice, the industrial applications often impose stringent demands on AVI systems,

particularly regarding the accuracy-efficiency trade-off and data scarcity. To meet these

demands, the system architecture, data acquisition methods, and defect detection techniques

must be tailored and optimised for each specific industrial application. This thesis aims to

address these challenges through the systematic design of four AVI systems. Firstly, a novel

comprehensive design methodology is proposed, encompassing the entire process from

specifications to system implementation. Following the proposed design methodology, the

accuracy-efficiency trade-off will be addressed in the first case study, an image- and pixel-

level concrete crack inspection system. The data scarcity will be addressed by three other case

studies: object-level wheat head disease detection, pixel-level car engine manufacturing defect

detection, and 3D-level spacecraft anomaly detection.

5

To achieve the research aim, the following objectives have been identified:

1. Conduct a detailed literature review on the state-of-the-art AVI systems, covering both the

system configurations and the detection algorithms.

2. Develop a comprehensive design methodology for AVI system with a focus on defect

detection method development.

3. Validate this design methodology through four case studies, each addressing specific

requirements and challenges of various industrial applications. These case studies

encompass image-level, object-level, pixel-level, and 3D-level defect detection.

1.3. Research Methodology

The methodology of this research focuses on the design, development, and evaluation of AVI

systems, with an emphasis on visual-based defect detection. The research methodology

consists of a combination of experimental, computational, and analytical methods to achieve

the following objectives:

1.3.1. System Design and Development

The first stage of the methodology involves the conceptualization and design of the AVI system,

focusing on the selection of appropriate sensors, cameras, and computational models. The

design process includes tasks initialisation and task clarification, conceptual design,

embodiment design, and system verification and validation.

1.3.2. Defect Detection Method

This stage focuses on building a robust defect detection method, which covers the following

key applications:

1) Image-level Detection: Implementing methods for defect identification at the image

level, focusing on coarse localization.

2) Object-level Detection: Developing object detection algorithms to segment the target

objects from the background and identify defects within specific regions of interest.

3) Pixel-level Detection: Refining detection methods to localize defects at the pixel level

with high precision.

4) 3D-level Detection: Exploring methods to incorporate 3D information from depth

images and point cloud for more accurate defect localization in complex geometries.

6

These detection methods will employ advanced computer vision and deep learning techniques

to enhance performance and robustness.

1.3.3. Dataset and Experimental Setup

A diverse set of real-world datasets will be used to train and test the AVI system. These datasets

will cover various industries, including manufacturing, construction, and agriculture, with

different types of defects such as cracks, surface irregularities, and discoloration. The

experimental setup will involve:

1) Data Collection: Capturing high-resolution images of defective and non-defective

objects using industrial cameras and 3D scanners.

2) Benchmarking: Comparing the performance of the proposed AVI system against

existing state-of-the-art defect detection methods.

1.3.4. Evaluation Metrics

The performance of the AVI system will be evaluated using the following metrics:

1) Detection Accuracy: The proportion of true positives to the total number of defects.

2) Localization Precision: The accuracy of the system in localizing defects.

3) False Positive/Negative Rate: The rate at which the system falsely identifies defects

or fails to identify actual defects.

4) Processing Time: The time required for defect detection and classification, which

impacts real-time applicability.

1.3.5. Analysis and Optimization

After system evaluation, the results will be analysed to identify potential areas of improvement.

Techniques such as hyperparameter tuning, data augmentation, and ensemble methods will be

explored to optimize the system’s performance. Sensitivity analysis will be performed to

evaluate how different factors (e.g., lighting conditions, camera resolution, and defect types)

affect the system's accuracy.

1.4. Thesis Structure

The remainder of the thesis is structured as in Figure 1.1.

7

Figure 1.1. Organisation of the thesis.

Chapter 2 examines the current literature of AVI system and defect detection methods to

identify the knowledge gaps. Different aspects of the AVI system are reviewed including the

data acquisition, defect detection, defect management, and system design methodology. The

chapter then delves into a detailed analysis of state-of-the-art defect detection methods,

highlighting their effectiveness and application within the field.

Chapter 3 presents a comprehensive design methodology for AVI system design with a focus

on defect detection method development. A design process model is proposed covering the

four design stages, i.e., analysis of need, concept design, embodiment design, and system

validation and verification. Specifically, the defect detection method development is described

in detail covering both the dataset establishment and algorithm selection and optimisation.

This design methodology is validated through four case studies as described in the following

chapter.

Chapter 4 focuses on the design of a head-mounted vision system for concrete wall crack

inspection as the first case study. This chapter addresses the challenge of achieving real-time

image and pixel-level detection on computationally resource-constrained devices, such as the

HoloLens 2 headset. To enhance accuracy and efficiency in crack detection, it introduces a

novel training strategy along with a novel network architecture specifically tailored for this

application.

Chapter 5 outlines a wheat head disease detection system designed for precision spray

8

applications as the second case study. Focusing on object-level detection without relying on

disease training data, this chapter employs a zero-shot learning method for wheat head disease

detection, utilising domain transfer and anomaly detection techniques to identify affected

plants effectively.

Chapter 6 details a car engine surface defect detection system developed for manufacturing

inspection as the third case study. This chapter focuses on pixel-level detection using only

defect-free data for training. Additionally, it explores the use of synthetic datasets to mitigate

data scarcity issues, enhancing the system's effectiveness in identifying surface defects.

Chapter 7 describes a vision inspection system designed for modular and reconfigurable

spacecraft as the last case study. This chapter emphasises 3D-level detection through advanced

3D reconstruction and six degrees of freedom (DOF) pose estimation. It proposes a processing

pipeline built on a developed reconfigurable software framework to enhance the system

adaptability and effectiveness in inspection tasks.

Chapter 8 presents the discussion and conclusions of this thesis, highlighting the key

contributions of the research. It also addresses the limitations encountered during the study

and outlines potential directions for future work.

9

2. Literature Review of Automated Visual Inspection

System and Defect Detection

2.1. Introduction

For automatic defect detection, various non-destructive testing (NDT) methods have been

developed for data collection targeting both internal and external defects. For example, the

internal defect detection includes the tapping sound, ultrasonic testing, X-ray tomography, etc.

The external defect detection contains infrared thermography , automated visual inspection

(AVI) [38] including both machine vision and laser scanner. Among these, AVI is one of the

most popular methods and has been widely used in industrial applications due to its relatively

low price, high efficiency and accuracy, continuous detection, non-contact measurement, etc.

[21]. A complete and effective AVI system requires the integration of data acquisition system

and defect detection methods [39, 40]. Additionally, a comprehensive design methodology is

essential to ensure the seamless integration of these components and the overall performance

of the system. Furthermore, as the core component of the AVI system, defect detection methods

require careful examination and optimisation to ensure both accuracy and efficiency.

In this chapter, the common academic databases are utilised including Google Scholar, IEEE

Xplore, Web of Science, and Elsevier. Specific terms are deployed to narrow down the search

results. For AVI system, the general terms are used including ‘automated inspection system’,

‘defect detection system’, ‘defect inspection’, etc. Additionally, the search is further narrowed

down through combined keywords for specific defect localisation precision, such as ‘defect

classification’, ‘anomaly segmentation’, ‘3D anomaly detection’, etc. For each specific

technique such as convolution neural network (CNN), the technique term is used in

combination with applications. The screening process typically begins with an initial search

using the selected keywords in the chosen databases. Results are filtered based on criteria such

as publication date, document type, and subject area to refine the list. Following this, the titles

and abstracts of the papers are reviewed to assess their relevance to the research question.

Relevant papers are then examined in full to evaluate their contributions to the topic.

Additionally, checking the references in relevant papers can reveal further sources that may

have been overlooked.

Following the above procedure, this chapter begins by reviewing the key components of the

AVI system and the system design methodology. It then focuses specifically on the state-of-

10

the-art defect detection methods. Finally, the knowledge gaps are identified to provide

guidance for the direction of the thesis.

2.2. AVI System

Typically, an AVI system consists of two main components: data acquisition and defect

detection [39, 40]. Data acquisition tries to capture and highlight the defects in the data,

including the configuration of illumination, camera, and target object. The defect detection

covers the data processing, defect detection tasks, and detection evaluation. Specifically, the

defect detection tasks are classified based on the defect localisation precision level, ranging

from image-level to 3D level. Upon detection of a defect, the details of the defect, such as type,

location, severity, can be viewed by expert via a GUI, or decided by an automated decision

system. To design a complex system involving the interaction of various components, a

systematic design methodology is essential for ensuring the overall quality of the system and

meeting all specified requirements.

2.2.1. Data Acquisition

2.2.1.1. Defect Types

Categorisation of defect types is crucial for AVI systems because it guides the selection of data

acquisition devices, construction of databases, and development of detection algorithms. For

AVI system, the target defect types are mainly the surface and shape defects that can be

visually detected. Various defect categorisation methods have been reported and some

common defects are classified and summarized in terms of different product and defect

characteristics [41-43]. In this review, the defects are categorised based on their 2D and 3D

visibility. Selecting appropriate illumination sources and cameras that align with the

categorised defect types is essential for ensuring the accuracy and efficiency of the inspection

process. By identification of the 2D and 3D visibility, the AVI system can be fine-tuned for

each category, ensuring that the illumination conditions and camera settings are optimised to

capture the specific features associated with these defects.

Some typical object defects are shown in Table 2.1, which are sorted according to their severity.

The visibility is assessed qualitatively based on defect characteristics and experience with four

levels, ranging from none, low, medium and high. All the defects are at least visible in 2D

images. The identification of surface defects such as appearance and porosity are more suitable

to use 2D camera-based methods. While for shape defects such as protrusion and deformation,

point cloud-based methods are more feasible and accurate.

11

Table 2.1. Categorisation of defect types and their 2D and 3D visibility

Defect Characteristics
2D Visibility 3D Visibility Related

Works

Appearance
Visual quality such as surface finish,

colour, texture
High None [21, 44]

Scratch
Linear or curvilinear abrasion or

marking on the surface
Low None [45-47]

Dent

Depression or concavity on the

surface of an object, usually caused

by an external force or impact

Medium Medium [48, 49]

Protrusion

Unwanted or out-of-place element

that extends from the surface of the

object

Medium High [28]

Porosity
Presence of small voids or air

pockets within a material
Medium Low [50, 51]

Crack

Fissure or fracture in a material,

often characterised by a linear

separation of the material

High Medium [52, 53]

Deformation

Alteration in the object's shape or

structure that deviates from its

intended design

Medium High [53, 54]

Assembly

Issues in the assembly of parts or

components, such as misalignments,

missing components, or improper fit

High High [55, 56]

2.2.1.2. Illumination

High-quality images are essential for defect detection because image clarity and fidelity have

a fundamental role in allowing accurate and reliable defect identification, thus ensuring the

integrity of quality control processes. Generally, the image quality is affected by the optical

illumination and camera. The primary purpose of an optical illumination platform is to

highlight significant object features while minimizing undesired aspects. A specially designed

optical illumination sometimes can be essential to make the defect visible.

The illumination modes within AVI systems can be categorised as forward or back

illuminations, determined by the spatial arrangement of the light source, object, and camera.

More specifically, these two techniques can be further divided as bright field forward lighting,

dark field forward lighting, coaxial forward lighting, scattering forward lighting of dome

structure, and back lighting [57]. These five illumination modes are compared in Figure 2.1.

The forward lighting approach entails positioning the light source and the camera on the same

side of the object under inspection. This method is widely adopted and particularly effective

for detecting surface defects, such as scratches, as well as capturing crucial object details,

including surface texture features. Forward lighting can be classified into two primary

subtypes: bright field forward lighting, where light reflects directly onto the camera, and dark

field forward lighting, where the incident angle of the light is adjusted to create a low-angle

dark field. The latter emphasises surface edges and elevations, improving the depiction of

topographical structures, and is effective in revealing surface concavities and convexities.

12

Coaxial forward lighting represents a unique variant within forward lighting modes. In this

method, a high-intensity uniform light passes through a half mirror, aligning the light coaxially

with the lens. This lighting technique is well-suited for detecting surface defects, cracks, and

scratches. For highly reflective objects with smooth surfaces, scattering forward lighting can

be adopted. Other illumination techniques include structured light , stroboscopic light , and

other auxiliary optical devices such as filter, reflector, polariser, etc [58].

Figure 2.1. Illustration of typical illumination modes including (a) bright field forward lighting, (b) dark field

forward lighting, (c) coaxial forward lighting, (d) scattering forward lighting of dome structure, and (e) back

lighting. (redrawn from [57])

2.2.1.3. Camera

In the field of visual inspection, the dimension of image data used varies from 1D to 3D. The

1D line profile data is usually captured by linear CCD or line by line in 2D image. The 2D

image data is the most commonly used data type usually captured from off-the-shelf CCD

camera, due to its cheap price and easy to setup. Besides, data from X-ray tomography and

infrared imaging are also regarded as 2D data. The 3D data have several types, including 3D

point cloud, depth image and RGB-Depth (RGB-D) image, which contains much more

information than 1D and 2D but usually expensive for high accuracy measurement and

difficult to setup. In this part, these three data type and corresponding data acquisition

equipment and methods will be briefly described.

1) 1D Data

The output format of 1D data is simply grayscale pixels along a line. The line profile is usually

obtained from linear CCD or by processing 2D image line by line [59]. The linear CCD camera

can usually satisfy high resolution and high-speed requirement. However, since the line

13

information is low intensity and it relies only on pixel value change along line profile, its

application field and detectable defects are limited. For example, defects like scratch would

not be detected through this data format.

2) 2D Data

Two-dimensional image is the most popular data format in AVI system and is closer to the way

how human eyes work. It is also easier to develop high performance algorithms with 2D data

than both 1D and 3D. The most used device for 2D image acquisition is CCD/CMOS camera

[60]. Linear CCD camera can also be used to obtain 2D image by stitching the lines to form a

complete image [61]. Besides, in some works, auxiliary devices are used for specific objects

or defects, such as light control to form bright field and dark field image [62], or polariser to

filter out the reflection light [63]. More detailed light source and illumination design can be

found in [58]. Radiography (X-ray or gamma-ray) and infrared thermography (IRT) are

another two commonly used data type in defect detection, and they all share similar image

processing algorithms with CCD/CMOS camera. The comparison of application scenarios of

three 2D data collection methods is shown in Table 2.2.

Table 2.2. Comparison of 2D data collection methods

Method Application Scenarios Limitations

CCD/CMOS
Surface or deformation defects that cause reflection light

intensity variations

Relies on ambient light

condition and reflection

factor of material

Radiographic
Mechanical or structural internal defects that cause the

absorption change of rays

Expensive, low speed, safety

consideration, requires two-

sided access to test object

Infrared
Electrical or mechanical defects that cause temperature

anomaly
Expensive, low accuracy

2) 3D Data

Basically, there are four ways to obtain 3D data according to the device: monocular cues,

binocular/multi-view stereo camera, structured light camera, and laser scanner. Monocular

cues methods refer to using only one camera to reconstruct 3D object, including shape from

shading, photometric stereo, shape from texture, and deep learning. These methods are solving

ill-posed inverse problem and therefore requires strong constraints on the target object. For

example, shape from shading method requires the surface image to be Lambertian and the

directions of the surface normals distributed uniformly in 3D space [64]. While the shape from

texture method requires texture uniformly distributed on the surface [65].

Deep learning method for single image 3D reconstruction has become popular in recent years

but requires large dataset and the accuracy is still limited [66]. The binocular and multi-view

14

stereo vision reconstruction is based on the triangulation process, which refers to determine

3D coordinate of a point from its projection onto two or more images [67]. The intrinsic and

extrinsic parameters of stereo cameras are usually calibrated before reconstruction, or self-

calibrated during reconstruction in some techniques such as structural from motion (SfM) [68].

However, stereo camera methods heavily rely on object texture and ambient environment light.

By introducing active and structured light source, the reconstruction can be much more

accurate and robust [69]. In addition, with the advance of 3D scanning technology, the

commercial laser scanner has become cheaper and more accurate [70]. The comparison of

these four 3D reconstruction methods is shown in Table 2.3.

Table 2.3. Comparison of 3D data collection methods

Method Data Precision Price Limitation

Monocular

Cues
RGB-D Low Low

Ill-posed inverse problem that needs many

constraints

Stereo Camera RGB-D Medium Low/Medium
Heavily relies on object texture and ambient

light

Structured

Light
RGB-D High Medium Difficult for reflective or transparent surface

Laser Scanner
Point

cloud
High High

Expensive, no RGB information, difficult for

reflective or transparent surface

2.2.1.4. Defect Datasets

The availability of diverse and comprehensive datasets is of paramount importance for the

development and training of AVI systems, as it enables these systems to recognise and

accurately classify a wide range of defects, enhancing their effectiveness in quality control

across various industries. Gathering data is typically a resource-intensive and costly endeavour.

Contemporary research often capitalizes on publicly available datasets to streamline and

enhance the research process. Table 2.4 lists the publicly available datasets identifying defects

in various materials and defect types.

15

Table 2.4. Publicly available datasets for defect detection

Name Objects Defects Label Task Resolution

Quantity

(train/val)

(good/defect)

Illumination Camera Image

NEU-DET

[71]

Hot rolled

steel

Rolled-in scale, patches, crazing,

pitted surface, inclusion,

scratches

Bounding box

with classes

Detection,

classification
200x200

1440/360

0/1800

Bright field

forward

lighting

Area scan

CCD
Grayscale

GC10-DET

[72]
Metal

Punching, weld line, crescent

gap, water spot, oil spot, silk

spot, inclusion, rolled pit, crease

Bounding box

with classes

Detection,

classification
2048*1000 3570

Direct

current light

source

Linear array

CCD
Grayscale

KolektorSDD

[27]

Electronic

Commutator
Scratch and crack Pixel-wise mask Segmentation 500*1240

399

347/52
- - Grayscale

KolektorSDD2

[73]
Metal Scratches and dents Pixel-wise mask Segmentation 230*630

2331/1004

2979/356
- - Colour

SD-saliency-

900

[74]

steel Inclusion, Patches, and Scratches Pixel-wise mask Segmentation 200*200
1800

900/900
- - Grayscale

Magnetic Tile

[75]

Magnetic

Tile

Blowhole, crack, break, fray,

unenven
Pixel-wise mask Segmentation 248*373 1344 - - Grayscale

DeepCrack

[76]

Wall and

Pavement
Crack Pixel-wise mask Segmentation 544*384

300/237

537
- - Colour

MVTec AD

[37]

10 Objects

and 5

textures

70 different types of defects such

as scratches, dents,

contaminations, and various

structural changes

Pixel-wise mask

Anomaly

classification

and

segmentation

700*700

1024*1024

3629/1725

4096/1258
-

RGB sensor

with

two bilateral

telecentric

lenses

Colour

MVTec 3D-

AD

[77]

10 objects
41 types of anomalies, such as

cracks or uneven areas
Pixel-wise mask

Anomaly

classification

and

segmentation

1920×1200
2656/294

3199/948

Indirect and

diffuse light

source

Zivid One+

Medium

structured

light camera

RGB-D,

point

cloud

16

2.2.2. Defect Detection

Once the data collection is complete, the defect detection process can be carried out. Usually,

the raw data cannot be directly utilised for detecting defects because of the noise from the

environment or device, data imbalance, format compatibility, etc. After the data processing,

the defect detection tasks can be performed to identify and locate defects. These tasks are

classified by the level of localisation precision, ranging from image-level, object-level and

pixel-level detection to 3D-level detection. Evaluation is then performed to assess the

developed detection model.

2.2.2.1. Data Processing

Though the preprocessing algorithm is highly dependent to the data type, there are some

common techniques like denoising, clustering, alignment, and augmentation. The noises may

come from the environment and electronic components, which reduce the data quality and the

affect the defect detection accuracy. The denoising algorithms can be divided into spatial

domain methods and frequency domain methods. The spatial domain methods operate directly

on the pixel values of an image or signal. They analyse and process data in its raw form, which

is usually represented as a grid of pixel values. Typical spatial domain methods include

histogram equalization [78], image sharpening [79], and various filtering algorithms such as

Gaussian filtering and biliteral filtering. The frequency domain methods transform data from

the spatial domain to the frequency domain using techniques like the Fast Fourier Transform

(FFT). These methods are based on the idea that noise often has distinct frequency

characteristics that can be separated from the desired signal. Key frequency domain denoising

methods include Fourier transform [80], wavelet transform [81], and wiener filtering [82].

The clustering methods are employed to group or segment pixels or regions of an image with

similar characteristics. These techniques can serve as either preprocessing, defect detection, or

postprocessing methods. For preprocessing, the clustering methods are usually used for

segmentation, image enhancement, and feature extraction. For example, clustering methods

can be employed for image segmentation, dividing an image into distinct regions or objects

based on pixel similarity. Clustering methods can also be applied to enhance image quality.

By grouping pixels or regions with similar properties, image enhancement techniques can be

applied to each cluster.

Alignment and registration techniques are imperative in the preprocessing of images as they

assist in aligning multiple images and ensuring that an image is situated and oriented correctly

for subsequent analysis. Image stitching is one of the mostly used alignment method. When

17

capturing multiple images of a scene, alignment methods match common features or control

points in the images and adjust the positions and orientations to create a seamless composite

image. This is widely used in applications like landscape photography and medical imaging

[83]. Besides, alignment is crucial in tracking moving objects or subjects across a series of

images or frames in video sequences [84].

Data augmentation techniques play a significant role in defect detection by increasing the

diversity of available data and improving the robustness and generalization of machine

learning models. These techniques are used to create variations of the original data, which can

help the model learn to recognise defects in different scenarios. The data augmentation

techniques can be divided into two main directions: image modification and generation. The

image modification includes rotation, flipping, scaling, translation, shearing, brightness and

contrast adjustment, noise injection, colour manipulation, cropping, elastic deformation,

occlusion, etc [85]. Style transfer is another direction of image modification, which

manipulates sequential representations across a neural network to transfer the style of one

image to another while maintaining its original content [86].

2.2.2.2. Defect Detection Tasks

From coarse to fine, the detection task of the algorithms can be categorised as image-level,

object-level, pixel-level, and 3D-point-level detection. For image level detection, the image is

classified according to whether the defect is present. Traditional methods rely on the hand-

crafted feature extraction methods, while machine learning based methods improve the

accuracy by training based method, such as support vector machine (SVM) [87] and KNN

[88]. Modern technology that uses neural networks has proven great efficiency and accuracy

in defect classification utilising the advance of computation power and big data. The

convolutional neural network is the most popular technology for image classification, such as

AlexNet [89] and ResNet [90].

For object level detection, the defect is detected as bounding box in the image. There are two

branches in object level defect detection: image patch classification and end-to-end CNN

object detection. The image patch classification method divides the whole image into small

patches and classify each patch as defective or defect-free. Then the defective patches are

grouped together to form a defect region [91]. However, this kind of method is usually time-

consuming and only suitable for single class defect detection with uniform background. The

object detection method is more popular with the advance of modern CNN architecture such

as R-CNN [92], YOLO [93], SDD [94], etc.

18

Pixel level defect detection is the highest level of defect localisation for 2D image. Important

references for evaluating the severity of defects and assessing conditions can be obtained from

the results of segmentation. Traditional methods based on the pixel value or frequency

information, such as clustering [95] and region growing [96]. Similar to image classification,

the CNN-based methods have become one of the most dominant methods in image

segmentation, such as fully convolutional network (FCN) [97], U-Net [98], and Mask R-CNN

[99]. Recently, the segment anything model (SAM) just appeared with ability of image

segmentation according to the prompt from users [100]. This model was trained with 1 billion

carefully masked dataset. The usage of SAM has been evaluated in medical image

segmentation [101], infrastructure defect assessment [102], fabric defect segmentation [103],

etc. However, there is considerable room for performance improvement when using SAM on

real-world applications [104, 105].

3D level defect detection involves quantifying the size, depth, or other characteristics of a

defect within an image. In vision-based system, the measurements can be done by either RGB

camera or reconstructed point cloud. With a pre-calibrated camera and controlled image

capture distance, the geometry shape from a single camera can be calculated [106], for

example, dimensional measurement of hot parts [107] and crack detection and measurement

[108]. When depth information is critical, depth-sensing technologies that use time-of-flight

or structured light cameras are utilised to measure the 3D attributes of defects. By outlier

remove and model fitting, the defects from point cloud can be detected and measured directly,

for example curved surface defect monitoring [109], automated fibre placement defect

measurement [110], etc.

2.2.2.3. Evaluation Criteria

When developing defect detection algorithms, there are several important evaluation criteria,

such as training time, accuracy, inference time, and model size [22, 23]. Training time is a

fundamental factor to consider as it affects the development cycle and resource requirements.

The training time depends on the data size, model size, hardware, and optimisation techniques.

Improvement of training time usually relies on model architecture optimisation such as depth-

wise separable convolution in MobileNet [111], finetune of pre-trained network [112], data

cache [113], or simply upgrade the hardware through cloud computation. Similarly, the

inference time depends on the model efficiency and hardware. The model architecture

optimisation methods are the same as the one in training time reduction. Other way to reduce

the inference time is by model size reduction, include model compression through distillation

or quantization [114], model pruning [115], or compiler optimisation [116]. The size of the

19

model impacts various performance aspects, such as training time, accuracy, and inference

time. Nonetheless, larger models do not necessarily guarantee greater accuracy and smaller

models do not guarantee faster training and inference time [117]. The balance of the three

criteria depends on the specific requirements of the application. Accuracy is more crucial in

off-line detection, as it prioritizes the quality of results; inference time is essential for real-time

applications, where fast decision-making is critical; and model size is particularly important

for embedded systems, where both memory and computational resources are limited.

For accuracy requirements, the detection rate is mostly used in defect detection, no matter the

original task of algorithms is classification [118], bounding box detection [119], or

segmentation [75]. Firstly, the confusion matrix and its terminology are defined in Table 2.5.

Table 2.5. Typical definition of confusion matrix

 Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)

Predicted Negative False Negative (FN) True Negative (TN)

The detection rate or accuracy is then defined as:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
(2-1)

Other criterions such as precision, recall, f1-score [120] are defined as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2-2)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2-3)

𝐹1 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(2-4)

Similarly, the Receiver Operating Characteristic (ROC) curve is created by plotting the True

Positive Rate (TPR) on the y-axis and the False Positive Rate (FPR) on the x-axis for different

threshold values [121]. Each point on the curve represents the TPR and FPR at a specific

threshold. The Area Under the ROC Curve (AUROC) quantifies the overall performance of

the classification model. It measures the area under the ROC curve. A higher AUROC indicates

a better model. An example ROC curve is shown in Figure 2.2.

20

Figure 2.2. Example image of ROC curve with AUCROC of 0.99 for car engine anomaly detection.

Specifically, for bounding box detection or segmentation, a correct prediction is a bounding

box or segmentation area that has Intersection of Union (IoU) with ground truth larger than a

threshold [122]. The IoU can be calculated as:

𝐼𝑜𝑈 =
𝐴𝑟𝑒𝑎 𝑜𝑓 𝑂𝑣𝑒𝑟𝑙𝑎𝑝

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
(2-5)

The dice coefficient is often considered more forgiving than IoU when assessing the similarity

between regions, as it doesn't penalize small differences as harshly [123]. It can provide a more

robust measure of similarity, particularly when regions are expected to be similar but not

perfectly identical. The calculation of dice coefficient is the same as the F1 score.

In bounding box detection, the mean Average Precision (mAP) is more popular criterion than

the others [124]. The mAP is calculated by averaging the AUC-PR of each object class of

interest. Typically, the mAP is accompanied by a threshold ranging from 50 to 90, indicating

that a bounding box is considered a true positive if its overlap area with the ground truth

exceeds this threshold. Raising this threshold value signifies a more rigorous evaluation.

Formally, the mAP is defined as:

mAP =
1

𝑁
∑ AP𝑖

𝑁

𝑖=1

=
1

𝑁
∑ ∑ P𝑗

𝐶

𝑗=1

𝑁

𝑖=1

(2-6)

For 3D defect detection, the per-region overlap (PRO) metric can be used, which is defined as

e average relative overlap of the binary prediction P with each connected component Ck of the

ground truth, defined as:

21

𝑃𝑅𝑂 =
1

𝐾
∑

|𝑃 ∩ 𝐶𝑘|

|𝐶𝑘|

𝐾

𝑘=1

(2-7)

where K represents the total number of ground truth components. This process is iterated for

different thresholds and a curve is plotted by the resulting PRO values against their

corresponding false positive rates. The final performance assessment is obtained by calculating

the integral under this curve, up to a specified false positive rate limit, then normalising the

resulting area within the [0,1] range. This method serves as a conventional metric for

unsupervised anomaly localisation tasks and is especially beneficial when dealing with

anomalies that exhibit significant variations in size [77].

In some cases, besides the detection rate, the dimensional error of the detected defects is also

important, especially in 3D measurement. The criterion for dimensional error can be expressed

as relative error:

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 E𝑟𝑟𝑜𝑟 =
|𝐷𝑇 − 𝐷𝑀|

𝐷𝑀

(2-8)

where DT is the true dimension and DM is the measured dimension.

2.2.3. System Design Methodology

The system design methodology provides a clear framework that helps developers understand

the requirements, avoid redundancy and wasted resources, and maintain consistency during

development. In the domain of engineering design, the methodological backbone is often

structured as design process model that defines the necessary stages and decision points

required to transform a requirement into an appropriate product. Based on the design practice

observed in industry, Frech proposed a stage-based design process model [125], as shown in

Figure 2.3. It outlines the design process as a sequence of interconnected phases, beginning

with identifying a requirement that leads to an examination of the issue. During conceptual

design phase, concepts are conceived and evaluated for their practicality. As the process

evolves, these embodiments are detailed meticulously, resulting in working drawings and other

documentation necessary to realise the design in the physical world. The model highlights the

significance of feedback as a means for continuous enhancement, emphasising the importance

of an agile approach rather than a fixed linear progression.

A more well-known design process model was proposed by Phal and Beitz for mechanical

design [126], as shown in Figure 2.3. This model not only depicts a clear pathway from task

to solution but also integrates key elements such as market considerations and economic

22

constraints, recognising the influence of external factors on design decisions. Through its

comprehensive structure, the Pahl and Beitz design process model offers a robust framework

for the systematic development of mechanical designs.

Figure 2.3. French’s design process model (redrawn from [125])

Figure 2.4. Phal-Beitz design process (courtesy of [126])

Yan’s mechatronic design process model is based on an enhancement of French’s model

through integrating proactive design and concurrent engineering principles tailored to

mechatronic systems [127], as shown in Figure 2.5. These phases involve generating both

qualitative and quantitative models. Concurrently with the development of the mechatronic

23

system model, the Manufacturing/Assembly Tool Element Model guarantees the integration

of manufacturing and assembly processes. This model emphasises a multi-perspective model

construction, including system function model, product assembly model, control program

model, etc.

Figure 2.5. Yan’s design process model for concurrent mechatronic system and manufacturing/assembly design

process model (courtesy of [127])

The V-model is highly regarded for its efficacy in dealing with the complexity of

multidisciplinary system design, especially in the realm of mechatronics. As a framework, it

has been standardised by VDI committee as the VDI guideline 2206 [128], a practice-oriented

guideline for the systematic development of mechatronic systems. This model advocates for

the seamless integration of discipline-specific design fields - mechanical engineering,

electrical engineering, and information technology - to meet the requirements of each sector

with precision, as shown in Figure 2.6.

24

Figure 2.6. V-model in the VDI guideline 2206 (modified from [128])

Designed specifically for AVI system, Batchelor et al. [31] proposed a design methodology for

industrial vision system targeting smooth and effortless design. It includes client-involved and

in-house activities at different development stages. However, this framework is overly specific

to manufacturing industries and lacks the flexibility for broader application. Additionally, the

hardware and software design are limited to opto-mechanical systems and image processing

algorithms, restricting its use in modern complex AVI systems. Furthermore, it does not

include a system validation component, which is critical for ensuring the system's performance

and reliability.

Figure 2.7. Design process of AVI system proposed by [31]

Saha and Bhattacharyya [129] described the design methodology for embedded computer

vision system as five subproblems including modelling, specification and transformation,

partitioning and mapping, scheduling, design space exploration, and code generation and

25

verification. Each of the subproblem was discussed separately. While this methodology

provides an in-depth analysis of individual components, the lack of a comprehensive design

process framework may hinder the ability to understand the project from a holistic perspective.

A comprehensive design refers to a systematic, integrated approach that considers all aspects

of the design process in a cohesive manner, ensuring that each component is aligned with the

overall project goals and constraints. A comprehensive design methodology would encompass

not only the individual subproblems (such as specifications, data collection, defect detection

method development, etc.) but also how these subproblems interrelate and influence one

another throughout the entire design process. A comprehensive design helps ensure that the

system's design is robust, well-coordinated, and adaptable to changing requirements [130].

2.2.4. Summary

From the above literature review, it is evident that designing an AVI system requires a

multidisciplinary approach to integrate both the data acquisition and defect detection. The

optimal data acquisition method varies depending on the type of defect being inspected, while

the defect detection method must align with the specific data type and the required localisation

precision. To ensure seamless integration of these components, a comprehensive system design

methodology is essential to support a structured development of an AVI system. However,

most existing system design methodologies are either too general or too specific to a particular

industrial application, hence lack systematic guidelines that can generalise the design process

of AVI systems as well as making the process more accessible. Additionally, despite the

availability of some public defect datasets, data scarcity has been one of the major challenges

hindering the development of defect detection methods for specific applications.

2.3. Defect Detection Methods

This section aims to provide a systematic and unified framework for understanding defect

detection. Specifically, the proposed taxonomy categorises detection methods into three main

groups based on their approach to define defect: defect similarity detection (DSD) [131],

classification-based detection (CBD) [132], and anomaly detection (AD) [133]. The defect

similarity detection methods treat defects as distinct features and employs feature extraction

methods to detect them. The classification-based methods model the defect detection as a

classification task and utilising machine learning models trained on both defect and normal

data. The anomaly detection methods try to assess the deviation of test image from some

concept of normality to identify defects. With this framework in place, a comprehensive

26

review of defect detection methods from the last three decades is undertaken, providing

reference to the most appropriate methods for different application scenarios.

2.3.1. Method Taxonomy

In this thesis, the term "defect" denotes a broad concept of imperfection resulting from a fault

in either the production process or during the usage. It is characterised as something that falls

short of being considered perfect. To formally define the defect detection methods, let 𝑋 ∈ ℝ𝐷

be the data space of D dimension, and 𝑁 = {𝑆𝑁 | 𝑆𝑁 ∈ 𝑋} and 𝐴 = {𝑆𝐴 | 𝑆𝐴 ∈ 𝑋} be the

normal set and defective (abnormal) set, in the data space X. The task of defect detection is to

classify a sample S as normal or defective. The most intuitive way to determine if a sample is

defective is by how this sample differs from the normal set. Based on this, the defectiveness

of sample 𝑆 ∈ 𝑋 can be defined as the distance between this sample and normal data set N

after certain space projection:

𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑑𝑖𝑠𝑡 (𝑓𝜃(𝑆), 𝜑(𝑓𝜃(𝑁))) (2-9)

where 𝑓𝜃: 𝑋 → 𝐹 is the projection function that maps the samples from original data space to

representation space, typically named feature map, differing in algorithms. Function 𝜑: 𝐹 →

𝐹 aggregate the representations of the normal data, such as cluster center, Gaussian mixture

model, etc. Function 𝑑𝑖𝑠𝑡: (𝐹, 𝐹) → 𝑅 calculates the distance between two representations,

such as Hamming distance or L2 norm. This kind of method that determines the defectiveness

based on the distance from target to normal data set is named as anomaly detection method.

Another manner to determine defect is by how close this sample is to the anormal set. Alike to

the anomaly detection method, define the defectiveness of sample S as the similarity between

this sample and abnormal data set A after certain space projection:

𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑠𝑖𝑚𝑖 (𝑓𝜃(𝑆), 𝜑(𝑓𝜃(𝐴))) (2-10)

where function 𝑠𝑖𝑚𝑖: (𝐹, 𝐹) → 𝑅 calculates the similarity between two representations. In the

representation space, the similarity can be seen as the reciprocal or negative of the distance.

This kind of method that determines the defectiveness based on the similarity between target

and abnormal data set is named as defect similarity detection method.

The classification-based method stands in between, and it takes into consideration of both the

normal dataset and abnormal dataset. The defectiveness of sample S is defined as the distance

between both the datasets after certain space projection:

27

𝑑𝑒𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = 𝑐𝑙𝑠 (𝑓𝜃(𝑆), 𝜑(𝑓𝜃(𝑁)), 𝜑(𝑓𝜃(𝐴))) (2-11)

where the function 𝑐𝑙𝑠: (𝐹, 𝐹, 𝐹) → 𝑅 calculates the probability or score that the sample S

belongs to the normal dataset or the abnormal dataset. This kind of method that models the

defect detection as a classification task is name as classification-based detection method.

The selection of distance function depends on the feature extractor 𝑓𝜃 and domain modelling

𝜑. In some cases, 𝜑 is an identity function that does not change the domain, in which case the

distance can be point-to-point distance, such as Euclidean distance. In other cases, the features

can be modelled as a distribution, and the distance can be point-to-distribution distance, such

as Mahalanobis distance [44].

From the definition, the three kinds of algorithms can be distinguished from both development

stage and inference stage. In the development stage, the defect similarity detection method

emphasises modelling of the normal data domain, i.e., 𝜑(𝑓𝜃(𝑁)). In opposite, the anomaly

detection method emphasises the modelling of the abnormal data domain, i.e., 𝜑(𝑓𝜃(𝐴)) .

While the classification-based detection method requires both the data domain. During the

inference stage, the defects are detected based on the defectiveness described above. The

inference speed and model storage depend on the specific implementation of each method.

Because the classification-based detection requires the largest number of data, its accuracy is

usually the best. The taxonomy of defect detection methods is illustrated in Table 2.6.

Table 2.6 Taxonomy of defect detection method

Category Defectiveness Description

Require

Normal

Data

Require

Abnormal

Data

Defect

Similarity

Detection

𝑠𝑖𝑚𝑖 (𝑓𝜃(𝑆), 𝜑(𝑓𝜃(𝐴)))

Based on the similarity

of the data feature to

the defect

No Yes/No

Classification-

based

Detection

𝑐𝑙𝑠(𝑓𝜃(𝑆), 𝜑(𝑓𝜃(𝑁)), 𝜑(𝑓𝜃(𝐴)))

Based on the

classification of the

data feature

Yes Yes

Anomaly

Detection
𝑑𝑖𝑠𝑡 (𝑓𝜃(𝑆), 𝜑(𝑓𝜃(𝑁)))

Based on the

discrepancy of the data

feature from the norm

Yes No

Through this taxonomy, even methods from the same technique family may be grouped into

different categories due to their different underlying principle. One example is that both the

support vector machine (SVM) method and support vector data description (SVDD) method

utilise support vectors to define the boundary. But the former one classifies the defects via the

hyperplane constructed by normal and abnormal data. While the hyperplane of the latter one

is formed by only the normal data. Therefore, the SVM is classification-based method, but the

SVDD is anomaly detection method. This highlights one of the advantages of this taxonomy

28

that it can reveal the fundamental principles behind these methods and potentially inspire the

incorporation of techniques based on different principles. Based on this taxonomy, the

remaining part of this section will review the existing defect detection methods, including both

conventional and machine learning approaches.

2.3.2. Defect Similarity Detection

In the defect similarity detection methods, the features or characteristics of defects are firstly

defined, followed by pattern recognition of these features. Normally used features include grey

value, edge, line, etc. This part will review the defect similarity detection methods include

edge detection, clustering, Hough transform, Fourier transform, and active contour model.

A. Edge Detection

The edge is defined as curves in image where the brightness changes sharply. For material

with smooth surface such as metal plate, the presents of edges are usually caused by defects

such as scratch or crack. Therefore, the defect detection is simply modelled as edge detection

with the extracted edge treated as defects. The edge extraction methods include Sobel and

Canny operator [134], edge drawing [135], etc. One big challenge in edge-based method is

that it is sensitive to uneven illumination and camera noise, leading to many false positive

detections. The edge detection is a simple yet effective method for defect detection for

materials with uniform coloured surface. However, it is prone to output false positive and

heavily relies on image preprocessing procedure to remove noises.

B. Clustering

This method is based on the similarity among data or feature values and classification these

values into different groups. In defect detection, the pixels of different defect types are

clustered, and the classification of defect is by calculation the similarity of clusters. There are

different cluster methods leading to different distance calculation. For example, in centroid

based clustering such as K-means[136], each cluster is represented by a central point and the

similarity is how close between the data point to the central point. While in distribution-based

clustering such as Gaussian mixture model, each cluster is represented by a distribution whose

parameters are optimised to fit the data in that cluster [137]. The similarity is defined as the

probability that a data point is from this distribution. The clustering-based algorithms with

defect similarity detection as principle are basically used in defect classification tasks with

predefined defect patterns.

29

C. Hough Transform

The Hough transform is a mathematical and computational technique used in image processing

and computer vision for the detection of shapes, lines, curves, and patterns. The Hough

transform is based on the idea that specific geometric patterns, such as lines and curves, can

be represented in parameterized form. The Hough transform accumulates votes in an

accumulator array based on the parameters of the patterns detected. Theoretically, the Hough

transform is able to detect any features that can be described in parameterized form. For defect

detection, the defects are assumed to be line or curve features which can be detected through

Hough transform [138]. However, the Hough transform can be computationally intensive,

especially for high-resolution images or complex patterns. It also needs proper selection and

configuration of the parameter space for a specific detection task.

D. Fourier Transform

In image processing, the Fourier transform (FT) provides the frequency domain information

of the image. On the surface of material with smooth texture, the defects usually appear as

high frequency term in the frequency domain. Wang et al. [139] defined the defect on magnetic

surface as bright lines in spectral image after Fourier transformation and used Hough transform

to detect the bright lines. The spatial image was reconstructed after remove of the lines. The

defects were detected by comparison of the original and reconstructed images. In [140],

through analysis of the spectral features of simulated defects of fabric, two significant

spectrum diagrams were defined for defect classification including double yarn, missing yarn,

webs or broken fabric, and yarn densities variation.

E. Active Contour Model

Active Contour Model, often referred to as a "snake," is named after the analogy of a snake

seeking to adjust its shape to align with the boundaries of objects or regions within an image

[141]. In defect detection, this method is used as edge detector to localise the defects, based

on the assumption that defects usually have clear edges in smooth texture background. Yang

and Marchant [142] used a two-step segmentation and refinement scheme for fruit blemishes

detection. The blemishes were segmented out roughly by flooding algorithm and refined by

the snake algorithm. To increase the robustness of the model, Yang et al. [143] improved the

active contour without edges model to detect defects with fuzzy boundaries and uneven

illumination.

2.3.3. Classification-Based Detection

30

The classification-based detection methods typically follow a two-step framework consisting

of feature extraction and classification. Basically, the representation power of the selected

feature space is the most critical part of the classification-based detection. In this part, different

feature representations will be reviewed together with the paired classifier and applications in

defect detection, including adaptive thresholding, co-occurrence matrix, local binary pattern,

Fourier transform, Gabor filter, wavelet transform, convolutional neural network, and vision

transformer.

A. Adaptive Thresholding

Thresholding based method separate the data into normal and abnormal sets by a threshold

value. In defect detection, adaptive thresholding method is usually used which derives the

threshold value adaptively taking into account the spatial variations in illumination and

changes dynamically over the image [144]. The feature of this method is pixel value

distribution. The classifier determines the threshold based on the grey value distribution

among a local image patch or the whole image. The threshold is determined adaptively

according to the pixel value distribution, i.e., the histogram. For example, the author detect the

defects by finding the valley in the grey value histogram through the proposed valley-emphasis

method revised from Otsu method [2]. The thresholding methods are the most intuitive

methods and highly explainable. However, unlike the other classification-based method, the

dynamic thresholding mechanism adjust the threshold based on the current test image and

cannot leverage the advance of big data.

B. Co-occurrence Matrix

A Grey-Level Co-occurrence Matrix (GLCM) is a statistical method used in defect detection

and image processing to analyse the spatial relationships between pixels of different grey

levels in an image. It is a matrix that quantifies how often different pairs of grey levels occur

in close proximity to each other in the image. For an image with N different pixel values, the

N×N co-occurrence matrix C of an image I of size W×H is defined as:

𝑪∆𝑥,∆𝑦(𝑖, 𝑗) = ∑ ∑ {
1, 𝑖𝑓 𝐼(𝑥, 𝑦) = 𝑖 𝑎𝑛𝑑 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦) = 𝑗
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐻

𝑦=1

𝑊

𝑥=1

(2-12)

where ∆𝑥, ∆𝑦 are the position offset. The (i, j) value in the matrix is the number of times in the

image that pixel value at (i, j) occur in the relation given by the offset. The GLCM is a feature

discriminator and cannot be used directly as defect detection method.

The GLCM was first presented by Haralick et al. [145], based on which, 14 texture descriptors

31

were generated, including angular second moment, contrast, shadow of clustering, etc. To

reduce the computational cost of original GLCM, Tsai et al. [146] used the weighted

eigenvalue of the GLCM with a small neighbourhood window. The image patch that contains

defect will have different eigenvalues. The GLCM is a powerful feature extractor but requires

cumbersome features design and choice of parameters.

C. Local Binary Pattern

Local Binary Pattern (LBP) is a local feature extractor for defect classification. LBP functions

by comparing the intensity of a central pixel in an image or local region with the intensities of

its surrounding neighbouring pixels. Typically, a 3x3 or 5x5 pixel neighbourhood is considered.

For each pixel in the neighbourhood, a binary code is generated based on whether the

neighbouring pixel's intensity is greater or lesser than the central pixel's intensity. These binary

comparisons result in a binary pattern. The binary patterns created for each pixel or region in

the image serve as a representation of the local texture. A histogram is then constructed by

counting the occurrence of different LBP patterns within the image or a region of interest. This

histogram encodes the distribution of texture patterns. The LBP histogram can be used as a

feature vector to represent the texture properties of the image or region. The shape of the

histogram reveals information about the texture characteristics.

Figure 2.8. An illustration of LBP histogram extraction for a 3x3 image patch

The LBP was first proposed by Ojala et al. [147] for texture classification. To improve the

rotation invariance, a completed LBP (CLBP) scheme was proposed by Guo et al. [148]. Three

features were combined including the centre pixels CLBP-Centre by threshold, and two

features CLBP-Sign and CLBP-Magnitude decomposed by a local difference sign-magnitude

transform. However, the threshold scheme is sensitive to noise, which reduces the stability of

the algorithm. To solve this problem, the adjacent evaluation CLBP was proposed by Song and

Yan [71] by using the adjacent evaluation window from neighbours. Similar to GLCM, the

LBP is typically used as feature extractor and extra classifier is needed for defect detection.

D. Fourier Transform

The image features in frequency domain are translation and rotation invariant. In classification

problem, the frequency domain was used as feature vectors followed by a classifier. For the

32

surface defect detection of continuous casting slabs, Ai et al. [149] used the Fourier transform

to calculate five kinds of statistical features from spectrum amplitude of sub-band images

decomposed by Curvelet transform, followed by dimensional reduction through Kernel

Locality Preserving Projection (KLPP) method. Finally, the SVM was used for defect

classification. For biscuit tile defect detection, Zorić et al. [150] proposed a Fourier transform

based feature extractor. The feature vectors can be obtained from the Fourier power spectrum.

E. Gabor Filter

The Gabor filter is a widely used feature extractor in image processing. It was first proposed

by Dennis Gabor [151] as a 1D filter, and extended to 2D by Gösta Granlund [152]. Gabor

filters are complex sinusoidal waveforms that are spatially localised and tuned to specific

frequencies and orientations. They are defined in both the spatial and frequency domains,

making them capable of capturing information at various scales and orientations.

Figure 2.9. Examples of defect edge detection based on Gabor filters (courtesy of [38])

Kumer et al. [153] investigated using the Gabor filter for defect detection in textured materials

in both supervised and unsupervised ways. A bank of Gabor filters was selected with a priori

knowledge about the orientation and size of a sample. The defect was detected through

thresholding method. Raheja et al. [154] compared the performance of GLCM and Gabor filter

for fabric defect detection. The results showed that the GLCM performed better than Gabor

filter regarding to the detection accuracy and efficiency. By combination of the Gabor filter

and PCA, the defect can be identified through Euclidean norm of features with fabric type

specific parameters [155].

F. Wavelet Transform

The wavelet transform is a powerful mathematical technique used in various fields, including

33

signal processing and image analysis. It operates by computing coefficients that are inner

products of the input signal and a family of wavelets. These wavelets are generated by scaling

and shifting a fundamental "mother" wavelet. What makes wavelets unique is their compact

support, which means they are localised in both time and frequency domains. In practical terms,

the wavelet transform enables the decomposition of a signal or image into different scales,

thereby allowing for the analysis of features at various levels of detail. Compared to the Gabor

filter, the wavelet transform offers multi-resolution perception by window adjustment.

Through a multiscale windowing technique based on arbitrary wavelet packet decomposition,

Lambert and Bock [156] proposed to use the square coefficients or the neighbourhoods

coefficients for feature vectors classification. The fast dyadic wavelet transform was used to

reduce computational expenses, and the classifier was a general neural net. To solve the

nonuniform brightness problem, Zhou et al. [157] proposed a glass bottle bottom defect

detection framework. The glass bottle bottom ROI was firstly detected through super-pixel

circle detection, followed by frequency-tuned anisotropic diffusion super-pixel segmentation

and wavelet transform multiscale filtering for defect localisation.

G. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a deep learning model specifically designed for

processing structured grid data, such as images and videos. It has been widely used in common

computer vision tasks, such as object classification, detection, and segmentation. CNNs are

composed of convolutional layers, which apply convolution operations to the input data. These

operations involve sliding small filters over the input to detect patterns from low-level feature,

such as edges and textures, to high-level semantic features. After convolution, pooling layers

are often used to reduce the spatial dimensions of the feature maps, retaining only the most

essential information. CNNs are trained through backpropagation, adjusting the model

parameters to minimize the error between predicted and actual outcomes.

The CNN-based method has been widely used for defect detection due to its great power in

feature representation. For example, Wang et al. [158] proposed a CNN architecture that can

extract features with less prior knowledge and robust to noise. The experimental results show

higher accuracy than the traditional hand-crafted optical features. He et al. [159] proposed to

fuse the feature maps from multiple stage of the CNN for steel surface defect detection. The

network was trained end-to-end to regress the bounding box prediction of defects. To increase

the accuracy of the detection for both categories and locations, Cheng and Yu [160]proposed

a new architecture with difference channel attention and adaptively spatial feature fusion for

steel surface defect detection. Dizaji and Harris [161] proposed a deep 3D CNN network for

34

concrete columns defect detection with synthetic 3D datasets with defects such as cracks and

spalls. For defect detection in laser power bed fusion process, Lee et al. [162] deployed the 3D

CNN to classify defects including lack-of-fusion and keyhole-induced defects. The dataset

was built by artificially fabricated defects with controlled energy densities. However, the

effectiveness of classification-based 3D defect detection is often hindered by the lack of

comprehensive datasets.

H. Vision Transformer

Transformer is a deep neural network initially used in natural language processing but has

gained more and more attention in computer vision. Compared with CNN, vision transformer

offer better global and contextual understanding in cluttered backgrounds with its special

attention mechanisms [163]. Vision transformer has been a new trend in defect detection and

proven its effectiveness in many applications. For example, based on the Swin Transformer,

Gao et al. validated the vision transformer in surface defect detection with a new window shift

scheme and more than 4000 annotated images of metal surface defects. The performance

surpassed standard CNN-based methods on most tasks. Dang et al. [164] manually collected

47,000 sewer defect images to train a Transformer-based network for severity analysis from

the self-attention weights of Transformer. An and Zhang [165] proposed a Transformer-based

model named LPViT for PCB defect classification, which exceeds all the other CNN models

and became the SOTA. To combine the advantages of CNN and Transformer, Wang et al. [166]

incorporated the CNN into the encoder and decoder part of the vision Transformer. The

experiments demonstrated higher efficiency compared with CNN- and Transformer-based

methods. Nonetheless, Vision Transformers often demand more extensive training datasets to

attain performance levels similar to CNNs. In addition, the inherent parallelizability of CNNs

contributes to their computational efficiency, rendering them a more feasible choice for real-

time applications and resource-limited scenarios. The cooperation of CNN and vision

Transformer could be the future trends.

2.3.4. Anomaly Detection

The anomaly detection methods try to model the normal samples and detect the defect by

deviation from the model. Based on the modelling of normal samples and deviation detection,

a range of anomaly detection methods have been developed, including clustering, grey-level

statistics, local binary pattern, Fourier transform, Markov random field, support vector data

description, generative CNN, pretrained CNN, and registration-based methods.

35

A. Clustering

As stated in the defect similarity detection, if the P is from the normal dataset, the clustering-

based algorithm will belong to the anomaly detection method. For example, the Haar-like

feature was extracted from defect-free images and clustered into ten groups with a proposed

binary clustering method [167]. The defect is measured by the distance of the test point to the

centroid of ten clusters. The computation time is only 0.1 s for 550×550 image of multi-crystal

solar cells. The clustering method can serve as segmentation methods for image preprocessing

and the defect is detected as parts of the segmented region. Van and Byung proposed a

segmentation approach using k-means clustering and graph-based algorithm for fruit defect

detection. The Euclidean colour distance was used to cluster the image into subregions as

initial segmentation, followed by a merge produce based on graph representation. However,

this method only separates the defect region and normal region but does not determine each

region is defective or not. The clustering method can also be used in 3D segmentation. Kaiyi

et al. used the minimal spanning tree clustering algorithm to segment the defect and intact

regions [168]. The defect is detected by that the defective regions do not obey Fourier's law.

Therefore, the segmentation-oriented clustering algorithms usually cannot detect the defect

directly but require extra classification methods.

B. Grey-Level Statistics

Grey-level statistical methods in defect detection involve analysing and assessing anomalies

or defects in images or data through the statistical characteristics of pixel or grey-level values.

The statistics can be probability distribution or median values of pixel intensity. By calculation

of pixel mean value and distribution from the steel surface background, the bright and dark

defects can be simultaneously detected through out of distribution test [169]. For general

surface defect detection, Ma et al. [170] proposed a neighbourhood grey difference method

based on multi-directional grey-level fluctuation for various surface defects. Both global and

local characteristics were used leading to improved generalization ability and detection

accuracy. In 3D applications, the grey-level statistics concept can be extended as point cloud

statistics. For example, Jovancevic et al. [171] fitted the 3D points of airplane surface as

smooth surface in second order polynomial according to the normal and curvature. The defects

were detected as outliers of the fitted surface.

C. Local Binary Pattern

Like all the other feature extractors, the local binary pattern can also be used in anomaly

detection algorithm. For example, Tajeripour et al. [172] computed a reference feature vector

36

from defect free fabric image using LBP and determine the threshold during the training stage.

Then the reference feature vector is used to detect the defective windows for fabric defect

detection. Following the idea that the defects usually have nonuniform patterns on steel surface,

Luo et al. [173] proposed a generalized completed local binary patterns (GCLBP) framework

that exploit the descriptive information in nonuniform patterns. The defect is detected by

histogram matching based nearest-neighbour classifier. Not only for image data, the LBP have

been widely used in data anomaly detection such as structure health monitoring [174],

streaming data anomaly pattern detection [175], congestive heart failure and arrhythmia

classification [176].

D. Fourier Transform

When the Fourier transform used in anomaly detection method, the frequency domain features

extracted from the samples are compared with the ones with the normal samples. For example

in [177] for weaving defect detection, the Fourier image of good fabric shows well defined

spots corresponding to the spatial frequencies of the tissue. While the pattern will change

significantly if defect is presented during production of the loom. By define the features of

normal directional textures as line patterns, Tsai et al. [178] used 1D Hough transform to

remove the high-energy frequency components in the Fourier image and back-transform to

spatial domain image. Through this method, only the defective region will be reserved in the

restored image.

E. Markov Random Field

In image processing, a Markov Random Field (MRF) is a probabilistic graphical model

defined by probability distributions that are used for modelling and understanding the spatial

dependencies and interactions among neighbouring elements. These distributions capture both

local and global contextual information. In defect detection, the anomalies can be identified

based on their deviations from the surrounding context. Noiboar and Cohen [179] proposed a

3D anomaly detection algorithm based on Gaussian Markov random field (GMRF). Each layer

of the 3D data was modelled as a GMRF and anomaly detection was implemented by inverse

covariance matrix. Goldman and Cohan [180] proposed a multi-scale GMRF model and a

corresponding anomaly subspace detection algorithm. The natural clutter images were

modelled by the multi-scale GMRF and the anomaly is detected by a matched subspace

detector. For defect detection of textured material, Hu et al. [181] proposed to use the hidden

Markov tree (HMT) in wavelet domain to model the defect-free images through expectation-

maximization algorithm. Then the log-likelihood map was used to classify the defects from

37

regular texture with the HMT model.

F. SVDD

The support vector data description (SVDD) is one-class classification algorithm that aims to

create a model that describes and encloses normal data instances, allowing it to identify

anomalies or outliers that fall outside this description. The SVDD algorithm finds the centre

and the radius of the hypersphere in such a way that it minimizes the distance between the

centre and the normal data points. During testing, SVDD computes the distance from each

data point to the centre of the hypersphere. Anomalies are identified by data points located

beyond the hypersphere or with a distance exceeding a predefined threshold. Bu et al. [182]

used SVDD in combination of multiple fractal features for fabric defect defection with

proposed optimal parameter selection for Gaussian kernel function. To address the speed

problem of SVDD, Liu et al. [183] proposed to use only one kernel term so that the time

complexity during test is O(1).

G. Reconstruction by Generative CNN

For industrial anomaly detection, there are two main branches of methods using CNN,

including feature embeddings from pretrained CNN and image reconstruction from generative

CNN. For generative CNN method, or reconstructed-based method, an encoder-decoder

shaped model is trained to reconstruct the normal samples. It is assumed that through feature

compression by encoder, only essential features are remained to reconstruct normal samples

only, which does not have enough information and failed to reconstruct the anomalies. The

anomaly detection is simply by comparison of the original and reconstructed images. There

are two subcategories of generative CNN method, including variational autoencoders (VAE)

[184] and generative adversarial network (GAN) [185]. The generative CNN based methods

are intuitive and highly interpretable. However, the reconstruction quality can sometimes be

too good for anomaly images to detect the anomaly [186]. Besides, the comparison of input

and reconstructed image in pixel space can be sensitive to noise and imperfect reconstruction.

H. Feature Embeddings from Pretrained CNN

The pretrained CNN method is based on assumption that the feature embedding from CNN

model trained on large and diverse dataset, such as ImageNet, has distinctive distribution for

normal and anomaly images. There are two subcategories of pretrained CNN based method

including feature embedding modelling (FEM) method and student-teacher (T-S) framework

method.

38

The FEM method tries to model the distribution of feature embeddings of normal samples

from pretrained CNN model. The defect is detected by out of distribution test of the feature

embeddings from the tested sample. For example, Cohen and Hoshen [187] proposed a

semantic pyramid anomaly detection (SPADE) method that aggregated the multi-resolution

feature pyramid from pretrained ResNet by k-nearest-neighbour (kNN) method. The anomaly

score can be calculated by the closest distance of the feature embedding using Euclidean metric.

The student-teacher based method uses two CNN models for anomaly detection, namely

teacher network and student network. The teacher network is a pretrained model on large

dataset named teacher, while a smaller student network is trained on the normal dataset to

imitate the feature response of the teacher. The assumption of student teacher method is that

student network does not have enough representation ability to generalize outside the

distribution of normal dataset. Based on this principle, Bergmann et al. [188] proposed the S-

T framework for unsupervised anomaly detection. The anomaly score will be the deviation of

the student features from the teacher features for test image.

I. Registration-based

Registration-based methods for anomaly detection typically rely on aligning a test image or

3D data to a reference or template. If the test data does not align well with the reference, or if

there are significant differences between them after registration, those differences can be

treated as anomalies. The registration can be rigid (involving only translations and rotations),

affine (which can also involve scaling and shearing), or non-rigid/deformable (where more

complex transformations are allowed).

Image registration is an effective way for anomaly detection by aligning two or more images

of the same scene taken at different times, from different viewpoints. Through extraction of

feature points with CNN, Lu et al. [189] registered the test image with template image via

neural best-buddies feature matching module. The anomaly was detected by simply calculation

of pixel-wise distances. Zhou et al. [190] proposed a registration and fusion framework for

power thermal anomaly detection. The registration parameter including translation and

rotation was obtained by low-frequency decomposition and joint histogram segmentation.

Registration-based method has also been widely used for 3D data anomaly detection. Hong-

Seok and Mani [191] developed a pressed parts inspection system using laser scanned data.

The 3D features were firstly extracted for initial pose estimation, followed by a modified

iterative closest point (ICP) algorithm for registration. The 3D point cloud was compared with

the CAD model for anomaly detection. For targets with large variations, the deformable

39

registration method can be employed. Chen et al. [192] proposed a 3-D hierarchical

deformable matching algorithm for brain data anomaly detection from MRI.

2.3.5. Comparison and Discussion

A unified view of the defect detection methods based on defectiveness definition is derived

and compared in Table 2.7. The advantage of this unified view is that it can reveal the

fundamental principles behind these methods and potentially inspire the incorporation of

techniques based on different principles. For example, the combination of classification-based

method and anomaly detection method may enhance the overall performance of defect

detection. Additionally, the feature extractor typically used for classification-based method

could be adapted for anomaly detection method.

40

Table 2.7. A unifying view and comparison of defect detection methods

Method Ref. Technique Principle 𝒇𝜽 𝝋 Distance Strengths Limitations

Adaptive Thresholding [144] Statistical Classification Grey value
Threshold

determination

Grey value

difference

Easy to understand and

implement

Sensitive to noise, fail with

complex background

Edge Detection [135]
Statistical,

Structural
Similarity

Gradients

calculation

Edge points

detection and

connection

Gradients intensity

and direction

Intuitive and easy to

implement

Sensitive to noise and only

suitable for low resolution

image

Clustering [167]
Statistical,

ML

Similarity,

Anomaly

Grey value or

image features

extraction

Clustering
Distance to cluster

centroids
High flexibility and scalability

Sensitive to cluster

initialization and data outliers

Grey-Level Statistics [169] Statistical Anomaly Grey value
Mean, median,

distribution

Distance to

median or

distribution

Easy to explain and

implement

Difficult to choose threshold,

sensitive to noise

Co-occurrence Matrix [145] Statistical Classification
Co-occurrence

matrix

Feature

aggregation

and reduction

Class probability

Powerful feature extractor,

noise robust, rotation and

scale invariant

Only for local feature

analysis, high requirement of

computation and memory

Local Binary Pattern [172] Statistical
Classification,

Anomaly
Local binary pattern

Feature

aggregation,

histogram

Class probability,

feature vector

distance

Powerful feature extractor,

rotation and grey scale

invariant, robust to

illumination, efficient

Require careful parameter

selection including

neighbourhood size and the

number of neighbours

Registration [189] Statistical Anomaly
Grey value or

feature

Template

matching,

Registration

Grey value or

feature difference

Robust to variations, high

accuracy defect localisation

Sensitive to noise,

computationally intensive

Hough Transform [138]
Statistical,

Spectral
Similarity Image binarization

Local maxima

in accumulator

space

Log-likelihood

Robust to noise, spatial

invariance, suitable for

multiple defect shapes

Computational expensive,

sensitive to parameters

Fourier Transform [177] Spectral

Similarity,

Classification,

Anomaly

Transform to

frequency domain

Spectral

diagram

Frequency

difference, class

probability

Shift-invariant, denoising,

computational efficient

Only for periodical defect

pattern, lack of spatial

information

Gabor Filter [151] Spectral Classification
Bank of Gabor

filters

Feature

aggregation,

edge detection

Class probability,

Euclidean

distance,

thresholding

Multi-scale and multi-

orientation feature extraction,

computational efficient

Configuration of filter

parameters can be

cumbersome

Wavelet Transform [156] Spectral Classification
Wavelet

coefficients

Feature

aggregation

and reduction

Class probability,

thresholding

Multi-scale feature extraction,

denoising, image compression

Sensitive to noise and

selection of basis functions

and the decomposition levels

41

Method Ref. Technique Principle 𝒇𝜽 𝝋 Distance Strengths Limitations

Active Contour Model [141] Model Similarity Image energy
Energy

minimizing
Energy level

Sub-pixel accuracy of object

boundary

Sensitive to initial contour and

constraints

Markov Random Field [179] Model Anomaly Grey level
Expectation

maximation
Log-likelihood

Contextual information from

neighbours,

Design of energy function and

potentials is crucial,

computationally intensive

Support Vector Data

Description
[182] ML Anomaly

Feature space

transform

Hypersphere

centre and

radius

estimation

Distance to

hypersphere

Specially designed for one-

class classification, nonlinear

mapping

Sensitive to hyperparameter

selection and data imbalance

Convolutional Neural

Network
[158] ML Classification

Stacked CNN

layers

Feature

learning
Class probability

Hierarchical feature learning

leverage big data, reserve

global and local features

Require high quality labelled

data and large computational

power for model training

Vision Transformer [163] ML Classification
Stacked

Transformer blocks

Feature

learning
Class probability

Global context understanding,

multi-modal integration,

attention mechanism, high

scalability

Require large amount of data

and computation resources,

larger model size than CNN,

struggle to detect small

defects

Generative CNN [184] ML Anomaly Grey value Reconstruction
Grey value

difference

Capture complexity and

variability of data,

interpretable

Sensitive to noise and

imperfect reconstruction,

sometimes good

reconstruction even for

anomaly

Pretrained CNN [187] ML Anomaly
Feature embeddings

from CNN

Feature

distribution

modelling

Distance in feature

space

Effective feature extraction

from pretrained model, high

generalization ability

High memory requirement,

less interpretable

42

2.3.5.1. Defect Similarity Detection

The defect similarity detection methods are naturally intuitive and easy to implement, such as

edge detection and Hough transform. For example, Edge Detection operates on the principle

of gradient calculation to identify discontinuities in intensity, which often correspond to the

edges of defects. On the other hand, the Hough Transform is used to detect regular curves and

lines, making it ideal for identifying specific shapes indicative of defects like circles or cracks.

However, the application of this kind of method is limited to a certain range of defects that can

be generally characterised, such as scratches and dents. Besides, these methods are intuitive

and easy to implement, their efficacy is closely tied to the resolution of the image and the

nature of the noise present within the data. In modern industrial applications, the variations in

defects often present with irregular shapes and appearances. These conventional techniques

typically rely on predefined patterns or models, which may not adequately capture the complex

and variable nature of manufacturing defects, thereby constraining their practical utility.

Indeed, while these methods have their limitations, they retain their utility when integrated

into broader defect detection workflows. They can be effectively employed as part of

preprocessing or postprocessing steps. In preprocessing, they can help in normalizing the data,

enhancing features, or reducing noise, thus improving the performance of more sophisticated

algorithms downstream. In postprocessing, they can refine the outputs of advanced models,

for instance, by removing false positives or further delineating the detected defects. By

situating these methods within a larger pipeline, they can contribute to more robust and

accurate AVI systems.

2.3.5.2. Classification-based Detection

Classification-based methods involve categorising image pixels or regions into predefined

classes. Adaptive Thresholding, for example, operates by comparing grey values to a threshold

to classify pixels. The Co-occurrence Matrix and Local Binary Pattern methods extract more

complex features that can then be classified. With the advent of deep learning, CNNs and

Vision Transformers offer a sophisticated approach by learning feature representations directly

from the data, allowing for more nuanced and robust classification. These methods are

typically more robust than similarity-based approaches but come with their own limitations

such as sensitivity to the training data quality and the computational resources required for

training large-scale models.

43

A list of classification-based methods using CNN is described in Table 2.8. Historically, before

2019, defect detection predominantly revolved around tasks like classification and bounding

box detection. This was largely due to the constraints imposed by the accuracy and processing

speed of CNNs at that time which usually requires expensive GPU. Segmentation, during this

period, was primarily utilised for visual interpretation rather than as a core detection strategy.

With the advent of 2020, there was a noticeable paradigm shift as segmentation took centre

stage, propelled by deeper and more intricate research into CNN architectures. After 2022, the

introduction of transformer-based models marked another notable shift, as they excel in

capturing global contextual information. This feature proved advantageous for identifying

defects within intricate backgrounds.

Despite these advancements, these methods still face limitations in terms of computational

efficiency, segmentation accuracy, and availability of comprehensive datasets. Even though

the overall accuracy of image-level classification has surpassed the 99% threshold, the trade-

off between accuracy and speed remains a challenge. For example, real-time defect

localisation applications predominantly cantered around bounding box detection due to their

less demanding computational requirements. While the image segmentation task is less

explored in real-time applications due to insufficient accuracy and speed. Moreover, the

scarcity of comprehensive datasets poses another significant challenge in the field of defect

detection. The most widely used defect datasets are dated, often more than a decade old, and

they fall short on several fronts. They typically contain limited data volumes, lack diversity in

defect types, and sometimes suffer from inaccuracies in labelling. This inadequacy impedes

the development and training of advanced models that require large and varied datasets to

achieve high generalization and robustness. Balancing these competing demands is a key

challenge for current and future AVI systems.

44

Table 2.8. Comparison of CNN classification-based defect detection methods

Ref. Year Algorithm Defects Dataset Task Accuracy (%) Frame Rate Novelty Limitation

[193] 2017 DCNN

Defects of hot-

rolled steel strip,

welds and wood

NEU,

Weld Defect

Database,

Wood Defect

Database

Classification,

segmentation

99.27 (NEU)

88.00 (Weld)

94.28 (Wood)

2 fps

on 24 cores

CPU

820x820

Small dataset training

by transfer learning

Low resolution and

speed for segmentation

[118] 2018 DCNN

Synthetic defect

on texture

background

DAGM
Classification,

segmentation
98.50 -

Compact CNN

architecture design for

simultaneous

classification and

segmentation

Focused on

classification accuracy,

no segmentation and

efficiency study

[194] 2018 Fast RCNN
Sewer pipe

defects

CCTV sewer

inspection videos
Bounding box mAP 79.80

20.4 fps

on GTX1070

224x224

New application of

CNN in defect

detection with model

hyperparameters

study

Bounding box output

has lower localisation

precision

[195] 2019
CNN +

LSTM

Hot-rolled steel

plates
- Bounding box 86.20 -

Novel CNN

architecture for actual

industrial scenarios

No time-cost analysis

Bounding box output

has lower localisation

precision.

Limited accuracy

[196] 2019 DCNN
Hot-rolled steel

strip
NEU

Classification,

segmentation
99.44 -

Class activation map

for visual decision

making

No time-cost analysis

and segmentation

accuracy

[197] 2019 Yolov3

scratches,

cratering, oil

spots, fisheye-

like crawling and

humps

- Bounding box 88.00

0.77 fps

on GTX1080

1632x1224

Image acquisition

system design

Bounding box output

has lower localisation

precision.

Limited accuracy

[27] 2020 DCNN
Electronic

Commutator
KolektorSDD

Classification,

segmentation
99.90

9.1 fps

on TitanX

500x1240

New dataset proposed

and novel CNN

architecture

Segmentation result

not analysed

[198] 2020 MobileNetv2

Defect of hot-

rolled strip and

wood

DAGM

Wood defect

Classification,

segmentation

100 (NEU)

99.90 (DAGM)

4.6 fps

on GTX1080

512x512

Light weight depth

wise pyramid block

Small dataset size.

Limited inference

speed

45

Ref. Year Algorithm Defects Dataset Task Accuracy (%) Frame Rate Novelty Limitation

[199] 2020
Concurrent

CNN

Hot-rolled steel

strip
NEU Classification 98.89

179 fps

on GTX 1080Ti

400x400

20% labelled data for

training

real-time

Small dataset size.

No localisation

information"

[200] 2020 mask-RCNN Oil leak defect - Segmentation 92.90

4.11 fps

GTX1060MaxQ

512x448

Refined Mask-RCNN

with pyramid feature

fusion

Relatively low

framerate

[75] 2020 U-Net

Defect on

magnetic tile:

blowhole, crack,

break and fray

Magnetic tile Segmentation 96.6

14.28 fps

on GTX 1050ti

196x196

Reformat the input

with MCue saliency

image, multi-task

learning with

detection branch.

New dataset proposed

Low input resolution

[201] 2020 DCNN

Three typical

industrial scratch

data sets

WSCRATCH512

CrackDataSet

magnetic tile

Segmentation

mIoU 80.05

(WSC)

mIoU 81.22

(crack)

mIoU 92.86

(magnetic)

2.14 fps

on GTX 1070

512x512

Novel CNN

architecture design

with attention feature

fusion and context

fusion block

Relatively low

framerate

[202] 2021 U-Net

16 types of

defects on steel

surface

- Segmentation

mIoU 40 (type)

mIoU 43

(severity)"

-

Multi-task model that

performs both pixel-

based defect

segmentation and

severity estimation

No time-cost analysis

relatively low accuracy

[203] 2021 RCN

1124 defect

categories of

FPCB

- Bounding box mAP 94.15 -

Novel CNN

architecture design

with multi-task

learning

No time-cost analysis

Bounding box output

has lower localisation

precision

[204] 2021 GAN+U-Net

Synthetic defect

on texture

background

DAGM Classification 95.00 -
Use GAN to produce

more training data

No time-cost analysis

segmentation accuracy

not analysed

[205] 2021 SSD
Three public

datasets

NEU

DAGM

magnetic tile

Bounding box

mAP 88.8 (NEU)

mAP 99.1

(DAGM)

mAP 93.4

(magnetic)

31.0 fps

on GTX 1080Ti

512x512

Novel CNN

architecture design

with feature retaining

block and skip

densely connected

module

Bounding box output

has lower localisation

precision

46

Ref. Year Algorithm Defects Dataset Task Accuracy (%) Frame Rate Novelty Limitation

[206] 2022 DCNN
defect on rail

surface

UAV collected

dataset
Segmentation F1 96.7 -

Novel CNN

architecture design

with boundary

guidance network

No time-cost analysis

[207] 2022
Faster R-

CNN

Stains, holes,

floats, and yarn

defects of fabric

Dataset collected

from factories and

online

Bounding box mAP 94.57 -
Incorporation of

Gabor filter in CNN
No time-cost analysis

[208] 2022 DCNN

Multiple defects

of texture and

industrial part

MvTec AD Segmentation F1 86.51
52.26 fps on

GTX Titan X

New model

architecture design

with multi-scale

feature enhancement

and fusion

Apply classification-

based method on

anomaly detection

dataset

[209] 2022 DCNN
13 types of rail

surface defect

Rail surface defect

dataset
Segmentation 85.51

32.26 fps

1282 ×160

New model

architecture design

with pyramid feature

extraction

GPU not specified

[210] 2022
Swin

Transformer

pitting, fatigue

cracking, spall,

and shallow spall

on metal surface

Self-collected

dataset
Segmentation AP 80.2 -

Validated the

Transformer network

for defect detection

Large model size, not

time-cost analysis

[211] 2023 YOLOv4

undercut lack of

fusion in Wire

and arc additive

manufacturing

Self-collected

dataset
Bounding box mAP 94.5

44 fps on GTX

1080Ti

416 × 416

Improved the model

with attention

mechanism and

applied in real-time

additive

manufacturing

Bounding box output

has lower localisation

precision

[212] 2023 YOLOv5s
Three public

datasets

NEU

MT

DAGM

Bounding box

mAP 86.80

(NEU)

mAP 92.6 (MT)

mAP 99.5

(DAGM)

51 fps on GTX

1080Ti

640 × 640

Improved the model

for multi-size defect

detection

Bounding box output

has lower localisation

precision

[166] 2023
CNN

Transformer

Three public

datasets

SD-saliency-900

Fabric defect

dataset

NRSD-MN dataset

Segmentation

97.91 (SD)

98.08 (fabric)

97.15 (NRSD)

5.88 fps on

NVIDIA P5000

256 × 256

Combined CNN with

transformer for defect

detection

Slow inference speed

47

2.3.5.3. Anomaly Detection

The third category is anomaly detection method, where the goal is to identify outliers that do

not conform to the expected distribution of the data. Clustering algorithms, for example, group

similar data points together and identify defects as those that fall outside of the main clusters.

Grey-level statistics measure how much a pixel intensity deviates from statistical measures

like the mean or median, and registration method aligns images to a reference to spot

anomalies. SVDD encapsulates normal data within a boundary in feature space and regards

points outside this boundary as anomalies. Machine learning methods such as generative

CNNs and pretrained CNNs detect anomalies by learning a model of normality from the data

and then identifying deviations from this model. These methods can be very powerful as they

do not require explicit defect modelling. However, they may be challenged by complex data

distributions and require careful tuning of their parameters.

A list of anomaly detection methods using CNN is described in Table 2.9. These methods are

compared on the MVTec AD dataset which is a widely recognised dataset that contains a

variety defect of textures and objects. The pixel AUROC is used to evaluate the accuracy of

defect localisation and the results of textures and objects are compared separately. The two

SVDD-based methods show both high performance with larger than 95% accuracy. For

generative CNN method, the VAE and GAN based methods have achieved well enough

accuracy but surpassed by the normalizing flow based method including CFlow and Fastflow.

As for pretrained CNN, the accuracy increased gradually from SPADE to PatchCore for feature

embedding modelling, and S-T to EfficientAD. The registration-based methods also achieved

comparable accuracy as the others that higher than 98%. Most algorithms predicted better for

objects than textures, except Cutpaste, S-T, and STPM. This may suggest a subtle complexity

in texture anomaly detection.

In terms of inference speed, there appears to be a bottleneck when processing on CPUs, with

most methods unable to exceed 10 fps. EfficientAD marks a significant leap forward,

achieving a remarkable 269 fps on the RTX A6000, which is the most advanced GPU currently

commercially accessible, highlighting its potential for real-time applications. Unfortunately,

comparable performance metrics for CPU processing are absent, which would have been

invaluable for understanding its practicality in less resource-intensive environments. This gap

underscores a common challenge in anomaly detection research: balancing accuracy with

computational efficiency, especially outside high-end GPU contexts.

48

Table 2.9. Comparison of anomaly detection method on MVTec AD dataset regarding to pixel AUROC (%)

Category Ref. Year Method Textures Objects Mean Frame Rate

SVDD

[213] 2020 PatchSVDD 93.7 96.7 95.7 -

[214] 2021 SE-SVDD 96.4 98.0 97.5

97 fps on (TITAN

XP

4 fps on Intel Xeon

Silver 4116

Generative

CNN

[215] 2020 Vanilla VAE - - 82.3 -

[216] 2020 VE-VAE 80.6 88.8 86.1 -

[217] 2022 MPAD 97.7 98.4 98.1 -

[218] 2021 CutPaste 96.3 95.8 96.0 -

[219] 2017 AnoGAN 57.6 82.6 74.3 -

[220] 2022 CFlow-AD 98.5 98.7 98.6 9 fps on Intel i7

[221] 2021 Fastflow 98.1 98.7 98.5

21.8 fps on

GeForce GTX

1080Ti

Pretrained

CNN

[187] 2020 SPADE 92.9 97.6 96.5
1.51 fps on Nvidia

Tesla V4

[222] 2021 Padim 96.9 97.8 97.5

5.26 fps on Nvidia

Tesla V4

1.05 fps on Intel

i7-4710HQ

[223] 2022 PatchCore 97.6 98.3 98.1
5.88 fps on Nvidia

Tesla V4

[188] 2020 S-T 92.7 90.77 91.4 -

[224] 2021 STPM 98.3 96.33 97.0 -

[225] 2022
Reverse

Distillation
97.7 97.9 97.8 3.22 fps on Intel i7

[226] 2023 EfficientAD - - 98.2

269 fps on

NVIDIA RTX

A6000

Registration
[227] 2022 RegAD - - 96.9 -

[228] 2022 FYD 98.2 98.3 98.2 -

2.3.6. Summary

In summary, the choice of defect detection method depends on several factors, including the

type of defect, the availability of target data, the computational resources available, and the

specific requirements of the application such as localisation precision, efficiency, and accuracy.

Each method has its strengths and limitations, and in practice, a combination of these methods

could be used to achieve the desired level of accuracy and reliability in defect detection. This

underscores the necessity for a comprehensive design methodology to guide the development

of AVI system design. This highlights the importance of adopting a comprehensive design

methodology to systematically address the various factors involved in AVI system

development, such as defect detection methods, data processing, computational resources, and

application-specific requirements. A structured approach ensures that all elements of the

system are properly integrated, optimised, and aligned with the overall goals, leading to more

efficient and reliable defect detection.

The literature review also highlights two major challenges in defect detection methods: the

accuracy-efficiency trade-off and data scarcity. While most research has focused on improving

49

detection accuracy, fewer studies have addressed efficiency, particularly on computation

resource constrained platforms. To tackle data scarcity, the anomaly detection methods are

often employed. However, current early-stage research primarily centres on public datasets,

leaving real-world applications underexplored.

2.4. Knowledge Gaps

Based on the literature review findings, the following knowledge gaps were identified:

1) Absence of a well-defined and comprehensive design methodology

Despite significant progress in the development of algorithms and systems for defect detection,

it is evident that there is an absence of a design methodology to help design, develop and

assessing the complete AVI systems. The challenge of developing effective AVI systems for

defect detection lies in managing complex factors such as data availability, defect variability,

and environmental conditions. Addressing these challenges during system development

requires a well-defined design methodology. This methodology should accommodate

detection tasks across various localisation precision levels, including image, object, pixel, and

3D levels.

2) Ability to achieve real-time detection on resource- constrained devices

As shown in Table 2.8 and Table 2.9, though some model can achieve real-time inference GPU,

there is no model achieved more than 10 fps on CPU. Their practical applications in real-time

scenarios still present a significant challenge, especially on mobile devices. This requires the

design of novel training strategy and model architectures to meet stringent time constraints.

3) Under-exploration of the application of anomaly detection in AVI systems

Despite advances in machine learning, the accuracy and generalisability of robust defect

detection algorithms still depend heavily on the availability of sufficient high-quality training

data. The anomaly detection method is a popular topic for addressing the shortage of high-

quality, diverse, and annotated data. However, the research of anomaly detection techniques is

still in relatively early stages of research in some specific areas, such as wheat head disease

detection or engine surface detection, and has focused on public datasets. Their deployment in

real-world AVI applications is underexplored.

50

3. Design Methodology for AVI System

3.1. Introduction

This chapter proposes a comprehensive design methodology for AVI system development with

a focus on defect detection. Inspired by Yan’s model, the life-cycle design model [229] and

concurrent design principle and multi-perspective modelling [230] are adapted for the design

methodology. It features a design process model for developing a complete AVI system, as

shown in Figure 3.1.

Figure 3.1. Design process model for concurrent hardware and software development for AVI system

Following the structure of Yan’s model, it consists of four design stages, i.e., task clarification,

concept design, embodiment design, and system verification and validation. The components

of the design process and the associated flow of information are adapted for the AVI system.

Compared with Batchelor’s design methodology, the proposed design methodology is more

comprehensive, covering all the three components of the AVI system, especially the defect

detection method development. Besides, the proposed methodology provides a more detailed

representation of the information flow. In contrast to Saha's design methodology, the proposed

design methodology includes a process model to present the interactions between the system

51

components, rather than merely describing each component separately.

The objective of the task clarification stage is to identify the customer need, collect academic

and industrial information, and define the requirements and specifications for the AVI system.

Following the task classification, the essential problem should be abstracted during the concept

design phase, after which fully developed and selected concept models should be generated.

To support the concept generation, a collection of dictionaries and libraries are used to assist

designers in producing embodiment models and solution models. This collection includes the

fundamental principles of camera and defect detection algorithms.

The embodiment design includes multi-perspective model construction, dataset establishment,

and algorithm selection and optimisation. The multi-perspective model covers the system

function model, camera model, algorithm pipeline model, defect detection model, and user

interface model. The dataset establishment relies on either self-collected or open-source data

to ensure diversity and the accurate representation of target defects. The development of the

defect detection algorithm involves selecting and optimising algorithms based on an

evaluation model, which comprises algorithm candidates, evaluation criteria, and the

established dataset.

The system validation should be conducted in parallel with the system integration process. The

unit test is carried out to ensure validation of all system models, such as image acquisition and

defect detection. Finally, the entire system is subjected to an integration test to verify the

performance of the final AVI system.

Throughout this progression, the design information becomes increasingly complex and

comprehensive. The design evolves from an abstract and qualitative concept to a specific and

quantitative embodiment, and finally a complete AVI system. The subsequent sections will

provide a detailed description of the design process and the tasks at each design stage.

3.2. AVI System Design Process

3.2.1. Task Clarification

The initial phase of system design is crucial and involves in-depth and continuous

communication with the customer to define the task clearly. This includes the understanding

of the operational environment, identification of the specific target object, and the detailed

requirements for defect detection. Thorough research should be conducted to collect

information from both industry and academia to identify the knowledge gap. From the

customer need and research information, the requirements and specifications of the system can

52

be derived.

Specifications should cover all aspects of the target inspection objects and the environment in

which the system will operate. This involves defining the type and material of the object to be

inspected, as well as the specific kinds of defects that need to be identified. In terms of the

environment, it is vital to specify the conditions of illumination and the characteristics of the

background against which inspections will be carried out.

The set of dictionaries and libraries should be established at this stage including the hardware

working principle, simulation blocks and elements, defect detection algorithms, and open-

source data. The dictionary of hardware working principle should include the mechanical,

electrical, and optical hardware working principles, such as the pinhole camera working

principle for image collection. These working principles will be used for hardware concept

models generation. The simulation blocks and elements, like those available in

MATLAB/Simulink, are used to model and test the physical processes within the system

before actual hardware is developed. The defect detection algorithms can be collected through

research, including the algorithms from the three categories summarized in the literature

review chapter. The open-source data is critical for algorithm development and testing,

including both publicly available datasets and dispersed data from internet.

Based on the requirements, and research information, a set of specifications can be defined,

including the detailed information on the target object, the operational environment, specific

system requirements, and available datasets. The specifications will be used for concept design

which will be described in the following section.

3.2.2. Concept Design

Concept design is an early phase of the design process, where the broad outlines of function

are abstracted and generated, including the design of interactions, experiences, processes, and

strategies. The system concept includes an initial design of system architecture, data

acquisition system, and defect detection method, based on the following considerations

derived from the task clarification stage:

1) Target Object: Understanding the characteristics of the target object is critical for the system

design. It includes identification of the size, shape, material, and other properties that could

affect how the object should be inspected and treated if defect presented.

2) Environment: The environment where the AVI system will be deployed affects the choices

of system components significantly. Factors include lighting conditions, presence of vibrations,

53

temperature, and humidity. For instance, embedded systems are generally used for portable,

on-site inspections where space and power may be limited, while desktop systems might be

used in a controlled environment where more room is available for powerful computing

resources. Additionally, for object in clear background, it can be easily segmented out. But for

cluttered background, extra step may be needed to extract the region of interest.

3) Dataset: The requirements of the target dataset can influence the data acquisition subsystem.

For example, the required number of images, the diversity of the objects, and variations in

illumination configurations impact how data is collected. The type and size of the dataset

available for training and testing the algorithms are critical to algorithm selection. A larger and

more varied dataset might be needed for more complex objects or tasks, which can affect the

choice of software platform based on its data processing capabilities.

4) Requirements: The requirements regarding to speed and precision can influence the

selection of operating system and programming language. As for the programming language,

C++ is often favoured in environments where speed and efficiency are critical, due to its

performance advantages over languages like Python. However, Python's simplicity and the

vast ecosystem of libraries make it a popular choice for rapid development and prototyping,

especially in the research phase or when the performance is less critical. TensorFlow and

PyTorch are two of the most popular platforms for AI algorithm development. TensorFlow is

known for its powerful production-ready tools and broad community support, making it a

common choice for deploying AI applications. PyTorch, on the other hand, is often praised for

its ease of use and dynamic computational graph, which can be more intuitive for research and

development purposes.

3.2.3. Embodiment Design

Embodiment design is a phase where the conceptual models of the system defined in earlier

stage are transformed into detailed embodiment models. In this stage, a set of multi-

perspective design models are developed to collectively define the behaviour of both the

hardware and software systems. The hardware models cover the camera model, illumination

model, and sensing model for data acquisition, control and execution model for defect

management, and the geometric layout model for the whole system. Based on these models, a

series of tasks can be conducted to develop the subsystems, including the dataset establishment,

hardware simulation and comparison, and algorithm selection and optimisation.

54

3.2.3.1. Multi-perspective Model Construction

During the embodiment design, the models of AVI system define the properties of the system

in terms of its physical definition and its intentional purpose. It includes the system function

model, camera model, algorithm pipeline model, defect detection model, and user interface

model, as defined in detail below:

1) System Function Model: This model provides an overview of the system architecture,

outlining how the system operates to achieve its goals. It defines the relationships between

different components and shows the detection is realised through various functional processes.

2) Camera Model: The camera model is essential for understanding how the appearance or

shape of the target object is captured by the designed vision system. For example, the pinhole

or fisheye camera model has different image distortions and perspectives. This choice also

influences the camera calibration method for image alignment and 3D reconstruction.

3) Algorithm Pipeline Model: The pipeline for defect detection includes the data processing,

defect detection, and decision making. The input, output, and available algorithms of each

component should be defined.

4) Defect Detection Model: This is core of the AVI system and should be developed and

optimised to meet the system requirements. It involves developing algorithm capable of

accurately and efficiently identifying the defects based on the acquired data.

5) User Interface Model: The user interface model provides an interface for users to control

and inspect the working status of the AVI system. It includes the control buttons, visualization

tools, real-time information updating, providing users with an interactive window into the AVI

system operations.

6) Algorithm Evaluation Model: This model contains essential components for algorithm

selection optimisation, including the defect detection algorithm candidates, evaluation criteria,

and established datasets.

3.2.3.2. Dataset Establishment

Data is one of the most important components of modern defect detection systems. The dataset

must contain adequate amount of data and sufficient object diversity to ensure robustness and

accuracy of the defect detection algorithm. The dataset can be sourced from open-source data,

self-collected data, or a combination of both. For self-collected data, camera settings and

illumination conditions should be optimised to highlight defects effectively, ensuring high-

55

quality data for training and validation. Open-source data can be drawn from publicly available

datasets or gathered from scattered sources across the internet. Regardless of the source, it is

essential to meet the requirements for data volume and diversity as specified during the task

clarification phase.

Additionally, the labelling of the data should align with the localisation precision required by

the task. For instance, labelling could be at the image level or pixel level based on the specific

defect detection goals. This precision will directly influence the model’s ability to localise and

identify defects accurately in real-world applications.

3.2.3.3. Algorithm Selection and Optimisation

Development of defect detection algorithm tailored for a specific application involves careful

selection and optimisation of algorithm to ensure all requirements are met. The process is

based on an algorithm evaluation model that includes the algorithm candidates, evaluation

criteria and the established datasets. The flowchart of the algorithm selection and optimisation

is shown in Figure 3.2. During the design process, the requirements, algorithm candidates, and

dataset can be derived from the task clarification, conceptual design, and embodiment design,

respectively.

In some applications, the dataset for the target object could be small and does not cover most

defect types likely to occur in real-world applications, which can hinder the development of

the defect detection algorithms. To address this issue, the supplementary dataset is needed for

algorithm development. To ensure the consistency between the selection and optimisation, the

supplementary dataset should cover similar objects and defects as those in the target dataset.

The best model is selected further optimised on the target dataset to refine its performance.

This systematic approach ensures that the defect detection algorithm is both robust and aligned

with the specific needs of the application.

56

Figure 3.2. Flowchart for basic defect detection algorithm selection and optimisation.

3.2.4. System Verification and Validation

Typically, the embodiment design phase operates alongside system verification and validation,

creating a continuous feedback loop. As in the V-model [128], verification of each subsystem

ensures compliance with detailed specifications and design requirements. Simultaneously,

validation procedures confirm that these subsystems collectively meet the intended use and

user requirements. During the development of subsystems such as data collection subsystem

and defect detection subsystem, unit tests are carried out for to verify individual functionalities.

Then a thorough evaluation of the fully integrated system should be conducted to examine the

cooperation amongst all subsystems. If any mismatches from the requirements emerge during

the tests, iterative refinements of the concept and embodiment designs are undertaken. The

resulting improvements are then incorporated into the development cycle, thereby ensuring

that the final product is aligned with its intended objectives.

57

3.3. Methodology Validation

To validate the proposed methodology, four case studies were conducted in this research

covering different applications, defect detection tasks, detection methods, etc. A comparison

of the four case studies is listed in Table 3.1.

Table 3.1. Comparison of case studies for methodology validation

The First Case

Study

The Second Case

Study

The Third Case

Study

The Fourth Case

Study

Target Object Concrete Wall Wheat Head Car Engine Modular Satellite

Detection Task
Image and pixel-

level
Object-level Pixel-level 3D-level

Defect Crack Head blight Surplus
Extrusion,

protrusion

Detection Method

Category

Classification-

based detection

Classification-

based and anomaly

detection

Anomaly detection Anomaly detection

Camera RGBD Monocular Monocular RGBD

Emphasise

Algorithm

selection and

optimisation

Algorithm

selection and

optimisation

Dataset

Establishment,

Algorithm

selection and

optimisation

Dataset

Establishment,

Algorithm

selection and

optimisation

The selection of the four case studies is driven by their ability to comprehensively demonstrate

the versatility and applicability of the proposed design methodology for AVI systems across

diverse sectors. Firstly, the case studies span industrial manufacturing, civil infrastructure,

space exploration, and smart agriculture, which represent key sectors where AVI systems play

a critical role in quality assurance, safety, and operational efficiency. In addition, the selected

cases require context-specific solutions with varying challenges, such as surface anomaly

detection in manufacturing, real-time inspection in AR environments, pose estimation in

modular spacecraft, and disease detection in crops. This variety validates the methodology's

capability to tailor system configurations based on domain knowledge. Furthermore, The case

studies leverage state-of-the-art technologies, including deep learning, augmented reality, and

domain adaptation. Their inclusion demonstrates the methodology's suitability for integrating

emerging technologies into AVI systems. Together, these four case studies provide

comprehensive evidence of the methodology's robustness, flexibility, and applicability across

different industrial and non-industrial domains, supporting its generalization and practical

value in AVI system design.

The first case study examines an AR-based concrete wall crack inspection system on a

commercially available AR headset. This study emphasises the image- and pixel-level

classification-based defect detection method development. This project will highlight how the

basic algorithm selection and optimisation process is applied for real-time crack detection

58

algorithm on computation resource restricted device.

The second case study delves into the wheat disease detection for a precision spray system.

The classification-based and anomaly detection method are combined for object-level wheat

head disease detection. It underscores a feasibility and comparative study of anomaly detection

methods with both labelled data and disease data are limited.

The third case study focuses on the design of an AVI system for car engine manufacturing. The

primary aim is to develop a pixel-level anomaly detection algorithm in car engine surface

detect detection. It will specifically detail the refined process of algorithms selection and

optimisation using a large synthetic anomaly dataset and a real anomaly dataset.

In the fourth case study, a visual inspection and anomaly detection system for modular

satellites is developed. This study illustrates the design of the image acquisition system with

three camera sets and the software platform for reconfigurable algorithm pipeline. It also

showcases the refined process of algorithms selection and optimisation for object 6-DoF pose

estimation and anomaly detection.

Each case study targets a unique application area and uses a combination of AVI system

components and techniques. They collectively demonstrate the versatility and breadth of the

proposed design methodology across diverse environments and challenges. The evaluation of

these case studies would include analysing the performance of the AVI system in accurately

detecting and classifying defects, the integration of system components, and the overall

effectiveness of the system in operational settings.

3.4. Summary

In this chapter, a comprehensive design methodology is proposed to provide a systematic

guidance for AVI system design. Through the process model, the design evolves from an

abstract and qualitative concept to a specific and quantitative embodiment, and finally a

complete AVI system. The development of defect detection method includes data collection,

dataset establishment, and algorithm selection and optimisation. Specifically, the process of

algorithm selection and optimisation can be tailored depending on the availability of target

data. To validate the proposed design methodology, it will be adopted in each of the four case

studies to demonstrate its effectiveness and usefulness.

The proposed design methodology for AVI systems introduces several key novelties and

advancements compared to existing design methodologies:

59

Context-Driven Design Framework: Unlike traditional methodologies that primarily focus on

technical specifications, the proposed approach prioritizes context knowledge—including

target object characteristics, environmental conditions, and operational requirements—as the

foundation for system design. This ensures that the resulting systems are tailored to specific

application demands.

Holistic Design Process: The methodology integrates hardware, software, and algorithm

design into a unified framework, guiding the development process from concept design to

embodiment design and verification and validation. This comprehensive approach contrasts

with existing methodologies that often address these aspects in isolation.

Modular and Scalable Structure: The framework adopts a modular structure that facilitates

system customization and scalability, making it adaptable to various inspection applications

across different sectors, including manufacturing, infrastructure, space exploration, and

agriculture.

Practical Validation through Case Studies: The methodology is validated through four diverse

case studies, demonstrating its applicability and effectiveness in both industrial and non-

industrial domains. This contrasts with many existing methodologies that lack comprehensive

practical validation.

These features collectively position the proposed design methodology as a versatile, context-

aware, and future-proof framework that bridges the gap between theoretical design principles

and practical AVI system implementation.

60

4. The First Case Study: Image- and Pixel-Level

Concrete Crack Inspection

This chapter reports the first case study of head mounted vision based concrete wall crack

inspection system using Artificial Intelligence (AI) and Augmented Reality (AR) technologies.

This case study focuses on the algorithm selection and optimisation part of the design

methodology. It aims to develop tiny AI models for real-time on-site AR applications using

HoloLens 2. The classification-based detection method is applied for image- and pixel-level

crack detection. Targeting the accuracy and efficiency requirements on computational resource

restricted device, a novel hierarchical knowledge transfer training strategy was proposed to

significantly reduce the training time while maintaining similar model accuracy. A new model

architecture based on dilated expansion block was designed to improve the parameter

efficiency. The developed model and application were deployed and validated on HoloLens 2

for crack inspection and measurement.

4.1. Introduction

Concrete structures are often designed to bear extreme load during their lifetime usage.

Overloading or degradation with age may lead to complete collapse of a concrete structure.

Physical deterioration damage in the form of cracks, mostly emerges on the surface [231].

Deteriorating concrete structures are a major cause for concern according to the American

Society of Civil Engineers (ASCE) as cracks are a primary indicator of structural health [232].

Timely detection and analysis of these cracks are critical to prevent accidents, costly repairs,

and structural failures that can jeopardize public safety and disrupt vital services. Furthermore,

the Federal Highway Administration (FHWA) estimates that billions of pounds are expended

annually on repairing and maintaining concrete infrastructure, underscoring the financial

repercussions of suboptimal inspection practices [233].

During the last decades, image-based automatic crack detection methods has gained popularity

because they are fast, less-expensive, and robust [234-236]. This method harnesses the power

of digital imaging technology to identify and analyse cracks on the surface of concrete walls

and other structures. The traditional image-based crack detection algorithm relies on texture

information of the image, such as greyscale value thresholding [237] or edge detection [238].

Nonetheless, the complex backgrounds in some cases hinder the determination of threshold or

the accurate extraction of crack edges. Recently, the artificial intelligence (AI), especially the

61

convolutional neural network (CNN) has gradually shown its power in computer vision related

processing tasks and gained most of the attention in crack detection area than any other

techniques [239]. CNNs work by learning hierarchical and semantic features from image data,

automatically identifying patterns and features in the images without the need for explicit

feature engineering. This capability is especially beneficial in the context of concrete wall

crack detection, where cracks can vary in size, shape, and orientation. CNNs for concrete wall

crack detection have demonstrated impressive accuracy and efficiency in identifying even

subtle cracks, reducing the need for time-consuming manual inspections [240]. At the same

time, more and more crack image datasets have been collected and made public by research

bodies both in industry and academia [241-244].

In practice, the images are usually collected by hand-held cameras [245], unmanned aerial

vehicles (UAVs) [246], or head mounted device [247]. Hand-held cameras are the most basic

tools for image-based crack detection. However, its effectiveness is compromised by its

reliance on operator skill, difficulty of stabilisation, image capture speed, and limited real-time

analysis. UAV has been widely used for crack image collection, but it requires complicated

UAV hardware and control algorithm development. It also suffers from limitations of battery

life, payload, regulatory considerations, mobility and cost. Combined the image sensors

together with human expert experience, head-mounted device for concrete wall crack detection

is a portable technology designed to assist engineers, inspectors and maintenance personnel in

the on-site assessment of concrete structures. These innovative devices provide a hands-free,

augmented reality (AR) or mixed reality (MR) experience that improves the efficiency and

accuracy of concrete wall crack detection.

In this section, a head mounted vision-based crack inspection system deployed on HoloLens

2 was developed. Following the design methodology, the task clarification is conducted to

derive the requirements and specifications for the system. The related works from the research

information provide the state-of-the-art solutions to crack detection. In the conceptual design

stage, the hardware specifications are analysed, the available software are compared and

selected, and the conceptual detection procedure is designed. To meet the real-time

requirement on AR device with restricted computational resource, the detection process is

divided into crack classification, segmentation, and measurement. The crack classification and

segmentation models were designed to share the same feature extractor. Only image patches

with cracks detected will be passed to the segmentation model to save time.

During the embodiment design, the datasets for crack classification and segmentation are

established using the open-source data. Given that the established dataset contains sufficient

62

crack images, the basic algorithm selection and optimisation process is adapted. The accuracy

and efficiency are ensured through a proposed hierarchical knowledge transfer (HKT) strategy

and new network architecture, the DE-Net. For segmentation, four different segmentation

heads were implemented, including U-Net, DEU-Net, DeepLabv3+, and LR-ASPP, using the

DE-Net 0.1 as backbone. They were tested on three different datasets, including Mendeley,

CrackForest, and DeepCrack. This process aims to choose the best segmentation architecture

and training dataset for best segmentation accuracy and model generalization ability. The GUI

was designed using the MRTK APK and integrated in Unity with the selected model. By

utilisation of the RGB and depth camera on HoloLens 2, the crack can be measured by

combination of crack mask and point cloud. The final system is integrated and tested for crack

measurement at millimetre precision.

4.2. Task Clarification

4.2.1. System Requirements and Specifications

The system requirements and specifications were established through collaborative

discussions between the project members from University of Strathclyde and the stakeholders.

4.2.1.1. Crack Inspection

• The crack inspection is composed of crack classification and crack segmentation. The crack

segmentation model should be called only when classification result is positive.

• The crack classification accuracy should be higher than 95%.

• The crack segmentation accuracy should be higher than 70%

• The crack classification inference speed should be real-time and faster than 20 fps.

• The crack segmentation inference speed should be real-time and faster than 5 fps.

• The crack width and length can be measured in real-world unit by depth camera.

4.2.1.2. GUI

• The GUI should include buttons for user to start and stop inspection program. The buttons

should be hologram in front of user.

• The GUI should include information box showing the current progress of the program.

• The GUI should display the crack classification results showing the position of cracks.

• The GUI should display the crack segmentation results as a mask.

• The interaction with the hologram should be fluent.

• The holograms should be within the field of view of HoloLens.

• The interaction of holograms should include several basic hand actions and gestures,

63

including touch, hand ray and air tap.

4.2.2. Related Works

4.2.2.1. Crack Inspection

Vision-based crack inspection uses computer vision and image processing techniques to

automatically detect, categorise and measure cracks in concrete surfaces. Recently, the CNN

models have been widely used for crack detection. The CNN-based crack inspection can be

divided into three categories: image patch crack classification, crack bounding box detection,

and direct crack segmentation.

Classification method divides the whole image into image patches and determine if each patch

contains crack using CNN classifier. For example, Cha and Choi [248] trained a model with

images of 256×256 resolution and used sliding window technique to scan larger image. The

classification-based method always needs to process a large number of image patches, which

is impossible for real-time on-site crack inspection.

Crack bounding box detection can provide a more precise location information than

classification and can use the entire image as input. Targeting crack detection in images with

the presence of handwriting scripts, Deng et al. proposed a faster R-CNN based model for

crack bounding box detection [249]. This type of method only works well when the crack is

linear, in which case the bounding box can provide a relatively accurate location.

Crack segmentation is a more popular direction than the other two, which can provide pixel

wise prediction for crack inspection. For example, Yang et al. implemented a fully

convolutional network (FCN) for to measure diverse cracks at pixel level [250]. The single-

pixel width skeletons were generated from the segmentation results for crack measurements,

such as topology, length, and width. However, segmentation networks tend to be large and

time-consuming, which is not suitable for head-mounted device application. For applications

where the background is complex, some researchers utilise a classification model to identify

the presence of cracks before implementing a segmentation model [251-254]. The feature

extractor employed in both classification and segmentation models can be shared, thereby

reducing the overall size of the model. This technique is adapted in this study.

As for real-time crack detection, Liu et al. proposed a deep hierarchical CNN network for

crack segmentation, called DeepCrack, based on FCN and deeply-supervised nets [243]. The

inference time is 0.1 s on NVIDIA TITAN X. for a single image of size 544×384. Based on

Faster R-CNN and Bayesian fusion, Fang et al. achieved 0.06 s inference time on TITAN Xp

64

GPU, but the image resolution was not specified [255]. Chen and Jahanshahi proposed naïve

Bayes based FCN and achieved 0.0276 s inference time with image size of 720×540 on TITAN

X Pascal GPU [256]. To balance the speed and accuracy, Pang et al. proposed Deep Crack

Segmentation Network (DcsNet) with two feature extraction branches, which can reach

minimal 51.7 fps for image size of 640×544 on TITAN XP [257]. However, these methods are

all tested on high-performance GPUs but not on any mobile devices. Jiang and Zhang achieved

real-time crack detection on mobile phone embedded on a wall-climbing UAV, running on 6

fps [258]. The output of CNN is bounding box, followed by image processing algorithms to

calculate the crack width. There are few end-to-end segmentation CNN networks that have

fewer than 1 M parameters, making them unsuitable for head-mounted devices with restricted

computational capacity.

4.2.2.2. Efficient AI Model

Some researchers have focused on improving the crack image classification accuracy by

proposing different model architectures or loss functions. While some of other researchers

have focused on reducing the inference time of CNN model when maintaining the accuracy,

targeting the real-time crack detection scenario [259-262]. Focusing on the parameter

efficiency, several model architectures have been developed in literature. MobileNet [263, 264]

series use depth separable convolution layer which simulate the standard convolution by a

depth-wise convolution and point-wise convolution with less parameter. EfficientNet [265,

266] series use progressive training and neural architecture search (NAS) to improve the

parameter efficiency. Dilated convolution [267] is another effective operator that can increase

the receptive field without increasing number of parameters. However, these methods need

modification of original model architecture leading to time-expensive model development.

Therefore, exploiting the parameter efficiency of a given model without changing its

architecture is still attractive and challenging for real time crack monitoring. Transfer learning

and knowledge distillation are two commonly used methods to address the above issue.

Transfer learning in deep learning refers to pretrain the model on a large dataset, and then fine-

tune it on the target dataset. This technique has been widely and has proven its effectiveness

in many applications [268-270]. The feature extractor part of the pretrained network contains

the contextural knowledge from a larger dataset, make the model handier with a simpler task.

For example, Kucuksubasi et al. used pretrained weights of InceptionV3 on ImageNet for

UAVs crack detection [246]. However, ImageNet is a fairly large dataset contains more than

1 million images of 1000 classes [271], leading to days of training time on a regular GPU. This

is sometimes unacceptable when fast delivery is required, and the budget is not enough to

65

cover a high-performance hardware platform. Though many deep learning platform such as

TensorFlow [272] or PyTorch [273] provide many pretrained weights of some popular models,

one may still need to train from scratch if modification is made or a completely new model is

proposed. Alternatively, we use CIFAR-100 dataset containing 60k 32x32 images of 100

classes, which is another rich dataset good for transfer learning [274], and only takes several

hours to pretrain.

Knowledge distillation is another model compression technique widely used for transferring

knowledge from a large model to a smaller model, introduced by Hinton in 2015 [275]. The

large model typically has higher knowledge capacity with very deep and wide architecture and

this capacity might not be fully utilised. According to the knowledge type, there are three types

of knowledge distillation [276], including response-based [275], feature-based [277], and

relation-based knowledge [278]. Franco et al. used the knowledge distillation to improve the

spped of neural network in a ranking task [279]. In [280], the model is pretrained on ImageNet

1k by semi-supervised label distillation (SSLD), and then finetuned on crack dataset. Our

method differs mainly from theirs that the teacher model pretrained on ImageNet is used to

distill its knowledge on CIFAR-100 before finetuning on crack dataset through a hierarchical

knowledge transfer strategy, which greatly reduce the training time and computation power

requirement as well as increase the accuracy. The contextual knowledge from ImageNet will

facilitate the training on CIFAR-100, and the contextual knowledge from CIFAR-100 will then

again facilitate the training on crack dataset.

4.3. Concept Design

From the requirements and research information, the HoloLens 2 is selected as the head

mounted device due to its powerful on-device computation units. The available software

components are compared and selected, including the SDK, 3D engine, and AI platform. To

ensure the real-time inspection, the detection procedure is designed as patch-level

classification, segmentation, and measurement.

4.3.1. System Architecture

4.3.1.1. Hardware and Software Selection

The head mounted device used in this project is Microsoft HoloLens 2, released on 7th

November 2019. It introduced a number of improvements compared with the first generation,

including a dedicated Deep Neural Network (DNN) core, custom-built Holographic

Processing Unit (HPU 2.0) for computer vision, articulated hand tracking and eye gaze

66

tracking. For image capturing, this device has a depth camera and an RGB camera, as well as

an IR eye tracking camera and four head tracking grayscale cameras.

Augmented Reality SDK facilitates many components within the AR application such as AR

recognition, AR tracking and AR content rendering. In this study, the AR techniques is

provided by Microsoft Mixed Reality Toolkit (MRTK) for hologram generation, interaction

logic design, environment perception, etc.

3D Engine is a software-development environment for AR application, including rendering

engine for 3D graphics, collision detection engine (and collision response), sound, scripting,

animation, artificial intelligence, networking, streaming, memory management, threading,

localisation support, scene graph, and porting applications to multiple platforms. Microsoft

HoloLens 2 support two 3D engines: Unity and Unreal. Unity engine is more recommended

for this project due to its support documents and language difficulty. In addition, the project

team has more knowledge about Unity, which could reduce the development time.

To deploy customised application onto HoloLens, the Development Mode need to be enabled

through system inside HoloLens [281]. To access the hardware sensors of the device, such as

VLC cameras, depth cameras, inertial measurement unit, etc., the Research Mode needs to be

enabled. The research mode API is written in C++. To integrate it with the Unity project, a

C++ plugin will need to be generated. Using Windows Runtime, the API is wrapped into a

C++ class and compiled as ‘winmd’ format, then it can be imported into the Unity project.

4.3.1.2. Detection Procedure

The detection procedure contains three steps: crack classification, precise segmentation, and

crack measurement, as shown in Figure 4.1.

1) Classification

The camera image is fed into a lightweight classifier to detect the presence of cracks. The

image of each frame produces 9 Boolean values by dividing the entire image into 3x3 grids

and identifying the presence of cracks within each grid. The use of gridding enables the user

to identify the area of attention, reduces the input size for the next stage, and is more time-

efficient than using a bounding box. The more the grid, the higher the localisation precision,

and also the longer the inference time. As a trade-off, the 3x3 is selected to meet the inference

time requirement.

2) Segmentation

67

If the cracks are detected, the user can opt to calculate the segmentation by clicking the

appropriate button. Each grid that contains crack will be processed individually by the

segmentation model for deducing the mask of the crack. Both the classification and

segmentation models utilise the identical feature extractor, thereby reducing the requirement

for encoder part computation during crack segmentation. The segmentation results are

overlapped onto the original image and displayed on a holographic panel.

3) Measurement

From the crack segmentation outcome, measurements for length and width can be calculated.

The mask is skeletonized first. The process begins with skeletonizing the mask, followed by

the designation of the crack skeleton as its length. The average width of the crack can then be

determined by dividing the number of pixels in the mask by the length obtained through the

skeletonization process. To convert from pixel to real-world unit, the depth camera is used.

The point cloud of wall can be fitted as a plane equation. Then the length in pixel can be

converted to millimetre by back projection from image points to 3D points.

Figure 4.1. Head mounted based crack inspection procedure.

Based on the proposed procedure, the HoloLens 2 application can be developed using the

embedded cameras and AI models. The application framework is shown in Figure 4.2. The AI

models are firstly trained using PyTorch and tested on PC. Then the models are transferred to

ONNX format for compatibility of HoloLens. The HoloLens research model API provide the

access for sensor usage, such as left and right VLC camera and depth camera. A script is written

in C++ using this API and compiled as Windows Runtime (Winrt) format for integration in

Unity. Unity is a develop environment for AR applications. The GUI is designed inside Unity,

such as buttons, information panel and other interaction and display units. The AI model and

API plugin are also integrated into Unity by C# script. Finally, the Unity compile this project

and deploy it onto HoloLens.

68

Figure 4.2. The application framework for crack inspection on HoloLens 2

4.3.2. GUI Design

For feasibility study, the GUI has been designed to only include necessary functions for testing,

such as buttons, information area, detection results display area, and diagnostic tool, as shown

in Figure 4.3. The information area shows the current program progress such as taking picture,

the duration of classification or segmentation, and any other debugging information. The

function buttons comprise initiating and halting the image capture function and executing the

classification and segmentation model with the acquired image. The hand tracking is provided

by the MRTK showing the current position of the hand. As designed, the image will be divided

into 3x3 grid for classification. The results of each grid will be displayed in the classification

results area with blue grid indicating non-crack and red grid showing crack founded. If the

crack is detected in any grid, the image patch of that grid will be fed into segmentation model

and the segmentation result will be overlapped on the image and displayed. The diagnostic

tool provides real-time information about the application performance, including current FPS

and memory usage. All of these components are displayed as holograms in HoloLens 2. The

buttons and image display area are interactable for the user.

69

Figure 4.3. GUI design for crack inspection.

4.3.3. Evaluation Criteria

The evaluation criteria for the crack inspection system includes different subsystems:

1) Crack Classification

For crack classification model, the evaluation criterion is the image-wise accuracy defined by

Eq. (2-1) on the test dataset.

2) Crack Segmentation

For crack segmentation model, the F1 score, also named as dice score, is used as evaluation

criterion, as defined in Eq. (2-4).

3) Crack Measurement

The crack should be measured in millimetre level. The relative error of the crack length and

width should be used.

4) Real-time Inspection

The final integrated system should be able to perform the real-time inspection according to the

framerate proposed in the task clarification.

4.4. Crack Classification

For crack classification model design, a novel hierarchical training strategy is proposed that

combines transfer learning and knowledge distillation, targeting fast model development for

real-time crack classification. Additionally, based on dilated convolution and MobileNetV3, a

70

new convolution block architecture is proposed, and a model named DE-Net is built from it.

4.4.1. Hierarchical Knowledge Transfer Training Strategy

4.4.1.1. Transfer Learning

In supervised transfer learning for classification task, basically two labelled datasets are

presented, namely the origin dataset DO and destination dataset DD, defined as:

𝐷𝑂 = {(𝑥𝑂,𝑖 , 𝑦𝑂,𝑖) | 𝑖 ∈ [1, 𝑀]} (4-1)

𝐷𝐷 = {(𝑥𝐷,𝑗, 𝑦𝐷,𝑗) | 𝑗 ∈ [1, 𝑁]}} (4-2)

where (xi, yi) is an image-label pair and M, N are the total number of images in the two datasets.

The images are noted as 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} ∈ ℝ𝑊×𝐻×𝐶, where W, H and C are image width,

height, and channel. The labels are integers noted as 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑛} ∈ [1, 𝐶𝑙], where Cl is

the number of classes of the dataset. The classification training task T on the dataset 𝐷 =

{(𝑋, 𝑌)}are defined as:

𝑇 = {𝑓𝜃 | 𝐷} (4-3)

where fθ is the neural network which maps the input image to probabilities of each label values

with parameter set θ, expressed as:

𝑓𝜃 = 𝑃𝜃(𝑌|𝑋): ℝ𝑊×𝐻×𝐶 → ℝ𝐶𝑙 (4-4)

and the estimation of parameter set θ can be treated as an optimisation problem:

𝜃 = arg max
𝜃∈Θ

𝑃𝜃(𝑌|𝑋) = arg min
𝜃∈Θ

𝐿(𝑓𝜃(𝑋), 𝑌) (4-5)

where Θ is the space containing all possible parameter values and 𝐿(𝑓𝜃(𝑋), 𝑌) is the loss

function identifying the difference between the prediction and label. In classification task, the

loss function is usually cross-entropy loss defined as:

𝐿𝐶𝐸(𝑝, 𝑌) = − ∑ 𝑦𝑛 log(𝑝𝑛)
𝐶𝑙

𝑛=1
(4-6)

where 𝑝 = 𝑓𝜃(𝑋) is the prediction of input X, and pn and yn are the prediction and label of class

n respectively.

The transfer learning is then defined as a method that improves the destination task

performance 𝑇𝐷 = {𝑓𝜃 | 𝐷𝐷)} on destination dataset 𝐷𝐷 = {(𝑋𝐷 , 𝑌𝐷)} with the help of the

71

origin task 𝑇𝑂 = {𝑓𝜃 | 𝐷𝑂)} and origin dataset 𝐷𝑂 = {(𝑋𝑂 , 𝑌𝑂)}. It is usually assumed for the

training task TO and the destination task TD that 𝐷𝑂 ≠ 𝐷𝐷 and 𝑃(𝑌𝑂|𝑋𝑂) ≠ 𝑃(𝑌𝐷|𝑋𝐷). This

assumption is true either when the two datasets contain different classes or the same classes

but different image distribution. Usually, a classification network can be treated as two parts,

i.e., feature extractor fF and classifier fC:

𝑓𝜃(𝑋, 𝜃) = 𝑓𝑐(𝑓𝐹(𝑋, 𝜃𝐹), 𝜃𝐶) (4-7)

and 𝜃 = {𝜃𝐹, 𝜃𝐶} is the parameter set of feature extractor and classifier. The simplest yet

effective transfer learning method is reusing the feature extractor fF pretrained on origin dataset

and finetuning on destination dataset, that is, using the feature extractor parameter set from

origin dataset 𝜃𝑂,𝐹 as initial value of the one from destination dataset 𝜃𝐷,𝐹 . A typical

implementation is fixing 𝜃𝐷,𝐹 for the first several epochs and finetuning the whole parameter

set 𝜃𝐷 = {𝜃𝐷,𝐹 , 𝜃𝐷,𝐶} with a lower learning rate.

4.4.1.2. Knowledge Distillation

As a model compression technique, knowledge distillation tries to train a smaller student

model from a larger teacher model. For a specific task T, the teacher model, represented as 𝑓𝜃𝑇
,

has higher knowledge capacity than the student model 𝑓𝜃𝑆
 . The knowledge distillation is

defined as a method that improves the student task performance 𝑇𝑆 = {𝑓𝜃𝑆
 | 𝐷)} with the help

of the teacher task 𝑇𝑇 = {𝑓𝜃𝑇
 | 𝐷)} on the same dataset 𝐷 = {(𝑋, 𝑌)} . The key difference

between knowledge distillation and transfer learning is that transfer learning trains the same

model on different datasets but knowledge distillation trains different models on the same

dataset. The knowledge distillation can be formulated as an optimisation problem:

𝜃𝑆 = arg min
𝜃𝑆∈Θ

𝐿(𝜑𝑆(𝑜𝑠), 𝜑𝑇(𝑜𝑇)) (4-8)

where 𝑜𝑠 and 𝑜𝑇 are the outputs of the student and teacher models, that can be either the final

digits output of classifier before softmax function or mid-layer feature maps. 𝜑𝑆 and 𝜑𝑇 are

transformation functions mapping the outputs to the same dimensional space. L is the loss

function measuring the difference between the transformed outputs from the teacher and

student models.

The initial knowledge distillation method proposed by Hinton [275] using soft target (ST)

combined with attention transfer (AT) [277] has achieved relatively high distillation

effectiveness and is easy to be implemented. Therefore, the distillation method combining ST

and AT was adopted to train the student model on CIFAR 100 dataset. The soft targets are

72

outputs of modified softmax function:

𝜑(𝑜𝑖, 𝑇) = exp (
𝑧𝑖

𝑇
) / ∑ exp (

𝑧𝑗

𝑇
)

𝑗
(4-9)

where the output oi is defined as the logit output zi from model classifier for the i-th class and

temperature T is to control the weight of each class. The ST method uses KullbackLeibler (KL)

divergence loss between soft targets of teacher and student to train the student model:

𝐿𝑆𝑇 =
1

𝐶𝐷
∑ 𝜑(𝑜𝑇

𝑖 , 𝑇)
𝑖

log (
𝜑(𝑜𝑇

𝑖 , 𝑇)

𝜑(𝑜𝑆
𝑖 , 𝑇)

) (4-10)

In AT method, the feature maps of mid-layer are used as output with L2 norm as transformation

function:

𝜑(𝑜𝑗) = 𝐿2(𝑚𝑗) =
𝑚𝑗

‖𝑚𝑗‖2

(4-11)

where 𝑚𝑗 is the j-th feature map. The loss function is defined as:

𝐿𝐴𝑇 = ∑ ‖𝐿2(𝑚𝑇
𝑗

) − 𝐿2(𝑚𝑆
𝑗
)‖

𝑝𝑗
(4-12)

where p refers to norm type and is set to 2 in this research. The final loss combining basic

cross-entropy loss, knowledge distillation loss ST and AT is:

𝐿𝐾𝐷 = 𝛼𝐿𝐶𝐸 + 𝛽𝐿𝑆𝑇 + 𝛾𝐿𝐴𝑇 (4-13)

where LCE is the cross-entropy loss of the student model, α, β and γ are the weights for three

losses.

4.4.1.3. Hierarchical Knowledge Transfer

The goal of the proposed hierarchical knowledge transfer (HKT) training strategy is trying to

exploit fully the parameter potential of the target model so that we could design a crack

classification model as small and fast as possible while maintaining the performance. The

scheme of the proposed training strategy is illustrated in Figure. 4.4. This training strategy

includes three datasets and two models. The first dataset is a very large and rich image

collection, such as ImageNet which contains more than 14 million images and 1000 classes.

The second dataset is a relatively small but still rich image set, such as CIFAR-100 which

contains 60k 32x32 images and 100 classes. The third dataset is the target crack dataset, which

is the smallest one with only 4.8k images of two classes, i.e., with and without crack.

73

Figure. 4.4. Scheme of hierarchical knowledge transfer training strategy.

The teacher model, which has higher compacity than the target student model, is first

pretrained on ImageNet and then finetuned on CIFAR-100. The pretraining process on

ImageNet makes the teacher model perform better on CIFAR-100 and become a better teacher.

Then the knowledge is distilled by ST and AT methods to the student model combined with its

own cross-entropy loss. Finally, the student model is finetuned on the target crack dataset.

Instead of finetuning the student model by frozen part of its parameters, it is finetuned on

resized crack dataset with the same image size of CIFAR-100 (32x32) and then increased to

224x224, during which the whole set of parameters are trainable. Training with multi-scale

image is also proved effective in [8, 26]. The knowledge transfer path is shown in Figure. 4.5.

The training loss for each stage is described as equation (6) for transfer learning and (13) for

knowledge distillation.

Figure. 4.5. Knowledge transfer path of the proposed training strategy.

4.4.2. DE-Net

4.4.2.1. Dilated Expansion Block

Dilated convolution, or atrous convolution, was initially published by [267] for semantic

segmentation. It can enlarge receptive field of the convolution operator without increasing the

74

number of parameters. This is realised by skipping some points during convolution, depending

on the dilation factor l. Formally, let 𝐹: ℤ2 ⟶ ℝ be a discrete function, and 𝑘: Ω𝑟 ⟶ ℝ be a

discrete filter with Ω𝑟 = [−𝑟, 𝑟]2 ∩ ℤ2 be its receptive field. The following equation is from

[267]. The dilated convolution operator ∗l with dilation factor l at location i is:

(𝐹 ∗𝑙 𝑘)(𝑖) = ∑ 𝐹(𝑖 + 𝑙 ∙ 𝑗)𝑘(𝑗)

𝑗∈Ω𝑟

(4-14)

when l = 1, it is equivalent to standard convolution. Concatenation of parallel dilated

convolution layers of different dilation rates is called atrous spatial pyramid pooling (ASPP),

proposed in [282] for semantic segmentation. It has high capacity to capture the spatial context

information with high efficiency through the large receptive field of dilated convolution. While

the dilated convolution emphasises on the spatial-wise information aggregation, the Squeeze-

and-Excitation (SE) block focuses on recalibration of channel-wise responses, first proposed

in [283]. The feature map is pooled to on dimensional vector, followed by two fully connected

layers (FC) to compute the channel attention vector. The output is obtained by multiplying the

attention vector with the original feature map. The MobileNetV3 architecture introduced the

SE block into the inverted residual residuals and linear bottleneck in MobileNetV2. The

bottleneck block first expands the input channels to 3 to 6 times by Conv 1x1 (convolution

with 1x1 kernel size), followed by depth separable convolution consisting of one depth wise

convolution (Dwise) and one Conv 1x1. Inside the depth separable convolution, the SE block

is added. In this research, the dilated expansion block is proposed to replace the original

expansion part of Conv 1x1 by an ASPP module, as shown in Figure. 4.6.

Figure. 4.6. Architecture of dilated expansion block.

The DE block can benefit from the ASPP in two aspects. Firstly, the receptive field is greatly

enlarged with the little computation load increase due to the parallel paths of different dilated

convolution. Secondly, since the spatial information is encoded into the channel-wise context

after concatenation of dilated convolutions with different dilated ratio, the Squeeze-and-

Excitation operation could carry out the channel-wise and spatial-wise recalibration at the

75

same time. The comparison of different block architecture used in four models is shown in

Figure. 4.7.

Figure. 4.7. Block architecture of (a) ResNet, (b) MobileNetV2, (c) MobileNetV3 and (d) DE-Net

4.4.2.2. Model Architectures of DE-Net

For crack classification, based on the MobileNetV3 architecture and DE block, a new model

architecture was proposed named DE-Net. Its specification is listed in Table 4.1. Since the

ASPP has provided a large receptive field, all the DE-blocks use 3x3 kernel size. The expiation

rate (column Exp_rate) is set to 3 except the first DE-block. The output channel is kept as

small as possible until the last several layers to reduce the computation expense. The non-

linear activation layer (column NL) follows the MobileNetV3 configuration. The SE block

and dilation expansion (column SE and Dilated) are always used together except the last DE-

block. Similar as the MobileNets, the width multiplier is used to adjust the size of the model.

As only one class is to be classified, the final channel number was set to 128.

Table 4.1. Specification of DE-Net Architecture

Layer Input Operator ER CO SE DL NL Stride

1 2242×3 Conv2d - 16 - - HS 2

2 1122×8 DE-block 1 16 - - HS 2

3 562×8 DE-block 3 16 - - RE 2

4 282×8 DE-block 3 24 ✓ ✓ RE 1

5 282×8 DE-block 3 24 ✓ ✓ HS 2

6 142×8 DE-block 3 40 ✓ ✓ HS 1

7 142×8 DE-block 3 40 ✓ ✓ HS 1

8 142×8 DE-block 3 40 ✓ ✓ HS 1

9 142×8 DE-block 3 48 ✓ ✓ HS 2

10 72×16 DE-block 3 96 ✓ - HS 1

11 72×16 Conv2d 1x1 - 96 - - HS 1

12 72×96 AvgPool - - - - - 1

13 12×96 FC - 128 - - HS 1

14 12×128 FC - k - - - 1

ER = expansion rate, CO = channel of output, SE = squeeze and excitation, DL = dilated, NL = nonlinear activation.

4.4.3. Experiments and Results

76

The proposed hierarchy knowledge transfer training strategy is used for tiny model

development of crack classification problem. A crack dataset consisting of several public crack

datasets and images from internet is built to validate the proposed training strategy and the

dilated expansion block. The teacher networks chosen in the experiments are MobileNetV2

and ResNet-18. The student networks are MobileNetV2 with width multiplier 0.1,

MobileNetV3 0.1 and DE-Net.

4.4.3.1. Crack Classification Data

The images for crack classification are from two public crack classification datasets, i.e.

Mendeley [241] and SDNET [242] for both positive and negative data, and two crack

segmentation datasets for positive only data, i.e. CrackForest [284] and DeepCrack [243]. To

train a crack classifier with higher generalization ability, we downloaded some non-crack

images from Internet including concrete corner, concrete tile, moss, and plant on wall, with

275 images each category and 1100 in total. The data used for training are listed in Table 4.2.

Some sample images are shown in Figure. 4.8 and Figure. 4.9. There are 2400 images for crack

and non-crack data respectively, 400 of which are randomly chosen as testing data and not

used in training, and another 400 images are chosen as validation data. Before fed into the

network, some typical augmentations were applied such as rotation, crop, and flip.

Table 4.2. Data composition for crack classification training

Data Source Crack Image Non-Crack Image Resolution

Mendeley 1360 1000 227×227

SDNET 385 300 256×256

CrackForest 118 0 448×448

DeepCrack 537 0 544×384

Internet 0 1100 -

Total 2400 2400 -

(a) Mendeley (b) SDNET (c) CrackForest (d) DeepCrack

Figure. 4.8. Sample crack images for crack classification

(a) Corner (b) Tile (c) Moss (d) Plant

77

Figure. 4.9. Sample non-crack images for crack classification

4.4.3.2. Model Configuration

Four model architectures were used during the experiment, including Resnet, MobileNetV2,

MobileNetV3 small and DE-Net. MobileNetV2 and V3 are the second and third version of

MobileNet, famous for its excellent trade-off between model size and performance. The width

multiplier introduced by MobileNet is a hyperparameter for adjusting the model size, which

was set to 1.0 and 0.1 as teacher and student network in the experiment. The models with a 1.0

width multiplier represent the standard benchmark models commonly used in literature for

comparison. As the number of channels in each convolution layer must be quantized by a

factor of 8, applying a width multiplier smaller than 0.1 has minimal impact on the overall

model size. The architecture of these four networks is compared in Figure. 4.7. The

implementation of MobileNet and ResNet was taken from torchvision [285] directly. The

model size (number of parameters) of the four networks are compared in Table 4.3. Different

combinations of teacher and student will be experimented in the next part.

In the following parts, testing of different teacher-student combinations was implemented to

validate the effectiveness of the proposed training strategy. At the same time, the DE-Net was

also evaluated regarding to both the training time and crack classification performance. The

experiments include three parts, the performance analysis of DE-Net, the knowledge

distillation on CIFAR-100 and classification on crack dataset.

Table 4.3. Comparison of teacher and student model size

Model RN-18
MN2-

1.0

MN2-

0.1

MN3-

0.1

DEN-

0.1

Role Teacher Teacher Student Student Student

Parameters

(k)
11177.02 2225.15 76.98 31.78 32.77

Memory

size (kB)
44786 6068 473 207 194

RN-18 = ResNet-18, MN2-1.0 = MobileNetV2 with width multiplier 1.0, MN2-0.1 = MobileNetV2 with width multiplier 0.1,

MN3-0.1 = MobileNetV3 with width multiplier 0.1, DEN-0.1 = dilated excitation network with width multiplier 0.1.

4.4.3.3. Performance Analysis of DE-Net

Since CIFAR-100 is a well-explored dataset, the training strategy followed the typical setting

[286], that is the initial learning rate was set to 0.1 and rescheduled by multistep learning rate

decay with gamma of 0.2 and milestones of the 60th, 120th and 160th epoch with 200 epochs in

total with batch size of 128. The Stochastic gradient descent (SGD) optimiser was used with

momentum of 0.9 and weight decay of 5e-4. This setting is not the optimal settings for all the

models but was kept the same to maintain consistency.

78

To compare the parameter efficiency of the three model architectures, different width

multipliers were used to change the number of parameters of models. These models were then

trained on CIFAR-100 and the top-1 accuracy is compared in Figure. 4.10. Noted that the

parameters are obtained from models with 100 output classes. With the same number of

parameters, the DE-Net achieves the highest accuracy among the three models. It can also be

observed that even with width multiplier as 1.0, the model size of DE-Net is still less than one

third of MobileNetV3 but achieves 2% higher accuracy. This can lead to conclusion that DE-

Net has the highest parameter efficiency and is most suitable for small model applications,

such as crack classification.

Figure. 4.10. Accuracy comparison of three models against parameter number trained on CIFAR-100.

In practice, the inference time latency of the model is a more important indicator than model

size. To compare the latency, the inference time on CPU was recorded and averaged for

CIFAR-100 images. The latency of the three architectures on CIFAR-100 is shown in Figure.

4.11. This shows similar trends as the parameter number. The DE-Net achieves the best

latency-accuracy trade-off which only takes about 7 micro-second(ms) for one image.

Figure. 4.11. Accuracy comparison of three models against inference CPU latency on CIFAR-100.

79

For ImageNet, due to the limit of GPU memory and computational power, the training of each

architecture takes more than one week, only the models with width multiplier 0.1 were trained

and compared. The top-1 accuracies on ImageNet test set of MobileNetV2 0.1, MobileNetV3

0.1, DE-Net 0.1, are 34.24%, 24.77, 25.87%, respectively. Since the model size of

MobileNetV2 0.1 is more than twice of the other two, its accuracy is much higher. The DE-

Net 0.1 is still better than MobileNetV3 0.1 with 1.1% higher accuracy.

4.4.3.4. Knowledge Distillation on CIFAR-100

The teacher model needs to be trained with the student model on the same dataset for

knowledge distillation. Here the pretrained weights on ImageNet of MobileNetV2 with wm-

1.0 and ResNet-18 from torchvision are used to boost the teacher model accuracy by transfer

learning. The initial learning rate for pretrained weights was set to 0.01. The comparison of

with/without pretrained weights of the two teacher models is shown in Figure. 4.12.

(a) MobileNetV2 1.0 (b) ResNet-18

Figure. 4.12. Validation accuracy with/without pretrained weights on ImageNet.

It can be observed that model with pretrained weights converges faster and has higher final

performance. The final top-1 accuracies of MobileNetV2 and ResNet-18 are improved from

56.25 and 60.77 to 63.62% and 63.24%, respectively. It is proved that the student model will

benefit from teacher model with higher accuracy, as in Table 4.4.

Table 4.4. Knowledge distillation results of different teacher-student pairs on CIFAR-100

Teacher Student Strategy Accuracy (%) Train Time (min)

- MN2-0.1 Scratch 38.28 35.5

MN2-1.0 MN2-0.1 KD 41.06 (+2.78) 67.2

MN2-1.0-pt MN2-0.1 KD 41.37 (+3.09) 66.7

RN-18 MN2-0.1 KD 40.87 (+2.59) 57.5

RN-18-pt MN2-0.1 KD 41.12 (+2.84) 59.5

- MN3-0.1 Scratch 31.40 24.6

MN2-1.0 MN3-0.1 KD 32.45 (+1.05) 50.0

MN2-1.0-pt MN3-0.1 KD 33.01 (+1.61) 50.5

RN-18 MN3-0.1 KD 32.64 (+1.24) 39.9

RN-18-pt MN3-0.1 KD 33.18 (+1.78) 40.0

80

- DEN-0.1 Scratch 33.84 24.2

MN2-1.0 DEN-0.1 KD 36.54 (+2.70) 49.1

MN2-1.0-pt DEN-0.1 KD 36.89 (+3.05) 48.8

RN-18 DEN-0.1 KD 36.49 (+2.65) 38.8

RN-18-pt DEN-0.1 KD 37.76 (+3.92) 39.5

-pt = pretrained weights from ImageNet, KD = knowledge distillation.

As for the knowledge distillation configuration, the α, β and γ was set to 0.1, 0.9 and 10

empirically for all teacher-student pairs, following [287]. The temperature of ST method was

set to 2. The mid-layers for AT method were chosen as the three layers that down-sample the

feature maps to 16x16, 8x8, and 4x4. The comparison results of different teacher-student pairs

are shown in in Table 4.4. The ‘pt’ in teacher model means this model is trained on CIFAR-

100 with pretrained weights on ImageNet.

It can be observed that the knowledge distillation method can improve the top-1 accuracy by

3.09%, 1.22%, 3.88% for MobileNetV2 0.1, MobileNetV3 0.1 and DE-Net 0.1, respectively.

For MobileNetV2 0.1, the MobileNetV2 1.0 teaches better because they have the same model

architecture. While for MobileNetV3 0.1 and DE-Net 0.1, ResNet-18 is a better teacher. Since

the MobileNetV2 0.1 has the largest number of parameters, it performs best among the three

students. With similar number of parameters, DE-Net 0.1 achieved higher accuracy and better

knowledge distillation improvement than MobileNetV3 0.1. In addition, the teacher models

with pretrained weights on ImageNet improve the student model performance by 0.25%~1.27%

top-1 accuracy. The comparison in chart form is shown in Figure. 4.13.

Figure. 4.13. Knowledge distillation results comparison for different teacher-student pairs on CIFAR-100.

4.4.3.5. Knowledge Transfer on Crack Dataset

Similar to the set up on CIFAR-100, the optimiser used was SGD with initial learning rate of

1e-1 for model training from scratch, and 1e-2 for finetuning. The weight decay was set to 5e-

81

4 with momentum of 0.9. The batch size was set to 32, and total number of epochs was 50.

The scheduler of multistep learning rate decay was used with gamma of 0.2 and milestones of

the 10th, 20th and 40th epoch. The loss function is simply the binary-cross-entropy loss. When

finetuning the pretrained weights following the typical scheme, the first 2/3 parameters of the

whole network were frozen for the first 10 epochs. Alternatively, since the pretrained dataset

CIFAR-100 has image size of 32x32, the pretrained weights can be finetuned all together on

crack dataset with image size of 32x32. Then finetune the whole network with image size of

224x224 for another 40 epochs. During the training, only weights with the best validation

accuracy were saved as the final weights. The results comparison of different training strategy

on crack dataset are shown in Table 4.5 and Figure. 4.14.

Considering the accuracy only, the results show that pretraining on ImageNet is still the best

choice disregard the training time. However, each model takes more than one week to train on

ImageNet which is sometimes unacceptable. Instead, pretraining on CIFAR-100 takes only

around one hour and can obtain comparable accuracy.

Table 4.5. Results of crack dataset with different training strategy

Model Strategy
Accuracy

(%)

Train Time

(min)

Total Train

Time (min)

MN2-0.1 Scratch 96.50 22.2 22.2

MN2-0.1 PT on IN 99.75 (+3.25) 22.3 8506

MN2-0.1 PT on CI 99.28 (+2.78) 22.4 89.1

MN2-0.1 KD on CI 99.40 (+2.90) 22.5 89.2

MN2-0.1 KD and FT with 32x32 99.76 (+3.26) 21.4 88.1

MN3-0.1 Scratch 96.15 21.5 21.5

MN3-0.1 PT on IN 99.16 (+3.01) 21.6 7954

MN3-0.1 PT on CI 97.12 (+0.97) 21.5 61.5

MN3-0.1 KD on CI 97.36 (+1.21) 21.6 61.6

MN3-0.1 KD and FT with 32x32 97.36 (+1.21) 20.1 60.1

DEN-0.1 Scratch 96.27 21.5 21.5

DEN-0.1 PT on IN 99.40 (+3.13) 21.8 7885

DEN-0.1 PT on CI 98.21 (+1.94) 21.7 61.2

DEN-0.1 KD on CI 98.56 (+2.29) 22.0 61.5

DEN-0.1 KD and FT with 32x32 98.68 (+2.41) 20.0 59.5

PT = pretrain, KD = knowledge distillation, FT = finetune, IN = ImageNet, CI = CIFAR-100, the total train time includes the

pretrained time plus the crack dataset train time.

82

Figure. 4.14. Results comparison of crack dataset in chart with different training strategy.

For pretraining on CIFAR-100 dataset, the crack dataset accuracy is positively related to the

pretraining accuracy. MobileNetV2 0.1 has the highest accuracy among the three models and

achieved 99.76% accuracy and just surpasses using pretrained weights on ImageNet. All three

models reach highest accuracy when using the complete hierarchical training strategy. By

simply pretraining on CIFAR-100, an accuracy improvement of 0.97%~2.78% can be obtained.

Then, the knowledge distillation gives additional 0.12%~0.35% accuracy uplift. The

finetuning with 32x32 images makes no difference with standard method for MobileNetv3 0.1

but gives 0.36% and 0.12% increase to MobileNetV2 0.1 and DE-Net 0.1, respectively. As

shown in Table 4.5, the total training time including pretraining on CIFAR-100 and finetuning

on crack dataset is less than 1.5 hour for all the models, which is a significant reduce compared

with one week on ImageNet. With similar number of parameters of MobileNetV3 0.1 and half

of MobileNetV2 0.1, DE-Net 0.1 achieved 98.68 accuracy with hierarchical training strategy.

Trade-off between model size and performance is well achieved. Therefore, the proposed

hierarchical knowledge transfer training strategy is validated to be effective for different model

architectures, and the proposed DE-Net is proved to have a good balance between model size

and accuracy.

4.5. Crack Segmentation

4.5.1. Segmentation Model Candidates

For crack segmentation, the proposed DE-Net was used as the encoder for feature extraction.

Four different segmentation head architectures were used for experiments, namely U-Net

[288], Dilated Expansion U-Net (DEU-Net), DeepLabv3+ [282], and Lite Reduced Atrous

83

Spatial Pyramid Pooling (LR-ASPP) [264].

U-Net is a U-shaped encoder-decoder network architecture, with a contracting path to capture

context and a symmetrical expanding path for precise localisation. Here, the variant of U-Net

is used with the proposed DE-Net as backbone. The feature maps from different levels are

used and aggregated through merge blocks, as shown in Figure 4.15 (a). Inside the merge

blocks, the feature map from higher level is upsampled and concatenated with lower level

feature map, followed by two 3x3 convolution blocks including batch normalization and ReLU

activation. The segmentation result is obtained by aggregation from the highest to lowest level

feature map. The DEU-Net has the same architecture as U-Net except that all the two 3x3

convolution blocks in each merge blocks are replaced by one proposed DE block with

expansion rate as 3.

The DeepLabv3+ is based on the ASPP module which uses multiple atrous convolutions. Two

feature maps from the encoder were used, whose sizes are 1/4 and 1/16 of the original image

size containing low- and high-level features of the image. The ASPP was used to extract spatial

features from the 1/16 feature map. This is then aggregated with the 1/4 feature map to form

the segmentation results, as shown in Figure 4.15 (b).

The LR-ASPP was proposed together with MobileNetV3 for segmentation tasks. It simplified

the ASPP block with fewer parameters but similar performance. The 1/16 feature map was

separated into two branches and merged using attention mechanism. Similar to DeepLabv3+,

the fusion of feature maps from two different resolutions was the predicted segmentation

results, as shown in Figure 4.15 (c). Unlike the original architecture which uses the feature

map of 1/8 resolution, here instead the feature map of 1/4 resolution was used to enable very

thin crack detection. For crack segmentation, all the outputs from the three segmentation heads

are followed by a 3x3 convolution block with 1 class output channel, and upsampling to

original image size.

84

(a)

(b)

(c)

Figure 4.15. Crack segmentation models using different heads (a) U-Net, (b) DeepLabv3+, (c) LR-ASPP.

4.5.2. Experiments and Results

The feature extractor of the crack classification network is used as encoder of the segmentation

85

network and share the same weights pretrained on classification datasets. Four different

segmentation architectures, namely U-Net, DEU-Net, DeepLabv3+, and LR-ASPP, are

compared on three different segmentation datasets.

4.5.2.1. Crack Segmentation Data

The crack segmentation dataset includes three public datasets including Mendeley [289],

CrackForest [284] and DeepCrack [243]. It should be noticed that the Mendeley crack

segmentation dataset is different from the classification dataset. The other two datasets are the

same as the one in the classification part but with segmentation labels. Instead of using the

images from the three datasets all together for training, they were fed into the model separately.

The model trained on one dataset will be tested on another two datasets for generalization

ability evaluation. The data used for training are listed in Table 4.6.

Table 4.6. Data composition for crack segmentation training

Data Source Numbers Resolution

Mendeley 445 224×224

CrackForest 118 448×448

DeepCrack 537 544×384

Total 1100 -

Some sample images are shown in Figure 4.17. The Mendeley dataset is purely crack images

of concrete wall. The CrackForest dataset is purely crack images of road pavement. While the

DeepCrack dataset is a mix of road pavement and concrete wall. Similar as the classification

setup, before fed into the network, data augmentations were applied to images and masks such

as rotation, crop, and flip.

 Mendeley CrackForest DeepCrack

Image

Label

Figure 4.16. Sample crack images for crack segmentation.

4.5.2.2. Model Configuration

For segmentation model training, the DE-Net 0.1 will be used as the backbone followed by

86

four different segmentation heads, i.e., U-Net, DEU-Net, DeepLabv3+, and RL-ASPP. For U-

Net, the feature maps of 1st, 2nd, 3rd, 5th, 9th layers are aggregated by merge blocks. The output

channels of the merge blocks are 8, 16, 32, 64, respectively. The DEU-Net is the same as the

U-Net except that the two convolution layers in each merge blocks are replaced by DE blocks

with expansion rate of 3. The feature maps of 2nd and 5th are used for DeepLabv3+,

corresponding to 1/4 and 1/16 resolution. The output channel of lower-level feature map is 48

and higher-level feature map is 128. Similarly in RL-ASPP, the 2nd and 5th feature maps are

used. The output channels of the convolutional layers are all 128, as described in the original

paper. The complete models with different segmentation heads are compared in Table 4.7. The

parameters include the whole DE-Net with classification head. The DeepLabv3+ has the most

parameters and largest memory size due to the ASPP module. Even though the U-Net used the

layers from the backbone, its number of parameters are less than the DeepLabv3+. The

parameters of DEU-Net are less than U-Net due to usage of DE block. The RL-ASPP has the

least number of parameters due to its simplified architecture.

Table 4.7. Comparison of segmentation models with different segmentation heads

Model U-Net DEU-Net DeepLabv3+ RL-ASPP

Layers

from

backbone

1,2,3,5,9 1,2,3,5,9 2,5 2,5

Parameters

(k)
137.149 129.477 177.213 65.749

Memory

size (kB)
644 621 814 343

In the following experiments, the same backbone DE-Net will be used but with different

pretraining weights. The first set of weights is from crack classification training using

pretrained from ImageNet. The other one is from the model using the proposed hierarchical

knowledge transfer strategy. To make sure the backbone is unchanged and the segmentation

model can be integrated with the classification model, during training, these weights will be

frozen and do not participate the updating process.

4.5.2.3. Segmentation Results and Discussion

For all the segmentation heads and datasets, the model training configuration is the same. The

training data was split into train and validation sets with split ratio of 0.8. The Adam optimiser

was used with the learning rate set as 0.001 and weight decay as 0.0001. The number of epochs

was 1000 and batch size was 16. The image size was the same as the classification model, that

is 224×224. The model weights with best accuracy on validation set was saved as the final

weights. Assume that a test is a self-dataset test if the training dataset and the test dataset are

the same, otherwise it is a cross-dataset test.

87

A. Quantitative Analysis

The average self-dataset test F1 score of three datasets using two different backbones is shown

in Figure 4.17. The first backbone is DE-Net pretrained on ImageNet and then crack

classification dataset. The other one is trained by the proposed HKT strategy. It can be seen

that ImageNet pretrained backbone provides a bit better performance for the first three models

instead of LR-ASPP. The difference between the two backbones is within 1%. The average F1

score of U-Net is the highest when using the HKT strategy. While the DEU-Net has highest

F1 score when pretrained on ImageNet. The performance of U-Net and DEU-Net is very close

with less than 0.5% difference. This verified the parameter efficiency of DE block. The

DeepLabv3+ is about 10% less than U-Net models with 62.33% average F1 score. While, the

LR-ASPP has only 46.61% F1 score with backbone pretrained by HKT strategy. This can be

explained by the fact that the output resolution of DeepLabv3+ and LR-ASPP before final

upsampling is 1/4 of the original image, which is a drawback when dealing with small objects

such as thin cracks.

Figure 4.17. Average F1 score for self-dataset test of different segmentation heads and backbones.

The average cross-dataset test F1 score is shown in Figure 4.18. Compared with the self-

dataset test, the average F1 score dropped significantly by about 14%. This is reasonable due

to the domain difference among datasets. The DEU-Net has higher F1 score than U-Net by

more than 1%, showing higher generalization ability of model architecture. The DeepLabv3+

is also 10% less than the U-Net and DEU-Net. The LR-ASPP still has the lowest F1 score of

only 36.95%. The difference between the two backbones becomes more obvious. The

ImageNet pretraining provides about 3% F1 score improve than the proposed HKT. This

validated again that the model representation ability of ImageNet pretraining is higher than

HKT. However, compared with the training time, this performance drop is still acceptable.

88

Figure 4.18. Average F1 score for cross-dataset test of different segmentation heads and backbones.

Table 4.8. Segmentation results of different segmentation heads and datasets

F1 score (%)
 Train

Test
Mendeley CrackForest DeepCrack

U-Net

Mendeley 76.02 63.49 71.37

CrackForest 27.27 61.99 41.86

DeepCrack 65.40 53.56 76.16

DEU-Net

Mendeley 75.88 63.89 72.15

CrackForest 28.87 63.28 47.91

DeepCrack 64.61 55.81 73.77

DeepLabv3+

Mendeley 60.12 49.41 57.40

CrackForest 28.71 50.58 32.66

DeepCrack 58.18 50.78 73.63

LR-ASPP

Mendeley 41.95 35.40 39.74

CrackForest 13.45 31.86 19.15

DeepCrack 56.93 56.99 66.03

The model performance evaluated on the test set from different datasets using backbone

trained by the proposed HKT strategy is listed in Table 4.8. It is interesting that the model

trained on one dataset not always has the best performance for self-dataset tests, except

DeepCrack dataset. This could be due to the small size of the datasets. For example, both U-

Net and DEU-Net obtained best F1 score on Mendeley dataset for training datasets of

Mendeley and CrackForest. The DeepLabv3+ obtained best performance on DeepCrack for

training datasets of CrackForest and DeepCrack. The performance differences between self-

dataset test and best cross-dataset test are within 1.5%. However, the LR-ASPP model

performed best on DeepCrack dataset no matter what dataset it was trained on. The

performance difference is from 15% to 26%. This is because the LR-ASPP architecture is more

suitable for cracks in DeepCrack dataset that all very wide. This can be verified in Figure 4.20.

It is also important to investigate the influence of dataset on the generalization ability during

cross-dataset test. Since the U-Net and DEU-Net have similar performance and better than the

other two, the self- and cross-dataset test results of U-Net are compared in Figure 4.19. The

models trained on Mendeley has the worst performance when segment the cracks in

89

CrackForest dataset with only 27.27% F1 score. While the test result on DeepCrack is

relatively high with 65.5% F1 score. The F1 scores tested on Mendeley dataset are all very

high from 63.49% to 76.02%, revealing that this dataset is an easy to be predicted dataset. The

segmentation performance of CrackForest of model trained on DeepCrack is also very poor

with only 41.86%. The F1 score of CrackForest is also the lowest among the self-dataset tests,

indicating the CrackForest as a tough dataset. However, the cross-dataset test results of model

trained on CrackForest has the highest average F1 score above 60%. Therefore, the

CrackForest is the best dataset that provides the most generalization ability to model.

Figure 4.19. The U-Net self- and cross-dataset test F1 score comparison.

B. Qualitative Analysis

Some example predictions of the four architectures tested on three datasets are shown in Figure

4.20. The cracks in Mendeley and CrackForest are thin and long, while the ones in DeepCrack

are much wider. For the thin cracks, both U-Net and DEU-Net has superior performance than

the other two. The predicted crack masks are clear and accurate. The performance of

DeepLabv3+ is ok but with less details due to that its prediction mask is 1/4 resolution of the

original images before the final upsampling. The LR-ASPP performs poorly for thin cracks. It

also outputs 1/4 resolution mask but with more noises and breaks in the mask. For test image

from DeepCrack, all the four models perform well with higher than 93% F1 score. Because

the Mendeley and CrackForest datasets have similar crack shape, it is reasonable that the

results from the self-dataset test and the cross-dataset test are close. To objectively test the

generalization ability influenced by the backbone and train dataset, a crack image was

downloaded from internet, as shown in Figure 4.21. The U-Net architecture was chosen to

segment this image with different backbone weights and train dataset. It is obvious that model

trained on CrackForest has the best segmentation results with clear and complete crack mask.

90

The crack recognised by the other two are not consistent and has many false positive noises.

The difference between the ImageNet pre-trained backbone and the HKT trained backbone is

trivial. For models trained on CrackForest, the one with HKT trained backbone is less sensitive

to non-crack pixels therefore has less false positive, such as the dents and falling off .

Figure 4.20. Example prediction results of four segmentation heads on different datasets, the dice score of

segmentation is shown below the predicted masks.

91

Figure 4.21. Example prediction results of U-Net trained on different datasets.

C. Efficiency Analysis

The efficiency of the four architectures is compared in Table 4.9. Even though the DEU-Net

has less parameters than U-Net and DeepLabv3+, it has the longest inference time on all the

devices. It is more obvious when tested on CPU and HoloLens 2 that the inference time is

almost twice as the one of DeepLabv3+. This is due to the feature maps after concatenation

and expansion has too many channels to process, making it not suitable for HoloLens 2

applications. Only U-Net and LR-ASPP can achieve more than 5 fps frame rate on HoloLens

2, with 24.3 and 21.1 inference time, respectively.

Table 4.9. Efficiency comparison of different segmentation heads. The accuracy of each model is the maximum

average F1 score for self-dataset test

Model Accuracy

(%)

Parameters (k) CPU (ms) GPU (ms) HoloLens 2

(ms)

U-Net 71.4 137.149 11.2 8.7 24.3

DEU-Net 71.87 129.477 54.6 9.4 101.4

DeepLabv3+ 62.33 177.213 28.1 8.6 63.7

LR-ASPP 46.61 65.749 8.8 7.9 21.1

Overall, the U-Net performed best among the four segmentation architectures with good

balance between inference speed and accuracy. Even though the DEU-Net has better parameter

efficiency, its inference speed is much slower on CPU and HoloLens 2. Therefore, for AR

application development, the U-Net architecture with DE-Net as backbone and trained on

CrackForest dataset will be used for crack segmentation model.

92

4.6. System Validation and Verification

For integration of AI models into Unity, they were converted into ONNX format after training,

including the DE-Net classification model and segmentation model with U-Net head

architecture. The opset version 9 was used for compatibility. The Barracuda package was used

to load and execute the converted model. Once the GUI design is finished in Unity, it can be

compiled as VS Studio solution and deployed on to HoloLens 2 as a Universal Windows

Program (UWP).

After training of the crack classification and segmentation models, the AR application can be

developed and deployed on HoloLens 2 with these AI models integrated. The GUI of the AR

application will be created in Unity using C#. The AI models will be incorporated via the

Barracuda package. For the experiments, initial testing will be conducted with the RGB and

depth cameras on HoloLens 2, followed by the evaluation of the AI models.

In lab environment, a crack image from Internet was projected on the wall for function test.

The classification and segmentation results after pressing the ‘Classification’ and

‘Segmentation’ button are shown in Figure 4.22. Compared withFigure 4.21, since the

classification results of the bottom three grids were negative, these image patches were not

processed by the segmentation model, providing a better illustration of crack mask.

Figure 4.22. The classification (left) and segmentation (right) results for GUI test.

Based on the crack mask and point cloud, the crack can be measured regarding to its width

and length. The crack mask is firstly connected using morphological close operation, followed

by the skeletonization, as shown in Figure 4.23. In the skeletonized image, there are 6

connected components, with the longest two of size 498 and 61. The average crack width can

be calculated by dividing the mask area by the total skeleton length. Therefore, the length and

width of the longest crack is 498 and 5.58 pixels, respectively.

93

Figure 4.23. Postprocess of crack mask (left) morphological close and (right) skeletonization.

To measure the crack in real-world unit, the wall in point cloud was fitted as a 3D plane,

represented by equation:

0.2330𝑥 − 0.0021𝑦 + 0.9725𝑐 + 2.4575 = 0 (4-15)

The parameter of y-axis is almost 0, which means in the camera coordination, this plane is

perpendicular to the XZ plane. The pixels in crack are firstly transformed from RGB image to

RGB-D image, and then projected onto this plane. The crack length and width in RGB-D

image are 154.8 pixels and 1.73 pixels. After mapping to point cloud, the crack length and

width in real-world unit are 1.449 m and 16.3 mm, respectively.

The inference time is calculated from 10 repetitions of this crack measurement. The crack

classification for the 9 image patches is 43.2 ms. The feature embeddings from the

classification model are saved and used for crack segmentation. The segmentation time for the

5 image patches with detected crack is 71.5 ms. The final measurement time including the

skeletonization and plane fitting is 65.4 ms. The total time is 180.1 ms (5.5 fps). Overall, all

the requirements from the task clarification have been fulfilled.

4.7. Summary

In this chapter, a head mounted vision-based crack inspection system was developed by

combining AR with AI technologies. A novel training strategy that combines the knowledge

distillation and transfer learning was proposed to facilitate the model training. A novel model

architecture was designed for real-time model inference on AR device. The whole program

was implemented in Unity and deployed on Microsoft HoloLens 2. Following the proposed

design methodology, the final developed system achieved a high accuracy real-time on-device

crack inspection. The proposed design methodology was validated in this case study with an

emphasis on the algorithm selection and optimisation.

The methodology ensured that the system design was tailored to the specific requirements of

crack detection tasks in concrete walls. The early stages of context knowledge acquisition and

94

system specification played a key role in defining the hardware platform (Microsoft HoloLens

2), the image acquisition method (RGB and depth camera combination), and the software

framework (Unity). These selections aligned with the need for real-time, portable, and

interactive inspection applications.

During the concept and embodiment design stages, the methodology guided the modular

design of the software system, including separate models for crack classification and

segmentation. The proposed Hierarchical Knowledge Transfer (HKT) strategy and the

development of DE-Net were direct outcomes of the methodology’s emphasis on selecting and

adapting machine learning models based on the task requirements and dataset availability.

95

5. The Second Case Study: Object-Level Wheat Head

Disease Detection

This chapter reports the second case study of precision agriculture application targeting wheat

head disease detection. This case study focuses on the algorithm selection for wheat head

disease detection. The classification-based and anomaly detection methods are combined and

applied for object-level wheat head disease detection. Addressing the challenge of limited data

availability for wheat head disease images, an algorithm pipeline is proposed that leverages

zero-shot learning and domain adaptation techniques. This case study is conducted on two

open-source datasets to verify the effectiveness of the proposed pipeline as well as the

feasibility of anomaly detection for wheat head disease detection. This case study aligns with

the proposed design methodology by demonstrating its applicability in scenarios where data

scarcity poses a significant challenge.

5.1. Introduction

In the pursuit of sustainable agriculture, precision agriculture has emerged as a significant

paradigm shift, revolutionising traditional farming practices. A key aspect of this

transformation is integrating state-of-the-art technologies into the agricultural sector,

particularly focusing on precision spray robotic systems [290]. These advanced systems show

promise in addressing the complex challenges faced by modern agriculture, including the

requirement for higher yields, decreased resource waste, environmentally sustainable farming

practices, and the critical issue of crop disease management. Wheat is one of the most

important staple foods that provides a significant portion of the world's dietary calories.

Fusarium Head Blight (FHB), (also known as wheat scab or ear blight, is one of the most

devastating fungal diseases that can reduce yield by as much as 80% [291, 292].

To detect the diseased wheat head, some researchers have focused on using colour image for

FHB detection and its feasibility has been widely validated [293-295]. Typically, the disease

detection process was divided into two stages. As wheat heads are usually clustered in the field

images, the first stage is to extract wheat heads from the images by segmentation [296] or

bounding box detection [297]. The segmentation method usually requires more labelling effort

and inference time than the bounding box method. After the extraction of wheat head, the

disease can be classified or segmented based on its colour and texture information. For

segmentation method, usually the binarization method is used based on the colour difference

96

of healthy part and diseased part [298]. The disease severity can be evaluated based on the

extracted disease part. However, this approach requires either the labour-intensive task of

hyperparameter tuning for different lighting conditions or the availability of carefully labelled

disease segmentation data, both of which can be time consuming and prone to overfitting.

To address the lack of diseased wheat head images, this study developed an anomaly detection-

based wheat head disease detection system for precise spray system. The requirements and

specifications for the detection are derived from the task clarification. In the concept design

stage, the concept of the system architecture is generated. As for the embodiment design, the

development of the disease detection method is described. To address the issue of insufficient

wheat head disease data, a novel detection algorithm pipeline is proposed that utilises only

healthy wheat head data for model training. This algorithm pipeline combines classification-

based detection and anomaly detection method, targeting wheat head bounding box detection

and anomaly score prediction, respectively. To validate the proposed method, a comprehensive

study of various anomaly detection methods is conducted on two wheat head disease datasets,

demonstrating high disease classification accuracy, as well as the potential for applying

anomaly detection methods to severity estimation. The entire detection pipeline is tested in

real-time on a Jetson Nano, achieving a processing time of 327.9 ms per image, including both

wheat head detection and disease classification.

5.2. Task Clarification

5.2.1. System Requirements and Specifications

• The detection method should be able to locate each diseased wheat head in the image as

bounding boxes.

• Only the healthy wheat head images can be used for model training.

• The camera view angle for each dataset is fixed.

• The accuracy of the disease detection should be larger than 80%.

• Given the rover speed of 1.5 m/s and the distance between the camera and the spray unit

of 1.8 m, the inference time for the whole processing pipeline should be within 1.2 second.

5.2.2. Related Works

For modern learning-based methods, the number of images in a dataset is a critical factor in

determining model prediction accuracy [299]. This underscores the importance of cutting-edge

technologies, like transfer learning [300] and domain adaptation [301], which enable the

system to learn and adapt from diverse datasets, leading to a robust and reliable disease

97

detection mechanism. Currently, wheat datasets used in published research are often collected

using dedicated instruments and are not publicly available. The Global Wheat Head Detection

2021 (GWHD) [302], which contains 193,634 labelled wheat heads from 7

countries/institutions such as UK, France, etc. This dataset has large diversity of geographic

locations and wheat stages like filling, ripening, and post-flowering. However, it only has

labels for wheat head and no information of any diseases. There are only a few public datasets

focused on wheat head disease detection, including the Wheat Head Blight Dataset (WHBD)

[303] and FHB with Severity (FHBS) dataset [304]. However, these datasets only have image-

level annotations.

To address the lack of diseased wheat head images, anomaly detection methods can be

employed. Anomaly detection is a recent trend in computer vision that uses only normal

images for model training to identify anomalies. There are many existing anomaly detection

methods, categorised as classification, probabilistic, reconstruction, and distance based

method for one-class classification tasks [305]. Typical methods for these four categories

include the Multi-variate Gaussian (MVG) used in PaDiM [222], K-Nearest Neighbor (KNN)

used in PatchCore [223], Generative Adversarial Network (GAN) in AnoGAN [306], Support

Vector Data Description (SVDD) in Patch SVDD [213], etc. This technique has been applied

in some plant disease detection scenarios. For example, Jin et al. applied the generative

adversarial network (GAN) to detect varies disease on grape leaves, such as black measles,

black rot, and leaf blight [307]. Similarly, Bhugra used the GAN paired with the edge map to

segment the disease area on the leaf images [308]. Other studies also focused on the leaf

disease detection with reconstruction-based model [309, 310]. Detecting wheat head disease

is more challenging than detecting diseases on leaves due to the more complex textures and

clustered background of wheat heads. This complexity makes it difficult to apply methods

such as GANs to wheat head images effectively. Therefore, a thorough study of different

anomaly detection methods is necessary to address these challenges.

5.3. Concept Design

In order to develop a disease detection algorithm with high generalization ability and validate

the robustness to various wheat head images, the GWHD dataset was used as training input,

while the WHBD and FHBS datasets were used as validation data. Several technologies have

been used during model training, including transfer learning, domain adaptation, anomaly

detection, and data augmentation. This section aims to verify the feasibility of disease

detection using deep learning with extremely unbalanced dataset that has no disease data at all.

98

The procedure of training detection model and using this model for disease detection is shown

in Figure 5.1. Firstly, the base model YOLOv8n is fine-tuned on GWHD dataset using COCO-

pretrained weights for wheat head bounding box detection task. This enables the base model

to have perception of wheat head. Then the three feature layers P3, P4, and P5, are used to

generate feature embeddings for wheat head. These feature embeddings are fitted to Multi-

variate Gaussian Model (MGM). For disease prediction, the wheat head bounding box is firstly

generated and used for feature embedding extraction. Then the distance between the feature

embedding and the fitted GMM is used as anomaly score. The implementation details will be

described in two sections since the first part which trains a bounding box detection model

follows the typical detection task paradigm, while the second part that uses the feature

embedding for disease detection falls into anomaly detection realm.

Figure 5.1. Disease detection model training and prediction

5.4. Wheat Head Detection

The wheat head detection is based on the state-of-the-art YOLOv8 model, which is a single-

stage bounding box detection deep learning model that famous for excellent balance between

speed and accuracy. The transfer learning and domain adaptation are used to enable the model

to detect the wheat head bounding box in WBHD and FHBS using GWHD dataset as

intermediate domain. The data augmentation such as random flip and mosaic is used during

transfer learning on GWHD dataset.

5.4.1. YOLOv8 Model

This latest version of YOLO utilises both Feature Pyramid Network and Path Aggregation

Network, which introduces numerous improvements compared to its predecessors [42]. It has

three hyper-parameters to adjust the size and performance of the model, i.e., depth_multiple,

width_multiple, and ratio, as listed in Table 5.1. The C2f block uses dense connections inside

with varied number of Bottleneck blocks controlled by depth_multiple. The U block is

upsampling block. The C block is concatenation of feature maps from different layers. The

number of output channel for each convolution block (Conv) is adjusted by width_multiple

and ratio. The smallest model architecture named YOLOv8n is used for wheat head detection

99

which has only 3.2 M parameters but achieved 37.3 map on COCO val2017 dataset.

Table 5.1. Comparison of different YOLOv8 models

Model depth_multiple width_multiple ratio params (M) mAP50-90

YOLOv8n 0.33 0.25 2.0 3.2 0.373

YOLOv8s 0.33 0.50 2.0 11.2 0.449

YOLOv8m 0.67 0.75 1.5 25.9 0.502

YOLOv8l 1.00 1.00 1.0 43.7 0.529

YOLOv8x 1.00 1.25 1.0 68.2 0.539

For training on GWHD dataset, the loss function and weight update procedure are the same as

the original YOLO model, defined as follows, from [42]:

𝐿(𝜃) =
𝜆𝑏𝑜𝑥

𝑁𝑝𝑜𝑠
𝐿𝑏𝑜𝑥(𝜃) +

𝜆𝑐𝑙𝑠

𝑁𝑝𝑜𝑠
𝐿𝑐𝑙𝑠(𝜃) +

𝜆𝑑𝑓𝑙

𝑁𝑝𝑜𝑠
𝐿𝑑𝑓𝑙(𝜃) + 𝜙‖𝜃‖2

2 (5-1)

where 𝜃 is the parameters of the model, Npos is the total number of cells containing and object,

Lbox is the bounding box loss, Lcls is the classification loss, Ldfl is the distribution focal loss.

The 𝜆𝑏𝑜𝑥, 𝜆𝑐𝑙𝑠, 𝜆𝑑𝑓𝑙 are the weighting factors of the three loss components, set as 7.5, 0.5, 1.5,

respectively. The specific loss function can be defined as:

𝐿𝑏𝑜𝑥(𝜃) = ∑ 𝐼𝑐𝑥,𝑦
∗ [1 − 𝑞𝑥,𝑦 +

‖𝑏𝑥,𝑦 − �̂�𝑥,𝑦‖
2

2

𝜌2
+ 𝛼𝑥,𝑦𝑣𝑥,𝑦]

𝑥,𝑦

(5-2)

𝐿𝑐𝑙𝑠(𝜃) = ∑ ∑ 𝑦𝑐 log(�̂�𝑐) + (1 − 𝑦𝑐) log(1 − �̂�𝑐)

𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠𝑥,𝑦

(5-3)

𝐿𝑑𝑓𝑙(𝜃) = ∑ 𝐼𝑐𝑥,𝑦
∗ [−(𝑞(𝑥,𝑦)+1 − 𝑞𝑥,𝑦) log(�̂�𝑥,𝑦) + (𝑞𝑥,𝑦 − 𝑞(𝑥,𝑦)+1) log(�̂�(𝑥,𝑦+1

)]

𝑥,𝑦

(5-4)

where

𝑞𝑥,𝑦 = 𝐼𝑜𝑈𝑥,𝑦 =
�̂�𝑥,𝑦 ∩ 𝛽𝑥,𝑦

�̂�𝑥,𝑦 ∪ 𝛽𝑥,𝑦

𝑣𝑥,𝑦 =
4

𝜋2 (arctan (
𝜔𝑥,𝑦

ℎ𝑥,𝑦
) − arctan (

�̂�𝑥,𝑦

ℎ̂𝑥,𝑦

))

2

(5-5)

𝛼𝑥,𝑦 =
𝑣

1 − 𝑞𝑥,𝑦

where Npos is the total number of cells containing and object, 𝐼𝑐𝑥,𝑦
∗ is indicator function for the

cells containing an object, 𝛽𝑥,𝑦 is the ground truth bounding box in format of (x_center,

y_center, width, height), �̂�𝑥,𝑦 is the predicted box, 𝑏𝑥,𝑦 is the central point of the ground truth

100

bounding box, 𝑦𝑐 is the ground truth class label, 𝑞(𝑥,𝑦)+/−1 is the nearest predicted box IoU of

left and right, ρ is the diagonal length of the smallest enclosing box covering the predicted and

ground truth boxes.

5.4.2. Domain Adaptation and Transfer Learning

Domain adaptation and transfer learning are pivotal concepts in machine learning that enable

models to leverage knowledge gained from one domain (source domain) to improve

performance in a different but related domain (target domain) [43]. In domain adaptation, the

objective is to minimise the distributional gap between the source and target domains, with the

aim of making the model robust to changes in data distribution. This is typically achieved

through methods such as adversarial training, where a domain discriminator is trained

alongside the main model to encourage domain-invariant representations. Transfer learning,

on the other hand, involves using pre-trained models on a source task to initialise a model for

a target task. This process finetunes the target model with features learnt from the source task,

thereby accelerating convergence and often leading to better generalisation on the target task,

especially when data are scarce.

To train a model that is able to detect the wheat head disease in images from disease dataset,

for example, the WHBD (target domain) without using its data at all, the domain adaptation

method can be used via finetuning the model, that is pre-trained with COCO dataset (source

domain), on GWHD dataset (intermediate domain). This process can be illustrated in Figure

5.2. The domains of the three datasets are simplified as Gaussian distributions, where the

GWJD and WHBD are close to each other, while COCO dataset is far from these two. The

aim of the training process is to pass knowledge from the COCO dataset domain to the WHBD

domain through the GWHD domain. The purpose of using COCO as the the source domain

and GWHD as intermediate domain, instead of using GWHD directly as that source domain,

is the the COCO dataset has a lot more data, which usually means more model representative

ability. This will be verified in the experiments section.

101

Figure 5.2. Illustration of domain adaptation and transfer learning on three datasets.

Mathematically, assume that the three datasets COCO, GWHD, WHBD are noted as DC, DG ,

and DW, and defined as:

𝐷𝐶 = {(𝑥𝐶𝑖, 𝑦𝐶𝑖) | 𝑖𝜖[1, 𝑁𝐶]}

𝐷𝐺 = {(𝑥𝐺𝑖, 𝑦𝐺𝑖)| 𝑖𝜖[1, 𝑁𝐺]} (5-6)

𝐷𝑊 = {(𝑥𝑊𝑖, 𝑦𝑊𝑖) | 𝑖𝜖[1, 𝑁𝑊]}

where (xi, yi) is image-label pair and N is the total number of images in the datasets. The

bounding box detection task is defined as an optimisation problem of model parameters 𝜃:

𝜃 = arg min
𝜃

𝐿(𝜃|𝐷) = arg min
𝜃

𝐿(𝑓𝜃|𝐷) (5-7)

where 𝑓𝜃 is the neural network model that maps the input data to bounding box. The domain

adaptation by transfer learning can then be formalized as:

𝑃(𝑦𝑊𝑖|𝑥𝑊𝑖) = 𝑓𝜃𝑊
(𝑥𝑊𝑖) = 𝑓𝜃𝐺

(𝑥𝑊𝑖)

𝜃𝐺 = arg min
𝜃𝐺

0=𝜃𝐶

𝐿(𝜃|𝐷𝐺) (5-8)

𝜃𝐶 = arg min
𝜃

𝐿(𝜃|𝐷𝐶)

The prediction of wheat head bounding box for WHBD is achieved by using the model weights

finetuned on dataset GWHD.

5.4.3. Experiments and Results

To verify the effectiveness of the proposed disease detection algorithm, the YOLOv8n model

was trained on a desktop PC and its performance was evaluated in terms of wheat head

detection and head disease detection.

102

5.4.3.1. GWHD

Regarding the training in the GWHD dataset, both YOLOv8n and YOLOv8s were trained with

or without using pre-trained weights in the COCO dataset. The image size was 640x640. The

hyperparameters follow exactly the original YOLO paper. The learning rate was set to 1e-3

and 1e-2 for training with and without pre-trained weights. The batch size was set to 16. The

SGD optimiser was used with a momentum of 0.937 and a weight decay of 0.0005. In total,

100 epochs were used, and the weights with best validation performance were saved. Three

warm-up epochs were used with warm up momentum of 0.8 and initial learning rate bias of

0.1. The mosaic augmentation was turned on and stopped 10 epochs before the final epoch.

Other image augmentation includes scaling, translation, flip, contrast, etc.

The performance comparison of the four models trained on the GWHD dataset is listed in

Table 5.2. The performance of YOLOv8n is good enough even when trained from scratch. All

criteria significantly increased if they used pretrained weights from COCO for both YOLOv8n

and YOLOv8s. With more than third times of the parameters, the YOLOv8s performed better

than YOLOv8n for both training from scratch or pre-trained weights. However, the

improvement is not significant, for example, only about 0.01 for precision and recall.

Table 5.2. Performance comparison of models trained on the GWHD dataset.

Model Precision Recall mAP50 mAP50-90

YOLOv8n-scratch 0.905 0.811 0.892 0.492

YOLOv8n-pretrain 0.915 0.852 0.92 0.515

YOLOv8s-scratch 0.916 0.851 0.918 0.508

YOLOv8s-pretrain 0.926 0.86 0.931 0.531

Figure 5.3. Example wheat head detection results with GWHD and YOLOv8n-pretrain

Two examples of wheat head detection using YOLOv8n using pre-trained weights are shown

in Figure 5.3. It is shown that almost all the wheat heads have been detected with the

probability threshold set as 0.3. The smaller and more obscure the wheat head is, the less

103

probability is predicted by the model. It performed well even when multiple wheat heads are

clustered together in the bottom right of this image.

5.4.3.2. WHBD

The trained models were then evaluated on the WHBD regarding the accuracy of the detection

of the wheat head bounding box, as listed in Table 5.3. Unlike the GWHD dataset, where each

image contains many wheat heads, in WHBD, basically only one wheat head appears in one

image. The model was trained to recognise multiple small wheat heads in one image, making

it almost impossible to detect large wheat heads in WHBD. Therefore, a small trick was used

here that multiple images in WHBD were resized and assembled as a single image before being

fed to the model. The resize ratio was determined based on the bounding box width/height

ratio regarding the image size in GWHD, which is 0.075 and 0.071. For WHBD, it is 0.16 and

0.42, about 2 and 6 times of GWHD. The final assembled image from WHBD contains 6 rows

and 2 columns of original images and resized to 640x640. The ground truth bounding boxes

were also resized and translated according to the new image size. The performance comparison

of the wheat head detection in WHBD dataset is listed in Table 5.3.

Table 5.3. Performance comparison of WHBD models for wheat head detection

Model Precision Recall mAP50 mAP50-90

YOLOv8n-scratch 0.640 0.545 0.597 0.298

YOLOv8n-pretrain 0.748 0.728 0.781 0.375

YOLOv8s-scratch 0.672 0.570 0.600 0.324

YOLOv8s-pretrain 0.753 0.750 0.775 0.383

Even though the model has never seen any images from WHBD, it can achieve over 0.72

precision and recall through transfer learning. It is obvious that the pre-trained weights on

COCO significantly improved the performance of YOLO models on dataset WHBD, for

example, about 0.108 precision, 0.183 recall, 0.1 184 mAP50, and 0.077 mAP50-90 increase

for YOLOv8n. This verified the method that uses transfer learning from COCO to GWHD and

WHBD. An example of wheat head detection in WHBD using YOLOv8n is shown in Figure

5.4. As stated above, the image was resized before fed into the model. It can be seen that even

the blurred wheat head on the left side can be recognised.

Figure 5.4. Examples of wheat head detection in WHBD using YOLOV8n-pretrain.

The WHBD also has images with clustered wheat head, as shown in Figure 5.5. It can be seen

104

that the detection results using the original image are very poor, with only one wheat head

detected. When resizing the original image to half height, the results improved significantly

with more than half the wheat heads correctly detected. This proved the importance of the

object size in domain transfer.

Figure 5.5. Detection result of a sample image with clustered wheat heads in WHBD using YOLOV8n-pretrain

with (left) original image size and (right) resized to half height.

5.4.3.3. FHBS

Since the wheat heads distribution in this dataset is also clustered, similar to the GWHD, no

image preprocessing is applied except for the resizing to 640x640 resolution. Wheat head

detection results on FHBS are listed in Table 5.4. The model configuration is the same as

previously. The YOLO8n model has achieved over 0.86 and 0.82 precision and recall, which

is close to the results on the GWHD dataset. The improvement through transfer learning is

verified again, with a 0.071 precision, 0.065 recall, 0.128 mAP50, and 0.056 mAP50-90

increase.

Table 5.4. Performance comparison of YOLOv8 models on FHBS for wheat head detection.

Model Precision Recall mAP50 mAP50-90

YOLOv8n-scratch 0.791 0.762 0.724 0.347

YOLOv8n-pretrain 0.862 0.827 0.852 0.403

YOLOv8s-scratch 0.875 0.828 0.811 0.412

YOLOv8s-pretrain 0.898 0.849 0.829 0.428

An example prediction result of this dataset is shown in Figure 5.6. It can be observed that

most of the wheat heads have been detected. The prediction threshold is reduced to 0.2 due to

the change of the dataset. Even with a lower threshold, there are few false positives but some

false negatives, including heads overlapped with others or hidden behind leaves. The overall

prediction quality is good enough for disease detection.

105

Figure 5.6.Example wheat head detection results with FHBS and YOLOv8n pretrain.

 Regarding the model size, the YOLOv8s does have some improvement compared with

YOLOv8n on WHBD, yet negligible (less than 0.03 on the four criterion). For Jetson Nano,

whose computational resource is limited, the performance improvement of YOLOv8s does not

justify its overhead. Therefore, for the development of the disease detection model, only

YOLOv8n will be used and evaluated in the following section.

5.5. Wheat Head Disease Detection

In practice, it is usually difficult to obtain an adequate amount of high-quality and well-labelled

disease images, which impedes the development of accurate and robust disease detection

models. To address this critical limitation, an anomaly detection-based approach is proposed

that uses the large number of images without disease. Before anomaly detection, the model

trained from the last step is used directly by extracting its intermediate feature maps to generate

feature embeddings for wheat head. The feature embeddings of healthy wheat heads are used

to fit an anomaly detection model. Four different anomaly detection methods are used and

compared, including the Multi-Variate Gaussian (MVG), K-Nearest Neighbor (KNN), Support

Vector Data Description (SVDD), and Principal Component Analysis (PCA) based

classification.

5.5.1. Algorithm Candidates

5.5.1.1. MVG

The anomaly detection algorithm follows the idea of Padim [44] with some modifications, as

illustrated in Figure 5.7. The three layers of intermediate feature maps are used to extract

feature embeddings. During training process, the images from GWHD dataset are used to

generate the feature maps. Then the corresponding ground truth bounding boxes are resized

106

according to the size of each feature map. The tensors within each bounding boxes of each

feature map are extracted, vectorised, and concatenated as the feature embeddings, 𝑿 =

{𝒙𝑘, 𝑘 ∈ [1, 𝑁]} where N is the number of bounding boxes. Before the vectorisation and

concatenation, the adaptive average pooling layer is used to adjust the length of the

embeddings from each feature map. Finally, all the feature embeddings of wheat heads in

GWHD are fitted to a multivariate Gaussian distribution 𝒩(∑, 𝝁) where 𝜇 is the sample mean

and the sample covariance ∑ is estimated as follows:

∑ =
1

𝑁 − 1
∑(𝒙𝑘 − 𝝁)(𝒙𝑘 − 𝝁)

T
+ 𝜖𝑰

𝑁

𝑘=1

(5-9)

where the final regularisation term 𝜖𝑰 makes the sample covariance matrix full rank and

invertible. By this way, each embedding contains information from different semantic levels

and ∑ contains the inter-level correlations.

Figure 5.7. Illustration of disease detection by anomaly detection.

The Mahalanobis distance 𝑀(𝒙𝑘) is used to calculate the anomaly score of the detected wheat

head in WHBD, defined as:

𝑀(𝒙𝑘) = √(𝒙𝑘 − 𝝁)T ∑
−1

(𝒙𝑘 − 𝝁) (5-10)

This can be interpreted as the distance between the test embedding and the learned distribution

𝒩(∑, 𝝁). A higher distance means a high probability of anomaly. The sigmoid function is used

to normalise the distance to probability from 0 to 1.

5.5.1.2. SVDD

The working flow of SVDD is similar to the MVG method, using the intermediate feature

embeddings from the YOLO model. To fit an SVDD model, a neural network 𝑓𝜃 is trained to

project the feature embeddings to another manifold, so that the feature embeddings are close

107

to each other with a sphere boundary. Formally, the objective of this method is:

min
𝜽,𝒄

1

𝑁
∑‖𝑓𝜽(𝒙𝑖) − 𝒄‖

2
𝑁

𝑖=1

(5-11)

where c is the centre of all the projected embeddings. The anomaly score is calculated as:

𝑠𝑐𝑜𝑟𝑒 = ‖𝑓𝜽(𝒙) − 𝒄‖2 (5-12)

In this research, the neural network is a multi-layer perceptron with two fully connected layers.

The output dimension is 32.

5.5.1.3. KNN

The KNN method does not have a model fitting process for one-class classification task.

During inference, the anomaly score is calculated by the average distance between the tested

embedding and its k-nearest neighbors of the normal samples:

𝑠𝑐𝑜𝑟𝑒 =
1

𝑘
∑‖𝒙 − 𝒙𝑖‖

2
𝑘

𝑖=1

(5-13)

5.5.1.4. PCA

The PCA method seeks an orthogonal basis W that maximises the variance of the data 𝒳 ∈

ℝ𝐷 that D is the dimension of the feature embedding:

max
𝑊

∑ ‖𝑊𝒙𝑖‖
2𝑁

𝑖=1 s. t. 𝑊𝑊𝑇 = 𝐼 (5-14)

The 𝑑 ≤ 𝐷 components of 𝑊 ∈ ℝ𝑑×𝐷 are the principal components that explain most of the

data variance. When applying the PCA for classification, it is formulated as a reconstruction

process using the orthogonal projection 𝑊𝑇𝑊 to a d-dimensional space. The anomaly score

is therefore the reconstruction error:

𝑠𝑐𝑜𝑟𝑒 = ‖𝒙𝑖 − 𝑊𝑇𝑊𝒙𝑖‖
2

(5-15)

5.5.2. Experiments and Results

To evaluate the anomaly detection-based wheat head disease detection methods, the image

patches of all the wheat heads are extracted from each dataset using the ground truth bounding

box and then resized to 64x64 images. For the severity evaluation of FHBS, the anomaly score

of each image is the average anomaly score of all the wheat heads in that image. Apart from

the four feature embedding-based methods, the HSV colour thresholding is also evaluated.

108

5.5.2.1. WHBD

1) HSV Colour Thresholding

The images are firstly converted to HSV colour space. Then the average Hue value for each

image as the colour feature. The normal and abnormal samples are then classified simply by

thresholding the Hue values. This method is simple yet feasible. As can be seen in Figure 5.8.

Negative samples, that is, wheat heads without disease are green in colour, with hue values

mostly in the range 35 to 45. In contrast, the positive samples, i.e., wheat heads with disease

are in yellow colour, with hue values mostly in the range 25 to 35. Therefore, the wheat heads

can be classified by a threshold of hue value. The precision, recall, optimal F1, and AUROC

using this algorithm are listed in Figure 5.10. Distribution of anomaly scores on WHBD using

embedding-based methods.

Table 5.5. Precision and recall are calculated using the optimal F1. It achieved a 0.736 optimal

F1 score and 0.765 AUROC.

Figure 5.8. Histogram of Hue values for positive and negative samples in WHBD.

2) Feature Embedding-based Methods

For the following feature embedding based methods, the YOLOv8n model trained for wheat

head detection is used directly to generate the intermediate feature maps. Since the disease

data emphasis more on the colour instead of texture, the shallow layers provide more

distinguishable features than deeper layers. Therefore, the first 7 layers of the model are used

for feature extraction, with a total feature dimension of 464 for each wheat head image. The

extracted feature embeddings are visualised in Figure 5.9, using the t-SNE method from scikit-

learn library. It can be observed that the feature embeddings of positive samples are clustered

109

together. The negative samples are scattered in the feature space, similar to the HSV colour

space.

For model fitting, 20% of the feature embeddings from negative samples are used for training.

During the evaluation, other 80% of the negative feature embeddings and the same number of

positive feature embeddings are used to calculate the anomaly scores using the fitted model.

The anomaly score distributions of the four feature embedding-based methods are shown in

Figure 5.10. The scores of negative and positive samples have different distributions using the

four methods. It is obvious that the KNN method can classify the diseased feature embeddings

better than all the others. It can be explained by the clustered distribution of the samples in the

feature space. The MVG and SVDD have similar performance with partially overlapping

between the positive and negative samples. The PCA method cannot classify the samples well

that the scores of negative and positive samples have fewer difference.

Quantitatively, the optimal F1 and AUROC are calculated for these four methods, as listed in

Table 5.5. The KNN method achieved the highest prediction performance with 0.963 optimal

F1 and 0.992 AUROC. The MVG and SVDD have similar performance. The performance of

the PCA method is even worse than that of the HSV thresholding method.

Figure 5.9. Feature embedding visualisation of WHBD. The feature embeddings are extracted from the first 7

layers of the YOLOv8n model.

110

(a) MVG (b) KNN

(c) SVDD (d) PCA

Figure 5.10. Distribution of anomaly scores on WHBD using embedding-based methods.

Table 5.5. Performance comparison of different disease detection algorithms on WHBD

Model Precision Recall Optimal F1 AUROC

HSV 0.643 0.858 0.736 0.765

MVG 0.806 0.892 0.847 0.914

KNN 0.956 0.970 0.963 0.992

SVDD 0.841 0.731 0.783 0.859

PCA 0.610 0.836 0.706 0.722

5.5.2.2. FHBS

1) HSV Colour Thresholding

Similarly, each wheat head image is converted to the HSV colour space, and the Hue value is

averaged and compared in Figure 5.11 (a). This dataset has labelled the images regarding to the

disease severity from 1 to 9. The images of severity 1 are negative samples and all the others

are positive samples. For the one-class classification task in this research, the classification is

done for each of the severity sets. The optimal F1 score and the AUROC for each severity

class are plotted in Figure 5.11 (b). It is clear that with increasing severity, the better the

prediction precision, especially from severity 7 to 9. The average scores for the criterion for

111

all the severities are listed in Figure 5.13.

(a) Hue value distribution (b) Classification accuracy

Figure 5.11. The classification of different severity of the disease in WHBD.

2) Feature Embedding-based Methods

For better visualisation, only the feature embeddings of severity 1, 4, 7, and 9 are plotted in

Figure 5.12. The higher the more severity, the projected points in the feature space are

distributed to the left. This verifies the feasibility of feature embedding-based methods for

disease detection and severity estimation.

Similarly, 20% of the feature embeddings from the negative samples are used for model fitting

and 80% for evaluation. The curve of optimal F1 scores and AUROCs using the four

algorithms is shown in Figure 5.13. For this dataset, none of the feature embedding-based

methods exceeds the simple HSV thresholding methods. However, for severity greater than 7,

optimal F1 scores and AUROCs are all larger than 0.7.

Figure 5.12. Feature embedding visualisation of FHBS.

112

(a) MVG (b) KNN

(c) SVDD (d) PCA

Figure 5.13. Distribution of anomaly scores on WHBD using embedding-based methods.

Table 5.6. Performance comparison of different disease detection algorithms on FHBS

Model Precision Recall Optimal F1 AUROC

HSV 0.718 0.902 0.787 0.801

MVG 0.650 0.927 0.753 0.744

KNN 0.672 0.919 0.761 0.760

SVDD 0.616 0.907 0.726 0.709

PCA 0.604 0.935 0.726 0.714

5.6. System Validation and Verification

Finally, the whole model including wheat head bounding box detection and disease score

calculation was run on Jetson Nano to evaluate the speed performance, as listed in Table 5.7.

The Jetson Nano has Quad-core ARM Cortex-A57 CPU, 4 GB 64-bit LPDDR4 RAM, and

NVIDIA Tegra X1 4GB GPU. The image size is the same as that for the training as 640x640

with a batch size of 16.

Table 5.7. Processing time (ms) of the head disease detection model on Jetson Nano

Model Pre-process Inference Post-process Distance Total time

YOLOv8n 7.0 279.8 19.8 21.3 327.9

113

Even though with the smallest YOLOv8n model and run on GPU, the inference time for the

bounding box still needs about 280 ms for one image. The distance calculation of feature

embedding to MGM is relatively fast, similar to the post-processing part that calculates the

NMS of bounding boxes. The total processing time is about 327.9 ms for each image. This

means that the algorithm is able to run nearly real-time in practice. Assume that the rover runs

in 1.5 m/s and the grid size is 0.5 m. This means that going through this grid takes about 1/3

second, which is just enough to process one image.

5.7. Summary

In this chapter, the proposed design methodology is adopted for the development of wheat

head disease detection methods using the basic algorithm selection and optimisation process.

To address the lack of wheat head disease data, a zero-shot learning based wheat head disease

detection algorithm was proposed targeting real-time in-field wheat inspection. The proposed

method was verified to have the ability to predict wheat head disease without using any

diseased data during model development, and real-time inference when deployed on embedded

systems such as Jetson Nano. This case study helps to validate the research direction of using

the domain transfer and anomaly detection method for the detection of wheat head disease

when the disease data is unavailable.

The wheat head disease detection case study aligns with the proposed design methodology by

demonstrating its applicability in scenarios where data scarcity poses a significant challenge.

During the context knowledge acquisition and system specification stages, the scarcity of

annotated wheat head disease images was identified as a critical constraint. This insight

informed the subsequent algorithm selection process, where a combination of classification-

based methods and anomaly detection techniques was proposed to leverage the larger

availability of healthy wheat head images.

The concept design stage guided the decision to adopt a pipeline integrating zero-shot learning

and domain adaptation techniques. The anomaly detection-based approach verified the

methodology's adaptiveness by shifting from conventional supervised learning to a more data-

efficient paradigm, which exploits knowledge transfer from related domains.

Moreover, the embodiment design and verification stages supported the model development

process by incorporating systematic evaluation across two open-source datasets. This

demonstrated the methodology’s role in guiding algorithm selection, performance assessment,

and generalization evaluation.

114

6. The Third Case Study: Pixel-Level Car Engine

Surface Anomaly Detection

In this chapter, the proposed design methodology is adopted for the design of a car engine

manufacturing anomaly detection system. The third case study focuses on the dataset

establishment and the refined algorithm selection and optimisation process of the design

methodology. It aims to provide a comparative study of pixel-level anomaly detection methods

on car engine images. Following the proposed algorithm development process, two car engine

datasets with synthetic and real anomalies are used as a validation and test dataset, respectively.

Five typical deep learning anomaly detection methods are compared on these two datasets

regarding image collection configurations and anomaly characteristics. Based on the findings

from the comparative study, the best model was identified and further optimised for the real

anomaly dataset, which achieved zero false negative and minimal false positives. This case

study addresses the challenge of developing a robust AVI system in a more controlled

industrial environment with a focus on comparative evaluation and model optimisation.

6.1. Introduction

With increased competition, globalisation, and uncertainty in today’s markets, the

manufacturing companies face more challenges in producing the desired products more

efficiently. State-of-the-art techniques, such as machine vision and AI techniques, allow

manufacturing systems to learn from big data in order to realise a connected and intelligent

industrial practice, known as smart manufacturing [311]. By 2030, the size of the global smart

manufacturing market is expected to grow from US$ 249.46 billion in 2021 to US$ 576.21

billion in 2028, with an annual growth rate of 12% [312]. Manufacturing automotive parts is

a complex and precision-driven process, where even minor surface defects can lead to

significant consequences, ranging from appearance problems to critical functional failures.

Conventional methods, which rely on manual inspection or simple automated systems, suffer

from problems of accuracy, consistency, and efficiency. Skilled human inspectors may

inadvertently miss minor defects or make mistakes due to fatigue, while AVI systems, despite

providing greater consistency, can struggle to spot subtle anomalies, particularly in intricate

geometries such as those encountered in combustion engines [132].

Deep learning technology presents a transformative opportunity to overcome these limitations.

Using advanced algorithms and data processing techniques, deep learning-based systems

115

provide a promising solution for the reliable detection of various surface anomalies. Research

has shown that algorithms trained on large image dataset can identify defects in various

materials, such as metals, textiles and composites, with high accuracy [313]. Convolutional

neural networks (CNNs), in particular, have been highlighted for their effectiveness in learning

defect characteristics [314]. Li et al. [315] and Yang et al. [316] reviewed the state-of-the-art

deep learning methods in manufacturing defect detection. The main challenges identified by

the authors include small object, complex background, data scarcity, and achieving high

precision and fast detection, etc. This chapter focuses on addressing the issue of data scarcity.

Defect images from the production line are usually rare and difficult to collect. The scarcity of

labelled data and the unpredictability of defect types pose significant challenges. Solutions to

this problem primarily stem from two directions: data enhancement and anomaly detection.

Data enhancement strategies focus on expanding the dataset though data augmentation [317]

and synthesis [318], while anomaly detection method aims to detect the anomalies that are

unseen in training data. However, implementing these advanced technologies for the car

engine surface defect detection presents its own challenges, including illumination

configuration, model selection, and model optimisation, due to its complex geometric structure.

To our knowledge and based on the literature review, no study has explored the usage of

anomaly detection in engine surface defect detection. Therefore, this chapter provides a

comparative study of vision-based deep learning anomaly methods for car engine surface

defect detection. The anomaly detection methods avoid the need for a database of defective

images, which can be difficult to collect in a manufacturing environment where defects are

usually rare.

Following the algorithm selection and optimisation process in the proposed design

methodology, this chapter developed the anomaly detection method using two datasets: the

synthetic anomaly dataset as supplementary dataset, and real anomaly dataset as target dataset

for algorithm optimisation. This study assesses anomaly detection performance in terms of

image collection configuration and anomaly characteristics, targeting different parts of the car

engine like engine head, block and underside.

6.2. Task Clarification

6.2.1. System Requirements and Specifications

Through the analysis of the need, the requirements of the car engine inspection system have

been generated and summarised as follows:

116

 A vision system that can detect various manufacturing defects in multiple car parts.

 The detection targets include three critical areas of the engine, including the engine block,

engine head, and engine under, as shown in Figure 6.1.

 The defect types are not constrained, including but not limited to choc, porosity, etc.

 The relative position of the camera and the parts are fixed.

 The controlled lighting condition is applied and optical filters are employed during the

image capture process.

 The datasets fewer than 150 defect-free images for each category are available for AI

model training.

 The system must not only detect the presence of defects, but also accurately determine

their number and the specific location on the part.

 The area of the defects should be quantitatively detected as accurately as possible.

 The AI model should be compatible with the TensorFlow platform.

 The processing and inference time for analysing one image should be within the range of

several seconds.

 The system should be adaptable to new types of defects and scalable to different types or

inspection stations without significant reconfiguration.

(a) Engine Block (b) Engine Head (c) Engine Under

Figure 6.1. The three different viewpoints of the combustion engine for defect detection

6.2.2. Related Works

6.2.2.1. Engine Surface Defect Detection

Traditional methods rely on specific illumination and image processing to identify defects.

For example, Liao et al. designed an inspection system under multiple directional illuminations

so that defects on machined surface can be emphasised [319]. Wang et al. compared the deep

learning method, VGG16 and InceptionV3, with the traditional method, HOG and SVM, in an

enhanced vehicle parts dataset [320]. The result shows a significant improvement in deep

learning methods for defect classification. Abagiu et al. proposed an inspection system for the

117

classification in engine pistons using CNN [20]. These image-level classification methods can

predict if a defect is presented but cannot locate it. Zhu et al. proposed an Mask-RCNN based

network to detect small defects in engine parts with bounding box [321]. A microscope is used

to obtain detailed images of the parts, which is not practical on the production line. All these

deep learning-based methods require hundreds of defect images for training. Instead, Abagiu

et al. proposed using a structural similarity index measure for pixel-level defect detection [322]

by comparing the test image with a reference image. However, this method requires the

reference image to be well aligned with the test image under the same illumination.

6.2.2.2. Anomaly Synthesis

Data synthesis is useful for dataset enhancement, especially for industrial applications where

data collection can be costly. The general data synthesis method includes the variational auto-

encoder (VAE), generative adversarial network (GAN), diffusion model, etc. These methods

have been adopted in defect detection. Li et al. [323] proposed to use synthetic 3D data for

training the detection model to reduce the cost of time, energy and material during data

collection. The trained model was used to detect geometric defects in additive manufacturing.

Through GAN, Zhang et al. proposed a Defect-GAN network to generate realistic defect

images. The network is capable of generating defects in normal images and remove the defects

to generate normal images. Instead of image-level synthesis, some studies focus on anomaly

synthesis and imposition on the original images. For example, the DTD method utilises the

DTD texture dataset to create anomalies in different patterns, including line, colour, size, bend,

and shape [324]. The CutPaste method randomly cropped and pasted images from the same

dataset to simulate anomalies [218]. The natural synthetic anomalies (NSA) method employs

Poisson image editing to seamlessly paste the copped image patch onto the target image [325].

The DRÆM method used the Perlin noise generator to create a variety of anomaly shapes

[326]. To study the influence of anomaly characteristics such as size, brightness, and contrast,

this research also proposed a new anomaly synthesis method that generates random polygon-

shaped anomalies with controlled anomaly characteristics, including size, brightness, and

contrast.

6.3. Concept Design

From the task clarification, only defect-free images are available for model training due to the

lack of defect images. It is also required to detect the exact numbers and positions of the defects

in each image. Therefore, the pixel-level anomaly detection method is adopted for this system.

According to the task clarification, for surface defect detection, a monocular RGB camera with

118

LEDs is sufficient. An optical filter can be applied to reduce interference from the surface

reflection of the metal parts.

Due to the limited number of collected data, the refined algorithm selection and optimisation

process is adopted. The image synthetic and processing techniques are used to establish a

validation dataset. The preliminary analysis is then carried out on this validation dataset to

comprehensively compare the image collection parameters, synthesis methods, and detection

models. Based on the preliminary analysis, the best image collection method and detection

model can be selected for this system. Then the dataset with real anomalies are used for the

algorithm optimisation based on the findings from the preliminary study.

6.4. Dataset Establishment

6.4.1. Image Collection

Due to reflection of the engine surface, some parts of the engine can be overexposed, leading

to false positive detections. Reflective light on the smooth surface of the engine block is

reduced by adding a polariser filter with a specific rotation angle. For comparison, five

different filter conditions are applied, including without filter, a filter rotated at 0, 45, 90, and

135 degrees, as shown in Figure 6.2. When the filter is applied, the exposure time is increased

to maintain the same image brightness. The reflected light is significantly reduced when the

filter is rotated to 90 degrees.

Figure 6.2. Sample images of different filter conditions: no filter, filter rotated at 0, 45, 90, 135 degrees, from left

to right.

Exposure time is another important factor that affects areas of overexposure and

underexposure. During data collection, three exposure times were used for each filter and

lighting configuration to cover different exposure settings. The intermediate exposure time t

was determined by the illuminance E in lux, from [327]:

𝑡 =
𝑁2𝐶

𝐸𝑆
(6-1)

where N is the f-number, C is the incident-light meter calibration constant, with common value

250 used, S is the ISO arithmetic speed. The exposure time was halved and doubled to provide

119

a range of settings, as shown in Figure 6.3.

Figure 6.3. Sample images of engine block with different exposure times of 100 ms, 200 ms, and 400 ms under

ceiling lights.

Different light directions and light intensities can affect the brightness distribution of the target

object. In this project, three different lighting configurations were used. The first configuration

utilised lights from the ceiling. The second used one LED light from the left-hand side of the

object. The third configuration included an additional LED light from the right-hand side of

the object. This approach allowed for a variety of lighting directions and intensities to be

included, as shown in Figure 6.4.

Figure 6.4. Sample images of an engine block with three lighting conditions: lights from the ceiling, one LED

from left-hand side, and two LEDs from the left and right-hand side.

Images of two engine parts, i.e., one engine block and one engine head, are captured to build

the dataset. With each set of image capture parameters, one of the six faces of the engine part

are placed to face toward the cameras. In total, 540 images were collected for each part of the

engine. Images of the six faces of engine head and engine block are shown in Figure 6.5.

The image collection setup is shown in Figure 6.6. The two cameras used are HikVision MV-

CE100-30GM with an image resolution of 3840x2748. Two LEDs are located on the two sides

of the target engine block/head. Exposure time is controlled by the collection software. The

other camera parameters are kept the same during the whole collection, including the white

balance, gain, focus, etc.

120

(a) Engine Head

(b) Engine Block

Figure 6.5. Example images taken for different faces of engine head and engine block.

Figure 6.6. Image collection setup for the engine head with two cameras and two LEDs.

Another set of images with real anomalies was captured using the system developed by the

Stellantis Centre Technique de Carrières (formerly PSA Group) in France. Several engines

after the machining process, with and without anomalies, during production are placed at a

fixed position in front of the camera. The camera resolution is 3088x2064. Since the object is

in the same position for all the images, the background in the image can be cropped out. The

sample images with and without anomalies are shown in Figure 6.7. This object is named as

engine under. In total, 55 images are normal images, among which 45 images are randomly

selected for training and 10 images with anomalies at different positions.

121

Figure 6.7. Sample images of engine under without (left) and with (right) anomalies.

6.4.2. Image Synthesis

Anomalies are rare and building an anomaly dataset is difficult. Therefore, some researchers

have used image synthetic techniques to mimic the anomalies and enrich the dataset. In this

project, three image synthesis techniques have been adopted to build engine anomaly datasets,

including Natural Synthetic Anomalies (NSA) [325], Perline noise generator [326], and

polygons with controlled area and brightness distribution. The aims of using synthetic datasets

are: 1) study the effects of the image collection parameters, 2) compare the effectiveness of

the image synthesis methods, and 3) compare the effectiveness of the anomaly detection

methods.

6.4.2.1. NSA

The NSA method tries to clone image patches from one image to another by Poisson image

editing [328]. To synthesise one anomaly image by NSA method, the source and target images

are randomly selected. Then an image patch from the source image is randomly resized and

pasted onto the target image at a random position with Poisson image editing. The number of

image patches for each anomaly image varies from 1 to 3. Finally, the pixel-wise labels for

each anomaly image are generated. One sample anomaly image for engine block generated by

NSA method is shown in Figure 6.8.

Figure 6.8. Sample synthetic anomaly image (left) and label (right) for engine block generated by the NSA

method

122

6.4.2.2. Perlin

Following the anomaly generation in the DRAEM [326] method, the Perlin noise image is

generated and binarized to capture a variety of anomaly shapes. This noise image is then used

as an anomaly mask for the source image to generate the anomalies, as an example in Figure

6.9. The augmentation functions are used to augment the source image, including posterise,

sharpness, solarize, equalize, brightness change, colour change, and auto-contrast.

Figure 6.9. Sample synthetic anomaly image (left) and label (right) for the engine block generated by the Perlin

noise image.

6.4.2.3. Polygon

The NSA method can only generate rectangular shaped anomalies and the Perlin noise image

has less control to the anomaly shapes and positions. To address the above problems, a simple

polygon generator is used to generate more controlled anomalies, as shown in Figure 6.10.

The number of polygon sides varies in the range of 3 to 6. The area of the polygon ranges from

100 to 5000 pixels. The contrast of the anomaly with respect to the target image is within 0.5

to 1.5.

Figure 6.10. Sample synthetic anomaly image (left) and label (right) for engine block generated by random

polygons.

6.4.3. Datasets with Synthetic and Real Anomalies

Two datasets are used for system verification and validation. The first dataset consists of

images with synthetic anomalies. For each engine part, the 540 original images are randomly

123

split into 270 images for training and 270 test images. Additional 270 training images are

generated with synthetic anomalies using different methods. The 270 test images are randomly

divided into 135 good images and 135 defective images with synthetic anomalies. In total, the

whole dataset contains 4860 images. The second dataset contains images with real anomalies.

It contains 45 training images and 20 test images. Among the test images, 10 of them are

normal images and another 10 contain 18 anomalies in total.

6.5. Synthetic Anomaly Analysis

6.5.1. Anomaly Detection Algorithm Candidates

For the preliminary analysis, five state-of-the-art anomaly detection algorithms are chosen,

including the GANomaly[185], NSA [328], STFPM [224], FastFlow [221], PaDiM [222].

6.5.1.1. GANomaly

Generative Adversarial Networks (GANs), which consist of a generator and a discriminator,

can be particularly effective for anomaly detection due to their ability to model complex data

distributions. The GANomaly model trains a GAN to determine if an image contains anomaly.

An encoder-decoder network is first used to reconstruct the input image as a generator. A

discriminator is used to determine whether the reconstructed image is fake or real. Therefore,

this model can only be used for image-level classification.

6.5.1.2. NSA

The NSA method takes the synthetic anomaly images to train an encoder-decoder CNN with

ResNet as the backbone. The model is trained to directly predict the anomaly mask, similar to

the traditional segmentation task. For better prediction results, logistic labels are used for

model training:

𝑦𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 =
𝑦𝑏𝑖𝑛𝑎𝑟𝑦

1 + exp(−𝑘(𝑦𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 − 𝑦0))
(6-2)

where ybinary is the binary label generated during image synthesis, ycontinuous is the colour

difference between the synthetic image and original image, k and y0 are the intensity logistic

parameters, set as 1/6 and 20 as default. ResNet-18 is used as the encoder without the final

classification layers. The decoder uses the same ResNet blocks and up-samples the feature

embedding to original image size. The binary cross-entropy loss is used for binary labels and

mean square error loss for logistic labels.

124

6.5.1.3. STFPM

The Student-Teacher Feature Pyramid Matching (STFPM) algorithm is based on a student-

teacher network architecture. The teacher network is typically pre-trained on a large, diverse

dataset to capture a wide array of features. The student network is trained on a more specific

dataset, typically the normal data for the anomaly detection task. The algorithm leverages

Feature Pyramid Networks (FPNs), which are a popular architecture in computer vision used

to detect objects at various scales within an image. Anomaly detection is performed by

comparing the feature pyramids of the student and teacher networks. For input image I, the

difference on the l-th feature map from the teacher 𝐹𝑡
𝑙(𝐼) and student network 𝐹𝑠

𝑙(𝐼) is

calculated as the L2 norm distance:

𝐿𝑙(𝐼) =
1

2
‖𝐹𝑡

𝑙(𝐼) − 𝐹𝑠
𝑙(𝐼)‖

2

2
(6-3)

6.5.1.4. FastFlow

The FastFlow is an anomaly detection algorithm that utilises Normalizing Flows (NFs). The

NFs are designed to transform data from a complex, multi-dimensional distribution into a

simpler distribution. They are "normalising" because they transform data into a standard form,

and they are "flows" because they allow the transformation to be reversed. In FastFlow, the

feature map from the feature extractor is transformed to a standard normal distribution. The

probability density of each location on the feature map is estimated for anomaly detection. The

flow model 𝑓: 𝑋 → 𝑍 is a bijective invertible mapping that projects the image features 𝑥 ∈

𝑝𝑋(𝑥) to hidden variable 𝑧 ∈ 𝑝𝑍(𝑧). It consists of a stack of the invertible transformation flow

blocks fi. The model distribution on X can be defined by the change of the hidden variable as:

𝑝𝑋(𝑥) = 𝑝𝑍(𝑧) |𝐝𝐞 𝐭 (
𝜕𝑧

𝜕𝑥
)| (6-4)

The log likelihoods for image features can be estimated from 𝑝𝑍(𝑧) by:

log 𝑝𝑋(𝑥) = log 𝑝𝑍(𝑧) + log |𝐝𝐞 𝐭 (
𝜕𝑧

𝜕𝑥
)| = log 𝑝𝑍(𝑓𝜃(𝑥)) + log |𝐝𝐞 𝐭 (

𝜕𝑓𝜃(𝑥)

𝜕𝑥
)| (6-5)

where 𝑧~𝒩(𝑜, 𝐼) and the
𝜕𝑓𝜃(𝑥)

𝜕𝑥
 is the Jacobian of the flow model, 𝜃 is parameters of the flow

model. The invertible flow model satisfies that 𝑧 = 𝑓𝜃(𝑥) and 𝑥 = 𝑓𝜃
−1(𝑧).

6.5.1.5. PaDiM

The Patch Distribution Modelling (PaDiM) algorithm leverages patch-based fully

convolutional network to detect the anomalies based on the feature embeddings modelling.

125

For each patch, PaDiM models the distribution of features extracted by a pre-trained CNN. It

uses multivariate Gaussian distributions (MGD) to capture the statistical properties of the

features of normal patches. The anomaly is detected by comparing the feature embedding of

the test image patch against the learnt distributions. The feature embeddings 𝑋𝑖,𝑗 = {𝑥𝑖,𝑗
𝑛 , 𝑛 ∈

[1, 𝑁]} of N image patches at location (i, j) extracted from the pretrained CNN are modelled

as a multivariate Gaussian distribution 𝒩(𝜇𝑖,𝑗 , ∑𝑖,𝑗) , where 𝜇𝑖,𝑗 and ∑𝑖,𝑗 are the mean and

covariance of 𝑋𝑖,𝑗. The covariance ∑𝑖,𝑗 is estimated as:

∑𝑖,𝑗 =
1

𝑁 − 1
∑(𝑥𝑖,𝑗

𝑛 − 𝜇𝑖,𝑗)(𝑥𝑖,𝑗
𝑛 − 𝜇𝑖,𝑗)

T
+ 𝜖𝑰

𝑁

𝑛=1

(6-6)

where the 𝜖𝑰 is regulation term to make the covariance matrix full rank and invertible. Each

image patch is associated with a multivariate Gaussian distribution that carries information of

different semantic levels. During the test, the feature embeddings of the image patches from

the test image are extracted at each location. The anomaly score is obtained by Mahalanobis

distance calculation between the feature embeddings and the multivariate Gaussian

distribution:

𝑀(𝑥𝑖,𝑗) = √(𝑥𝑖,𝑗 − 𝜇𝑖,𝑗)
T

∑𝑖,𝑗
−1(𝑥𝑖,𝑗 − 𝜇𝑖,𝑗) (6-7)

The Mahalanobis distances at different image locations form the anomaly map. The image-

level anomaly score is the highest score in the anomaly map.

6.5.2. Experiment Setup

 Anomalib [329] is an open source deep learning libraries that has collected a number of state-

of-the-art anomaly detection algorithms. A good API design has made it a good choice for

algorithms selection and development for this system. The default parameters are used for each

anomaly detection model. ResNet18 is used as the backbone network for models who need

one. The input image size is set to 256x256. ImageNet normalisation is used for all the images.

To evaluate the performance of anomaly prediction, two sets of metrics are used. The first set

is for image and pixel level analysis, including Optimal F1 and AUROC, which have been

widely used in anomaly detection. Another one is anomaly level analysis focusing on the

anomaly score of each anomaly, regarding to anomaly size, brightness, and contrast.

6.5.3. Image and Pixel Level Analysis

126

6.5.3.1. Training with the full dataset

To compare the performance of different models for different target objects, the models are

trained and tested with the full dataset, as shown in Figure 6.11. For image-level performance,

the image F1 score and AUROC are all above 0.8 except for the GANomaly model with only

less than 0.7 image F1 score and less than 0.6 AUROC. The other four models have similar

performance but react differently to the synthesis methods. The reconstruction-based models,

NSA and FastFlow, perform best on the Perlin dataset, while the feature embedding-based

methods, STFPM and PaDiM perform best on the NSA dataset. As for the pixel level

performance, there is a large deviation between the F1 score and AUROC. The F1 score is

much lower than the AUROC, typically below 0.65 for the NSA dataset, and below 0.5 for the

other two datasets. This deviation is caused by the pixel-level imbalance between normal and

abnormal pixels. The Perlin dataset has many small anomalies that only occupy a small part

of the image. Although the anomalies from Polygon and NSA datasets are typically large patch,

therefore showing a higher F1 score. The GANomaly model is not included due to its

incapability of pixel-level detection.

(a) Image F1 Score (b) Image AUROC

(c) Pixel F1 Score (d) Pixel AUROC

Figure 6.11. Model comparison with respect to image and pixel level metrics.

In terms of the target object, the performance of the models has the same trends for engine

head and engine block. The engine block dataset is more difficult than the engine head, with

127

difference within 0.1 on all the evaluation metrics, as can be seen in Figure 6.12.

(a) Image F1 Score (b) Image AUROC

(c) Pixel F1 Score (d) Pixel AUROC

Figure 6.12. Model performance comparison on engine head and engine block.

6.5.3.2. Filter

To compare the effects of the polarised filter, only data with specified filter condition are used

for training but tested on the entire test dataset with all the filter conditions, as shown in Figure

6.13. The Filter0-4 corresponds to no filter, and filter rotated at 0, 45, 90, and 135 degrees,

respectively. The overall performance of Filter0, which does not use filter, has the lowest

performance for all the anomaly detection models. The other four filter conditions exhibit

similar performance at both the image and pixel levels, with no single condition significantly

outperforming the others.

As for the models, the PaDiM model achieves the best performance over all the filter

conditions except the pixel F1 on Filter0. This could be explained by the lack of training data

when the dataset is divided into five subsets with different filter conditions. All models except

PaDiM need iterative training on the dataset. Consequently, the PaDiM is less sensitive to

image scarcity and filter variations.

128

(a) Image F1 Score (b) Image AUROC

(c) Pixel F1 Score (d) Pixel AUROC

Figure 6.13. Model comparison under different filter conditions: F0-no filter, F1-filter rotated at 0°, F2-45°, F3-

90°, F4-135°.

(a) Image F1 Score (b) Image AUROC

(c) Pixel F1 Score (d) Pixel AUROC

Figure 6.14. Comparison of models under different filter conditions and tested on dataset with the same filter

condition or dataset with all filter conditions.

129

In real applications, the filter condition is mostly kept unchanged during development and

deployment. Therefore, the models are also tested with dataset that has the same filter

condition with the training dataset, as shown in Figure 6.14. Interestingly, the model does not

always perform better on the dataset with the same filter condition. The accuracy across

different filter conditions using various metrics shows a degree of randomness. This suggests

that for synthetic anomalies, the filter condition has a limited impact on detection accuracy.

6.5.3.3. Exposure

Three training datasets with three exposure levels, namely Exp0, Exp1, and Exp2, are

established for model training. The exposure time of Exp1 is calculated by Eq.(1). The time

of Exp0 and Exp2 is half and double of Exp1. The performance of anomaly detection on the

three datasets is shown in Figure 6.15. The PaDiM model consistently performs the best across

all datasets and metrics. A comparison with the average performance across models is shown

in Figure 6.16. The models perform best with the normal exposure dataset, but the difference

in performance between the different exposure levels is less than 0.02 for all models. It is

obvious that models trained and tested on the same exposure levels perform better than tested

on the whole dataset with all the exposure levels.

(a) Image F1 Score (b) Image AUROC

(c) Pixel F1 Score (d) Pixel AUROC

Figure 6.15. Model comparison on different exposure levels: Exp0-under exposure, Exp1-normal exposure,

Exp2-over exposure.

130

(a) Image F1 Score (b) Image AUROC

(c) Pixel F1 Score (d) Pixel AUROC

Figure 6.16. Model comparison on different exposure level and tested on dataset with the same exposure level or

dataset with all the exposure levels.

6.5.3.4. Lighting

Three training datasets with three lighting conditions, namely Light0, Light1, and Light2, are

established for model training. The Light0 to Light2 correspond to lights from the the ceiling,

one LED from the left-hand-hand side, and two LEDs from left and right-hand side. The

performance of anomaly detection on three datasets are shown in Figure 6.17. The

performance differences among the models are much smaller compared to the changes caused

by different filters or exposure levels. Furthermore, the performance is similar across the three

lighting conditions, indicating that the anomaly detection models have consistent but low

sensitivity to lighting variations. This can also be observed from Figure 6.18 that the lighting

condition itself has a limited impact on performance. However, the difference between testing

on dataset with specific lighting conditions and dataset with all lighting conditions are much

larger, with 0.05-0.1 gap on image and pixel accuracy. This indicates that the lighting

conditions should remain unchanged during training and testing. Otherwise, the results will be

variant unless the diversity of lighting conditions in the training dataset should be ensured to

be close to the actual ones.

131

(a) Image F1 Score (b) Image AUROC

(c) Pixel F1 Score (d) Pixel AUROC

Figure 6.17. Model comparison under different lighting conditions: Light0-ceil light, Light1-one LED from left,

Light2-two LEDs from left and right.

(a) Image F1 Score (b) Image AUROC

(c) Pixel F1 Score (d) Pixel AUROC

Figure 6.18. Model comparison on different lighting conditions and tested on dataset with the same lighting

condition or dataset with all the lighting conditions.

132

6.5.3.5. Summary

Overall, in terms of the anomaly detection methods, the GANomaly model performed the

worst in image-level detection. The other four methods performed similarly when trained with

the whole dataset. However, the PaDiM model performed the best when trained with

subcategories dataset, showing highest robustness across different image collection parameters,

including the filter, exposure, and lighting.

Among the three datasets, the NSA and Perlin datasets are easier than the Polygon dataset for

image-level anomaly detection. For pixel-level detection, the NSA dataset is significantly

easier than the other two. This can be explained by the fact that the NSA dataset contains

anomalies in large patch shapes, while the Perlin and Polygon datasets contain anomalies in

random shapes and smaller sizes. More detailed datasets comparison can be found in the next

section about anomaly level analysis.

For datasets with controlled image collection parameters, the filter has less impact on anomaly

detection. Although reducing reflective light can decrease overexposed areas of the target part,

this effect can also be achieved by adjusting the exposure time. The polariser filter may be

particularly useful when defects are bright and easily confused with other overexposed areas,

which is not the case for this dataset. With respect to exposure time, on average, the best

performance for anomaly detection is achieved at normal exposure levels. Maintaining

consistency between exposure levels during training and testing is beneficial for optimal

performance. This consistency is essential for lighting conditions and is more important than

the specific lighting condition itself.

6.5.4. Anomaly Level Analysis

6.5.4.1. Anomaly Distribution

The anomaly level analysis focuses on the effects of anomaly characteristics on detection,

including anomaly size, anomaly brightness, and anomaly contrast. Firstly, the distribution of

these three anomaly characteristics is compared in Figure 6.19. For a better view, the anomaly

sizes are presented on a log10 scale on the x-axis. It can be seen that the NSA dataset in Figure

6.19 (a) contains anomalies concentrated between 2.7 and 3.5 (approximately 500 to 3000

pixels) in a 256x256 resolution image. The Perlin dataset has anomalies less than 100 pixels.

The Polygon dataset has anomalies distributed around 1.5 to 3 (approximately 30 to 1000

pixels). The brightness and contrast distribution for the three datasets is similar and normally

distributed.

133

(a) Anomaly Size

(b) Anomaly Brightness

(c) Anomaly Contrast

Figure 6.19. Comparison of the anomaly characteristics of NSA, Perlin, and Polygon datasets, regarding anomaly

size, brightness, and contrast.

6.5.4.2. Anomaly Size

The anomaly score relative to the scaled anomaly size for different datasets and anomaly

detection models is compared in Figure 6.20. The anomaly score for each anomaly is the

maximum prediction score within the anomaly area. For each bin of the anomaly size in the

plot, the anomaly score is averaged for anomalies within the size range. For all three datasets,

the anomaly score increases linearly with the scaled anomaly size. Only a small number of

anomalies have size larger than 3.0 from the Perlin dataset, the drop of anomaly score when

the size is larger than 3.5 is not crucial.

Regarding to the anomaly detection models, the STFPM model remains close to 0.5 for all the

anomaly size. The PaDiM model performs better than FastFlow when the scaled anomaly size

is smaller than 3.0. The FastFlow model performs the best when the scaled anomaly size is

larger than 3.0 except one point that the NSA model surpassed FastFlow at 3.7. The anomaly

score of the NSA model exceeds 0.5 only when the scaled anomaly size is larger than 3.5.

134

Figure 6.20. The anomaly score in relation to the anomaly size for different datasets (left) and anomaly detection

models (right).

6.5.4.3. Anomaly Brightness

The anomaly score relative to the anomaly brightness for different datasets and anomaly

detection models is compared in Figure 6.21. It can be observed that the NSA and Polygon

datasets are less sensitive to brightness variations. In contrast, for the Perlin dataset, the

anomaly score is significantly higher for anomaly brightness between 50 and 200. Regarding

the models, the anomaly score increases steadily when the brightness is less than 170 and then

drops slightly. Due to the image normalisation process of the models, the absolute brightness

of the anomalies has less impact on the anomaly score than the relative brightness, the anomaly

contrast, as discussed below.

Figure 6.21. The anomaly score with respect to the anomaly brightness for different datasets (left) and anomaly

detection models (right).

6.5.4.4. Anomaly Contrast

The anomaly score with respect to the anomaly contrast for different datasets and anomaly

detection models is compared in Figure 6.22. All three datasets show increase trend of anomaly

score with the increase of the contrast, especially for the Perlin dataset, which has much greater

number of anomalies. The anomaly score of the STFPM model still remains around 0.5 with

a slight increase with the contrast. The PaDiM model performs better than FastFlow for all the

135

contrast ranges. The NSA model struggles to achieve an anomaly score greater than 0.2.

Figure 6.22. The anomaly score with respect to the anomaly contrast for different datasets (left) and anomaly

detection models (right).

6.5.4.5. Summary

The three datasets cover different distributions of the anomaly size but have similar

distributions of the brightness and contrast. For anomaly size, the anomaly score increases

linearly with the scaled anomaly size. The anomaly brightness has less influence on the

anomaly score than the anomaly contrast. A higher anomaly score is achieved for brightness

between 50 and 200. A higher anomaly contrast usually leads to higher anomaly scores.

6.6. Real Anomaly Analysis

In this section, the model performance is evaluated on the real anomaly dataset. Since the NSA

method still requires synthetic anomalies during the training stage, the three synthesis methods

are used to generate synthetic anomalies. To evaluate the influence of anomaly size, different

input image resolutions for the models are used to change the anomaly size in pixel, including

256, 512, and 1024. Image augmentation is then used to enrich the training dataset, and its

influence is evaluated. Similarly to the synthetic anomaly analysis, image and pixel level

analysis is performed first, followed by the anomaly level analysis.

6.6.1. Image and Pixel Level Analysis

First, the NSA method is evaluated on the real anomaly dataset with three different synthesis

methods to train image generation. The results regarding the four image and pixel metrics are

listed in Table 6.1. It is obvious that the model trained on the Perlin dataset outperforms the

other two significantly. However, the overall performance is poor with the best pixel F1 score

only 0.009. For the following evaluation, only the Perlin synthetic dataset will be used for the

NSA method.

136

Table 6.1. Evaluation of NSA method on real anomaly dataset using different synthesis method.

Synthesis method Image F1 Score Image AUROC Pixel F1 Score Pixel AUROC

NSA 0.667 0.150 0.001 0.360

Perlin 0.869 0.790 0.009 0.539

Polygon 0.701 0.634 0.003 0.521

The results of the five anomaly detection models with different input image resolutions are

listed in Table 6.2. The GANomaly method cannot distinguish the anomalous image from the

normal images due to the small size of the anomalies. The NSA method is found to be more

difficult to locate anomalies when image size increases to 512. All the other three models

achieve a pixel AUROC of more than 0.9. However, the image level detection and the pixel

F1 score of STFPM and FastFlow are not satisfying with most pixel F1 scores less than 0.1.

An increase in image size to 512 is beneficial for GANomaly, STFPM, and PaDiM, but

detrimental to NSA and FastFlow.

The PaDiM model demonstrates clear superiority over the other models, exhibiting complete

accuracy in image-level classification and the highest pixel-level performance. The optimal

performance is observed when the image size is 512. Compared to the synthetic dataset, this

notable discrepancy between the PaDiM and the other models can be attributed to the reduction

of the training images from 270 to 45. Additionally, given that the PaDiM model extracts and

fits patch-level features at fixed positions for all images, it benefits from a dataset in which all

objects are positioned consistently within the image.

PaDiM is the only model that does not require iterative model training, resulting in the fastest

training time of only 32 seconds, even for an image size of 1024. It also has the fastest

inference speed with 3.35 fps for an image size of 256. The downside is that its model size

explodes with image size. While the models of NSA, STFPM, and FastFlow are much smaller.

Table 6.2. Evaluation of anomaly detection models on a real anomaly dataset.

Model
Image

Size

Image F1

Score

Image

AUROC

Pixel F1

Score

Pixel

AUROC

Train

Time (s)

Inference

FPS

Model

Size

(MB)

GANomaly

256 0.667 0.240 - - 265 0.86 2109.0

512 0.690 0.631 - - 1775 0.47 8219.7

1024 - - - - - - -

NSA

256 0.790 0.790 0.009 0.539 776 1.46 43.9

512 0.857 0.790 0.006 0.611 4557 1.18 43.9

1024 - - - - - - -

STFPM

256 0.741 0.640 0.051 0.952 178 3.32 35.0

512 0.800 0.630 0.112 0.986 340 3.06 37.6

1024 0.833 0.680 0.059 0.968 397 2.11 54.5

FastFlow

256 0.833 0.780 0.033 0.906 76 3.29 86.8

512 0.714 0.530 0.009 0.789 28 2.85 125.7

1024 - - - - - - -

PaDiM

256 0.909 0.940 0.151 0.990 6 3.35 177.2

512 1.000 1.000 0.262 0.994 11 3.00 674.2

1024 0.952 0.950 0.258 0.997 32 2.11 2664.1

137

To enrich the training dataset, the image augmentation techniques, such as rotation, translation,

brightness, and contrast adjustment, are used to increase the training images from 45 to 180.

The results of all the models trained on the augmentation dataset are listed in Table 6.3. Despite

increasing the number of training images four times, there is little improvement in most models.

In particular, STFPM and FastFlow benefit more from image augmentation, whereas the other

models show little or negative improvement. This is due to the fact that simple augmentation

methods do not sufficiently enrich the image features.

The PaDiM model remains the best performer. Although the image-level accuracy drops

slightly and is no longer 100% accurate, the best pixel F1 score improves significantly from

0.262 to 0.322 when the image size is 1024. With the augmented dataset, the increase in image

size improves recognition accuracy, particularly the pixel F1 score, which increases from

0.190 to 0.322. However, the pixel AUROC drops by 0.004 and 0.001 for image size of 256

and 1024.

Table 6.3. Evaluation of anomaly detection models on real anomaly dataset with image augmentation. The red

digits indicate decrease and green digits indicate increase.

Model Image Size Image F1 Score Image AUROC Pixel F1 Score Pixel AUROC

GANomaly

256 0.667 (0) 0.310 (+0.070) - -

512 0.667 (-0.023) 0.300 (-0.331) - -

1024 - - - -

NSA

256 0.833 (+0.043) 0.770 (-0.020) 0.008 (-0.001) 0.585 (+0.046)

512 0.869 (+0.012) 0.780 (-0.010) 0.005 (-0.001) 0.460 (-0.151)

1024 - - - -

STFPM

256 0.769 (+0.028) 0.720 (+0.080) 0.063 (+0.012) 0.971 (+0.019)

512 0.800 (0) 0.690 (+0.060) 0.118 (+0.006) 0.987 (+0.001)

1024 0.800 (-0.033) 0.680 (0) 0.066 (+0.007) 0.973 (+0.005)

FastFlow

256 0.869 (+0.036) 0.850 (+0.070) 0.113 (+0.080) 0.908 (+0.002)

512 0.818 (+0.104) 0.790 (+0.260) 0.058 (+0.049) 0.930 (+0.141)

1024 - - - -

PaDiM

256 0.909 (0) 0.970 (+0.03) 0.190 (+0.039) 0.986 (-0.004)

512 0.952 (-0.048) 0.990 (-0.01) 0.242 (-0.020) 0.994 (0)

1024 0.952 (0) 0.980 (+0.03) 0.322 (+0.064) 0.996 (-0.001)

Overall, similar to the synthetic dataset, all the models struggle to accurately locate the

anomalies, leading to low pixel F1 score. Among these models, the PaDiM is the most robust

and accurate model. The change in image size changes the anomaly size and the details of the

image. The best image size for the PaDiM model is 512. Image augmentation is helpful for the

STFPM and FastFlow model but not the others. All the performance of STFPM and FastFlow

increased after augmentation, except the image F1 score of STFPM at image size 1024 drops

by 0.033. The anomaly level analysis regarding the image size and anomaly characteristics is

carried out in the next section.

6.6.2. Anomaly Level Analysis

138

Due to its significant superiority over the other models, the PaDiM model is selected as the

core model for this anomaly detection application. The anomaly score of each anomaly is

calculated for the PaDiM model with respect to the anomaly size, brightness, and contrast. As

can be seen in Figure 6.23, the anomaly score changes to the upper right when the image size

increases. This verifies the preliminary analysis that the anomaly score increases with the

anomaly size. The anomaly scores for all anomalies are higher than 0.3 when the image size

is 1024. This indicates that all anomalies can be identified if the threshold is 0.3, although this

results in an increase in the number of false positives from 35 to 282. Given that the lighting

conditions of the engine datasets are identical, the anomaly contrast is directly proportional to

the anomaly brightness, resulting in a similar distribution of anomaly-wise performance. The

fitted lines from real anomalies and synthetic anomalies in Figure 6.23 show similar trends,

indicating the effectiveness of the synthetic anomaly analysis.

Figure 6.23. The anomaly score with respect to the anomaly size (left), anomaly brightness (middle) and anomaly

contrast (right). The fitted lines of anomaly score from synthetic anomalies and real anomalies are compared.

The prediction results for a sample image with different image sizes are shown in Figure 6.24.

The original image contains four anomalies with different size and brightness. More anomalies

are detected when the image size increases. The only anomaly detected when the image size

is 256, in the upper middle of the image, has the highest brightness. However, the largest

anomaly shows a relatively high anomaly score in the anomaly map and cannot be fully

detected due to its low brightness and low contrast with the surrounding area. The smallest

anomaly near the largest anomaly cannot be detected for any image size. It is observed that

the larger the image size, the more false positives detected by the model, especially at the

background.

139

Figure 6.24. PaDiM prediction results on a sample image with different image sizes.

6.7. Model Optimisation

The accuracies of general-task models are limited when applied directly to this real-world

application. For this specific application, certain observations can help enhance the

performance during the anomaly detection process:

1) The feature extractor used for all models is ResNet-18 for concept proofing. This can

be replaced by more powerful feature extractors.

140

2) Many false positives are detected in the background area which could be eliminated

by background removal.

3) For this complicated part, the level of variations is different in different image part. A

global anomaly score threshold is not the optimised solution.

Based on the above observations, some improvements can be made to the anomaly detection

process, including the ViT feature extractor, background removal, and image tiling.

6.7.1. Feature Extractor

The feature extractor used in previous experiments is ResNet-18, which can be replaced by

more powerful feature extractor, the Vision Transformer (ViT) [330]. The comparison of using

different feature extractors is listed in Table 6.4. The image size is set to 1024. For ViT model

sets, the final feature layer with 256 dimension is used. The ViT model sets have much more

model parameters and better representation ability than the ResNet. The PaDiM achieves 100%

image level accuracy when using ViT-large model. The pixel F1 score increases significantly

from 0.258 to 0.386 when using the ViT-huge model.

Table 6.4. Comparison of using different feature extractors for the PaDiM model.

Feature Extractor Parameters (M) Image F1 Image AUROC Pixel F1 Pixel AUROC

ResNet-18 11 0.952 0.950 0.258 0.997

ViT-base 86 0.909 0.930 0.294 0.995

ViT-large 307 1.000 1.000 0.282 0.994

ViT-huge 632 0.952 0.990 0.386 0.995

6.7.2. Background Removal

Since the engine is placed in the same place in the image, the background can be removed

using the Segment Anything Model (SAM) [331] with a rough bounding box prompt. The

extraction result and anomaly map prediction are shown in Figure 6.25. The original image

and the ground truth are the same as in Figure 6.24. The false positives in the background have

been eliminated. The image F1 score, AUROC, pixel F1 score, AUROC are 0.909, 0.940,

0.431, and 0.997, respectively.

141

Figure 6.25. Background removal result using SAM and bounding box prompt for image with anomaly (left) and

corresponding anomaly map (right).

6.7.3. Image Tiling

By image tiling, each image is divided into 3x3 image patches to form 9 sub-datasets. The

image size for each patch is 1024. Each dataset is trained separately to have its own threshold.

Also, the anomaly size is also enlarged at each image patch. The prediction results for image

patches that contain anomalies are shown in Figure 6.26. The object mask from the SAM is

used to filter the background. The prediction quality has been greatly improved, with all four

anomalies identified with only one false positive. The average image F1 score, AUROC, and

pixel F1 score, AUROC are 1.000, 1.000, 0.662, 0.996, respectively. Both the image and the

pixel level accuracy have been dramatically improved.

142

Figure 6.26. Prediction results of image patches containing anomalies by image tiling.

Although anomaly detection has achieved image level, there are still some false positives in

normal and abnormal images when the threshold is set to achieve the best F1 score, as shown

in Figure 6.27. The anomaly score is high across the entire image patch due to the change in

lighting condition. Most of the detected false anomalies are at the edges of the engine with

high brightness. Some very small shining points on the engine are also identified as anomalies.

Overall, by a set of improvements, including better feature extractor, background removal, and

image tiling, the anomaly detection accuracy using the PaDiM model has been significantly

improved at both the image level and the pixel level. All anomalies can be successfully

identified with the cost of false positives in 7 images.

143

Figure 6.27. Sample false positive predictions for good images using the image tilling method.

Overall, by a set of improvements, including better feature extractor, background removal, and

image tiling, the anomaly detection accuracy using PaDiM model has been significantly

improved at both image level and pixel level, as listed in Table 6.5. All the anomalies can be

successfully identified with the cost of false positives in 7 images.

Table 6.5. Model improvements for real anomaly dataset. The red digits indicate decrease and green digits

indicate increase.

Improvement Image F1 Score Image AUROC Pixel F1 Score Pixel AUROC

Original 0.952 0.950 0.258 0.997

ViT-huge 0.952 (0) 0.990 (+0.040) 0.386 (+0.128) 0.995 (-0.002)

Background

Removal

0.909 (-0.043) 0.940 (-0.010) 0.431 (+0.173) 0.997 (0)

Image Tiling 1.000 (+0.048) 1.000 (+0.050) 0.662 (+0.404) 0.996 (-0.001)

6.8. Summary

To design an anomaly detection system for quality monitoring of engine production, this case

study follows the proposed algorithm selection and optimisation process. It first presents a

144

comparative study involving different anomaly synthesis methods, anomaly characteristics,

and anomaly detection techniques. Based on the findings from the synthetic dataset, specific

improvements were made to the real anomaly dataset to achieve zero false negative prediction.

Specifically, this study successfully established two datasets for engine parts, containing both

synthetic and real anomalies. The synthetic dataset was generated using different image

collection configurations and three different anomaly synthesis methods. A comprehensive

comparative analysis was conducted using five anomaly detection methods, evaluating image,

pixel, and anomaly-level detection accuracy across the three synthesis methods, three anomaly

characteristics, and five detection models. Ultimately, the best-performing model from this

analysis was selected and optimised for the real anomaly dataset, achieving zero false negative.

The study highlights the effectiveness of the methodology in guiding the systematic

development and optimisation of AVI systems. The case study demonstrates the importance of

structured dataset creation as an essential step of the design methodology. By establishing two

datasets with both synthetic and real anomalies, the study highlights how the dataset's

characteristics significantly impact model performance and how synthetic data can support

model development in the absence of sufficient real anomaly samples.

For algorithm selection and comparative study, the study adopts a comparative approach to

evaluate five state-of-the-art anomaly detection algorithms, reflecting the design

methodology's emphasis on method benchmarking and selection. This process provides

comprehensive insights into the strengths and limitations of different methods under varying

anomaly characteristics and image acquisition conditions, which is a critical aspect of AVI

system design.

The study further validates the importance of optimisation as an iterative process in the

proposed design methodology. By fine-tuning hyperparameters and applying post-processing

techniques, the selected model achieves zero false negatives and minimal false positives,

demonstrating how optimisation significantly enhances detection performance.

145

7. The Fourth Case Study: 3D-Level Spacecraft

Anomaly Detection

This chapter reports the fourth as well as the last case study of a vision-based anomaly

detection system for modular and reconfigurable spacecraft. Central to this case study is the

development of a 3D image capture system for dataset establishment and development of a

reconfigurable algorithm pipeline. The algorithm selection and optimisation process is also

applied, presenting a distinct extension of the proposed comprehensive design methodology

by addressing the unique challenges associated with 3D-level anomaly detection. Specifically,

three distinct image capture systems were developed, consisting of two sets of stereo cameras

and one structured light camera. The software system was developed to be reconfigurable. The

backbone of anomaly detection is formed by 3D reconstruction and registration algorithms.

Two datasets are used for algorithm selection, including a small satellite model and an

engineering feature block. The selected algorithm is optimised on the modular spacecraft

dataset. The final system is evaluated through a series of anomaly detection tasks, including

surface, interface, and reconfiguration anomaly detection.

7.1. Introduction

In space exploration and satellite technology, the concept of modular and reconfigurable

spacecraft is a paradigm shift. Traditionally, missions entail launching singular, fixed-purpose

satellites specifically designed for predetermined tasks. However, the limitations inherent in

this approach, such as high costs, long development times, and inflexibility to adapt to

changing mission requirements, have spurred the development of modular and reconfigurable

spacecraft [332]. Modular and reconfigurable spacecraft are a novel class of space vehicles

that offer a dynamic and versatile approach to space missions. They depart from the

conventional "one-size-fits-all" approach by allowing for the assembly of spacecraft using

standardised, interchangeable components, or modules, akin to building blocks. These

modules can be configured and reconfigured in orbit, allowing a single spacecraft to undertake

various missions, adapt to unexpected challenges, or extend its operational lifespan [333].

Vision systems are a crucial aspect of the spacecraft system, potentially allowing for the

automatic monitoring and control of spacecraft and robots in the expansive realm of outer

space. These advanced systems possess the ability to obtain and transmit valuable spatial and

geometric data from camera images, which can then be used by a robotic planner. This planner

146

directs the robot in its regular duties and, importantly, allows instantaneous reactions to

unexpected occurrences, enabling fast adaptation of the robotic operational conduct to prevent

probable collisions [334].

This chapter outlines the development of the vision system for the modular and reconfigurable

spacecraft. The system objectives and requirements are identified during the task clarification

stage. Then the concept of vision system architecture and software platform is generated. The

embodiment design focuses on the dataset establishment and algorithm selection and

optimisation. Three datasets are collected using the stereo camera, two of which are used as

validation dataset for algorithm selection, and the other one are used as test dataset for

algorithm improvement. A software platform is developed to enable reconfigurable algorithm

nodes and chains. The final system is verified and validated through a series of anomaly

detection tasks.

7.2. Task Clarification

7.2.1. System Requirements and Specifications

The specifications derived from the task clarification are summarised as follows:

• A vision inspection system that can detect anomaly of the modular and reconfigurable

spacecraft, including surface, interface, and reconfiguration anomaly.

 • A 3D reconstruction of the satellite could be produced from the observation by a camera,

with a maximum surface average error of 1cm.

• The 3D pose estimation of the spacecraft modules could be computed based on the image

stream obtained by the camera mounted on the walking manipulator, with a mean error not

larger than 1 cm translation and 5° rotation.

• Initial detection of a module does not require real-time capabilities but needs to be achieved

to meet the above accuracy.

7.2.2. Related Works

7.2.2.1. Vision-based Spacecraft Inspection System

The use of computer vision techniques for spacecraft inspection can be traced back to the

implementation of the Space Vision System by the Canadian Space Agency [335, 336]. This

vision system was utilised on the space shuttle Columbia flight in November 1996 for element

berthing and space station assembly operations. Another vision system used for space missions

is the Advanced Video Guidance Sensor. This system demonstrated its efficacy through its use

147

on the Defence Advanced Research Projects Agency Orbital Express mission in 2007 for

spacecraft guidance [337]. A vision-based navigation system was developed by Alonso et al.

[338] for formation flying of spacecraft. The position sensing diode was used together with an

optical sensor to estimate spacecraft state using the Lyapunov and contraction mapping

approach. However, there is a limited availability of vision systems tailored specifically for

the inspection of modular and reconfigurable spacecraft.

Typically, there are three types of vision system for in space applications regarding the image

capture system, including monocular camera, stereo camera, and laser camera. The monocular-

based vision system uses a single camera to capture RGB image of the spacecraft for inspection.

To retrieve 3D information of the targets, the monocular camera is always supported by other

additional components, such as markers [339] or structured light [340]. Through stereo

matching, the 3D point cloud can be obtained for the targets together with the RGB image

using stereo cameras [341]. Laser-based methods include using laser range finder [342] for

distance measurement or LIDAR target 3D reconstruction from LIDAR [343]. With regard to

the utilisation of additional light sources, vision systems can be classified into passive and

active systems. In space applications, LEDs and structured lighting represent two common

light sources. LEDs are employed not only to enhance the target's brightness but also, at times,

their arrangement can serve as patterns or markers for monocular vision systems. Structured

light, on the other hand, finds utility in both monocular and stereo vision applications. For

laser-based vison systems, it usually does require an extra light source.

7.2.2.2. 3D Reconstruction and Localisation

During the past decade, several works have addressed the problem of 3D reconstruction from

RGB data. Usually, the problem is reduced to a camera localisation step, followed by a fusion

process of the 3D data in one unique environmental representation. The developed 3D

reconstruction solution evolved in quality from variant of the iterative closest point algorithm

with the capacity of handling sparse data or dense data in a small area to hierarchical

optimisation of the reconstruction over large areas.

The iterative closest point (ICP) algorithm is an iterative process that refines the estimation of

pose between two point clouds. Pamerleau proposed an ICP comparison framework for

multiple ICP variations [344]. It is reported that the ICP using point-to-plane distance was 77%

faster than ICP using point-to-point distance. In addition, the point-to-plane pose error for the

ICP was 60-90% lower than the point-to-point pose error. In [345], Henry et al. proposed an

algorithm that uses the Surfel representation, which refers to 3D points taken from a depth

148

image and enriched with additional descriptive information, such as surface normal. The

reconstruction algorithm initiates by identifying SIFT features in the stereo images. These

features are then matched with a RANSAC estimation followed by a point-to-plane ICP

refinement. This idea was extended in [346] with a new energy function defined as the

weighted sum of a geometric term based on the consolidated point-to-plane distance and a

photo consistency term based on the colour difference.

Instead of reinventing the wheel, some existing software can be used with maturely developed

implementation of 3D processing pipeline. InFuse is a software equipped with a collection of

data fusion algorithms. It contains a 3D reconstruction pipeline composed by a point cloud

reconstruction step from a pair of stereo images, an ICP matching step between consecutive

point clouds and point cloud fusion step by weighted average [347]. Based on the InFuse

library, this study will focus on the development of a vision inspection system for modular

spacecraft.

7.3. Concept Design

The vision processing subsystem is composed of a vision processing platform and a fixed

camera. The processing platform is a standard computer with dedicated memory and

processors and input/output peripherals such as a monitor, a keyboard, and a mouse. The

processing platform will host an Ubuntu Operating System and will execute the vision

processing algorithms. The camera will be installed on a stand at a pre-determined location

beside the satellite mock. The camera field of view will cover the upper surface of the satellite,

granting clear visibility to the non-occluded spacecraft modules. The space illumination

conditions will be simulated by setting the demonstrator in a dark room with a black

background. The lighting conditions will approximate those that could be experienced in space.

A dark background will be placed behind the demonstrator to absorb light and minimise

features detected by the vision system. Three adjustable servicer LED lamps will be located

on the side of the camera and will illuminate the visible side of the demonstrator.

To detect anomalies in spacecraft, a point cloud is generated through 3D reconstruction using

either a stereo camera or a structured light camera. This allows for image capture of the the

evaluation of a the determination of the poses of all observed spacecraft through feature

matching, which could then be used for CAD model registration. By calculating the distance

between the point cloud and the registered CAD model, anomalies can be identified according

to a predefined threshold.

149

7.4. Dataset Establishment

To validate the vision inspection system, three datasets are collected using different 3D printed

models, including the small satellite, the engineering feature block, and modular satellite. The

small satellite dataset serves as a feasibility study of 3D reconstruction and localisation from

the stereo camera pair. The engineering feature block dataset focuses on comparison of

different 3D localisation methods. The modular satellite dataset contains the target object of

the MOSAR system and is used for final system validation by anomalies detection tasks. The

small satellite dataset was collected by my colleagues Dr. Mutian and Dr. Alessandro Bianco,

while the other two datasets were collected by myself.

7.4.1. Hardware Configuration

The hardware for the vision subsystem was selected for the lab environment demonstrator. The

control unit was selected as small size workstation with an a good computing power. Two

completely same set of cameras and lens are selected for stereo vision with high resolution

imaging ability. Additional two PTZ cameras with adjustable focal length were used for

selective zooming function. Furthermore, an RGB-D camera using binocular structured light

technology was bought for better point cloud reconstruction. These components are listed in

Error! Reference source not found. with detailed specifications.

7.4.2. Data Collection

To validate the vision inspection system, three datasets are collected using different models.

The first model is a small satellite with typical satellite shape that has one main body and two

solar panels, captured by HikVision stereo cameras. The second model is a block designed to

contain typical engineering features, captured by both HikVision stereo cameras and

Revopoint RGB-D camera. The third model is the finalised modular spacecraft, captured by

all the three camera sets of, including another DataVideo PTZ stereo cameras. The CADs of

the three modules are shown in Figure 7.1.

(a) (b) (c)

 Figure 7.1. CAD of the three modules for vision system, including (a) small satellite model, (b) engineering

feature block, and (c) modular spacecraft.

150

7.4.2.1. Small Satellite

For the image capture of this model, the vision system consists of a SCARA robot, a pair of

Hikvision stereo cameras, a set of 4 controllable lightings in a dark room, and a conveyor belt

which could move the model, as shown in Figure 7.2. Stereo cameras were attached to the

SCARA robot and instructed to rotate in a circular motion with the model in the centre. In total,

21 pairs of stereo images were captured with robot arms rotated every 4.5o in the range of 90o.

A sample image pair is shown in Figure 7.3. The colour different was caused by the white

balance discrepancy from product inconsistence of HikVision camera. This dataset aims to test

the stereo reconstruction and pose estimation function of the vision system.

Figure 7.2. Vision system setup for small satellite model.

Figure 7.3. Sample image of small satellite captured by HikVision stereo cameras.

7.4.2.2. Engineering Feature Block

An engineering feature block was designed containing most of the typical engineering features,

such as circle, triangle, polygon, holes of different depth,, thread, etc. It was 3D printed to test

the 3D reconstruction and registration performance of the vision system. For 3D printing

precision evaluation, measurements were carried out with calliper, height gage, and dial

indicator, giving a maximum error of 0.271 mm. Therefore, the 3D printed model is accurate

enough and the CAD model is used as the point cloud ground truth.

Both the stereo camera and RGB-D camera were used for image capture from different angle,

151

distance, exposure time, and illumination conditions. The system set up is shown in Figure 7.4.

The EFB was placed on a rotating plate so that it can be rotated with a minimum angle interval

of 5o. The stereo cameras and RGB-D camera were placed at two sides of the model. Three

LED lamps were placed around the model to create different illumination directions and

intensity.

Figure 7.4. Vision system setup for EFB model image capture.

The two cameras were placed at two difference distances from the EFB. According to the field

of view, the HikVision camera was placed about 50 cm and 70 cm away, while the Revopoint

camera was placed about 30 cm and 50 cm away. Three view angles of the camera with respect

to the EFB were used, about 30, 45, and 60 degrees. Four sets illumination were configured

with different numbers of LEDs turned on. For each illumination configuration, three exposure

times of HikVision stereo cameras were used based on the measured exposure value (EV), as

listed in Table 7.1. The exposure time for RGB camera of Revopoint RGB-D was set as auto-

exposure. Due to the usage of structured light, the depth camera is not sensitive to the

illumination, therefore three different exposure values were used but the same for all the

illumination conditions. The EFB was rotated for 360 o with angle interval of 10o. A sample

image pair from HikVision camera with distance 50 cm, view angle 60, and illumination level

0, exposure time 300 ms is shown in Figure 7.5. Another sample image from Revopoint RGB-

D camera with distance 30 cm, view angle 45, illumination level 2, depth camera exposure

time 10 ms, is shown in Figure 7.6. This dataset aims to test the multi-view stereo

reconstruction, RGB-D image quality, line segment based monocular image pose estimation,

and point cloud based pose estimation.

Table 7.1. Illumination configuration for EFB image capture

Level Description Lux
Exposure

value

HikVision

Exposure (ms)

Revopoint

Exposure (ms)

0 Room Lights 211 6.4 200, 400, 800 10, 20, 30

152

1 One back LED 320 7.0 125, 250, 500 10, 20, 30

2 Two lateral LEDs 342 7.1 125, 250, 500 10, 20, 30

3 Three LEDs 685 8.1 62, 125, 250 10, 20, 30

Figure 7.5. Sample EFB image of stereo image pair from HikVision Camera.

Figure 7.6. Sample EFB image of RGB and depth from Revopoint camera.

7.4.2.3. Modular Satellite

After finalising the modular satellite design, it is 3D printed for testing in one tenth of the

original size. The components of one modular satellite including frame, interface and cover,

which are separately printed, as shown in Figure 7.7. The system setup is shown in Figure 7.8.

The three camera sets were used for data collection, including HikVision stereo cameras,

Revopoint RGB-D camera, and DataVideo PTZ stereo cameras. The robot arm is Universal

Robot UR10 to simulate the walking manipulator. The module body and interface were printed

separately so that the interface anomaly can be easily created. There are two focal lengths

configured for the PTC stereo cameras targeting close and far view of the satellite, with the

camera intrinsic and extrinsic parameters calibrated separately.

To simulate the surface anomaly of the module body, two different kinds of anomaly were

designed in CAD and 3D printed, including one extrude and one recess with 5 mm depth both

in ellipse shape with major axis 8 cm and minor axis 4 cm. The interface anomaly is designed

as protrusion or recession with respect to the cover plate. For reconfiguration anomaly test, the

experiments were simply designed with one to three modules presented in the view and test if

the modules can be detected with correct number and location. The sample images with surface

153

anomaly taken by the three sets of cameras are shown in Figure 7.9, Figure 7.10, Figure 7.11,

respectively. This dataset aims to test whether the designed vision inspection system can

successfully detect the surface, interface, and reconfiguration anomalies.

(a) (b) (c)

 Figure 7.7. CAD model of modular satellite components including (a) satellite frame, (b) interface, and (c) cover

with anomaly.

(a) HikVision Stereo Cameras

(b) Revopoint RGB-D Camera

154

(c) DataVideo PTZ Stereo Cameras

Figure 7.8. Vision system setup for modular satellite model image capture using three sets of cameras.

Figure 7.9. Sample modular satellite image with surface anomaly from HikVision stereo cameras.

Figure 7.10. Sample modular satellite image with surface anomaly from Revopoint RGB-D camera.

Figure 7.11. Sample modular satellite image with surface anomaly from DataVideo PTC stereo camera.

155

7.5. Object Pose Estimation

7.5.1. Algorithms for Object Pose Estimation

Pose estimation is the last step before the CAD model compared to the reconstructed point

cloud. Therefore, it is the most important part of the vision subsystem, as it directly influences

the accuracy of the three inspection requirements including surface, interface, and

reconfiguration anomaly detection. For stereo and RGB-D based pose estimation, the image

feature extraction is critical for model recognition and localisation. In this study, the image

features are used to obtain an initial model pose estimation. The point cloud based method is

then used to refine the pose.

7.5.1.1. Image Feature based Pose Estimation

The image features of a model in RGB image can be used for initial pose estimation by

matching the image features with 3D model features. Typically used image features for the

2D-3D correspondence include a key point, line segment, and curve.

A. Key Point Detection

The key point is an important image feature that is widely used for object recognition and

localisation. Generally, there are two kinds of key point in computer vision, that is, traditional

feature points which are category-agnostic and generated from a small image patch, such as

SIFT, and semantic feature points of specific objects and generated from AI model. The AI-

generated key points enable direct mapping to 3D models due to their inclusion of semantic

information, unlike traditional feature points which only provide low-level feature. In practice,

AI-based key points are more robust than traditional feature points if the model is well trained

with sufficient data. Among the AI-based key points detector, including regression, heatmap,

segmentation, and bounding box, the heatmap-based key points detection method is used in

this study because it has better interpretability. The output of heatmap-based detector is a set

of heatmaps with each showing the probability density of the key point at each pixel location.

The position with the highest probability is chosen as the position of that key point.

For this study of satellite model pose estimation, an AI model is trained to detect the predefined

key-points of the satellite model in one RGB image. The key-points are then used for initial

pose estimation by solving the PnP problem. The AI model uses a one-layer hourglass CNN

architecture [348], with output of 19 heatmaps representing the positions of 19 key-points. The

input image size is 256x256 and the output heatmap size is 96x96. The architecture of the

network is shown in Figure 7.12.

156

Figure 7.12. Hourglass model for satellite key points detection.

For supervision, the ground truth of each point is also a heatmap as a 2D Gaussian with

standard deviation of 1 pixel and cantered on the point location. The Mean-Squared Error

(MSE) loss is applied for back propagation.

B. Edge based Image Feature

Edge detection in computer vision is a fundamental process that aims to identify and extract

linear patterns or edges within an image, providing valuable information for tasks like object

recognition and scene analysis. This is particularly significant for industrial components that

include many fabricated features, such as straight line, curve, and circle. Unlike other

algorithms that use edges from the edge detector as an image feature, the line segment and

curve are more meaningful and contain less noises. Therefore, the line segment and the curve

together comprise the edge feature of industrial parts for pose estimation.

In this study, the Line Segment Detector (LSD) algorithm [349] is used. The LSD algorithm

is a widely recognised method for detecting line segments in images. It is known for its

efficiency and robustness in identifying line segments of varying lengths and orientations

within images, making it a valuable tool in computer image processing applications. Compared

to the Hough transform, the LSD has several advantages. It takes into grey scale image as input

instead of binary image. The algorithm operates in linear time and does not require parameter

tuning, making it highly advantageous for space applications where lighting conditions may

vary significantly.

The curve is another significant edge feature of 2D images that can be used for pose estimation

through edge point matching. Usually, detection of curves is the first step of circle and ellipse

detection. Here, the curve detection is the same as the one in circle and ellipse detection but

used directly for pose estimation. In this study, the edge drawing method was used for edge

extraction [135], which introduced the Helmholtz principle to eliminate invalid detections.

Then the curve detection follows the same procedure presented in [350] for the circle detection.

The procedure is summarised as follows:

157

1. Detect edge segments by the edge drawing method.

2. Extend and merge edges to fill the gap of several pixels.

3. Convert the remaining edge segments into line segments using Edlines in [351].

4. Detect curves by combining line segments with turning angle as a criterion.

5. Validate the curves by the Helmholtz principle.

The Helmholtz principle states that whenever some large deviation from randomness occurs,

a structure is perceived. Based on this, the ε -meaningful event is used to capture the

meaningful edge segments. We say that an event that is ε - meaningful if the expectation of the

number of occurrences of this event is less than ε under the a contrario random assumption.

When ε ≤ 1, we simply say that the event is meaningful. The number of false alarms (NFA) is

defined as:

𝑁𝐹𝐴 = 𝑁𝑐𝑜𝑛𝑓 ∙ 𝐵(𝑛, 𝑘, 𝑝) ≤ 𝜀 (7-1)

𝐵(𝑛, 𝑘, 𝑝) = ∑ (
𝑛
𝑖

) 𝑝𝑖(1 − 𝑝)𝑛−𝑖

𝑛

𝑖=𝑘

(7-2)

where Nconf is the number of different possible configurations one could have for the searched

object, p is the precision of the detection, usually probability of a Bernoulli distribution. For

the curve, Nconf is defined as:

𝑁𝑐𝑜𝑛𝑓 = ∑
𝑙𝑖(𝑙𝑖 − 1)

2
𝑖

(7-3)

where li is the length of the segment. For the edge of engineering features, the angle change

should be consistent. According to the Helmholtz principle, an edge segment is meaningful if

the probability of this segment happening is rather low, with the assumption that each angle

change is independent and randomly distributed. The segment validation problem can be

reformulated with p being 0.125. Instead of focusing on the gradient distribution along the

segment, this method focuses on the sub-segment angle distribution. This assumes that the

extracted segments are valid and looks for segments aligned with engineering features.

The edge features, comprising of both line segments and curves, can be used for pose

estimation in two distinct ways. The first method is for estimating the pose of monocular

images. The 3D model edges are back projected to the image, and the extracted edge features

are matched with the 3D model edges. Once the point-to-point correspondence is established

between image edges and 3D edges, the PnP problem can be solved to estimate the pose of the

3D model in camera coordinates. The other method is for RGB-D image pose estimation. The

158

2D edge features can be mapped directly to 3D points in the RGB-D image. Then the 3D points

can be used either for 3D feature fitting and matching, or directly for point cloud matching

with the 3D model. In this study, both methods will be used.

J. Perspective-n-Points

The Perspective-n-Point (PnP) problem is a fundamental challenge in computer vision and

robotics, particularly in the context of pose estimation. It involves determining the position

and orientation (pose) of a camera relative to a set of 3D points in a scene, given their

corresponding 2D projections in the camera's image. Mathematically, given a set of 3D points

in world coordinate system, represented as {Xi | i = 1, 2, ..., n.}, and their corresponding 2D

points in image coordinate system, represented as { xi | i = 1, 2, ..., n.}, the camera's intrinsic

parameters including the focal length (fx, fy), principal point (cx, cy), and lens distortion

parameters, The goal is to find the camera's extrinsic parameters, which specify its pose in the

world coordinate system, including rotation matrix R, which describes the camera's orientation,

and the translation vector t, which represents the camera's position. Generally, the PnP problem

can be defined as follows.

𝑓(𝑋𝑖, 𝑥𝑖 , 𝑹, 𝒕) = 0 (7-4)

where f represents the mapping between 3D world points and their corresponding 2D image

projections, taking into account the camera's intrinsic parameters, as well as the rotation matrix

R and the translation vector t. Solving the PnP problem typically involves finding the values

of R and t that minimise the error in the mapping f, often expressed as the sum of squared

reprojection errors:

𝑒𝑟𝑟𝑜𝑟 = ∑‖𝑥𝑖 − 𝑲[𝑹|𝒕]𝑋𝑖‖

𝑖

(7-5)

where K is the camera intrinsic matrix and

𝑲[𝑹|𝒕] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

𝑡1

𝑡2

𝑡3

] (7-6)

Various algorithms, such as the Direct Linear Transform (DLT) or iterative methods like

Levenberg-Marquardt, can be employed to find the optimal values for R and t that best align

the 3D points with their corresponding 2D projections, thereby solving the PnP problem and

estimating the camera's pose.

In practice, the problem of PnP can be sensitive to outliers, which refer to incorrect or noisy

159

correspondences between 3D points and their 2D projections. The Random Sample Consensus

(RANSAC) algorithm performs excellently in addressing these outliers by choosing subsets

of correspondences, fitting pose models, and identifying the consensus set of inliers that

concurs best agree with the model. By doing so, the algorithm considerably enhances the

precision and accuracy of pose estimation, even in the existence of noisy data. RANSAC is an

iterative method that is used to calculate the parameters of the mathematical model from a data

set containing outliers. The method deliberately excludes outliers, ensuring that they do not

affect the estimated values. The number of iterations N can be determined from:

𝑁 =
log(1 − 𝑝)

log(1 − 𝑤𝑚)
(7-7)

where m is the lowest number of points that uniquely define the model, w is the percentage of

inliers, and p is the desired probability that the RANSAC algorithm will produce at least one

useful result in this run.

Apart from using in the PnP problem, the RANSAC can also be used in any matching

algorithms where outliers may appear, such as line segment 3D matching, model registration,

etc.

7.5.1.2. Point Cloud based Pose Estimation

The point cloud based pose estimation matches the reconstructed point cloud and the 3D model

in camera coordinate system. The object point cloud together with the RGB image can be

obtained by stereo reconstruction or directly from the RGB-D camera, both of which provide

the pixels to 3D points correspondence. The iterative closest point (ICP) method is the most

popular way for point cloud matching because of its easy implementation and effectiveness.

A. Stereo Reconstruction

Stereo reconstruction is a computer vision technique used to reconstruct the 3D structure of a

scene or objects by analysing the disparities between corresponding points in stereo images

captured by two cameras. This process is based on the principles of triangulation and stereo

geometry. The epipolar geometry describes the geometric relationship between two cameras

and their corresponding points in stereo images. The fundamental matrix F represents this

relationship and is used to restrict the search for the corresponding points. The epipolar

constraint can be expressed as follows:

(𝑥′)𝑇𝑭𝑥 = 0 (7-8)

160

where x and x' are the homogeneous image coordinates of a point in the left and right images,

respectively, and F is the fundamental matrix. The disparity map represents the pixel-wise

horizontal shift (disparity) between corresponding points in the left and right images.

According to the epipolar constraint, the disparities can be calculated simply by the difference

of the horizontal coordinates of the corresponding points in the left and right images. Once the

disparity map is obtained, the depth values for each pixel can be calculated by:

𝑍 = 𝑓
𝐵

𝑑𝑖𝑠𝑝𝑎𝑟𝑖𝑡𝑦
(7-9)

where f is the focal length of the camera lens and B is the baseline distance between the two

cameras (the distance between their optical centres).

By calculating the disparities and applying the depth estimation equation, the 3D

representation of the scene or objects can be created from the stereo images. The calculation

of disparities through stereo matching is the most important part of stereo reconstruction since

it directly influences the accuracy of the depth calculation. Stereo matching quality depends

on the matching algorithm and image quality. With smooth and reflective surfaces that contain

large area of similar pixel values, the stereo matching always failed to estimate the disparity.

The structure light with predefined pattern can be used to add features to the images and

significantly improve the stereo matching quality.

B. ICP Registration

Once the point cloud of the object is obtained, the pose of the object can be estimated by the

point cloud matching between the reconstructed point cloud Cr and point cloud sampled from

the mesh model Cm. The goal is to find the transformation T composed of a 3D rotation matrix

R and a 3D translation vector t that minimises the sum of squared distances between

corresponding points in Cr and the transformed Cm, expressed by:

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = ‖𝑝𝑟 − (𝑹𝑝𝑚 + 𝑻)‖2 (7-10)

where pr and pm are points in Cr and Cm.

The Iterative Closest Point (ICP) algorithm is a widely used technique in computer vision and

robotics to align two sets of 3D points through an iterative optimisation process. It is

commonly employed for tasks such as point cloud registration, 3D object alignment, and

mapping. The primary goal of ICP is to find the transformation (translation and rotation) that

best aligns one set of points to another. The procedure of ICP following the step:

161

1) Initialisation: Start with an initial guess for the transformation T (often an identity matrix).

2) Point Correspondence: Find the nearest neighbours in the the set Cm for each point in set Cr.

This establishes point correspondences.

3) Alignment Estimation: Estimate the transformation (R, t) that minimises the sum of squared

distances between the corresponding points. Rotation Estimation: Compute the optimal

rotation matrix R using Singular Value Decomposition (SVD) of the cross-covariance matrix

between the corresponding points. Translation Estimation: Calculate the translation vector t as

the mean of the differences between the corresponding points.

4) Update Transformation: Update the transformation T with the estimated (R, t).

5) Termination Criterion: Check if a termination criterion is met (e.g., small change in

transformation or a maximum number of iterations). If not, repeat steps 2-4.

6) Final Transformation: The final transformation T aligns the set Cm with the set Cr.

ICP iteratively refines the transformation until convergence. Variants of ICP exist to address

these challenges, such as Robust ICP (which handles outliers) and Point-to-Plane ICP (which

considers the surface normal for more accurate alignment). It is important to note that ICP can

be sensitive to the choice of initial alignment, data noise, and the presence of outliers. In this

study, initial pose estimation was used through image feature based point estimation methods.

7.5.2. Small Satellite Model Pose Estimation

The dataset of small satellite model was used to test the stereo reconstruction and pose

estimation performance of the vision system. The stereo matching algorithm parameters tuning

strategy was firstly investigated. Then the reconstructed point cloud from different view angles

was merged to obtain more point clouds. Finally, the key point based pose estimation was used

to obtain the initial pose for final ICP registration.

7.5.2.1. Stereo Reconstruction

The stereo matching algorithm used is from the OpenCV library, which is a semi-global block

matching (SGBM) algorithm modified from [352]. There are 11 parameters in the tuning of

the algorithm for the generation of disparity maps. It would be time-consuming and inefficient

to use a trial-and-error approach to find the optimal parameter set for the MOSAR vision image

capture work. The Taguchi method was used to reduce the number of experiments [353].

Taguchi uses orthogonal arrays to stipulate the way to conduct a minimum number of

experiments, which give sufficient information of the effect of a parameter upon a performance

162

parameter. The alternative is the factorial method, which involves altering all parameters,

resulting in unnecessary testing of all possible combinations of parameters. Using Taguchi for

the 11 parameters (3 levels for 10 parameters and 1 parameter at 2 levels) results in a L54 (2^1

plus 3^10) orthogonal array, that is 54 tests compared to 118098 tests for the full factorial

method. Software tools such as Minitab can be used to produce the Taguchi test. The values

used for the 11 parameters in the test are listed in Table 7.2.

Table 7.2. Values for parameter tuning of stereo matching algorithm

MinDisp NumDisp BlockSize

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

450 500 550 22 24 26 3 7 9

SpecRange SpecSize MaxDiff

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

1 3 5 75 125 160 4000 5000 6000

UniRatio Smooth1 Smooth2

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

8 10 12 100 200 300 400 800 1200

Cap TwoPass

Level 1 Level 2 Level 3 Level 1 Level 2

300 500 700 0 1

Figure 7.13. Comparison of reconstruction results of three parameter combinations.

The criterion to evaluate the performance of a combination of the parameters is the number of

points reconstructed for the small satellite. The density in region of interest (DROI) was used

which calculates the ratio of matched pixels and total pixels for the small satellite model. The

pixels of the small satellite model were extracted by colour segmentation. The comparison of

reconstruction results of three parameter combinations is shown in Figure 7.13. The blue mask

shows the segmentation results of the small satellite. The DROIs from left to right are 0.80,

0.77, and 0.74, respectively. According to DROI, the best parameter combination of

163

parameters can be determined.

7.5.2.2. Point Cloud Merge

The point cloud from one point of view contains many noises and holes. To improve the quality

of the point cloud, the point cloud from different points of view can be merged as a new point

cloud. In both the lab environment and the space application, the rough relative position of the

target with respect to the camera can be obtained from the robot control module. Here, the

point cloud from another viewpoint is first transformed to the first viewpoint using the rough

relative position, and then refined by the ICP algorithm.

To estimate the initial transformation, the transformation matrix is estimated through the

geometrical layout of the vision system and the camera rotation during image capture. The

coordinate system of the vision system for the small satellite model is shown in Figure 7.14.

The transformation from the camera and object can be estimated. For different viewpoints, a

new transformation matrix can be generated with the knowledge that the camera was rotated

4.5o centred at the object. After the initial transform estimation, the point clouds can be merged

using the ICP algorithm with the first as the target. An example of point cloud merge result is

shown Figure 7.15 using the point cloud from the 4th, 5th, and 6th viewpoints. It can be seen

that the number of points has increased and many holes have been filled.

Figure 7.14. The coordinate system of the vision system for the small satellite model.

Figure 7.15. Point cloud merge result using the 4th, 5th, and 6th viewpoints.

164

7.5.2.3. Key Point Detection and Pose Estimation

 AI-based key point detection requires a labelled dataset for model training. Therefore, the

dataset of satellite images is labelled with the ground truth key points positions. The open-

source software LabelMe is used for labelling the points. For the small satellite model, 19

points are selected, mainly the vertices of the satellite model, as shown in Figure 7.16. The

labelled images are fed to the hourglass model for training of key point heatmap generation.

The input is the undistorted and rectified single RGB image with size 256x256. Then 19

heatmaps with size 96x96 are generated from the AI model. The mean square error (MSE) loss

function is used to calculate the gradients. Adam optimiser is used for gradient update with

initial learning rate of 0.001 and weight decay 1e-4. The batch size is set to 8 and 1000 epochs

are used in total. The final loss after training is 1e-4.

Figure 7.16. Key points selected for the small satellite model.

Once the model training is completed, the key points of the satellite model can be predicted

for each image. The corresponding 3D coordinates of these points on the CAD model are also

known. With the camera intrinsic matrix calibrated, by solving the projective-n-points (PnP)

problem, rotation and translation vectors can be obtained for initial pose estimation. The 2D

projective points of transformed 3D points are compared with the predicted points, revealing

the precision of PnP, as shown in Figure 7.17. The green points are the predicted key points

using AI model. The red points are the projected 3D vertices points after transformation using

the rotation and translation vectors obtained from solving the PnP problem. It can be observed

that the red points align well with the predefined key points.

165

Figure 7.17. Comparison of key point prediction (green dots) with the ground truth (red dots).

Once the initial pose is estimated from PnP, the ICP algorithm can be sued to refine the pose.

The satellite model is sampled as a point cloud from the CAD mesh file. This point cloud is

first transformed using the vectors from initial pose estimation as shown in Figure 7.18. Then

the ICP algorithm is used for point cloud registration, from which a more accurate pose

estimation is obtained. The transformed 3D mesh model is compared with the reconstructed

point cloud to evaluate the accuracy of pose estimation, as shown in Figure 7.19. The 3D mesh

of the satellite model is transformed and displayed together with the reconstructed point cloud

from stereo images. Compared to the initial pose estimation, the CAD model using the refined

pose aligned much better with the point cloud. The ICP algorithm was also applied without

using the initial pose estimation from PnP, as shown in Figure 7.20, showing a rotation error.

Overall, the feasibility of stereo-based pose estimation has been verified using the small

satellite model.

Figure 7.18. The CAD model (grey) is transformed using matrix from PnP and compared with the point cloud

(red points).

However, as an initial pose estimation, the accuracy is enough for postprocessing, such as

aligning algorithm like iterative closest point (ICP). The below image shows the alignment

using the ICP algorithm.

166

Figure 7.19. The CAD model (grey) is transformed using matrix from ICP with initial pose from PnP and

compared with the point cloud (red points).

Figure 7.20. The CAD model (grey) is transformed using matrix from ICP without initial pose and compared with

the point cloud (red points) showing 90 degree rotation error.

7.5.3. Engineering Feature Block Pose Estimation

The EFB dataset was collected for general purpose engineering feature recognition,

localisation, and defect detection. In this study, the EFB dataset was used for the evaluation of

edge feature extraction, monocular image edge-based pose estimation, and defect detection.

7.5.3.1. Edge-based Pose Estimation

The extraction of edge features, such as lines, circles, and arcs, is critical for recognising parts

in engineering. For the edge-based pose estimation, which will be described shortly, the edge

pixels are the key part regardless of whether it belongs to a line or a circle. Traditional edge

detectors such as Canny can be used directly, but the detection results always contain useless

edge segments and noises. The line or circle detector can only find a small part of useful edges.

Therefore, in this study, the edges from edge detector are filtered to extract useful edges

through the NFA-based false detection control, including line segments and arcs. The result of

the edge filter is shown in Figure 7.21 using the EFB dataset. It is obvious that most of the

noise from the edge pixels has been filtered out.

For edge-based pose estimation, the ground truth edge is first generated using the CAD model

and back projection, as shown in Figure 7.22. This requires an initial pose estimation for the

167

object similar to the ICP registration, which can be obtained through key-point detection or as

prior knowledge from the system setup. Then the edge pixels from the image are matched to

the ground truth edges through a search in the direction of the edge normal. After edge

matching, the image pixels from the extracted edge can be mapped to the 3D points from the

ground truth edge. Finally, the pose can be estimated by solving the PnP problem. The

registration result is shown in Figure 7.23 and Figure 7.24. It can be seen that the ground truth

edge has been well aligned with the EFB in the image through only a monocular image. The

distance between the matched edge points is shown in Figure 7.23 with red colour showing a

higher matching error.

(a)

(b)

Figure 7.21. Comparison of edges extracted from EFB before (left) and after (right) NFA-based filter.

Figure 7.22. The ground truth edge generated from CAD and the extracted and filtered edge from image.

168

Figure 7.23. Ground truth edge (right) and matching error (right) overlayed on the left camera image after

alignment by solving PnP. The red colour means higher matching error.

Figure 7.24. Results of edge-based registration for the upper left (left) and lower right (right) parts of EFB.

To quantitatively assess the quality of different alignments, the average model edge to image

edge distance is used as a criterion, as listed in Table 7.3. Other two methods are also

implemented using 3D edge information. The edge pixels are mapped to the 3D points through

stereo reconstruction and registered with the 3D model edges. The SVD method uses the point

correspondence from the edge matching and calculates the transformation from 3D image edge

points to model edge points. The ICP method simply registers the two edge point cloud. It is

shown that using only the monocular image and the PnP method, the model registration

accuracy is comparable to the ones with 3D information. The ICP method achieved the best

performance. It should be noted that the ICP method used only the 3D edge points of both the

reconstruction and the CAD model. The ICP using the complete reconstructed points will have

much better accuracy, which will be described in the next section.

Table 7.3. The comparison of edge-based model registration

Method Edge Distance (px) Point Cloud Distance (mm)

PnP 1.80 0.7553

SVD 1.78 0.7321

ICP 1.69 0.6132

7.5.3.2. Point Cloud Registration

Stereo images from HikVision stereo cameras were used for point cloud reconstruction. The

reconstructed point cloud is shown in Figure 7.25. Unlike the small satellite model, the point

cloud quality is higher with fewer holes and noises due to the feature-rich surface of the 3D

169

printed model through multi-jet fusion. The reconstructed point cloud is registered to the

sampled point cloud from CAD model for pose estimation with the pose from edge-based

method as initial pose, as shown in Figure 7.26. It can be seen that the reconstructed point

cloud is well aligned with the sampled point cloud. The position of each feature part of the

EFB is well estimated. The mean distance from the reconstructed point cloud to the CAD

model is 0.4209. The point cloud from the RGB-D camera is also shown in Figure 7.25. The

mean distance after ICP registration is 0.3861, which gives better point cloud quality.

Figure 7.25. The EFB point cloud from the stereo reconstruction (left) and the RGB-D camera (right).

Figure 7.26. Pose estimation of EFB through ICP registration.

7.6. Modular Spacecraft Inspection

7.6.1. Algorithm Selection and Optimisation

From the pose estimation experiments for small satellite model and engineering feature block,

it shows the necessity of initial pose estimation and high accuracy of the ICP algorithm. For

initial pose estimation, the key-point detection AI model is accurate, but relies on labelled

training data and lacks generalisation ability. Edge-based pose estimation is effective and easy

to implement. Therefore, for modular spacecraft inspection, the edge-based pose estimation is

used for the initial estimation. Then the ICP algorithm is used to refine the pose. For anomaly

170

detection, the distance between the reconstructed point cloud after registration with the CAD

model is calculated. The 3D points with distance higher than the preset anomaly tolerance are

regarded as anomaly.

Due to the simple structure of the spacecraft, the edge-based pose estimation can be optimised

by simple orthogonal 3D line matching. It also needs to be modified to fit this application

given that a multiple number of spacecrafts could be present in one image. The 3D lines

already matched will be removed from the matching pool. An additional procedure is required

to filter out false detection by visibility check.

The pipeline of spacecraft anomaly detection is defined as: image acquisition, point cloud

reconstruction, segment 3D extraction, segment 3D matching, model position detection, model

inlier extraction, and module anomaly detection. The workflow is shown in Figure 7.27.

Figure 7.27. Workflow of satellite anomaly detection.

First, the stereo images are acquired from a stereo camera with intrinsic and extrinsic

parameters calibrated. Then the stereo images are undistorted and rectified based on the

calibration parameters. The stereo matching algorithm is used to calculate the disparities of

the stereo image pair and reconstruct the point cloud of the scene. From the RGB image of the

left camera, the 2D image features such as the line segment are extracted and mapped to 3D

points. The 3D points of the line segments are fitted as 3D line segments. By matching the

extracted 3D line segments and model line segments, the model can be detected with a 6 DoF

pose. The model inlier point cloud is then extracted from the reconstructed point cloud from

the estimated position. The above steps will continue until no more models can be detected.

The positions of all the models will be compared with the predefined configuration for

reconfiguration anomaly detection. The extracted model inlier will be compared with the

model CAD for surface and interface anomaly detection.

The algorithm development focuses on three nodes, i.e., 3D segment extraction, 3D segment

matching, and 3D model inlier extraction.

1) 3D Segment Extraction

171

Edge is one of the most simple but important features for object detection. The algorithms for

2D segment detection have been very mature, but the detection of 3D segments that rely solely

on the point cloud is still difficult. In this application, through the RGB-D image, this problem

can be solved accurately and efficiently, as shown in Figure 7.28. First, the 2D segment is

extracted on the RGB image with the line segment detector (LSD). Then the pixels belonging

to the segments are mapped to 3D points through the transformation matrix between the RGB

image and the depth image. Finally, the 3D points of the same segment will be fitted into the

3D segment through the RANSAC algorithm.

Figure 7.28. Workflow of the segment 3D extraction node.

2) 3D Segment Matching

Once the 3D segments are extracted, the segment matching algorithm can be performed to

search for cubes among the segments. It is impossible to search with brute force for all possible

transformations, as shown in Figure 7.29. Instead, the repeated RANSAC algorithm was used

with some constraints. Initially, all orthogonal segment pairs are found from the 3D segments

of the last step and the cube model, forming two sets of segment pairs. Then, two pairs from

each set are randomly selected and the transformation matrix from one to the other is calculated.

The segments of the cube model are then transformed using the matrix and compared with the

extracted segments to calculate the overlapping length. Once the overlapping length of more

than two segments is larger than a threshold and the overall length is larger than another

threshold, this match will be treated as a success. This process will be iterated multiple times

until no success match is found. This step always tries to find all the possible models even

though some of which are invalid and will be filtered out in the next step.

Figure 7.29. Workflow of 3D segment matching node.

3) Model Inlier Extraction

After the segment matching process, the inlier points from the point cloud will be extracted.

Simple use of the distance from point to model mesh will introduce many outliers. Therefore,

172

loop of reprojection and ICP alignment combination was used to determine the inliers, as

shown in Figure 7.30. The transformed mesh model after the matching process is reprojected

to the depth map, and the points inside the reprojected meshes are treated as inlier candidates.

Then the ICP algorithm is used to align the inlier candidates with the sample point cloud of

the mesh model to get a new transformation of the model. Repetition of the reprojection and

ICP alignment twice can obtain a good result of inliers. To filter out the invalid model from

the last step, two thresholds are introduced to imply constraint to the detected model, one for

the total number of the inliers and one for the number of inliers of each visible faces of the

model. The last step is to calculate all the distances of each inlier point to the model, which

will be used for anomaly detection by the region growing method.

Figure 7.30. Workflow of model inlier extraction node.

7.6.2. Test Procedures

For surface anomaly detection, three scenarios were designed, including i) one undamaged

module, ii) one module in the view with 5 mm surface protrusion, iii) one module in the view

with 5 mm surface recess, and iv) one module undamaged and another module with 5 mm surface

protrusion.

For interface anomaly detection, three scenarios were designed including i) one undamaged

module, ii) one module in the view with 5 mm interface protrusion, iii) one module in the view

with 5 mm interface recess, and iv) one module undamaged and another module with 5 mm

surface protrusion and 5 mm interface recess.

For reconfiguration anomaly detection, two scenarios were designed including i) two modules

in the view and ii) three modules in the view.

7.6.3. Stereo Camera based Pose Estimation

For the modular spacecraft pose estimation, the line segments were used as image features for

the initial pose estimation. Compared with key points, the line segment is easy to extract

without the need for deep learning model training. Since the modular spacecraft is in cubic

shape, the 12 3D line segments of a cube of the same size are used for segment matching. The

173

pixels from extracted 2D line segments are mapped to 3D points and fitted as line segments

by RANSAC. These extracted 3D line segments are then compared with the model line

segments for spacecraft detection. The output results through the module detection pipeline

are shown in Figure 7.31. It can be seen that there are many noises of line segments leading to

multiple false positive detection of modules. Therefore, several constraints are applied to filter

out false positive detection, such as orthogonal line segment detection, module collision

detection, inlier points threshold, etc. The final detection results will show the position of each

modular spacecraft, which can be used for reconfiguration anomaly detection.

(a) (b) (c) (d)

Figure 7.31. Module detection pipeline for stereo images including (a) image line segment detection, (b) 3D line

segment fitting, (c) 3D line segment matching, and (d) model inlier extraction.

First, the influence of illumination is compared in Figure 7.32. The images were pre-processed

before point cloud reconstruction, such as contrast adjustment and histogram balance. It can

be seen that the quality of the point cloud with medium light is the best among the results. In

all the cases, the module pose has been correctly estimated.

no light low light medium light intense light

Figure 7.32. Comparison of point cloud reconstruction and pose estimation for a HikVision camera using

different illumination.

The result of the pose estimation using one module with recession surface anomaly is shown

in Figure 7.33, which contains the image from the left camera and the reconstructed point

cloud. The model inlier is extracted through the back projection method. It can be seen that

the module position has been successfully detected and aligned well with the cube line

174

segments. However, the point cloud quality is so poor that many false positive anomalies were

detected, shown in the red bounding box. The two modules pose estimation is shown in Figure

7.34 with three different configurations. Due to the limitation of field of view of the stereo

camera, the module away from the right side of the left image cannot be completely

reconstructed. Nevertheless, all modules have been detected correctly. Similarly, the poses of

three modules are correctly detected in Figure 7.35.

Figure 7.33. Single modular spacecraft pose estimation using the HikVision stereo camera.

(a)

(b)

(c)

Figure 7.34. Two modules pose an estimation of different configuration using a HikVision stereo camera.

175

Figure 7.35. Three modules pose estimation of different configuration using HikVision stereo camera.

The selective zooming is enabled by the use of a pair of PTZ cameras whose direction of view

and focal length can be digitally controlled. To make them a stereo camera pair, each

orientation and zoom position need to be calibrated for point cloud reconstruction. Two

positions are calibrated here for demonstration, i.e., far view and close view, as shown in

Figure 7.36 and Figure 7.37, respectively. The close view mode has better point cloud

reconstruction quality than far view when the module is far from the cameras.

Figure 7.36. Far view mode pose estimation of single module using DataVideo stereo cameras.

Figure 7.37. Close view mode pose estimation of single module using DataVideo stereo cameras.

Due to the texture-less surface of the the module, the error of reconstructed point cloud from

both HikVision and DataVideo stereo cameras is larger than 5mm. Therefore, it is impossible

to detect the designed 5mm surface and interface anomaly using the current system. However,

they are still capable of reconfiguration anomaly detection.

7.6.4. RGB-D based Anomaly Detection

Following the same procedure of the stereo-based anomaly detection, the modules are detected

with line segment matching. The point cloud from the RGB-D camera is compared with the

176

spacecraft mesh model for anomaly detection. Similarly, different illumination conditions are

compared in Figure 7.38. Since the point cloud is generated using an active light source, that

is, the structured light, the quality of the point cloud is not influenced by the environment light

condition. It can be seen that the point cloud and detection results are the same for all the

illumination conditions.

(a) no light (b) low light (c) medium light (d) intense light

Figure 7.38. Comparison of point cloud reconstruction and pose estimation for the Revopoint camera using

different illumination.

The comparison of the single module point cloud quality from three camera sets is listed in

Table 7.4. It can be observed that the DataVideo PTZ stereo camera has the worst performance

with far view configuration. In the close view configuration, both the number of points and

quality have increased. The distance error was reduced to 2.8 mm. However, for all the stereo

cameras, the distance error is too large to detect the designed 5 mm surface and interface

anomaly. But the precision is good enough for reconfiguration anomaly detection. The

RevoPoint structured light RGB-D camera has the best point cloud quality with only 0.5 mm

distance error, which makes it a good camera for all the anomaly detection.

Table 7.4. Comparison of point cloud quality from three camera sets

Camera Type
HikVision

Stereo Camera

RevoPoint

RGB-D

Camera

DataVideo

PTZ Far

DataVideo

PTZ Close

Number of Points 37979 32818 14924 56778

Mean Distance Erro

(mm)
3.1 0.48 4.7 2.8

Distance Error Standard

Deviation (mm)
2.2 0.51 3.7 1.5

1) Surface Anomaly Detection

Following the procedure defined in Section 0, the vision system was tested in four scenarios,

as shown in Figure 7.39. The detection result of the undamaged module shows no anomaly

177

detected. The protrusion and recess of the other three scenarios were detected successfully. For

the second scenario, the top interface was detected with an anomaly, which is due to an

installation error. When two modules were placed together, surface error can still be detected.

Therefore, the system performed well in surface anomaly detection. Quantitatively, the

detected surface protrusion is 4.3 mm in depth, compared to the ground truth 5 mm. The

detected depth of the surface recess is 2.3 mm, which is much less than the ground truth. This

is due to the fact that points within the thickness of the cover, which is about 1.5 mm, are not

counted as anomaly.

(a) (b) (c) (d)

Figure 7.39. Surface anomaly detection results using Revopoint camera including (a) no damage, (b) surface

protrusion, (c) surface recess, and (d) one undamaged and one with surface recess.

2) Interface Anomaly Detection

Similarly to surface anomaly detection, there are four scenarios for interface anomaly

detection, as shown in Figure 7.40. The experiment was designed to change the position of the

front face interface. However, due to the installation error, the top face interface was detected

as anomaly in all the four scenarios. This validated the repeatability of the system. For all front

face interface, the designed anomalies have been correctly detected. The detected interface

protrusion is 3.6 mm and the recess is 3.2 mm.

178

(a) (b) (c) (d)

Figure 7.40. Results of the detection results using RevoPoint camera, including (a) undamaged, (b) protrusion of

the interface, (c) recess of the interface, and (d) one undamaged and one with recess of the interface.

3) Reconfiguration Anomaly Detection

The reconfiguration anomaly detection is simply a comparison of the detected module

configuration with the predefined configuration. The most critical part is the correct detection

of the positions of all the modules in the view. Therefore, the evaluation of reconfiguration

anomaly detection is simplified as a multi-module pose estimation. As shown in Figure 7.41

and Figure 7.42 with two and three modules presented, the positions of all the modules have

been detected. Comparison of the detected module positions with the defined configuration

depends on the implementation of the MOSAR mission.

Overall, the designed vision system has passed all MOSAR tests by using RGB-D camera.

The standard stereo cameras, however, only managed to realise the reconfiguration anomaly

detection, but not the surface and interface anomaly detection.

Figure 7.41. Two modules pose estimation using a Revopoint camera.

Figure 7.42. Three modules pose estimation using Revopoint camera.

7.6.5. Metal Cover

179

The 3D printed material is plastic, which is easier for both point cloud reconstruction from

stereo camera and structured light camera. However, in practice, the spacecraft is usually

covered by metal plates. Therefore, a dataset of modular spacecraft with metal plate cover

were also collected, as shown in Figure 7.43 and Figure 7.44. The point cloud from stereo

cameras is sparser and contains more noise for metal cover than the one for the plastic cover.

As for the structured light camera, since the metal surface is reflective, the structured light

cannot be captured and decoded correctly, leading to failure of point cloud reconstruction for

the front face of the module. Even though the point cloud for the top face is still good, surface

and interface anomaly detection still cannot be realised. Therefore, anomaly detection for

spacecraft with metal surface spacecraft was failed.

(a) (b) (c)

Figure 7.43. Left camera images (top) and reconstructed point cloud (bottom) of modular spacecrafts with metal

cover from HikVision stereo cameras.

(a) (b) (c)

Figure 7.44. RGB images (top) and point cloud (bottom) of modular spacecrafts with metal cover from RevoPoint

camera.

180

7.7. Summary

In this chapter, an AVI system is designed for modular and reconfigurable spacecraft. It

includes three image capture systems for 3D reconstruction. Three datasets are established to

validate the AVI system, including the small satellite model, engineering feature block, and

modular spacecraft. The first two datasets were used for the algorithm selection and

optimisation process, followed by a pose estimation algorithm pipeline to detect the anomaly

of the target spacecraft. The proposed pipeline combines the information from both the RGB

and point cloud for accurate pose estimation and model inlier extraction The three key

algorithms include segment 3D extraction, segment 3D matching, and model inlier extraction.

With identified module position and its inlier point cloud, the anomaly can be detected by

comparing the point cloud with the CAD model. Three sets of cameras are used and tested for

the vision system. The final system is validated through a series of spacecraft anomaly

detection tasks, including the surface, interface, and reconfiguration anomaly detection.

The fourth case study on modular spacecraft anomaly detection significantly contributes to the

proposed comprehensive design methodology by extending its applicability to 3D vision-

based inspection systems. This case study demonstrates that the proposed design methodology

is not limited to 2D image-based systems but can be effectively applied to 3D anomaly

detection tasks. The incorporation of 3D reconstruction and registration algorithms into the

algorithm selection and optimisation process broadens the methodology's scope to address

more complex and multi-dimensional inspection applications.

The study highlights the importance of customising image acquisition systems to the target

application. By developing and evaluating three different 3D image capture systems (stereo

cameras and structured light camera), the case study validates the methodology's principle of

sensor selection and system customisation as a critical step in the AVI system design process.

It has also been verified that the algorithm selection and optimisation process can be applied

to 3D-level data. The process facilitated the identification of the most suitable 3D

reconstruction and anomaly detection algorithms, as well as their optimisation for different

anomaly types, showcasing the generalisability of the proposed methodology across different

data modalities.

181

8. Conclusion and Future Work

8.1. Introduction

This thesis provides an investigation of AVI system design for defect detection across various

localisation precision levels and diverse industrial applications. Based on the literature review,

the knowledge gaps have been identified including the absence of a comprehensive design

methodology for AVI systems, challenges in real-time detection on devices with limited

computational resources, and under-exploration of the anomaly detection methods in AVI

systems when negative sample data is scarce.

To address these challenges, this thesis proposed a comprehensive design methodology for

AVI systems. The methodology emphasises defect detection method development through

systematic dataset establishment and algorithm selection. Its effectiveness is demonstrated

through four case studies: concrete wall crack inspection, wheat head disease detection, car

engine anomaly detection, and modular spacecraft anomaly detection. These case studies

encompass a range of defect detection tasks, from image-level analysis to 3D-level inspections,

highlighting the versatility of the proposed approach.

This chapter first outlines the key findings from the design methodology and case studies,

followed by the contributions to knowledge. Finally, it discusses the limitations and potential

directions for future work.

8.2. Key Findings

8.2.1. AVI System Design Methodology

First, a design methodology is proposed to support the design of AVI systems with a focus on

defect detection method development. Through the process model, the design evolves from an

abstract and qualitative concept to a specific and quantitative embodiment, and finally a

complete AVI system. During the development of the defect detection method, the algorithm

selection and optimisation process is adapted based on the availability of target data. Following

this design methodology, four AVI systems are designed and developed to address various

detection tasks across the construction, agricultural, manufacturing, and space industries. An

improved version of Table 3.1, comparing the four AVI systems is presented in Table 8.1. The

four case studies have covered and validated different aspects of the design methodology.

Specifically, the algorithm selection and optimisation process has been adapted by each case

182

study for the defect detection method development, targeting different tasks.

Table 8.1. Comparison of case studies for methodology validation

The First Case

Study

The Second Case

Study

The Third Case

Study

The Fourth Case

Study

Target Object Concrete Wall Wheat Head Car Engine Modular Spacecraft

Detection Task
Image and pixel-

level
Object-level Pixel-level 3D-level

Defect Crack Head blight Surplus
Extrusion,

protrusion

Requirements
Real-time

High accuracy

Real-time

No disease data for

training

High accuracy

No defect data for

training

High accuracy

No defect data for

training

Detection Method

Category

Classification-

based detection

Classification-

based detection and

anomaly detection

Anomaly detection Anomaly detection

Camera
Monocular RGB,

depth camera
Monocular RGB Monocular RGB

Stereo camera,

structured light

camera

Target Dataset

Open-source crack

datasets for

classification and

segmentation

Open-source wheat

head datasets and

wheat head disease

datasets

Collected car

engine datasets

with real anomalies

Collected stereo

and RGBD images

for small satellite

and engineering

feature block

Supplementary

Dataset
- -

Collected car

engine datasets

with synthetic

anomalies

Collected stereo

image pairs and

RGBD images for

modular spacecraft

System Platform AR headset Agri-Rover Production line Spacecraft

Algorithm

Pipeline

Crack

classification,

segmentation,

measurement

Wheat head

bounding box

detection, anomaly

detection

Background

removal, image

tiling, anomaly

detection

3D reconstruction,

pose estimation,

anomaly detection

Detection Method CNN CNN Pretrained ViT Registration

Optimisation

Novel training

strategy, novel

model architecture

Domain transfer

SAM-based

background

removal, image

tiling, ViT-based

feature extractor

3D segment

extraction and

matching

User Interface AR application

Image window

with bounding box

and confidence

Image window

with heatmap mask

Point cloud

window with

bounding box

Accuracy (%)
98.68 classification

71.4 segmentation

74.8 WHBD head

detection

86.2 FHBS head

detection

95.6 WHBD

disease detection

71.8 FHBS disease

detection

66.2 pixel F1 score

99.6 pixel AUROC

5 cm surface and

interface anomalies

successfully

detected

Inference speed

5.5 fps on

HoloLens 2 for

crack measurement

3 fps on Jetson

Nano
- -

8.2.2. The First Case Study: Concrete Crack Inspection

Specifically, the first case study for image- and pixel-level detection presents the development

of a head-mounted vision-based inspection system, employing a synergistic blend of AR and

AI technologies. The system, implemented in Unity and deployed on Microsoft HoloLens 2,

183

divides crack images into patches for AI-driven classification and segmentation. A novel

hierarchical training strategy, combining transfer learning and knowledge distillation,

accelerates the model generation for real-time classification. A new convolution block

architecture, DE-Net, was developed, showing a remarkable balance between accuracy, model

size, and training time. For crack segmentation, various segmentation heads like U-Net and

DEU-Net were implemented, tested on different datasets to evaluate their performance in self-

dataset and cross-dataset scenarios. The results favoured the U-Net and DEU-Net for their

superior performance and parameter efficiency, with U-Net demonstrating particular

effectiveness when trained on the CrackForest dataset. The final integration combined the

classification and segmentation models with a user-friendly GUI in Unity, successfully

deploying the system on HoloLens 2. In lab tests, the system effectively classified and

segmented crack images, using point cloud data from HoloLens 2 to measure crack dimensions

in real-world units. This comprehensive system was validated in a lab environment,

confirming its potential for practical application in engineering and construction scenarios.

8.2.3. The Second Case Study: Wheat Head Disease Detection

The second case study for object-level detection details the design and development of a wheat

head disease detection method for precision spray system. This system highlights the

incorporation of cutting-edge technological approaches in the model training process to

address the data scarcity. Techniques such as transfer learning, domain adaptation, anomaly

detection, and data augmentation have been applied to enhance the system capabilities.

Particularly, the zero-shot learning was employed to tackle the challenges posed by a

significantly imbalanced dataset. The deep learning model pre-trained on a large wheat head

detection dataset can be used for the detection task on another dataset via domain adaption

method. Without any labelled data of wheat head disease, the anomaly detection methods were

compared on two datasets for disease detection. The HSV color thresholding method

significantly outperformed the feature embedding-based methods on the FHBS dataset. While

all methods could distinguish between healthy heads and those with severity level 9, the

accuracy for detecting lower severity disease heads requires improvement.

This is the first time the anomaly detection technique is used for wheat head disease detection.

This method can also be easily extended to other disease detection tasks through the proposed

pipeline, i.e., domain transfer from one larger dataset to the target dataset, feature analysis of

negative and positive samples, and apply anomaly detection methods for the assigned disease

detection task..

184

8.2.4. The Third Case Study: Car Engine Surface Anomaly Detection

In the third case study for pixel-level detection, the proposed design methodology was applied

to develop a car engine manufacturing defect detection system. This case study firstly presents

a comparative study involving different anomaly synthesis methods, anomaly characteristics,

and anomaly detection techniques. Based on the findings from this study, specific

improvements were made to the real anomaly dataset to achieve zero false negatives prediction.

Specifically, two engine parts datasets with synthetic and real anomalies are established. The

synthetic dataset contains varied image collection configurations and synthetic anomalies

generated from three synthesis methods. In this synthetic dataset, a range of anomaly

characteristics has been covered, including anomaly size, brightness, and contrast. A

comparative study was conducted using five anomaly detection methods tested on datasets

with both synthetic and real anomalies. It is revealed that the polarised filter can reduce the

reflective light on the engine surface, however, it has limited impact on the anomaly detection

on the synthetic dataset. Exposure time affects the size of overexposed and underexposed area.

The study shows that the medium level exposure is the best for anomaly detection. As for

lighting conditions, there is no perfect lighting condition, but it is critical to maintain the same

lighting for image collection for both training and testing. Finally, the best performed model,

PaDiM, is selected as the base model and improvements were made for the real anomaly

dataset, including the implementation of a better feature extractor, background removal, and

image tiling. This case study offers critical insights into developing and optimising anomaly

detection method for vision-based car engine manufacturing defect inspection systems.

8.2.5. The Fourth Case Study: Modular Spacecraft Anomaly Detection

In the fourth case study for 3D level detection, a specialised vision-based inspection system

was developed for the anomaly detection in modular spacecraft. Based on the pose estimation

experiments on two supplementary datasets, an algorithm pipeline was introduced and

optimised for the modular spacecraft. The proposed pipeline incorporated three key algorithms:

segment 3D extraction, segment 3D matching, and model inlier extraction, each playing a

critical role in the anomaly detection process. These algorithms enabled the system to

accurately identify the position of spacecraft modules and extract their inlier point clouds,

facilitating the detection of anomalies on the spacecraft's surface, interfaces, and during

reconfiguration processes. To support and test the vision system, three different sets of cameras

were utilised. This visual inspection system was validated with 3D printed spacecraft in lab

environments.

185

Overall, following the proposed design methodology, the four designed and developed AVI

systems have been verified and validated to meet the specifications and requirements of their

respective applications.

8.3. Contribution to Knowledge

8.3.1. Overall Contributions to Knowledge

This research addresses the AVI system design for defect detection in dealing with a range of

application requirements. Through a thorough literature review, the limitations and knowledge

gaps in this field have been provided, including the absence of a comprehensive design

methodology for AVI systems, challenges in real-time detection on devices with limited

computational resources, and under-exploration of the anomaly detection methods in AVI

systems. By addressing these knowledge gaps, this research makes significant contributions

to the field, including a comprehensive design methodology, and the AVI systems developed

through these case studies.

To address the first knowledge gap regarding the absence of design methodology, a

comprehensive design methodology was proposed for the design of vision-based defect

detection systems with a focus on defect detection. The design process model in the

methodology can be used to guide the integration of different components for the development

of the defect detection method. In addition, an algorithm selection and optimisation process is

proposed and can be adapted to different applications depending on the data availability. This

design methodology has been validated through four case studies.

Addressing the second knowledge gap related to the accuracy-efficiency trade-off on resource

constrained device, a novel training strategy and a novel CNN model architecture are proposed.

The training strategy combines the knowledge distillation and transfer learning to facilitate the

model training process on both efficiency and accuracy. The proposed CNN model architecture

integrated the dilated convolution to increase the parameter efficiency, leading to a smaller and

more accurate model. Both the proposed training strategy and model architecture were

validated in a crack inspection system on the AR device HoloLens 2.

Targeting the third knowledge gap concerning data scarcity in most industrial applications, the

anomaly detection method was explored, deployed, and validated on three case studies,

including wheat head disease detection, car engine defect detection, and modular spacecraft

anomaly detection. All three applications require no defect data during model training. To

apply the anomaly detection method, following the design methodology, the algorithm

186

candidates are compared, and the best algorithm is optimised for the target application.

8.3.2. Case Study Specific Contributions

Each case study also provides their specific contribution to knowledge. In the case study of

AR based wall crack inspection system, the proposed model architecture is used as the

backbone of four different segmentation architectures and evaluated on three different datasets.

An AR application that integrates the classification model and segmentation model are

developed and deployed on HoloLens 2.

In terms of the wheat head disease detection, a zero-shot wheat head disease detection

algorithm is proposed based on domain transfer and anomaly detection. The domain transfer

enables the model to detect wheat head in the test dataset which has completely different data

distribution. The anomaly detection enables the model to detect wheat disease without using

any disease data during training. Then a comprehensive study of various anomaly detection

methods is conducted on two wheat head disease datasets, demonstrating high disease

classification accuracy, as well as the potential for applying anomaly detection methods to

severity estimation.

The contributions of the third case study, the car engine defect detection, include two datasets

for engine parts with synthetic anomalies and real anomalies, the findings from the image-,

pixel- and anomaly-level analysis on the two datasets regarding to the data collection

configurations, anomaly characteristics, and anomaly detection methods, and finally an

optimised algorithm pipeline to achieve zero false negative for car engine defect detection.

For the case study of modular spacecraft inspection system, a reconfigurable defect detection

software was developed so that each algorithm node can be configured for specific tasks. An

image capture system with three different cameras was developed. Additionally, three datasets

were established using different 3D printed models and cameras.

8.4. Limitations and Future Work

8.4.1. AVI System Design Methodology

The proposed design methodology was used to design four different AVI systems to address

two key challenges in defect detection method development: the accuracy-efficiency trade-off

and data scarcity. In addressing the accuracy-efficiency trade-off, only the crack inspection

system was developed to validate the proposed training strategy and model architecture. Future

research will aim to conduct further experiments to validate these strategies in other

187

applications such as surface inspection of metal pipe, electronic components, food production,

etc. For the anomaly detection methods used in wheat head disease and car engine defect

detection, only existing anomaly detection methods were deployed and compared without

further modification. Future work will focus on proposing novel anomaly detection methods

for general anomaly detection tasks and validating them across these applications.

Other limitations of the design methodology include the multi-perspective models and the

defect detection development process. The current multi-perspective models cover only the

most general models within AVI systems, while more specific models in certain applications

remain unexplored. Additionally, the defect detection development process outlines only basic

steps for method development and requires more detailed guidance. Future work will aim to

develop adaptable, application-specific multi-perspective models and provide a more detailed

defect detection development process.

8.4.2. The First Case Study: Concrete Crack Inspection

The current system relies on two stages of crack detection including crack classification and

crack segmentation. This could sometimes lead to high latency during on-site usage and cause

uncomfortable for users. It also requires further refinement to enhance its accuracy and

efficiency, particularly under varied environmental conditions. Additionally, the ability to

perform consistently in diverse real-world environments remains to be fully tested and

validated. The future work to refine the system includes:

- Implement model quantisation techniques to reduce the model size without significant loss

of accuracy, enhancing the system's suitability for devices with limited processing capabilities.

- Utilise Neural Architecture Search (NAS) to optimise the network structure, potentially

improving the system's performance and efficiency.

- Refine the AR application based on feedback from real-world tests. This could involve

improving the user interface, improving the design of the interaction, and ensuring stable

performance in various environmental conditions.

- Explore the use of more advanced AR features, such as real-time data overlay and interactive

3D models, to provide a more comprehensive and user-friendly experience.

- Conduct extensive field tests in different settings, such as in various weather conditions and

on different types of concrete structures, to rigorously assess the system's versatility and

reliability.

188

- Gather and analyse data from real-world usage to identify any shortcomings and areas for

improvement.

8.4.3. The Second Case Study: Wheat Head Disease Detection

The limitations of the precision spray system can be mainly attributed to two aspects: the

detection algorithm and the physical spray mechanism. First, the accuracy of the defection

algorithm is constrained by a lack of comprehensive data. Second, the robustness of the spray

system needs to be improved. There have been occasions when the pressure and flow rate of

the system have decreased significantly, especially when navigating obstacles. Therefore, the

directions of future work include:

- Develop and fine-tune the disease detection algorithm to improve its sensitivity and accuracy,

particularly to reduce false negatives. This could be done by collecting more data and

optimisation of the detection algorithm.

- Improve the durability and resistance to environmental factors such as moisture, dust, and

temperature variations, ensuring its longevity and reliability in agricultural settings.

- Deploy the system in actual field conditions and conduct extensive tests to evaluate its

performance across various agricultural settings and crop types. Collect and analyse data from

these deployments to identify areas for improvement.

- Improve system integration with smart farming technologies, such as IoT sensors and farm

management software, to provide a more holistic approach to crop health and resource

management.

8.4.4. The Third Case Study: Car Engine Surface Anomaly Detection

The car part defect detection system, particularly for complex structures like cylinder head or

engine underside, can yield many false positives and false negatives, indicating a need for

further algorithmic refinement. Achieving a balance between image-level and pixel-level

accuracy remains challenging, as optimising one often leads to a compromise on the other.

There are several areas where further work could possibly enhance the defect detection

accuracy of the system, especially for challenging components like cylinder heads and engine

undersides:

- Investigate more sophisticated image processing and heatmap generation techniques. This

can include adaptive filtering, advanced edge detection methods, and machine learning-based

image enhancement based on the characteristics of cylinder heads and engine undersides.

189

- Explore hybrid models that combine the strengths of different anomaly detection algorithms.

For example, integrating models that are effective in identifying large defects with those

proficient in detecting finer anomalies could produce a more robust system.

- Implement more advanced feature extraction methods that can accurately capture the nuances

of complex structures in cylinder heads and engine undersides.

- Develop dynamic anomaly scoring systems that adjust thresholds based on the specific

characteristics of each car part and defect type. This could help reduce false positives and

negatives by providing a more detailed assessment of anomalies.

- Collect and incorporate a more diverse range of data, including rare defect types and

variations in car part manufacturing, to improve the model's ability to generalise and handle a

wider array of defects.

8.4.5. The Fourth Case Study: Modular Spacecraft Anomaly Detection

The current inspection system has limitations in accurately reconstructing 3D models,

especially when dealing with reflective surfaces such as metal. This could impact the precision

of pose estimation and anomaly detection. System performance under varying conditions of

space, such as extreme lighting and temperature variations, might not be fully optimised. To

address these limitations, the future work will focus on:

- Develop advanced algorithms or incorporate new sensor technologies to improve 3D

reconstruction, particularly for challenging surfaces like metal.

- Explore the use of polarised light or specialised filters to mitigate the issues caused by

reflective surfaces.

- Tailor and optimise the system to handle a wider range of materials and surface textures

found in spacecraft, enhancing its applicability.

- Implement machine learning techniques to improve the system’s ability to adapt and

accurately interpret data from different materials and environmental conditions.

- Use AI to enhance the system’s capability for real-time processing and decision making in

space environments.

- Conduct rigorous tests in environments that closely simulate space conditions to validate and

refine the performance of the system.

190

References

[1] T. S. Newman and A. K. Jain, "A survey of automated visual inspection,"

Computer vision and image understanding, vol. 61, no. 2, pp. 231-262, 1995.

[2] H.-F. Ng, "Automatic thresholding for defect detection," Pattern recognition

letters, vol. 27, no. 14, pp. 1644-1649, 2006.

[3] A.-A. Tulbure, A.-A. Tulbure, and E.-H. Dulf, "A review on modern defect

detection models using DCNNs–Deep convolutional neural networks,"

Journal of Advanced Research, vol. 35, pp. 33-48, 2022.

[4] S. K. Dwivedi, M. Vishwakarma, and A. Soni, "Advances and researches on

non destructive testing: A review," Materials Today: Proceedings, vol. 5, no. 2,

pp. 3690-3698, 2018.

[5] M. Gupta, M. A. Khan, R. Butola, and R. M. Singari, "Advances in applications

of Non-Destructive Testing (NDT): A review," Advances in Materials and

Processing Technologies, vol. 8, no. 2, pp. 2286-2307, 2022.

[6] A. Fahr, Aeronautical applications of non-destructive testing. DEStech

Publications, Inc, 2013.

[7] S. Iliopoulos et al., "Detection and evaluation of cracks in the concrete buffer

of the Belgian Nuclear Waste container using combined NDT techniques,"

Construction and Building Materials, vol. 78, pp. 369-378, 2015.

[8] F. Guibert, M. Rafrafi, D. Rodat, E. Prothon, N. Dominguez, and S. Rolet,

"Smart NDT tools: Connection and automation for efficient and reliable NDT

operations," in 19th World Conf. Non-Destructive Test, 2016, pp. 1-10.

[9] A. Chabot, N. Laroche, E. Carcreff, M. Rauch, and J.-Y. Hascoët, "Towards

defect monitoring for metallic additive manufacturing components using

phased array ultrasonic testing," Journal of Intelligent Manufacturing, vol. 31,

no. 5, pp. 1191-1201, 2020.

[10] A. Lopez, R. Bacelar, I. Pires, T. G. Santos, J. P. Sousa, and L. Quintino, "Non-

destructive testing application of radiography and ultrasound for wire and arc

additive manufacturing," Additive Manufacturing, vol. 21, pp. 298-306, 2018.

[11] H. A. Gabbar, A. Chahid, M. J. A. Khan, O. G. Adegboro, and M. I. Samson,

"CTIMS: Automated defect detection framework using computed

tomography," Applied Sciences, vol. 12, no. 4, p. 2175, 2022.

[12] Z.-C. Yuan, Z.-T. Zhang, H. Su, L. Zhang, F. Shen, and F. Zhang, "Vision-based

defect detection for mobile phone cover glass using deep neural networks,"

International Journal of Precision Engineering and Manufacturing, vol. 19,

no. 6, pp. 801-810, 2018.

[13] B. W. Drinkwater and P. D. Wilcox, "Ultrasonic arrays for non-destructive

evaluation: A review," NDT & e International, vol. 39, no. 7, pp. 525-541, 2006.

[14] G. Zenzinger, J. Bamberg, W. Satzger, and V. Carl, "Thermographic crack

detection by eddy current excitation," Nondestructive Testing and Evaluation,

vol. 22, no. 2-3, pp. 101-111, 2007.

[15] Y. Chung, R. Shrestha, S. Lee, and W. Kim, "Thermographic inspection of

internal defects in steel structures: analysis of signal processing techniques in

pulsed thermography," Sensors, vol. 20, no. 21, p. 6015, 2020.

[16] W. Sun, S. Brown, and R. Leach, "An overview of industrial X-ray computed

191

tomography," 2012.

[17] A. Du Plessis, S. G. le Roux, J. Els, G. Booysen, and D. C. Blaine, "Application

of microCT to the non-destructive testing of an additive manufactured titanium

component," Case Studies in Nondestructive Testing and Evaluation, vol. 4, pp.

1-7, 2015.

[18] M. Baygin, M. Karakose, A. Sarimaden, and A. Erhan, "Machine vision based

defect detection approach using image processing," in 2017 international

artificial intelligence and data processing symposium (IDAP), 2017: Ieee, pp.

1-5.

[19] B. Caiazzo, M. Di Nardo, T. Murino, A. Petrillo, G. Piccirillo, and S. Santini,

"Towards Zero Defect Manufacturing paradigm: A review of the state-of-the-

art methods and open challenges," Computers in Industry, vol. 134, p. 103548,

2022.

[20] M. M. Abagiu, D. Cojocaru, F. Manta, and A. Mariniuc, "Detecting Machining

Defects inside Engine Piston Chamber with Computer Vision and Machine

Learning," Sensors, vol. 23, no. 2, p. 785, 2023.

[21] X. Zheng, S. Zheng, Y. Kong, and J. Chen, "Recent advances in surface defect

inspection of industrial products using deep learning techniques," The

International Journal of Advanced Manufacturing Technology, pp. 1-24, 2021.

[22] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, "Deep

learning for computer vision: A brief review," Computational intelligence and

neuroscience, vol. 2018, no. 1, p. 7068349, 2018.

[23] J. Chai, H. Zeng, A. Li, and E. W. Ngai, "Deep learning in computer vision: A

critical review of emerging techniques and application scenarios," Machine

Learning with Applications, vol. 6, p. 100134, 2021.

[24] A. Ioannidou, E. Chatzilari, S. Nikolopoulos, and I. Kompatsiaris, "Deep

learning advances in computer vision with 3d data: A survey," ACM computing

surveys (CSUR), vol. 50, no. 2, pp. 1-38, 2017.

[25] Z. Wang et al., "A convolutional neural network-based classification and

decision-making model for visible defect identification of high-speed train

images," Journal of Sensors, vol. 2021, pp. 1-17, 2021.

[26] Q. Jiang, D. Tan, Y. Li, S. Ji, C. Cai, and Q. J. A. S. Zheng, "Object Detection

and Classification of Metal Polishing Shaft Surface Defects Based on

Convolutional Neural Network Deep Learning," vol. 10, no. 1, p. 87, 2020.

[27] D. Tabernik, S. Šela, J. Skvarč, and D. Skočaj, "Segmentation-based deep-

learning approach for surface-defect detection," Journal of Intelligent

Manufacturing, vol. 31, no. 3, pp. 759-776, 2020.

[28] W. Ying, J. Cuiyun, and Z. Yanhui, "Pipe defect detection and reconstruction

based on 3D points acquired by the circular structured light vision," Advances

in Mechanical Engineering, vol. 5, p. 670487, 2013.

[29] J. Guo, P. Liu, B. Xiao, L. Deng, and Q. Wang, "Surface defect detection of

civil structures using images: Review from data perspective," Automation in

Construction, vol. 158, p. 105186, 2024.

[30] S. R. Saufi, Z. A. B. Ahmad, M. S. Leong, and M. H. Lim, "Challenges and

opportunities of deep learning models for machinery fault detection and

diagnosis: A review," Ieee Access, vol. 7, pp. 122644-122662, 2019.

[31] B. Batchelor, F. Waltz, and M. Snyder, "A design methodology for industrial

vision systems," in Optomechanical and Electro-Optical Design of Industrial

192

Systems, 1988, vol. 959: SPIE, pp. 126-145.

[32] H. Golnabi and A. Asadpour, "Design and application of industrial machine

vision systems," Robotics and Computer-Integrated Manufacturing, vol. 23,

no. 6, pp. 630-637, 2007.

[33] Y. Chen, Y. Ding, F. Zhao, E. Zhang, Z. Wu, and L. Shao, "Surface defect

detection methods for industrial products: A review," Applied Sciences, vol. 11,

no. 16, p. 7657, 2021.

[34] J. Huang et al., "Speed/accuracy trade-offs for modern convolutional object

detectors," in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 7310-7311.

[35] D. Hou, T. Liu, Y.-T. Pan, and J. Hou, "AI on edge device for laser chip defect

detection," in 2019 IEEE 9th Annual Computing and Communication

Workshop and Conference (CCWC), 2019: IEEE, pp. 0247-0251.

[36] J. Liu et al., "Deep industrial image anomaly detection: A survey," Machine

Intelligence Research, vol. 21, no. 1, pp. 104-135, 2024.

[37] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, "MVTec AD--A

comprehensive real-world dataset for unsupervised anomaly detection," in

Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2019, pp. 9592-9600.

[38] Q. Luo, X. Fang, L. Liu, C. Yang, and Y. Sun, "Automated visual defect

detection for flat steel surface: A survey," IEEE Transactions on

Instrumentation and Measurement, vol. 69, no. 3, pp. 626-644, 2020.

[39] X. Fang, Q. Luo, B. Zhou, C. Li, and L. Tian, "Research progress of automated

visual surface defect detection for industrial metal planar materials," Sensors,

vol. 20, no. 18, p. 5136, 2020.

[40] J. J. Lin, A. Ibrahim, S. Sarwade, and M. Golparvar-Fard, "Bridge inspection

with aerial robots: Automating the entire pipeline of visual data capture, 3D

mapping, defect detection, analysis, and reporting," Journal of Computing in

Civil Engineering, vol. 35, no. 2, p. 04020064, 2021.

[41] W. Ming et al., "A comprehensive review of defect detection in 3C glass

components," Measurement, vol. 158, p. 107722, 2020.

[42] S. Alahakoon, Y. Q. Sun, M. Spiryagin, and C. Cole, "Rail flaw detection

technologies for safer, reliable transportation: a review," Journal of Dynamic

Systems, Measurement, and Control, vol. 140, no. 2, 2018.

[43] W. Cao, Q. Liu, and Z. He, "Review of pavement defect detection methods,"

IEEE Access, vol. 8, pp. 14531-14544, 2020.

[44] R. Manish, A. Venkatesh, and S. D. Ashok, "Machine vision based image

processing techniques for surface finish and defect inspection in a grinding

process," Materials Today: Proceedings, vol. 5, no. 5, pp. 12792-12802, 2018.

[45] V. Bruni and D. Vitulano, "A generalized model for scratch detection," IEEE

transactions on image processing, vol. 13, no. 1, pp. 44-50, 2004.

[46] L. Song, W. Lin, Y.-G. Yang, X. Zhu, Q. Guo, and J. Xi, "Weak micro-scratch

detection based on deep convolutional neural network," IEEE Access, vol. 7,

pp. 27547-27554, 2019.

[47] W. Li, L. Zhang, C. Wu, Z. Cui, and C. Niu, "A new lightweight deep neural

network for surface scratch detection," The International Journal of Advanced

Manufacturing Technology, vol. 123, no. 5-6, pp. 1999-2015, 2022.

[48] T. Lilienblum, P. Albrecht, R. Calow, and B. Michaelis, "Dent detection in car

193

bodies," in Proceedings 15th International Conference on Pattern Recognition.

ICPR-2000, 2000, vol. 4: IEEE, pp. 775-778.

[49] L. Wang, L. Luo, P. Zheng, T. Zheng, and S. He, "A fast dent detection method

for curved glass using deep convolutional neural network," in 2019 IEEE 13th

International Conference on Anti-counterfeiting, Security, and Identification

(ASID), 2019: IEEE, pp. 117-121.

[50] S. Barua, F. Liou, J. Newkirk, and T. Sparks, "Vision-based defect detection in

laser metal deposition process," Rapid Prototyping Journal, vol. 20, no. 1, pp.

77-85, 2014.

[51] V. Rebuffel, S. Sood, and B. Blakeley, "Defect detection method in digital

radiography for porosity in magnesium castings," Materials Evaluation,

ECNDT, 2006.

[52] Y. Yao, S. T. E. Tung, and B. Glisic, "Crack detection and characterization

techniques—An overview," Structural Control and Health Monitoring, vol. 21,

no. 12, pp. 1387-1413, 2014.

[53] H. S. Munawar, A. W. Hammad, A. Haddad, C. A. P. Soares, and S. T. Waller,

"Image-based crack detection methods: A review," Infrastructures, vol. 6, no.

8, p. 115, 2021.

[54] W. Mukupa, G. W. Roberts, C. M. Hancock, and K. Al-Manasir, "A review of

the use of terrestrial laser scanning application for change detection and

deformation monitoring of structures," Survey review, vol. 49, no. 353, pp. 99-

116, 2017.

[55] P. Arjun and T. Mirnalinee, "Machine parts recognition and defect detection in

automated assembly systems using computer vision techniques," Rev. Téc. Ing.

Univ. Zulia, vol. 39, no. 1, pp. 71-80, 2016.

[56] P. Kunakornvong and P. Sooraksa, "Machine vision for defect detection on the

air bearing surface," in 2016 International Symposium on Computer, Consumer

and Control (IS3C), 2016: IEEE, pp. 37-40.

[57] T. Czimmermann et al., "Visual-based defect detection and classification

approaches for industrial applications—a survey," Sensors, vol. 20, no. 5, p.

1459, 2020.

[58] Z. Ren, F. Fang, N. Yan, and Y. Wu, "State of the art in defect detection based

on machine vision," International Journal of Precision Engineering and

Manufacturing-Green Technology, pp. 1-31, 2021.

[59] W. Hou, D. Zhang, Y. Wei, J. Guo, and X. Zhang, "Review on computer aided

weld defect detection from radiography images," Applied Sciences, vol. 10, no.

5, p. 1878, 2020.

[60] O. Duran, K. Althoefer, and L. D. Seneviratne, "Automated pipe defect

detection and categorization using camera/laser-based profiler and artificial

neural network," IEEE Transactions on Automation Science and Engineering,

vol. 4, no. 1, pp. 118-126, 2007.

[61] M. Chang, B.-C. Chen, J. L. Gabayno, and M.-F. Chen, "Development of an

optical inspection platform for surface defect detection in touch panel glass,"

International Journal of Optomechatronics, vol. 10, no. 2, pp. 63-72, 2016.

[62] C. Bakolias and A. K. Forrest, "Dark-field Scheimpflug imaging for surface

inspection," in Machine Vision Applications in Industrial Inspection V, 1997,

vol. 3029: SPIE, pp. 57-68.

[63] Z. Xue-Wu, D. Yan-Qiong, L. Yan-Yun, S. Ai-Ye, and L. Rui-Yu, "A vision

194

inspection system for the surface defects of strongly reflected metal based on

multi-class SVM," Expert Systems with Applications, vol. 38, no. 5, pp. 5930-

5939, 2011.

[64] R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah, "Shape-from-shading: a survey,"

IEEE transactions on pattern analysis and machine intelligence, vol. 21, no. 8,

pp. 690-706, 1999.

[65] J. Aloimonos, "Shape from texture," Biological cybernetics, vol. 58, no. 5, pp.

345-360, 1988.

[66] J. Wu et al., "Single image 3d interpreter network," in European Conference

on Computer Vision, 2016: Springer, pp. 365-382.

[67] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, "A

comparison and evaluation of multi-view stereo reconstruction algorithms," in

2006 IEEE computer society conference on computer vision and pattern

recognition (CVPR'06), 2006, vol. 1: IEEE, pp. 519-528.

[68] S. Ullman, "The interpretation of structure from motion," Proceedings of the

Royal Society of London. Series B. Biological Sciences, vol. 203, no. 1153, pp.

405-426, 1979.

[69] H. Kawasaki, R. Furukawa, R. Sagawa, and Y. Yagi, "Dynamic scene shape

reconstruction using a single structured light pattern," in 2008 IEEE conference

on computer vision and pattern recognition, 2008: Ieee, pp. 1-8.

[70] Z. Xiong, Q. Li, Q. Mao, and Q. Zou, "A 3D laser profiling system for rail

surface defect detection," Sensors, vol. 17, no. 8, p. 1791, 2017.

[71] K. Song and Y. Yan, "A noise robust method based on completed local binary

patterns for hot-rolled steel strip surface defects," Applied Surface Science, vol.

285, pp. 858-864, 2013.

[72] X. Lv, F. Duan, J.-j. Jiang, X. Fu, and L. Gan, "Deep metallic surface defect

detection: The new benchmark and detection network," Sensors, vol. 20, no. 6,

p. 1562, 2020.

[73] J. Božič, D. Tabernik, and D. Skočaj, "Mixed supervision for surface-defect

detection: From weakly to fully supervised learning," Computers in Industry,

vol. 129, p. 103459, 2021.

[74] G. Song, K. Song, and Y. Yan, "Saliency detection for strip steel surface defects

using multiple constraints and improved texture features," Optics and Lasers

in Engineering, vol. 128, p. 106000, 2020.

[75] Y. Huang, C. Qiu, and K. Yuan, "Surface defect saliency of magnetic tile," The

Visual Computer, vol. 36, no. 1, pp. 85-96, 2020.

[76] Y. Liu, J. Yao, X. Lu, R. Xie, and L. J. N. Li, "DeepCrack: A deep hierarchical

feature learning architecture for crack segmentation," vol. 338, pp. 139-153,

2019.

[77] P. Bergmann, X. Jin, D. Sattlegger, and C. Steger, "The mvtec 3d-ad dataset for

unsupervised 3d anomaly detection and localization," arXiv preprint

arXiv:2112.09045, 2021.

[78] S. M. Pizer et al., "Adaptive histogram equalization and its variations,"

Computer vision, graphics, and image processing, vol. 39, no. 3, pp. 355-368,

1987.

[79] F. Russo, "An image enhancement technique combining sharpening and noise

reduction," IEEE Transactions on Instrumentation and Measurement, vol. 51,

no. 4, pp. 824-828, 2002.

195

[80] H. J. Nussbaumer and H. J. Nussbaumer, The fast Fourier transform. Springer,

1982.

[81] Y. Han and P. Shi, "An adaptive level-selecting wavelet transform for texture

defect detection," Image and Vision Computing, vol. 25, no. 8, pp. 1239-1248,

2007.

[82] J. Chen, J. Benesty, Y. Huang, and S. Doclo, "New insights into the noise

reduction Wiener filter," IEEE Transactions on audio, speech, and language

processing, vol. 14, no. 4, pp. 1218-1234, 2006.

[83] S. Singla and R. Sharma, "Medical image stitching using hybrid of sift & surf

techniques," International Journal of Advanced Research in Electronics and

Communication Engineering (IJARECE), vol. 3, no. 8, pp. 838-842, 2014.

[84] Q. Zhou, B. Zhong, Y. Zhang, J. Li, and Y. Fu, "Deep alignment network based

multi-person tracking with occlusion and motion reasoning," IEEE

Transactions on Multimedia, vol. 21, no. 5, pp. 1183-1194, 2018.

[85] C. Shorten and T. M. Khoshgoftaar, "A survey on image data augmentation for

deep learning," Journal of big data, vol. 6, no. 1, pp. 1-48, 2019.

[86] X. Zheng, T. Chalasani, K. Ghosal, S. Lutz, and A. Smolic, "Stada: Style

transfer as data augmentation," arXiv preprint arXiv:1909.01056, 2019.

[87] D. Shumin, L. Zhoufeng, and L. Chunlei, "AdaBoost learning for fabric defect

detection based on HOG and SVM," in 2011 International conference on

multimedia technology, 2011: IEEE, pp. 2903-2906.

[88] I. Cetiner, A. A. Var, and H. Cetiner, "Classification of knot defect types using

wavelets and KNN," Elektronika ir elektrotechnika, vol. 22, no. 6, pp. 67-72,

2016.

[89] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

"SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and< 0.5 MB

model size," arXiv preprint arXiv:1602.07360, 2016.

[90] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, "Inception-v4, inception-

resnet and the impact of residual connections on learning," in Proceedings of

the AAAI conference on artificial intelligence, 2017, vol. 31, no. 1.

[91] L. Zhang, F. Yang, Y. D. Zhang, and Y. J. Zhu, "Road crack detection using

deep convolutional neural network," in 2016 IEEE international conference on

image processing (ICIP), 2016: IEEE, pp. 3708-3712.

[92] R. Girshick, "Fast r-cnn," in Proceedings of the IEEE international conference

on computer vision, 2015, pp. 1440-1448.

[93] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, "A Review of Yolo algorithm

developments," Procedia Computer Science, vol. 199, pp. 1066-1073, 2022.

[94] W. Liu et al., "Ssd: Single shot multibox detector," in European conference on

computer vision, 2016: Springer, pp. 21-37.

[95] G. B. Coleman and H. C. Andrews, "Image segmentation by clustering,"

Proceedings of the IEEE, vol. 67, no. 5, pp. 773-785, 1979.

[96] R. Pohle and K. D. Toennies, "Segmentation of medical images using adaptive

region growing," in Medical Imaging 2001: Image Processing, 2001, vol. 4322:

SPIE, pp. 1337-1346.

[97] H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic

segmentation," in Proceedings of the IEEE international conference on

computer vision, 2015, pp. 1520-1528.

[98] N. Siddique, S. Paheding, C. P. Elkin, and V. Devabhaktuni, "U-net and its

196

variants for medical image segmentation: A review of theory and applications,"

Ieee Access, vol. 9, pp. 82031-82057, 2021.

[99] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask r-cnn," in Proceedings

of the IEEE international conference on computer vision, 2017, pp. 2961-2969.

[100] A. Kirillov et al., "Segment anything," arXiv preprint arXiv:2304.02643, 2023.

[101] S. He, R. Bao, J. Li, P. E. Grant, and Y. Ou, "Accuracy of segment-anything

model (sam) in medical image segmentation tasks," arXiv preprint

arXiv:2304.09324, 2023.

[102] M. Ahmadi, A. G. Lonbar, A. Sharifi, A. T. Beris, M. Nouri, and A. S. Javidi,

"Application of segment anything model for civil infrastructure defect

assessment," arXiv preprint arXiv:2304.12600, 2023.

[103] Z. Chen, W. K. Wong, Z. Zhong, J. Liao, and Y. Qu, "Effective Transfer of

Pretrained Large Visual Model for Fabric Defect Segmentation via Specifc

Knowledge Injection," arXiv preprint arXiv:2306.16186, 2023.

[104] G.-P. Ji, D.-P. Fan, P. Xu, M.-M. Cheng, B. Zhou, and L. Van Gool, "SAM

Struggles in Concealed Scenes--Empirical Study on" Segment Anything","

arXiv preprint arXiv:2304.06022, 2023.

[105] W. Ji, J. Li, Q. Bi, W. Li, and L. Cheng, "Segment anything is not always

perfect: An investigation of sam on different real-world applications," arXiv

preprint arXiv:2304.05750, 2023.

[106] L. M. Song, M. P. Wang, L. Lu, and H. J. Huan, "High precision camera

calibration in vision measurement," Optics & Laser Technology, vol. 39, no. 7,

pp. 1413-1420, 2007.

[107] S. Dworkin and T. Nye, "Image processing for machine vision measurement of

hot formed parts," Journal of materials processing technology, vol. 174, no. 1-

3, pp. 1-6, 2006.

[108] R. G. Lins and S. N. Givigi, "Automatic crack detection and measurement

based on image analysis," IEEE Transactions on Instrumentation and

Measurement, vol. 65, no. 3, pp. 583-590, 2016.

[109] D. Huang, S. Du, G. Li, C. Zhao, and Y. Deng, "Detection and monitoring of

defects on three-dimensional curved surfaces based on high-density point

cloud data," Precision Engineering, vol. 53, pp. 79-95, 2018.

[110] Y. Tang, Q. Wang, H. Wang, J. Li, and Y. Ke, "A novel 3D laser scanning defect

detection and measurement approach for automated fibre placement,"

Measurement Science and Technology, vol. 32, no. 7, p. 075201, 2021.

[111] A. G. Howard et al., "Mobilenets: Efficient convolutional neural networks for

mobile vision applications," 2017.

[112] Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris, "Spottune:

transfer learning through adaptive fine-tuning," in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.

4805-4814.

[113] C. Pinto, Y. Gkoufas, A. Reale, S. Seelam, and S. Eliuk, "Hoard: A distributed

data caching system to accelerate deep learning training on the cloud," arXiv

preprint arXiv:1812.00669, 2018.

[114] A. Polino, R. Pascanu, and D. Alistarh, "Model compression via distillation

and quantization," arXiv preprint arXiv:1802.05668, 2018.

[115] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste, "Sparsity in deep

learning: Pruning and growth for efficient inference and training in neural

197

networks," The Journal of Machine Learning Research, vol. 22, no. 1, pp.

10882-11005, 2021.

[116] T. Chen et al., "{TVM}: An automated {End-to-End} optimizing compiler for

deep learning," in 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), 2018, pp. 578-594.

[117] X. Hu, L. Chu, J. Pei, W. Liu, and J. Bian, "Model complexity of deep learning:

A survey," Knowledge and Information Systems, vol. 63, pp. 2585-2619, 2021.

[118] D. Racki, D. Tomazevic, and D. Skocaj, "A compact convolutional neural

network for textured surface anomaly detection," in 2018 IEEE Winter

Conference on Applications of Computer Vision (WACV), 2018: IEEE, pp.

1331-1339.

[119] Y. Li, H. Huang, Q. Xie, L. Yao, and Q. Chen, "Research on a surface defect

detection algorithm based on MobileNet-SSD," Applied Sciences, vol. 8, no. 9,

p. 1678, 2018.

[120] C. Goutte and E. Gaussier, "A probabilistic interpretation of precision, recall

and F-score, with implication for evaluation," in European conference on

information retrieval, 2005: Springer, pp. 345-359.

[121] M. H. Zweig and G. Campbell, "Receiver-operating characteristic (ROC) plots:

a fundamental evaluation tool in clinical medicine," Clinical chemistry, vol. 39,

no. 4, pp. 561-577, 1993.

[122] M. A. Rahman and Y. Wang, "Optimizing intersection-over-union in deep

neural networks for image segmentation," in International symposium on

visual computing, 2016: Springer, pp. 234-244.

[123] R. R. Shamir, Y. Duchin, J. Kim, G. Sapiro, and N. Harel, "Continuous dice

coefficient: a method for evaluating probabilistic segmentations," arXiv

preprint arXiv:1906.11031, 2019.

[124] P. Henderson and V. Ferrari, "End-to-end training of object class detectors for

mean average precision," in Computer Vision–ACCV 2016: 13th Asian

Conference on Computer Vision, Taipei, Taiwan, November 20-24, 2016,

Revised Selected Papers, Part V 13, 2017: Springer, pp. 198-213.

[125] M. French, "Conceptual design for engineers. Springer, Berlin Heidelberg New

York," 1999.

[126] W. Beitz, G. Pahl, and K. Grote, "Engineering design: a systematic approach,"

Mrs Bulletin, vol. 71, 1996.

[127] X.-T. Yan and R. Zante, "A mechatronic design process and its application," in

Mechatronics in Action: Case Studies in Mechatronics–Applications and

Education: Springer, 2010, pp. 55-70.

[128] V. VDI, "2206. Design Handbook 2206, Design methodology for mechatronic

systems," ed: VDI Publishing Group, Düsseldorf, 2003.

[129] S. Saha and S. S. Bhattacharyya, "Design methodology for embedded

computer vision systems," in Embedded computer vision: Springer, 2009, pp.

27-47.

[130] T. Menzies and P. Haynes, "The methodology of methodologies, or, evaluating

current methodologies: Why and how," in Technology of Object-Oriented

Languages and Systems: TOOLS, 1994, vol. 15, pp. 83-92.

[131] M. Sharifzadeh, R. Amirfattahi, S. Sadri, S. Alirezaee, and M. Ahmadi,

"Detection of steel defect using the image processing algorithms," in The

International Conference on Electrical Engineering, 2008, vol. 6, no. 6th

198

International Conference on Electrical Engineering ICEENG 2008: Military

Technical College, pp. 1-7.

[132] Z. Ren, F. Fang, N. Yan, and Y. Wu, "State of the art in defect detection based

on machine vision," International Journal of Precision Engineering and

Manufacturing-Green Technology, vol. 9, no. 2, pp. 661-691, 2022.

[133] G. Pang, C. Shen, L. Cao, and A. V. D. Hengel, "Deep learning for anomaly

detection: A review," ACM computing surveys (CSUR), vol. 54, no. 2, pp. 1-38,

2021.

[134] Z. Hocenski, S. Vasilic, and V. Hocenski, "Improved canny edge detector in

ceramic tiles defect detection," in IECON 2006-32nd Annual Conference on

IEEE Industrial Electronics, 2006: IEEE, pp. 3328-3331.

[135] C. Topal and C. Akinlar, "Edge drawing: a combined real-time edge and

segment detector," Journal of Visual Communication and Image

Representation, vol. 23, no. 6, pp. 862-872, 2012.

[136] B. Kundu, K. White, and C. Mastrangelo, "Defect clustering and classification

for semiconductor devices," in The 2002 45th Midwest Symposium on Circuits

and Systems, 2002. MWSCAS-2002., 2002, vol. 2: IEEE, pp. II-II.

[137] F. G. Bulnes, R. Usamentiaga, D. F. García, and J. Molleda, "Vision-based

sensor for early detection of periodical defects in web materials," Sensors, vol.

12, no. 8, pp. 10788-10809, 2012.

[138] K. P. White, B. Kundu, and C. M. Mastrangelo, "Classification of defect

clusters on semiconductor wafers via the Hough transformation," IEEE

Transactions on Semiconductor Manufacturing, vol. 21, no. 2, pp. 272-278,

2008.

[139] F.-l. Wang and B. Zuo, "Detection of surface cutting defect on magnet using

Fourier image reconstruction," Journal of Central South University, vol. 23, no.

5, pp. 1123-1131, 2016.

[140] C.-h. Chan and G. K. Pang, "Fabric defect detection by Fourier analysis," IEEE

transactions on Industry Applications, vol. 36, no. 5, pp. 1267-1276, 2000.

[141] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models,"

International journal of computer vision, vol. 1, no. 4, pp. 321-331, 1988.

[142] Q. Yang and J. A. Marchant, "Accurate blemish detection with active contour

models," Computers and electronics in agriculture, vol. 14, no. 1, pp. 77-89,

1996.

[143] J. Yang et al., "Development of an optical defect inspection algorithm based on

an active contour model for large steel roller surfaces," Applied optics, vol. 57,

no. 10, pp. 2490-2498, 2018.

[144] P. Roy, S. Dutta, N. Dey, G. Dey, S. Chakraborty, and R. Ray, "Adaptive

thresholding: A comparative study," in 2014 International conference on

control, Instrumentation, communication and Computational Technologies

(ICCICCT), 2014: IEEE, pp. 1182-1186.

[145] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, "Textural features for

image classification," IEEE Transactions on systems, man, and cybernetics, no.

6, pp. 610-621, 1973.

[146] D.-M. Tsai, M.-C. Chen, W.-C. Li, and W.-Y. Chiu, "A fast regularity measure

for surface defect detection," Machine Vision and applications, vol. 23, pp.

869-886, 2012.

[147] T. Ojala, M. Pietikäinen, and D. Harwood, "A comparative study of texture

199

measures with classification based on featured distributions," Pattern

recognition, vol. 29, no. 1, pp. 51-59, 1996.

[148] Z. Guo, L. Zhang, and D. Zhang, "A completed modeling of local binary

pattern operator for texture classification," IEEE transactions on image

processing, vol. 19, no. 6, pp. 1657-1663, 2010.

[149] Y.-h. Ai and K. Xu, "Surface detection of continuous casting slabs based on

curvelet transform and kernel locality preserving projections," Journal of Iron

and Steel Research International, vol. 20, no. 5, pp. 80-86, 2013.

[150] B. Zorić, T. Matić, and Ž. Hocenski, "Classification of biscuit tiles for defect

detection using Fourier transform features," ISA transactions, vol. 125, pp.

400-414, 2022.

[151] D. Gabor, "Theory of communication. Part 1: The analysis of information,"

Journal of the Institution of Electrical Engineers-part III: radio and

communication engineering, vol. 93, no. 26, pp. 429-441, 1946.

[152] G. H. Granlund, "In search of a general picture processing operator," Computer

Graphics and Image Processing, vol. 8, no. 2, pp. 155-173, 1978.

[153] A. Kumar and G. K. Pang, "Defect detection in textured materials using Gabor

filters," IEEE Transactions on industry applications, vol. 38, no. 2, pp. 425-

440, 2002.

[154] J. L. Raheja, S. Kumar, and A. Chaudhary, "Fabric defect detection based on

GLCM and Gabor filter: A comparison," Optik, vol. 124, no. 23, pp. 6469-6474,

2013.

[155] L. Bissi, G. Baruffa, P. Placidi, E. Ricci, A. Scorzoni, and P. Valigi, "Automated

defect detection in uniform and structured fabrics using Gabor filters and

PCA," Journal of Visual Communication and Image Representation, vol. 24,

no. 7, pp. 838-845, 2013.

[156] G. Lambert and F. Bock, "Wavelet methods for texture defect detection," in

proceedings of international conference on image processing, 1997, vol. 3:

IEEE, pp. 201-204.

[157] X. Zhou et al., "A surface defect detection framework for glass bottle bottom

using visual attention model and wavelet transform," IEEE Transactions on

Industrial Informatics, vol. 16, no. 4, pp. 2189-2201, 2019.

[158] T. Wang, Y. Chen, M. Qiao, and H. Snoussi, "A fast and robust convolutional

neural network-based defect detection model in product quality control," The

International Journal of Advanced Manufacturing Technology, vol. 94, no. 9,

pp. 3465-3471, 2018.

[159] Y. He, K. Song, Q. Meng, and Y. Yan, "An end-to-end steel surface defect

detection approach via fusing multiple hierarchical features," IEEE

Transactions on Instrumentation and Measurement, vol. 69, no. 4, pp. 1493-

1504, 2019.

[160] X. Cheng and J. Yu, "RetinaNet with difference channel attention and

adaptively spatial feature fusion for steel surface defect detection," IEEE

Transactions on Instrumentation and Measurement, vol. 70, pp. 1-11, 2020.

[161] M. S. Dizaji and D. K. Harris, "3D InspectionNet: a deep 3D convolutional

neural networks based approach for 3D defect detection on concrete columns,"

in Nondestructive Characterization and Monitoring of Advanced Materials,

Aerospace, Civil Infrastructure, and Transportation XIII, 2019, vol. 10971:

SPIE, pp. 67-77.

200

[162] K.-H. Lee, H. W. Lee, and G. J. Yun, "A defect detection framework using

three-dimensional convolutional neural network (3D-CNN) with in-situ

monitoring data in laser powder bed fusion process," Optics & Laser

Technology, vol. 165, p. 109571, 2023.

[163] K. Han et al., "A survey on vision transformer," IEEE transactions on pattern

analysis and machine intelligence, vol. 45, no. 1, pp. 87-110, 2022.

[164] L. M. Dang, H. Wang, Y. Li, T. N. Nguyen, and H. Moon, "DefectTR: End-to-

end defect detection for sewage networks using a transformer," Construction

and Building Materials, vol. 325, p. 126584, 2022.

[165] K. An and Y. Zhang, "LPViT: a transformer based model for PCB image

classification and defect detection," IEEE Access, vol. 10, pp. 42542-42553,

2022.

[166] J. Wang, G. Xu, F. Yan, J. Wang, and Z. Wang, "Defect transformer: An

efficient hybrid transformer architecture for surface defect detection,"

Measurement, vol. 211, p. 112614, 2023.

[167] D.-M. Tsai, G.-N. Li, W.-C. Li, and W.-Y. Chiu, "Defect detection in multi-

crystal solar cells using clustering with uniformity measures," Advanced

Engineering Informatics, vol. 29, no. 3, pp. 419-430, 2015.

[168] K. Zheng, Y.-S. Chang, K.-H. Wang, and Y. Yao, "Thermographic clustering

analysis for defect detection in CFRP structures," Polymer Testing, vol. 49, pp.

73-81, 2016.

[169] S.-S. Yang, Y.-H. He, Z.-L. Wang, and W.-S. Zhao, "A method of steel strip

image segmentation based on local gray information," in 2008 IEEE

International Conference on Industrial Technology, 2008: IEEE, pp. 1-4.

[170] Y. Ma, Q. Li, Y. Zhou, F. He, and S. Xi, "A surface defects inspection method

based on multidirectional gray-level fluctuation," International Journal of

Advanced Robotic Systems, vol. 14, no. 3, p. 1729881417703114, 2017.

[171] I. Jovančević et al., "3D point cloud analysis for detection and characterization

of defects on airplane exterior surface," Journal of Nondestructive Evaluation,

vol. 36, pp. 1-17, 2017.

[172] F. Tajeripour, E. Kabir, and A. Sheikhi, "Fabric defect detection using modified

local binary patterns," EURASIP Journal on Advances in Signal Processing,

vol. 2008, pp. 1-12, 2007.

[173] Q. Luo, Y. Sun, P. Li, O. Simpson, L. Tian, and Y. He, "Generalized completed

local binary patterns for time-efficient steel surface defect classification," IEEE

Transactions on Instrumentation and Measurement, vol. 68, no. 3, pp. 667-679,

2018.

[174] Y. Zhang, Z. Tang, and R. Yang, "Data anomaly detection for structural health

monitoring by multi-view representation based on local binary patterns,"

Measurement, vol. 202, p. 111804, 2022.

[175] T. Kim and C. H. Park, "Anomaly pattern detection in streaming data based on

the transformation to multiple binary-valued data streams," Journal of

Artificial Intelligence and Soft Computing Research, vol. 12, no. 1, pp. 19-27,

2022.

[176] A. Çalışkan, "A new ensemble approach for congestive heart failure and

arrhythmia classification using shifted one-dimensional local binary patterns

with long short-term memory," The Computer Journal, vol. 65, no. 9, pp. 2535-

2546, 2022.

201

[177] C. Ciamberlini, F. Francini, G. Longobardi, P. Poggi, P. Sansoni, and B.

Tiribilli, "Weaving defect detection by Fourier imaging," in Vision Systems:

Applications, 1996, vol. 2786: SPIE, pp. 9-18.

[178] D.-M. Tsai and C.-Y. Hsieh, "Automated surface inspection for directional

textures," Image and Vision computing, vol. 18, no. 1, pp. 49-62, 1999.

[179] A. Noiboar and I. Cohen, "Anomaly detection in three dimensional data based

on Gauss Markov random field modeling," in 2004 23rd IEEE Convention of

Electrical and Electronics Engineers in Israel, 2004: IEEE, pp. 448-451.

[180] A. Goldman and I. Cohen, "Anomaly subspace detection based on a multi-scale

Markov random field model," Signal Processing, vol. 85, no. 3, pp. 463-479,

2005.

[181] G.-H. Hu, G.-H. Zhang, and Q.-H. Wang, "Automated defect detection in

textured materials using wavelet-domain hidden Markov models," Optical

Engineering, vol. 53, no. 9, pp. 093107-093107, 2014.

[182] H.-g. Bu, J. Wang, and X.-b. Huang, "Fabric defect detection based on multiple

fractal features and support vector data description," Engineering Applications

of Artificial Intelligence, vol. 22, no. 2, pp. 224-235, 2009.

[183] Y.-H. Liu, Y.-C. Liu, and Y.-Z. Chen, "High-speed inline defect detection for

TFT-LCD array process using a novel support vector data description," Expert

Systems with Applications, vol. 38, no. 5, pp. 6222-6231, 2011.

[184] J. An and S. Cho, "Variational autoencoder based anomaly detection using

reconstruction probability," Special lecture on IE, vol. 2, no. 1, pp. 1-18, 2015.

[185] S. Akcay, A. Atapour-Abarghouei, and T. P. Breckon, "Ganomaly: Semi-

supervised anomaly detection via adversarial training," in Computer Vision–

ACCV 2018: 14th Asian Conference on Computer Vision, Perth, Australia,

December 2–6, 2018, Revised Selected Papers, Part III 14, 2019: Springer, pp.

622-637.

[186] P. Perera, R. Nallapati, and B. Xiang, "Ocgan: One-class novelty detection

using gans with constrained latent representations," in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.

2898-2906.

[187] N. Cohen and Y. Hoshen, "Sub-image anomaly detection with deep pyramid

correspondences," arXiv preprint arXiv:2005.02357, 2020.

[188] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, "Uninformed students:

Student-teacher anomaly detection with discriminative latent embeddings," in

Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition, 2020, pp. 4183-4192.

[189] D. Lu, X. Liao, F. Xu, and J. Bai, "Anomaly detection method for substation

equipment based on feature matching and multi-Semantic classification," in

2021 6th Asia Conference on Power and Electrical Engineering (ACPEE),

2021: IEEE, pp. 109-113.

[190] X. Zhou, G. Liu, X. Zhang, B. D. Prasad, X. Gu, and Y. Li, "Re2FAD: A

differential image registration and robust image fusion method framework for

power thermal anomaly detection," Optik, vol. 259, p. 168817, 2022.

[191] P. Hong-Seok and T. U. Mani, "Development of an inspection system for defect

detection in pressed parts using laser scanned data," Procedia Engineering, vol.

69, pp. 931-936, 2014.

[192] M. Chen, T. Kanade, D. Pomerleau, and H. A. Rowley, "Anomaly detection

202

through registration," Pattern Recognition, vol. 32, no. 1, pp. 113-128, 1999.

[193] R. Ren, T. Hung, and K. C. Tan, "A generic deep-learning-based approach for

automated surface inspection," IEEE transactions on cybernetics, vol. 48, no.

3, pp. 929-940, 2017.

[194] J. C. Cheng and M. Wang, "Automated detection of sewer pipe defects in

closed-circuit television images using deep learning techniques," Automation

in Construction, vol. 95, pp. 155-171, 2018.

[195] Y. Liu, K. Xu, and J. Xu, "Periodic surface defect detection in steel plates based

on deep learning," Applied Sciences, vol. 9, no. 15, p. 3127, 2019.

[196] S. Y. Lee, B. A. Tama, S. J. Moon, and S. Lee, "Steel surface defect diagnostics

using deep convolutional neural network and class activation map," Applied

Sciences, vol. 9, no. 24, p. 5449, 2019.

[197] F. Chang, M. Liu, M. Dong, and Y. Duan, "A mobile vision inspection system

for tiny defect detection on smooth car-body surfaces based on deep ensemble

learning," Measurement Science and Technology, vol. 30, no. 12, p. 125905,

2019.

[198] Y. Huang, C. Qiu, X. Wang, S. Wang, and K. Yuan, "A compact convolutional

neural network for surface defect inspection," Sensors, vol. 20, no. 7, p. 1974,

2020.

[199] Y. Liu, Y. Yuan, C. Balta, and J. Liu, "A light-weight deep-learning model with

multi-scale features for steel surface defect classification," Materials, vol. 13,

no. 20, p. 4629, 2020.

[200] L. Xiao, B. Wu, and Y. Hu, "Surface defect detection using image pyramid,"

IEEE Sensors Journal, vol. 20, no. 13, pp. 7181-7188, 2020.

[201] X. Tao, D. Zhang, W. Hou, W. Ma, and D. Xu, "Industrial weak scratches

inspection based on multifeature fusion network," IEEE Transactions on

Instrumentation and Measurement, vol. 70, pp. 1-14, 2020.

[202] R. Neven and T. Goedemé, "A multi-branch U-Net for steel surface defect type

and severity segmentation," Metals, vol. 11, no. 6, p. 870, 2021.

[203] J. Luo, Z. Yang, S. Li, and Y. Wu, "FPCB surface defect detection: A decoupled

two-stage object detection framework," IEEE Transactions on Instrumentation

and Measurement, vol. 70, pp. 1-11, 2021.

[204] D.-M. Tsai, S.-K. S. Fan, and Y.-H. Chou, "Auto-annotated deep segmentation

for surface defect detection," IEEE Transactions on Instrumentation and

Measurement, vol. 70, pp. 1-10, 2021.

[205] L. Cui, X. Jiang, M. Xu, W. Li, P. Lv, and B. Zhou, "SDDNet: A fast and

accurate network for surface defect detection," IEEE Transactions on

Instrumentation and Measurement, vol. 70, pp. 1-13, 2021.

[206] Y. Wu, Y. Qin, Y. Qian, F. Guo, Z. Wang, and L. Jia, "Hybrid deep learning

architecture for rail surface segmentation and surface defect detection,"

Computer‐Aided Civil and Infrastructure Engineering, vol. 37, no. 2, pp.

227-244, 2022.

[207] M. Chen et al., "Improved faster R-CNN for fabric defect detection based on

Gabor filter with Genetic Algorithm optimization," Computers in Industry, vol.

134, p. 103551, 2022.

[208] P. Lu, J. Jing, and Y. Huang, "MRD-net: An effective CNN-based segmentation

network for surface defect detection," IEEE Transactions on Instrumentation

203

and Measurement, vol. 71, pp. 1-12, 2022.

[209] Y. Liu, H. Xiao, J. Xu, and J. Zhao, "A rail surface defect detection method

based on pyramid feature and lightweight convolutional neural network," IEEE

Transactions on Instrumentation and Measurement, vol. 71, pp. 1-10, 2022.

[210] L. Gao, J. Zhang, C. Yang, and Y. Zhou, "Cas-VSwin transformer: A variant

swin transformer for surface-defect detection," Computers in Industry, vol. 140,

p. 103689, 2022.

[211] W. Li et al., "Deep learning based online metallic surface defect detection

method for wire and arc additive manufacturing," Robotics and Computer-

Integrated Manufacturing, vol. 80, p. 102470, 2023.

[212] Y. Zhang et al., "Development of a cross-scale weighted feature fusion network

for hot-rolled steel surface defect detection," Engineering Applications of

Artificial Intelligence, vol. 117, p. 105628, 2023.

[213] J. Yi and S. Yoon, "Patch svdd: Patch-level svdd for anomaly detection and

segmentation," in Proceedings of the Asian conference on computer vision,

2020.

[214] C. Hu, K. Chen, and H. Shao, "A semantic-enhanced method based on deep

SVDD for pixel-wise anomaly detection," in 2021 IEEE International

Conference on Multimedia and Expo (ICME), 2021: IEEE, pp. 1-6.

[215] T. Matsubara, K. Sato, K. Hama, R. Tachibana, and K. Uehara, "Deep

generative model using unregularized score for anomaly detection with

heterogeneous complexity," IEEE Transactions on Cybernetics, vol. 52, no. 6,

pp. 5161-5173, 2020.

[216] W. Liu et al., "Towards visually explaining variational autoencoders," in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2020, pp. 8642-8651.

[217] C.-C. Tsai, T.-H. Wu, and S.-H. Lai, "Multi-scale patch-based representation

learning for image anomaly detection and segmentation," in Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer Vision, 2022, pp.

3992-4000.

[218] C.-L. Li, K. Sohn, J. Yoon, and T. Pfister, "Cutpaste: Self-supervised learning

for anomaly detection and localization," in Proceedings of the IEEE/CVF

conference on computer vision and pattern recognition, 2021, pp. 9664-9674.

[219] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs,

"Unsupervised anomaly detection with generative adversarial networks to

guide marker discovery," in International conference on information

processing in medical imaging, 2017: Springer, pp. 146-157.

[220] D. Gudovskiy, S. Ishizaka, and K. Kozuka, "Cflow-ad: Real-time

unsupervised anomaly detection with localization via conditional normalizing

flows," in Proceedings of the IEEE/CVF Winter Conference on Applications of

Computer Vision, 2022, pp. 98-107.

[221] J. Yu et al., "Fastflow: Unsupervised anomaly detection and localization via 2d

normalizing flows," arXiv preprint arXiv:2111.07677, 2021.

[222] T. Defard, A. Setkov, A. Loesch, and R. Audigier, "Padim: a patch distribution

modeling framework for anomaly detection and localization," in International

Conference on Pattern Recognition, 2021: Springer, pp. 475-489.

[223] K. Roth, L. Pemula, J. Zepeda, B. Schölkopf, T. Brox, and P. Gehler, "Towards

total recall in industrial anomaly detection," in Proceedings of the IEEE/CVF

204

Conference on Computer Vision and Pattern Recognition, 2022, pp. 14318-

14328.

[224] G. Wang, S. Han, E. Ding, and D. Huang, "Student-teacher feature pyramid

matching for anomaly detection," arXiv preprint arXiv:2103.04257, 2021.

[225] H. Deng and X. Li, "Anomaly detection via reverse distillation from one-class

embedding," in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2022, pp. 9737-9746.

[226] K. Batzner, L. Heckler, and R. König, "Efficientad: Accurate visual anomaly

detection at millisecond-level latencies," arXiv preprint arXiv:2303.14535,

2023.

[227] C. Huang, H. Guan, A. Jiang, Y. Zhang, M. Spratling, and Y.-F. Wang,

"Registration based few-shot anomaly detection," in European Conference on

Computer Vision, 2022: Springer, pp. 303-319.

[228] Y. Zheng, X. Wang, R. Deng, T. Bao, R. Zhao, and L. Wu, "Focus your

distribution: Coarse-to-fine non-contrastive learning for anomaly detection and

localization," in 2022 IEEE International Conference on Multimedia and Expo

(ICME), 2022: IEEE, pp. 1-6.

[229] J. C. Borg, X.-T. Yan, and N. P. Juster, "Exploring decisions' influence on life-

cycle performance to aid “design for Multi-X”," AI EDAM, vol. 14, no. 2, pp.

91-113, 2000.

[230] X.-T. Yan, "A multiple perspective product modeling and simulation approach

to engineering design support," Concurrent Engineering, vol. 11, no. 3, pp.

221-234, 2003.

[231] P. Prasanna et al., "Automated crack detection on concrete bridges," IEEE

Transactions on automation science and engineering, vol. 13, no. 2, pp. 591-

599, 2014.

[232] M. Lehman, "The american society of civil engineers’ report card on america’s

infrastructure," in Women in Infrastructure: Springer, 2022, pp. 5-21.

[233] J. Act, "Infrastructure Investment and Jobs Act," 2021.

[234] X. Ji, Z. Miao, and R. Kromanis, "Vision-based measurements of deformations

and cracks for RC structure tests," Engineering Structures, vol. 212, p. 110508,

2020.

[235] D. Ai, G. Jiang, S.-K. Lam, P. He, and C. Li, "Computer vision framework for

crack detection of civil infrastructure—A review," Engineering Applications of

Artificial Intelligence, vol. 117, p. 105478, 2023.

[236] B. F. Spencer Jr, V. Hoskere, and Y. Narazaki, "Advances in computer vision-

based civil infrastructure inspection and monitoring," Engineering, vol. 5, no.

2, pp. 199-222, 2019.

[237] K. Xu and Y. Lu, "Numerical simulation study of spallation in reinforced

concrete plates subjected to blast loading," Computers & structures, vol. 84,

no. 5-6, pp. 431-438, 2006.

[238] N.-D. Hoang and Q.-L. Nguyen, "Metaheuristic optimized edge detection for

recognition of concrete wall cracks: a comparative study on the performances

of roberts, prewitt, canny, and sobel algorithms," Advances in Civil

Engineering, vol. 2018, pp. 1-16, 2018.

[239] Y. Hamishebahar, H. Guan, S. So, and J. Jo, "A Comprehensive Review of

Deep Learning-Based Crack Detection Approaches," Applied Sciences, vol. 12,

no. 3, p. 1374, 2022.

205

[240] M. M. Islam, M. B. Hossain, M. N. Akhtar, M. A. Moni, and K. F. Hasan, "CNN

based on transfer learning models using data augmentation and transformation

for detection of concrete crack," Algorithms, vol. 15, no. 8, p. 287, 2022.

[241] Ç. F. Özgenel, "Concrete crack images for classification," Mendeley Data, v1

http://dx. doi. org/10.17632/5y9wdsg2zt, vol. 1, 2018.

[242] M. Maguire, S. Dorafshan, and R. J. Thomas, "SDNET2018: A concrete crack

image dataset for machine learning applications," 2018.

[243] Y. Liu, J. Yao, X. Lu, R. Xie, and L. Li, "DeepCrack: A deep hierarchical

feature learning architecture for crack segmentation," Neurocomputing, vol.

338, pp. 139-153, 2019.

[244] S. Kulkarni, S. Singh, D. Balakrishnan, S. Sharma, S. Devunuri, and S. C. R.

Korlapati, "CrackSeg9k: a collection and benchmark for crack segmentation

datasets and frameworks," in European Conference on Computer Vision, 2022:

Springer, pp. 179-195.

[245] S. Zhao, F. Kang, and J. Li, "Non-Contact Crack Visual Measurement System

Combining Improved U-Net Algorithm and Canny Edge Detection Method

with Laser Rangefinder and Camera," Applied Sciences, vol. 12, no. 20, p.

10651, 2022.

[246] F. Kucuksubasi and A. Sorguc, "Transfer learning-based crack detection by

autonomous UAVs," arXiv preprint arXiv:1807.11785, 2018.

[247] T. Yamaguchi, T. Shibuya, M. Kanda, and A. Yasojima, "Crack inspection

support system for concrete structures using head mounted display in mixed

reality space," in 2019 58th Annual Conference of the Society of Instrument

and Control Engineers of Japan (SICE), 2019: IEEE, pp. 791-796.

[248] Y. J. Cha, W. Choi, and O. Büyüköztürk, "Deep learning‐based crack damage

detection using convolutional neural networks," Computer‐Aided Civil and

Infrastructure Engineering, vol. 32, no. 5, pp. 361-378, 2017.

[249] J. Deng, Y. Lu, and V. C. S. Lee, "Concrete crack detection with handwriting

script interferences using faster region‐based convolutional neural network,"

Computer‐Aided Civil and Infrastructure Engineering, vol. 35, no. 4, pp.

373-388, 2020.

[250] X. Yang, H. Li, Y. Yu, X. Luo, T. Huang, and X. Yang, "Automatic pixel‐level

crack detection and measurement using fully convolutional network,"

Computer‐Aided Civil and Infrastructure Engineering, vol. 33, no. 12, pp.

1090-1109, 2018.

[251] K. Chen, G. Reichard, X. Xu, and A. Akanmu, "Automated crack segmentation

in close-range building façade inspection images using deep learning

techniques," Journal of Building Engineering, vol. 43, p. 102913, 2021.

[252] Y. Zheng, Y. Gao, S. Lu, and K. M. Mosalam, "Multistage semisupervised

active learning framework for crack identification, segmentation, and

measurement of bridges," Computer‐Aided Civil and Infrastructure

Engineering, vol. 37, no. 9, pp. 1089-1108, 2022.

[253] Y. Jiang and C. Zhao, "Attention classification-and-segmentation network for

micro-crack anomaly detection of photovoltaic module cells," Solar Energy,

vol. 238, pp. 291-304, 2022.

[254] G. Yang et al., "Datasets and processing methods for boosting visual inspection

of civil infrastructure: A comprehensive review and algorithm comparison for

206

crack classification, segmentation, and detection," Construction and Building

Materials, vol. 356, p. 129226, 2022.

[255] F. Fang, L. Li, M. Rice, and J.-H. Lim, "Towards real-time crack detection

using a deep neural network with a Bayesian fusion algorithm," in 2019 IEEE

international conference on image processing (ICIP), 2019: IEEE, pp. 2976-

2980.

[256] F.-C. Chen and M. R. Jahanshahi, "NB-FCN: Real-time accurate crack

detection in inspection videos using deep fully convolutional network and

parametric data fusion," IEEE Transactions on Instrumentation and

Measurement, vol. 69, no. 8, pp. 5325-5334, 2019.

[257] J. Pang, H. Zhang, H. Zhao, and L. Li, "DcsNet: a real-time deep network for

crack segmentation," Signal, Image and Video Processing, pp. 1-9, 2022.

[258] S. Jiang and J. Zhang, "Real‐time crack assessment using deep neural

networks with wall‐climbing unmanned aerial system," Computer‐Aided

Civil and Infrastructure Engineering, vol. 35, no. 6, pp. 549-564, 2020.

[259] A. Doulamis, N. Doulamis, E. Protopapadakis, and A. Voulodimos,

"Combined convolutional neural networks and fuzzy spectral clustering for

real time crack detection in tunnels," in 2018 25th IEEE International

Conference on Image Processing (ICIP), 2018: IEEE, pp. 4153-4157.

[260] T. Chisholm, R. Lins, and S. Givigi, "FPGA-based design for real-time crack

detection based on particle filter," IEEE Transactions on Industrial Informatics,

vol. 16, no. 9, pp. 5703-5711, 2019.

[261] D. Ma, H. Fang, N. Wang, B. Xue, J. Dong, and F. Wang, "A real-time crack

detection algorithm for pavement based on CNN with multiple feature layers,"

Road Materials and Pavement Design, pp. 1-17, 2021.

[262] Z. Yu, Y. Shen, and C. Shen, "A real-time detection approach for bridge cracks

based on YOLOv4-FPM," Automation in Construction, vol. 122, p. 103514,

2021.

[263] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen,

"MobileNetV2: Inverted Residuals and Linear Bottlenecks," in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-23

June 2018 2018, pp. 4510-4520, doi: 10.1109/CVPR.2018.00474.

[264] A. G. Howard et al., "Searching for MobileNetV3," 2019 IEEE/CVF

International Conference on Computer Vision (ICCV), pp. 1314-1324, 2019.

[265] M. Tan and Q. Le, "EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks," presented at the Proceedings of the 36th International

Conference on Machine Learning, Proceedings of Machine Learning Research,

2019. [Online]. Available: https://proceedings.mlr.press/v97/tan19a.html.

[266] M. Tan and Q. Le, "EfficientNetV2: Smaller Models and Faster Training,"

presented at the Proceedings of the 38th International Conference on Machine

Learning, Proceedings of Machine Learning Research, 2021. [Online].

Available: https://proceedings.mlr.press/v139/tan21a.html.

[267] F. Yu and V. Koltun, "Multi-Scale Context Aggregation by Dilated

Convolutions," 2016. [Online]. Available: http://arxiv.org/abs/1511.07122.

[268] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, "A survey on deep

transfer learning," in International conference on artificial neural networks,

2018: Springer, pp. 270-279.

207

[269] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE Transactions on

knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2009.

[270] J. Xie, B. Huang, and S. Dubljevic, "Transfer learning for dynamic feature

extraction using variational bayesian inference," IEEE Transactions on

Knowledge and Data Engineering, 2021.

[271] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A

large-scale hierarchical image database," in 2009 IEEE conference on

computer vision and pattern recognition, 2009: Ieee, pp. 248-255.

[272] M. Abadi et al., "Tensorflow: Large-scale machine learning on heterogeneous

distributed systems," arXiv preprint arXiv:1603.04467, 2016.

[273] A. Paszke et al., "Pytorch: An imperative style, high-performance deep

learning library," Advances in neural information processing systems, vol. 32,

2019.

[274] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from tiny

images," 2009.

[275] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a neural

network," arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[276] J. Gou, B. Yu, S. J. Maybank, and D. Tao, "Knowledge distillation: A survey,"

International Journal of Computer Vision, vol. 129, no. 6, pp. 1789-1819, 2021.

[277] S. Zagoruyko and N. Komodakis, "Paying more attention to attention:

Improving the performance of convolutional neural networks via attention

transfer," arXiv preprint arXiv:1612.03928, 2016.

[278] W. Liu, D. Gong, M. Tan, J. Q. Shi, Y. Yang, and A. G. Hauptmann, "Learning

distilled graph for large-scale social network data clustering," IEEE

Transactions on Knowledge and Data Engineering, vol. 32, no. 7, pp. 1393-

1404, 2019.

[279] F. M. Nardini, C. Rulli, S. Trani, and R. Venturini, "Distilled Neural Networks

for Efficient Learning to Rank," IEEE Transactions on Knowledge and Data

Engineering, 2022.

[280] Z. Liu, X. Gu, H. Yang, L. Wang, Y. Chen, and D. Wang, "Novel YOLOv3

Model With Structure and Hyperparameter Optimization for Detection of

Pavement Concealed Cracks in GPR Images," IEEE Transactions on

Intelligent Transportation Systems, pp. 1-11, 2022, doi:

10.1109/TITS.2022.3174626.

[281] D. Ungureanu et al., "Hololens 2 research mode as a tool for computer vision

research," arXiv preprint arXiv:2008.11239, 2020.

[282] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, "Rethinking Atrous

Convolution for Semantic Image Segmentation," 06/17 2017.

[283] J. Hu, L. Shen, and G. Sun, "Squeeze-and-Excitation Networks," in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 18-23

June 2018 2018, pp. 7132-7141, doi: 10.1109/CVPR.2018.00745.

[284] Y. Shi, L. Cui, Z. Qi, F. Meng, and Z. J. I. T. o. I. T. S. Chen, "Automatic road

crack detection using random structured forests," vol. 17, no. 12, pp. 3434-

3445, 2016.

[285] S. Marcel and Y. Rodriguez, "Torchvision the machine-vision package of

torch," presented at the Proceedings of the 18th ACM international conference

on Multimedia, Firenze, Italy, 2010. [Online]. Available:

https://doi.org/10.1145/1873951.1874254.

208

[286] T. Devries and G. W. Taylor, "Improved Regularization of Convolutional

Neural Networks with Cutout," CoRR, vol. abs/1708.04552, / 2017. [Online].

Available: http://arxiv.org/abs/1708.04552.

[287] G. Aguilar, Y. Ling, Y. Zhang, B. Yao, X. Fan, and C. Guo, "Knowledge

distillation from internal representations," in Proceedings of the AAAI

conference on artificial intelligence, 2020, vol. 34, no. 05, pp. 7350-7357.

[288] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for

biomedical image segmentation," in International Conference on Medical

image computing and computer-assisted intervention, 2015: Springer, pp. 234-

241.

[289] Ç. F. Özgenel. Concrete Crack Segmentation Dataset, doi:

10.17632/jwsn7tfbrp.1, doi: 10.17632/jwsn7tfbrp.1.

[290] U. Shafi, R. Mumtaz, J. García-Nieto, S. A. Hassan, S. A. R. Zaidi, and N. Iqbal,

"Precision agriculture techniques and practices: From considerations to

applications," Sensors, vol. 19, no. 17, p. 3796, 2019.

[291] C. Dweba et al., "Fusarium head blight of wheat: Pathogenesis and control

strategies," Crop protection, vol. 91, pp. 114-122, 2017.

[292] M. McMullen et al., "A unified effort to fight an enemy of wheat and barley:

Fusarium head blight," Plant disease, vol. 96, no. 12, pp. 1712-1728, 2012.

[293] E. Cambaza, S. Koseki, and S. Kawamura, "Why RGB imaging should be used

to analyze Fusarium graminearum growth and estimate deoxynivalenol

contamination," Methods and protocols, vol. 2, no. 1, p. 25, 2019.

[294] R. Ruan, S. Ning, A. Song, A. Ning, R. Jones, and P. Chen, "Estimation of

Fusarium scab in wheat using machine vision and a neural network," Cereal

Chemistry, vol. 75, no. 4, pp. 455-459, 1998.

[295] L. Qiongyan, J. Cai, B. Berger, M. Okamoto, and S. J. Miklavcic, "Detecting

spikes of wheat plants using neural networks with Laws texture energy," Plant

Methods, vol. 13, pp. 1-13, 2017.

[296] R. Qiu, C. Yang, A. Moghimi, M. Zhang, B. J. Steffenson, and C. D. Hirsch,

"Detection of fusarium head blight in wheat using a deep neural network and

color imaging," Remote Sensing, vol. 11, no. 22, p. 2658, 2019.

[297] S. Khaki, N. Safaei, H. Pham, and L. Wang, "WheatNet: A lightweight

convolutional neural network for high-throughput image-based wheat head

detection and counting," Neurocomputing, vol. 489, pp. 78-89, 2022.

[298] D. Zhang et al., "Using neural network to identify the severity of wheat

Fusarium head blight in the field environment," Remote Sensing, vol. 11, no.

20, p. 2375, 2019.

[299] J. G. A. Barbedo, "Impact of dataset size and variety on the effectiveness of

deep learning and transfer learning for plant disease classification," Computers

and electronics in agriculture, vol. 153, pp. 46-53, 2018.

[300] M. Hasan, B. Tanawala, and K. J. Patel, "Deep learning precision farming:

Tomato leaf disease detection by transfer learning," in Proceedings of 2nd

international conference on advanced computing and software engineering

(ICACSE), 2019.

[301] Z. K. Hartley and A. P. French, "Domain adaptation of synthetic images for

wheat head detection," Plants, vol. 10, no. 12, p. 2633, 2021.

[302] E. David et al., "Global wheat head detection 2021: An improved dataset for

benchmarking wheat head detection methods," Plant Phenomics, 2021.

209

[303] Wheat head blight dataset, Science Data Bank, 2023-08-14, doi:

10.11922/sciencedb.p00001.00008.

[304] D. Rößle et al., "Efficient Noninvasive FHB Estimation using RGB Images

from a Novel Multiyear, Multirater Dataset," Plant Phenomics, vol. 5, p. 0068,

2023.

[305] L. Ruff et al., "A unifying review of deep and shallow anomaly detection,"

Proceedings of the IEEE, vol. 109, no. 5, pp. 756-795, 2021.

[306] T. Schlegl, P. Seeböck, S. M. Waldstein, G. Langs, and U. Schmidt-Erfurth, "f-

AnoGAN: Fast unsupervised anomaly detection with generative adversarial

networks," Medical image analysis, vol. 54, pp. 30-44, 2019.

[307] H. Jin, Y. Li, J. Qi, J. Feng, D. Tian, and W. Mu, "GrapeGAN: Unsupervised

image enhancement for improved grape leaf disease recognition," Computers

and Electronics in Agriculture, vol. 198, p. 107055, 2022.

[308] S. Bhugra, V. Kaushik, A. Gupta, B. Lall, and S. Chaudhury, "AnoLeaf:

Unsupervised Leaf Disease Segmentation via Structurally Robust Generative

Inpainting," in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, 2023, pp. 6415-6424.

[309] A. Benfenati, P. Causin, R. Oberti, and G. Stefanello, "Unsupervised deep

learning techniques for automatic detection of plant diseases: reducing the need

of manual labelling of plant images," Journal of Mathematics in Industry, vol.

13, no. 1, p. 5, 2023.

[310] T. Kim, H. Kim, K. Baik, and Y. Choi, "Instance-aware plant disease detection

by utilizing saliency map and self-supervised pre-training," Agriculture, vol.

12, no. 8, p. 1084, 2022.

[311] H. S. Kang et al., "Smart manufacturing: Past research, present findings, and

future directions," International journal of precision engineering and

manufacturing-green technology, vol. 3, pp. 111-128, 2016.

[312] S. Sahoo and C.-Y. Lo, "Smart manufacturing powered by recent technological

advancements: A review," Journal of Manufacturing Systems, vol. 64, pp. 236-

250, 2022.

[313] A. Bailly et al., "Effects of dataset size and interactions on the prediction

performance of logistic regression and deep learning models," Computer

Methods and Programs in Biomedicine, vol. 213, p. 106504, 2022.

[314] P. M. Bhatt et al., "Image-based surface defect detection using deep learning:

A review," Journal of Computing and Information Science in Engineering, vol.

21, no. 4, p. 040801, 2021.

[315] C. Li, J. Li, Y. Li, L. He, X. Fu, and J. Chen, "Fabric defect detection in textile

manufacturing: a survey of the state of the art," Security and Communication

Networks, vol. 2021, pp. 1-13, 2021.

[316] J. Yang, S. Li, Z. Wang, H. Dong, J. Wang, and S. Tang, "Using deep learning

to detect defects in manufacturing: a comprehensive survey and current

challenges," Materials, vol. 13, no. 24, p. 5755, 2020.

[317] X. Ren, W. Lin, X. Yang, X. Yu, and H. Gao, "Data augmentation in defect

detection of sanitary ceramics in small and non-iid datasets," IEEE

Transactions on Neural Networks and Learning Systems, vol. 34, no. 11, pp.

8669-8678, 2022.

[318] S. Jain, G. Seth, A. Paruthi, U. Soni, and G. Kumar, "Synthetic data

augmentation for surface defect detection and classification using deep

210

learning," Journal of Intelligent Manufacturing, pp. 1-14, 2022.

[319] Y. Liao, X. Weng, C. Swonger, and J. Ni, "Defect detection and classification

of machined surfaces under multiple illuminant directions," in Applications of

Digital Image Processing XXXIII, 2010, vol. 7798: SPIE, pp. 541-556.

[320] W. Liqun, W. Jiansheng, and W. Dingjin, "Research on vehicle parts defect

detection based on deep learning," in Journal of Physics: Conference Series,

2020, vol. 1437, no. 1: IOP Publishing, p. 012004.

[321] H. Zhu, Y. Wang, and J. Fan, "IA-Mask R-CNN: improved anchor design Mask

R-CNN for surface defect detection of automotive engine parts," Applied

Sciences, vol. 12, no. 13, p. 6633, 2022.

[322] M. M. Abagiu, D. Cojocaru, F. L. Manta, and A. Mariniuc, "Detection of a

surface defect on an engine block using computer vision," in 2021 22nd

International Carpathian Control Conference (ICCC), 2021: IEEE, pp. 1-5.

[323] R. Li, M. Jin, and V. C. Paquit, "Geometrical defect detection for additive

manufacturing with machine learning models," Materials & Design, vol. 206,

p. 109726, 2021.

[324] T. Aota, L. T. T. Tong, and T. Okatani, "Zero-shot versus many-shot:

Unsupervised texture anomaly detection," in Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision, 2023, pp. 5564-5572.

[325] H. M. Schlüter, J. Tan, B. Hou, and B. Kainz, "Natural synthetic anomalies for

self-supervised anomaly detection and localization," in European Conference

on Computer Vision, 2022: Springer, pp. 474-489.

[326] V. Zavrtanik, M. Kristan, and D. Skočaj, "Draem-a discriminatively trained

reconstruction embedding for surface anomaly detection," in Proceedings of

the IEEE/CVF international conference on computer vision, 2021, pp. 8330-

8339.

[327] D. A. Kerr, "Apex-additive system of photographic exposure," Issue, vol. 7, no.

2007.08, p. 04, 2007.

[328] P. Pérez, M. Gangnet, and A. Blake, "Poisson image editing," in Seminal

Graphics Papers: Pushing the Boundaries, Volume 2, 2023, pp. 577-582.

[329] S. Akcay, D. Ameln, A. Vaidya, B. Lakshmanan, N. Ahuja, and U. Genc,

"Anomalib: A deep learning library for anomaly detection," in 2022 IEEE

International Conference on Image Processing (ICIP), 2022: IEEE, pp. 1706-

1710.

[330] A. Dosovitskiy et al., "An image is worth 16x16 words: Transformers for

image recognition at scale," arXiv preprint arXiv:2010.11929, 2020.

[331] A. Kirillov et al., "Segment anything," in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2023, pp. 4015-4026.

[332] M. Goeller, J. Oberlaender, K. Uhl, A. Roennau, and R. Dillmann, "Modular

robots for on-orbit satellite servicing," in 2012 IEEE international conference

on robotics and biomimetics (ROBIO), 2012: IEEE, pp. 2018-2023.

[333] G. Hu et al., "Modular self-reconfigurable spacecraft: Development status, key

technologies, and application prospect," Acta Astronautica, 2023.

[334] J. Esper, "Modular, adaptive, reconfigurable systems: technology for

sustainable, reliable, effective, and affordable space exploration," in AIP

Conference Proceedings, 2005, vol. 746, no. 1: American Institute of Physics,

pp. 1033-1043.

[335] D. P. Goodwin et al., "Orbiter space vision system on space shuttle flight STS-

211

80," in Visual Information Processing VI, 1997, vol. 3074: SPIE, pp. 18-28.

[336] H. Pinkney and S. MacLean, "Machine Vision in Space," Canadian

Aeronautics and Space Journal, vol. 39, no. 2, pp. 63-77, 1993.

[337] R. T. Howard, A. F. Heaton, R. M. Pinson, and C. K. Carrington, "Orbital

express advanced video guidance sensor," in 2008 IEEE Aerospace Conference,

2008: IEEE, pp. 1-10.

[338] R. Alonso, J. Crassidis, and J. Junkins, "Vision-based relative navigation for

formation flying of spacecraft," in AIAA guidance, navigation, and control

conference and exhibit, 2000, p. 4439.

[339] C.-C. J. Ho and N. H. McClamroch, "Automatic spacecraft docking using

computer vision-based guidance and control techniques," Journal of guidance,

control, and dynamics, vol. 16, no. 2, pp. 281-288, 1993.

[340] X.-H. Gao, B. Liang, L. Pan, Z.-H. Li, and Y.-C. Zhang, "A monocular

structured light vision method for pose determination of large non-cooperative

satellites," International Journal of Control, Automation and Systems, vol. 14,

no. 6, pp. 1535-1549, 2016.

[341] W. Xu, Q. Xue, H. Liu, X. Du, and B. Liang, "A pose measurement method of

a non-cooperative GEO spacecraft based on stereo vision," in 2012 12th

International Conference on Control Automation Robotics & Vision (ICARCV),

2012: IEEE, pp. 966-971.

[342] V. Capuano, A. Harvard, and S.-J. Chung, "On-board cooperative spacecraft

relative navigation fusing GNSS with vision," Progress in Aerospace Sciences,

vol. 128, p. 100761, 2022.

[343] E. Martin, D. Maharaj, R. Richards, J. W. Tripp, J. Bolger, and D. King,

"RELAVIS: the development of a 4D laser vision system for spacecraft

rendezvous and docking operations," in Spaceborne Sensors, 2004, vol. 5418:

SPIE, pp. 69-80.

[344] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, "Comparing ICP

variants on real-world data sets: Open-source library and experimental

protocol," Autonomous robots, vol. 34, pp. 133-148, 2013.

[345] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, "RGB-D mapping: Using

Kinect-style depth cameras for dense 3D modeling of indoor environments,"

The international journal of Robotics Research, vol. 31, no. 5, pp. 647-663,

2012.

[346] T. Whelan, M. Kaess, H. Johannsson, M. Fallon, J. J. Leonard, and J.

McDonald, "Real-time large-scale dense RGB-D SLAM with volumetric

fusion," The International Journal of Robotics Research, vol. 34, no. 4-5, pp.

598-626, 2015.

[347] R. Dominguez et al., "A common data fusion framework for space robotics:

architecture and data fusion methods," in International Symposium on

Artificial Intelligence, Robotics and Automation in Space Symposia, 2018.

[348] A. Newell, K. Yang, and J. Deng, "Stacked hourglass networks for human pose

estimation," in Computer Vision–ECCV 2016: 14th European Conference,

Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14,

2016: Springer, pp. 483-499.

[349] R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, "LSD: A line

segment detector," Image Processing On Line, vol. 2, pp. 35-55, 2012.

[350] C. Akinlar and C. Topal, "EDCircles: A real-time circle detector with a false

212

detection control," Pattern Recognition, vol. 46, no. 3, pp. 725-740, 2013.

[351] C. Akinlar and C. Topal, "Edlines: Real-time line segment detection by edge

drawing (ed)," in 2011 18th IEEE International Conference on Image

Processing, 2011: IEEE, pp. 2837-2840.

[352] H. Hirschmuller, "Stereo processing by semiglobal matching and mutual

information," IEEE Transactions on pattern analysis and machine intelligence,

vol. 30, no. 2, pp. 328-341, 2007.

[353] G. Taguchi, G. Taguchi, and R. Jugulum, The Mahalanobis-Taguchi strategy:

A pattern technology system. John Wiley & Sons, 2002.

