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General Abstract 

Type 2 diabetes mellitus (T2DM) represents a burgeoning global pandemic that has 

currently afflicted nearly half a billion individuals. With the uncertainties surrounding 

the underlying pathoetiogenesis and course of T2DM, lifelong medication adherence 

remains the central cornerstone of comprehensive disease management. 

Thiazolidinediones (TZDs), represented by pioglitazone and rosiglitazone, are a class 

of cost-effective oral anti-diabetic agents that pose a marginal hypoglycaemia risk. 

While TZDs initially demonstrated efficacy in maintaining glycaemic control, safety 

concerns, particularly regarding their cardiotoxicity, have restricted their clinical 

usefulness. The uncharacterised mechanisms underlying TZD-induced cardiotoxicity 

continue to fuel debate, limiting the broader application of TZDs as a treatment option. 

Capitalising on the increasing potential of omics technologies, this project integrated 

an adverse outcome pathway framework that combined traditional in vitro toxicity 

testing with multi-omics approaches to illuminate the mechanisms underlying the 

cardiotoxicity debate surrounding TZD use. In vitro cytotoxicity testing of TZDs against 

AC16 human adult cardiomyocytes and primary human cardiac fibroblasts revealed a 

novel crosstalk between TZDs and mitochondrial dysfunction, manifested by 

perturbations in mitochondrial energetics and the induction of oxidative stress 

independent of PPAR-γ activation, highlighting two potential key mechanisms by 

which TZDs exert their cytotoxic actions on cardiac cells. Accordingly, to gain a more 

comprehensive understanding of the metabolic changes induced by TZDs, an 

untargeted liquid chromatography–mass spectrometry (LC–MS)-based 

toxicometabolomics pipeline was used, with AC16 cells as a model system. The 

toxicometabolomics analysis revealed a significant modulation in carnitine content 

after the acute administration of either TZD agent, reflecting the potential disruption of 

the mitochondrial carnitine shuttle. Furthermore, perturbations were observed in 

purine metabolism and amino acid fingerprints, strongly conveying aberrations in the 

cardiac energetics associated with TZD use. The analysis of our findings also 

highlighted alterations in polyamine (spermine and spermidine) and amino acid (L-

tyrosine and valine) metabolisms, which are known modulators of cardiac hypertrophy, 

suggesting a potential link to TZD cardiotoxicity that necessitates further research. To 

further complement the metabolic changes found at the most downstream molecular 

level, an LC–MS-based toxicoproteomics pipeline on AC16 cells was conducted. Our 
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toxicoproteomics analysis revealed a mitochondrial dysfunction accompanying TZD 

exposure that primarily stemmed from impaired oxidative phosphorylation, with distinct 

signalling mechanisms observed for both agents. Furthermore, our analysis revealed 

additional mechanistic aspects of cardiotoxicity, showing drug specificity. The 

downregulation of various proteins involved in the protein machinery and protein 

processing in the endoplasmic reticulum was observed in rosiglitazone-treated cells, 

implicating proteostasis in rosiglitazone cardiotoxicity. Regarding pioglitazone, the 

findings suggest the potential activation of the interplay between the complement and 

coagulation systems and the disruption of the cytoskeletal architecture, which was 

primarily mediated by the integrin-signalling pathways responsible for pioglitazone-

induced myocardial contractile failure. Finally, to move beyond association and 

establish causality in the observed effects, a multi-omics approach that integrated 

toxicoproteomics and toxicometabolomics data was implemented. A network analysis 

of proteometabolomic data revealed a distinct fingerprint of disrupted biochemical 

pathways, which were primarily related to energy metabolism. In addition, the study 

identified a marked disruption in the glutathione system, indicating an imbalanced 

redox state triggered by TZD exposure. In conclusion, the combined findings from our 

framework illuminate novel molecular mechanisms, potentially offering a resolution to 

the decades-long controversy surrounding the cardiotoxicity of TZDs. This research 

showcases the transformative power of combining traditional and omics-based 

methods that enables the re-evaluation of long-neglected medications and signals a 

new era of safer medications and improved patient compliance. 
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1.1 Aetiologic Classification and Epidemiology of Diabetes Mellitus 

The term ‘diabetes mellitus’ represents a spectrum of chronic, progressive metabolic 

disorders chiefly characterised by elevated levels of blood glucose (hyperglycaemia) 

(ADA, 2023; Lankatillake et al, 2019). Diabetes mellitus is complex in aetiology and 

incompletely understood; however, the consensus is that a relative or absolute 

deficiency in insulin secretion, accompanied by varying degrees of peripheral 

resistance to insulin actions, are the significant contributors to the imbalance in 

glucose homeostasis that manifests disease pathology (Chetan et al, 2019; 

Lankatillake et al, 2019). The most common aetiologic classification of diabetes 

includes type 1 diabetes mellitus (T1DM), type 2 diabetes mellitus (T2DM), and 

gestational diabetes mellitus (ADA, 2023; Egan & Dinneen, 2019).  

1.1.1 Epidemiology of T1DM 

T1DM is the most common endocrine disorder of childhood and adolescence, 

accounting for almost all diabetes diagnoses before age 10 in the United States (US) 

(Tönnies et al, 2023). Nevertheless, it may present at any age, as 25% of cases are 

diagnosed in adults (Martin et al, 2020). The age of onset of T1DM in childhood has a 

bimodal distribution with two peaks: one at pre-school age, and another onset at 

puberty (Figure 1.1) (Pedrosa et al, 2023). In the United Kingdom (UK), T1DM affects 

400,000 individuals, including almost 29,000 children (Ng & Soni, 2023).  
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Figure 1.1 Incidence of T1DM and T2DM in youth by age group. T1DM: type 1 diabetes 
mellitus; T2DM: type 2 diabetes mellitus. Adopted from (Pedrosa et al, 2023). 
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1.1.2 Epidemiology of T2DM 

T2DM is the most prevalent form of diabetes mellitus, accounting for more than 90% 

of all cases in adults (ADA, 2023; Forouhi & Wareham, 2022). The prevalence of 

T2DM is increasing at a tremendous rate and is thus a pandemic concern (ADA, 2023; 

Forouhi & Wareham, 2022). As of 2021, according to the International Diabetes 

Federation (IDF), roughly 537 million adults have been diagnosed with diabetes 

globally, and this number is projected to reach 783 million adults by 2045 (Figure 1.2) 

(Forouhi & Wareham, 2022). In the US, in 2022, the Centers for Disease Control and 

Prevention (CDC) reported that diabetes mellitus affects more than 37 million 

Americans (1 in 10), the considerable majority of whom were diagnosed with T2DM 

(90–95%) (Herman et al, 2023).  

 

 

 

 

 

 

 

 
 
 
 
Figure 1.2 Estimates and projections of global diabetes prevalence in the adult 
population. Adopted from (Forouhi & Wareham, 2022). 

Furthermore, in 2021, in the Middle East and North Africa region, the prevalence of 

adult diabetes was found to be 16.2% (73 million adults aged between 20 and 79), 

reflecting the highest estimated prevalence compared to other IDF regions (Bodhini & 

Mohan, 2022). Additionally, the region is estimated to experience the second-highest 

increase (86%) in the total number of diabetic subjects to 136 million by 2045 (Bodhini 

& Mohan, 2022).  
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In the UK, in 2019, more than 4.9 million individuals were diagnosed with diabetes 

(Whicher et al, 2020). A National Health Service (NHS) report revealed that one in 15 

people in the UK has diabetes, including one million people who have T2DM but have 

been underdiagnosed (Whicher et al, 2020). Since 1996, the prevalence of diabetes 

in the UK has more than doubled, and if this trend continues, it is projected that more 

than 5.5 million people will have diabetes by 2030 (Penn et al, 2018; Whicher et al, 

2020).  Most cases in the UK were diagnoses of T2DM, and the same NHS report 

(2019) indicated that a further 13.6 million people are at high risk of developing T2DM 

(Whicher et al, 2020). 

1.1.3 Gestational Diabetes Mellitus 

Additional forms of diabetes mellitus include gestational diabetes mellitus, which can 

be defined as an impairment in glucose tolerance initially recognised in the second or 

third trimester of pregnancy (Egan & Dinneen, 2019). The prevalence of gestational 

diabetes mellitus varies globally and among different racial and ethnic groups (Deputy 

et al, 2018). This variation can be partially attributed to the various criteria and 

screening programmes adopted worldwide (ADA, 2023). In the US, the prevalence of 

gestational diabetes mellitus in pregnant women is about 8.3%, with a higher 

prevalence in African American women than in white women (Prevention, 2023). In 

addition, pregnant women aged 40 years and above are at approximately six times 

higher risk for developing gestational diabetes mellitus compared to women aged 20 

or under (Prevention, 2023). Women diagnosed with this form of diabetes are at an 

increased risk of getting type T2DM after pregnancy (Deputy et al, 2018).  

1.1.4 Other Specific Types of Diabetes 

Other uncommon types of diabetes can be induced by genetic defects, pancreatic 

disorders, endocrinopathies, infections, and chemicals (e.g., drugs) (ADA, 2023). The 

American Diabetes Association (ADA)  has classified these forms of diabetes as ‘other 

specific types of diabetes’ (ADA, 2023). 

1.1.4.1 Genetic Defects 

The clinical phenotype of monogenic defects that give rise to impairment in β-cell 

function includes maturity-onset diabetes of the young (MODY) and transient or 

permanent neonatal diabetes mellitus (NDM) (Urakami, 2019). Monogenic diabetes 
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accounts for less than 5% of all diabetic cases, with the majority being diagnosed with 

MODY (Bonnefond et al, 2023; Urakami, 2019). 

MODY represents a heterozygous monogenic form of diabetes with an autosomal 

dominant inheritance and early onset age (before age 25 years) (Bonnefond et al, 

2023; Urakami, 2019). MODY is primarily characterised by a defect in insulin 

secretion, with minimal or no effects on insulin action (Urakami, 2019). In the UK, the 

prevalence of MODY is roughly 68 to 108 cases per million (Whicher et al, 2020). To 

date, several genetic mutations have been identified including hepatocyte nuclear 

factor (HNF) 4α (HNF4α), HNF1α, HNF1β, and glucokinase (GCK), each leading to a 

different type of MODY (Urakami, 2019). The most common subtypes of MODY listed 

by ADA classification of diabetes include HNF1α-MODY (MODY 3), GCK-MODY 

(MODY2), and HNF4α-MODY (MODY1) (ADA, 2023). 

NDM is another rare form of monogenic diabetes that occurs mostly within the first 

month of life (<six months of age) (Lemelman et al, 2018). NDM is sub-classified into 

transient neonatal diabetes mellitus (TNDM) and permanent neonatal diabetes 

mellitus (PNDM) (Lemelman et al, 2018). The incidence is infrequent, accounting for 

1:20,000-500,000 live births (Mancioppi et al, 2023). TNDM often results from genetic 

mutations in chromosome 6q24 (Lemelman et al, 2018). PNDM is due to mutations in 

potassium channels in pancreatic β-cells that lead to defects in insulin secretion 

(Lemelman et al, 2018). 

1.1.4.2 Diseases of the Exocrine Pancreas 

Any pathological condition that damages the pancreas can lead to diabetes (Egan & 

Dinneen, 2019). Diabetes initiated by diseases of the exocrine pancreas has been 

termed “type 3c DM” or pancreoprivic diabetes (Conlon & Duggan, 2017). The most 

common diseases are cystic fibrosis, acute and chronic pancreatitis, 

hemochromatosis, and pancreatic carcinoma (Conlon & Duggan, 2017). Current 

research suggests that the prevalence of type 3c diabetes mellitus is approximately 

8%, with chronic pancreatitis being the primary underlying cause. (Conlon & Duggan, 

2017; Śliwińska-Mossoń et al, 2023).  
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1.1.4.3 Endocrinopathies 

Physiologically, counterregulatory hormones, such as cortisol, glucagon, growth 

hormone, and epinephrine, induce insulin resistance in the liver and peripheral tissues 

and antagonise insulin action in response to hypoglycaemia (Okura et al, 2020). 

However, overproduction of these hormones may precipitate or worsen overt diabetes 

(Okura et al, 2020). Examples of endocrine disorders that can lead to impairment in 

glucose homeostasis include Cushing's syndrome, glucagonomas, 

somatostatinomas, acromegaly, and hyperthyroidism (Okura et al, 2020). 

1.1.4.4 Viral Infections 

Viral infections have been reported to cause diabetes mellitus (Korkmaz & Ermiş, 

2019). The etiopathogenesis could be either through inducing autoimmune damage 

or direct destruction to β-cell mass (Korkmaz & Ermiş, 2019). Congenital rubella in 

infants is a well-recognised infection that has been found to develop into autoimmune 

T1DM in 20% of cases when they become young adults (Korkmaz & Ermiş, 2019). 

1.1.4.5 Drug-Induced Diabetes  

A variety of medications can alter glucose homeostasis by increasing hepatic 

gluconeogenesis, inducing insulin resistance, and/or decreasing insulin release, 

resulting in impairment in glucose tolerance or development of diabetes mellitus in 

susceptible individuals (Yi & Kang, 2017). Common pharmaceutical classes that can 

elevate plasma glucose levels include fluoroquinolones, thiazide diuretics, beta-

blockers, second-generation antipsychotics, corticosteroids, etc (Yi & Kang, 2017). 

1.2 Clinical Diagnosis of Diabetes Mellitus  

Recent ADA guidelines have recommended four available tests for the clinical 

diagnosis of diabetes: fasting plasma glucose (FPG), 2-h plasma glucose (2-h PG) 

during a 75-g oral glucose tolerance test (OGTT), random glucose test, and glycated 

haemoglobin test (HbA1c) (ADA, 2023). All these tests are equally appropriate and 

can be used to screen and diagnose diabetes, and to identify individuals with glucose 

levels that are higher than normal, but not enough to be classified as diabetic 

(prediabetes) (ADA, 2023). The diagnostic criteria for diabetes and prediabetes are 

shown in Table 1.1.   



 7 

Table 1.1 The diagnostic criteria for diabetes and prediabetes* (ADA, 2023). 

 

Measure Normal Prediabetes Diabetes 

FPG ≤99 mg/dL 100–125 mg/dL ≥126 mg/dL 

OGTT  ≤139 mg/dL 140–199 mg/dL ≥200 mg/dL 

Random Plasma Glucose   ≥200 mg/dL 

HbA1c ≤5.6% 5.7–6.4% ≥6.5 % 

 

*In the absence of unequivocal hyperglycaemia, diagnosis requires two abnormal test results 
from the same sample or in two separate test samples.  
Abbreviations: FPG: fasting plasma glucose; OGTT: oral glucose tolerance test 
 
 

1.3 Health and Economic Burden of T2DM 

Patients with T2DM are at high risk of developing severe long-term complications, 

including macrovascular and microvascular complications (Figure 1.3) (ADA, 2023).  

 

Figure 1.3 Macrovascular and microvascular complications of type 2 diabetes mellitus. 
Chronic diabetes can lead to a multitude of complications. Microvascular complications, 
affecting small blood vessels, include retinopathy (eye damage), nephropathy (kidney 
damage), and neuropathy (nerve damage). Neuropathy can further contribute to diabetic foot; 
it can also lead to erectile dysfunction. Macrovascular complications, affecting large blood 
vessels, encompass coronary artery disease (heart issues), peripheral artery disease 
(circulation problems in legs and feet), and stroke (brain damage). Adopted from (ADA, 2023).  
 

Studies have shown that patients with chronic metabolic imbalances have a two-to-six 

times higher risk of developing macrovascular complications, including ischemic heart 

disease, cardiovascular disease (CVD) and peripheral vascular diseases, compared 

to the general population (ADA, 2023). Studies have reported that diabetic patients’ 



 8 

risk of developing myocardial infarction (MI) is equivalent to those who are non-

diabetic with a previous history of MI (Viigimaa et al, 2020). Similar to coronary artery 

disease, diabetes is an independent risk factor for stroke and cerebrovascular 

diseases (Viigimaa et al, 2020). Diabetic patients have an increased risk of 150–400% 

for stroke compared to the general population (Viigimaa et al, 2020). Furthermore, the 

risk of vascular dementia and stroke-related deaths is elevated in diabetic patients 

(Viigimaa et al, 2020). Heart failure (HF), which is another leading cause of morbidity 

and mortality from CVD, has also been associated with diabetes mellitus (ADA, 2023; 

Viigimaa et al, 2020). Recent studies have shown a twofold increase in HF-related 

hospitalisation among patients with diabetes compared to those without diabetes 

(ADA, 2023; Viigimaa et al, 2020). 

Microvascular complications refer to diseases of the small blood vessels associated 

with the thickening of the basement membranes, which include diabetic retinopathy, 

diabetic nephropathy, and diabetic neuropathy. Chronic kidney disease (CKD) 

attributed to diabetes affects 20–40% of diabetic patients (Park et al, 2019). It typically 

presents at the time of T2DM diagnosis and is likely to progress to end-stage renal 

disease, which requires dialysis or kidney transplantation (ADA, 2023). In fact, CKD 

attributed to diabetes is the leading cause of end-stage renal disease in the US (An et 

al, 2021; ADA, 2023; Park et al, 2019). Diabetic retinopathy is a progressive disease 

of the retinal microvasculature associated with persistent hyperglycaemia and other 

factors linked to diabetes, including hypertension (An et al, 2021). The risk of 

developing diabetic retinopathy is strongly related to the duration of diabetes and the 

level of diabetic control (An et al, 2021). Diabetic retinopathy is attributed to 4.8% of 

the 37 million cases of blindness worldwide and is considered the leading cause of 

blindness in patients aged 15–64 (Park et al, 2019). Diabetic neuropathy refers to a 

heterogeneous group of disorders characterised by nerve dysfunction that results in 

the loss of sensation, ulceration and ultimately amputation (Park et al, 2019). 

Approximately half of all diabetic patients develop diabetic neuropathy within 25 years 

of disease onset (Park et al, 2019). Similar to other microvascular complications, the 

risk of developing diabetic neuropathy is proportional to the duration and level of 

glycaemic control (Park et al, 2019). Depending on the clinical manifestations and the 

site at which the peripheral nervous system is affected, diabetic neuropathy may 

manifest in several ways, including distal symmetric polyneuropathy and autonomic 
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neuropathy (An et al, 2021). Diabetic polyneuropathy is the most prevalent form of 

neuropathy in developed countries (Sloan et al, 2022). According to a large 

community-based study in the UK, the prevalence of clinical neuropathy among 

15,692 diabetic patients was 49% (Sloan et al, 2022). This high prevalence rate 

indicates substantial morbidity consequences, including diabetic foot ulceration, which 

carries a risk of progressing to limb amputation (Sloan et al, 2022). In fact, more than 

80% of amputations following foot ulceration or injuries are due to diabetic neuropathy 

(Park et al, 2019). A total of 40–60 million diabetic patients are affected by diabetic 

foot and lower limb complications globally (Park et al, 2019). 

Hence, diabetes mellitus is a global pandemic that poses a serious health and 

economic burden to all health care systems. The direct and indirect economic costs 

and related complications have a significant impact on national economics. In 2021, 

6.7 million deaths were caused secondary to diabetes (Forouhi & Wareham, 2022). 

According to the ADA's 2023 guidelines, macrovascular complications account for 

almost half of all diabetes-related cases of mortality and cost approximately $37.3Bn 

in CVD-related spending annually (ADA, 2023). Furthermore, in the UK, the NHS 

spends approximately £10Bn annually on diabetes (Whicher et al, 2020). The number 

of items prescribed for diabetes increased from 35.5 million in 2009 to 57.7 million in 

2019 (Whicher et al, 2020). In 2021, the International Diabetes Federation stated that 

the total direct health expenditure for diabetes alone cost at least $966Bn, labelling it 

the costliest chronic disease (Karugu et al, 2023).  

1.4 Blood Glucose Homeostasis  

Glucose is an essential metabolic fuel for various body tissues and organs, and 

therefore maintaining blood glucose homeostasis is of critical importance to ensure 

proper body function (Röder et al, 2016). This is accomplished by a complex network 

of biomolecular processes that involves various glucoregulatory hormones and 

neuropeptides released chiefly from the pancreas, brain, liver, intestine, and adipose 

and muscle tissues (Röder et al, 2016).  

Within this network, the pancreas plays a central role in the regulation of blood glucose 

and maintenance of metabolic homeostasis (Bakhti et al, 2019; Röder et al, 2016). It 

is a unique gland that consists of both exocrine and endocrine functionality (Bakhti et 
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al, 2019; Röder et al, 2016). The exocrine pancreas constitutes 85% of the pancreatic 

mass and is made up of acinar cells that secrete digestive juice essential for digestion 

(Röder et al, 2016). By contrast, the endocrine gland of the pancreas takes the form 

of clumps of small secretory cells called islets of Langerhans, or simply islet cells 

(Bakhti et al, 2019; Röder et al, 2016). A human pancreas comprises 1–3 million 

pancreatic islets, which are complex micro-organs that work to synthesise and release 

hormones directly into the bloodstream (Bakhti et al, 2019; Röder et al, 2016). There 

are five major types of cells in the islets of Langerhans: glucagon-producing α-cells 

that account for 15–20% of the total endocrine cells; insulin and amylin-secreting β-

cells, which represent almost 65–80% of the whole islet cells; somatostatin-secreting 

δ-cells, which make up 3–10% of the endocrine cells; pancreatic polypeptide-

producing PP-cells, which constitute 3–5% of the islets of Langerhans; and ghrelin-

releasing ɛ-cells (< 1% of the total cells) (Figure 1.4) (Alamri et al, 2016; Bakhti et al, 

2019; Kumar & Singh, 2020; Röder et al, 2016).  

 

Figure 1.4 The pancreas anatomy ‘islets of Langerhans’. Islets of Langerhans cell types 
(A). The potential interactions among the major islet cell types (B). Red flathead arrows 
indicate inhibitory action, while green arrows denote the activation effect. PP cell: pancreatic 
polypeptide-producing cell. Adopted from (Bakhti et al, 2019; Röder et al, 2016). 
 

Each hormone has its own definite functions (Alamri et al, 2016; Bakhti et al, 2019; 

Kumar & Singh, 2020; Röder et al, 2016). Insulin is the primary hormone capable of 

lowering blood glucose levels, while glucagon acts primarily on raising these levels 

during the fasting state (Röder et al, 2016). Somatostatin inhibits the secretion of 

both insulin and glucagon from adjacent cells, and pancreatic polypeptide works to 
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self-regulate the secretion activity of the pancreas (Kumar & Singh, 2020). The role of 

ghrelin in pancreatic function remains not fully known. However, recent evidence has 

shown that ghrelin exerts inhibitory actions on pancreatic exocrine and endocrine 

secretions and has pleiotropic activity on energy metabolism (Alamri et al, 2016). 

Collectively, the human pancreas, through its endocrine system, particularly α and β-

cells, works to achieve the homeostatic equilibrium between the rate of glucose 

appearance in the circulation and the metabolic clearance of glucose, through which 

fasting blood glucose levels is maintained between 79 and 99 mg/dL (Lankatillake et 

al, 2019).  

1.5 Glucose Metabolism and the Insulin Secretion Signalling Pathway  

Insulin is a small anabolic polypeptide hormone of 51 amino acids, arranged in two 

polypeptide chains, A (21-residue) and B (30-residue), held together by two disulphide 

bridges formed between cysteine residues A7–B7 and A20–B19 (Figure 1.5) 

(Lankatillake et al, 2019).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 Schematic diagram of human insulin and its X-ray 3D structure (PDB ID: 
3I40). The A-chain is illustrated in green and the B-chain in orange. The inter-and intra-chain 
disulphide bonds formed between cysteine residues are shown in black. Adopted from (PDB 
ID: 3I40; Timofeev et al, 2010). 

Glucose is the most potent insulin secretagogue in the blood circulation (Lankatillake 

et al, 2019). The glucose-stimulated β-cell insulin release is a multistep molecular 
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process. When the exogenous glucose level is elevated, the circulating blood glucose 

enters β-cells through a facilitated transporter isoform expressed on the surface of β-

cells called glucose transporter 2 (GLUT2), also known as solute carrier family 2, 

member 2 (SLC2A2) (Röder et al, 2016). Inside the cell, glucose undergoes glycolysis, 

resulting in increased production of adenosine triphosphate (ATP) molecules (Al-

Daghri et al, 2016; Lankatillake et al, 2019; Skelin et al, 2010). Elevated ATP levels 

raise the ATP/Adenosine diphosphate (ADP) ratio, which consequently leads to the 

closure of ATP-sensitive potassium channels (Al-Daghri et al, 2016; Lankatillake et al, 

2019; Skelin et al, 2010). When glucose levels are not high, the ATP levels are too 

low to maintain the ATP-sensitive potassium channel closure (Al-Daghri et al, 2016; 

Lankatillake et al, 2019; Skelin et al, 2010). The closure of these channels is a critical 

step in insulin secretion, as this closure causes subsequent depolarisation of the 

plasma membrane, which in turn results in activation of voltage-gated calcium 

channels and increased influx of extracellular calcium (Al-Daghri et al, 2016; 

Lankatillake et al, 2019; Skelin et al, 2010). This electrical activity, together with 

calcium influx, triggers the fusion of insulin-granule with the plasma membrane 

(exocytosis), leading to insulin release into the circulation (Figure 1.6) (Al-Daghri et 

al, 2016; Lankatillake et al, 2019; Skelin et al, 2010).  
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Figure 1.6 Signalling pathways involved in insulin secretion. When glucose levels are 
high, the GLUT2 transporter, expressed on the surface of β-cells, facilitates the entry of 
glucose into β-cells (1). Once inside the cell, glucose undergoes glycolysis (2), leading to 
increased production of ATP molecules (3) and subsequently a high ATP/ADP ratio (4). The 
elevated ATP/ ADP ratio causes the closure of ATP-sensitive potassium channels (5), which 
in turn causes membrane depolarisation (6) and results in the activation of voltage-sensitive 
calcium channels (7). Activation of the calcium channels increases calcium influx, which 
promotes exocytosis of secretory granules containing insulin (8). ATP: adenosine 
triphosphate; ADP: adenosine diphosphate; GLUT2: glucose transporter 2. Adopted from (Al-
Daghri et al, 2016; Lankatillake et al, 2019; Skelin et al, 2010). 

The exocytosis mechanism underlying insulin release is mediated by sophisticated 

extracellular machinery. Insulin is stored in large dense-core vesicles (LDCVs) that 

are recruited to the plasma membrane in response to meal congestion and high 

glucose levels (Röder et al, 2016). There are a number of key proteins that mediate 

the fusion process of secretory granules of insulin with the plasma membrane, 

including the vesicle-associated membrane protein (VAMP2)/synaptobrevin 2, the 

synaptosomal protein of 25 kDa (SNAP-25), and syntaxin-1, which collectively belong 

to the superfamily of the soluble N-ethylmaleimide-sensitive factor attachment protein 

(SNAP) receptor proteins (SNAREs) (Al-Daghri et al, 2016; Ramakrishnan et al, 

2012). The Sec1/Munc-18 (SM)-family proteins are fundamental molecules involved 
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in the exocytosis process, which together with SNAREs form the so-called SNARE 

complex (Al-Daghri et al, 2016; Ramakrishnan et al, 2012). To enable exocytosis, the 

VAMP2 present in the vesicle’s membrane binds to SNAP-25 and syntaxin-1, which 

are both integrated into the target cell membrane, hence allowing fusion to occur (Al-

Daghri et al, 2016; Ramakrishnan et al, 2012). 

To proceed with the fusion of the secretory granules of insulin with the plasma 

membrane, a calcium sensor is needed (Al-Daghri et al, 2016). In endocrine cells, 

synaptotagmins, the vesicle-bound calcium sensors, have been reported to be 

involved in calcium-dependent insulin-secretion (Gauthier & Wollheim, 2008; Röder et 

al, 2016). Synaptotagmins interact with SNAREs, following calcium binding, and form 

a complex that triggers the exocytosis process (Gauthier & Wollheim, 2008; Röder et 

al, 2016). Currently, the synaptotagmin gene family consists of 17 members (Syts 1-

17), with only eight members (Syt-1, -2, -3, -5, -6, -7, -9, and -10) possessing calcium-

binding affinities consistent with their potential role as calcium sensors (Gauthier & 

Wollheim, 2008; Röder et al, 2016). 

1.6 Insulin Receptor and Mechanism of Signalling  

Insulin exerts its cellular actions by binding to its specific receptor, leading to 

intracellular signalling cascade activation (De Meyts, 2016; Lankatillake et al, 2019). 

The insulin receptor belongs to the superfamily of receptor-tyrosine kinases (RTKs), 

which phosphorylate their substrates on tyrosine residues (De Meyts, 2016; 

Lankatillake et al, 2019). It comprises two extracellular α-subunits and two 

transmembrane β-subunits connected through disulphide bonds to form a functional 

receptor that exists as an α2β2 dimer/heterotetrameric complex (De Meyts, 2016; 

Lankatillake et al, 2019).   

Binding of insulin to the ligand-binding site of the insulin receptor induces dimerisation 

and conformational changes in the insulin receptor (De Meyts, 2016; Lankatillake et 

al, 2019; Pelley, 2012). This results in the activation of the receptor tyrosine kinase 

domain, which leads to autophosphorylation of various tyrosine residues within the β-

subunit, triggering the activation of signalling pathways that are responsible for both 

metabolic and mitogenic cellular responses (Figure 1.7) (De Meyts, 2016; Lankatillake 

et al, 2019; Pelley, 2012). The mitogenic actions of insulin are crucial even though it 
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is considered a mild growth factor (Draznin, 2011). Insulin promotes cell proliferation, 

cell division, and migration and inhibits cell death (apoptosis), collectively essential for 

cellular physiology (Draznin, 2011). Additionally, it modulates cellular responsiveness 

to other growth factors, including vascular endothelial growth factor, platelet-derived 

growth factor, and epidermal growth factor, promoting their actions (Draznin, 2011). 

In the presence of ligand (e.g. insulin) bound to the extracellular domain of the insulin 

receptor, dimerisation and conformational changes in the insulin receptor take place 

(Pelley, 2012). These changes activate the tyrosine kinase domain of the insulin 

receptor, leading to autophosphorylation of specific tyrosine residues (Tyr-1146, Tyr-

1150, and Tyr-1151) within the β-subunit (De Meyts, 2016; Lankatillake et al, 2019; 

Pelley, 2012). These phosphorylated residues act as a binding site and facilitate the 

recruitment of adaptor proteins containing Src-homology (SH2) domains 

and phosphotyrosine-binding domain (PTB) domains that are also phosphorylated, 

thus initiating insulin signalling responsible for both metabolic and mitogenic cellular 

responses by two main pathways (De Meyts, 2016; Pelley, 2012).  
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Figure 1.7 Schematic drawing along with the X-ray structures of the tyrosine kinase 
domain of the human insulin receptor. (A) represents the 3D crystal structure of the inactive 
insulin receptor tyrosine kinase domain (PDB ID: 1IRK). (B) illustrates the active form following 
insulin engagement (PDB ID: 1IR3). The representation of the crystal structure is showing the 
seven structural units or domains of the insulin receptor. Domains are coloured: large domains 
(L domains), L1 and L2, are coloured in orange and yellow, respectively, and separated by a 
cysteine-rich rod-like structure (labelled in green), termed as the cysteine-rich region. L2 is 
followed by three tandem fibronectin type III (FnIII) domains, FnIII-1, 2, and 3 domains 
coloured in pink, cyan, and light blue, respectively, collectively acting as structural spacers to 
arrange other domains in space. Following the FnIII domains is the tyrosine kinase domain 
(blue), the binding pocket of insulin. Adopted from (PDB ID: 1IRK; Hubbard et al, 1994) and 
(PDB ID: 1IR3; Hubbard, 1997). 
  

The two main intracellular insulin receptor signal transduction networks are Ras-

dependent and Ras-independent pathways (Boucher et al, 2014; De Meyts, 2016; 

Pelley, 2012; Świderska et al, 2018). Ras proteins belong to a large family of small 

molecular weight guanosine triphosphate (GTP) binding proteins that play a role in 

regulating insulin cellular signalling pathways (De Meyts, 2016; Pelley, 2012). Upon 

insulin binding and RTK activation, insulin receptor substrate (IRS) proteins, which are 

a family of large docking proteins, become activated as a result of autophosphorylation 

and are phosphorylated upon binding to the phosphotyrosine residue through a PTB 

domain (De Meyts, 2016; Pelley, 2012). The insulin receptor, unlike other RTK 



 17 

receptors, does not directly bind to signalling proteins, but rather attaches to IRS or 

the adapter Shc (Src-homology (SH2) domain-containing) to form a complex that aid 

in the recruitment of signalling proteins that are critically involved in the insulin 

signalling network (De Meyts, 2016; Pelley, 2012).  

Both Ras-dependent and Ras-independent pathways arise from the insulin receptor-

IRS node (De Meyts, 2016; Pelley, 2012). The Ras-independent pathway, also known 

as the phosphatidylinositol 3-kinase (PI3K, a lipid kinase)/AKT (PKB or protein kinase 

B) pathway, is linked only through IRS and is responsible for the metabolic effects of 

insulin (Boucher et al, 2014; De Meyts, 2016; Pelley, 2012; Świderska et al, 2018). 

The Ras-dependent pathway arises from both IRS and Shc and is implicated in the 

regulation of cell proliferation, differentiation, and gene expression (Boucher et al, 

2014; De Meyts, 2016; Pelley, 2012).  

1.7 Insulin Actions 

Insulin is a major anabolic hormone that promotes anabolism by channelling 

metabolism towards protein synthesis and carbohydrates and lipid storage 

(Lankatillake et al, 2019). Insulin exerts its metabolic actions in multiple body tissues 

and organs (Lankatillake et al, 2019). The main insulin action sites are the liver, 

muscles, and adipose tissue (Dimitriadis et al, 2011; Edgerton et al, 2017; Lankatillake 

et al, 2019). As previously mentioned, the primary sources of glucose to the human 

body include dietary intake of carbohydrates, breakdown of glycogen (glycogenolysis), 

which is the storage form of glucose in the liver and skeletal muscles into glucose, and 

through de novo synthesis of glucose from non-carbohydrate sources 

(gluconeogenesis) (Lankatillake et al, 2019). 

Apart from carbohydrate intake and during short period fasting, the glucose level is 

replenished by the process of glycogenolysis (Edgerton et al, 2017). Even though 

glycogenolysis occurs in most tissues in the human body, the liver and kidneys are 

the only organs that express glucose-6-phosphatase, which is the enzyme needed for 

liberating glucose into the circulation (Lankatillake et al, 2019). However, after 

prolonged fasting, glycogen is depleted, and glucose is mainly produced by the liver 

through gluconeogenesis using non-hexose precursors (Lankatillake et al, 2019). 

Once glucose enters the cell, it is either stored in the form of glycogen or undergoes 
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glycolysis to yield pyruvate (Röder et al, 2016). The new pyruvate molecules can then 

be fed into the Krebs cycle if oxygen is present or reduced to lactate in the absence of 

oxygen (Röder et al, 2016). 

At these stages of glucose production and metabolism, insulin exerts several 

metabolic actions to ensure glucose homeostasis (Röder et al, 2016). Since both 

glycogenolysis and gluconeogenesis occur mainly in the liver, insulin acts through 

direct and indirect mechanisms to limit hepatic glucose output (Edgerton et al, 2017). 

This includes direct inhibition of the glycogen phosphorylase enzyme, which catalyses 

the rate-limiting step in glycogenolysis and therefore suppresses the breakdown of 

glycogen into glucose (Edgerton et al, 2017). Furthermore, it suppresses 

gluconeogenesis through several pathways, including inhibiting gene expression of 

catalytic enzymes, glucose 6-phosphatase, and phosphoenolpyruvate carboxykinase, 

involved in the metabolic pathway of gluconeogenesis, limiting glucagon secretion, 

and changing autonomic neural input to the liver (Edgerton et al, 2017). 

In terms of glucose utilisation, insulin improves glucose uptake into skeletal muscle 

and adipose tissues (Dimitriadis et al, 2011). Mechanistically, insulin stimulates the 

glucose transporter movement, GLUT4, from intracellular cytoplasmic vesicles onto 

the cell surface, thereby promoting glucose uptake by muscle and fat tissues 

(Dimitriadis et al, 2011). Moreover, insulin induces glucose disposal into cells by 

stimulating glycogen synthesis and increasing the rate of glycolysis in muscle and 

adipose tissue (Dimitriadis et al, 2011). The effects of insulin on glycogenesis are 

achieved by activating glycogen synthase and promoting glycogen synthesis in the 

liver, skeletal, and adipose tissue (Dimitriadis et al, 2011). Insulin increases the rate 

of glycolysis by potentiating the activity of hexokinase and 6-phosphofructokinase 

enzymes that are involved in the glycolytic pathway (Dimitriadis et al, 2011).  

Besides insulin’s crucial role in carbohydrate metabolism, insulin also contributes 

considerably to lipid and protein metabolism (Lankatillake et al, 2019). In the feed 

state, once glucose levels are high, insulin promotes the synthesis and storage of 

triglycerides from glucose by providing glycerol 3-phosphate and nicotinamide 

adenine dinucleotide phosphate (NADPH) (Dimitriadis et al, 2011). Insulin stimulates 

a key enzyme presented on the vascular endothelial surface within muscle and 

adipose tissue called lipoprotein lipase, which hydrolyses circulating chylomicron 
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triglycerides in the bloodstream into fatty acids and glycerol (Dimitriadis et al, 2011). 

The liberated free fatty acids are then used as fuel for skeletal muscle or storage in 

adipose tissue (Dimitriadis et al, 2011). Noticeably, insulin actions on lipoprotein lipase 

enzyme are tissue-specific, through which it activates the adipose tissue lipoprotein 

lipase and inhibits the exact enzyme in skeletal muscle, causing the diversion of free 

fatty acids from skeletal muscle to adipose tissue (Dimitriadis et al, 2011). Another 

mechanism is the fact that insulin increases glucose uptake by adipose tissue in an 

insulin-dependent manner (Petersen & Shulman, 2018). This, in turn, increases 

glycolytic activity within fatty cells, resulting in elevated levels of glycerol-3-phosphate 

(Petersen & Shulman, 2018). The glycolytic end-product glycerol-3-phosphate will 

then act on the re-esterification of free fatty acids into triglycerides (Petersen & 

Shulman, 2018). Insulin effects on lipid metabolism are also extended to inhibit the 

lipolysis of storage triglycerides (Petersen & Shulman, 2018). Insulin inhibits lipolysis 

through phosphorylation and activation of phosphodiesterase-3B (PDE-3B) (Petersen 

& Shulman, 2018). PDE-3B catalyses the breakdown of cyclic adenosine 

monophosphate (cAMP) to its inactive form, which subsequently reduces PKA 

activation responsible for phosphorylating and activating the hormone-sensitive lipase, 

the key enzyme involved in the rate-limiting step in lipolysis (Petersen & Shulman, 

2018). Insulin may also inhibit lipolysis via phosphorylation of protein phosphatase-1 

(PP-1), which once triggered rapidly dephosphorylates and inactivates hormone-

sensitive lipase, hence decreasing the rate of lipolysis (Petersen & Shulman, 2018). 

In the case of protein metabolism, insulin also exerts anabolic effects on skeletal 

muscle (Vargas et al, 2020). Insulin stimulates the uptake of many amino acids into 

cells and increases the translation of messenger ribonucleic acid (mRNA) (Vargas et 

al, 2020). Also, insulin prevents the catabolism of proteins, which collectively leads to 

an increase in protein production (Dimitriadis et al, 2011; Vargas et al, 2020). Since 

insulin has an inhibitory action on gluconeogenesis, this effect contributes to 

preventing further utilisation of amino acids and thus conserves their availability for 

protein synthesis (Edgerton et al, 2017). Therefore, insulin promotes the synthesis and 

storage of proteins via direct and indirect actions (Dimitriadis et al, 2011; Vargas et al, 

2020).  
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1.8 Insulin Resistance  

Insulin resistance (IR) is generally defined as a decreased biological response to the 

normal concentration of endogenous and/or exogenous insulin (Boucher et al, 2014; 

Lankatillake et al, 2019). IR is a hallmark of T2DM; it may present for several years 

prior to the diagnosis of T2DM with the capability to progress during the course of the 

disease (Ciregia et al, 2017). In IR, there is a failure of insulin-sensitive cells to respond 

to normal concentrations of insulin, leading to an impairment in insulin biological 

actions (Boucher et al, 2014; Lankatillake et al, 2019). The primary defects in the effect 

of insulin mostly appear in skeletal muscle and adipose tissue, where a defect in 

GLUT4 translocation occurs, leading to a decrease in insulin-mediated glucose uptake 

(Chen et al, 2017). Consequently, and in response to IR, pancreatic β-cells increase 

their insulin production to maintain normoglycaemia, which further contributes to 

hyperinsulinemia (Chen et al, 2017). With chronic overstimulation of pancreatic β-cells 

as glucose levels rise, exhaustion and dysregulation results in β-cells, leading to a 

reduction in β-cell mass, insulin deficiency, and eventually glucose intolerance and 

diabetes (Boucher et al, 2014). The exact mechanism of IR is not entirely understood; 

nevertheless, numerous risk factors have been associated with its development 

(Lankatillake et al, 2019). Obesity, in the form of abdominal obesity and ectopic fat 

deposition (e.g., in muscles and the liver), has been highly implicated in the 

pathogenesis of IR (Boucher et al, 2014). It has been found that high levels of 

circulating free fatty acids initiate an inflammatory state and cause IR (Boucher et al, 

2014; Ciregia et al, 2017). One explanation for the inflammatory state associated with 

obesity is that the secretory profile of adipocytokines, secretory proteins secreted by 

adipose tissue, changes during adipocyte lipolysis (Boucher et al, 2014; Ciregia et al, 

2017). Numerous studies have reported increased production of adipocytokines, such 

as tumour necrosis factor (TNF)-α, or decreased release of protective adipocytokines, 

including adiponectin in obese patients, which collectively are thought to mediate the 

effects of obesity in the pathogenesis of insulin resistance (Boucher et al, 2014; 

Ciregia et al, 2017). Moreover, excess fat deposition in muscles or the liver, due to 

relative deficiency of adipose tissue storage space in the usual fat depot sites, reduces 

insulin sensitivity, and disrupts insulin signalling (Boucher et al, 2014; Chen et al, 2017; 

Ciregia et al, 2017). Circulating free fatty acids, in particular, high levels of palmitatic 

acid and arachidonic acid, in addition to adipocytokine tumour necrosis factor (TNF)-
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α, may increase serine phosphorylation of IRS proteins, thereby reducing IRS1-

associated PI3K activity, resulting in impairment in the regulation of GLUT4 and IR 

(Figure 1.8) (Boucher et al, 2014; Chen et al, 2017; Ciregia et al, 2017).  

 

Figure 1.8 Fatty acids-induced insulin resistance. The activation of TLRs by its ligands 
(SFA or LPS) causes the assembly of TAK1 kinase with TAB1, TAK1-TAB1 complex (1), which 
promotes the activation of JNK and IKKβ (2). This subsequently activates transcriptional 
genes (e.g., NF-κB and AP-1), which are responsible for upregulating the transcription of 
inflammatory genes (TNF-α, IL-1β, IL-6) (3). These inflammatory genes increase serine 
phosphorylation of IRS proteins (4), thereby reducing IRS1-associated PI3K activity, resulting 
in impairment of the regulation of GLUT4 and IR (5). LPS: lipopolysaccharides; SFA: saturated 
fatty acid; TLR: toll-like receptors; TAK1: transforming growth factor β-activated kinase 1; 
TAB1: transforming growth factor β-activated protein kinase 1-binding protein 1-β; NF-κB: 
nuclear factor kappa B; JNK: c-JUN amino-terminal kinase; IKKβ: inhibitor of nuclear factor 
kappa B kinase subunit β; Ap-1: activator protein 1; IRS: insulin receptor substrate; TNF-α; 
tumour necrosis factor α; IL-1β: interleukin 1β; IL-6: interleukin 6; Akt: protein kinase B; PDK1: 
phosphoinositide-dependent protein kinase 1; PIP2: phosphatidylinositol-4,5-biphosphate; 
PI3K: phosphatidylinositol kinase 3; PIP3: phosphatidylinositol-3,4,5-triphosphate; PKC: 
protein kinase C. Adopted from (Boucher et al, 2014; Chen et al, 2017; Ciregia et al, 2017). 
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1.9 Pharmacological Therapies Used for T2DM 

Within the last 20 years, the therapeutic management of T2DM has undergone some 

major revisions due to advancements in evidence-based diabetes care (Schernthaner 

et al, 2010; Syed et al, 2019). The ultimate aim in the management of diabetes is to 

maintain good glycaemic control that aids in preventing or delaying the onset and 

progression of diabetes-related complications (Syed et al, 2019). The cornerstones of 

diabetes management involve lifestyle interventions, concomitant with 

pharmacological treatments and self-monitoring of blood glucose (Chaudhury et al, 

2017). Owing to the progressive nature of T2DM, a stepwise approach is 

predominantly adopted in clinical practice, through which diet regulation and exercise 

can be initially recommended (Chaudhury et al, 2017; Schernthaner et al, 2010; Syed 

et al, 2019). However, if blood glucose levels remain high and inadequately controlled 

even with the employment of these measures, anti-diabetic medications are warranted 

(Chaudhury et al, 2017; Schernthaner et al, 2010; Syed et al, 2019).  

Currently, several medications are available for the management of T2DM. The major 

pharmacological classes include biguanides, sulfonylureas, meglitinides, 

thiazolidinediones (TZDs), dipeptidyl peptidase 4 inhibitors (DPP-4 inhibitors or 

gliptins), sodium-glucose cotransporter 2 (SGLT2) inhibitors, α-glucosidase inhibitors 

and glucagon-like peptide-1 receptor agonists (GLP-1 agonists) (Chaudhury et al, 

2017). Anti-diabetic medications lower glucose levels through one or more of the 

following mechanisms: (i) increase insulin availability by promoting insulin secretion 

from pancreatic β-cells; (ii) improve glucose uptake in peripheral tissues; (iii) delay the 

absorption of carbohydrates; (iv) increase satiety and regulate gastric emptying; (v) 

induce glucosuria; (vi) decrease hepatic glucose production; and (vii) suppress 

glucagon production from pancreatic α-cells (Chaudhury et al, 2017; Schernthaner et 

al, 2010; Syed et al, 2019). The following subsections offer a brief overview of the 

major pharmacological classes used in the management of T2DM.  

1.9.1 Insulin Sensitisers  

Biguanides and TZDs are the two pharmacological classes that work primarily in 

enhancing insulin actions (Syed et al, 2019). These classes lower blood glucose levels 

by boosting insulin-sensitive cell response to insulin without promoting insulin 
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secretion from the pancreatic β-cells (Syed et al, 2019). A brief overview of each class 

is given below. 

1.9.1.1 Biguanides  

The only biguanide that is currently available and approved by the Food and Drug 

Administration (FDA) and the Medicines and Healthcare products Regulatory Agency 

(MHRA) is metformin (ADA, 2023). Metformin is the most commonly prescribed anti-

diabetic medication and considered as the first-line agent in the management of T2DM 

(Zhou et al, 2018). Metformin is highly efficient in reducing both fast and postprandial 

glucose levels by exerting collective action on multiple target sites (Zhou et al, 2018). 

It suppresses the hepatic glucose output largely by inhibiting hepatic gluconeogenesis 

(Zhou et al, 2018). It also slows the intestinal absorption of glucose and improves 

insulin sensitivity by increasing glucose uptake and utilisation in both the hepatic and 

peripheral muscle tissues (Zhou et al, 2018). Its molecular mechanisms remain 

debatable, but evidence has shown that metformin activates adenosine 

monophosphate (AMP) activated protein kinase (AMPA-PK), leading to an increase in 

hepatic glucose uptake and suppression of hepatic gluconeogenesis via complex 

interactions with mitochondrial enzymes (Figure 1.9) (Chaudhury et al, 2017). 

In addition, it sensitises peripheral tissues to insulin by activating the insulin receptor 

expression and tyrosine kinase activity (Chaudhury et al, 2017). Apart from its well-

characterised anti-diabetic properties, metformin also lowers plasma very-low-density 

lipoprotein triglyceride (TG) levels by acting on the peroxisome proliferator-activated 

receptor alpha (PPAR-α) pathway, thereby preventing CVDs (Chaudhury et al, 2017). 

Potential CVD benefits were shown in the United Kingdom Prospective 

Diabetes Study (UKPDS) trial in which patients who were receiving metformin 

exhibited decreased risk of myocardial infarction and coronary death by 39% and 50%, 

respectively, compared to other therapies (Holman et al, 2008). 
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Figure 1.9 Potential molecular mechanisms of the blood glucose-lowering effect of 
metformin. Multiple pathways have been proposed under the inhibitory action of metformin 
on hepatic gluconeogenesis. Following the hepatic uptake of metformin through organic cation 
transporter 1 (OCT1), metformin inhibits mitochondrial complex 1, thereby reducing the 
ATP/AMP ratio and activating the AMP-activated protein kinase (AMPK) system (1). Based 
on in-vivo studies, metformin inhibits adenylate cyclase, reducing cyclic AMP levels and 
protein kinase A (PKA) activity, antagonising the glucagon on hepatocytes (2). Another 
potential mechanism is through the serine-threonine liver kinase B1 (LKB1)-dependent 
activation of the AMPK pathway, which is believed to exert indirect action on hepatic insulin 
sensitivity via its effects on lipid metabolism (3). Metformin reduces hepatic glucose output by 
lowering the level of fructose 1,6-bisphosphatase (FBPase), a key enzyme involved in hepatic 
gluconeogenesis (4). ATP: adenosine triphosphate; AMP: adenosine monophosphate; MAPK: 
AMP-activated protein kinase; GLUT2: glucose transporter 2. Adopted from (Chaudhury et al, 
2017). 
 

1.9.1.2 Thiazolidinediones 

Pioglitazone and rosiglitazone are the only two drugs under the TZD class that are 

accessible in the market (Figure 1.10) (Syed et al, 2019). They constitute potent and 

selective ligands of PPAR-γ that modulate the expression of the genes involved in lipid 

and glucose metabolism, insulin signalling pathway and adipocyte tissue 

differentiation (Figure 1.11) (Syed et al, 2019). This ligand-receptor activation leads 
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to an augmentation in glucose uptake in the adipose and skeletal tissues, as well as 

a depletion in plasma fatty acids, which collectively result in the decrease of the HbA1c 

level (Chaudhury et al, 2017). Regarding the beneficial effects of TZDs on lipid 

metabolism, a review of six randomised trials revealed an increase in high-density 

lipoprotein (HDL) cholesterol levels by 10% with both drugs and a decrease in TG 

levels at a greater extent following pioglitazone administration rather than rosiglitazone 

(Yki-Järvinen, 2004). Additionally, a meta-analysis comprising 19 trials of pioglitazone 

for the management of T2DM noted a reduction in atherosclerotic cardiovascular 

events in the pioglitazone group, suggesting the potential CVD benefits of pioglitazone 

usage (Lincoff et al, 2007). Moreover, in patients with T2DM and biopsy-proven non-

alcoholic steatohepatitis (NASH), pioglitazone shows a beneficial impact on liver 

histology; it improves fibrosis, inflammation and steatosis (ADA, 2023). 

 

 

  

 

 

 

 

 

 

Figure 1.10 Chemical structures of thiazolidinedione agents: rosiglitazone (A) and 
pioglitazone (B). 
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Figure 1.11 X-ray 3D structure of the PPAR-γ–RXR-α complex on PPRE (PDB ID: 3DZY). 
Upon binding of activating ligands (TZDs) to PPAR-γ receptor, an obligate heterodimerisation 
between PPAR-γ and human retinoid X receptor-alpha (RXR-α) is formed. This complex 
recognises and binds to a specific DNA consensus sequence, termed PPRE, located at the 
promoter regions of several genes involved in glucose and lipid metabolism. The PPAR-γ 
receptor is represented in orange and RXR-α in green. The ligands of PPAR-γ and RXR-α 
receptors–rosliglitazone and 9-cis-retinoic acid–are indicated with brown and green labels, 
respectively. PPAR-γ: human peroxisome proliferator-activated receptor-gamma; PPRE: 
peroxisome proliferator response element; TZDs: thiazolidinediones. Adopted from (PDB ID: 
3DZY; Chandra et al, 2008). 
 
 

 

1.9.2 Insulin Secretagogues  

Sulfonylureas and meglitinides are two pharmacological classes that are classified as 

insulin secretagogues because they primarily lower glucose levels by promoting 

insulin release from the pancreatic β-cells (Schernthaner et al, 2010; Syed et al, 2019). 
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1.9.2.1 Sulfonylureas 

Sulfonylureas induce insulin secretion by blocking the ATP-dependent potassium 

channels, leading to membrane depolarisation and calcium influx that cause insulin 

release from secretory granules in a non-glucose dependent manner (Figure 1.12) 

(Schernthaner et al, 2010; Syed et al, 2019).  

Figure 1.12 Sulfonylurea’s mechanism of action. Upon its entrance into cells via the 
GLUT2 transporter (1), glucose undergoes glycolysis (2), leading to increased production of 
ATP molecules (3) and subsequently a high ATP/ADP ratio (4). The binding of sulfonylurea to 
the sulfonylurea subunit of the ATP-sensitive K+ channel reduces the efflux of K+ ions across 
the cell membrane and leads to the closure of the channel (5). This, in turn, causes membrane 
depolarisation (6) and triggers the opening of voltage-sensitive calcium channels (7). 
Increased calcium influx causes the release of preformed insulin from insulin-containing 
secretory granules (8) into the blood circulation (9). ATP: adenosine triphosphate; ADP: 
adenosine diphosphate; GLUT2: glucose transporter 2. Adopted from (Schernthaner et al, 
2010; Syed et al, 2019). 

 

Sulfonylureas also cause a reduction in hepatic glucose output and improve insulin 

sensitivity at peripheral target sites (Schernthaner et al, 2010; Syed et al, 2019). 

Sulfonylureas are generally divided into first-and second-generation agents 

(Chaudhury et al, 2017). The first-generation agents include chlorpropamide, 

tolazamide and tolbutamide, while the second-generation agents are glipizide, 
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glimepiride and glyburide (Chaudhury et al, 2017). Both generations are equally 

effective when administered at equivalent doses. Nevertheless, second-generation 

sulfonylureas are more commonly used than first-generation, as they are more potent 

than first-generation agents, and subsequently lower doses are needed to meet 

glycaemic control (Figure 1.13) (Chaudhury et al, 2017).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.13 Chemical structures of second-and first-generation sulfonylureas: 
glyburide (A) and tolbutamide (B). 
 
 

1.9.2.2 Meglitinides 

Meglitinides, also known as non-sulfonylurea secretagogues, act in a similar manner 

to sulfonylureas, but with shorter duration of activity and more rapid onset of action 

(Schernthaner et al, 2010; Syed et al, 2019). Two agents that are currently available, 

namely, repaglinide and nateglinide, are shown to be primarily effective in reducing 

postprandial glucose levels (Figure 1.14) (Schernthaner et al, 2010; Syed et al, 2019). 

 

 
 
 
 
 
 
 
 
 
 
Figure 1.14 Chemical structures of meglitinides: repaglinide (A) and nateglinide (B). 

B A 

O

H
N

H
N

S

O

N
H

Cl

O

O

O

O

N
H

S

O

O
N
H

A B 

O

O

N
H

N

OH

O

N
H

O
O OH



 29 

1.9.3 Incretin Mimetics  

Glucagon-like peptide 1 (GLP-1)-based therapies (e.g., GLP-1 receptor agonists, 

DPP-4 inhibitors) affect blood glucose levels mainly by targeting the incretin system 

(Lankatillake et al, 2019). This is achieved through the restoration of GLP-1 and 

glucose-dependent insulinotropic polypeptide (GIP) activities that are responsible for 

mediating several effects, including potentiating glucose-mediated insulin secretion, 

delaying gastric emptying and reduction of postprandial glucagon release 

(Lankatillake et al, 2019).  

1.9.3.1 DPP-4 Inhibitors 

DPP-4 inhibitors, including sitagliptin, saxagliptin, vildagliptin, linagliptin, teneligliptin 

and alogliptin, constitute an anti-diabetic class that is often used as an add-on 

treatment for adults with T2DM (Figure 1.15) (ADA, 2023).  

 

 

 

 

 

 

 

 

 

Figure 1.15 Chemical structure of sitagliptin. 
 

They exert a blood glucose level-lowering effect chiefly on postprandial levels and act 

by inhibiting DPP-4, the enzyme responsible for degrading the hormone incretin, such 

as GLP-1 and GIP (Syed et al, 2019).Consequently, incretin levels are increased, 

which increases insulin secretion, limits glucagon release, decreases gastric emptying 

and promotes satiety (Figure 1.16) (Syed et al, 2019). Apart from their anti-diabetic 

characteristics, DPP-4 inhibitors have no additional benefits on CVD mortality, all-

cause mortality or chronic kidney disease progression (ADA, 2023).  
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Figure 1.16 Mechanism of action of incretin mimetics and DPP-4 inhibitors. Under 
normal physiological conditions, incretin peptide hormones GLP-1 and GIP are released from 
enteroendocrine cells into the circulation in response to food ingestion. These hormones are 
rapidly inactivated by the DPP-4 enzyme. The administration of DPP-4 (e.g., sitagliptin) 
inhibits the breakdown of incretin peptide hormones and therefore prolongs the incretin effects 
in diabetic patients. GLP-1 and GIP hormones exert multiple actions to maintain glucose 
homeostasis. They increase insulin release from pancreatic β-cells and limit glucagon release, 
thereby decreasing hepatic glucose production, prolonging gastric emptying, and promoting 
satiety. GIP: Glucose-dependent insulinotropic polypeptide; GLP-1: glucagon-like peptide-1; 
DPP-4: dipeptidyl peptidase-4. Adopted from (ADA, 2023). 
 
 
 
 
 

1.9.3.2 GLP-1 Agonists 

GLP-1 agonists albiglutide, dulaglutide, exenatide, liraglutide, semaglutide and 

lixisenatide are analogues of human GLP-1 hormones (Figure 1.17) (Chaudhury et 

al, 2017). They bring about glucose-dependent insulin release, suppress postprandial 

glucagon release, slow gastric emptying and boost β-cell growth/replication, as shown 

in Figure 1.16 (Chaudhury et al, 2017). Given GLP-1 agonists’ effects on gastric 

emptying, they have a beneficial impact on weight loss (ADA, 2023). Therefore, their 

use is highly recommended to patients diagnosed with T2DM, along with obesity and 

metabolic dysfunction (ADA, 2023). 
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Figure 1.17 Nuclear magnetic resonance solution structure of exenatide (PDB ID: 1JRJ). 
Adopted from (PDB ID: 1JRJ; (Neidigh et al, 2001). 
 
 
 

Furthermore, a reduction in CVD outcomes was observed in patients with T2DM and 

CVD who were treated with one of the following medications, i.e., liraglutide, 

semaglutide once weekly, dulaglutide and albiglutide, compared with the placebo 

group (Buse, 2016; Marso et al, 2016). Nevertheless, these favourable CVD outcomes 

were not reported in T2DM patients who experienced overt CVD and were 

administered oral semaglutide, extended-release exenatide or lixisenatide (Holman et 

al, 2017; Pfeffer MA et al, 2015). These differences in CVD outcomes among GLP-1 

agonist agents could be attributed to the variation in the intrinsic characteristics of 

each agent (e.g., pharmacokinetics profile), the differences in the patients’ 

demographics or the disparity in the study design. 

GLP-1 agonists (liraglutide) have also shown their efficacy in improving renal events 

in diabetic kidney disease (Mann et al, 2017). In a liraglutide phase 3 trial, liraglutide 

lowered the incidence of new-onset macroalbuminuria and delayed the decline of 

glomerular filtration rate (GFR) in diabetic patients (Mann et al, 2017). Thus, it offers 

another potentially favourable outcome, in addition to its glycaemic, CVD and weight 

loss benefits. 

1.9.4 SGLT2 Inhibitors 

SGLT2 inhibitors represented by canagliflozin, dapagliflozin, empagliflozin and 

ertugliflozin are new glucosuric agents that have been recently approved for 
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monotherapy or in combination with other anti-diabetic agents in the management of 

T2DM (Syed et al, 2019). SGLT2 inhibitors block the sodium-glucose cotransporter 2 

in the proximal renal tubules, the leading site of filtered glucose reabsorption, thereby 

reducing the reabsorption of filtered glucose and increasing the urinary excretion of 

glucose (Figure 1.18) (Chaudhury et al, 2017). Due to their glucose-independent 

mechanism, these medications can preserve their effectiveness at later stages of 

T2DM when the pancreatic β-cells are extremely exhausted (Syed et al, 2019).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18 The primary mechanism of action of SGLT2 inhibitors. SGLT2, found in the 
proximal straight tubule of the nephron, is responsible for 90% of renal glucose reabsorption. 
Thereby, inhibition of SGLT2 with SGLT2 inhibitors (e.g., dapagliflozin) reduces glucose 
reabsorption and lowers the renal threshold for glucose. This, in turn, results in increased 
urinary excretion of glucose and consequently lowers plasma glucose levels. SGLT2: sodium-
glucose cotransporter 2. Adopted from (Syed et al, 2019). 

Previous studies have demonstrated the additional benefits of SGLT2 inhibitor usage, 

including weight loss and blood pressure reduction (ADA, 2023). Moreover, recent 

clinical trials have reported significant positive cardiovascular outcomes associated 

with SGLT2 inhibitors (Guthrie, 2018; Zinman et al, 2016). These include a decrease 

in atherosclerotic CVD (ASCVD) morbidity and mortality in patients with T2DM and 

established CVD (Guthrie, 2018; Zinman et al, 2016). Moreover, a reduction in HF 

hospitalisation has been observed with the use of SGLT2 inhibitors in people with and 

without prevalent HF or overt CVD at baseline (Zelniker et al, 2019). In addition to its 
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CVD beneficial effects, a meta-analysis of three major CVD outcome trials 

demonstrated kidney-related benefits in patients receiving SGLT2 inhibitors (Zelniker 

et al, 2019). In these trials, the results showed a reduction in the risk of end-stage 

kidney disease and worsening of kidney function in patients with overt ASCVD or with 

multiple risk factors for CVD (Zelniker et al, 2019). 

1.9.5 α-Glucosidase Inhibitors 

The α-glucosidase inhibitors (acarbose, miglitol, voglibose) are oral hypoglycaemic 

agents that exert their actions by reversibly inhibiting α-glucosidase enzymes in the 

brush border of the small intestine mucosa (Figure 1.19) (Schernthaner et al, 2010; 

Syed et al, 2019). These enzymes are responsible for the breakdown of complex 

polysaccharide carbohydrates into monosaccharides, subsequently slowing the 

absorption of carbohydrates and reducing the postprandial glucose levels 

(Schernthaner et al, 2010; Syed et al, 2019).  

 

 

Figure 1.19 Chemical structure of acarbose. 

 
 
1.9.6 Miscellaneous Hypoglycaemics  

Bile acid sequestrants comprise another pharmacological class used for T2DM 

management (ADA, 2023). Colesevelam, primarily used for cholesterol management, 

is the only bile acid sequestrant agent approved by the FDA for use in T2DM (ADA, 

2023). The hypoglycaemic property of colesevelam remains unknown, and it is only 
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approved as an adjunctive therapy, alongside lifestyle interventions and insulin or oral 

agents to improve glycaemic control (Chaudhury et al, 2017). Bromocriptine, a central-

acting dopamine agonist, is also approved for T2DM treatment (ADA, 2023). Its 

mechanism of action is not yet clearly understood, but evidence has shown that 

improvement in insulin sensitivity sets in following a morning administration of 

bromocriptine (Chaudhury et al, 2017). 

1.10 Drawbacks of Current Anti-Diabetic Agents  

Despite the broad range of clinical benefits have been achieved by anti-diabetic drug 

design in the past decades, a number of drawbacks that may limit their use still exist. 

The most critical limitations associated with their usage are cost and drug toxicity 

(ADA, 2023; Schernthaner et al, 2010). 

1.10.1 Cost of Anti-Diabetic Agents 

According to the ADA 2023, the pharmacological classes GLP-1 agonists, DPP-4 

inhibitors, SGLT-2 inhibitors and insulin analogues are classified as high-cost 

medications (ADA, 2023). Given that T2DM is progressive in nature, most patients 

need combination therapies with two or more anti-diabetic agents, especially with the 

classes mentioned above, for their additional benefits in bringing about positive 

glycaemic, metabolic and CVD outcomes (e.g., GLP-1 agonists). This poses a 

substantial economic burden on patients and healthcare systems.  

1.10.2 Safety Concerns  

Another concern that is corollary to the use of anti-diabetic agents is the range of 

adverse side-effects. Recently, the pharmacological classes used for T2DM have 

been expanded. As each class exerts a unique mechanism of action, diversity in 

toxicological profiles could consequently be induced by these anti-diabetic drugs that 

typically require follow-up assessment and treatment.  

The following subsections set forth some adverse effects caused by anti-diabetic 

agents.  
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1.10.2.1 Gastrointestinal Side Effects  

Metformin is one of the most tolerable anti-diabetic medications with a favourable 

safety profile (Zhou et al, 2018). Nevertheless, it may cause gastrointestinal (GI) 

disturbances, such as nausea and diarrhoea, in almost 28% of patients after initiation 

(Zhou et al, 2018). Other pharmacological classes that can cause GI side effects, 

which are mainly nausea and vomiting, include GLP-1 agonist agents (e.g., 

exenatide), bile acid sequestrants (e.g., colesevelam) and α-glucosidase inhibitors 

(e.g., acarbose, miglitol) (Schernthaner et al, 2010).  

1.10.2.2 Skeletal Fracture Risk 

TZDs (pioglitazone and rosiglitazone) decrease bone density and increase bone 

fracture risk more often in women (Yki-Järvinen, 2004). In the Diabetes Outcome 

Progression Trial (ADOPT), 4,351 participants (2,511 men and 1,840 women) were 

randomly allocated to three treatment groups (metformin, glyburide, and 

rosiglitazone), and the time to first skeletal fracture was assessed (Kahn et al, 2006). 

During the trial, 200 participants, divided into 89 men and 111 women, reported bone 

fractures: 93 patients were treated with rosiglitazone, 49 were assigned to the 

glyburide group, and 59 patients were exposed to metformin (Kahn et al, 2006). Thus, 

the fracture rate per 100 patient years in women was 2.7 for rosiglitazone, 1.5 for 

metformin, and 1.3 for glyburide, respectively (Kahn et al, 2006). In men, the fracture 

rates did not show any difference following the drugs’ administration (1.2, 1.0, and 1.1, 

respectively) (Kahn et al, 2006). Similar to TZDs, the incidence of bone fractures was 

found to be high in patients on canagliflozin (Watts et al, 2016). In a randomised phase 

3 study involving patients with T2DM, the bone fracture per 100 patient years was 1.4 

for 100 mg and 1.5 for 300 mg canagliflozin, respectively, compared to 1.1 per 100 

patient years in the placebo group (Watts et al, 2016).  

1.10.2.3 Acute Pancreatitis 

There have been post-marketing cases of acute pancreatitis in patients using incretin 

mimetics, such as exenatide and sitagliptin (Singh et al, 2013). To date, there are 

conflicting data regarding the association between incretin-based therapies and 

pancreatitis (Li et al, 2014; Singh et al, 2013). In a population-based matched case-

control study using an extensive database in the US, 1269 hospitalised acute 
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pancreatitis cases were identified and matched with 1269 control subjects (Singh et 

al, 2013). The results showed an increased risk of hospitalisation due to acute 

pancreatitis in exenatide and sitagliptin patients (odds ratio [OR]: 2.07, 95% CI: 1.36-

3.13) in comparison with non-users (Singh et al, 2013). In a systematic review and 

meta-analysis of 60 studies consisting of 55 randomised trials and five observational 

studies (total n = 353, 639), acute pancreatitis associated with the use of incretin-

based therapy was investigated (Li et al, 2014). The findings revealed comparable 

results in the risk of pancreatitis in patients taking GLP-1-based treatments compared 

with metformin and glibenclamide (Li et al, 2014). Therefore, collectively, the risk of 

pancreatitis appears to be low, nevertheless not definitive, and further studies are 

needed to definitively establish the risk level.  

1.10.2.4 Cancer 

There is also concern about the increased risk of bladder cancer in patients 

undergoing pioglitazone therapy (Schernthaner et al, 2010; Yki-Järvinen, 2004). Data 

on the association between pioglitazone and bladder cancer are contradictory and 

uncertain, yet the use of pioglitazone is contraindicated in patients with active bladder 

cancer (ADA, 2023). Furthermore, based on in-vivo studies, the FDA has issued a 

black box warning regarding the increased risk of thyroid C-cell tumours in patients 

receiving GLP-1 agonists (Elashoff et al, 2011). To date, it remains unknown if this 

adverse effect also afflicts humans, so clinical studies are warranted for further 

investigation.  

1.10.2.5 Fluid Retention/ Heart Failure  

It is well recognised that all TZD medications have the potential of causing peripheral 

oedema and further worsening of HF (Spiller & Sawyer, 2006; Syed et al, 2019; Yki-

Järvinen, 2004). Nonetheless, this adverse effect does not appear to affect HF 

mortality rates (Schernthaner et al, 2010). Furthermore, safety studies on saxagliptin 

have shown increased risk of HF hospitalisation in patients with pre-existing HF or 

renal impairment and during the first year of treatment compared to the placebo (ADA, 

2023). As a result, ADA has spoken out against the use of saxagliptin in patients with 

HF (ADA, 2023).  
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1.10.2.6 Hypoglycaemia and Weight Changes  

Iatrogenic hypoglycaemia is a serious adverse effect that is associated with insulin 

and insulin secretagogue medication usage (Wang et al, 2007). Various guidelines 

have recommended strict glycaemic control (HbA1c < 7%) as an approach to prevent 

the progression of T2DM regardless of the agents used and the patient’s history of 

CVD (Kirkman et al, 2018). Subsequently, poor outcomes have been associated with 

tight control, including increased rate of all-cause and CVD-caused mortality, as well 

as severe hypoglycaemic events, in comparison with the conventional group (HbA1c 

= 7.5%) (Group, 2008). Although the exact cause of mortality is unknown, iatrogenic 

hypoglycaemia could be a possible explanation for those consequences, as it has 

been clinically proven to be associated with autonomic and neuroglycopenic 

complications that require urgent treatment (Bonaventura et al, 2015).  

The effect of an anti-diabetic on body weight varies depending on the pharmacological 

class (Chaudhury et al, 2017). Weight loss is a favourable side effect induced by new 

anti-diabetic classes used for T2DM, as the majority of T2DM-diagnosed patients 

suffer from overweightness or obesity (Lankatillake et al, 2019). Table 1.2 

summarises the effects of each pharmacological class on body weight with their risk 

of hypoglycaemia. 

Table 1.2 Hypoglycaemic risk and weight changes associated with anti-diabetic classes (ADA, 
2023). 
 

Pharmacological Class Risk of Hypoglycaemia Weight Change 

Biguanides Low Neutral 

TZDs Low Weight Gain 

Sulfonylureas High Weight Gain 

Meglitinides High Weight Gain 

GLP-1 agonists Low Weight Loss 

DPP-4 inhibitors Low Neutral 

SGLT2 inhibitors Low Weight Loss 

α-Glucosidase inhibitors Low Weight Loss 

 

Abbreviations: TZDs: thiazolidinediones; DPP-4: dipeptidyl peptidase 4; SGLT2: sodium-
glucose cotransporter 2; GLP-1 agonists: glucagon-like peptide-1 
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1.10.2.7 Class/Medication-Specific Side Effects 

According to safety studies and clinical reports, there are various side effects that are 

only observed in specific anti-diabetic classes; these effects are termed class-specific 

side effects. These side effects are often attributed to the class’s unique 

pharmacological mode of action and correspondingly not observed with other classes. 

However, there are other side effects only shown in specific agents/ingredients within 

a pharmacological class. The following subsections discuss the side effects, which 

could be agent- or class specific. 

1.10.2.7.1 Metformin 

In extremely rare situations with estimated evidence of six cases per 100,000 person-

years, metformin may cause lactic acidosis, especially in patients with pre-existing 

renal dysfunction (Zhou et al, 2018). Despite its low incidence, metformin-associated 

lactic acidosis remains a concern due to its high fatality rate (30 to 50%) (Zhou et al, 

2018). Another potential issue associated with metformin use is the reduction in serum 

vitamin B12 and folic acid concentrations, which can cause megaloblastic anaemia 

(Zhou et al, 2018). Nonetheless, since the prevalence of vitamin B12 deficiency in 

metformin-treated patients has approached 20% over five years treatment; routine 

B12 monitoring is considered in elderly patients and those at risk for developing B12 

deficiency because of low intake (e.g. vegan diet) or malabsorption issues (e.g. 

bariatric surgery) (Zhou et al, 2018).  

1.10.2.7.2 DPP-4 Inhibitors  

Several studies have reported severe forms of arthralgia and other musculoskeletal 

adverse effects, including myalgias, muscle weakness and muscle spasms, that are 

associated with the usage of DPP-4 inhibitors, such as sitagliptin, vildagliptin and 

saxagliptin (Schernthaner et al, 2010; Syed et al, 2019). Patients may develop these 

symptoms two days to five months after initiating DPP-4 inhibitors (Schernthaner et 

al, 2010; Syed et al, 2019). In many cases, these symptoms subsided within one 

month following discontinued use of the drug (Schernthaner et al, 2010; Syed et al, 

2019). 
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1.10.2.7.3 SGLT2 Inhibitors  

A meta-analysis of randomised controlled trials revealed higher incidence and risk of 

genitourinary tract infections among SGLT2 inhibitor recipients compared with those 

who were administered with placebo (Bailey et al, 2013; Bersoff-Matcha et al, 2019; 

Nyirjesy et al, 2012). Moreover, Fournier’s gangrene is a new post-marketing safety 

concern associated with SGLT2 inhibitors (Bersoff-Matcha et al, 2019). Despite the 

rarity of its occurrence, it is a serious concern that warrants proper physician 

assessment of all patients on SGLT2 inhibitors presenting with fever, malaise or 

swelling from necrotizing fasciitis (Bersoff-Matcha et al, 2019). Furthermore, given 

their mechanism of actions, post-marketing cases of hypotension and acute kidney 

injury have been reported in some T2DM patients receiving SGLT2 inhibitors (Syed et 

al, 2019). In 2017, the FDA issued a black box warning on the increased risk of leg 

and foot amputations with the use of canagliflozin based on two large clinical trials 

(The Canagliflozin Cardiovascular Assessment Study (CANVAS) and The 

Canagliflozin Cardiovascular Assessment Study-Renal (CANVAS-R)) (Neal et al, 

2013; Neal et al, 2017). However, in August 2020, the FDA withdrew this warning on 

account of new data derived from three clinical trials (Aschenbrenner, 2020). The 

latest data did not rule out the increased risk of amputation associated with 

canagliflozin, but found it to be lower than previously reported, especially when 

appropriately monitored (Aschenbrenner, 2020). Diabetic ketoacidosis is another 

safety concern that may arise from receiving SGLT2 inhibitors, particularly 

canagliflozin (Liu et al, 2020). A few cases have been documented in patients with 

T1DM and T2DM taking SGLT2 inhibitors (Liu et al, 2020). In light of the foregoing, 

the ADA recommends discontinuing the administration of SGLT2 inhibitors in patients 

with acidosis symptoms (e.g., nausea/vomiting, abdominal pain, generalised malaise) 

(ADA, 2023). 

To sum up, the key evidence-based clinical data of current anti-diabetic agents are 

presented in Table 1.3. 
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Table 1.3 Key data of current pharmacological classes used for T2DM (ADA, 2023; Wajid et al, 2019). 
 

 

Abbreviations: TZDs: thiazolidinediones; DPP-4: dipeptidyl peptidase 4; SGLT2: sodium-glucose cotransporter 2; GLP-1 agonists: glucagon-like peptide-1 

Pharmacological Class Mechanism of Action HbA1c Reduction  

Additional Benefits 

Cost Safety Concerns 
CV Effects Renal Effects 

Biguanides 
-Decrease hepatic 
gluconeogenesis and increase 
insulin sensitivity 

1–2% 
Potential ASCVD 

benefits 
Neutral Low 

-GI (diarrhoea, abdominal pain) 
-Potential for B12 deficiency 
-Lactic acidosis 

TZDs -Increase insulin sensitivity 0.5–1.4% 
Potential ASCVD 

benefits 
(Pioglitazone) 

Neutral Neutral 

-Weight gain 
-Fluid retention 
-Congestive heart failure 
-Bone fractures 

Sulfonylureas -Enhance insulin secretion 1–2% Neutral Low 
-Hypoglycaemia 
-Weight gain 

Meglitinides -Enhance insulin secretion 0.5–1.5% Neutral Low 
-Hypoglycaemia 
-Weight gain 

GLP-1 agonists 

-Increase satiety, regulate 
gastric emptying, enhance 
insulin secretion and decrease 
glucagon release 

0.5–1.5 % 
ASCVD 
benefits 

Reduce diabetic 
kidney disease 

progression 
(Liraglutide) 

High 
-GI (diarrhoea, abdominal pain) 
-Injection site reactions 

DPP-4 inhibitors 
-Increase endogenous GLP-1 
levels 

0.5–0.8% Neutral High 
-Increased risk of infection 
-Headache 
-Arthralgia 

SGLT2 inhibitors 
-Induce glucosuria and prevent 
glucose reabsorption in the 
kidney’s proximal tubule 

0.3–1% 
Both ASCVD 

and HF 
benefits 

Reduce diabetic 
kidney disease 

progression 
High 

-Genitourinary infection 
-Hypovolemia 
-Renal insufficiency 
-Hypotension 
-Diabetic ketoacidosis 

α-Glucosidase inhibitors 
-Slow the absorption of 
carbohydrates 

0.5–0.8% Neutral Mod. -GI (flatulence, diarrhoea) 
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1.11 Toxicological Approaches for Side-Effect Exploration 

With the unprecedented rise in the global prevalence of diabetes mellitus and its 

complications, optimising anti-diabetic agents’ safety profile is urgently needed. The 

principal objective in managing diabetes and its related complications is maintaining 

adequate glycaemic control, which is primarily premised on the patient’s medication 

adherence (Denicolo et al, 2021). Approximately 45% of diabetic patients fail to achieve 

their target HbA1c control (<7%) chiefly due to poor adherence (Currie et al, 2012). Non-

adherence is a serious health concern that is subsequently associated with a higher 

incidence of diabetes-related complications, fatality rates and economic burden on the 

health care system (Denicolo et al, 2021). In the UK, among 15,984 participants treated 

with anti-diabetic agents, poor medication adherence was reported and independently 

associated with a significant 1.6-fold increase in all-cause deaths (Currie et al, 2012). 

Multiple factors are associated with anti-diabetic agent non-adherence. However, one of 

the significant determinants of poor adherence constitutes the adverse effects of 

medication (Denicolo et al, 2021).  

In diabetes research, majority of the side effects summarised in Table 1.3 are poorly 

characterised. In fact, the pathomechanisms underlying these adverse effects are still 

poorly defined, and there is a dearth of mechanistic studies addressing these issues. While 

most existing mechanistic studies have focused on elucidating the side effects of the 

prototype anti-diabetic drug metformin, particularly GI intolerance, these investigations 

have yielded valuable insights (Akhter & Uppal, 2020; DeFronzo et al, 2016; Piel et al, 

2015; Thomas & Gregg, 2017). Studies suggest a direct effect of metformin on the gut 

mucosa, with jejunal concentrations reaching up to 300 times plasma levels (Thomas & 

Gregg, 2017). Additionally, research has explored the mechanisms underlying the rare 

side effect of lactic acidosis, revealing metformin's direct action on mitochondria, altering 

the balance between coupled and uncoupled reactions (DeFronzo et al, 2016; Piel et al, 

2015). Specifically, metformin uptake via organic cation transporters followed by its 

targeting of mitochondria leads to inhibition of complex I respiration, increased uncoupled 

respiration, a slowdown of the tricarboxylic acid cycle, and ultimately, increased lactic acid 

formation (DeFronzo et al, 2016; Piel et al, 2015). This latter effect can potentially lead to 

lactic acidosis at high metformin concentrations (DeFronzo et al, 2016; Piel et al, 2015). 

Furthermore, investigations into the potential impact of SGLT2 inhibitors on renal function 

were conducted due to the mechanism of action of this drug class relying heavily on kidney 
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function. While some speculate on potential adverse events or even renoprotective 

benefits, initial studies suggest a transient decrease in GFR associated with SGLT2 

inhibition (Minze et al, 2018). This decrease has been suggested to occur due to increased 

sodium delivery to the macula densa (Akhter & Uppal, 2020). This, in turn, leads to an 

increase in adenosine release, resulting in vasoconstriction of the afferent arteriole and 

subsequent reduction in renal plasma flow and GFR (Akhter & Uppal, 2020). Lastly, few 

proposed mechanisms attempt to explain the joint pain associated with DPP-4 inhibitors 

(Drucker, 2007; Mascolo et al, 2016). One possibility suggests these drugs may elevate 

levels of cytokines, chemokines, and matrix metalloproteinases, all of which can contribute 

to pain (Drucker, 2007; Mascolo et al, 2016). However, the exact mechanism underlying 

this side effect remains elusive. Therefore, further toxicological studies are warranted to 

unveil these mechanisms and give rise to the proposition of preventive and therapeutic 

strategies that could improve patient safety and, ultimately, medication 

adherence. Currently, several toxicological approaches are available to evaluate and 

predict drug safety endpoints (Jennings, 2015). These include in vivo testing, in vitro 

models, in silico and omics-based approaches (Jennings, 2015; Lankatillake et al, 2019).  

1.11.1 In Vivo Toxicity Testing 

In vivo animal models have been extensively used in T2DM research (Chatzigeorgiou et 

al, 2009). The etiopathogenesis of T2DM represented by insulin resistance and obesity 

has been substantially investigated using in vivo models (Chatzigeorgiou et al, 2009). The 

use of experimental animals is not restricted to disease pathogenesis but has been 

extended to drug applications in which animal models are utilised to determine drug 

efficacy, safety and drug-related parameters (pharmacokinetic and pharmacodynamic 

parameters) (Chatzigeorgiou et al, 2009). Rodent models are the most commonly used in 

vivo models for diabetes research, with Zucker diabetic Sprague-Dawley (ZDSD) rats 

being particularly valuable in this field (Rashmi et al, 2023). ZDSD rats are developed by 

breeding obese Sprague-Dawley rats, prone to obesity on a high-fat diet, with Zucker 

diabetic fatty rats that have impaired insulin production (Rashmi et al, 2023). These ZDSD 

rats develop a pre-diabetic state lasting over eight weeks, resembling the early stages of 

human T2DM (Rashmi et al, 2023). Another commonly employed model in diabetes 

research is the LepOb/Ob mouse, which carries a mutation in the leptin gene, leading to 

leptin deficiency (D'souza et al, 2016). This deficiency results in severe obesity, 

hyperphagia (excessive eating), IR, and hyperglycemia, closely mirroring T2DM (D'souza 
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et al, 2016). Given that the abovementioned rodent models exhibit key hallmarks T2DM 

pathogenesis, such as IR and hyperglycemia, and share the same metabolic and signaling 

pathways found in humans, these models are considered well-suited for diabetes research 

(Lankatillake et al, 2019). 

Nevertheless, in vivo platforms have several drawbacks. Firstly, it is challenging to 

elucidate the mechanisms of drug perturbation or drug actions within biological systems 

since these mechanisms often arise from complex interactions between the complicated 

network of different organs and tissues within a living animal. Moreover, animal testing is 

costly and time consuming with low-throughput readouts (Lankatillake et al, 2019). 

Furthermore, the findings of animal studies are inconsistent and the validity of 

extrapolating these results to human cells is debatable (Lankatillake et al, 2019). Apart 

from the scientific and economic challenges, the use of experimental animals, particularly 

in toxicological studies, is fraught with other issues, including ethical and legislative 

constraints (Yu et al, 2020). As a consequence of the challenges mentioned above, the 

concept of next-generation risk assessments has emerged, providing new directions in 

toxicity testing (Yu et al, 2020). Toxicity testing of drugs is striving towards approaches 

that sustain the principles of replacement, reduction and refinement (3Rs), with the 

capability of developing reliable, robust and efficient findings in a high-throughput manner 

(Hemmerich & Ecker, 2020; Krewski et al, 2010). This includes the use of in vitro models, 

in silico approaches or a combination of both (hybrid projects) (Hemmerich & Ecker, 2020; 

Krewski et al, 2010). 

1.11.2 In Vitro Toxicology 

In vitro toxicology refers to the process of analysing the toxic effects of chemical 

substances in cellular systems selected to mimic the target tissues and organ toxicity 

(Jennings, 2015). There are numerous in vitro platforms, including (but not limited to) 

isolated organs, tissue slices, isolated primary cell cultures, immortalised cell lines, explant 

cultures and even subcellular organelles (e.g. mitochondria) (Jennings, 2015). The 

diversity in cellular systems enables testing of the toxic effects of drugs on specific cell 

types and determining the mode of toxicity at a fundamental level. Over the past decade, 

an upsurge in in vitro toxicology aspects has been reported (Jennings, 2015). This could 

be attributed to the advantages that in vitro toxicology testing offers in comparison with the 

in vivo approach. These include: (i) reduction of experimental animal utilisation following 
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the toxicology screening of drugs, (ii) consistency of the findings and less biological 

variations compared with in vivo testing, and (iii) availability of biotechnological 

advancements (e.g. high-throughput screens (HTS)) that provide reproducible and fast-

tracked toxicology analyses (Jennings, 2015; Lankatillake et al, 2019). 

To date, numerous in vitro modelling systems exist, including primary pancreatic cells and 

immortalised insulin-secreting cell lines (Bakhti et al, 2019).  

1.11.2.1 Primary Islets 

Primary islets are often derived from humans and rodents for ex vivo cell studies (Skelin 

et al, 2010). They are usually isolated either by enzymatic disaggregation (e.g. trypsin) or 

mechanical dispersion of pancreatic tissues (Skelin et al, 2010). Hence, primary islets 

retain many of their functional and differentiated characteristics despite their loss of 

microenvironment and vasculature supply (Skelin et al, 2010). Furthermore, they are 

phenotypically and genetically identical to their parental tissue (Skelin et al, 2010).  

Nevertheless, the preparation of primary culture is labour intensive and the handling of 

these cells require extensive skills and careful planning (Lankatillake et al, 2019). The use 

of human primary islets in diabetes research is scarce due to limited tissue availability 

(Skelin et al, 2010). Another limitation of primary cells usage is their short lifespan 

attributed to cellular senescence genes (Skelin et al, 2010). In addition, the reproducibility 

of the findings is influenced by several confounders, which include the hormonal, cellular 

and genetic variabilities among individuals donors (Bakhti et al, 2019). Intra-donor 

differences due to sex, age, ethnicity, diet and body mass index could also impact the 

validity and efficiency of the results (Bakhti et al, 2019). Variations in the protocol followed 

in the primary islet isolation procedure, as well as the size and composition differences of 

these primary cells, are other obstacles for the comparative analyses of primary islets 

(Bakhti et al, 2019).  

One of the suggested solutions to overcome these limitations is using the human micro-

islets platform (Bakhti et al, 2019). The human micro-islets platform is a standardised 

alternative to human pancreatic islets as it enables the generation of clusters with defined 

size, identical cell number and uniform composition (Bakhti et al, 2019). The process starts 

with primary islet disassociation accompanied by scaffold-free culturing that supports 

spontaneous re-aggregation of the dispersed endocrine cells to form homogenous human 
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micro-islets (Bakhti et al, 2019). Therefore, the resulting uniform human islet microtissues 

minimise the variations in the primary islet platform while ensuring robustness and 

reproducibility of the findings (Bakhti et al, 2019).  

Another platform that relies on primary islets for research purposes is primary pancreatic 

tissue slice (Skelin et al, 2010). The preparation of slice culture is relatively quick and less 

damaging compared with primary culture (Bakhti et al, 2019). As a result, slice culture has 

the advantage of retaining tissue morphology and partially preserving the cellular 

microenvironment (Bakhti et al, 2019; Skelin et al, 2010). Furthermore, this platform 

(pancreatic slice) allows investigating the crosstalk between exocrine and endocrine 

compartments within the pancreatic tissue and the interactions between pancreatic and 

non-pancreatic tissues (Bakhti et al, 2019; Skelin et al, 2010). Nevertheless, limited 

availability and intra-donor variations remain as the challenges of this platform (Bakhti et 

al, 2019; Skelin et al, 2010). 

1.11.2.2 Established Pancreatic Cell Lines  

Owing to the finite lifespan of primary cells and their limited availability, immortalised cell 

lines have been generated to enable cells to overcome normal senescence and propagate 

indefinitely (Lankatillake et al, 2019; Persaud et al, 2014; Skelin et al, 2010). Several 

transformation approaches exist for the immortalisation of cells in culture conditions 

(Lankatillake et al, 2019; Persaud et al, 2014; Skelin et al, 2010). These include isolation 

of naturally occurring cancer cells, irradiation or chemical carcinogen induction of 

permanent genetic mutations or viral oncogene induction (e.g., simian vacuolating virus 

40 (SV40) TAg) either by transfection or recombinant viral vector transduction 

(Lankatillake et al, 2019; Persaud et al, 2014; Skelin et al, 2010).  

Besides their infinite lifespan, immortalised cell lines have several advantages. They are 

typically easy to handle and maintain in culture for an extended period of time (Skelin et 

al, 2010). Their fast proliferative property enables immortalised cells to continuously 

express target genes and, therefore, purify large amounts of the recommended proteins 

(Skelin et al, 2010). The unlimited availability of these homogeneous cell populations, in 

addition to their lower cost, enhances the consistency and reproducibility of the results 

compared with primary cells (Lankatillake et al, 2019; Persaud et al, 2014; Skelin et al, 

2010).   
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Immortalised cell lines constitute powerful tools in diabetes research. In fact, they have 

been widely used for various purposes that cover both disease pathogenesis and 

pharmaceutical drug development process (e.g., safety studies) (Lankatillake et al, 2019; 

Persaud et al, 2014; Skelin et al, 2010). Currently, a number of pancreatic cell lines are 

commercially available. Some examples of commonly used immortalised cell lines include 

rat insulinoma cell line (RIN), insulinoma cell line (INS-1), hamster pancreatic β-cells (HIT), 

transgenic C57BL/6 mouse insulinoma cell line (MIN6) and β-tumour cell (β-TC) 

(Lankatillake et al, 2019; Persaud et al, 2014; Skelin et al, 2010). Each cell line has its 

own characteristics and limitations, and the choice should be tailored to the research goal 

being pursued. A brief description of commonly encountered cell lines is presented below.  

1.11.2.3 Insulin-Secreting Cell Lines  

The INS-1 cell line is a genetically modified cell line originally derived from rat insulinoma 

induced by X-ray irradiation (RIN) (Persaud et al, 2014). INS-1 is one of the relevant 

models displaying numerous characteristics that mimic pancreatic β-cells, including 

relatively high insulin content and secretory responsiveness to glucose within the 

physiological range (Skelin et al, 2010). Hence, the use of INS-1 is considered a suitable 

approach for investigating the effects of chemicals on glucose-stimulated insulin secretion 

(Persaud et al, 2014; Skelin et al, 2010). Furthermore, it has been shown that INS-1 cells 

can be passaged up to 80 times without substantial changes in cellular function or 

morphology (Persaud et al, 2014; Skelin et al, 2010). Nevertheless, the insulin release in 

response to glucose is as low as 20% of naive β-cells (Persaud et al, 2014; Skelin et al, 

2010). In addition, the cell culture requires the presence of 2-mercaptoethanol for 

propagation (Skelin et al, 2010). Without this compound, the cells will lose various 

functional characteristics (Skelin et al, 2010). Despite these benefits of 2-mercaptoethanol, 

this toxic compound increases the intracellular levels of glutathione (GSH), which is 

associated with the irreversible denaturing of insulin production (Skelin et al, 2010).  

HIT is a hamster insulinoma cell line produced by transforming hamster pancreatic β-cells 

with SV4 Tag (Lankatillake et al, 2019). HIT-T15 is the only sub-clone that responds to 

glucose stimulation (Lankatillake et al, 2019). Similar to mature hamster β-cells, HIT has 

a modest number of secretory granules (Persaud et al, 2014). It also has a low insulin 

content compared with normal hamster islets, and insulin production decreases with long-

term subculturing (Skelin et al, 2010).  
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MIN6 is a transgenic C57BL/6 mouse insulinoma cell line established by SV40 transfection 

(Lankatillake et al, 2019). MIN6 cells express glucokinase and GLUT-2 and respond to 

glucose in a manner similar to that of naive β-cells (Persaud et al, 2014). They also have 

the advantage of retaining the morphological and functional characteristics of primary mice 

β-cells (Persaud et al, 2014). However, a high passage number of MIN6 cells should be 

generally avoided as a sudden loss of glucose-induced insulin release has been noticed 

(Skelin et al, 2010).  

1.11.2.4 Human Pancreatic Cancer Cell Lines 

Human pancreatic cancer cell lines constitute another in vitro model that is commonly used 

for molecular investigations of endocrinopathies, including diabetes mellitus (Deer et al, 

2010). Numerous cell lines are available commercially; however, each cell line displays 

distinct phenotypic characteristics, such as adhesion, invasion, tumorigenesis and 

migration and genotypic status, thus requiring careful evaluation prior to cell line selection 

(Deer et al, 2010; Hiram-Bab et al, 2012). An overview of the commonly used human 

pancreatic cell lines is presented in Table 1.4.  

The use of these cell lines in diabetes research has been achieved after several 

investigations involving the conversion of these immortalised cell lines into insulin-

secreting cell lines (Hiram-Bab et al, 2012). A typical example is the PANC-1 epithelial cell 

line that has been transformed into a novel human insulin-secreting cell line (1.1B4, 1.4E7 

and 1.1E7) after electrofusion with human pancreatic β-cells (Hiram-Bab et al, 2012; 

Persaud et al, 2014). The results showed that these electrofusion-derived cells display 

functional characteristics similar to those of naive pancreatic β-cells; however, the 

magnitude of insulin synthesis and secretory response is inferior to that of primary human 

β-cells and parallel or inferior to that of rodent-based cell lines (Hiram-Bab et al, 2012; 

Persaud et al, 2014). The studies by Hui et al., Hardikar et al., and Wu et al. showed that 

changing the growth medium of PANC-1 to serum-free medium (SFM) leads to cell line 

differentiation and induces the expression of insulin, glucagon and somatostatin (Hui et al, 

2001; Wu et al, 2010). In the experiment, the cytosolic-free calcium of PANC-1 cells 

cultured in SFM was assessed following tolbutamide or glucose administration (Hui et al, 

2001; Wu et al, 2010). Moreover, quantitative real-time polymerase chain reaction was 

used to measure the changes in the mRNA expression of glucokinase, GLUT2, L-type 

calcium channels, potassium ATP channels, glucagon and somatostatin (Hui et al, 2001; 
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Wu et al, 2010). The results showed cell response to tolbutamide or glucose that is similar 

to those exhibited by primary pancreatic islets (Hiram-Bab et al, 2012; Hui et al, 2001; Wu 

et al, 2010). This was parallel to a fivefold increase in glucokinase mRNA expression level 

and, to a lower degree, to L-type calcium channels and potassium ATP channels (Hiram-

Bab et al, 2012; Hui et al, 2001). Furthermore, an increase in glucagon and somatostatin 

was detected, which altogether indicated changes in PANC-1 cell differentiation and gene 

expression (Hiram-Bab et al, 2012; Hui et al, 2001).  

Table 1.2 Comparison of commonly used human pancreatic cancer cell line characteristics (Deer 
et al, 2010). 
 

Cell Line Disease 
Cell Type/ 

Growth Mode 
Patient 

Information 
Differentiation Proliferation 

PANC-1 
 
 

Epithelioid 
carcinoma 

Epithelial/ 
Adherent 

56-year-old 
Caucasian 

male 
 

Poor 52 hrs 

AsPC-1 
 

Adenocarcinoma 
 

NA/Adherent 

62-year-old 
Caucasian 

female 
 

Poor 38–40 hrs 

BxPC-3 
 

Adenocarcinoma 
 

Epithelial/ 
Adherent 

 

61-year-old 
Caucasian 

female 
 

Poor to 
moderate 

4–60 hrs 

HPAC 
 

Adenocarcinoma 
 

Epithelial/ 
Adherent 

 

64-year-old 
female 

 
Moderate 41 hrs 

MIA 
PaCa-2 
 

Carcinoma 
Epithelial/ 
Adherent 

 

65-year-old 
Caucasian 

male 
Poor 40 hrs 

1.11.2.5 Stem Cell Lines  

After the first report of the generation of insulin-producing β-like cells from the spontaneous 

differentiation of human embryonic stem cells (ESCs), a tremendous stride has been made 

towards the in vitro establishment of β-like cells (Bakhti et al, 2019). Stem cell research 

has revealed new horizons in the domain of diabetes mellitus therapy, including novel 

therapeutic approaches, such as human islet allotransplantation (Rickels & Robertson, 

2019). Human islet allotransplantation has been successfully applied in selected T1DM 

patients, with results indicating 8% insulin independence achieved at one year (Rickels & 

Robertson, 2019). Aside from their involvement in cell-based therapy,  stem cells have the 

ability to undergo unlimited cell division, differentiate into all specialised cells present in 

the human body and have the potential to regenerate and repair damaged tissue (Bakhti 

et al, 2019). Thus, stem cells could be used for multiple applications, including screening 
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and cytotoxicity testing of anti-diabetic drugs and disease modelling to explore new 

therapeutic targets for diabetes mellitus (Bakhti et al, 2019). Despite the advantages that 

the stem cell differentiation platform holds, several drawbacks exist. These include limited 

availability, high cost associated with the characterisation of each stem cell line and ethical 

concerns regarding the use of human stem cells, particularly ESCs, in laboratory research 

(Bakhti et al, 2019). In addition, stem cells require a long period of growth prior to their use 

(Skelin et al, 2010). Besides, the stem cell differentiation platform is not yet entirely 

understood, which means that it is still challenging to select the most appropriate type of 

stem cell needed to address the research objective (Bakhti et al, 2019). Moreover, 

differentiation protocols are still lacking and have not been developed for many cell types 

as they are hindered by limited knowledge and tissue availability (Bakhti et al, 2019). 

1.11.2.6 Drawbacks of In Vitro Platforms  

Despite the diversity and advantages of in vitro toxicology platforms, in vitro testing faces 

various challenges that need to be addressed. The lack of a reflecting cellular 

microenvironment, the complex human biology under disease conditions and loss of cell–

cell interactions are the major drawbacks of in vitro studies (Langhans, 2018). This could 

raise a debate about result validity and pose a challenge in extending the experimental 

results to whole organisms or different species (Langhans, 2018). Although immortalised 

cell lines can address some limitations in primary islet cells, they also have their own 

pitfalls. Since the senescence genes have been mutated by different transformation 

techniques, cell lines may have abnormal chromosomal content and some form of genetic 

mutations that could consequently lead to atypical protein expression and modified 

metabolism (Skelin et al, 2010). Hence, collectively, the behaviour and characteristics of 

immortalised cell lines are not functionally comparable with those of primary cells (Skelin 

et al, 2010). The foregoing concerns should be considered when using these cell lines in 

diabetes mellitus research.  

1.11.2.7 Recent Advancements in In Vitro Platforms 

Recently, considerable progress has been attained in developing cell culture models that 

accurately mirror in vivo cellular microenvironments and replicate complex tissue 

structures (Langhans, 2018). This has enabled the transition from two-dimensional (2D) 

to three-dimensional (3D) cell culture experiments in which cells are permitted to grow and 

interact with their surroundings in a 3D environment (Langhans, 2018). Various 3D 
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culturing techniques are currently in use, often divided into two distinct categories: 

scaffold-based (i.e. polymeric hard scaffolds, micropatterned surface microplates) and 

scaffold-free systems (i.e. spheroid microplates containing ultra-low attachment (ULA) 

coating) (Langhans, 2018). Each has its advantages and disadvantages, which need to 

be considered prior to choosing the most suitable 3D system to achieve the research goal. 

The implication of 3D culture systems in diabetes mellitus research involves the use of 

pseudo-islet models and organoids (Bakhti et al, 2019; Kojima, 2014; Langhans, 2018).  

1.11.2.7.1 Pseudo-Islets 

In diabetes mellitus research, majority of cell culturing, mostly with immortalised cell lines, 

is carried out using conventional 2D techniques in which cells are propagated as adherent 

monolayers on tissue culture substrates (Persaud et al, 2014). Given that the anatomical 

configuration of islet cells is a major determinant of sustaining optimal insulin release 

responses, the configuration of cell lines as adherent monolayers is a major concern 

(Persaud et al, 2014). In previous studies, the functional characteristics of islet cells were 

evaluated after dispersing the cells into a cell suspension (Kojima, 2014). The results 

showed a significant reduction in insulin content in response to physiological signals 

(Kojima, 2014). Subsequently, when the islet cells were configured into the 3D structure, 

named pseudo-islets, restoration of the insulin secretion ability was established (Kojima, 

2014). In agreement with the findings mentioned above, the reconfiguration of commonly 

used cell lines (MIN6, βTC6) into 3D pseudo-islet structures has also been shown to 

restore the cell line’s differentiated functions, demonstrated as an improvement in the 

glucose-sensing characteristics compared with the monolayer culture (Bakhti et al, 2019). 

These observations collectively highlight the importance of cell–cell and cell–matrix 

interactions in the phenotypic and functional characteristics of pancreatic β-cells.  

1.11.2.7.2 Organoids 

An organoid is a 3D multicellular in vitro tissue culture that incorporates the key 

characteristics of its corresponding in vivo organ micro-architecture (Langhans, 2018). The 

3D organoid system is a novel in vitro platform with promising potential for pharmaceutical 

testing and disease modelling (Langhans, 2018). This unique system replicates complex 

tissue structures and mirrors cellular microenvironments with superior reflections on cell 

differentiation, polarisation and intracellular interactions (Langhans, 2018). Several 

organoid structures have been established, such as mini-brain, kidney, liver and small 
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intestine (Langhans, 2018). To establish organoids, cells capable of self-renewing and 

multipotency are required. Hence, organoids are typically derived from a single adult stem 

cell (aSC), ESC and induced pluripotent stem cells (iPSC) (Bakhti et al, 2019). Different 

protocols are currently adopted with regards to organoid culture conditions; however, 

collectively agreeing on specific culture media with certain growth conditions (e.g. 

involvement of the basement matrix membrane) is essential to ensure proper development 

of the required organoid (Bakhti et al, 2019; Langhans, 2018). Since organoids are derived 

from stem cells, they preserve the long-term viability and maintenance characteristics 

(Bakhti et al, 2019; Langhans, 2018). Hence, organoids are suitable for replicative studies 

(Bakhti et al, 2019; Langhans, 2018). Going beyond diabetes research, pancreatic 

organoids were first generated by Anne Grapin-Botton’s group using embryonic pancreatic 

cells (Greggio et al, 2015). In these generated organoids, the mouse progenitors 

successfully produced branched structures containing ductal, exocrine and endocrine 

lineages (Greggio et al, 2015). Furthermore, pancreatic organoids have been generated 

from CD133 (prominin-1) cells derived from adult mouse pancreas, and the results were 

comparable to those observed with embryonic cells (Greggio et al, 2015). Currently, the 

use of the 3D organoid system in diabetes research focuses on understanding pancreatic 

morphogenesis and differentiation (Bakhti et al, 2019). Its use in anti-diabetic agent 

screening is still lacking; however, it seems to be a promising in vitro platform candidate 

for pharmaceutical applications in the future. 

1.11.3 Application of Omics in Toxicity Evaluation 

Conventional toxicological methods have been mostly adopted to investigate the 

adverse effects of medications, mainly through observing toxicological endpoints. 

Despite the crucial input provided by these methods, a comprehensive description of 

the biological pathways underlying medications’ toxic effects is still lacking. Thus, 

innovative methodological approaches are warranted to provide both comprehensive 

and targeted mechanistic data capable of filling the existing data gaps and ultimately 

improve the current understanding of drug toxicity. 

To date, omics-based approaches have emerged as powerful tools in toxicological 

research (Hu & Jia, 2021; Li et al, 2021; Nguyen et al, 2022). The integration of omics- 

based studies in toxicity-related investigations has successfully shifted the scope of 

toxicological evaluation from an observational-based strategy to a more mechanical, 
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target-based analysis of the impact of chemicals on the human system (Marx-Stoelting et 

al, 2015). Various omics approaches currently exist – including toxicogenomics, 

toxicotranscriptomics, toxicometabolomics and toxicoproteomics, each of which has 

provided unprecedented insights into the toxicity pathways of various chemicals at 

different molecular levels (i.e., DNA, RNA, proteins and metabolites) in a high- 

throughput manner and acceptable time frame (Marx-Stoelting et al, 2015; Nguyen et al, 

2022). Numerous technologies are available to perform such omics approaches (Li et al, 

2021). These technologies can be broadly branched into two main categories that serve 

as the workhorse for performing different omics strands: technologies based on next-

generation sequencing (NGS) and mass spectrometry (MS) (Figure 1.20) (Li et al, 

2021). 

 



 53 

 
 

 
Figure 1.20 Integration of omics-based approaches in the investigation of drugs’ side 
effects. Drugs, apart from their therapeutic effects, can disturb cells at different molecular levels, 
resulting in side effects. With the aid of omics-based technologies, these perturbations can be 
captured and translated into distinct types of omics data, enabling a comprehensive understanding 
of the toxic mechanisms that underpin drugs’ unfavourable actions. 
 

1.11.3.1 Toxicogenomics and Toxicotranscriptomics in Toxicological Studies 

Francis Crick's central dogma of molecular biology, positing a unidirectional flow of genetic 

information from DNA to RNA to protein, laid the foundation for toxicogenomics (Mortimer 

et al, 2022). Advancements in sequencing technologies have enabled researchers to 

acquire genomic and transcriptomic data at unprecedented depth, driving the integration 

of these technologies into diverse fields, including toxicology (Mortimer et al, 2022).  

Starting with toxicogenomics, various forms of genetic variants (i.e., single-nucleotide 

variations/polymorphisms [SNVs/SNPs], structural variation, insertion and deletion) may 

occur, resulting in variability in drug efficacy and safety (Nguyen et al, 2022). Genetic 

variation to variation in drug safety can be detected using whole-genome sequencing 
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(WGS) and whole-exome sequencing (WES) (Robinson et al, 2012). Moreover, 

advances in other sequencing techniques have enabled the deciphering of the 

dysregulated epigenome and its influence on gene expression and, ultimately, drug 

response (Li et al, 2021; Robinson et al, 2012). There are four well-recognised 

mechanisms  that  drive  epigenetic  modifications:  DNA  methylation,  histone 

modifications, chromatin accessibility and compaction and nuclear architecture, each of 

which can be measured by certain techniques (Li et al, 2021). For instance, chromatin 

immunoprecipitation followed by sequencing (ChIP-Seq) is widely used for genome-wide 

mapping of DNA-binding proteins and histone modifications, whereas bisulfite 

sequencing (BS-Seq) is adopted for detecting DNA methylation patterns (Robinson et 

al, 2012). In addition, for the purpose of identifying chromatin accessibility across the 

genome, the assay for transposase-accessible chromatin with sequencing (ATAC-Seq) 

and DNase I hypersensitive sites sequencing (DNase-seq) have been commonly 

used (Li et al, 2021). Furthermore, Hi-C and chromatin interaction analysis with 

paired-end tag sequencing (ChIA-PET) have opened new horizons in the exploration of 

in situ chromatin interactions and transcription regulation (Li et al, 2021). 

Moving to toxicotranscriptomics, the evolution of RNA-sequencing technologies has 

introduced a new perspective to transcriptome studies, producing valuable, increasingly 

accurate insights at a reasonable cost (Haimbaugh et al, 2022). The utilisation of RNA 

sequencing has enabled the quantification of the whole transcriptome and transcript 

isoforms, identification of aberrant splicing events and detection of gene fusions 

(Haimbaugh et al, 2022). The data extracted from this omics strand has significantly 

contributed to developing an inclusive list of differentially expressed gene candidates for 

adverse drug reaction exploration (Nguyen et al, 2022). 

In toxicogenomics and toxicotranscriptomics, gene expression analysis has been primarily 

adopted to achieve two main key purposes: characterising the molecular signature of 

chemicals and discovering novel biomarkers. Genome-wide expression profiling offers 

unparalleled resolution for creating molecular fingerprints of toxicants, comprehensively 

capturing the impact of chemicals on molecular pathways (Mortimer et al, 2022). Given 

the vast number of genes in organisms (approximately 20,000 in humans), chemical 

exposures induce multiple simultaneous changes that necessitate comprehensive 

detection (Serra et al, 2020). Transcriptomics excels at identifying these changes, 

enabling the characterisation of molecular pathways perturbed by toxicants through the 
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simultaneous analysis of tens of thousands of gene expression profiles (Joseph, 2017). 

This comprehensive view encompasses intricate regulation and network interactions 

among genes throughout the genome and serves as a "molecular signature" that contains 

highly detailed biological information about chemicals (Mortimer et al, 2022). Hence, by 

comparing genome-wide expression profiles, researchers can effectively differentiate 

chemicals with distinct toxicity mechanisms and predict potential toxicity pathways for 

novel compounds based on similarities to known toxicants (Mortimer et al, 2022). 

Furthermore, by analysing genome-wide expression profiles for a chemical, researchers 

can identify biomarkers based on classification criteria (Nguyen et al, 2022). Bioinformatics 

tools facilitate the discovery of marker genes consistently altered across expression 

profiles of chemically similar compounds (Li et al, 2021). These biomarkers streamline 

chemical classification. For instance, Li et al. compared transcriptome profiles of 14 

genotoxic and 14 non-genotoxic chemicals, identifying 65 marker genes capable of 

accurately distinguishing between these chemical classes (Li et al, 2015). Despite the 

utility of toxicogenomics in biomarker discovery, solely relying on this approach for 

assessing chemical toxicity is insufficient, necessitating validation through traditional 

phenotyping experiments. It's crucial to interpret results cautiously, as molecular-level 

changes may not always translate into observable physiological effects. 

Despite advancements in toxicogenomics, challenges persist in its application to 

toxicology studies. Firstly, lack of comprehensive transcriptomics databases hindering the 

ability of performing comprehensive chemical classification analysis (Mortimer et al, 2022). 

Secondly, the high cost of RNA-sequencing through which the expense of whole genome 

expression profiling restricts its widespread application (Zhang et al, 2018). Recent 

advancements have introduced reduced transcriptomics as a cost-effective method for 

comprehensively assessing chemical toxicity and identifying key molecular pathways 

(Zhang & Zhao, 2018; Zhang et al, 2018). This approach is predicated on the concept that 

a limited gene subset can effectively represent the behavior of entire gene networks 

(Zhang et al, 2018). Zhang and Zhao demonstrated the utility of reduced transcriptomics 

in identifying neurotoxicants induced by chemicals by using a reduced transcriptome atlas 

(RTA) approach which integrated transcriptomic data sets and a set of genes linked with 

neurogenesis and the early neurodevelopment of zebrafish (Zhang & Zhao, 2018). 

Analysing transcriptomic data from 74 chemicals and 736 genes yielded 135 distinct 

exposure signatures. A gene panel of 300 genes derived from gene expression index 
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(GEI) analysis effectively assessed neurotoxic potential and associated biological 

pathways. Thirdly, in the context of data interpretation, the substantial volume of data 

generated presents significant challenges in interpretation, necessitating advanced 

computational tools and expertise to establish connections between transcriptomic 

alterations and toxicological endpoints (Mortimer et al, 2022). Fourthly, transcriptomics 

analyses focus on RNA levels, which may not accurately reflect protein levels due to post-

transcriptional regulation, limiting its ability to fully predict biological outcomes. Lastly, 

standardisation issues hinder the comparability of the findings and hence widespread 

application of transcriptomics in toxicology (Marx-Stoelting et al, 2015). 

1.11.3.2 Toxicoproteomics and Toxicometabolomics in Toxicological Studies 

While transcriptomics has been the predominant global approach in toxicology due to its 

well-established computational pipelines, toxicoproteomics is rapidly emerging as one of 

the most dynamic and fast-developing fields in toxicology for analysing changes in protein 

expression at the functional level (Yipel & İlhan, 2022). This dynamic field is gaining 

prominence due to its capacity to directly measure and quantify proteins, which are the 

ultimate effectors of biological processes. Proteomics encompasses not only the analysis 

of protein expression patterns but also their functions, localization, interactions, post-

translational modifications (PTMs), and turnover (Suman et al, 2016). With an estimated 

80,000 proteins encoded by approximately 20,000-25,000 genes in humans, and 

considering the vast array of PTMs, the protein landscape exceeds one million entities 

(Suman et al, 2016).  

Toxicoproteomics is increasingly employed in toxicology to decipher the mode of action of 

chemicals through the investigation of the changes in protein expression profiles to 

pinpoint affected pathway processes (Thomas et al, 2023). Numerous papers in the 

literature have demonstrated the successful application of proteomics approaches in 

elucidating the mechanisms of action underlying chemical toxicity. In one paper, a 

comprehensive whole-cell proteomic analysis unveiled the molecular underpinnings of 

oxaliplatin's action, demonstrating its induction of DNA damage and perturbations in 

nucleolar and ribosomal function (Ozdian et al, 2017). Another untargeted proteomic 

examination in rifampicin-treated mice revealed proteomic alterations associated with 

hepatotoxic mechanisms (Kim et al, 2017). Hence, proteomic characterisation can 
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delineate cellular reactions to pharmaceutical interventions and facilitate the prediction of 

adverse drug effects.  

Furthermore, toxicoproteomics has been widely utilised as a valuable platform for 

discovering protein biomarkers indicative of diverse chemicals within the realms of 

biomonitoring and human toxicology (Mortimer et al, 2022). For example, a study 

investigated changes in the rat serum proteome resulting from prepubertal exposure to 

bisphenol A (BPA) and genistein (Betancourt et al, 2014). By analysing the serum protein 

profiles of rats exposed to these compounds, the researchers aimed to identify alterations 

in protein expression and potential biomarkers associated with early exposure to 

endocrine-disrupting chemicals. The findings revealed elevated levels of 

ATPase family AAA domain containing 3A (ATAD3A), receptor tyrosine-protein kinase 

(ERBB3), and wingless-type MMTV integration site family (WNT). ATAD3A, a 

mitochondrial membrane protein crucial for stabilizing mitochondrial DNA-protein 

complexes (nucleoids), has been linked to lymphovascular invasion and exhibits anti-

apoptotic properties in lung adenocarcinoma (Betancourt et al, 2014). The observed 

increases in ERBB3 and WNT align with previous research associating these factors with 

heightened carcinogenesis and mammary terminal end bud proliferation, respectively 

(Betancourt et al, 2014). These biomarkers provide insights into how BPA and genistein 

impact biological processes during critical developmental windows. 

Metabolomics is a field of life science research that utilises high-throughput technologies 

to identify and characterise all small molecules or metabolites within a specific cell, tissue, 

or organism, collectively known as the metabolome (Olesti et al, 2021). Metabolomics 

represents the downstream consequence of genomic, transcriptomic, and proteomic 

processes, with metabolite fluctuations directly reflecting biochemical function and 

organismal phenotype (Olesti et al, 2021). The metabolome encompasses a 

comprehensive collection of low molecular weight compounds (≤1000 Da) present within 

biological samples, including endogenous and exogenous molecules as well as transient 

or even theoretical molecules (Fraga-Corral et al, 2022). The significance of metabolites 

is underscored by their diverse roles in biological systems. Over 95% of clinical diagnostic 

tests analyse small molecules, while 89% of pharmaceuticals and 50% of existing drugs 

are derived from them (Qiu et al, 2023). Additionally, 30% of identified genetic disorders 

stem from small molecule metabolism dysfunctions (Qiu et al, 2023). Metabolites function 

as essential cofactors and signaling molecules for thousands of proteins, highlighting their 
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intricate involvement in cellular processes (Olesti et al, 2021). Furthermore, the 

metabolome is intrinsically linked to other omics domains. Small molecules serve as 

fundamental building blocks for the genome and transcriptome, constituting nucleotides 

like adenosine monophosphate, cytidine monophosphate, guanosine monophosphate, 

and thymidine monophosphate (Rinschen et al, 2019). They also form the basis of the 

proteome as amino acids, and contribute to cellular architecture through lipids and 

glycolipids (Rinschen et al, 2019). Moreover, metabolites like sugars, lipids, amino acids, 

and ATP fuel cellular energy production (Qiu et al, 2023). Beyond structural and energetic 

roles, small molecules act as essential cofactors and signaling molecules, influencing both 

proteome and genome function (Rinschen et al, 2019). In essence, the genome and 

proteome have evolved to facilitate small molecule chemistry. To date, metabolomics is 

implicated in various applications, including toxicology (Toxicometabolomics) (Araújo et 

al, 2021). Toxicometabolomics explores how chemicals induce alterations in metabolite 

profiles, reflecting changes in biochemical processes (Araújo et al, 2021). This approach 

facilitates the early detection of toxic responses, preceding traditional toxicity 

assessments, and enables the application of toxicometabolomics across a wide range of 

toxicological studies (Olesti et al, 2021; Suman et al, 2016). These include the 

determination of the point of departure using benchmark dosing, elucidation of off-target 

toxicity mechanisms with high specificity, chemical grouping and cross-species 

extrapolation of toxicity data (Olesti et al, 2021). Furthermore, toxicometabolomics can 

simultaneously probe the toxicokinetic and toxicodynamic data of both parent drug and 

biotransformation products, which can further hasten the acquisition of mechanistic 

knowledge (Olesti et al, 2021). Recent studies, for example, have demonstrated its utility 

in characterising the effects of hepatotoxic drugs. In this study, Garcia-Canaveras et al. 

employed an MS-based metabolomics approach to categorise and investigate diverse 

mechanisms of drug-induced hepatotoxicity using HepG2 cells (García-Cañaveras et al, 

2016). The research team profiled the metabolome of human-derived HepG2 cells 

exposed to various hepatotoxic drugs with distinct mechanisms: steatosis (doxycycline, 

tetracycline, valproate), phospholipidosis (amiodarone, clozapine, fluoxetine, tilorone, 

tamoxifen), and oxidative stress (cumene hydroperoxide, tert-butyl hydroperoxide). 

Glutathione and γ-glutamyl cycle metabolites emerged as potential oxidative stress 

biomarkers, while phospholipidosis was linked to inhibited phospholipid degradation and 

steatosis to increased triacylglyceride synthesis. Unique metabolic fingerprints for each 
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mechanism enabled the development of a predictive model with high accuracy (AUC of 

0.97) in classifying hepatotoxicity based on drug mode of action.   

Recent advancements in MS, particularly in liquid chromatography–mass spectrometry 

[LC–MS], with enhanced resolution and sensitivity, have significantly transformed the 

characterisation and profiling of proteomes and metabolomes in biological samples (Li 

et al, 2021). This technological leap has driven the increasing adoption of 

toxicoproteomics and toxicometabolomics in toxicological research (Li et al, 2021). The 

following section will describe the fundamental principles underlying LC–MS applications 

utilised in both toxicometabolomics and toxicoproteomics studies. 

1.11.3.2.1 LC–MS Applications in Toxicometabolomics and Toxicoproteomics: 

Dissecting the Basic Principles 

LC–MS is an analytical technique that merges the physical separation capabilities of 

liquid chromatography with the mass analysis power of mass spectrometry (Pitt, 2009). 

The LC–MS setup featuring the interface between the LC and MS components is shown 

in Figure 1.21. 
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Figure 1.21. A schematic representation of LC–MS. An LC–MS system comprises several key 
components. The automated sample injector (autosampler) precisely introduces the sample into 
the high-pressure flow generated by the pump system. This flow carries the sample through a 
specialized column, where individual components separate based on their unique interactions with 
the stationary phase within the column. The separated analytes then enter the ion source, where 
they transition from a liquid state to gas-phase ions. These ionized molecules are then propelled 
through the mass spectrometer under progressively decreasing pressure, ultimately reaching the 
detector for analysis. LC–MS: liquid chromatography–mass spectrometry. Adopted from (Pitt, 
2009). 
 

The fundamental principle of an LC system relies on separating the components of a 

mixture (Coskun, 2016). This is achieved by passing the mixture dissolved in a mobile 

phase through a stationary phase (Coskun, 2016). The stationary phase interacts 

differently with the mixture’s components, causing them to separate in accordance with 

their affinities for the two phases (Robards & Ryan, 2021). To date, a range of 

chromatographic separation techniques, most notably high-performance liquid 

chromatography (HPLC) and ultra-high-performance liquid chromatography (UHPLC), 

exist for complex sample analysis (Robards & Ryan, 2021). A standard HPLC system 

uses high pressure (up to 40 MPa) to propel the mobile phase through a compact column 

(Nahar et al, 2020). This column is typically 2.0–4.6 mm in diameter and 20– 250 mm in 

length and packed with a stationary phase, such as reversed-phase C18 silica particles, 

which are typically 2–5 μm in size (Nahar et al, 2020). UHPLC stands out as a cutting-
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edge LC technique, achieving remarkably fast analysis times and using minimal mobile 

phase solvents (Cielecka-Piontek et al, 2013; Nahar et al, 2020). The defining 

characteristic of UHPLC instrumentation lies in its use of sub-2-micron stationary phase 

particles (Cielecka-Piontek et al, 2013; Nahar et al, 2020). This contrasts with 

conventional HPLC systems, which typically employ particles ranging from 2.5 to 10 

microns (Nahar et al, 2020). The smaller particle size in UHPLC contributes to its 

superior separation efficiency and resolution (Robards & Ryan, 2021). However, these 

smaller particles necessitate significantly higher operating pressures, exceeding 6000 

psi, which surpasses the capabilities of most classical HPLC systems (Cielecka-Piontek 

et al, 2013; Robards & Ryan, 2021). 

LC relies on a mobile phase – a solvent or solvent mixture – to transport the sample 

through the column and achieve separation (Robards & Ryan, 2021). Two primary 

modes govern the delivery of this mobile phase: isocratic elution and gradient elution 

(Schellinger & Carr, 2006; Snyder & Dolan, 2007). Isocratic elution uses a single mobile 

phase composition throughout the separation (Schellinger & Carr, 2006). Hence, it offers 

the advantage of a constant mobile phase composition, simplifying setup and operation 

(Schellinger & Carr, 2006). However, the strength of this fixed solvent may not be 

sufficient to separate complex mixtures containing analytes with a wide range of 

polarities. To address this limitation, gradient elution emerged (Snyder & Dolan, 2007). 

This method dynamically changes the mobile phase composition over time, allowing for 

the separation of a broader spectrum of analytes with varying affinities for the stationary 

phase (Nahar et al, 2020). 

In chromatographic separations, the columns play a crucial role in isolating and 

analysing the target compounds (Kirkland & DeStefano, 2006; Premnath & Zubair, 

2024). These columns, typically made of stainless steel or glass, house the stationary 

phase, the key component responsible for separation (Kirkland & DeStefano, 2006). 

Selecting the most appropriate column hinges on several factors, including the 

properties of the analytes, the desired level of resolution, and the specific analytical 

technique employed. Currently, several types of LC columns are available, each offering 

unique properties for distinct applications, the most common of which are normal-phase 

and reversed-phase columns (Premnath & Zubair, 2024). Normal- phase 

chromatography employs stationary phases with hydrophilic surfaces, such as silica 

(Premnath & Zubair, 2024). In this setup, the mobile phase is typically a nonpolar solvent 
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like hexane or chloroform, causing nonpolar analytes to elute earlier (Premnath & 

Zubair, 2024). In contrast, reversed-phase chromatography uses a nonpolar stationary 

phase, often C18-bonded silica, paired with a polar mobile phase (Robards & Ryan, 

2021). This versatile technique has demonstrably proven its worth in diverse 

applications, including the separation of drugs, metabolites, and bioactive molecules 

(Nahar et al, 2020). To sum up, operating an LC system effectively is akin to an art form, 

demanding meticulous selection of the stationary phase, mobile phase, and flow rate, all 

tailored to the specific properties of the analyte under investigation. 

After the chromatographic separation resolves the analyte mixture into its individual 

components, these separated analytes are introduced into the MS system, where their 

mass-to-charge (m/z) ratios are measured (Medina et al, 2023). MS is an analytical 

technique that operates by transforming analyte molecules into charged particles (ions) 

through a process called ionization (Pitt, 2009). These ions, along with any fragment 

ions generated during ionization, are then accurately analysed based on their mass-to-

charge ratio (m/z) (Pitt, 2009). Various ionization techniques have been devised to 

efficiently ionize molecules with diverse properties, including electrospray ionization 

(ESI), atmospheric pressure chemical ionization (APCI), and matrix- assisted laser 

desorption/ionization (MALDI), with ESI being the method most widely employed 

(Medina et al, 2023). ESI is a soft ionization technique applicable to a broad range of 

analytes, from small molecules to large biomolecules, such as proteins, with molecular 

weights of up to 200,000 Daltons (Banerjee & Mazumdar, 2012). In LC– ESI, the sample 

solution is introduced via a needle positioned within the probe (Pitt, 2009). Here, a high 

voltage (typically 3–4 kV) applied at the tip, coupled with a nebulizing gas flow, induces 

the sample to undergo nebulization, essentially forming an aerosol (Banerjee & 

Mazumdar, 2012; Medina et al, 2023). This aerosol is then directed through successive 

stages of increasing vacuum, where the solvent droplets evaporate to near-atomic size, 

generating highly charged analyte ions suitable for mass spectral analysis (Banerjee & 

Mazumdar, 2012; Pitt, 2009). Following ionization, the resulting ions are propelled into 

the mass spectrometer’s vacuum chamber and directed towards the mass analyser, 

which comes in various forms, including time-of- flight (ToF), quadrupole (Q), magnetic 

sector, ion trap, and Orbitrap mass analysers (Medina et al, 2023). Each type poses 

distinct characteristics in terms of resolution and mass accuracy that serve as key 

parameters for evaluating the efficiency of a mass analyser. 
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Within the realm of mass spectrometry, two prominent analysers stand out: Q and 

Orbitrap. The Q mass analyser functions by using four parallel metal rods with a 

distinctive, hyperbolic-shaped cross-section (Dawson, 2013; Haag, 2016). These rods 

are arranged around a central axis where ions travel (Dawson, 2013; Haag, 2016). The 

rods are linked to radiofrequency (RF) and direct current (DC) generators, and the 

adjacent rods are of the opposite RF phase (Dawson, 2013; Haag, 2016). By precisely 

controlling the RF and DC voltages applied, the Q analyser acts as a highly selective 

filter (Dawson, 2013; Haag, 2016). Only ions within a narrow m/z range possess a stable 

trajectory and reach the detector (Szyszka et al, 2024). All other ions, unable to maintain 

this path, collide with the rods and lose their charge (Szyszka et al, 2024). Hence, the Q 

analyser excels at filtering individual ions due to its unique operating principle (Szyszka 

et al, 2024). However, compared to other analysers, its lower mass resolution 

necessitates careful consideration for applications that demand high precision (Medina 

et al, 2023). 

The Orbitrap, a powerful ion trap analyser, employs two outer electrodes and a central 

electrode, creating an ion trap configuration that allows it to function as both an analyser 

and a detector (Madeira et al, 2012). The Orbitrap applies a captivating technique 

called “electrodynamic squeezing” to trap incoming ions (Madeira et al, 2012). Once 

captured, these ions embark on a journey of oscillation within the trap (Madeira et al, 

2012; Zubarev & Makarov, 2013). They travel around the central electrode while 

simultaneously oscillating between the two outer electrodes (Zubarev & Makarov, 2013). 

Notably, the frequency of these oscillations varies depending on the specific ion's m/z 

ratio (Madeira et al, 2012). This variation in frequency ultimately leads to the separation 

of the ions (Zubarev & Makarov, 2013). Then, the mass spectra of ions are acquired 

through image current detection by measuring the Fourier transform (FT) of the 

oscillation frequencies caused by ions on the outer electrodes (Madeira et al, 2012). 

Recognising the strengths and weaknesses of individual mass analysers, scientists 

have increasingly adopted instruments that combine two analysers into a single (MS/ 

MS) system. The Exploris 240 exemplifies this approach, integrating the previously 

mentioned analysers to offer enhanced capabilities (Sui et al, 2022). In MS/MS, a 

powerful technique for structural analysis, selected parent ions are fragmented using a 

process called collision-induced dissociation (CID) (Sui et al, 2022). These fragments, 

along with the parent ions, are then separated and measured by a second mass analyser 
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(Sui et al, 2022). This additional fragmentation step provides richer data than just the 

m/z value of the parent ion, revealing more detailed information about the molecule’s 

structure (Yu et al, 2022). The MS/MS technique is currently compatible with a range of 

instruments, including a triple-quadrupole mass spectrometer (QqQ), QToF, and 

Orbitrap mass spectrometers (Zubarev & Makarov, 2013). MS/MS systems offer various 

data acquisition modes, broadly categorized as data-dependent acquisition (DDA) and 

data-independent acquisition (DIA). DDA selects the most abundant ions (“Top N”, 10–

15) and fragments them for detailed analysis, while DIA fragments all ions within a pre-

defined mass range, resulting in a comprehensive fragmentation map of all ions present 

in the sample (Yu et al, 2022). 

Following data acquisition, which generates a complex dataset, including retention time 

(RT), m/z ratio, and MS/MS spectra for each identified feature, the data undergo spectral 

processing. This processing often involves various software tools (i.e., XCMS, 

MetaboAnalyst, Proteome Discoverer™, R) and includes steps such as batch correction 

(i.e., peak matching and RT alignment) across samples to facilitate feature identification 

(Matthiesen, 2020). Once the raw spectra are converted into a list of features with their 

corresponding abundances, the data are further assessed and normalized to ensure a 

standardized final output, typically an X-Y matrix, suitable for downstream statistical 

analysis (Matthiesen, 2020). 

Unravelling the complexities of omics data requires a toolbox of statistical analysis 

techniques encompassing both univariate and multivariate approaches (Todorov et al, 

2020). Univariate analyses, well suited for examining single variables, such as changes 

in feature expression across samples, serve as a starting point (Todorov et al, 2020). 

However, the high dimensionality of omics data necessitates the use of multivariate 

statistical models. These models allow for a more holistic analysis and visualisation of 

the complex relationships between multiple variables within the data. In the realm of data 

analysis, multivariate statistical analysis and machine learning can be broadly 

categorized into supervised and unsupervised learning techniques (Bujak et al, 2015). 

Unsupervised learning techniques aim to find hidden patterns or structures within 

unlabelled data (Bujak et al, 2015). These include clustering algorithms (i.e., hierarchical 

clustering) and dimension reduction techniques, such as principal component analysis 

(Todorov et al, 2020). Supervised techniques use labelled data to train models for 

prediction (Lee et al, 2018). A common technique in the omics field is partial least-
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squares discriminant analysis (PLS-DA), which uses labelled samples with known class 

membership to build a model that can predict the class of new unlabelled samples (Lee 

et al, 2018). Finally, pathway enrichment analysis is commonly performed to decipher 

the biological processes underlying the identified features (Chicco & Agapito, 2022). 

This technique compares the list of features against a reference pathway database, such 

Kyoto Encyclopedia of Genes and Genomes, to statistically assess the 

overrepresentation of specific biological functions or pathways within the feature set 

(Chicco & Agapito, 2022). To date, a growing body of evidence has underscored the 

remarkable effectiveness of LC–MS- based toxicometabolomics and toxicoproteomics 

workflows in toxicological research. These pipelines have proven instrumental in 

elucidating drugs’ toxic mechanisms of action and identifying promising therapeutic 

targets (Li et al, 2022; Nury et al, 2023; Olesti et al, 2021; Thomas et al, 2023; Zaitsu et 

al, 2016). 

Although toxicoproteomics and toxicometabolomics have expanded rapidly within 

toxicological research, significant challenges remain. Starting with toxicoproteomics, 

proteome is exceptionally complex, encompassing a vast array of proteins subject to 

dynamic expression changes and post-translational modifications. This complexity hinders 

comprehensive characterisation of protein diversity. Additional challenges in proteomics 

include sample preparation and data variability (Moulder et al, 2018). Protein extraction, 

digestion, and analysis processes can introduce artifacts that compromise protein 

integrity, affecting result accuracy (Moulder et al, 2018). Furthermore, inconsistencies in 

sample handling, experimental conditions, and analytical platforms contribute to data 

variability, hindering reproducibility and cross-study comparisons. Despite the critical role 

of PTMs in protein function and toxicity, current proteomics techniques often fail to 

comprehensively identify these modifications, hindering our understanding of protein 

activity and interactions (Nguyen et al, 2022). Similar to other omics-based approaches, 

proteomics studies necessitate specialised equipment, technical proficiency, and 

substantial computational resources, potentially limiting accessibility due to high costs. 

While regarding toxicometabolomics, standardisation of analytical procedures remains 

elusive due to the inability to comprehensively analyse all metabolites using a single 

extraction method. Metabolite identification, though improving, remains a hurdle as many 

NMR and MS detected metabolites remain chemically unidentified. While significant 

progress has been made in developing metabolite databases and automated identification 
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tools, a substantial portion of detected features lack definitive structural assignments 

(Borts, 2019). Similar to proteomics, metabolomics is hindered by the absence of 

amplification techniques, limiting the detection of low-abundance metabolites and 

providing an incomplete metabolic pathway overview (Mortimer et al, 2022). Additionally, 

metabolite databases, especially for plants and microorganisms, lag behind genomic and 

proteomic resources, impeding metabolite function annotation (Wu et al, 2019). Lastly, 

and within the context of biological interpretation of metabolomics data, major pathway 

databases like Kyoto Encyclopedia of Genes and Genomes (KEGG) were not primarily 

designed for metabolomics. The Human Metabolome Database (HMDB), while containing 

114,100 metabolites, only maps approximately 22% to known pathways, highlighting the 

limited integration of metabolomics into pathway analysis tools (Chu et al, 2019). 

Despite the unparallel insights obtained from the single-omics strand, toxicological 

studies have recently made the transition towards integrating multi-omics approaches 

(Hu & Jia, 2021; Xie et al, 2020). This paradigm shift in study design has been 

considered an attempt to yield a more comprehensive and complementary 

understanding of the adverse outcome pathways that underpin drugs’ undesirable 

effects (Hu & Jia, 2021). For instance, since changes in metabolic profiles and protein 

expression can yield complementary data regarding drugs’ adverse effects, the 

combination of toxicoproteomics and toxicometabolomics approaches has been shown 

to provide unparalleled opportunities to establish causality across different cellular 

function levels, thereby improving comprehension of the interplay between molecular 

alterations and phenotypic manifestations (Chen et al, 2020; Xie et al, 2020). 

Collectively, the integration of omics-based studies either as a single strand or multi- 

omics strategies represents a powerful tool with great potential for supporting toxicology 

research outputs in different applications. Nevertheless, the variation in the sensitivity of 

the technologies adopted in different studies and the lack of harmonisation among the 

protocols followed for sample preparation and data acquisition hinder the comparability 

of the findings and therefore impede the reproducibility and replicability of the studies. 

Hence, efforts should be exerted and directed towards harmonising the designs of 

omics-based studies for the purpose of facilitating their incorporation into risk 

assessments and decision-making.
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1.12 The Adverse Outcome Pathway Framework: A Mechanistic Approach to 

Toxicity Prediction 

As the toxicity testing paradigm shifts from traditional in vivo methods to high-throughput 

in vitro and in silico approaches to support chemical risk assessments (as described in 

section 11.1.1), a critical challenge persists in the rapid, cost-effective prediction of a 

continuously growing number of chemicals. A key challenge in utilising alternative 

methods for chemical safety assessment lies in the absence of a cohesive framework for 

incorporating molecular-level measurements derived from high-throughput approaches 

and extrapolating these findings to apical endpoints relevant for risk assessment. These 

endpoints include impacts on survival, prediction of drug adverse outcomes and their 

underlying mechanisms, at individuals and population-level ecological impacts. The 

adverse outcome pathway (AOP) framework was established to tackle this translation 

challenge. AOPs offer a valuable framework for establishing biologically plausible and 

evidence-based connections between various molecular-levels along with their phenotypic 

manifestations (Halappanavar et al, 2020). The conceptual underpinnings of the AOP 

framework and its applications in drug toxicity are outlined below.  

An AOP is a model that delineates the sequence of cellular and molecular events leading 

to a toxic effect following exposure to any poisonous substance (Gill et al, 2023). An AOP 

comprises a sequence of measurable key events (KEs) interconnected by key event 

relationships (Gill et al, 2023; Halappanavar et al, 2020). The initial KE is typically a 

molecular initiating event (MIE) that occurs when a chemical interacts with a biological 

macromolecule, triggering subsequent KEs culminating in an adverse outcome (AO) at 

the individual or population level (Gill et al, 2023; Halappanavar et al, 2020). An AOP 

explicitly defines sequential KEs as causally linked and describes toxicity responses 

across multiple biological levels, from cellular to organismal and population scales (Ankley 

& Edwards, 2018). Furthermore, a key characteristic of AOPs is their chemical 

agnosticism, allowing for the information they contain to be accessed, reused, updated, 

and applied to a diverse range of substances (Ankley & Edwards, 2018). Of importance, 

a prevalent misunderstanding is that AOPs can only illustrate KEs in a linear sequence, 

neglecting potential interactions between pathways. Nonetheless, linear AOPs can be 

integrated into AOP networks to encompass shared elements and pathway 

interconnections (Halappanavar et al, 2020). Additionally, quantitative AOPs (qAOPs) can 

be constructed to incorporate quantitative relationships between KEs, including feedback 
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model that mirror system regulation, to forecast AOs (Halappanavar et al, 2020). For 

instance, Conolly et al. introduced a qAOP employing a feedback-controlled hypothalamic-

pituitary-gonadal axis model to predict reproductive capacity in fish exposed to sex steroid 

synthesis inhibitors (Conolly et al, 2017). In essence, the AOP framework is adaptable to 

accommodate the complexity of various assessment contexts. 

1.12.1 Omics-Driven AOP Development 

Omics-based approaches, encompassing high-throughput measurements of genes, 

proteins, and metabolites, allow researchers to comprehensively assess the 

transcriptional and translational responses of thousands of biological molecules within a 

single sample (Zhang et al, 2018). The substantial amount and breadth of omics data have 

elevated the toxicologists’ expectations for their application in toxicology and risk 

assessment, particularly in the context of AOPs through identifying molecular-level 

changes, such as MIEs and early KEs, that underpin responses to chemical stressors 

(Brockmeier et al, 2017). Utilising acetylcholine esterase inhibition as a case study, 

transcriptomic data validated established MIEs and their corresponding KEs within the 

AOP framework (Russom et al, 2014). These KEs encompass an accumulation of 

acetylcholine at neural synapses and uncontrolled stimulation within muscular junctions 

(Russom et al, 2014). Furthermore, microarray analysis of Caenorhabditis elegans, a 

nematode model organism relevant to both ecotoxicology and human health, revealed 

affected pathways linked to electron transport activities and lipid metabolism (Viñuela et 

al, 2010). Within the AOP framework, omics datasets enhance the precision of MIE 

definition and biomarker selection for assessing effects and exposure (Brockmeier et al, 

2017). Omics data offer both gene- and pathway-level insights, such as alterations in 

individual gene expression or statistical measures for differentially regulated gene sets 

within specific biological pathways, facilitating the identification of measurable and 

pertinent biomarkers (Viñuela et al, 2010). Within the realm of omics and drugs’ mode of 

action elucidation, the use of high-content omics datasets has generated substantial 

research on chemical modes of action, nevertheless, there remains a scientific imperative 

to corroborate these findings through additional biochemical or physiological 

investigations (Brockmeier et al, 2017). The AOP framework offers a structured approach 

to fulfill this scientific need while optimising the integration of omics data into risk 

assessment (Ankley & Edwards, 2018). 
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In addition to the data generation capacity of omics-based approaches, the incorporation 

of computational biology tools for analysing omics datasets is another key driver for their 

integration into the AOP framework (Williams & Halappanavar, 2015). The emergence of 

computational tools designed for univariate and multivariate statistical analysis of omics 

datasets has facilitated groundbreaking discoveries in biomarker identification, network 

inference, and computational modelling (Schultz & Watanabe, 2018; Williams & 

Halappanavar, 2015). By incorporating these approaches into the AOP framework, 

network inference, for example, enables a deeper understanding of molecular network 

dynamics, contributing to the elucidation of the progression from an MIE or early KE to an 

AO (Schultz & Watanabe, 2018; Williams & Halappanavar, 2015). 

Research in omics applications has successfully demonstrated the utility of omics data in 

developing and refining AOPs. For instance, Antczak et al. identified a potential 

mechanism for narcosis toxicity in Daphnia magna associated with calcium signaling 

(Antczak et al, 2015). Narcosis, a prevalent MOA for industrial chemicals, has an unclear 

underlying mechanism. Data from Antczak et al. and the University of Antwerp contributed 

to the Organisation for Economic Cooperation and Development (OECD's), an 

organization that play a role in advancing the development and application of AOPs, 

acceptance of a proposed AOP within their development program (Antczak et al, 2015). 

To date, the AOP framework has been instrumental in revolutionising risk assessment by 

providing a mechanistic basis for understanding potential human health effects. This 

structured and systematic approach offers a significant leap forward for 21st century toxicity 

testing (Ankley & Edwards, 2018). Two key strengths contribute to this advancement: (i) 

a centralised repository and collaboration tools like AOP-Wiki (www.aopwiki.org), 

facilitating knowledge sharing and collaboration; and (ii) governance by OECD, ensuring 

broad support and adoption by major regulatory bodies worldwide (Ankley & Edwards, 

2018). The AOP Wiki currently houses over 200 AOPs in various stages of development, 

encompassing processes and endpoints pertinent to both human health and 

environmental safety (Ankley & Edwards, 2018; Halappanavar et al, 2020). These robust 

frameworks are poised to transform risk assessment and usher in a new era of informed 

decision-making for chemical safety.  

Currently, there are numerous proposed scenarios for applying AOPs to drug toxicities. In 

one study, an AOP network, encompassing thirteen individual nephrotoxicity-related 

http://www.aopwiki.org/
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AOPs sourced from the AOP-Wiki, was developed to create a comprehensive map of the 

biological processes leading to kidney damage (Barnes et al, 2024). A topological analysis 

of the modeled network pinpointed mitochondrial dysfunction, oxidative stress, and tubular 

necrosis as the most interconnected and central KEs within the nephrotoxicity pathway. 

These KEs offer a potential framework for developing in vitro assays as alternatives to 

animal-based in vivo studies in predicting and evaluating chemical-induced nephrotoxicity 

in humans. 

Another AOP framework was developed by Nymark, Penny, et al. to assess the potential 

lung carcinogenicity of nanoparticles (Nymark et al, 2021). The researcher formulated an 

AOP for lung cancer triggered by nanosized foreign matter, integrating both traditional and 

innovative new approach methodologies. Traditional in vitro assays, such as genotoxicity 

and mutagenicity tests, were combined with cutting-edge approaches centered on 

carcinogenic mechanisms, including including Multiple-Path Particle 

Dosimetry (MPPD) Model and in silico modeling in vitro Sedimentation, Diffusion, and 

Dosimetry, to identify and characterise key molecular and cellular events. The study 

meticulously delineates the critical stages of nanoparticle-induced lung carcinogenesis, 

commencing with the MIE, specifically the interaction between nanoparticles and lung 

cells. The pathway progresses through intermediate KEs encompassing oxidative stress, 

DNA damage, and chronic inflammation, culminating in tumor formation. This AOP 

framework is instrumental in elucidating and forecasting the carcinogenic risk posed by 

nanoparticles, thereby supporting informed risk assessment and regulatory strategies. 
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1.13 Research Aims  

Diabetes mellitus is a pandemic that affects nearly half a billion people worldwide (ADA, 

2023). The unprecedented rise in diabetes mellitus’s global prevalence, incidence and 

related complications poses a heavy burden on healthcare expenditures and creates a 

cumulative impact on public health (ADA, 2023). Underlying drug toxicity is emerging as 

a threat to the favourable outcomes of commonly used cost-effective medication classes, 

such as TZDs (pioglitazone and rosiglitazone) (Wajid et al, 2019). TZDs, designed to 

tackle excess levels of both glucose and lipids within the blood, have been linked with 

cardiotoxicity in case reports (De Flines & Scheen, 2007). The mechanism of this 

deleterious off-target effect remains largely uncharacterised. Hence, the present thesis 

aims to elucidate the mechanism of TZD-induced cardiotoxicity through the integration of 

a novel adverse outcome pathway (AOP) framework. This novel conceptual framework 

provides a means to outline a knowledge-driven sequence of biological responses that 

relate a molecular initiating event (MIE) elicited by chemical exposure to an adverse 

outcome. The basis of this framework comprises two distinct disciplines: in vitro 

cytotoxicity testing and multi-omics strategies coupled with bioinformatics data modelling.  

To establish an AOP framework for TZD-induced cardiotoxicity, the following thesis 

milestones were set: 

• Develop cellular models for the in vitro toxicity testing of TZDs on both human adult 

cardiomyocytes and human cardiac fibroblasts (Chapter 2). 

• Integrate the developed cellular toxicity models of TZDs to determine how drug-

driven cardiotoxicity arises in mitochondria and develop strategies to avoid such 

events (Chapter 2). 

• Introduce an untargeted LC–MS-based toxicometabolomics approach, followed by 

multivariate statistics to profile the biochemical pathways perturbed in TZD-

treated human cardiomyocytes, and accordingly delineate the potential 

mechanisms implicated in the cardiotoxic actions of TZDs (Chapter 3). 

• Establish a novel microflow LC–MS-based toxicoproteomics pipeline capable of 

profiling the proteome signatures of TZD-treated human adult cardiomyocytes and 

ultimately detecting hub proteins associated with TZDs’ undesirable events 

(Chapter 4). 
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• Integrate multi-omics approaches by combining the untargeted toxciometabolomics 

and toxicoproteomics obtained data (Chapters 3 and 4) to further enhance 

comprehension of the findings and the interplay between molecular alterations and 

phenotypic manifestations (Chapter 5).  

A graphical representation of the proposed framework is illustrated in Figure 1.22. 

 
 
Figure 1.22 Adverse outcome pathway framework development for the assessment of 
thiazolidinedione cardiotoxicity. The proposed framework comprises two main distinct 
disciplines: (1) in vitro cytotoxicity testing of both TZD agents against cardiac cell lines and (2) 
multi-omics strategies and bioinformatics data modeling. The second discipline is subdivided into 
three subsections. The first and second subsections include toxicometabolomics and 
toxicoproteomics pipelines developed against the AC16 cellular model, while the third subsection 
represents an integrated multi-omics approach combining the untargeted toxicometabolomics and 
toxicoproteomics obtained data to further enhance comprehension of the findings and the interplay 
between molecular alterations and phenotypic manifestations. The ultimate aim of the proposed 
framework is to identify the MIE – which upon binding with TZD agents can lead to sufficient 
perturbation in the molecular-level homeostatic mechanisms (key events), resulting in an adverse 
outcome (heart failure) occurring in an organism or population. TZDs: thiazolidinediones; MIE: 
molecular initiating event; AO: adverse outcome; PGZ: pioglitazone; ROSI: rosiglitazone. 

The primary knowledge developed in this project will contribute to the understanding of 

the molecular mechanisms responsible for TZDs’ off-target effects. This knowledge may 

subsequently allow the proposal of potential therapeutic strategies that could improve 

TZDs’ safety profile, promote the safety of patients with diabetes and support and enable 

the selection of cost-effective medications.
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Abstract  

Thiazolidinediones (TZDs), such as pioglitazone and rosiglitazone, are selective and 

potent agonists of nuclear peroxisome proliferator-activated receptor gamma (PPAR-

γ) used for managing insulin resistance in patients with type 2 diabetes mellitus. While 

TZDs initially showed promise in maintaining glycaemic control, safety concerns, 

particularly regarding heart failure, limited their use. The unclear mechanisms behind 

TZD-induced cardiotoxicity continue to spark debate, hindering their wider application 

as a treatment option. Hence, this study presented a comprehensive in vitro 

cytotoxicity approach designed to investigate the potential role of mitochondria as an 

off-target organelle contributing to the cardiotoxic effects of TZDs. In addition, it aims 

to elucidate their action mechanisms in terms of PPAR-γ dependency against selected 

cardiac cell types.  Herein, AC16 human adult cardiomyocytes and primary human 

cardiac fibroblasts (HCFs) were used to evaluate the cytotoxicity of TZDs using 

mitochondrial assays with distinct endpoints. The concentration-response modelling 

of either pioglitazone or rosiglitazone (0.01–20 μM) revealed concentration-dependent 

loss in cell viability in both cardiac cell types. Analysis of caspase 3/7 activity revealed 

a drug and cell-type dependent response, with no significant increase observed in 

TZD-treated cardiac cells, except for the predefined endpoint noted in rosiglitazone-

treated AC16 cells. Furthermore, significant depletion (p < 0.05) in mitochondrial 

adenosine triphosphate production was observed in both AC16 and HCFs upon TZD 

exposure (1–100 μM), which was not attenuated by a PPAR-γ inhibitor. Capitalising 

on TZD exposure and mitochondrial energetics, exposing cardiac cells to TZDs at 

concentrations ranging from 1 μM to 100 μM resulted in a marked perturbation in 

membrane depolarisation (p < 0.05). Moreover, the administration of TZD substantially 

triggered oxidative stress in both AC16 and HCFs (p < 0.05). In conclusion, our results 

indicated that TZDs exerted cytotoxic effects independently of PPAR-γ. The study’s 

findings also pointed to a crosstalk between TZDs and mitochondrial dysfunction, as 

evidenced by perturbations in mitochondrial energetics and the induction of oxidative 

stress, highlighting two potential key mechanisms by which TZDs exert their cytotoxic 

actions on cardiac cells. 

Keywords: Thiazolidinediones; Cardiotoxicity; Mitochondrial dysfunction; Oxidative 

stress; Apoptosis 
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2.1 Introduction 

Thiazolidinediones (TZDs) (also called glitazones), including pioglitazone (PGZ) and 

rosiglitazone (ROSI), are a class of insulin-sensitising agents used for managing 

insulin resistance in patients with type 2 diabetes mellitus (T2DM) (ADA, 2023; 

Chaudhury et al, 2017; Wajid et al, 2019). TZDs are selective and potent ligands of 

nuclear peroxisome proliferator-activated receptor gamma (PPAR-γ), the molecular 

target responsible for their insulin-enhancing effects (ADA, 2023; Chaudhury et al, 

2017; Wajid et al, 2019). Moreover, numerous ex vivo and in vivo studies have found 

that the ligand activation of PPAR-γ regulates endothelial nitric oxide synthase, the 

enzyme primarily responsible for vascular nitric oxide production, reduces blood 

pressure and improves the lipid profile, characteristically by elevating and reducing 

high- and low-density lipoproteins, respectively (Tan et al, 2021). Collectively, these 

promising data suggest that TZDs may exert cardioprotective effects in addition to 

their well-recognised hypoglycaemic effects. However, the cardiovascular effects of 

TZDs reported in clinical trials, pharmacovigilance reports and animal models have 

been surprisingly inconsistent and controversial (De Flines & Scheen, 2007; Erdmann 

et al, 2007; Home et al, 2007; Nissen & Wolski, 2007; Ntaios & Kent, 2016; Richter et 

al, 2007; Wallach et al, 2020; Zhou et al, 2020). 

2.1.1 Effect of PGZ on Atherosclerotic Cardiovascular Events and Heart Failure 

In the PROspective pioglitAzone Clinical Trial In macroVascular Events (PROactive), 

the effect of PGZ on cardiovascular events and mortality was evaluated in 5,238 

patients with T2DM who demonstrated evidence of macrovascular disease (Erdmann 

et al, 2007). In this large randomised controlled trial (RCT) and following  a mean 

follow-up period of 34.5 months, PGZ use failed to meet the predefined primary 

endpoints of the study: a composite of all-cause mortality, nonfatal myocardial 

infarction (MI) and silent MI, stroke, acute coronary syndrome, surgical intervention on 

coronary or leg arteries or leg amputation [19.7% versus 21.7%, hazard ratio (HR) 

0.90, 95% confidence interval (CI) 0.80–1.02] (Erdmann et al, 2007). However, there 

was a significant reduction in the main secondary endpoint (composite of all-cause 

mortality, nonfatal MI or nonfatal stroke) in the PGZ group (11.6% versus 13.6%; HR 

0.84; 95% CI 0.72–0.98) compared to the placebo arm (De Flines & Scheen, 2007; 

Erdmann et al, 2007). Additionally, there was a significant increase in hospitalisation 
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for heart failure (HF) in PGZ-treated patients: 149 versus 108 placebo-treated patients 

(p = 0.007) (De Flines & Scheen, 2007). The latter findings corroborated those of other 

large RCTs, including the studies titled “The Rosiglitazone Evaluated for Cardiac 

Outcomes and Regulation of Glycaemia in Diabetes” (RECORD) and “A Diabetes 

Outcome Progression Trial” (ADOPT), which illustrated an increased rate of 

hospitalisation for HF following TZD treatment (De Flines & Scheen, 2007). Moreover, 

animal models consistently confirmed the negative influence of PGZ treatment on HF 

progression, as PGZ administration exacerbated the cardiac damage associated with 

isoproterenol (ISO) injection in an ISO-induced HF rat model (Biswas et al, 2012). 

Another in vivo study evaluated an acute toxicity experiment with PGZ in mice 

(Chinnam et al, 2012). The results indicated ventricular hypertrophy in mice treated 

with large acute doses of PGZ (500 mg/kg and 1,000 mg/kg) (Chinnam et al, 2012). 

However, in the Insulin Resistance Intervention after Stroke (IRIS) trial, PGZ treatment 

increased the risk of oedema without increasing the rate of hospitalisation for HF, 

although the dose titration of PGZ was allowed to compensate for oedema or weight 

gain during the trial (Ntaios & Kent, 2016). Corroborating the IRIS trial, a recent meta-

analysis reported an increased risk of hospitalisation for HF in patients receiving PGZ 

[relative risk (RR) 1.34; 95% CI 1.11–1.57], although it was limited to those with overt 

cardiovascular diseases (Zhou et al, 2020). 

2.1.2 Effect of ROSI on Atherosclerotic Cardiovascular Events and Heart 

Failure 

Regarding ROSI and major adverse cardiovascular events, RECORD was designed 

primarily to evaluate cardiovascular death or hospitalisation due to the cardiovascular 

outcomes associated with ROSI exposure (Home et al, 2007). In this randomised, 

multicentre, open-label trial, 4,447 T2DM patients on metformin or sulfonylurea were 

randomly allocated to either receive ROSI as an add-on treatment (ROSI + 

metformin/sulfonylurea; n = 2,220) or undergo a combination therapy of metformin and 

sulfonylurea (n = 2,227) (Home et al, 2007). During a mean follow-up duration of 5.5 

years, the trial’s findings reported 321 patients within the ROSI group experiencing the 

primary endpoint compared to 323 patients on standard glucose-lowering agents, with 

a HR of 0.99 (95% CI 0.85–1.16) (Home et al, 2007). The HR of each composite 

endpoint was 0.84 (95% CI 0.59–1.18), 1.14 (95% CI 0.80–1.63) and 0.72 (95% CI 
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0.49–1.06) for cardiovascular death, MI and stroke, respectively (Home et al, 

2007). Furthermore, ROSI did not increase the risk of overall cardiovascular morbidity 

and mortality compared to the combination therapy (metformin and sulfonylurea) 

group (Home et al, 2007). The inconclusive effects of ROSI on cardiovascular 

morbidity and mortality were also reported in another systematic review of 18 trials (n 

= 3,888 patients; ≥ 24 weeks), which showed no evidence of an increased risk of MI 

in patients with ROSI treatment compared to other anti-diabetic agents (Richter et al, 

2007). 

Nevertheless, discrepant findings regarding ROSI and major adverse cardiovascular 

events have been conveyed elsewhere in other reports. One meta-analysis 

comprising 42 RCTs (n = 27,800 patients; ≥ 24 weeks) investigated the incidence of 

MI and cardiovascular death from cardiovascular causes associated with ROSI 

exposure (Nissen & Wolski, 2007). The analysis findings reported an increased risk of 

MI and cardiovascular mortality in the ROSI group compared to the control drugs 

group, with odds ratios of 1.43 (95% CI 1.03–1.98; p = 0.03) and 1.64 (95% CI 0.98–

2.74; p = 0.06) for MI and cardiovascular death, respectively (Nissen & Wolski, 2007). 

Similar findings were reported in another systematic review and meta-analysis of 33 

eligible randomised controlled trials (n = 21,156 patients; ≥ 24 weeks), in which a 33% 

heightened risk of the composite endpoint (composite of acute MI, HF, cardiovascular-

related death and non-cardiovascular-related death) was reported in the ROSI group 

compared to the control arm (odds ratio 1.33; 95% CI 1.09–1.61) (Wallach et al, 2020). 

These findings highlight the fact that the effect of ROSI on cardiovascular events is 

uncertain. 

Compared to PGZ, consistent findings of a greater risk of HF associated with ROSI 

exposure have been revealed in various reports, including RECORD and ADOPT (De 

Flines & Scheen, 2007; Home et al, 2007). Table 2.1 provides an overview of key 

findings from meta-analyses of the TZDs used and their associated cardiovascular 

effects (de Jong, van der Worp, van der Graaf, Visseren, & Westerink, 2017; Lago, 

Singh, & Nesto, 2007; Liao et al., 2017; Nissen & Wolski, 2007, 2010; Richter, 

Bandeira‐Echtler, Bergerhoff, Clar, & Ebrahim, 2007; S. Singh, Loke, & Furberg, 

2007a, 2007b; Wallach et al., 2020; Zhou et al., 2020). 
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Table 2.1 Summary of the key findings of meta-analyses conducted on thiazolidinedione use and its associated cardiovascular effects. Colour 
shading donates the following: no significant treatment effect, lower risk and higher risk for grey, green and red, respectively.  
 

 

Abbreviations: RCTs: randomised controlled trials; TZD: thiazolidinedione; PGZ: pioglitazone; ROSI: rosiglitazone; MI: myocardial infarction; HF: heart 
failure; CV: cardiovascular; RR: relative risk; OR: odds ratio; CI: confidence interval. *non-fatal MI; **non-fatal stroke 

Meta-
analysis 

Included 
Trials, n 

TZD under 
Investigation 

Treatment Duration 

CV Risk 

MI Stroke All-Cause Mortality CV Mortality HF 

(Liao et al., 
2017) 

9  RCTs 
(n = 12,026) 

PGZ > 52 weeks 
RR, 0.8 

(95% CI 0.62–1.03; p 
= 0.08) 

RR, 0.78 
(95% CI 0.60–1.02; p 

= 0.07) 

RR, 0.93 
(95% CI 0.80–1.09; p 

= 0.40) 

 
RR, 1.32 

(95% CI 1.14–1.54; p = 
0.0003) 

(de Jong et 
al., 2017) 

10 RCTs 
(n = 10,095) 

PGZ 
Not within the 

predefined inclusion 
criteria 

RR, 0.77 
(95% CI 0.64–0.93; p 

= 0.007) 

RR, 0.81 
(95% CI 0.68–0.96; p 

= 0.02) 

RR, 0.94 
(95% CI 0.81–1.08; p 

= 0.38) 

 
RR, 1.33 

(95% CI 1.14–1.54; p = 
0.0002) 

(Zhou et 
al., 2020) 

26 RCTs 
(n = 19,645) 

PGZ 
Not within the 

predefined inclusion 
criteria 

RR, 0.8* 
(95% CI 0.6–1.0; p = 

0.023) 

RR, 0.8** 
(95% CI 0.7–0.9; p = 

0.018) 

RR, 1 
(95% CI 0.8–1.1; p = 

0.64) 

RR, 1 
(95% CI 0.7–1.2; p = 

0.67) 

RR, 1.3 
(95% CI 1.1–1.6; p < 

0.01) 
(Nissen & 

Wolski, 
2007) 

42 RCTs 
(n = 27,800) 

ROSI ≥ 24 weeks 
OR, 1.43 

(95% CI 1.03–1.98; p 
= 0.03) 

  
OR, 1.64 

(95% CI 0.98–2.74; p 
= 0.06) 

 

(Nissen & 
Wolski, 
2010) 

56 RCTs 
(n = 35,531) 

ROSI ≥ 24 weeks 
OR, 1.28 

(95% CI 1.02–1.63; p 
= 0.04) 

  
OR, 1.03 

(95% CI 0.78–1.36; p 
= 0.86) 

 

(Wallach et 
al., 2020) 

33 RCTs 
(n = 21,156) 

ROSI ≥ 24 weeks 
OR, 1.17 

(95% CI 0.92–1.51; p 
< 0.05) 

  
OR, 1.15 

(95% CI 0.55–2.41; p 
< 0.05) 

OR, 1.54 
(95% CI 1.14–2.09; p < 

0.05) 

(S. Singh 
et al., 

2007a) 

4  RCTs 
(n = 14,291) 

ROSI ≥ 52 weeks 
RR, 1.42 

(95% CI 1.06–1.91; p 
= 0.02) 

  
RR, 0.90 

(95% CI 0.63–1.26; p 
= 0.53) 

RR, 2.09 
(95% CI 1.52–2.88; p < 

0.001) 

(Richter et 
al., 2007) 

18 RCTs 
(n = 3,888) 

ROSI ≥ 24 weeks No evidence    
OR, 2.27 

(95% CI 1.83–2.81; p < 
0.05) 

(Lago et 
al., 2007) 

7  RCTs 
(n = 20,191) 

Both Agents 
Not within the 

predefined inclusion 
criteria 

   
RR, 0.93 

(95% CI 0.67–1.29; p 
= 0.68) 

RR, 1.72 
(95% CI 1.21–2.42; p = 

0.002) 
(S. Singh 

et al., 
2007b) 

3  RCTs 
(n = 20,191) 

Both Agents ≥ 24 weeks     
OR, 2.1 

(95% CI 1.08–4.08; p = 
0.03) 
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Although the mechanisms of the effects of TZDs on HF remain uncharacterised, a 

previous paper interestingly suggested mitochondrial dysfunction as a potential 

contributor to their cardiotoxic effects (Zhong et al, 2018). Since the scope of T2DM 

management has undergone major revisions and the selection of anti-diabetes 

medications is evolving towards those with cardiovascular benefits, it is imperative to 

expand our understanding of anti-diabetic agents that have potential cardiovascular 

benefits, including TZDs. Hitherto, and within the confines of TZDs’ HF-inducing 

capacity, various platforms have been adopted, including in silico (PGZ only) (Zhong 

et al, 2018), in vivo and in vitro models (Asakawa et al, 2002; Biswas et al, 2012; 

Chinnam et al, 2012; Duan et al, 2005; Festuccia et al, 2009; Gouni-Berthold et al, 

2001; Liu et al, 2012; Lygate et al, 2003; Qi et al, 2015; Son et al, 2007; Zhong et al, 

2018), to explore such toxic effects (Figure 2.1). 
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Figure 2.1 Overview of reported platforms adopted for TZD cardiotoxicity 
investigations. ROSI treatment induced diverse cardiac effects across in vivo models. In 
Sprague-Dawley rats, it triggered hypertrophy via the mTOR pathway, while wild-type mice 
exhibited increased lipid accumulation and cardiac damage. db/db mice experienced fluid 
retention upon ROSI administration, and supratherapeutic doses (10 and 30 μM) in C57BL/6 
mice resulted in cardiac dysfunction (decreased pressure and relaxation rates, increased end-
diastolic pressure). Both PGZ and ROSI displayed cytotoxic effects against vascular smooth 
muscle cells, but through distinct pathways: PPAR-γ signaling for PGZ and an ERK1/2-
independent pathway for ROSI. PGZ exhibited dose-dependent inhibition of neonatal rat 
cardiomyocyte viability (higher doses up to 20 µmol/L showing a stronger effect). Conversely, 
ROSI treatment in neonatal rat cardiac fibroblasts increased connective tissue growth factor 
expression and decreased nitric oxide production at doses ranging from 0.1 to 10 μmol/L after 
a 48-hour pretreatment. Interestingly, in silico analysis using GOLD v5.3 software predicted 
VEGFR-2 as a potential target for PGZ in cardiovascular disease, suggesting that PGZ may 
influence cardiomyocyte hypertrophy through VEGFR-2 binding. PGZ: pioglitazone; ROSI: 
rosiglitazone; PPAR-γ: peroxisome proliferator-activated receptor gamma; mTOR: 
mammalian target of rapamycin; ERK1/2: extracellular signal-regulated kinase 1/2; GOLD: 
Genetic Optimization for Ligand Docking; VEGFR-2: vascular endothelial growth factor 
receptor 2. Adopted from (Asakawa et al, 2002; Biswas et al, 2012; Chinnam et al, 2012; Duan 
et al, 2005; Festuccia et al, 2009; Gouni-Berthold et al, 2001; Liu et al, 2012; Lygate et al, 
2003; Qi et al, 2015; Son et al, 2007; Zhong et al, 2018). 

Nevertheless, the application of human cardiac cell lines is limited. Therefore, the aims 

of this chapter are to traverse the potential implications of mitochondria as an off-target 

organelle for the cardiotoxic actions of TZDs by characterising the in vitro cytotoxicity 

of TZDs on AC16 human adult cardiomyocytes and primary human cardiac fibroblasts 

(HCFs) using various mitochondrial assays. 
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2.2 Methods 

2.2.1 Drugs and Chemicals 

PGZ, ROSI and the PPAR-γ antagonist GW9662 were purchased from Sigma-Aldrich 

(St Louis, MO, USA). For the in vitro studies, all drugs were dissolved in sterile 

dimethyl sulphoxide (DMSO) (Cat. No. 12611P; Cell Signaling Technology, Beverly, 

MA, USA), and the stock solutions (100 mM) were subsequently diluted to the 

appropriate concentrations with culture medium. The final concentration of DMSO in 

the medium was ≤0.1% (v/v). 

2.2.2 Cells and Culture Conditions 

The AC16 cell line was derived from adult human ventricular cardiomyocytes and was 

purchased from Sigma-Aldrich (Product No. SCC109; St. Louis, MO, USA). The cells 

were cultured in Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 

(DMEM/F-12) (Product No. D6434; Sigma-Aldrich, St Louis, MO, USA) supplemented 

with 12.5% foetal bovine serum, 1% antibiotics (streptomycin and penicillin) and 2 mM 

L-glutamine at 37 °C in a humid atmosphere of 5% CO2 and 95% air. 

HCFs obtained from the ventricles of the adult heart were purchased from PromoCell 

GmbH (Product. No. C-12375; Heidelberg, Germany). The HCFs were cultured using 

Fibroblast Growth Medium 3 (Product. No. C-23025; PromoCell GmbH, Heidelberg, 

Germany) and kept in a humidified incubator at 37 °C and 5% CO2. 

2.2.3 Cell Viability Assay 

The cytotoxic effect of TZDs on cardiomyocyte and cardiac fibroblast proliferation was 

measured using an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide] assay kit (Cat. No. V13154; Thermo Fisher, Eugene, OR, USA). The cells 

were seeded in 96-well microplates (Cat. No. 655180; Greiner Bio-One, Gillingham, 

Dorset, UK) (1 × 104 cells/well) and exposed to increasing concentrations of the TZD 

agent (0.01, 0.1, 0.5, 1, 5, 10, and 20 μM) for 24 h. Following the incubation period, 

10 μL of the MTT solution (5 mg/mL) was added to each well, the supernatants were 

removed and 50 μL of DMSO was used to dissolve the yielded formazan precipitate. 

A plate reader (GloMax Explorer Multimode Microplate Reader; Promega, Madison, 

WI, USA) was used to measure the formazan absorbance at 560 nm. 
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Cell viability was expressed as a percentage and calculated as follows:  

(A-treatment – A-blank)/(A-control – A-blank) × 100% 

where A is absorbance. The half maximal inhibitory concentration (IC50) value was 

determined from a three-parameter nonlinear regression curve fitted to TZD 

concentration and the obtained absorbance values using GraphPad Prism 9 software 

(San Diego, CA, USA). 

2.2.4 Luminescence Assay Used to Detect Caspase Activity 

The activity of caspase 3 and caspase 7 was assessed using a Caspase-Glo 3/7 assay 

kit (Part No. G8090; Promega, Madison, WI, USA) according to the manufacturer’s 

protocol. Cells were seeded in white-walled 96-well plates (1 × 105 cells/well) and 

incubated overnight. Following exposure to various concentrations of either PGZ or 

ROSI (0.01, 0.1, 1, 5, 10 and 20 µM) for 24 h, the cells were lysed by adding 100 µL 

of the Caspase-Glo 3/7 reagent to each well. Subsequently, equal volumes of the 

samples and reagent were mixed and incubated for 1 h at room temperature. 

Luminescence was measured using a plate reader (GloMax Explorer Multimode 

Microplate Reader). The activity was expressed as relative luminescence units (RLU) 

and calculated using the following formula:  

RLU = luminescence (sample) – luminescence (blank) 

2.2.5 Measurement of Adenosine Triphosphate Production 

The CellTiter-Glo Luminescent Assay (Part No. G7570; Promega, Madison, WI, USA) 

was used to determine the level of cellular metabolism by measuring adenosine 

triphosphate (ATP) levels. Cells were seeded in white 96-well microplates (1 × 104 

cells/well) and incubated for 24 h. The cells were then exposed to increasing 

concentrations of PPAR-γ agonist (1, 5, 10, 50 and 100 μM) in the presence or 

absence of GW9662 (5 μM) and incubated for a further 24 h. Subsequently, 100 μL of 

the CellTiter-Glo reagent was added to each well and the plates were agitated for 1 

min in a shaking incubator. A luminometer (GloMax Explorer Multimode Microplate 

Reader) was then used to measure the luminescence. 
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2.2.6 Mitochondrial Membrane Potential Measurement 

TZD-stimulated changes in the mitochondrial membrane potential (ΔΨm) were 

assessed using the JC-1-Mitochondrial Membrane Potential Assay Kit (Cat. No. 

ab113850; Abcam, Cambridge, UK). Cells were seeded (50,000 cells/well) and 

allowed to adhere overnight in a black, clear-bottom 96-well plate (Cat. No. 165305; 

Thermo Fisher, Rochester, NY, USA). The cells were exposed to various 

concentrations of PGZ or ROSI (1, 5, 10, 50 and 100 μM) and incubated for 24 h. 

Afterwards, the cells were washed once with phosphate-buffered saline (PBS) and 

then incubated with 10 μM JC-1 dye for 10 min at 37 °C while protected from light. 

Following incubation, the wells were washed with 1× dilution buffer (provided in the 

kit). The fluorescence related to the mitochondrial membrane potential (MMP) was 

measured immediately using a FlexStation 3 Multi-Mode Microplate Reader 

(Molecular Devices, Sunnyvale, CA, USA) at the maximum excitation and emission 

spectra of 531 and 595 nm, respectively, as well as 485 and 535 nm for aggregate 

and monomer forms, respectively. Background fluorescence was subtracted from the 

fluorescence of the treated cells, and the ratio of red (polarised) fluorescence to green 

(depolarised) fluorescence was obtained. 

2.2.7 Determination of Reactive Oxygen Species Production  

To examine the ability of TZDs to induce the production of reactive oxygen species 

(ROS) in the cells, the intracellular level of the ROS was estimated using a fluorescent 

2′7′-dichlorodihydrofluorescein diacetate dye (H2DCFDA) (Cat. No. D399; Thermo 

Fisher, Waltham, MA, USA). H2DCFDA, a chemically reduced form of fluorescein, is 

a nonpolar compound converted into a polar and membrane-impermeable derivative 

of H2DCF under the presence of cellular esterases (Wu & Yotnda, 2011). The latter 

compound is nonfluorescent (Wu & Yotnda, 2011). However, upon oxidation through 

the intracellular level of ROS, H2DCF is oxidised to highly fluorescent 2',7'-

dichlorofluorescein (DCF) (Wu & Yotnda, 2011). 

Cells were seeded in a dark, clear-bottomed 96-well microplate (50,000 cells/well) and 

incubated overnight. Following 24 h of incubation, the cells were washed once with 

PBS and loaded with 5 μM H2DCFDA for 30 min at 37 °C in the dark. Subsequently, 

the dye was removed, and the cells were exposed to various concentrations of PGZ 

or ROSI (1, 5, 10, 50 and 100 μM) and incubated for 6 h. DCF fluorescence was 
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measured using a FlexStation 3 Multi-Mode Microplate Reader (Molecular Devices, 

Sunnyvale, CA, USA) at the maximum excitation and emission spectra of 492 and 

517 nm, respectively. 

A detailed description of the mechanisms underlying each assay can be found in Table 

S1 of Appendix Section 7.1. 

2.2.8 Statistical Analysis 

Cytotoxicity data are expressed as mean ± SD. At least three independent 

experiments were performed for each cytotoxicity assay, with three or more technical 

replicates for each experimental group tested. Statistical significance was determined 

using Student’s or Welch’s t-test when comparing two groups. A non-repeated one-

way analysis of variance (ANOVA), followed by Dunnett’s post-hoc test, was used for 

multiple comparisons. A p-value < 0.05 was considered statistically significant. 

The experimental design employed in this study is depicted in Figure 2.2. 
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Figure 2.2 Experimental design for functional assays. Each experimental group was 
subjected to three independent cytotoxicity assays (biological replicates n=3), each with at 
least three technical replicates, for each experimental group. In each assay, the cells were 
pre-cultured for 24 h in 96-well plates and incubated with increasing concentrations of either 
PGZ or ROSI for another 24 h. In vitro endpoints were then assessed according to the 
manufacturer’s protocol. 

 

2.3 Results  

2.3.1 Effect of TZDs on Cell Viability 

The effects of PGZ and ROSI on the viability of the two human cardiac cell types, 

AC16 and HCF, were assessed using the MTT assay. Cells were treated with a wide 

range of concentrations of either PGZ or ROSI (0.01, 0.1, 0.5, 1, 5, 10 and 20 μM). 

Then, after a 24-h incubation period, the cytotoxic effect was measured. As shown in 

Figures 2.3A and 2.3C, the PGZ treatment resulted in concentration-dependent cell 

death, and the IC50 values against AC16 cells and HCFs, calculated using the Hill 

equation (Goutelle et al, 2008), were 4.74 μM (R2 = 0.99; 95% CI 3.842–5.894) and 

0.37 μM (R2 = 0.96; 95% CI 0.1472–0.9358), respectively. The exposure of both AC16 

and HCFs to ROSI led to a notable decrease in cell viability, which closely resembled 

the concentration-dependent manner observed with PGZ. As seen in Figures 2.3B 

and 2.3D, the IC50 values of ROSI against AC16 cells and HCFs were 2.05 μM (R2 = 
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0.98; 95% CI 1.270–3.495) and 0.95 μM (R2 = 0.90; 95% CI 0.1865–6.006), 

respectively.  

 

 
Figure 2.3 Cytotoxic effects of TZDs on selected cardiac cell types. Concentration-
response modelling (applying the Hill equation) and corresponding IC50 values for PGZ (A, C) 
and ROSI exposure (B, D) in AC16 cells and HCFs, respectively. In each experiment, cells 
were pre-cultured for 24 h in 96-well plates (1 × 104 cells/well) and incubated with increasing 
concentrations of either PGZ or ROSI for another 24 h. Each point is the average of four 
independent experiments (each in quadruplicate), with standard deviation indicated by error 
bars. R2 indicating goodness of fit of the model. 
TZDs: thiazolidinediones; IC50: half maximal inhibitory concentration; PGZ: pioglitazone; 
ROSI: rosiglitazone; HCFs: human cardiac fibroblasts 
 
 
 
 

2.3.2 Effect of TZDs on Caspase 3/7 Activity 

To investigate the molecular mechanisms underlying the TZD-induced loss of cell 

viability, we first determined whether apoptosis occurred by measuring caspase 3/7 

activity—a gold standard measure of apoptosis (Niles et al, 2008). This assay 

produces a luminescent substrate that has a four-peptide sequence, which, after 

cleavage by caspase 3/7, generates a light signal produced by luciferase (Niles et al, 

2008). As shown in Figures 2.4A and 2.4C, PGZ did not activate caspase 3/7 activity. 

The observed effect was noted in both AC16 and HCFs at all tested concentrations. 
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Furthermore, caspase 3/7 activity was lower in ROSI-treated HCFs than in cells 

treated with the control medium (Figure 2.4D). However, the activation of caspase 3/7 

activity was observed in ROSI-treated AC16 cells that reached significance at 0.01, 

0.1, 1, 5, 10 and 20 μM (Figure 2.4B). 

 
Figure 2.4 The effect of TZDs on caspase 3/7 activity. The fold change in the y-axis 
represents the level of caspase 3/7 activity in the TZD-treated AC16 (A, B) or HCF cells (C, 
D) relative to that of the control group. The data are from three independent experiments, each 
performed in triplicate, and are expressed as the mean ± SD. Statistical significance was 
assessed using Student’s t-test (each concentration of TZD vs. control).  
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001  
TZDs: thiazolidinediones; HCFs: human cardiac fibroblasts; ns: non-significance 
 
 
 
 

2.3.3 Involvement of PPAR-γ in TZDs’ Effects on Cell Viability 

Figures 2.5A–D show the effect of TZD on mitochondrial ATP production and the 

involvement of PPAR-γ in TZD-induced cell death. In both cardiac cell types, the 

administration of PGZ or ROSI markedly decreased mitochondrial ATP production in 

a concentration-dependent manner.  
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Figure 2.5 The effect of TZDs on mitochondrial ATP production. Quantifying cellular ATP 
production levels of AC16 cells (A, B) and HCFs (C, D) after 24 h of exposure to increasing 
concentrations of either PGZ or ROSI using the CellTiter-Glo luminescent assay. The data are 
from three independent experiments, each performed in triplicate, and are expressed as the 
mean ± SD. Statistical significance was determined using a one-way ANOVA and Dunnett’s 
multiple comparisons test (control vs. each concentration of TZD).  
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001  
TZDs: thiazolidinediones; ATP: adenosine triphosphate; HCFs: human cardiac fibroblasts; 
PGZ: pioglitazone; ROSI: rosiglitazone 
 

Interestingly, the co-administration of TZDs and PPAR-γ antagonist GW9662 (5 μM) 

resulted in multi-faceted effects (Figure 2.6). The presence of GW9662 partially 
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attenuated the cytotoxic effect of PGZ on AC16 cells. Nevertheless, its presence 

worsened the cytotoxicity of PGZ in HCFs and further decreased the ATP levels of 

both AC16 and HCFs following ROSI exposure. 

 

Figure 2.6 The effect of the PPAR-γ inhibitor GW9662 on TZD-induced cytotoxicity. 
AC16 cells or HCFs were pre-cultured for 24 h in 96-well plates (1 × 104 cells/well) and 
exposed to either PGZ (10 μM) or ROSI (10 μM) with or without GW9662 (5 μM) for another 
24 h. The data are from three independent experiments, each performed in triplicate, and are 
expressed as mean ± SD. Statistical significance was assessed using Student’s t-test (TZD 
vs. TZD + GW9662).  
* p < 0.05, ** p < 0.01 
PPAR-γ: peroxisome proliferator-activated receptor gamma; TZD: thiazolidinedione; HCFs: 
human cardiac fibroblasts; PGZ: pioglitazone; ROSI: rosiglitazone; ns: non-significant  
 
 
 

2.3.4 Effect of TZDs on MMP Depolarisation  

MMP is a key hallmark of the mitochondrial bioenergetic state, as it reflects the cells’ 

capability to generate ATP through oxidative phosphorylation (Zorova et al, 2018). 

Due to the decrease in ATP production observed following 24 h of TZD treatment 

(Figure 2.5), it is highly anticipated that TZDs act on the motive force processes that 
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drive ATP production, oxidative phosphorylation and glycolysis. Given that the majority 

of ATP generated in the heart is through oxidative phosphorylation (>95%), the effect 

of TZDs on MMP was therefore assessed using the fluorescent reagent JC-1. 

Treatment with TZDs showed a marked decrease in ΔΨm in both AC16 cells and 

HCFs, as illustrated in Figure 2.7.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 The ∆Ψm of selected cardiac cell types following TZD treatment. Cells were 
pre-cultured for 24 h in 96-well plates (5 × 104 cells/well) and exposed to various 
concentrations of PGZ (A, C) or ROSI (B, D) for another 24 h. FCCP (100 μM), the depolarizing 
agent, served as a positive control for this assay. Afterwards, the cells were loaded with 10 
μM JC-1 dye and fluorescence was measured using a microplate reader. The data are from 
three independent experiments, each performed in triplicate, and are expressed as the mean 
± SD. Statistical significance was determined using a one-way ANOVA and Dunnett’s multiple 
comparisons test (control vs. each concentration of TZD).  
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 
TZDs: thiazolidinediones; MMP: mitochondrial membrane potential; PGZ: pioglitazone; ROSI: 
rosiglitazone; FCCP: carbonyl cyanide 4-phenylhydrazone 
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2.3.5 Effect of TZDs on ROS Production  

To determine the role of oxidative stress in TZD-induced cytotoxic effects, the 

fluorogenic dye H2DCFDA, a marker of a broad spectrum of ROS, was used to 

measure the intracellular levels of ROS in selected cardiac cell types following TZD 

treatment. The results showed that PGZ significantly increased ROS levels at 

concentration ranges of 10–100 μM and 1–100 μM in AC16 cells and HCFs, 

respectively (Figures 2.8A and 2.8C). ROSI treatment markedly elevated ROS levels 

in both AC16 and HCFs at a concentration range of 1–100 μM (Figures 2.8B and 

2.8D).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.8 Effect of TZDs on ROS production. AC16 cells (A, B) and HCFs (C, D) were pre-
cultured for 24 h in 96-well plates (50,000 cells/well). Afterwards, the cells were loaded with 5 
µM H2DCFDA and exposed to various concentrations of either PGZ or ROSI. The data are 
from three independent experiments, each performed in triplicate, and are expressed as the 
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mean ± SD. Statistical significance was determined using a one-way ANOVA and Dunnett’s 
multiple comparisons test (control vs. each concentration of TZD).  
* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001  
TZDs: thiazolidinediones; ROS: reactive oxygen species; HCFs: human cardiac fibroblasts; 
PGZ: pioglitazone; ROSI: rosiglitazone; ns: non-significance  
 

 

2.4 Discussion  

2.4.1 Research Design Rationale  

As clinical practice is evolving towards a new, evidence-based era of T2DM 

management guidelines, it is imperative to enrich our understanding of anti-diabetic 

agents, especially those that carry potential benefits against cardiovascular disease, 

including TZDs (ADA, 2023). Since their approval for T2DM management in the early 

2000s, TZDs have demonstrated a range of cardiovascular effects that have ultimately 

limited their selection as anti-diabetic agents of choice (ADA, 2023; Starner et al, 

2008). For instance, despite large clinical trials that have evidenced a reduced risk of 

atherosclerosis progression, in-stent restenosis after coronary stent implantation, MI 

and ischaemic stroke in TZD-treated patients, the reported consensus is that 

increased risk of HF is associated with TZD use (De Flines & Scheen, 2007). 

Nevertheless, few mechanistic studies have addressed the TZD-induced HF mode of 

toxicity, leaving us with inconclusive evidence on the role of TZDs in cardiovascular 

disease risk. 

Today, emerging evidence implicates mitochondrial dysfunction as a potential 

determinant of the unfavourable effects of various off-target medications (Varga et al, 

2015; Vuda & Kamath, 2016). Troglitazone, a member of the TZD family, is an 

example of an anti-diabetic agent with toxicity linked to mitochondrial damage (Julie 

et al, 2008; Rachek et al, 2009). Troglitazone was first introduced into the US market 

in 1997 for the management of T2DM (Rachek et al, 2009). However, a few months 

after its approval, numerous hepatotoxicity cases were reported, including hepatic 

failure necessitating hepatic transplantation and even instances of death (Rachek et 

al, 2009). These eventually led to its withdrawal from the UK and US markets in late 

1997 and 2000, respectively (Julie et al, 2008; Rachek et al, 2009). Mechanistic 

studies have proposed that a decline in mitochondrial ATP production and the 



93 
 

induction of oxidative stress, which contribute to mitochondrial damage, are potential 

mechanisms for troglitazone-induced hepatotoxicity (Julie et al, 2008; Rachek et al, 

2009). Interestingly, a previous paper also suggested that damage to the 

mitochondria, an off-target organelle, may be responsible for the cardiotoxic effects of 

both PGZ and ROSI (Zhong et al, 2018). Hence, to gain deeper insight into this specific 

potential effect, the cytotoxicity of TZDs on selected human cardiac cell types, AC16 

cells and HCFs, as well as their action mechanisms in terms of PPARγ dependency, 

were investigated in this study primarily using mitochondrial assays, each of which 

carries a different endpoint (MTT assay: implication of mitochondrial dehydrogenases; 

ATP assay: measurement of oxidative phosphorylation; caspase 3/7 assay: activity of 

caspase 3/7 in cellular apoptosis; MMP: reflection of membrane depolarisation, 

electron transfer and oxidative phosphorylation; and ROS: measurement of oxidative 

stress). 

2.4.2 Interpretation of Results 

2.4.2.1 Crosstalk Between TZDs and Mitochondrial Functions  

The results from the MTT assay indicated that TZDs exhibited cytotoxicity against 

AC16 cells with high potency, reflected by IC50 values of 4.74 μM and 2.05 μM at 24 

h for PGZ and ROSI, respectively. Our results correspond with those of a previous 

study in which rat cardiomyocytes exhibited a dose-dependent loss of viability 

following PGZ administration, with effective concentrations ranging from 0 to 20 μM/L 

(Zhong et al, 2018). Analogously, dose-dependent reduction in H9c2 (rat 

cardiomyocyte) proliferation in response to ROSI exposure was also reported 

elsewhere, but at doses that ranged between 1 and 100 μM (Mishra et al, 2014). Our 

study also shed light on TZDs’ effects on cardiac fibroblast viability, suggesting 

detrimental cytotoxic effects of TZDs on HCFs, as indicated by lower IC50 values of 

both PGZ and ROSI compared to the AC16 cell line. The effect of TZDs on cardiac 

fibroblasts was reported only once, when an in vitro study showed a reduction in 

cardiac fibroblast viability following ROSI exposure (Li et al, 2008). These cytotoxic 

effects potentially indicate a mitochondrial involvement in TZDs’ cytotoxicity, as the 

MTT assay relies on mitochondrial respiration (mitochondrial succinate 

dehydrogenase) for the enzymatic reduction of MTT to the MTT-formazan product 

(Ghasemi et al, 2023).  
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In this study, the role of mitochondrial dysfunction in TZD-induced cardiotoxicity was 

examined further by measuring the effect of TZDs on mitochondrial ATP production. 

Consistent with the aforementioned MTT assay findings, TZD treatment led to a 

marked reduction in the intracellular ATP production in both cardiac cell types. To 

investigate TZDs’ cytotoxicity in terms of PPAR-γ dependency, the effect of TZDs on 

ATP production was assessed in the presence and absence of a PPAR-γ antagonist 

(GW9662). The partial restoration of ATP production noted in PGZ-treated AC16 cells 

and the further decrease in the ATP levels in PGZ-treated HCFs and in both AC16 

and HCFs following ROSI exposure strongly indicated that the observed cytotoxicity 

was not fully PPAR-γ dependent and that potentially an off-target effect was involved. 

As such, it seems that TZDs induced mitochondrial damage that led to AC16 cells’ 

and HCFs’ death due to a decline in ATP production. These findings correspond with 

a previous in vivo study performed in mice, in which ROSI treatment significantly 

compromised mitochondrial respiration and substrate oxidation, resulting in decreased 

ATP production and deterioration of cardiac function, notably at a concentration of 10 

μM (He et al, 2014). These findings also agree with those of several other studies that 

showed a correlation between the cytotoxic effects of various chemicals and 

insufficient ATP levels (Julie et al, 2008; Rachek et al, 2009).  

The exact mechanism behind the induced mitochondrial dysfunction is complex. 

However, our analysis findings strongly suggest that the uncoupling of oxidative 

phosphorylation is involved in mediating mitochondrial damage. Mitochondria are well-

recognised as the cellular ‘powerhouse’, orchestrating cardiac energy production 

primarily through oxidative phosphorylation (Stoker et al, 2019). The latter biological 

process involves a flow of electrons through five electron transport chain complexes 

(ETC I–V) (Deshpande & Mohiuddin, 2020). The passage of electrons generated from 

energy-rich molecules nicotinamide adenine dinucleotide and flavin adenine 

dinucleotide, through glycolysis, fatty acid oxidation and the citric acid cycle to oxygen, 

which occurs through the ETC located in the inner membrane of the mitochondria, 

pumps hydrogen ions out of the matrix (Deshpande & Mohiuddin, 2020). This pumping 

generates an electrochemical gradient and a membrane voltage that creates a high 

proton motive force (PMF) (Deshpande & Mohiuddin, 2020). This high PMF, which is 

the driving force of MMP, will eventually generate ATP from ADP and phosphate 

through the flow of protons back to the mitochondrial matrix through the ATP synthase 
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enzyme (Zorova et al, 2018). Therefore, when considering the decrease in MMP noted 

in both cardiac cell types following TZD exposure (Figure 2.7) and when referring to 

the prominent role that MMP has in ATP production, it can be postulated that cells 

treated with TZD agents exhibited a mitochondrial uncoupling that potentially led to 

sequelae of events initiated with disruption in the PMF and MMP defects and ending 

up with a loss of ATP production. There is cumulative evidence of similar results, in 

which the cytotoxic effects of chemicals including bisphenol A and N-

nitrosofenfluramine arose from the interplay between MMP defects and ATP depletion 

(Khan et al, 2016; Nakagawa et al, 2005). 

To explain the association between MMP defects and mitochondrial uncoupling 

further, TZDs’ effect on oxidative stress was evaluated. The results indicated that TZD 

exposure induced ROS generation in both AC16 and HCFs. These findings may have 

one of two theoretical underpinnings, as follows: (i) First, the cellular redox imbalance 

state generated following TZD exposure may be the implicated mechanism behind 

mitochondrial uncoupling and subsequent MMP defects, eventually leading to 

mitochondrial damage, ATP depletion and cell death. This notion is supported by other 

studies’ findings, one of which evaluated the mechanism of usnic-acid-induced liver 

toxicity, finding usnic acid to induce ROS generation in HepG2 cells, which resulted in 

MMP loss and cell death (Sahu et al, 2012). The second explanation (ii) is that the 

TZD-induced oxidative stress is secondary to the mitochondrial uncoupling and 

membrane depolarisation, with the increase in electron leakage from the electron 

transport chain resulting from mitochondrial damage and leading to excessive 

generation of ROS species (Zorova et al, 2018). In alignment with TZDs’ effect on 

redox homeostasis, consistent findings in regard to the induction of oxidative stress 

following ROSI exposure were reported both from studies in vivo and in vitro (He et al, 

2014; Riess et al, 2020). 

2.4.2.2 Insights into Molecular Mechanisms for TZD-Induced Cell Death 

Cell death is a common pathological mechanism that underpins all cardiovascular 

diseases, regardless of whether it is the endpoint or a sign of impending disease 

progression. However, there are distinct types of cell deaths, and those are greatly 

disease dependent. To investigate the type of cell death in the cardiac cells treated 

with TZD agents, the level of apoptosis was examined by measuring caspase 3/7 
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activity. It was found that this activity was not markedly elevated in the TZD-treated 

cardiac cells apart from the observation endpoints noted in ROSI-treated AC16 cells, 

suggesting the following: (i) PGZ could have inhibitory effects on caspase-dependent 

apoptosis. In a previous study conducted on adult male Sprague–Dawley rats, the 

effect of PGZ on cardiomyocyte apoptosis was investigated (Li et al, 2008). In this in 

vivo model, rats were randomly divided into four groups: a sham-operated control 

group (treated with 0.9% saline), an ischaemia/reperfusion (I/R) group (treated with 

0.9% saline), a PGZ-treated group (3 mg/kg) and a group treated with 5-

hydroxydecanoate (5-HD, 10 mg/kg) and PGZ (3 mg/kg). After 24 h of treatment, the 

rats were subjected to 30 min of ischaemia followed by 4 h of reperfusion (Li et al, 

2008). The apoptosis rate and three proteins (B-cell lymphoma 2 (Bcl-2), Bcl-2-

associated X protein (BAX) and caspase-3) were detected using 

immunohistochemistry staining. The PGZ-treated group had a significantly lower (p < 

0.05) apoptosis rate and positive cell index (PCI) for Bax and caspase-3 compared to 

the I/R group, and a marked increase in the PCI for Bcl-2 was noted (Li et al, 2008). 

Together, these findings revealed the inhibitory effects that PGZ has on cardiomyocyte 

apoptosis. (ii) Caspase assay findings imply that other types of cell death—particularly 

necrosis—might underpin TZD’s cell death effects. The defects in MMP and the 

depletion of mitochondrial ATP observed in cardiac cells exposed to TZD are 

characteristic biochemical features of necrosis. Various mechanistic studies have 

reported cellular necrosis as common sequelae of chemical-induced ATP depletion 

(Julie et al, 2008; Rachek et al, 2009); nevertheless, further investigations are 

warranted to examine its implication for TZDs’ cardiotoxicity. (iii) The activation in 

caspase 3/7 that we noted in ROSI-treated AC16 cells was also noted in another in 

vitro study, in which ROSI treatment induced apoptosis at 50 and 60 μM in cultured 

H9c2 cells (Mishra et al, 2014). A possible explanation is that apoptosis activation 

could be secondary to mitochondrial uncoupling, through which the collapse in MMP 

defects noted after ROSI treatment could result in increased calcium influx into the 

mitochondria, triggering cytochrome c release from the mitochondria to the cytoplasm 

(Zorova et al, 2018). The presence of cytochrome c in the cytoplasm allows for binding 

of cytochrome c to apoptotic protease activating factor 1, leading to activation of the 

caspase cascade (Zorova et al, 2018). Another mechanistic insight regarding the 

observed caspase activation concerns elevated ROS levels. High levels of ROS were 

reported to activate caspase 3/7 through multiple pathways including direct oxidising 
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of caspases that trigger apoptosis, or via activating mitogen-activated protein kinase 

(MAPK) signalling pathways, which can eventually lead to caspase activation and 

apoptosis (Yue & López, 2020).  

In light of the observational endpoints outlined, the mechanistic basis for the disparity 

between PGZ and ROSI in caspase activation remains elusive. Nevertheless, it is well-

recognised that there are slight differences in chemical structure and stereochemistry 

between PGZ and ROSI (e.g. the presence of a methyl group on the 5-position of the 

thiazolidinedione ring in PGZ and not in ROSI)  (Naim et al, 2017) (As illustrated in 

Figure 1.10 from Chapter 1). On account of these differences, TZDs have distinct 

PPAR selectivity, with ROSI purely selective to PPAR-γ, while PGZ also exerts some 

PPAR-α actions (Naim et al, 2017). These detailed divergences in the chemical and 

pharmacological properties between the two TZD agents could possibly explain the 

variation in caspase activation noted in the present study.  

2.4.3 The Study’s Limitations and Future Directions 

We caution that this study has potential limitations, which should frame how the 

findings are interpreted. First, all cytotoxic assays were conducted using an in vitro 

platform; therefore, it is imperative to address the limitations associated with each 

cardiac cell line. HCFs are primary cells isolated from the ventricles of human adults; 

hence, they are phenotypically and genetically identical to their parental tissue 

(Jonsson et al, 2016). As with most primary cells, HCFs’ have been shown to retain 

many of their functional and differentiated characteristics (Jonsson et al, 2016). Yue 

et al. also reported these cells’ ability to express various receptors including cardiac-

delayed-rectifier potassium channels, inward-rectifier potassium channels and the 

swelling-activated chloride current, which collectively make them candidates for 

investigating various cardiovascular pathologies, including cardiac hypertrophy (Yue 

et al, 2013). Nevertheless, the preparation of HCFs is labour intensive and the 

handling of these cells requires extensive skills and careful planning (Eckerle et al, 

2014).  

Another limitation of this study concerning primary cells’ usage is their short lifespan, 

attributed to cellular senescence genes (Eckerle et al, 2014). In addition, the 

reproducibility of the findings could be influenced by several confounders, which 
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include the hormonal, cellular and genetic variabilities among individual donors (Ng & 

Schantz, 2010). Intra-donor differences due to sex, age, ethnicity, diet and body mass 

index could also impact the validity and efficiency of the results (Ng & Schantz, 2010). 

Meanwhile, the AC16 cell line is an immortalised, stable cell line, derived from adult 

human ventricular cardiomyocytes, which has been used widely in toxicology research 

(Davidson et al, 2005). It expresses adult cardiomyocyte-specific biomarkers (α-

myosin heavy chain [α-MHC], β-MHC, α-actin and troponin I) and displays 

electrophysiological properties comparable with primary human cardiomyocytes, 

which generally explains its wide application in in vitro studies (Davidson et al, 2005). 

Nonetheless, while immortalised cell lines can address some limitations in primary 

cells, they also have their own pitfalls. Since the senescence genes have been 

mutated using different transformation techniques, the cell lines may have abnormal 

chromosomal contents and forms of genetic mutations that could consequently lead 

to atypical protein expression and modified metabolism (Irfan Maqsood et al, 2013). 

Hence, collectively, the behaviour and characteristics of immortalised cell lines are not 

functionally comparable with those of primary cells (Irfan Maqsood et al, 2013).  

Lastly, in both primary and immortalised cell lines, failure to grow these cells in a 3D 

environment while performing the cytotoxicity assays and the loss of cell–cell 

interaction could limit the extrapolation of the obtained in vitro results to in vivo 

environments and hence confound their validity. Furthermore, aside from the 

limitations of the in vitro platform, the cytotoxic effects of PPAR-γ agonist drugs are 

clearly cell-type dependent, as we have shown. Unfortunately, few extant studies have 

addressed the implications of mitochondrial dysfunction in TZDs’ cardiotoxic effects, 

and particularly PGZ, limiting the chance of conducting a comparative analysis. 

In conclusion, our results indicated that TZDs exerted cytotoxic effects on both cardiac 

cell types in a PPAR-γ-independent manner. The results also suggest that TZDs 

induced mitochondrial dysfunction through oxidative stress and MMP defects, 

subsequently leading to insufficient ATP production and eventually cell death. Despite 

the findings’ importance, as mentioned earlier, more mechanistic details of TZDs’ 

cytotoxic effects are needed to further understand and confirm the study’s results, 

including the following: In the aforementioned results, TZDs were found to induce 

oxidative stress and MMP defects, both of which are determinant factors triggering 
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mitophagy activation. Furthermore, caspase 3/7 activity was found not to be highly 

implicated following TZD treatment. Thus, other forms of cell death, particularly 

necrosis and mitophagy, need to be assessed. The investigation of the latter form of 

cell death is crucial in accordance with a previous in vitro study performed in human 

neuroblastoma SH-SY5Y cells, in which low MMP arose from elevated ROS levels led 

to phosphatase and tensin homolog-induced kinase protein 1 accumulation in the 

outer mitochondrial membrane (Lee et al, 2017). This subsequently resulted in Parkin 

recruitment to the damaged mitochondria and excessive mitophagy (Lee et al, 2017). 

Furthermore, ROS levels were elevated in TZD-treated cells, as the H2DCFDA assay 

confirmed. Nevertheless, the pathways involved in this observed effect were not 

investigated. Thus, future assessment of the pathways involved in this effect is 

warranted for further mechanistic data acquisition. Extending the findings presented 

herein, these proposed research directions will collectively improve our understanding 

of the mode of toxicity of TZD-induced cardiotoxicity and further clarify the implications 

of mitochondrial dysfunction for such toxic effects. 
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Abstract 

Introduction: Thiazolidinediones (TZDs), represented by pioglitazone and 

rosiglitazone, are a class of cost-effective oral antidiabetic agents posing a marginal 

hypoglycaemia risk. Nevertheless, observations of heart failure have hindered the 

clinical use of both therapies.  

Objective: Since the mechanism of TZD-induced heart failure remains largely 

uncharacterised, this study aimed to explore the as-yet-unidentified mechanisms 

underpinning TZD cardiotoxicity using a toxicometabolomics approach.  

Methods: The present investigation included an untargeted liquid chromatography–

mass spectrometry-based toxicometabolomics pipeline, followed by multivariate 

statistics and pathway analyses to elucidate the mechanism(s)of TZD-induced 

cardiotoxicity using AC16 human cardiomyocytes as a model, and to identify the 

prognostic features associated with such effects.  

Results: Acute administration of either TZD agent resulted in a significant modulation 

in carnitine content, reflecting potential disruption of the mitochondrial carnitine shuttle. 

Furthermore, perturbations were noted in purine metabolism and amino acid 

fingerprints, strongly conveying aberrations in cardiac energetics associated with TZD 

usage. Analysis of our findings also highlighted alterations in polyamine (spermine and 

spermidine) and amino acid (L-tyrosine and valine) metabolism, known modulators of 

cardiac hypertrophy, suggesting a potential link to TZD cardiotoxicity that necessitates 

further research. In addition, this comprehensive study identified two groupings – (i) 

valine and creatine, and (ii) L-tryptophan and L-methionine – that were significantly 

enriched in the above-mentioned mechanisms, emerging as potential fingerprint 

biomarkers for pioglitazone and rosiglitazone cardiotoxicity, respectively.  

Conclusion: These findings demonstrate the utility of toxicometabolomics in 

elaborating on mechanisms of drug toxicity and identifying potential biomarkers, thus 

encouraging its application in the toxicological sciences.  

 

Keywords: Thiazolidinediones; Toxicometabolomics; LC–MS; Cardiotoxicity; Amino 

acids; Carnitines 
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3.1 Introduction 

Thiazolidinediones (TZDs), represented by pioglitazone (PGZ) and rosiglitazone 

(ROSI) agents, are a class of oral insulin-sensitising agents used to manage type 2 

diabetes mellitus, or T2DM (DeFronzo et al, 2019; Wajid et al, 2019). Moreover, TZDs 

are cost-effective, potent insulin sensitisers that pharmacologically mediate their 

action by activating the peroxisome proliferator-activated receptor-gamma (PPAR-γ) 

nuclear receptor (Wajid et al, 2019). Independent of their metabolic actions, TZDs 

have been shown to exert several pleiotropic effects involving improvements in insulin 

resistance, endothelial dysfunction, dyslipidaemia and vascular inflammation 

(Chaudhury et al, 2017; DeFronzo et al, 2019). These polyhedric effects suggest a 

cardiovascular protective potential that encourages the selection of TZDs in T2DM 

treatment in parallel with the new T2DM treatment paradigm (ADA, 2023).  

Despite the initially encouraging profile of TZDs, PGZ and ROSI have been widely 

used globally for the initial management of T2DM. However, a few years after their 

approval, case reports of heart failure (HF) emerged, leading to a progressive decline 

in TZD prescriptions (ADA, 2023; Wajid et al, 2019).  

In recent decades, toxicometabolomics has progressively been established as a 

powerful tool in regulatory toxicology (Olesti et al, 2021). Toxicometabolomics can be 

broadly defined as the comprehensive and simultaneous analysis of large sets of 

endogenous metabolites presented in a biological sample in response to chemical 

exposure (Karahalil, 2016). Broadly speaking, toxicometabolomics has two major 

strategies: targeted and untargeted (Turi et al, 2018). As reflected by its term, the 

untargeted approach, also termed a global approach, involves the comprehensive 

analysis of all metabolites within the biological sample, whereas the targeted approach 

entails the study of a certain subset of metabolites characterised structurally and 

annotated biochemically (Turi et al, 2018). In regards to toxicometabolomic-based 

analytical techniques, the most commonly used methods include liquid 

chromatography–mass spectrometry (LC–MS), gas chromatography–mass 

spectrometry (GC–MS) and nuclear magnetic resonance (NMR) spectroscopy (Fraga-

Corral et al, 2022). Each of these has its own metabolic coverage, advantages and 

disadvantages that define its application (Table 3.1).  
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Table 3.1 Overview of commonly used toxicometabolomic-based analytical techniques. 
Adopted from (Fraga-Corral et al, 2022). 

 

Characterisations LC–MS / GC–MS NMR 

Sample Preparation Extensive Simple 

Sample Volume  
Low sample consumption (∼ 10 

μL) 

High sample consumption (∼ 500 

μL) 

Sample Destructive 
Destructive; derivatisation is 

needed for GC–MS 
Non-destructive 

Metabolic Coverage Wide Narrower than MS techniques 

Sensitivity  High Low 

Reproducibility  Moderate High 

Experiment Cost High Low 

 
Abbreviations: NMR: nuclear magnetic resonance; LC–MS: liquid chromatography–mass 
spectrometry; GC–MS: gas chromatography–mass spectrometry. 

To date, extensive toxicometabolomic studies have been devoted to revealing the 

toxicity modes of various drugs (Cabaton et al, 2018; Li et al, 2020). These studies 

have led to the discovery of toxicity biomarkers and a deeper understanding of the 

underlying toxicological pathways (Cabaton et al, 2018; Li et al, 2020).  

Thus, the present study was designed to introduce an untargeted LC–MS-based 

toxicometabolomic approach, followed by multivariate statistics to elucidate the 

mechanism of TZD-induced cardiotoxicity using AC16 human cardiomyocytes. The 

AC16 cell line is derived from adult human ventricular cardiomyocytes (Davidson et 

al, 2005). This immortalised, stable cell line has been increasingly used in both 

metabolomics and toxicology research because it expresses adult cardiomyocyte-

specific biomarkers, which are α-myosin heavy chain (α-MHC), β-MHC, α-Actin and 

troponin I (Davidson et al, 2005). In addition, it displays electrophysiological properties 

comparable to primary human cardiomyocytes, which makes it a suitable candidate 

for toxicological studies (Davidson et al, 2005). Hence, the primary aim of this study 

was to (i) profile the biochemical pathways perturbed in TZD-treated AC16 human 

cardiomyocytes and, accordingly, (ii) identify biomarker candidates associated with 
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such an effect that could serve as potential therapeutic targets for TZDs’ undesirable 

effects. 

3.2 Methods  

3.2.1 Reagents and Chemicals  

PPARγ agonists, PGZ and ROSI, were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). PGZ and ROSI 100 mM stock solutions were prepared in sterile dimethyl 

sulphoxide (DMSO) (Cat. No. 12611P; Cell Signalling Technology Beverly, MA, USA), 

and diluted to the appropriate half maximal inhibitory concentration (IC50) with culture 

medium for in vitro experiments. The final concentration of DMSO in the medium was 

≤0.1% (v/v). The reagents used for the LC–MS analysis consisted of high-performance 

liquid chromatography (HPLC)-grade acetonitrile, methanol, analytical-grade formic 

acid and ultrapure water and were purchased from Fisher Scientific (Loughborough, 

Leicestershire, UK). 

3.2.2 Cells and Cell Culture 

The AC16 cell line was purchased from Sigma-Aldrich (Product. No. SCC109; St 

Louis, MO, USA). The cells were cultured in Dulbecco’s Modified Eagle’s Medium 

(DMEM/F-12, Product. No. D6434; Sigma-Aldrich, St Louis, MO, USA) supplemented 

with 12.5% foetal bovine serum (FBS), 1% antibiotics (streptomycin and penicillin) and 

2 mM L-glutamine at 37°C in a humid atmosphere of 5% CO2 and 95% air.  

3.2.3 Sample Preparation and Metabolite Extraction 

To profile changes in the endogenous metabolites, AC16 cells were seeded at a 

density of 2×106 cells/well in six-well plates (Cat. No. 140675; Thermo Fisher 

Scientific, Roskilde, Denmark) containing 2 mL of medium per well and incubated for 

24 h. Following a 24-h incubation period, the cells were washed once with phosphate-

buffered saline (PBS) and supplemented with either a new phenol red-free medium 

alone or exposed to the half-maximal inhibitory concentration of either PGZ or ROSI 

(Details on IC50 determination are included in Chapter 2, Section 2.3.1). After the 24 h 

treatment period, the plates were placed on an ice-cold metal plate, and the AC16 

cells were washed with 500 μL of ice-cold PBS. Using a pre-chilled plastic cell scraper, 

the cells were harvested three times with 500 μL of ice-cold methanol/water (50/50, 
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v/v) and aliquoted in microcentrifuge tubes. Subsequently, the microcentrifuge tubes 

were placed in liquid nitrogen. The samples were then allowed to sit for a few seconds 

and vortexed for 2 min. The resultant extracts were centrifuged at 12,000 g for 15 min 

at 4°C. The supernatant was then collected into new microcentrifuge tubes and 

evaporated using a Thermo Scientific™ Savant™ SpeedVac™ (Thermo Fisher, San 

Jose, CA, USA) to form dried metabolite extract pellets, while the recovered sediment 

pellets were retained for total protein quantification using the Bradford assay (Product. 

No. 10495315; Thermo Fisher, Rockford, IL, USA). The dried metabolite pellets were 

reconstituted in water/0.1% formic acid at volumes normalised to the relative protein 

content. Eventually, the reconstituted solutions were transferred to 300µL fixed insert 

glass vials (Cat. No. 6PSV9-03FIVAPT; Thermo Fisher, Langerwehe, Düren, 

Germany) for LC–MS analysis. Following sample preparation, quality control (QC) and 

blank samples were prepared. The QC samples were prepared by mixing equal 

volumes of all the prepared and tested samples. The blank sample, typically used to 

monitor background contamination or interference acquired through sample 

preparation, was prepared by pooling methanol/water (50/50, v/v) (Figure 3.1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1 Schematic flow chart of the toxicometabolomic profiling strategy employed 
for LC–MS data collection and analysis.  
PGZ: pioglitazone; ROSI: rosiglitazone; LC–MS: liquid chromatography–mass spectrometry; 
DSPC: debiased sparse partial correlation. 
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3.2.4 LC–MS Data Acquisition 

Metabolite extracts of the AC16 cell biomass and corresponding culture media were 

randomised and subsequently analysed by high-performance liquid chromatography-

electrospray ionisation quadrupole orbitrap mass spectrometry (HPLC-ESI-HRMS) 

using a Thermo Scientific™ Vanquish™ binary LC system coupled to a Thermo 

Scientific™ Orbitrap Exploris™ 240 mass spectrometer. The LC separations were 

carried out on an Accucore C18 HPLC column (2.6 μm, 100 mm × 2.1 mm I.D.; Thermo 

Fisher) thermostatted at 40°C and operated at a flow rate of 400 μl/min. A 5 μl sample 

injection was used with an elution gradient consisting of water (eluent A) and 

acetonitrile (eluent B), each containing 0.1% formic acid (Table 3.2). 

Table 3.2 HPLC gradient mode of the mobile phase 
 

 

 

The mass spectrometer (Orbitrap Exploris™ 240) was equipped with a heated 

electrospray ion source (HESI-II). The HESI-II was operated in positive (+ESI) mode 

and set as follows: spray voltage 3700 V; sheath gas flow rate: 40 (arbitrary units); 

auxiliary gas flow rate: 10 (arbitrary units); sweep gas flow rate: 1 (arbitrary units); ion 

transfer tube temperature: 300°C; and vaporiser temperature: 280°C. The duty cycle 

consisted of a full MS scan with an MS1 resolution of 60,000 and then 5 subsequent 

data dependent acquisition scans using 30,000 resoluiton and an RF lens of 70% in 

No. Time Flow (ml/min) %B 

1 0.000 Run 

2 0.000 0.400 1.0 

3 0.500 0.400 1.0 

4 2.000 0.400 50.0 

5 10.500 0.400 99.0 

6 11.000 0.400 99.0 

7 11.500 0.400 1.0 

8 14.900 0.400 1.0 

9 15.000 0.400 1.0 

10   

11 15.000 Stop Run 
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an m/z scan range of 70–1050. XCalibur ™ 4.2 software (Thermo Fisher Scientific) 

was used for data acquisition. 

3.2.5 Data Processing Using Compound Discoverer 3.2 

The acquired LC–MS data were processed using Compound Discoverer 3.2 software 

(Thermo Fisher, San Jose, CA, USA) featuring a processing workflow and its 

associated data processing nodes, as depicted in Figure 3.2. The workflow applied 

herein and its associated nodes are described as follows. 

 

Figure 3.2 Flow chart of the Compound Discoverer workflow applied to the acquired 
LC–MS data.  
 
LC–MS: liquid chromatography–mass spectrometry. 

 

Briefly, the Select Spectra node was used with open settings and a default 1.5 signal-

to-noise ratio (S/N) threshold. The raw data files were aligned with adaptive curve 

settings with 3 ppm mass tolerance and a 0.3 min retention time shift. The Detect 

Compounds node was used with 5 ppm mass tolerance, 10,000 minimum peak 

intensity, peak detection S/N threshold 1.5, remove baseline true, and compound 

detection of [M+H]+1, [M+ACN+H]+1, [M+MeOH+H]+1, [M+H-H2O]+1, [M+H-NH3]+1 ions 

for polar sample positive mode, [M-H]−1, [M+FA-H]−1, [M-H-H2O]−1 ions for polar 

sample negative mode, [M+H]+1, [M+ACN+H]+1, [M+H-H2O]+1, [M-NH3+H]+1, 

[M+NH4+1]+1 ions for non-polar sample positive mode, and [M-H]−1, [M+FA-H]−1, [M-

H-H2O]−1, [M-H+HAc]−1 ions for non-polar sample negative mode. The Group 
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Compounds node was tuned with 5 ppm mass tolerance, 0.2 min retention time 

tolerance and a peak rating filter threshold of 4 for a minimum of 2 files. The Fill Gaps 

node was used with 5 ppm mass tolerance, the QC Correction node was used with 

max QC area relative standard deviation (RSD) 30%, max corrected QC area RSD 

25%, and the Mark Background Components node was enabled with max 

sample/blank 5. The Predict Compositions node was set at 5 ppm mass tolerance with 

element counts C90 H190 Br3 C14 N10 O18 P3 S5.  The Apply mzLogic and Apply 

Spectral Distance nodes were set with 5 ppm mass tolerances. Subsequently, the 

normalisation procedure took place, at which peak areas across all the samples were 

normalised to the total area of the corresponding samples. Features identified in the 

processed raw data of mass spectral peaks within a 5-ppm mass error were searched 

against the mzCloud spectral library and ChemSpider™ databases. Databases 

selected by ChemSpider were the Human Metabolome Database (HMDB), BioCyc, 

Chemical Entities of Biological Interest (ChEBI), Kyoto Encyclopaedia of Genes and 

Genomes (KEGG), Taneisa Grier, Toxin, Toxin-Target Database, WikiPathways and 

xPharm. All data reported align to MSI Level 2 identification. Only known features with 

full matches across at least two annotation sources and supported by MS2 data (DDA 

for the preferred ion) were included in the subsequent analysis. 

 
3.2.6 Data Analyses and Statistical Interpretation 

3.2.6.1 Chemometric Analyses and Characteristic Features Selection Criteria 

Univariate and multivariate statistical analyses were performed using R v4.3.0 and 

MetaboAnalyst v6.0 (https://www.metaboanalyst.ca) webserver. Before the data 

analyses and through Compound Discoverer 3.2 software, the spectral data were 

filtered by annotation filters (i.e., a full match with the predefined databases). This was 

followed by data normalisation using the MSPrep R package (Hughes et al., 2014), 

with the normalisation mode applied being median mode. Regarding multivariate 

analysis, principal component analysis (PCA) and orthogonal partial least 

squaresdiscriminant analysis (OPLS-DA) were developed to inspect the clustering of 

biological samples and model the discriminations between the experimental groups. 

Furthermore, random forest analysis (RF), was performed to identify the features that 

had the highest discriminatory power between the two experimental groups. The 

number of trees in this study was set to 500. Univariate analysis, Student’s t-test, was 

https://www.metaboanalyst.ca/
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conducted to identify differentially expressed features (DEFs) between control and 

TZD-treated groups. The p and FDR values were set at 0.05. Through combining 

univariate and multivariate analyses findings, features that fit on one of the following 

criteria— (i) variable importance in the projection (VIP) value >1 of the OPLS-DA 

model, (ii) discriminant features identified by RF and (iii) significant features extracted 

from univariate analysis (p-value ≤ 0.05)—were labelled in this study as characteristic 

features and hence subjected for debiased sparse partial correlation analysis 

(DSPC)–weighted network analysis, metabolite set enrichment analysis (MSEA) and 

pathway analysis. 

3.2.6.2 DSPC Weighted Network, MSEA and Pathway Analyses of the 

Characteristic Features  

To further explore the metabolic alteration underpinning treatment conditions, the 

correlation among the characteristic features was determined through DSPC weighted 

network analysis. Using MetaboAnalyst, the DSPC network was performed on the 

basis of the graphical lasso modelling procedure. The significance cutoff for correlation 

(p-value) was set to 0.01. The specific range for correlation coefficients was from −1 

to 1. The constructed network was accordingly exported to the Cytoscape software 

platform (Cytoscape; https://cytoscape.org; v3.10) for visualisation.  

In addition, MSEA and pathway analyses were performed to profile the perturbed 

biochemical pathways in response to TZD treatment. Initially, the characteristic 

features were annotated using HMDB v5.0 (https://hmdb.ca). MSEA and pathway 

analysis were then deduced by mapping the annotated metabolites against known 

metabolic pathways for homo sapiens (i.e., Kyoto Encyclopedia of Genes and 

Genomes (KEGG)) using MetaboAnalyst. The hypergeometric test’s p-values 

determined the pathway impact and statistical significance of the identified metabolic 

pathways.  

3.2.6.3 Selection of Biomarker Candidates 

To identify biomarker candidates associated with the cardiotoxicity of TZDs, univariate 

receiver operating characteristic (ROC) curves were applied. Initially, hub feature(s) 

identified from the DSPC network (feature(s) with the highest degree score) that were 

also enriched in pathways linked with TZDs’ cardiotoxicity were defined in this study 

https://cytoscape.org/
https://hmdb.ca/
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as biomarker candidates. Thereafter, ROC curves were constructed and the area 

under the curve (AUC) was calculated to evaluate the prognostic potential of these 

features. 

3.2.7 Statistical Analysis 

Statistical analysis was conducted using R v4.3.0. Three independent experiments 

were performed, each conducted in triplicate (biological replicates), yielding nine 

samples per group. The experimental design employed in this study is illustrated in 

Figure 3.3. Statistical significance was determined using Student’s or Welch’s t-tests 

when comparing the two groups. A non-repeated one-way analysis of variance 

(ANOVA), followed by Dunnett’s post hoc test, was used for multiple comparisons. 

The correlation coefficient was assessed using Pearson and distance correlation 

analyses. A p-value ≤ 0.05 was considered statistically significant. All the downstream 

analyses were performed using MetaboAnalyst, otherwise delegated to R. A 

schematic flowchart of the toxicometabolomics pipeline applied for downstream 

analyses is illustrated in Figure 3.4. 
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Figure 3.3 Experimental design for toxicometabolomics analysis. Three independent 
toxicometabolomics experiments were performed. Each experiment involved (1) cell seeding, 
followed by (2) metabolite extraction. The resulting extracts were transferred to (3) 
microcentrifuge tubes and (4) quenched in liquid nitrogen. After (5) centrifugation, the 
supernatant was collected in new microcentrifuge tubes and (6) evaporated using a Thermo 
Scientific™ Savant™ SpeedVac™. 
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Figure 3.4 Flowchart of the toxicometabolomics pipeline applied for downstream 
analyses. The metabolic profiling of AC16 cells produced in response to the TZDs was 
characterised using an untargeted LC–MS approach. First, the raw LC–MS data were 
processed using Compound Discoverer, after which further data filtering and normalisation 
were conducted using the MSPrep R package. Thereafter, downstream analysis, including 
uni- and multi-variate analyses, was performed on the identified features. PCA was performed 
to identify potential outliers. Subsequently, OPLS-DA and RF analysis, both supervised 
techniques, were adopted as feature selectors and classifiers. Alongside the multivariate 
analysis, univariate analysis, Student's t-test, was conducted to identify differentially 
expressed features (DEFs) between control and TZD-treated groups. The p and FDR values 
were set at 0.05. Accordingly, the characteristic features were first selected by combining the 
univariate and multivariate findings and then subjected to DSPC weighted network analysis, 
metabolite set enrichment analysis and pathway analysis. Finally, this study defined the hub 
features identified from the DSPC network, which were also observed to be enriched in the 
pathways linked to TZD’s cardiotoxicity pathogenesis, as biomarker candidates. Additionally, 
ROC curves were applied to evaluate the prognostic potential of the chosen candidates. 
 
LC–MS: liquid chromatography–mass spectrometry; TZDs: thiazolidinediones; DEFs: 
differentially expressed features; PCA: principal component analysis; OPLS-DA: orthogonal 
partial least squares-discriminant analysis; RF: random forest; DSPC: debiased sparse partial 
correlation; KEGG: Kyoto Encyclopaedia of Genes and Genomes; ROC: receiver operating 
characteristic. 
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3.3 Results 

3.3.1 Overview of Cellular Metabolome Profiling under TZD Treatment 

To unveil TZDs’ cardiotoxic mode of action and delineate the perturbation of the 

cellular metabolome in response to their exposure, a toxicometabolomics approach 

featuring untargeted LC–MS followed by computational bioinformatics analyses was 

introduced, as depicted in Figure 3.4. 

However, prior to data analysis, data inspection and quality assessment involved 

generating box plots of log2-transformed abundance data with corresponding retention 

times and plotting coefficient of variation (CV%) against raw intensity. In both 

experiments, box plots (Figures 3.5B and 3.5D) revealed comparable medians 

across samples within the same group. Figures 3.5C and 3.5D demonstrated a 

clustering of features at low intensity values with correspondingly high CVs, 

suggesting increased relative variability for less abundant features, likely due to noise. 

Conversely, as raw intensity increased, CV values tended to decrease, indicating 

improved measurement consistency for more abundant features. Overall, these 

findings suggest robust and reproducible LC-MS system performance. 
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Figure 3.5 Quantitative profiling of AC16 cells in response to TZD treatment. Box plots 
of log2 area for each tested sample using PGZ and ROSI datasets are shown in figures A and 
C. Control and TZD-treated samples are colored orange and purple, respectively. Figures B 
and D depict the coefficient of variation (CV%) in raw PGZ and ROSI data. 
 

PGZ: pioglitazone; ROSI: rosiglitazone; CV: coefficient of variation 

 

Univariate and multivariate statistical analyses were performed to decipher the 

metabolic perturbation in AC16 cells following TZD exposure. An unsupervised two-

component PCA plot was constructed to delineate the overall similarities and 

heterogeneity in the clustering of the biological samples. 

In both experiments, the PCA scores plots indicated marked separation among the 

sampling data, showing a distinct metabolic profile that was yielded after TZD 

exposure (Figures 3.6A and 3.6B). In addition to its role in assessing sample group 

heterogeneity, the PCA plot was utilised as a QC and QA tool to evaluate the reliability 

and quality of LC–MS-based toxicometabolomics data. As depicted in Figures 3.6A 
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and 3.6B, all QC samples clustered within the PCA plot and 95% CIs, indicating a 

robust and reproducible performance of the LC-MS system. 

 

Figure 3.6 Multivariate analysis of the metabolomics data. (A and B) PCA plots comparing 
the LC–MS metabolic profiles of TZD-treated and control samples. (A) The PCA scores plot 
of PGZ-treated and control samples; (B) scores plot of PCA of the ROSI-treated vs. control 
samples. In both (A and B), shaded circles represent 95% confidence intervals, while colored 
dots illustrate individual samples. The plot shows the separation between sample groups and 
the cluster of QC samples, which are colored in green. 
 
PGZ: pioglitazone; ROSI: rosiglitazone; LC–MS: liquid chromatography–mass spectrometry; 
PCA: principal component analysis; QC: quality control.  

 

 

This distinct metabolic profile observed by PCA plots was also confirmed following the 

application of the OPLS-DA supervised model illustrated in Figures 3.7A and 3.7C. 

In both experiments, the constructed supervised OPLS-DA model yielded a 

satisfactory fitness of the model and a high predictive ability value of (R2 = 0.747 and 

Q2= 0.618) and (R2 = 0.805 and Q2= 0.717), in PGZ and ROSI datasets, respectively 

(Figures 3.7B and 3.7D). 
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Figure 3.7 Multivariate statistical analysis of the acquired LC–MS data. OPLS-DA plots 
showing the separation between the (a) PGZ-treated vs. control groups and the (c) ROSI-
treated vs. control groups. (b) and (d) show the cross-validated cumulative modelled variation 
R2X, R2Y and Q2 coefficients of the predictive loading (p1) and orthogonal (o1, o2) 
components applied on OPLS-DA data. The supervised OPLS-DA model illustrated in (a) 
yielded satisfactory fitness and a high predictive ability value (R2 = 0.747 and Q2 = 0.618, 
respectively), while the OPLS-DA score plot of the metabolite profiling data in (c) 
demonstrated a similar clustering panel between the experimental groups, exhibiting 
satisfactory fitness and predictive ability values (R2 = 0.805 and Q2 = 0.717, respectively). 
 
PGZ: pioglitazone; ROSI: rosiglitazone; OPLS-DA: orthogonal partial least squares-
discriminant analysis. 

 

Furthermore, the Variable Importance in Projection (VIP) measure was adopted to 

fingerprint the important features responsible for clustering separation. With respect 

to PGZ treatment, 9 features were found with VIP scores > 1, as listed in Figure 3.8A. 

In contrast, several influential features were extracted from the later model in response 

to ROSI exposure (Figure 3.8B), including amino acid-related products (e.g. L-

glutamine), purines and purine derivatives (hypoxanthine), polyamines (spermidine), 

inosine and others. 
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Figure 3.8 Variable importance in projection (VIP) scores for the top 10 features. (A) and 
(B) illustrate the VIP score plots of the 10 most influential features responsible for the 
separation noted between the PGZ-treated vs. control groups and the ROSI-treated vs. control 
groups in the OPLS-DA model, respectively. In (A and B), the colour code indicates higher 
(red) or lower (blue) concentrations.  
 
VIP: variable importance in projection; PGZ: pioglitazone; ROSI: rosiglitazone; OPLS-DA: 
orthogonal partial least squares-discriminant analysis. 
 

 

Furthermore, the putative features were ranked using the mean decrease accuracy 

measure integrated into the RF analysis. Regarding the PGZ experiment, the RF 

classification, as shown in Figure 3.9A, demonstrated an outstanding prediction of the 

treated group; nevertheless, the classification exhibited less accuracy in the control 

group, with a 0.0556 out-of-bag (OOB) error rate. The RF variable importance plot 

identified a number of discriminant features important in classifying the data, including 

amino acid products (e.g., L-tyrosine, valine), creatine and mitochondrial-derived 

metabolites such as triglylcarnitine (Figure 3.9B). However, the RF classification 

model extracted from ROSI data, as illustrated in Figure 3.9C, predicted the control 

excellently, while the prediction of the treated class was less accurate, with a 0.056 

OOB rate. The features identified by RF that had the most influence on data 

classification are listed in Figure 3.9D. In an attempt to further identify the DEFs, 

univariate analysis, Student's t-test, was conducted, yielding 16 and 53 DEFs in 

response to PGZ and ROSI exposure, respectively. 
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Figure 3.9 Random forest classification model. (A) and (C) represent the random forest 
classification model of the PGZ and ROSI experiments, respectively, illustrating the 
cumulative error rates measured for each experimental group using the machine learning 
approach. (B) and (D) demonstrate the discriminant features with the highest discriminatory 
power between the treated and control groups (PGZ in (B) and ROSI in (D)). In (B and D), the 
colour code indicates higher (red) or lower (blue) concentrations.  
 
PGZ: pioglitazone; ROSI: rosiglitazone. 
 

 

Thereafter, a combination of multivariate and univariate analyses was performed to 

define PGZ’s and ROSI’s characteristic features. The combination analysis resulted 

in 27 and 63 characteristic features extracted from the PGZ and ROSI datasets, 

respectively, discriminating the experimental groups. 

The relative distribution of these defined characteristic features across TZD-treated 

and control groups was measured by calculating the z-score using the following 

formula (Wei et al, 2012): 
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z = (x − μ)/σ              

where x indicates sample abundance; μ represents average and σ denotes the 

standard deviation.  

The z-score plot of the 27 features in the PGZ-treated group relative to the control 

group, as presented in Figure 3.10A, exhibited metabolic perturbation in the treated 

group, with a z-score range of −6 to 14 compared to the control group (z-score range: 

−2 to 2). The relative distribution of the 63 features altered following ROSI exposure 

showed z-score ranges of (−15 to 20) and (−2 to 2) in the treated and control groups, 

respectively (Figures 3.10B and 3.10C). The chemical taxonomy classification of the 

characteristic features of each TZD agent is described in Figures 3.10D and 3.10E. 

 
 
Figure 3.10 z-score plot of the characteristic features and their chemical classification. 
(A) and (B and C) present z-score plots of the characteristic features altered in the PGZ-
treated and ROSI-treated samples relative to the mean in the control cells, respectively. Each 
point represents one metabolite in one sample, coloured according to the sample grouping. 
(D) and (E) show the chemical classification of the characteristic features identified from the 
PGZ and ROSI datasets, respectively.  
 

PGZ: pioglitazone; ROSI: rosiglitazone. 
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3.3.2 DSPC Algorithm and Correlation Network Construction  

Debiased sparse partial correlation (DSPC) was applied to explore the connectivity 

among PGZ’s and ROSI’s characteristic features. The PGZ-constructed network, as 

illustrated in Figure 3.11A, revealed dense interactions among amino acids, amino 

acids with purine ribonucleotide (ADP) and amino acids with both polyamines 

(spermine and spermidine). In addition to the identified positive correlations, negative 

interactions were also noted, including valine with L-histidine, L-phenylalanine with 

guanine, and creatine with spermidine. Valine and creatine represented the main hubs 

with the highest degree score in the PGZ network. 

Conversely, ROSI’s DSPC network, as shown in Figure 3.11B, revealed dense 

interactions among amino acids and their derivatives, similar to PGZ. Furthermore, 

kynurenic acid, which is a vital bioproduct of tryptophan’s catabolism, has 

demonstrated strong interactions with amino acid derivatives (i.e., acetyl-L-

methionine) and purine nucleosides (methylguanosine). The main hubs represented 

in the ROSI network include L-tryptophan and L-methionine. 
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Figure 3.11 DSPC correlation network using characteristic features. (A) and (B) denote 
the DSPC network using PGZ’s and ROSI’s characteristic features, respectively. In both 
networks, the nodes represent metabolites, the red lines indicate a direct positive correlation 
between features, and the blue lines signify an inverse correlation. The thickness of the lines 
donates significance. The DSPC network analysis was performed on the basis of the graphical 
lasso modelling procedure, with the significance cutoff for correlation (p-value) set to 0.01. 
The range specified for the correlation coefficients was from −1 to 1. The constructed networks 
were exported to the Cytoscape software platform (Cytoscape; https://cytoscape.org; v3.10.1) 
for visualisation.  
 
DSPC: debiased sparse partial correlation; PGZ: pioglitazone; ROSI: rosiglitazone. 

 
 
3.3.3 MSEA and Pathway Analysis 

To profile the biochemical pathways perturbed in PGZ- and ROSI-treated AC16 cells, 

MSEA and pathway analyses were performed by mapping the drug’s characteristic 

features against the Kyoto Encyclopedia of Genes and Genomes (KEGG) using the 

MetaboAnalyst webserver. The MSEA analysis revealed that the PGZ’s characteristic 

features were significantly enriched in pathways linked to amino acid metabolism, 

energy metabolism, polyamine biosynthesis, metabolism of cofactors and others as 

listed in Figure 3.12A (Table S2, Appendix Section 7.2). The pathway analysis 

results, on the other hand, showed that the highest number of metabolites were 

https://cytoscape.org/
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products of various amino acid metabolism and amino acid and cofactor biosynthesis 

(Figure 3.12B, [Table S3, Appendix Section 7.2]). 

Regarding ROSI, the MSEA, as shown in Figure 3.12C (Table S4, Appendix Section 

7.2), revealed that the characteristic features were significantly enriched in pathways 

belonging to amino acid (i.e., methionine metabolism), polyamines (spermidine and 

spermine biosynthesis) and betaine metabolism. The pathway-topology analysis 

showed a significant association between the characteristic features and pathways 

linked to purine metabolism, amino acid metabolism and amino acid biosynthesis, as 

illustrated in Figure 3.12D (Table S5, Appendix Section 7.2). 

Figure 3.12 The MSEA and metabolic pathways of the characteristic features. The top 
25 enriched pathways of (A) PGZ’s and (C) ROSI’s characteristic features. (B) and (D) denote 
the pathway analysis of the characteristic features identified from the PGZ and ROSI datasets, 
respectively. The size and colour of each circle in (A) and (C) reflect the enrichment ratio and 
significance, respectively, while those in (B) and (D) represent the pathway impact value and 
the p-value, respectively.  
 

PGZ: pioglitazone; ROSI: rosiglitazone; MSEA: metabolite set enrichment analysis. 
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3.3.4 Identification and Validation of Biomarker Candidates for TZDs’ 

Cardiotoxicity  

The hub features identified through PGZ’s and ROSI’s DSPC networks that were also 

enriched in pathways linked with TZDs’ cardiotoxicity were subjected to ROC analysis 

to evaluate their prognostic potential (Figure 3.13). The ROC findings revealed 

excellent biomarker prediction for PGZ’s hub features; these results included valine 

with an AUC value of 0.938 (p < 0.05), as well as creatine with AUC value of 1 and p 

< 0.05. Regarding ROSI, the ROC curves had an AUC value of 0.802 (p < 0.05) and 

0.778 (p < 0.05) for both L-tryptophan and L-methionine, reflecting a satisfactory 

overall score performance.  

 

 
 
 
 
Figure 3.13 Receiver operating characteristic curves and box-plot representation for 
the hub features of the TZDs. (A) and (B) illustrate the receiver operating characteristic 
curves, along with the corresponding AUC and considering 95% confidence intervals, for 
PGZ’s chosen biomarkers, while (C) and (D) indicate the receiver operating characteristic 
analysis findings for ROSI’s biomarker candidates. 
 
TZD: thiazolidinedione; PGZ: pioglitazone; ROSI: rosiglitazone; AUC: area under the curve. 
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3.4 Discussion  

The latest T2DM management guidelines have placed growing emphasis on the 

concept of maintaining tight glycaemic control as a means to delay disease 

progression and prevent T2DM complications (ADA, 2023). The primary cornerstone 

to achieving the envisioned goal is pharmacological modalities. TZDs are insulin 

sensitisers with outstanding pharmacoeconomic attributes (DeFronzo et al, 2019). The 

efficacy of TZDs, as measured by the HbA1c index, and their costs have been 

categorised by the American Diabetes Association as highly effective and economical, 

cost-effective agents (ADA, 2023). Despite the fruitful profile of TZDs, their clinical use 

in T2DM has been hindered due to safety concerns, which are characterised chiefly 

by HF cases associated with their usage (Administration, 2012). To date, the TZD 

class has been forgotten, and its application has been restricted.  

Toximetabolomic tools have been successfully and widely employed in toxicological 

studies to reveal novel biochemical sequelae and molecular biomarkers underpinning 

the mode of toxicity of various drugs, including dexamethasone, bisphenol A, 

doxorubicin and 17β-oestradiol (Cabaton et al, 2018; Dahabiyeh et al, 2020; Geng et 

al, 2020). However, a limited number of pharmacometabolomic studies on TZDs have 

been reported thus far. In a rat model, Yang et al. showed that PGZ had an 

ameliorative effect on hepatic steatosis, predominantly due to the regulation of lipid 

metabolism, including fatty acids (FAs) and phosphatidylcholines (Yang et al, 2018). 

In another study, Vinaixa et al. reported a reduction in metabolic oxidation in women 

with polycystic ovary syndrome after PGZ treatment in combination with flutamide-

metformin (Vinaixa et al, 2011). Furthermore, the lipid metabolome effects of ROSI on 

obese (NZO x NON) F1 male mice were assessed, with observations suggesting a 

hypolipidemic effect (in the form of triacylglycerides and cholesterol esters) associated 

with its use (Watkins et al, 2002). Nevertheless, toxicometabolomic studies have yet 

to address the toxic effects associated with TZD usage (e.g., cardiotoxicity). Thus, this 

study was designed to employ an untargeted, LC–MS-based toxicometabolomic 

pipeline for comprehensive metabolic profiling of the AC16 cellular metabolome in 

response to the acute exposure of TZDs as a means to elucidate the hitherto 

uncharacterised pathomechanisms that basis TZDs’ cardiotoxicity.  
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3.4.1 Interpretation of Results 

The heterogeneity and similarity between the metabolic fingerprints of the drug-treated 

and control groups were assessed using multivariate statistical analyses. PCA was 

initially performed to inspect the clustering of the biological samples and determine 

potential outliers. The PCA model identified group separation, as illustrated in Figures 

3.6A and 3.6B. Thereafter, the supervised methods OPLS-DA and RF analysis were 

carried out as feature identifiers and classifiers. By combining the univariate and 

multivariate analysis findings, the characteristic features of each experiment were 

identified. In both experiments, these features predominantly include modulation in 

amino acids (e.g., glutamine, glycine, valine and asparagine); energy metabolites, 

including glutamate; and lipid content, including prenol lipids, glycerophospholipids 

and glycerolipids. The common and unique characteristic features, MSEA and 

pathway findings isolated from each experiment are illustrated via an UpSet plot in 

Figure 3.14. The modulation in characteristic features expression following TZD 

treatment suggests perturbation in the following major biological processes: cardiac 

energy metabolism and cardiac hypertrophy. 

Figure 3.14 UpSet plot illustrating the overlapping and specific characteristic features, 
MSEA and pathway analysis findings for the two experiments. The x-axis (set size) 
represents the size of each set, while the intersection size indicates the number of each set’s 
measures that are common between sets. The black points denote the intersections, while the 
grey points represent no intersections.  
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PGZ: pioglitazone; ROSI: rosiglitazone; MSEA: metabolite set enrichment analysis; KEGG: 
Kyoto Encyclopedia of Genes and Genomes. 
 

3.4.1.1 TZDs and Cardiac Energetics  

It is well acknowledged that a cardiac energy deficit is a hallmark characteristic of HF. 

The contractile and mechanical properties of the myocardium demand a substantial, 

steady energy supply; hence, any disruption in the energy metabolic pathways results 

in drastic reduction in efficient cardiac function. Our toxicometabolomics analysis 

revealed modulation in the carnitine pool, including L-carnitine and triglylcarnitine, 

which are crucially integrated in mitochondrial fatty acid oxidation. The carnitine pool 

represents mitochondrial-derived metabolites primarily responsible for importing long-

chain fatty acids into the mitochondria for subsequent beta-oxidation, providing 

roughly 70–90% of cardiac adenosine triphosphate (ATP), a process referred to as 

the carnitine shuttle (McCann et al, 2021). The analysis findings showed a decrease 

in the carnitine pool associated with TZD treatment. Of importance, enrichment in beta 

oxidation of very long-chain fatty acids was noted with MSEA findings, reinforcing the 

potential of cardiac energy failure associated with TZD administration secondary to 

disruption in the carnitine shuttle system and a decrease in substrate oxidation. To 

date, a cumulative amount of evidence has linked disruption in the carnitine profile 

with HF pathogenesis in both human and rodent models  (Schenkl et al, 2023). 

Furthermore, our analysis findings revealed an increase in D-glucose levels, which 

could be interpreted as a compensatory mechanism to meet the energy demand in 

response to the disruption of fatty acid oxidation. 

In the same context, our analysis revealed alterations in purine metabolites, including 

inosine, hypoxanthine, adenosine, and adenosine monophosphate/diphosphate 

(AMP/ADP), suggesting modulation in purine biosynthesis/catabolism pathways 

accompanying TZD treatment. It is well established that purine nucleotides play crucial 

roles in the synthesis of the genetic material and the energy currency of the cells, ATP 

(Lane & Fan, 2015). The cross-linking between the modulation in purine metabolites 

and TZD treatment is explained through the need to compensate for the shortage of 

cellular ATP. The elevated levels of both inosine and hypoxanthine suggest 

upregulation of the purine salvage pathway, which is a process of synthesizing purine 

nucleotides from nucleosides recovered from RNA and DNA degradation as a 
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response to mitigate cardiac energy failure and increase the energy supply (Johnson 

et al, 2019). Nevertheless, the purine catabolism end product, hypoxanthine, has been 

reported to induce reactive oxygen species (ROS) generation, elevate serum 

cholesterol levels and worsen the progression of cardiotoxicity (Ryu et al, 2016). 

Therefore, the unbalancing between purine salvage and catabolism noted in our 

analysis could have catastrophic consequences for cardiac tissue, which necessitates 

further investigation. 

Reflecting on the amino acid profile, modulation in branched-chain amino acids 

(BCAAs) represented with high levels of L-leucine, L-isoleucine and valine was noted 

in our analysis. Growing clinical and preclinical evidence has proposed elevated levels 

of BCAAs as a predictor of a wide range of cardiovascular diseases, including HF 

(Xiong et al, 2022). These findings surprisingly contradict the crucial roles that BCAAs 

play in cardiac energy metabolism. It is well recognised that BCAA oxidation acts as 

another fuel supply in the heart. Therefore, the high levels of BCAAs noted, and 

through various clinical studies performed on patients with overt cardiovascular 

diseases, could potentially be interpreted as a cardioprotective mechanism to promote 

cardiomyocyte survival. Nevertheless, the reported outcomes are inconsistent with the 

above-mentioned predictions. High levels of BCAAs have been shown to worsen the 

progression of cardiotoxicity for the following proposed reasons: (i) The contribution 

of BRAAs to cardiac ATP is marginal, accounting for approximately 2% of the total 

cardiac energetics. Therefore, elevated levels of these amino acids are not adequate 

for overcoming the shortage in cardiac ATP levels (Karwi & Lopaschuk, 2023). (ii) On 

account of recent in vivo cardiovascular studies, downregulations in key enzymes 

involved in BCAA oxidation have been reported, resulting in impairment in energy 

supply, contractile dysfunction and further accumulation of BCAAs in the myocardium 

(Lai et al, 2014; Sun et al, 2016). (iii) Elevated levels of BCAAs have been reported to 

induce mitochondrial dysfunction through mechanisms involving interfering with the 

electron transport chain and hence oxidative phosphorylation and altering 

mitochondria biogenesis through activating eNOS/NO/SIRT1 pathways (Ye et al, 

2020).  
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3.4.1.2 TZDs and Cardiac Hypertrophy 

Cardiac hypertrophy is an adaptive response prompted by physiological and 

pathological stressors. However, sustained hypertrophy causes a myriad of negative 

consequences, including the progression to HF. In our analysis, the modulation of a 

number of putative features that are evidently associated with cardiac hypertrophy was 

identified. For instance, elevated levels of polyamines, spermine and spermidine, 

noted in our analysis, have been linked through numerous in vivo models with cardiac 

hypertrophy (Giordano et al, 2010; Meana et al, 2016). Several mechanisms have 

been postulated to explain the cross-link association, one of which is attributed to the 

intrinsic ability of polyamines to modulate β-adrenoceptor signalling pathways and 

therefore cardiac remodelling (Giordano et al, 2010). In addition, modulation of amino 

acids has been associated with cardiac remodelling (Geng et al, 2020; Karwi & 

Lopaschuk, 2023). The high levels of BCAAs found in our toxicometabolomics 

analysis have been reported to activate the mammalian target of the rapamycin 

(mTOR) signalling pathway, a crucial hypertrophic signalling pathway implicated in HF 

patho-mechanisms (Xiong et al, 2022). L-tyrosine is another amino acid that has been 

hooked with cardiac hypertrophy, as its involvement was supported by a recent study 

performed to investigate the pathophysiological process of doxorubicin-induced 

cardiotoxicity (Geng et al, 2020). Furthermore, low levels of the nonproteinogenic 

amino acid γ-aminobutyric acid (GABA) were detected with TZDs. GABA is well 

recognised as a major inhibitory neurotransmitter with vital biological roles that are not 

restricted to the central nervous system but also function in peripheral tissues (Rashmi 

et al, 2018). In spontaneously hypertensive rats, the oral administration of GABA led 

to a reduction in cardiac hypertrophy (Lin et al, 2012). Hence, the low levels of GABA 

found in our analysis could be secondary to TZD-induced modulation of amino acid 

metabolism, an additional contributor factor involved in TZD cardiotoxicity. While the 

above-mentioned findings provide a valuable starting point, additional experiments are 

crucial to validate the cross-link between TZDs and cardiac hypertrophy and unravel 

the specific molecular pathways involved. 

3.4.2 Limitations and Future Directions 

When all the results are taken together, some limitations should be addressed before 

drawing conclusions. Initially, in accordance with the 3Rs principle of animal 
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experimentation, the transition in toxicological research is evolving towards animal-

free in vitro and in silico approaches (Yu et al, 2020). This also explains the rationale 

behind selecting AC16 cells for our analysis. Furthermore, the well-defined cardiac 

signaling pathways and responsiveness to stimuli in AC16 cells, combined with their 

ease of culture, rapid growth, and relative cost-effectiveness compared to other 

models, justified their selection for our research, allowing us to effectively investigate 

the effects of TZDs on cardiomyocyte metabolism. While AC16 cells offer advantages 

for studying cardiac function, their inherent limitations, including glycolysis-

dependence and fibroblast-like morphology, coupled with their dedifferentiation 

potential and challenges in maintaining differentiated cultures, necessitated our focus 

on proliferative cells for this investigation. Also, the validity of in vitro models in 

accurately estimating the biological complexity of the human body is still lacking 

(Graudejus et al, 2018; Yu et al, 2020). Moreover, when investigating the metabolic 

activity of cells, an in vitro model could be a limitation due to its limited metabolic 

activity compared to in vivo systems (Graudejus et al, 2018; Yu et al, 2020). Lastly, a 

significant limitation of this study is the lack of internal standards. Internal standards 

are essential for normalising variations that can arise during sample 

preparation, instrument performance, and data acquisition (Wang et al, 2017). They 

help to control for factors like variable metabolite recovery, matrix effects, and MS 

drift. Without internal standards, the ability to accurately quantify metabolite levels is 

reduced, and relative quantification becomes more susceptible to technical 

variability. This also limits confidence in comparing metabolite changes across 

samples, batches, or experiments, and may affect the reproducibility of the results. 

Furthermore, the absence of internal standards complicates the detection of low-

abundance metabolites and increases the risk of RT shifts, which can hinder 

metabolite identification (Wang et al, 2017). However, a future direction for our 

research group is to address this limitation by developing a comprehensive internal 

standard library tailored for our system. This effort will enhance data reliability and 

improve the robustness of our metabolomics analysis in future studies. 

In conclusion, the present study is the first to profile the broad-scale metabolic 

perturbations of human AC16 induced by the TZD class of medications. The 

comprehensive toxicometabolomics approach employed herein has unveiled 

modulations in the carnitine shuttle, purine metabolism and amino acid fingerprint, 
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each of which strongly indicate aberration in cardiac energetics associated with TZD 

usage. Our analysis has also pinpointed changes in polyamines and BCAA levels that 

are evidently associated with phenotypic alterations of cardiac tissues (hypertrophy), 

which indeed represents another hallmark characteristic of cardiotoxicity and a 

potential mechanism implicated in it. This comprehensive study also suggests the 

following two groupings – (i) valine and creatine, and (ii) L-tryptophan and L-

methionine – which were significantly enriched in the above-mentioned mechanisms, 

as potential fingerprint biomarkers for PGZ and ROSI cardiotoxicity, respectively. 

Collectively, the results of this study suggest the LC–MS toxicometabolomics 

approach as a powerful platform for exploring chemical-induced perturbation in 

downstream molecular phenotypes, in turn pointing out a promising route for designing 

therapeutic targets capable of tackling these chemicals’ adverse effects.  
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Abstract 

Thiazolidinediones (TZDs) (e.g., pioglitazone and rosiglitazone), known insulin 

sensitiser agents for type II diabetes mellitus, exhibit controversial effects on cardiac 

tissue. Despite consensus on their association with increased heart failure risk, limiting 

TZD use in diabetes management, the underlying mechanisms remain 

uncharacterised. Herein, we report a comprehensive in vitro investigation utilising a 

novel toxicoproteomic pipeline on human adult cardiomyocytes to elucidate 

mechanistic insights into TZD cardiotoxicity. Our toxicoproteomic analysis revealed 

mitochondrial dysfunction accompanying TZD exposure. This dysfunction primarily 

stemmed from impaired oxidative phosphorylation, with distinct signalling mechanisms 

observed for both agents. The type of cell death differed strikingly between the two 

agents, with rosiglitazone exhibiting features of caspase-dependent apoptosis and 

pioglitazone implicating mitochondrial-mediated necroptosis, as evidenced by the 

protein upregulation in the phosphoglycerate mutase family 5–dynamin-related protein 

1 axis. Furthermore, our analysis revealed additional mechanistic aspects of 

cardiotoxicity, showcasing drug specificity. The downregulation of various proteins 

involved in protein machinery and protein processing in the endoplasmic reticulum 

was observed in rosiglitazone-treated cells, implicating proteostasis in the 

rosiglitazone cardiotoxicity. Regarding pioglitazone, the findings suggested the 

potential activation of the interplay between the complement and coagulation systems 

and the disruption of the cytoskeletal architecture, which was primarily mediated 

through the integrin-signalling pathways responsible for pioglitazone-induced 

myocardial contractile failure. Collectively, this study unlocks substantial mechanistic 

insight into TZD cardiotoxicity, providing the rationale for future optimisation of 

antidiabetic therapies.  

 

 

Keywords: Thiazolidinediones; mitochondrial dysfunction; WGCNA; label-free protein 

quantification 
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4.1 Introduction 

Over the past few decades, dramatic advances in analytical techniques for high-

throughput experimentation and computational tools have been achieved, 

revolutionising the landscape of toxicological science (Karahalil, 2016; Li et al, 2021; 

Nguyen et al, 2022). Simultaneously with revolutionary discoveries, the US National 

Research Council (NRC) published a turning point report, 'Toxicity Testing in the 21st 

Century', setting up a long-term strategic plan to encourage the transition towards 

advanced in vitro and in silico high-throughput technologies over the costly and time-

consuming traditional toxicity testing that primarily relies on animal experimentation 

(Krewski et al, 2020). The long-term strategic vision of the NRC, which is rooted in 

embracing the technologies mentioned above, has a two-component toxicity testing 

paradigm (Krewski et al, 2020). The first component encourages the elucidation of the 

signalling pathways perturbed by chemicals, preferably through adapting omics-based 

in vitro cell-line studies, and the second envisioned point focuses on validating the first 

component’s findings by performing targeted testing on the identified pathway using 

in vivo models or clinical samples (Krewski et al, 2020). These two components 

collectively aim to provide more comprehensive insights into the toxicity mode and 

open up new horizons into the identification of toxicity biomarkers associated with 

hazardous substances.  

In alignment with the NRC's strategic vision, several omics-based approaches have 

emerged and been integrated into mechanistic toxicological studies, including 

toxicoproteomics (Brewer et al, 2020; Nguyen et al, 2022; Nury et al, 2023; Thomas 

et al, 2023). Toxicoproteomics is a rapidly expanding field of omics that can be broadly 

described as the global characterisation of protein expression profiling in response to 

stressors (Nguyen et al, 2022). Toxicoproteomics encompasses a triangle of three 

disciplinary areas: traditional toxicology, proteomics applications and the biological 

system to fulfil two main research aims: (i) deciphering the mode of toxicity associated 

with adverse chemical effects and (ii) governing and identifying molecular targets that 

could act as candidate biomarkers for toxicants (Suman et al, 2016). Depending upon 

the research question, toxicoproteomic approaches constitute a large-scale 

characterisation of either the whole proteome or are restricted to a class of proteins of 

interest, processes termed the shotgun approach and targeted proteomics, 

respectively (Deracinois et al, 2013). To date, numerous proteomic platforms are 
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available to apply this approach (Aslam et al, 2016). This includes gel-based and gel-

free techniques. An overview of the principle and the advantages and drawbacks of 

the commonly used techniques is summarised in Table 4.1. 
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Table 4.1 Overview of commonly used proteomics approaches.  

 
 

Technique Principle Pros Cons 

Gel-Based Techniques (Abdallah et al, 2012; Aslam et al, 2016; Deracinois et al, 2013) 

2D Gel Electrophoresis  
Separation and profiling complex protein mixtures as per 
isoelectric point and protein mass  

-Cost-effective compared to existing methods 
-Reasonable sensitivity and resolution 
-Can detect protein complexes 

-Limited reproducibility and dynamic range 
-Low throughput 
-Time consuming 
-Labour intensive 
-Difficulty in separating basic and hydrophobic proteins 
-Differential analysis is challenging 
-Inter-gel variability 

2D-DIGE Fluorescent protein sample labelling before gel separation 
-Improved sensitivity 
-Enables comparative analysis 
-Overcomes inter-gel variation with 2D gel electrophoresis 

-Time consuming 
-Labour intensive 
-Limited reproducibility and dynamic range 
-Low throughput 

Gel-Free Techniques (Abdallah et al, 2012; Al-Amrani et al, 2021; Deracinois et al, 2013) 

HPLC 
Fractionating and separating protein complexes as per to their 
distribution equilibrium differences between stationary and 
mobile phases 

-Availability of stationary and mobile phases 
-Accuracy, precision and reproducibility 
-Low sample consumption 
-Wide dynamic range 

-Costly and complex 
-Solvent consumption 

Analytical Protein and 
Peptide Microarrays  

Proteins identified after antibody capture with direct protein 
labelling 

-High-throughput technology 
-Versatile: Utilised in a broad spectrum of applications 
-Low sample consumption 
-Rapid and sensitive technique 

-Lack of standardised protocol methods 
-Highly specific antibodies are imperative for each assay; 
otherwise, non-specific binding could arise, leading to false 
positive results 
-Stability of proteins on the array surface 

MS 
Profiling and quantifying simple and complex mixtures 
according to their mass-to-charge ratio of ions  

-High-throughput technique 
-Distinctive array of applications (i.e., de novo sequencing, post-
translational modification identification) 
-Highly sensitive, precise and accurate 
-Can be coupled with other techniques (i.e., HPLC) 
-Low sample consumption 

-Costly 
-Sample handling, refinement and manipulation 
-Technical expertise required 
 
 

NMR 
Determination of the molecular structure at the atomic level via 
measuring the interaction of the radio frequency 
electromagnetic radiations and the nuclei of atoms 

-High-throughput technology 
-Non-destructive 
-Rapid 

-Costly 
-Lack of sensitivity 
-Not applicable for large proteins (molecular weight > 800 Da) 

LC–MS/ GC–MS 
Coupling of the separation feature of the chromatography 
technique with the detection power of MS 

-Gold standard; superior sensitivity and specificity 
-Multiplexing capabilities 
-High-throughput technique 
-Broad array of applications (i.e. de novo sequencing, post-
translational modification identification) 
-Low sample consumption 

-Time consuming 
-Complex 
-Costly 
-Technical expertise required 
 

Abbreviations: 2D-DIGE: 2D differential gel electrophoresis; HPLC: high-performance liquid chromatography; MS: mass spectrometry; NMR: nuclear magnetic resonance; LC–MS: 
liquid chromatography–mass spectrometry; GC–MS: gas chromatography–mass spectrometry 
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Among these proteomics techniques, increasing attention has been paid to integrating 

liquid chromatography–mass spectrometry (LC–MS) into mechanistic toxicology (Al-

Amrani et al, 2021; Li et al, 2021). The increased sensibility and specificity of LC–MS 

has revitalised the ability to profile and quantify the proteome, generating high-

throughput data acquisition with unprecedented mass accuracy, sensitivity and 

resolving power. Emphasising proteome quantification, another distinctive feature of 

integrating MS technology is the usability of numerous strategies for relevant and 

absolute protein quantification (Aslam et al, 2016). The multitude of quantitative MS 

applications can be broadly categorised based on sample labelling into label-based 

and label-free quantification methods (Figure 4.1) (Abdallah et al, 2012; Al-Amrani et 

al, 2021; Aslam et al, 2016; Deracinois et al, 2013).  

 

Figure 4.1 Quantitative mass spectrometry-based proteomics. Boxes in blue and grey 
indicate the two experimental conditions. The dashed lines indicate the parallel processing of 
the experimental conditions at each workflow step. The horizontal lines represent the step 
whereupon the blue and grey samples are pooled for the upcoming experimental workflow. 
Adopted from (Abdallah et al, 2012; Al-Amrani et al, 2021; Aslam et al, 2016; Deracinois et al, 
2013).  
 

MS: mass spectrometry; ICAT: isotope-coded affinity tag; TMT: tandem mass tagging; SILAC: 
stable-isotope labelling by amino acids in cell culture. 
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Label-based quantification analysis entails the introduction of stable isotope labels 

within the samples, thereby providing a predictable mass difference within the tested 

groups (Abdallah et al, 2012; Al-Amrani et al, 2021). Examples of well-recognised 

isotope labelling strategies involve metabolic labelling, such as isotope labelling with 

amino acids in cell culture (SILAC); chemical labelling, which includes isobaric 

labelling techniques, such as tandem mass tag and isobaric tag for absolute and 

relative quantitation (TMT/iTRAQ); and enzymatic labelling (i.e., 18O-labeling) (Anand 

et al, 2017; Aslam et al, 2016). Notably, each labelling technique has its pros and cons 

that, therefore, affect its scope of application. In contrast, the label-free technique, as 

the term implies, provides a large-scale proteome quantification independent of 

sample labelling (Anand et al, 2017). The adoption of this technique has been 

widespread in recent years due to the straightforward principle of label-free 

quantification (LFQ), the simplicity of the protocol required to implement such an 

experiment and the fact that it is time saving and cheaper than the other label-based 

methods (Aslam et al, 2016).  

Therefore, with the envisioned NRC and motivated by the successful application of 

toxicoproteomics in mechanistic toxicology, as reported extensively in the literature 

(Al-Amrani et al, 2021; Nury et al, 2023; Pizzatti et al, 2020; Thomas et al, 2023), this 

study aimed to implement a toxicoproteomic approach to elucidate the cardiotoxicity 

effects associated with a class of insulin-sensitising agents termed thiazolidinediones 

(TZDs). The objectives of this study were to (i) establish a novel micro-flow LC–MS-

based toxicoproteomic pipeline capable of profiling the proteome signatures of TZD-

treated AC16 cells, (ii) elucidate the biochemical pathways underpinning the 

cardiotoxic effects of TZD agents and (iii) identify the driver proteins associated with 

such effects through analysing differential expressed proteins (DEPs) and performing 

a weighted correlation network analysis (WGCNA). 
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4.2 Material and Methods  

4.2.1 Drugs and Chemicals  

PGZ and ROSI were purchased from Sigma-Aldrich (St Louis, MO, USA). For the in 

vitro studies, PGZ and ROSI 100 mM stock solutions were prepared in sterile dimethyl 

sulphoxide (DMSO) (Cat. No. 12611P; Cell Signaling Technology Beverly, MA, USA), 

and diluted to the appropriate IC50 concentrations with culture medium for in vitro 

experiments. The final concentration of DMSO in the medium was ≤0.1% (v/v). 

The EasyPep Mini MS Sample Prep Kit that was used for the proteomic profiling of 

cultured cells was purchased from Thermo Fisher Scientific (Cat. No. A40006; 

Rockford, IL, USA). The following items were included in the kit: lysis solution, 

universal nuclease, reduction solution, alkylation solution, PierceTM Trypsin/Lys-C 

Protease Mix (MS Grade), digestion stop solution, peptide clean-up columns, wash 

solution A, wash solution B, elution solution and low protein-binding collection tubes. 

The reagents used for the LC–MS analysis consisted of high-performance liquid 

chromatography (HPLC)-grade acetonitrile, methanol, analytical-grade formic acid 

and ultrapure water and were purchased from Fisher Scientific (Loughborough, 

Leicestershire, UK). 

4.2.2 Cells and Cell Culture 

The AC16 cell line is derived from adult human ventricular cardiomyocytes and was 

purchased from Sigma-Aldrich (Product. No. SCC109; St Louis, MO, USA). Cells were 

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM/F-12, Product. No. D6434; 

Sigma-Aldrich, St Louis, MO, USA) supplemented with 12.5% foetal bovine serum, 

1% antibiotics (streptomycin and penicillin) and 2 mM L-glutamine at 37 °C in a humid 

atmosphere of 5% CO2 and 95% air. 

4.2.3 Sample Preparation for Proteomic Profiling 

Rigorous optimisation of sample preparation and protein extraction protocols was 

conducted to ensure reproducible and reliable analytical outcomes. The EasyPep™ 

MS Sample Prep Kits served as the foundation, with further optimisation focused on 

cell density and trypsin digestion (Figure 4.2).  
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Figure 4.2 Optimisation workflow for proteomics sample preparation techniques. This 
figure outlines the sample preparation and analysis workflow employed in the study. The 
process involved (1) cell lysis, (2) reduction and (3) alkylation, (4) protein digestion, and (5) 
peptide cleanup, followed by LC–MS analysis. Optimisation was conducted for key 
steps, including cell density and trypsin digestion incubation period. Three different cell 
densities were evaluated, with two million cells selected as the optimal concentration. Trypsin 
digestion time was optimised through time-series experiments, resulting in a two-hour 
incubation period as the preferred choice. These optimised parameters ensured reliable and 
robust findings throughout the study. 
LC–MS: Liquid chromatography–mass spectrometry  

 

 

Cell seeding count is a crucial factor in the efficiency of cell lysis and protein extraction, 

the essential initial steps in bottom-up proteomics. To achieve consistent and reliable 

protein yield, various cell densities were evaluated. The cell seeding densities were 

categorised into three groups: low, moderate, and high cell counts. The low count 

included cell numbers up to 1 million, moderate ranged from 1 to 2 million cells, and 

the high count consisted of a minimum of 2 million cells.  
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The results demonstrated a direct correlation between cell seeding concentration and 

the mean number of identified proteins and peptides (Figure 4.3). The low-cell group 

exhibited the lowest counts, with an average of 813 proteins and 1543 peptides. The 

moderate group showed an increase to 3026 proteins and 13,928 peptides. However, 

the group with the highest cell count (2 million) yielded the most comprehensive 

proteomic coverage, with an average of 3285 proteins and 15,804 peptides. These 

findings, based on the results of two experimental replicates per group, suggest that 

a minimum cell seeding count of 2 million is necessary to ensure adequate protein 

coverage and maximize the identification of biologically relevant molecules in 

subsequent proteomic analyses. 

 

Figure 4.3 Effect of cell seeding density on proteomic coverage. This figure compares 
the proteomic coverage achieved using different cell seeding densities (low, moderate, and 
high). The number of identified proteins (A) and peptides (B) were evaluated for each seeding 
density. The results demonstrate that higher seeding densities led to increased proteomic 
coverage. 
 

 

Following cell count optimisation, proteolytic digestion is another critical step in 

bottom-up proteomics sample preparation. The duration and completeness of 

digestion can significantly impact the overall performance of the proteomic analysis. 

While the EasyPep™ MS Sample Prep Kits protocol recommended a 1-3 h incubation 

period, our optimisation procedure focused on assessing the percentage of zero 

missed cleavages at 1, 2, and 3 h to determine the ideal digestion duration. The 

results, based on two experimental replicates per group, were comparable across the 

three time points, with a slightly higher percentage of zero missed cleavages observed 

at 2 hours (Figure 4.4). 
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Figure 4.4 Effect of trypsin incubation time on digestion efficiency. This figure illustrates 
the impact of varying trypsin incubation times (1, 2, and 3 h) on protein digestion efficiency. 
The percentage of peptides with zero missed cleavages was assessed to evaluate digestion 
quality. The findings demonstrate comparable digestion efficiency across all incubation times. 

 

 

Collectively, based on the findings presented, a minimum of 2 million cells and a 2 h 

incubation period were selected as optimal parameters, ensuring robust peptide 

cleavage and enhanced protein identification. These optimisations established a 

robust and reproducible sample preparation process, which is essential for accurate 

mass spectrometry analysis. A detailed explanation of the protocol followed is 

provided below. 

AC16 cells were cultured to 70–80% confluence and seeded at 2×106 cells/well in six-

well plates (Cat. No. 140675; Thermo Fisher Scientific, Roskilde, Denmark). Following 

attachment, the medium was replaced with either fresh medium (control) or medium 

containing TZD agent at the calculated IC50 and incubated for 24 h. Cells were scraped 

from the six-well plates, aliquoted into 1.5 mL Eppendorf microtubes (Eppendorf, 

Hamburg, Germany) and centrifuged at 3,000 g for 10 min (4 °C). The supernatant 

was discarded, and cell pellets retained for proteomics profiling using EasyPep Mini 

MS Sample Prep Kits.  
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4.2.4 Protein Extraction, Trypsin Digestion and Peptide Clean-up 

For the protein identification and proteomic profiling steps, the cell pellets were lysed 

with 100 μL lysis buffer and resuspended thoroughly in 1 μL of universal nuclease for 

10–15 cycles until the sample viscosity was reduced. The lysates were collected, and 

the supernatant protein concentration was determined using the Pierce BCA Protein 

Assay Kit (Product. No. 10495315; Thermo Fisher, Rockford, IL, USA). For the protein 

digestion step, an aliquot containing 100 μg of protein was taken from each sample 

and transferred into a new 1.5 mL Eppendorf microtube, and the final volume was 

adjusted to 100 μL with the lysis solution. The samples were then reduced by the 

addition of 50 μL of reduction solution and alkylated by the addition of 50 μL of 

alkylation solution. The alkylated protein samples were then incubated at 95 °C for 10 

min using a heat block. The samples were then left to cool to room temperature. 

Subsequently, 50 μL of the reconstituted enzyme solution (Trypsin/Lys-C Protease 

Mix) was added to each sample, and the sample tubes were incubated for 2 h at 37 

°C in an Eppendorf ThermoMixer C (Thermo Fisher, San Jose, CA, USA) with agitation 

(600 rpm). Following the incubation period, 50 μL of digestion stop solution was added 

to each sample to terminate trypsin digestion. 

Following the instructions supplied with the EasyPep Mini MS Sample Prep Kit, 

peptide clean-up was performed after the enzymatic sample processing. The peptide 

clean-up columns provided with the kit were first placed in 2 mL microcentrifuge tubes 

and centrifuged at 3,000 g for 2 min until dry. The protein samples were then 

transferred into the dry peptide clean-up columns and centrifuged at 1,500 g for 2 min. 

The flowthrough was discarded from each column. Subsequently, 300 μL of wash 

solution A was added to each column, the tubes were centrifuged at 1,500 g for 2 min, 

and the flowthrough was discarded. The same step was repeated with 300 μL of wash 

solution B. For the elution step, the peptide columns were transferred into new 2 mL 

microcentrifuge tubes. The elution solution (300 μL) was added to each column, and 

the sample tubes were centrifuged at 1,500 g for 2 min. The eluted peptides were then 

collected and evaporated to dryness using a Thermo Scientific Savant SpeedVac 

(Thermo Fisher, San Jose, CA, USA). The dried samples were reconstituted in 100 

μL of 0.1% formic acid in water and eventually transferred to 1.5 mL LC–MS glass 

vials (Cat. No. 6PSV9-03FIVAPT; Thermo Fisher, Langerwehe, Düren, Germany) for 

LC–MS analysis. In addition to the experimental samples, quality control (QC) and 
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blank samples were prepared. The QC sample was prepared by pooling equal 

volumes of all the experimental samples, while the blank sample consisted of 50 μL 

of acetonitrile: water (50:50). 

4.2.5 Micro-flow LC–MS-based Toxicoproteomic  

4.2.5.1 Data Acquisition  

Peptide separation was performed on a binary Thermo Vanquish ultra-high-

performance liquid chromatography system where 20 μL of the reconstituted peptide 

mixture extract was injected onto a Thermo Acclaim C18 PepMap 100 column (150mm 

x 1mm, particle size 3µm) and separated over a 100min method. The column was 

maintained at 40 °C, while the autosampler temperature was set at 5 °C. For 

chromatographic separation, a consistent flow rate of 50 µl/min was used where the 

mobile phase in positive and negative heated electrospray ionisation mode (HESI+/-) 

was composed of Solvent A (99.9% water with 0.1% formic acid) and solvent B (99.9% 

acetonitrile with 0.1% formic acid) (Table 4.2). All post columns viper fittings had a 75 

μm internal diameter (black colour code). 

 

Table 4.2 HPLC gradient mode of the mobile phase 
 

No. Time Flow (ml/min) %B 

1 0.000 Run 

2 0.000 0.050 3.0 

3 65.000 0.050 20.0 

4 70.000 0.050 40.0 

5 74.000 0.050 95.0 

6 79.000 0.050 95.0 

7 84.000 0.050 3.0 

8 100.000 0.050 3.0 

9   

10 100.000 Stop Run 
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A high-resolution Exploris 240-Orbitrap mass spectrometer (Thermo Fisher Scientific) 

was used to perform bottom up proteomics analysis. Operating parameters were set 

as follows: spray voltages of 3400V in HESI +ve mode. The temperature of the ion 

transfer tube was set at 320°C with a vaporiser temperature of 75°C. Sheath, aux gas 

and sheath gas flow rates were set at 25, 5 and 0 Arb, respectively. A Top-20 Data-

Dependent Acquisition (DDA) was performed using the following parameter: survey 

scan range was 275-1500 m/z with MS1 resolution of 120,000, RF Lens of 70% and 

an intensity threshold of 1.0e4. Subsequent MS/MS scans were collected with a 

resolution of 15,000, isolation window of 1.2 m/z, and with a normalised HCD Collision 

Energy of 30%. A data dependent cycle time of 3 seconds between master scans was 

also employed. High-purity nitrogen was used as nebulising and as the collision gas 

for higher energy collisional dissociation.  

4.2.5.2 Data Processing 

Using Proteome Discoverer (PD) v3.0 software (Thermo Fisher, San Jose, CA, USA), 

the MS raw data were used to search the UniProtKB Human Reference Proteome 

database (v22.07.13; 79,740 entries), including common contaminants (247 entries), 

using the SEQUEST and Percolator algorithms involved in modified label-free 

quantification (LFQ) standard processing and consensus workflows. Figure 4.5 

outlines the processing and consensus workflows used in this study, which are 

described in detail in [Tables S6 and S7, Appendix Section 7.3] and summarised 

below (Orsburn, 2021; Zhao et al, 2020). 
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Figure 4.5 Flow chart of the Proteome Discoverer workflows applied to the acquired 
LC–MS data.  

 

The precursor mass tolerance was set to 10 ppm and 0.02 Da for fragment mass 

tolerance. Full tryptic digestion was selected, with up to two missed cleavages allowed. 

The minimum and maximum peptide lengths were set at 6 and 144 amino acids, 

respectively. Cysteine carbamidomethylation was set as a static modification, and 

oxidation of methionine (Met), Met loss and N-terminal acetylation were set as 

dynamic modifications. A maximum of three modifications were allowed per peptide. 

A concentrated target–decoy approach was applied for the false discovery rate (FDR) 

calculation, which was set to 1% for highly confident peptide hits. 

For protein abundance, the Feature Mapper node was enabled. The raw files were 

chromatographically aligned with a 10-min retention time shift. The minimum signal-

to-noise threshold for feature linking and mapping was set at a value of 5. For 

precursor peptide abundance, precursor chromatographic intensities were used for 

precursor quantification results, and the total peptide amount was the selected 

normalisation mode to correct for experimental bias. Unique and razor peptides were 

used to quantify the identified proteins. Following data processing, the search results 

were filtered to include only peptides with a confidence level greater than 95% and 

"Master proteins" with a confidence level greater than 99%. This stringent filtering 

ensured that only high-quality identifications were retained for further 
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analysis. Proteins with an FDR of less than 1% were classified as "High" 

confidence, corresponding to an experimental q-value no greater than 0.01. These 

criteria were applied to the resultant outcome features, which were subsequently 

subjected to statistical analyses. 

4.2.6 Bioinformatic Analyses of Proteomics Data 

4.2.6.1 Dimensionality Reduction Approaches and Identification of DEPs 

To capture the underlying uniformity and heterogeneity within the data obtained from 

the two sample groups, dimensionality reduction and clustering methodologies were 

performed in R v4.3.0, including principal component analysis (PCA), t-stochastic 

neighbour embedding (t-SNE) and generation of a hierarchical clustering heatmap. 

Notably, the mixOmics R package (Rohart et al, 2017) was used on the linearly 

transformed data to generate the PCA scatter plot, and two components were 

extracted. In contrast, the Rtsne (Krijthe et al, 2018) and ggplot2 (Wickham et al, 2016) 

packages were utilised to perform the nonlinear t-SNE, and the resultant output data 

were clustered based on the protein expression data.  

To identify differentially expressed proteins (DEPs), a log2 fold change (FC) value of 

1 and a p-value ≤ 0.05 were set as cutoffs. A volcano plot was accordingly generated 

to visualise the discriminant proteins using the ggplot2 package (Wickham et al, 2016). 

4.2.6.2 GO, DO and KEGG Pathway Analyses 

To acquire a systematic understanding of the biological functions and pathways 

associated with the identified DEPs, an overrepresentation analysis of the Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 

pathways was performed utilising the enrichDAVID function of the clusterProfiler 

package (Yu et al, 2012). Furthermore, mining protein–disease associations has 

opened a new avenue for exploring protein recruitment from the disease perspective. 

Therefore, disease ontology (DO) enrichment analysis was also performed using the 

Genetic Association Database, which is based on the Database for Annotation, 

Visualization and Integrated Discovery (DAVID; https://david.ncifcrf.gov; v2023q1). 

The GO, DO and KEGG enrichment terms that had a cumulative hypergeometric p-

value < 0.05 and a minimum count of 2 were considered statistically significant. 

https://david.ncifcrf.gov/


147 
 

4.2.6.3 WGCNA and Module Identification 

WGCNA is an established analytical co-correlation tool that was originally developed 

for analysing high-throughput genomic datasets predominantly via unsupervised 

clustering (Langfelder & Horvath, 2008; Liu et al, 2021). The unsupervised clustering 

method is used to classify genomic data into biologically meaningful modules of 

coexpressed genes and can be used to identify regulatory networks, disease-

associated modulation in genomic networks and the ’driver genes’ that are critical in 

disease onset and progression (Langfelder & Horvath, 2008; Liu et al, 2021). Recent 

studies have highlighted the successful deployment of WGCNA in quantitative 

proteomics (Wu et al, 2021; Zhang et al, 2018). Here, a WGCNA was constructed 

using the WGCNA r-package (Langfelder & Horvath, 2008; Wu et al, 2021) and the 

entire proteomic dataset excluding the outliers. A similarity matrix was constructed by 

measuring each pairwise protein correlation and then converted to an adjacency 

matrix using an appropriate soft threshold power (β) estimated using the 

pickSoftThreshold function (Wu et al, 2021). The obtained adjacency matrix was used 

to calculate the topology overlap matrix accompanied by the calculation of 

corresponding dissimilarity (1-TOM). Accordingly, hierarchical clustering based on the 

distance measure (1-TOM) was performed to generate a clustering dendrogram. 

Using the dynamic tree-cut algorithm, dendrogram branches with similar co-

expression were clustered into several modules, each assigned a different colour, and 

the parameter value of the minimum cluster size was set to 30. Lastly, module–trait 

correlation analysis was conducted to correlate the modules with the TZD-treated 

samples that potentially had a ’high HF risk’ compared to the control samples that had 

a ’low HF risk’. Only modules with a significant positive correlation with high HF risk 

were subjected to subsequent analysis (WGCNA’s module–GO, DO, and KEGG 

pathway analyses). 

4.2.6.4 Protein–Protein Interactions of the Key Module Proteins and 

Identification of Hub Proteins 

The list of identified proteins was uploaded to the Search Tool for the Retrieval of 

Interacting Genes/Proteins (STRING; https://string-db.org; v11.5) database to 

generate a full protein–protein interaction (PPI) STRING network limited to Homo 

sapiens with the highest confidence interaction score of 0.9. The developed network 
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was exported to the Cytoscape software platform for visualisation (Cytoscape; 

https://cytoscape.org; v3.10). The cytoHubba plugin in Cytoscape, which provided 

topological algorithms for ranking nodes, was used to identify the top 20 proteins. 

Proteins that were cytoHubba-identified driver proteins as well as enriched in 

pathways linked with HF pathogenesis from both the DEPs and WGCNA KEGG 

analyses were labelled in this study as feature proteins. 

4.2.7 Statistical Analysis 

Statistical analysis was conducted using R v4.3.0. Three independent experiments 

were performed for each proteomics analysis. Statistical significance was determined 

using Student’s or Welch’s t-tests when comparing the two groups. The experimental 

setup for this study is presented in Figure 4.6. A non-repeated one-way analysis of 

variance (ANOVA), followed by Dunnett’s post hoc test, was used for multiple 

comparisons. The correlation coefficient was assessed using Pearson and distance 

correlation analyses. A p-value ≤ 0.05 was considered statistically significant. A 

schematic flowchart of the toxicoproteomics pipeline applied for downstream analyses 

is illustrated in Figure 4.7. 

 

https://cytoscape.org/
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Figure 4.6 Experimental design for toxicoproteomics analysis. Three independent 
toxicoproteomics experiments were performed. Each experiment involved (1) cell seeding 
followed by (2) pellet preparation. The resulting cell pellets were subjected to (3) reduction, 
(4) alkylation, and (5) digestion. The tryptic peptide samples were dried, reconstituted with the 
extraction solvent and subsequently analyzed by LC-MS. 
 
LC–MS: liquid chromatography–mass spectrometry; TZD: thiazolidinedione 
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Figure 4.7 Flowchart of the toxicoproteomics pipeline used in this study for the 
downstream analyses. The total proteome of the AC16 cells produced in response to TZD 
was characterised using a novel microflow label-free shotgun toxicoproteomics approach. 
Initially, the raw LC–MS data were processed using PD, followed by further data filtering, 
normalisation and imputation, yielding a total of >1000 proteins in each experiment. 
Accordingly, downstream analysis, represented by uni- and multi-variate analyses, was 
performed on the identified proteins. WGCNA was conducted on all identified proteins. In 
parallel to WGCNA, the DEPs under the threshold values (log2FC > 1 and p ≤ 0.05) were 
captured. Further functional (GO), disease (DO) and pathway (KEGG) analyses of both the 
WGCNA results and DEPs were performed. The pathways significantly implicated in HF 
pathogenesis, which were identified from the examination of the DEPs and the WGCNA, were 
intersected. The key module proteins extracted from the WGCNA were mapped to the PPI 
network, and then the top 20 driver proteins were identified using the cytoHubba plugin. 
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Finally, proteins that were cytoHubba-identified driver proteins as well as enriched in pathways 
linked with HF pathogenesis from both the DEPs and WGCNA KEGG analyses were labelled 
in this study as feature proteins.  
 
LC–MS: liquid chromatography–mass spectrometry; DDA: data-dependent acquisition; LFQ: 
label-free quantitation; PD: Proteome Discoverer; TZD: thiazolidinedione; DEP: differentially 
expressed protein; PCA: principal component analysis; t-SNE: t-stochastic neighbour 
embedding; GO: Gene Ontology; BP: biological process; CC: cellular component; MF: 
molecular function; DO: Disease Ontology; KEGG: Kyoto Encyclopedia of Genes and 
Genomes; WGCNA: weighted correlation network analysis; PPI: protein-protein interaction. 
 

4.3 Shotgun Proteomics and Protein-Based Bioinformatics Analysis Results 

of TZD-Treated Human AC16 Cells 

4.3.1 Characterisation of the Proteome of TZD-Treated Human AC16 Cells 

To characterise the proteins and the mechanism(s) of action underlying the cardiotoxic 

activity of TZDs and identify the implicated targets, a label-free quantitative proteomic 

pipeline was applied, as depicted in Figure 4.7. After processing the raw data of the 

tryptic peptides using PD, further data filtering (FDR < 1% for both peptides and 

proteins), normalisation and imputation were conducted via NormalyzerDE (Willforss, 

Chawade, & Levander, 2018) and NAguideR (S. Wang et al., 2020) packages, yielding 

thousands of proteins in both PGZ and ROSI experiments. In both experiments, 

median normalisation was applied, followed by data imputation using the KNN 

method. 

As part of the data inspection and quality assessment, box plots of the log2 

transformed LFQ intensities for the control and the treated samples with their 

corresponding peptide retention times were plotted. Plotting box plots of log₂-

transformed LFQ intensities along with peptide retention times in proteomics serves 

as an important quality control step (Pan et al, 2017). It aids verifying data 

normalisation, ensuring consistent distributions across control and treated samples, 

and detect any systematic biases or outliers. Additionally, it allows to assess 

experimental variability by comparing the spread of intensities within each group. By 

including peptide retention times, the analysis ensures consistent peptide detection 

and alignment across runs, minimising technical artifacts. Overall, this approach helps 

confirm that differences between control and treated samples are biologically 

meaningful and not due to technical issues. In both experiments, the boxplot results 

(Figures 4.8A and 4.8C) revealed a comparable median across samples within the 

same group; nevertheless, the following samples, labelled Drug-2 and Drug-7, in PGZ 
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and ROSI experiments, respectively, were flagged as potential outliers and therefore 

excluded from the subsequent analyses. To further assess data quality, coefficient of 

variation (CV%) was plotted against raw intensity. This approach highlights technical 

variability, as lower CV% at higher intensities indicates better reproducibility, while 

higher CV% often points to noise in low-abundance signals. The plot also reveals 

intensity-dependent variability, helping identify the most reliable data range. It serves 

as a quality control tool, allowing the filtering of low-quality data with high CV%, and 

provides insights into the overall performance of the analytical workflow, ensuring 

more robust and accurate results (Mendoza‐Porras et al, 2024). Figures 4.8B and 

4.8D depict a clustering of features at low intensity values with correspondingly high 

CVs, suggesting increased relative variability for less abundant features, likely due to 

noise. Conversely, as raw intensity increased, CV values tended to decrease, 

indicating improved measurement consistency for more abundant features. Overall, 

these findings suggest robust and reproducible LC-MS system performance. 

 

Figure 4.8 Quantitative profiling of AC16 cells in response to TZD treatment. (A, C) Box 
plots of log2 abundance for each tested sample using PGZ and ROSI datasets. (B, D) 
Visualization of coefficient of variation (CV%) in PGZ and ROSI raw data.  
 
PGZ: pioglitazone; ROSI: rosiglitazone; CV: coefficient of variation 
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Various chemometric analyses were performed to profile TZD-induced, proteome-

wide changes in expression in AC16 cells. In both experiments, the multivariate PCA 

technique was employed to visualise the heterogeneity in the expression data among 

the studied samples. The PCA scores plots revealed that the control and PGZ-treated 

samples, shown in Figure 4.9A, and the control and ROSI-treated samples (Figure 

4.9B), were distinct. Nevertheless, PCA analysis identified samples labeled Drug-2 

(PGZ) and Drug-7 (ROSI) as potential outliers and therefore, these samples were 

excluded from further analyses. Besides its function in evaluating sample group 

heterogeneity, the PCA plot was employed as a quality control and assurance tool to 

assess the reliability and quality of LC-MS-based toxicoproteomics data. As shown in 

Figures 4.9A and 4.9B, all QC samples grouped together within the PCA plot and 95% 

confidence intervals, demonstrating consistent and reproducible performance of the 

LC-MS system. 

Distinct proteomic profiles differentiating control and treated groups were further 

validated following the application of t-SNE; sample separation was also achieved 

using the first two t-SNE components (Figures 4.9C and 4.9D). To discern the protein 

expression trends of the two studied genotypes globally, another t-SNE plot was 

generated in which the quantified proteins were projected into the t-SNE space and 

clustered accordingly based on their expression patterns. The t-SNE plot in Figures 

4.9E and 4.9F shows the expression-driven separation of the control and treated 

groups and highlights the downregulation trend observed in a large set of proteins 

following treatment of cells with the TZD agent.  
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Figure 4.9 Chemometric analyses of proteomics data. (A, B) 2D PCA scores plots showing 
the trend of separation between the control and TZD-treated groups. (A) The PCA scores plot 
of the PGZ-treated and control samples. (B) PCA scores plot between the ROSI-treated and 
control groups. In both (A and B), the plots demonstrate the separation between sample 
groups and the clustering of QC samples, which are colored gray and orange in A and B, 
respectively. (C, D) t-SNE plots comparing the LC–MS proteomic profiles of the control and 
TZD-treated samples. (C) The plot represents the PGZ-treated and control cells. (D) The 
separation between the ROSI-treated and control samples. In both C and D, the Rtsne values 
used were 𝑃𝑒𝑟𝑝 = 5, 𝜂 = 200, and T = 5,000. The shaded circles in plots A–D represent 95% 
confidence intervals, while the coloured dots illustrate the individual samples. (E, F) Clustered 
protein visualised within t-SNE across samples on the basis of expression. (E, F) Proteome 
datasets of PGZ and ROSI, respectively. In both E and F, the Rtsne values applied were 𝑃𝑒𝑟𝑝 

= 50, 𝜂 = 200, and T = 5,000. 
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PCA: principal component analysis; t-SNE: t-stochastic neighbour embedding; LC–MS: liquid 
chromatography–mass spectrometry; 𝑃𝑒𝑟𝑝: perplexity; 𝜂: learning rate; T: maximum number 
of iteration; DEPs: differentially expressed protein. 

To capture the DEPs responsible for the separation and clustering observed in the 

PCA and t-SNE results, a volcano plot was generated using data that fell under the 

threshold values (log2FC > 1 and p ≤ 0.05), and 237 upregulated and 368 

downregulated proteins were identified after PGZ exposure (Figure 4.10A). Proteins 

significantly affected after ROSI exposure yielded 198 significant proteins (97 

upregulated and 101 downregulated), as shown in Figure 4.10B.  

 

Figure 4.10 Volcano plots of label-free quantitative proteomic data. Volcano plot showing 
the DEPs (log2 fold change value of 1 and a −log10 p value < 0.05) identified between (A) the 
PGZ-treated and control samples and (B) the ROSI-treated and control samples. The red and 
blue dots denote significant upregulated and downregulated proteins, respectively. The grey 
dots represent the non-significant altered proteins. 
 
DEP: differentially expressed protein; PGZ: pioglitazone; ROSI: rosiglitazone. 

 

4.3.2 Functional, Disease and Pathway Analyses of the DEPs 

To gain insights into the implicated molecular mechanisms and further delineate the 

cellular responses to TZD treatment, GO, DO and KEGG pathway analyses of the 

DEPs were performed.  
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4.3.2.1 Functional, Disease and Pathway Analyses of the DEPs 

To gain insights into the implicated molecular mechanisms and further delineate the 

cellular responses to TZD treatment, GO, DO and KEGG pathway analyses of the 

DEPs were performed.  

Regarding PGZ exposure, the GO enrichment analysis based on biological process 

(BP) revealed that the DEPs were associated with various processes, including 

intermediate filament organisation, oxygen transport, blood coagulation, the mitogen-

activated protein kinase (MAPK) cascade and mitochondrial translation (Figure 

4.11A). Furthermore, the DEPs were found to be markedly enriched in molecular 

functions (MFs) associated with protein binding, haptoglobin binding, oxygen 

transporter activity and extracellular matrix (ECM) structural constituents (Figure 

4.11A). Parallel to the BP and MF analysis findings, the DEPs were overrepresented 

in compartments, including the cytosol, extracellular exosome and cytoplasm (Figure 

4.11A). In response to ROSI treatment, the GO functional analyses showed that the 

DEPs were predominantly assembled into BP linked to nucleosome assembly, 

intermediate filament organisation, protein folding, telomere organisation, innate 

immune response in mucosa and Rab protein signal transduction (Figure 4.11B). On 

the MF level, the DEPs were mainly involved in structural constituents of chromatin, 

RNA binding, protein heterodimerization activity, ATPase activity, nucleosomal DNA 

binding and DNA binding (Figure 4.11B). On the CC levels, the DEPs were 

predominantly localised in the nucleosome, cytosol, blood microparticle, membrane, 

nuclear chromosome and nucleus (Figure 4.11B). 

 

Figure 4.11 Functional analysis of the DEPs. The top 10 enriched GO terms for the BP, CC 
and MF categories of the DEPs of PGZ (A) and ROSI (B).  
DEP: differentially expressed protein; PGZ: pioglitazone; ROSI: rosiglitazone; GO: Gene 
Ontology; BP: biological process; CC: cellular component; MF: molecular function 
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The DO analysis revealed that the PGZ’s DEPs were predominantly associated with 

cardiovascular diseases (CVDs), such as atherosclerotic CVD, myocardial infarction 

(MI), peripheral (i.e., venous thromboembolism) and cerebrovascular (i.e., stroke) 

diseases (Figure 4.12A). Interestingly, as shown in Figure 4.12A, 103 DEPs were 

enriched in the DO termed ’type 2 diabetes-oedema-rosiglitazone’. This finding could 

potentially explain the worsening body congestion noted in diabetic patients who use 

PGZ as part of their treatment, as evidenced in numerous case reports (De Flines & 

Scheen, 2007). 

However, the DO enrichment analysis of the DEPs induced by ROSI revealed their 

implications in various diseases, including blood disorders (glucosephosphate 

dehydrogenase deficiency, sickle cell anaemia), neurodegenerative disorders (e.g., 

Alzheimer’s disease, Parkinson’s disease) and peripheral diseases, such as venous 

thrombosis. Similar to PGZ’s DO findings, the majority of DEPs were markedly 

enriched in the DO termed ’type 2 diabetes-oedema-rosiglitazone’, signifying the 

implication of oedema in cardiotoxicity pathogenesis (Figure 4.12B). 

 

Figure 4.12 DO enrichment analysis results for the DEPs. (A and B) The bubble plots 
represent a subset of the enriched DO terms of the DEPs identified in the PGZ and ROSI data, 
respectively. In A and B, the bubble size and colour represent the number of DEPs enriched 
in the pathway and the enrichment significance, respectively.  
 

DEP: differentially expressed protein; PGZ: pioglitazone; ROSI: rosiglitazone; DO: Disease 
Ontology. 
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The KEGG pathway analysis revealed 37 enriched pathways that fulfilled the applied 

criteria of a p-value < 0.05 and a minimum count of 2 (Figure 4.13A, [Table S8, 

Appendix Section 7.3]). The KEGG pathway analysis findings also showed that the 

screened proteins were associated with pathways primarily involved in immune-

related cellular processes and signal transduction-based pathways, which include the 

complement and coagulation cascades (KEGG: 04610), platelet activation (KEGG: 

04611), neutrophil extracellular trap formation (KEGG: 04613), the Wingless-related 

integration site (Wnt) signalling pathway (KEGG: 04310), the phosphatidylinositol 3’ 

kinase-protein kinase B (PI3K-Akt) signalling pathway (KEGG: 04151), extracellular 

matrix (ECM)-receptor interaction (KEGG: 04512), focal adhesion (KEGG: 04510) and 

the regulation of the actin cytoskeleton (KEGG: 04810). The pathway-topology 

analysis (Figure 4.13B, [Table S9, Appendix Section 7.3]) of the proteins markedly 

altered in response to ROSI showed a significant association between the DEPs and 

pathways linked to immune-related systems (i.e., neutrophil extracellular trap 

formation (KEGG: 04613)), circulatory system and cardiovascular disease (e.g., 

cardiac muscle contraction (KEGG: 04260), diabetic cardiomyopathy (KEGG: 05415)) 

and excretory system ( e.g., endocrine and other factor-regulated calcium 

reabsorption (KEGG: 04961), proximal tubule bicarbonate reclamation (KEGG: 

04964) and collecting duct acid secretion (KEGG: 04966)). Furthermore, the KEGG 

analysis revealed the involvement of DEPs in pathways related to the following: 

carbohydrate metabolism (i.e., glycolysis / gluconeogenesis (KEGG: 00010)), citrate 

cycle (TCA cycle (KEGG: 00020), pyruvate metabolism (KEGG: 00620)), energy 

metabolism (i.e., oxidative phosphorylation (KEGG: 00190)) and cellular processes 

(i.e., phagosome (KEGG: 04145), ferroptosis (KEGG: 04216), necroptosis (KEGG: 

04217)). 
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Figure 4.13 KEGG pathway analysis results for the DEPs. The bubble plots in A and B list 
all the significantly enriched pathways of the DEPs of PGZ and ROSI, respectively. In A and 
B, the bubble size and colour represent the number of DEPs enriched in the pathway and the 
enrichment significance, respectively. 
 
DEP: differentially expressed protein; PGZ: pioglitazone; ROSI: rosiglitazone; KEGG: Kyoto 
Encyclopedia of Genes and Genomes. 
 
 
 

4.3.3 WGCNA and Module Identification 

A WGCNA was constructed using a PGZ dataset that included 19 samples by adopting 

the WGCNA package. To ensure a scale-free network, a soft threshold power (β = 8; 

scale free R2=0.85) was selected as shown in Figures 4.14A and 4.14B, yielding four 

protein co-expression modules (blue, yellow, turquoise and brown), which ranged in 

size from 60 to 904 proteins (Figure 4.15A).  
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Figure 4.14 WGCNA network construction using PGZ dataset. (A, B) Determination of 
optimal soft threshold power for scale-free topology. (A) and (B) show the scale-free topology 
index and the mean connectivity for each power value between 1 and 20, respectively.  
 
WGCNA: weighted correlation network analysis; PGZ: pioglitazone 

 

To achieve a clear understanding of the molecular changes that occur in AC16 cells 

following PGZ treatment, a module–trait correlation analysis was conducted to 

correlate the identified modules with the PGZ-treated samples that potentially had a 

’high HF risk’ compared to the control samples that had a ’low HF risk’. It was found 

that only the blue module demonstrated a strong positive correlation with the high-HF-

risk samples (correlation coefficient = 0.964, p < 0.001) (Figure 4.15B). An 

intramodular analysis demonstrating the correlation between blue module members 

(MMs) and protein significance for the chosen trait is illustrated in Figure 4.15C.  
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Figure 4.15 Analysis of the protein coexpression modules. (A) Dendrogram of all proteins, 
with dissimilarity clustered on topological overlap. (B) Diagram showing the correlation 
between each of the five modules and the HF-risk trait. The blue module significantly 
correlated with the chosen trait (R = 0.964, p < 0.001). (C) Scatterplot and correspondent 
regression line (in red) with 95% confidence interval of the blue MMs versus protein 
significance for HF risk.  
 
HF: heart failure; MMs: module members. 

 

Regarding the ROSI dataset, a soft-threshold power of 8 was selected on the basis of 

the scale-free fit index and mean connectivity values illustrated in Figures 4.16A and 

4.16B (β = 8; scale free R2 = 0.85).  
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Figure 4.16 WGCNA network construction using ROSI dataset. (A, B) Determination of 
optimal soft threshold power for scale-free topology. (A) and (B) show the scale-free topology 
index and the mean connectivity for each power value between 1 and 20, respectively.  
 
WGCNA: weighted correlation network analysis; ROSI: rosiglitazone 

 

The WGCNA algorithm clustered proteins into eight co-expression modules, which 

were blue, turquoise, black, red, brown, green, pink and yellow modules, ranging in 

size from 45 to 148 proteins (Figure 4.17A). In regard to module–trait correlation 

analysis, the brown module showed the highest positive correlation with the high-HF-

risk samples, with a correlation coefficient value of (correlation coefficient = 0.701, p 

< 0.05) (Figure 4.17B). A scatter plot of brown MMs vs. protein significance is shown 

in Figure 4.17C. 
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Figure 4.17 Analysis of the protein coexpression modules. (A) Dendrogram of all proteins, 
with dissimilarity clustered on topological overlap. (B) Diagram showing the correlation 
between each of the eight modules and the HF-risk trait. The brown module significantly 
correlated with the chosen trait (R = 0.701, p < 0.001). (C) Scatterplot and correspondent 
regression line (in red) with 95% confidence interval of the brown MMs versus protein 
significance for HF risk.  
 
HF: heart failure; MMs: module members. 

 

 

4.3.4 Functional, Disease and Pathway Analyses of the Chosen Modules  

Given that only the blue and brown modules demonstrated a positive correlation with 

HF risk in the PGZ and ROSI datasets, additional GO, DO and KEGG enrichment 

analyses were performed with these modules to further characterise the biological 

relevance of the MMs and their roles in pathway and disease processes.  
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4.3.4.1 Biological Inferences of the Blue Module–PGZ  

The GO enrichment analysis revealed that the blue MMs were associated with BPs 

linked to nucleosome assembly, fibrin clot formation, mitochondrial ATP synthesis and 

the tricarboxylic acid cycle (Figure 4.18A). In terms of MFs, the blue MMs were 

implicated in protein binding, RNA binding, ATPase activity, haptoglobin binding and 

calcium-ion binding (Figure 4.18A). The analysis also revealed that most of the blue 

MMs were localised in the extracellular exosome, cytosol, mitochondria and nucleus 

(Figure 4.18A).  

The DO enrichment analysis revealed that the blue MMs were primarily associated 

with the same heart diseases associated with DEPs and other lipid disorders (Figure 

4.18B). It was also found that 86 blue MMs were enriched for ‘type 2 diabetes-

oedema-rosiglitazone’, which was consistent with the results of the DO enrichment 

analysis of the full set of DEPs.  

The KEGG pathway analysis revealed that the blue MMs were significantly enriched 

in pathways related to CVDs, the immune system, cellular processes and energy 

metabolism. The immune-related pathways included the complement and coagulation 

cascades (KEGG: 04610), platelet activation (KEGG: 04611) and neutrophil 

extracellular trap formation (KEGG: 04613). The CVD-related pathways included 

diabetic cardiomyopathy (KEGG: 05415) and lipid and atherosclerosis (KEGG: 

05417). The cellular processes–related pathways included ferroptosis (KEGG: 

04216), necroptosis (KEGG: 04217), the phagosome (KEGG: 04145), the ECM-

receptor interaction (KEGG: 04512), focal adhesion (KEGG: 04510) and the regulation 

of the actin cytoskeleton (KEGG: 04810). The energy metabolism–related pathway 

was the oxidative phosphorylation pathway (KEGG: 00190) (Figure 4.18C, [Table 

S10, Appendix Section 7.3]). 

https://www.genome.jp/kegg-bin/show_pathway?map05415
https://www.genome.jp/kegg-bin/show_pathway?map05417
https://www.genome.jp/kegg-bin/show_pathway?map04217
https://www.genome.jp/kegg-bin/show_pathway?map04145
https://www.genome.jp/kegg-bin/show_pathway?map00190
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Figure 4.18 Functional, disease and pathway analyses of the blue module. (A) The top 
10 enriched GO terms for the BP, CC and MF categories. (B) DO enrichment analysis results 
(top 10) for the blue module. (C) KEGG enrichment analysis results for the blue module. In 
(B) and (C), the bubble size and colour represent the number of blue MMs enriched in the 
pathway and the enrichment significance, respectively.  
 
GO: Gene Ontology; BP: biological process; CC: cellular component; MF: molecular function; 
DO: Disease Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; MMs: module 
members. 
 

4.3.4.2 Biological Inferences of the Brown Module–ROSI  

The GO functional analysis of the brown MMs (Figure 4.19A) revealed their 

implication in BPs associated with cellular oxidant detoxification, hydrogen peroxide 

catabolic process, cytoplasmic translation, negative regulation of growth and 

intermediate filament organisation. In addition, the brown MMs were markedly 

enriched in MFs related to endopeptidase inhibitor activity, organic acid binding, 

serine-type endopeptidase inhibitor activity, oxygen transporter activity and oxygen 

binding. The proteins in the brown module were found to be predominantly localised 
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in the extracellular exosome, blood microparticle, cytosol, extracellular space, focal 

adhesion, haptoglobin-haemoglobin complex and extracellular regions. 

Regarding the DO ontology, the proteins in the brown module were mainly enriched 

in blood disorders (i.e., α-thalassemia, β-Thalassemia, anaemia), dyslipidaemias and 

neurodegenerative disorders, including Alzheimer’s disease. Interestingly, consistent 

with the findings for PGZ, ‘type 2 diabetes-oedema-rosiglitazone’ was also enriched 

(Figure 4.19B). 

Lastly, KEGG pathway enrichment analysis suggested that 133 proteins in the brown 

module were significantly enriched in the following pathways: mineral absorption 

(KEGG: 04978), ribosome (KEGG: 03010), and complement and coagulation 

cascades (KEGG: 04610) (Figure 4.19C, [Table S11, Appendix Section 7.3]). 

 

Figure 4.16 Functional, disease and pathway analyses of the brown module. (A) The top 
10 enriched GO terms for the BP, CC and MF categories. (B) DO enrichment analysis results 
(top 10) for the brown module. (C) KEGG enrichment analysis results for the brown module. 
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In (B) and (C), the bubble size and colour represent the number of brown MMs enriched in the 
pathway and the enrichment significance, respectively.  
 
GO: Gene Ontology; BP: biological process; CC: cellular component; MF: molecular function; 
DO: Disease Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; MMs: module 
members. 

 

4.3.5 WGCNA and Identification of Hub Proteins 

To further identify the key proteins (prognostic biomarkers) implicated in the 

pathoetiology of TZD use and HF risk, the pathways significantly implicated in HF 

pathogenesis, which were identified from the examination of the DEPs and the 

WGCNA, intersected. In the PGZ dataset, this resulted in the identification of seven 

pathways: the complement and coagulation cascades (KEGG: 04610), platelet 

activation (KEGG: 04611), neutrophil extracellular trap formation (KEGG: 04613), 

ferroptosis (KEGG: 04216), the ECM-receptor interaction (KEGG: 04512), focal 

adhesion (KEGG: 04510) and the regulation of the actin cytoskeleton (KEGG: 04810) 

(Figure 4.20A). In the context of the ROSI dataset, two pathways were identified: 

mineral absorption (KEGG: 04978) and ribosome (KEGG: 03010) (Figure 4.20C). 

Subsequently, the hub proteins of each chosen module (blue module–PGZ; brown 

module–ROSI) were extracted. The MMs were mapped to the PPI network, and then 

the top 20 driver proteins were identified using the cytoHubba plugin. Brief descriptions 

of the identified top 20 driver proteins for each module, as well as their expression 

levels, are summarised in (Figure 4.20B, Table 4.3) and (Figure 4.20D, Table 4.4) 

for the blue and brown modules, respectively. 

With respect to blue module–PGZ, among the 20 listed proteins, eight (P60709, 

P05556, P00533, P02751, P00734, P21796, P02679 and P02452) intersected with 

the proteins enriched in the seven pathways (DEPs and WGCNA) mentioned above 

and were therefore labelled as feature proteins. For brown module–ROSI, eight 

proteins, which were P30050, Q9UNX3, P61254, P46777, P62277, P39019, P62857 

and P62081, were also found to fulfil the proposed criteria and hence recognised as 

feature proteins.  
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Figure 4.20 Chord diagrams and identification of hub proteins. The common pathways 
enriched with both (the DEPs of PGZ and blue MMs–PGZ) and (the DEPs of ROSI and brown 
MMs–ROSI) are presented in plots A and C, respectively. The top 20 hub proteins in the blue 
module (B) and brown module (D) identified using Cytoscape's cytoHubba plugin. The node 
colour denotes the ranking score (red = high score, orange = intermediate score and yellow = 
low score). 
PGZ: pioglitazone; ROSI: rosiglitazone; DEP: differentially expressed protein; KEGG: Kyoto 
Encyclopedia of Genes and Genomes; MM: module member. 
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Table 4.3 The top 20 hub proteins in the blue module identified using Cytoscape’s cytoHubba 
plugin. 

 
 

Rank Accession No. Score          Protein Name    Gene Symbol log2 FC p-value 

1 P60709 32 Actin, cytoplasmic 1 ACTB 0.45 1.80E-03 

2 P25705 30 
ATP synthase subunit-α, 

mitochondrial 
ATP5A1 0.37 4.05E-04 

3 P06576 28 
ATP synthase subunit-β, 

mitochondrial 
ATP5B 0.24 9.71E-03 

3 P05556 28 Integrin β-1 ITGB1 0.14 1.04E-02 

5 P00533 27 
Epidermal growth factor 

receptor 
EGFR 2.54 3.95E-06 

6 P02751 25 Fibronectin FN1 4.48 2.35E-08 

7 P00734 23 Prothrombin F2 1.08 2.89E-06 

7 P30049 23 
ATP synthase subunit-δ, 

mitochondrial 
ATP5D 0.40 3.22E-03 

7 P11142 23 
Heat shock cognate 71 kDa 

protein 
HSPA8 0.09 2.96E-02 

7 P21796 23 
Voltage-dependent anion-
selective channel protein 1 

VDAC1 0.52 2.80E-05 

7 P38646 23 Stress-70 protein, mitochondrial HSPA9 0.07 1.47E-01 

7 P36542 23 
ATP synthase subunit-γ, 

mitochondrial 
ATP5C1 0.12 2.39E-01 

13 P08238 22 Heat shock protein HSP 90-β HSP90AB1 0.10 5.19E-02 

13 P02679 22 Fibrinogen-γ chain FGG 1.25 1.31E-05 

15 P21912 21 
Succinate dehydrogenase 
[ubiquinone] iron-sulphur 

subunit, mitochondrial 
SDHB 0.69 8.11E-04 

15 P02647 21 Apolipoprotein A-I APOA1 1.44 3.10E-07 

15 P11021 21 
Endoplasmic reticulum 

chaperone BiP 
HSPA5 0.12 4.42E-02 

18 P02765 20 α-2-HS-glycoprotein AHSG 0.95 6.44E-05 

18 P02452 20 Collagen α-1(I) chain COL1A1 3.61 3.71E-07 

18 P13073 20 
Cytochrome c oxidase subunit 4 

isoform 1, mitochondrial 
COX4I1 0.08 3.29E-01 
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Table 4.4 The top 20 hub proteins in the brown module identified using Cytoscape’s 
cytoHubba plugin. 
 

 
 
 
 

 

 

 

 

 

Rank Accession No. Score Protein Name Gene Symbol log2 FC p-value 

1 P62277 10 
Small ribosomal subunit protein 

uS15 
RPS13 1.28 7.55E-02 

1 P39019 10 
Small ribosomal subunit protein 

eS19 
RPS19 1.46 3.53E-03 

1 P62081 10 
Small ribosomal subunit protein 

eS7 
RPS7 2.08 1.59E-02 

1 P62857 10 
Small ribosomal subunit protein 

eS28 
RPS28 0.62 4.89E-02 

5 P30050 7 
Large ribosomal subunit protein 

uL11 
RPL12 1.17 3.26E-02 

5 Q9UNX3 7 Ribosomal protein uL24-like RPL26L1 0.89 4.43E-02 

5 P46777 7 
Large ribosomal subunit protein 

uL18 
RPL5 0.73 2.10E-01 

5 P61254 7 
Large ribosomal subunit protein 

uL24 
RPL26 0.89 4.43E-02 

9 P02760 6 α-1-microglobulin AMBP 2.22 1.77E-02 

9 P55884 6 
Eukaryotic translation initiation 

factor 3 subunit B 
EIF3B 1.35 1.81E-03 

9 P69905 6 Hemoglobin subunit α HBA1; HBA2 0.23 3.32E-01 

12 P02765 5 α-2-HS-glycoprotein AHSG 1.42 3.12E-03 

12 Q9Y262 5 
Eukaryotic translation initiation 

factor 3 subunit L 
EIF3L 1.27 7.16E-02 

14 P01008 3 Antithrombin-III SERPINC1 2.33 2.22E-02 

14 P02749 3 β-2-glycoprotein 1 APOH 0.29 1.54E-01 

16 P02452 2 Collagen α-1(I) chain COL1A1 1.43 4.65E-03 

16 P02751 2 Fibronectin FN1 1.53 4.38E-02 

16 O14556 2 
Glyceraldehyde-3-phosphate 

dehydrogenase 
GAPDHS 1.41 1.57E-01 

16 P05062 2 Fructose-bisphosphate aldolase B ALDOB 1.74 6.38E-03 

16 P02774 2 Vitamin D-binding protein GC 2.07 2.16E-03 
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4.4 Discussion 

TZDs are a class of antidiabetic agents approved for the management of T2DM. 

Besides their well-recognised capability in improving insulin sensitivity, TZDs have 

been shown to exert multiple pleotropic effects, including anti-inflammatory, potential 

neuroprotective, and blood pressure-lowering effects (DeFronzo et al, 2013). These 

pleotropic actions have extended TZDs’ therapeutic horizons beyond glycaemic 

control and encouraged their application in managing T2DM and its related 

complications (DeFronzo et al, 2013). Nevertheless, the widespread use of TZDs in 

clinical practise has shortly been hampered following reports of HF cases associated 

with their usage (De Flines & Scheen, 2007). Owing to the uncharacterised 

mechanisms underpinning TZD-induced HF, TZD agents have failed to garner 

widespread clinical interest, and further exploration of their pleotropic effects has been 

hindered, resulting in their gradual disappearance from the realm of active research. 

To date, the exponential growth of proteomics techniques, along with bioinformatic 

tools, has fuelled a surge in their application within the areas of pharmacology and 

mechanistic toxicology (Karahalil, 2016; Li et al, 2021; Nguyen et al, 2022). Substantial 

evidence from various papers has corroborated the successful integration of the 

toxicoproteomics approach in devoting and predicting the mechanisms of drugs’ 

adverse effects (Karahalil, 2016; Li et al, 2021; Nguyen et al, 2022). Hence, by 

exploiting the innovative potential of toxicoproteomics while upholding the long-term 

strategic vision of the NRC, this study aims to clarify the controversy behind the 

cardiotoxic potential of TZDs and to elucidate the molecular mechanisms behind 

TZDs’ deleterious effect by deciphering the AC16 cellular proteome following TZD 

administration using a novel, label-free, quantitative shotgun toxicoproteomics 

pipeline. 

Using the LFQ shotgun proteomic pipeline outlined in Figure 4.7, the heterogeneity 

and similarity between the proteome signatures of the two cohorts (TZD-treated cells 

and control cells) were assessed using two unsupervised dimensionality reduction 

techniques, namely PCA and t-SNE. Although both methods fall under the umbrella of 

dimensionality reduction, each utilises a unique algorithm, which enables their use in 

a variety of contexts. In our analysis, these two techniques were initially used to 

visualise the clustering of biological samples. Consistently, the overall results 
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represented by the PCA and t-SNE plots in both experiments showed that the control 

and treated groups had distinct proteome patterns, as illustrated in Figure 4.9. Since 

PCA is a linear dimensionality reduction tool, and the presence of outliers could distort 

the linear relationship between features, PCA was also used to identify the potential 

outliers among the included samples (de Oliveira Andrade et al, 2022). D2 in PGZ-

treated AC16 and D7 in ROSI-treated cells were found to be outliers and were 

therefore excluded from the subsequent analysis. t-SNE, on the other hand, 

constitutes a nonlinear mapping approach to the dataset that preserves the local 

structure of the data; thus, it is less sensitive to outliers and is not an ideal tool for 

outlier detection (Bajal et al, 2022; de Oliveira Andrade et al, 2022). However, the 

effectiveness of t-SNE at the local level and its ability as a nonlinear stochastic model 

to capture the complex interplay between features/data points empowers its use for 

clustering (Bajal et al, 2022; de Oliveira Andrade et al, 2022). Hence, based on the 

aforementioned characteristics of t-SNE and given that t-SNE is an unsupervised 

method, an attempt to elucidate the biological factor that mediated the separation of 

the two tested groups was made by taking advantage of the clustering feature of t-

SNE and performing t-SNE-based cluster analysis. Notably, whole-proteome 

clustering based on protein expression levels was performed, and the generated t-

SNE plots (Figures 4.9E and 4.9F) showed that expression-mediated clustering 

effectively distinguished the two cohorts. The clustering analysis also sheds light on 

the trend of protein downregulation, which was observed in the majority of proteins 

following TZD agent treatment. These two findings extracted from the t-SNE plot 

strongly indicate the potential for acquiring output on biological prevalence when using 

an unsupervised technique, such as t-SNE.  

Correspondingly, DO, functional and pathway enrichment analyses of each TZD 

agent’s DEPs and the TZD agent’s-chosen MMs (WGCNA) were performed. Within 

each experiment, the overall results suggest shared functional proteomic signatures 

between the ‘PGZ-DEPs vs. PGZ-blue MMs’ and ‘ROSI-DEPs vs. ROSI-brown MMs’, 

as considerable intersections were noted in most of the findings obtained from the DO, 

GO and KEGG pathway analyses. However, from a macro perspective, a holistic 

examination of PGZ and ROSI analysis findings uncovered common and unique 

functional and pathway findings that could explain the molecular basis underpinning 

the cardiotoxicity of each agent. A detailed description of the overlapping and distinct 
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molecular mechanisms that each TZD agent elicits to induce heart failure will be 

provided accordingly. 

4.4.1 Converging Pathways to Cardiotoxicity: Unravelling the Shared Molecular 

Signatures of PGZ and ROSI 

4.4.1.1 Distorted Cardiac Energetics and Mitochondrial Dysfunction 

The biological inferences of TZD-induced alteration in the AC16 proteome suggest 

that PGZ and ROSI exhibit cytotoxicity due to mitochondrial impairment. The exact 

mechanism behind the induced mitochondrial dysfunction is complex. However, our 

analysis of the GO and KEGG pathways strongly suggests perturbation in 

mitochondrial cardiac energetics as the hallmark characteristic of TZD cardiotoxicity. 

Intriguingly, a significant downregulation in crucial pathways implicated in cardiac 

energetics involving oxidative phosphorylation, citrate cycle (TCA cycle) and pyruvate 

metabolism were noted in both TZD agents. However, the signalling pathways 

underpinning these processes revealed a striking divergence between PGZ and ROSI.  

With regard to PGZ, the results of our enrichment analyses suggested that the treated 

cells exhibited mitochondrial uncoupling, represented by significant upregulation of 

uncoupling proteins referred to as adenine nucleotide translocators (ANTs), including 

ANT2. ANTs belong to a large mitochondrial solute carrier family of proteins that 

catalyse the ATP/ADP exchange across the inner mitochondrial membrane and 

therefore play a crucial role in energy homeostasis (Busiello et al, 2015; Demine et al, 

2019). Apart from their role in mitochondrial energy output, ANTs also exhibit 

uncoupling properties (Busiello et al, 2015; Demine et al, 2019). The uncoupling 

properties of ANTs are reported to be secondary to their intrinsic ability to mediate H+ 

leakage across the inner mitochondrial membrane, which leads to mitochondrial 

membrane potential disruption, proton gradient dissipation and, eventually, 

mitochondrial uncoupling (Busiello et al, 2015; Demine et al, 2019). The ability of PGZ 

to induce ANT-mediated uncoupling was also suggested in a recent study performed 

with isolated rat liver mitochondria (Kharechkina et al, 2021). Kharechkina et al. 

investigated the role that mitochondrial carriers (ANTs) play in mitochondrial 

depolarisation and the uncoupling effects associated with PGZ exposure in liver 

mitochondria (Kharechkina et al, 2021). They found that the coadministration of 

carboxyatractyloside (an ANT inhibitor) with PGZ-containing medium ameliorated 
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PGZ-induced mitochondrial depolarisation and uncoupling activities, suggesting that 

the latter effects were mediated by ANTs (Kharechkina et al, 2021). 

With respect to ROSI, our toxicoproteomics analysis revealed a significant 

perturbation in crucial proteins involved in the oxidation of pyruvate and the citric acid 

cycle. For instance, a marked downregulation of fumarate hydratase (FH), the 

homotetrameric mitochondrial enzyme that catalyses the reversible hydration of 

fumarate to malate as a step in the citric acid cycle (Valcarcel-Jimenez & Frezza, 

2023), was associated with ROSI-treated cells. This downregulation of FH could result 

in excessive accumulation of fumarate, disrupting this vital metabolic pathway and 

thereby impeding cellular energy production. Another perturbated protein in response 

to ROSI treatment and crucially involved in the pyruvate and citric acid cycle was 

malate dehydrogenase, a member of the malate–aspartate shuttle (Ahn et al, 2020). 

The malate shuttle is a metabolic pathway that serves as a conduit for electrons 

produced during glycolysis, enabling their translocation from the cytosol to the 

mitochondria for oxidative phosphorylation (Ahn et al, 2020). The primary role of 

malate dehydrogenase is to catalyse the reversible conversion of malate to 

oxaloacetate, facilitating the transfer of NADH from the cytoplasm to mitochondria 

(Ahn et al, 2020). Hence, with the recognition of the malate dehydrogenase role, its 

disruption markedly disrupts the malate–aspartate shuttle, leading to reduced NADH 

transfer to the mitochondria and thus compromising oxidative phosphorylation. The 

influence of ROSI on oxidative phosphorylation also reverberates by modulating the 

expression of mitochondrial complexes, the driving force of mitochondrial ATP 

production. The treatment of ROSI is associated with downregulation of human 

ubiquinol-cytochrome c reductase core protein 1 (UQCRC1), a vital subunit of the 

mitochondrial complex Ⅲ (Yi et al, 2020). The UQCRC1 protein plays an essential 

role in the catalytic activity of complex Ⅲ,serving as key facilitator of electron transport 

from ubiquinol to cytochrome c, thus contributing to the overall functionality of complex 

Ⅲ (Yi et al, 2020). Hence, downregulation of this vital subunit could dramatically 

disrupt the complex Ⅲ role, resulting in compromised electron flow and diminished 

ATP production. These findings were consistent with an in vivo study through which 

disrupting one UQCRC1 allele in mice showed perturbed complex Ⅲ formation, 

leading to a decrease in complex Ⅲ activity and ATP content in the brain at baseline 
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(Shan et al, 2019). Furthering the understanding of ROSI’s impact on mitochondrial 

complexes, an additional marked downregulation in mitochondrially encoded 

cytochrome c oxidase I (MT-CO1) was observed. The MT-CO1 protein is a pivotal 

subunit of cytochrome c oxidase, the terminal enzyme in the electron transport chain, 

serving as an electron acceptor, mediating the transfer of electrons from cytochrome 

c to oxygen and driving the synthesis of ATP (Singh et al, 2019). Its downregulation 

strongly reflects the direct interplay between ROSI and mitochondrial complexes. In 

parallel with the downregulation in pyruvate metabolism and the citric acid cycle noted 

in response to TZD treatment, an upregulation in lactate dehydrogenase was 

observed, suggesting an adaptive response to limited oxygen availability (hypoxic 

state), allowing cells to compensate for the limited energy supply. This proposed 

theory is strongly supported by the upregulation of the hypoxia-inducible factor 1 (HIF-

1) pathway identified in the PGZ- and ROSI-KEGG analyses. As such, it seems that 

TZDs induced mitochondrial damage that led to AC16 cells’ death due to a decline in 

ATP production. These findings correspond with a previous in vivo study performed in 

mice, in which ROSI treatment significantly compromised mitochondrial respiration 

and substrate oxidation, resulting in decreased ATP production and deterioration of 

cardiac function (He et al, 2014). These findings also agreed with those of several 

other studies that showed a correlation between the cytotoxic effects of various 

chemicals and insufficient ATP levels (Julie et al, 2008; Rachek et al, 2009).  

The KEGG pathway analyses also suggested that the impact of TZD on oxidative 

phosphorylation extends beyond the confines of ATP production, influencing a diverse 

array of cellular mechanisms, including redox status. In both TZD agents, the reactive 

oxygen species pathway showed significant enrichment of proteins also involved in 

oxidative phosphorylation, implying a shared mechanistic basis underlying both 

processes. One possible explanation for the convergence of both pathways with a 

noteworthy degree of similarity in the protein profile is that the TZD-induced oxidative 

stress is secondary to mitochondrial uncoupling and the interruption in oxidative 

phosphorylation, with the increase in electron leakage from the electron transport 

chain resulting from mitochondrial damage and leading to excessive generation of 

ROS species (Zorova et al, 2018). 
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4.4.1.2 Molecular Insights Into TZD-Induced AC16 Cellular Death 

The induction of energy deficit, oxidative stress and hypoxia often culminates in 

cellular death. Regardless of whether cell death is an endpoint or a sign of impending 

disease progression, it is a common pathological mechanism that underpins all CVDs. 

However, there are distinct types of cell death, and they are disease dependent to a 

substantial extent. Our toxicoproteomics analysis uncovered that two forms of cell 

death were shared between PGZ and ROSI: ferroptosis and necroptosis.  

Interestingly, our analysis of the DEPs identified in the present study and our WGCNA 

pathway analysis revealed that TZDs had an inhibitory effect on a distinct type of cell 

death: ferroptosis. Ferroptosis is defined as an iron-dependent type of non-apoptotic 

cell death that is primarily characterised by two main biochemical features: iron 

accumulation and lipid peroxidation (Hu et al, 2022). There have been mixed results 

regarding the effect of TZDs on ferroptosis (Chen et al, 2020; Liang et al, 2022). 

However, in our analysis, TZDs showed a strong ferroptosis inhibitory effect mediated 

by glutathione peroxidase-4 (GPX4)-dependent (PGZ only) and independent 

pathways (PGZ & ROSI). Exposing AC16 cells to PGZ led to significant upregulation 

of the antioxidant defence enzyme GPX4, a cornerstone regulator of ferroptosis (Hu 

et al, 2022). Since ferroptosis is triggered by iron-dependent lipid peroxidation 

accumulation, the induction of GPX4 production, which functionally disrupts lipid 

peroxidation by converting lipid hydroperoxides into nontoxic lipid alcohols, will 

eventually result in ferroptosis suppression. In addition to this GPX4-dependent 

inhibitory effect, the expression of ferritin was significantly upregulated in both ROSI- 

and PGZ-treated cells, suggesting a GPX4-independent mechanism for ferroptosis 

inhibition. Upregulation of ferritin, the iron-storage form, can limit the availability of iron 

in the body and thus limit ferroptosis (Ma et al, 2022). Another GPX4-independent 

pathway revealed by our analysis and implicated only in PGZ-mediated ferroptosis 

inhibition is the interaction of PGZ with CDGSH iron-sulphur domain-containing protein 

1 (mitoNEET), an outer mitochondrial membrane protein that plays a crucial role in 

mitochondrial iron homeostasis (Kharechkina et al, 2021). MitoNEET is reportedly a 

mitochondrial PGZ target and has been shown to be overexpressed in various 

compartments, including the heart (Kharechkina et al, 2021; Yuan et al, 2016). Loss 

of mitoNEET, as reported by cumulative evidence, leads to intracellular iron 

accumulation that results in excessive reactive oxygen species (ROS) generation and, 
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therefore, ferroptosis (Yuan et al, 2016). In our analysis, upregulation of the anti-

ferroptosis activity of mitoNEET was noted in the PGZ-treated samples. Together with 

the abovementioned findings, this result supports the notion that PGZ and ROSI have 

anti-ferroptosis activity. 

The second pathway that exhibited enrichment in both drugs was necroptosis. 

Necroptosis is an emerging mode of programmed cell death that shares hallmark 

features with both apoptosis and necrosis (Hu et al, 2022). Compared to apoptosis, 

necroptosis is a regulated caspase-independent process that correlates at the 

molecular level with the activation of receptor-interacting protein kinases 1 and 3 

(RIPK1 and RIPK3) (Dhuriya & Sharma, 2018; Xue et al, 2020). When RIPK3 is 

activated, it phosphorylates its substrate (mixed-lineage kinase domain-like 

pseudokinase (MLKL)), which results in cell death via disruption of plasma membrane 

permeability and cell lysis (Dhuriya & Sharma, 2018; Xue et al, 2020).  

With reference to the PGZ dataset, enrichment in the necroptosis pathway, which was 

characterised primarily by upregulation of phosphoglycerate mutase family member 5 

(PGAM5) and dynamin-related protein 1 (Drp1), strongly suggested that 

mitochondrial-mediated necroptosis occurred in PGZ-treated AC16 cells. PGAM5 is a 

mitochondrial phosphatase integral in the regulation of mitochondrial dynamics (i.e., 

mitochondrial fission) and various types of cell death, including mitophagy and 

necroptosis (Cheng et al, 2021). In the context of necroptosis, emerging evidence 

indicates that PGAM5 is the point of convergence for multiple necrosis pathways 

(Cheng et al, 2021; Wang et al, 2012). Nevertheless, it is defined as a downstream 

molecule of RIP3/MLKL, and its RIPK3-dependent activation results in its recruitment 

to the mitochondria (Cheng et al, 2021; Wang et al, 2012; Xue et al, 2020). Activated 

PGAM5 subsequently dephosphorylates and activates the mitochondrial fission factor 

Drp1 and its GTPase activity, leading to mitochondrial fragmentation, an obligatory 

step in the execution of necroptosis (Cheng et al, 2021; Wang et al, 2012; Xue et al, 

2020). In a study conducted with a human tumour cell line, knockdown of PGAM5 

attenuated ROS and tumour necrosis factor-α, as well as calcium ionophore-mediated 

necroptosis (Wang et al, 2012). Surprisingly, our toxicoproteomic analysis indicated 

that the enhanced expression of proteins in the PGAM5–Drp1 axis was independent 

of the canonical necroptosis pathway. This finding has also been reported elsewhere, 
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with PGAM5 reported to play an indispensable role in mediating concanavalin A-

induced liver injury without being implicated in the execution of the canonical 

necroptosis pathway (He et al, 2017). Collectively, these findings may suggest that a 

novel form of PGAM5–Drp1 axis-mediated necrosis exists, and this necessitates 

further investigation. 

Surprisingly, ROSI counteracts the effect of PGZ on necroptosis. The proteome profile 

of ROSI-treated cells showed downregulation of glutamate dehydrogenase (GLUD), a 

protein reported to play a role in the initiation and execution of necroptosis (Morgan & 

Kim, 2022). An explanation of GLUD enzyme contribution to necroptosis execution is 

its interaction with RIPK3 and thereby activating necroptosis signalling (Morgan & Kim, 

2022). Hence, the dysregulation of GLUD suggests an inhibitory effect of ROSI against 

necroptosis.  

4.4.2 Deciphering the Molecular Mechanisms of Cardiotoxicity: A Drug-Specific 

Perspective 

4.4.2.1 ROSI and Alteration in Myocyte Contractility  

The present study has revealed the “cardiac muscle contraction” pathway as a novel 

contributor to ROSI-induced cardiotoxicity, representing a significant advancement in 

our understanding of this adverse drug reaction. The characterisation of the enriched 

proteins in this tightly regulated pathway points towards four possible explanations by 

which ROSI modulates cardiomyocyte contraction: (i) impediment in cardiac muscle 

metabolism primarily through interrupting the oxidative phosphorylation process via 

altering mitochondrial complexes levels (MT-CO1 and UQCRC1) and (ii) alteration in 

muscle coordination, as significant downregulation in myosin light chain 3 (MYL3) was 

noted. This downregulation in MYL3 could drastically reduce myosin phosphorylation, 

disrupting the myosin–actin interaction and thereby compromising muscle contractility 

(Sitbon et al, 2020). (iii) Perturbation in catecholamine synthesis is another 

mechanism suggested herein, following the downregulation in aspartate beta-

hydroxylase (ASPH) noted with ROSI-treated cells. The dysregulation in ASPH 

enzymes involved in catecholamine synthesis could principally lead to a reduction in 

sympathetic nervous system activity manifested in low heart rate, decreased 

contractility and impaired blood pressure regulation (Brewitz et al, 2020), and finally, 

(iv) modulation in cardiac sodium pump (Na+/K+ ATPase) function. Our findings 
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revealed significant downregulation of ATPase Na+/K+ transporting subunit alpha 

1(ATP1A1), a major component of Na+/K+ pump that has a recognizable role in 

maintaining the electrochemical gradient that arises from the difference in electrical 

potential and ion concentration across the cell membrane (Obradovic et al, 2023). 

Maintaining this gradient by ATP1A1 is crucial to drive the Na+/Ca2+ exchanger that 

works in extruding calcium ions from the cell, contributing to the regulation of cytosolic 

calcium levels and thereby ensuring muscle relaxation (Obradovic et al, 2023). Hence, 

dysregulation in ATP1A1 associated with ROSI exposure could have a dramatic effect 

on the contractile machinery, at which it could potentially result in elevating cytosolic 

calcium levels, leading to sustained muscle contraction and, eventually, muscle 

weakness.  

4.4.2.2 ROSI Influence on Protein Synthesis Machinery  

Noticeably reported in association with ROSI, the GO and KEGG observations 

suggest modulation in the cellular machinery responsible for the protein synthesis 

reflected by “ribosome pathway”, “protein export” and “protein processing in the 

endoplasmic reticulum (ER)”. The analysis revealed a downregulation of various 

numbers of ribosomal proteins, including ribosomal protein L24, which play a crucial 

role in the decoding of mRNA during translation and thus impede protein synthesis 

(Kisly et al, 2019). Moreover, downregulation of SEC61 translocon subunit alpha 1 

(SEC61A1), a pivotal subunit of the transmembrane protein SEC61 that mediates the 

translocation of the newly synthesised proteins from the cytoplasm to the ER for proper 

folding and protein maturation (i.e., glycosylation and disulfide bond formation) (Lang 

et al, 2017), was noted. The effect of ROSI on protein machinery also extends to 

involving other proteins localized in the ER, with crucial roles in protein folding. This 

includes downregulation in ribophorin 1, a chaperone-like protein that facilitates N-

linked glycosylation to the asparagine residues on proteins (Wilson & High, 2007), and 

protein disulfide isomerase family A member 3, which catalyses the formation and 

isomerization of disulfide bonds between cysteine residues in proteins (Ali Khan & 

Mutus, 2014). Altogether, the decreased expression of the abovementioned proteins 

reveals critical insights into the disruption of protein machinery, protein export and 

protein processing in the ER that could massively lead to defects in protein maturation, 

accumulation of unfolded or misfolded proteins in the ER and, ultimately, disruption in 

ER homeostasis. 
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4.4.2.3 Immunothrombotic Dysregulation and Cytoskeleton Architecture 

Alteration in PGZ-treated AC16 Cells 

4.4.2.3.1 The Interplay between the Complement and Coagulation Cascades 

HF is well-recognised as a disorder of cardiac contractility. Despite the phenotypic and 

pathophysiological heterogeneity of contractile failure, alterations in blood coagulation 

status and cardiomyocyte cytoskeleton components responsible for preserving cell 

morphology and orchestrating contractile activity play a central part. In the current 

study, PGZ treatment led to activation of the complement system and coagulation 

cascade, and this was reflected by enhanced expression of numerous complement 

proteins, including complement C5, C7 and C9, and various coagulation factors (i.e. 

coagulation factor II, V and IX). Three potential mechanisms responsible for this 

upregulation in the complement and coagulation cascades and their interconnectivity 

are briefly explained below. First, the upregulation noted in the complement 

components, coagulation factors and scar constituents (i.e. collagens) may suggest 

that their enhanced expression was part of an adaptive response to PGZ-induced 

myocardial damage/stress that led to an immune-cell response and scar formation. 

Clinically, the involvement of the complement system in HF pathogenesis is well-

known. For example, Aukrust et al. reported an increase in complement activation in 

patients with HF, including those with dilated and ischaemic cardiomyopathies 

(Aukrust et al, 2001). Second, our data showed that there was molecular alteration in 

coagulation proteins and upregulation in the platelet activity pathway, suggesting an 

increased risk of blood clotting associated with PGZ exposure. Interestingly, these 

findings are in agreement with those from clinical cases that have reported an increase 

in blood coagulation with PGZ treatment (Jarrar et al, 2022). Therefore, PGZ’s intrinsic 

ability to increase blood clotting and thrombus formation may result in complement 

activation by way of thrombus-mediated complement activation, as described in detail 

by de Bont et al. (de Bont et al, 2019), and consequently immunoinflammatory 

reactions. Third, necroptosis induced by PGZ exposure could lead to complement 

activation. In turn, complement activation can promote fibrin and clot formation. In an 

in vivo experimental model, C3 knockout (KO) mice experienced prolonged bleeding 

compared to wild-type mice, and this effect was ameliorated by reconstituting C3 KO 

mice with the serum of wild-type mice (Subramaniam et al, 2017). Hence, at the 

molecular level, the activation of the complement system, namely through the 
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production of C3a and C5a, aids the recruitment of platelets and immune cells to the 

injured site, which triggers the coagulation cascade (Rafail et al, 2015; Subramaniam 

et al, 2017). 

4.4.2.3.2 Perturbation of Cell–Matrix Adhesion in PGZ-treated Cells 

The cardiac ECM is a highly dynamic non-cellular network that plays a crucial role in 

cellular development and haemostasis by providing structural integrity and various 

functions; for example, it can elicit cellular responses and transduce signalling 

cascades (Frantz et al, 2010). However, aberrant protein expression in the ECM could 

adversely impact cellular integrity and ultimately contribute to various CVD 

pathologies, including HF (Frangogiannis, 2019; Frantz et al, 2010). In addition, it is 

widely acknowledged that the massive loss of cardiomyocytes in response to external 

stimuli limits their endogenous regeneration. In fact, the healing process often modifies 

the functional ECM to an acellular fibrotic-scar matrix with a profoundly different 

composition (Frangogiannis, 2019). There is mounting evidence that these changes 

in the ECM’s profile have a dramatic impact that not only modulates the heart’s 

structural/mechanical segments but also affects the cellular phenotype and function, 

leading to myocardial stiffness, diastolic dysfunction and adverse cardiac remodelling 

(Frangogiannis, 2019). The current study’s findings showed that there was 

upregulation in the ECM receptor–focal adhesion–cytoskeleton pathway axis. The 

upregulation of ECM proteins was reflected by increased myocardial collagen and 

fibronectin levels, along with enhanced expression of the integrin receptors, 

heterodimeric transmembrane proteins consisting of α and β subunits, suggesting 

that the cell–matrix adhesion/linkages were modulated by PGZ exposure. 

Changes in the ECM profile can be sensed by cells via active mechanosensing, a 

process primarily mediated by integrins (Hu et al, 2023; Huveneers & Danen, 2009). 

When integrins bind their adhesive ligands, a conformational change occurs in the 

integrin’s cytoplasmic domain, and this triggers the formation of docking sites, allowing 

the recruitment of anchor and cytoskeleton proteins, such as talin and vinculin, which 

are responsible for initiating signalling cascades and links to the cytoskeleton (Hu et 

al, 2023; Huveneers & Danen, 2009). These proteins were overexpressed in PGZ-

treated cells. The resultant integrin–anchor protein complexes ultimately support 

integrin clustering and the formation of focal adhesions (FAs) between a cell and the 
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ECM (Hu et al, 2023; Huveneers & Danen, 2009). The formation of FAs results in the 

activation and recruitment of other adapter proteins, including integrin-linked kinase 

(Yen et al, 2014), which was overexpressed in the treated cells in this study. This 

subsequently causes the activation of various downstream signalling pathways 

implicated in regulating cell behaviour and cytoskeleton organisation (Yen et al, 2014).  

It is likely that PGZ affects the the cytoskeleton of cardiomyocytes by targeting the 

talin–vinculin axis and the Rho-associated kinases (ROCK1 and ROCK2) pathway 

(Figure 4.21). The crosslinking of vinculin with talin and actin is fundamental in the 

orchestration of the actomyosin cytoskeleton’s actions (Meagher et al, 2021). Aberrant 

expression in the talin–vinculin axis could result in detrimental effects in actin 

polymerisation and, ultimately, myocardial stiffness. Our findings align with those from 

an RNA-sequencing analysis performed to investigate changes in cytoskeletal genes 

in patients with ischaemic and dilated cardiomyopathy (Herrer et al, 2014). In that 

analysis, increased vinculin expression was noted and reported to be associated with 

HF pathogenesis (Herrer et al, 2014; Meagher et al, 2021; Yen et al, 2014). 

Furthermore, in another study, knocking out mouse cardiomyocyte talin-1 resulted in 

a reduction in cardiac hypertrophy and fibrosis compared to that in wild-type mice 

(Manso et al, 2017). 

Integrin activation following PGZ exposure has also been shown to upregulate the 

Rho/ROCK pathway. When Rho is activated via integrins, it activates ROCK1 and 

ROCK2, and this leads to the phosphorylation of several downstream substrates, 

including myosin phosphatase target subunit 1, ezrin-radixin-moesin and myosin light 

chain (MLC), which is crucial for diverse cellular responses (Hartmann et al, 2015). 

Nevertheless, the high expression of ROCK1 and ROCK2 found in our analysis was 

concomitant with the downregulation of MLC and myosin light chain kinase, which may 

be an attempt to compensate for the increased Rho kinase activity, as explained by 

Kirschstein et al. (Kirschstein et al, 2015). This downregulation of MLC may ultimately 

result in a decrease in myocardial flexibility and increased myocardial stiffness, as 

proven by numerous studies (Hartmann et al, 2015; Herrer et al, 2014; Manso et al, 

2017). 
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Figure 4.21 The focal adhesion signaling pathway. Proteins expression in the focal 
adhesion pathway (KEGG: 04510) with respect to our measured proteomics data. Red 
represents up-regulated proteins, while green represents down-regulated proteins. The plot 
was generated using PATHVIEW (available online: https://pathview.uncc.edu/analysis). 
 

4.4.3 Limitations and Future Directions 

Although the study provides valuable insights, it is crucial to acknowledge that it has 

a few limitations that should be considered before drawing a definitive conclusion. In 

response to the NRC’s call, the adoption of in vitro–to–in vivo extrapolation 

methodologies over animal experimentation is becoming increasingly popular in 

mechanistic toxicology studies. Motivated by this rationale, a cell model represented 

by AC16 cells was employed in this study. The AC16 cell line is derived from adult 

human ventricular cardiomyocytes (Davidson et al, 2005). This immortalised, stable 

cell line has been used widely in toxicology research, as the cells express adult 

cardiomyocyte–specific biomarkers (α-myosin heavy chain [α-MHC], β-MHC, α-actin 

and troponin I) and display electrophysiological properties that are comparable to 

those of primary human cardiomyocytes (Davidson et al, 2005). While cell models 

offer numerous advantages, they have some limitations. In vitro models, despite their 

contributions, cannot accurately reflect the biological complexity of the human body. 

Also, when investigating the proteomic activity of cells, using an in vitro model could 

be a limitation, since such models exhibit restricted proteomic activity compared to in 

https://pathview.uncc.edu/analysis
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vivo systems. In addition, our findings strongly suggest that PGZ may induce immune-

mediated cardiotoxic effects; however, the interplay between immune and cardiac 

cells and the consequences cannot be studied using an in vitro model alone. Lastly, 

the small sample size and the absence of clinical data directly associated with the 

expression data may limit the utility of the results of this study. 

In conclusion, we conducted a comprehensive study that used a novel proteomic 

pipeline to investigate the effects of TZDs on the heart. The findings provide 

substantial mechanistic insight into the role that mitochondrial dysfunction plays in 

TZDs’ undesirable actions. The in-depth differential and WGCNA correlation analyses 

showed that the cardiotoxicity of TZDs primarily stemmed from mitochondrial oxidative 

phosphorylation impairment, with distinct signalling mechanisms observed for PGZ 

and ROSI. The type of cell death was also found to be related to the mitochondria—

protein upregulation in the PGAM5–Drp1 axis, as noted in PGZ-treated cells, 

suggested mitochondrial-mediated necroptosis. As well as the influence of TZD on 

mitochondrial cardiac energetics, our toxicoproteomics findings revealed additional 

mechanistic aspects of cardiotoxicity; however, these findings showcased drug 

specificity. 

Notably, dysregulation in cardiomyocyte contractility and its regulation were noted in 

the ROSI-treated cells, with potential mechanisms related to perturbation in 

mitochondrial complex expression (MT-CO1 and UQCRC1) and cardiac sodium pump 

(Na+/K+ ATPase) function, impeding cytosolic calcium homeostasis. Surprisingly, and 

apart from ROSI’s influence on calcium levels, the analysis sheds light on potential 

perturbation in sodium homeostasis, represented as enrichment in ‘proximal tubule 

bicarbonate reclamation’ and ‘mineral absorption’. Due to the protein profiles of both 

pathways, the potential disruption in sodium levels is anticipated to be secondary to 

the alteration of the Na+/K+ ATPase pump, with the potential consequence of sodium 

and water retention. Interestingly, a previous mechanistic study suggested the 

possibility of sodium and water retention in TZDs’ cardiotoxicity (Horita et al, 2015); 

thus, further investigation of TZDs’ effects on the kidney is needed to validate the 

reported findings. Furthermore, impairments in protein homeostasis, or proteostasis, 

were found following ROSI treatment, potentially contributing to cardiac myocyte 

dysfunction and, ultimately, cell death. In accordance with ROSI’s impact on protein 
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synthesis and maturation, the identified hub proteins were found to be exclusively 

engaged in pathways relating to protein machinery, further suggesting the significance 

of proteostasis in ROSI-induced cardiotoxicity. 

With respect to PGZ treatment, the findings suggest a potential interplay between the 

complement and coagulation systems induced by PGZ exposure that could trigger 

immunothrombosis, resulting in blood clotting and scar formation. Recent evidence 

has highlighted the presence of a tripartite interconnection among the complement 

and coagulation systems, neutrophil extracellular trap formation (NETosis) and CVDs 

(51). Interestingly, NETosis (KEGG: 04613) was enriched in our study; hence, 

understanding the interplay between PGZ and this tripartite interconnection is 

imperative for the examination of NETosis as a potential therapeutic target for reducing 

PGZ cardiotoxicity. Our findings also suggest that the disruption of the cytoskeletal 

architecture, which was primarily mediated through integrin-signalling pathways 

(namely, the talin–vinculin axis and the Rho/ROCK pathway), was responsible for 

myocardial contractile failure. In alignment with the findings on the ECM–integrin 

interaction, the hub proteins identified using the cytoHubba plugin included ECM-

receptor interaction pathway proteins, such as P60709, P05556, P02751, P02679 and 

P02452, reinforcing the notion that the ECM is central to PGZ’s undesirable actions.  

Our findings provide novel information on the mechanisms, pathways and proteins 

that may mediate the detrimental effects that TZD has on cardiomyocytes. Thus, these 

mechanisms, pathways and proteins represent potential targets for the development 

of technologies and methodologies designed to mitigate TZDs’ undesirable actions 

and improve their safety profiles. Further functional and clinical investigations are 

needed to confirm the roles that these potential targets play in the cytotoxicity of TZD. 
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Abstract 

Introduction 

Despite the well-established efficacy of thiazolidinediones (TZDs), including 

pioglitazone and rosiglitazone, in type II diabetes management, their potential 

contribution to heart failure risk remains a significant area of uncertainty. This 

incomplete understanding, which persists despite decades of clinical use of TZDs, has 

generated ongoing controversy and unanswered questions regarding their safety 

profiles, ultimately limiting their broader clinical application.  

Objective and Methods 

This study presented a multi-omics approach, integrating toxicoproteomics and 

toxicometabolomics data with the goal of uncovering novel mechanistic insights into 

TZD cardiotoxicity and identifying molecular signatures predictive of side effect 

progression.  

Results 

Network analysis of proteo-metabolomic data revealed a distinct fingerprint of 

disrupted biochemical pathways, which were primarily related to energy metabolism. 

Downregulation of oxidative phosphorylation and fatty acid synthesis was coupled with 

increased activity in anaerobic glycolysis, the pentose phosphate pathway, and amino 

acid and purine metabolism. This suggests a potential metabolic shift in AC16 cells 

from fatty acid oxidation towards anaerobic glycolysis, potentially contributing to 

observed cardiotoxicity. Additionally, the study identified a marked disruption in the 

glutathione system, indicating an imbalanced redox state triggered by TZD exposure. 

Importantly, our analysis identified key molecular signatures across omics datasets, 

including prominent signatures of amino acids like L-ornithine, L-tyrosine and 

glutamine, which are established heart failure biomarkers, supporting their potential 

use for the early prediction of cardiotoxicity progression.  

Conclusion 

By uncovering a novel mechanistic explanation for TZD cardiotoxicity, this study 

simultaneously illuminates potential therapeutic interventions, opening avenues for 

future research to improve the safety profile of TZD agents.  

Keywords: Thiazolidinediones; Toxicometabolomics; Toxicoproteomics; 

Cardiotoxicity; Mitochondrial energetics; Oxidative stress 
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5.1  Introduction 

Within the last decade, the concept of medication safety has risen to the forefront of 

the healthcare and drug development agenda in recognition of the fact that it plays a 

pivotal role in patients’ clinical outcomes (Alshammari, 2016). The overarching 

purpose of medication safety is to prevent or at least reduce the occurrence of adverse 

drug reactions (ADRs), which are broadly defined by the National Patient Safety 

Agency (NPSA) as ‘any unintended or unexpected incident which could have or did 

lead to harm for one or more patients’ (Courtenay & Griffiths, 2010). According to the 

latest Centers for Disease Control and Prevention (CDC) report, ADRs necessitate 

1.3 million emergency department visits annually (Thacker et al, 2020). It has also 

been estimated by the CDC that 350,000 patients per year require hospitalisation 

following emergency visits for ADRs (Thacker et al, 2020). Within the context of ADRs 

and drug development, a recent study has proposed four main reasons for the 90% 

failure rate of drug development, one being related to drug toxicity, which accounts for 

30% of the attrition of drug candidates (Sun et al, 2022). Given the deleterious impact 

of ADRs, collectively, on healthcare and drug development processes, comprehensive 

toxicological-based studies are urgently needed to screen and further elucidate the 

toxicity mechanisms implicated in medication ADRs.  

Conventional in vivo and cellular systems toxicological-based approaches have been 

principally adopted to investigate the ADRs-induced drug development failure of 

medications, mainly through observing targeted toxicological endpoints. Although 

these conventional methods have yielded crucial outcomes, they have several 

drawbacks. They are time-consuming, and their primary focus, namely, on identifying 

and testing limited molecular targets, is often unlikely to fully characterise the safety 

profile of a drug. A growing body of single- and multi-omics-based approaches has 

therefore emerged as powerful tools in toxicological research, providing 

comprehensive and unprecedented mechanistic insights capable of filling the existing 

data gaps and hence improving our understanding of drug toxicity (Hu & Jia, 2021; Li 

et al, 2021; Marx-Stoelting et al, 2015; Nguyen et al, 2022). Notably, it is evident that 

most of the toxicological studies performed thus far have adopted single-omics-based 

approaches (Hu & Jia, 2021; Li et al, 2022; Nury et al, 2023; Olesti et al, 2021; Zaitsu 

et al, 2016). Despite the extensive findings of these studies, the single-omics-derived 

data are mainly associative and lack the resolving power required to establish 
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causality between observed molecular perturbations and phenotypic manifestations. 

These concerns about the single-omics approach have led to a revolution in omics 

study design and a paradigm shift toward integrating a multi-omics-based approach 

(Hu & Jia, 2021; Li et al, 2021). Recent papers have implied that the application of the 

multi-omics approach has provided novel and compelling opportunities to establish 

causality across different cellular function levels; thus, it has become the cutting edge 

of ADR research (Chen et al, 2020; Hu & Jia, 2021; Nguyen et al, 2022; Xie et al, 

2020).  

Recognising the transformative power of multi-omics integration in toxicology 

research, and with the aim of expanding upon our prior solo-omics investigation (Al 

Sultan et al, 2024a; b), this study was designed to integrate our toxicometabolomics 

and toxicoproteomics analyses of human adult cardiomyocytes AC16 treated with a 

class of anti-diabetic agents named thiazolidinedione (TZD). The current study 

introduced a novel liquid chromatography–mass spectrometry (LC–MS)-based multi-

omics pipeline designed to (i) integrate potential relationships among the key identified 

metabolites and proteins and (ii) identify novel protein-metabolite modules capable of 

elucidating previously undiscovered biochemical pathways perturbed in TZD toxicity. 

5.2 Methods  

5.2.1 Reagents and Chemicals  

TZDs, PGZ and ROSI, were obtained from Sigma-Aldrich (St. Louis, MO, USA). The 

LC–MS analysis used reagents purchased from Fisher Scientific (Loughborough, 

Leicestershire, UK): high-performance liquid chromatography (HPLC)-grade 

acetonitrile, methanol, analytical-grade formic acid, and ultrapure water.  

5.2.2 Cells and Cell Culture 

The AC16 cell line was purchased from Sigma-Aldrich (Product. No. SCC109; St 

Louis, MO, USA) and cultured in Dulbecco’s Modified Eagle’s Medium (DMEM/F-12, 

Product. No. D6434; Sigma-Aldrich, St Louis, MO, USA) supplemented with 12.5% 

foetal bovine serum (FBS), 1% antibiotics (streptomycin and penicillin) and 2 mM L-

glutamine at 37°C in a humid atmosphere of 5% CO2 and 95% air.  
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5.2.3 LC–MS-based Toxicometabolomics Analysis  

A comprehensive description of the methodologies used for sample preparation, 

metabolite extraction, and LC–MS data acquisition and processing is described in 

Chapter 3, Sections (3.2.3–3.2.5). 

5.2.4 LC–MS-based Toxicoproteomics Analysis 

The specific methodologies employed for each stage of the proteomic analysis are 

documented in Chapter 4. Chapter 4, Sections 4.2.3 and 4.2.4, detail the sample 

preparation procedures for proteomic profiling, including protein extraction, trypsin 

digestion, and peptide clean-up. Furthermore, Section 4.2.5 outlines the microflow 

LC–MS data acquisition and processing protocols. 

5.2.5 Integration Paradigms and Bioinformatic Analyses  

5.2.5.1 Data-Driven Analysis  

To integrate the shotgun toxicoproteomics and toxicometabolomics data, an N-

integration framework, namely the Data Integration Analysis for Biomarker Discovery 

using Latent cOmponents (DIABLO) impeded in the mixOmics R package, was 

employed (Rohart et al, 2017). The applied DIABLO model, also referred as multiblock 

sparse partial least squares discriminant analysis (MB-sPLS-DA), imposes 

sparseness within the latent components and hence was utilised to dissect 

discriminative omics features across omics datasets while concurrently performing 

simultaneous dimension reduction (Rohart et al, 2017). Regarding MB-sPLS-DA 

parameter selection and performance evaluation, a design matrix tuned to 0.1 was 

used to accentuate the discrimination between genotype groups during analysis. The 

classification performance was evaluated using the repeated cross-validation through 

the perf function (Rohart et al, 2017). Five-fold cross-validation repeated 50 times was 

used, and the classification error rate (overall and balanced error rate [BER]) resulting 

from the cross-validation process across different numbers of components was then 

recorded for each type of prediction distance. The model with the lowest error rate was 

subsequently chosen to define the optimal number of components for the MB-sPLS-

DA model. Lastly, with respect to feature selection, the tune.block.splsda function 

(Rohart et al, 2017) was run with five-fold cross-validation repeated 50 times to 

determine the suitable number of molecular signatures on each component. 
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Through analysis of the PGZ datasets using the outlined parameters, the MB-sPLS-

DA model constructed with two components yielded the most favourable outcome, 

namely, the lowest overall estimation error rate (Figure 5.1A). This, coupled with its 

excellent discriminatory power, designated it as the optimal model for further 

investigation. Regarding the supervised integrative analysis of ROSI multi-omics 

datasets, the optimal number of components on the basis of the performance plot 

shown in Figure 5.1B was four; hence, this value was chosen for all downstream 

analyses.  

The MB-sPLS-DA results were primarily visualised using the mixOmics R package 

(Rohart et al, 2017) and the Cytoscape software platform (Cytoscape; 

https://cytoscape.org; v3.10.1). 

 

Figure 5.1 Evaluation of MB-sPLS-DA model performance via repeated cross-validation. 

MB-sPLS-DA classification performance was evaluated using repeated cross-validation (50  
5-fold) for each component, considering both overall and balanced error rate across different 
prediction distances (max.dist, centroids.dist, mahalanobis.dist) in the PGZ (A) and ROSI (B) 
studies.  The bars show the standard deviation across the repeated folds. The plots in (A and 
B) show that the error rate reaches a minimum of two and four components, respectively.  
 
MB-sPLS-DA: Multiblock sparse partial least squares discriminant analysis; PGZ: 
Pioglitazone; ROSI: Rosiglitazone; BER: Balanced error rate 
 
 

5.2.5.2 Knowledge-Driven Analysis 

To gain a holistic understanding of perturbed pathways and their complex interactions 

across omics levels, a joint pathway analysis of the toxicoproteomics and 

toxicometabolomics data was performed via the joint-pathway analysis functionality of 

MetaboAnalyst v6.0 (https://www.metaboanalyst.ca) webserver. First, significance 

https://cytoscape.org/
https://www.metaboanalyst.ca/
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testing was carried out to capture the significant features within each omics dataset. 

Accordingly, joint pathway analysis of the differential expressed proteins (DEPs) and 

metabolites/features (DEFs) was configured with the following parameters: a 

hypergeometric test for enrichment analysis, degree centrality as the topology 

measure, and a query combination approach for data integration. The KEGG 

enrichment terms that had a p-value < 0.05 were considered to be statistically 

significant. 

5.2.6 Statistical Analysis  

Statistical analyses were performed using R software version 4.3.0. All 

toxicometabolomics and toxicoproteomics data comprised three independent 

experiments, each run in triplicate (biological replicates), leading to nine samples per 

group. Student’s t-tests or Welch’s t-tests, dependent on data distribution and 

variance, were applied to assess statistical significance in pairwise comparisons 

between the two groups. To compare multiple variables within a single group, a one-

way non-repeated ANOVA was followed by Dunnett’s post hoc test for multiple 

comparisons. The correlation coefficient was assessed using Pearson’s and distance 

correlation analyses. A p-value ≤ 0.05 was defined as the threshold for statistical 

significance. A visual summary of the analytical framework, incorporating both data-

driven and knowledge-driven components, is presented as a schematic flowchart in 

Figure 5.2. 
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Figure 5.2 A schematic flow chart of the multi-omics integrative paradigm applied for 
downstream analyses. Prior to data merging, each omics dataset was subjected to data 
filtering, normalisation and transformation. Following these pre-processing steps, multi-omics 
data integration was performed, encompassing both data-driven and knowledge-based 
analyses (joint pathway analysis). The data-driven analysis utilised an MB-sPLS-DA model to 
assess inter-omics and intra-omics heterogeneity across the sample groups. Subsequently, 
the model was trained to identify key molecular signatures within the omics datasets, serving 
as potential biomarkers for TZD-induced cardiotoxicity. Furthermore, a significance test was 
employed within each omics dataset to capture significant features, followed by a joint 
pathway analysis using MetaboAnalyst v6.0 (https://www.metaboanalyst.ca) to holistically 
comprehend the perturbed pathways underpinning TZD’s adverse effects.  
 
MB-sPLS-DA: Multiblock sparse partial least squares discriminant analysis; DEPs: Differential 
expressed proteins; DEFs: Differential expressed features; TZD: Thiazolidinedione  
 

5.3 Integrative Analysis Findings of Untargeted Toxicometabolomics and 

Toxicoproteomics Data 

To comprehensively landscape the heterogeneity among sample groups and unveil a 

detailed molecular profile of TZD-induced changes in AC16-cardiomyocytes, 

https://www.metaboanalyst.ca/
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multivariate analysis integrating proteomics and metabolomics data was employed 

using the DIABLO framework.  

5.3.1 Multivariate Model-Driven Analysis of AC16 Cell Proteo-metabolomic 

Response to PGZ Exposure 

With regard to the PGZ datasets, visual inspection of the sample plots generated by 

the DIABLO model revealed a distinct separation between the treated and control 

groups across all omics datasets (Figure 5.3A). Furthermore, interrogation of the two 

omics datasets, as presented in Figure 5.3B, yielded a highly significant correlation 

between their corresponding latent components, indicating a striking level of inter-

dataset concordance across heterogeneous data types.  

Figure 5.3 Multiblock supervised partial least squares discriminant analysis (MB-sPLS-
DA) model of multi-omics data following PGZ treatment. (A) Individual omics dataset 
contributions to the MB-sPLS-DA model. Score plots revealed distinct separation of control 
and treated samples at both the metabolome and proteome levels. (B) Inter-omics correlations 
from plotDIABLO displaying the first component in each dataset (upper diagonal plot) and the 
Pearson correlation between each component (lower diagonal plot), showcasing high 
correlation between proteomics and metabolomics data.  
 
MB-sPLS-DA: Multiblock sparse partial least squares discriminant analysis; PGZ: Pioglitazone 

 

To ensure optimal feature selection for maximal discrimination, a threshold of ± 0.15 

was imposed on the loading coefficients of the first and second sPLS-DA components 

for each data block. This applied criterion for MB-sPLS-DA feature selection (fold = 5, 

nrepeat = 50, using Mahalanobis as a distance measure) resulted in the identification 

of five proteins (Table 5.1) and five metabolites in each component. The multi-omics 
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signature extracted from component 1 included mitochondrial carnitines 

(tiglylcarnitine, crotonylcarnitine), L-glutamine, oleic acid, and D-pantothenic acid. 

Prominent protein signatures within this component comprised P52209, Q07955, 

P31942, P62280, and P49327. In contrast to component 1, component 2 exhibited a 

unique signature comprising metabolites such as spermidine, L-tyrosine, L-proline, 

and L-ornithine, alongside protein identifications Q56UQ5, Q16795, Q5TEC6, 

O75083, and Q01995 (Table 5.1).  

 

Table 5.1 List of signature proteins identified by the DIABLO model in the PGZ study. 
 

 

Accession Protein Name Gene Symbol p-value 

Q56UQ5 TPT1-like protein TPT1 3E-10 

Q16795 
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 

subunit 9, mitochondrial 
NDUFA9 3E-09 

Q5TEC6 Histone H3-7 H3-7 8E-08 

O75083 WD repeat-containing protein 1 WDR1 1E-06 

P62280 Small ribosomal subunit protein uS17 RPS11 4E-01 

Q01995 Transgelin TAGLN 5E-07 

P49327 Fatty acid synthase FASN 4E-01 

Q07955 Serine/arginine-rich splicing factor 1 SRSF1 2E-01 

P31942 Heterogeneous nuclear ribonucleoprotein H3 HNRNPH3 3E-02 

P52209 6-phosphogluconate dehydrogenase, decarboxylating PGD 3E-01 

The contribution of each selected variable to each component across all blocks is 

illustrated in Figure 5.4. The expression of each multi-omics molecular signature for 

each included sample is illustrated in Figure 5.5. 
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Figure 5.4 Loading plot for the molecular signatures selected by MB-sPLS-DA 
performed in the PGZ study. The plots (A and B) display the most important variables, 
ranked by the magnitude of their coefficients from bottom to top. Each variable's colour 
denotes the class with the highest median expression level. 
 
MB-sPLS-DA: Multiblock sparse partial least squares discriminant analysis; PGZ: Pioglitazone 
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Figure 5.5 Circos plot generated from MB-sPLS-DA applied to the PGZ study data. 
Clustered Image Map (Euclidean distance, complete linkage) for the molecular signatures 
extracted by MB-sPLS-DA performed on the PGZ study. 
 
MB-sPLS-DA: Multiblock sparse partial least squares discriminant analysis; PGZ: Pioglitazone 
 

 

 

To visually depict the inter-molecular signature correlations, a circus plot (Figure 

5.6A) was constructed. The plot revealed dense positive interactions between the 

following: L-tyrosine and P31942/P62280; L-ornithine/guanine and P52209; and D-

pantothenic acid with the proteins Q56UQ5, Q16795, Q01995, and O75083. Further 

investigation identified robust repulsive/negative interactions involving D-pantothenic 

acid and Q5TEC6; guanine/L-ornithine and the P62280/P49327/P31942/Q07955 

proteins; and spermidine with P62280, P49327, and P31942. 
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Lastly, a network of the proteomics and metabolomics key features was constructed 

based on the similarity matrix (Figure 5.6B). Analysis of this proteo-metabolomic 

network identified a tightly knit cluster of co-regulated features, with tiglylcarnitine, 

spermidine, L-tyrosine, L-ornithine, and guanine (metabolome block), and O75083 

and Q5TEC6 (proteome block) serving as the prominent hub features that drive this 

module. 

 

 

 

 
 
 
 
Figure 5.6 Correlation network analysis of the multi-omics signatures derived by the 
DIABLO framework. Plot (A) displays a circos plot depicting correlations between selected 
features (cut-off: 0.6), illustrating positive associations in red and negative associations in 
blue. Plot (B) showcases a protein-metabolite interaction network, where circular and triangle 
shapes represent protein and metabolite features, respectively, and edge colours red and blue 
represent positive and negative correlations, respectively. The width of the edges represents 
the strength of correlation. The protein-metabolite network was generated using (Cytoscape; 
https://cytoscape.org; v3.10.1). 

 

https://cytoscape.org/
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5.3.2 Multivariate Model-Driven Analysis of AC16 Cell Proteo-metabolomic 

Response to ROSI Exposure 

With respect to the ROSI datasets, the DIABLO method, through integrative analysis 

of inter-omics correlations, pinpointed several crucial features that differentiate ROSI-

treated samples from the control group. Visualisation of the sample distribution after 

projection onto the subspace spanned by components 1 and 2 in Figure 5.7A reveals 

a distinct separation between treated and control groups. Furthermore, and similarly 

to the PGZ findings, the interrogation of both proteomics and metabolomics datasets, 

as visually depicted in Figure 5.7B, unveiled a highly significant correlation between 

their respective latent components, signifying a remarkable degree of coherence and 

agreement between these divergent data modalities.  

 

Figure 5.7 Multi-omics integration of ROSI datasets via the DIABLO mixOmics 
framework. (A) The individual contribution of each dataset to the MB-sPLS-DA final model, 
demonstrating distinct intra-omics separation between ROSI-treated samples and control 
groups. (B) Component correlation of each of the two datasets determined by DIABLO 
analysis, demonstrating a high correlation between the proteomics and metabolomics data.  
 
MB-sPLS-DA: Multiblock sparse partial least squares discriminant analysis; ROSI: 
Rosiglitazone 

 

In terms of feature selection, integrative analysis with DIABLO (fold = 5, nrepeat = 50, 

using Mahalanobis as a distance measure) identified a signature of 20 proteins (Table 

5.2) and 20 metabolites across all the selected components. The identity of each 
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molecular signature along with its contribution to its perspective component, as well 

as its expression over the included samples, are illustrated in Figures 5.8 and 5.9.  

 

 

 

Table 5.2 List of signature proteins identified by the DIABLO model in the ROSI study. 
 

Accession Protein Name Gene Symbol p-value 

P67936 Tropomyosin alpha-4 chain TPM4 4E-01 

Q9UQE7 Structural maintenance of chromosomes protein 3 SMC3 4E-01 

O95347 Structural maintenance of chromosomes protein 2 SMC2 5E-01 

Q8N357 Solute carrier family 35 member F6 SLC35F6 3E-01 

Q16181 Septin-7 SEPTIN7 3E-01 

P62917 Large ribosomal subunit protein uL2 RPL8 4E-01 

Q96D15 Reticulocalbin-3 RCN3 3E-01 

A0A075B767 Peptidyl-prolyl cis-trans isomerase A-like 4H PPIAL4H 5E-05 

P0DN37 Peptidyl-prolyl cis-trans isomerase A-like 4G PPIAL4G 5E-05 

P0DN26 Peptidyl-prolyl cis-trans isomerase A-like 4F PPIAL4F 5E-05 

F5H284 Peptidyl-prolyl cis-trans isomerase A-like 4D PPIAL4D 5E-05 

A0A0B4J2A2 Peptidyl-prolyl cis-trans isomerase A-like 4C PPIAL4C 5E-05 

Q9Y536 Peptidyl-prolyl cis-trans isomerase A-like 4A PPIAL4A 5E-05 

P12268 Inosine-5'-monophosphate dehydrogenase 2 IMPDH2 9E-05 

P50395 Rab GDP dissociation inhibitor beta GDI2 7E-02 

P31150 Rab GDP dissociation inhibitor alpha GDI1 7E-02 

P22102 Trifunctional purine biosynthetic protein adenosine-3 GART 5E-01 

P24534 Elongation factor 1-beta EEF1B2 4E-01 

P0DP23 Calmodulin-1 CALM1 5E-01 

O75947 ATP synthase subunit d, mitochondrial ATP5PD 7E-02 

P04083 Annexin A1 ANXA1 2E-01 
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Figure 5.8 Loading plot for the molecular signatures selected by MB-sPLS-DA 
performed in the ROSI study. The plots (A-D) display the most important variables, ranked 
by the magnitude of their coefficients from bottom to top. Each variable's colour denotes the 
class with the highest median expression level. 
MB-sPLS-DA: Multiblock sparse partial least squares discriminant analysis; ROSI: 
Rosiglitazone 

 

 

Figure 5.9 Circos plot generated from MB-sPLS-DA applied to the ROSI study data. Clustered 
Image Map (Euclidean distance, complete linkage) for the molecular signatures extracted by MB-
sPLS-DA performed on the ROSI study. 
 

MB-sPLS-DA: Multiblock sparse partial least squares discriminant analysis; ROSI: Rosiglitazone 

 



202 
 

For post-feature selection analysis, a comprehensive correlation analysis unveiled a 

rich network of positive associations among the extracted features (Figure 5.10A). 

Within this network, GABA and D-maltose emerged as key players, exhibiting 

synergistic interactions with the following proteins: P12268, A0A075B767, P0DN37, 

P0DN26, F5H284, A0A0B4J2A2, and Q9Y536. Interestingly, urea and glycerol 3-

phosphate displayed independent positive correlations with a subset of this list, 

including A0A075B767, P0DN37, P0DN26, F5H284, A0A0B4J2A2, and Q9Y536. 

Spermine, on the other hand, adopted a targeted approach, demonstrating direct 

positive interactions with individual proteins P67936 and P62917. Notably, AMP 

engaged in a distinct network of positive associations with a separate subset of 

proteins formed by P0DP23, P50395, and P31150. Beyond the identified positive 

associations, a nuanced picture of negative interactions emerged. Notably, L-

glutamine, L-pyroglutamic acid, and hypoxanthine exhibited negative correlations with 

a same profile of protein members, comprising A0A075B767, P0DN37, P0DN26, 

F5H284, A0A0B4J2A2, Q9Y536, and P12268. Additionally, spermine and cytosine 

demonstrated strong negative associations with Q9UQE7 and O95347, respectively.  

Delving deeper into the interplay between the identified proteomics and metabolomics 

signatures, a network analysis was conducted (Figure 5.10B). As shown in Figure 

5.10B, a crucial group of hub features, spanning both proteome and metabolome, that 

serve as key orchestrators within the network were identified. From block one, 

spermine and L-ornithine were identified as prominent hubs, while block two 

contributed a distinct set of hub proteins, including A0A075B767, A0A0B4J2A2, 

F5H284, P0DN26, P0DN37, P12268, and Q9Y536. 
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Figure 5.10 Correlation network analysis of the multi-omics signatures derived by the 
DIABLO framework. Plot (A) displays a circos plot depicting correlations between selected 
features (cut-off: 0.6), illustrating positive associations in red and negative associations in 
blue. Plot (B) showcases a protein-metabolite interaction network, where circular and triangle 
shapes represent protein and metabolite features, respectively, and edge colours red and blue 
represent positive and negative correlations, respectively. The width of the edges represents 
the strength of correlation. The protein-metabolite network was generated using (Cytoscape; 
https://cytoscape.org; v3.10.1). 
 
 

 

5.3.3 Joint Pathway Analysis of the Toxicoproteo-metabolomic Data 

To elucidate the biological drivers of TZD-mediated cardiotoxic effects and unveil the 

interconnected pathways governing these alterations at the metabolomic and 

proteomic levels, a comprehensive joint pathway analysis was conducted.  

Analysis of PGZ-treated proteo-metabolomic datasets (Figure 5.11A, [Table S12, 

Appendix Section 7.4]) revealed a pronounced enrichment in pathways related to 

amino acid metabolism. Notably, pathways associated with phenylalanine 

metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glutathione 

metabolism, beta-alanine metabolism, and lysine degradation exhibited significant 

enrichment. Additionally, pathways involved in aminoacyl-tRNA biosynthesis and 

pantothenate and CoA biosynthesis were identified as significantly perturbed in 

response to PGZ. 

https://cytoscape.org/
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Complementary pathway analysis of the ROSI datasets (Figure 5.11B, [Table S13, 

Appendix Section 7.4]) revealed a multifaceted metabolic rewiring encompassing 

several key functional domains. Pathways involved in core energy production, such 

as the citrate cycle, pyruvate metabolism, glycolysis/gluconeogenesis, and nitrogen 

metabolism, showed marked alterations. Strikingly, amino acid metabolism was 

extensively modulated, with enrichments noted in pathways associated with 

phenylalanine, tyrosine, and tryptophan biosynthesis; phenylalanine metabolism; 

arginine and proline metabolism; glutathione metabolism; and lysine 

degradation. Additionally, perturbations in aminoacyl-tRNA biosynthesis were also 

observed.  

 

Figure 5.11 Joint pathway analysis of the proteo-metabolomic data. Dot plots in (A and 
B) illustrated the metabolic pathway enrichment in a joint analysis of significantly differentially 
expressed metabolites and proteins of PGZ and ROSI, respectively. The size and colour of 
each circle in (A) and (B) reflect the pathway impact value and the p-value, respectively. The 
figure was generated using MetaboAnalyst v6.0 (https://www.metaboanalyst.ca) 
 
PGZ: Pioglitazone; ROSI: Rosiglitazone 
 

 

 

 

https://www.metaboanalyst.ca/
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5.4 Discussion  

While ensuring the effectiveness of medication in chronic disease is paramount, 

recognising the importance of managing both safety and cost through a holistic 

approach, as encapsulated by the medication triangle, contributes to optimal and 

enduring treatment outcomes. Within the context of T2DM management, TZDs serve 

as a prime example of how the medication triangle plays out in practice. Despite 

showcasing efficacy in maintaining glycaemic control and offering affordability, TZDs 

fall short in the medication triangle, primarily due to concerns surrounding their safety 

profile (ADA, 2023). The emergence of clinical evidence demonstrating a link between 

TZD usage and HF has fundamentally reshaped the risk–benefit profile of these 

medications, leading to marked restrictions in their clinical use (Administration, 2010; 

2012; De Flines & Scheen, 2007). Nevertheless, the exact mechanisms responsible 

for triggering or aggravating cardiac events in response to TZD usage are still unclear, 

impeding a holistic understanding of this complex interplay. Motivated by the obscurity 

surrounding the mechanistic nature of TZD cardiotoxicity, this study introduced a 

comprehensive multi-omics approach to unravel the hitherto undeciphered 

pathomechanisms driving this adverse effect.  

Employing the integrated pipeline detailed in Figure 5.2, a joint data and pathway 

analysis limited to co-acquired, filtered and known annotated metabolomics and 

proteomics data from the same biological AC16 samples was performed. The 

inclusion of unannotated features in data-driven analyses remains a subject of debate. 

Proponents argue that incorporating such features could uncover novel biological 

processes or subtle phenomena missed by traditional methods. Additionally, hidden 

correlations with other molecular features might be revealed. Conversely, our analysis 

opted for a conservative approach, exclusively considering features with high-

confidence annotations. This decision was underpinned by the potential for 

uncharacterised features to introduce noise, redundancy, and complexity, hindering 

data interpretation. Moreover, the absence of validation and characterisation for these 

features limits their biological interpretability and increases the risk of erroneous 

conclusions. A summary of the advantages and disadvantages of including unknown 

features in statistical analysis, particularly when integrating multiple omics data, is 

presented in Table 5.3. 
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Table 5.3 Advantages and disadvantages of including unknown features in statistical analysis 
 

Aspect Advantages Disadvantages 

Novel biomarker 
discovery 

Potential to discover novel 
biomarkers or unannotated 
molecules. 

Unclear biological relevance without 
proper annotation, limiting insights. 

Comprehensive 
data exploration 

Allows a more thorough exploration 
of the dataset, capturing all 
detected signals. 

Increases dataset complexity, leading 
to potentially overwhelming data that 
may complicate analysis. 

Unbiased analysis Ensures unbiased statistical 
analysis by considering all features, 
even unknown ones. 

Risk of including irrelevant or noise-
derived features, leading to false 
positives. 

Cross-omics 
correlations 

Can identify novel, unexpected 
relationships across different omics 
layers. 

Difficult to establish meaningful 
connections between unknown 
features across omics layers. 

Discovery 
potential 

May reveal new pathways or 
mechanisms that were previously 
unknown. 

Unannotated features cannot be linked 
to existing biological knowledge, 
limiting interpretability. 

Noise and artifacts Could represent biologically 
relevant but novel signals. 

May include technical artifacts or 
noise, reducing the reliability of the 
dataset. 

Data integration Provides a more comprehensive 
integration across multiple omics 
layers. 

Integrating unknown features across 
datasets is challenging without clear 
identification. 

Computational 
complexity 

Provides a rich dataset for 
advanced modeling and machine 
learning approaches. 

Increased computational complexity 
and processing time due to the larger, 
unfiltered dataset. 

Validation Opportunity to explore novel 
hypotheses for further validation. 

Lack of validation methods for 
unknown features makes it hard to 
assess their biological significance. 

Quality control Can be informative if unknowns are 
systematically related to technical 
or biological variations. 

Increases the difficulty of quality 
control, as unknowns are harder to 
filter for reliability. 

Interpretation Allows for more exploratory 
analyses, potentially leading to 
novel insights. 

Interpretation is challenging without a 
functional or structural context for 
unknowns. 

 

 

Through the introduction of the DIABLO framework, an evaluation of both intra- and 

inter-omics heterogeneity was performed, revealing subtle yet distinct separation 

patterns between the predefined groups (control samples and TZD-treated AC16 

cells). Furthermore, interrogation of the correlation between the proteomics and 
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metabolomics datasets revealed a robust positive association. This finding indicates 

robust agreement within the DIABLO model and justifies its suitability for further 

investigations aimed at (i) elucidating the system biology of TZD-induced cardiotoxicity 

(joint pathway analysis), from protein to the final metabolic product, and (ii) identifying 

the unique molecular signatures associated with different characteristics of 

cardiotoxicity as reflected by changes in both protein and metabolite levels. 

5.4.1 Decoding the Metabolic Remodeling of AC16 Cardiomyocytes Following 

TZD Exposure 

HF is demonstrably characterised by early disruptions in cardiac energy metabolism, 

preceding discernible structural alterations. Our multi-level molecular profiling 

corroborates this notion, uncovering distinct patterns of metabolic reprogramming 

across multiple pathways, culminating in perturbed cardiac energetics. Our analysis 

revealed a coordinated downregulation of crucial pathways involving oxidative 

phosphorylation (OXPHOS), the citric acid cycle (TCA), pyruvate metabolism, and 

fatty acid synthesis in response to TZD treatment. Conversely, increased activity was 

observed in glycolysis, the pentose phosphate pathway, and amino and purine 

metabolism. This coordinated pattern strongly suggests a marked switch in AC16 

metabolic fate manifested as metabolic shift from fatty acid oxidation towards 

anaerobic glycolysis, potentially contributing to cardiotoxicity progression.  

In the context of TCA and OXPHOS, a marked downregulation in mitochondrial 

NAD(P)+-dependent malic enzyme (m-NAD(P)-ME), a protein with a prominent role in 

catalysing the oxidative decarboxylation of malate to pyruvate, feeding into the TCA 

cycle (Hsieh et al, 2019) was noted following PGZ treatment. However, ROSI 

treatment induced substantial downregulation of fumarate hydratase (FH), a 

homotetrameric mitochondrial enzyme catalysing the reversible hydration of fumarate 

to malate within the TCA (Valcarcel-Jimenez & Frezza, 2023). This downregulation 

led to a marked accumulation of fumarate, mirroring its observed abundance in TZD-

treated cells. Another crucial protein perturbed by ROSI treatment is malate 

dehydrogenase, a key enzyme in the oxidation of pyruvate and TCA and a member of 

the malate-aspartate shuttle (Ahn et al, 2020). This metabolic pathway functions as a 

conduit for electrons generated during glycolysis, facilitating their transfer from the 

cytosol to mitochondria for OXPHOS (Ahn et al, 2020). Malate dehydrogenase 
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catalyses the reversible conversion of malate to oxaloacetate, enabling NADH transfer 

from the cytoplasm to mitochondria (Ahn et al, 2020). Therefore, given its established 

role, disruption of malate dehydrogenase by ROSI critically impairs the malate-

aspartate shuttle, leading to reduced NADH transfer to mitochondria and 

compromising OXPHOS. Furthermore, ROSI treatment induced a striking enrichment 

in the nitrogen metabolism pathway. Notably, the glutamate dehydrogenases 

(GLUD1), key enzymes converting glutamate to α-ketoglutarate (α-KG), exhibited 

significant downregulation (Craze et al, 2019). This resulted in a marked accumulation 

of glutamate, as confirmed via our analysis, and compromised aerobic energy output, 

as α-KG serves as a crucial intermediate in the TCA cycle. 

Essential for normal cardiac function, long-chain fatty acids serve as the preferred 

energy source for the heart, enabling efficient ATP production through mitochondrial 

β-oxidation while simultaneously contributing to the structural integrity and function of 

cellular membranes by replenishing their lipid composition (Yamamoto & Sano, 2022). 

Our complementary analysis revealed a compelling downregulation of the fatty acid 

synthesis pathway, evidenced by the marked decrease in acyl-CoA synthetase long 

chain family member 1 (ACSL1) expression in both PGZ- and ROSI-treated cells. This 

significant ACSL1 downregulation, a key enzyme responsible for long-chain fatty acid 

activation and β-oxidation initiation (Roelands et al, 2019), aligns with the observed 

reduction in cellular fatty acid levels, including palmitic and stearic acids, following TZD 

treatment, which together shed light on potential impairment in fatty acid oxidation that 

underlined the observed changes in cellular energy metabolism following PGZ and 

ROSI treatment. The present data support the observations of Shekar et al., who 

reported increased degradation of proteins essential for mitochondrial fatty acid 

metabolism resulting in deficits in fatty acid oxidation in a Sprague Dawley rat model 

of transverse aortic constriction-induced moderate HF (Shekar et al, 2014). 

Beyond directly impacting fatty acid synthesis and β-oxidation, TZDs orchestrate a 

broader metabolic reprogramming reverberating through amino acid metabolism 

pathways markedly linked to fatty acid oxidation. This multifaceted effect, revealed by 

our integrated pathway analysis, manifests as a significant downregulation of lysine 

degradation in cardiac cells. This combined pathway analysis unveils an accumulation 

of lysine and its precursor, L-α-aminoadipate, coupled with a significant suppression 
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of dihydrolipoamide dehydrogenase, a critical pyruvate dehydrogenase complex 

subunit vital for β-oxidation and pyruvate-to-acetyl-CoA conversion feeding the TCA 

cycle (Duarte et al, 2021). Additionally, consistent with the lysine degradation 

pathway, TZD treatment associates with depleted carnitine and its precursor, γ-

butyrobetaine. Given carnitine’s central role in transporting long-chain fatty acids into 

mitochondria for β-oxidation (carnitine shuttle), this reduced carnitine pool provides a 

novel mechanistic explanation for the observed perturbation in cardiac energetics 

following TZD administration, as we described in our previous paper/ Chapter 3 (Al 

Sultan et al, 2024b). While both medications elicited significant effects on branched-

chain amino acid metabolism, our study additionally highlights pronounced 

modulations in the aromatic amino acid pool, particularly L-phenylalanine and L-

tyrosine. Despite their marginal contribution as energy substrates, these observations 

echo prior reports linking such alterations to cardiac remodelling (Geng et al, 2020; 

Karwi & Lopaschuk, 2023). Nevertheless, the ability of these amino acid fingerprint 

changes to serve as early biomarkers for subclinical cardiac hypertrophy in the context 

of acute TZD administration remains elusive and necessitates further research.  

TZD treatment of AC16 cells triggered a metabolic shift towards anaerobic glycolysis, 

orchestrated by the upregulation of key glycolytic enzymes and glucose transporters, 

such as aldolase A and lactate dehydrogenase A noted in TZD-treated cells. 

Additionally, overexpression of pyruvate dehydrogenase suggested a compensatory 

mechanism to decrease mitochondrial oxygen consumption and potentially suppress 

the TCA cycle. These observations collectively indicate TZD-induced cellular hypoxia, 

which, along with potential cardiac energy deficits, may drive the observed 

upregulation of purine metabolism in both drug-treated groups (Doigneaux et al, 

2020). The altered expression of Inosine-5'-monophosphate dehydrogenase 1, a key 

enzyme in de novo guanine nucleotide synthesis (Liu et al, 2023), could explain 

elevated guanine metabolite levels. Furthermore, upregulation of the purine salvage 

pathway, as indicated by increased inosine and hypoxanthine, suggests a cellular 

response to mitigate energy deficits by recovering nucleotides from RNA and DNA 

degradation (Johnson et al, 2019). Finally, modulated expression of adenylate kinase 

6, an enzyme involved in maintaining the nuclear adenine nucleotide pool (Deline et 

al, 2021), further supports the notion of increased cellular demand for nucleotides 

under hypoxic and glucose-deprived conditions. Notably, the aforementioned 
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observations regarding perturbations in mitochondrial energetics align with our 

previously reported in vitro cytotoxicity finding (Chapter 2) of a significant depletion in 

mitochondrial ATP upon TZD exposure, underscoring the consistency of these 

observations and highlighting the potential impact of TZDs on cellular energy 

production. 

TZD-induced alterations in cardiomyocyte fatty acid synthesis, β-oxidation, and amino 

acid and purine metabolism, as previously described, further translate to modulations 

in cellular redox status, highlighting the multifaceted impact of TZD on energy 

metabolism. Our analysis revealed a disrupted glutathione (GSH) system upon TZD 

administration, evidenced by a significant decrease in GSH content. This depletion 

could potentially stem from elevated reactive oxygen species (ROS) generated due to 

TZD-induced mitochondrial damage. Further proteomic investigation of TZD-treated 

cells unveiled perturbations in GSH anabolism, contributing to the diminished 

intracellular GSH pool. Specifically, downregulation of key enzymes was observed: (i) 

glutathione synthetase, responsible for the rate-limiting step of GSH synthesis (Tan et 

al, 2023), and (ii) glutathione disulfide (GSSG) reduction-related enzymes, such as 

glutathione reductase and glucose-6-phosphate dehydrogenase, crucial for recycling 

oxidised glutathione (GSSG) back to GSH (Tan et al, 2023). These findings collectively 

suggest a TZD-induced imbalance in the cellular redox state, rendering AC16 cells 

more susceptible to ROS damage.  

Building upon established biomarkers and leveraging the power of data-driven-based 

analysis, this study successfully identified key molecular signatures associated with 

TZD-induced cardiotoxicity across diverse omics datasets using the DIABLO model 

and the tune.block.splsda function. Prominent among these were signatures of amino 

acids such as L-ornithine, L-tyrosine, and glutamine, known HF biomarkers, further 

solidifying their potential utility in clinical settings (Geng et al, 2020; Karwi & 

Lopaschuk, 2023). Similarly, proteomic signatures revealed alterations in energy 

metabolism pathways (OXPHOS, pentose phosphate pathway, fatty acid synthesis) 

reflected by proteins such as Q16795, P52209, and P49327, respectively. 

Interestingly, ROSI datasets yielded distinct protein signatures enriched in energy 

metabolism (e.g. ATP synthase) but additionally highlighted disruption of protein 

synthesis machinery (P0DN37, P0DN26, Q9Y536), suggesting potential endoplasmic 
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reticulum stress and impaired protein export. Notably, these DIABLO-derived 

signatures align well with the observed metabolic shifts in AC16 cells upon TZD 

treatment. However, for their translation into clinically relevant prognostic tools for TZD 

cardiotoxicity and early detection of subclinical hypertrophy, rigorous validation and 

further investigation are warranted. 

Biological data driven independently by metabolomics and proteomics analyses, 

including functional assay findings (chapter 2), as well as following integration of both 

datasets, is comprehensively presented in Table 5.4.
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Table 5.4 Summary of functional assay observations, solo-omics findings and integrated insights 

 

Biological Process In vitro endpoint Metabolome Level Proteome Level Integration Level 

Disruption in pyruvate 

metabolism and TCA 

cycle  

Significant ATP Depletion 

following TZD treatment, 

measured using the CellTiter-

Glo® assay. 

A marked accumulation 

of fumarate 

A marked downregulation 

of mitochondrial 

NAD(P)+-dependent 

malic enzyme (m-

NAD(P)-ME). 

A marked downregulation of mitochondrial NAD(P)+-

dependent malic enzyme (m-NAD(P)-ME) coupled 

with a marked accumulation of fumarate suggests a 

disruption in the TCA cycle. 

A marked accumulation 

of fumarate 

 

A downregulation of 

fumarate hydratase 

 

A downregulation of fumarate hydratase and a 

marked accumulation of fumarate reflect a disruption 

in the TCA cycle, leading to altered cellular 

metabolism. 

Marked accumulation of 

glutamate 

A significant 

downregulation in 

glutamate 

dehydrogenases 

A marked accumulation of glutamate coupled with a 

significant downregulation of glutamate 

dehydrogenases likely indicates a disruption in the 

conversion of glutamate to α-ketoglutarate, hence 

compromising an aerobic energy output. 

Downregulation of the 

fatty acid synthesis 

pathway 

 

Significant ATP Depletion 

following TZD treatment, 

measured using the CellTiter-

Glo® assay. 

Reduction in cellular fatty 

acid levels, including 

palmitic and stearic acids 

Marked decrease in acyl-

CoA synthetase long 

chain family member 1 

The significant downregulation of ACSL1, a critical 

enzyme initiating long-chain fatty acid activation and 

β-oxidation, coupled with decreased levels of cellular 

fatty acids such as palmitic and stearic acid following 

TZD treatment, suggests a potential impairment in 

fatty acid oxidation underlying the observed 

alterations in cellular energy metabolism. 
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Disrupted glutathione 

(GSH) system 

 

Induction of oxidative stress 

noted in AC16 cells following 

TZD treatment 

Significant decrease in 

GSH content 

 

Downregulation of key 

enzymes was observed: 

(i) glutathione synthetase, 

(ii) glutathione reductase 

and (iii) glucose-6-

phosphate 

dehydrogenase 

The findings suggest that TZD treatment induces 

oxidative stress by impairing the cell's antioxidant 

defence mechanisms. 

Alteration in purine 

metabolism 
 

Elevated guanine 

metabolite levels 

 

Altered expression of 

Inosine-5'-

monophosphate 

dehydrogenase 

Elevated guanine metabolite levels in conjunction 

with altered expression of inosine-5'-monophosphate 

dehydrogenase (IMPDH) suggest potential increase 

in the de novo purine synthesis to meet energy 

demand.  

Increased levels of 

inosine and hypoxanthine 

Modulated expression of 

adenylate kinase 6 

The accumulation of inosine and hypoxanthine 

indicates an activation of the purine salvage pathway, 

reflecting a metabolic shift likely occurring as a 

compensatory response to cellular stress. 
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Reflecting on the key findings noted in Table 5.4, the synergy between 

toxicometabolomics and toxicoproteomics within a multi-omics approach offers 

significant advantages in elucidating the mechanisms of TZD cardiotoxicity, providing 

a more holistic understanding of biological systems. The added values of integrating 

these approaches can be summarised as follows: 

(i) Toxicoproteomics and toxicometabolomics complement each other in 

understanding molecular changes. Proteomics analyses the proteins 

involved in cellular processes, while metabolomics examines the small 

molecules that are produced or consumed by these proteins. This combined 

approach allows for a connection between early protein-level events and 

downstream metabolic perturbations, linking molecular changes to 

functional outcomes. For instance, a decrease in a specific metabolite might 

correlate with the downregulation of an enzyme involved in its synthesis. 

This correlation not only clarifies the molecular interactions driving toxic 

responses but also helps in pinpointing key regulatory nodes affected by the 

drug. For example, in our analysis, a significant downregulation of 

glutamate dehydrogenases was coupled with a marked accumulation of 

glutamate likely indicates a disruption in the conversion of glutamate to α-

ketoglutarate, hence compromising an aerobic energy output, as illustrated 

in Table 5.4. Similarly, our toxicoproteomics analysis demonstrated a 

downregulation of enzymes involved in initiating long-chain fatty acid 

activation and β-oxidation. Concurrently, toxicometabolomics findings 

revealed decreased levels of cellular fatty acids like palmitic and stearic acid 

following TZD treatment, reinforcing a disruption in energy production 

pathways.  

(ii) Drugs can induce toxicity by disrupting various biochemical 

pathways. Proteomics offers insights into the enzymes and regulatory 

proteins affected by the drug, while metabolomics reveals the specific 

metabolic pathways impacted. Our toxicoproteomics analysis demonstrated 

a downregulation of enzymes involved in the glutathione (GSH) system. 

Concurrently, toxicometabolomics findings revealed decreased levels of 

cellular fatty acids like palmitic and stearic acid and a marked accumulation 
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of fumarate, suggesting a disruption in the TCA cycle following TZD 

treatment. These findings suggest a possible cross-link between two 

biological processes, energy production and oxidative stress, indicating a 

strong connection between TZD treatment and mitochondrial 

dysfunction. This combined approach provides a more comprehensive 

understanding of the multi-layered biochemical disruptions caused by the 

drug. 

(iii) A multi-omics approach offers a comprehensive understanding of the 

temporal dynamics of toxicity, providing a detailed view of the progression 

of TZD-induced cardiotoxic effects. Our study suggests a potential 

metabolic shift from fatty acid oxidation towards anaerobic glycolysis in 

AC16 cells, observed at both the proteome and metabolome levels. This 

temporal mapping offers a more detailed understanding of how drug toxicity 

evolves over time, potentially contributing to the observed acute nature of 

cardiotoxicity and providing insights into critical windows for intervention. 

(iv) Furthermore, this approach reveals adaptive or compensatory 

responses, distinguishing between protective mechanisms and toxic insults 

by correlating protein-level stress responses with functional metabolic 

outcomes. In our analysis, elevated guanine metabolite levels in conjunction 

with altered expression of inosine-5'-monophosphate dehydrogenase 

(IMPDH) suggest a potential increase in de novo purine synthesis to meet 

energy demand. Additionally, the accumulation of inosine and hypoxanthine 

indicates an activation of the purine salvage pathway, reflecting a metabolic 

shift likely occurring as a compensatory response to cellular stress. 

(v) Lastly, the integration of toxicoproteomics and toxicometabolomics 

approaches not only elucidates the mechanisms of toxicity but also 

identifies key features implicated in each perturbed pathway. These 

features can be selected as early biomarkers, which can be used clinically 

for screening and progression monitoring. This can potentially improve the 

detection and management of adverse drug reactions, leading to safer and 

more effective drug development. 
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5.4.2 Limitations and Future Research Directions 

While the present investigation has yielded valuable insights into our understanding of 

TZD cardiotoxicity, it is prudent to acknowledge several limitations before drawing 

definitive conclusions. Motivated by the National Research Council’s (NRC) emphasis 

on minimising animal experimentation, this study embraced the growing trend of 

utilising in vitro-to-in vivo extrapolation methodologies in mechanistic toxicology 

research (Krewski et al, 2020). Accordingly, AC16 cells were chosen as a relevant cell 

model for investigation. Recognising the AC16 model’s prominent position within the 

field of cardiac research and its inherent advantages in terms of growth rate and cost-

efficiency relative to other models, this study employed this cell line for its 

investigations. Despite the strengths of the AC16 model, certain limitations warrant 

consideration. Namely, its dependence on glycolysis, fibroblast-like morphology, and 

potential for dedifferentiation, along with the complexities of maintaining differentiated 

cultures (Davidson et al, 2005), restricted our investigation to proliferative cells, as we 

previously described in chapters 3 and 4/ papers (Al Sultan et al, 2024a; b). 

The present study utilises a multi-omics framework, integrating toxicoproteomics and 

toxicometabolomics analyses, to establish novel causal relationships spanning 

various molecular levels with unprecedented precision. This comprehensive approach 

offers significant advantages over single-omics analyses in elucidating the complex 

interplay between molecular alterations and phenotypic manifestations. However, 

inherent challenges associated with multi-omics studies, such as variations in 

technology sensitivity across different investigations and the lack of standardised 

protocols for sample preparation and data acquisition, can hinder the comparability 

and reproducibility of findings. Addressing these fundamental limitations is crucial to 

maximising the advancement and fruitful progress within omics research. 

In conclusion, this study pioneers the integration of LC–MS-based toxicoproteomics 

and toxicometabolomics data to unravel the mechanistic underpinnings of TZD-

induced cardiotoxicity. The network analysis of proteo-metabolomic data revealed a 

distinct fingerprint of perturbed biochemical pathways, primarily involving energy 

metabolism. Downregulation of OXPHOS and fatty acid synthesis was coupled with 

increased activity in glycolysis, the pentose phosphate pathway, and amino acid and 

purine metabolism, suggesting a potential metabolic shift in AC16 cells from fatty acid 
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oxidation towards anaerobic glycolysis, potentially contributing to cardiotoxicity. 

Additionally, the study identified a marked disruption in the GSH system, indicating an 

imbalanced redox state triggered by TZD administration. These findings collectively 

illuminate promising therapeutic targets, paving the way for future research to improve 

the safety profile of TZD agents. 
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6.1  Connecting the Dots: A Holistic View of Chapter Insights 

Type II diabetes mellitus (T2DM) represents a burgeoning global pandemic, currently 

afflicting nearly half a billion individuals (ADA, 2023), and this alarming escalation in 

T2DM prevalence, incidence and associated complications has imposed a significant 

financial strain on healthcare systems and a cumulatively negative impact on public 

health outcomes (ADA, 2023). Given the current limitations in understanding the full 

spectrum of the pathogenesis and progressive trajectory of T2DM, lifelong medication 

adherence remains the central cornerstone of comprehensive disease management. 

The achievement of ideal adherence to medication regimes necessitates a 

collaborative interplay among the fundamental pillars of efficacy, cost and 

safety/toxicity, into the latter of which this thesis delves deeply. 

The past decade has witnessed remarkable progress in T2DM management with the 

introduction of new drug classes. However, a critical gap exists in our understanding 

of their safety profiles and the mechanisms underlying their adverse effects. 

Traditional mechanistic studies investigating these mechanisms for anti-diabetic drugs 

remain scarce in the literature. Despite the recent surge in single- and multi-omics 

investigations to understand T2DM pathogenesis (Gan et al, 2019; Kupai et al, 2022; 

Liu et al, 2022; Passaro et al, 2021; Tayanloo-Beik et al, 2021; Tiwari et al, 2023; 

Wang et al, 2021), the safety perspective of these new drugs remains underexplored, 

which exacerbates this gap. This is further evidenced by the few omics-based studies. 

Most of these studies were toxicogenomic in nature, primarily focused on identifying 

potential associations between genotypes and the adverse effects caused by oral 

antidiabetic drugs (Baye et al, 2021; Dawed et al, 2016). 

In these studies, various SNPs in SLC22A1, SLC29A4 and SLC6A4, which encode 

drug transporters and metabolising enzymes, were found to be associated with the GI 

intolerance attributed to metformin use (Baye et al, 2021; Dawed et al, 2019). These 

adverse effects were further shown to worsen with concomitant treatment with 

transporter-inhibiting drugs (Baye et al, 2021). Regarding sulfonylureas, CYP2C9 

genetic variants were associated with a higher risk of sulfonylurea-induced 

hypoglycaemia (Baye et al, 2021; Gökalp et al, 2011). Furthermore, the CYP2C8*3 

variant was associated with less weight gain in cases of rosiglitazone treatment (Baye 

et al, 2021; Dawed et al, 2019). The C allele of rs6123045 (an intronic SNP in 
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NFATC2) was markedly associated with a higher rate of rosiglitazone (ROSI)-induced 

oedema (Baye et al, 2021; Dawed et al, 2016). 

To the best of our knowledge, no other omics-based studies have been conducted to 

assess the effect of genetic polymorphisms on the incidence of the adverse effects 

associated with other antidiabetic agents or to elucidate the mechanism of action of 

such adverse effects. This highlights a gap in omics-based investigations of the 

pharmacological landscape of T2DM, particularly regarding predicting and elucidating 

the potential mechanisms underlying drug toxicities. 

Driven by the alarming rise in T2DM diagnoses globally and, particularly, in my own 

country of Kuwait, coupled with the need for cost-effective and safe medications, this 

research aims to embrace the power of omics-based technologies from a toxicological 

perspective. Recognising the limited application of omics in understanding drug 

toxicity, this study strives to bridge this gap by establishing an adverse outcome 

pathway (AOP) framework, the basis of which comprises two distinct disciplines: in 

vitro cytotoxicity testing and multi-omics strategies coupled with bioinformatics data 

modelling, with the ultimate aim of illuminating the potential molecular mechanisms 

responsible for drug-induced toxicities, initially focusing on a specific class of T2DM 

agents, namely thiazolidinediones (TZDs). TZDs represent a prime example of the 

dynamic interplay among efficacy, cost and safety within the clinical framework of 

medication management. Despite demonstrating an established efficacy in 

maintaining the glycaemic control and offering affordability, TZDs encounter 

limitations, primarily due to cardiotoxicity cases associated with their usage (ADA, 

2023). The emergence of these case reports has profoundly reshaped the risk–benefit 

profile of these medications, leading to marked restrictions on their clinical use 

(Administration, 2010; 2012; De Flines & Scheen, 2007). Nonetheless, the exact 

mechanisms responsible for TZD-induced cardiotoxicity remain unravelled, impeding 

a holistic understanding of this complex interplay. Hence, by integrating our proposed 

AOP framework and delving into the implicated pathways leading to adverse effects, 

this research proposes therapeutic strategies that have the potential to improve 

pharmaceutical safety profiles, promoting patient protections and support and 

enabling the selection of cost-effective medications. 
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In Chapter 2, the first component of the AOP framework, traditional toxicity testing, 

was introduced. Guided by the National Research Council's emphasis on reducing 

animal experimentation (Yu et al, 2020), the cellular model for the in vitro toxicity 

testing of TZDs was developed. The model employed both human adult 

cardiomyocytes and human cardiac fibroblasts to enhance in vitro–in vivo translation, 

acknowledging the fact that the application of human cardiac cell lines to the study of 

TZD cardiotoxicity is limited. Recognising the extent of the assays encompassed 

within established traditional toxicity testing methodologies, our framework was 

directed towards the specific domain of mitochondrial assays, motivated by two 

distinct rationales, as follows. First, the well-documented evidence linking 

mitochondrial dysfunction to troglitazone, the oldest member of the TZD family, as an 

off-target organelle responsible for troglitazone-induced liver failure (Julie et al, 2008), 

prompted us to explore whether this phenomenon is drug-specific or observable 

among the entire TZD class. Second, a previous paper finding interestingly suggested 

mitochondrial dysfunction as a potential contributor to pioglitazone (PGZ) cardiotoxic 

effects (Zhong et al, 2018). These two factors were the determinants behind the 

workflow designated in Chapter 2, which comprises five mitochondrial assays, each 

of which carries a different endpoint: (MTT assay: implication of mitochondrial 

dehydrogenases; mitochondrial adenosine triphosphate [ATP] assay: measurement 

of OXPHOS; caspase 3/7 assay: activity of caspase 3/7 in cellular apoptosis; 

mitochondrial membrane potential [MMP]: reflection of membrane depolarisation 

[ΔΨm], electron transfer and OXPHOS; and ROS: measurement of oxidative stress). 

The key insights driven by this chapter can be summarised as follows: 

• The concentration-response modelling of TZD agents against the developed 

cellular models demonstrated a concentration-dependent loss of cell viability 

with a high potency, reflected by the half-maximal inhibitory concentration (IC50) 

measure.  

• Treatment with TZDs resulted in a significant decline in ATP production in both 

human cardiomyocytes and fibroblasts. Notably, this reduction remained 

evident following the introduction of the PPAR-γ antagonist GW9662, implying 

the existence of PPAR-γ-independent mechanisms governing TZD-mediated 

perturbations in mitochondrial energy production. 
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• The decline in ATP production prompted the investigation of the MMP (ΔΨm), 

the key hallmark of the mitochondrial bioenergetic state. Notably, both cardiac 

cells displayed impaired ΔΨm upon TZD exposure. Acknowledging the 

prominent role of ΔΨm in ATP production, it has been postulated that TZD 

treatment induces mitochondrial uncoupling, potentially initiating a series of 

events stemming from the disruption of the proton motive force, a central driver 

of ΔΨm, ultimately culminating in compromised ATP production. 

• Through the application of H2DCFDA, a fluorescent dye sensitive to ROS, the 

effect of TZDs on ROS generation was investigated. Our results revealed the 

induction of oxidative stress in response to TZD exposure, suggesting a 

possible additional mechanism involved in TZD-induced cardiotoxicity. 

• An investigation of cell death mechanisms through a caspase 3/7 activity 

assessment demonstrated a high degree of specificity to the modality of cell 

death, depending on the specific drug and cell line employed. 

Collectively, this chapter underlines the anticipated class specificity of mitochondrial 

dysfunction and its prominent involvement in TZD cytotoxicity, with three distinct 

potential mechanisms implicated: disturbances in mitochondrial energetics, ΔΨm 

dysregulation and oxidative stress induction. 

Capitalising on recent breakthroughs in omics technologies and the concomitant 

advancements in bioinformatics tools, single- and multi-omics studies were 

conducted, forming the second and principal component of our AOP framework.  

In Chapter 3, an untargeted liquid chromatography–mass spectrometry (LC–MS)-

based approach was introduced, followed by multivariate statistics. Owing to the 

progressive establishment of toxicometabolomics as a powerful tool in toxicological 

research over the past few decades (Olesti et al, 2021), this approach was adopted 

herein to (i) profile the biochemical pathways perturbed in TZD-treated AC16 human 

cardiomyocytes and (ii) identify biomarker candidates associated with such an effect 

that could serve as potential therapeutic targets for TZDs’ undesirable effects. 

The principal findings presented in this chapter can be summarised as follows:  



223 
 

• The acute administration of either TZD agent resulted in a significant 

modulation in carnitine content, reflecting a potential disruption to the 

mitochondrial carnitine shuttle and mitochondrial energetics.  

• Over-expression was noted in purine metabolites, including inosine, 

hypoxanthine, adenosine and adenosine monophosphate/diphosphate 

(AMP/ADP), suggesting a modulation in purine metabolism accompanying TZD 

treatment. 

• TZD treatment resulted in marked modulations in amino acids fingerprints, 

characterised by high levels of branched-chain amino acids (BCAAs), such as 

L-leucine, L-isoleucine and valine, which are well-established markers of 

cardiovascular disease (Xiong et al, 2022). 

• Beyond the observed modulations in BCAAs, alterations in L-tyrosine and γ-

aminobutyric acid were identified, evidently established as early biomarkers of 

cardiac hypertrophy (Zhao et al, 2023). These observations imply the potential 

of TZD-induced cardiac tissue remodelling, another hallmark of cardiotoxicity. 

In summary, the findings in Chapter 3 shed light on the alterations in biochemical 

pathways primarily attributed to cardiac energetics. Furthermore, the profiling of the 

AC16 metabolome in response to TZD revealed characteristic features of cardiac 

hypertrophy, suggesting the potential discovery of early biomarkers of TZD-related 

cardiotoxic effects. 

Proceeding with the single-omics based approach, a novel microflow LC–MS-based 

toxicoproteomics pipeline (Chapter 4) was implemented to characterise 

comprehensively the protein-level molecular alterations and profile the perturbed 

pathways triggered by TZD exposure.  

As such, the central findings presented in this chapter can be summarised as follows: 

• The in-depth differential and weighted correlation network analyses showed 

that the cardiotoxicity of TZDs primarily stemmed from mitochondrial OXPHOS 

impairment, with distinct signalling mechanisms observed for PGZ and ROSI. 

• The type of cell death was also found related to the mitochondria—protein 

upregulation in the PGAM5–Drp1 axis, as noted in PGZ-treated cells, 
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suggested mitochondrial-mediated necroptosis. However, caspase-mediated 

apoptosis was the distinct form of cell death characterising ROSI-treated cells. 

• Our toxicoproteomics findings revealed additional mechanistic aspects of 

cardiotoxicity; however, these findings highlight drug specificity, as follows: 

▪  Both dysregulation and regulation in cardiomyocyte contractility were 

noted in the ROSI-treated cells, with potential mechanisms related to 

perturbation in mitochondrial complex expressions (MT-CO1 and 

UQCRC1) and cardiac sodium pump (Na+/K+ ATPase) function, 

impeding cytosolic calcium homeostasis. 

▪ Impairments in protein homeostasis, or proteostasis, were detected in 

ROSI-treated cells, potentially contributing to defects in protein 

maturation, the accumulation of unfolded or misfolded proteins and 

disruption of endoplasmic reticulum homeostasis. 

▪ A disruption in the cytoskeletal architecture, primarily driven by integrin-

signalling pathways (namely the talin–vinculin axis and the Rho/ROCK 

pathway), was noted in PGZ-treated cells, suggesting a potential 

mechanism implicated in myocardial contractile failure. 

▪ An investigation of PGZ-treated cells demonstrated a synergistic 

interplay between the complement and coagulation systems, manifested 

by an upregulation of proteins involved in immunothrombosis. This 

observation proposes a potential mechanism for the cardiotoxic effects 

of PGZ. 

In summary, insightful data were extracted from the toxicoproteomics approach, 

further solidifying the implication of mitochondrial dysfunction as the primary off-target 

organelle that characterised TZD cytotoxicity. While focusing on alterations in cardiac 

energetics, the analyses additionally revealed previously unknown, drug-specific 

mitochondrial-independent contributions to TZD cardiotoxicity, enriching our 

understanding of TZD’s adverse effects.  

To elucidate comprehensively the underlying mechanisms of TZD’s cardiotoxicity and 

to explore the multifaceted interactions among diverse molecular levels, a multi-omics 

integration approach was employed, transitioning the investigative paradigm from 

associative to causative. In the multi-omics integration chapter (Chapter 5), a 
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combined data- and knowledge-driven analysis of co-acquired toxicometabolomics 

and toxicoproteomics data from the same biological AC16 samples was performed.  

The key findings extracted from the integrative approach can be summarised as 

follows:  

• The investigation of intra-omics heterogeneity within the sample groups 

revealed a clear separation at each investigated molecular layer. 

• An evaluation of the inter-omics heterogeneity demonstrated a similar pattern 

of distinct separation between the control and TZD-treated cells, reflecting 

differentiable molecular profiles among sample groups. 

• The interrogation of the correlation between the toxicoproteomics and 

toxicometabolomics datasets revealed a robust positive association, implying 

internal coherence within the DIABLO model and supporting its applicability for 

further exploration. 

• The joint pathway analysis revealed alterations in the metabolic fate of AC16 

cells triggered by TZD exposure, with changes evident at both the metabolite 

and protein expression levels. 

• The joint analysis findings strongly re-enforced the marked switch in AC16 

metabolic fate, manifested as a metabolic shift from fatty acid oxidation towards 

anaerobic glycolysis, potentially contributing to cardiotoxicity progression. 

• An analysis of TZD-treated cells revealed a substantial downregulation of the 

fatty acid synthesis pathway, manifested by a marked decrease in the ACSL1 

expression. This finding aligns with the observed reduction in cellular fatty acid 

levels, most notably palmitic acid and stearic acid, suggesting the potential 

impairment of fatty acid oxidation and contributing to the altered cellular energy 

metabolism observed upon PGZ and ROSI treatment. 

• An investigation of TZD-treated cells revealed alterations in amino acid 

metabolism, specifically the marked downregulation in lysine degradation, 

known to be linked to fatty acid oxidation, suggesting an additional mechanism 

is implicated in TZD-induced perturbation in fatty acid oxidation. Through the 

combined pathway analysis, the study unveiled an accumulation of lysine and 

its precursor, L-α-aminoadipate, coupled with the significant suppression of 

dihydrolipoamide dehydrogenase, a critical pyruvate dehydrogenase complex 
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subunit vital for β-oxidation and pyruvate-to-acetyl-CoA conversion, feeding the 

TCA cycle (Duarte et al, 2021) and suggesting a collectively marked 

downregulation in lysine degradation, potentially contributing to the observed 

disruptions in fatty acid oxidation. 

• The integrated analysis shed light on potential mechanisms contributing to the 

increased purine metabolism detected in the toxicometabolomics data. 

Proteomic profiling revealed the activation of a hypoxia-related pathway, a well-

established inducer of purine metabolism (Doigneaux et al, 2020). Moreover, 

the altered expression of Inosine-5'-monophosphate dehydrogenase 1, a key 

enzyme in de novo guanine nucleotide synthesis (Liu et al, 2023), provides a 

potential explanation for the observed elevation in guanine metabolite levels in 

TZD-treated cells. Lastly, the perturbed  expression of adenylate kinase 6, an 

enzyme crucial to maintaining the nuclear adenine nucleotide pool (Deline et 

al, 2021), further supports the hypothesis of an increased cellular demand 

among nucleotides under the conditions of hypoxia and glucose deprivation. 

• Our comprehensive analysis highlighted the induction of oxidative stress, 

triggered upon TZD exposure, and it also revealed a disrupted glutathione 

(GSH) system upon TZD administration, evidenced by a significant decrease in 

GSH content. This disruption is explained to be secondary for elevated reactive 

oxygen species (ROS), generated due to TZD-induced mitochondrial damage 

or perturbations in GSH anabolism and characterised by the downregulation of 

crucial enzymes, including glutathione synthetase and glucose-6-phosphate 

dehydrogenase, contributing to the diminished intracellular GSH pool. 

• Capitalising on the power of the DIABLO model in extracting potential 

biomarkers from diverse omics datasets, the data-driven analysis identified 

amino acids, including L-ornithine, L-tyrosine and glutamine, known HF 

biomarkers (Xiong et al, 2022; Zhao et al, 2023), as candidate biomarkers, 

opening novel avenues for profiling TZD cardiotoxicity progression. 

In summary, the integration of multi-omics datasets yielded valuable insights into the 

molecular mechanisms underlying the key findings previously observed in single-

omics analyses, thereby enriching our understanding of the potential molecular 

pathways involved in TZD-induced cardiotoxicity. Furthermore, the integration model 
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revealed key molecular signatures across omics datasets, potentially serving as 

valuable biomarkers for the early detection of TZD-induced cardiotoxicity. 

6.2 Unveiling the Horizon: Directions for Continued Research 

Considering the progressive nature of TZD-induced cardiotoxicity, that is transitioning 

from an acute to a potential chronic phase, a comprehensive understanding of each 

pathophysiological stage is crucial. While acknowledging the limitations of research 

timeframes and initial laboratory access restrictions due to the COVID-19 pandemic, 

this thesis aimed to develop a reproducible framework, incorporating analytical tools 

designed to expedite the acquisition of key insights into the molecular mechanisms 

governing the acute stage of cardiotoxicity and striving to identify early biomarkers for 

predicting the onset and progression of this adverse effect.  

Extending the present investigation, our future research plans will prioritise further 

clarification of the aetiological underpinnings of the acute manifestation of TZD-

induced cardiotoxicity. Following the successful elucidation of key molecular 

mechanisms underlying TZD-mediated cardiotoxicity through a comprehensive 

combination of in vitro cytotoxicity testing and omics-based analyses, coupled with the 

identification of potential early-stage biomarkers, the next crucial step is validation of 

the observed molecular perturbations. This validation will be crucial to translating 

these findings into clinically actionable prognostic biomarkers and therapeutic targets 

for mitigating TZD-associated side effects. Therapeutic targets identified in this study 

require additional validation and are as follows: 

6.2.1 Uncovering New Therapeutic Opportunities: The Path to Validation 

6.2.1.1 Mitophagy: A New Potential Target for Preventing TZD-Induced HF 

Expanding upon the in vitro findings, our analyses revealed an upregulation of 

oxidative stress and a decline in MMP following TZD treatment. These molecular 

alterations are recognised as potent inducers of PINK1/Parkin-mediated mitophagy 

(Lee et al, 2017). Mitophagy is indispensable for maintaining cardiac health (Wang et 

al, 2023). Given the heart's heavy reliance on mitochondrial function, the timely 

removal of damaged mitochondria through this process is crucial. HF is often 

characterised by impaired mitophagy, resulting in the accumulation of dysfunctional 

mitochondria (Onishi et al, 2021; Wang et al, 2023). Inefficient mitophagy in clearing 
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these damaged organelles can precipitate cardiomyocyte apoptosis and ultimately, 

HF (Onishi et al, 2021; Wang et al, 2023). At the molecular level and under stress, the 

mitochondrial protease OMA1 cleaves Opa1 into a short form, inhibiting mitochondrial 

fusion and promoting fragmentation, culminating in necrotic cell death, fibrosis, and 

ventricular remodeling (Wai et al, 2015). Interestingly, Wang et al. reported that 

AMPKα2-mediated phosphorylation of PINK1 activates the PINK1-Parkin pathway, 

enhancing mitophagy and safeguarding myocardial cells from stress-induced damage, 

thereby mitigating HF progression (Wang et al, 2018). Therefore, assessing the 

expression of the mitophagy pathway is crucial as it represents a potential therapeutic 

target for TZD-induced cardiotoxicity. Our future research will characterise the mRNA 

and protein expression levels of PINK1 and Parkin using RT-qPCR and Western 

blotting, respectively, to evaluate their potential involvement in this condition. 

6.2.1.2 Necroptosis: A Novel Pathway in TZD-Induced Cardiotoxicity 

Diverse forms of heart disease, including MI, HF, cardiomyopathies, and myocarditis, 

involve multiple cell death pathways. Recent research highlights the significant 

contribution of necroptosis to the pathogenesis of major cardiac events like HF (Guo 

et al, 2022). Key necroptotic mediators, including RIPK1, RIPK3, and MLKL, and their 

phosphorylated forms, exhibited elevated levels in failing human hearts compared to 

healthy controls (Guo et al, 2022). A parallel increase in these proteins was observed 

in mice subjected to transverse aortic constriction (TAC) (Marunouchi et al, 2021). 

Notably, the administration of Hsp90 inhibitor 17-AAG reversed the upregulation of 

RIPK1, RIPK3, and MLKL following TAC (Marunouchi et al, 2021). Furthermore, 

doxorubicin, a chemotherapeutic agent, induces cardiomyopathy in approximately 

10% of patients (Zhang et al, 2016). Although the underlying mechanisms remain 

elusive, multiple cell death pathways, including necroptosis, have been implicated 

(Zhang et al, 2016). RIPK3 upregulation in cardiomyocytes following doxorubicin 

treatment was reported supporting the involvement of necroptosis (Zhang et al, 2016). 

Of importance, global deletion of RIPK3 mitigated doxorubicin-induced cardiac 

dysfunction, further confirming this pathway's role (Zhang et al, 2016). Given the 

consistency between the current findings and previous research implicating RIPK3 in 

doxorubicin-induced cardiomyopathy, further investigation into RIPK3's role in TZD-

induced cardiac dysfunction is warranted. To this end, an in vivo model utilising adult 
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RIPK3 knockout and wild-type C57BL/6 mice will be developed to examine RIPK3's 

involvement in TZD-induced necroptosis and HF. 

6.2.1.3 Mitochondrial Dysfunction in TZD Therapy: Drug-Specific or Class-Wide 

Phenomenon? 

Results presented herein reinforce the established link between TZDs and 

mitochondrial dysfunction, consistent with previous findings on troglitazone and the 

prototypical compound of TZD class ciglitazone (Julie et al, 2008). This suggests a 

strong potential interaction between the TZD core structure and mitochondrial 

proteins. To explore this further, in silico docking studies using GOLD software, as 

described by (Zhong et al, 2018), will be conducted. To elucidate potential binding 

partners, mitochondrial proteins identified in our analysis will be subjected to docking 

simulations with both TZD agents to identify the specific pharmacophore responsible 

for the toxic effect. Proteins with the highest docking scores will undergo further 

investigation to assess their biological significance (i.e., map the protein against our 

KEGG pathway analysis) and Western blotting to validate protein expression. 

Subsequently, structure-activity relationship (SAR) studies will be performed by 

docking drug analogs to understand how structural modifications influence binding 

affinity and toxicity. Ultimately, these findings will inform the design of modified drug 

structures with reduced affinity for the toxic target protein while preserving therapeutic 

efficacy. 

6.2.2 AC16 and Beyond: Advancing Model Capabilities 

6.2.2.1 The Transition from Proliferative to Differentiated state 

The current study primarily employed an in vitro model utilizing proliferative human 

cardiac cells. Given the substantial alterations in gene expression, cellular 

architecture, and function associated with the transition from a proliferative to a 

differentiated cardiomyocyte state, which significantly influence cardiac physiology 

and development, future research will be directed towards re-evaluating these findings 

using differentiated cell models. Human induced pluripotent stem cell-derived 

cardiomyocytes (iPSC-cardiomyocytes) currently represent one of the most advanced 

and well-characterised model systems (Burnett et al, 2021). The accessibility of high-

quality iPSC- cardiomyocytes encourages its application in toxicological research 
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(Burnett et al, 2021). Future research will focus on investigating TZD cardiotoxicity 

using iPSC-differentiated cardiomyocytes. To further elucidate the complex effects of 

TZDs, a co-culture system incorporating these cells with other cardiac cell types, such 

as fibroblasts, will be developed (Giacomelli et al, 2020; Groen et al, 2024). This 

approach will enable the examination of cell-cell interactions following TZD 

administration and facilitate a more comprehensive assessment of toxicological 

impacts in a more integrated system. 

6.2.2.2 Expanding the Cellular Landscape: Beyond Heart Cells 

To unravel comprehensively the complexity of TZD-induced cardiotoxicity, a 

systematic evaluation of their cytotoxic effects on diverse cell lines, including kidney, 

liver and brain cells, is imperative. Such a multi-organ approach holds the potential to 

reveal the multifaceted nature of TZD action and uncover crosstalk mechanisms 

between different organ systems contributing to TZD’s adverse effect. This multi-organ 

cytotoxicity evaluation is designated as a key component of our future research 

agenda, aiming to provide a more holistic understanding of TZD-induced adverse 

effects and to identify potential therapeutic targets. 

6.2.3 Omics to Outcomes: A Path to Targeted Approaches 

Building upon the untargeted omics analysis conducted on the AC16 model, the 

subsequent phase will employ targeted omics approaches. A targeted metabolomics 

strategy, centered on characteristic features identified in the untargeted study, will be 

implemented to precisely quantify and track metabolite fluctuations in response to TZD 

exposure. This focused approach will facilitate a more in-depth examination of specific 

metabolic pathways or processes, mitigating the complexity inherent to untargeted 

analyses and enhancing reproducibility and reliability through the prioritisation of 

predefined metabolites. Furthermore, to investigate the metabolism of TZDs and 

assess their toxicological potential, a comprehensive in vitro model utilising liver 

microsomes will be employed. This model aims to characterise the biotransformation 

products of TZDs by exposing them to liver microsomes, which replicate the enzymatic 

environment of the endoplasmic reticulum involved in drug metabolism (Sun et al, 

2024). Following incubation, the metabolites will be analysed using advanced 

analytical techniques such as mass spectrometry to identify and quantify 

biotransformation products. To further evaluate the potential toxicity of these 
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metabolites, functional assays similar to those described in Chapter 2 will be utilised. 

These assays will include cellular viability tests, oxidative stress assessments, and 

assays for apoptosis and necrosis. This approach will provide a detailed 

understanding of the metabolic pathways of TZDs and their potential toxic effects, 

offering insights into their safety profiles and mechanisms of toxicity. 

At the proteome level, following the successful implementation of a label-free 

approach, the next step is to transition towards a targeted approach. Given the 

suggestive role of OXPHOS in thiazolidinedione (TZD) cardiotoxicity, the targeted 

approach will be designed to specifically investigate the proteins involved in this 

pathway. This will involve quantifying key components of the OXPHOS machinery to 

better understand their alterations in response to TZD exposure, thereby providing 

more detailed insights into the mechanistic underpinnings of TZD-induced 

cardiotoxicity. To achieve this objective, a recently applied method by (Imami et al, 

2023) will be utilised to uncover the comprehensive picture of (post-)translational 

regulation of both mitochondrial- and nuclear-encoded subunits of OXPHOS 

complexes. This approach involves an MS-based proteomic technique that integrates 

biochemical isolation of mitochondria with pulse stable isotope labeling by amino acids 

in cell culture (pSILAC). pSILAC, an advanced variation of the standard SILAC 

technique, is specifically designed to measure the rate of protein synthesis rather than 

merely comparing protein abundance across different samples (Imami et al, 2023). By 

combining pSILAC with mitochondrial isolation, this method will enable the 

quantification of mitochondrial-encoded proteins and facilitate the monitoring of 

mitochondrial translation. This will provide insights into how OXPHOS is perturbed 

following exposure to TZDs, thereby elucidating the mechanisms underlying TZD-

induced cardiotoxicity. 

The integrated analysis of toxicometabolomics and toxicoproteomics provided a 

comprehensive understanding of the observed effects identified in individual omics 

studies, deepening insights into TZD-induced cardiotoxicity. Given the established 

correlation between the proteome and genome, incorporating transcriptomics into the 

analysis is expected to enhance data flow and provide a more holistic perspective on 

the underlying mechanisms of TZD cardiotoxicity. Single-cell RNA sequencing 

(scRNA-seq) represents a transformative advancement in toxicology, enabling 
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unprecedented insights into cellular heterogeneity and the molecular basis of toxicity 

(Kim & Cho, 2023). By profiling gene expression at the individual cell level, rather than 

relying on bulk tissue analysis, scRNA-seq unveils the diverse cellular responses 

within a tissue, providing a more comprehensive understanding of toxicological 

effects. The primary objectives of employing single-cell transcriptomics are to enhance 

spatial resolution and contextual understanding of gene expression within tissue 

architecture, as well as to investigate the impact of cellular interactions on toxicity (Kim 

& Cho, 2023). Furthermore, integrating single-cell transcriptomics with existing 

toxicoproteomics and toxicometabolomics approaches will provide a more 

comprehensive overview of cellular responses to TZDs, facilitating a deeper 

understanding of intricate biological processes and interactions. 

6.3 Concluding Remarks 

The concluding remarks of this thesis highlight the development of a putative AOP 

framework devised to elucidate the molecular mechanisms driving the manifestation 

of TZD-induced cardiotoxicity. Given the growing body of literature on drug-induced 

cardiotoxicity, such as those related to doxorubicin (Geng et al, 2020) and 

cyclophosphamide (Dionísio et al, 2022), the current AOP can be integrated with 

existing models to construct a more comprehensive AOP network. AOP networks offer 

several advantages. They provide a comprehensive overview of interconnected 

molecular mechanisms and biological pathways, revealing how diverse mechanisms 

converge to produce similar adverse outcomes. Additionally, AOP networks capture 

intricate interactions between pathways and endpoints, facilitating the identification of 

how different stressors or chemicals impact multiple pathways simultaneously. This 

holistic approach enhances predictive toxicity assessment by enabling extrapolation 

across species and chemicals with similar mechanisms, even in the absence of direct 

data. Ultimately, AOP networks contribute to more informed regulatory decisions by 

providing a structured framework for integrating diverse evidence, thereby enhancing 

assessment transparency and reliability. 

The findings of our framework collectively shed light onto novel molecular 

mechanisms, potentially resolving decades-old contradictory data surrounding TZD 

agents. Key molecular targets identified include impaired OXPHOS, carnitine shuttle 

dysfunction, and multiple cell death pathways. Potential interventions include carnitine 
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supplementation, as employed in valproic acid therapy (Okumura et al, 2021), or drug 

redesign to inhibit interactions with deleterious protein targets. These strategies aim 

to mitigate TZD toxicity, thereby re-establishing their viability as a first-line treatment 

for T2DM. The affordability and convenience of oral TZD administration are particularly 

advantageous for middle- and low-income populations, such as those in the MENA 

region with high T2DM prevalence (Khalil et al, 2024). Improved glycemic control, 

delayed disease progression, reduced micro- and macrovascular complications, and 

enhanced patient productivity are anticipated outcomes, ultimately alleviating the 

substantial healthcare burden associated with T2DM and its complications. 

Lastly, this research highlights the transformative power of integrating traditional and 

omics-based methodologies, and its comprehensive approach expedites the 

acquisition of toxicology-driven insights, offering renewed hope for revisiting the safety 

of long-forgotten medications and forging a crucial pathway towards safer medications 

and improved patient compliance. 
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7.1 Supplementary Table for Chapter 2 

Table S1. Summary of utilized assays and their operational principles. 
 

 

Assay Name Cell-Based Assay Mechanism Reference 

MTT 

The MTT colorimetric method relies on the reduction of a yellow 
tetrazolium salt, referred as MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide), to form purple formazan crystals by 
metabolically active cells. These viable cells contain NAD(P)H-
dependent oxidoreductase enzymes that facilitate the reduction 
of MTT to formazan. Subsequently, the insoluble formazan 
crystals are dissolved using a solubilization solution, and the 
resulting colored solution's absorbance is measured at 500-600 
nanometers using a multi-well spectrophotometer.  

(Ghasemi et al, 
2023) 

Caspase-
Glo 3/7 

The Caspase-Glo 3/7 assay consists of a proluminescent 
caspase-3/7 DEVD-aminoluciferin substrate and a proprietary 
thermostable luciferase within a reagent designed to optimize 
caspase-3/7 activity, luciferase activity, and cell lysis. Upon 
adding the single Caspase-Glo 3/7 reagent in an "add-mix-
measure" format, the cells undergo lysis, leading to caspase 
cleavage of the substrate. This process releases free 
aminoluciferin, which is then consumed by the luciferase, 
producing a luminescent signal proportional to caspase-3/7 
activity. 

(Niles et al, 
2008) 

CellTiter-Glo 

The CellTiter-Glo luminescent cell viability assay relies on 
luciferase to measure the amount of ATP present in metabolically 
active cells. Upon addition to the cell culture, the CellTiter-Glo 
reagent performs three key functions: lysing cells to release ATP, 
inhibiting endogenous ATPases to prevent ATP degradation, and 
providing the necessary luciferin and luciferase for an ATP-
dependent luminescent signal. The intensity of the light output 
directly correlates with the number of viable cells. 

(Hannah et al, 
2001) 

JC-1 

This assay utilizes the JC-1 dye, a membrane-permeant 
fluorescent probe commonly employed in apoptosis 
investigations for assessing mitochondrial health. JC-1 dye 
accumulates in mitochondria in a potential-dependent manner, 
initially emitting a green fluorescence at approximately 529 nm for 
its monomeric form. As the dye concentration increases, it 
transitions to a red fluorescence at around 590 nm, indicative of 
the formation of red fluorescent J-aggregates. Thus, 
mitochondrial depolarization is characterised by a reduction in the 
ratio of red to green fluorescence intensity. 

(Sivandzade et 
al, 2019) 

H2DCFDA 

This assay relies on the cell-permeant compound 2',7'-
dichlorodihydrofluorescein diacetate (H2DCFDA), also known as 
dichlorofluorescein diacetate, which serves as a chemically 
reduced form of fluorescein and functions as an indicator for 
reactive oxygen species (ROS) within cells. Upon intracellular 
esterase cleavage of the acetate groups and subsequent 
oxidation, the initially nonfluorescent H2DCFDA is converted into 
the highly fluorescent 2',7'-dichlorofluorescein (DCF). 

(Wu & Yotnda, 
2011) 
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7.2 Supplementary Tables for Chapter 3 

Table S2. Findings of metabolite set enrichment analysis on characteristic features identified 
in the PGZ study.  
 
 

Pathway Term Total Expected Hits Raw p Holm p FDR 

Spermidine and Spermine 
Biosynthesis 

18 0.251 3 0.00157 0.154 0.154 

Urea Cycle 28 0.391 3 0.00579 0.562 0.228 

Glycine and Serine Metabolism 59 0.824 4 0.00697 0.669 0.228 

Beta Oxidation of Very Long 
Chain Fatty Acids 

17 0.238 2 0.0219 1 0.401 

Alanine Metabolism 17 0.238 2 0.0219 1 0.401 

Glutathione Metabolism 20 0.279 2 0.0298 1 0.401 

Arginine and Proline 
Metabolism 

52 0.727 3 0.032 1 0.401 

Pantothenate and CoA 
Biosynthesis 

21 0.293 2 0.0327 1 0.401 

Oxidation of Branched Chain 
Fatty Acids 

26 0.363 2 0.0487 1 0.448 

Phenylalanine and Tyrosine 
Metabolism 

27 0.377 2 0.0521 1 0.448 

Selenoamino Acid Metabolism 27 0.377 2 0.0521 1 0.448 

Methylhistidine Metabolism 4 0.0559 1 0.0548 1 0.448 

Ammonia Recycling 31 0.433 2 0.0669 1 0.504 

Beta-Alanine Metabolism 34 0.475 2 0.0788 1 0.552 

Propanoate Metabolism 42 0.587 2 0.114 1 0.65 

Histidine Metabolism 42 0.587 2 0.114 1 0.65 

Thiamine Metabolism 9 0.126 1 0.119 1 0.65 

Lactose Degradation 9 0.126 1 0.119 1 0.65 

Glutamate Metabolism 48 0.671 2 0.142 1 0.706 

Trehalose Degradation 11 0.154 1 0.144 1 0.706 

Phosphatidylethanolamine 
Biosynthesis 

12 0.168 1 0.156 1 0.709 

Glucose-Alanine Cycle 13 0.182 1 0.168 1 0.709 

Thyroid hormone synthesis 13 0.182 1 0.168 1 0.709 

Phosphatidylcholine 
Biosynthesis 

14 0.196 1 0.18 1 0.709 

Valine, Leucine and Isoleucine 
Degradation 

59 0.824 2 0.197 1 0.709 

Phosphatidylinositol Phosphate 
Metabolism 

17 0.238 1 0.214 1 0.709 

Mitochondrial Electron 
Transport Chain 

19 0.265 1 0.236 1 0.709 

Lactose Synthesis 19 0.265 1 0.236 1 0.709 

Nucleotide Sugars Metabolism 20 0.279 1 0.247 1 0.709 

Catecholamine Biosynthesis 20 0.279 1 0.247 1 0.709 

Riboflavin Metabolism 20 0.279 1 0.247 1 0.709 

Threonine and 2-Oxobutanoate 
Degradation 

20 0.279 1 0.247 1 0.709 

Tyrosine Metabolism 70 0.978 2 0.255 1 0.709 

Sulfate/Sulfite Metabolism 22 0.307 1 0.269 1 0.709 
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Carnitine Synthesis 22 0.307 1 0.269 1 0.709 

Transfer of Acetyl Groups into 
Mitochondria 

22 0.307 1 0.269 1 0.709 

Purine Metabolism 73 1.02 2 0.272 1 0.709 

Glycolysis 23 0.321 1 0.279 1 0.709 

Inositol Phosphate Metabolism 24 0.335 1 0.289 1 0.709 

Glycerolipid Metabolism 25 0.349 1 0.3 1 0.709 

Cysteine Metabolism 26 0.363 1 0.31 1 0.709 

Phytanic Acid Peroxisomal 
Oxidation 

26 0.363 1 0.31 1 0.709 

Mitochondrial Beta-Oxidation 
of Short Chain Saturated Fatty 
Acids 

27 0.377 1 0.32 1 0.709 

Mitochondrial Beta-Oxidation 
of Long Chain Saturated Fatty 
Acids 

28 0.391 1 0.329 1 0.709 

Pentose Phosphate Pathway 29 0.405 1 0.339 1 0.709 

Folate Metabolism 29 0.405 1 0.339 1 0.709 

Inositol Metabolism 30 0.419 1 0.348 1 0.709 

Starch and Sucrose 
Metabolism 

31 0.433 1 0.358 1 0.709 

Fructose and Mannose 
Degradation 

31 0.433 1 0.358 1 0.709 

Citric Acid Cycle 32 0.447 1 0.367 1 0.709 

Amino Sugar Metabolism 33 0.461 1 0.376 1 0.709 

Gluconeogenesis 33 0.461 1 0.376 1 0.709 

Nicotinate and Nicotinamide 
Metabolism 

35 0.489 1 0.394 1 0.729 

Galactose Metabolism 38 0.531 1 0.42 1 0.762 

Sphingolipid Metabolism 40 0.559 1 0.437 1 0.778 

Methionine Metabolism 42 0.587 1 0.453 1 0.793 

Fatty acid Metabolism 43 0.601 1 0.461 1 0.793 

Pyruvate Metabolism 47 0.657 1 0.492 1 0.829 

Steroid Biosynthesis 48 0.671 1 0.499 1 0.829 

Pyrimidine Metabolism 57 0.796 1 0.562 1 0.903 

Warburg Effect 57 0.796 1 0.562 1 0.903 

Tryptophan Metabolism 59 0.824 1 0.575 1 0.909 

Bile Acid Biosynthesis 65 0.908 1 0.611 1 0.951 
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Table S3. Findings of pathway enrichment analysis on characteristic features identified in 
the PGZ study. 
 
 

Pathway Term Total Expected Hits Raw p Enrichment Holm adjust FDR Impact 

Arginine and 
proline 
metabolism 

36 0.32 4 0.0001959 3.708 0.015672 0.015672 0.25465 

Phenylalanine, 
tyrosine and 
tryptophan 
biosynthesis 

4 0.035556 2 0.000436 3.3605 0.034446 0.017441 1 

beta-Alanine 
metabolism 21 0.18667 3 0.0006774 3.1691 0.052844 0.018066 0.05597 

Glutathione 
metabolism 28 0.24889 3 0.0016082 2.7937 0.12383 0.031899 0.00719 

Phenylalanine 
metabolism 8 0.071111 2 0.0019937 2.7003 0.15152 0.031899 0.35714 

Pantothenate and 
CoA biosynthesis 20 0.17778 2 0.012727 1.8953 0.95455 0.1697 0.0068 

Valine, leucine 
and isoleucine 
biosynthesis 

8 0.071111 1 0.069087 1.1606 1 0.78956 0 

Arginine 
biosynthesis 14 0.12444 1 0.11796 0.92825 1 1 0.06091 

Purine 
metabolism 70 0.62222 2 0.12564 0.90086 1 1 0.03301 

Histidine 
metabolism 16 0.14222 1 0.13372 0.87381 1 1 0.22131 

Ubiquinone and 
other terpenoid-
quinone 
biosynthesis 

18 0.16 1 0.14921 0.82619 1 1 0 

Selenocompound 
metabolism 20 0.17778 1 0.16445 0.78397 1 1 0 

Alanine, 
aspartate and 
glutamate 
metabolism 

28 0.24889 1 0.22289 0.6519 1 1 0 

Lysine 
degradation 30 0.26667 1 0.2369 0.62543 1 1 0 

Glycine, serine 
and threonine 
metabolism 

33 0.29333 1 0.25747 0.58927 1 1 0 

Biosynthesis of 
unsaturated fatty 
acids 

36 0.32 1 0.27753 0.5567 1 1 0 

Valine, leucine 
and isoleucine 
degradation 

40 0.35556 1 0.30348 0.51787 1 1 0 

Tyrosine 
metabolism 42 0.37333 1 0.31613 0.50013 1 1 0.13972 
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Table S4. Findings of metabolite set enrichment analysis on characteristic features identified 
in the ROSI study. 
 
 

Pathway Term Total Expected Hits Raw p Holm p FDR 

Betaine Metabolism 21 0.923 4 0.0113 1 1 

Methionine Metabolism 43 1.89 5 0.036 1 1 

Spermidine and Spermine Biosynthesis 18 0.791 3 0.0408 1 1 

Carnitine Synthesis 22 0.967 3 0.0681 1 1 

D-Arginine and D-Ornithine Metabolism 11 0.483 2 0.0807 1 1 

Glycerolipid Metabolism 25 1.1 3 0.0928 1 1 

Phosphatidylethanolamine Biosynthesis 12 0.527 2 0.0942 1 1 

Purine Metabolism 74 3.25 6 0.0989 1 1 

Oxidation of Branched Chain Fatty Acids 26 1.14 3 0.102 1 1 

Glycine and Serine Metabolism 59 2.59 5 0.111 1 1 

Phosphatidylcholine Biosynthesis 14 0.615 2 0.123 1 1 

Methylhistidine Metabolism 4 0.176 1 0.165 1 1 

Beta Oxidation of Very Long Chain Fatty Acids 17 0.747 2 0.169 1 1 

Arginine and Proline Metabolism 53 2.33 4 0.199 1 1 

Mitochondrial Electron Transport Chain 19 0.835 2 0.202 1 1 

Catecholamine Biosynthesis 20 0.879 2 0.218 1 1 

Glutathione Metabolism 21 0.923 2 0.235 1 1 

Biotin Metabolism 8 0.352 1 0.303 1 1 

Thiamine Metabolism 9 0.396 1 0.334 1 1 

Lactose Degradation 9 0.396 1 0.334 1 1 

De Novo Triacylglycerol Biosynthesis 9 0.396 1 0.334 1 1 

Phenylalanine and Tyrosine Metabolism 28 1.23 2 0.351 1 1 

Selenoamino Acid Metabolism 28 1.23 2 0.351 1 1 

Steroid Biosynthesis 48 2.11 3 0.354 1 1 

Phospholipid Biosynthesis 29 1.27 2 0.367 1 1 

Folate Metabolism 29 1.27 2 0.367 1 1 

Urea Cycle 29 1.27 2 0.367 1 1 

Lysine Degradation 30 1.32 2 0.384 1 1 

Tyrosine Metabolism 72 3.16 4 0.391 1 1 

Glycerol Phosphate Shuttle 11 0.483 1 0.392 1 1 

Trehalose Degradation 11 0.483 1 0.392 1 1 

Cardiolipin Biosynthesis 11 0.483 1 0.392 1 1 

Starch and Sucrose Metabolism 31 1.36 2 0.4 1 1 

Ammonia Recycling 32 1.41 2 0.415 1 1 

Taurine and Hypotaurine Metabolism 12 0.527 1 0.419 1 1 

Ketone Body Metabolism 13 0.571 1 0.444 1 1 

Thyroid hormone synthesis 13 0.571 1 0.444 1 1 

Pyrimidine Metabolism 59 2.59 3 0.487 1 1 

Valine, Leucine and Isoleucine Degradation 60 2.64 3 0.499 1 1 
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Tryptophan Metabolism 60 2.64 3 0.499 1 1 

Alanine Metabolism 17 0.747 1 0.537 1 1 

Phosphatidylinositol Phosphate Metabolism 17 0.747 1 0.537 1 1 

Bile Acid Biosynthesis 65 2.86 3 0.555 1 1 

Histidine Metabolism 43 1.89 2 0.574 1 1 

Fatty acid Metabolism 43 1.89 2 0.574 1 1 

Nucleotide Sugars Metabolism 20 0.879 1 0.596 1 1 

Vitamin B6 Metabolism 20 0.879 1 0.596 1 1 

Riboflavin Metabolism 20 0.879 1 0.596 1 1 

Lactose Synthesis 20 0.879 1 0.596 1 1 

Threonine and 2-Oxobutanoate Degradation 20 0.879 1 0.596 1 1 

Pantothenate and CoA Biosynthesis 21 0.923 1 0.615 1 1 

Sulfate/Sulfite Metabolism 22 0.967 1 0.632 1 1 

Transfer of Acetyl Groups into Mitochondria 22 0.967 1 0.632 1 1 

Glutamate Metabolism 49 2.15 2 0.647 1 1 

Glycolysis 25 1.1 1 0.679 1 1 

Cysteine Metabolism 26 1.14 1 0.694 1 1 

Phytanic Acid Peroxisomal Oxidation 26 1.14 1 0.694 1 1 

Inositol Phosphate Metabolism 26 1.14 1 0.694 1 1 

Mitochondrial Beta-Oxidation of Short Chain 
Saturated Fatty Acids 

27 1.19 1 0.708 1 1 

Mitochondrial Beta-Oxidation of Long Chain 
Saturated Fatty Acids 

28 1.23 1 0.721 1 1 

Pterine Biosynthesis 29 1.27 1 0.733 1 1 

Pentose Phosphate Pathway 29 1.27 1 0.733 1 1 

Citric Acid Cycle 32 1.41 1 0.768 1 1 

Fructose and Mannose Degradation 32 1.41 1 0.768 1 1 

Inositol Metabolism 33 1.45 1 0.778 1 1 

Amino Sugar Metabolism 33 1.45 1 0.778 1 1 

Beta-Alanine Metabolism 34 1.49 1 0.789 1 1 

Fatty Acid Elongation In Mitochondria 35 1.54 1 0.798 1 1 

Aspartate Metabolism 35 1.54 1 0.798 1 1 

Gluconeogenesis 35 1.54 1 0.798 1 1 

Fatty Acid Biosynthesis 35 1.54 1 0.798 1 1 

Nicotinate and Nicotinamide Metabolism 37 1.63 1 0.816 1 1 

Galactose Metabolism 38 1.67 1 0.824 1 1 

Porphyrin Metabolism 40 1.76 1 0.84 1 1 

Sphingolipid Metabolism 40 1.76 1 0.84 1 1 

Propanoate Metabolism 42 1.85 1 0.854 1 1 

Pyruvate Metabolism 48 2.11 1 0.89 1 1 

Warburg Effect 58 2.55 1 0.932 1 1 
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Table S5. Findings of pathway enrichment analysis on characteristic features identified in 
the ROSI study. 
 
 

Pathway Term Total Expected Hits Raw p Enrichment Holm adjust FDR Impact 

Aminoacyl-tRNA biosynthesis 48 1.3006 8 2.47E-05 4.6066 0.0020783 0.002078 0 

Purine metabolism 65 1.7613 7 0.001385 2.8585 0.11498 0.054499 0.06812 

Phenylalanine metabolism 10 0.27097 3 0.001946 2.7108 0.1596 0.054499 0.35714 

Arginine and proline 
metabolism 

38 1.0297 5 0.002965 2.5279 0.24023 0.062282 0.14778 

Phenylalanine, tyrosine and 
tryptophan biosynthesis 

4 0.10839 2 0.004156 2.3813 0.33251 0.069828 1 

Glycine, serine and threonine 
metabolism 

33 0.89419 4 0.010779 1.9674 0.85151 0.1509 0.05034 

Valine, leucine and isoleucine 
biosynthesis 

8 0.21677 2 0.018102 1.7423 1 0.21722 0 

Lysine degradation 25 0.67742 3 0.028111 1.5511 1 0.29517 0.14554 

Glutathione metabolism 28 0.75871 3 0.037855 1.4219 1 0.35332 0.01428 

Terpenoid backbone 
biosynthesis 

18 0.48774 2 0.083408 1.0788 1 0.70063 0.11429 

Tyrosine metabolism 42 1.1381 3 0.10233 0.99 1 0.70329 0.15223 

D-Arginine and D-ornithine 
metabolism 

4 0.10839 1 0.10416 0.98231 1 0.70329 0 

beta-Alanine metabolism 21 0.56903 2 0.10884 0.9632 1 0.70329 0.05597 

D-Glutamine and D-glutamate 
metabolism 

6 0.16258 1 0.15219 0.81762 1 0.91312 0 

Alanine, aspartate and 
glutamate metabolism 

28 0.75871 2 0.17434 0.7586 1 0.97064 0.08654 

Taurine and hypotaurine 
metabolism 

8 0.21677 1 0.1977 0.704 1 0.97064 0.28571 

Ubiquinone and other 
terpenoid-quinone 
biosynthesis 

9 0.24387 1 0.21955 0.65847 1 0.97064 0 

One carbon pool by folate 9 0.24387 1 0.21955 0.65847 1 0.97064 0 

Vitamin B6 metabolism 9 0.24387 1 0.21955 0.65847 1 0.97064 0.07843 

Biotin metabolism 10 0.27097 1 0.24082 0.6183 1 1 0 

Glycerophospholipid 
metabolism 

36 0.97548 2 0.25483 0.59375 1 1 0.10675 

Valine, leucine and isoleucine 
degradation 

40 1.0839 2 0.29572 0.52911 1 1 0 

Tryptophan metabolism 41 1.111 2 0.30593 0.51438 1 1 0.23655 

Arginine biosynthesis 14 0.37935 1 0.32039 0.49432 1 1 0 

Butanoate metabolism 15 0.40645 1 0.33897 0.46984 1 1 0.03175 

Histidine metabolism 16 0.43355 1 0.35706 0.44726 1 1 0 

Glycerolipid metabolism 16 0.43355 1 0.35706 0.44726 1 1 0.04361 

Starch and sucrose 
metabolism 

18 0.48774 1 0.39179 0.40694 1 1 0.07306 

Folate biosynthesis 27 0.73161 1 0.52673 0.27841 1 1 0 

Porphyrin and chlorophyll 
metabolism 

30 0.8129 1 0.56484 0.24808 1 1 0.05288 

Cysteine and methionine 
metabolism 

33 0.89419 1 0.59995 0.22189 1 1 0.10446 

Biosynthesis of unsaturated 
fatty acids 

36 0.97548 1 0.63228 0.19909 1 1 0 

Fatty acid elongation 39 1.0568 1 0.66206 0.1791 1 1 0 

Fatty acid degradation 39 1.0568 1 0.66206 0.1791 1 1 0 

Fatty acid biosynthesis 47 1.2735 1 0.73044 0.13642 1 1 0.01473 
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7.3 Supplementary Tables for Chapter 4 

Table S6. Processing step workflow nodes followed for protein analysis using Proteome 
Discoverer. 

 
 

Processing Workflow Workflow Node Parameter Value 

Processing node 0: 
Spectrum Files RC 

Search Settings File Name(s) AS_Raw 

  Protein Database 
Homo sapiens 
(sp_canonical 
TaxID=9606)  

  Enzyme Name Trypsin (Full) 

  Precursor Mass Tolerance 20 ppm 

  Fragment Mass Tolerance 0.5 Da 

  Static Modification 
Carbamidomethyl / 

+57.021 Da (C) 

 Regression 
Settings 

Regression Model Non-linear Regression 

  Parameter Tuning Coarse 

Processing node 4: 
Minora Feature 
Detector 

Storage Settings Feature Traces to Store All 

 Peak & Feature 
Detection 

Min. Trace Length 5 

  S/N Threshold 1 

  Max. ΔRT of Isotope Pattern 
Multiplets [min] 

0.2 

 Feature to ID 
Linking 

PSM Confidence At Least High 

Processing node 1: 
Spectrum Selector 

General Settings Precursor Selection Use MS1 Precursor 

  Use Isotope Pattern in 
Precursor Reevaluation 

TRUE 

  Provide Profile Spectra Automatic 

  Spectra to Store All 

 Spectrum 
Properties Filter 

Lower RT Limit 0 

  Upper RT Limit 0 

  First Scan 0 

  Last Scan 0 

  Total Intensity Threshold 0 

  Minimum Peak Count 1 

 
Spectrum 
Properties Filter 
for DDA Spectra 

Lowest Charge State 0 

  Highest Charge State 0 

  Min. Precursor Mass 350 Da 

  Max. Precursor Mass 5000 Da 

 Scan Event Filters MS Order Is Not MS1 

  Min. Collision Energy 0 

  Max. Collision Energy 1000 
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  Scan Type Is Full 

 Peak Filters S/N Threshold (FT-only) 1.5 

 
Replacements for 
Unrecognized 
Properties 

Unrecognized Charge 
Replacements 

Automatic 

  Unrecognized Mass 
Analyzer Replacements 

ITMS 

  Unrecognized MS Order 
Replacements 

MS2 

  Unrecognized Activation 
Type Replacements 

CID 

  Unrecognized Polarity 
Replacements 

+ 

  
Unrecognized MS 
Resolution@200 
Replacements 

60000 

  
Unrecognized MSn 
Resolution@200 
Replacements 

30000 

 Precursor Pattern 
Extraction 

Precursor Clipping Range 
Before 

2.5 Da 

  Precursor Clipping Range 
After 

5.5 Da 

Processing node 2: 
Sequest HT 

Input Data Protein Database 
Homo sapiens 
(sp_canonical 
TaxID=9606)  

  Enzyme Name Trypsin (Full) 

  Max. Missed Cleavage Sites 2 

  Min. Peptide Length 6 

  Max. Peptide Length 144 

  Max. Number of Peptides 
Reported 

10 

 Tolerances Precursor Mass Tolerance 10 ppm 

  Fragment Mass Tolerance 0.02 Da 

  Use Average Precursor 
Mass 

FALSE 

  Use Average Fragment 
Mass 

FALSE 

 Spectrum 
Matching 

Use Neutral Loss a Ions TRUE 

  Use Neutral Loss b Ions TRUE 

  Use Neutral Loss y Ions TRUE 

  Use Flanking Ions TRUE 

  Weight of a Ions 0 

  Weight of b Ions 1 

  Weight of c Ions 0 

  Weight of x Ions 0 

  Weight of y Ions 1 

  Weight of z Ions 0 

 Dynamic 
Modifications 

Max. Equal Modifications Per 
Peptide 

3 

  Max. Dynamic Modifications 
Per Peptide 

4 

  Dynamic Modification 
Oxidation / +15.995 Da 

(M) 
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Dynamic 
Modifications 
(protein terminus) 

N-Terminal Modification 
Acetyl / +42.011 Da (N-

Terminus) 

  N-Terminal Modification 
Met-loss / -131.040 Da 

(M) 

  N-Terminal Modification 
Met-loss+Acetyl / -

89.030 Da (M) 

 Static 
Modifications 

Static Modification 
Carbamidomethyl / 

+57.021 Da (C) 

Processing node 3: 
Percolator 

Target/Decoy 
Strategy 

Target/Decoy Selection Concatenated 

  Validation Based on q-Value 

 Input Data Maximum Delta Cn 0.05 

  Maximum Rank 0 

 FDR Targets Target FDR (Strict) 0.01 

  Target FDR (Relaxed) 0.05 
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Table S7. Consensus Step Workflow nodes followed for protein analysis using Proteome 
Discoverer. 

 
 

Consensus Step Workflow Node Parameter Value 

Processing node 0: 
MSF Files 

Storage Settings Spectra to Store Identified or Quantified 

  Feature Traces to Store All 

 Merging of Identified 
Peptide and Proteins 

Merge Mode 
Globally by Search 

Engine Type 

 FASTA Title Line 
Display 

Reported FASTA Title Lines Best match 

  Title Line Rule standard 

 PSM Filters Maximum Delta Cn 0.05 

  Maximum Rank 0 

  Maximum Delta Mass 0 ppm 

Processing node 10: 
Feature Mapper 

Chromatographic 
Alignment 

Perform RT Alignment TRUE 

  Parameter Tuning Coarse 

  Maximum RT Shift [min] 10 

  Mass Tolerance 10 ppm 

 Feature Linking and 
Mapping 

RT Tolerance [min] 0 

  Mass Tolerance 0 ppm 

  Min. S/N Threshold 5 

  Map single PSMs TRUE 

Processing node 11: 
Precursor Ions 
Quantifier 

General 
Quantification 
Settings 

Peptides to Use Unique + Razor 

  Consider Protein Groups for 
Peptide Uniqueness 

TRUE 

  Use Shared Quan Results FALSE 

  Reject Quan Results with 
Missing Channels 

FALSE 

 Precursor 
Quantification 

Precursor Abundance Based On Intensity 

  Min. # Replicate Features [%] 0 

 Normalization and 
Scaling 

Normalization Mode Total Peptide Amount 

  Scaling Mode On All Average 

 
Exclude Peptides 
from Protein 
Quantification 

For Normalization Use All Peptides 

  For Protein Roll-Up Use All Peptides 

  For Pairwise Ratios Exclude Modified 

 Quan Rollup and 
Hypothesis Testing 

Protein Abundance Calculation Summed Abundances 

  N for Top N 3 

  Protein Ratio Calculation Pairwise Ratio Based 

  Maximum Allowed Fold Change 100 

  Imputation Mode None 
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  Hypothesis Test 
t-test (Background 

Based) 

  Calculate Hypothesis Test for 
Peptides 

FALSE 

 Quan Ratio 
Distributions 

1st Fold Change Threshold 2 

  2nd Fold Change Threshold 4 

  3rd Fold Change Threshold 6 

  4th Fold Change Threshold 8 

  5th Fold Change Threshold 10 

Processing node 1: 
PSM Grouper 

Peptide Group 
Modifications 

Site Probability Threshold 75 

Processing node 2: 
Peptide Validator 

General Validation 
Settings 

Validation Mode 
Automatic (Control 

peptide level error rate if 
possible) 

  Target FDR (Strict) for PSMs 0.01 

  Target FDR (Relaxed) for PSMs 0.05 

  Target FDR (Strict) for Peptides 0.01 

  Target FDR (Relaxed) for 
Peptides 

0.05 

 Specific Validation 
Settings 

Validation Based on q-Value 

  
Target/Decoy Selection for PSM 
Level FDR Calculation Based on 
Score 

Automatic 

  
Reset Confidences for Nodes 
without Decoy Search (Fixed 
score thresholds) 

FALSE 

Processing node 3: 
Peptide and Protein 
Filter 

Peptide Filters Peptide Confidence At Least High 

  Keep Lower Confident PSMs FALSE 

  Minimum Peptide Length 6 

  Remove Peptides Without 
Protein Reference 

FALSE 

 Protein Filters 
Minimum Number of Peptide 
Sequences 

1 

  Count Only Rank 1 Peptides FALSE 

  Count Peptides Only for Top 
Scored Protein 

FALSE 

Processing node 4: 
Protein Marker 

Annotate Species As Species Map FALSE 

  As Species Names FALSE 

 Mark Additional 
Entities 

Annotation Groups FALSE 

  Pathway Groups FALSE 

  Modification Sites TRUE 

  Peptide Isoform Groups TRUE 

Processing node 5: 
Protein Annotation 

Annotation Aspects 1. Aspect Biological Process 

   Cellular Component 

   Molecular Function 

 Annotation/Pathway 
Groups 

Protein Database 
Homo sapiens 
(sp_canonical 
TaxID=9606)  

Processing node 6: 
Protein Scorer 

No parameters No parameters No parameters 
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Processing node 7: 
Protein FDR Validator 

Confidence 
Thresholds 

Target FDR (Strict) 0.01 

  Target FDR (Relaxed) 0.05 

Processing node 8: 
Protein Grouping 

Protein Grouping Apply strict parsimony principle TRUE 

Processing node 9: 
Peptide in Protein 
Annotation 

Flanking Residues 
Annotate Flanking Residues of 
the Peptide 

TRUE 

  Number Flanking Residues in 
Connection Tables 

1 

 Modifications in 
Peptide 

Protein Modifications Reported Only for Master Proteins 

 Modifications in 
Protein 

Modification Sites Reported All And Specific 

  Minimum PSM Confidence High 

  Report Only PTMs TRUE 

 Positions in Protein Protein Positions for Peptides Only for Master Proteins 

Processing node 13: 
Data Distributions 

ID Distributions 
(Bottom-up) 

Peptides to Use 
Only unique peptides 

based on protein groups 
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Table S8. List of significantly enriched pathways of the differential expressed proteins 
identified in the PGZ study, as analysed by KEGG pathway analysis. 
 
 

Category Term Count % P-Value Fold Enrichment FDR 

KEGG_PATHWAY Staphylococcus aureus infection 25 3.9 2.20E-14 7.2 5.60E-12 

KEGG_PATHWAY Complement and coagulation cascades 22 3.5 1.60E-12 7.1 2.10E-10 

KEGG_PATHWAY Estrogen signaling pathway 23 3.6 3.20E-09 4.6 2.80E-07 

KEGG_PATHWAY Focal adhesion 26 4.1 4.90E-08 3.6 3.10E-06 

KEGG_PATHWAY ECM-receptor interaction 16 2.5 4.50E-07 5 2.30E-05 

KEGG_PATHWAY Human papillomavirus infection 31 4.9 2.50E-06 2.6 1.10E-04 

KEGG_PATHWAY Proteoglycans in cancer 19 3 4.00E-04 2.6 1.30E-02 

KEGG_PATHWAY Cholesterol metabolism 9 1.4 4.20E-04 4.9 1.30E-02 

KEGG_PATHWAY Shigellosis 20 3.2 1.40E-03 2.2 3.80E-02 

KEGG_PATHWAY Regulation of actin cytoskeleton 19 3 1.50E-03 2.3 3.80E-02 

KEGG_PATHWAY Malaria 8 1.3 1.90E-03 4.4 4.50E-02 

KEGG_PATHWAY Melanogenesis 11 1.7 3.30E-03 3 6.90E-02 

KEGG_PATHWAY Systemic lupus erythematosus 13 2.1 3.50E-03 2.6 6.90E-02 

KEGG_PATHWAY Adherens junction 9 1.4 3.80E-03 3.5 6.90E-02 

KEGG_PATHWAY PI3K-Akt signaling pathway 24 3.8 4.30E-03 1.9 7.30E-02 

KEGG_PATHWAY Platelet activation 12 1.9 4.90E-03 2.7 7.60E-02 

KEGG_PATHWAY Steroid biosynthesis 5 0.8 5.00E-03 6.9 7.60E-02 

KEGG_PATHWAY Hepatocellular carcinoma 14 2.2 7.40E-03 2.3 1.10E-01 

KEGG_PATHWAY Wnt signaling pathway 14 2.2 8.20E-03 2.3 1.10E-01 

KEGG_PATHWAY Thyroid cancer 6 0.9 9.90E-03 4.5 1.20E-01 

KEGG_PATHWAY Cushing syndrome 13 2.1 9.90E-03 2.3 1.20E-01 

KEGG_PATHWAY Protein digestion and absorption 10 1.6 1.20E-02 2.7 1.30E-01 

KEGG_PATHWAY Colorectal cancer 9 1.4 1.20E-02 2.9 1.30E-01 

KEGG_PATHWAY Ferroptosis 6 0.9 1.50E-02 4.1 1.60E-01 

KEGG_PATHWAY Endometrial cancer 7 1.1 1.70E-02 3.3 1.80E-01 

KEGG_PATHWAY Mineral absorption 7 1.1 2.00E-02 3.2 2.00E-01 

KEGG_PATHWAY Basal cell carcinoma 7 1.1 2.50E-02 3.1 2.40E-01 

KEGG_PATHWAY Human cytomegalovirus infection 15 2.4 3.20E-02 1.8 2.90E-01 

KEGG_PATHWAY Salmonella infection 16 2.5 3.50E-02 1.8 3.00E-01 

KEGG_PATHWAY Prion disease 17 2.7 3.70E-02 1.7 3.00E-01 

KEGG_PATHWAY Alcoholism 13 2.1 3.70E-02 1.9 3.00E-01 

KEGG_PATHWAY Coronavirus disease - COVID-19 15 2.4 4.00E-02 1.8 3.00E-01 

KEGG_PATHWAY Neutrophil extracellular trap formation 13 2.1 4.10E-02 1.9 3.00E-01 

KEGG_PATHWAY Gastric cancer 11 1.7 4.20E-02 2 3.00E-01 

KEGG_PATHWAY Pathways in cancer 28 4.4 4.20E-02 1.5 3.00E-01 

KEGG_PATHWAY African trypanosomiasis 5 0.8 4.30E-02 3.7 3.00E-01 
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Table S9. List of significantly enriched pathways of the differential expressed proteins 
identified in the ROSI study, as analysed by KEGG pathway analysis. 
 

 

Category Term Count % P-Value Fold Enrichment FDR 

KEGG_PATHWAY Neutrophil extracellular trap formation 45 10.2040816 6.78E-28 8.02729993 1.67E-25 

KEGG_PATHWAY Systemic lupus erythematosus 38 8.61678005 3.49E-26 9.45046924 4.29E-24 

KEGG_PATHWAY Alcoholism 37 8.39002268 5.06E-20 6.70554711 4.15E-18 

KEGG_PATHWAY Viral carcinogenesis 24 5.44217687 2.42E-08 4.00840336 1.49E-06 

KEGG_PATHWAY Shigellosis 26 5.89569161 5.11E-08 3.58646617 2.52E-06 

KEGG_PATHWAY 
Protein processing in endoplasmic 

reticulum 
20 4.53514739 4.82E-07 4.00840336 1.98E-05 

KEGG_PATHWAY Vibrio cholerae infection 11 2.49433107 1.40E-06 7.49571429 4.91E-05 

KEGG_PATHWAY Carbon metabolism 15 3.40136054 5.92E-06 4.44409938 1.82E-04 

KEGG_PATHWAY Parkinson disease 22 4.98866213 3.20E-05 2.8179377 8.73E-04 

KEGG_PATHWAY Phagosome 16 3.62811791 3.59E-05 3.58646617 8.73E-04 

KEGG_PATHWAY Protein export 7 1.58730159 3.91E-05 10.3695652 8.73E-04 

KEGG_PATHWAY Oxidative phosphorylation 14 3.17460317 1.42E-04 3.55970149 0.00290797 

KEGG_PATHWAY Mineral absorption 9 2.04081633 3.28E-04 5.11071429 0.00619775 

KEGG_PATHWAY Transcriptional misregulation in cancer 16 3.62811791 5.17E-04 2.82457439 0.00908208 

KEGG_PATHWAY Necroptosis 14 3.17460317 7.56E-04 3 0.01240549 

KEGG_PATHWAY Prion disease 19 4.30839002 0.00100835 2.3799895 0.01550337 

KEGG_PATHWAY Coronavirus disease - COVID-19 17 3.85487528 0.00124357 2.4966133 0.01799517 

KEGG_PATHWAY Huntington disease 20 4.53514739 0.00156099 2.22689076 0.02133358 

KEGG_PATHWAY Staphylococcus aureus infection 10 2.2675737 0.00190939 3.54910714 0.02374764 

KEGG_PATHWAY Alzheimer disease 23 5.2154195 0.0019307 2.04073661 0.02374764 

KEGG_PATHWAY Diabetic cardiomyopathy 15 3.40136054 0.00246726 2.51759324 0.02890219 

KEGG_PATHWAY 
Proximal tubule bicarbonate 

reclamation 
5 1.13378685 0.00407364 7.4068323 0.04482121 

KEGG_PATHWAY Central carbon metabolism in cancer 8 1.81405896 0.0041906 3.89387755 0.04482121 

KEGG_PATHWAY Amyotrophic lateral sclerosis 21 4.76190476 0.00488684 1.96565934 0.05009012 

KEGG_PATHWAY Estrogen signaling pathway 11 2.49433107 0.00676752 2.73566215 0.06659244 

KEGG_PATHWAY Citrate cycle (TCA cycle) 5 1.13378685 0.01074722 5.67857143 0.10168522 

KEGG_PATHWAY 
Pathways of neurodegeneration - 

multiple diseases 
24 5.44217687 0.01200885 1.71788715 0.10941401 

KEGG_PATHWAY Glycolysis / Gluconeogenesis 7 1.58730159 0.01324569 3.55970149 0.1125288 

KEGG_PATHWAY Cardiac muscle contraction 8 1.81405896 0.01346542 3.13300493 0.1125288 

KEGG_PATHWAY 
Chemical carcinogenesis - reactive 

oxygen species 
14 3.17460317 0.01372302 2.13901345 0.1125288 

KEGG_PATHWAY HIF-1 signaling pathway 9 2.04081633 0.0143243 2.81323722 0.11367025 

KEGG_PATHWAY DNA replication 5 1.13378685 0.0201652 4.73214286 0.15501997 

KEGG_PATHWAY Biosynthesis of amino acids 7 1.58730159 0.02206668 3.18 0.16449705 

KEGG_PATHWAY Ribosome 11 2.49433107 0.02450536 2.24422583 0.17249874 

KEGG_PATHWAY Spliceosome 13 2.9478458 0.0245425 2.05059524 0.17249874 

KEGG_PATHWAY Synaptic vesicle cycle 7 1.58730159 0.02620358 3.05769231 0.17905779 

KEGG_PATHWAY Viral myocarditis 6 1.36054422 0.03039695 3.40714286 0.20053976 

KEGG_PATHWAY Ferroptosis 5 1.13378685 0.03097769 4.15505226 0.20053976 
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KEGG_PATHWAY Collecting duct acid secretion 4 0.90702948 0.04307116 5.04761905 0.27167963 

KEGG_PATHWAY Pyruvate metabolism 5 1.13378685 0.04770761 3.62462006 0.29340181 
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Table S10. List of significantly enriched pathways of the blue module members identified in 
the PGZ study, as analysed by KEGG pathway analysis.  
 
 

Category Term Count % P-Value Fold Enrichment FDR 

KEGG_PATHWAY Neutrophil extracellular trap formation 27 5.9 1.40E-10 4.6 2.00E-08 

KEGG_PATHWAY Systemic lupus erythematosus 23 5.1 1.50E-10 5.4 2.00E-08 

KEGG_PATHWAY Prion disease 32 7 2.80E-10 3.8 2.40E-08 

KEGG_PATHWAY Complement and coagulation cascades 16 3.5 4.90E-08 6 3.20E-06 

KEGG_PATHWAY Diabetic cardiomyopathy 24 5.3 6.70E-08 3.8 3.50E-06 

KEGG_PATHWAY Parkinson disease 27 5.9 1.90E-07 3.3 8.10E-06 

KEGG_PATHWAY Alcoholism 22 4.8 3.00E-07 3.8 1.10E-05 

KEGG_PATHWAY Cholesterol metabolism 12 2.6 3.30E-07 7.5 1.10E-05 

KEGG_PATHWAY Huntington disease 28 6.2 8.40E-07 2.9 2.40E-05 

KEGG_PATHWAY Oxidative phosphorylation 17 3.7 3.60E-06 4.1 9.30E-05 

KEGG_PATHWAY Focal adhesion 21 4.6 3.90E-06 3.3 9.30E-05 

KEGG_PATHWAY 
Chemical carcinogenesis - reactive oxygen 

species 
22 4.8 5.40E-06 3.2 1.20E-04 

KEGG_PATHWAY Alzheimer disease 29 6.4 2.10E-05 2.4 4.20E-04 

KEGG_PATHWAY Amyotrophic lateral sclerosis 27 5.9 6.00E-05 2.4 1.10E-03 

KEGG_PATHWAY Protein processing in endoplasmic reticulum 17 3.7 7.90E-05 3.2 1.40E-03 

KEGG_PATHWAY Platelet activation 14 3.1 1.20E-04 3.6 1.90E-03 

KEGG_PATHWAY Viral carcinogenesis 18 4 2.00E-04 2.8 3.00E-03 

KEGG_PATHWAY Thermogenesis 19 4.2 3.10E-04 2.6 4.50E-03 

KEGG_PATHWAY ECM-receptor interaction 11 2.4 3.80E-04 4 5.20E-03 

KEGG_PATHWAY Spliceosome 14 3.1 6.30E-04 3.1 8.30E-03 

KEGG_PATHWAY 
Pathways of neurodegeneration - multiple 

diseases 
29 6.4 8.00E-04 2 1.00E-02 

KEGG_PATHWAY Phagosome 14 3.1 8.70E-04 3 1.00E-02 

KEGG_PATHWAY Necroptosis 13 2.9 3.90E-03 2.6 4.40E-02 

KEGG_PATHWAY Malaria 7 1.5 4.30E-03 4.5 4.70E-02 

KEGG_PATHWAY Proteoglycans in cancer 15 3.3 4.70E-03 2.3 4.90E-02 

KEGG_PATHWAY Regulation of actin cytoskeleton 16 3.5 5.10E-03 2.2 5.10E-02 

KEGG_PATHWAY Pathogenic Escherichia coli infection 14 3.1 8.30E-03 2.3 7.80E-02 

KEGG_PATHWAY Ferroptosis 6 1.3 8.40E-03 4.7 7.80E-02 

KEGG_PATHWAY Carbon metabolism 10 2.2 9.40E-03 2.8 8.50E-02 

KEGG_PATHWAY Bacterial invasion of epithelial cells 8 1.8 9.70E-03 3.3 8.50E-02 

KEGG_PATHWAY Estrogen signaling pathway 11 2.4 1.10E-02 2.6 9.00E-02 

KEGG_PATHWAY Coronavirus disease - COVID-19 15 3.3 1.30E-02 2.1 1.10E-01 

KEGG_PATHWAY Lipid and atherosclerosis 14 3.1 1.60E-02 2.1 1.30E-01 

KEGG_PATHWAY HIF-1 signaling pathway 9 2 2.00E-02 2.6 1.50E-01 

KEGG_PATHWAY Leukocyte transendothelial migration 9 2 2.50E-02 2.5 1.90E-01 

KEGG_PATHWAY Protein export 4 0.9 3.30E-02 5.6 2.40E-01 

KEGG_PATHWAY Metabolic pathways 60 13.2 4.50E-02 1.2 3.10E-01 

KEGG_PATHWAY Lysine degradation 6 1.3 4.50E-02 3.1 3.10E-01 
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Table S11. List of significantly enriched pathways of the brown module members identified 
in the ROSI study, as analysed by KEGG pathway analysis. 
 
 

Category Term Count % P-Value Fold Enrichment FDR 

KEGG_PATHWAY Mineral absorption 6 5 2.34E-05 16.83529 0.001505 

KEGG_PATHWAY Ribosome 8 6.666667 4.59E-05 8.064812 0.001505 

KEGG_PATHWAY Coronavirus disease - COVID-19 9 7.5 5.07E-05 6.530933 0.001505 

KEGG_PATHWAY 
Complement and coagulation 

cascades 
4 3.333333 0.013554 7.830369 0.301567 

KEGG_PATHWAY African trypanosomiasis 3 2.5 0.019441 13.65024 0.346045 

KEGG_PATHWAY Malaria 3 2.5 0.03409 10.10118 0.505668 

KEGG_PATHWAY Glycolysis / Gluconeogenesis 3 2.5 0.057825 7.538191 0.735204 

KEGG_PATHWAY Tight junction 4 3.333333 0.076071 3.961246 0.846295 
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7.4 Supplementary Tables for Chapter 5 

Table S12. Joint pathway analysis results from proteo-metabolic data in the PGZ study. 
 
 

Pathway Term Total Expected Hits Raw p Enrichment Holm adjust FDR Impact 

Phenylalanine 
metabolism 

21 0.46475 4 0.00097039 3.0131 0.081513 0.081513 0.6 

beta-Alanine 
metabolism 

44 0.97377 5 0.0024794 2.6056 0.20579 0.10414 0.13953 

Aminoacyl-tRNA 
biosynthesis 

74 1.6377 6 0.0051603 2.2873 0.42315 0.12758 0.09589 

Pantothenate and CoA 
biosynthesis 

34 0.75246 4 0.0060751 2.2164 0.49209 0.12758 0.18182 

Lysine degradation 49 1.0844 4 0.021736 1.6628 1 0.32578 0.1875 

Phenylalanine, tyrosine 
and tryptophan 
biosynthesis 

11 0.24344 2 0.02327 1.6332 1 0.32578 1.2 

Glutathione metabolism 56 1.2393 4 0.03364 1.4731 1 0.40368 0.10909 

Ubiquinone and other 
terpenoid-quinone 
biosynthesis 

17 0.37623 2 0.052883 1.2767 1 0.55527 0.3125 

Vitamin B6 metabolism 21 0.46475 2 0.077226 1.1122 1 0.70063 0.9 

Biosynthesis of 
unsaturated fatty acids 

47 1.0402 3 0.08394 1.076 1 0.70063 0.5 

Arginine and proline 
metabolism 

78 1.7262 4 0.091749 1.0374 1 0.70063 0.14286 

Steroid biosynthesis 82 1.8148 4 0.10556 0.97652 1 0.73889 0.17284 

Selenocompound 
metabolism 

35 0.77459 2 0.18053 0.74346 1 1 0.088235 

Glycine, serine and 
threonine metabolism 

68 1.5049 3 0.18909 0.72332 1 1 0.044776 

Valine, leucine and 
isoleucine biosynthesis 

12 0.26557 1 0.23599 0.62711 1 1 0.090909 

Starch and sucrose 
metabolism 

43 0.95164 2 0.246 0.60907 1 1 0.11905 

Glycerophospholipid 
metabolism 

86 1.9033 3 0.29624 0.52835 1 1 0.11765 

Tyrosine metabolism 88 1.9475 3 0.30855 0.51068 1 1 0.17241 

Porphyrin and 
chlorophyll metabolism 

53 1.173 2 0.32887 0.48298 1 1 0.076923 

Sulfur metabolism 18 0.39836 1 0.33253 0.47817 1 1 0.70588 

Alanine, aspartate and 
glutamate metabolism 

61 1.35 2 0.39362 0.40493 1 1 0.11667 

Arginine biosynthesis 27 0.59754 1 0.45531 0.3417 1 1 0.11538 

Inositol phosphate 
metabolism 

69 1.527 2 0.45557 0.34144 1 1 0.058824 

Fatty acid elongation 75 1.6598 2 0.49969 0.3013 1 1 0.013514 

Purine metabolism 166 3.6738 4 0.50681 0.29515 1 1 0.21212 

Histidine metabolism 32 0.7082 1 0.51363 0.28935 1 1 0.16129 

Glycerolipid metabolism 35 0.77459 1 0.54564 0.2631 1 1 0.088235 

Various types of N-
glycan biosynthesis 

36 0.79672 1 0.55584 0.25505 1 1 0.22857 

Ether lipid metabolism 39 0.86311 1 0.58512 0.23276 1 1 0.10526 

Pyruvate metabolism 45 0.9959 1 0.6381 0.19511 1 1 0.090909 

Pentose phosphate 
pathway 

47 1.0402 1 0.65424 0.18426 1 1 0.086957 

Propanoate metabolism 48 1.0623 1 0.66204 0.17912 1 1 0.17021 
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Glyoxylate and 
dicarboxylate 
metabolism 

56 1.2393 1 0.71854 0.14355 1 1 0.036364 

Sphingolipid 
metabolism 

58 1.2836 1 0.73115 0.13599 1 1 0.035088 

Drug metabolism - 
other enzymes 

70 1.5492 1 0.79596 0.099111 1 1 0.072464 

Cysteine and 
methionine metabolism 

71 1.5713 1 0.80061 0.096582 1 1 0.028571 

Phosphatidylinositol 
signaling system 

74 1.6377 1 0.81394 0.089409 1 1 0.054795 

N-Glycan biosynthesis 77 1.7041 1 0.82639 0.082813 1 1 0.026316 

Arachidonic acid 
metabolism 

81 1.7926 1 0.84174 0.074824 1 1 0.05 

Valine, leucine and 
isoleucine degradation 

88 1.9475 1 0.86545 0.062759 1 1 0.022989 

Pyrimidine metabolism 99 2.191 1 0.89584 0.047768 1 1 0.020408 

Fatty acid degradation 102 2.2574 1 0.90289 0.044366 1 1 0.039604 

Fatty acid biosynthesis 129 2.8549 1 0.94851 0.022957 1 1 0.046875 
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Table S13. Joint pathway analysis results from proteo-metabolic data in the ROSI study. 
 
 

Pathway Term Total Expected Hits Raw p Enrichment Holm adjust FDR Impact 

Aminoacyl-tRNA biosynthesis 74 2.4869 12 3.73E-06 5.4279 0.00031362 0.000 0.21918 

Glycolysis or Gluconeogenesis 61 2.05 7 0.003759 2.4249 0.31203 0.157 0.6 

Citrate cycle (TCA cycle) 42 1.4115 5 0.012145 1.9156 0.99591 0.338 0.53659 

Pyruvate metabolism 45 1.5123 5 0.016127 1.7925 1 0.338 0.31818 

Lysine degradation 49 1.6467 5 0.022675 1.6445 1 0.376 0.20833 

Phenylalanine metabolism 21 0.70574 3 0.031442 1.5025 1 0.376 0.45 

Glutathione metabolism 56 1.882 5 0.037865 1.4218 1 0.376 0.2 

D-Glutamine and D-glutamate 
metabolism 

10 0.33607 2 0.042145 1.3753 1 0.376 0.44444 

Nitrogen metabolism 10 0.33607 2 0.042145 1.3753 1 0.376 0.44444 

Arginine and proline 
metabolism 

78 2.6213 6 0.044761 1.3491 1 0.376 0.31169 

Phenylalanine, tyrosine and 
tryptophan biosynthesis 

11 0.36967 2 0.050407 1.2975 1 0.384 1.2 

Valine, leucine and isoleucine 
biosynthesis 

12 0.40328 2 0.059195 1.2277 1 0.387 0.27273 

Arginine biosynthesis 27 0.90738 3 0.059921 1.2224 1 0.387 0.19231 

Pentose phosphate pathway 47 1.5795 4 0.070824 1.1498 1 0.424 0.69565 

Glycine, serine and threonine 
metabolism 

68 2.2852 5 0.075816 1.1202 1 0.424 0.1194 

Purine metabolism 166 5.5787 9 0.10121 0.99478 1 0.531 0.41818 

Ubiquinone and other 
terpenoid-quinone biosynthesis 

17 0.57131 2 0.10959 0.96024 1 0.541 0.3125 

Neomycin, kanamycin and 
gentamicin biosynthesis 

4 0.13443 1 0.12788 0.89321 1 0.596 0.66667 

Alanine, aspartate and 
glutamate metabolism 

61 2.05 4 0.14664 0.83376 1 0.648 0.2 

Vitamin B6 metabolism 21 0.70574 2 0.15548 0.80831 1 0.653 0.5 

Starch and sucrose metabolism 43 1.4451 3 0.1738 0.75994 1 0.695 0.2619 

D-Arginine and D-ornithine 
metabolism 

6 0.20164 1 0.18561 0.73139 1 0.708 0.2 

Cysteine and methionine 
metabolism 

71 2.3861 4 0.2141 0.66938 1 0.781 0.17143 

N-Glycan biosynthesis 77 2.5877 4 0.25815 0.58812 1 0.891 0.10526 

Riboflavin metabolism 9 0.30246 1 0.26521 0.57641 1 0.891 0.25 

One carbon pool by folate 31 1.0418 2 0.27986 0.55306 1 0.904 0.23333 

Terpenoid backbone 
biosynthesis 

36 1.2098 2 0.34268 0.46511 1 1 0.11429 

Tyrosine metabolism 88 2.9574 4 0.34269 0.4651 1 1 0.34483 

Fructose and mannose 
metabolism 

40 1.3443 2 0.39174 0.407 1 1 0.35897 

Taurine and hypotaurine 
metabolism 

16 0.5377 1 0.42228 0.3744 1 1 0.2 

beta-Alanine metabolism 44 1.4787 2 0.43916 0.35738 1 1 0.04651 

Fatty acid elongation 75 2.5205 3 0.46568 0.33192 1 1 0.09459 

Amino sugar and nucleotide 
sugar metabolism 

79 2.6549 3 0.50062 0.30049 1 1 0.20513 

Biotin metabolism 21 0.70574 1 0.51368 0.28931 1 1 0.05 

Porphyrin and chlorophyll 
metabolism 

53 1.7811 2 0.53805 0.26918 1 1 0.07692 

Tryptophan metabolism 84 2.823 3 0.54267 0.26546 1 1 0.10843 
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Glyoxylate and dicarboxylate 
metabolism 

56 1.882 2 0.5683 0.24542 1 1 0.07272 

Valine, leucine and isoleucine 
degradation 

88 2.9574 3 0.57484 0.24045 1 1 0.14943 

Butanoate metabolism 29 0.97459 1 0.63108 0.19992 1 1 0.10714 

Pyrimidine metabolism 99 3.327 3 0.65589 0.18317 1 1 0.04081 

Histidine metabolism 32 1.0754 1 0.66747 0.17557 1 1 0.03225 

Glycerolipid metabolism 35 1.1762 1 0.70031 0.15471 1 1 0.05882 

Glycosaminoglycan 
degradation 

44 1.4787 1 0.7808 0.10746 1 1 0.09302 

Glycerophospholipid 
metabolism 

86 2.8902 2 0.79436 0.099985 1 1 0.15294 

Biosynthesis of unsaturated 
fatty acids 

47 1.5795 1 0.80255 0.095528 1 1 0.02173 

Propanoate metabolism 48 1.6131 1 0.80932 0.091882 1 1 0.0851 

Galactose metabolism 51 1.7139 1 0.82827 0.081829 1 1 0.08 

Folate biosynthesis 61 2.05 1 0.87898 0.056023 1 1 0.05 

Drug metabolism - other 
enzymes 

70 2.3525 1 0.91179 0.040107 1 1 0.02898 

Arachidonic acid metabolism 81 2.7221 1 0.94016 0.026796 1 1 0.025 

Primary bile acid biosynthesis 92 3.0918 1 0.95949 0.01796 1 1 0.04395 

Fatty acid degradation 102 3.4279 1 0.97163 0.0125 1 1 0.0198 

Fatty acid biosynthesis 129 4.3352 1 0.98924 0.0046988 1 1 0.01562 

Steroid hormone biosynthesis 199 6.6877 1 0.99917 0.0003585 1 1 0.0202 
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