
Parallel finite element methods and software for

partial differential equations

Omer Riaz

Department of Mathematics

University of Strathclyde

Glasgow, UK

September 2014

This thesis is submitted to the University of Strathclyde for the

degree of Doctor of Philosophy in the Faculty of Science.

2

The copyright of this thesis belongs to the author under the terms of the United

Kingdom Copyright Acts as qualified by University of Strathclyde Regulation 3.50.

Due acknowledgement must always be made of the use of any material in, or

derived from, this thesis.

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisors Prof.

Mark Ainsworth and Dr. Gabriel R. Barrenechea. For the continuous support of

my Ph.D study and research, for their immense knowledge, patience, motivation,

and enthusiasm. Their guidance helped me in all the time of research and writing

of this thesis. I could not have imagined having a better advisers and mentors for

my Ph.D study.

I would like to thanks Numerical Algorithms and Intelligent Software (NAIS)

as this Ph.D was not possible without their financial support.

Lastly, I would like to thank my family: my parents and wife for their patience

and giving me moral and spiritual support.

i

Abstract

In this thesis a Finite Element solver package called FEDomain is developed for

C++ finite element software developers. It is focused on solving the Finite Ele-

ment problem on shared memory as well as distributed memory architectures. The

FEDomain package segregates the finite element software into two phases. The

first phase includes defining the finite element problem. The user selects the math-

ematical problem, domain shape, domain dimensions, triangulation of the domain

and formulations to compute elements’ data. The second phase comprises assem-

bly of system of equations and computing its solution. The FEDomain package

concentrates on the second phase. It facilitates the user by providing the efficient

implementation of the second stage using parallel algorithms. This design allows

the C++ finite element application developers, with no knowledge and experience

of parallel computing, to implement parallel finite element application for shared

and distributed memory architectures.

More specifically, FEDomain package is focused on introducing a new type of

user interface. The interface requires the user to provide the mathematical prob-

lem and domain related data in terms of C++ element objects. The FEDomain

assembles the system of equations, computes its solution, and provides it back to

the user through element objects. The FEDomain package computes the residual

vector and solution for the system of equations on shared memory and distributed

memory architectures.

ii

Contents

1 Introduction 1

1.1 Aims . 2

1.2 Objectives . 3

1.3 Parallelism, Core and Threads . 5

1.4 Parallel Architectures . 6

1.5 Parallel Libraries . 7

1.6 Basic concepts on object oriented implementation of Finite Element

Methods . 10

1.7 Low Level Linear Algebra Systems 16

1.7.1 Tuning Paradigms . 17

1.8 High Level Linear Algebra Libraries 18

1.9 Object Oriented Finite Element Packages 21

1.10 Algorithmic Skeletons . 24

1.11 Plan of the thesis . 25

2 Finite Elements 27

2.1 Finite Element Methods . 27

2.1.1 Galerkin Methods . 29

2.1.2 The Linear System . 30

2.1.3 Partitioning the domain . 31

2.1.4 Partitioning of partitioning 36

2.2 Solution of Linear Systems . 39

iii

2.2.1 Direct Solution Methods . 39

2.2.2 Iterative Solution Methods 41

2.2.2.1 Full Assembly . 42

2.2.2.2 Element By Element 43

2.2.3 Static Condensation . 43

2.2.4 Parallel Iterative Solver . 52

2.3 Conclusion . 53

3 FEDomain Interface 54

3.1 FEDomain Interface Version 1 . 55

3.2 FEDomain Interface Version 2 . 57

3.3 FEDomain Interface Version 3 . 60

3.4 FEDomain Interface Version 4 . 61

3.5 FEDomain Interface Version 5 . 63

3.6 FEDomain Interface Version 6 . 64

3.7 FEDomain Interface Version 7 . 65

3.8 FEDomainMPI Interface . 68

3.9 Summary and Conclusion . 70

4 FEDomain Shared Memory FE Solver 73

4.1 Direct Solver . 74

4.1.1 Sparse Matrix Container Requirements 78

4.1.2 Direct Solver Stages . 81

4.1.3 Direct Sovler Timing . 83

4.2 Static Condensation . 86

4.2.1 FEEquation Class . 90

4.2.2 Client object as Element object 94

4.2.3 Shared Memory Solvers Class Diagrams 95

4.3 Complexity . 100

4.4 Conclusion . 103

iv

5 FEDomain Distributed Memory FE Solvers 109

5.1 Distributed Solver Interface . 110

5.1.1 Distribution of the mesh . 110

5.2 DOFs notations . 112

5.3 FEDomainMPI . 113

5.4 Distributed Direct Solver . 114

5.4.1 CSREquation Container . 118

5.4.2 Distributed Direct Solver Mathematical Model 120

5.4.2.1 2-Dimensional Mesh 122

5.4.2.2 3-Dimensional Mesh 124

5.4.2.3 D-Dimensional Mesh 125

5.5 Distributive Hybrid Solver . 126

5.5.1 Distributed Hybrid Solver Mathematical Model 135

5.6 Conclusion . 136

6 FEDomain Residual Methods 137

6.1 FEResidual Version 1 . 138

6.1.1 Interface . 138

6.1.2 Implementation . 139

6.1.3 Drawbacks . 140

6.2 FEResidual Version 2 . 140

6.2.1 Interface . 141

6.2.1.1 Requirements of Template Parameters 141

6.2.2 Implementation . 142

6.2.3 Performance . 144

6.2.4 Drawbacks . 145

6.3 FEResidual Version 3 . 145

6.3.1 Interface . 145

6.3.2 Implementation . 147

v

6.3.3 Performance . 148

6.3.4 Drawbacks . 150

6.4 FEResidual Version 4 . 151

6.4.1 Interface . 151

6.4.2 Implementation . 151

6.4.3 Performance . 152

6.5 Conclusion . 153

7 FEDomain Shared Memory Residual Method 154

7.1 FEResidual Version 5 . 154

7.1.1 Interface . 154

7.1.2 Implementation . 155

7.1.3 Performance . 156

7.2 FEResidual Version 6 . 160

7.2.1 Implementation . 160

7.2.2 Interface . 161

7.2.3 Performance . 162

7.3 FEResidual Version TBB . 173

7.3.1 Implementation . 173

7.3.2 Performance . 175

7.4 Conclusion . 179

8 FEDomain Distributed Memory Residual Methods 180

8.1 Distributed EBE Residual . 183

8.2 Distributed FA Residual . 185

8.3 Distributed FA Compressed Residual 191

8.4 Conclusion . 201

9 Extension to a non-linear solver for the Convection-Diffusion equa-

tion 202

vi

9.1 Interface . 202

9.2 Implementation . 203

9.3 Future Works . 206

10 Convection-Diffusion Equation Examples 207

10.1 Problem . 207

10.2 Streamline Upwind/Petrov-Galerkin 209

10.2.1 Error Computation . 210

10.2.2 Error Rate . 211

10.2.3 Domains . 212

10.2.4 SUPG Error Results . 213

10.2.4.1 2D Error Test: a constant convectional field 213

10.2.4.2 SUPG 2D Error Test : A variable convection field . 214

10.2.4.3 SUPG 3D Error Test Example 1 : variable convec-

tive field . 216

10.2.5 Problem with internal and boundary layers 218

10.2.5.1 SUPG 2D Layer problem constant convection field 218

10.2.5.2 SUPG 2D Layer problem rotating convection field . 219

10.2.5.3 SUPG 2D Layer problem 3 220

10.2.5.4 SUPG 3D Layer problem 2 224

10.2.6 Codina Method C93 . 227

10.2.7 Modified Codina Method KLR02 3 227

10.2.8 Burman and Ern Method BE02 1 227

10.2.9 Modified Burman and Ern Method BE02 2 227

10.2.10 SOLD Methods Error Results 228

10.2.10.1 2D Error Test: constant convection field 228

10.2.10.2 2D Error Test: a variable convection field 232

10.2.10.3 3D Error Test: a variable convectional field 236

10.2.11 Problem with internal and boundary layers 240

vii

10.2.11.1 SOLD 2D Layer problem constant convection field 240

10.2.11.2 SOLD 2D Layer problem variable convection field 240

10.2.11.3 SOLD 2D Layer problem 3 242

11 Conclusion and Future Work 243

11.1 Conclusion . 243

11.2 Future Work . 246

A FEDomain Installation Guide 247

A.1 Requirements . 247

A.2 FEDomain Preprocessors . 248

A.3 Poisson 2D element classes examples 249

A.4 Elasticity 3D Modifications . 258

viii

Chapter 1

Introduction

The Finite Element Method (FEM) [9, 50] is widely used for simulating phys-

ical problems. The method can be used in design stage as well as to improve a

previously existing design. The main advantage of the FEM is its flexibility which

allows it to handle arbitrary geometries, different materials and general boundary

conditions. One of the key components of the FEM is the solution of the lin-

ear system of equations. This process generally involves matrix operations (such

as multiplication) which are computationally intensive. Finite element software

developers usually use third party linear algebra solver libraries for these rou-

tines. The efficient implementations of linear algebra libraries require thorough

understanding of the algorithms and coding details. The implementation of these

routines is a time consuming task which is prone to error. This thesis presents a

novel C++ finite element solver package which alleviates some of these problems

by providing efficient solution computation methods for parallel architectures.

This chapter has three section. The first section contains motivation and ob-

jectives of this work. The second section covers a literature review of the parallel

architectures, parallel libraries, and linear algebra numerical libraries. The third

section gives a brief review of the forth coming chapters in the thesis.

1

Motivation

In this chapter many commercial and open source packages will be reviewed.

Some of these packages are lower level libraries, which have been matured by years

of deployment, development and error correction. These have been acting as build-

ing blocks for the higher level libraries. The higher level linear algebra libraries

have been developed to support numerical applications development. Most of these

applications are developed in functional languages like C and FORTRAN. These

packages require their users to provide the system matrix and the right hand side.

The object oriented finite element developers have to accumulate all the mesh el-

ements data into a global data containers and provide these to the solver. Like

wise the solution is provided as a vector to the user. The user has to distribute

the solution to all the mesh elements for post processing.

The third category will be reviewed in this chapter is object oriented finite

element packages. These are developed as a complete solution which starts from

generation of the mesh, creation of the linear systems, solving the linear system

and providing an output either as values or as visualisation.

1.1 Aims

The aim of this project is to define a generic interface of finite element solver

package. This package will lie between the high level linear algebra libraries and

object oriented finite element packages. The interface should be simple and easy

to adopt by the users, unlike high level linear algebra libraries. It should allow the

user to implement any valid finite element method for any model problem. The

domain specifications and problem type will be selected by the user. The user

will have complete control over the mesh generation and properties of the mesh

elements and should select the algorithms to be implemented for the elements.

2

The concrete way of achieving our main aim, is to develop a finite element solver

which assembles the linear system of equations from the element objects as it is

implemented in most of the object oriented finite element packages. The system

matrix and the right hand side have to be provided to the linear algebra solver.

The solver should be responsible for the selection of A and ~f data containers. The

FEDomain will select its internal data structures according to the solver selection.

The user has to provide the mesh element objects to FEDomain. The FEDomain

will collect the system data from these element objects.

Figure 1.1: Overview of FEDomain package.

The FEDomain package will be an object oriented package which will compute

the solution in parallel, both on shared and distributed memory architectures. The

package will provide a solution to all the allocated mesh elements as can be seen

in Figure 1.1. The FEDomain package will depend on a third party linear algebra

package to compute the solution.

1.2 Objectives

This project has implemented a finite element solver package. The objectives of

this project are as follows.

1. Simple interface: The package should provide a simple interface between

the user application and the linear algebra solvers. The user should be able

to include this package into their C++ finite element application code with

minimal efforts.

3

2. Generic interface: The interface should be defined to accommodate as wide

a family as possible of problems and finite element spaces. The package

should provide support to all finite element shapes and domain dimensions.

3. Operating system independent: The package should be compatible to com-

monly used operating systems like Windows, Linux and MacOS. It should

not be dependent on operating system specific resources.

4. Support multiple solution methods: The interface should give the user the

choice of either direct or iterative methods to solve the linear systems, in-

cluding domain decomposition method.

5. Support for shared and distributed architectures: The package should provide

support for shared and distributed memory architectures.

6. Solution distribution: The package should provide solution back to the finite

elements.

7. Extendible: Give to the user the possibility to implement algebraic solvers

different to the already implemented ones. It will help the user to implement

iterative solvers by calculating residual vector on shared as well as distributed

memory architectures.

These objects could be checked using following indicators:

1. The interface of the primary FEDomain library should be concise and easy

to read. This makes it easy for the user to include it into their applications.

2. The only requirement from the user is a group of elements and a list of

Dirichlet degrees of freedom. These elements should provide

• a local stiffness matrix,

• a local right hand side, and

• a connectivity matrix.

4

The structure allows any choice of degrees of freedom (point, fluxes, means,

moments, etc).

3. A variety of problem types have been implemented and their performance

tested. These include scalar equations (such as Laplace and convection-

diffusion) and systems (such as elasticity). Also, the interface can deal with

symmetric and non symmetric problems, and can accommodate a non-linear

solver for the convection-diffusion equations.

4. The user has the choice of algebraic solvers to use. The Jacobi algorithm is

implemented to test an iterative solver on shared and distributed memory

architectures.

5. The package should provide support to multiple third party linear algebraic

solvers.

1.3 Parallelism, Core and Threads

Parallelism can be defined as executing many computing calculations simulta-

neously. The basic idea is to divide the large groups of calculations into smaller

groups and solve these at the same time. There are two basic concepts: core and

thread. Both have to be explained as these will be used in this thesis.

A core is a physical processing unit in a processor chip. In earlier computers

there used to be one core per processor. Physical constraints like power delivering,

heat dissipation, and need for higher frequency have made single core processors

outdated. The earlier attempt to overcome these constraints involves the introduc-

tion of the motherboards with two physical processor sockets which communicate

with each other through added circuitry on these motherboards. The communica-

tion was considered as much slower to the calculations actually happening inside

the processors. To increase processing speed, lower manufacturing cost, and end

5

user cost, processors are designed to have multiple processing cores in a chip.

These cores perform faster as these can communicate swiftly and share common

circuitry like caches.

A thread is a set of instructions from a computer process that is executed by a

core. A single process is divided into multiple threads which can be simultaneously

execute on multiple cores.

1.4 Parallel Architectures

Parallel computers have two basic architectures: shared memory and distributed

memory.

• In a shared memory computer, multiple processor units share access to a

global memory space via a high-speed memory bus. This global memory

space allows the processors to efficiently exchange or share access to data.

Typically, the number of processors used in shared memory architectures

is limited to only a handful of processors. This is because the amount of

data that can be processed is limited by the bandwidth of the memory bus

connecting the processors.

• Distributed memory parallel computers are essentially a collection of com-

puters (nodes) working together to solve a problem. Each node has rapid

access to its own local memory and access to the memory of other nodes

via some sort of communications network, usually a proprietary high-speed

communications network like Ethernet and InfiniBand. Data are exchanged

between nodes as messages over the network.

6

1.5 Parallel Libraries

In this section the parallel libraries are reviewed. These libraries are imple-

mented for the shared memory and distributed memory architectures.

OpenMP

OpenMP [72] is a language extension consisting of pragmas, routines and envi-

ronment variables implemented for C and Fortran programs. OpenMP is a form

of a directed parallelism in which application developers have to add OpenMP

pragmas in their application sequential code. These OpenMP pragmas indicate

parallel regions to the compiler to generate an equivalent parallel code. The appli-

cation developer is responsible for correction of the code to avoid parallel software

drawbacks like race conditions and deadlocks, etc.

OpenMP V3.0 [72] provides three scheduling schemes STATIC, DYNAMIC,

and GUIDED which represent different algorithms for task scheduling and load

balancing. The description of OpenMP scheduling schemes is given below:

• In STATIC scheduling, the data is divided into subsets or bins of size chunk

size only the last subset can be of smaller size. The number of subsets can be

more than the total number of threads, and subsets are allocated to threads

in a round robin manner.

• In DYNAMIC scheduling, the elements are distributed into subsets of size

chunk size. When a thread finishes one chunk, it is dynamically assigned

another until all the subsets are assigned. None of the threads remain in idle

state or wait for other thread to finish.

• In GUIDED scheduling, the subset of chunk size is proportional to the unas-

signed data and total threads. Only the last chunk size is less than user

7

selected chunk size. The chunk allocation algorithm is the same as of DY-

NAMIC scheduler. No thread waits for other threads and chunks are allo-

cated as the threads are available.

Thread Building Blocks

Thread Building Blocks (TBB) [76] is an Intelr Corporation library developed

to leverage multi-core programming by supporting scalable parallel programming

in standard C++. TBB is implemented as template C++ library to take full ad-

vantage of Generic programming. It provides performance and scalability while

presenting user with higher level task base parallelism. TBB perform synchroniza-

tion, load balancing and cache optimization to attain increase in speed.

Contrary to OpenMP, TBB library does not need special compiler and can be

built for new and older compilers. TBB also provides thread safe data struc-

tures like concurrent vector and concurrent queue which is TBB advantage over

OpenMP. Generic programming enables TBB to be flexible yet efficient while op-

timizing components to the user’s own requirements. TBB can provide better

portability, easier programming and more understanding of C++ code due its

generic implementation.

Task Parallel Library

Parallel Library (TPL) [30] provides concurrency support for the Microsoft .NET

framework. It provides parallel constructs such as aggregate, do and for to keep

different queues balanced. It is based on the concept of a task-based asynchronous

operations. The TPL utilizes the threads available to execute these tasks in par-

allel. Unlike OpenMP and TBB, TPL is supported by MS platform and .NET

only.

8

Message Passing Interface (MPI)

The MPI library is implemented to make the application executable on the

distributed memory computer. It provide the routines to manage the tasks on

the group of computational nodes. MPI is intended as a standard implementation

of the ”message passing” model of parallel computing. A parallel computation

consists of a number of processes, each working on some local data. Each process

has purely local variables, and there is no mechanism for any process to directly

access the memory of another. Sharing of data between processes takes place by

message passing, that is,by explicitly sending and receiving data between processes.

MPI provides great deal of functionality, including a number of different types

of communication, special routines for common ”collective” operations, and the

ability to handle user-defined data types and topologies. It provides support for

heterogeneous parallel architectures.

MPI library can efficiently transfer data organised in consecutive memory in

single transfer message it is designed as a functional library. There are few third

party object oriented interfaces and implementations of MPI like OOMPI [6].

These interfaces are not accepted as standard in the high performance computing

community. The MPI library cannot transfer class objects as mostly an object is

set of functionality and data.

.NET Framework Remoting

.NET Remoting is Microsoft’s infrastructure that provides a rich set of classes

that allow developers to ignore most of the complexities of deploying and manag-

ing remote objects. The calling methods for remote objects are nearly identical

to calling local methods. Remoting framework is built into the common language

runtime (CLR) that is used to build sophisticated distributed applications and

network services. When a client creates an instance of a remote object, it re-

9

ceives a proxy to the class instance on the server. All methods called on the

proxy will automatically be forwarded to the remote class and any results will be

returned to the client. From the client’s perspective, this process is no different

than making a local call. The .NET framework is Windows OS dependent. Other

packages like MONO [1] and Portble.NET [2] provide common language infras-

tructure. MONO supports windows, GNU/Linux and MacOS X. Portable.NET

supports GNU/Linux, Solaris, NetBSD and MacOS X. These frameworks are not

available on all the development environments.

1.6 Basic concepts on object oriented implemen-

tation of Finite Element Methods

Object oriented languages provide facilities for balanced support of data ab-

straction and encapsulation, polymorphism, extensibility and code re usability

through inheritance and run-time type support via dynamic binding of operations

to objects. Object oriented languages make it possible to construct software using

software components directly modelling real world high level entities. There are

many object oriented languages like C++, Objective C, C#, Visual Basic .Net,

and Java, etc, available for software development. C++ is improved C as it pro-

vides methods for data hiding and data encapsulation. C++ retains the efficiency

of C by allowing the low level memory access and floating point arithmetic to

be carried out without overheads. It also provides object oriented features like

inheritance, polymorphism, and real time type support via dynamic binding of

operations to objects.

Upto our knowledge, the first finite element object oriented framework is given in

[61]. FE++ is an object oriented architecture developed in C++ for finite element

programming. This package implements finite element object classes for structural

mechanics. This package partitions the common attributes and the concepts in

10

the finite element analysis into an object oriented architecture using components

like element, node, material, assembler, and solver. Later TF++ and PTF++

[70] frameworks are developed using FE++ architectures to compute transient

solutions.

A more concrete realisation in terms of finite element solver is given in [32]

(1990), where Ford et al presented an object oriented finite element program for

linear elasticity analysis with plane, isoparametric elements. The aim was to de-

velop a framework that could be easily expanded to more advanced problems, or

incorporated in expert systems. There are 5 FEM classes that have only a few at-

tributes and methods. In addition to the Element, Material, and Node classes, the

boundary conditions are handled by a DispBC class and a ForceBC class. To each

FEM class belongs a customized version of a List class which handles storage and

assembly of the model. The Element is capable of computing the element stiffness

and several types of distributed loads. This is done by numerical integrations and

requires two new classes, name Gausspoint and Shapefcn. Furthermore, the Ele-

ment has its own post processing facilities such as stress evaluation and graphical

representation of the result. The entire finite element model is represented by a

Domain class which stores the customized lists of Nodes, Elements, Materials, and

boundary conditions. It is also responsible for the storage of the global matrices

and vectors. To perform an analysis the user should provide an application pro-

gram that controls program evaluation, i.e. definition of a Domain, solution and

call of post processing facilities. The expandable framework is simple due to few

FEM classes. The program was implemented in a hybrid language using C for the

numerical part and ObjectPascal for the object oriented part.

One of the first object oriented finite element application is explained in [78]

(1992), where Scholz has developed and implemented a typical finite element anal-

ysis program on the basis of the Timoshenko beam using the object oriented pro-

11

gramming language C++. The merits of object-oriented programming are shown

by providing two examples of the design, implementation, and application of the

object classes ”Vector” and ”Matrix”. Scholz has again indicated that an object

oriented approach to engineering problems leads to easier validation and mainte-

nance of programs than procedural languages, and that the implementation of an

object oriented program requires less time and produces smaller programs com-

pared with conventional programming techniques.

The concept of the central data for finite element is used in [82] (1993), where

Yu and Adeli define a class library for finite element analysis. The analysis is

centred around a GlobalElement object which handles the model assembly. It is a

subclass of Element and uses several objects like Node, Material and Shape. The

model is stored in a central database from which it is possible for any object to

get the data that are needed. A noticeable difference to the systems presented

above is the possibility for each object to copy itself, e.g. generate a number of

equally spaced Nodes. The class library has been tested on composite laminate

problems using a C++ implementation. The authors in [8] (1995) have presented a

blackboard software architecture. The blackboard consists of local and global con-

trollers that control the logic of the problem solving. An object oriented database

management system (OODBMS) has been created for effective management of

input, intermediate and output data. The methods and models developed in this

research have been applied to the solution of the inter laminar stress analysis of

composite laminates.

One of the earliest examples of finite element programs implemented using Mi-

crosoft C++ 7.0 is ”Event” given in [56] (1995) by Kong and Chen. The poly-

morphism and inheritance are used to implement the finite element program. The

Event reads the problem data from the file, create elements from the provided ge-

ometry and physical classes. The element classes are implemented using multiple

12

inheritance. From these elements, the stiffness matrix and load vector are created

to compute a solution. The focus was to create different element objects by using

multiple inheritance. Kong in [55] (1996), studied how a FORTRAN finite element

code can be translated into C++ finite element application. The paper shows the

way of applying the object oriented design, enhancing data hiding and cohesion,

decreasing data coupling, as well as managing finite element objects. It proposes

a process of defining private data members and arranging them into C++ FEM

class hierarchies to remove the drawbacks of FORTRAN common variables. Static

data members are used for implementing common resources that all objects need.

The C++ linked list of finite element objects are used to gain high effectiveness

and flexibility.

In [62] (1992), Mackie used ObjectPascal to represent the possibility of chang-

ing from procedural programming to object oriented programming. A class of

Elements for plane stress and plate bending have been defined for static as well

as dynamic analysis. The class methods are defined parametric in a style that lies

close to the traditional Fortran style. What is accomplished by using object ori-

ented programming is, however, an enhancement of the program structure as well

as re-usability due to inheritance. This work was later extended to a C++ imple-

mentation in [64]. In this reference a software approach to fully interactive finite

element software is presented. The objective of this work was to generate finite

element classes with lean interface and the finite element objects are distributed

around the graphical model objects. This work distributes the finite element ap-

plication into two modules, finite element class system and graphical structural

model. The graphical model implements the classes key points (TKeyPt), key

lines (TKeyLine) and key substructures (TSubStruct). These classes are imple-

mented from the user point of view and data is encapsulated within them. After

generating the mesh nodes belong to these structures. The author has used sub-

structuring to compute the solution of these nodes. It uses the TFeNode class for

13

the nodes, TElement class to represent elements and TProperty class for material

properties. The extension to multi-threaded parallel implementations of the finite

element software given in [64] was presented in [63, 65, 68].

The main concept described in the previous paragraph was extended to dis-

tributed computing in [66] by breaking the calculation into large segments. The

motivation is to create an implementation which appears relatively seamless for

concurrent and distributed computing. The .NET framework is used to achieve the

desired goal. In [66], domain decomposition methods are implemented using di-

rect and iterative linear equation solvers using C# language. The implementation

was made using C#, and it showed that using interfaces allows greater flexibility

in software design than using inheritance, especially in the case of multiple in-

heritances. IVectorD and ISubDomain interfaces are used for the data containers

classes and sub domains classes, respectively. In [67], Mackie has implemented

three different solution scenarios to compute the solution using Conjugate Gradi-

ent iterations and showed how the interfaces can be used to add these solutions

scenarios in Conjugate Gradient class (CGSolverGen). The work shows that the

use of an interface in object oriented application reduces code complexity and in-

creases extensibility. The solution classes implemented ICGMatrix interface and

the CGSolverGen class has ICGMatrix object. The solution classes implement

concurrent and distributed algorithms. The interfaces allow to hide the local and

remote objects from the CGSolverGen object.

The possibility of using multiple computers connected through the internet was

advised in [69] by the introduction of remote objects and mobile agents. The

focus was on developing flexible software by using interfaces and mobile agents.

It showed using delegates for remote objects are easy to use and efficient method

for distributed computing. The author has demonstrated design flexibility by

the implementation for direct solver (UTDU) and iterative (conjugate gradient)

14

distributed solvers using mobile agents. It is also shown how to perform distributed

assemblies, user interface approach for solver methods and user hosting approach

for mobile agents.

A design pattern [35, 10, 34] is the abstraction of a recurring solution to a

design problem. It captures the relationship between objects participating in the

solution and describes their collaboration. In [35] the detailed introduction and

explanation of 23 software design patterns (given in table 1.1). The patterns

solve specific design problems and make object oriented code designs more flexible,

elegant and, ultimately reusable. These design patterns help software developers

to reuse successful designs in their implementations. A software designer familiar

with these design patterns can apply them immediately to design problems which

will help in fast and right implementation and clean code. These also help in

communication among designers and improve documentation. Each design pattern

specifically targets recurring design in object oriented systems.

Purpose
Creational Structural Behavioural

Scope Class Factory Method Adapter Interpreter
Template Method

Object Abstract Factory Adapter Chain of Responsibility
Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator

Facede Memento
Flyweight Observer
Proxy State

Strategy
Visitor

Table 1.1: Design pattern space given in [35].

Heng and Mackie [44] have presented five basic design scenarios that appear

during object oriented finite element software development. The paper explains

what design patterns for these scenarios and how these can be applied. Table 1.2

15

shows these finite element design scenarios and their appropriate design patterns.

The detailed explanation, and implementation of scenarios is given in [45].

Scenarios Design Patterns
Model-Analysis separations Facade, Mediator
Model-UI separations Model-View-Controller, Observer
Modular Elements Singleton, Template, Strategy
Composite Elements Composite
Modular Analysis Strategy

Table 1.2: Finite element software scenarios and their appropriate design patterns
given in [44].

There are many commercial and open source libraries available for linear al-

gebraic software development. Most of these libraries a continuously evolving to

meet new requirements of software developers. Following is an introduction of few

commonly used libraries.

1.7 Low Level Linear Algebra Systems

Basic Linear Algebra Subprograms(BLAS) [57] is a set of low-level kernel subrou-

tines that perform common linear algebra operations such as copying, vector scal-

ing, vector dot products, linear combinations, and matrix multiplication. BLAS

is a standard application programming interface API for linear algebra routines,

which has to be tuned for specific computer architectures. BLAS functionality is

divided into 3 levels. The first level contains vector operations, the second level

contains matrix vector operations and the third level contains matrix matrix op-

erations. It is used as the building block for the high level programming language.

Linear Algebra PACKage(LAPACK) [12] is written in Fortran 90 and provides

routines for solving systems of simultaneous linear equations, least-squares so-

lutions of linear systems of equations, eigenvalue problems, and singular value

problems. The associated matrix factorizations (LU, Cholesky, QR, Schur, gen-

16

eralized Schur) are also provided, as are related computations such as reordering

of the Schur factorizations and estimating condition numbers. Dense and banded

matrices are handled, but not general sparse matrices. In all areas, similar func-

tionality is provided for real and complex matrices, in both single and double

precision. LAPACK routines are written so that as much as possible of the com-

putation is performed by calls to the BLAS. LAPACK is designed at the outset

to exploit the Level 3 BLAS. The coarse granularity of the Level 3 BLAS opera-

tions, promotes high efficiency on many high-performance computers, particularly

if specially coded implementations are provided by the manufacturer.

1.7.1 Tuning Paradigms

The lower level linear algebra kernels act as the building blocks for higher level

packages. Their performance is critical for the performance of these high level

packages. In this section few tuning packages have been reviewed. These packages

tune the lower level linear algebra kernels according to the target architecture.

Automatically Tuned Linear Algebra Software (ATLAS) [81] is the application of

Automated Empirical Optimization of Software (AEOS) paradigm to dense linear

algebra software. It produces a BLAS library which is optimized for the target

platform. The BLAS building block routines, when tuned well, allow more compli-

cated linear algebra operations such as solving linear equations to run extremely

efficiently. ATLAS generates linear algebra kernel for system at installation by

static tuning of BLAS library and generated kernel routines are called by the

user. ATLAS allows the user to avoid hand tuning his code as it requires detailed

knowledge of a complex set of interrelated factors and is a time consuming task.

Portable High Performance ANSI C (PhiPAC) [20] is a methodology to achieve

high performance linear algebra C libraries for wide range of hardware. PhiPAC

strategy consists of three components for code development. In the first phase,

17

these provide generic model of current C compilers that provides guidelines for

producing high performance ANSI C code. In the second phase, these provide

parametrized generators which produce optimized routine according to the guide-

lines. In the third phase, script is provided to automatically tune the code for

a particular system by varying the generator parameters and benchmarking the

resulting routines. The code guidelines include issues like remove false dependen-

cies, reduce memory bandwidth or use of base + constant offset addressing mode

to avoid unnecessary pointer updates.

The Optimized Sparse Kernel Interface (OSKI)[80] from the Berkeley Bench-

marking and Optimization Group (BeBOP) is a released software package provid-

ing automatically tuned sparse computational kernels. OSKI provides statically

tuned kernels according to the underlying machine architecture created upon in-

stallation. It also provides dynamically tuned routines created at runtime accord-

ing to the matrix/vector structure. The static kernel becomes the default and

called when runtime tuning is not used. OSKI allows the user to select different

runtime tuning options such as justify, moderate or aggressive. It can also save

tuning transformations for reuse so that tuning overhead can be reduced for fu-

ture use. OSKI also provides a parameter list input (a way to specify a variable

number of inputs) that can be used to indicate the properties of a given problem

that OSKI can exploit during the tuning process. The more information a user

can provide, the less work it is for OSKI to automatically tune because it narrows

down the number of tuning techniques.

1.8 High Level Linear Algebra Libraries

This section reviews linear algebra packages which support high level users.

These packages provide support to languages such as C, C++, FORTRAN and

Python, etc. These packages support multiple solvers on variable OS. Most of these

18

provide parallel routines for shared memory and distributed memory architectures.

Unsymmetric Multifrontal Sparse LU Factorization Package(UMFPACK) [27]

is a set of routines for solving unsymmetric sparse linear systems, using the Un-

symmetric MultiFrontal method. It includes a MATLAB interface, a C-callable

interface, and a Fortran-callable interface. It can be used as a stand alone library

but for high performance it uses BLAS routines.

Portable, Extensive Toolkit for Scientific Computation (PETSc) [15] is a pow-

erful set of tools for the numerical solution of partial differential equations and

related problems on high performance computing. It contains a variety of libraries

developed to ease the development of large scale scientific application codes in C,

C++, Fortran and Python. Each library manipulates particular sets of objects

and the operation one would like to perform on the objects. PETSc provides

parallel dense vectors and matrices (dense and several sparse matrices storages).

It supports symmetric, block diagonal and sequential matrices. It provides many

linear algebra operations like preconditioners (like ILU, LU, Jacobi , block Ja-

cobi, additive Schwartz and ICC), Direct Solvers (like LU and Cholesky), Krylov

Subspace methods (like GMRES, Richardson and conjugate gradient), non linear

solvers (like Newton-based method, line search and trust region) and parallel time

stepping solvers (like Euler). It provides interface to other packages like MUMPS

[11] and SuperLU [58]. Packages like OpenFEM, OOFEM and DEALII [17] are

using PETSc. PETSc does not provide any sparse vector and matrix matrix mul-

tiplication. The user is responsible for creation and population data and will select

the solution method.

MUltifrontal Massively Parallel Solver (MUMPS) [11] is an other popular pack-

age for solving systems of linear system of equations of the form Ax = b, where A

is a square sparse matrix that only need to be invertible. MUMPS implements a

direct method based on a multifrontal approach which performs a direct factoriza-

19

tion. This package includes features like solution of the transposed system, input

of the matrix in assembled format or elemental format, iterative refinement and

computation of Schurs Complement matrix. This requires other libraries like MPI

[73], BLAS [57] and ScaLAPACK. It supports sequential and parallel (shared and

distributed memory) applications.

SuperLU [58] is the collection of three related subroutine libraries for solving

sparse linear systems of equations. It supports multiple right hand sides and arbi-

trary square matrices. SuperLU has different implementations for sequential pro-

cessors, SuperLU MT is implemented for shared memory multiprocessors (SMP)

using PThreads, and Super DIST is implemented for distributed memory multi-

processors and uses MPI library. It provides FORTRAN interface for all three

implementations. All the three libraries use BLAS to achieve high performance.

In SuperLU DIST, A can be either stored as replicated if all nodes have enough

memory or distributed across all processors where each process is allocated with

consecutive rows. The distribution storage is slow as in all stages of solver data

has to be re-distribute.

Parallel Sparse Direct and Multi-Recursive Iterative Linear Solvers (PARDISO)

[7], [77] is a solver package for solving large sparse symmetric and unsymmetic

linear systems of equations on shared memory and distributed memory multipro-

cessors. The commercial version of this package is provided as a part of Intelr

Math Kernel Library (MKL). It supports general invertible matrices. PARDISO

can solve for multiple right hand sides. This package is available in C and FOR-

TRAN languages.

Watson Sparse Matrix Package (WSMP) [41, 42] is a collection of algorithms

for efficiently solving large systems of linear equations whose coefficient matrices

are sparse. This library can be used as a serial package, or in a shared-memory

multiprocessor environment, or as a scalable parallel solver in a message-passing

20

environment, where each node can either be a uniprocessor or a shared-memory

multiprocessor. It implements both direct and iterative methods of linear systems.

This package is available in C and Fortran languages.

Matrix Template Library 4 (MTL4) has implemented a linear algebra library in

C++ using modern object oriented programming techniques to provide an easy

and intuitive user interface, while enabling optimal performance. It provides nat-

ural mathematical notations which enables engineers and scientists to implement

algorithms in a minimum time. It has used template meta programming like ex-

pression templates and meta tuning [39]. It uses BLAS for some operations like

dense matrix multiplications.

1.9 Object Oriented Finite Element Packages

In this section the numerical packages which are specifically designed for finite

element methods are discussed. All the packages are implemented using object

oriented paradigm. These packages provide support to C++ developers.

FemLab. In [37] (2001) FemLab framework was introduced. The paper has

explained in details the implementation of the element objects and construction

of the global structures. This toolkit has three main classes FemLab perform

analysis of the problem. The Domain class contains problem data. It has DofPlex

list which contains the list of degrees of freedom inside finite element mesh. The

NodePlex list contains all the nodes in mesh. Each node object has pointers

to the corresponding degrees of freedom. The ElementSetPlex list contains all

the elements in mesh. The elements have pointer to the corresponding nodes.

The MaterialPlex list all the material properties. The Solver class computes the

solution and it is independent of the Domain class. The [37] showed the design

enable to implement non-linear structural material problem.

21

OFELI. In [79] (2002) has introduced OFELI toolkit and demonstrated how

it can be used to implement finite element code by providing a simple elliptic

boundary value problem. The package involves reading the mesh, generation of

elements and providing solution. It is designed for research or academic purposes

where larger packages are not required. OFELI creates the mesh object by reading

the mesh file. The mesh file will have the problem description. The mesh object is

passed to the matrix and vector objects for stiffness matrix and load vector. The

matrix object computes the solution for the system of equations.

Differential Equations Analysis Library (DEAL II) [17, 16] is a general purpose

finite element library written in C++ for linear and non linear problems. The li-

brary uses advance object oriented and data encapsulation to break finite elements

into small blocks that can be arranged to fit user requirements. It makes extensive

use of templates and STL concepts such as iterators. Deal II focuses on extensi-

bility, simplicity and efficiency [18]. This package is a large group of classes which

covers all the aspects of finite element codes as setting up the meshes and finite

element spaces, assembling the system of equations, solving this system and post

processing. It provides a collection of linear algebra classes for iterative solvers

while for direct solver it provides interface to other packages like UMFPACK and

HCL. The DEAL II fully supports multi threaded parallelisation for multi-core

shared memory machines. It provides interface to PETSc library to add compati-

bility for distributed memory machines.

FEniCS [60] The FEniCS Project is a collection of free, open source, software

components with the common goal to enable automated solution of differential

equations. The components provide scientific computing tools for working with

computational meshes, finite element variational formulations of ordinary and par-

tial differential equations, and numerical linear algebra. It provides C++ and

python interface. It provides similar facilities as of DEAL II. FEniCS has defined

22

user interface as C++ and python library called Dolphin. Dolphin is used for

high-level mathematical description of a finite element variational problem.

Distributed and Unified Numerics Environment(DUNE) [19] Dune a modular

framework for solving partial differential equations with grid-based methods. It is

intended to create slim interfaces allowing an efficient use of legacy and/or new

libraries. Using C++ techniques Dune allows to use very different implementa-

tions of the same concept (e.g., meshes, solvers) using a common interface with

a very low overhead. The framework consists of a number of modules which are

downloadable as separate packages. DUNE-FEM module defines interfaces for im-

plementing discretisation methods like Finite Element Methods (FEM) and Finite

Volume Methods (FV) and Discontinuous Galerkin Methods (DG). It is based on

the dune-grid interface library.

FreeFEM++ [43] is a partial differential equation solver written in C++. It has

its own language written in C++ idiom. FreeFem++ has an advanced automatic

mesh generator, capable of a posteriori mesh adaptation. It has a general purpose

elliptic solver interfaced with fast algorithms such as the multi-frontal method

UMFPACK and SuperLU. Hyperbolic and parabolic problems are solved by itera-

tive algorithms prescribed by the user with the high level language of FreeFem++.

Object Oriented Finite Element Solver (OOFEM) [74] is a general purpose object

oriented FEM code, written in C++. It can solve various linear and nonlinear

problems from structural, thermal and fluid mechanics. It particularly includes

many material models for nonlinear fracture mechanics of quasibrittle materials,

such as concrete. It provides efficient parallel processing support based on domain

decomposition and message passing paradigms [75]. The provided direct solvers

include symmetric and unsymmetric skyline solver and sparse direct solver and

iterative solvers support many sparse storage formats and come with various pre-

conditioners. Interfaces to third party linear solver libraries are available, including

23

IML, PETSc, SLEPc, and SPOOLES.

1.10 Algorithmic Skeletons

The algorithmic skeletons correspond to a high level programming paradigm

which hide lower level details from the programmer. Skeletons were introduced by

Murray Cole [26]. Skeleton uses common programming patterns and hide lower

level complexities of parallel and distributed computing. The skeletons are re-

sponsible for achieving high performance by performing optimization of skeleton

structure and dynamically adopt to the environment.

The skeletons can be divided into different groups based on their programming

paradigm. In Coordination approach, the high level language is used to describe

the algorithmic behaviour and a host language to handle interaction with the

interface. The llc language [29] and the Skeleton Imperative language (Skil) [26]

are few examples of augmented languages. They translate skeletal description into

the host language and allows the programmer to generate a program by assembling

the high level skeletal portion with the host language structure on top of a low

level parallel software infrastructure.

The skeletons are introduced in object oriented languages using classes. Based

on C++ classes and MPI, the Skeletons in Tokyo (SkeTO) [51], the Munster Skele-

ton Library (Muesli) [25] and the Malaga-La Laguna-Barcelona (Mallba) library

provide data-parallel, task-parallel and resolution skeletons respectively. Other

examples such as Calcium, JaSkel, Lithium, Muskel, Quaff and Skandium have

focused on distinct skeletons as Java and C++ classes. In object oriented the

skeleton libraries rely in the abstraction capabilities of the object oriented host

language and they do not require special syntax.

24

A pattern based C++ library for parallel programming the Thread Building

Blocks(TBB) [76] has been developed by Intelr to take advantage of multi-core

architectures. TBB provides parallel patterns including for, reduce, scan, do, sort,

and pipeline. It provides abstraction with more control on low level parallelism

aspects such as granularity, the possibility to combine with other thread libraries,

and direct access to the task scheduler. The Task Parallel Library (TPL) [30] pro-

vides concurrency support for the Microsoft.NET framework. It provides parallel

constructs such as aggregate, do and for to keep different queues balanced.

Skeletons are also deployed as APIs in procedural languages. By procedural calls

with in a low level parallel environment they deliver data and task parallel skeletal

APIs. The Edinburgh Skeleton Library(eSkel) [21], the Skeleton-based Integrated

Environment(SkIE) [14], the Software development System based upon Integrated

Skeleton Technology (ASSIST) and the Pisa’s Skeleton Library (SKElib) are few

of these libraries.

1.11 Plan of the thesis

In this thesis the development of the FEDomain package is discussed. The

summary of the following chapters are given below:

◦ The second chapter Finite Element discusses the mathematics for the fi-

nite element solver algorithms. The implementation of these algorithms are

discussed in later chapters.

◦ The third chapter FEDomain Interface discusses the steps taken to develop

the user interface. It explains the interfaces for the shared memory and

distributed memory architectures, receptively.

◦ The fourth chapter FEDomain Shared Memory FE Solvers discusses the

implementation of the FEDomain finite element solvers discussed for the

25

shared memory architectures.

◦ The fifth chapter FEDomain Distributed Memory FE Solvers discusses the

implementation of the FEDomain finite element solvers discussed for the

distributed memory architectures.

◦ The sixth chapter FEDomain Residual Methods discusses the implementa-

tion of the residual methods in FEDomain package.

◦ The seventh chapter FEDomain Shared Memory Residual Methods discusses

the implementation of the residual methods for the shared memory architec-

tures in the FEDomain package.

◦ The eighth chapter FEDomain Distributed Memory Residual Methods dis-

cusses the implementation of the residual methods for the distributed mem-

ory architectures in the FEDomain package.

◦ The ninth chapter Extension to a non-linear solver for the Convection-Diffusion

equation discusses the implementation of the non linear solver in the FEDo-

main package for Convection-Diffusion problem.

◦ The tenth chapter Convection-Diffusion equation Results, reports the results

obtained using the FEDomain package for the convection diffusion problem

using SUPG and SOLD methods.

◦ The chapter eleven contains the conclusion and future work.

◦ Lastly, an appendix A (FEDomain Installation Guide), explains the user

how to use FEDomain package in software. It includes example how to

implement Poisson and Elasticity problems.

26

Chapter 2

Finite Elements

This chapter provides an introduction for the finite element methods. It explains

how system of equations are developed from the finite elements in mesh. It also

includes a summery of methods to compute the solution of these linear system of

equations. This topics in this chapter will be referred to in forthcoming chapters.

2.1 Finite Element Methods

The Finite Element Method is a numerical procedure that allows one to obtain

an approximation to the solution of an ordinary or partial differential equation

under appropriate initial and boundary conditions. The finite element method has

a solid theoretical foundation (see e.g [22, 31]) and has become one of the most

used techniques in the approximation of differential equations. The efficiency of

the finite element method relies on two distinct ingredients: the approximation

capability of finite elements and the ability of the user to approximate his model

in a proper mathematical setting.

Let us consider the following abstract problem. Find u ∈ V such that

a(u, v) = f(v) ∀v ∈ V,
(2.1)

27

where:

• V is a Hilbert space;

• a is a continuous bilinear form on V × V ;

• f is a continuous linear form on V .

In many applications the bilinear form a results from the weak formulations of

a partial differential equations post on a domain Ω ∈ Rd with boundary conditions

on its boundary Γ.

Three representative examples falling into this framework of the abstract prob-

lem (2.1) are the followings:

The Laplace equation: Consider the partial differential equation −∆u = f in

Ω supplemented with the homogeneous Dirichlet condition u|Γ = 0. This problem

can be reformulated in the form (2.1) by setting
V = H1

0 (Ω),

a(u, v) =

∫
Ω

∇u · ∇v and f(v) =

∫
Ω

fv,
(2.2)

if f ∈ L2(Ω). Where L2(Ω), H1(Ω), and H1
0 (Ω) are defined as follows:

L2(Ω) =

{
f : Ω −→ R |

∫
Ω

|f |2 < +∞
}

H1(Ω) =
{
f ∈ L2(Ω) : 5f ∈ L2(Ω)d

}
H1

0 (Ω) =
{
f ∈ H1(Ω) : f |∂Ω= 0

}
The Elasticity equation: Consider the partial differential equation −∇·σ(u) =

f in Ω supplemented with the homogeneous Dirichlet condition u|Γ = 0. Where

σ(u) = 2µε(u) + λtr(ε(u))I and ε = 0.5(∇u +∇uT). This problem can be refor-

28

mulated in the form (2.1) by setting
V = H1

0 (Ω),

a(u, v) =

∫
Ω

2µε(u) : ε(v) + λtr(ε(u)).tr(ε(v)) and f(v) =

∫
Ω

fv,
(2.3)

if f ∈ L2(Ω).

Advection-Reaction-Diffusion: Consider the partial differential equation−ν∆u+

~c · ∇u + κu = f in Ω supplemented with the homogeneous Dirichlet condition

u|Γ = 0. This problem falls into the above framework by setting


V = H1

0 (Ω),

a(u, v) =

∫
Ω

ν∇u · ∇v + ~c · ∇u v + κuv and f(v) =

∫
Ω

fv,
(2.4)

if f ∈ L2(Ω) and ~c is a solenoidal function.

The existence and uniqueness of a solution for the weak formulation of the

three previous problems follows by classical results from function analysis such

as the Lax-Milgram Lemma [22] or Banach-Nečas-Babuška theorem [38].

Notice that all the previous weak formulations can be modified to consider non

homogeneous Dirichlet and Neumann boundary conditions. For more details of

the study of weak forms for different problems see Brezzi and Fortin [23], Brenner

and Scott [22], Ern and Guermond [31], Girault and Raviart [38].

2.1.1 Galerkin Methods

The key idea underlying Galerkin methods is to replace the spaces V by finite-

dimensional space Vh. The space Vh is termed the solution space as well as test

space. In its most general form, the Galerkin method constructs an approximation

29

of u by solving the following approximate problem: Find uh ∈ Vh such that

ah(uh, vh) = fh(vh) ∀vh ∈ Vh.
(2.5)

Notice that (2.5) involves an approximation ah to the bilinear form a and an

approximation fh to the linear form f .

In order to construct an appropriate approximation space Vh, we will use finite

element spaces, defined in the sense of Ciarlet as follows: A finite element consists

of a triplet {K,P,Σ} where:

• K ⊆ Rd is an element domain, for example an edge, triangle or tetrahedron.

• P is a finite-dimensional space of shape functions on K, for example poly-

nomials.

• Σ are degrees of freedom, for example values at the vertices of K.

2.1.2 The Linear System

The approximation problem (2.5) is simply a linear system. To see this let:

N = dim(Vh) with a basis {φ1, φ2,, φN}. (2.6)

In the framework of finite element methods, the functions {φ1, φ2,, φN} can be

taken to be the global shape functions in Vh [31, 22].

Consider the expansion of uh in the basis of Vh

uh =
N∑
i=1

Uiφi, (2.7)

and introduce the coordinate vector of uh, U = [U1, U2, ..., UN]T . In this thesis,

the degrees of freedom are considered as the values of the functions on the nodes

30

of the mesh. Let A ∈ RN×N be the stiffness matrix with entries

[A]ij = ah(φj, ϕi), 1 ≤ i, j ≤ N, (2.8)

and let ~b ∈ RN be the vector with components

[b]i = fh(ϕi), 1 ≤ i ≤ N. (2.9)

It is readily verified that

(uh solves (2.5)) ⇐⇒ (Au = b). (2.10)

2.1.3 Partitioning the domain

Let Ω be a bounded domain in Rd, where d = 1, 2 or 3 with boundary Γ. Let

P = {K} be a partitioning of Ω into elements such that

Ω =
⋃
K∈P

K

and the non-empty intersection of a distinct pair of elements is a single common

point, edge, or face of both elements. The most commonly used element types are

triangle, quadrilaterals when Ω is R2 and tetrahedra and hexahedra when Ω is R3,

for polygon and polyhedral domains

For a fix partition P 1 let:

• K denote an element of the partition;

• #P be the total number of elements in P ;

• N index the set {xn}n∈N of all global degrees of freedom (DOFs) xn on P ;

1represents set of all elements in Ω.

31

• NK index the set {xn}n∈NK of local degrees of freedom (DOFs) xn on K;

• N is the total number of DOFs in P ;

• NK is the total number of DOFs in K.

The following functions maps K local DOFs numbering to global DOFs num-

bering respectively:

λK : NK −→ N

i 7→ λK(i) = j.
(2.11)

Each DOF xi in P is associated with a basis function ϕi, defined on Ω with

the property that

ϕi(xj) =

1 i = j,

0 i 6= j.

(2.12)

In order to solve the problem (2.10), first we mention that in general, ah and

fh take the form

ah(uh, vh) =

∫
Ω

Bh(x, uh, vh) and fh(vh) =

∫
Ω

Lh(x, f, vh),

where Bh and Lh are operators. Notice that, from the three previous problem we

have that

Poisson: Bh(uh, vh) = ∇u · ∇v,

Elasticity: Bh(uh, vh) = 2µ ε(u) : ε(v) + λ tr(ε(u)).tr(ε(v)),

Advection-Reaction-Diffusion: Bh(uh, vh) = ν∇u · ∇v + ~c · ∇u v + κuv.

Now, due to the properties of the basis function and (2.8), it follows that

[A]ij = ah(φj, φi) =

∫
Ω

Bh(x, φj, φi) =

∫
Ωij

Bh(x, φj, φi), (2.13)

32

where

Ωij = Ωi ∩ Ωj ⊂ P .

Then

[A]ij =

∫
Ωij

Bh(x, φj, φi),

=
∑
K∈Ωij

∫
K

Bh(x, φj, φi),

=
∑
K∈Ωij

∫
K

Bh(x, φλK(s), φλK(t)),

=
∑
K∈Ωij

BKλK(s)λK(t).

where

λK(s) = j, λK(t) = i and s, t ∈ NK .

For a fixed element K, let us define AK ∈ RNK×NK , a local stiffness matrix with

local DOFs numbering, with entries

[AK]st =
(
BKλK(s)λK(t)

)
s,t∈NK

. (2.14)

Now, let ΛE ∈ RNK×N be a connectivity matrix with entries

[ΛK]ij =

 1 if λK(i) = j,

0 elsewhere.
(2.15)

ΛK is used to map data related to K stored using NK into global numbering N .

The relation between the local stiffness matrix AK and global stiffness matrix A

can be represented as:

A =
∑
K∈Ω

ΛT
KAKΛK . (2.16)

33

The same process can be repeated for the right hand side. In fact,

[b]i = fh(ϕi) =

∫
Ω

Lh(x, f, φi) =

∫
Ωi

Lh(x, f, φi)

where

Ωi = supp{φi} ⊂ P ,

with supp{ϕi} is the set of elements where the function ϕi is not zero-valued, then

[b]i =

∫
Ωi

Lh(x, f, φi)

=
∑
K∈Ωi

∫
K

Lh(x, f, φi)

=
∑
K∈Ωi

∫
K

Lh(x, f, φλK(t))

=
∑
K∈Ωi

LKλK(t),

For a fixed element K, let bK ∈ RNK×1 be a local load vector with local DOFs

numbering, with entries

[bK]t =
(
LKλK(t)

)
t∈NK

. (2.17)

Hence, using the definition of ΛK , it follows that

~b =
∑
K∈Ω

ΛT
K
~bK . (2.18)

In order to clarify all the previous definition let us consider the following simple

mesh shown in Figure 2.1.

34

e3

e2

e1

e4

2

2
2

2
1

1

1

1

3

3
33 5

21

4 3

Figure 2.1: Simple mesh with 4 elements and 5 nodes (DOFs), where we mark in
red the global numbering of the nodes (DOFs) and in blue the local nodes (DOFs).

Then, for this mesh we have:

A =


∫

Ω11
Bh(x, φ1, φ1) · · ·

∫
Ω15
Bh(x, φ5, φ1)

...
. . .

...∫
Ω51
Bh(x, φ1, φ5) · · ·

∫
Ω55
Bh(x, φ5, φ5)

 , (2.19)

and

~b =


∫

Ω1
Lh(x, f, φ1)

...∫
Ω5
Lh(x, f, φ5)

 , (2.20)

where

Ω11 = e1 ∪ e4, ..., Ω15 = e1 ∪ e4, ... and Ω55 = e1 ∪ e2 ∪ e3 ∪ e4, (2.21)

35

and

Ω1 = e1 ∪ e4, ... and Ω5 = e1 ∪ e2 ∪ e3 ∪ e4. (2.22)

Now, the local stiffness matrices are

AK =

[∫
K Bh(x, φ

λK (1)
, φ
λK (1)

)
∫
K Bh(x, φ

λK (2)
, φ
λK (1)

)
∫
K Bh(x, φ

λK (3)
, φ
λK (1)

)∫
K Bh(x, φ

λK (1)
, φ
λK (2)

)
∫
K Bh(x, φ

λK (2)
, φ
λK (2)

)
∫
K Bh(x, φ

λK (3)
, φ
λK (2)

)∫
K Bh(x, φ

λK (1)
, φ
λK (3)

)
∫
K Bh(x, φ

λK (2)
, φ
λK (3)

)
∫
K Bh(x, φ

λK (3)
, φ
λK (3)

)

]
(2.23)

and the local load vector is

~bK =


∫
K
Lh(x, f, φλK(1))∫

K
Lh(x, f, φλK(2))∫

K
Lh(x, f, φλK(3))

 , (2.24)

where

λe1(1) = 1,

λe1(2) = 2,

λe1(3) = 5,

λe2(1) = 2,

λe2(2) = 3,

λe2(3) = 5,

λe3(1) = 3,

λe3(2) = 4,

λe3(3) = 5,

λe4(1) = 4,

λe4(2) = 1,

λe4(3) = 5.

(2.25)

Finally, the connectivity matrices are given by

Λ1 =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

 , ... and Λ4 =


0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

 .

2.1.4 Partitioning of partitioning

Let P1, ...,PN be a partitioning of P into disjoint subsets such that

P = P1 ∪ P2 ∪ ∪ PN where Pi ∩ Pj = ∅ if i 6= j.

36

Let #Pi be the number of elements and Np represents the number of degrees of

freedom present in Pi. Let Gi be the set of dofs on Pi.

Gi = range(ΛK) ∀K ∈ Pi (2.26)

Let NP be the set of degrees of freedom of P associated to Pi. For Pi, let define

AP ∈ RNp×Np be a local stiffness matrix with local DOFs numbering. ΛP ∈ RNp×N

be a connectivity matrix with entries

[ΛP]ij =

 1 if λP (i) = j,

0 elsewhere.
(2.27)

The ΛP is used to map Pi local data stored using NP into global numbering N .

The relation between the local stiffness matrix AP and global stiffness matrix A

can be represented as

A =
∑
Pi∈P

ΛT
PAPΛP . (2.28)

Let ~bP ∈ RNP×1 be the local load vector with local DOFs numbering. The relation

between ~b and ~bP can be explained as

~b =
∑
Pi∈P

ΛT
P
~bP . (2.29)

Element

AK, bK, ΛK

Domain

A,b

Sub-

domain

AP, bP, ΛP

???

??

ΛP
T
APΛP,

ΛP
T
bP

ΛK
T
AKΛK,

ΛK
T
bK

Figure 2.2: Mapping between the elements, sub-partitions and partitions.

37

The ΛK and ΛP are used to map elements and sub-partitions data from NK
to N and from NP to N , respectively. Figure 2.2 shows there is no NK to NP
mapping information present in K. The information is required by Pi to collect

it’s elements data and store as NP . Let λKP maps K data from NK to NP .

λKP : NK −→ NP
i 7→ λKP (i) = j.

(2.30)

Let l ∈ NK and m can be defined such that

λPK(l) = m,

then

λP (λPK(l)) = λP (m) = λK(l).

Let ΛKP ∈ RNK×NP is connectivity matrix which maps element data to sub-

partition data. It is defined as

[ΛKP]ij =

 1 if λPK(i) = j,

0 elsewhere.
(2.31)

Let Pi ∈ P data can be defined as

AP =
∑
K∈Pi

ΛT
KP

AKΛKP , (2.32)

~bP =
∑
K∈Pi

ΛT
KP
~bK . (2.33)

38

Element

AK, bK, ΛK

Domain

A,b

Sub-

domain

AP, bP, ΛP

ΛKP
T
AKΛKP,

ΛKP
T
bK

ΛP
T
APΛP,

ΛP
T
bP

ΛK
T
AKΛK,

ΛK
T
bK

Figure 2.3: Mapping between the elements, sub-partitions and partitions.

2.2 Solution of Linear Systems

Finite element methods lead to large linear system. We need to describe the

main methods to solve these systems. The are two type of methods direct and

iterative. These methods have their advantages and disadvantages according to

their computation resources and timing.

2.2.1 Direct Solution Methods

The direct methods for solving linear system of equations factorise stiffness ma-

trix and once the factorization is complete, the system of equations can be solved

efficiently for multiple right hand side (RHS) vectors by forward elimination and

back substitution. The sparsity of the system is used to minimize the arithmetic

operations and data storage required for the solution. These methods have high

numerical precision and guarantee the solution within a predictable amount of

time if computational resources are adequate.

In general a sparse direct solver is composed of three phases, stated as follows:

• Analysis and symbolic factorization phase: determines the pivot ordering

required to minimize the time and storage needed by the solution. The non

zero structures of the factors, which contains the original non zero elements in

39

A as well as filled elements, are determined and computed without referring

to numerical values of A. The minimum degree algorithm [59] and nested

disection algorithm [53] are commonly used for symbolic analysis of A.

• Numerical factorisation phase: the numerical values of factors are computed.

The selection of the matrix decomposition algorithm depends on the nature

of A. The oldest decomposition method is Gaussian Elimination, where A

is factored into lower and upper triangular matrices. In LU decomposition

or factorization A is factored into L and U . If A is symmetric and positive

definite 2, the Cholesky factorization is used which decompose it as LLT ,

where L is a lower triangle matrix. For structurally symmetric 3 A free

root Cholesky factorization is used, it decompose into LDLT . In case of

asymmetric A, the QR factorization is used to decompose into orthogonal

matrix Q and upper triangle matrix R.

• Solution phase: performs forward elimination and back substitution using

the factor matrices found in the Numerical factorization phase. In case of

LU factorization following steps are performed:

Ly = ~b forward elimination for y

Uα = y backward substitution for α

The computational cost of solving the 2D problem is O(N2/3) and 3D problem

is O(N5/3). The direct methods are preferred if the number of right hand sides in

system of equations is so large that the decomposition of A takes relatively small

time.

2A matrix A is symmetric if A = AT

3If the nonzero pattern of A is symmetric, a matrix A is structurally symmetric ; that is,
[A]ij 6= 0 if and only if [A]ji 6= 0 for all i and j

40

2.2.2 Iterative Solution Methods

Iterative algorithms solve linear equations while only performing multiplications

by A, and performing a few vector operations. Unlike the direct methods which

are based on elimination, the iterative algorithms do not get exact solutions. The

accuracy of the solution ~α is directly proportional to the number of iterations. The

advantage of iterative methods is they require less memory for storage by avoiding

fill-ins and are often faster than the direct methods. As a disadvantage they do

not guarantee to provide an approximate solution (according to given tolerance)

in a specific number of steps.

The iterative method solution starts by guessing the approximate solution αg of

the system of linear equations, which is used to calculate an error vector e as:

e = α− αg,

Ae = Aα−Aαg,

Ae = ~b−Aαg,

Ae = r,

e = A−1r. (2.34)

The pre-conditioner matrix C are used in place of A−1 in equation (2.34). Dif-

ferent iterative methods have their own definition of pre-conditioner matrix C.

The Jacobi method has one of the simplest forms of preconditioning matrix, the

pre-conditioner is chosen to be the inverse of diagonal of A.

D = diagonal(A)

C = D−1

C ≈ A−1

41

Alternative iterative method like Richard method uses an identity matrix mul-

tiplied with suitable constant values as C. The e is calculated by multiplying

pre-conditioner matrix with r.

e ≈ Cr (2.35)

At the end of each iteration a new approximation solution is calculated by

adding e into αg.

αg+ = e (2.36)

In next iteration the updated αg is used to calculate r. The process repeats it-

self for every iteration to compute new approximate solution and residual. Mostly

but not always in each iteration the approximation solutions converges toward

the actual solutions and error reduces. The stopping mechanism is required to

check the solution has converged to the required tolerance and stop the iterations.

Few example of iterative methods are Jacobi, Gauss-Seidel, Generalized Mini-

mal Residual (GMRES), Quasi-Minimal Residual (QMR) and Conjugate Gradient

(CG). Each method has different method of calculating error but every method

calculates residual.

The residual vector can be calculated by two methods.

2.2.2.1 Full Assembly

In full assembly (FA) stiffness matrix and load vector of the system are assembled.

The assembled data are used to compute residual vector in each iteration using

following (2.37)

r = ~b−Aαg. (2.37)

42

2.2.2.2 Element By Element

In element by element (EBE) method, the residual vector is calculated at the

element level. This process can be implemented in parallel for the distributed

architectures. By replacing the A and ~b from (2.16) and (2.18) the following

equations are generated.

r =
∑
K∈P

ΛT
K
~bK −

∑
K∈P

ΛT
KAKΛKαg,

=
∑
K∈P

(ΛT
K
~bK −ΛT

KAKΛKαg),

=
∑
K∈P

ΛT
K(~bK −AKΛKαg). (2.38)

Let rK be the element K residual vector defined as

rK = ~bK −AKΛKαg, (2.39)

then

r =
∑
K∈P

ΛT
K(rK). (2.40)

2.2.3 Static Condensation

Static condensation is a method of solving the system of linear equations by

decomposing into smaller system of linear equations. The smaller systems of equa-

tions are achieved by dividing the domain into smaller domains. (Ω = Ω1 ∪ Ω2 ∪

...∪ΩN) as shown in Figure 2.4. The domain is divided into 4 sub-domains. This

subdivision of Ω generates the following sub-domains of the partition P :

P = P1 ∪ P2 ∪ P3 ∪ ... ∪ PN . (2.41)

43

1

2

45

3

6

9

7

8

10

14 13

1112

1615

18

17

19

23 22

2021

2524

27

26

28

32 31

2930

3433

36

35

36 37

39 38

40 42

41

43

50 45

4649

4451

48 47

52

53

54

5556

P1 P2

P3P4

Figure 2.4: The mesh with 4 partitions and each partition has 9 internal nodes
and 8 boundary nodes.

Matrix A can be represented in terms of elements as in (2.16) and in terms

of sub-partitions as in (2.28). The relation between these equations can be repre-

sented as

A =
∑
K∈P

ΛT
KAKΛK ,

=
N∑
i=1

∑
K∈Pi

ΛT
KAKΛK , (2.42)

=
N∑
i=1

ΛT
Pi
APiΛPi .

44

From (2.42) and (2.28) it is observed

ΛT
Pj
APjΛPj =

∑
K∈Pj

ΛT
KAKΛK (2.43)

The following theorem state the relation between the connectivity mapping of

the elements and the sub partitions.

Theorm 1. ΛT
Pj
APjΛPj =

∑
K∈Pj ΛT

KAKΛK

Proof. ΛPj maps Pj’s data from NPj to N . The ΛT
Pj
∈ RN×NPj maps the data

from the N to NPj . From the definition of the ΛPj

ΛPjΛ
T
Pj

= I, (2.44)

where I is the identity matrix of dimension NPj × NPj . The ΛT
Pj

ΛPj generates a

matrix of size N×N . This is a sparse matrix in which most of the rows are empty.

The rows which ids are identical to the sub partition DOFs global ids have a single

value at diagonal. ΛT
Pj

ΛPj has only NPj non zero values all of which are set to 1

and lies on matrix diagonal. Let suppose the DOFs present in Pj are allocated

with 1 to NPj consecutive global DOF indexes. Than:

ΛT
Pj

ΛPj =

NPj N −NPj


I 0

0 0

. (2.45)

Multiplying both sides of (2.43) to the left by ΛPj and to the right by ΛT
Pj

. We

45

have

ΛPjΛ
T
Pj
APjΛPjΛ

T
Pj

=
∑
K∈Pj

ΛPjΛ
T
KAKΛKΛT

Pj
, (2.46)

and using (2.44) we get

APj =
∑
K∈Pj

ΛPjΛ
T
KAKΛKΛT

Pj
. (2.47)

Equation (2.47) maps the AK (where K ∈ Pj) to APj . To prove the converse of

the equation is true, (2.47) multiply with (2.45).

ΛT
Pj
APjΛPj =

∑
K∈Pj

ΛT
Pj

ΛPjΛ
T
KAKΛKΛT

Pj
ΛPj . (2.48)

Let

ÃPj =
∑
K∈Pj

ΛT
KAKΛK , (2.49)

=

NPj N −NPj


ÃPj 0

0 0

.

46

By replacing the ΛT
Pj

ΛPj and ÃPj in (2.48) we have

ΛT
Pj
APjΛPj =




I 0

0 0




ÃPj 0

0 0




I 0

0 0

,

=




ÃPj 0

0 0

. (2.50)

which finishes the proof.

For a fix sub-domain Pj, ~bPj ∈ RNPj×1

~b =
∑
K∈P

ΛT
K
~bK ,

=
∑
Pj∈P

∑
K∈Pi

ΛT
K
~bK ,

=
∑
Pj∈P

ΛT
Pj
~bPj . (2.51)

From (2.51) following equation is emerged.

~̃bPj = ΛT
Pj
~bPj =

∑
K∈Pj

ΛT
K
~bK , (2.52)

=

[]
b̃Pj NPj

0 N −NPj
. (2.53)

47

To prove the relation between the ~bP and ~bK we multiply (2.52) by ΛPj to arrive

at

ΛPjΛ
T
Pj
~bPj =

∑
K∈Pj

ΛPjΛ
T
K
~bK , (2.54)

where ΛPjΛ
T
Pj

= I, so (2.54) becomes

~bPj =
∑
K∈Pj

ΛPjΛ
T
K
~bK . (2.55)

To prove the converse test (2.55) is multiplied by ΛT
Pj

ΛT
Pj
~bPj =

∑
K∈Pj

ΛT
Pj

ΛPjΛ
T
K
~bK ,

= ΛT
Pj

ΛPj

∑
K∈Pj

ΛT
K
~bK ,

=








I 0 ~̃bP

0 0 0

. (2.56)

From equation (2.45) the equation (2.56) becomes

ΛT
Pj
~bPj =

∑
K∈Pj

ΛT
K
~bK (2.57)

Some times the system of linear equations can not be computed on single computer

due to memory or computation resource restrictions. Static condensation method

is used to compute the solution of a linear system of equations on distributed

computer systems. Each partition is allocated to a unique computational node

and a separate computational node is used to compute the solution of boundary

DOFs. This method allows division of actual systems of equations into smaller

48

systems which can be solved on each node with some communication between

them.

Let us assume that for a partitioned mesh all the internal DOFs of each parti-

tion are allocated consecutive global numbers. The interface DOFs are numbered

after all the partitions internal DOFs. Each partition stiffness matrix and load

vector can be represented in term of internal DOFs and interface DOFs, as follows

APj =

 Aii Aib

Abi A
Pj
bb

 (2.58)

~bPj =

 ~bi

~b
Pj
k

 (2.59)

In (2.58), Aii and A
Pj
bb are the stiffness matrices connected to the internal and

boundary DOFs of Pj respectively. While Aib and Abi matrices represents the

internal and boundary DOFs interaction. In (2.59), ~bi and ~b
Pj
B are the load vectors

connected to the internal and boundary DOFs of Pj receptively. The full system

of equations can be written as


A11 . . . 0 A1bΛ

1
bB

...
. . .

...
...

0 . . . ANN ANbΛ
N
bB

(Λ1
bB)TAb1 . . . (ΛN

bB)TAbB
∑N
k=1(Λk

bB)TAk
bbΛ

k
bB




α1

...

αN

αB

 =



~b1

...

~bN∑N
k=1(Λk

bB)T~bkb

 (2.60)

49

Lets

AiB = AibΛ
i
bB (2.61)

Ai
BB = (Λi

bB)TAiiΛ
i
bB (2.62)

ABB =
N∑
k=1

Ak
BB (2.63)

~bB =
N∑
k=1

(Λk
bB)T~bkb (2.64)

The Eq (2.60) becomes


A11 . . . 0 A1B

...
. . .

...
...

0 . . . ANN ANB

AB1 . . . ABN ABB




α1

...

αN

αB

 =


~b1

...

~bN

~bB

 . (2.65)

Equation (2.65) is used to calculate the sub-partition Pi internal DOFs solution

(αi) using following equation

αi = A−1
ii (~bi −AiBαB) (2.66)

To avoid the dependence of αB on the internal DOFs αi, we use (2.66) and arrive

the following

AB1α1 + AB2α2 + . . .+ ABNαN + ABBαB = ~bB (2.67)

The Eq (2.67) is dependent on all partitions αi. By replacing all the αi values

from (2.66) where i = 1...N .

AB1A
−1
11 (~b1 −A1BαB) + . . .+ ABNA

−1
NN(~bN −ANBαB)+

ABBαB = ~bB

(2.68)

50

and then αB satisfies:

N∑
k=1

(Ak
BB −ABkA

−1
kkAkB)αB =

N∑
k=1

(~bkB)−ABkA
−1
kk
~bk) (2.69)

By replacing the values of AkB, Ak
BB and~bk in (2.69) from (2.61), (2.62) and (2.64)

respectively, we get the final form of the system αB

N∑
k=1

((Λk
bB)T (Ak

bb −AkbA
−1
kkAkb)Λ

k
bB)αB =

N∑
k=1

((Λk
bB)T (~bkb −AikA

−1
kk bk))

(2.70)

Defining the Schur Complement of P ′js data as

S
Pj
bb = A

Pj
bb −AbiA

−1
ii Aib (2.71)

~v
Pj
b = ~b

Pj
b −AbiA

−1
ii
~bi (2.72)

The (2.70) can be written as

N∑
k=1

((Λk
bB)TSk

bbΛ
k
bB)αB =

N∑
k=1

((Λk
bB)T~vkb) (2.73)

By declaring

S =
N∑
k=1

((Λk
bB)TSk

bbΛ
k
bB) (2.74)

~v =
N∑
k=1

((Λk
bB)T~vkb) (2.75)

The (2.73) can be written in the compact form

αB = S−1~v. (2.76)

51

The static condensation method computes the solution of by dividing the system

into smaller systems. It is used to solve the system of equation which is not possible

to solver on shared memory machine using direct method. This method allows to

solve it on distributed memory architectures. This method will be referred to in

the distributed direct solver chapter.

2.2.4 Parallel Iterative Solver

The residual can be calculated on distributed architectures by computing resid-

ual on each partition.

r = ~b−Aαg,

=
∑
K∈P

(ΛT
KrK). (2.77)

For a mesh compose of N partitions. The r will be constructed by gathering all

the partitions residual vector rP . (2.77) can be written in term of partitions rP as:

r =
∑
Pi∈P

(ΛT
Pi
rPi). (2.78)

For a partition Pi, its residual vector rPi can be written as the sum of its elements

residual vector rK using theorm 2.2.3. The relationship is described as.

rPi = ΛPi

∑
K∈Pi

(ΛT
KrK), (2.79)

by replacing the rPi in (2.78)

r =
∑
Pi∈P

ΛT
Pi

ΛPi

∑
K∈Pi

(ΛT
KrK). (2.80)

In this chapter the basic idea of calculating the residual for partitioned domain

is discussed. The method will be discussed in detail in forthcoming Distributed

52

Iterative Solver chapter.

2.3 Conclusion

This chapter has given an introduction of the finite element methods. It has

discussed, how to create system of equations from the elements data and multiple

methods of computing solution of the system of equations. These methods and

algorithms will be referred in forthcoming chapters where their implementations

will be discussed.

53

Chapter 3

FEDomain Interface

The FEDomain package interface is designed for beginner and expert finite ele-

ment software developers. It is aimed for software developers or researchers who

have no or little experience of parallel programming. They should be able to

convert their existing C++ finite element sequential application code into a paral-

lel application by using this package with minimum modifications. For advanced

parallel software developers this interface provides flexibility in terms of software

design and implementations. The main objective of the FEDomain interface is

that it should be easy to understand and involves minimum user involvement in

different finite element solution stages specially assembling of data and computing

solution.

The interface of the software package defines the methods of software package

interaction with the user. It informs the user about the type of data and its format

required by the package. FEDomain package requires finite elements data (bK , AK

and ΛK) from all K in P . It treats all elements in the mesh as a C++ object

which provide its data through the specified FEDomain interface. The advantage

of constructing elements as objects is these encapsulate all the element related

information as a single object. It protect the element’s private information from

outer world. The classes make application code more maintainable and reusable.

54

The standard interface allows the FEDomain to access data from all the elements

irrespective of their internal implementation. This allows developers to reuse their

classes with other problems having their elements.

3.1 FEDomain Interface Version 1

The FEDoman was initially aimed to efficiently assemble the elements data and

calculate residual for iterative solvers. FEDomain will require access to all mesh

elements to assemble their system data. The user is responsible for the selecting

the problem type, problem data, domain and element geometry. The implements

of the element classes are dependent on these parameters. The element class

implementation of the Poisson’s equations, Elasticity equations and Convection-

Diffusion equations will be different. Even in single problem the algorithm can

vary as in case of Convection-Diffusion equation which smoothing function is used

such as SUPG [24] and SOLD [49]. It depends on the user choice such as for

tetrahedron element which quadrature rule is used to approximate load vector etc.

From above reasons it is decided to the implementation of the mesh element classes

is user domain.

The FEDomain package requires stiffness matrix AK and load vector ~bK from

the element objects. The FEDomain will require a standard interface in element

class to retrieve data. The user should implement the three methods given in

Listing 3.1 as an abstract base class. The abstract base class has three interface

methods getLoad, getStiffness and getConnectivity as pure virtual functions. The

abstract class also define the containers used by interface methods to return ~bK ,

AK and ΛK .

c l a s s Element{

pub l i c :

typede f typename dense vec to r Vec ;

typede f typename dense matr ix Mtx ;

55

typede f typename spar s e mat r ix SMtx ;

Vec& getLoad () = 0 ;

Mtx& g e t S t i f f n e s s () = 0 ;

SMtx& getConnect iv i ty () = 0 ;

} ;

Listing 3.1: Element Interface

The FEDomain package requires the list of elements, total number of DOFs

and the information about the containers in which the data will return. FEDomain

package is implemented as a template class. The first template parameter is the

user-provided abstract element class as shown in Listing 3.2. The constructor of

the FEDomain package requires a list of element pointers and total number of

DOFs.

template<typename TEle , typename TVec>

c l a s s FEDomain{

pub l i c :

FEDomain(vector<TEle∗>∗ e l e p t r s , s i z e t t o t a l d o f s) ;

TVec getRes idua l (TVec&);

} ;

Listing 3.2: FEDomin Interface Version 1.0

The FEDomain interface and abstract base element class allow FEDomain

packages to be used by any set of element classes. There are a few shortcomings

of the element interface given in Listing 3.1. First, the elements are required

to internally store their data and provide their containers to the FEDomian on

request. There are many cases that finite element class developers do not require

to store finite elements stiffness and load data inside their objects. Second, all the

element classes have to use the same data structures. There can be a possibility

that a user can use different data structures in element classes for performance

and efficiency.

56

The users are allowed to choose their data structures but these data structures

should support specific signature for get and set functions. The Vec is one dimen-

sional data structure which should support [] subscript operator interface. The

Mtx should represent the two dimensional data structure to store AK . The most

commonly access operator are two consecutive subscript operator [][]. [][] are

taken as two separate subscript operators in C++, the first subscript operator is

used to access the substructure (a row or column depending on the implementa-

tion) inside the matrix and the second subscript operator points the data entry

in that sub structure. To avoid this problem, round brackets operators (,) with

two arguments are used to get data from 2 dimensional containers.

In object oriented programming, the data container classes provide accessors

methods for their private data. Every data container is designed for specific usage

like different storage algorithms will be used to store dense and sparse matrices.

If the provided data containers are used in internal calculation then lack of under-

standing of their internal storage scheme results in an inefficient calculation. On

other hand, if elements data is copied in FEDomian solver, internal data container

cause wastage of time as well as memory.

3.2 FEDomain Interface Version 2

In FEDomain interface version 2, the FEDomain package has provided the data

structures to represents AK , ~bK and ΛK and avoided dependency on third party

containers. The FEDomain package will use these data structures to get elements

data. The FEDomain package data containers allow to manipulate and store data

efficiently. To standardise the element interface the FEElement abstract class in

Listing 3.3 is added in the FEDomain package. The users have to inherit their

element classes from the FEElement class and implement the data access methods

in their element classes.

57

c l a s s FEElement{

pub l i c :

s i z e t getDofsCount () ;

void getLoad (FEVector &);

void g e t S t i f f n e s s (FEMatrix &);

void ge tConnec t iv i ty (FESparseMatrix &);

} ;

Listing 3.3: Element Interface

The FEVector, FEMatrix and FESparseMatrix are data containers implemented

in the FEDomain package. The FEVector and FEMatrix are a dense vector and

a dense matrix, implemented to obtain element’s bK and AK respectively. The

FESparseMatrix is a sparse matrix and used to retrieve the mapping information

ΛK . The getDofsCount() function is added to obtain the number of degrees of

freedom on the element. The FEElement interface does not force element objects

to store internal data. It provides the user a freedom for internal implementation

by allowing the elements to either store their data into various data structures or

do not store any data at all.

The FEDomain interface version 2 is given in the Listing 3.4. The users are

provided with the abstract FEElement class which has reduced the FEDomain

template count to only one template parameter TVec. It is possible that users are

using a third party vector implementation in their algorithm and not wanted to use

FEDomain provided container. The FEDomain interface has two functions to get

residual getResidual FA and getResidual EBE. These methods implement the full

assembly and element by element residual methods which are explained in section

2.2.2.1. Both of these residual methods require different type of data assembly for

calculations. The FA requires A and ~b and EBE requires each elements AK , ~bK

and ΛK as explained in (2.37) and (2.38).

template <typename TVec>

58

c l a s s FEDomain{

pub l i c :

FEDomain(vector<FEElement∗>& e l e p t r s , s i z e t t o t a l d o f s) ;

TVec getResidual FA (const TVec&);

TVec getResidual EBE (const TVec&);

} ;

Listing 3.4: FEDomin Interface Version 2.0

The FEVector in Listing 3.5 is an one dimensional dense data structure to get

load vector from the elements. The subscript operator [] is implemented in a

FEVector to get and set data. The FEMatrix is a two dimensional dense data

structure to get stiffness matrix from the elements. The FESparseMatrix is a two

dimensional sparse data structure to store scarcely populated matrix data. The

dense and sparse matrices classes have similar interfaces defined in Listing 3.6. The

getValue and setValue functions allow to hide the matrix data storage algorithms

and provide generic interface to the containers data.

c l a s s FEVector{

pub l i c :

FEVector (s i z e t i) ;

s i z e t s i z e () const ;

double& operator [] (s i z e t& i) ;

double operator [] (s i z e t& i) const ;

} ;

Listing 3.5: corrVector Interface

c l a s s FEMatrix{

pub l i c :

FEMatrix (s i z e t i , s i z e t j) ;

s i z e t rows () const ;

s i z e t c o l s () const ;

void setValue (s i z e t& i , s i z e t& j , double& v) ;

double getValue (s i z e t& i , s i z e t& j) ;

59

} ;

Listing 3.6: Matrix Interface

The FESparseMatrix is used to store the element connectivity matrix or system

stiffness matrix. The size of connectivity matrix is NK by N . The connectivity

data cannot be displayed as a vector because it is possible to have more than one

entry in a row as in case of hanging nodes. Suppose we have a triangle element

with three DOFs present in a system of 100 DOFs. The ΛK will have only three

non zero entries. The FESparseMatrix object performs efficient data manipulation

than dense matrix of same dimensions.

The residual function can be called from multiple instances in the user code. To

switch between the residual methods every function call has to be altered. This

can be tiresome and error prone process. The residual functions signature return

a vector. Each call to the residual function involves a memory coping of N data

values.

3.3 FEDomain Interface Version 3

Listing 3.7 contains FEDomain interface version 3. The new parameter resid-

ual method is added in the FEDomain constructor to set the residual method. The

user has to specify the residual method at FEDomain construction time which will

not modify during the object lifetime. The residual method parameter in the FE-

Domain constructor allows to have a single getResidual method in the FEDomain

package.

template <typename TVec>

c l a s s FEDomain{

pub l i c :

FEDomain(vector<FEElement∗>& elements ,

s i z e t t o t a l s y s t e m d o f s ,

60

map<s i z e t , double>& d i r i c h l e t c o n s t r a i n t s ,

s i z e t max dof s in e l ements ,

r e s t y p e& res idua l method) ;

void getRes idua l (const TVec& apprx so l vec , TVec& r e s v e c) ;

} ;

Listing 3.7: FEDomin Interface Version 3.0

The max dofs in elements is a tuning parameter in the FEDomain constructor.

This parameter represents the maximum number of DOFs an element can have in

P and is used in efficient data structure implementation of the FEDomain package.

The dirichlet constraints represents the Dirichlet DOFs ids and values. The user

has an option to either apply Dirichlet constraints at the elements data before pro-

viding it to the FEDomain or provide Dirichlet data to FEDomain at construction

stage. FEDomain will apply Dirichlet constraints during residual computation.

The std::map is selected for dirichlet constraints because of its constant search

time.

The residual function signature is also modified. The first parameter is a con-

stant vector and represents an approximate solution. The second argument is a

residual vector which will be populated by the residual method. Both the contain-

ers should have same size. The residual method new signature is adopted to avoid

memory copying occurred in due to previous interface. The residual calculation

method is selected at the construction stage and is automatically implemented by

residual method for each residual call. Both the residual methods require to han-

dle element data differently. By modifying the residual method a much optimized

data management can be done.

3.4 FEDomain Interface Version 4

template <typename TVec>

61

c l a s s FEDomain{

pub l i c :

FEDomain(vector<FEElement∗>& elements ,

FE UINT t o t a l s y s t e m d o f s ,

map<FE UINT , FE DATA>& d i r i c h l e t c o n s t r a i n t s ,

FE UINT max dofs in e l ements ,

r e s t y p e& res idual method ,

vector<FE UINT>& p a r t i t i o n i d) ;

void getRes idua l (const TVec& apprx so l vec , TVec& r e s v e c) ;

} ;

Listing 3.8: FEDomin Interface Version 4.0

The FEDomain interface version 4.0 in Listing 3.8 is implemented for a dis-

tributed memory parallel iterative solver. The MPI library is used to implement

parallel processes and communication among the processes. For parallel iterative

solver the elements are distributed among MPI parallel precesses so that each ele-

ment is processed in only one of the MPI processes. The new parameter partition id

is added in FEDomain constructor to represent the mesh partitions allocated to

MPI processes. The user can assign one or more partitions to each MPI process.

The partition id parameter is set as a vector type such that it can represent all the

allocated partitions ids. For the user’s convenience, the user can either provide all

the elements in P to each MPI process or provide specified partitions elements.

The value of partition id should be zero for a non-partitioned mesh. All the mesh

partitions should be represented by identifiers of type size t greater then zero.

c l a s s FEElement{

pub l i c :

FE UINT getDofsCount () ;

FE UINT getPar t i t i on ID () ;

void getLoad (FEVector &);

void g e t S t i f f n e s s (FEMatrix &);

void ge tConnec t iv i ty (FESparseMatrix &);

62

} ;

Listing 3.9: Element Interface 2.0

In FEDomain constructor all the elements are checked to filter group of elements

present in targeted partitions. The FEElement class interface in Listing 3.3 does

not have any member functions to provide partition id of element. The FEElement

class interface is modified by adding a new member function getPartitionID to get

partition identifier of all mesh elements as in Listing 3.11.

The getResidual function will be called by the user in all the MPI processes but

the solution vector should be provided only to MPI process having process id 0

(MPI 0). The MPI 0 getResidual function will return the residual vector. This

design decision made for the FEDomain user having no experience in parallel

coding. Such user can run his sequential code as parallel with minimum additional

steps. The FEDomain interface allows the user (new to parallel coding) to execute

his sequential or shared memory code to run on distributed memory architectures.

The user will be required to add FEDomain library and some other MPI related

modifications in his current code.

3.5 FEDomain Interface Version 5

The FEDomain was initially developed for efficiently calculating the residual

for iterative solvers through full assembly and element by element methods. The

support to direct solvers is later added into FEDomain package. A new parameter

SOLUTION METHOD is added to the FEDomain constructor to represent the

solution type of FEDomain object. The direct solver will provide the solution vec-

tor of the problem. The getSolution method is added to the FEDomain interface

to obtain a solution vector. The new interface is in Listing 3.10.

template <typename TVec>

63

c l a s s FEDomain{

pub l i c :

FEDomain(vector<FEElement∗>& elements ,

map<FE UINT , FE DATA>& d i r i c h l e t c o n s t r a i n t s ,

FE UINT t o t a l s y s t e m d o f s ,

FE UINT max dofs in e l ements ,

SOLUTION METHOD& method ,

vector<FE UINT>& p a r t i t i o n i d) ;

void getRes idua l (const TVec& apprx so l vec , TVec& r e s v e c) ;

void ge tSo lu t i on (TVec& s o l v e c) ;

} ;

Listing 3.10: FEDomin Interface Version 5.0

The SOLUTION METHOD is FEDomain’s internally define enumeration

type to define the solution methods. Currently it supports three methods, two

for residual (RESIDUAL FA and RESIDUAL EBE) and one for direct solver

(DIRECT SOLV ER). The user has to select the solution method at the FEDo-

main object construction stage.

3.6 FEDomain Interface Version 6

The FEDomain interface version 5 lacked the provision of solution allocation

to the elements. The user had to provide the solution to the elements for post

processing. The FEElement class is modified to support the allocation of solution

to the elements and a new interface method setSolution(FEVector&) is introduced

as shown in Listing 3.11.

c l a s s FEElement{

pub l i c :

FE UINT getDofsCount () ;

FE UINT getPar t i t i on ID () ;

void getLoad (FEVector &);

64

void g e t S t i f f n e s s (FEMatrix &);

void ge tConnec t iv i ty (FESparseMatrix &);

void s e t S o l u t i o n (FEVector &);

} ;

Listing 3.11: Element Interface 3.0

The getSolution(TVec&) function is removed from the FEDomain class interface

and the setSolution(const map&) is added as shown in Listing 3.12. The setSo-

lution(const map&) takes Dirichlet data in terms of map as a parameter. In case

of direct solver the setSolution(const map&) function will calculate the solution

of the system and provide each element with its DOFs solution. In case of resid-

ual mode, the user will provide the entire solution to setSolution(const map&) to

provide solutions to mesh elements.

template <typename TVec>

c l a s s FEDomain{

pub l i c :

FEDomain(vector<FEElement∗>& elements ,

map<FE UINT , FE DATA>& d i r i c h l e t c o n s t r a i n t s ,

FE UINT t o t a l s y s t e m d o f s ,

FE UINT max dofs in e l ements ,

SOLUTION METHOD& method ,

vector<FE UINT>& p a r t i t i o n i d) ;

void getRes idua l (const TVec& apprx so l vec , TVec& r e s v e c) ;

void s e t S o l u t i o n (const map<FE UINT , FE DATA>& d i r i c h l e t d a t a) ;

} ;

Listing 3.12: FEDomin Interface Version 6.0

3.7 FEDomain Interface Version 7

The FEDomain interface is modified to add support for static condensation, de-

fined in section 2.2.3, into the package for the shared memory systems. A new solu-

65

tion type STATIC CONDENSATION is added into SOLUTION METHOD

enumerated values. The user can switch between different solvers only by chang-

ing one parameter in the constructor. The finite element method can lead to

symmetric or unsymmetric matrices, which can further be classified as definite or

indefinite matrices. This information is required by the linear algebra solver. The

user specifies the type of stiffness matrix which will be produced. The new param-

eter MATRIX TY PE is added into the FEDomain constructor and its values are

given in Listing 3.13. The user has to specify one of these types at the construction

stage.

MATRIX TYPES = { DEFINITE SYMMETRIC,

INDEFINITE SYMMETRIC,

DEFINITE UNSYMMETRIC,

INDEFINITE UNSYMMETRIC }

Listing 3.13: FEDomin Matrix Types

template <typename TVec>

c l a s s FEDomain{

pub l i c :

FEDomain(vector<FEElement∗>& elements ,

map<FE UINT , FE DATA>& d i r i c h l e t c o n s t r a i n t s ,

vector<FE UINT>& p a r t i t i o n i d

FE UINT t o t a l s y s t e m d o f s ,

FE UINT max dofs in e l ements ,

MATRIX TYPE& matrix ,

SOLUTION METHOD& method) ;

void getRes idua l (const TVec& apprx so l vec , TVec& r e s v e c) ;

void s e t S o l u t i o n (const map<FE UINT , FE DATA>& d i r i c h l e t d a t a) ;

} ;

Listing 3.14: FEDomin Interface Version 7.0

The FEEquation class given in Listing 3.15 is added into the FEDomain package.

The FEEquation encapsulates the implementation details of the static condensa-

66

tion. In FEEquation constructor has four parameters where the first one represents

the total DOFs of the system. The second and third parameters represent the list

of the allocated partitions internal DOFs, global ids and interface DOFs, respec-

tively. The FEEquation has two operational modes. The fourth parameter in

constructor selects these modes. If it is set to true the FEEquation class set as

a Static Condition and compute Sjj and ~vj using (2.71) and (2.72), respectively,

and also calculates αi by implementing (2.66).

The FEDirectSolver and FEDirectSolverMPI classes are composed of the FEE-

quation object. The FEEquation has to collect elements stiffness matrix as well

as load vector. The two getValue functions are added into FEEquaiton class.

The addV alue(size t, double) is used to get the value of the load vector and

addV alue(size t, size t, double) is to update the stiffness matrix. The name of

the functions is selected keep the same data structure interface. Previously, the

elements were required to provide data using their local DOF numbering. This is

not possible with FEEquation so the user has to provide elements data using their

global DOFs numbering N . The FEEquation user interface is in the Listing 3.15.

c l a s s FEEquation{

pub l i c :

FEEquation (FE UINT& t o t a l s y s d o f s ,

vector<FE UINT>& i n t e r n a l d o f s ,

vector<FE UINT>& i n t e r f a c e d o f s ,

MATRIX TYPE m type , bool condensat ion) ;

void addValue (FE UINT& index , FE DATA& vlaue) ;

void addValue (FE UINT& row id , FE UINT& c o l i d , FE DATA& ca lue) ;

void getSystem (FEEquation& EQ) ;

template<typename V1 , typename V2>

void s o l v e (V1& i n t e r f a c e v a l u e , V2& s o l u t i o n) ;

} ;

Listing 3.15: FEEquation Interface

67

The FEElement abstract class does not support FEEquation objects. The new

getSystem(FEEquation&) function is introduced in FEElement class to support

static condensation. The new function cannot replace already present getStiff-

ness and getLoad functions which were implemented for the residual calculation.

The user has to add data in getSystem(FEEquation&) using global DOF num-

bering N through the interface defined in Listing 3.15. For RESIDUAL FA

or RESIDUAL EBE only the first set of get functions are required and for

DIRECT SOLV ER and STATIC CONDENSATION the new get function

has to be implemented, but the user can implement all the get functions.

c l a s s FEElement{

pub l i c :

FE UINT getDofsCount () ;

FE UINT getPar t i t i on ID () ;

void getLoad (FEVector &);

void g e t S t i f f n e s s (FEMatrix &);

void getSystem (FEEquation &);

void ge tConnec t iv i ty (FESparseMatrix &);

void s e t S o l u t i o n (FEVector &);

} ;

Listing 3.16: Element Interface 4.0

3.8 FEDomainMPI Interface

The FEDomainMPI interface is implemented in FEDomain package to represent

distributed memory architecture implementations. It is MPI version of FEDomain

interface. In each MPI process the FEDomainMPI object is constructed. The MPI

process with identifier 0 is called master process (MPI 0) and the FEDomainMPI

object constructed in it is master object. All the other MPI processes are client pro-

cesses and their FEDomainMPI objects are called client objects. For distributed

solvers, no mesh partition is allocation to the master object. It will be responsi-

68

ble to calculate the solution of the interface DOFs. The role of master object is

discusses in Distributed Direct Solver chapter. The mesh partitions are allocated

to the client objects. The master object requires all the Dirichlet DOFs data at

construction time. The user should atleast provide the global DOF ids and value

of the Dirichlet DOFs present in allocated partitions to the client object.

template <typename TVec>

c l a s s FEDomainMPI{

pub l i c :

FEDomainMPI(vector<FEElement∗>& elements ,

map<FE UINT ,FE DATA>& d i r i c h l e t c o n s t r a i n t s ,

vector<FE UINT>& p a r t i t i o n i d ,

FE UINT t o t a l s y s t e m d o f s ,

FE UINT max dofs in e l ements ,

MATRIX TYPE matrix ,

DISTRIBUTED SOLUTION METHOD method) ;

void getRes idua l (const TVec& apprx so l vec , TVec& r e s v e c) ;

void s e t S o l u t i o n (const map<FE UINT ,FE DATA>& d i r i c h l e t d a t a) ;

} ;

Listing 3.17: FEDomainMPI Interface

The interface of the FEDomainMPI is kept similar to the FEDomain class. The

DISTRIBUTED SOLUTION METHOD is introduced in place of SOLUTION METHOD

to select distributed solvers available in the FEDomainMPI. Currently there are

two distributed solver, DIS DIRECT SOLVER and DIS HYBRID SOLVER. The

FEDomainMPI objects have to be provided unique list of partition ids. During

the design stage of the FEDomainMPI class, it was considered that the FEDo-

mainMPI objects should distribute mesh partitions among them. This decision

creates uncertainty of which partition will be mapped to which FEDomainMPI

object and the user will have to provide all the elements to all the FEDomainMPI

objects. This design will result in huge waste of memory in case of large mesh.

The drawback can be avoided by allowing the user to perform partition to FEDo-

69

mainMPI object mapping. The user will allocate partitions to the FEDomainMPI

objects and will provide the elements belonging to these partitions. This design

allows the user to only allocate the minimum memory for each MPI process.

3.9 Summary and Conclusion

The FEDomain package is implemented for the shared memory and distributed

memory architectures. There are two interfaces developed, FEDomin for shared

memory and FEDomainMPI for distributed memory architectures. The final ver-

sion of the FEDomain interface is given in Listing 3.12. The interface required

following data from the user.

• The reference to the vector containing all the mesh elements pointer. All

the mesh elements classes should be inherited from the FEElement class.

The element objects will be accessed in FEDomain package through poly-

morphism.

• The list of partition ids are required for the static condensation solver. FE-

Domain package will consider the elements for computation which will belong

to the partitions identified by the user. The parameter requires a vector of

partition ids. If the size of the vector is zero, all the provided elements are

considered as a single partition and solved by factorization method.

• Total number of DOFs are present in targeted system. This variable is

dependent on the problem type and the number of nodal points in a mesh.

• Maximum number of DOFs a single element can have. It depends on the

type of problem and the shape of elements.

• Matrix type. There are four matrix type supported by FEDomain. Its value

can be set any of these four value

1. DEFINITE SYMMETRIC

70

2. INDEFINITE SYMMETRIC

3. DEFINITE UNSYMMETRIC

4. INDEFINITE UNSYMMETRIC

• Solution type. There are six solution methods available in FEDomain pack-

age. These methods are selected by setting the Solution type to following

values

1. DIRECT SOLVER (Compute solution of the system using LU factor-

ization).

2. CONDENSATION SOLVER (Compute solution of the system using

static condensation method).

3. RESIDUAL FA (Compute residual vector using full assembly method).

4. RESIDUAL EBE (Compute residual vector using element by element

method using OpenMP).

5. RESIDUAL TBB (Compute residual vector using element by element

method using Intel TBB library).

6. NON LINEAR SOLVER (Compute solution of the non linear system).

The FEDomainMPI class in FEDomain package is the interface for all the dis-

tributed memory solvers. The final interface of FEDomainMPI is given in Listing

3.17. The FEDomainMPI object will be created in each MPI process. The de-

scription of each parameter in the FEDomainMPI class constructor is given below.

• All the FEDomainMPI objects are allocated one or more partitions. The

user has to provide the elements belonging to allocated partitions for MPI

process. The list of elements as a vector are provided to each object. Each el-

ement should be inherited from FEElement class and will be accessed through

polymorphism.

71

• The Dirichlet constraint data is provided to all the FEDomainMPI object.

The data contains the DOF global id and value. Each FEDomainMPI pro-

cesses should be provided its allocated partitions Dirichlet data. In case of

static condensation solver the FEDomainMPI object at MPI process 0 has

to be provided all the Dirichlet constraints information.

• The vector of partition ids maps which of the mesh partition will be processed

on which MPI process. More than one partitions can be allocated to each

FEDomainMPI object. In case of static condensation solver no partition is

allocated to the FEDomainMPI object at process 0.

• Maximum number of DOFs in the mesh

• Maximum number of DOFs in the elements. It can vary on each MPI process.

• MATRIX TYPE is same as of in FEDomain interface.

• DISTRIBUTED SOLUTION METHOD is used to select the solution method

for the distributed memory architecture. The solution methods are given be-

low.

1. DIS DIRECT SOLVER (Compute solution of the system using static

condensation. The solution of the interface DOFs is calculated using

LU factorization).

2. DIS HYBRID SOLVER (Compute solution of the system using static

condensation. The solution of the interface DOFs is calculated using

Conjugate Gradient method).

3. DIS RESIDUAL FA (Compute residual vector using full assembly method).

4. DIS RESIDUAL EBE (Compute residual vector using element by ele-

ment method).

5. DIS RESIDUAL FA COMP (Compute residual vector using element

by element method).

72

Chapter 4

FEDomain Shared Memory FE

Solver

Software developers used to depend on the processor upgrade, to increase the

performance of their software. The single core conventional processors used to gain

their clock speed by increasing the number of transistors. The increase in clock

speed is challenged from unavoidable thermal constraints. To use these processors

time efficiently, different parallelism techniques like instruction level parallelism

and hyper threading, have been developed. Unfortunately, these techniques could

not provide significant decrease in execution time. The processors vendors over-

come the performance bottleneck by packaging multiple computational cores in

single processor package. The multi-core processors can execute multi-threads in

parallel on different processing cores with shared memory.

The FEDomain package is implemented for the shared memory and distributed

memory architectures. The FEDomain interface class is implemented in FEDo-

main package to represent shared memory architecture solver. The FEDomain

class is implemented as a Facade design pattern which provides unified interface

to a set of interfaces in a subsystems. In this chapter two subsystems of shared

memory direct linear algebra solvers are discussed. The first solver uses LU fac-

73

torization to compute while second solver implemented domain decomposition.

4.1 Direct Solver

The shared memory direct solver is selected by setting the SOLUTION METHDO

parameter equal to DIRECT SOLVER in the FEDomain class constructor (in List-

ing 3.12). In the FEDomain package the direct solver is implemented as FEDi-

rectSolver class. During development cycle the FEDirectSolver class has evolved

through different implementations. In this section these implementation stages

will be discussed. The FEDirectSolver requires elements data, the matrix type of

the system of equations, Dirichlet DOFs data and maximum possible size of the

system in P . The first interface of the FEDirectSolver class is given in Listing 4.1.

template <typename TVec>

c l a s s FEDirectSolver {

pub l i c :

FEDirectSolver (vector<FEElement∗>& elements ,

map<FE UINT , FE DATA>& d i r i c h l e t c o n s t r a i n t s ,

FE UINT t o t a l s y s t e m d o f s ,

FE UINT max dofs in e l ements ,

MATRIX TYPE& matrix) ;

void getRes idua l (const TVec& apprx so l vec , TVec& r e s v e c) {} ;

void s e t S o l u t i o n (const map<FE UINT , FE DATA>& d i r i c h l e t c o n s t r a i n t s) ;

} ;

Listing 4.1: FEDirectSolver version 1

The FEDirectSolver requires list of finite element objects as FEElement pointers,

Dirichle data and Matrix type, etc. The C++ polymorphism is used to extract

AK , bK and ΛK for each K. The first version of the FEDirectSolver (FEDS V1)

obtains elements data using FEElement interface defined in Listing 3.11. The

finite elements should have knowledge about the total number of DOFs in system,

74

how many elements are in it, and what are the global ids for its DOFs. The

FEDirectSolver class has following responsibility.

• Gather elements data and assemble A and ~b.

• Transform the data into solver format.

• Initialize a third party solver.

• Compute solution.

• Provide solutions to the user provided elements.

In finite element methods the constraints are applied on the boundaries to spec-

ify the solution of the problem. The FEDomain package applies the Dirichlet

constraints for the user. The Dirichlet boundary DOFs solutions are given in the

problem definition as either constant values or functions. The Dirichlet constraints

require modification of the data in A and ~b. These have to be applied after as-

sembling all the system of equations. The user can provide elements data after

applying the Dirichlet constraints. The FEDirectSolver class constructor requires

Dirichlet data from the user where Dirichlet data contains ids and values of the

DOFs present on Dirichelet boundaries. For the FEDomain package efficient, it is

preferred that the user provides elements data after applying Dirichlet boundary

constraints.

In the FEDirectSolver class the constraints have to applied to A and ~b before

computing the solution. There two method of applying Dirichlet constraints.

• In the first method, the Dirichlet constraints are applied after assembling

A and ~b. The application of Dirichlet constraints involves removal of data

from A and modification of data in ~b. After applying the constraints, the

rows and columns of A represent the Dirichet DOFs have only single en-

try at diagonal position set to 1. The data in these columns are used to

75

modify ~b. In this method the A has to initially accommodate the Dirich-

let DOFs rows and columns data. These rows and columns have to delete

after apply constraints and before computing solutions. The amount of

data and cost of managing data is dependent on the number of DOFs ly-

ing on Dirichlet boundaries. In matrix data structures the data removal

can be performed by two methods. In first method the data can be re-

moved by setting its value to zero. In the matrix container their mem-

ory remain allocated. In second method, the matrix has the ability to dy-

namically expand and reduce memory footprint. The removal of data is

performed by releasing the memory allocation. For efficient sparse matrix

data structures it is either very expensive or not possible to remove data.

// Applying Dirichlet constraints

1 for i← 1 to N do

2 if IsNotDirichlet(i) then

3 for j ← 1 to ND do

4 f [i] = f [i]− d val[j] ∗A[i][d[j]] ;

5 end

6 end

7 end

// Clearing Dirichlet rows and columns in A

8 for j ← 1 to ND do

9 for i← 1 to N do

10 A(i, d[j]) = A(d[j], i) = 0;

11 end

// Setting A and ~b Dirichlet values

12 A(d[j], d[j]) = 1;

13 f [d[j]] = d val[j];

14 end

Algorithm 1: Dirichlet constraints algorithm after full assembly.

76

• In the second method the Dirichlet constraints are applied on the element

data before assembling A and ~b. This method allows only the permanent

data to be inserted in A and avoid removal of data. The data can be collected

and constraints can be applied in parallel on multiple elements data.

All the user implemented classes have to be publicly inherited from the FEEle-

ment class. The FEElement class defines element interface functions as pure virtual

functions. The mesh P is provided to the FEDirectSolver object as a vector of

pointers of all K ∈ P . The FEDirctSolver constructor assembles A and ~b using

sequential and parallel methods. For a shared memory architecture the assembly

of data is performed in parallel and is implemented using OpenMP directives [72].

In data assembling phase the elements are distributed among parallel threads.

The elements distribution is performed through an OpenMP provided scheduler

method (STATIC, GUIDED and DYNAMIC), which is selected by the user at

runtime. These threads gather allocated elements data and apply Dirichlet con-

straints in parallel before adding into A and ~b. The addition of elements data into

A and ~b is a critical task as all the threads have to share the same resources. If

one thread is adding data into A the other thread has to wait of the resource.

The FEDomain package is not aimed to develop a new linear algebra solver.

There are many third party linear algebra packages like PARDISO [77], MUMPS

[11], and SuperLU [58], etc available which are optimized for the shared memory

architecture. During initial development of FEDomain the PARDISO solver was

chosen as it was available in development environment. All these third party

solvers require data (A and ~b) into a specified data format and PARDISO requires

data in Intel MKL compressed sparse row (CSR) format [7]. The CSR format

store matrix entries in a set of three consecutive memory arrays as shown in Table

4.1. The first array contains the row pointers which points the starting index of

every row in the next two arrays. The second array contains the column indexes

77

for each matrix data entries in sorted manner. The last array contains the data

value for each entry in second array. The consecutive memory allocation allows

efficient memory access required for high performance computation.

rowIndex = (1 4 6 9 12 14)
columns = (1 2 4 1 2 3 4 5 1 3 4 2 5)
values = (1 -1 -3 -2 5 4 6 4 -4 2 7 8 -5)

Table 4.1: Compressed Sparse Row Format

The insertion and deletion in CSR data containers in random order and location

of matrix require unnecessary copying. As an example, if a CSR format matrix is

populated with some data. A new value has to be added at the first column of

its first row (A[0][0]). There are two possibilities for inserting data into CSR. In

first case the data is already present inside the container and its value is modified.

In second case, a new memory location has to be created at the beginning of the

second and third vectors. The memory for new location can be created either

by coping all the data in second and third vectors to their next memory location

if only these vectors have extra memory available. If there is no extra allocated

memory available at the end of these vectors than larger consecutive memory has

to be allocated for second and third vectors. The new value and data from old

vectors have to be copied into new vectors. All the entries in the first vector have

to be modified. The copying of data becomes more expensive as the number of

non zero entries increases.

4.1.1 Sparse Matrix Container Requirements

The pattern of population of A and ~b cannot be predicted. All the elements

have unique sets of DOFs where a DOF is most likely to be present in more than

one element. The multiple elements with same DOFs will add values to the same

row and column. These will update same location in A and ~b. Suppose the DOF

i is not a Dirichlet DOFs and is present in 8 elements of P . During data assembly

78

the diagonal position of the ith row in A will be updated 8 times and the same is

true for the ith position in ~b. The data structure selected to contain ~b is a dense

vector composed of consecutive memory locations and accommodates all zero and

non zero entries. A is a sparsely populated and to avoid memory wastage requires

a data structure to store only non zero values. The required sparse matrix data

structure should have characteristics like the data can be added and retrieved

in any order, it should maintain data in sorted order, and the entry lookup in

container should be efficient and ideally have a constant access time.

For A, a data structure is needed which can perform insertions, erasures, and

lookups in random order. The STL provides associative data containers like

std::map and std::set and these containers have the hallmark of guaranteed logarithmic-

time lookups. The standard associative containers are typically implemented as

balanced binary search trees. A balanced binary search tree is a data structure

that is optimized for a mixed combination of insertions, erasures, and lookups.

These are designed for applications that do some insertions, then some lookups,

then maybe some more insertions, then perhaps some erasures, then a few more

lookups etc. The key characteristic of this sequence of events is that the insertions,

erasures, and lookups are all mixed up. The map containers are sorted associative

containers that provide fast retrieval of data associated to a unique key and keys

are internally maintained in sorted order.

std :: map < row id, std :: map < column id, value >>

The std::map has all the properties required in a container to store A. A new

sparse matrix FESparseMatrixMM (SMMM) is implemented in FEDomain using

map of maps. The FESparseMatrixMM enables us to populate A by adding

data in random order and the data will always be maintained in sorted order.

Like SMV the SMMM has drawbacks. On Linux systems the std::map used with

79

default allocator. std::map does not actually release allocated memory until the

application stops. For efficiency, during application execution the std::map object

does not released acquired memory to operating system. So that if any std::map

object in application require memory, it does have to reallocate memory. An other

drawback of SMMM is its memory consumption. As std::map is a balanced binary

search tree made up of tree nodes. Each node holding not only a data, but also

a pointer to the node’s left child, a pointer to it’s right child, and a pointer to its

parent. The memory overhead of maintaining an associative container is at least

three pointers for each node.

The SMMM memory consumption issue is very apparent as the number of non

zero entries being stored in A increases. The new sparse matrix FESparseMa-

trixVV (SMVV) is implemented to remove the drawback of SMMM. The SMVV

is implemented using vectors of pairs. Each row is further divided into smaller

chunks of vectors. For data insertion, smaller vector is searched, if the data is not

present, lesser amount of data copying is involved. This design also involves lesser

comparisons for the lookup. The drawback of this design is that removal of data

is not expensive. The timing and data comparisons of these structures are given

below in table (4.2).

Mesh (DOFs) Cube4(7371) Cube5(53907) Cube6(411939) Cube7(3220035)

Container data size time data size time data size time data size time

SMMM 203069 0.282 1902189 3.004 16408799 24.490 136202251 247.762

SMVV 203069 0.153 1902189 1.246 16408799 10.084 136202251 86.178

Table 4.2: Data Structure Population Time and Number of Entries

80

4.1.2 Direct Solver Stages

Data Assembling
· Gathering of Elements Data.

· Apply Dirichlet Constriaints

· Construction of Stiffness matrix {A}

· Construction of Load vector {ḇ}

· Conversion of A and f into solver format.

Solve
· Initialize Solver

· Compute solution {u}

Back Solve
· Set the solution to the user_provided

elements

U
s
e

r_
P

ro
v
id

e
d

 M
e

s
h

 E
le

m
e

n
ts

 {
K

}

Ak,bk,Λk

uk

Figure 4.1: FEDirectSolver Model

The FEDomain direct solver can be divided into three stages as shown in Figure

4.1. The first stage objective is to obtain elements data and transform it into

the solver acceptable format after applying Dirichlet constraints. The assembling

of data is implemented in parallel using OpenMP extensions for shared memory

processors. All the OpenMP threads have to share A and ~b and for the validity

of data and to avoid race conditions only one of the threads can access A or ~b at

any time. The distribution of elements among OpenMP threads depend upon the

OpenMP environment variables OMP SCHEDULE and OMP NUM THREADS.

The user has to set these variable before executing the FEDomain application.

Each OpenMP threads creates its own copy of a stiffness matrix At and and load

vector ~bt or dimensions N × N and N respectively. Each thread assemble its

allocated user elements into its At and ~bt. At the end the parallel region all the

threads data At and ~bt are added into A and ~b. In final version the A is stored in

SMVV container.

81

The FEDomain package does not have its own implementation of linear algebraic

solver and it relies on third party PARDISO solver. The PARDISO solver requires

~b as a consecutive memory array of type double and A in CSR format which is again

set of three consecutive memory arrays. During data assembly the user provided

elements insert their data A in random order. The A is initially assembled in

SMVV container and after the data assembly has finished the A is converted into

CSR format for the PARDISO solver. In FEDomain second stage, the solver is

initialized and solution is computed. The user has to specify the type of stiffness

matrix (SYMMETRIC and NONSYMMETRIC) at the constructor time of the

FEDomain class. The PARDISO solver requires A′s all non zero entries for the

non symmetrix stiffness matrix and only upper triangle of A′s non zero entries

for symmetric problem. The PARDISO provides minimum degree algorithm[59]

and nested dissection algorithm[53] for fill-in reduction. The nested dissection is

parallel algorithm implemented for shared memory systems[46]. PARDISO solver

solution process is composed of three stages.

• In first stage analysis and symbolic factorization of the A is completed. This

stage includes allocation of memory and fill in calculations.

• The second stage is composed of numerical factorization which depends on

the matrix type (symmetric and unsymmteric).

• The last stage includes forward and backward solve through iterative refine-

ments.

In the last stage, the computed solution is provided to the user provided finite

element objects. This process is implemented in parallel. This will allow the user

to use the elements for post processing.

82

4.1.3 Direct Sovler Timing

Table 4.3 shows the timing data for the direct solver. The timings are obtained

by solving Elasticity 3D problem using different threads. The mesh used has

811392 elements and 411939 DOFs. Intel Xeon E5560 processor is used which

has 4 cores and supports 8 threads. The second column in Table 4.3 contains the

FEDomain data assembling timing for various threads. During data assembling

stage, A and ~b are constructed by adding contribution from each element. The

assembling time reduces with the increase in number of threads. The third, fourth

and fifth columns have timing for the PARDISO solver three stages (Symbolic

factorization, Numerical factorization and solve stage). It is observed only the

numerical factorization varies with the number of threads used. In the back solve

stage the FEDomain direct solver provides solution to the element objects. The

sixth column shows timing for the back solve stage. The last column is the time

consumed by all the stages. The data timing is shown in Figure 4.2.

OpenMP Data Factorization Back Total

Threads Assemble Symbolic Numerical Solve Solve Time

1 192.6 6.5 292.3 2.9 1.19 495.47

2 101.0 5.7 166.5 2.9 0.56 276.67

3 69.04 4.5 118.5 2.9 0.37 195.35

4 53.19 4.6 92.23 2.9 0.28 153.20

5 43.69 4.6 82.73 2.9 0.23 134.15

6 37.63 4.3 72.23 2.9 0.19 117.25

7 33.28 4.4 65.80 2.9 0.16 106.54

8 32.23 4.2 63.19 2.9 0.14 100.66

Table 4.3: The timing results are obtained using 3D Elasticity mesh. The mesh
has 411939 DOFs and 811392 elements. This table timing data of all stages for
FEDomain direct solver using 1 to 8 OpenMP threads.

83

Figure 4.2: The graphs have the timing, speed-up and efficiency data for the
FEDirectSolver obtained using Elasticity 3D problem with OpenMP threads. The
FEDirectSolver class has two main stages assembling of data and factorization.
The solution bar represents the total time used by the FEDirectSolver to calculate
the solution. The mesh used contains 411939 DOFs and 811392 elements.

Speed up = T1/Tn (4.1)

Efficiency = Speed up ∗ 100/n (4.2)

The (4.1) and (4.2) are the speed up and efficiency equations used to compute

direct solver speed up and efficiency shown in Table 4.4. The Table 4.3 is as

source for Table 4.4. The data assembler is implemented in FEDomain package

has obtained better speed up and efficiency as compare to PARDISO solver. The

FEDomain solver improves the over all solution time. Figure 4.3a and Figure 4.3b

shows the speed up and efficiency graphs of the FEDomain solver. The FEDomain

has achieved best speed up of 4.92 for 8 threads. FEDomain data assembling stage

has achieved 6.37 speed up and 79.64 efficiency for 8 OpenMP threads. PARDISO

solver has obtained 4.63 speed up and 57.82 percent efficiency.

84

Speedup Efficiency

OpenMP Data PARDISO Back Total Data PARDISO Back Total

Threads Assemble Factorization Solve Time Assemble Factorization Solve Time

1 1.00 1.00 1.00 1.00 100.0 100.0 100.0 100.0

2 1.91 1.76 2.13 1.79 95.37 87.76 106.3 89.54

3 2.79 2.47 3.22 2.54 92.99 82.19 107.2 84.54

4 3.62 3.17 4.25 3.23 90.52 79.23 106.3 80.85

5 4.41 3.53 5.17 3.69 88.17 70.66 103.5 73.87

6 5.12 4.05 6.26 4.23 85.30 67.44 104.4 70.43

7 5.79 4.44 7.44 4.65 82.68 63.46 106.3 66.44

8 6.37 4.63 8.50 4.92 79.64 57.82 106.3 61.53

Table 4.4: The timing results are obtained using 3D Elasticity mesh. The mesh
has 411939 DOFs and 811392 elements. This table data is calculated using data
from Table 4.3.

(a) SpeedUp graph (b) Efficiency graph

Figure 4.3: The graphs have the speed-up and efficiency data for the FEDirect-
Solver obtained using Elasticity 3D problem with OpenMP threads. The FEDi-
rectSolver class has two main stages assembling of data and factorization. The
solutions represents the total time used by the FEDirectSolver to calculate solu-
tion. The mesh used contains 411939 DOFs and 811392 elements.

In last stage of the FEDomain direct solver is called back solve. In back solve

stage the computed solution is allocated to the elements by storing provided so-

lution into internal structures. The solution can be used by elements for post

processing. This is implemented in parallel using OpenMP directives. The time

consumed by back solve stage reduces with the increase in threads count as shown

in Table 4.3. The maximum speedup of 8.5 is achieved by running the FEDi-

rectSolver using 8 threads. The solution is provided to the elements through the

setSolution() method.

85

Table 4.4 shows that FEDomain has achieved much better speed up for data

assembly and back solve stage than factorization. The FEDomain package ac-

tually improves the performance of third party solvers. The FEDomain package

facilitates its user to easily implement finite element solver and achieve better

performance.

4.2 Static Condensation

Static condensation is a second method for calculating the finite element solu-

tion and the theory of static condensation is already discussed in section 2.2.3.

Static condensation requires a partitioned mesh where a solution u is computed

by individually solving smaller systems of linear equations for each mesh partition

Pi (sub-domain). Partitioning the mesh into N sub-domains creates N number

of small finite element problems. The dimensions of each small problem will be

less than whole mesh. The smaller systems of equations cannot be solved sepa-

rately because of coupling across the partition’s interfaces. Each partition’s DOFs

classified into two categories:

• The DOFs which are present in a single partition are called internal dofs for

that partition.

• The DOFs which are present at the boundary of the Pi and are present in

more than one partition are called interface dofs.

For each partition the solution of its internal DOFs ui requires the solution for

its interface DOFs ub as shown in Eq (2.66).

The FEDomain interface in Listing 3.14 is designed to support static condensa-

tion by adding a new field called partition ids in the FEDomain constructor. The

user has to provide partitioned mesh where each element lies in single partition and

should be aware to which partition it belongs. All the mesh partitions should be

86

assigned a unique positive integer called partition identification number(PID). The

FEDomain will ask each element for its PID through getPartitionID() present

in FEElement superclass in listing 3.16. C++ does not support template virtual

functions in abstract classes and FEElement class is an abstract class so the posi-

tive integer data type has been assigned to PID. It was possible to avoid adding list

of PIDs parameter in the FEDomain constructor interface as these could have been

collected from the mesh elements. In FEDomain constructor the SOLVER TYPE

parameter is used to select between direct solver and condensation solver. If the

partition ids vector is empty the direct solver will be used by default.

The FEDirectSolver class is modified to include support for the static conden-

sation solver. The FEDirectSolver class requires the list of partition ids for the

condensation solver as well as a condensation flag to select between the two so-

lution modes. The condensation flag is set to TRUE for condensation solver else

it is set by default to FALSE at construction time. The new interface is of the

FEDirectSolver is in Listing 4.2.

c l a s s FEDirectSolver : pub l i c FEElement{

pub l i c :

FEDirectSolver (std : : vector<FEElement∗>& elements ,

s td : : map<FE UINT , FE DATA>& d i r i c h l e t c o n s t r a i n t s ,

s td : : vector<FE UINT>& p a r t i t i o n i d s ,

FE UINT& t o t a l s y s t e m d o f s ,

FE UINT& max dofs in e l ements ,

MATRIX TYPE& matrix

bool& condensat ion) ;

FE UINT getDofCount (void) ;

FE UINT g e t P a r t i t i o n I d (void) ;

void getLoad (FE vector& load) ;

void g e t S t i f f n e s s (FE dense matrix& s t i f f n e s s) ;

void getSystem (FE equation& equat ion) ;

void ge tConnec t iv i ty (FE sparse matr ix& d o f i d s) ;

void ge tConnec t iv i ty (std : : vector<FE UINT>& d o f i d s) ;

87

void s e t S o l u t i o n (std : : vector<FE DATA>& D i r i c h l e t v a l u e) ;

void getRes idua l (std : : vector<FE DATA>& approx so lut ion ,

std : : vector<FE DATA>& r e s i d u a l) ;

} ;

Listing 4.2: FEDirectSolver version 2

FEDirectSolver

FEDirectSolverFEDirectSolverFEDirectSolver FEDirectSolver

Element Element Element Element Element Element Element Element

Ak,Λk,bk

Sbb,Λb,vb

αb

αk αk αk αk

αb αb αb

αk αk αk αk

Ak,Λk,bk Ak,Λk,bk Ak,Λk,bk

Figure 4.4: FEDomain class diagram. The FEDirectSolver object at top is master
object which will be created by the user and provides it with mesh partitioned into
4 sub domains. The master object is composed of 4 slave FEDirectSolver objects.
Each each slave objects is allocated the specified partitions elements.

The design of the static condensation finite element solver is composed of mul-

tiple FEDirectSolver objects, one for each provided PID and these objects will be

referred to as client objects. The client objects are composed inside a FEDirect-

Solver object will be referred to as master object as shown in Figure 4.4. The

master object divides the set elements into subsets according to their PIDs. The

master object functionalities are given below:

• The master object is provided with sets of elements and PIDs. It divides the

set of elements into subsets according to the element’s PID. The elements

which are provided but do not belong to any specified partitions will be

ignored.

• Due to a limited information about allocated DOFs, the client objects cannot

differentiate among the internal and interface DOFs. The interface DOFs

88

information has to calculate the master object. The master object has data

for all the allocated partitions. It calculates the interface DOFs which can

be defined as a set containing the DOFs present in more than one partition

and the Dirichlet DOFs present in P . Let the interface DOFs are denoted

as DOFB.

• The master object encapsulates client objects. It is responsible for the con-

struction and deletion of these objects. At the construction of a client object,

it is provided with list of elements and interface DOFs along with other pa-

rameters.

• Finally master object has to compute the uB solution for the interface DOFs

through (2.76). The computation of the uB requires SP
bb and ~vPb from each

client object. Each partition will have a subset of the interface DOFs, and

a mapping data ΛP
b will be required to construct S and ~v. The solution is

provided to all the client objects to compute their internal DOFs solution

uj.

The client object functionalities are given below:

• The client object collects allocated elements data.

• A client object has to provide it schur complement stiffness matrix SP
bb (given

in (2.74)), schur complement load vector ~vPb (given in (2.75)) and connectivity

matrix ΛP
b .

• It compute solution for internal DOFs.

• The clinet object provides solution to allocated elements.

The client objects behave like an FEElement object which has to provide their

data to master object. To keep the client object interface same as of finite element

interaface, the FEDirectSolver class is inherited from the FEElement class. In the

89

condensation mode, the FEDirectSolver object will provide its allocated partition

ID for getPartitionID(). Let DOFBj be the boundary DOFs for the partition

Pj than DOFB ⊇ DOFBj . The get dof count() will provide number of interface

DOFs NBj in client object. The SP
bb is a sparse matrix and in the FEElement class

the getStiffness function requires a dense matrix.

For each partition, the SP
bb and ~vPb are computed using (2.71) and (2.72), respec-

tively. The Schur complement required AP and ~bP to be transformed into smaller

matrices and vectors based in the partitions internal and boundary DOFs. The

AP has to be stored as four matrices Aii, Aib, Abi and AP
bb of smaller dimensions.

The load vector ~bP has to be kept as two smaller load vectors ~bi and ~bPb . In the

ideal case the partition data should be directly assembled into sub-matrices and

vectors. For each element data entry it has to be verified which data structure it

will be stored in. The process of checking for each entry of element provided data

makes the data gathering process extremely slow. The partition’s elements data

is stored as AP and ~bP using client objects local DOF numbering NP which are

further transformed into smaller structures.

4.2.1 FEEquation Class

The mesh elements provide their stiffness matrices and load vectors in local

numbering NK and the client objects maintain their allocated elements data in

partition local numbering NP . The allocated elements can provide PID and their

DOF’s global mapping, but these elements do not have knowledge about their

DOF’s partition mapping. The mapping NK to NP is not constant as by repar-

titioning the mesh the element can be moved to a different partition and so that

element’s mapping information has to be altered as well. The way to populate the

AP and bP is to initially map AK and bK into N and finally map global numbered

data into NP using (2.47) and (2.55).

90

The FEDirectSolver class was implemented to solve Au = ~b which involves

the assembling of the element data, computing the solution and providing the

solution to the user elements. The FEEquation class in Listing 4.3 is introduced

to encapsulate implementations of the direct solver and the static condensation

solver in a class which can be reused for future implementations like distributed

direct solver and keep solver classes clean of unnecessary or repeated code. The

FEEquation class converts the user provided data into the desired data structures

Aii, Aib, Abi, Abb, ~bi and ~bb. For the direct solver the matrix Aii represents mesh

partition Pi internal DOFs mappings and Abb represents mesh boundary DOFs

interaction. The Aib and Abi is the internal to boundary DOFs interaction. If the

user has provided data after applying constraints the Aib and Abi should be empty

and Abb should be a diagonal matrix. For the direct solver, the FEEquation object

has to solve (2.66) to compute ui, as ub are the Dirichlet DOFs and their values

are provided by the user.

The FEEquation class constructor takes a list of internal DOFs, interface DOFs,

matrix types and solution mode. For direct solver mode the condensation flag has

to be set to false and the provided interface DOFs will be Dirichlet DOFs. In the

case of static condensation, the condensation flag has to set to true and the inter-

face DOFs should be the partition boundary DOFs and internal DOFs will also be

the partition’s internal DOFs. The FEEquation class does not interact with the

user elements and it depends on its composing object. The FEDirectSolver object

has to provide allocated elements data in N to its FEEquation object using FEE-

quation’s setStiffness() and setLoad() given in Listing 4.3. For FEEquation object

in direct mode the getStiffness() and getLoad() functions return Aii and ~bi while

in condensation mode the Schur complement data SP
bb and ~vPb is provided. The

solve() function requires the interface DOFs solution αb to compute the solution

of internal DOFs αi. Again in direct mode it will be the values for the Dirichlet

DOFs on other hand the solution to partition’s boundary DOFs.

91

c l a s s FEEquation{

pub l i c :

FEEquation (FE UINT t o t a l s y s t e m d o f s ,

vector<FE UINT>& i n t e r n a l d o f s ,

vector<FE UINT>& i n t e r f a c e d o f s ,

MATRIX TYPE matrix , bool condensat ion) ;

template<typename V> void ge t l oad (V& v) ;

template<typename V> void setLoad (V& v) ;

template<typename M> void g e t S t i f f n e s s (M& m) ;

template<typename M> void s e t S t i f f n e s s (M& m) ;

template<typename V1 , typename V2>

void s o l v e (V1& bdr so l , V2& i n t s o l) ;

} ;

Listing 4.3: FEEquation version 1.

The FEEquation object maintains data in N and cannot differentiate between

internal and interface DOFs. The list of internal and interface DOFs are pro-

vided to FEEquation which are required for calculating the Schur complement of

the partition data. The FEEquation class is aimed at solving the system of lin-

ear equations where the user has to provide system data represented as stiffness

matrix and load vector. The FEDirectSolver object class has to construct and

populate the data containers for
∑

K∈P ΛT
KAKΛK and

∑
K∈P ΛT

K
~bK for allocated

elements and provide these containers to its FEEquation object. The design keeps

the FEDomain data acquisition method and internal solution process separate so

that if either of these methods changes the other one remains unchanged. The

FEEqaution object obtains stiffness matrix and load vector data from the pro-

vided containers through the getValue() functions one by one which makes the

data coping process very inefficient.

The alternative approach is to provide FEEquation object to the user provided

elements. The FEEquation class is considered as a data container as it will keep

92

data to compute solution. It allow the internal implementation of the FEEqua-

tion class independent of its interface. The internal data structures can be se-

lected according to the execution mode. The FEEquation class interface meth-

ods are modified to allow elements to insert their data. It should have same

interface as of FEvector and FEMatrix classes. From FEEqution class setStiff-

ness() and setLoad() functions have been removed and addV alue(index, value)

and addV alue(row id, col id, value) are added to populate load vector and stiff-

ness matrix respectively using global DOFs numbering. The new interface of the

FEEquation class is shown in Listing 4.4.

c l a s s FEEquation{

pub l i c :

FEEquation (FE UINT t o t a l s y s t e m d o f s ,

vector<FE UINT>& i n t e r n a l d o f s ,

vector<FE UINT>& i n t e r f a c e d o f s ,

MATRIX TYPE matrix , bool condensat ion) ;

void addValue (FE UINT& index , FE DATA& value) ;

void addValue (FE UINT& row id , FE UINT& c o l i d , FE DATA& value) ;

template<typename V> void ge t l oad (V& v) ;

template<typename M> void g e t S t i f f n e s s (M& m) ;

void getSystem (FEEquation& eq) ;

template<typename V1 , typename V2>

void s o l v e (V1& bdr so l , V2& i n t s o l) ;

} ;

Listing 4.4: FEEquation version 2, new interface functions addValue are added to

insert stiffness matrix and load vector. The getLoad, getStiffness and getSystem

functions are added to attain FEEquation class.

In case of static condensation mode the FEEquation class getStiffness() and

getLoad() functions provide SP
bb and ~vPb ,respectively while in direct solver mode

these functions return A and ~b, respectively. The FEDirectSolver class is com-

posed of the FEEquation object. The FEDirectSolver class acts as a wrapper

93

which manage the interaction between group of the FEDirectSolver objects. The

getSystem(FEEquation&) is added into FEElement class interface. This method

allows the FEDirectSolver object to pass its FEEquation object’s reference to al-

located elements. The elements have to populate it with ΛTAKΛ and ΛT~bK .

4.2.2 Client object as Element object

In static condensation mode, the FEDirectSolver class master object is com-

posed of FEDirectSolver client object, one for each allocated mesh partition. The

FEEquation class implements the solution for the system of equations. In master

object, its client objects act like the user provided finite element object K. In order

to assemble schur complement S and ~v, the master object has to collect SP and

~vP from all its client objects. It is similar to the user provided element class which

provides AK and ~bK to assemble A and ~b, respectively. The collection of system

data is similar for the client and master objects. The client objects gather data

from element objects through FEElement interface. The FEDirectSolver class is

inherited from the FEElement class so that single FEDomainSolver class imple-

mentation can be used to create master as well as client objects. The master object

uses FEElement interface to gather data from client objects. The master object

gather interface DOFs and computes solution for non Dirichlet interface DOFs.

Each client object has FEEquation object in condensation mode to handle in-

ternal data storage and manipulation. The FEEquation object is created at the

construction stage. The FEDirectSolver does not deallocate its memory space un-

til the destructor, to avoid unnecessary memory allocation, the assembly of the

partition data is delayed until setSolution() is called. The client objects assemble

their data from the allocated elements and compute the Schur complement of the

assemble data. The Schur complement data of the partition is computed by imple-

menting (2.71) and (2.72). This requires assembling the partition data according

to internal and interface DOFs into multiple smaller data structures Aii, Aib, Abi,

94

Abb, ~bi and ~bb. The FEEquation class is using PARDISO solver to compute LU

factors of Aii. In future, the support for other linear algebraic solvers will be

added into FEEquation class. The class diagram of FEDirectSolver is shown in

Figure 4.5.

4.2.3 Shared Memory Solvers Class Diagrams

+getDofCount() : unsigned int

+getPartitionID() : unsigned int

+getLoad(out DenseVector) : void

+getStiffness(out DenseMatrix) : void

+getConnectivity(out SparseMatrix) : void

+getConnectivity(out DofIdVector) : void

+getSystem(out Equation) : void

+setSolution(in Solution) : void

FEElement

«implementation class»

FEDirectSolver

+getResidual(in solution, out residual) : unsigned int

FEsystem

1

1..*

1

0..*

+addValue(in index, in value) : void

+addValue(in row_id, in col_id, in value) : void

+getSystem(out Equation) : void

+solve(in bdr_value, out solution) : void

-Aii_Matrix

-Aib_Matrix

-Abi_Matrix

-Abb_Matrix

-Fi_Vector

-Fb_Vector

«implementation class»FEEquation
1

1

+setSolution(in dirichlet_values) : void

+getResidual(in solution, out residual) : void

«implementation class»

FEDomain1

1

Elements : FEElement

Figure 4.5: FEDomain class diagram

Figure 4.5 represents the FEDomain class diagram for the direct solver and

static condensation solver mode for the shared memory architectures. The user

will creates a FEDomain object and will define the mode of the solver. The

FEDomain object (in both direct and static condensation mode) will be composed

of a single FEDirectSolver object which will act as a master object. The master

object will always have an FEEquation object and also it will have associative

95

with the elements. In direct mode, the master object will collects all the provided

elements data into its FEEquation object and provide the solution to the elements

in back solve. In static condensation mode the user has to provide the partition

ids of the mesh and the master object will create client objects, one for each

provided partition ids. The FESystem class in the Figure 4.5 is introduced for the

FEDomain residual calculation and will be explained at a later chapter.

Schur Complement Implementation

In the FEDomain package the parallel regions are implemented using OpenMP

pragmas and FEDomain does not support nested parallelism. The parallelism

is implemented at the root level operations like gathering data or data manipula-

tions. All the composite FEDirectSolver client objects are constructed and treated

sequentially and their internal operations like computing Sbb are performed in par-

allel.

of RHS CUBE5 CUBE6

1 316.70 6186.1

2 189.97 3372.8

4 101.22 1893.8

8 61.02 1193

16 54.17 863

32 35.06 673.5

64 20.09 348.7

128 25.54 381.1

256 19.71 207.1

512 24.08 291.1

1024 31.54 306.8

Table 4.5: PARDISO multiple RHS solve timings. Total RHS are 2048 and #RHS
are the number of right hand sides provided to solver in a single solve call. The
second and thrid column represents the time taken to solve for the CUBE5 and
CUBE6 stiffness matrices, respectively. The CUBE5 and CUBE6 matrices dimen-
sions are 53907 and 411939, respectively.

96

The PARDISO solver can provide sequential and parallel direct solution of sym-

metric as well as unsymmetric systems of linear equations on shared memory pro-

cessor. According to the technical report [40], the PARDISO has performed best

among other linear symmetric solvers. It is capable to solve the system of linear

equations with multiple right hand sides. The user has to provide multiple right

hand sides in consecutive memory containers. The size of this containers should

be greater than or equal to the number of right hand sides × size of right hand

side. To obtain the solution, the user has to provide the same size consecutive

memory container to the PARDISO solver. The experiments have showed, the

PARDISO time consumption to compute solution for multiple right hand sides by

a single solve call is less than the time it consumes to compute the solution for

these right hand sides one by one. The timing comparison for solving the total of

2048 right hand sides for cube5 and cube6 meshes using various number of right

hand sides is shown in Table 4.5. The step size (#RHS) is the number of right

hand sides provided to the solver in each solve call. In both the cases step size 256

has produced best results.

QUATER8 (2D) DOFs=229664 CUBE5 (3D) DOFs=53907

Total RHS = 1024 Total RHS = 512 #RHS = 1024 #RHS = 512

RHS Time Mem (KB) Time Mem (KB) Time Mem (KB) Time Mem (KB)

1 112.60 9293156 55.68 4699582 159.18 2042489 78.66 1146076

8 51.94 9292711 25.75 4699237 29.89 2042217 15.08 1146924

64 19.66 9293245 9.42 4699890 10.09 2042967 5.03 1147400

128 18.65 9292844 8.86 4699734 10.31 2038975 5.19 1146844

256 16.99 9292811 9.17 4699728 9.77 2045518 4.92 1148366

Table 4.6: PARDISO multiple RHS solve timings and memory consumption

Table 4.6 contains timing and memory consumption data for QUATER8 (2D

Poisson) and CUBE5 (3D Elasticity) linear algebra problems and again all the

solver data are obtained from the PARDISO solver. Table 4.6 data suggests that

the memory consumed by the solver for the triangular solve depends on the total

number of right hand sides. The total time requires to obtain the solution for all

97

the right hand side depends on #RHS. The SP
bb computation algorithm is given in

Algorithm 2. To achieve better performance it is necessary to collect consecutive

non empty columns from Aib. Multiple RHS requires more memory to store data

and their results outside PARDISO in dense vector. PARDISO does not support

sparse vector so the right hand sides ~c are provided and solution ~t is obtained in

dense 1D containers of size internal DOFs counts × step size. The ~s is a sparse

vector which is used to save memory and computations while subtracting it from

Abb.

1 ~c← getConsecutiveNonEmptyCols(Aib)

2 while !Empty(~c) do

3 ~t = LPUP~c

4 ~s = AP
bi
~t

5 AP
bb:ids[i]

− = ~si

6 ~c← getNextConsecutiveNonEmptyCols(Aib)

7 end

Algorithm 2: Psudocode for computing SbbP for each mesh partition. It

will be implemented in each FEDirectSolver client object.

During experiments it is observed that PARDISO solver remain at the solve

stage if provided with all zero RHS. Every time a column is obtained from AP
ib it

has to be checked that column is not empty before providing it to solver.

Direct Solver Timing

Table 4.7 has the timing information for the FEDirectSolver class in direct mode.

These timing are obtained using new implementation having FEEquation object.

The CUBE5 and CUBE6 meshes are to solve 3D Elasticity problem .

98

Mesh Cube5 Cube6

Constructor Time (sec) – 5.52

Total DOFs 53907 411939

Dirichlet DOFs 9222 36870

non zero in A 1889487 16355129

non zero in LU 26503683 5200091653

Solver Mem (kB) 275025 4557979

Solution Time (sec) 4.96 84.01

Table 4.7: PARDISO timing and memory data while being used in FEDirectSolver
solver (direct mode). The cube5 and cube6 are 3D meshes obtained using GMSH
software and used to solve an Elasticity 3D problem.

Table 4.8 has the timing of static condensation non partitioned and partitioned

meshes where the non partitioned timing are better than partitions meshes. The

PARDISO solver memory information is collected from the solver at run time.

Table 4.8 displays the memory consumption and computation time for CUBE6

mesh with 5 partitions. The METIS [52] package is used to partition CUBE6

mesh and all the produced partitioned meshes have same number of DOFs and

elements. The Construction Time in Table 4.8 represents the time consumed by

FEDirectSolver constructor in condensation mode for partitioned meshes which is

almost similar. The FEDirectSolver class constructor in static condensation mode

perform tasks like filtering the elements according to their PID’s, computing the

interface DOFs among all the mesh partitions, and construct composite FEDi-

rectSolver objects for each PID. The DOF B are the mesh interface DOFs which

also include the Dirichlet DOFs. The Sbb Time represents the time consumed for

populating Sbb in master object. It requires computation of SP
bb and ~vPb for all the

client objects and adding each client object Schur complement data into Sbb and

~vb. To avoid unnecessary memory consumption the elements data is not assembled

in the FEDomain solver until SP
bb and ~vPb are required.

99

The Sbb A NNZ represents the amount of data in Sbb upper triangle as 3D

elasticity is a symmetric problem, The Sbb LU NNZ represents the number of

non zero entries in Sbb numerical factorization. The Sbb is a densely populated

matrix so does its factors are as can be seen in Table 4.8. The Total LU NNZ

represents total amount of factorization data for each FEDirectSovler client object

and interface DOFs from master object. The Solver Mem represents the total

memory consumed by all the PARDISO solvers. As the mesh partitions increases

so does the memory consumption of PARDISO as can be seen in 9th rows of

Table 4.8. The memory consumed by each client object deceases and the interface

DOFs increases as the number of partitions increases in the provided mesh. All the

PARDISO solver memory consumption and total non zero data count are provided

by the PARDISO solver.

Partitions 1 2 3 4 5

Constructor Time 7.05 7.14 7.14 7.21 7.24

Sbb DOFs 36870 45756 51519 55137 58686

Sbb IDOF 0 8886 14649 18267 21816

Sbb Time 0 1453.18 2148.9 2645.83 3312.1

Sbb A NNZ 0 39484941 107303925 166850778 237979836

Sbb LU NNZ 0 39764581 107765170 167425690 238666817

Sbb Mem (kB) 0 971649 2429645 3677522 5150820

Total LU NNZ 529995920 374464081 375094627 397287579 440321571

Solver Mem (kB) 4627245 3973634 4920007 5597337 7153935

Solution Time (sec) 94.0114 1491.45 2218.48 2867.65 4538.45

Table 4.8: PARDISO solver time and memory consumption for the FEDirectSovler
in the condensation mode using Cube6 mesh (411939 DOFs and 811392 elements)
from 1 to 5 partitions.

4.3 Complexity

The complexity of the direct solver depends of the complexity of the PARDISO

solver. The complexity of the PARDISO solver for 2D and 3D meshes is shown in

Table 4.9 (see [36]).

100

2D 3D

Symbolic Factorization O(nlog(n)) O(n4/3)

Numerical Factorization O(n3/2) O(n2)

Triangle Solve O(nlog(n)) O(n4/3)

Table 4.9: PARDISO time complexity

In the case of the static condensation solver the calculation of SP
bb requires

multiplication of two matrices AP
ib and AP

ib from the LU factors of AP
ii . The

algorithm of the SP
bb computation is defined in the Algorithm 2.

In line 3 of Algorithm 2 the column ~c is provided to the PARDISO solver to

produce the solution as ~t. Let IP be the total number of partition internal DOFs

and BP be the interface DOFs. The complexity of line 3 of Algorithm 2 for 2D

mesh is O(IP log(IP)) and for 3D problem is O(I
4/3
P). The ~c and ~t can be scarcely

populated vectors but PARDISO requires these containers to be dense. The maxi-

mum complexity of the matrix vector multiplication in line 4 is O(IPBP). In line 5

a sparse vector is added in a column of AP
bb which can have a maximum complexity

of O(BP). The whole process repeats itself BP times. The total complexity for SP
bb

calculation for 2D mesh is O(max((IP log(IP))BP , IPB
2
P , B

2
P)) and for 3D mesh

O(max(I
4/3
P BP , IPB

2
P , B

2
P)).

Let suppose a D dimension problem has to be solved. The mesh for it has been

partitioned in such a way that there are s number of partitions in each dimensions

and each partition has n + 1 DOFs in each dimensions. The total number of

partitions P in mesh is

P = sD

and total number of DOFs N in the mesh is

N = (sn)D

101

than

n = (N/P)1/D

partition’s interface DOFs BP are

BP ≈ (N/P)D

partition’s internal DOFs IP are

IP ≈ N/P

By putting the values of BP and IP in the Schur complement solver complexity

becomes

O((N/P)((2D−(D−2))/D))

so for the 2D mesh the Schur complement complexity becomes

O((N/P)2)

and for the 3D mesh the Schur complement complexity becomes

O((N/P)7/3).

The total number of interface DOFs B in D dimension mesh are

B = sDn = P (N/P)1/D = N1/DP ((D−1)/D).

The complexity of αB computation is

O(B2) = O(N2/DP 2(D−1)/D)).

102

Total complexity of the FEDomain static condensation solver is

O(max(tS, tB)) = O(max((N/P)((2D+1−D)/D), (N/PD−1)2/D))

4.4 Conclusion

In this chapter the FEDomain package is introduced as a C++ finite elements

solver package developed for the shared memory architectures. The focus of the

package is to provide a user with a finite element solver which any C++ finite

elements application developer can add into his application with the minimum

modification. The FEDomain package can compute the solution of the symmetric

and unsymmetric linear equation systems. The package requires the user to repre-

sent the mesh elements as the C++ classes and provides the list of these element

objects to the FEDomain objects at construction stage. The FEDomain solvers

require element objects to provide their data (Ak, Λk and ~bk) through standard

element interface. The standard interface is given as a FEElement class in FE-

Domain package. The user has to publicly inheriting all element classes from the

FEElement abstract class and implements all the interface methods in element

classes. The FEDomain package also provides two finite elements direct solvers

for the shared memory systems. The FEDirectSolver direct solver is implemented

to find the solution of the whole mesh. The FEDirectSolver Static Condensa-

tion solver is implemented to find the solution for the partitioned mesh. For the

FEDirectSolver direct solver all the three stages (acquisition of data, PARDISO

solver and distribution of solution) are implemented using parallel algorithm with

OpenMP.

In Static condensation solver, the parallelism is implemented at the root level.

All the client objects and the master object of the FEDirectSovler condensation

are implemented in parallel. Each FEDirectSolver client objects are implemented

103

using parallel algorithms. These objects are allocated one by one to the processors.

Once all the client objects have computed their SP
bb and ~vPb , the computational

resources are provided to the FEDirectSolver master object. The master object

uses these resources to attains the client objects data and compute the interface

DOFs values. It provides each of its client objects with the interface DOFs values

and allows each client objects to solve its internal DOFs values. This method is

currently implemented in static condensation as this gives each partition an equal

computational opportunity. If all the partitions have similar number of internal

and interface DOFs then the Schur complement computation for these partition

takes a similar time.

Table 4.10 represents the timing results for the FEDirectSolver Static Condensa-

tion solver for the multiple 2D and 3D meshes used to solve Poisson and Elasticity

problems, respectively. The second column shows the interface DOFs present in

the partitioned mesh. The number of interface DOFs increases with the raise in

the mesh partitions. The third column represents the number of entries added into

the Sbb from all the FEDirectSolver client objects. Its increases with the rise in

partitions for each mesh. The FEDirectSolver Static Condensation solver performs

Schur complement for each partitions one by one and each client object perform

the Schur complement algorithm in parallel. The time consumed by these objects

for Schur Complement computation are added to attain the total time the FEDi-

rectSolver spents for calculating all SP
bb. The Schur Complement time is displayed

in fourth column of the Table 4.10. The fifth column represents the time consumed

by all the client objects to copy their SP
bb and ~vP into the FEDirectSolver master

object.

For the 2D meshes the time consumed for SP
bb and ~vP calculation and copying

increases with the raise in partitions. For 3D meshes these times reduces with

the raise in mesh partitions. The similar time pattern continues in the total time

104

Mesh Interface NNZ added SP
bb timing (sec) for Total PARDISO

Parts DOFs to Sbb Comput Copying Time(sec) Mem (kB) NNZ
Quater8 (Poisson 2D) Total DOFs(230465) Total Elements(460931)

2 1328 1400514 11.901 0.053 17.6874 4826927 9807074
3 1592 2519349 23.169 0.103 28.7923 4829988 9596615
4 1841 3831927 29.235 0.146 33.9255 4763129 9441451
5 2185 6053256 43.044 0.207 50.7696 5057392 9411136
6 2316 7022921 34.564 0.215 42.5034 4628149 9390914
7 2472 8264713 39.841 0.232 47.3875 4372747 9219985
8 2771 10924099 41.422 0.305 47.1122 4506097 9367279

Quater9 (Poisson 2D) Total DOFs(920065) Total Elements(1840131)
2 2686 5830222 89.863 0.295 104.213 39354313 46490532
3 3259 10808449 164.263 0.590 177.451 40067039 45710841
4 3821 16966849 191.343 0.954 208.447 40198292 44972000
5 4474 25718156 211.964 1.831 228.163 41584387 45077691
6 4632 28090057 195.717 1.151 209.769 36631914 44886375
7 5380 40679792 229.262 2.008 245.553 39078202 44974507
8 5660 45966474 223.849 1.709 245.419 36736737 44471315

Cb 53907 (Elasticity 3D) Total DOFs(53907) Total Elements(104648)
2 11358 150653200 123.15 51.78 178.38 11248265 18332424
3 12915 211915036 125.81 52.28 183.29 9011400 18676024
4 13413 234612867 120.17 44.43 169.89 7173906 18415385
5 14283 276226424 121.16 38.20 165.86 6261456 20064430
6 14799 301968684 115.99 31.48 153.35 5480741 20884211
7 15216 323899173 122.23 28.34 157.63 4882505 21275395
8 15603 345432079 102.06 29.30 150.74 4446707 22674156

Cb 85103 (Elasticity 3D) Total DOFs(85104) Total Elements(166828)
2 19032 404653396 525.309 179.041 712.346 27754020 28488984
3 20721 511124194 562.364 157.326 729.136 21034537 28979221
4 21561 569622775 603.584 128.084 741.592 16757094 28559086
5 22419 633251315 528.153 110.098 649.413 14238878 31097947
6 22860 666969531 583.839 98.0312 692.663 12225119 30906377
7 23505 717169443 651.062 86.7967 750.263 10891256 31080380
8 23964 757270944 609.978 74.1710 695.888 9864984 33963251

Cb 146781 (Elasticity 3D) Total DOFs(445923) Total Elements(286548)
2 26763 790706924 1055.511 467.629 1536.090 69858508 61509775
3 28872 978094224 1092.372 412.345 1521.690 52694606 61926469
4 29688 1055615711 1001.947 285.810 1303.880 41357790 61923862
5 31554 1242757418 1041.395 308.756 1370.000 36226749 68072665
6 32337 1326566357 977.949 247.854 1246.230 31295571 65960725
7 32544 1351168456 968.155 209.746 1197.110 27214948 66603332
8 32949 1397638001 902.706 156.457 1078.090 24312238 63958023

Table 4.10: The table contains timing and memory consumptions of the FEDi-
rectSolver Static Condensation solver. The second column represents the interface
DOFs of partitioned meshes. The third column represents the amount of data
added from all the client objects. The fourth and fifth columns represent the time
consumed for calculating all FEDiectSolver client objects SP

bb and time required
to all these SP

bb into Sbb. The sixth column represents the total time consumed
by the FEDiretSolver to compute the solution. The seventh and eighth columns
represents all the PARDISO solvers memory consumed and amount of NNZ stored.

105

required by the FEDirectSovler Static condensation as can be seen in the sixth

column. The seventh and eighth column in Table 4.10 represents the total mem-

ory consumed and the total non zero data stored by all the PARDISO solvers.

For the 2D meshes the PARDISO solver consumed similar amount of memory and

stored similar amount of data. For the 3D meshes the PARDISO solver’s memory

consumption increases with the raise in the mesh partitions while on other hand

the data stored reduces as can be seen in Table 4.10. All the PARDISO solver

information data is obtained from the solver itself during execution. The PAR-

DISO solver memory consumption represents the memory consumed by all the

FEDirectSolver client objects and the FEDirectSolver master object’s PARDISO

solver and same is true for the PARDISO NNZ. The PARDISO solver memory

consumption is shown in Figure 4.6 and FEDirectSolver Static condensation total

time consumed is shown in Figure 4.7.

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

8.00E+07

2 3 4 5 6 7 8

quater8

quater9

Cb_53907

Cb_85104

Cb_146781

Pardisomemory consumption during FEDomain Static Condensation solver
with increasing number of mesh partitions

M
e

m
o

ry
S

iz
e

 (
K

ilo
B

y
te

s)

MeshPartitions

Figure 4.6: The FEDirectSolver Static Condensation solver PARDISO memory
consumption of 2D and 3D meshes using 2 to 8 meshes.

106

Mesh Total Dirichlet PARDISO Total
Name DOFs DOFs Mem (kB) NNZ Time (sec)
quater8 230465 801 105480 10515549 7.16
quater9 920065 1601 487040 50400874 27.812
Cb 53907 53907 9222 254574 26514787 5.279
Cb 85104 85104 16506 366473 39980939 8.63
Cb 146781 445923 47430 3635120 433581043 71.495

Table 4.11: The table contains PARDISO results for the FEDirectSolver direct
solver for multiple 2D and 3D meshes for Poisson and Elasticity respectively.

0
200
400
600
800

1000
1200
1400
1600
1800

2 3 4 5 6 7 8

quater8

quater9

Cb_53907

Cb_85104

Cb_146781

Total Time consumedby FEDomain Static Condensation solver to compute the solution for
increasing number of partitioned 2D and 3D meshes.

T
im

e
(s

e
c)

Mesh Partitions

Figure 4.7: The FEDirectSolver Static Condensation solver time consumption for
2D and 3D meshes using 2 to 8 partitions.

Table 4.11 has the PARDISO solver data (computation time and memory ac-

quired) for the meshes given in Table 4.10 for the FEDirectSolver direct solver.

All the solutions are computed using eight OpenMP threads as was for the FEDi-

rectSolver Static condensation. The comparison between the Tables 4.10 and

4.11 shows that the Direct solution method has performed better than the Static

condensation solver. The FEDirectSolver direct solver has performed 2.47 for

quater8, 3.474 for quater9, 28.555 for Cb 53907, 60.636 for Cb 85104 and 15.079

for Cb 146781 speedup than the FEDirectSolver condensation method. The PAR-

DISO solver overall memory consumption is much better in FEDitectSovler di-

rect method than for the Static condensation method. The PARDISO solver for

107

quater8 mesh consumed 45.76, for quater9 mesh consumed 80.8, for Cb 53907 mesh

consumed 17.47, for Cb 85104 mesh consumed 26.92 and for Cb 146781 mesh con-

sumed 6.69 less memory than the FEDirectSolver static condensation solver. For

the shared memory architecture the FEDirectSolver direct method has performed

much better then the FEDirectSolver static condensation method. The static con-

densation method will allow to implement the FEDomin package on distributed

memory machine and will be discussed in next chapter.

108

Chapter 5

FEDomain Distributed Memory

FE Solvers

This chapter is aimed to develop a finite element solver for the distributed

memory architectures. This work is based on the developments illustrated in

Chapter 4. It implements the domain decomposition algorithms which divides the

large system of equations into multiple small systems of equations. These small

systems of equations can be independently solved if their Dirichlet and boundary

DOFs values are provided to them. This has already discussed in Section 4.2 as a

static condensation solver. In this section the algorithm was implemented for the

shared memory solver.

The Distributed Finite Element Solvers (DS) will be developed for the finite

elements application developers using object oriented paradigm and C++ language

for development. The users should be familiar with the MPI library as they will

have to initialize and finalize MPI execution environment. The user application

has to fulfil the prerequisites like inheriting all the finite element classes from the

abstract FEElement class given in FEDomain package defined in Listing 3.16. DS

require the partitioned mesh P where sub-partitions Pi should not overlap. There

are many third party software available for partitioning P such as libMesh [54],

109

METIS and ParMETIS [52] developed for the shared memory and distributed

memory systems.

5.1 Distributed Solver Interface

In FEDomain package the FEDomainMPI class defined in Section 3.8 repre-

sents the distributed architecture implementation. The FEDomainMPI class is

implemented using Facade design pattern and provides interface to and encap-

sulates the implementation of subsystems . The FEDomainMPI class interface

is designed similar to the FEDomain class. The user implemented finite element

classes should be inherited from the FEElement class. Unlike shared memory ap-

plications the distributed memory processes do not share memory. The data has

to be distributed among the MPI processes.

5.1.1 Distribution of the mesh

In FEDomain Schur complement solver discussed in Section 4.2 the partitioned

mesh P was allocated to the master object. The master object on bases of the

partition ids, provided by the user, creates client objects one for each partition.

During distributed direct solvers development it was aimed to keep the same ini-

tialization routine. The user should have no knowledge of the client objects and

the master object should be responsible for the initialisation, management and

deletion of the client objects. The master object should allocate partition ids to

the client objects.

The MPI library is selected to implement parallel process because it is eas-

ily available and not operating system dependent. The MPI library has its ex-

ecution environment which initiates the parallel processes. In MPI environment

the processes are created by a mpirun command on the multiple computational

nodes. Each MPI process executes the user program as an individual applica-

110

tion which can communicate with the other applications running in other MPI

processes. An MPI process can spawn child processes through MPI Comm spawn

and MPI Comm spawn multiple routines. These routines require a command as a

parameter which will execute an application in the child or client process. These

routines cannot be used in the FEDomain package because of the following reasons:

• The MPI spawn routines require the command to execute a program in child

process. The name and arguments of command are selected by the user. To

use these MPI routines, the use have to implement the applications to run

in client processes.

• The element objects are provided to the master object. MPI does not allow

transferring of C++ objects. The allocation of the elements to client object

is not possible.

Due to the above reasons, the spawning of client objects from master object is

not possible. It is possible to start master and client MPI process from the start

and the mesh is read in all these processes. The master object should allocate mesh

partitions among the client objects. The drawback of this design is the wastage

of the memory by providing unwanted element objects to all the FEDomainMPI

objects. This scenario cannot be avoided if the master object is responsible for the

allocation of partition ids. The user has no information about the mapping of the

mesh partitions to the FEDomainMPI client objects.

The user selects the mesh and has to construct and provide the element objects

to the FEDomain package. In the final design of the DS, it is decided that it will

be the user’s responsibility to map the mesh partitions among the FEDomainMPI

client objects. It will allow the user to create objects for the elements present

in the allocated mesh partitions for each MPI process. This design will be mem-

ory efficient as the subset of the mesh elements objects is required for each MPI

111

process. The FEDomainMPI class interface is given in section 3.8. The FEDo-

mainMPI interface allows the user to allocate the partitions to the FEDomainMPI

client objects. The user can allocate a subset of partitions to a FEDomainMPI

client object where no partition should be allocated to multiple FEDomainMPI

objects. The user has given a choice of either provide all the elements to all the

FEDomainMPI client objects, or just the elements of the allocated partitions to

the FEDomainMPI client objects.

In the final version of DS solvers, the MPI library script is responsible for the ini-

tialization, communication and termination of parallel MPI processes. These pro-

cesses are constructed and assigned at the start of the parallel application. Each

one of the FEDomainMPI master and client objects are allocated to unique MPI

process. All the FEDomainMPI client objects are allocated unique mesh parti-

tions. The master object is not allocated any mesh partition. The FEDomainMPI

client objects filter provided elements to separate the allocated partitions elements.

It is advised that the user provides only the allocated partition elements. It is an

optimal option as it will reduce filtering and allows the client objects to consume

less memory per MPI process. The FEDomainMPI constructor requires the list of

elements of the allocated partition, the Dirichlet data, and the allocated partitions

ids.

5.2 DOFs notations

• TDOFj is the set of DOFs present in elements allocated to FEDomainMPI

client object Cj.

• IDOFj is the subset of TDOFj which are only present in elements allocated

to Cj. These are called internal DOFs of Cj.

• BDOFj is the subset of TDOFj which also exist in other FEDomainMPI

client objects. It is called interface DOFs of Cj.

112

• TDOF0 is a set of master object’s DOFs. Its is created by collecting all the

partitions BDOF s.

TDOF0 = BDOF1 ∪BDOF2 ∪ · · · ∪BDOFN .

• BDOF0 is a set of Dirichlet DOFs (DDOF) which are present in TDOF0.

The solution for these DOFs are provided by the user.

BDOF0 = TDOF0 ∩DDOF.

• IDOF0 is a set of non Dirichlet DOFs in TDOF0. These are master object

internal DOFs.

IDOF0 = TDOF0 \BDOF0.

5.3 FEDomainMPI

The FEDomainMPI class behaves differently for the master and client modes.

In MPI process 0 the FEDomainMPI object is in master mode. The master ob-

ject calculates the solution of the IDOF0. The client objects have to calculate

the solution of their internal DOFs. These also calculate the SP
bb and ~vPb by im-

plementing (2.71) and (2.72), respectively. Table 5.1 represents the TDOF0 size

and number of non zero entries in Sbb upper triangle. The table has comparison

between Elasticity 3D and Poisson 2D problems. It can be seen that an increase

in the mesh partitions results in a rise in the interface DOFs count. The increase

in interface DOFs results in an increase of Sbb’s non zero entries. The Sbb’s non

zero entries are directly proportional to data container and PARDISO memory

consumptions.

113

Elasticity 3D Poisson 2D

Cb1 (85103) Cb2 (146781) Q9 (920065)

NP TDOF0 Sbb NNZ TDOF0 Sbb NNZ TDOF0 Sbb NNZ

2 2508 2282316 9636 39484725 1086 589155

3 4284 6776475 15783 106973376 1659 1375311

4 4887 6939847 19737 136116856 2222 2041646

5 5877 8746089 23595 160683485 2876 2803559

6 6480 9114492 25896 170170866 3033 2571827

7 6978 9037714 28080 171712080 3781 3728467

8 7467 9170828 29742 166339683 4063 3615403

Table 5.1: The table represents the TDOF0 size and number of non zero entries
in Sbb upper triangle for three meshes.

5.4 Distributed Direct Solver

The FEDomainMPI solver interface given in Listing 3.17 requires a user to

provide the Dirichlet constraints data to all the FEDomainMPI objects. The

user has to provide all the Dirichlet constraints data for the whole mesh into the

FEDomainMPI master object. The client objects should ideally be provided by

the Dirichlet constraints data for the DOFs present in the allocated partitions.

The user can provide all the Dirichlet constraints data to all the client objects but

that will inversely affect the FEDomain performance. The interface has modified in

FEDomainMPI class from the FEDomain class. In FEDomain class the user has to

provide a set of partitions to the master object, which will generate client objects.

In DS solvers the user has to specify the mapping between the FEDomainMPI

client objects to the mesh partitions.

A mesh can be partitioned using different algorithms and a mesh can be parti-

tioned into different number of sub-domains. In both cases the number of interface

DOFs among the partitions can vary. The FEDomain package does not require the

user to calculate the interface DOFs every time the mesh is modified or partitioned.

114

The FEDomainMPI solver calculates the interface DOFs in the construction stage.

The FEDomainMPI client objects cannot individually differentiate between their

internal and boundary DOFs. It collects TDOF0 by gathering all the partitions

TDOFj. The master object’s TDOF0 is further classified into IDOF0 and BDOF0

through the user provided Dirichlet DOFs. The user has to provide all the Dirich-

let data to the master object. The master object has to compute the solution for

the IDOF0 where the BDOF0 solutions are provided by the user. The master

object provides TDOF0 to all the client objects so that these can compute their

IDOFj and BDOFj.

In FEDomain direct solver the master object was composed of the client objects

and it used to treat all the FEDomain client objects as user provided elements. In

DS solver the FEDomainMPI master object is not composed of the client objects

but the client objects execute in parallel MPI processes. The FEDomainMPI mas-

ter object has no contribution in the creation and deletion of the client objects.

In FEDomain solver in condensation mode, the master object collects it’s client

objects Schur complement data through getSystem() method declared in the ab-

stract FEElement class. In FEDomainMPI distributed solver the data can only

be accessed through the MPI communication protocols.

c l a s s FEDirectSolverMPI : pub l i c FESystem

{

FEDirectSolverMPI (std : : vector<FEElement∗>& element ptr ,

FE UINT& sys total DOFs ,

FE UINT& max element DOFs ,

std : : vector<FE UINT>& par t i d s ,

s td : : vector<FE UINT>& d i r i c h l e t I D s ,

MATRIX TYPE matr ix type) ;

˜FEDirectSolverMPI (void) ;

FE UINT getDofCount (void) ;

FE UINT g e t P a r t i t i o n I d (void) ;

void getLoad (FE vector& load) ;

115

void g e t S t i f f n e s s (FE dense matrix& s t i f f n e s s) ;

void getSystem (FE equation& equat ion) ;

void ge tConnec t iv i ty (std : : vector<FE UINT>& d o f i d s) ;

void s e t S o l u t i o n (std : : vector<FE DATA>& d i r i c h l e t v a l u e) ;

void getRes idua l (std : : vector<FE DATA>& approx so lu t i ons ,

s td : : vector<FE DATA>& r e s i d u a l) ;

} ;

Listing 5.1: FEDirectSolverMPI Interface

In Chapter 4 the FEDirectSolver and the FEEquation classes are introduced

which are the building blocks of the FEDomainMPI solver. The FEDomainMPI

solver client objects have the same functionalities as of FEDomain condensation

solver client objects. In FEDomainMPI the client objects are implemented using

FEDirectSolver and FEEquation classes. The FEDirectSolverMPI class is added

as a communication wrapper around the FEDirectSolver class to add capability for

MPI based communication. The FEDirectSolverMPI class enables communication

among the master and client objects. The interface of the FEDirectSolverMPI class

in given in the Listing 5.1.

The FEDirectSolverMPI interface is similar to the FEDirectSolver interface de-

fine in the Listing 4.2. The FEDirectSolverMPI class has to behave differently for

master object and client objects. In client mode the FEDirectSolverMPI object

has to gather all the allocated elements data and compute the Schur complement.

This has already been implemented in the FEDirectSovler class in condensation

mode. In FEDirectSolverMPI class is composed of the FEDirectSolver object to

gather elements data, compute S
Pj
bb and ~v

Pj
b and finally compute the solution of

{IDOFj}. The FEDirectSolverMPI class in the client mode has to collect S
Pj
bb

and ~v
Pj
b from its FEDirectSolver object and transfer it to the master object. The

FEDirectSolver interface in the Listing 4.2 provides the getSystem(), getStiffness()

and getLoad() to access Schur complement data. The getStiffness() takes the dense

116

matrix container to access S
Pj
bb which will be wastage of memory. The getSystem()

is a suitable option to access partitions Schur complement data. It will require the

FEDirectSolverMPI object to have a FEEquation object to collect S
Pj
bb and ~v

Pj
b

from the FEDirectSovler object.

+getDofCount()() : unsigned int

+getPartitionId()() : unsigned int

+getLoad()(out LocalLoad) : void

+getStiffness()(out Local_Matrix) : void

+getConnectivity()(out Connectivity) : void

+getSystem()(out system) : void

+setSolution()(in solution) : unsigned int

FEElment

+getResidual(in solution, out residual) : void

FESystem

«implementation class»

FEDirectSolver

+addValue(in index, out value) : void

+addValue(in row_id, in col_id, out value) : void

+getSystem(out system) : void

+solve((in dirichlet_val, out solution) : void

-Aii

-Aib

-Abi

-Abb

-Fi

-Fb

«implementation class»FEEquation

1

1

+getResidual(in solution, out residual) : void

+setSolution(in solution) : void

«implementation class»

FEDomainMPI

«implementation class»

FEDirectSolverMPI

1

1

1

1

«implementation class»

FEHybridSolverMPI

1

1

1

1

1

1

1

1

Figure 5.1: FEDomainMPI class diagram.

The FEDirectSolverMPI master object is responsible to compute the solution

of the {IDOF0}. It collects all its client objects Schur complement data (S
Pj
bb and

~v
Pj
b) through MPI library. All the client objects keep their Schur complement data

into their FEEquation objects. These objects cannot be directly transferred to

the mater object due to limitation in MPI library. All the FEDirectSolverMPI ob-

jects have to transform their Schur complement data into MPI supported format.

The MPI library allows consecutive memory containers to be transferred as a single

message. The client’s ~vPb is copied into std::vector and SP
bb is transformed into com-

pressed sparse row format (CSR) which is composed of three consecutive arrays

117

and defined in chapter 4. All the FEDirectSolverMPI client objects access their

FEDirectSolver object’s S
Pj
bb and v

Pj
b through FESystem(FEEquation) by passing

their FEEquation object to their FEDirectSolver object. The FEDirectSovlerMPI

client objects maintain a extra copy of their allocated elements Schur complement

data into their FEEquation objects which further convert its data into the CSR

format. The FEDirectSolverMPI master object uses its FEEquation object to col-

lect all the clients Schur complement data. The FEDirectSolverMPI master object

does not have to gather data from the user elements. It does not require FEDi-

rectSolver object. The master object’s FEEquation object compute the solution

of {IDOF0}.

5.4.1 CSREquation Container

The FEDirectSolverMPI class is composed of FEDirectSolver object, which is

responsible for assembling data for systems of equation and compute Schur comple-

ment of it. The FEDirectSolver object is further composed of FEEquation object

and Schur complement data is persent in it. In shared memory condensation solver

implementation given in Section 4.2 the FEEuation object is provide by the master

object to collect S
Pj
bb and ~v

Pj
b for all partitions.

In DS the master object is not composed of the client objects so it is not possible

to access data directly from the client objects. In the current implementation

the FEDirectSolverMPI object has to keep a FEEquation object which has to be

passed to its FEDirectSolver’s FEEquation object to retrieve S
Pj
bb and ~v

Pj
b . The

outer FEEquation object which lies in FEDirectSolverMPI object has to convert

the data into MPI compatible CSR format. The CSR format has already discussed

in Section 4.1. This design creates three instances of same S
Pj
bb and ~v

Pj
b on single

MPI process. The Schur complement data is originally calculated and store in the

FEDirectSolver’s FEEquation object, the first copy is created by copying data into

FEDirectSolverMPI’s FEEquation object and the second copy is created when the

118

data is converted into CSR before transmitting to master object.

In above mentioned implementation the S
Pj
bb has to be stored three times before

transferring to master object. Originally data is saved in the FEDirectSolver’s

FEEquation object and it does not store S
Pj
bb in CSR format and has no inter-

face method to provide it in CSR format. The FEDirectSolverMPI object has

to get S
Pj
bb in FEEquation from the FEDirectSolver object and transform it into

CSR format. An extra copying of S
Pj
bb can be avoided if the FEDirectSovler class

and FEEquation class have the capability to provide S
Pj
bb in CSR format. The

CSREquation container class is added into FEDomain package as shown in Figure

5.2. A new getSystem(CSREquation&) method is introduced in FEEquation and

FEDirectSolver class so that FEDirectSolverMPI object can retrieve S
Pj
bb and ~v

Pj
b

in CSR format.

+getDofCount()() : unsigned int

+getPartitionId()() : unsigned int

+getLoad()(out LocalLoad) : void

+getStiffness()(out Local_Matrix) : void

+getConnectivity()(out Connectivity) : void

+getSystem()(out system) : void

+setSolution()(in solution) : unsigned int

FEElment

+getResidual(in solution, out residual) : void

FESystem

+getSystem(out system : CSREquation) : void

«implementation class»

FEDirectSolver

+addValue(in index, out value) : void

+addValue(in row_id, in col_id, out value) : void

+getSystem(out system : FEEquation) : void

+getSystem(out system : CSREquation) : void

+solve(in dirichlet_val, out solution) : void

«implementation class»FEEquation

1

1

+getResidual(in solution, out residual) : void

+setSolution(in solution) : void

«implementation class»

FEDomainMPI

«implementation class»

FEDirectSolverMPI

1

1

«implementation class»

FEHybridSolverMPI

1

1

1

1
1

1

«implementation class»

CSREquation

1 1

111

1

Figure 5.2: FEDomainMPI class diagram with CSREquation object.

119

Figure 5.2 is the class diagram which shows the static view of the FEDomainMPI

solver. The FEDomainMPI is the facade class which hides subsystems Distributed

Direct Solver (FEDirectSovlverMPI) and Distributed Hybrid Solver (FEHybrid-

SolverMPI). The FEHybridSolverMPI will be discussed in Section 5.5. Both of

these classes is composed of FEDirectSolver object, CSREquation object and FEE-

quation object. In distribute direct solver the FEEquation object is used in master

object to gather all partitions Schur complement data. FEEquation object is not

used in client objects. On other had CSREquation object is used in client object

while not in master object.

5.4.2 Distributed Direct Solver Mathematical Model

The complexity of the direct solver depends on the complexity of the PARDISO

solver. The complexities of PARDISO solver for 2D and 3D meshes are shown

in Table 4.9 which are taken from [36]. The SP
bb which is defined in (2.71) is the

most computationally intensive task which involves multiplication of two sparse

matrices. It involves the part of a linear system with matrix AP
ii , and multiple

120

right hand side (see chapter 4 for a description).

1 C ← getConsecutiveNonEmptyCols(Aib)

2 ids← getConsecutiveNonEmptyColsIDs(Aib)

3 while !Empty(C) do

4 T 1 ← LPUPC

5 T 2 ← AP
biT 1

6 foreach column i in T 2 do

7 AP
bb:ids[i]

− = T 2i

8 end

9 C ← getNextConsecutiveNonEmptyCols(Aib)

10 ids← getNextConsecutiveNonEmptyColsIDs(Aib)

11 end

Algorithm 3: Sbb algorithm

In Algorithm 3 line 4 calculates (AP
ii)
−1AP

ib, the consecutive non empty columns

are copied into C from AP
ib and are provided to the PARDISO solver which return

solutions as T . Let IP be the number of internal DOFs and BP be the number

of interface DOFs of the partition P . The PARDISO solver takes multiple right

hand sides as a consecutive memory arrays C of size IP ×#ids and provides the

solution in a dense matrix T 1. The T 2 is a sparse matrix which stores the product

of AP
biT 1. To control the memory consumption of the solver the size of maximum

non empty consecutive columns are limited to step size. The step size has to

be tuned on different hardware architectures. The memory consumption in SP
bb is

directly proportional to the step size value as it affects the size of C, T 1 and T 2.

The comparison of values of step size and the time to compute the solution of

2048 right hand sides is given in Table 4.5. The best time is achieved by providing

256 columns to PARDISO solver in single solve call.

121

S
n

S

n

(a) 2D Square Mesh.

S

S

S

n

n

n

(b) 3D Cube Mesh.

Figure 5.3: Pictures of meshes

5.4.2.1 2-Dimensional Mesh

Let a 2D square mesh in Figure 5.3a is partitioned into S number of partitions

in each dimensions. Each partition has n DOFs in each dimensions. The total

partitions P are

P = S2

and the total DOFs, N , in the mesh are

N = (nS)2

and

n = (N/P)1/2

each partition’s interface DOFs BP are

BP = 4n ≈ n ≈ (N/P)1/2

122

each partition’s internal DOFs IP are

IP = n2 − 4n ≈ n2 ≈ N/P

The complexity of PARDISO solver symbolic factorization is O(N/P), numerical

factorization is O(N/P)3/2 and triangular solve complexity O(N/P). For the 2

dimension mesh the complexity of SP
bb Algorithm 3 has to be calculated for every

line. The line 4 complexity for BP right hand sides is O(IPBP) = O((N/P)3/2),

the line 5 complexity is O(IPB
2
P) = O((N/P)2), and finally for line 6-8 complexity

is O(B2
P) = O(N/P). So the total complexity of calculating SP

bb for 2D is

= O((N/P)3/2 + (IP log IP)BP + IPB
2
P +B2

P),

= O((N/P)3/2 + (N/P)3/2 + (N/P)2 +N/P),

= O((N/P)2).

Now, for the total complexity, the total interface DOFs B in mesh is:

B = S2n = P (N/P)1/2 = (NP)1/2.

The complexity of the computation of αB is:

O(B3/2) = O((NP)3/4). (5.1)

Hence, complexity of Distributed Direct Solver for 2D mesh is:

= O((N/P)2) +O((NP)3/4). (5.2)

123

5.4.2.2 3-Dimensional Mesh

Let a 3D cube mesh shown in Figure 5.3b is partitioned into S partitions as in

each dimension. The total number of partitions P in cube is:

P = S3,

and the total number of DOFs N in the cube is equal to

N = (nS)3 = n3P,

and

n =

(
N

P

)1/3

.

The cube partitions share faces with each other and the DOFs which lies on any

of the partition face will be interface DOFs. For any partition in a Figure 5.3b the

number of interface DOFs are denoted as BP .

BP = 6((n+ 1)2)− 12N − 8 ≈ (n)2 ≈ (N/P)2/3,

each partition’s internal DOFs IP are:

IP = n3 − n2 ≈ n3 ≈ N/P.

For 3D meshes complexity of PARDISO solver symbolic factorization isO((N/P)4/3),

numerical factorization isO((N/P)2), and triangular solve complexity isO((N/P)4/3).

The complexity of SP
bb Algorithm 3 has to be calculated for every line. The line

4 complexity for BP right hand sides is O(IP
4/3BP) = O((N/P)2), the line 5

complexity is O(IPB
2
P) = O((N/P)7/3), and finally for line 6-8 complexity is

O(B2
P) = O(N/P)4/3. So the total complexity of calculating the SP

bb in 3D mesh

124

is

= O(I2
P + I

4/3
P BP + IPB

2
P +B2

P),

= O((N/P)2/3 + (N/P)2 + (N/P)7/3 + (N/P)4/3),

≈ O((N/P)7/3).

Now in 3D cube mesh, the total interface DOFs B is:

B = s3n = P (N/P)1/3 = N1/3P 2/3,

The complexity of computation of αB is:

O(B2) = O(N2/3P 4/3).

Hence, the total complexity of the Distributed Direct Solver for 3D mesh is:

= O((N/P)7/3) +O(N2/3P 4/3).

5.4.2.3 D-Dimensional Mesh

The total number of partitions in mesh is

P = SD.

Total number of DOFs N in cube is equal to

N = (nS)D = nDP

so n becomes

n = (N/P)1/D

125

The number of boundary DOFs in a partition of D dimensional mesh is

BP ≈ (n)D−1 ≈ (N/P)(D−1)/D,

than number of internal DOFs IP for a partition is equal to

IP = nD − nD−1 ≈ nD ≈ N/P.

The complexity of computing SP
bb is

O((P/N)(3D−2)/D). (5.3)

Now the total interface DOFs B in the mesh is

B = sDn = P (N/P)1/D = N1/DP (D−1)/D.

than the time complexity of αB computation is

O(B2) = O((N1/DP (D−1)/D)2). (5.4)

Hence, the total time complexity of the Distributed Direct Solver for D dimensional

mesh is

= O((P/N)(3D−2)/D) +O(N2/DP 2(D−1)/D). (5.5)

5.5 Distributive Hybrid Solver

The DS solver allowed user to solver large systems of linear equations on dis-

tributed memory systems. The Sbb is a dense matrix, its dimension is smaller

than the dimension of A but the amount of data stored in Sbb is more than A.

The total number of non zero entries in A for CUBE6 mesh is 16371949 and the

126

CUBE6 (3D Elasticity) A NNZ=16371929

Partitions CON I DOF Sbbii NNZ Data SMMM SMVV

2 8886 39484725 14.45 162.50

3 14649 106973378 29.39 443.13

4 18267 136116856 35.93 548.88

5 21816 160683485 41.24 625.40

6 23982 170170868 42.93 613.95

7 26055 171712080 43.13 580.08

Table 5.2: The table represents timing to collect CUBE6 Sbb into SMMM and
SMVV continers. Interface DOFs increase with the increase in partition count.
The amount of non zero data in Sbb also increases with the raise in partition count.

number of non zero entries in Sbb for CUBE6 meshes divided into multiple par-

titions are shown in Table 5.2. With the increase in number of partitions, the

number of interface DOFs increases and so does the amount of non-zero entries

in Sbb. In FEDirectSolverMPI the Sbb is contained in SMMM container which

is composed of binary tree. On Linux OS the STL std::map container does not

release acquired memory after the map object is deleted. This method is used to

maintain efficiency and avoid reallocation of map memory until it is absolutely

necessary. The fourth and fifth columns in Table 5.2 represent the time consumed

to add the number of non zero entries into Sbb for SMMM and SMVV containers,

respectively. The SMVV container is composed of std::vector and as the SMVV

object is destroyed it returns all its allocated memory to OS. The SMVV is a

memory efficient sparse matrix container which stores only column id and value

for each entry. This container is not suitable for the densely populated matrix

with random order data entry. The SMMM is very efficient data container which

has data insert and lookup complexity is O(logn)[71]. The map is a binary tree

which atleast store 3 pointers (left child, right and parent nodes) for each data

entry (index and value). It consumes at least three times more data than SMVV

and also does not release all the memory when the container is destroyed.

127

A new distributed solver is introduced into the FEDomain package called Dis-

tributed Hybrid Solver (DHS). In DHS solver the ”Conjugate Gradient” iterative

method is used to calculate αB. The iterative solver calculates the solution by

the computing residual vector in each iteration. The residual vector is calculated

in parallel as shown in (2.78). To keep the distributed direct and iterative solver

is alike, the αB are calculated in the master process. In iterative solver αB is

computed by multiplying each partition’s SP
bb by the approximate global solution

d to calculate the residual vector ~rP . These are added together to calculate ~r. The

Conjugate Gradient (CG) solver is implemented in FEDomainMPI and its algo-

rithms is a modified version of the algorithm given in [13] on p.23. The algorithm

is modified to be implemented on distributed memory system. The detailed of the

implemented algorithm is given in Algorithm 4.

1 g =
∑i<N

i=0 bi
2 δ0 = gTg
3 β = 0
4 while NotConverged(δ0) do
5 d = g + βd
6 MPI Bcast(d)

7 h =
∑P<N

P=0 h
P =

∑P<N
P=0 ((ΛP

b)TSPbb)d
8 MPI Reduce(h)
9 τ = δ0/(d

Th)
10 x = x+ τd
11 g = g + τh
12 δ1 = gTg
13 β = δ1/δ0

14 δ0 = δ1

15 MPI Bcast(δ0)

16 end

Algorithm 4: Conjugate Gradient Parallel Algorithm.6

The lines 1, 5 and 7 in Algorithm 4 have to be performed by all the client

processes. In line 1 all the non Dirichlet interface DOFs load values are added

together for all the processes and stored in the master process. In line 4 the value

128

of d is computed and spread to all the clients. The d is an approximate solution

vector which is distributed to all the client process to calculate their residual vector

hP . For the first iteration d is equal to g. All the client’s residual vector hP are

summed on master object to obtain h. The master object performs the rest of

the steps in the algorithm while the other process wait for d. At the end of each

iteration all the client objects receive the convergence information δ0 from the

master object.

In FEDomain package DHS is implemented as FEHybridSolverMPI class. The

DHS is selected by setting the DISTRIBUTED SOLUTION METHOD equal to

DIS HYBRID SOLVER. The FEDomainMPI interface is the same for both direct

and hybrid solvers, and the user can switch between these solvers by only chang-

ing a single parameter in FEDomainMPI constructor. In DHS, each partition is

allocated to a single client MPI process or vice versa. The master process is fixed

for iterator solver and no partition is allocated to it. The DHS processes commu-

nicate with each other through MPI and perform internal calculations in parallel

using OpenMP. The matrix vector multiplication in line 7 of Algorithm 4 is per-

formed by client processes FEHybridSolverMPI objects. The DHS objects store

S
Pj
bb for allocated partition Pj in a memory efficient CSR format which is a set of

std::vectors which allows fast memory access as well as requires minimum amount

of memory to store data.

129

CB3 2205745 (3D Elasticity) DOFs=6617235

MPI OMP Mesh Interface DOFs Conjugate Gradient Solution

Process Thread Partitions Internal Dirichlet SP
bb Iterations Time Time

192 1 191 633963 30234 375.014 2052 1057.18 1331.97

96 2 95 486843 22317 672.141 2353 1857.68 2278.23

48 4 47 356334 16233 1562.80 1382 1545.59 2856.83

24 8 23 255321 11799 3673.94 1160 1931.52 5688.76

23 8 22 249747 11601 3794.24 911 1672.06 5549.42

22 8 21 237885 11409 4310.35 1068 1763.82 6163.64

21 8 20 236718 10731 4297.23 1131 2173.39 6570.60

20 8 19 230391 10257 5504.83 1881 3396.74 9001.51

19 8 18 214725 10320 5294.10 1827 3401.25 8813.33

18 8 17 218469 10212 6516.16 943 2707.64 9513.44

17 8 16 215121 9825 6370.11 1250 2940.29 9554.00

Table 5.3: DHS solver timing solution timing for CB3 2205745 mesh for partitions
16 to 23,47,95 and 191.

CB3 2205745 (3D Elasticity) DOFs=6617235

MPI OMP Mesh Conjugate FEDomain

Process Thread Partitions SP
bb Gradient Solution

192 1 191 16.99 2.78 7.17

96 2 95 9.48 1.58 4.19

48 4 47 4.08 1.90 3.34

24 8 23 1.73 1.52 1.68

23 8 22 1.68 1.76 1.72

22 8 21 1.48 1.67 1.55

21 8 20 1.48 1.35 1.45

20 8 19 1.16 0.87 1.06

19 8 18 1.20 0.86 1.08

18 8 17 0.98 1.09 1.00

17 8 16 1.00 1.00 1.00

Table 5.4: This is a speedup graph of the DHS solver for CB3 2205745 mesh. This
graph shows the relative speedup graph as the solution was not possible for the
15 partition mesh. The speed up is calculated relative to 16 partitions execution
timing.

130

CB3 2205745 (3D Elasticity) DOFs=6617235

MPI OMP Internal Interface

192 1 29004 11313

96 2 61566 16722

48 4 126192 28416

24 8 261438 44163

CB2 1157354 (3D Elasticity) DOFs=3472131

192 1 14970 6882

96 2 31365 10956

48 4 65532 17649

24 8 135993 28890

Table 5.5: Mesh partitions internal and interface DOFs for the biggest partition.

FEDomain DHS is a parallel implementation of Conjugate Gradient method

shown in Algorithm 4 which does not require assembling of Sbb on the master

node. We now show the performance in the case of a 3D elasticity problem in the

mesh CB3 2205745. The CB3 2205745 mesh has 6,617,235 DOFs. The FEDomain

DS was not able to compute the solution of CB3 2205745 due to the shortage of

memory required to accommodate Sbb on the master node. The DHS enabled to

solve the CB3 2205745 mesh on the same machine, but while using more than

15 computational nodes with 8 OpenMP threads. Meanwhile, for CB3 2205745

mesh with less than 15 partitions due to lack of the available memory required

by PARDISO to compute SP
bb, the applications were aborted abnormally. Table

5.3 represents the timing of the CB3 2205745 mesh using different number of MPI

process and OpenMP threads. In each case each MPI process is allocated a par-

tition except for the master process. Each MPI process internal computations are

executed in parallel using OpenMP threads. Table 5.3 provides the timing for

different stages of the DHS solver. The SP
bb column represents the time taken for

computing the SP
bb and ~v

Pj
b of each partition. The timing value in the column is the

longest time taken among the client processes. The conjugate gradient columns

represent the number of iterations and time taken by the iteration solver to com-

131

pute the solution of IDOF0. The last column represents the solution time taken

by the DHS solver. It includes construction time, Schur’s Complement time, and

Conjugate Gradient time. The first row represents the MPI processes where each

has sequential code in it. The second row represents the combination of MPI pro-

cesses and OpenMP threads as in each MPI process computation is distributed

between two OpenMP threads. The total partitions are reduced to half as com-

pare to first row. As the number of partitions reduces so does the mesh total

interface DOFs but on other hand the number of interface and internal DOFs on

each partition increases. The increase in the interface DOFs count increases the

computational time for each partition’s Schur Complement as shown in Table 5.5.

Table 5.4 is the speed up table. The DHS has achieved maximum speed up of 17

for the SP
bb calculation and 7.17 speed up for the total execution time. The total

speed up has reduced due to the Conjugate Gradient solver methods. The number

of TDOFs increase with the number of partitions.

132

CB2 1157354 (3D Elasticity) DOFs=3472131

MPI OMP Mesh Interface DOFs Conjugate Gradient Solution

Process Thread Partitions Internal Dirichlet SP
bb Iterations Time Time

192 1 191 434760 20049 133.364 1067 295.326 370.179

96 2 95 335061 15129 381.786 1002 421.115 690.428

48 4 47 247515 11157 577.497 856 609.054 1305.27

24 8 23 186030 8799 1311.99 744 827.42 2171.85

23 8 22 176631 8490 1244.39 757 701.50 1977.21

22 8 21 176175 8325 1524.53 724 746.22 2313.68

21 8 20 169110 7962 1652.87 779 848.97 2544.15

20 8 19 163437 7743 2321.81 710 883.42 3261.63

19 8 18 158199 7395 1894.88 774 1037.08 2968.63

18 8 17 153309 7059 2195.67 779 997.33 3242.75

17 8 16 146265 6741 2096.10 707 813.67 2965.78

16 8 15 142086 6702 2330.80 677 977.66 3358.46

15 8 14 142248 6411 2716.23 713 1168.94 3953.82

14 8 13 128745 5928 3073.86 764 1139.70 4282.56

13 8 12 124263 5502 3454.59 691 1054.07 4600.39

12 8 11 115584 5385 4055.93 643 1126.87 5287.67

11 8 10 115392 5163 5089.73 770 1685.30 6918.78

10 8 9 109299 4851 4688.47 650 1147.04 5965.95

9 8 8 97059 4122 5843.30 775 1507.39 7495.50

8 8 7 88377 3840 6700.81 510 731.81 7590.46

7 8 6 81801 3783 8147.06 553 907.70 9409.74

6 8 5 73593 3201 11594.1 665 1380.11 17423.9

Table 5.6: DHS iterative solver timing for CB2 1157354 mesh with DOFs=3472131
for partitions 5 to 23,47,95 and 191. The mesh is used to solve the Elasticity 3D
problem.

133

CB2 1157354 (3D Elasticity) DOFs=3472131

MPI OMP Mesh Conjugate FEDomain

Process Thread Partitions SP
bb Gradient Solution

192 1 191 86.94 4.67 47.07

96 2 95 30.37 3.28 25.24

48 4 47 20.08 2.27 13.35

24 8 23 8.84 1.67 8.02

23 8 22 9.32 1.97 8.81

22 8 21 7.61 1.85 7.53

21 8 20 7.01 1.63 6.85

20 8 19 4.99 1.56 5.34

19 8 18 6.12 1.33 5.87

18 8 17 5.28 1.38 5.37

17 8 16 5.53 1.70 5.87

16 8 15 4.97 1.41 5.19

15 8 14 4.27 1.18 4.41

14 8 13 3.77 1.21 4.07

13 8 12 3.36 1.31 3.79

12 8 11 2.86 1.22 3.30

11 8 10 2.28 0.82 2.52

10 8 9 2.47 1.20 2.92

9 8 8 1.98 0.92 2.32

8 8 7 1.73 1.89 2.30

7 8 6 1.42 1.52 1.85

6 8 5 1.00 1.00 1.00

Table 5.7: DHS iterative solver speedup for CB2 1157354 mesh with
DOFs=3472131 for partitions 5 to 23,47,95 and 191. The mesh is used to solve
the Elasticity 3D problem.

The CB2 1157354 is a 3D mesh with 3472131 DOFs which is triangulated into

tetrahedron and triangle elements. FEDomain DHS solver timing information for

solving the CB2 1157354 mesh having 5 to 23,47,95 and 191 partitions is given in

Table 5.6 and attained relative speedup in Table 5.7. It shows the same timing

pattern of both the meshes. The cb2 1157354 and cb3 2205745 meshes cannot be

134

solved on a single computational node. The cb2 1157354 mesh with less than 5

partitions could not be solved due to shortage of memory required to compute

the partitions Schur’s complement matrix and vector. The SP
bb has achieved 86.84

speeup for 192 processes and Conjugate Gradient algorithm has achieved 4.67

speedup. The DHS solver has achieved speedup of 47.07 in total. The Conjugate

Gradient method speedup is not constant as it involved MPI communication and

number of iterations are unpredictable.

5.5.1 Distributed Hybrid Solver Mathematical Model

In the Conjugate Gradient algorithm the most computationally intensive task is

matrix vector multiplication to compute h. It has a computational complexity of

O(B2) for each iteration if it is performed on a processor using Sbb. In FEDomain

DHS matrix vector multiplication is performed in parallel on each partition as

shown in Algorithm 4 Line 7. The SP
bb matrix is B2

P dimension matrix which

is densely populated so the computational cost of each iteration matrix vector

multiplication is O(B2
P). The computational complexity of partitions SP

bb and ~vPb

for 2D and 3D meshes are in (5.1) and (5.3) respectively. The computational

complexity of FEDomain DHS for 2D mesh is

= O((N/P)2) +O(N/P)

and for 3D mesh computational complexity is

= O((N/P)7/3) +O((N/P)4/3)

and for any arbitrary D dimension mesh computational complexity is

= O((N/P)(3D−2)/D)) +O((N/P)2(D−1)/D).

135

5.6 Conclusion

In this chapter we have discussed implementations of distributed memory fi-

nite element solvers. The are two distributed memory solvers (direct and hybrid)

are implemented in the FEDomain package. These solvers are implemented using

domain decomposition methods. The distributed direct solver gathers Schur com-

plement data Sbb and ~vb to compute interface DOFs solution using a third party

solver. The Sbb is a densely populated matrix and the transfer of data from client

objects to master object is an inefficient task. The data count of Sbb increases

with the number of interface DOFs which is directly proportional to the number

of mesh partitions as can be seen in Table 5.1. The table has the upper triangle

count of Sbb it does not depict the amount of data transferred to master object.

The experiment showed that amount of data transferred are much greater than

shown in Table 5.1.

The distributed hybrid solver is implemented to overcome the disadvantages of

distributed direct solver. In distributed hybrid solver, the interface DOFs solution

is computed using Conjugate Gradient solver given in Algorithm 4. This imple-

mentation does not require assembly of Sbb and ~v. The amount of data transferred

among the FEDirectSolverMPI objects is small as compare to the distributed di-

rect solver.

136

Chapter 6

FEDomain Residual Methods

The FEDomain package was initially implemented to calculate residual vector

~r for the iterative linear algebra solver algorithms like Jacobi and Conjugate Gra-

dient methods implemented. The residual computation involves matrix vector

multiplication in every residual iteration. The residual is a computation intensive

task which has to be computed efficiently to reduce the total computation time

of the developed application. There are two methods for calculating the residual

vector, namely the Full Assembly (FA) and Element by Element (EBE) methods.

The mathematical model of both residual methods has already been discussed in

Section 2.2.2. These methods require the same elements data (~bk,Ak and Λk) but

require different internal implementation with regards to storage and calculation

algorithms. In FEDomain the residual computation class is added as the FER-

esidual class which is initially implemented as standalone library for the shared

memory machines. This chapter discusses development life cycle for the FER-

esidual class from very first implementation to the current/latest implementation.

During the FEResidual class development, the Jacobi iterative method is used as

137

linear algebraic solver. The algorithm used is given in Algorithm 5.

1 D = diag(a−1
ii);

2 while α not converged do

3 ~r = ~b−A~α;

4 α+ = D~r;

5 end

Algorithm 5: Jacobi iterative method used to calculate solution in

FEResidual class testing.

6.1 FEResidual Version 1

6.1.1 Interface

The FEResidual class interface given in Listing 6.1 contains the class definition.

The FEResidual class constructor requires the vector of user element pointers and

total number of DOFs. The element has two arguments where the first argument is

a pointer to a vector of the user elements pointers and second argument is the total

number of DOFs in P . The Listing 6.1 has two residual functions. The residual FA

implements the FA residual method and the residual EBE implements the EBE

residual method. The residual functions have same signatures. These methods

receive a vector of approximate solution vector αg and return residual vector ~r.

template <typename TElement>

c l a s s FEResidual{

pub l i c :

FEResidual (std : : vector<TElement∗> ∗ elements , s i z e t total DOFs) ;

std : : vector<double> res idua l FA (const std : : vector<double>& X) ;

std : : vector<double> res idual EBE (const std : : vector<double>& X) ;

} ;

Listing 6.1: FEResidual Interface

138

The FEResidual class has to collect each elements data (~bK , AK and ΛK) to

calculate the residual. The elements data is collected once at it remains unchanged

through the iterations. The user of the FEDomain has to implement their element

classes in C++. The FEDomain package has provided definition of the element

interface methods in the Listing 6.2. The user has to implement these methods

into its C++ element classes to make these compatible with the FEResidual class.

The FEResidual is a template class which requires abstract base element class

as a template parameter. The user has to implement the abstract base element

class and define interface methods in the Listing 6.2 as pure virtual functions. All

the user element classes should be inherited from the abstract element class. The

standardization of the element interface allows the FEResidual object to gather

data from user elements. To carry out this concept we make use of polymorphism.

v i r t u a l std : : vector<double>& getLoad () ;

v i r t u a l gmm: : dense matr ix<double>& g e t S t i f f n e s s () ;

v i r t u a l gmm: : dense matr ix<double>& getConnect iv i ty () ;

Listing 6.2: Element Interface Methods

6.1.2 Implementation

In the FEResidual class first version, all the matrix vector manipulations are

implemented using third party matrix manipulation library, GMM++ [3]. The

FEResidual object accesses elements data using container references provided by

elements objects. FEResidual class includes the GMM++ library and uses to com-

pute the residual vector. The user should have the knowledge about the GMM++

library as element objects have to provide AK and ΛK in the GMM++ compati-

ble data structures gmm::dense matrix. The element load vector is provided in the

std :: vector < double > and it is also compatible with the GMM++. The user

elements provide their load vectors and stiffness matrices using local numbering,

and connectivity matrices are used to map their data from local DOF numbering

139

into global DOF numbering. The user interface in the Listing 6.2 requires the

user elements to construct and populate these data containers and provide their

references to the FEResidual objects for calculations.

6.1.3 Drawbacks

The FEResidual class performs all computations using GMM++ matrix manip-

ulation functions like multiplication and addition. The element interface forces the

user to implement its element classes using GMM++ or at least provide GMM++

supporting interface in Listing 6.2. The restriction affects previously implemented

user element classes which do not support GMM++. These element classes have

to be altered to support Listing 6.2. The modifications can be complicated, trou-

blesome and prone to errors in the code. The residual class interface is not generic

in nature as it does not support element classes implemented using any data con-

tainers. The interface enforces the elements objects to keep a copy of ~bK , AK and

ΛK in specific data containers. It is considered as wastage of memory in some

finite elements implementations.

6.2 FEResidual Version 2

The FEResidual Version 2 is implemented to overcome the drawbacks for the

FEResidual Version 1. The main objective of the FEResidual version 2 is to add

support for the user elements classes using the third party data containers. The

FEResidual interface is shown in Listing 6.3 where it is templated to elements data

types. In FEResidual version 2 the FEResidual class has four template parame-

ters. The first template parameter represents the abstract element class as it was

in version 1. The second template parameter represents the one dimensional con-

tainer used by the elements to return load vector. The third template parameter

represents the two dimensional matrix type used as a container in element class

to store stiffness and connectivity matrix. The last template parameter type is

140

also a one dimensional container, which will be used to store the residual vector in

residual calculation. It is possible that a user uses different one dimensional data

containers in the elements and the residual methods.

6.2.1 Interface

The change in FEResidual class interface requires changes in element interface.

The abstract element class should have an interface shown in the Listing 6.4.

All the user element classes should use the same set of data structures, which are

represented by the template parameters TE Vector and TE Matrix. The interfaces

in the Listings 6.3 and 6.4 keep element class modifications.

template<typename TElement , typename TE Vector ,

typename TE Matrix , typename TG Vector>

c l a s s FEResidual{

pub l i c :

FEResidual (std : : vector<TElement∗> ∗ element , s i z e t total DOFs) ;

TG Vector res idua l FA (const TG Vector& X) ;

TG Vector res idual EBE (const TG Vector& X) ;

} ;

Listing 6.3: FEResidual version 2 interface

c l a s s Element{

v i r t u a l TE Vector& getLoad ()=0;

v i r t u a l TE Matrix& g e t S t i f f n e s s ()=0;

v i r t u a l TE Matrix& getConnect iv i ty ()=0;

} ;

Listing 6.4: Generic Element Interface

6.2.1.1 Requirements of Template Parameters

The interface in Listing 6.3 allows a user to template FEResidual with any set

of element classes. All the user element classes should be using the same data con-

141

tainers. All the user selected data containers cannot provide similar signatures for

their set and get data functions. The FEResidual class cannot provide support for

all the user provided data containers get function and set function signatures. The

FEResidual library requires from the users to provide data containers which have

specified get function and set function interfaces. The TG Vector and TE Vector

represent one dimensional data containers which should provide [] subscript op-

erator interface to get and set data. The operator should be able to get and set

data from and to a specific location in the container represented by an index. The

container should also have a size() member function to return the dimension of

the container. The one dimensional containers used should support an interface in

Listing 6.5. The first subscript operator interface in Listing 6.5 is used to access

the reference of the memory location needed to update the value. The second sub-

script interface return the copy of the stored value at the location. The TE Matrix

interface is already discussed in Section 3.1. The round brackets operators (,) is

used in TE Matrix interface to set and get data.

c l a s s Vector{

pub l i c :

Vector (s i z e t s i z e) ;

s i z e t s i z e () const ;

double& operator [] (s i z e t index) ;

double operator [] (s i z e t index) const ;

} ;

Listing 6.5: Vector Interface

6.2.2 Implementation

In FEResidual Version 1, the GMM++ library methods were used for all the

internal computations. The FEResidual version 2 is designed to support the el-

ement classes with the generic data containers. A computation kernel FEMath

is implemented in the FEResidual class to perform internal manipulation. It is

142

added to provide support to the generic data containers. The FEMath contains

template methods to perform matrix and vector manipulations such as addition,

multiplication, and transpose. Few examples of these methods interfaces are given

in Listing 6.6.

// Matrix A. and Vector B, C.

//C = A ∗ B.

template <typename TM, typename TV1, typename TV2>

void mul t matr ix vec tor (const TM& A, const TV1& B, TV2& C) ;

// Matrix A. and Vector B, C.

//C += A ∗ B.

template <typename TM, typename TV1, typename TV2>

void mult add matr ix vector (const TM& A, const TV1& B, TV2& C) ;

Listing 6.6: FEMath Interfaces

The FA method requires A and ~b for the residual calculation. For the linear

system of equations, A and ~b have to be constructed once. The construction

of A and ~b from the element’s data is a time intensive task. The FEResidual

class constructs and stores A and ~b before the first residual iteration. These

objects remain for the life time of the FEResidual object. Unlike FA method in

EBE residual method the residual is calculated at the element level. In a residual

iteration, each element data is accessed and its residual vector rK is computed. All

the elements residual vectors are mapped into global residual vector r =
∑

ΛT
KrK .

This method does not require to store elements data in FEResidual object. These

are constructed and provided by the user element objects. These can be accessed

by reference for each iteration manipulation. These residual methods can be called

in any order. The FA method requires more memory then the EBE method since

it needs sA and ~b. The FEResidual class requires user element objects to provide

their data after applying all the constraints.

143

6.2.3 Performance

Table 6.1 represents the performance of the FEResidual Version 2 for the Pois-

son 2D problem using both methods. The FEResidual Version 2 is executed for

multiple meshes.

DOFs Elements Iter. Method Const Time Convgs Time Per Iter Time

239 479 1705 FA 6.178e-05 1.524 8.941e-04

239 479 1705 EBE 6.158e-05 30.20 1.771e-02

956 1913 6090 FA 2.992e-03 102.31 1.6799-02

956 1913 6090 EBE 3.189e-03 1800.23 2.956-01

3741 7483 20511 FA 4.855e-02 5682.47 2.77-01

3741 7483 - EBE 4.917e-02 - -

Table 6.1: FEResidual V2 Timing Table

Table 6.1 shows the timing information of this library using both residual meth-

ods. The total number of iterations and the constructor timing are similar for

both residual methods. The convergence timing of residual methods have huge

timing difference due to the generic interface. In FA method, the element data is

accessed only once before the first iteration to generate the global stiffness matrix

and load vector. The FEResidual object store these in an internally implemented

data containers. These containers enable to implement matrix vector multiplica-

tion efficiently. The EBE residual for an iteration, accesses each element data and

processes these through FEMath kernel. The FEMath does not have the knowl-

edge about the element class data container algorithms. This results in a poor

performance for the residual calculation as shown in Table 6.1. The most time

consuming task is multiplication with ΛK . In each row mostly a single non zero

entry exists. The FEMath access data from all the data indexes during multipli-

cation.

144

6.2.4 Drawbacks

The manipulation and storage algorithms for sparse matrix data heavily affects

the performance of the a finite element software. The idea of using generic third

party matrix and vector containers appeared to be the right approach to design

a library. These have improved memory consumption but have adversely affected

the timing and performance. In object oriented programming, the data container

classes encapsulate the data which can only be accessed via class public interface

methods. The use of third party data container classes refrains the FEMath kernel

to directly access their data and take the advantage of their internal data storage

algorithms. It does not have any knowledge of the container class data storage al-

gorithm. In FEResidual class all the calculations are performed using the FEMath

computation kernel. The FEMath kernel can access the container data through

container class public interface. The element connectivity matrix is sparse in na-

ture where for an element its dimensions are NK × N (where NK � N). The

FEMath kernel is ignorant of the connectivity matrix storage structure and treats

it as a dense matrix. During matrix computation the FEMath kernel will ac-

cess every zero and non-zero entity of the sparse matrix. This method makes the

whole computation very inefficient by performing unnecessary memory accesses

and computations. For FA residual method, A is stored as a sparse matrix and its

container is implemented in the FEDomain package. The knowledge of the data

storage algorithm allows to perform data manipulation efficiently as can be seen

in Table 6.1.

6.3 FEResidual Version 3

6.3.1 Interface

FEResidual version 3 is designed to improve the performance of residual methods

and to make the FEResidual class independent of the third party data containers.

145

The solution of the EBE performance bottleneck is to obtain elements data in

the FEResidual provided data containers. The current element interface does not

allow to provide FEResidual internal data containers, so the only possible solution

is to store elements data internally into the FEResidual object. The current ele-

ment interface methods allow data copying in the FEResidual object by accessing

the element data and copying each entry one by one into the FEDomain internal

containers through their get functions. The copying to elements load vectors and

stiffness matrices is efficient as these are densely populated containers of dimen-

sions NK and NK×NK , respectively. The ΛK is of dimensions NK×N where each

row will be sparsely populated. The lack of user provided data containers internal

memory storage algorithm for ΛK make copying inefficient as most of the data is

zero and will not be stored into a sparse matrix container. In FEResidual object

the copying of the elements data into FEResidual internal data containers cannot

be performed efficiently. The user element has the knowledge of the ΛK , and then

it will be in better position to populate FEResidual objects internal objects. The

new element interface in Listing 6.7 is introduced to increase the performance while

keeping support to generic implementation of element classes. The new element

interface allows the FEResidual object to provide its internal data container to

the element objects. It will be the user elements responsibility to populate these

containers. This interface will allow the FEResidual class to be independent of the

user element classes internal details.

v i r t u a l s i z e t get DOFs count () = 0 ;

v i r t u a l void getLoad (FEVector& l) = 0 ;

v i r t u a l void g e t S t i f f n e s s (FEMatrix& s) = 0 ;

v i r t u a l void ge tConnect iv i ty (FESparseMatrix& c) = 0 ;

Listing 6.7: Element Interface

The element interface in Listing 6.7 allows the FEResidual objects to provide

their internal data containers to elements objects. The data containers will be

146

constructed in the FEResidual object but their size will depend on the element’s

DOFs. The get DOFs count() is added in element abstract interface in Listing

6.7 to get elements DOF counts. The FEResidual class interface is modified as

the FEResidual object does not require knowledge for elements internal DOFs.

The latest FEResidual class in Listing 6.8 has two template arguments, the first

argument represents the abstract base element class and second represents residual

container class.

template <typename TElement , typename TGlobal Vector>

c l a s s FEResidual{

FEResidual (vector<TElement∗> &elements , s i z e t t DOFs) ;

TGlobal Vector res idua l FA (const TGlobal Vector& X) ;

TGlobal Vector res idual EBE (const TGlobal Vector& X) ;

} ;

Listing 6.8: FEResidual Interface Version3

6.3.2 Implementation

In FEResidual version 2, the data manipulation, specially for matrices, is the

fundamental barrier for achieving efficiency. In FEResidual vesrion 3, the data

container required to obtain element data are created and provided to elements

by the FEResidual object. In FEDomain package three data container classes

(FEVector, FEMatrix and FESparseMatrix) are added to store element data. To

take full advantage of their internal storage algorithms, these classes also provide

data manipulation functions. This version of FEResidual has omitted FEMath

library as these containers are responsible for their data manipulation.

FEVector is a one dimensional dense data container implemented to obtain the

element’s load vector. The FEVector has [] subscript operator for get and set func-

tions interface. FEMatrix is a two dimensional data container class implemented

for a densely populated matrices like element stiffness matrix. The FEMatrix

147

memory storage algorithm is implemented as std :: vector < std :: vector <

double >>. The FEMatrix get and set functions interfaces are shown in List-

ing ??. For a scarcely populated matrix, the FESparseMatrix class is introduced

in the FEDomain package. It is a two dimensional data container class and it

is provided to an element to get its connectivity matrices. The FESparseMatrix

class has the same interface as the FEMatrix class, but its storage algorithm is

std :: map < size t, std :: map < size t, double >>. The storage algorithm allows

us to add data randomly as the map always keep the data in sorted order, but it

takes almost five time more storage space to store an entry.

The FESparseMatrix is used for element connectivity matrix or system stiffness

matrix. The connectivity data cannot be provided as a vector because it is possible

to have more than one entry in a row.

6.3.3 Performance

In FA residual method, the global stiffness matrix and load vector are con-

structed during the first iteration. The connectivity matrices are used to construct

global structures. The global stiffness matrix is also a sparse matrix. While, in

the EBE method, during each iteration the residual is calculated for each element,

and this calculation involves the connectivity matrix as shown by (2.38). The new

element interface should positively affect both methods. The EBE method should

present a large improvement in performance. This efficiency is displayed in the

performance Table 6.2.

148

DOFs Elements Method Iter. Const Time Convgs Time Per Iter Time

239 476 FA 1705 6.033e-06 54.0355 3.169e-02

239 476 EBE 1705 8.01e-06 119.587 7.014e-02

956 1910 FA 6090 1.615-e05 3454.77 5.673e-01

956 1910 EBE 6090 1.811e-05 1749.08 2.872e-01

3741 7483 FA 20511 5.502e-05 7144.76 3.483e-01

3741 7483 EBE 20511 5.568e-05 429.444 2.094e-02

3721 7443 FA 20129 5.459e-05 7060.44 3.508e-01

3721 7443 EBE 20129 5.511e-05 424.202 2.107e-02

14573 29147 FA 64473 - - -

14573 29147 EBE 64473 1.862e-04 5349.54 8.297e-02

Table 6.2: FEResidual V3 Timing Table

The FA residual method speed has reduced significantly when compared to the

previous version. In the previous FEResidual version, the elements were responsi-

ble for the construction, population and store containers for their local data. The

FEResidual in construction stage accesses elements data. The FEResidual object

practically spend no time in obtaining elements data as these elements only pass

the references of their data containers. In the current FEResidual class imple-

mentation testing the user element classes used do not construct their local data

structures to store AK , ~bK , and ΛK to store memory. These elements populate

the provided data containers by computing local data on request. This makes data

retrieval task more time consuming as can be seen in the Table 6.2. The sparse

matrix provided in this implementation has generic data manipulation functions

like matrix vector, matrix matrix, and transpose matrix matrix multiplication.

The current interface forces the application to perform unnecessary computations

for mapping ΛT
KAKΛK . The first two matrices are multiplied efficiently as AK

is a dense matrix but the product of ΛT
KAK = T 1 is a sparse matrix and most

of the columns in ΛK are empty. Then, T 1ΛK = T 2 is a time consuming task

where most of the columns are empty. Since fetching the value from these columns

will return mostly zero, most of the work done has no advantage as T 2 is a sparse

149

matrix. Since the mapping of ΛT
KAKΛK has to be performed for each element

data, a dedicated function can be added to the sparse matrix class which performs

mapping efficiently by reducing computations and avoiding the temporary matrix

T 1.

In EBE, the data gathering method remained unchanged. The elements data

are accessed in each iteration which means that the elements data are computed

for every iteration. In each EBE iteration the data containers are constructed for

each element according to their DOFs count, plus some extra vectors to assist

in internal calculations. One of the extra vectors is required to map the global

solution u to local solution uK . The residual method has consumed most of the

time creating and deleting elements data containers.

6.3.4 Drawbacks

Confining the generality of the FEResidual class and introducing the compatible

element class interface (given in Listing 6.7) has dramatically affected the perfor-

mance of the FEResidual library. The examination of the FEResidual Version 3

has revealed a number of drawbacks. The residual function returns a vector which

creates a memory copy of residual vector in each residual iteration. The amount

of memory copy in each iteration depends upon N for a mesh. The data copy

increases with the bigger meshes. The second factor is the number of iterations.

If the iterative algorithm used converge slowly, the amount of data copied will be

increased with every iteration.

For the EBE method, the element’s data AK , ~bK , and ΛK is accessed for each

iteration. The recurrent copying of element’s data was selected to keep memory

requirements of the library to a minimum but adversely affects the FEResidual

performance.

150

If a user’s choice of FEResidual method is known at the construction stage,

different optimization techniques can be applied to the FEResidual class. The

current implementation allows the user to call both the residual methods in any

order, and with in the same execution. This is clearly an inefficient option.

6.4 FEResidual Version 4

6.4.1 Interface

The FEResidual version 4 is implemented to improve the performance of the

FEResidual class by removing the design and implementation drawbacks in FER-

esidual version 3. FEResidual Version 4 is given in Listing 6.9. A new parameter

method t is added in the FEResidual class construct. It defines the user’s choice

of residual method (FA or EBE) for the FEResidual object life time. The user

has to select the residual algorithm during construction stage which will be fixed

for the FEResidual object life time. The FEResidual interface in Listing 6.9 has a

single residual function. The signature of the residual function has also been modi-

fied. This method will implement the residual method selected at the construction

stage.

template <typename TElement , typename TG Vector>

c l a s s FEResidual{

FEResidual (vector<TElement∗>& e , s i z e t TDofs , method t r e s) ;

void r e s i d u a l (const TG Vector& X, TG Vector& R) ;

} ;

Listing 6.9: FEResidual Interface V4

6.4.2 Implementation

The confirmation of the residual method at the construction stage enables the

FEResidual object to create the internal memory containers. In case of the FA

151

method, the data containers are constructed to accommodate A and ~b. While for

the EBE residual method, the data containers are constructed to accommodate all

the elements data AK , ~bK , and ΛK , individually. In both the residual methods,

during the construction stage, all the elements data are stored in these containers

and remains for the life time of the FEResidual object.

The new interface has a single residual function which will implement the se-

lected residual algorithm. The signature of the residual method has also been

modified to achieve efficiency. It has void return data and has two parameters.

The first parameter is a constant reference to the approximate solution vector and

the second parameter is a reference to the residual vector. The residual signature

does not return residual vector which enables us to avoid unnecessary memory copy

in every iteration. The user has to provide the residual vector in which all the val-

ues should be set to zero. In FEResidual solver the residual data is added into

the residual container. If the container has not set to zero, then the FEResidual

provided residual data can be corrupted.

6.4.3 Performance

The computational time of the FEResidual Version 4 for both the residual meth-

ods is given in Table 6.3. From the comparison of the EBE method timing for

FEResidual Version 3 and Version 4, it is observed that the constructor timing

has increased and the convergence timing has reduced. The constructor stage

computation time is given in 5th column of Table 6.3. In this implementation, an

additional task of elements data gathering is performed at the construction stage.

The 6th column in Table 6.3 has the time consumed for all the residual iterations.

These timings have significantly improved as all the required elements data are

present in the FEResidual object.

152

DOFs Elements Method Iter. Const Time Convgs Time Per Iter Time

239 479 FA 1705 2.52E-02 3.09E-02 1.81E-05

239 479 EBE 1705 5.96E-02 10.33 6.07E-03

956 1913 FA 6090 3.025E-02 6.12E-01 1.00E-04

956 1913 EBE 6090 9.9541E-03 38.697 6.3541E-04

3741 7443 FA 20129 4.12E-02 7.12 3.47E-03

3741 7443 EBE 20129 4.53E-02 55.76 2.77E-03

14573 29144 FA 64473 7.08 156.90 2.43E-03

14573 29144 EBE 64473 7.54E-02 495.10 7.67E-03

Table 6.3: FEResidual V4 Timing Table

6.5 Conclusion

In this chapter the sequential implementation of the FEDomain package residual

solvers is discussed. The consecutive different versions of FEResidual class is

presented, and their respective short comings are discussed. This process ended

when all the requirements were met in version 4. The aim is to implement a

parallel version of iterative solver for shared memory architecture is discussed in

the next chapter.

153

Chapter 7

FEDomain Shared Memory

Residual Method

In Chapter 6, the FEResidual class was developed as a sequential library. In

this chapter the multi-threaded version of FEResidual class will be developed for

shared memory processor computers.

7.1 FEResidual Version 5

7.1.1 Interface

The FEResidual version 5 is a parallel implementation for shared memory pro-

cessors of FEResidual version 4. The objective of the FEResidual version 5 is to

obtain execution speedup by distributing the computational load among threads.

Each thread will be allocated a fraction of the computational load and each thread

should require a fraction of the time to perform the allocated computations. In

theory, when the computation load is divided evenly between two threads the

computational time should also be reduced to half. These threads will be exe-

cuted in parallel and each thread should finish in almost half the total execution

time. The aim of the FEResidual version 5 is to provide a residual solver which

154

performs efficiently on the generic multi core processor architectures. It should

provide compatible computational time while requiring minimum effort from the

user.

The FEDomain package does not have knowledge about the target processor

architecture. Every processor can support different number of maximum threads.

The FEResidual version 5 interface is shown in Listing 7.1 which has a new pa-

rameter max thread to get available threads. This parameter will allow the user

to select the number of parallel threads being deployed during execution. Both

methods for calculating residual defined in previous versions (FA and EBE), are

also present in this version and the residual method signature remains unmodified.

template <typename TElement , typename TG Vector>

c l a s s FEResidual{

FEResidual (vector<TElement∗>& elements , s i z e t& Total DOFs ,

method t& res idual method , s i z e t& max thread) ;

void r e s i d u a l (const TG Vector& X, TG Vector& R) ;

} ;

Listing 7.1: FEResidual Interface V5

7.1.2 Implementation

In FEReisdual version 5 two new residual calculation methods RANDOM and

WEIGHTED are introduced in addition to the FA and EBE. These methods are

parallel implementations of EBE residual method. In EBE method, the residual

is calculated using elements’ data only. Multiple elements residual vectors can

be calculated simultaneously in parallel threads. The main idea is to divide the

total computational load into sub loads. These sub loads should have similar

computational work loads. The number of sub loads should be equal to the number

of threads so that a single sub load is allocated to each thread. Each thread

should consume similar amount of time to finish execution. For EBE method the

155

total computation load is the number of allocated mesh elements objects. For

the RANDOM and WEIGHTED methods, the set of provided mesh elements are

divided into subsets. The number of subsets will be equal to the number of threads

but the total number of elements in each subset will depend on the distribution

algorithm (RANDOM and WEIGHTED). The aim is for each thread to calculate

the residual vector for the allocated subset of elements in similar time and store

the results in the global residual vector ~r.

For the RANDOM method, it is assumed that all the provided elements have

the same amount of DOFs. The user provided element is considered as the unit of

computation, and sub computational load is measured as the number of elements

provided to each thread. The provided elements are divided into subsets where

each subset contains almost the same number of elements. Each element will be

present in only one subset. This method of load distribution is useful if the elements

have the same number of DOFs, because this would lead to similar computational

load. The WEIGHT method is designed for a non uniform mesh. In this case,

the elements can have variable number of DOFs. The computational load of these

elements will vary and are dependent on the DOFs. The computational cost of

each element varies with the type of problem being solved (Poisson, Elasticity,

Convection Diffusion, etc), location of the element (boundary, interior) and the

mesh dimensions (2D, 3D, etc). The elements are distributed among threads such

that each subset has a similar number of DOFs. The weighted scheduling can be

implemented without modification of element interface as it already has a method

get DOFs count() to retrieve number of element DOFs.

7.1.3 Performance

The Poisson 2D mesh with 3741 DOFs and 7483 elements is used to test the

multi threaded FEResidual version 5 on a quad core Intelr Xeon 5560 processor.

It supports maximum of 8 parallel threads (4 cores in a processor and 2 threads on

156

each core). Table 7.1 displays timing data of EBE, Random and Weight methods

and the speed up achieved by using multi threaded executions. There is no modi-

fication occurred in the FA method so results are not included in the table. The

parallel methods have achieved similar speed up. For example, for 8 threads both

have achieved 5% as can be seen in the Figure 7.1a. The speed up and efficiency

are given in Figures 7.1a and 7.1b respectively.

DOFs Elements Thread Const Time Convgs Time SpeedUP Efficiency

3741 7483 EBE 0.026 36.523 1 100

RANDOM

3741 7483 2 0.026 25.07 1.46 72.85

3741 7483 3 0.019 17.08 2.14 71.28

3741 7483 4 0.026 12.18 3.00 74.95

3741 7483 5 0.026 11.95 3.06 61.12

3741 7483 6 0.020 8.178 4.47 74.44

3741 7483 7 0.026 7.423 4.92 70.29

3741 7483 8 0.020 7.013 5.21 65.10

WEIGHTED

3741 7483 2 0.021 21.94 1.66 83.23

3741 7483 3 0.025 15.93 2.29 76.44

3741 7483 4 0.026 12.05 3.03 75.77

3741 7483 5 0.025 10.19 3.58 71.70

3741 7483 6 0.017 8.333 4.38 73.05

3741 7483 7 0.023 7.519 4.86 69.39

3741 7483 8 0.016 7.093 5.15 64.37

Table 7.1: FEResidual V5 timing for 3741 DOFs and 7483 elements mesh. It took
20511 iterations to converge with the Jacobi mehtod.

157

(a) SpeedUp graph (b) Efficiency graph

Figure 7.1: The data is collected for the 3741 DOFs and 7483 element mesh using
FEResidual V5

The 2D mesh with 14573 DOFs and 29147 elements (triangles and edges) is

solved with FEResidual methods and their timing results are in Table 7.2. The

FEResidual has not achieved the same speed up, as before. Figure 7.4a depicts

the speed up graph which increases with the threads and Figure 7.4b depicts the

efficiency graph which reduces as the threads increases.

158

DOFs Elements Threads Const Time Convgs Time Speedup Efficiency

14573 29147 1 0.0615 530.742 1 100

RANDOM

14573 29147 2 0.0745 501.874 1.058 52.876

14573 29147 3 0.0680 369.132 1.438 47.927

14573 29147 4 0.0741 299.272 1.773 44.336

14573 29147 5 0.0611 292.177 1.817 36.330

14573 29147 6 0.0798 235.565 2.253 37.551

14573 29147 7 0.0821 219.535 2.418 34.537

14573 29147 8 0.0602 192.539 2.757 34.457

WEIGHTED

14573 29147 2 0.0749 501.314 1.058 52.916

14573 29147 3 0.0609 387.388 1.370 45.652

14573 29147 4 0.0644 299.554 1.771 44.278

14573 29147 5 0.0661 249.110 2.130 42.595

14573 29147 6 0.0744 248.579 2.134 35.572

14573 29147 7 0.0684 218.348 2.430 34.712

14573 29147 8 0.0761 198.485 2.673 33.412

Table 7.2: FEResidual V5 Timing Table for mesh with 14573 DOFs and 29147
elements. The solution required 64473 iterations using the Jacobi method.

(a) SpeedUp graph (b) Efficiency graph

Figure 7.2: Data collected for mesh with 14573 DOFs using FEResidaul V5

159

7.2 FEResidual Version 6

7.2.1 Implementation

OpenMP [72] requires its user to define the number of threads, the scheduling

scheme, and a suitable chunk size before the execution of the parallel applica-

tion. For OpenMP, these parameters can be specified at multiple levels. In first

approach, the tuning parameters are defined individually for each parallel region.

The advantage of this method is that it fine tunes the library. Due to large amount

of parallel regions this is not suitable for the FEResidual solvers. These parameters

cannot actually be selected until the executing problem type is not defined. The

second approach is to set these parameters at the run time dynamically through

environment variables. The same parameter values are set for every parallel re-

gion in the application. These parameters can either be set in an application using

OpenMP routines, or as the environment in the console.

FEResidual Version 6 has two residual FA and EBE methods. The FA is not

implemented in parallel as the elements data has to be copied into global stiffness

matrix and load vector. It is observed that OpenMP threads spend more time

idle waiting for the data resource. The EBE method code is reimplemented using

OpenMP parallel regions. The OpenMP enables the user to execute the EBE

residual method as a sequential code by setting OMP NUM THREADS to one,

or parallel by setting it greater than one. The OpenMP provides two methods

to set parameters dynamically. In the first one, the scheduling parameter is set

to AUTO. In this case the compiler selects the scheduling algorithm and chunk

size at compile time. The compiler does not have the information about the

user application implementation and problem size. In the second method, the

scheduling is set to RUNTIME. It defers the scheduling decision until run time.

The FEResidual application parallel regions will take value for scheduler and chunk

size from environment. These values are set using OMP SCHEDULE environment

160

variable. The environment variable OMP NUM THREADS is used to set the

maximum number of threads available to parallel regions. In FEResidual version

6 all the parallel regions scheduler scheme is set dynamically, so the library can

be tuned for different problem types and sizes, for the most optimised execution

time.

The application of the Dirichlet constraints are introduced in FEResidual ver-

sions 6. The implementation of the Dirichlet boundary conditions involves a mod-

ification in the stiffness matrix and the load vector. In FEResidual class the con-

straints are applied at constructor stage during data assembly. The FEResidual

constructor requires Dirichlet constraints ids and values from the user. In Listing

7.2 the second argument of the FEResidual class constructor represents Dirichlet

data. This is of std :: map type, where the key field is Dirichlet DOF id and the

value field represents the Dirichlet value.

The enumeration structure FEType is added into FEResidual class to represent

the residual method to be implemented. The FEType has three methods (FE FA,

FE EBE and FE TBB) of residual computation.

7.2.2 Interface

An abstract element class FEElement has been introduced into the FEResidual

version 6. This class contains the declaration of all the element interface methods

required by the FEResidual object to gather elements’ data. In this version the

abstract FEElement class defined in Listing 3.11 is introduced. The users are no

longer required to provide abstract element class as the template parameter but is

required to inherit its element classes from the FEElement class. The FEElement

class is provided in the FEDomain package and defined in the Section 3.1.

161

The FEResidual interface is modified due to the introduction of the FEElement

class. The FEResidual class does no longer require a first template parameter. As

the FEResidual is implemented for C++ application developer and std :: vector

objectts are used for the consecutive memory data containers. In residual function

class the signature is modified and the user has to provide an approximate solution

αappr and residual r as vectors of size N . The FEResidual Version 6 interface is

defined in Listing 7.2. This interface is designed to be simple and does not involve

any details about scheduling, chunk size, and threads. The method t is enumer-

ated type to represent the selected residual method. The ele max DOFs is the

max number of DOFs in any element of the mesh. This information is required for

efficient internal implementation of residual methods by and the default value is 3.

The total sys DOFs represents total number of DOFs N in a mesh. The Dirich-

let constraints represent the Dirichlet data which includes the Dirichlet DOFs ids

and its value.

c l a s s FEResidual{

pub l i c :

FEResidual (vector<FEElement∗>& l i s t o f e l e m e n t s ,

map<s i z e t , double>& D i r i c h l e t c o n s t r a i n t s ,

s i z e t& total sys DOFs , s i z e t& ele max DOFs ,

FEType& res idua l method) ;

void r e s i d u a l (const vector<double>& approx imate so lut ion ,

vector<double>& r e s i d u a l) ;

} ;

Listing 7.2: FEResidual Interface V6

7.2.3 Performance

The FEResidual Version 6 has been executed on a machine having an Intel Xeon

X5560 2.6GHz processor (quad core and supports 8 threads), 48290 MB RAM and

running GUN/Linux h2.6.18 OS. The Xeon X5560 has 4 computational core and

due to hyper threading it provides 8 threads. The mesh used during execution has

162

3676673 DOFs and 7353344 elements. The Jacobi iterative method is implemented

to compute the solution. Each execution is stopped after 100 iterations. The mesh

is executed with various sets of scheduling schemes, threads and chunk sizes. The

chunk size is selected by dividing the number of elements by the number of threads.

This will approximately equally distribute elements among threads.

Table 7.3 represents the timing data for STATIC scheduler. As the number of

threads increases the application gains speedup, the maximum speedup attained

is 3.3 for 8 threads but on other hand efficiency of the system reduces.

OpenMP Chunk Construct Convergence Per Itera. Total

Threads Size Time Time Time Time Speedup Efficiency

1 7353344 7.442 157.736 1.577 165.178 1 100

2 3676672 5.808 86.918 0.869 92.726 1.78 89.07

3 2451114 5.366 62.349 0.623 67.715 2.44 81.31

4 1838336 7.274 50.805 0.508 58.079 2.84 71.10

5 1470668 8.834 44.618 0.446 53.453 3.09 61.80

6 1225557 10.546 42.787 0.428 53.333 3.10 51.62

7 1050477 10.527 41.563 0.416 52.090 3.17 45.30

8 919168 10.673 39.378 0.394 50.051 3.30 41.25

Table 7.3: The table contains the timing data for the FEResidual V6 EBE method.
The mesh used has 3676673 DOFs and 7353344 elements. The OpenMP Static
scheduler with variable threads and chunk size are used.

Table 7.4 represents the timing data of executions using DYNAMIC scheduler. It

shows that best execution time is not always achieved using maximum threads. For

DYNAMIC scheduler the total time of 49.24 is achieved using 7 threads which has

slightly better than best total execution time attained using STATIC scheduling.

The total time consumed for the thread 5, 6, 7 and 8 threads is almost similar.

163

OpenMP Chunk Construct Convergence Per Itera. Total

Threads Size Time Time Time Time Speedup Efficiency

1 7353344 7.5889 155.607 1.5561 163.1959 1 100

2 3676672 5.4899 89.0070 0.8901 94.4969 1.7270 86.3498

3 2451114 5.0073 64.7203 0.6472 69.7276 2.3405 78.01593

4 1838336 6.7425 52.0522 0.5205 58.7947 2.7757 69.3922

5 1470668 9.0666 44.4322 0.4443 53.4988 3.0504 61.0092

6 1225557 10.0679 42.5227 0.4252 52.5906 3.1031 51.7190

7 1050477 10.4172 38.8230 0.3882 49.2402 3.3143 47.3469

8 919168 10.1966 40.2208 0.4022 50.4174 3.2369 40.4612

Table 7.4: FEResidual V6 Timing Table with 3676673 DOFs mesh having 100
iterations for Dynamic Scheduler with variable threads and chunk size.

Table 7.5 represents the timing data using GUIDED scheduler. The best total

time of 48.96 is achieved using 7 threads but execution time using 5,6 and 8

threads is very similar. This appeared to the best configuration among all 24

different configurations as shown in Figure 7.3. The current design helps to tune

the FEResidual according to hardware and software as it been observed the same

software can behave differently on different hardware.

OpenMP Chunk Construct Convergence Per Itera. Total

Threads Size Time Time Time Time Speedup Efficiency

1 7353344 7.5807 155.976 1.5598 163.5567 1 100

2 3676672 5.9221 94.7639 0.9476 100.6860 1.6244 81.2212

3 2451114 5.1669 65.2900 0.6529 70.4569 2.3214 77.3791

4 1838336 6.6160 51.7542 0.5175 58.3702 2.8021 70.0514

5 1470668 8.9628 44.6589 0.4466 53.6217 3.0502 61.0040

6 1225557 9.9410 44.6084 0.4461 54.5493 2.9983 49.9721

7 1050477 10.4654 38.4932 0.3849 48.9586 3.3407 47.7245

8 919168 10.4771 39.2966 0.3930 49.7737 3.2860 41.0751

Table 7.5: FEResidual V6 Timing Table with 3676673 DOFs mesh having 100
iterations for Guided Scheduler with variable threads and chunk size.

164

Figure 7.3: Timing Graph for OpenMP scheduling algorithms for 1 to 8 threads.

(a) SpeedUp graph (b) Efficiency graph

Figure 7.4: The data is collected for the mesh with 3676673 DOFs on Intel X5560
by FEResidual Version 6 (EBE method). It displays data for the complete solution.

Figure 7.5 is the constructor speedup and efficiency graph for the mesh with

3676673 DOFs. It considers OpenMP schedulers (STATIC, DYNAMIC and GUIDED)

for 1 till 8 threads. These results are obtained by executing on a machine having

an Intel X5560 processor with 4 cores and 8 threads. The X5560 processor [4]

has DDR3 memory having three memory channels. Figure 7.5a has the construc-

tion speedup data. The FEResidual constructor attained speedup till five threads.

When the threads increase the constructor timing start to increase. The memory

access is the bottle neck for constructor speed up. The increase in the threads

165

(a) SpeedUp graph (b) Efficiency graph

Figure 7.5: The data is collected for the mesh with DOFs 3676673 on Intel X5560
by FEResidual Version 6 (EBE method). It displays data for the FEResidual
constructor.

required more parallel memory access while the memory channels and their data

transfer rate remains constant. It is believed that after 5 threads the memory

channels cannot keep up the memory requests from the parallel threads. The rate

of memory requests increases with the increase in threads, thus some of the threads

have to stall during constructor for response from memory channels.

(a) SpeedUp graph (b) Efficiency graph

Figure 7.6: The data is collected for the mesh with 3676673 DOFs on Intel X5560
by FEResidual Version 6 (EBE method). It displays data for the FEResidual
residual calculation.

Figure 7.6 is the residual speedup and efficiency graphs for the 100 iterations.

The residual method has achieved a constant speedup with increase in number of

OpenMP threads as shown in Figure 7.6a. It has achieved the 3 speedup for the

eight threads. The residual member function does not has to save large amounts

166

of data into memory, and memory channels do not affect the performance in the

residual function. The residual has achieved the speed up of 4 for all three OpenMP

schedulers in Figure 7.6a. The residual efficiency graph is shown in Figure 7.6b.

The same mesh is also executed on Intel X5650 [5] processor having 6 cores and

12 threads. The X5650 has DDR3 memory with three memory channels. Figure

7.7a and Figure 7.7b depict the speedup and efficiency graphs. The constructor

has the constant speedup rise till 6 threads. The constructor speedup starts to

reduce till 9 threads and speedup becomes constant after 9 threads.

(a) SpeedUp graph (b) Efficiency graph

Figure 7.7: The data is collected for the mesh with 3676673 DOFS on Intel X5650
by FEResidual Version 6 (EBE method). It displays data for the FEResidual
constructor.

Figure 7.8a and Figure 7.8b are the speedup and efficiency graphs for the residual

functions for 100 iterations. The residual function gained speedup till 10 threads

and become almost constant for 10, 11 and 12 threads. The residual behaviour of

the FEResidual class residual method has shown the same behaviour on both the

processors.

167

(a) SpeedUp graph (b) Efficiency graph

Figure 7.8: The data is collected for the mesh with 3676673 DOFs on Intel X5650
by FEResidual Version 6 (EBE method). It displays data for the FEResidual
residual method.

Figure 7.9a and Figure 7.9b are the speedup and efficiency graphs for the entire

solution. The Jacobi iterative algorithm is used to solve a linear system that

represents a large number of iterations to converge to the solution. The constructor

timing and behaviour is not significant as most of the execution time has been used

for residual iterations. The residual iterations have achieved speedup of almost 4

on both processors for the 2D Poisson problem.

(a) SpeedUp graph (b) Efficiency graph

Figure 7.9: The data is collected for the mesh with 3676673 DOFs on Intel X5650
by FEResidual Version 6 (EBE method). It displays data for the FEResidual
solution.

Now the FEResidual is executed with the 3D elasticity problem. For a 3D mesh,

the tetrahedral element performs atleast 144 multiplication and addition for its

168

(a) SpeedUp graph (b) Efficiency graph

Figure 7.10: The data is collected for the 3D mesh with 411939 DOFs on Intel
X5560 by FEResidual Version 6 (EBE method). It displays data for the FEResid-
ual constructor.

stiffness matrix calculation. The tetrahedral element will perform about 16 times

more computation than triangle elements. The 3D elasticity problem in first case

is executed on the Intel X5560 processor for three OpenMP scheduling algorithms.

For each case, the execution are stopped after 100 residual iterations. Figures 7.10a

and 7.10b are the FEResidual EBE constructor speedup and efficiency graphs. The

constructor has showed the same behaviour was in case of 2D Poisson problem.

The FEResidual constructor for 3D elasticity has achieved a speedup of 3. In both

the problem the efficiency reduction are same. Figures 7.11a and 7.11b is the 100

residuals iterations speedup and efficiency graphs for the 3D Elasticity problem.

The residual has speedup of 6 and its efficiency is always above 60. Figures 7.12a

and 7.12b are the speedup and efficiency graphs of the FEResidual class for the 3D

Elasticity problem. The FEResidual iterative method has achieved the maximum

speedup of 4 and efficiency of 60. The FEResidual iterative EBE method has

performed better for the 3D elasticity problem as compare to 2D Poisson problem.

It has speedup of 4 for 3D Elasticity as compare to 3 for 2D Poisson problem. It

has achieved the efficiency of 60 for the 3D Elasticity and 30 for the 2D Poisson

problem.

169

(a) SpeedUp graph (b) Efficiency graph

Figure 7.11: The data is collected for the 3D mesh with 411939 DOFs on Intel
X5560 by FEResidual Version 6 (EBE method). It displays timing data for the
FEResidual method.

(a) SpeedUp graph (b) Efficiency graph

Figure 7.12: The data is collected for the 3D mesh with 411939 DOFs on Intel
X5560 by FEResidual Version 6 (EBE method). It displays data for the FEResid-
ual solution (construction time + 100 residual iterations time).

Now the 3D Elasticity problem is executed on the Intel X5650 processor for

comparison. Figures 7.13a and 7.13b are the FEResidual EBE library constructor

speedup and efficiency graphs. The constructor has achieved speedup of 3 till 7

threads. From 8 onward threads the speedup decreases. The constructor efficiency

reduces with the rise in number of threads.

170

(a) SpeedUp graph (b) Efficiency graph

Figure 7.13: The data is collected for the 3D mesh with 411939 DOFs on Intel
X5650 by FEResidual Version 6 (EBE method). It displays data for the FEResid-
ual constructor.

Figures 7.14a and 7.14b represent the speedup and efficiency graph for the 100

residual iterations of FEResidual residual method. Figure 7.14a represents the

constant increase in speedup for the residual method. It has achieved maximum

speedup of 6. Figure 7.14b represents the efficiency which slowly decreases with

the increase in threads. The lowest efficiency is about 60 percent for 12 threads.

(a) SpeedUp graph (b) Efficiency graph

Figure 7.14: The data is collected for the 3D mesh with 411939 DOFs on Intel
X5650 by FEResidual Version 6 (EBE method). It displays timing data for the
FEResidual method.

Finally, Figures 7.15a and 7.15b depicts the speedup and efficiency graphs for the

3D Elasticity problem on the Intel X5650 processor. The FEResidual has achieved

speedup till 8 threads after it almost constants. Its has reached the max speedup

of 6. The efficiency has reduced with increase in threads. The 3D Elasticity has

171

achieved speed of 6 as compared to the 2D Poisson problem speedup of 3.5. The

same pattern can be observed for the FEResidual constructor and residual.

(a) SpeedUp graph (b) Efficiency graph

Figure 7.15: The data is collected for the 3D mesh with 411939 DOFs on Intel
X5650 by FEResidual Version 6 (EBE method). It displays data for the FEResid-
ual solution (construction time + 100 residual iterations time).

During experiments the Intel XEON X5560 processor (quad core) is used. The

processor provides eight threads using Hyper Threading technology. It is observed

from the experiments that the memory intensive tasks like residual calculation

performs much better with Hyper Threading technology. It can be seen in the

residual calculation charts given in Figures 7.6a, 7.8a, 7.11a and 7.14a. The mul-

tiple threads allow the efficient usage of cores as if one of the threads is waiting

for data, other threads with data can use the core.

The experiments depict that the constructor speedup gained is limited to the

number of cores in the processors. During data assembly for each element its data

container are constructed. The acquisition of the memory efficiency is dependent

on the Memory Management Unit (MMU). When the number of threads increases

the number of cores the requests to the MMU also increases. The MMU cannot

conveniently serve all the threads memory requests and some of the threads have to

wait for the response. The FEDomain constructor speedup for Intelr XEON 5560

processor is shown in Figures 7.5a and 7.10a. For Intelr XEON 5650 processor is

shown in 7.7a and 7.13a. The speedup reduces as the number of threads increases

172

the available number of cores.

7.3 FEResidual Version TBB

In this section the FEResidual EBE method parallelism is implemented using

Intel Thread Building Blocks. TBB has been introduced in Section 1.5.

7.3.1 Implementation

The EBE method parallel implementation using TBB library is added into FER-

esidual library as a FEResidual TBB class. The TBB provides loop parallelisation

structures like parallel for, parallel reduce. These parallelisation structures im-

plement the number of loops structures simultaneously without interfering with

each other. The tbb::parallel for template function breaks the iteration space into

chunks and runs each chunk on a separate thread. The parallel for is initialized

by implementing the body object as shown in Listing 7.3, in which the operator()

is a loop body which processes a chunk. The iteration space is represented by a

one dimension range object blocked range provided by the TBB.

template <typename DVec , typename DMat, typename SMat>

c l a s s Accumulate{

p r i v a t e :

s i z e t sDoF ;

vector<Element>∗ p E ; map<s i z e t , double>∗ p Constra in ;

LOAD∗ p L ; STIFFNESS∗ p S ; CONNECTIVITY∗ p C ;

pub l i c :

Accumulate (e l c o n t ∗ p e , LOAD DATA∗ p l , STIF DATA∗ p s , CONN DATA∗ p c ,

map<s i z e t , double>∗ constr , s i z e t S DOFs) : p E (p e) , p L (p l) ,

p S (p s) , p C (p c) , p Constra in (cons t r) , sDoF(S DOFs){} ;

void operator () (const tbb : : b locked range<int>& range) const {

multimap<s i z e t , s i z e t > m D;

multimap<s i z e t , s i z e t > : : i t e r a t o r i t ;

f o r (s i z e t i=range . begin () ; i != range . end () ; i ++){

173

s i z e t eDoF = (∗p E) [i]−>get DOFs count () ;

DVec∗ L = new DVec(eDoF) ;

DMat∗ S = new DMat(eDoF , eDoF) ;

SMat∗ C = new SMat(eDoF , sDoF) ;

(∗p E) [i]−>getLoad ((∗L)) ; (∗ p L) [i] = L ;

(∗p E) [i]−> g e t S t i f f n e s s ((∗S)) ; (∗ p S) [i] = S ;

(∗p E) [i]−>getConnect iv i ty ((∗C)) ; (∗p C) [i] = C;

C−>ap p l y co n s t r a i n ((∗S) , (∗L) , (∗ p Constra in)) ;

}

} ;

} ;

Listing 7.3: Parallel For example

The loop object is invoked by the parallel for construct in accumateParallel as

shown in Listing 7.4. The parallel for requires the range object (blocked range)

and functor to loop body (accu) in Listing 7.4.

void accumula t ePara l l e l (vector<TElement>& Ele Vector ,

map<s i z e t , double>& Constra ins)

{

Accumulate<DVector , DMatrix , SMatrix> accu(&Ele Vector , &v L , &v S ,

&v C , &Constrains , sys tota l DOFs) ;

tbb : : p a r a l l e l f o r (b locked range<int >(0 , E le Vector . s i z e () ,

chunk s i z e) , accu) ;

}

Listing 7.4: Calling Parallel For

The blocked range constructor requires 3 arguments. The first argument is the

index of the first and the second object is the index of the last object. The third

argument is a chunk size, also known as a grain size, and specifies the number of it-

erations for a chunk. If the iteration space is greater than the grain size iterations,

parallel for splits it into separate sub ranges, that are scheduled separately. The

grain size has to be tuned for every problem size. A too smaller grain size leads to

174

relatively high proportion of overhead and for large grain size reduces this propor-

tion, at the cost of reducing potential parallelism. The overhead as a fraction of

useful work depends on the grain size and not on the number of chunks. The TBB

provides auto partitioner class to automatically choose grain size heuristically and

allows user not to specify the grain size. The auto partitioner is an adaptive par-

titioner that limits the number of splits needed for load balancing by reacting to

work-stealing events. It creates additional sub ranges only if threads are actively

stealing work.

In FEResidual TBB class the assembling of data, residual vector computation

and data deletion are implemented in parallel. In FEResidual EBE method the

work load depends upon the number of elements, as in the data assembling phase

elements data can be collected in parallel. The TBB residual method is selected

by setting the solver method parameter to RESIDUAL TBB in the FEDomain

constructor. The FEDomain and element interface are not modified and only a

new residual method TBB is added into method types.

7.3.2 Performance

For TBB there are three variables threads, grain size, problem size, and problem

type. For computing the preformance of TBB residual application three meshes are

used Cube4, Cube5, and Quater9 and the properties of these meshes are in Table

7.6. The TBB residual is tested using the number of available threads provided

by the processing core and the appropriate thread size. The maximum number of

threads is computed using the function provided by tbb :: task scheduler init ::

default num threads(). The chunk size increases logarithmically so the chunk

size used is in range from 1 to 100000 as shown in Figures 7.16 and 7.17. Both

the figures show that, for each grain size, the best results were achieved when the

maximum number of threads was used. The smallest grain size using 1 thread has

the slowest run time. In Figure 7.16 as the grain size is greater than or equal to the

175

Figure 7.16: Residual TBB timing for Cube4 mesh.

number of elements the FEResidual run time becomes constant. For Cube4, 1000

is most optimized grain size, and for Cube5 1000 and 10000 have similar execution

timing. In FEResidual TBB, the number of threads is fixed to the maximum

available threads. The chunk size grows as the number of elements in the mesh

grows so for the Cube4 mesh with 13920 elements has 1000 grain size while for

Cube5 mesh the optimized grain size is 10000. For the 2D meshes Quater9 the

grain size does not grow as in case of 3D Elasticity meshes as from the Figure 7.18

the most optimized grain size is 100 while the DOFs and the number of elements is

greater than Cube4 and Cube5. The grain size has to be optimized for problems.

Mesh Problem Type DOFs Elements
Cube4 Elasticity 3D 7370 13920
Cube5 Elasticity 3D 53906 104640
Quater9 Poisson 2D 920064 1840128

Table 7.6: Mesh Properties

176

Figure 7.17: Residual TBB timing for Cube5 mesh.

Figure 7.18: Residual TBB timing for Quater9 mesh.

177

As mentioned earlier that TBB provides simple partitioner and auto partitioner

classes to implement different algorithms of load balancing among the threads. In

simple partitioner the threads are allocated with a fix sized load chunk to all the

threads except from the last chunk and work stealing is not allowed. While for

auto partitioner task scheduler dynamically vary chunk size according the work

stealing. Figures 7.19 and 7.20 represent the timing and speedup of these three

meshes using both partitioner methods. Figure 7.19 shows the timing information

of these threads using maximum threads. As long as the grain size is ten times less

than the total number of elements, the execution time remains almost the same.

The difference of the timing is negligible. The auto partitioner has performed

better than simple partitioner for cube4 and quater9 mesh but for cube5 sim-

ple partitioner has performed better. The difference for both partitioners timing

as speedup is small. The FEResidual TBB is implemented using auto partitioner

while keeping grain size as tunable parameter which is problem size and type de-

pendent variable.

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Cube4_Auto

Cube4_Simple

Cube5_Auto

Cube5_Simple

Quater9_Auto

Quater9_Simple

Ti
m

e(
Se

c)

Grain_Size

Residual TBB 100 Iterations Timing Graph

Cube4, Cube5 (Elasticity 3D) and Quater9(Poisson 2D) meshes residual timing
forTBB::auto_partitioner and TBB::simple_partitioner for differnet grains size for 100 iterations.

Figure 7.19: Execution time

178

0

1

2

3

4

5

6

7

8

1 10 100 1000 10000 100000 1000000

Cube4_Auto

Cube4_Simple

Cube5_Auto

Cube5_Simple

Quater9_Auto

Quater9_Simple

P
e

rc
e

n
t

Grain_Size

Residual TBB 100 Iterations SpeedUp Graph

Cube4, Cube5 (Elasticity 3D) and Quater9(Poisson 2D) meshes residual speedup with
TBB::auto_partitioner and TBB::simple_partitioner using different grain size for 100 iterations.

Figure 7.20: Speedup graph

7.4 Conclusion

In this chapter the shared memory version of FEDomain residual libraries are

discussed. The RESIDUAL FA and RESIDUAL EBE methods are implemented

using OpenMP while FERESIDUAL TBB is implemented using TBB library. In

next chapter, the distributed memory implementations of the residual methods

are discussed.

179

Chapter 8

FEDomain Distributed Memory

Residual Methods

The Distributed Memory Residual Methods (DMRM) is a set of residual vector

computation methods implemented to calculate a residual vector on a distributed

memory architecture. These are aimed for the iterative solver methods which

are targeted at computing the finite element solution on the distributed memory

architectures. In this chapter the FA and EBE methods are implemented for

the distribute memory architectures. As it has been discussed in Chapter 5, due

to the limitations of C++ language the FEDomain library cannot partition the

provided mesh. The DMRM requires the user to provide the partitioned mesh.

Each provided element should be present in only one mesh partition and should

be aware of its partition id. The mesh partitioning criteria are discussed in section

2.1.4.

The DMRM is implemented as the part of a FEDomainMPI package discussed in

Chapter 5. The user can select the FA or EBE method by setting the DISTRIBU-

TION SOLUTION METHOD to DIS RESDUAL FA or DIS RESIDUAL EBE re-

spectively at the FEDomainMPI constructor. The FEDomainMPI constructor

takes partition ids as a std::vector object so that more than one mesh partition

180

can be allocated to each MPI process. The users are allowed to provide all the

mesh elements to all the MPI processes. All the FEDomainMPI objects filter

their allocated mesh element objects to collect allocated partition’s elements. Each

FEDomainMPI object performs the residual calculation for allocated partition’s

elements. In setSolution function the DOFs solutions are set to every provided

element. The getResidual method for all the MPI process FEDomainMPI object

take the α and provides the residual vector ~r in global DOF numbering N .

For the DMRM solver the FEDomainMPI class getResidual function requires

the user to provide the global approximate solution xα. The users have to at

least provide the solution for the DOFs present in the allocated partitions to

each FEDomainMPI object. The allocated DOFs are represented by ΛP but the

solution should be mapped in N . The user should at least provide ΛT
PΛPxα which

will be a vector of same size as ~r but will only have solutions for the DOFs present in

the allocated partitions. The getResidual function provides the ~r to all the DMRM

objects. The DMRM does not have knowledge of the user implemented iterative

algorithm requirements. It is preferred that in each MPI process the DMRM

FEDomainMPI object will provide ~r to the user. Each MPI process has a single

FEDomainMPI object. In FEDomainMPI object all its allocated mesh partitions

are considered as a single partition. The DMRM objects provide their data (AP , ~bP

and ΛP) in NP numbering. The FEDomainMPI::getResidual function could have

provided ΛT
PΛP~r but during design process it was considered that the user with

no experience of MPI communication may perform all its approximate solution

calculations on a single or on all the processes. This design decision allows the

naive DMRM user to convert their current code (non distributed memory finite

element codes) into parallel applications.

In FEDomainMPI package the DMRM solvers are implemented as FEResid-

ualMPI class shown in Listing 8.1. The FEResidualMPI class is a MPI wrapper

181

around FEResidualFA and FEResidualEBE class for the distributed FA and EBE

solver. This class has to perform the communication on behalf of their residual

classes objects. In DMRM the set of elements allocated to each MPI process is

considered as one element. Each MPI process DMRM object collects allocated

partitions elements data (AK and ~bK) and stores the elements data into process

internal DOFs ids NP as AP and ~bP as shown in (2.47) and (2.55). The global

residual vector ~r is computed by summing all the FEResiudalMPI objects’ ~rP as

shown in (8.1). The FEResidualMPI object’s residual vector ~rP for the FA method

is calculated for each partition through (8.2), and stored in using NP . The global

residual is calculated through (8.3).

r =
∑
Pi∈P

ΛT
p rp (8.1)

where rp = ~bp −ApΛpx (8.2)

then r =
∑
Pi∈P

ΛT
p (~bp −ApΛpx) (8.3)

c l a s s FEResidualMPI : pub l i c FESystem

{

pub l i c :

FEResidualMPI (std : : vector<FEElement∗>& Elements ,

FE UINT& s y s t o t a l d o f s ,

FE UINT& max element dofs ,

s td : : vector<FE UINT>& par t i d s ,

s td : : map<FE UINT ,FE DATA>& d i r i c h l e t i d s ,

DISTRIBUTED SOLVER TYPE s o l v e r t y p e) ;

˜FEResidualMPI () ;

FE UINT g e t d o f s c o u n t () ;

FE UINT g e t P a r t i t i o n I d () ;

void getLoad (FEVector &vecto r) ;

void g e t S t i f f n e s s (FEDenseMatrix &matrix) ;

182

void getSystem (FE equation &equat ion) ;

void ge tConnec t iv i ty (std : : vector<FE UINT> &d o f i d s) ;

void s e t S o l u t i o n (std : : vector<FE DATA> &d i r i c h l e t v a l s) ;

void getRes idua l (const std : : vector<FE DATA> &app so lut ion ,

std : : vector<FE DATA> &r e s i d u a l) ;

} ;

Listing 8.1: FEResidualMPI Interface

8.1 Distributed EBE Residual

The EBE residual method already discussed in section 2.2.2 calculates the ele-

ment residual vector rk at the element level using (2.39). The DMRM EBE method

has to collect his allocated partitions elements data (AK and ~bK) for residual cal-

culations. The elements’ data can be stored in multiple formats, these formats are

discussed in following paragraphs.

• In first design all the elements data (AK and ~bK) are stored in DMRM in

the dense matrix and vector, respectively. For the residual calculations the

element data has to be mapped from NK to NP . The user element contains

the information about its DOFs global numbering. For a partitioned mesh,

the elements should have information about their partition ids. The elements

do not have information about the total DOFs in a partition and how to map

their data from NK to NP . The elements’ data can be converted into the

partition NP by two methods:

– Either the element data should be firstly converted from NK to N and

then convert the mapped data into partition’s DOF numbering NP .

– or, for each element the mapping matrix ΛKP (from NK to NP) is

calculated using (8.4) and stored with element data. The computation

of ΛKP is computationally expensive. Suppose a partitioned mesh has

183

10 DOFs, one of its partition has 7 DOFs and contains an element with

3 DOFs. The element’s ΛK is a 3 × 10 matrix with three not zero

entries and the partition’s ΛP is a 7 × 10 matrix with seven non zero

entries. The ΛKP will be 3 × 7 matrix with three non zero entries. The

computation of ΛKP involves 21 multiplications and only 3 of which

yield non zero results which will be stored. 85% of the multiplications

will be wastage of the computational resource and processing time. This

design has to store all the allocated partitions elements data inside the

DMRM EBE solver after mapping the data from the NK to NP . The

elements data have to be stored into the sparse data structures. If the

~rP is calculated using (8.5), then ΛKP is calculated for every element

in every iteration while (8.6) represents the send methods in which

the ΛKP are calculated once and stored to be used in later residual

iterations. This is:

ΛKP = ΛKΛT
P (8.4)

rp =
∑
K∈Pi

(ΛPΛT
K
~bK − (ΛPΛT

KAKΛKΛT
P)ΛPx) (8.5)

rp =
∑
K∈Pi

(ΛT
KP

~bK −ΛT
KPAKΛKPΛPx) (8.6)

• In the second design the elements data is stored in DMRM objects after

applying the Dirichlet constraints and being mapped into NP . For each ele-

ment in a partition, ΛT
KPAKΛKP and ΛT

KP
~bK are stored as stiffness matrix

and load vector, respectively. The ΛT
KPAKΛKP is a sparse matrix of dimen-

sion NP × NP with maximum of N2
K non zero entries see (8.7) below. The

ΛT
KP
~bK is a sparse vector of NP dimensions and NK non zero entries see

(8.8) below. This design allows the DMRM objects to calculate ΛKP once

for each element using (8.4). Then ~rp is calculated using (8.9).

184

AKP = ΛT
KPAKΛKP (8.7)

~bKP = ΛT
KP
~bK (8.8)

rp =
∑
K∈Pi

(~bKP −AKPΛPx) (8.9)

• The additional computation due to sparse matrix multiplication can be

avoided by storing the elements data in NK numbering. The FEDomain-

MPI obtains elements data in dense data structures like dense matrix and

vector. These data structures are memory and computationally efficient.

The AK and ~bK have to be stored in the DMRM solver as their data may

change after applying Dirichlet constraints. The elements connectivity data

remain constant and always remain unmodified so it can be obtained from

the elements at any time. In (8.10), the elements residual vector can be

directly calculated at the element level and firstly stored in N , but provides

residual vector after mapping in partitions’ NP numbering.

rp = ΛP

∑
K∈Pi

ΛT
K(~bK −AKΛKx) (8.10)

This design enabled the DMRM EBE solver to store minimum amount

of data during execution and avoid unnecessary computation by omitting

sparse matrix by sparse matrix multiplications. The (8.1) calculate the global

residual vector by mapping and adding each processes residual vector after

mapping from these from NP to N numbering.

8.2 Distributed FA Residual

The DMRM solver FA residual mode is selected by setting the DISTRIBU-

TION SOLUTION METHOD to DIS RESIDUAL FA. The FA residual method

185

has been discussed in section 2.2.2.1. In DMRM FA residual method every MPI

process will be allocated a single FEResidualMPI object. The user can allocate

each FEResidualMPI object to more than one mesh partition, and each FER-

esidualMPI object treats all its allocated partitions as a single partition. The

mesh partitions should be allocated to only one of the MPI processes. The FER-

esidualMPI object is treated as an element object which will provide its data in

partitions numbering NP . Each of the FEResidualMPI objects in FA mode will

allocate its elements’ data into its stiffness matrix AP and load vector ~bP . The

element data is mapped into partition data as follows.

AP =
∑
K∈Pi

ΛPΛT
KAKΛKΛT

P (8.11)

~bP =
∑
K∈Pi

ΛPΛT
K
~bK (8.12)

The FEResidualMPI for FA method calculates the residual vector through (8.13)

below. For each iteration the AP and ~bP remains unchanged and these are stored

after applying Dirichlet constraints.

rP = ~bP −APΛPxα. (8.13)

The residual vector ~r is computed by adding all MPI process residual vector ~rP

after mapping these from NP to N . During implementation it is observed that

significant time is being spent in transferring the element data between different

mapping systems, especially in acquiring data from elements and setting solution

to the elements. To reduce the mapping time it is decided that data inside DMRM

FA FEResidualMPI object should be stored using global numbering N . In each

FEResidualMPI object the partition stiffness matrix AP and load vector ~bP are

actually stored as ΛT
PAPΛP and ΛT

P
~bP , respectively. The stiffness matrix and load

186

vector are computed as follows:

ΛT
PAPΛP =

∑
K∈Pi

ΛT
KAKΛK (8.14)

ΛT
P
~bP =

∑
K∈Pi

ΛT
K
~bK (8.15)

Storing the partition in N has advantages as the data stored in the partition

stiffness matrix remains the same. The drawback is that the load vector can not

be stored as a dense vector, it has to be stored as a sparse vector.

In the DIS RESIDUAL FA solver the getResidual() function of every FER-

esidualMPI object will receive two std::vector objects of size N from the user. Te

first parameter object represents the current approximate solution provided by the

user. The other object represents the residual vector. The FEResidualMPI object

uses the second object to provide the residual vector to the user. These vectors

represent their data in global DOF numbering N . The getResidual() function

implements the following equation.

ΛT
P~rP = ΛT

P
~bP −ΛT

PAPΛPxα (8.16)

The residual ~r is computed by adding all the FEResidualMPI objects’ residual

vectors ΛT
P~rP as shown in (8.1). All the ΛT

P~rP are present in different MPI pro-

cesses where these processes cannot directly access each other’s memory. There

are two methods to calculate ~r:

• either, all the FEResidualMPI objects ΛT
P~rP are gathered on a single MPI

process and are added to compute ~r. ~r is then broadcast to all other MPI

processes. This method will compute the global values of the DOFs which

are not Dirichlet DOFs and present in more than one partition.

• or, (8.1) can be implemented by using MPI Allreduce with MPI SUM opera-

tor. This method will involve less book keeping. This method is implemented

187

in the FEResidualMPI DIS RESIDUAl FA method.

Table 8.1 contains the timing of the FEDomainMPI DIS RESIDUAL FA for

the Poisson 2D problem. The table contains the timing data for the meshes with

the 3 million and 6 million DOFs. It is observed that the constructor time has

reduced with rise in the number of partitions. The third column in Table 8.1

contains the time consumed by the getResidual method for 101 iterations. The

time consumed for the getResidual method has changed randomly for the parti-

tions. The fourth and fifth columns in Table 8.1 show the time consumptions for

residual calculation and data communication, respectively. In fourth column, the

residual time consumption has reduced with the increase in the number of parti-

tions. In fifth column depicts the MPI Allreduce time consumption which changes

randomly. The DIST Random FA solver behaviours for 2D problem can be seen

in Figures 8.1a and 8.1b.

(a) Mesh with 3,676,673 DOFs (b) Mesh with 6,678,529 DOFs

Figure 8.1: The charts display the timing of the DIST Residual FA solver for the
Poisson 2D problem. Two meshes are used to calculate the construction time
and 100 residual iteration time consumption. The getResidual time is sum of the
residual time and communication time.

188

Processes Constructor Time Residual Time Residual FA Communication

DIS RESIDUAL FA (DOFs = 3,676,673, Poisson2D)

2 5.53 8.40 5.53 2.87

3 3.70 8.63 4.18 4.44

4 2.81 6.47 3.54 2.93

5 2.42 9.11 3.10 6.01

6 2.00 10.91 2.75 8.16

7 1.79 12.74 2.63 10.11

8 1.51 9.14 2.75 6.42

DIS RESIDUAL FA (DOFs = 6,678,529, Poisson2D)

2 10.61 18.01 10.26 7.85

3 6.93 21.53 7.66 13.90

4 5.45 13.52 6.43 7.09

5 4.49 21.89 5.71 16.19

6 3.79 20.97 5.14 15.83

7 3.25 19.94 4.93 13.02

8 2.91 17.10 4.70 12.56

Table 8.1: The FEDomainMPI DIS RESIDUAL FA solver timing results for the
constructor and 101 residual iterations. The FEDomainMPI DIS RESIDUAL FA
solver is executed for the Poisson 2D problem.

(a) Mesh with 3,220,035 DOFs (b) Mesh with 25,461,891 DOFs

Figure 8.2: The figures display the time consumption of the DIST Residual FA
solver for the Elasticity 3D problem. Two meshes are used to calculate the con-
struction time and 100 residual iterations time consumption. The getResidual
time is sum of the residual calculation time and communication time.

189

MPI Assembly Residual Residual Communication Assembly Residual

Processes Time Full Assembly Time Speed Up

DIS RESIDUAL FA (DOFs = 3,220,035, Elasticity 3D)

2 32.40 37.94 33.71 4.22 1.0 1.0

3 22.23 30.77 24.93 5.85 1.5 1.7

4 16.83 22.51 19.02 3.49 1.9 1.7

5 13.85 22.49 16.96 5.54 2.3 1.7

6 11.17 22.48 13.12 6.25 2.9 1.7

7 9.36 21.06 11.51 9.55 3.5 1.8

8 8.53 16.51 10.98 5.53 3.8 2.3

DIS RESIDUAL FA (DOFs = 25,461,891, Elasticity 3D)

3 147.93 168.93 123.50 45.53 1.0 1.0

4 116.89 135.89 104.83 31.50 1.3 1.2

5 90.68 159.86 66.30 93.58 1.6 1.1

6 74.90 140.84 75.38 68.48 2.0 1.2

7 61.37 153.71 66.28 87.42 2.4 1.1

8 47.13 137.43 64.68 72.75 3.1 1.2

Table 8.2: The FEDomainMPI DIS RESIDUAL FA solver timing results for the
constructor and 100 residual iterations. The FEDomainMPI DIS RESIDUAL FA
solver is executed for the Elasticity 3D problem.

Table 8.2 contains the timing of the FEDomainMPI DIS RESIDUAL FA for

the Elasticity 3D problem. The table contains the timing data for the meshes with

the 3 million and 25 million DOFs. It is observed that the constructor timing (given

in second column) has reduced with the increase in the number of partitions. The

third column in Table 8.2 contains the time consumed by the getResidual method

for 101 iterations. The getResidual method time consumption has not reduced

as is in second column. The fourth and fifth columns in Table 8.2 show the time

consumptions for residual calculation and data communication, respectively. In

fourth column the residual time consumption has reduced with the increase in the

number of partitions. In fifth column depicts the MPI Allreduce time consumption

which changes randomly. The DIST Random FA solver behaviours for 3D problem

can be seen in Figures 8.2a and 8.2b.

190

Figure 8.3: The DIS RESIDUAL FA solver time comparison for the mesh with
25,462,891 DOFs solved using different partitions.

Figure 8.3 depicts the DIS Residual FA solver constructor and 100 residual iter-

ations timing for mesh with 25,462,891 DOFs. The solver has executed the mesh

with 4,8,16,24, and 32 partitions. The ReduceAll time consumption in Figure 8.3

has increased with the increase in number of partitions. The getResidual time is

directly proportional to the ReduceALL time consumption. In next section a new

version of the distributed FA method is implemented to reduce MPI Allreduce

time consumption.

8.3 Distributed FA Compressed Residual

The Distributed FA Compressed Residual (DFCR) solver is selected by setting

the DISTRIBUTION SOLUTION METHOD to DIS RESIDUAL FA COMP in

the FEDomainMPI constructor. This method is implemented after the FEEqua-

tion class is introduced in the FEDomain package. This method is selected for

the advanced C++ application developer which has experience in parallel pro-

191

gramming and MPI library. The DFCR is implemented as the FEResidualFAMPI

class which is inherited from the FESystem class to keep the standard interface.

The DFCR is designed to keep the communication to a minimum among the MPI

processes, by storing the data in the compressed format.

The DIS RESIDUAL FA COMP solver classifies the mesh DOFs into two cat-

egories. The first category has the Dirichelet DOFs (dDOFs), the global number

and values for these DOFs are provided by the user at construction time. The

second category is the Internal DOFs (iDOFs), all the non Dirichlet DOFs come

in this category. The iDOFs which are present in only in a single MPI process are

called Process Internal DOFs (pIDOFs), and the iDOFs which are present in more

than one MPI process are called Boundary DOFs (bDOFs). Each MPI process

has a DIS RESIDUAL FA COMP solver object which provides the residual vector

~rp, which represents the pDOFs = (pIDOFs∪ bDOFs). The pIDOFs are present

in one MPI partition and their residual calculation does not require input from

other MPI processes. The bDOFs are present in more than one partitions and

their residual values require contribution from all the MPI processes they belong

to.

Suppose a mesh is partitioned into N partitions. For each partition Pi the inter-

nal DOFs are numbered consecutively and the boundary DOFs are numbered after

all the partitions internal DOFs are numbered. For each partition, the stiffness

matrix AP and load vector ~bP are given in (2.58) and (2.59), respectively.

The global residual vector ~r equation can be written in terms of the global

system of equations for the mesh with N partitions using (2.65) and can be written

as:

192


~r1

...

~rN

~rB

 =


~b1

...

~bN

~bB

−


A11 . . . 0 A1B

...
. . .

...
...

0 . . . ANN ANB

AB1 . . . ABN ABB




α1

...

αN

αB

 , (8.17)

where

ABB =
∑
Pj∈P

A
Pj
BB, (8.18)

~bB =
∑
Pj∈P

~b
Pj
B . (8.19)

The partition internal DOFs residual values are calculated as follows:

~ri = ~bi − (Aiiαi + AiBαB), (8.20)

and the residual values for the boundary DOFs ~rb are calculated as follows:

~rB = ~bB − (AB1α1 ++ ABNαN + ABBαB)

=
∑
Pi∈P

~bPiB − (AB1α1 ++ ABNαN +
∑
Pi∈P

APi
BBαB)

=
∑
Pi∈P

~rPiB =
∑
Pi∈P

(~bPiB −ABiαi −APi
BBαB). (8.21)

The partition’s internal DOFs residual vector can be calculated independently

of each other as can be seen in (8.20). The user can obtain the partitions’ DOFs

through the FEDomainMPI::getConnectivity method. The user has to provide the

approximate solution for pDOFs for each partition. The FEDomainMPI object will

provide the solution for pDOFs. For the FE RESIDUAL FA COMP solver, the ge-

tResidual method takes two vectors of size #pDOFs (number of DOFs in pDOFs).

The first vector is αP , provided by the user, and the second vector is rP , used by the

193

solver to provide the residual vector to the user. The FE RESIDUAL FA COMP

solver is implemented after the FEEquation class into the FEDomain package. It

is implemented as the FEResiduaFAMPI class in the FEDomain package. The

interface of the FEReisudalFAMPI class is given in Listing 8.2. The ~rB is calcu-

lated using (8.21), it requires input from all the FEResidualFAMPI objects. Each

FEResidualFAMPI object calculates ~rPiB . The ~rB values are computed using the

MPI Allreduce function with the MPI SUM operator. This method enables us to

reduce the amount of data being transferred among the MPI processes.

c l a s s FEResidualFAMPI : pub l i c FESystem{

FEResidualFAMPI (std : : vector<FEElement∗>& Elements ,

s td : : map<FE UINT ,FE DATA>& Constra ints ,

FE UINT &SysMaxDofs ,

FE UINT &EleMaxDofs ,

s td : : vector<FE UINT> &Part i t ionIDs ,

MATRIX TYPE MtrxType , SYSTEM TYPE SysType) ;

FE UINT g e t d o f s c o u n t () ;

FE UINT g e t P a r t i t i o n I d () ;

void getLoad (FE vector& v) ;

void g e t S t i f f n e s s (FE dense matrix& m) ;

void ge tConnec t iv i ty (std : : vector<FE UINT>& v) ;

void getSystem (FE equation& e) ;

void getRes idua l (const std : : vector<FE DATA>& approx so lut ion ,

std : : vector<FE DATA>& r e s i d u a l v e c t o r) ;

void s e t S o l u t i o n (std : : vector<FE DATA>& v) ;

} ;

Listing 8.2: FEResidualFAMPI Interface

The timing of FEResidualFAMPI solver is given in Table 8.3 for the Poisson 2D

and Elasticity 3D problems. In FEResidualFAMPI the equation data is acquired

from the user elements in construction stage and its timing is shown in the second

column of Table 8.3. As the number of partitions increases, the number of elements

allocated to single partitions reduces, and so does the construction time. The

194

third column represents the timing for the first residual iteration. In the first

residual vector before the residual calculations the data is assembled smaller data

containers given in (2.58) and (2.59). The third column has the timing for the

first iteration. The fourth column represents the timing for the next 100 residual

iterations, which includes the comparison if the data. The last column represents

the time consumed by FEResidualFAMPI solver including constructor and 101

iterations. These timing are obtained using 8 distributed computational nodes.

Each node had IntelrX5560 processor (4 cores and 8 threads).

Processes Constructor 1st Residual 100 Residuals Execution

Count Time Time Time Time Speed Up

DIS RESIDUAL FA COMP (DOFs = 14699521, Poisson2D)

2 33.33 18.71 31.50 83.54 1.00

3 22.34 10.34 26.63 59.31 1.41

4 16.80 9.10 26.78 52.67 1.59

5 13.51 7.20 27.33 47.95 1.74

6 11.15 6.27 24.22 41.64 2.01

7 9.79 5.32 24.17 39.28 2.13

8 8.63 4.67 18.81 27.44 3.04

DIS RESIDUAL FA COMP (DOFs = 25461891, Elasticity3D)

2 262.40 51.26 150.60 464.26 1.00

3 213.58 42.31 136.38 392.26 1.18

4 164.25 30.80 103.80 301.84 1.54

5 141.24 25.35 101.37 267.96 1.73

6 103.83 20.66 63.87 191.36 2.43

7 91.29 21.01 61.91 174.21 2.66

8 65.77 13.50 49.65 128.92 3.60

Table 8.3: The FEDomainMPI DIS RESIDUAL FA COMP solver timing re-
sults for the constructor and 101 residual iterations. The FEDomainMPI
DIS RESIDUAL FA COMP solver is executed for the Poisson 2D problem and
Elasticity 3D problem.

The DIS RESIDUAL FA and DIS RESIDUAL FA COMP for each partition the

amount of stiffness matrix and load vector data are exactly the same. The differ-

195

ence lies in how the data is stored and the amount of data used in communication.

The DIS RESIDUAL FA COMP stores the data in the CSR format and only the

bDOFs are used for the communication. The number of bDOFs increases with the

number of partitions, but the number of pIDOFs reduces. The amount of time

spent to calculate the residual for the pIDOFs reduces.

Partition Constructor getResidual Assembly Residual MPIReduceAll

ID Time Time Time Time Time

DIS RESIDUAL FA COMP (DOFs = 25461891, Elasticity3D)

1 165.93 128.51 30.21 96.25 20.18

2 167.12 124.24 25.72 77.07 21.44

3 172.37 124.68 26.19 77.20 21.28

4 170.58 130.43 18.63 54.51 57.28

Table 8.4: The table displays the timing for each partition FEResidalFAMPI object
stages for the 4 partition cube mesh. Each row displays the timing step during
construction and residual calculation stage. The last three columns have the timing
data for the three tasks performed in the getResidual method.

Partition Constructor getResidual Assembly Residual MPIReduceAll

ID Time Time Time Time Time

DIS RESIDUAL FA COMP (DOFs = 25461891, Elasticity3D)

1 65.68 52.84 13.49 35.03 4.125

2 63.96 64.00 13.47 35.69 12.49

3 66.75 64.91 10.48 34.88 21.53

4 64.94 66.82 11.84 36.40 18.57

5 67.51 68.29 9.950 33.99 24.31

6 66.33 65.98 11.16 35.32 19.49

7 64.96 65.55 10.26 35.11 20.17

8 65.91 66.79 12.99 37.79 15.98

Table 8.5: The table displays the timing for each partition FEResidalFAMPI object
stages for the 8 partition cube mesh. Each row displays the timing step during
construction and residual calculation stage. The last three columns have the timing
data for the three tasks performed in the getResidual method.

196

The FEResidalFAMPI objects calculation is composed of two stages. In first

stage the FEResidalFAMPI object is constructor. It involves construction of the

internal data structures and acquisition of data from the allocated elements. The

second stage involves calculation of the residual vector. In first residual iteration,

the assembly of data into efficient data structures is performed. The data in

efficient data structures are used to calculate the residual efficiently. The interface

DOFs residual vector global values are computed by performing distributed sum.

The FEResidalFAMPI::getResidual method is divided into 3 sub stages: assembly

of data, residual calculation time and MPIReduceAll time. Table 8.4, Table 8.5,

Table 8.6 and Table 8.7 represent the timing for these stages for the mesh with

4, 8, 16 and 24 partitions, respectively. The 3D cube mesh is used for testing.

The mesh is partitioned using GMSH package. These partitions have almost the

sane number of elements. In these tables it is observed that for each stage, all the

processes have consumed similar timing except for the last column. In Table 8.4

last column values varies between 20.18 sec and 57 sec. For Table 8.5 last column

values varies between 4.125 sec and 24.13 sec. and in Table 8.6 the MPIResduceAll

time column varies between 9.13 sec and 28.86 sec. In the last Table 8.7 the MPI

communication time consumption for the getResidual method for all iterations

varies between 9.35 sec and 44.04 sec. All the timing data is obtained through

the Intelr Trace Analyzer. In future work the improvements will be made in the

FEDomainMPI DIS RESIDUAL FA COMP solver to make MPI communication

timing stable.

197

Partition Constructor getResidual Assembly Residual MPIReduceAll

ID Time Time Time Time Time

DIS RESIDUAL FA COMP (DOFs = 25461891, Elasticity3D)

1 34.82 37.23 5.47 19.87 11.65

2 34.06 36.24 5.18 20.21 10.62

3 34.27 49.92 5.34 18.79 25.58

4 33.95 49.68 5.28 19.26 24.97

5 33.54 57.86 5.03 18.57 28.86

6 34.74 51.19 5.79 18.52 26.86

7 34.51 34.12 5.07 19.67 09.36

8 35.57 34.18 5.27 19.76 09.13

9 35.06 48.72 5.11 18.31 25.29

10 34.02 48.51 4.87 18.40 25.32

11 34.38 42.39 6.09 19.11 17.18

12 34.56 42.29 6.28 19.20 16.08

13 34.33 49.33 5.30 18.87 25.15

14 34.85 48.96 5.21 18.59 25.14

15 34.27 42.07 5.25 19.03 17.77

16 34.01 42.77 5.24 19.07 18.45

Table 8.6: The table displays the timing for each partition FEResidalFAMPI object
stages for the 16 partition cube mesh. Each rows display the timing step during
construction and residual calculation stage. The last three columns have the timing
data for the three tasks performed in the getResidual method.

198

Partition Constructor getResidual Assembly Residual MPIReduceAll

ID Time Time Time Time Time

DIS RESIDUAL FA COMP (DOFs = 25461891, Elasticity3D)

1 25.36 27.42 3.44 13.51 10.56

2 24.86 38.09 3.70 12.99 21.13

3 24.83 57.62 3.55 13.11 40.72

4 24.29 29.11 4.16 13.78 10.93

5 24.24 49.90 3.54 12.99 33.08

6 24.38 32.22 3.51 13.30 15.13

7 25.32 41.57 3.43 12.99 25.00

8 22.19 26.32 3.58 13.24 09.35

9 24.95 15.59 3.36 11.98 44.04

10 25.53 28.20 3.47 13.09 11.54

11 25.41 40.99 3.46 13.19 24.23

12 25.58 34.21 3.49 13.97 16.59

13 25.13 40.07 3.45 12.60 23.88

14 25.23 45.69 3.41 12.81 29.32

15 25.30 41.35 3.45 13.14 24.52

16 24.48 36.14 3.67 14.12 18.08

17 24.82 38.57 3.31 13.57 21.55

18 25.58 34.01 3.64 13.25 16.92

19 25.07 38.60 3.47 13.36 21.65

20 25.27 38.42 3.47 12.81 21.92

21 25.06 38.74 3.58 14.01 21.02

22 25.01 29.58 4.32 13.90 11.23

23 25.77 41.88 3.58 13.00 25.02

24 24.99 38.28 3.28 12.99 21.19

Table 8.7: The table displays the timing for each partition FEResidalFAMPI object
stages for the 24 partition cube mesh. Each rows display the timing step during
construction and residual calculation stage. The last three columns have the timing
data for the three tasks performed in the getResidual method.

199

Figure 8.4: The DIS RESIDUAL FA COMP solver time comparison for the mesh
with 25,461,891 DOFs solved using different partitions.

Figure 8.4 has the time comparison of the DIS RESIDUAL FA COMP method

different stages. In this the Constructor time represents the time consumed by

the FEResidualFAMPI class. The FA Residual is the largest time consumed by a

partitions to compute ~rP and the ReduceAll is the largest time spend by a partition

for 100 iterations. The getResidual represents the largest time consumed by a

partition for FEResidualFAMPI::getResidual 100 iterations. It is sum of the data

assemble time, 100 residuals calculation time and the 100 MPI ReduceALL calls. It

can be seen in Figure 8.4 that the Constructor time, and FA Residual has reduced

at with the rise in MPI precesses. The time consumed for the MPI ReduceALL

are unpredictable. For the 8 parallel processes the MPI ReduceALL has consumed

lowest time. The MPI ReduceAll become significant for the meshes with higher

partitions like in Figure 8.4 partitions 24, 36 and 48.

200

8.4 Conclusion

In this chapter three algorithms of the FEDomain residual systems for dis-

tributed memory architectures are discussed. This chapter explains what were the

possible implementations and why a certain implementation is selected. In all these

methods it is observed that the MPIReduceAll communication has variable time.

In future work, an alternative to MPIReduceAll method will be implemented.

201

Chapter 9

Extension to a non-linear solver

for the Convection-Diffusion

equation

There are vast range of non-linear problems and it is not possible to develop a

totally general non-linear solver. In this chapter the non-linear solver is introduced

in the FEDomain package to calculate convection-diffusion equation solution. The

non-linear convection-diffusion solver is developed for the shared memory archi-

tectures, and is added in the FEDomain library as FENonLinearSolver class. The

interface of these files are given below in Listing 9.1.

9.1 Interface

c l a s s FENonLinearSolver{

FENonLinearSolver (vector<FEElement∗>& elements ,

map<FE UINT , FE DATA>& d i r i c h l e t c o n s t r a i n t s ,

FE UINT t o t a l s y s t e m d o f s ,

FE UINT max elements dofs ,

MATRIX TYPE& system matrix ,

FE UINT max i t e r a t i on s) ;

202

void s e t S o l u t i o n (const map<FE UINT , FE DATA>& d i r i c h l e t d a t a) ;

} ;

Listing 9.1: Interface of FENonLinearSolver class

The non linear solver is implemented for the shared memory architecture. It is

added into FEDomain package which is selected by setting the solver method in

FEDomain constructor equal to NON LINEAR SOLVER.

9.2 Implementation

The non linear equations solutions are computed using the following fixed point

algorithm. In each iteration a system of linear equations is solved. The elements

data in the next step is based on the solution of the present, or the previous it-

eration steps. The FENonLinearSolver object has to assemble the elements’ data

in every iteration. The memory footprint of the FENonLinearSolver stiffness ma-

trix remains unmodified as the relationship among the DOFs do not change. The

internal structures are constructed in the first step and reused in next iterations.

Structure of the non linear problem is: Find uh ∈ Vh such that:

ah(uh; vh) +Nh(uh;uh, vh) = (f, vh) ∀vh ∈ Vh,

We solve it with following fixed point method. For the approximate solution unh,

ũn+1
h is computed as

ũn+1
h : ah(ũ

n+1
h ; vh) +Nh(u

n
h; ũn+1

h , vh) = (f, vh) ∀vh ∈ Vh,

where Nh is a non-linear form that depends on the given method. In all cases the

dependence of N on the second argument is linear. The next iterate is defined as

un+1
h := unh − ωn+1(ũn+1

h − unh)

203

with the damping factor ωn+1 > 0. The damping factors ωn+1 are computed

dynamically through the algorithm taken from [49] (given in section 5 on page

2008). As in [49] we have fixed the maximum number of iterations to 100000.

We have followed this recommendation at this first stage, mostly due to the fact

that the convergence might be slow, and the size of the problems we have to

deal with is large. Our intention was to avoid overlooking a case in which there

is a slow convergence. If the solution does not converge in 100000 iterations,

it stops by displaying a message on the screen. The number of iterations are

fixed for this version as current FEDomain class interface does not allow to set

number of iterations. Still a user can set by maximum iterations by setting a

max iterations parameter of FENonLinearSolver constructor in the FEDomain

class before compilation.

The non linear equations have two sparse matrices (A to store ah and N to

store Nh) in left hand side. These matrices are of same dimensions and contain

same amount of data. The dimension of these matrices and their data count

remains unchanged in all the iterations. The FEElement interface class provided

in FEDomain package does not have the interface method to collect the NK . The

interface allows the user to provide his AK . The user has to provide AK after

adding its NK into it. The AK is modified in every iteration. The FEEquation

class is not implemented for the non linear system of equations. It does not

provide a separate interface methods to collect AK and NK . The FEEquation

object creates a single matrix container to collect AK + NK as a left hand side.

The user has to provide elements’ data after applying Dirichlet constraints.

The FENonLinearSolver solver in each iteration collects element data. The

computation of element data is dependent on previous iteration solution. For

the first iteration, the zero solution vector should be used in element objects to

compute stiffness matrix and load vectors. At the end of each iteration the solution

204

is provided by FEDomain to the element objects which is be used in next iteration

element data computations. In FENonLinearSolver setSolution method algorithm

is given in Algorithm 6. The calculation initiate by scattering zero solution among

the element objects. The FENonLinearSolver class is composed of FEEquation

object which is responsible to assemble system of equations and compute direct

solution. It also computes residual for the NonLinearSolver. In NonLinearSolver

class the solution is refined by using damping factor algorithm taken from [49].

// Convection Diffusion Non Linear Solver setSolution()

1 void setSolution(){

2 ScatterSolution(zero);

3 DataAssembling();

4 FEEquation.ComputeSolution();

5 ScatterSolution();

6 DataAssembling();

7 FEEquation.ComputeResidual();

8 while IsNotConverged() do

9 ScatterSolution();

10 DataAssembling();

11 ComputeResidualUsingDampingFactor();

12 end

13 ScatterSolution();

14 };
Algorithm 6: Non Linear Solver algorithm

For each iteration the PARDISO solver has to be reconstructed. It is observed

that even though only the left hand side data changes but its memory foot print re-

mains unchanged. During design phase it was assumed that symbolic factorization

has to the performed in the first iteration. During development it was observed

that PARDISO has to perform both symbolic and numerical factorization in each

205

iteration. This problem will be addressed in future work.

The extension only requires the user to specify, at each step, what linear system

needs to be solved. Then, extending this framework to other non linear problem

requires the user to specify the matrix that needs to be inverted at each step. This

is in user’s domain and can be used with other non linear problems.

9.3 Future Works

The FEEquation class is implemented for the linear system of equations. It has

to be modified for the add the support for the non linear system of equations.

The support has to be added in the FEEquation and FEElement classes for NK .

The efficient algorithm needs to be implemented to assemble data and compute

solution for the system. Finally the non linear solver have to be implemented for

the distributed memory architectures.

206

Chapter 10

Convection-Diffusion Equation

Examples

10.1 Problem

This chapter describes the algorithm used in implementation of the 2D and 3D

convection diffusion formulation in C++ element classes. These classes are used

with the FEDomain package to compute the solutions for number of 2D and 3D

test examples on shared memory architectures. The convection diffusion equation

is implemented with the popular streamline upwind/Petrov-Galarkin (SUPG) [24]

stabilization and spurious oscillation at layers diminishing (SOLD) methods [49]

for smoothing of solutions.

We consider the steady scalar convection-diffusion equation

− ε∆u+ ~c · ∇u = f on Ω, u = ub on ∂Ω. (10.1)

We assume that Ω is a bounded domain in Rd (d=1,2,3,..,N) with a polygonal

boundary ∂Ω, ε > 0 is the constant diffusivity, ~c is a smooth, solenoidal convection

field, f ∈ L2(Ω) is an outer source, and ub represents the Dirichlet boundary

207

condition.

The streamline upwind/Petrov-Galerkin (SUPG) method [24] is frequently used

because of its stability and higher order accuracy. In the convection dominated

problems the SUPG solutions typically contain oscillations in layer regions. The

spurious oscillations at layers diminishing (SOLD) [49] methods are used to sup-

press the local oscillations present in SUPG discrete solutions.

To define the discretization the triangulation P of the domain Ω is introduced

which consists of a finite number of triangle elements K. All the elements of P

are triangles. The finite element space used is defined as

Wh = {vK ∈ C0(Ω) : vh|K ∈ P1(K) ∀K ∈ P}, (10.2)

Vh = {vK ∈ Wh : vh|∂Ω = 0}. (10.3)

Let ubh ∈ Wh be a function whose trace approximates the boundary condition ub.

Then the Galerkin finite element discretization of the convection-diffusion equation

(10.1) reads: Find uh ∈ Wh such that uh − ubh ∈ Vh and

a(uh, vh) = (f, vh) ∀vh ∈ Vh,

where

a(u, v) = ε

∫
Ω

∇u · ∇v +

∫
Ω

~c · ∇u v.

Where ~c is the convection field. It is well known that this discretization is inappro-

priate if convection dominates diffusion since then the discrete solution is usually

globally polluted by spurious oscillations.

208

10.2 Streamline Upwind/Petrov-Galerkin

An improvement can be achieved by adding a stabilization term to the Galerkin

discretization. One of the most efficient procedures of this type is the streamline

upwind/Petrov-Galerkin (SUPG) method developed by Brooks and Hughes [24].

To formulate this method the residual we define

Rh(u) = −ε∆hu+ ~c · ∇u− f, (10.4)

where ∆hu is the Laplace operator defined element wise, i.e., (∆hv)|K = ∆(v|K)

for every K ∈ P and piecewise smooth function v. The SUPG method reads:

Find uh ∈ Wh such that uh − ubh ∈ Vh and

a(uh, vh) + (Rh(uh), τ~c · ∇vh) = (f, vh) ∀vh ∈ Vh, (10.5)

where τ ∈ L∞(Ω) is a non-negative stabilization parameter. The choice of τ

influences the accuracy of the discrete solution but a general optimal definition

of τ is still not known. Here hK represents the length of the longest side of the

triangle and h := max{hK : K ∈ P}. During our computations for an element

K ∈ P , τK is defined by the formula

τK =


hK
2|c| if PeK ≥ 1

(hK)2

4ε
if PeK < 1

with PeK =
hK |c|

2ε
. (10.6)

The Péclet number PeK [33] is an element local parameter which is very large if

convection strongly dominates diffusion in Ω. The |c| is the euclidean norm of

vector ~c, it is calculated as:

|c| =
√
c2

1 + c2
2 ++ c2

N .

209

10.2.1 Error Computation

The L2-norm and H1-norm errors of the solutions are represented as eL and eH ,

respectively. The L2-norm and H1-norm errors for an element K are represented as

eLK and eHK respectively. The error of the computation is calculated by computing

every element error eK . The total L2-norm and H1-norm errors are computed as

follows

eL =

√∑
K∈Ω

e2
LK

and eH =

√∑
K∈Ω

e2
HK
.

In a 2D dimensional domain (Ω2D) the triangulation generates triangle elements.

For each triangle element error is computed at the three midpoints (m0, m1 and

m2) of the edges. The discrete solutions on the midpoints um are computed using

following equations.

um0 =
uh1 + uh2

2
,

um1 =
uh0 + uh2

2
,

um2 =
uh0 + uh1

2
.

The L2 - norm error on a triangle element is computed as follows

e2
LK

=

∫
K

(u− uh)2 ' |K|
3

3∑
i=1

(u− uh)2(mi). (10.7)

The H1 - norm error on a triangle element is computed as follows

e2
HK

=

∫
K

(∂x(u− uh)2 + ∂y(u− uh)2)

' |K|
3

3∑
i=1

(∂x(u− uh)2 + ∂y(u− uh)2)(mi). (10.8)

210

In a 3D domain (Ω3D) the triangulation generates tetrahedron elements. For

a tetrahedron element class the load vector is calculated using the five points

quadrature rules taken from [47]. The rule provides the five evaluation points Xi
and their weights Wi which are given below.

X1 =
n1

4
+
n2

4
+
n3

4
+
n4

4
W1 =

−4

5
,

X2 =
n1

6
+
n2

6
+
n3

6
+
n4

2
W2 =

9

20
,

X3 =
n1

6
+
n2

6
+
n3

2
+
n4

6
W3 =

9

20
,

X4 =
n1

6
+
n2

2
+
n3

6
+
n4

6
W4 =

9

20
,

X5 =
n1

2
+
n2

6
+
n3

6
+
n4

6
W5 =

9

20
.

The L2−norm and H1−norm errors are calculated for the tetrahedron elements

at these evaluation points. The L2 − norm is calculated as follows

e2
LK

=
∫
K

(u− uh)2 ' |K|
∑4

i=1(u− uh)2(Xi)Wi

= |K|
∑4

i=1Wi(u(Xi)−
∑4

j=1 uh(nj)λj(Xi))2. (10.9)

The H1 − norm is calculated as follows

e2
HK

=

∫
K

(∂x(u− uh)2 + ∂y(u− uh)2 + ∂z(u− uh)2). (10.10)

and is approximated using the same quadrature formula.

10.2.2 Error Rate

The rate of reduction of L2-norm errors for Ω2D and Ω3D are computed using

following equation:

rate =
ln(eL(i)/eL(i+1))

ln(hi/hi+1)
, (10.11)

211

and for H1-norm errors rate of error reduction is calculated in the same way.

As ‖ u−uh ‖L26 Ch2 and ‖ u−uh ‖H16 Ch, then we expect the error to reduce

by the factor of 2 for L2-norm error and factor of 1 for the H1-norm error.

10.2.3 Domains

In 2D computations the domain is Ω2D = (0, 1)2, while in 3D we use the domain

Ω3D = (0, 1)3. Figure 10.1 depicts the basic domains and meshes used in the

computations.

(a) 2D Mesh (b) 3D Mesh

Figure 10.1: Domains and initial meshes.

Mesh Elements DOFs hi Mesh Elements DOFs hi

sq0 24 13 0.5 cb0 68 14 1

sq1 80 41 0.25 cb1 820 63 6.12E-01

sq2 288 145 0.125 cb2 1976 365 3.95E-01

sq3 1088 545 0.0625 cb3 13928 3457 2.65E-01

sq4 4224 2113 0.03125 cb4 104648 17969 1.71E-01

sq5 16640 8321 0.015625 cb5 811400 137313 1.15E-01

sq6 66048 33025 0.0078125 cb6 6390536 1073345 7.57E-02

Table 10.1: Ω2D Square Meshes and Ω3D Cube Meshes details. These meshes are
used during the computations.

212

10.2.4 SUPG Error Results

10.2.4.1 2D Error Test: a constant convectional field

The convection diffusion equation is tested using the FEDomain linear solver.

The FEDomain solver requires the user to provides triangle elements that provide

element stiffness matrix AK and load vector ~bK for (10.5). The SUPG error

testing for Ω2D in Figure 10.1 is preformed using meshes given in Table 10.1. For

test problems all the boundary conditions are set of homogeneous Dirichlet. The

exact solution of the first test example used is

u(x, y) = x(1− x)y(1− y), (10.12)

and the convection vector is defined as

~c = (1, 1)T , (10.13)

and applied force on the domain is

f = 2ε((x− x2) + (y − y2)) + (1− 2x)(y − y2) + (x− x2)(1− 2y). (10.14)

(a) L2-Norm Error (b) H1-Norm Error

Figure 10.2: The figure have the L2-norm and H1-norm errors graphs. The x-axis
represents the h and the y-axis represents the errors in log scale.

213

mesh ε = 1E-0 ε = 1E-2 ε = 1E-4 ε = 1E-6 ε = 1E-8

name L2 H1 L2 H1 L2 H1 L2 H1 L2 H1

SUPG Error

sq0 6.94E-3 5.92E-2 5.75E-3 6.20E-2 5.76E-3 6.27E-2 5.76E-3 6.27E-2 5.76E-3 6.27E-2

sq1 1.96E-3 3.17E-2 1.47E-3 3.27E-2 1.52E-3 3.33E-2 1.52E-3 3.33E-2 1.52E-3 3.33E-2

sq2 5.11E-4 1.62E-2 3.67E-4 1.63E-2 3.82E-4 1.67E-2 3.82E-4 1.67E-2 3.82E-4 1.67E-2

sq3 1.29E-4 8.16E-3 1.03E-4 8.17E-3 8.97E-5 8.25E-3 8.99E-5 8.25E-3 8.99E-5 8.25E-3

sq4 3.25E-5 4.09E-3 3.76E-5 4.09E-3 2.10E-5 4.10E-3 2.10E-5 4.10E-3 2.10E-5 4.10E-3

sq5 8.13E-6 2.04E-3 1.75E-5 2.05E-3 5.07E-6 2.05E-3 5.05E-6 2.05E-3 5.05E-6 2.05E-3

SUPG Error Reduction Rate

1.82 0.90 1.97 0.92 1.92 0.91 1.92 0.91 1.92 0.91

1.94 0.97 2.00 1.00 1.99 1.00 1.99 1.00 1.99 1.00

1.99 0.99 1.83 1.00 2.09 1.02 2.09 1.02 2.09 1.02

1.99 1.00 1.45 1.00 2.09 1.01 2.10 1.01 2.10 1.01

2.00 1.00 1.10 1.00 2.05 1.00 2.06 1.00 2.06 1.00

Table 10.2: The error data for the SUPG method for the first test example using
Ω2D. The table has the L2-norm and H1-norm errors data for the meshes given in
Table 10.1. The ε are used for range of values 1E-0, 1E-2, 1E-4, 1E-6 and 1E-8.

Table 10.2 has the SUPG method error data and the error reduction rate for

Ω2D square meshes. Figure 10.2 shows the error data graph where the y-axis has

the error data in log scale and x-axis represents h. The L2-norm and H1-norm

errors are reducing at constant rate with the reduction in h as can be observed in

the lower section of Table 10.2. For the ε = 1E − 02 the error reduction rate for

L2-norm error has not reduced at the constant rate as can be seen in the Table

10.2.

10.2.4.2 SUPG 2D Error Test : A variable convection field

The second test example used for the Ω2D for SUPG problem is given below.

Again the mesh has homogeneous Dirichlet conditions. The exact solution of the

second example is:

u(x, y) = 100x2(1− x)2y(1− y)(1− 2y). (10.15)

the convection vector for Ω2D second example is

~c = (x+ 1, 1− y)T . (10.16)

214

Mesh ε = 1E-0 ε = 1E-2 ε = 1E-4 ε = 1E-6 ε = 1E-8

Name L2 H1 L2 H1 L2 H1 L2 H1 L2 H1

SUPG Error Data

sq 1.64E-1 1.42 1.83E-1 1.40 1.86E-1 1.45 1.87E-1 1.45 1.87E-1 1.45

sq1 4.10E-2 7.15E-1 3.65E-2 7.09E-1 3.70E-2 7.39E-1 3.70E-2 7.40E-1 3.70E-2 7.40E-1

sq2 1.10E-2 3.58E-1 9.52E-3 3.57E-1 8.91E-3 3.70E-1 8.95E-3 3.70E-1 8.95E-3 3.70E-1

sq3 2.82E-3 1.79E-1 3.84E-3 1.80E-1 2.09E-3 1.81E-1 2.11E-3 1.82E-1 2.11E-3 1.82E-1

sq4 7.08E-4 8.96E-2 1.99E-3 9.11E-2 5.01E-4 8.99E-2 5.12E-4 9.01E-2 5.12E-4 9.01E-2

sq5 1.77E-4 4.48E-2 9.83E-4 4.59E-2 1.21E-4 4.48E-2 1.27E-4 4.49E-2 1.27E-4 4.49E-2

SUPG Error Rate

2.00 0.99 2.33 0.98 2.33 0.97 2.34 0.97 2.34 0.97

1.90 1.00 1.94 0.99 2.05 1.00 2.05 1.00 2.05 1.00

1.96 1.00 1.31 0.99 2.09 1.03 2.08 1.02 2.08 1.02

1.99 1.00 0.95 0.98 2.06 1.01 2.04 1.01 2.04 1.01

2.00 1.00 1.02 0.99 2.05 1.00 2.01 1.00 2.01 1.00

Table 10.3: The error data for the SUPG method for the second test example
using Ω2D. The table has the L2 norm and H1 norm errors data for the meshes
given in Table 10.1. The ε are used for range of values 1E-0, 1E-2, 1E-4, 1E-6 and
1E-8.

The applied force in Ω2D second example is:

f =100((12x2 − 12x+ 2)(2y3 − 3y2 + y) + (x4 − 2x3 + x2)(12y − 6))

+100((x+ 1)(4x3 − 6x2 + 2x)(2y3 − 3y2 + y))

+100((1− y)(x4 − 2x3 + x2)(6y2 − 6y + 1)).

(10.17)

(a) L2-Norm Error (b) H1-Norm Error

Figure 10.3: The figure have the L2-norm and H1-norm errors graphs. The x-axis
represents the h and the y-axis represents the errors in log scale.

215

Table 10.3 has the SUPG method error and the error rate data for the Ω2D

error test example with variable convection field. The meshes used during test

problem 2 execution are given in Table 10.1. Figure 10.3 has the error graphs

for the L2-norm and H1-norm errors. This example displayed the error reduction

rate characteristics similar to the example with fixed convection field in Section

10.2.4.1. The execution with the ε = 1E − 02 the L2-norm error has not reduced

with the required rate of 2.

10.2.4.3 SUPG 3D Error Test Example 1 : variable convective field

The second test problem used to compute the error of the SUPG methods on

Ω3D is defined below. The Ω3D considered for this example has homogeneous

Dirichlet boundary. The actual solution of this test example is given as:

u(x, y, z) = sin(πx) sin(πy) sin(πz), (10.18)

and the convection vector is defined as:

~c = (z, y, x)T , (10.19)

and applied force on the domain is:

f =3π2ε(sin(πx) sin(πy) sin(πz))

+ πz(cos(πx) sin(πy) sin(πz))

+ πy(sin(πx) cos(πy) sin(πz))

+ πx(sin(πx) sin(πy) cos(πz)).

(10.20)

216

Mesh ε = 1E-0 ε = 1E-2 ε = 1E-4 ε = 1E-6 ε = 1E-8

Name L2 H1 L2 H1 L2 H1 L2 H1 L2 H1

cb1 4.04E-1 1.19 4.01E-1 1.22 3.91E-1 1.24 3.91E-1 1.24 3.91E-1 1.24

cb2 1.51E-1 7.18E-1 1.63E-1 7.63E-1 1.44E-1 8.07E-1 1.44E-1 8.08E-1 1.44E-1 8.08E-1

cb3 5.48E-2 4.35E-1 6.35E-2 4.65E-1 4.83E-2 5.26E-1 4.82E-2 5.29E-1 4.82E-2 5.29E-1

cb4 2.03E-2 2.66E-1 2.62E-2 2.81E-1 1.75E-2 3.40E-1 1.75E-2 3.44E-1 1.75E-2 3.44E-1

cb5 7.66E-3 1.63E-1 1.14E-2 1.70E-1 6.73E-3 2.16E-1 6.85E-3 2.22E-1 6.86E-3 2.22E-1

Rate of reduction for mesh diameter and error.

2.25 1.15 2.06 1.08 2.28 0.98 2.28 0.98 2.28 0.98

2.53 1.25 2.36 1.24 2.74 1.07 2.74 1.06 2.74 1.06

2.27 1.13 2.03 1.15 2.33 1.00 2.31 0.98 2.31 0.98

2.44 1.23 2.08 1.27 2.39 1.14 2.35 1.10 2.35 1.10

Table 10.4: The table contains the error rate for the L2-norm and H1-norm errors
computed for SUPG method using 3D test example 2 for a cube domain.

(a) L2-Norm Error (b) H1-Norm Error

Figure 10.4: The figure have the L2-norm and H1-norm errors graphs for Ω3D.
The x-axis represents the h and the y-axis represents the errors in log scale.

Table 10.4 contains the SUPG errors data and rate for Ω3D meshes given Table

10.1. The upper half of Table 10.4 has the L2-norm and H1-norm error data for

the Ω3D cube meshes. The lower half of Table 10.4 has the error reduction rate

for the L2-norm and H1-norm error for the ε range. The L2 and H2 norm error

rates are computed using the formula in (10.11). Figure 10.4 has graphs for the

L2-norm and H1-norm errors. The error show very low sensitivity to ε.

217

10.2.5 Problem with internal and boundary layers

In this section three Ω2D and two Ω3D examples are discussed. These examples

are executed for all four SOLD methods. Ω2D used for the problems is defined as:

Ω2D = (0, 1)2,

ΓD = (0× [0, 1]) ∪ ([0, 1]× 0),

ΓN = (1× [0, 1]) ∪ ([0, 1]× 1).

10.2.5.1 SUPG 2D Layer problem constant convection field

The first example selected for the layer visualization is defined below:

f = 0, ~c = (1, 1)T ,

∂u

∂n
= 0 on ΓN ,

u =


0 for x = 0 and y = 0,

1 for x = 0,

0 for y = 0

on ΓD.

Figure 10.5 depicts the solution given by the SUPG method. The solution contains

the oscillations along the upper and lower curves of the bend as can be observed in

Figure 10.5. The oscillations are not desired in the solution, it should be smooth

at upper and lower boundary of the bend. In the next section smoothing methods

will be used in conjunction with SUPG to remove or reduce these oscillations. The

solution is computed for the ε = 1E − 4.

218

Figure 10.5: Discrete solution obtained using the SUPG method.

10.2.5.2 SUPG 2D Layer problem rotating convection field

The second example used to visualize the oscillations in the SUPG solution is given

below:

~c = (1 + x, 1− y)T , f = 0,

∂u

∂n
= 0 on ΓN ,

u =


0 for x = 0 and y = 0,

1 for x = 0,

0 for y = 0

on ΓD.

219

(a) Galerkin solution (b) SUPG solution

Figure 10.6: figure
Discrete solution obtained using the Galerkin and the SUPG methods. These are
computed using sq3 mesh using the ε = 1E − 8.

Figure 10.6 shows the Galerkin and SUPG solutions for the sq3 mesh using the

ε = 1E − 8. The solution contains the oscillations above and under the interior

layers. This example will be again used in later sections with the SOLD methods

to remove unwanted oscillations.

10.2.5.3 SUPG 2D Layer problem 3

The third example, the mesh Ω2D has homogeneous boundary condition. The

solution of this problem is visualization is given below:

~c = (1, 0)T ,

f(x, y) =

16(1− 2x) for (x,y) ∈ [0.25, 0.75]2,

0 else.

(10.21)

220

(a) Exact Solution (b) Galerkin Solution

(c) SUPG solution

Figure 10.7: These graphs represents the exact solution, Galerkin solution and
SUPG solutions of the sq3 mesh using ε = 1E − 8.

The exact solution and the SUPG solution for the problem are depicted in

Figure 10.7 for the sq3 mesh and ε = 1E − 08. The actual solution does not

have any oscillations, on other hand the SUPG presents have oscillations along

the interior layers [0.25, 0.75]2 as well as the top of the curve as can be seen in

Figure 10.7c. To remove these oscillations the smoothing SOLD methods will be

applied in later sections.

221

SUPG 3D Layer problem 1

The first example considered to visualise the computed solution on Ω3D is given

below. The boundary conditions applied on Ω3D for this problem is given below.

~c = (0, 1, 0)T , f = 0,

Figure 10.8: Cube with the boundary numbering just included to specify boundary
conditions.

The boundary 22 and 24 in Figure 10.8 are Neumann (ΓN) having zero value

(∂u
∂n

= 0). The boundaries 14, 16, 18 and 20 are Dirichlet (ΓD) where boundary

14 and 18 are Neumann with value = 1 while 16 and 20 boundaries are Neumann

with zero value. Figure 10.9 have SUPG method solutions obtained using ε from

1 till 1E − 05 respectively. For the ε = 1 the solution is scattered in whole cube

as can be seen in cross section Figure 10.9(a). In Figure 10.9(a) the solution has

started moving toward the edges which continues as the ε value increases. The

difference cannot be observed when the ε ≥ 1E − 03.

222

(a
)
ε

=
1E
−

00
(b

)
ε

=
1E
−

01
(c

)
ε

=
1E
−

0
2

(d
)
ε

=
1E
−

0
3

(e
)
ε

=
1E
−

04
(f

)
ε

=
1E
−

0
5

F
ig

u
re

10
.9

:
D

is
cr

et
e

so
lu

ti
on

ob
ta

in
ed

u
si

n
g

th
e

S
U

P
G

m
et

h
o
d

u
si

n
g

m
es

h
cb

3.

223

10.2.5.4 SUPG 3D Layer problem 2

The second example problem used to visualize the SUPG solution for Ω3D is given

below.

~c = (z, y, x)T , f = 0.

The boundary 22 and 24 in Figure 10.8 are Neumann (ΓN) having zero value

(∂u
∂n

= 0). The boundaries 14, 16, 18 and 20 are Dirichlet (ΓD) where boundary

14 and 18 has -1 value while 16 and 20 boundaries have value equal to 1. Figure

10.10 have SUPG method solutions using ε from 1 till 1E − 05 respectively. For

the ε = 1 the solution is scattered in whole cube as can be seen in cross section

Figure 10.10a. In Figure 10.10b the solution has started moving toward the edges

which exceed as the ε value increases. The difference cannot be observed when the

ε > 1E − 03.

224

(a
)
ε

=
1E
−

00
(b

)
ε

=
1E
−

01
(c

)
ε

=
1E
−

0
2

(d
)
ε

=
1E
−

0
3

(e
)
ε

=
1E
−

04
(f

)
ε

=
1E
−

0
5

F
ig

u
re

10
.1

0:
D

is
cr

et
e

so
lu

ti
on

s
ob

ta
in

ed
u
si

n
g

th
e

S
U

P
G

m
et

h
o
d

fo
r

th
e

S
U

P
G

3D
L

ay
er

p
ro

b
le

m
2.

T
h
es

e
so

lu
ti

on
s

ar
e

ob
ta

in
ed

u
si

n
g

m
es

h
cb

3
w

it
h
ε

fr
om

1E
-0

0
ti

ll
1E

-0
5.

225

Spurious Oscillation at Layer Diminishing

The discrete solutions provided by the SUPG method still contains spurious

oscillations. These oscillations are localized in narrow regions along sharp layers.

These are not avoidable and not permissible in many applications. The Spurious

Oscillation at Layer Diminishing (SOLD) methods [48, 49] are used to add suitable

artificial diffusion to the SUPG method. The SOLD methods are nonlinear algo-

rithms for computing discrete solutions. There are two classes of SOLD methods,

methods that add isotropic artificial diffusion, and methods adding crosswind arti-

ficial diffusion. In this work we have only considered methods that add crosswind

diffusion. A typical SOLD method has the form

(ε̃c⊥.∇uh, c⊥.∇vh)

a(uh, vh) + (Rh(uh), τ~c.∇vh) + (ε̃c⊥.∇uh, c⊥.∇vh) = (f, vh) ∀vh ∈ Vh, (10.22)

where for Ω2D the c⊥ is

c⊥ =
1

|c|

 −c2

c1

 , (10.23)

and for Ω3D the c⊥ is

c⊥ =

I −
c⊗c
|c|2 if c 6= 0

0 otherwise

. (10.24)

The parameter ε̃ is non negative and usually depends on uh. Every SOLD method

has its own definition for ε̃. The four crosswind artificial diffusion methods and

their results are given below.

226

10.2.6 Codina Method C93

For any K ∈ P the C93 [28, 49] definition of ε̃ is

ε̃|K = max

{
0, C

hK |Rh(uh)|
2|∇uh|

− ε |Rh(uh)|
~c · ∇uh

}
(10.25)

where C is a suitable constant, where recommended value is 0.7 (cf. [49]).

10.2.7 Modified Codina Method KLR02 3

In [49] [49] the following modification of (10.25) was purposed

ε̃|K = max

{
0, C

hK |Rh(uh)|
2|∇uh|

− ε
}
. (10.26)

10.2.8 Burman and Ern Method BE02 1

For any K ∈ P the BE02 1 [49] definition of ε̃ is

ε̃|K =
τK |c||Rh(uh)|
|∇uh|

|c||∇uh|
|c||∇uh|+ |Rh(uh)|

|c||∇uh|+ |Rh(uh)|+ tanαK |c||c⊥ · ∇uh|
|Rh(uh)|+ tanαK |c||c⊥ · ∇uh|

,

(10.27)

The parameter αK is equal to π/2 − βK where βK is the largest angle of K. If

βK = π/2 it is recommended to set αK = π/6. The τK is already defined in (10.6).

10.2.9 Modified Burman and Ern Method BE02 2

For any K ∈ P the BE02 2 [49] definition of ε̃ is

ε̃|K =
τK |c||Rh(uh)|
|∇uh|

|c||∇uh|
|c||∇uh|+ |Rh(uh)|

. (10.28)

227

10.2.10 SOLD Methods Error Results

10.2.10.1 2D Error Test: constant convection field

The description of this Ω2D test example is given in section 10.2.4.1. This section

will discuss the error for all the four SOLD methods. The L2-norm and H1-norm

errors for the Codina C93 and Codina KLR02 3 are in Table 10.5. For these

methods the error reduction rate are approximately 2 and 1 for the L2-norm and

H1-norm errors, respectively. The L2-norm error reduction for ε = 1E − 2 does

not reduce at the required rate in both methods. The error graphs for the C93

and KLR02 3 methods are in Figures 10.11 and 10.12, respectively. These graphs

dispaly an optimal reduction rate.

The Burman and Ern methods (BE02 1 and BE02 2) error results are in Table

10.6. The BE02 1 method has converged for all the meshes when the ε = E − 0.

The L2-norm and H1-norm errors has reduced at the required rate. For smaller ε

values it has converged for sq and sq1 meshes. Even for converged cases the error

has not achieved the required reduction rate. The BE02 2 method has converged

for all the meshes for the ε values 1E-0 and 1E-2. This method has not converged

for the sq4 and sq5 meshes when the ε values 1E-4, 1E-6 and 1E-8.

228

M
es

h
ε

=
1E

-0
ε

=
1
E

-2
ε

=
1
E

-4
ε

=
1
E

-6
ε

=
1
E

-8

N
am

e
It

er
L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

C
9
3

E
rr

o
r

sq
1

6.
94

E
-3

5.
92

E
-2

8
6.

64
E

-3
6
.1

0
E

-2
1
0

7
.2

3
E

-3
6
.2

3
E

-2
1
0

7
.2

4E
-3

6
.2

3
E

-2
1
0

7
.2

4
E

-3
6
.2

3
E

-2

sq
1

1
1.

96
E

-3
3.

17
E

-2
10

1.
75

E
-3

3
.2

5
E

-2
1
8

1
.9

9
E

-3
3
.3

0
E

-2
1
8

2
.0

0E
-3

3
.3

0
E

-2
1
8

2
.0

0
E

-3
3
.3

0
E

-2

sq
2

1
5.

11
E

-4
1.

62
E

-2
10

4.
86

E
-4

1
.6

5
E

-2
2
3

5
.4

2
E

-4
1
.6

8
E

-2
2
7

5
.5

5E
-4

1
.7

0
E

-2
2
7

5
.5

5
E

-4
1
.7

0
E

-2

sq
3

1
1.

29
E

-4
8.

16
E

-3
6

1.
48

E
-4

8
.2

3
E

-3
2
9
1

1
.4

5
E

-4
8
.4

6
E

-3
2
2
4

1
.5

3E
-4

8
.4

3
E

-3
2
2
8

1
.5

4
E

-4
8
.4

3
E

-3

sq
4

1
3.

25
E

-5
4.

09
E

-3
3

4.
31

E
-5

4
.1

0
E

-3
N

.C
N

.C
N

.C

sq
5

1
8.

13
E

-6
2.

04
E

-3
1

1.
75

E
-5

2
.0

5
E

-3
N

.C
N

.C
N

.C

C
9
3

E
rr

o
r

R
ed

u
ct

io
n

R
a
te

1.
82

0.
90

1.
92

0
.9

1
1
.8

6
0
.9

2
1
.8

6
0
.9

2
1
.8

6
0
.9

2

1.
94

0.
97

1.
85

0
.9

8
1
.8

8
0
.9

7
1
.8

5
0
.9

6
1
.8

5
0
.9

6

1.
99

0.
99

1.
72

1
.0

0
1
.9

0
0
.9

9
1
.8

6
1
.0

1
1
.8

5
1
.0

1

1.
99

1.
00

1.
78

1
.0

1

2.
00

1.
00

1.
30

1
.0

0

K
L

R
0
2

3
E

rr
o
r

sq
40

8.
27

E
-3

6.
42

E
-2

9
6.

87
E

-3
6
.1

8
E

-2
1
0

7
.2

3
E

-3
6
.2

3
E

-2
1
0

7
.2

4E
-3

6
.2

3
E

-2
1
0

7
.2

4
E

-3
6
.2

3
E

-2

sq
1

33
2.

19
E

-3
3.

25
E

-2
9

1.
62

E
-3

3
.2

6
E

-2
1
8

1
.9

9
E

-3
3
.3

0
E

-2
1
8

2
.0

0E
-3

3
.3

0
E

-2
1
8

2
.0

0
E

-3
3
.3

0
E

-2

sq
2

28
5.

33
E

-4
1.

63
E

-2
9

3.
78

E
-4

1
.6

4
E

-2
2
5

5
.4

6
E

-4
1
.6

9
E

-2
2
7

5
.5

5E
-4

1
.7

0
E

-2
2
7

5
.5

5
E

-4
1
.7

0
E

-2

sq
3

24
1.

31
E

-4
8.

17
E

-3
6

1.
04

E
-4

8
.1

8
E

-3
1
9
1

1
.4

4
E

-4
8
.4

1
E

-3
2
2
8

1
.5

3E
-4

8
.4

3
E

-3
2
2
8

1
.5

4
E

-4
8
.4

3
E

-3

sq
4

21
3.

26
E

-5
4.

09
E

-3
6

3.
76

E
-5

4
.0

9
E

-3
N

.C
N

.C
N

.C

sq
5

18
8.

14
E

-6
2.

04
E

-3
5

1.
75

E
-5

2
.0

5
E

-3
N

.C
N

.C
N

.C

K
L

R
0
2

3
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

1.
92

0.
98

2.
08

0
.9

2
1
.8

6
0
.9

2
1
.8

6
0
.9

2
1
.8

6
0
.9

2

2.
04

1.
00

2.
10

0
.9

9
1
.8

7
0
.9

7
1
.8

5
0
.9

6
1
.8

5
0
.9

6

2.
02

1.
00

1.
86

1
.0

0
1
.9

2
1
.0

1
1
.8

6
1
.0

1
1
.8

5
1
.0

1

2.
01

1.
00

1.
47

1
.0

0

2.
00

1.
00

1.
10

1
.0

0

T
ab

le
10

.5
:

T
h
e

ta
b
le

co
n
ta

in
s

al
l

th
e

S
O

L
D

m
et

h
o
d
s

er
ro

r
d
at

a
an

d
ra

te
of

er
ro

r
re

d
u
ct

io
n

ra
te

fo
r

th
e

Ω
2
D

T
es

t
E

x
am

p
le

w
it

h
fi
x

co
n
ve

ct
io

n
fi
el

d
.

229

M
es

h
ε

=
1E

-0
ε

=
1
E

-2
ε

=
1
E

-4
ε

=
1
E

-6
ε

=
1
E

-8

N
am

e
It

er
L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

B
E

0
2

1
E

rr
o
r

sq
4

8.
34

E
-3

6.
00

E
-2

62
9

2.
14

E
-2

9
.9

1
E

-2
2
8
2

9
.1

6
E

-3
9
.7

7
E

-2
1
9
3

1
.7

6
E

-2
1
.0

2
E

-1
6
7
3

2
.3

2
E

-2
1
.2

0
E

-1

sq
1

3
2.

44
E

-3
3.

18
E

-2
69

4
8.

28
E

-3
6
.9

8
E

-2
3
3
4
8

1
.4

0
E

-2
1
.3

8
E

-1
4
9
2
9

7
.4

8
E

-3
8
.1

8
E

-2
4
9
3
6

1
.0

9
E

-2
8
.3

7
E

-2

sq
2

2
6.

41
E

-4
1.

62
E

-2
N

.C
5
0
2
1
9

9
.0

0
E

-3
1
.4

3
E

-1
N

.C
N

.C

sq
3

2
1.

63
E

-4
8.

16
E

-3
N

.C
N

.C
N

.C
N

.C

sq
4

1
4.

08
E

-5
4.

09
E

-3
N

.C
N

.C
N

.C
N

.C

sq
5

1
1.

02
E

-5
2.

04
E

-3
N

.C
N

.C
N

.C

B
E

0
2

1
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

1.
77

0.
92

1.
37

0
.5

1
-0

.6
1

-0
.5

0
1
.2

3
0.

3
2

1
.0

9
0
.5

2

1.
93

0.
97

1.
98

0.
99

2.
00

1.
00

2.
00

1.
00

B
E

0
2

2
E

rr
o
r

sq
4

7.
94

E
-3

5.
97

E
-2

12
7.

64
E

-3
6
.1

8
E

-2
1
3

7
.5

7
E

-3
6
.2

4
E

-2
1
3

7
.5

7
E

-3
6
.2

4
E

-2
1
3

7
.5

7
E

-3
6
.2

4
E

-2

sq
1

3
2.

30
E

-3
3.

17
E

-2
11

2.
23

E
-3

3
.2

7
E

-2
2
7

2
.1

8
E

-3
3
.3

0
E

-2
2
8

2
.1

8
E

-3
3
.3

0
E

-2
2
8

2
.1

8
E

-3
3
.3

0
E

-2

sq
2

2
6.

02
E

-4
1.

62
E

-2
18

7.
03

E
-4

1
.6

7
E

-2
4
0

6
.4

4
E

-4
1
.7

1
E

-2
4
7

6
.4

4
E

-4
1
.7

1
E

-2
4
7

6
.4

4
E

-4
1
.7

1
E

-2

sq
3

2
1.

53
E

-4
8.

16
E

-3
16

2.
73

E
-4

8
.4

2
E

-3
7
4
1

1
.8

6
E

-4
8
.5

1
E

-3
9
5
1

1
.8

6
E

-4
8
.5

2
E

-3
9
5
5

1
.8

6
E

-4
8
.5

2
E

-3

sq
4

1
3.

83
E

-5
4.

09
E

-3
6

1.
26

E
-4

4
.2

5
E

-3
N

.C
N

.C
N

.C

sq
5

1
9.

59
E

-6
2.

04
E

-3
3

6.
15

E
-5

2
.1

4
E

-3
N

.C
N

.C
N

.C

B
E

0
2

2
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

1.
79

0.
91

1.
78

0
.9

2
1
.8

0
0
.9

2
1
.8

0
0.

9
2

1
.8

0
0
.9

2

1.
93

0.
97

1.
67

0
.9

7
1
.7

6
0
.9

5
1
.7

6
0.

9
5

1
.7

6
0
.9

5

1.
98

0.
99

1.
36

0
.9

9
1
.7

9
1
.0

1
1
.7

9
1.

0
1

1
.7

9
1
.0

1

2.
00

1.
00

2.
00

1.
00

T
ab

le
10

.6
:

T
h
e

ta
b
le

co
n
ta

in
s

al
l

th
e

S
O

L
D

m
et

h
o
d
s

er
ro

r
d
at

a
an

d
ra

te
of

er
ro

r
re

d
u
ct

io
n

ra
te

fo
r

th
e

Ω
2
D

T
es

t
E

x
am

p
le

w
it

h
fi
x
ed

co
n
ve

ct
io

n
al

fi
el

d
.

230

(a) L2 −Norm (b) H1 −Norm

Figure 10.11: The figure have the L2-norm and H1-norm errors graphs for Ω2D

obtained using C93 method. The x-axis represents the h and the y-axis represents
the errors in log scale.

(a) L2 −Norm (b) H1 −Norm

Figure 10.12: The figure have the L2-norm and H1-norm errors graphs for Ω2D

obtained using KLR02 3 method. The x-axis represents the h and the y-axis
represents the errors in log scale.

(a) L2 −Norm (b) H1 −Norm

Figure 10.13: The figure have the L2-norm and H1-norm errors graphs for Ω2D ob-
tained using BE02 2 method. The x-axis represents the h and the y-axis represents
the errors in log scale.

231

10.2.10.2 2D Error Test: a variable convection field

The description of this Ω2D test example is given in section 10.2.4.2. This section

will discuss the error results obtained by computing solution using the SOLD meth-

ods. The L2-norm and H1-norm errors for the Codina C93 and Codina KLR02 3

are in Table 10.7. For these methods the error reduction rates are approximately

2 and 1 for the L2-norm and H1-norm errors, respectively. The C93 and KLR02 3

methods have displayed similar behaviour. These methods have converged for all

the cases except for the sq4 and sq5 meshes when ε is greater than 1E-02. The

error graphs for these C93 and KLR02 3 methods are in Figure 10.14 and Figure

10.15, respectively. The error reduction rate in L2-norm graphs have deviated from

the expected rate.

The Burman and Ern methods (BE02 1 and BE02 2) error results are in Table

10.8. The BE02 1 method has converged for all the meshes when the ε = 1. The

L2-norm and H1-norm errors has reduced at required rate. For smaller ε values it

has converged for sq, sq1 and sq2 meshes. Even for these meshes the errors have

not achieved the required reduction rate. The BE02 2 method has converged for

all the meshes for the ε = 1. This method has not converged for the sq3, sq4 and

sq5 meshes when the ε values less than 1. The BE02 2 method error reduction

graphs are shown in Figure 10.16. In both the graphs the error reduction rate has

deviated for bigger meshes using lower values of ε.

232

M
es

h
ε

=
1E

-0
ε

=
1
E

-2
ε

=
1
E

-4
ε

=
1
E

-6
ε

=
1
E

-8

N
am

e
It

er
L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

C
9
3

E
rr

o
r

sq
1

1.
64

E
-1

1.
42

N
.C

2.
21

E
-1

1
.5

2
2
4
0
9

2
.3

1
E

-1
1
.5

8
3
1
3
8

2.
3
2
E

-1
1
.5

8
3
1
4
4

2
.3

2
E

-1
1
.5

8

sq
1

1
4.

10
E

-2
7.

15
E

-1
15

5
5.

56
E

-2
7
.4

3
E

-1
3
1
7
1

6
.5

9
E

-2
7
.9

1
E

-1
4
7
9
1
1

6.
6
1
E

-2
7
.9

2
E

-1
1
8
8
9

6
.6

1
E

-2
7
.9

2
E

-1

sq
2

1
1.

10
E

-2
3.

58
E

-1
17

1.
46

E
-2

3
.7

2
E

-1
1
9
6
7
3

1
.7

9
E

-2
3
.9

0
E

-1
2
3
5
7
4

1.
8
2
E

-2
3
.9

4
E

-1
2
3
3
9
0

1
.8

2
E

-2
3
.9

4
E

-1

sq
3

1
2.

82
E

-3
1.

79
E

-1
14

4.
76

E
-3

1
.8

4
E

-1
1
7
6

4
.4

8
E

-3
1
.8

8
E

-1
2
3
1

4.
9
2
E

-3
1
.9

8
E

-1
2
3
0

4
.9

3
E

-3
1
.9

8
E

-1

sq
4

1
7.

08
E

-4
8.

96
E

-2
6

2.
04

E
-3

9
.1

4
E

-2
N

.C
N

.C
N

.C

sq
5

1
1.

77
E

-4
4.

48
E

-2
1

9.
83

E
-4

4
.5

9
E

-2
N

.C
N

.C
N

.C

C
9
3

E
rr

o
r

R
ed

u
ct

io
n

R
a
te

2.
00

0.
99

1.
99

1
.0

3
1
.8

1
1
.0

0
1
.8

1
1
.0

0
1
.8

1
1
.0

0

1.
90

1.
00

1.
93

1
.0

0
1
.8

8
1
.0

2
1
.8

6
1
.0

1
1
.8

6
1
.0

1

1.
96

1.
00

1.
62

1
.0

2
2
.0

0
1
.0

5
1
.8

9
0
.9

9
1
.8

8
0
.9

9

1.
99

1.
00

2.
00

1.
00

K
L

R
0
2

3
E

rr
o
r

sq
40

8.
27

E
-3

6.
42

E
-2

9
6.

87
E

-3
6
.1

8
E

-2
1
0

7
.2

3
E

-3
6
.2

3
E

-2
1
0

7.
2
4
E

-3
6
.2

3
E

-2
1
0

7
.2

4
E

-3
6
.2

3
E

-2

sq
1

33
2.

19
E

-3
3.

25
E

-2
9

1.
62

E
-3

3
.2

6
E

-2
1
8

1
.9

9
E

-3
3
.3

0
E

-2
1
8

2.
0
0
E

-3
3
.3

0
E

-2
1
8

2
.0

0
E

-3
3
.3

0
E

-2

sq
2

28
5.

33
E

-4
1.

63
E

-2
9

3.
78

E
-4

1
.6

4
E

-2
2
5

5
.4

6
E

-4
1
.6

9
E

-2
2
7

5.
5
5
E

-4
1
.7

0
E

-2
2
7

5
.5

5
E

-4
1
.7

0
E

-2

sq
3

24
1.

31
E

-4
8.

17
E

-3
6

1.
04

E
-4

8
.1

8
E

-3
1
9
1

1
.4

4
E

-4
8
.4

1
E

-3
2
2
8

1.
5
3
E

-4
8
.4

3
E

-3
2
2
8

1
.5

4
E

-4
8
.4

3
E

-3

sq
4

21
3.

26
E

-5
4.

09
E

-3
6

3.
76

E
-5

4
.0

9
E

-3
N

.C
N

.C
N

.C

sq
5

18
8.

14
E

-6
2.

04
E

-3
5

1.
75

E
-5

2
.0

5
E

-3
N

.C
N

.C
N

.C

K
L

R
0
2

3
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

1.
92

0.
98

2.
08

0
.9

2
1
.8

6
0
.9

2
1
.8

6
0
.9

2
1
.8

6
0
.9

2

2.
04

1.
00

2.
10

0
.9

9
1
.8

7
0
.9

7
1
.8

5
0
.9

6
1
.8

5
0
.9

6

2.
02

1.
00

1.
86

1
.0

0
1
.9

2
1
.0

1
1
.8

6
1
.0

1
1
.8

5
1
.0

1

2.
01

1.
00

2.
00

1.
00

T
ab

le
10

.7
:

T
h
e

ta
b
le

co
n
ta

in
s

al
l

th
e

S
O

L
D

m
et

h
o
d
s

er
ro

r
d
at

a
an

d
ra

te
of

er
ro

r
re

d
u
ct

io
n

ra
te

fo
r

th
e

Ω
2
D

T
es

t
E

x
am

p
le

w
it

h
co

n
ve

rg
in

g
co

n
ve

ct
io

n
fi
el

d
.

233

M
es

h
ε

=
1E

-0
ε

=
1
E

-2
ε

=
1
E

-4
ε

=
1
E

-6
ε

=
1
E

-8

N
am

e
It

er
L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

B
E

0
2

1
E

rr
o
r

sq
10

1.
67

E
-1

1.
40

10
79

2.
21

E
-1

1
.5

1
1
2

2
.4

5
E

-1
1
.6

5
1
2

2
.4

5
E

-1
1
.6

5
1
2

2
.4

5
E

-1
1
.6

5

sq
1

4
4.

34
E

-2
7.

12
E

-1
16

23
1.

66
E

-1
1
.4

2
1
3
8
4

1
.3

1
E

-1
1
.5

7
2
7
1
0

1
.2

7
E

-1
1
.3

4
3
8
4

1
.6

5
E

-1
1
.4

0

sq
2

3
1.

18
E

-2
3.

58
E

-1
77

40
1.

27
E

-1
2
.1

8
4
6
1
7
2

1
.4

9
E

-1
1
.5

3
1
1
9
4
4

1
.5

4
E

-1
2
.0

1
2
3
6
6
9

1
.4

3
E

-1
1
.5

7

sq
3

3
3.

02
E

-3
1.

79
E

-1
N

.C
N

.C
N

.C
N

.C

sq
4

6
7.

63
E

-4
8.

96
E

-2
N

.C
N

.C
N

.C
N

.C

sq
5

27
1.

90
E

-4
4.

48
E

-2
N

.C
N

.C
N

.C
N

.C

B
E

0
2

1
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

1.
94

0.
98

0.
41

0
.0

9
0
.9

0
0
.0

7
0
.9

5
0
.3

0
0
.5

7
0
.2

4

1.
88

0.
99

0.
39

-0
.6

2
-0

.1
9

0
.0

4
-0

.2
8

-0
.5

8
0
.2

1
-0

.1
7

1.
97

1.
00

1.
98

1.
00

2.
01

1.
00

B
E

0
2

2
E

rr
o
r

sq
4

1.
67

E
-1

1.
39

13
2.

19
E

-1
1
.5

1
1
2

2
.2

2
E

-1
1
.5

4
1
2

2
.2

2
E

-1
1
.5

4
1
2

2
.2

2
E

-1
1
.5

4

sq
1

3
4.

30
E

-2
7.

12
E

-1
18

7.
61

E
-2

8
.1

4
E

-1
2
2

7
.3

0
E

-2
8
.1

9
E

-1
2
2

7
.3

0
E

-2
8
.1

9
E

-1
2
2

7
.3

0
E

-2
8
.1

9
E

-1

sq
2

3
1.

16
E

-2
3.

58
E

-1
37

2.
58

E
-2

4
.1

4
E

-1
6
3

2
.2

0
E

-2
4
.1

1
E

-1
6
5

2
.2

0
E

-2
4
.1

1
E

-1
6
5

2
.2

0
E

-2
4
.1

2
E

-1

sq
3

2
2.

97
E

-3
1.

79
E

-1
33

1.
04

E
-2

2
.0

9
E

-1
3
3
5

6
.2

2
E

-3
2
.0

6
E

-1
5
3
6

6
.2

3
E

-3
2
.0

7
E

-1
5
4
2

6
.2

3
E

-3
2
.0

7
E

-1

sq
4

2
7.

48
E

-4
8.

96
E

-2
14

5.
00

E
-3

1
.0

7
E

-1
N

.C
N

.C
N

.C

sq
5

1
1.

87
E

-4
4.

48
E

-2
7

2.
45

E
-3

5
.4

6
E

-2
N

.C
N

.C
N

.C

B
E

0
2

2
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

1.
96

0.
97

1.
52

0
.8

9
1
.6

0
0
.9

1
1
.6

0
0
.9

1
1
.6

0
0
.9

1

1.
89

0.
99

1.
56

0
.9

8
1
.7

3
0
.9

9
1
.7

3
0
.9

9
1
.7

3
0
.9

9

1.
97

1.
00

1.
31

0
.9

9
1
.8

2
1
.0

0
1
.8

2
0
.9

9
1
.8

2
0
.9

9

1.
99

1.
00

2.
00

1.
00

T
ab

le
10

.8
:

T
h
e

ta
b
le

co
n
ta

in
s

al
l

th
e

S
O

L
D

m
et

h
o
d
s

er
ro

r
d
at

a
an

d
ra

te
of

er
ro

r
re

d
u
ct

io
n

ra
te

fo
r

th
e

Ω
2
D

T
es

t
E

x
am

p
le

w
it

h
co

n
ve

rg
in

g
co

n
ve

ct
io

n
fi
el

d
.

234

(a) L2 −Norm (b) H1 −Norm

Figure 10.14: The figure have the L2-norm and H1-norm errors graphs for Ω2D

obtained using C93 method for a variable convection field. The x-axis represents
the h and the y-axis represents the errors in log scale.

(a) L2 −Norm (b) H1 −Norm

Figure 10.15: The figure have the L2-norm and H1-norm errors graphs for Ω2D ob-
tained using KLR02 3 method for a variable convection field. The x-axis represents
the h and the y-axis represents the errors in log scale.

(a) L2 −Norm (b) H1 −Norm

Figure 10.16: The figure have the L2-norm and H1-norm errors graphs for Ω2D ob-
tained using BE02 2 method for a variable convection field. The x-axis represents
the h and the y-axis represents the errors in log scale.

235

10.2.10.3 3D Error Test: a variable convectional field

The description of this Ω3D test example is given in section 10.2.4.3. This section

will discuss the error results obtained by computing solution using the SOLD meth-

ods. The L2-norm and H1-norm errors for the Codina C93 and Codina KLR02 3

are in Table 10.9. For these methods the reduction rates are approximately 2 and 1

for the L2-norm and H1-norm errors, respectively. The C93 method has converged

for all the meshes and ε values except for one case. It has not converged for the

cb5 mesh for ε < 1. The KLR02 3 method has converged for the cb1 for all the ε

values. It has converged into for all the meshes for ε = 1. It has not converged for

cb5 for ε < 1. The method has converged for both methods at the required rate.

The L2-norm error graphs for C93 and KLR02 3 methods are depicted in Figures

10.17 and 10.18, respectively.

The Burman and Ern methods (BE02 1 and BE02 2) error results are in Table

10.10. The BE02 1 method has converged only for cb mesh. The BE02 2 method

has converged for all the meshes for the all the ε values. There are few exceptions as

the method has not converged for the cb5 mesh for ε < 0.01. The BE02 2 method

error reduction graphs are depicted in Figure 10.19. The errors have reduced at

the required rates.

236

M
es

h
ε

=
1E

-0
ε

=
1
E

-2
ε

=
1
E

-4
ε

=
1
E

-6
ε

=
1
E

-8

N
am

e
It

er
L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

C
9
3

E
rr

o
r

cb
1

1
4.

04
E

-1
1.

19
12

4.
60

E
-1

1
.2

6
1
6

4
.8

1
E

-1
1
.2

9
1
5

4
.8

2
E

-1
1
.2

9
1
5

4
.8

2
E

-1
1
.2

9

cb
2

1
1.

51
E

-1
7.

18
E

-1
15

2.
14

E
-1

8
.1

6
E

-1
3
0
6
3

2
.3

9
E

-1
8
.8

1
E

-1
2
2
0
9

2
.4

0
E

-1
8
.8

2
E

-1
1
1
7
1

2
.4

0
E

-1
8
.8

2
E

-1

cb
3

1
5.

48
E

-2
4.

35
E

-1
35

35
5

8.
12

E
-2

4
.8

8
E

-1
1
4
2
9
1

9
.0

7
E

-2
5
.7

3
E

-1
1
6
4
4
2

9
.1

3
E

-2
5
.7

5
E

-1
1
5
7
3
0

9
.1

3
E

-2
5
.7

5
E

-1

cb
4

1
2.

03
E

-2
2.

66
E

-1
95

95
2.

97
E

-2
2
.8

7
E

-1
3
1
2
5
3

3
.3

7
E

-2
3
.7

8
E

-1
1
2
7
0

3
.4

2
E

-2
3
.8

3
E

-1
5
5
7

3
.4

2
E

-2
3
.8

3
E

-1

cb
5

1
7.

66
E

-3
1.

63
E

-1
N

.C
N

.C
N

.C
N

.C

C
9
3

E
rr

o
r

R
ed

u
ct

io
n

R
a
te

2.
25

1.
15

1.
7
5

0
.9

9
1
.6

0
0
.8

6
1
.5

9
0
.8

6
1
.5

9
0
.8

6

2.
53

1.
25

2.
4
2

1
.2

8
2
.4

3
1
.0

8
2
.4

2
1
.0

7
2
.4

2
1
.0

7

2.
27

1.
13

2.
2
9

1
.2

2
2
.2

6
0
.9

5
2
.2

4
0
.9

3
2
.2

4
0
.9

3

2.
44

1.
23

K
L

R
0
2

3
E

rr
o
r

cb
1

29
4.

45
E

-1
1.

24
11

4.
60

E
-1

1
.2

6
E

1
5

4
.8

1
E

-1
1
.2

9
1
5

4
.8

2
E

-1
1
.2

9
1
5

4
.8

2
E

-1
1
.2

9

cb
2

22
1.

60
E

-1
7.

30
E

-1
18

2.
04

E
-1

8
.0

7
E

-1
N

.C
N

.C
N

.C

cb
3

23
5.

61
E

-2
4.

37
E

-1
14

65
2

7.
05

E
-2

4
.7

8
E

-1
2
2
0
3
2

9
.0

3
E

-2
5
.7

3
E

-1
1
5
5
4
5

9
.1

3
E

-2
5
.7

5
E

-1
N

.C

cb
4

31
2.

04
E

-2
2.

66
E

-1
60

55
6

2.
68

E
-2

2
.8

3
E

-1
N

.C
N

.C
N

.C

cb
5

28
7.

66
E

-3
1.

63
E

-1
N

.C
N

.C
N

.C
N

.C

K
L

R
0
2

3
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

2.
33

1.
21

1.
8
6

1
.0

1
1
.6

0
0
.8

6
1
.5

9
0
.8

6
1
.5

9
0
.8

6

2.
63

1.
28

2.
6
6

1
.3

2
2
.4

4
1
.0

8
2
.4

2
1
.0

7

2.
32

1.
13

2.
2
1

1
.2

0

2.
45

1.
23

T
ab

le
10

.9
:

T
h
e

ta
b
le

co
n
ta

in
s

C
93

an
d

K
L

R
02

3
S
O

L
D

m
et

h
o
d
s

er
ro

r
d
at

a
an

d
ra

te
of

er
ro

r
re

d
u
ct

io
n

fo
r

th
e

Ω
3
D

T
es

t
E

x
am

p
le

w
it

h
co

n
ve

rg
in

g
co

n
ve

ct
io

n
al

fi
el

d
.

237

M
es

h
ε

=
1E

-0
ε

=
1
E

-2
ε

=
1
E

-4
ε

=
1
E

-6
ε

=
1
E

-8

N
am

e
It

er
L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

It
er

L
2

E
rr

H
1

E
rr

B
E

0
2

1
E

rr
o
r

cb
1

39
4.

11
E

-1
9.

96
E

-1
10

44
3.

48
E

-1
9
.9

6
E

-1
1
5
6
4

4
.6

2
E

-1
9
.9

9
E

+
1

1
7
3
0

4.
4
3
E

-1
9
.9

8
E

-1
2
1
0
3

3
.8

1
E

-1
9
.9

6
E

-1

cb
2

19
6

1.
53

E
-1

1.
02

N
.C

N
.C

N
.C

N
.C

cb
3

N
.C

N
.C

N
.C

N
.C

N
.C

B
E

0
2

1
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

2.
26

-0
.0

6

B
E

0
2

2
E

rr
o
r

cb
1

4
4.

13
E

-1
1.

19
13

4.
88

E
-1

1
.2

7
1
4

4
.8

7
E

-1
1
.2

8
1
4

4.
8
7
E

-1
1
.2

8
1
4

4
.8

7
E

-1
1
.2

8

cb
2

3
1.

55
E

-1
7.

18
E

-1
12

2.
59

E
-1

8
.5

5
E

-1
1
6

2
.4

6
E

-1
8
.7

3
E

-1
1
6

2.
4
6
E

-1
8
.7

3
E

-1
1
6

2
.4

6
E

-1
8
.7

3
E

-1

cb
3

2
5.

63
E

-2
4.

35
E

-1
14

1.
19

E
-1

5
.3

6
E

-1
3
5

9
.9

5
E

-2
5
.7

6
E

-1
3
5

9.
9
4
E

-2
5
.7

7
E

-1
3
5

9
.9

4
E

-2
5
.7

7
E

-1

cb
4

2
2.

07
E

-2
2.

66
E

-1
13

5.
27

E
-2

3
.2

3
E

-1
1
0
6
6

3
.8

4
E

-2
3
.8

7
E

-1
6
6
2

3.
8
4
E

-2
3
.9

0
E

-1
6
6
5

3
.8

4
E

-2
3
.9

0
E

-1

cb
5

1
7.

77
E

-3
1.

63
E

-1
10

2.
40

E
-2

1
.9

1
E

-1
N

.C
N

.C
N

.C

B
E

0
2

2
E

rr
o
r

R
ed

u
ct

io
n

R
a
te

2.
24

1.
16

1.
4
5

0
.9

1
1
.5

6
0
.8

8
1
.5

6
0
.8

8
1
.5

6
0
.8

8

2.
54

1.
25

1.
9
5

1
.1

7
2
.2

7
1
.0

4
2
.2

7
1
.0

4
2
.2

7
1
.0

4

2.
28

1.
13

1.
8
6

1
.1

6
2
.1

8
0
.9

1
2
.1

7
0
.9

0
2
.1

7
0
.9

0

2.
46

1.
23

1.
9
6

1
.3

1

T
ab

le
10

.1
0:

T
h
e

ta
b
le

co
n
ta

in
s

B
E

02
1

an
d

B
E

02
2

S
O

L
D

m
et

h
o
d
s

er
ro

r
d
at

a
an

d
ra

te
of

er
ro

r
re

d
u
ct

io
n

fo
r

th
e

Ω
3
D

T
es

t
E

x
am

p
le

w
it

h
co

n
ve

rg
in

g
co

n
ve

ct
io

n
al

fi
el

d
.

238

(a) L2 −Norm (b) H1 −Norm

Figure 10.17: The figure have the L2-norm and H1-norm errors graphs for Ω3D

obtained using C93 method for a variable convection field. The x-axis represents
the h and the y-axis represents the errors in log scale.

(a) L2 −Norm (b) H1 −Norm

Figure 10.18: The figure have the L2-norm and H1-norm errors graphs for Ω3D ob-
tained using KLR02 3 method for a variable convection field. The x-axis represents
the h and the y-axis represents the errors in log scale.

(a) L2 −Norm (b) H1 −Norm

Figure 10.19: The figure have the L2-norm and H1-norm errors graphs for Ω3D ob-
tained using BE02 2 method for a variable convection field. The x-axis represents
the h and the y-axis represents the errors in log scale.

239

10.2.11 Problem with internal and boundary layers

10.2.11.1 SOLD 2D Layer problem constant convection field

This section compares the solution of SOLD methods. The test example used in

this section is given in section 10.2.5.1. The SUPG and SOLD methods solutions

are given in Figure 10.20 for Ω2D using sq4 mesh and ε = 1E − 4.

(a) SUPG (b) C93

(c) KLR02 3 (d) BE02 2

Figure 10.20: The figure have the solution visualization of the SUPG, C93,
KLR02 3 and BE02 2 methods solutions for the constant convective field. The
oscillations present in the SUPG solution have beeb removed by the SOLD meth-
ods.

10.2.11.2 SOLD 2D Layer problem variable convection field

This section compares the solution of SOLD methods. The test example used in

this section is given in section 10.2.5.2. The SUPG and SOLD methods solutions

240

are given in Figure 10.21 for Ω2D using sq4 mesh using ε = 1E − 8.

(a) SUPG (b) C93

(c) KLR02 3 (d) BE02 2

Figure 10.21: The figure have the solution visualization of the SUPG, C93,
KLR02 3 and BE02 2 methods solutions for the variable convection field. The
oscillations present in the SUPG solution have reduced around the inner and outer
boundary of the curve in the SOLD methods.

The SOLD methods have removed the unwanted osculations from the first SOLD

2D layer problem can be seen in Figure 10.20. In the second problem the SOLD

method has reduced the oscillations to minimum as shown in Figure 10.21. The

SOLD methods have produced desired results but these are computational ex-

pensive as compare to SUPG method. These have to solve the system of linear

equations in every iteration.

241

10.2.11.3 SOLD 2D Layer problem 3

(a) C93 (b) KLR02 3

(c) BE02 1 (d) BE02 2

Figure 10.22: Elevation of the solution provided by the C93, KLR02 3, BE02 1
and BE02 2 methods for the constant convectional field.

This section compares the solution of SOLD methods. The test example used in

this section is given in Section 10.2.5.3. The SUPG and SOLD methods solutions

are given in Figure 10.22 for Ω2D using sq3 mesh using ε = 1E − 8. The C93,

KLR02 3 and BE02 2 solutions have reduced the oscillations in [0.25, 0.75]2 but

also has added the oscillations in outer regions. The discrete solution produced by

the SOLD methods are not desired solutions as the extra oscillations are present in

the region (0.75,1)×(0,1) which are absent in the actual solutions given as Figure

10.7. The huge undesired oscillation in the BE02 1 solution make this solution

least desirable.

242

Chapter 11

Conclusion and Future Work

11.1 Conclusion

The objectives of this work are given in Section 1.2. This section explains how

these objectives are achieved.

1. Simple interface: The user selects the mathematical problem and domain

data and provides these to FEDomain as a list of elements’ objects. The

FEDomain collects element objects’ data and assembles it according to the

target third party solvers to compute solution. The solution is then pro-

vided to the element objects. The user does not have to implement parallel

data assembly and does not have to know about third party linear algebra

solver specifications. FEDomain maintains the interface between the user

application and the third party linear algebra solver.

2. Generic interface: The user implements C++ classes for each type of finite

element. The implementation of the element classes depends on the problem

type (Poisson, Elasticity, etc), the shape of the element (triangle, quadrangle,

tetrahedron, hexahedron, prism, pyramid etc), and the dimension of the

mesh (2D, 3D, etc). The FEDomain package provides an interface class

called FEElement defined in Listing 3.16. The user has to inherit element

243

classes from the FEElement class. The FEElement class standardize the

data access interface between the FEDomain package and mesh element.

This design allows the user to implement any type of constraints (Neumann,

Dirichlet, Robin etc) and degrees of freedoms (point, fluxes, means, etc).

The simple interface of FEDomain package introduces generality in im-

plementation. This interface divides the finite element application into two

segments. The first segment is FEDomain responsibility which includes as-

sembling of system data and calculation of the solution. The second segment

includes the user’s specific tasks, such as selection of domain and its dimen-

sions, problem types, element topologies, etc. The FEElement class enhances

this generality as it allows user to implement any element topology. The first

segment is not affected by this user’s choice and computes solution.

3. Operating system independent: FEDomain package is implemented in stan-

dard C++. It uses OpenMP, MKL and MPI libraries which are available for

all commonly used operating systems. FEDomain is not operating system

dependent. It can be used on commonly used operating systems like Linux,

Windows, and Mac OS, etc.

4. Support multiple solution methods: The user’s mathematical problem and

domain data is dynamic and can be changed at runtime. The FEDomain

package’s interface selection is kept dynamic so that user can select appro-

priate solver at runtime.

5. Support for shared and distributed architectures: The FEDomain package is

implemented for shared and distributed architecture machines. FEDomain

shared memory interface is given in Listing 3.14 and the distributed mem-

ory interface in given in Listing 3.17. The objective was to design these

interfaces as simple as possible. In both cases the user has to provide a

set of mesh element objects, a list of Dirichlet DOFs, partition ids, type of

244

matrix, and solution methods to package constructor. The FEDomain and

FEDomainMPI classes have two methods. The getResidual method is to

support iterative linear algebra solver and setSolution method is to compute

the solution using linear algebra direct solver methods. The user can convert

his sequential finite element application C++ code into parallel by adding

FEDomain into their application. FEDomain will perform data assembly

and calculation in parallel. The conversion from shared memory architec-

ture code into distributed memory code only requires altering a few lines.

This involves initiation and finalization of MPI and calling FEDomainMPI

interface instead of FEDomain interface.

6. Solution distribution: The FEElement class defines the interface between the

FEDomain package and user’s element objects. In this interface a setSolution

function is defined which provides solution to element objects. The solution

provided to element is already mapped according to its local DOF numbering.

7. Extendible: The FEDomain package allows its users to select and implement

linear algebra iterative solvers like Jacobi, Conjugate Gradients, etc. To help

with this it provides the calculation of the residual vector, which is a very

computationally intensive task. This can be done in both scenarios (shared

and distributed architectures).

The aim given in Section 1.1 is achieved as all the above mentioned objectives

are fulfilled. The package and element interfaces proposed in this work can support

all finite element problems. The proposed distinction between user and package

domains provides the user independence to define its problem. It also enable the

package to provide solvers for these problems.

245

11.2 Future Work

The FEDomain package uses the third party linear algebra solvers PARDISO

and MUMPS to compute the solution of finite element problem. The support to

the other well known linear algebra solver like PETSc, and SuperLU should be

added. This will allows the FEDomain user to select the available linear algebra

solver.

The calculation of the SP
bb algorithm has to be reimplemented to increase the

performance of the DIS DIRECT SOLVER, and DIS HYBRID SOLVER meth-

ods. It is the most time consuming task in DIS HYBRID SOLVER methods.

The FEDomain package non linear solver has to be implemented for the dis-

tributed memory architectures. The shared memory implementation of the non

linear solver has to be reimplemented for better memory management.

As every solution and residual method can be tuned appropriately to get a better

performance. Auto tuning strategies will be explored in future work.

246

Appendix A

FEDomain Installation Guide

This section illustrates how to use FEDomain package. It includes a Poisson

2D example as well as demonstrates how the application can be converted into

Elasticity 3D solver.

A.1 Requirements

The FEDomain package is developed for the shared memory and the distributed

memory architectures. The FEDomain supports PARDISO and MUMPS linear

algebra libraries. The shared memory version of these libraries is required by the

package and is not provided as the part of the package. The open source PARDISO

solver can be downloaded from www.pardiso-project.org. The user can purchase

the paid version of PARDISO solver from Intelr as a part of Math Kernel Library

(MKL). The MUMPS solver can be downloaded from http://mumps.enseeiht.fr.

The FEDomain package is provided as source code as well as the compiled li-

braries. The user can obtain the package by email the author at omer.riaz@strath.ac.uk.

The FEDomain library has to be compiled according to the operating system. The

user has to mention the target operating system in the email.

247

The FEDomain package implements parallel regions using OpenMP pragma.

The pragmas are the directives for the compiler to implement parallel code regions.

The user has to use the C++ compiler which supports OpenMP pragma. The

commonly used Windows operating system compilers are Microsoft Visual C++

compiler and Intel C++ compiler. For Linux and Mac OS operating systems GNU

C++ and Intel C++ compilers can be used. The Microsoft Visual C++ and GNU

C++ compilers are free compilers that can be obtained online. The list of other

OpenMP compilers can be seen at http://openmp.org/wp/openmp-compilers.

A.2 FEDomain Preprocessors

The FEDomain is developed for for the 32-bit and 64-bit machines. It uses

FE UINT for indexing type and FE DATA for data type. The FEDomain package

has to be indicated by setting preprocessors from Table A.1 at compile time.

Architecture Preprocessor FE UINT FE DATA

32-bit FE 32 unsigned int double

64-bit FE 64 unsigned long long double

Table A.1: The data type and preprocessor table.

The FEDomain package support two third party linear algebra packages. The

user has to select these packages at the compile time. Table A.2 shows the pre-

processors for these processors.

Package Preprocessor

PARDISO FE PARDISO

MUMPS FE MUMPS

Table A.2: The linear algebra package and their preprocessors.

248

A.3 Poisson 2D element classes examples

In this section the Poisson 2D example will be solved on the square domain

Ω = (0, 1)2 given in Fig A.1. The domain is triangulated into edge and triangle

elements. The edge elements lie at the domain boundaries which will contribute

to the right hand side. We define the Dirichlet boundary conditions on Γ1 and Γ2

and Neumann conditions on Γ3 and Γ4. The data for the boundary conditions and

right hand sizes are

on Γ3 : ∂hu = sin(πx)

on Γ4 : ∂hu = sin(πy)

in Ω : f = 1

Figure A.1: Poisson 2D domain.

This section discusses the Poisson 2D example code. The code in Listing A.1

represents the user application. In line 14 the Element Factory class object is

created. This class has to be defined by the user. The Element Factory object

is responsible for creating element objects. The constructor returns the list of

elements, nodes and partition ids. The Problem class in line 17 defines the problem

249

specific data. This includes the force applied on the domain, the type of boundaries

and what are the Neumann and Dirichlet values on the boundaries. The FEDomain

object is created into in Line 19. All the element objects are created to FEDomain

object to compute the solution in using DIRECT SOLVER. In the following line,

the solution is computed and provided back to the elements.

1 #inc lude ”FEDomain/FEDomain . h”

2 #inc lude ”FEDomain/FEElement . h”

3 i n t main (){

4 s t r i n g m e s h f i l e = ” f i l e p a t h / f i l e n a m e ” ;

5 FE UINT Max Ele DOFs ;

6 FE UINT Total Sys DOFs ;

7 std : : vector<NODES> Nodes ;

8 std : : vector<FEElement∗> Elements ;

9 std : : vector<FE UINT> P a r t i t i o n s ;

10 std : : map<FE UINT ,FE DATA> D i r i c h l e t ;

11 // Read mesh adapter

12 Mesh Adapter adapter (m e s h f i l e) ;

13 // Create node and mesh elements .

14 Element Factory Factory (adapter) ;

15 Factory . getData (Nodes , Elements , P a r t i t i o n s) ;

16 // Apply Poisson problem data (s p e c i f y boundary types and app l i ed f o r c e s) .

17 Poisson2D Data (Elements , Nodes , D i r i c h l e t , Total Sys DOFs , Max Ele DOFs) ;

18 // Creat ing FEDomain ob j e c t us ing DIRECT SOLVER.

19 FEDomain Domain(Elements , D i r i c h l e t , Pa r t i t i on s , Total Sys DOFs ,

20 Max Ele DOFs ,DIRECT SOLVER,DEFINITE SYMMETRIC) ;

21 // Computing s o l u t i o n .

22 Domain . s e t S o l u t i o n (D i r i c h l e t) ;

23 // Perform post p r o c e s s i n g (l i k e v i s u a l i z a t i o n) .

24 re turn 0 ;

25 }

Listing A.1: User Application

250

The Mesh Reader class in Listing A.2 is implemented to read mesh files. It is

good practice to have adapter for different mesh formats.

c l a s s Mesh Reader{

pub l i c :

enum ELEMENT TYPE = {EDGE=1, TRIANGLE=2};

Mesh Reader (s t r i n g mesh path) { . . } ;

bool getPoint (std : : vector<FE DATA>& point) { . . } ;

bool getElement (ELEMENT TYPE& element type , FE UINT& p a r t i t i o n i d , FE UINT& domain id ,

std : : vector<FE UINT>& e l e d a t a){ . . } ;

}

Listing A.2: Mesh Reader

The example of Element Factory class is given in Listing A.3. The objective of

this class is to create element and node objects. Listing A.3 shows the prototype of

the class implementation. In constructor stage, the Element Factory have to open

the mesh file and setup internal data structures. The getData method provides

mesh nodes, elements and partition ids.

1 c l a s s Element Factory{

2 pr i va t e :

3 // Co l l e c t a l l nodes and c r ea t e ob j e c t s f o r these nodes .

4 void getNodes (std : : vector<NODES> &nodes){

5 // Construct a l l node ob j e c t s .

6 std : : vector<FE DATA> coord inate (2) ;

7 whi le (reader . getNode (coord inate))

8 nodes . pushback (coord inate) ;

9 } ;

10 // Create ob j e c t s f o r mesh elements and c o l l e c t p a r t i t i o n id s .

11 void getElements (std : : vector<NODES> &nodes , std : : vector<FEElement∗> &elements ,

12 std : : vector<FE UINT> &partIDs){

13 FE UINT pid , did ;

14 std : : vector<FE DATA> data (5) ;

15 Mesh Adapter : :ELEMENT TYPE type ;

16 std : : map<FE UINT , FE UINT> gpid ;

17 whi le (reader . getElement (type , pid , did , data))

18 {

19 gpid [pid]=0;

20 i f (type == EDGE){

21 // Create and c o l l e c t edge elements .

22 Poisson2DEdge ∗e = new Poisson2DEdge (nodes , data , did , pid) ;

23 element . push back (e) ;

24 }

25 e l s e i f (type == TRIANGLE){

26 // Create and c o l l e c t t r i a n g l e e lements

27 Poisson2DTriangle ∗e = Poisson2DTriangle (nodes , data , did , pid) ;

28 element . push back (e) ;

29 }

30 e l s e i f (type == TETRAHEDRON){

31 // Create and c o l l e c t tet rahedron elements . I t w i l l be used in 3d mesh .

32 }

251

33 }

34 // Co l l e c t p a r t i t i o n id s .

35 std : : transform (gpid . begin () , gpid . end () , b a c k i n s e r t e r (partIDs) , RetrieveKey ()) ;

36 } ;

37 pub l i c :

38 Element Factory (Mesh Reader& m e s h f i l e){ /∗Open F i l e ∗/ } ;

39 ˜ Element Factory (){} ;

40 void getData (std : : vector<NODES>& nodes , std : : vector<FEElement∗>& elements ,

41 std : : vector<FE UINT>& partIDs){

42 getNodes (nodes) ;

43 getElements (nodes , elements , partIDs) ;

44 } ;

45 }

Listing A.3: Element Factory

The Poisson2D class will provide the problem data to the element objects. The

prototype of this class is given in Listing A.6. This class defines the problem con-

stants, function to calculate force on Ω, the type of the domain boundaries and

how to calculate load on these boundaries. The Element Factory and Poisson2D

classes cannot be implemented by FEDomain package. Their implementation will

depend on the user’s choice of problem, and domain geometry, etc.. The TFunctor

and TSpecificFunctor classes given in Listing A.4 are implemented to provide func-

tion pointers to the element classes. A new abstract class called Element (given in

Listing A.5) is introduced to collect domain identification id from the user. The

user has to add Element class (given in Listing A.5) as the FEElement class does

not provide any method to object Domain identification id. This information is

required to set Functor to the element class. The getElementID() in Element class

provides element identification number which will be unique for each element class.

// Abstract Functor c l a s s .

c l a s s TFunctor{

pub l i c :

v i r t u a l double operator () (double , double , double , i n t) = 0 ;

} ;

// S p e c i f i c Functor c l a s s .

template <c l a s s TClass>

c l a s s TSpec i f i cFunctor : pub l i c TFunctor{

pr i va t e :

TClass∗ pt2Object ;

double (TClass : : ∗ f p t) (double , double , double , i n t) ;

pub l i c :

TSpec i f i cFunctor (TClass ∗ pt2Object , double (TClass : : ∗ f p t) (double , double , double , i n t))

{

252

pt2Object = pt2Object ;

f p t = f p t ;

} ;

v i r t u a l double operator () (double x , double y , double z , i n t i)

{ re turn (∗ pt2Object .∗ f p t) (x , y , z , i) ; } ;

} ;

Listing A.4: Abstract Functor and Specific Functor Class

c l a s s Element : pub l i c FEElement

{

pub l i c :

v i r t u a l i n t getElementID () = 0 ;

v i r t u a l i n t getDomainID () = 0 ;

}

Listing A.5: User Element Abstract Class

1 c l a s s Poisson2D{

2 pr i va t e :

3 TSpec i f i cFunctor <Poisson2D> ∗E1 , ∗E2 , ∗E3 , ∗E4 , ∗D1 ;

4

5 void setElement (std : : vector<FEElement∗> &Elements){

6 FE UINT did ;

7 Element∗ pElement ;

8 f o r (FE UINT i =0; i<Elements . s i z e () ; i ++){

9 pElement = Elements [i] ;

10 did = pElement−>getDomainID () ;

11 i f (did == 1){

12 Poisson2DEdge ∗e = pElement [i] ;

13 e−>se tForce (E1) ;

14 }

15 e l s e i f (did == 2){

16 Poisson2DEdge ∗e = pElement [i] ;

17 e−>se tForce (E2) ;

18 }

19 e l s e i f (did == 3){

20 Poisson2DEdge ∗e = pElement [i] ;

21 e−>se tForce (E3) ;

22 }

23 e l s e i f (did == 4){

24 Poisson2DEdge ∗e = pElement [i] ;

25 e−>se tForce (E4) ;

26 }

27 e l s e i f (did == 5){

28 Poisson2DTriangle ∗e = pElement [i] ;

29 e−>se tForce (D1) ;

30 e−>s e t C o e f f i c i e n t (1) ;

31 }

32 }

33 } ;

34 void setTotalSysDOFs (std : : vector<NODES> &Nodes , FE UINT &Total Sys DOFs) {

35 // Compute t o t a l DOfs in the system .

253

36 Total Sys DOFs = Nodes . s i z e () ;

37 } ;

38 void setMaxEleDOFs (std : : vector<FEElement∗> &Elements , FE UINT &Max Ele DOFs) {

39 FE UINT count = 0 ;

40 Max Ele DOFs = 0 ;

41 f o r (i =0; i<Elements . s i z e () ; i ++){

42 count = Elements [i] . getDofsCount () ;

43 i f (count > Max Ele DOFs)

44 Max Ele DOFs = count ;

45 }

46 } ;

47 void s e t D i r i c h l e t (std : : vector<FEElement∗> &Elements , std : : map<FE UINT , FE DATA> &D i r i c h l e t){

48 in t did ;

49 f o r (FE UINT i =0; i<Elements . s i z e () ; i ++){

50 Element∗ e = Elements [i] ;

51 e id = e−>getElementID () ;

52 i f (e id == 1){

53 did = e−>getDomainID () ;

54 i f (did == 1 | | did == 2){

55 std : : vector<FE UINT> do f s (e−>getDofsCount ()) ;

56 e−>getConnect iv i ty (do f s) ;

57 f o r (FE UINT i =0; i<do f s . s i z e () ; i++)

58 D i r i c h l e t [do f s [i]] = 0 ;

59 }

60 }

61 }

62 } :

63

64 pub l i c :

65 Poisson2D (std : : vector<FEElement∗> &Elements , std : : vector<NODES> &Nodes ,

66 std : : map<FE UINT ,FE DATA>& Di r i ch l e t , FE UINT &Total Sys DOFs ,

67 FE UINT &Max Ele DOFs){

68 E1 = new TSpeci f icFunctor<Poisson2D>(th i s , Poisson2D : : ForceAt1) ;

69 E2 = new TSpeci f icFunctor<Poisson2D>(th i s , Poisson2D : : ForceAt2) ;

70 E3 = new TSpeci f icFunctor<Poisson2D>(th i s , Poisson2D : : ForceAt3) ;

71 E4 = new TSpeci f icFunctor<Poisson2D>(th i s , Poisson2D : : ForceAt4) ;

72 D1 = new TSpec i f i cFunctor<Poisson2D>(th i s , Poisson2D : : ForceAt5) ;

73 setTotalSysDOFs (Nodes , Total Sys DOFs) ;

74 setMaxEleDOFs (Elements , Max Ele DOFs) ;

75 setElement (Elements) ;

76 s e t D i r i c h l e t (Elements , D i r i c h l e t) ;

77 } ;

78 ˜Poisson2D (){ d e l e t e E1 ; d e l e t e E2 ; d e l e t e E3 ; d e l e t e E4 ; d e l e t e D1 ; } ;

79 // Force app l i ed on Γ1 .

80 double ForceAt1 (double x , double y , double z , i n t i) { re turn 0 . 0 ; } ;

81 // Force app l i ed on Γ2 .

82 double ForceAt2 (double x , double y , double z , i n t i) { re turn 0 . 0 ; } ;

83 // Force app l i ed on Γ3 .

84 double ForceAt3 (double x , double y , double z , i n t i) { re turn s i n (180∗x) ; } ;

85 // Force app l i ed on Γ4 .

86 double ForceAt4 (double x , double y , double z , i n t i) { re turn s i n (180∗y) ; } ;

87 // Force app l i ed on Ω .

88 double ForceAt5 (double x , double y , double z , i n t i) { re turn 1 . 0 ; } ;

89 }

Listing A.6: Poisson2D Class

254

The Edge element class called Poisson2DEdge is given in Listing A.7. The edge

element has two nodes and two DOFs. The class is inherited from the FEElement

class (given in Listing 3.16). The edge element lies at the domain boundary. These

contribute only to the load vector. The getLoadAt method in Poisson2DEdge class

calculate load vector using Simpson’s rule.

1 c l a s s Poisson2DEdge : pub l i c Element

2 {

3 pr i va t e :

4 FE DATA eLength ; // Length o f Edge

5 TFunctor∗ f Fo r c e ; // Functor to the f o r c e func t i on

6 FE UINT TotalDofs ; // Total DOFs in element .

7 FE UINT ePartIDs ; // Element p a r t i t i o n id (d e f a u l t =0)

8 FE UINT eDomainIDs ; // Element domain id (d e f a u l t =0)

9 std : : vector<NODES> &Nodes ; // L i s t o f mesh nodes

10 std : : vector<FE UINT> nIDs ; // L i s t o f element node id s

11 std : : vector<FE UINT> eDOFs ; // L i s t o f element DOFs

12 double getLoadAt (FE UINT &idx){

13 //
∫
l G(s)ds ' |l|

6
(G(x0)λ(x0) + 4G(m)λ(m) +G(x1)λ(x1))

14 a s s e r t (idx < TotalDofs) ;

15 double load = 2 ∗ f Fo r c e ∗ ((Nodes [nIDs [0]] . x + Nodes [nIDs [1]] . x)/2 ,

16 (Nodes [nIDs [0]] . y + Nodes [nIDs [1]] . y)/2 , 0 , 0) ;

17 load += f Forc e (Nodes [nIDs [idx]] . x , Nodes [nIDs [idx]] . y , 0 , 0) ;

18 return (e Length / 6) ∗ load ;

19 } ;

20 pub l i c :

21 Poisson2DEdge (vector<FE UINT>& node ids , vector<NODES>& mesh nodes , FE UINT& domain id ,

22 FE UINT& p a r t i t i o n i d) : nIDs (node ids) , Nodes (mesh nodes) , TotalNodes (2) ,

23 eDomainIDs (domain id) , ePartIDs (p a r t i t i o n i d){ . . } ;

24 ˜Poisson2DEdge (void){ . . } ;

25 void setForce (TFunctor∗ f unc t i on) { f Fo r c e = func t i on ; } ;

26 void assemble (std : : map<FE UINT ,FE DATA>& d i r i c h l e t) { . . } ;

27 v i r t u a l i n t getDomainID () { re turn eDomainIDs ; }

28 v i r t u a l i n t getElementID () { re turn eType ; }

29 v i r t u a l FE UINT getDofsCount () { re turn eDOFs . s i z e () ; } ;

30 v i r t u a l FE UINT getPar t i t i on ID () { re turn ePartIDs } ;

31 v i r t u a l void getLoad (FEVector& v) {

32 f o r (FE UINT i =0; i<TotalDofs ; i++) v [i] = getLoadAt (i) ;

33 } ;

34 v i r t u a l void g e t S t i f f n e s s (FEMatrix& m) { } ;

35 v i r t u a l void getSystem (FEEquation& e){

36 f o r (FE UINT i =0; i<TotalDofs ; i++) e . setValue (eDOFs [i] , getLoadAt (i)) ;

37 } ;

38 v i r t u a l void getConnect iv i ty (FESparseMatrix& m) {

39 f o r (FE UINT i =0; i<TotalDofs ; i++) m. setValue (i , eDOFs [i] , 1) ;

40 } ;

41 v i r t u a l void getConnect iv i ty (std : : vector<FE UINT>& v) {

42 f o r (FE UINT i =0; i<TotalDofs ; i++) v [i] = eDOFs [i] ;

43 } ;

44 v i r t u a l void s e t S o l u t i o n (FEVector&) { . . . } ;

45 } ;

Listing A.7: Poisson 2D Edge Class

255

The Poisson2DTriangle class in Listing A.8 implements the formulation of the

triangle elements for Poisson 2D problem. The Poisson2DTriangle have three nodes

and three DOFs. The load function is provided as the functor which is provided by

Poisson2D class. The nodes and node ids are allocated at the construction time.

The triangle load vector is calculated using the mid-points rule. The triangle

stiffness matrix is calculated using tangent vectors on triangle edges.

1 c l a s s Poisson2DTriangle : pub l i c Element

2 {

3 FE DATA eArea ; // Area o f t r i a n g l e

4 FE DATA ePoisson ; // Poisson Eq c o e f f i c i e n t

5 FE UINT TotalDofs ; // Total DOFs in element .

6 TFunctor∗ f Fo r c e ; // Functor to the f o r c e func t i on

7 FE UINT ePartIDs ; // Element p a r t i t i o n id (d e f a u l t =0)

8 FE UINT eDomainID ; // Element domain id (d e f au l t =0)

9 std : : vector<NODES> &Nodes ; // L i s t o f mesh nodes

10 std : : vector<FE UINT> nIDs ; // L i s t o f element node id s

11 std : : vector<FE UINT> eDOFs ; // L i s t o f element DOFs

12 std : : vector<NODES> eMPoint ; // L i s t o f edges mid point

13 std : : vector<NODES> eTangent ; // L i s t o f tangents

14

15 FE DATA getLoadAt (FE UINT& idx) {

16 //
∫
K F (x)λj(x)dx ' |K|

3
(F (m0)λj(m0) + F (m1)λj(m1) + F (m2)λj(m2))

17 a s s e r t (idx < TotalDofs) ;

18 FE DATA load = 0 ;

19 i f (idx != 0) load += f For c e (eMPoint [0] . x , eMPoint [0] . y , 0 , 0) ;

20 i f (idx != 1) load += f For c e (eMPoint [1] . x , eMPoint [1] . y , 0 , 0) ;

21 i f (idx != 2) load += f For c e (eMPoint [2] . x , eMPoint [2] . y , 0 , 0) ;

22 return (e Area / 6) ∗ load ;

23 } ;

24

25 FE DATA g e t S t i f f n e s s A t (FE UINT& i , FE UINT& j) {

26 // BK(λj , λi) '
aK
4|K| (~t1.~tj)

27 a s s e r t ((i<TotalDofs)&&(j<TotalDofs)) ;

28 FE DATA data = eTangent [j] . y ∗ eTangent [i] . y + eTangent [j] . x ∗ eTangent [i] . x ;

29 return data ∗ ePoisson / (4 ∗ eArea) ;

30 } ;

31

32 pub l i c :

33 Poisson2DTriangle (std : : vector< FE UINT >& node ids , std : : vector< NODES >& mesh nodes ,

34 FE UINT &domain id , FE UINT& p a r t i t i o n i d) : nIDs (node ids) ,

35 Nodes (mesh nodes) , eDomainID (domain id) , ePartIDs (p a r t i t i o n i d) ,

36 TotalDofs (3) { . . } ;

37 ˜ Poisson2DTriangle (void) { . . } ;

38 void assemble (std : : map<FE UINT ,FE DATA>& d i r i c h l e t) { . . } ;

39 void setForce (TFunctor∗ f unc t i on) { f Fo r c e = func t i on ; } ;

40 void s e t C o e f f i c i e n t (FE DATA& c o e f f i c i e n t) { ePoisson = c o e f f i c i e n t ; } ;

41 v i r t u a l i n t getDomainID () { re turn eDomainID ; }

42 v i r t u a l i n t getElementID () { re turn eType ; }

43 v i r t u a l FE UINT getDofsCount () { re turn eDOFs . s i z e () ; } ;

44 v i r t u a l FE UINT getPar t i t i on ID () { re turn ePartIDs ; } ;

45 v i r t u a l void getLoad (FEVector& v) {

46 f o r (FE UINT i =0; i<TotalDofs ; i++) v [i] = getLoadAt (i) ;

47 } ;

256

48 v i r t u a l void g e t S t i f f n e s s (FEDenseMatrix& m) {

49 double value = 0 ;

50 f o r (FE UINT i =0; i<TotalDofs ; i++)

51 f o r (FE UINT j=i ; j<TotalDofs ; j++){

52 value = g e t S t i f f n e s s A t (i , j) ;

53 m. addValue (i , j , va lue) ;

54 m. addValue (j , i , va lue) ;

55 }

56 } ;

57 v i r t u a l void getSystem (FE equation& e) {

58 double value = 0 ;

59 f o r (FE UINT i =0; i<TotalDofs ; i ++){

60 e . setValue (eDOFs [i] , getLoadAt (i)) ;

61 f o r (FE UINT j=i ; j<TotalDofs ; j++){

62 value = g e t S t i f f n e s s A t (i , j) ;

63 e . setValue (eDOFs [i] , eDOFs [j] , va lue) ;

64 e . setValue (eDOFs [j] , eDOFs [i] , va lue) ;

65 }

66 }

67 } ;

68 v i r t u a l void getConnect iv i ty (FESparseMatrix& m) {

69 f o r (FE UINT i =0; i<TotalDofs ; i++) m. setValue (i , eDOFs [i] , 1) ;

70 } ;

71 v i r t u a l void getConnect iv i ty (std : : vector<FE UINT>& v) {

72 f o r (FE UINT i =0; i<TotalDofs ; i++) v [i] = eDOFs [i] ;

73 } ;

74 v i r t u a l void s e t S o l u t i o n (FEVector&) { . . } ;

75 } ;

Listing A.8: Poisson 2D Triangle Class

NODES class in the above classes are used to represents nodes. It encapsulates

x and y coordinates of the point. NODES class is given in Listing A.9.
1 c l a s s NODES

2 { ‘

3 pub l i c :

4 FE DATA x , y , z ;

5 NODES(NODES& n) : x (n . x) , y (n . y) , z (n . z){} ;

6 NODES(FE DATA & x , FE DATA & y) : x (x) , y (y) , z (0){} ;

7 NODES(FE DATA & x , FE DATA & y , FE DATA & z) : x (x) , y (y) , z (z){} ;

8 NODES(std : : vector<FE DATA> &n) : x (n [0]) , y (n [1]) , z (n [2]) { } ;

9 ˜NODES(){} ;

10 }

Listing A.9: NODES Class

In this chapter an example of the code to solve the 2D Poisson problem is given.

The code is complete up to the calculation of geometry. Specific quantities such

as length of the edge, area of the triangle, and tangent vectors. These should be

implemented by the user.

257

A.4 Elasticity 3D Modifications

Apart from geometry and dimension specific changes, such as the calculation of

the normals and quadrature rules etc, the following are the only changes needed to

solve an Elasticity 3D problem. The fact that very few changes are needed in order

to apply the system to a different problem domain demonstrates its effectiveness.

The implementation of the Elasticity 3D problem requires the implementa-

tion of the problem definition classes like Poisson2D, Poisson2DEdge and Pois-

son2DTriangle classes. Let the 3D domain is triangulated into triangle and tetra-

hedron elements. The boundary elements have triangle shape and these will con-

tribute only for the right hand side. Let Elasticity3DTriangle class is the name of

the boundary elements. This class will be similar to the Poisson2DEdge class given

in Listing A.7 with small modifications. For Elasticity 3D, each nodal point will

have 3 DOFs so triangle element will have 9 DOFs. For internal identifications the

DOFs allocated to single node are labelled with consecutive ids. The getLoadAt

function will be changed to the getLoadAt function given in Listing A.10.

1 FE DATA getLoadAt (FE UINT& idx) {

2 a s s e r t (idx < TotalDofs) ;

3 FE UINT node id = idx /DOFsPerNode ;

4 FE UINT d o f i d = idx%DOFsPerNode ;

5 FE DATA x , y , z ;

6 x = e MPoints [node id] . x ;

7 y = e MPoints [node id] . y ;

8 z = e MPoints [node id] . z ;

9 re turn (∗ f Fo r c e) (x , y , z , d o f i d)∗ e Area / 3 . 0 ;

10 }

Listing A.10: Elasticity 3D Triangle Class load method.

Let Elasticity3DTetrahedron class is the name of the tetrahedron element. This

class will be similar to Poisson2DTriangle class given in Listing A.8. The tetra-

hedron element will have 12 DOFs and the DOFs allocated to single node are

internally labelled consecutive ids. There will be two Elasticity equation constants

λ and µ represented in this class as e Lambda and e Mu respectively. The load

258

vector and stiffness matrix implementation for this class is given in Listing A.11.In

Elasticity3DTetrahedron class the normals are used to calculate stiffness matrix.

1 FE DATA getLoadAt (FE UINT& idx) {

2 a s s e r t (idx < eTotalDofs) ;

3 FE UINT node pos = idx / DOFsPerNode ;

4 FE UINT dof pos = idx % DOFsPerNode ;

5 FE DATA f = 0 ;

6 FE DATA l = 0 ;

7 f o r (FE UINT i =0; i<TotalNodes ; i ++){

8 f = (∗ f Fo r c e) ((∗ p node) [e NodeIDs [i]] . x , (∗ p node) [e NodeIDs [i]] . y ,

9 (∗ p node) [e NodeIDs [i]] . z , do f pos) ;

10 i f (node pos == i) l += f / 10 ;

11 e l s e l += f / 20 ;

12 }

13 return l ∗ e Volume ;

14 } ;

15

16 FE DATA g e t S t i f f n e s s A t (FE UINT& r , FE UINT& c) {

17 a s s e r t ((r < eTotalDofs)&&(c < eTotalDofs)) ;

18 FE DATA value = 0 ;

19 FE UINT i , j , f i , f j ;

20 i = r % DOFsPerNode ; f i = r / DOFsPerNode ;

21 j = c % DOFsPerNode ; f j = c / DOFsPerNode ;

22 i f (f i == f j)

23 {

24 i f (f i == 0)

25 value = (2 ∗ e Mu ∗ (e Normals [j] . x ∗ e Normals [i] . x

26 + e Normals [j] . y ∗ e Normals [i] . y / 2

27 + e Normals [j] . z ∗ e Normals [i] . z / 2)

28 + e Lambda ∗ (e Normals [j] . x ∗ e Normals [i] . x)) ;

29 e l s e i f (f i == 1)

30 value = (2 ∗ e Mu ∗ (e Normals [j] . x ∗ e Normals [i] . x / 2

31 + e Normals [j] . y ∗ e Normals [i] . y

32 + e Normals [j] . z ∗ e Normals [i] . z / 2)

33 + e Lambda ∗ (e Normals [j] . y ∗ e Normals [i] . y)) ;

34 e l s e i f (f i == 2)

35 value = (2 ∗ e Mu ∗ (e Normals [j] . x ∗ e Normals [i] . x / 2

36 + e Normals [j] . y ∗ e Normals [i] . y / 2

37 + e Normals [j] . z ∗ e Normals [i] . z)

38 + e Lambda ∗ (e Normals [j] . z ∗ e Normals [i] . z)) ;

39 }

40 e l s e

41 {

42 i f ((f i == 0) && (f j == 1))

43 value = (e Mu ∗ e Normals [j] . x ∗ e Normals [i] . y

44 + e Lambda ∗ e Normals [j] . y ∗ e Normals [i] . x) ;

45 e l s e i f ((f i == 0) && (f j == 2))

46 value = (e Mu ∗ e Normals [j] . x ∗ e Normals [i] . z

47 + e Lambda ∗ e Normals [j] . z ∗ e Normals [i] . x) ;

48 e l s e i f ((f i == 1) && (f j == 0))

49 value = (e Mu ∗ e Normals [j] . y ∗ e Normals [i] . x

50 + e Lambda ∗ e Normals [j] . x ∗ e Normals [i] . y) ;

51 e l s e i f ((f i == 1) && (f j == 2))

52 value = (e Mu ∗ e Normals [j] . y ∗ e Normals [i] . z

53 + e Lambda ∗ e Normals [j] . z ∗ e Normals [i] . y) ;

54 e l s e i f ((f i == 2) && (f j == 0))

55 value = (e Mu ∗ e Normals [j] . z ∗ e Normals [i] . x

56 + e Lambda ∗ e Normals [j] . x ∗ e Normals [i] . z) ;

259

57 e l s e i f ((f i == 2) && (f j == 1))

58 value = (e Mu ∗ e Normals [j] . z ∗ e Normals [i] . y

59 + e Lambda ∗ e Normals [j] . y ∗ e Normals [i] . z) ;

60 }

61 return value /(9 ∗ e Volume) ;

62 } ;

Listing A.11: Elasticity 3D Tetrahedron Class Methods.

260

Bibliography

[1] url=http://www.mono-project.com/.

[2] url=http://dotgnu.org/pnet.html.

[3] Getfem++ an open source finite element library.

http://download.gna.org/getfem/html/homepage/index.html.

[4] Intel Xeon Processor X5560. http://ark.intel.com/products/37109/Intel-

Xeon-Processor-X5560-8M-Cache-2 80-GHz-6 40-GTs-Intel-QPI.

[5] Intel Xeon Processor X5650. http://ark.intel.com/products/47922.

[6] Object Oriented MPI (OOMPI):A class library for the Massage Passing In-

terface, South Bend, IN, 1996. IEEE Computer Society Press.

[7] Intel Math Kernel Library Reference Manual. http://www.intel.com, January

2010.

[8] H. Adeli and G. Yu. An integrated computing environment for solution of com-

plex engineering problems using the object-oriented programming paradigm

and a blackboard architecture. Computers & Structures, 54(2):255 – 265,

1995.

[9] J.E. Akin. Finite Elements for Analysis and Design. Computational mathe-

matics and applications. Academic Press, 1994.

261

[10] A. Alexandrescu. Modern C++ Design: Generic Programming and Design

Patterns Applied. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2001.

[11] P. R. Amestoy, I. S. Duff, J. Koster, and J.Y. L’Excellent. A fully asyn-

chronous multifrontal solver using distributed dynamic scheduling. SIAM

Journal on Matrix Analysis and Applications, 23(1):15–41, 2001.

[12] E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra,

J. Du Croz, S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen.

LAPACK Users’ guide (third ed.). SIAM, Philadelphia, PA, USA, 1999.

[13] O. Axelsson and V.A. Barker. Finite Element Solution of Boundary Value

Problems Theory and Computation. SIAM, Philadelphia, PA, USA, 2001.

[14] B. Bacci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Skeletons and trans-

formations in an integrated parallel programming environment. volume 1662

of LNCS, pages 760–760. University of Passau, D-94030, Passau, Germany,

1999.

[15] S. Balay, J. Brown, K. Buschelman, W. Gropp, D. Kuashik, M. Knepley, L.C.

McInnes, B. Smith, and H. Zhang. PETSc Users Manual. MCS Division,

Argonne National Laboratory, 3.2 edition, Sept 2011.

[16] W. Bangerth. Using modern features of C++ for adaptive finite element

methods: Dimension-independent programming in DEAL.II. Proceedings of

the IMACS 2000 World Congres, August.

[17] W. Bangerth, R. Hartmann, and G. Kanschat. DEAL.II a general purpose

object oriented finite element library. ACM Transactions on Mathematical

Software, 33, August 2007.

[18] W. Bangerth and G. Kanschat. Concepts for object-oriented finite element

software the DEAL.II. In Preprint 43, SFB 359, 1999.

262

[19] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, M. Ohlberger,

and O. Sander. A generic grid interface for parallel and adaptive scientific

computing. Part I: abstract framework. Computing, 82(2-3):103–119, 2008.

[20] J. Bilmes, K. Asanovic, J. Demmel, D. Lam, and C.W. Chin. Phipac: A

portable, high-performance, ANSI C coding methodology and its application

to matrix multiply. Technical report, University of Tennessee, 1996.

[21] G.H. Botorog and H. Kuchen. Skil: An imperative language with algorith-

mic skeletons for efficient distributed programming. In In Proceedings of the

Fifth International Symposium on High Performance Distributed Computing

(HPDC5), pages 243–252. Society Press, 1996.

[22] S.C. Brenner and L.R. Scott. The mathematical theory of finite element meth-

ods. Springer, 2008.

[23] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-

Verlag New York, Inc., New York, NY, USA, 1991.

[24] A.N. Brook and T.J.R Hughes. Streamline upwind/Petrov-Galerkin formula-

tions for convection dominated flows with particular emphasis on the incom-

pressible Navier-Stokes equations. Computer Methods in Applied Mechanics

and Engineering, 32:199–259, 1982.

[25] P. Ciechanowicz, M. Poldner, and H. Kuchen. The münster skeleton library

Muesli - A comprehensive overview. ERCIS Working Paper No. 7, 2009.

[26] M. Cole. Algorithmic skeletons: structured management of parallel compu-

tation. MIT press, 1991.

[27] T. Davis and I. Duff. An Unsymmetric-Pattern Multifrontal Method for

Sparse LU Factorization. SIAM Journal on Matrix Analysis and Applica-

tions, 18(1):140–158, 1997.

263

[28] E.G.D. doCarmo and A.C. Galeão. Feedback Petrov-Galerkin methods for

convection-dominated problems. Computer Methods in Applied Mechanics

and Engineering, 88:1–16, 1991.

[29] A.J. Dorta, J.A. González, C. Rodŕıguez, and F. Sande. llc: A parallel skeletal

language. Parallel Processing Letters, 13(3):437–448, 2003.

[30] J. Duffy. Concurrent Programming on Windows. Addison Wesley Professional,

2008.

[31] A. Ern and J.L. Guermond. Theory and Practice of Finite Elements, volume

159 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004.

[32] B.W.R. Forde, R.O. Foschi, and S.F. Stiemer. Object-oriented finite element

analysis. Computers & Structures, 34(3):355 – 374, 1990.

[33] L.P. Franca, S.L. Frey, and T.J.R. Hughes. Stabilized finite element methods:

I. Application to the advective-diffusive model. Computer Methods in Applied

Mechanics and Engineering 95, pages 253–276, 1992.

[34] E. Freeman, E. Freeman, B. Bates, and K. Sierra. Head First Design Patterns.

O’ Reilly & Associates, Inc., 2004.

[35] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Object-oriented Software. Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 1995.

[36] K. Gärtner. Mathematical topic ”Solution of large sparse linear systems”.

http://www.wias-berlin.de/research/rts/GlSyst/index.jsp.

[37] L. Gil and G. Bugeda. A c++ object-oriented programming strategy for

the implementation of the finite element sensitivity analysis for a non-linear

structural material model. Adv. Eng. Softw., 32(12):927–935, November 2001.

264

[38] V. Girault and P.A. Raviart. Finite Element Methods for Navier-Stokes equa-

tions: Theory and Algorithm. Springer Series in Computational Mathematics,

Springer-Verlag, 1986.

[39] P. Gottschling and C. Steinhardt. Meta-Tuning in MTL4. In ICNAAM 2010:

International Conference of Numerical Analysis and Applied Mathematics,

volume 1281, pages 778–782. American Institute of Physics, 09 2010.

[40] N. I. M. Gould, Y. Hu, and J. A. Scott. A numerical evaluation of sparse direct

solvers for the solution of large sparse, symmetric linear systems of equations.

Technical report, Council for the Central Laboratory of the Research Councils,

May 2005.

[41] A. Gupta. WSMP: Watson Sparse Matrix Package Part I - direct solution

of symmetric sparse systems. Technical report, IBM T. J. Watson Research

Center,, 1101 Kitchawan Road, Yorktown Heights, NY 10598, November 2000.

[42] A. Gupta. WSMP: Watson Sparse Matrix Package Part II - direct solution of

general sparse systems. Technical report, IBM T. J. Watson Research Center,,

1101 Kitchawan Road, Yorktown Heights, NY 10598, November 2000.

[43] F. Hecht. New development in FreeFEM++. Journal of Numerical Mathe-

matics, 20(3-4):251–265, 2012.

[44] B.C.P. Heng and R.I. Mackie. Using design patterns in object-oriented finite

element programming. Comput. Struct., 87(15-16):952–961, August 2009.

[45] B.C.P. Heng and R.I. Mackie. Parallel modal analysis with concurrent dis-

tributed objects. Computers & Structures, 88(2324):1444 – 1458, 2010. Special

Issue: Association of Computational Mechanics United Kingdom.

[46] Intel Coorporation. Intel Math Kernel Library Reference Manual, 10.2 edition,

2010.

265

[47] Y. Jinyun. Symmetric gaussian quadrature formulae for tetrahedronal regions.

Computer Methods in Applied Mechanics and Engineering, 43(3):349 – 353,

1984.

[48] V. John and P. Knobloch. On spurious oscillations at layers diminishing

(SOLD) methods for convectiondiffusion equations: Part I - A review. Com-

puter Methods in Applied Mechanics and Engineering, 196:2197–2215, Novem-

ber 2007.

[49] V. John and P. Knobloch. On spurious oscillations at layers diminishing

(SOLD) methods for convection–diffusion equations: Part II – Analysis for

P1 and Q1 finite elements. Computer methods in applied mechanics and en-

gineering, 197(21-24):1997–2014, 2008.

[50] C. Johnson. Numerical solution of partial differential equations by finite ele-

ment method. Cambridge University Press, May 1998.

[51] Y. Karasawa and H. Iwasaki. A Parallel Skeleton Library for Multi-core

Clusters. In Parallel Processing, 2009. ICPP ’09. International Conference,

pages 84 – 91, Sept 2009.

[52] G. Karypis. Metis A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings

of Sparse Matrices. Department of Computer Science & Engineering,

University of Minnesota, Minneapolis, MN 55455, 5 edition, 8 2011.

http://www.cs.umn.edu/karypis.

[53] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for par-

titioning irregular graphs. SIAM Journal on scientific computing, 20(1):359–

392, 1998.

[54] B.S. Kirk, J.W. Peterson, R.H. Stogner, and G.F. Carey. libMesh

: A C++ library for parallel adaptive mesh refinement coarsen-

266

ing simulations. Engineering with Computers, 22(3–4):237–254, 2006.

urlhttp://dx.doi.org/10.1007/s00366-006-0049-3.

[55] X.-A. Kong. A data design approach for object-oriented {FEM} programs.

Computers & Structures, 61(3):503 – 513, 1996.

[56] X.-A. Kong and D.P. Chen. An object-oriented design of {FEM} programs.

Computers & Structures, 57(1):157 – 166, 1995.

[57] C.L. Lawson, R.J. Hanson, D.R. Kincaid, and F.T. Krogh. Basic Linear

Algebra Subprograms for Fortran usage. ACM Transactions on Mathematical

Software, 5(3):308–323, 1979.

[58] X.S. Li. An overview of SuperLU: Algorithms implementation and user inter-

face. ACM Transactions on Mathematical Software, 31:302–325, Sept 2005.

[59] J.W.H. Liu. Modification of the minimum-degree algorithm by multiple elim-

ination. ACM Transactions of Mathematical Software, 11(2):141–153, June

1985.

[60] A. Logg, K.-A. Mardal, and G.N. Wells, editors. Automated Solu-

tion of Differential Equations by the Finite Element Method, volume 84

of Lecture Notes in Computational Science and Engineering. Springer,

http://dx.doi.org/10.1007/978-3-642-23099-8, 2012.

[61] J. Lu, D. White, and W.F. Chen. Applying object-oriented design to finite

element programming. In Proceedings of the 1993 ACM/SIGAPP Symposium

on Applied Computing: States of the Art and Practice, SAC ’93, pages 424–

429, New York, NY, USA, 1993. ACM.

[62] R.I. Mackie. Object oriented programming of the finite element method.

International Journal for Numerical Methods in Engineering, 35(2):425–436,

1992.

267

[63] R.I. Mackie. An object-oriented approach to fully interactive finite element

software. Advances in Engineering Software, 29(2):139 – 149, 1998.

[64] R.I. Mackie. Object-oriented finite element programming-the importance of

data modelling. Advances in Engineering Software, 30(911):775 – 782, 1999.

[65] R.I. Mackie. Implementation of sub-structuring within an object-oriented

framework. Advances in Engineering Software, 32(1011):749 – 758, 2001.

[66] R.I. Mackie. Object oriented implementation of distributed finite element

analysis in .net. Advances in Engineering Software, 38(1112):726 – 737, 2007.

Engineering Computational Technology.

[67] R.I. Mackie. Object-oriented programming of distributed iterative equation

solvers. Computers & Structures, 86(6):511 – 519, 2008. Civil-Comp Special

Issue.

[68] R.I. Mackie. Advantages of object oriented finite element analysis. Proceedings

of the ICE - Engineering & Computational Mechanics, 162:23–29, 2009.

[69] R.I. Mackie. Design and deployment of distributed numerical applications

using .net and component oriented programming. Advances in Engineering

Software, 40(8):665–674, 2009.

[70] S. Modak and E.D. Sotelino. An object-oriented programming framework for

the parallel dynamic analysis of structures. Computers & Structures, 80(1):77

– 84, 2002.

[71] D. R. Musser, G. J. Derge, and A. Saini. STL tutorial and reference guide, sec-

ond edition: C++ programming with the standard template library. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[72] OpenMP Architecture Review Board, http://openmp.org/wp/. OpenMP Ap-

plication Program Interface, version 3.1 edition, July 2011.

268

[73] P.S. Pacheco. Parallel programming with MPI. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, November 1996.

[74] B. Patzak and Z. Bittnar. Design of object-oriented finite element code.

Advances in Engineering Software, 32(10-11):759–767, 2001.

[75] B. Patzak and D. Rypl. Object-oriented, parallel finite element framework

with dynamic load balancing. Advances in Engineering Software, 47(1):35–50,

2012.

[76] J. Reider. Intel Threading Building Blocks. OŔeilly Media, 2007.

[77] O. Schenk, K. Gärtner, W. Fichtner, and A. Stricker. PARDISO: A High-

Performance Serial and Parallel Sparse Linear Solver in Semiconductor Device

Simulation, 2000.

[78] S.-P. Scholz. Elements of an object-oriented fem++ program in c++. Com-

puters & Structures, 43(3):517 – 529, 1992.

[79] R. Touzani. An object oriented finite element toolkit. In Proceedings of the

Fifth World Congress on Computational Mechanics (WCCM V), pages 163–

202. Vienna, Vienna University of Technology, Austria, ISBN 3-9501554-0-6,

July 2002.

[80] R. Vuduc, J.W. Demmel, and K.A. Yelick. The Optimized Sparse Ker-

nel Interface (OSKI) Library. BeBOP, University of California, Berkeley,

http://bebop.cs.berkeley.edu/oski, 1.0.1h edition, June 2007.

[81] R.C. Whaley. Software Automatic Tuning : From Concepts to State-of-the-

Arts Results, chapter Chapter 2 ATLAS Version 3.9: Overview and Status.

Springer, 2010.

[82] G. Yu and H. Adeli. Object-oriented finite element analysis using eer model.

Journal of Structural Engineering, 119(9):2763–2781, 1993.

269

	Introduction
	Aims
	Objectives
	Parallelism, Core and Threads
	Parallel Architectures
	Parallel Libraries
	Basic concepts on object oriented implementation of Finite Element Methods
	Low Level Linear Algebra Systems
	Tuning Paradigms

	High Level Linear Algebra Libraries
	Object Oriented Finite Element Packages
	Algorithmic Skeletons
	Plan of the thesis

	Finite Elements
	Finite Element Methods
	Galerkin Methods
	The Linear System
	Partitioning the domain
	Partitioning of partitioning

	Solution of Linear Systems
	Direct Solution Methods
	Iterative Solution Methods
	Full Assembly
	Element By Element

	Static Condensation
	Parallel Iterative Solver

	Conclusion

	FEDomain Interface
	FEDomain Interface Version 1
	FEDomain Interface Version 2
	FEDomain Interface Version 3
	FEDomain Interface Version 4
	FEDomain Interface Version 5
	FEDomain Interface Version 6
	FEDomain Interface Version 7
	FEDomainMPI Interface
	Summary and Conclusion

	FEDomain Shared Memory FE Solver
	Direct Solver
	Sparse Matrix Container Requirements
	Direct Solver Stages
	Direct Sovler Timing

	Static Condensation
	FEEquation Class
	Client object as Element object
	Shared Memory Solvers Class Diagrams

	Complexity
	Conclusion

	FEDomain Distributed Memory FE Solvers
	Distributed Solver Interface
	Distribution of the mesh

	DOFs notations
	FEDomainMPI
	Distributed Direct Solver
	CSREquation Container
	Distributed Direct Solver Mathematical Model
	2-Dimensional Mesh
	3-Dimensional Mesh
	D-Dimensional Mesh

	Distributive Hybrid Solver
	Distributed Hybrid Solver Mathematical Model

	Conclusion

	FEDomain Residual Methods
	FEResidual Version 1
	Interface
	Implementation
	Drawbacks

	FEResidual Version 2
	Interface
	Requirements of Template Parameters

	Implementation
	Performance
	Drawbacks

	FEResidual Version 3
	Interface
	Implementation
	Performance
	Drawbacks

	FEResidual Version 4
	Interface
	Implementation
	Performance

	Conclusion

	FEDomain Shared Memory Residual Method
	FEResidual Version 5
	Interface
	Implementation
	Performance

	FEResidual Version 6
	Implementation
	Interface
	Performance

	FEResidual Version TBB
	Implementation
	Performance

	Conclusion

	FEDomain Distributed Memory Residual Methods
	Distributed EBE Residual
	Distributed FA Residual
	Distributed FA Compressed Residual
	Conclusion

	Extension to a non-linear solver for the Convection-Diffusion equation
	Interface
	Implementation
	Future Works

	Convection-Diffusion Equation Examples
	Problem
	Streamline Upwind/Petrov-Galerkin
	Error Computation
	Error Rate
	Domains
	SUPG Error Results
	2D Error Test: a constant convectional field
	SUPG 2D Error Test : A variable convection field
	SUPG 3D Error Test Example 1 : variable convective field

	Problem with internal and boundary layers
	SUPG 2D Layer problem constant convection field
	SUPG 2D Layer problem rotating convection field
	SUPG 2D Layer problem 3
	SUPG 3D Layer problem 2

	Codina Method C93
	Modified Codina Method KLR02_3
	 Burman and Ern Method BE02_1
	 Modified Burman and Ern Method BE02_2
	SOLD Methods Error Results
	2D Error Test: constant convection field
	2D Error Test: a variable convection field
	3D Error Test: a variable convectional field

	Problem with internal and boundary layers
	SOLD 2D Layer problem constant convection field
	SOLD 2D Layer problem variable convection field
	SOLD 2D Layer problem 3

	Conclusion and Future Work
	Conclusion
	Future Work

	FEDomain Installation Guide
	Requirements
	FEDomain Preprocessors
	Poisson 2D element classes examples
	Elasticity 3D Modifications

