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This thesis is the result of the author’s original research. It has been

composed by the author and has not been previously submitted for

examination which has led to the award of a degree.

The copyright of this thesis belongs to the author under the terms of the

United Kingdom Copyright Acts as qualified by University of Strathclyde

Regulation 3.50. Due acknowledgement must always be made of the use of

any material contained in, or derived from, this thesis.

Part II of this thesis has been published here [Smi14a]. Parts III and IV

have been submitted to journals and preprints are available at [Smi14b]

and [Smi15], respectively. All three papers are a result of the author’s

original work and are the sole work of the author.

Signed:

Date: 13/10/2015



Acknowledgements

Firstly, I would like to express my deepest gratitude to my supervisor
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Abstract
A permutation is an ordering of the letters 1, . . . , n. A permutation σ

occurs as a pattern in a permutation π if there is a subsequence of π whose

letters appear in the same relative order of size as the letters of σ, such a

subsequence is called an occurrence. The set of all permutations, ordered

by pattern containment, is a poset. In this thesis we study the behaviour

of the Möbius function and topology of the permutation poset.

The first major result in this thesis is on the Möbius function of in-

tervals [1, π], such that π = π1π2 . . . πn has exactly one descent, where a

descent occurs at position i if πi > πi+1. We show that the Möbius function

of these intervals can be computed as a function of the positions and num-

ber of adjacencies, where an adjacency is a pair of letters in consecutive

positions with consecutive increasing values.

We then alter the definition of adjacencies to be a maximal sequence of

letters in consecutive positions with consecutive increasing values. An oc-

currence is normal if it includes all letters except (possibly) the first one of

each of all the adjacencies. We show that the absolute value of the Möbius

function of an interval [σ, π] of permutations with a fixed number of descents

equals the number of normal occurrences of σ in π. Furthermore, we show

that these intervals are shellable, which implies many useful topological

properties.

Finally, we allow adjacencies to be increasing or decreasing and apply

the same definition of normal occurrence. We present a result that shows

the Möbius function of any interval of permutations equals the number of

normal occurrences plus an extra term. Furthermore, we conjecture that

this extra term vanishes for a significant proportion of intervals.
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Chapter 1

Motivation and Overview

1.1 Motivation

The main focus of this thesis is the study of permutation patterns. A per-

mutation π is an ordering of the letters 1, . . . , n and σ occurs as a pattern

in π if there is a subsequence of π whose letters appear in the same rela-

tive order of size as the letters of σ. For example, 132 occurs as a pattern

in 25143 as the subsequence 254. If a pattern σ does not occur in a permu-

tation π we say that π avoids σ. Furthermore, we define the permutation

poset consisting of all permutations with the partial order σ ≤ π if σ occurs

as a pattern in π.

Permutation patterns have been studied implicitly for a long time. For

example, in 1768 Leonhard Euler introduced the Eulerian numbers An,k

which count the number of length n permutations with k descents, where a

descent occurs any time a letter is smaller in value than the letter directly

preceding it. A descent can be viewed as an occurrence of the pattern 21
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appearing in consecutive letters. The modern study of permutation patterns

can be traced to Knuth’s 1968 work [Knu68], where it was shown that

permutations that avoid 231 can be sorted using a stack. This work was

expanded on throughout the 1970s and 1980s in papers such as [Knu70],

[Rog78], [Rot81] and [SS85]. An excellent review of the field’s current state

can be found in [Kit11]. And, many open problems, some of which are

answered in this thesis, can be found in [Ste13].

The Möbius function was first introduced by August Ferdinand Möbius

in 1832, in the paper [Möb32], as a function on an integer n giving a value 0

if n has a repeated prime factor and (−1)k if n is a product of k distinct

primes. In 1964, in his seminal paper [Rot64], Gian-Carlo Rota introduced

the systematic study of the Möbius function for arbitrary posets. Note that

the original definition of the Möbius function of the integer n is equivalent

to the Möbius function of the poset of divisors of n. The Möbius function

of a poset turns out to have many interesting properties and applications

and has been extensively studied since, see [Sta12, Section 3].

One interesting consequence of Rota’s paper [Rot64] is the development

of poset topology. That is, the study of the topology of simplicial complexes

constructed from posets. Poset topology has links to a variety of mathe-

matical fields such as commutative algebra, group theory, representation

theory, combinatorics and topology; for an excellent overview of the field

see [Wac07].

Due to the wealth of knowledge associated with poset topology and

the Möbius function of posets, two questions that are often asked for any

given poset are ‘What is its topology?’ and ‘How does its Möbius function
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behave?’. In this thesis we give some answers to these questions for the

permutation poset.

1.2 Outline and List of Results

This thesis is in four parts. The first part is an introduction to the relevant

areas and the latter three parts are three independent, but related, papers.

Part I is split into the following chapters:

In Chapter 2 we introduce the definitions required to study the permu-

tation poset and define the Möbius function. Moreover, we present some

previous results on the Möbius function of intervals of permutations. We

also give an overview of the results on the Möbius function presented in

this thesis.

In Chapter 3 we introduce order complexes, which are the simplicial

complexes we use to study the topology of posets. We then give a brief

overview of the topology necessary to study these complexes. Finally, we

give a summary of the results presented in this thesis on the topology, and

in particular on the Möbius function, of the permutation poset.

Part II contains the published paper “On the Möbius Function of Permu-

tations with One Descent”, see [Smi14a]. In this paper we present a formula

for the Möbius function of intervals of permutations of the form [1, π], such

that π has exactly one descent. We prove this formula using an inductive

argument on the recursive formula for the Möbius function.

Part III contains the paper “Intervals of Permutations with a Fixed

Number of Descents are Shellable”, which is to appear in Discrete Math-
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ematics, see [Smi14b]. In this paper we present a formula for intervals of

permutations with a fixed number of descents and show that these intervals

are shellable, a property with strong topological implications. We prove this

by presenting an order isomorphism to posets of words with subword order,

which are shown to be shellable, and for which an efficient formula of the

Möbius function is presented, in [Bjö90]. This result is used to present a

simpler proof of the result in Part II.

Part IV contains the paper “A Formula for the Möbius Function of the

Permutation Poset Based on a Topological Decomposition”, which has been

submitted for publication, see [Smi15]. This paper introduces a formula for

the Möbius function of all intervals of the permutation poset. To prove this

formula we use topological methods to construct the interval (σ, π) from

simpler posets for which the Möbius function can be computed easily.

We now give an overview of the main results in Parts II - IV:

Part II

• If a permutation π contains three consecutive letters with

values x(x+ 1)(x+ 2), for any x, then µ(1, π) = 0 (Lemma 32).

• Complete classification of the permutations that occur as patterns in a

permutation with exactly one descent and no adjacencies (Lemma 34).

• Complete classification of µ(1, π) when π has exactly one descent

(Theorem 36).

• The Möbius function µ(1, π) is unbounded on the permutation poset

(Corollary 46).
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Part III

• There is an order preserving bijection between intervals of permuta-

tions with a fixed number of descents and certain intervals of words

with subword order (Theorem 56).

• Intervals of permutations with a fixed number of descents are shellable

(Corollary 57).

• The Möbius function of an interval of permutations with a fixed num-

ber of descents equals the number of normal embeddings, with sign

determined by the rank of the interval (Proposition 61).

• If a permutation π has exactly one descent, then µ(1, π) = −µ(21, π)

(Lemma 64).

• Complete classification of µ(1, π) when π has exactly one descent,

with an alternate proof to the one presented in Part II (Theorem 65).

• A formula for the Möbius function of intervals [σ, π], such that σ and π

both have exactly one descent and π has no adjacencies (Proposi-

tion 67). This is a proof of Conjecture 47 in Part II.

• If π is a permutation with exactly one descent, then the order com-

plex ∆(1, π) is homotopy equivalent to a suspension of ∆(21, π) (The-

orem 69).

• We conjecture that the intervals [1, π] are shellable if π has exactly

one descent and avoids 456123 and 356124 (Conjecture 71).
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• If π has exactly one descent and avoids 456123 and 356124, then

the interval [1, π] has no disconnected subintervals of rank 3 or more

(Proposition 75).

Part IV

• A two term formula for the Möbius function of all intervals of permu-

tations (Theorem 94).

• A result linking the Möbius function of two posets connected by a

poset fibration satisfying a certain condition (Proposition 97).

• The expected number of letters in the tails of the adjacencies of a

permutation tends to 2 as the length of the permutation tends to

infinity (Lemma 99).

• Consider an interval [σ, π]. If for all λ ∈ [σ, π) there is a letter of π

that is not in any occurrence of λ in π, then the Möbius function of

[σ, π] equals the number of normal embeddings, with sign determined

by the rank of the interval (Proposition 102).
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Chapter 2

The Permutation Poset and its

Möbius Function

Permutations have been extensively studied for a long time. This is largely

due to their versatility in encoding data from a wide range of origins. While

there exists a wealth of knowledge associated with permutations there are

still many open questions to be answered.

Permutations can be written in many forms. In this thesis we consider

permutations using one-line notation. As such, we formally define a per-

mutation as follows:

Definition 1. A permutation π on the set {α1, . . . , αn} is a sequence of

distinct letters π1 . . . πn such that πi ∈ {α1, . . . , αn}. We say π has length n

which we denote |π|.

Example 2. The sequence 54316728 is a permutation on the set {1, . . . , 8}

of length 8.
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Remark 3. The definition of length given here is not to be confused with the

definition of length used in the study of permutations in relation to Coxeter

groups.

In this thesis we largely focus on patterns in permutations. As such, we

are interested in the relative differences between the letters of a permuta-

tion. Therefore, given a permutation on some set other than {1, . . . , n}, we

reduce said permutation to its smallest form whilst maintaining the pattern

of the permutation, in the following way:

Definition 4. Let π be a permutation on the set {j1, . . . , jn}. Define the

reduced form of π, denoted red(π), as the sequence obtained by replacing

the i-th smallest letter in π with i, for all 1 ≤ i ≤ n.

Example 5. The reduced form of π = 25473 is red(π) = 14352.

Throughout this thesis we consider a permutation to be in its reduced

form unless otherwise stated. As such, we consider two permutations with

the same reduced form to be equivalent.

There are numerous ways of considering patterns in permutations,

see [Kit11] for a good overview. We focus on the classical permutation

patterns which are defined as follows:

Definition 6. Consider two permutations σ and π = π1 . . . πn. We say

there is an occurrence of σ in π if there is a subsequence πj1 . . . πjm of π such

that the reduced form of the subsequence equals σ, that

is, red(πj1 . . . πjm) = σ.

13



1(1)

21(-1) 12(-1)

312(1) 213(1) 132(1) 231(1)

2413(-3)

Figure 2.1: The interval [1,2413] with the Möbius function µ(1, π) in red.

We can consider occurrence as a binary relation between permutations.

It is quite straightforward to show that this relation is reflexive, antisym-

metric and transitive. As such, we can construct a poset of permutations

in the following way:

Definition 7. The permutation poset, denoted P, consists of all permuta-

tions with the order relation σ ≤ π if there is an occurrence of σ in π. Define

an interval of permutations [σ, π] as the induced subposet {λ ∈ P |σ ≤ λ

≤ π} ⊂ P and the interior of [σ, π] as (σ, π) := {λ ∈ P |σ < λ < π} ⊂ P.

The permutation poset has a very complicated structure and has been

the focus of much study in recent years. Many questions remain open in

relation to the permutation poset, such as the behaviour of the Möbius

function on P , which is defined as follows:

Definition 8. Given an interval [σ, π] the Möbius function is defined re-

cursively as µ(σ, σ) = 1 and for all λ ∈ (σ, π]:

µ(σ, λ) = −
∑
σ≤τ<λ

µ(σ, τ). (2.1)
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See Figure 2 for an example of an interval of permutations and its Möbius

function.

2.1 Previous Results on the Möbius

Function of the Permutation Poset

In the past ten years there has been some progress towards understanding

the Möbius function of the permutation poset. Efficient formulas have been

found for the Möbius function of certain classes of permutations. However,

the proportion of intervals for which we have such a formula tends to zero

as the rank of the interval increases, where the rank of an interval I = [σ, π]

is defined rk(I) = |π| − |σ|.

One result that we can deduce straight away follows from the trivial

bijections, which are defined thus:

Definition 9. Consider a permutation π = π1 . . . πn. The following bijec-

tions are the three trivial bijections:

• The reverse of π, denoted r(π), is πnπn−1 . . . π1.

• The complement of π, denoted c(π), is π′1 . . . π
′
n, where π′i = n+1−πi.

• The inverse of π, denoted i(π), is obtained by setting the πj-th letter

of i(π) as j.

Example 10. Consider the permutation π = 51243. Applying the triv-

ial bijections to π gives r(π) = 34215, c(π) = 15423 and i(π) = 23541.
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We can also compose trivial bijections, for example r(c(π)) = 32451

and c(i(π)) = 43125.

It is straightforward to show that the trivial bijections are order isomor-

phisms, this implies the following result on the Möbius function.

Lemma 11. Consider two permutations σ and π. Let f be any trivial

bijection or composition of trivial bijections, then:

µ(σ, π) = µ(f(σ), f(π)).

In order to simplify the problem of finding an efficient formula for the

Möbius function of intervals of P we can split permutations into smaller

parts and consider each part separately. There are many different ways

that we can split permutations, one that has given numerous interesting

results is splitting a permutation using direct sums.

Definition 12. The direct sum σ ⊕ π of two permutations σ and π is the

concatenation of σ with π′, where π′ is obtained by increasing each letter

of π by |σ|. Similarly, the skew sum σ	π is the concatenation of σ′ and π,

where σ′ is obtained by increasing each letter of σ by |π|.

Example 13. Consider the permutations σ = 2413 and π = 12435,

then σ ⊕ π = 241356879 and σ 	 π = 796812435.

Using direct sums, and skew sums, we can split permutations into

smaller parts. Moreover, we can consider special permutations which can

be written as the direct sum of certain classes of permutations.
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Definition 14. A permutation is decomposable if it can be written as the

direct sum π1⊕· · ·⊕πt, for some t > 1. A layered permutation is the direct

sum of decreasing permutations. A permutation is separable if it can be

written using only direct sums, skew sums, parentheses and the singleton

permutation 1.

Example 15. The permutation 213645 is decomposable because it can be

written 213 ⊕ 312, and the permutation 2413 is indecomposable. The per-

mutation 1326547 is layered as it can be written 1 ⊕ 21 ⊕ 321 ⊕ 1. The

permutation 34125 is separable because it can be written ((1⊕1)	(1⊕1))⊕1.

A decomposable permutation can be written uniquely in its finest

form π1 ⊕ · · · ⊕ πt such that each πi, which we call a component of π,

is indecomposable.

The first major result on the Möbius function of P was presented

in [SV06] where a formula for layered permutations was given. This for-

mula is based on counting normal embeddings. Many of the formulas for

the Möbius function of P , and of other posets, use this idea of normal em-

beddings to give an efficient formula for the Möbius function. However,

although they all follow a similar theme, the definition of normal varies

in each case. We give our own definition of normal in Section 2.2, but

first we define embeddings, which are in one-to-one correspondence with

occurrences:

Definition 16. Consider permutations σ ≤ π. An embedding η of σ in π

is a sequence of the same length as π such that the nonzero positions in η

17



are the positions of an occurrence of σ in π and the removal of all the zeroes

leaves an occurrence of σ.

Example 17. For σ = 132 and π = 2314765 the sequence 0300065 is an

embedding of σ in π.

Remark 18. In Part II the notation of embeddings is slightly altered such

that removal of all the zeroes leaves the reduced form of σ. As we consider

two permutations with the same reduced form to be equivalent we can use

either definition.

The next major results on this topic appeared in [BJJS11], where formu-

las for decomposable and separable permutations are given. The formula for

separable permutations is also based on normal embeddings. A simplifica-

tion of the formula for decomposable permutations is given in [MS15]. Both

of the formulas for decomposable permutations are recursive and bottom

out in indecomposable permutations.

2.2 Overview of Results in this Thesis on

the Möbius Function of the

Permutation Poset

Many of the results we present in Parts II - IV are focused on providing an

efficient formula for computing the Möbius function of intervals of permu-

tations.
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As seen in Section 2.1, most of the results on the Möbius function of

intervals of P are for intervals of decomposable permutations. A formula

for the Möbius function of intervals of indecomposable permutations has

proven more difficult to develop. In Part II we present the first result that

gives an efficient formula for the Möbius function of intervals of a class

of permutations that contains a significant proportion of indecomposable

permutations. This is the class of permutations with at most one descent,

where a descent occurs at position i in π = π1 . . . πn if πi > πi+1. In

Part II we give a full classification of the Möbius function of intervals [1, π]

when π has exactly one descent. This provides the first proof that the

function µ(1, π) is unbounded on the permutation poset. The proof of

this classification is an inductive proof on the length of π. Furthermore, we

present a pair of conjectures on the Möbius function of [σ, π], where either σ

or π has no adjacencies and both have exactly one descent. We prove one

of these conjectures in Part III, while the other one remains open.

In Part III we prove a more general result on intervals of permutations

with a fixed number of descents. The proof of this result is based on an

order isomorphism from intervals of permutations to intervals of words with

subword order, for which an efficient formula for the Möbius function is pre-

sented in [Bjö90]. The formula for words with subword order that is used in

Part III is based on counting the number of normal embeddings. We adapt

this definition of normal embeddings for permutations using increasing ad-

jacencies, which are defined as follows:

Definition 19. An adjacency in a permutation is a maximal sequence,

of length ` ≥ 1, of increasing or decreasing consecutively valued letters in
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consecutive positions. The tail of an adjacency of length at least 2 is all

but the first letter of the adjacency. An adjacency of length 1 does not have

a tail.

Example 20. The permutation π = 2314765 has adjacencies 23, 1, 4

and 765 and the tails are 3 and 65.

In Part III we say an embedding η of σ in π is normal if the positions of

all the letters in all the tails of the increasing adjacencies in π are nonzero

in η. The result from [Bjö90] implies the Möbius function of an interval

of permutations [σ, π] equals the number of normal embeddings with sign

depending only on the rank of the interval. We apply this result to give a

much shorter proof of the main theorem, and to prove one of the conjectures,

of Part II.

Note that any increasing adjacency in π becomes a decreasing adjacency

in the reverse permutation r(π). By Lemma 11 we know that the reverse

operation preserves the value of the Möbius function, which appears to be

intrinsically linked to the notion of normal embeddings. In Part IV we

extend the definition of normal to consider both increasing and decreasing

adjacencies.

Definition 21. An embedding η of σ in π is normal if the letters in the

positions of all the tails of the adjacencies in π are nonzero in η. We denote

the number of normal embeddings of σ in π as NE(σ, π).

Example 22. For σ = 132 and π = 2314765 the sequence 0300065 is the

only normal embedding of σ in π, so NE(σ, π) = 1.
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Using this definition of normal embeddings computational testing in-

dicates that, up to a sign, the Möbius function of [σ, π] equals NE(σ, π)

for 95% of intervals when |π| < 9. So in Part IV we use this definition

of normal embeddings to develop a formula that says the Möbius function

equals the number of normal embeddings, with sign given by the rank of

the interval, plus an extra term. Furthermore, we conjecture that this extra

term vanishes for a significant proportion of intervals. One such case where

this second term vanishes is when two permutations have the same number

of descents, which follows from Part III.

An interesting open question is how the definition of normal embeddings

given here compares to those given in previous papers. Many of the pre-

viously considered definitions of normal have extra conditions to deal with

decomposable permutations which have equal consecutive components. In

Section 6.4 of Part IV we show that such equal consecutive components

cause the extra term of our formula to be nonzero.

In terms of further work, the formula given in Part IV is not the final

answer in the search to find an efficient formula for the Möbius function of P .

However, it gives a good basis for further investigation. If the intervals for

which the extra term of the formula vanishes can be classified, we would

get a polynomial time formula for a large class of permutations. Moreover,

finding an efficient way to compute the extra term would give an efficient

formula for the Möbius function of all intervals of the permutation poset.
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Chapter 3

The Topology of the

Permutation Poset

The other major results in Part III and Part IV are on the topology of the

permutation poset. To study the topology of an interval of permutations

we represent the interval as a simplicial complex. We can then study the

topology of this complex in order to understand the structure of the un-

derlying poset. First we introduce how we can represent these intervals as

simplicial complexes.

3.1 Order Complexes

In order to study the topology of a poset we must represent the poset as a

topological space, we use simplicial complexes for this purpose. A simplicial

complex can be viewed as a collection of vertices, edges, triangles, tetra-

hedra and higher dimensional analogues, called simplices, that are glued
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together in certain ways and is formally defined as follows:

Definition 23. An abstract simplicial complex ∆ on the finite vertex set V

is a nonempty collection of subsets of V such that:

• {v} ∈ ∆ for all v ∈ V ,

• if G ∈ ∆ and F ⊆ G then F ∈ ∆.

The elements of ∆ are called the faces and the maximal faces are called

facets. The dimension of a face F is given by dimF := |F | − 1 and the

dimension of ∆ is given by dim ∆ := maxF∈∆ dimF .

Any abstract simplicial complex has a geometric representation obtained

by embedding the complex in Rn to get a geometric simplicial complex. As

such, from now on we simply refer to simplicial complexes or sometimes

just complexes.

We can use simplicial complexes to represent a poset in the following

way:

Definition 24. A chain in a poset P is a totally ordered subset of P . The

order complex of P , denoted ∆(P ), contains the elements of P as vertices

and any subset of vertices is a face of ∆(P ) if the corresponding subset in P

is a chain.

See Figure 3.1 for an example of an order complex of a poset of permu-

tations.

To allow us to easily apply topological methods to study posets, we re-

fer to a poset and its order complex interchangeably. When considering a
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Figure 3.1: Left: Hasse diagram of (12, 456123). Right: The order com-
plex ∆(12, 456123).

poset it is often useful to have a top and bottom element. For example, this

is necessary to consider the Möbius function. However, when considering

the topology of a poset P we generally are only interested in the interior,

that is, the poset without the top and bottom element which we denote P o.

Therefore, when considering the order complex of an interval [σ, π] we ac-

tually consider the interior (σ, π) and use the notation ∆(σ, π). Moreover,

when considering a poset P we use P̂ to denote the poset obtained by

adding a top and bottom element to P .

Some properties of posets and their order complexes coincide nicely.

For example, the length of a chain equals its number of elements minus

one and the rank of a poset P , denoted rk(P ), is the length of the longest

chain. Therefore, the rank of a poset equals the dimension of the order

complex of the poset. A simplicial complex is pure if all the facets have

the same dimension and similarly a poset is pure if all the maximal chains

have the same length. Therefore, it is clear that a pure poset has a pure

order complex. We focus on order complexes of intervals of permutations

which are always pure, so we assume throughout that a complex is pure

unless otherwise stated. In many cases nonpure versions of the definitions
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and results exist, see [BW96] and [BW97].

Many other combinatorial objects can also be represented as simplicial

complexes in a variety of ways. The most common objects to be represented

in this way are graphs, for a thorough overview of this topic see [Jon08]

and [Koz08, Chapter 9].

Now that we have a way to represent posets topologically we can study

them with tools from topology. Homology theory is a very important field

in the study of topology, however the topic lies outside of the scope of

this thesis, so we refer the reader to [Hat02] for the necessary background.

The most important topological invariants that we consider are the reduced

Betti numbers and the reduced Euler characteristic which are defined thus:

Definition 25. The reduced Euler characteristic of a simplicial complex ∆

is defined as:

χ̃(∆) :=
dim ∆∑
i=−1

(−1)if̃i(∆), (3.1)

where

f̃i(∆) :=

 the number of i-dimensional faces of ∆, if i 6= 0

0, if i = 0

.

The n-th reduced Betti number β̃n(∆) is the rank of the n-th reduced

homology group of ∆.

The following useful result shows that the reduced Euler characteristic

and the reduced Betti numbers are intrinsically linked:
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Theorem 26. (Euler-Poincaré formula)

χ̃(∆) =
dim ∆∑
i=−1

(−1)iβ̃i(∆). (3.2)

The field of poset topology is an extremely interesting field and, although

we use many tools from it, we cannot fully cover the topic in this thesis and

instead refer the reader to [Wac07] for a comprehensive overview.

3.2 The Topology of Order Complexes

The topology of a poset and its Möbius function are fundamentally linked,

as can be seen in the following important proposition.

Proposition 27. (Philip Hall Theorem) For any poset P ,

µ(P̂ ) = χ̃(∆(P )). (3.3)

The Euler characteristic has been extensively studied and is well behaved

with respect to many operations on simplicial complexes. Therefore, we can

use tools from topology to compute the Möbius function of the underlying

poset, for example:

Corollary 28. If two posets P and Q have homotopy equivalent order com-

plexes then µ(P̂ ) = µ(Q̂).

If a complex satisfies certain conditions it can allow for easier compu-

tation of its topology. One such property is that of shellability, which was

first implicitly consider in [Sch01] and formally introduced in [MB71].
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Definition 29. A simplicial complex ∆ is shellable if the facets of ∆ can

be arranged in a linear order F1, . . . , Ft such that the subcomplex(
k−1⋃
i=1

〈Fi〉

)
∩ 〈Fk〉,

where 〈F 〉 := {G : G ⊆ F}, is pure and (dimFk − 1)-dimensional for all

k = 2, . . . , t. If an ordering of the facets satisfies this condition the ordering

is called a shelling of ∆.

See Figure 3.2 for an example of a shelling of a complex. Being shellable

implies a complex has many nice properties, see [Wac07, Chapter 3]. One

such property that is very useful for computing the topology is:

Theorem 30. [Koz08, Theorem 12.3] A shellable simplicial complex ∆ has

the homotopy type of a wedge of top dimensional spheres.
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Figure 3.2: A complex with two orderings of its facets. Ordering (A)
is not a shelling because the intersection of facets 1 and 2 does not have
dimension 1. However, (B) is a shelling, therefore the complex is shellable.
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When considering order complexes of posets we can combine Theorem 30

with Proposition 27 to get the following corollary:

Corollary 31. For a poset P , if ∆(P ) is shellable then it has the homotopy

type of a wedge of µ(P̂ ) spheres, all of dimension rk(P ).

3.3 Results on the Topology of the

Permutation Poset

The first explicit results on the topology of the permutation poset appear

in [MS15], where it is shown that almost all intervals are non-shellable.

There are still large classes of intervals of permutations which are shellable.

Furthermore, it is shown that any interval of layered permutations is

shellable if and only if it has no disconnected subinterval of rank 3 or more.

In Part III we prove that an interval of permutations that all have the

same number of descents is shellable. We then go on to conjecture that

intervals [1, π], where π has exactly one descent, are shellable if π avoids

456123 and 356124. We support this conjecture with a proof that such

intervals do not contain any disconnected subintervals of rank at least 3, a

known obstruction to shellability.

In Part IV we use topological tools to present a formula for the Möbius

function of [σ, π]. To do this we construct a poset Aσ,π which contains (σ, π)

as a subposet. The poset Aσ,π is constructed by taking the union of a

collection of chains, so we can easily compute µ(Aσ,π) using the inclusion-

exclusion formula. We then retract Aσ,π onto (σ, π) and record the change
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to the Möbius function caused by this retraction, thus obtaining a formula

for µ(σ, π).

In terms of further work, many open questions remain in relation to the

topology of the permutation poset. For example, intervals of certain classes

of permutations are known to be shellable but it is unknown in general

which intervals are shellable.
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Part II

On the Möbius Function of

Permutations With One

Descent
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Abstract

The set of all permutations, ordered by pattern containment, is

a poset. We give a formula for the Möbius function of intervals [1, π]

in this poset, for any permutation π with at most one descent. We

compute the Möbius function as a function of the number and posi-

tions of pairs of consecutive letters in π that are consecutive in value.

As a result of this we show that the Möbius function is unbounded on

the poset of all permutations. We show that the Möbius function is

zero on any interval [1, π] where π has a triple of consecutive letters

whose values are consecutive and monotone. We also conjecture val-

ues of the Möbius function on some other intervals of permutations

with at most one descent.
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4.1 Introduction

Let σ and π be permutations of positive integers. We define an occurrence

of σ as a pattern in π to be a subsequence of π with the same relative order

of size as the letters in σ. For example, if σ = 213 and π = 23514 then

there are two occurrences of σ in π as the subsequences 214 and 314. A

permutation π is said to avoid a pattern σ if there are no occurrences of σ

in π. The set of all permutations forms a poset P , with a partial ordering

defined as σ ≤ π if σ occurs as a pattern in π. An interval [σ, π] in P is a

subposet consisting of all permutations z ∈ P with σ ≤ z ≤ π. The Möbius

function is defined recursively as follows: µ(σ, λ) = 0 if σ 6≤ λ, µ(σ, σ) = 1

for all σ and for σ < λ:

µ(σ, λ) = −
∑
σ≤z<λ

µ(σ, z).

We frequently use the term Möbius value of a permutation λ to refer

to µ(1, λ) and we refer to permutations with a nonzero Möbius value as

nonzero permutations. A descent in a permutation π = π1π2 . . . πn is a

decrease in the value of consecutive letters, that is, a descent at position i

is where πi > πi+1.

Formulas for the Möbius function in this poset in certain special cases

have been proved. Almost all such results so far are on permutations con-

structed using direct sums, where the direct sum of two permutations α

and β, denoted α ⊕ β, is the concatenation of α with β′, where β′ is the

permutation β with each letter increased in value by the length of α. For

example, 213 ⊕ 2413 = 2135746. The first such result was by Sagan and

32



Vatter in [SV06], where they give a formula for the Möbius function on the

poset of layered permutations, that is, permutations that can be written as

the direct sum of a number of decreasing permutations. More general results

are presented in [BJJS11] where a formula is given for the Möbius function

of all separable permutations, that is, permutations avoiding both 3142

and 2413, along with many results for decomposable permutations, that is,

permutations that can be written non-trivially as direct sums. It is also

shown that the absolute value of the Möbius function has an upper bound

in some of these cases.

In this paper we present some of the first results for the Möbius function

on a substantial class of indecomposable permutations, the only other such

result seems to be in [ST10], which gives certain cases in which the Möbius

function is zero. As a result of this we show that µ(1, π) is unbounded,

which does not seem to have been established before. Our main result is a

formula for the Möbius function on the interval [1, π] for any permutation π

with at most one descent and that on such intervals the Möbius function is

alternating in sign. Note that a permutation of length n with one descent is

indecomposable unless it starts with 1 or ends with n, so our result applies

to a substantial class of indecomposable permutations.

Define the subposet Pk ⊆ P to be the poset containing permutations

with exactly k descents. In this paper we mainly treat permutations from

the subposets P0 and P1. We also use the notation Pnk for the set of per-

mutations of length n with exactly k descents and Pn for the set of all

permutations of length n. As we often treat the Möbius function of the

intervals [1, π] we consider the Möbius function as a function of a single
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variable in the form of µ(π) := µ(1, π). An adjacency in a permuta-

tion is two letters that are consecutive in position and have consecutive

increasing values. For example, 24578136 has adjacencies 45 and 78, at

positions 2 and 4. A permutation can also have a triple adjacency, or an

adjacency of even greater length, as in the permutation 12456837 where

there is the triple adjacency 456. The number of and positions of the

adjacencies in a permutation will be key to our results. An important

type of permutations from P1 are the permutations without adjacencies,

which are the permutations where odd and even letters are separated from

each other. We denote the even length permutations without adjacencies

as Mn = 246 . . . (2n)135 . . . (2n − 1) and Wn = 135 . . . (2n − 1)246 . . . (2n)

for n > 1.

In Section 4.2 we prove that µ(π) = 0 for any permutation π containing

a triple adjacency. In Section 4.3 we prove a result relating to permuta-

tions with no adjacencies that is useful in the proof in Section 4.4. In Sec-

tion 4.4 we completely classify the Möbius function on the intervals [1, π]

where π has at most one descent. This proves the conjecture made in [Ste13]

that µ(π) =
(
n+1

2

)
when π is of the form 246 . . . (2n)135 . . . (2n− 1), which

is the permutation without adjacencies Mn. This shows that µ(π) is un-

bounded in general, answering a question asked in [BJJS11], where it was

shown that |µ(π)| ≤ 1 for all separable permutations π. In Section 4.5

we present additional conjectures we have not been able to prove on the

Möbius function of permutations with at most one descent.
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4.2 The Möbius Function on Permutations

with a Triple Adjacency

In this section we present and prove a lemma stating that a permutation

with a triple adjacency has a Möbius value of zero. While interesting in

its own right, it is useful in proving the result in Section 4.4. But first we

consider some notation and important points about adjacencies.

We defined an adjacency in the introduction as two letters that are con-

secutive in position and have consecutive increasing values. There is an

analogous decreasing adjacency but we consider adjacencies to be increas-

ing unless otherwise stated, because in P1 decreasing adjacencies are rare

and do not play a role in our considerations. We denote the value of an

adjacency by the value of its initial letter, so in the permutation 24578136

the adjacencies 45 and 78 have values 4 and 7. Notice that a triple adja-

cency consists of two adjacencies of two letters, for example we can split 456

into 45 and 56. When counting the adjacencies in a permutation we count

adjacencies of two letters, therefore 12456837 has three adjacencies 12, 45

and 56.

Lemma 32. If a permutation π contains a triple adjacency then µ(π) = 0.

Proof. We can easily check that µ(123) = 0. Now assume that the claim

holds for any permutation of length m < n where m ≥ 3. Given a per-

mutation π ∈ Pn with a triple adjacency, removing any of the letters of

the triple adjacency from π results in the same permutation, call this σ.

Any permutation obtained from π by removing any of the letters not in the
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triple adjacency still has a triple adjacency hence by the inductive hypothe-

sis has a zero Möbius value. Hence all nonzero permutations in [1, π) occur

in [1, σ], implying:

µ(π) = −
∑

1≤z<π

µ(1, z) = −
∑

1≤z≤σ

µ(1, z) = 0.

The result in Lemma 32 also holds for the case of decreasing triple

adjacencies, with an analogous proof. We can slightly generalise this result

to give the following corollary, whose proof is analogous to the proof of

Lemma 32 after suitably modifying the base case:

Corollary 33. If a permutation π contains an adjacency (increasing or

decreasing) of length k ≥ 3, then µ(12 . . . (k − 2), π) = 0.

4.3 The Permutations with One Descent

and No Adjacencies

We present a result on permutations with no adjacencies that is useful in

proving the results in Section 4.4. Before stating the lemma, we introduce

some notation and definitions along with a few remarks about the posets P0

and P1.

We say that two permutations are related if both or neither permuta-

tion begins with 1. For example the permutations 246135 and 2357146 are

related as neither begins with 1 but 246135 and 135246 are not related.
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Let the increasing permutation 12 . . . k be denoted k. Notice that the

poset P0 forms a chain, as for any k ≥ 1 the only length k permutation

without a descent is the increasing permutation k. As P0 is a chain it is

easy to see that µ(k) = 0 for any k > 2.

It is also important to note that a permutation with k descents cannot

contain, as a pattern, a permutation with more than k descents. Therefore,

in any interval [1, π], with π ∈ P1, any permutation λ ∈ [1, π] must be

in P0 ∪ P1. That is, the set P0 ∪ P1 is an order ideal in P , also called

a permutation class. A permutation class can be uniquely determined by

its basis, that is, the set of minimal permutations it avoids. The basis

for P0∪P1 can be shown to be {321, 2143, 3142}. We remark that the poset

of permutations with at most k descents, for any fixed k, is a permutation

class, but the basis for the general case k > 1 is much more difficult to find.

A formula is given in [BF13, Theorem 4.2] which can be used to calculate

the size of such a basis but this formula is rather complicated.

Recall that the permutations without adjacencies are the permutations

where the odd and even letters are separated from each other. The even

length permutations without adjacencies are Mn = 246 . . . (2n)135 . . .

(2n− 1) and Wn = 135 . . . (2n− 1)246 . . . (2n) for n > 1.

Lemma 34. Let π ∈ Pn1 be a permutation with no adjacencies. Then π

contains, as patterns, precisely all permutations in P1 of length less than n

with at most two adjacencies except the following:

1. The permutations of length n− 1 with two adjacencies.

2. The permutations of length n − 1 with one adjacency that are not
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related to π.

3. The permutations of length n − 2 with two adjacencies that are not

related to π.

Proof. Let R and N be the subposets of P1 which contain the permutations,

of length m < n, that are related and not related to π, respectively. Also

denote the subposets of R and N with exactly k adjacencies as Rk and Nk,

respectively. We need to prove that π contains all permutations σ ∈ R0 ∪

N0 ∪ R1, all permutations σ ∈ R2 ∪ N1 of length m < n − 1 and all

permutations σ ∈ N2 of length m < n− 2.

First consider the permutations in R. Note that R0 is a chain and any

permutation in R0, of length m < n, can be obtained by removing the n−m

largest letters of π. To obtain a permutation σ ∈ R1, of length m < n,

where the adjacency has value i, it is necessary and sufficient to remove the

letter i + 1 from π and then to adjust to the correct length permutation

by removing the n − m − 1 largest letters. So to create any permutation

in R0 ∪ R1 there is only one letter that must be removed and thus all

permutations in R0 ∪ R1 of length m ≤ n − 1 can be obtained from π.

Now consider a permutation τ ∈ R2, of length m < n, with adjacencies of

value i and k. To create such a permutation, from π, we remove the letters of

value i+1 and k+1 and then we adjust the length by removing the n−m−2

largest letters. So the permutations in R2 require at least two letters to be

removed and therefore all the permutations in R2 of length m ≤ n− 2 can

be obtained, but none of length n− 1.

Now consider the permutations in N . Removing the letter 1 from π

creates a unique length n− 1 permutation λ which is in N0. We can then
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apply the same argument as in the previous paragraph to λ instead of π.

Hence we can obtain all permutations in N0 ∪N1 of length m ≤ n− 2 and

all permutations in N2 of length m ≤ n− 3. As λ is the only permutation

of length n−1 in N0 we can get all permutations in N0 of length m ≤ n−1.

Therefore we can obtain all permutations with at most two adjacencies

in R∪N except for the following: The permutations in R2 of length n− 1,

the permutations in N2 of lengths n − 1 and n − 2 and the permutations

in N1 of length n− 1.

We provide an example of Lemma 34:

Example 35. Consider the permutation π = 135246. By Lemma 34 we

know the only permutations with at most two adjacencies not contained

in π are:

1. The permutations of length 5 with two adjacencies, that is: 12354,

41235, 12534, 34125, 12453, 31245, 15234, 23415, 14523, 23145,

13452 and 21345.

2. The permutations of length 5 with one adjacency that are not related

to π, that is: 35124, 23514, 25134 and 24513.

3. The permutations of length 4 with two adjacencies that are not related

to π, that is: 4123, 3412 and 2341.
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4.4 The Möbius Function for Permutations

with One Descent

In this section we present a formula for the Möbius function on the inter-

val [1, π] where π is any permutation with at most one descent.

Theorem 36. Given a permutation π ∈ P0∪P1, of length n > 2, the value

of µ(π) can be computed from the number and positions of adjacencies in π,

as follows:

1. If π begins with 12 or ends in (n− 1)n then µ(π) = 0.

2. If π has a triple adjacency then µ(π) = 0.

3. If π has more than two adjacencies then µ(π) = 0.

4. If π has exactly two adjacencies then:

a) If the first adjacency has greater value than the second

then µ(π) = ±1,

b) If the first adjacency has lower value than the second

then µ(π) = 0.

5. If π has exactly one adjacency, at position i ∈ {1, . . . , n− 1}, and the

descent is at position d, then: (see item 7 for calculating the sign)

a) If i < d and π1 6= 1 then µ(π) = ±i,

b) If i < d and π1 = 1 then µ(π) = ±(i− 1),

c) If i > d and πn 6= n then µ(π) = ±(n− i),
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d) If i > d and πn = n then µ(π) = ±(n− i− 1).

6. If π has no adjacencies then:

a) If n is even and π1 = 1, that is π = Wn
2
, then µ(π) = −

(
n
2

2

)
,

b) If n is even and π1 = 2, that is π = Mn
2
, then µ(π) = −

(
n
2

+ 1

2

)
,

c) If n is odd then µ(π) =

(
n+1

2

2

)
.

7. If µ(π) 6= 0 then µ(π) is positive if and only if n is odd.

Before proving Theorem 36 we make some remarks:

• Each permutation with one descent falls into at least one of the above

classes.

• The above result agrees on permutations covered by more than one

class. These cases are:

– A permutation with one adjacency and beginning with 12 or

ending with (n− 1)n has zero Möbius value by both part 1 and

part 5.

– A permutation with 12 at the beginning and (n− 1)n at the end

has zero Möbius value by both part 1 and part 4b.

– A triple adjacency can be treated as two consecutive adjacencies

and the result states the Möbius value is zero by part 2 and

part 4b.
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– It is possible for a permutation to fall into all three of the first

cases, such as 12354, and such a permutation has zero Möbius

value according to all three cases.

For part 1 of Theorem 36, a permutation that begins with 12 or ends

with (n−1)n is decomposable so the proof follows directly from Corollary 3

in [BJJS11] and part 2 follows from Lemma 32.

We prove the remaining parts of Theorem 36 using an inductive argu-

ment throughout the following subsections. For a base case we need to con-

sider all permutations of length 3 ≤ n ≤ 6. We know certain permutations

have zero Möbius value by the already proven parts 1 and 2 of Theorem 36.

So we can leave such permutations. We now list the remaining permutations

of length 3 ≤ n ≤ 6 with one descent along with their calculated Möbius

value and which case of Theorem 36 they fall into: µ(34125) = µ(14523) =

1(4a), µ(3412) = µ(145236) = µ(256134) = µ(346125) = µ(356124) =

−1(4a), µ(235614) = µ(236145) = µ(361245) = 0(4b), µ(231) = µ(312) =

µ(13425) = µ(14235) = µ(23514) = µ(25134) = 1(5), µ(1423) = µ(3124) =

µ(1342) = µ(2314) = µ(134625) = µ(136245) = µ(235146) = µ(251346) =

−1(5), µ(24513) = µ(35124) = 2(5), µ(245136) = µ(351246) =

µ(146235) = µ(135624) = −2(5), µ(132) = µ(213) = 1(6), µ(1324) =

µ(2413) = −1(6), µ(13524) = µ(24135) = 3(6), µ(135246) = −3(6a),

µ(246135) = −6(6b).

It is straightforward to check that these results agree with Theorem 36.

The reason it is necessary to check the base case up to length n = 6 is

so we can use Lemma 39 below to cancel out the Möbius values of sets of

permutations in the intervals we consider.
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From now on we assume that any permutation in P0 ∪ P1, of length

less than n, where n > 6, satisfies the claims in Theorem 36 and we prove

that Theorem 36 then holds for permutations with at most one descent

of length n and thus for any length. When referencing the induction hy-

pothesis we add the part of Theorem 36 being referenced in brackets, for

example (36.6a) for Theorem 36 part 6a.

By our inductive hypothesis (36.3) we can see that any nonzero permu-

tation of length m < n can have at most two adjacencies. If we combine

this with Lemma 34 we see that a permutation of length m < n with no

adjacencies contains all nonzero permutations of length at most m− 3.

4.4.1 The Structure of the Proof

The remaining parts of the proof of Theorem 36 all follow a similar schema,

which is outlined as follows:

1. Consider π ∈ Pn1 .

2. Remove one letter from each adjacency in π or the largest letter if π

has no adjacencies. This leaves a permutation λ with no adjacencies.

3. By the definition of the Möbius function,
∑
σ∈[1,λ]

µ(σ) = 0.

4. Now we can compute µ(π) using µ(π) = −
∑
σ<π
σ 6≤λ

µ(σ).

We develop this schema in detail for the proof of Proposition 40 in the

following subsection and then, as they are quite similar, the remaining parts

of the proof are done in less detail.
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We present two lemmas which we frequently reference throughout the

proof:

Lemma 37. Let σ ∈ Pm1 , where 2 < m < n, be a nonzero permutation

satisfying either one of the following conditions:

1. Has exactly one adjacency, which is neither 12 nor (m− 1)m.

2. Has exactly two adjacencies at least one of which is neither 12

nor (m− 1)m.

Then σ contains a length m − 1 permutation λ with the same number of

adjacencies as σ such that µ(λ) + µ(σ) = 0.

Proof. If σ has exactly one adjacency, at location i, then either this adja-

cency is before or after the descent. If the adjacency is before the descent,

then by the induction hypothesis (36.5) the Möbius value of σ is a func-

tion of i. We know m must be to the right of i so removing m creates a

length m− 1 permutation λ with exactly one adjacency at location i, so by

the induction hypothesis (36.5 and 36.7) µ(σ) = −µ(λ). If the adjacency is

after the descent then removing the letter 1 gives an analogous argument.

This completes the first case.

If σ has exactly two adjacencies we can remove either the letter 1

or m which gives a length m − 1 permutation λ which has two adjacen-

cies of the same relative sizes as the adjacencies in σ. By the induction

hypothesis (36.7) the sign of the Möbius function is alternating, there-

fore µ(λ) = −µ(σ).
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Example 38. 1. Consider the permutation 13425 which is of the first

form in Lemma 37. Removing the letter 5 gives the permutation 1342.

We compute the Möbius values of these permutations as µ(13425) = 1

and µ(1342) = −1.

2. Consider the permutation 24781356 which is of the second form in

Lemma 37. Removing the letter 1 gives the permutation 1367245.

We compute the Möbius values of these permutations

as µ(24781356) = −1 and µ(1367245) = 1.

We can use Lemma 37 to show that the Möbius values of certain sets of

permutations sum to zero.

Lemma 39. Take a set ∆1 of k nonzero permutations from Pm1 ,

where 4 < m < n, all with t > 0 adjacencies and where none of the adja-

cencies is 12 or (m− 1)m. Then we can construct the following sets:

• A set ∆2 of 2k permutations from Pm−1
1 with exactly t adjacencies.

• A set ∆3 of k permutations from Pm−2
1 with exactly t adjacencies.

Also the sum of the Möbius values of all the permutations in ∆1 ∪∆2 ∪∆3

is zero.

Proof. From each permutation in ∆1 we have two options: We can remove

the letter 1 or the letter m. Assume first that the removal of either of these

letters from any of the permutations does not remove the descent from the

permutation, then it is easy to see that this does not create or remove an

adjacency. So to create ∆2 we get two permutations for each permutation
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in ∆1 by removing either 1 or m. To create ∆3 we remove, from each

permutation in ∆1, both 1 and m. It is easy to see that, as we are only

removing the letters 1 and m, the permutations in the union of ∆2 and ∆3

are distinct. This concludes the proof of the first part of the lemma.

To show that the Möbius values sum to zero we can apply Lemma 37.

Recall that a permutation with t > 2 adjacencies has Möbius value zero by

the induction hypothesis (36.3). As ∆1 only contains nonzero permutations

any permutation λ ∈ ∆1 must be of one of the forms in Lemma 37. First

suppose it is of the first form, that is, it has one adjacency, and suppose

this adjacency is before the descent. We can pair λ with the permutation

obtained by removing the letter m from λ and their Möbius values sum

to zero. Then, given the permutation λ1 ∈ ∆2 obtained by removing the

letter 1 from λ, we can pair this with the permutation λ1,m ∈ ∆3 obtained

by removing 1 and m from λ. By Lemma 37 we know the Möbius values of

these two permutations sum to zero. We can do this for each permutation

in ∆1, which completes this case. An analogous argument applies to the

case where λ has an adjacency after the descent or has two adjacencies.

If the removal of the letter 1 or m results in the removal of the descent

from one of the permutations then we apply an analogous argument to entire

proof above. In this argument we must account for the fact that for each

permutation of this form there are two permutations that are increasing

permutations of length greater than 2. As such, these permutations contain

a triple adjacency and will have zero Möbius value and the Möbius value of

the remaining permutations cancel as above.
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4.4.2 Theorem 36 Part 3

Recall that we are assuming Theorem 36 is true for any permutations of

length m < n. We now consider part 3 of Theorem 36 for permutations of

length n.

Proposition 40. A permutation π ∈ Pn1 with more than two adjacencies

has µ(π) = 0.

Proof. Suppose π has k > 2 adjacencies also suppose none of the adjacencies

are 12 or (n−1)n and there are no triple adjacencies. Then, by the inductive

hypothesis (36.3), π contains no nonzero permutations of length greater

than n − k + 2. There is a unique length n − k permutation λ contained

in π with no adjacencies. Let us ignore λ along with any other permutation

in [1, λ], since their contributions to the Möbius value of π sum to zero.

Then we can use Lemma 34 to consider the remaining permutations, that

are possibly nonzero, occurring in π:

• Of length n − k + 2 there remain s =
(
k
2

)
permutations with two

adjacencies, call these Γ0 = {γ0
1 , . . . , γ

0
s}, where each of the γ0

i ’s is

obtained by removing a letter from all but two of the adjacencies

in π.

• Of length n− k + 1 there remain:

– k nonzero permutations with one adjacency, call these ∆0 =

{δ0
1, . . . , δ

0
k}.
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– 2
(
k
2

)
permutations with two adjacencies obtained by removing

the letter 1 or the largest letter from each of the γ0
i ’s, call

these Γ1 = {γ1
1 , . . . , γ

1
2s}.

• Of length n− k there remain:

– All the permutations related to π that have two adjacencies,

where at least one of the adjacencies is an original adjacency

in π, call this set of permutations Ω0.

–
(
k
2

)
permutations not related to π that have two adjacencies,

both occurring in π, call these Γ2 = {γ2
1 , . . . , γ

2
s}.

– 2k permutations with one adjacency obtained by removing the

letter 1 or the largest letter from the δ0
i ’s, call

these ∆1 = {δ1
1, . . . , δ

1
2k}.

• Of length n− k − 1 there remain:

– All permutations with two adjacencies, where at least one of

the adjacencies is an original adjacency in π, call this set of

permutations Ω1.

– k permutations with one adjacency obtained by removing the let-

ter 1 and the largest letter from each δ0
i , call

these ∆2 = {δ2
1, . . . , δ

2
k}.

• Of length n− k − 2 all permutations not related to π with two adja-

cencies, where at least one of the adjacencies is an original adjacency

in π, call this set of permutations Ω2.
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Note that by Lemma 39 the Möbius values in ∆0 ∪ ∆1 ∪ ∆2 sum to zero

and the same is true of Γ0 ∪ Γ1 ∪ Γ2 and Ω0 ∪Ω1 ∪Ω2. We know these sets

satisfy the length conditions in Lemma 39 because the maximum number of

adjacencies is n−2
2

, this is because the letters 1 and n are not in adjacencies

and there are no triple adjacencies, which implies n − k ≥ n+2
2
≥ 4.5 > 4.

This implies µ(π) = 0 and completes this case.

Now suppose one of the adjacencies in π is 12 or (n − 1)n. If these

adjacencies occur at the beginning or end, respectively, then this reduces

to part 1 of Theorem 36. It is also possible that one of these adjacencies

occurs directly after or before the descent in which case the proof follows

from the proof above with minor modifications. These modifications arise

from the fact that removing the letter 1 from π is equivalent to removing

the adjacency 12 and likewise with the letter n and the adjacency (n− 1)n.

In certain cases, this may result in n−k 6> 4, and we must apply Lemma 37

to get the desired cancellation.

4.4.3 Theorem 36 Part 4

Proposition 41. Consider a permutation π ∈ Pn1 with exactly two adja-

cencies, at positions k and i. If the first adjacency has greater value than

the second then µ(π) = ±1, otherwise µ(π) = 0.

Proof. If π begins with 12 or ends with (n− 1)n, then µ(π) = 0 by part 1

of Theorem 36. Now consider the case π does not contain both the adja-

cencies 12 and (n− 1)n.

Removing the letters πi and πk results in a permutation λ, of length n−2,

with no adjacencies. As the Möbius values of all the permutations in [1, λ]
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sums to zero we can ignore any permutation in said interval. Now use

Lemma 34 and consider the remaining permutations. By Lemma 39 the

Möbius values of the remaining permutations with one adjacency sum to

zero. Split the remaining permutations with two adjacencies into two sets A

and B, where A are those obtained from π by removing the letters 1 or n

(or both) and B are those obtained from π by removing a letter from an

adjacency and then removing another letter to create a new adjacency that

does not occur in π. As the largest permutations in B are of length n−2 > 4

we can apply Lemma 39 to see that the Möbius values of the permutations

in B sum to zero.

This just leaves us to consider A. First assume π doesn’t have the

adjacencies 12 or (n − 1)n directly after or before the descent. Then A

contains the following permutations with two adjacencies:

• A permutation δ of length n − 1, obtained by removing the letter 1

from π.

• A permutation τ of length n − 1, obtained by removing the letter n

from π.

• A permutation σ of length n−2, obtained by removing letters 1 and n

from π.

By the inductive hypothesis (36.4 and 36.7) it is clear that µ(τ)+µ(σ) = 0.

This means that µ(π) = −µ(δ). The relative values of the adjacencies in π

are the same as in δ so, if the first adjacency has greater value than the

second then µ(π) = −µ(δ) = ±1, otherwise µ(π) = −µ(δ) = 0. This

completes the first case.
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Now consider the case when π contains the adjacency 12 but not (n−1)n,

then A only contains τ and µ(π) = −µ(τ). Similarly when π contains the

adjacency (n− 1)n but not 12, then A only contains δ and µ(π) = −µ(δ).

The result then follows by evaluating the value of δ or τ . This completes

this case.

Finally consider the case π contains both adjacencies 12 and (n−1)n and

with (n−1)n occurring before 12. In this case there are no permutations in

the set denoted A above and not all the permutations with one adjacency

cancel. So we repeat the argument above considering the permutations with

one adjacency.

Remark 42. Note that the Möbius value in the above proof is computed as

a negation of a permutation of length one less. Hence the Möbius value is

alternating in the case of permutations with two adjacencies.

4.4.4 Theorem 36 Part 5

Proposition 43. Consider a permutation π ∈ Pn1 which has exactly one

adjacency at position i and the descent at position d. Then:

1. If i < d and π1 6= 1 then µ(π) = ±i,

2. If i < d and π1 = 1 then µ(π) = ±(i− 1),

3. If i > d and πn 6= n then µ(π) = ±(n− i),

4. If i > d and πn = n then µ(π) = ±(n− i− 1).
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Proof. If π begins with 12 or ends with (n− 1)n, then µ(π) = 0 by part 1

of Theorem 36. Next, we consider the case where π doesn’t have the adja-

cencies 12 or (n− 1)n directly before or after the descent.

Removing πi from π creates a permutation λ with no adjacencies and

we can ignore the interval [1, λ] as the Möbius values sum to zero by def-

inition. We can apply Lemma 39 to the remaining permutations with two

adjacencies to see that their Möbius values sum to zero. By Lemma 34 this

leaves us to consider three permutations with one adjacency:

• Of length n − 1 there remain two permutations with one adjacency,

obtained by removing the letters 1 or n, call these σ1 and σ2 respec-

tively.

• Of length n − 2 there remains one permutation with one adjacency

not related to π. This is obtained by removing the letters 1 and n

from π, call this δ.

We consider the four cases in the statement of the proposition and obtain

the Möbius value from the induction hypothesis (36.5):

• If i < d then µ(σ1) + µ(δ) = 0. Hence µ(π) = −µ(σ2) which gives:

1. If π1 6= 1 then µ(π) = −µ(σ2) = ±i.

2. If π1 = 1 then µ(π) = −µ(σ2) = ±(i− 1).

• If i > d then µ(σ2) + µ(δ) = 0. Hence µ(π) = −µ(σ1) which gives:

3. If πn 6= n then µ(π) = −µ(σ1) = ±(n− i).

4. If πn = n then µ(π) = −µ(σ1) = ±(n− i− 1).
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We have completed this case of the proof.

If π contains the adjacency 12 or (n−1)n then removing the letter n or 1,

respectively, gives a permutation with one adjacency α. The Möbius values

of all the other permutations sum to zero by Lemma 39, so µ(π) = −µ(α).

Evaluating the four different cases of the proposition and using the inductive

hypothesis (36.5) to get µ(α) completes the proof.

Remark 44. Note that in the above proof for each case the Möbius value

of π is a negation of a permutation of length one less. Therefore the sign

of the Möbius value is alternating for all permutations with exactly one

adjacency.

4.4.5 Theorem 36 Part 6

Proposition 45. Let π be a permutation in Pn1 with no adjacencies. Then:

1. If n is even and π1 = 1, that is π = Wn
2
, then µ(π) = −

(
n
2

2

)
,

2. If n is even and π1 = 2, that is π = Mn
2
, then µ(π) = −

(
n
2

+ 1

2

)
,

3. If n is odd then µ(π) =

(
n+1

2

2

)
.

Proof. First note that π contains a permutation λ, with no adjacencies,

of length n − 1, obtained by removing the largest letter from π. As the

Möbius values of all the permutations in [1, λ] sum to zero we can ignore

any permutation in said interval. By Lemma 34 this leaves us to consider

the following permutations which occur in π:

• Of length n− 1 there remain:
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– One permutation with no adjacencies obtained by removing the

letter 1 from π.

– The permutations with one adjacency each obtained by removing

a letter from π, excluding the letters 1 and n.

• Of length n− 2 there remain:

– The permutations not related to π with one adjacency. These are

obtained by removing the letter 1 from each of the permutations

with one adjacency of length n− 1 listed above.

– All permutations of length n−2 related to π with two adjacencies.

• Of length n− 3 there remain the permutations not related to π with

two adjacencies.

First consider the case n is even and π1 = 1, that is when π = 13 . . . (n−

1)24 . . . n = Wn
2
. We will consider the permutations in [1,Wn

2
] based on

number of adjacencies, and when needed, by the number removed to create

an adjacency. We start with the nonzero permutations with two adjacen-

cies. Note that all the length n− 3 permutations with two adjacencies are

obtained from the length n − 2 permutations with two adjacencies by re-

moving the letter 1. We can then apply Lemma 37 to see that the Möbius

values of the permutations with two adjacencies sum to zero. We can re-

peat this argument with the permutations with one adjacency obtained

from π by removing any of the letters 3, 4, . . . , (n − 1) to see that these

cancel with the permutations of length n − 2 with one adjacency. This

leaves the permutations obtained from π by removing the letters 2 and 1,
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respectively. The first is of the form 124 . . . (n− 2)3 . . . (n− 1) and begins

with 12 so has zero Möbius value by part 1 of Theorem 36. The second

is 24 . . . (n− 2)13 . . . (n− 1) which by the induction hypothesis (36.6c) has

Möbius value
(n−1+1

2
2

)
, which implies µ(Wn

2
) = −

(n
2
2

)
.

In the case n is odd and π1 = 1, the argument is analogous. We find

the permutation 24 . . . n13 . . . (n − 1) has Möbius value −
(n−1

2
+1

2

)
, which

implies µ(π) =
(
n+1

2

)
.

Next consider the case where n is even and π1 = 2, that is π =

24 . . . n13...(n − 1) = Mn
2
. First we consider permutations of length n − 1

with one adjacency formed by removing one of the letters 3, 4, . . . , (n− 1).

We can apply Lemma 37 to see that the Möbius value of all but one of these

cancel with all but one of the length n−2 permutations with one adjacency.

The only remaining length n− 2 permutation is 124 . . . (n− 2)35 . . . (n− 3)

which has zero Möbius value by part 1 of Theorem 36. The only remaining

length n− 1 permutation is 24 . . . (n− 2)(n− 1)13 . . . (n− 3) which by the

induction hypothesis (36.5a) has Möbius value n
2
− 1.

Now consider the remaining permutations with two adjacencies. The

permutation with the triple adjacency 123 contributes zero to the Möbius

value by part 1 of Theorem 36. Removing the letter 2 and any letter i > 3

from π results in a permutation with adjacency 12 immediately after the

descent. If i is even then the larger adjacency also appears after the de-

scent so such a permutation contributes zero to the Möbius value by the

induction hypothesis (36.4b). If i is odd then the adjacency appears before

the descent. Since each such permutation has Möbius value −1 by the in-

duction hypothesis (36.4a), and i is an odd number between 5 and n, the
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sum of the Möbius values of these permutations is −n
2

+ 2. We can apply

Lemma 37 to cancel all of the other permutations with two adjacencies in

a similar way to the case π1 = 1 above.

We must also consider the Möbius values of the permutations found by

removing 2 or 1 from π. The permutation 35 . . . (n − 1)124 . . . (n − 2) has

Möbius value n
2
− 1 by the induction hypothesis (36.5c). The permutation

13 . . . (n − 1)24 . . . (n − 2) has Möbius value
(n

2
2

)
by the induction hypoth-

esis (36.6c). The Möbius value of π is given by the negation of the sum

of the Möbius values of the permutations it contains, so we sum the above

values and negate which gives:

µ(π) = −
((

n
2

2

)
+ 2(

n

2
− 1)− n

2
+ 2

)
= −

(
n
2

+ 1

2

)
.

Finally we consider the case where n is odd and π1 = 2, that is, π =

24 . . . (n−1)13 . . . n. The argument proceeds in an analogous manner to the

previous case, except the sum of the Möbius values of the permutations with

two adjacencies is n−1
2
− 2 and the Möbius values of the three permutations

with one adjacency are −n
2

+1, −n
2

+1 and
(n−1

2
2

)
, resulting in µ(π) =

(n+1
2
2

)
.

Remark:

• The nice form of the result in Proposition 45 raises the question of a

direct combinatorial proof. We expect to present such a proof in the

forthcoming paper [Smi14b] which analyses topological properties of

some intervals in the poset P .

• Notice that in the above cases the Möbius value is positive if and only

if n is odd. Therefore the Möbius value is alternating.
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4.4.6 Finishing the Proof of Theorem 36

Notice that the remarks after Propositions 41, 43 and 45 show that the

Möbius value is alternating for all nonzero permutations, which implies the

Möbius value is positive if and only if n is odd. This proves part 7 of

Theorem 36. We have shown that if the classification of Theorem 36 holds

for all permutations, of length less than n, with at most one descent, then

it also holds for n. By induction, that completes the proof of Theorem 36.

Parts 5 and 6 of Theorem 36 give us the following important corollary:

Corollary 46. On the poset P the function µ(π) is unbounded.

4.5 Conjectures on the Möbius Function

for Intervals of Permutations with at

Most One Descent

So far we have mainly concentrated on intervals of the form [1, π]. We

now consider permutations where we allow the permutation 1 to change.

We see that this change increases the complexity of computing the Möbius

function quite drastically especially in the second conjecture we present,

but also leads to some interesting results relating to the Möbius function

being dependant on whether a permutation is separable.
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4.5.1 The Möbius Function on the Intervals [σ,Mn]

and [σ,Wn]

In this subsection we examine intervals [σ, π] where π is one of the two

permutations of even length with no adjacencies and σ ∈ P1. Recall that

these permutations with no adjacencies are denoted Mn = 24 . . . (2n)13 . . .

(2n− 1) and Wn = 13 . . . (2n− 1)24 . . . (2n). This leads us to the following

conjecture which has been checked by computer to hold for any pair (m,n)

where m < 12 and n < 7:

Conjecture 47. Given a permutation σ ∈ Pm1 , let i be the number of

adjacencies in σ. If σ ≤ π where π ∈ {Mn,Wn} we have the following:

• If σ is separable, then:

� µ(σ,Mn) = ±
(
n+ 1

m

)
,

� µ(σ,Wn) = ±
(
n+m− i− 2

m

)
.

• If σ is not separable, then:

µ(σ, π) = ±
(
n+ bm−i−a

2
c

m

)

where a =

0, if σ and π are related

1, otherwise

.

Also the Möbius value is positive if and only if m is even.

Recall that when considering an adjacency of length k we regard it

as k − 1 individual adjacencies.
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Notice that Conjecture 47 only deals with intervals [σ, π] where π is of

even length. In Theorem 36 we can see that changing π between odd and

even length has little effect on the Möbius function. In Conjecture 47, on

the other hand, there is a substantial difference between the odd and even

case.

4.5.2 The Möbius Function on the Interval [Mm, π]

We can reverse the idea in subsection 4.5.1 and consider intervals [σ, π]

where σ is a permutation without adjacencies and π ∈ Pn0 ∪ Pn1 . In this

subsection we conjecture a formula for the Möbius function on such inter-

vals. This formula is somewhat complicated, but turns out to be compu-

tationally efficient, compared to the brute force method of computing from

the recursive formula for the Möbius function. Before stating the result we

define a few statistics on π:

• Let a be the number of adjacencies in π.

• Set n̂ =

n− 1, if πn = n

n, otherwise

.

• Let the set A = {i1, . . . , ia} be the ordered sequence of the values

of the adjacencies in π. Also add to A two phantom adjacencies i0

and ia+1 which occur before and after the descent, respectively, with

values:

i0 =

−1, if π1 6= 1

0, otherwise

and ia+1 = n̂+ 1.
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• A function:

Ĉα
β (k, s) =


(
α− 2k

β

)
, if 0 ≤ k < s

2(
α− 2(s− k) + 1

β

)
, if s

2
≤ k < s

.

• A sequence Ĵ = {ĵ0, . . . , ĵa} where:

ĵk =

⌊
ik+1 − ik − 2

2

⌋
.

• Split Ĵ into two sequences ja and jb in the following way:ĵk ∈ j
a, if ik and ik+1 occur on the same side of the descent

ĵk ∈ jb, otherwise

.

• Set s =
a∑
t=0

ĵt.

• Trim ja and jb in the following way:

1. If ja is empty remove the largest element from jb and set ε = 0,

2. If ja is not empty let maxja be the largest element in ja and

remove it from ja, then set ε = maxja −
∑
t

jat ,

3. Then set α = |ja| and β = |jb|,

4. Remove all zero elements from both sequences and if this results

in jb being empty set ε = 0,

5. Finally sort ja into ascending order and jb into decreasing order.

• Define the function sθ(κ, τ) =
τ∑
t=κ

jθt .
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• Set λ =
⌈
n̂
2

⌉
+m−

⌈
5a
2

⌉
+ β − t and σ = 2m− 2a+ β

where t =


1, if π1 = 1 and n is even and πn = n

1, if π1 = 1 and n is odd and πn 6= n

0, otherwise

.

For an example of these statistics see Example 49 below.

We can now state the conjecture which has been checked by computer

tests to hold for all pairs (m,n) where m < 6 and n < 12:

Conjecture 48. Consider the interval [Mm, π] where π ∈ Pn0 ∪ Pn1 and λ,

σ, ja, jb, ε, s, sθ and Ĉ are all as defined above, then:

If π begins with 12, ends with (n − 1)n or contains a triple

adjacency µ(Mm, π) = 0, otherwise:

|µ(Mm, π)| =
(
λ

σ

)
−
|jb|−1∑
τ=0

τ∑
γ=0

jbγ+sb(τ+1,|jb|−1)−1∑
ω=τ−γ

Ĉλ−τ−2
σ−τ−1(ω, s)

+

|ja|−1∑
τ=0

 jaτ+sa(0,τ−1)∑
γ=1

Ĉ
λ−|jb|−τ
σ−|jb|−τ (γ, s+ 1)

+
ε∑

ω=1

Ĉ
λ−|jb|−τ
σ−|jb|−τ (ω + 1, s+ 1)

 .
Also the sign of µ is positive if and only if n is even.

Whilst Conjecture 48 is rather complicated it is significantly more com-

putationally efficient than computing the Möbius function from its recur-

sive definition. To see this consider the following example, for an interval

of rank 20, whose computation from the recursive definition would take

enormous time even on a fast computer:
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Example 49. Consider the interval

I = [24681357, 2 4 6 7 9 12 14 16 18 21 23 24 26 28 1 3 5 8 10 11 13 15 17 19 20 22 25 27].

We compute µ(I) using Conjecture 48, first extracting the following statis-

tics from I:

• a = 4, m = 4 and n̂ = 28,

• A = {−1, 6, 10, 19, 23, 29} and Ĵ = {2, 1, 3, 1, 2},

• Before trimming: ja = {2, 3} and jb = {1, 1, 2},

• After trimming: ja = {2}, jb = {2, 1, 1}, ε = 1, α = 1 and β = 3,

• s = 9, λ = 11 and σ = 3.

Putting this into the formula of Conjecture 48 we get:

µ(I) =

(
11

3

)
−

2∑
τ=0

τ∑
γ=0

jbγ+sb(τ+1,|jb|−1)−1∑
ω=τ−γ

Ĉ9−τ
2−τ (ω, 9)

+
0∑

τ=0

jaτ+sa(0,τ−1)∑
γ=1

Ĉ8−τ
0−τ (γ, 10) +

1∑
ω=1

Ĉ8−τ
0−τ (ω + 1, 10)


=

(
11

3

)
−

4∑
ω=0

Ĉ9
2(ω, 9)−

[
2∑

ω=1

Ĉ8
1(ω, 9) +

1∑
ω=0

Ĉ8
1(ω, 9)

]

−
0∑

ω=0

Ĉ7
0(ω, 9) +

2∑
γ=1

Ĉ8
0(γ, 10) +

1∑
ω=1

Ĉ8
0(ω + 1, 10)

=

(
11

3

)
−
(

9

2

)
−
(

7

2

)
−
(

5

2

)
−
(

3

2

)
−
(

6

1

)
−
(

4

1

)
−
(

8

1

)
−
(

6

1

)
−
(

7

0

)
+

(
6

0

)
+

(
4

0

)
+

(
4

0

)
= 165− 36− 21− 10− 3− 6− 4− 8− 6− 1 + 1 + 1 + 1 = 73.
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Whilst we cannot verify this is the correct value of the Möbius function

on this interval, the example serves as a good indicator of the efficiency of

the conjecture if it can be proved correct.
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Part III

Intervals of Permutations with

a Fixed Number of Descents

are Shellable
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Abstract

The set of all permutations, ordered by pattern containment, is

a poset. We present an order isomorphism from the poset of permu-

tations with a fixed number of descents to a certain poset of words

with subword order. We use this bijection to show that intervals

of permutations with a fixed number of descents are shellable, and

we present a formula for the Möbius function of these intervals. We

present an alternative proof for a result on the Möbius function of

intervals [1, π] such that π has exactly one descent. We prove that

if π has exactly one descent and avoids 456123 and 356124, then

the intervals [1, π] have no nontrivial disconnected subintervals; we

conjecture that these intervals are shellable.
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5.1 Introduction and Preliminaries

A permutation of length n is an ordering of the integers 1, . . . , n, without

repetitions. Given two permutations σ and π, we define an occurrence

of σ as a pattern in π to be a subsequence of π with the same relative

order of elements as in σ. For example, if σ = 213 and π = 23514 then

there are two occurrences of σ in π, as the subsequences 214 and 314. The

set of all permutations forms a poset P , with a partial ordering defined

by σ ≤ π if σ occurs as a pattern in π. An interval [σ, π] in P is a

subposet consisting of all permutations z ∈ P with σ ≤ z ≤ π. A chain

in a poset P is a totally ordered subset {c1 < · · · < ct}. For example,

21 < 2341 < 24513 is a chain in [1, 24513]. The direct sum σ ⊕ π of two

permutations σ and π is obtained by appending π to σ after adding the

length of σ to each letter of π. For example, 213⊕312 = 213645. A descent

occurs at i in a permutation π1 . . . πn if πi > πi+1. As an example, 23154

has descents at 2 and 4.

If σ ≤ π, then des(σ) ≤ des(π). Therefore, if the permutations σ and π

both have exactly k descents, then any permutation τ ∈ [σ, π] also has

exactly k descents. We denote the induced subposet of all permutations

with exactly k descents as Pk. The Möbius function for a poset is defined

recursively as follows: µ(a, b) = 0 if a 6≤ b, µ(a, a) = 1 for all a and for a < b:

µ(a, b) = −
∑
a≤z<b

µ(a, z).

One of the main goals of this paper is to study the Möbius function of Pk.

The interior of the interval [σ, π], written (σ, π), is the set [σ, π]−{σ, π}.
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The order complex of [σ, π], written ∆(σ, π), is the simplicial complex whose

faces are the chains contained in the interior (σ, π). When we attribute a

topological property to an interval we mean the corresponding property of

its order complex. We refer the reader to [Wac07] for extensive background

on the subject of order complexes.

A simplicial complex is pure if all its maximal faces, which are called

facets, have the same dimension. The order complex of an interval of permu-

tations is always pure. A pure simplicial complex ∆ is shellable if its facets

can be arranged in linear order F1, . . . , Ft in such a way that the subcom-

plex
(
∪k−1
i=1 〈Fi〉

)
∩ 〈Fk〉 is pure and (dim ∆− 1)-dimensional for 2 ≤ k ≤ t,

where 〈F 〉 = {G : G ⊆ F}, that is, 〈F 〉 is the subcomplex generated

by F . Again we refer the reader to [Wac07] for extensive background on

the subject of shellability.

Let A be the poset of words on the alphabet of positive integers, with

the partial order called subword order where v ≤ w, with w = w1 . . . wn,

if there is a subsequence wi1 . . . wim in w such that v = wi1 . . . wim . For

example, 2132 ≤ 212312 but 2132 6≤ 21233. In [Bjö90] a formula was

given for computing the Möbius function on intervals of A in polynomial

time, and it is shown that all intervals in A are shellable. In this paper we

present an order isomorphism, that is, an order-preserving bijection, from

each interval in the permutation posets Pk to a corresponding interval in A.

This allows us to easily compute the Möbius function of intervals from the

posets Pk and to show that they are shellable.

The reduced Betti number β̃k(X) of a simplicial complex X is the rank

of the k-th reduced homology group of X (for background on the homology
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of simplicial complexes we refer the reader to [Koz08]). The Philip Hall

Theorem and the Euler-Poincaré formula, which appear as Proposition 1.2.6

and Theorem 1.2.8 in [Wac07], combined state:

µ(σ, π) = χ̃(∆(σ, π)) =

dim ∆(σ,π)∑
i=−1

(−1)iβ̃i(∆(σ, π)), (5.4)

where χ̃(∆(σ, π)) is the reduced Euler characteristic of the order complex

of [σ, π].

An important property of simplicial complexes is Cohen-Macaulayness,

which has its origins in commutative algebra. A simplicial complex ∆ is

Cohen-Macaulay if rank(H̃i(`k∆F )) = 0 for all F ∈ ∆ and i < dim `k∆F ,

where `k∆F denotes the link of F and H̃i denotes the i’th reduced homology

group. For a full explanation of this definition see [Wac07, Section 4]. A

shellable simplicial complex is Cohen-Macaulay, as observed in [Sta96]. We

use this property to compute the homology of intervals from the posets Pk
for any k ≥ 0.

There is a generalised subword order, defined in [SV06], where we take

a poset P and let P ∗ denote the poset of finite words whose letters are

elements of P . If u, w ∈ P ∗ then u ≤P ∗ w if there is a subword wi1 . . . wi|u|

such that uj ≤P wij for 1 ≤ j ≤ |u|. If P is an antichain, then gener-

alised subword order is precisely the subword order. In [SV06] a formula

was presented for the Möbius function of words with generalised subword

order when P is a chain. That paper also established an order isomorphism

between posets of these words and posets of layered permutations, that is,

permutations that can be expressed as a direct sum of decreasing permuta-

tions. For example, 1⊕ 21⊕ 321⊕ 21 = 13265487 is a layered permutation.
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In [MS12] a formula was presented for the Möbius function of words

with generalised subword order for any poset P , which covers both the

words considered in the present paper and in [SV06]. In [Bjö80] it was

shown that if an interval I contains a nontrivial disconnected subinterval,

that is, a subinterval of rank at least 3 whose interior can split into two

disjoint subposets, then I is not shellable. The first major result on the

topology of intervals from the poset P appeared in [MS15], where it was

shown that if P is a rooted forest, then any interval [u, v] in P ∗ that does

not contain a nontrivial disconnected subinterval is shellable. This result

was then used to show that intervals of layered permutations that do not

contain a nontrivial disconnected subinterval are shellable. Furthermore, it

was conjectured that the same applies to the more general class of separable

permutations, that is, the permutations that avoid 2413 and 3142.

In Section 5.2 we present a bijection from P to a subposet of A. We

show that when we restrict this bijection to Pk it is an order isomorphism.

This allows us to draw on many useful results that have been proven for

subword order, such as the shellability of intervals, and apply these results

to permutations. In Section 5.3 we use this order isomorphism to present

a formula for the Möbius function of intervals from the posets Pk. We

use this formula to prove a conjecture made in [Smi14a] and to present an

alternative, simpler proof of [Smi14a, Theorem 5] on the Möbius function of

intervals [1, π] such that π has one descent. In Section 5.4 we show that if π

has exactly one descent and avoids 456123 and 356124, then [1, π] has no

nontrivial disconnected subintervals and we conjecture that these intervals

are shellable.
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5.2 Bijection from Permutations to Words

In this section we present an order isomorphism from the poset Pk of per-

mutations with exactly k descents to a subposet of A. Let max(w) be the

value of the largest letter in the word w. We now define the poset of words

we consider:

Definition 50. Let Â denote the poset of words with subword order on

the alphabet of all positive integers, with the additional conditions that for

any w ∈ Â:

AC1: There is at least one occurrence of each letter i ∈ {1, . . . ,max(w)}.

AC2: The rightmost occurrence of each letter i ∈ {1, . . . ,max(w) − 1} is

preceded by an occurrence of i+ 1.

Let Âk denote the subposet of Â of words w where max(w) = k.

Example 51. For example, 231423 ∈ Â but 1121343 6∈ Â because the

rightmost occurrence of 2 does not have a 3 to its left.

The additional conditions in Definition 50 are very similar to the def-

inition of a restricted growth function, which can be used to encode set

partitions, see [Mil77]. To see the similarity we use the definition of a re-

stricted growth function that appears in Question 106 in [Sta96, Chapter 1].

A restricted growth function is a sequence of the positive integers 1, . . . , k

with each letter occurring at least once and the first occurrence of i appear-

ing before the first occurrence of i+1, for 1 ≤ i ≤ k−1. If we consider AC2

reworded as beginning at the right end of the word, and travelling left, then
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the first occurrence of i must appear before the last occurrence of i+1. The

key difference is that AC2 requires at least one occurrence of i+ 1 after the

first i whereas a restricted growth function requires that all occurrences

of i+ 1 are after the first i. As such, it is easy to see that Â is a larger class

than the class of restricted growth functions.

We know that the number of permutations of length n in Pk is the

Eulerian number A(n, k), see [Sta12]. We show that there is a length-

preserving bijection from Âk to Pk−1, which implies the number of words

of length n in Âk is given by the Eulerian number A(n, k − 1).

When referring to both words and permutations we often use the nota-

tion αi to refer to the letter at location i in α, and |α| to denote the length

of α. Given a letter c of the permutation π, let dπ(c) be the index of the run

containing c, where a run is a maximal consecutive sequence of increasing

letters. Therefore, dπ(c) equals the number of descents preceding c in π,

plus 1. For example, d35241(5) = 1 and d35241(1) = 3. Given a letter j of the

word w, let pw(j) be the positions of the letter j in w, in increasing order.

For example, p21232(2) = 135. Now define the following functions:

f : P → Â by π 7→ dπ(1)dπ(2) . . . dπ(|π|),

g : Â → P by w 7→ pw(1), . . . , pw(max(w)).

Now consider what these functions are doing. When applying f to π we

first find the location of 1 in π and count the number of preceding descents,

which gives the first letter, dπ(1), of f(π). We then repeat this for the

letter 2 in π and continue up to n. To apply g to w we find the positions

of each 1 in w and g(w) begins with these positions in increasing order.
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Then we find the positions of each 2 in w and we continue g(w) with these

positions in increasing order. We continue this up to max(w). For example,

if π = 263415 then f(π) = 312231, and if w = 214321 then g(w) = 261543.

Before proceeding we define a term used for both permutations and

words:

Definition 52. Consider two elements a ≤ b of a poset of either words or

permutations. An embedding of a in b is a sequence η of length |b| such

that the nonzero positions in η are the positions of an occurrence of a in b

and removal of all the zeros from η results in a.

Example 53. The embeddings of the word 2121 in 211221 are 210201,

210021, 201201 and 201021. The embeddings of the permutation 213 in

142356 are 021030, 020130, 021003 and 020103.

We now show that f and g are inverses of each other. First we show

that f and g link the number of descents of permutations in P and the

largest letter of words in Â.

Lemma 54. Let f and g be defined as above.

1. If π ∈ Pk, then f(π) ∈ Âk+1.

2. If w ∈ Âk+1, then g(w) ∈ Pk.

Proof. For (1), consider π ∈ Pk and let w = f(π). It is clear that w is a

word and that dπ(πn) = k + 1. Also there must be an occurrence of all

the letters 1, . . . , k because for each i the letter at the location of the i-th

descent maps to i. All that remains to be shown is that w satisfies AC2
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in Definition 50. Let wt = i be the rightmost occurrence of the letter i.

This implies the letter t at position j in π is the rightmost letter that is

preceded by exactly i descents, and hence a descent occurs directly after πj.

Thus the letter πj+1 is mapped to i+ 1. Since πj+1 < πj, the letter πj+1 is

mapped to an earlier location in w than πj. Therefore, wt = i is preceded

by an occurrence of i+1. Since the argument holds for all i, this proves (1).

For (2), we need to show there are k descents in g(w). By AC2 in

Definition 50, the largest letter in pw(t) must have a greater value than

the smallest letter in pw(t + 1). Therefore, for each t there is a descent

between pw(t) and pw(t+ 1) in g(w). Since each pw(j) is increasing, these k

are the only descents.

Lemma 55. The map f is a bijection with inverse g.

Proof. We prove this by showing that fg = idÂ and gf = idP .

First consider w ∈ Â and v = f(g(w)). If wi = t then dg(w)(i) = t,

since i ∈ pw(t) and thus in the t-th run of g(w). Since we know

that wi = t = dg(w)(i) = vi for all i, we conclude w = v.

Now consider g(f(π)) such that π ∈ Pk, and let πt . . . πt+λ be the j-th

run of π for some j ∈ {1, . . . , k + 1}. Each π`, where ` ∈ {t, . . . , t + λ}, is

mapped to the letter j in f(π), and these are the only letters mapped to j.

In turn only those letters are mapped into pf(π)(j). Since each segment is

listed in increasing order, and this holds for all j, we have g(f(π)) = π.

So f is a bijection from P to Â. Finally we need to see if this bijection is

order-preserving. This is not true in general. For example, consider the per-
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mutations 132 ≤ 2143: Applying f yields f(132) = 121 6≤ 2132 = f(2143).

Consider the functions fk obtained by restricting f to Pk and gk obtained

by restricting g to Âk. We know by Lemma 54 that the image of fk is Âk+1

and the image of gk+1 is Pk. Combining this with Lemma 55 implies fk is

a bijection. We now show that fk and gk are order-preserving:

Theorem 56. The bijection fk is an order isomorphism.

Proof. Consider two permutations σ, π ∈ Pk with σ ≤ π. Since σ and π

have the same number of descents, thus the same number of runs, for

any occurrence of σ in π the t-th run of σ must occur in the t-th run

of π. If πk1 . . . πkm is an occurrence of σ in π, then dπ(πk1) . . . dπ(πkm) =

dσ(σ1) . . . dσ(σm). Let πt1 . . . πtm be the reordering of πk1 . . . πkm in increas-

ing order, then dπ(πt1) . . . dπ(πtm) occurs in fk(π) and is equal to fk(σ).

Therefore, fk(σ) ≤ fk(π).

Now consider two words v, w ∈ Âk with v ≤ w. Let η be an em-

bedding of v in w, and let ĝk(η) = pη(1) . . . pη(k + 1). It is easy to see

that pη(t) ⊆ pw(t), which implies ĝk(η) ≤ gk(w). Also ĝk(η) is an occur-

rence of gk(v), so gk(v) ≤ gk(w).

Hence we have an order isomorphism between Pk and Âk+1. One of our

key results is the following corollary, which follows directly from [Bjö90,

Theorem 3] and Theorem 56:

Corollary 57. Any interval [σ, π], where σ and π are permutations with

the same number of descents, is shellable.

Note that [Bjö90, Theorem 3] implies the stronger result that these

intervals are dual CL-shellable which implies shellability. For a good survey
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of the implications of different types of shellability we refer the reader to

[Wac07, Section 4.1].

We can also consider f as a map to the poset of words on generalised

subword order, where the underlying poset is the chain of positive integers.

In this case f is order-preserving, but g is not. For example, 211 ≤ 212

but g(211) = 231 6≤ 213 = g(212).

It is known that a shellable complex has the homotopy type of a wedge

of spheres. Therefore, Corollary 57 gives the following result:

Corollary 58. If σ and π are permutations with the same number of de-

scents, then ∆(σ, π) is homotopy equivalent to a wedge of |µ(σ, π)| spheres

of dimension dim ∆(σ, π) = |π| − |σ| − 1.

5.3 Computing the Möbius Function

We can use Theorem 56 along with [Bjö90, Theorem 1], which also appears

as [SV06, Theorem 2.1], to compute the Möbius function of any interval in P

between permutations with the same number of descents. To do this we

first need to define what a normal embedding is in the case of permutations.

The definition we use is induced by the definition of a normal embedding

in [SV06] after applying the bijection from Theorem 56:

Definition 59. An adjacency in a permutation is a maximal sequence of

consecutively valued letters in increasing consecutive order. The tail of an

adjacency is all but the first letter of the adjacency. An embedding η of σ in

π is normal if ηi is nonzero for each letter πi in the tail of an adjacency. We
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use the notation from [Bjö90] and denote the number of normal embeddings

of σ in π as
(
π
σ

)
n
.

There is an analogous decreasing adjacency, but we are only interested

in increasing adjacencies.

Example 60. As in Example 53 consider 213 and 142356. The adjacencies

in 142356 are 23 and 56 so the tails of the adjacencies are 3 and 6. Hence

the only normal embedding is 020103 and therefore
(

142356
213

)
n

= 1.

We use this definition to state the following result:

Proposition 61. If σ and π are permutations with the same number of

descents, then

µ(σ, π) = (−1)|π|−|σ|
(
π

σ

)
n

.

Proof. This follows directly from Theorem 56 and [Bjö90, Theorem 1].

In [Bjö90] it was shown that
(
π
σ

)
n

can be computed in polynomial time.

In Section 5.3.1 we use Proposition 61 to give a simpler proof of a result

which appears in [Smi14a] and prove a conjecture from the same paper.

First we present two corollaries:

Corollary 62. Consider σ, π ∈ Pk. Let t be the total number of letters in

all the tails of all the adjacencies in π. If t > |σ|, then µ(σ, π) = 0.

This result doesn’t hold if we remove the restriction on the number of

descents. For example, consider σ = 213 and π = 569341278, which have

one and two descents, respectively. The total number of letters in all the

tails of 569341278 is t = 4 and |σ| = 3, but µ(312, 6745123) = 1 6= 0.
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Corollary 62 is another part of the answer to a question posed

in [BJJS11] asking when is µ(σ, π) = 0. Whilst we cannot yet give a

simple definitive answer to this question, there are results which present

several classes of intervals with a zero Möbius function, such as results

in [BJJS11], [Smi14a] and [ST10].

A result in [BJJS11] showed that if σ and π are separable permutations,

then |µ(σ, π)| is at most the number of occurrences of σ in π. Proposi-

tion 61 implies this is also the case if we fix the number of descents, since

an embedding corresponds to a unique occurrence.

Corollary 63. If σ and π have the same number of descents, then |µ(σ, π)|

is at most the number of occurrences of σ in π.

5.3.1 Möbius Function of Permutations with at

Most One Descent

Proposition 61 allows us to compute the Möbius function of an interval

between two permutations with the same number of descents, but says

nothing about intervals between permutations with different number of de-

scents. Now we consider the intervals [1, π], where π ∈ P1. In particular

we present an alternative proof, which is both shorter and simpler than the

original, of [Smi14a, Theorem 5]. We begin with a useful lemma which gives

a formula for µ(1, π) for every permutation π with one descent.

Lemma 64. If π has exactly one descent, then µ(1, π) = −µ(21, π).

Lemma 64 can be proved directly by considering the effect the removal

of the increasing permutations has on the Möbius function. However, it
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also follows from Theorem 69, along with the Philip Hall Theorem and the

Euler-Poincaré formula, so we omit the proof here.

We now present the alternative proof of [Smi14a, Theorem 5]. As

in [Smi14a], we use the notation µ(π) := µ(1, π). A triple adjacency in-

dicates an adjacency of three letters, for example 234 in 52341. We use

the notation adjacency pair to denote an adjacency of length 2. The value

and position of an adjacency pair are given by the value and position of

the first letter of the adjacency pair. We denote the two permutations of

length n that have one descent and no adjacencies as Mn = 246 . . . 135 . . .

and Wn = 135 . . . 246 . . .. For example, M6 = 246135 and W5 = 13524.

As observed in [Smi14a], in Theorem 65 any overlap of cases agree in

value. For example, if π contains the triple adjacency 234, then equiva-

lently π contains the two adjacency pairs 23 and 34, the first of which has

lower value; both cases imply µ(π) = 0.

Theorem 65. Given a permutation π of length n > 2, with exactly one

descent, the value of µ(π) can be computed from the number and positions

of adjacencies in π, as follows:

1. If µ(π) 6= 0, then µ(π) is positive if and only if n is odd.

2. If π begins with 12 or ends in (n− 1)n, then µ(π) = 0.

3. If π has a triple adjacency, then µ(π) = 0.

4. If π has more than two adjacency pairs, then µ(π) = 0.

5. If π has exactly two adjacency pairs, then:
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a) If the first adjacency pair has greater value than the second,

then |µ(π)| = 1,

b) If the first adjacency pair has lower value than the second,

then µ(π) = 0.

6. If π has exactly one adjacency pair, at position i ∈ {1, . . . , n−1}, and

the descent is at position d, then:

a) If i < d and π1 6= 1, then |µ(π)| = i,

b) If i < d and π1 = 1, then |µ(π)| = i− 1,

c) If i > d and πn 6= n, then |µ(π)| = n− i,

d) If i > d and πn = n, then |µ(π)| = n− i− 1.

7. If π has no adjacencies, then:

a) If n is even and π1 = 1, so π = Wn, then µ(π) = −
(
n
2

2

)
,

b) If n is even and π1 = 2, so π = Mn, then µ(π) = −
(
n
2

+ 1

2

)
,

c) If n is odd, then µ(π) =

(
n+1

2

2

)
.

Proof. By Lemma 64, we know that µ(π) = −µ(21, π). We can use Propo-

sition 61 to compute µ(21, π), which implies the sign of µ(21, π) is given

by (−1)|π|−2. Therefore, µ(21, π) is positive if and only if n is even, com-

bining this with µ(π) = −µ(21, π) gives part 1.

We need to show that the absolute value of µ(21, π), which equals the

number of normal embeddings, agrees with each of the cases in the theorem.

We refer to the permutation 21 as σ, to avoid confusion between letters and

permutations.
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Case 2: If π begins with 12, then we must embed the 2 of σ as the 2

in π. However, there is no letter after the descent of value less than 2, so

we cannot embed the 1 of σ anywhere. Similarly, if π ends in (n−1)n, then

we must embed the 1 of σ as n in π. However, this leaves no valid position

to embed the 2 of σ. Therefore, there are no normal embeddings of σ in π.

Case 3: If π has a triple adjacency at πiπi+1πi+2, then any normal

embedding of σ in π must be non-zero for πi+1πi+2. Therefore, σ must

contain 12, which 21 does not. So there are no normal embeddings of σ

in π.

Case 4 follows directly from Corollary 62.

Case 5: When there are two adjacency pairs, at locations k

and j, there is only one embedding that might be normal,

namely η = . . . 0ηk+10 . . . 0ηj+10 . . .. If πk > πj, then we can set ηk+1 = 2

and ηj+1 = 1. Therefore, there is one normal embedding of σ in π.

If πk < πj, then there is no way to make η an embedding of σ. There-

fore, there are no normal embeddings of σ in π.

Case 6: In these cases we must embed one of the letters of 21 in the

adjacency pair and can choose an appropriate place for the other letter.

Denote the locations of the descent and adjacency pair as d and i, respec-

tively. If i < d, then an embedding η of σ in π must have ηi+1 = 2 and we

can then embed the 1 from σ in any of the letters after the descent that

have value less than πi. Since the rest of π follows the same alternating

pattern, because there are no more adjacencies, it is easy to see that this

gives the desired results. The argument is analogous if i > d.

Case 7: Since there are no adjacencies in π, any embedding is normal.
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Therefore, we need only count the number of embeddings. First consider

the case when n is even and π1 = 1. If we embed the letter 2 of σ in

locations 1, 2, . . . , n
2

and then count where we can embed the letter 1, then

we get the following sequence 0, 1, 2, . . . , n
2
− 1. Summing the sequence

implies
(
π
21

)
n

=
(n

2
2

)
. Repeating this for each case gives the desired results.

We can also use Proposition 61 to prove one of the conjectures presented

in [Smi14a]. In Proposition 67 we count the number of adjacency pairs, so

a triple adjacency counts as two adjacency pairs and a length k adjacency

counts as k−1 adjacency pairs. We say that two permutations with exactly

one descent are related if they have the letter 1 on the same side of the

descent. Let bxc denote the floor of x, that is, the largest integer not

greater than x.

Lemma 66. Let σ be a permutation of length m with exactly one descent

and i adjacency pairs. In σ the letter m occurs on the same side of the

descent as the letter 1 if and only if m− i is odd.

Proof. If σ begins with the letter 1, then let τ = Wm, otherwise let τ = Mm.

We can build σ from τ by going through each letter k ∈ {2, . . . ,m} in τ .

If k is not on the same side of the descent in τ as k is in σ, then move k to

the opposing side of the descent, in the unique way that does not create a

new descent.

We consider three cases that occur when moving a letter

k ∈ {2, . . . ,m − 1}. If k is not part of an adjacency pair, then moving

it creates two new adjacency pairs (k − 1)k and k(k + 1). If k is part of
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one adjacency pair, then moving it destroys one adjacency pair but creates

another. If k is part of two adjacency pairs, then moving it destroys both

adjacency pairs. If k = m, then moving it either creates or destroys the

adjacency pair (m − 1)m. Therefore, each move of a letter k changes the

number of adjacency pairs by −2, 0 or 2 for all k ∈ {2, . . . ,m − 1} and

by 1 or −1 if k = m.

If m is odd, then 1 and m are on the same side of the descent in τ . If m

is not moved whilst building σ from τ , then m− i must be odd and m must

be on the same side of the descent as 1 in σ. If m is moved, then it is on the

opposite side of the descent and m− i is even. The argument is analogous

if m is even.

Proposition 67. Given a permutation σ ∈ P1 of length m, let i be the

number of adjacency pairs in σ. If σ ≤ π such that π ∈ {Mn,Wn}, then:

µ(σ, π) = (−1)n−m
(
bn+m−i−a

2
c

m

)
,

where a =

0, if σ and π are related

1, otherwise

.

Proof. Since both σ and π have exactly one descent, we can apply Propo-

sition 61. The sign part of the result follows immediately. Since π has no

adjacencies, any embedding of σ in π is normal, hence we need only count

the number of embeddings. To do this we find it simpler to consider f(σ)

and f(π), which are binary strings. Note that we consider an occurrence

of a substring to occur in consecutive positions. For example, 101 has an

occurrence of 10, but no occurrence of 11. We consider the different cases

depending on whether n is odd or even, and whether σ and π are related.
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First consider the case when σ and π are related and n is even. Sup-

pose π = Mn, then f(π) = 1010 . . . and can be split into n/2 blocks, each

consisting of a single 10. We can choose to embed a 10 from f(σ) in either

a single block of f(π) or two separate blocks. For any other letter of f(σ)

we choose a single block of f(π) in which to embed it. Thus, once we decide

which 10s of f(σ) to embed in single blocks of f(π), all we need to do to

determine an embedding is to pick a subset of blocks of f(π).

Suppose we embed none of the 10s of f(σ) in a single block of f(π). We

need to pick m of the n/2 blocks of f(π), to embed one letter of f(σ) in each

of the selected blocks, which can be done in
( n

2
m

)
ways. Suppose we select r

of the 10s in f(σ) to embed in a single block. We need to choose m− r of

the 10s in f(π) in which to embed the parts of f(σ). Thus, we need to pick

a total of m objects, some of them blocks of f(π) to embed in and some of

them 10s in f(σ) to embed in a single block of f(π). An occurrence of 10

in f(σ) corresponds to a letter in σ that is after the descent and not the

start of an adjacency pair, and there are bm−i
2
c such letters. Therefore, we

have
(bn

2
c+bm−i

2
c

m

)
embeddings, and because n is even this gives the desired

result. If π = Wn, n is even and σ and π are related, then the proof is

analogous to when π = Mn, but considering substrings 01 instead of 10.

Now consider the case when n is odd and σ and π are related. By

Lemma 66 we know that the largest letters in σ and π are on same sides of

the descent if and only if m− i is odd. Therefore, if m− i is even, then we

cannot embed anything in the final letter of π; thus this case is equivalent to

when n is even and σ and π are related. If m− i is odd, then we can embed

a letter of σ in the largest letter of π; thus we have n+1
2

blocks of f(π) to
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embed in. The remaining argument is analogous to when n is even, using

the fact that as n and m− i are odd bn+1
2
c+ bm−i

2
c = bn+m−i

2
c.

Finally consider the cases when σ and π are not related. In these cases

we cannot embed anything in the first letter of π. Therefore, we can remove

the first letter from π without changing the number of embeddings. So these

cases are equivalent to when σ and π are related and π is of length n − 1,

the latter point accounting for the −a in the equation.

5.4 Intervals of [1, π] where π has One

Descent

We have shown that intervals between two permutations with the same

number of descents are shellable. Now we consider intervals of the form

[1, π] such that π ∈ P1. First we present a useful tool called the Quillen

Fiber Lemma, which can be found as Theorem 15.28 in [Koz08]. Define the

upper ideal as Q≥x := {y ∈ Q : y ≥ x}.

Proposition 68. (Quillen Fiber Lemma) Let φ : P → Q be an order-

preserving map between posets such that for any x ∈ Q the

complex ∆(φ−1(Q≥x)) is contractible. Then the induced map between sim-

plicial complexes ∆(φ) : ∆(P )→ ∆(Q) is a homotopy equivalence.

Note that the order complex of an upper ideal Q≥x is always contractible

to the point x. Now we consider the homology of the order complexes of

intervals [1, π] such that π ∈ P1.
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Theorem 69. If π ∈ P1, then the order complex ∆(1, π) is homotopy equiv-

alent to a suspension of ∆(21, π). Therefore, the reduced Betti numbers of

∆(1, π) are β̃n(∆(1, π)) = β̃n−1(∆(21, π)), for n > 0, and β̃0(∆(1, π)) = 0.

Proof. Let X = (1, π) and A = X \ [123,k], where k = 1 . . . k is the largest

increasing permutation that occurs in π. The only permutations in A not

in (21, π) are 21 and 12. The permutations 21 and 12 occur as a pattern

in every permutation in (21, π). Therefore, in the order complex of A each

of the points associated to 12 and 21 is the apex of a cone over ∆(21, π),

so ∆(A) is a suspension of ∆(21, π).

We use the Quillen Lemma to show that ∆(X) is homotopically equiv-

alent to ∆(A). Consider the map f : X → A defined by:

f(σ) =

12, if σ ∈ P0

σ, if σ ∈ P1

.

This map is order-preserving and f−1(A≥a) = X≥a which is an upper

ideal, thus ∆(f−1(A≥a)) is contractible. Therefore, by the Quillen Fiber

Lemma, f induces a homotopy equivalence between ∆(X) and ∆(A).

Thus, ∆(X) is homotopically equivalent to a suspension of ∆(21, π). The

result on the reduced Betti numbers then follows directly from the property

of the suspension that H̃n+1(suspX) = H̃n(X).

It is not true that all intervals [1, π], π ∈ P1, are shellable, as can be

seen by the following example:

Example 70. Consider the permutations 456123 and 356124. In the inter-

val [1, 456123] the subinterval [123, 456123] is disconnected and of rank 3,
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which implies [1, 456123] is not shellable. Similarly in [1, 356124] the subin-

terval [123, 356124] is disconnected and of rank 3. Consequently, if a permu-

tation π ∈ P1 contains 456123 or 356124 the interval [1, π] is not shellable.

Whilst it is not true that the intervals [1, π] are all shellable, we conjec-

ture that containing 456123 or 356124 are the only obstructions to shella-

bility for the intervals [1, π] when π ∈ P1.

Conjecture 71. If π ∈ P1 and π avoids 456123 and 356124, then the

interval [1, π] is shellable.

We have been unable to prove this conjecture, but we show that these

intervals have no nontrivial disconnected subintervals. We prove this below,

but first we need a result from [MS15] and the following definition:

Definition 72. Let η be an embedding of σ in π. The zero set of η, which we

denote Zη, is the set {i : ηi = 0}. The zero set ZE of a set of embeddings E

is the union of the zero sets of all the embeddings in the set E.

Example 73. Let σ = 213 and π = 245136. Consider the following em-

beddings of σ in π: η1 = 200130, η2 = 200103 and η3 = 020103. These em-

beddings have zero sets Zη1 = {2, 3, 6}, Zη2 = {2, 3, 5} and Zη3 = {1, 3, 5},

respectively. Therefore, the set {η1, η2, η3} has zero set {1, 2, 3, 5, 6}.

Lemma 74. (see [MS15, Proposition 5.3]) Consider two permutations

σ < π such that |π| − |σ| ≥ 3. The interval [σ, π] is not disconnected if

the embeddings of σ in π cannot be partitioned into two non-empty sets E1

and E2 such that ZE1 ∩ ZE2 = ∅.
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Proposition 75. If π ∈ P1 and π avoids 456123 and 356124, then the

interval [1, π] has no disconnected subintervals of rank 3 or more.

Proof. By Corollary 57 we know that intervals between two permutations

in P1 are shellable, hence have no disconnected subintervals. All that re-

mains is subintervals of the form [α, β], of rank 3 or more, with α ∈ P0

(so α is an increasing permutation) and β ∈ P1. We show there is no way

to split the embeddings of α in β into two sets with disjoint zero sets. To

do this we separate the embeddings into three disjoint sets:

1. Embeddings with all of α embedded before the descent in β constitute

the set E1.

2. Embeddings with all of α embedded after the descent in β constitute

the set E2.

3. Embeddings with part of α embedded before the descent in β, and

part after, constitute the set E3.

Note that each embedding in E1 has zeros in all positions after the descent.

Similarly, all embeddings in E2 have zeros in all positions before the descent.

Therefore, it is not possible to split E1 or E2 into smaller sets that have

disjoint zero sets. Moreover, E3 cannot be split into smaller sets with

disjoint zero sets. To see this note that, it is always possible to swap a

nonzero letter with a zero letter directly to the right if after the descent, or

directly to the left if before the descent. We can use this to build a sequence

of embeddings between any two embeddings in E3, where the elements in

each adjacent pair in the sequence have only one letter differing in their
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zero sets. If the zero sets differ by only one element they cannot be disjoint.

Since we can build such a sequence between any two embeddings in E3, it

is not possible to split E3 into two sets with disjoint zero sets.

Suppose that all three sets are non-empty. Since both E1 and E2 are

non-empty, it is not possible to make an embedding that uses all letters

from one side of the descent and some letters from the other. This means

that each embedding in E3 must have a zero on both sides of the descent.

So all embeddings in E1 must be placed in the same set, all embeddings

in E3 must be placed in the same set as the embeddings in E1 and all

embeddings in E2 must be placed in the same set as the embeddings in E3.

So we cannot split the embeddings into two sets with disjoint zero sets.

We now analyse three cases, depending on which of the three sets are

empty.

First suppose E1 is empty and that E2 and E3 are non-empty. Consider

the embeddings in E3. Unless an embedding embeds all its letters before

the descent, and then some after, it has a zero before the descent, so must

be put into the same set as E2. Furthermore, as E3 cannot be split into two

sets with disjoint zero sets, the only way for E2 and E3 to have disjoint zero

sets is if all the embeddings in E3 have no zeros before the descent. We show

that the only way such an embedding can exist is if β = β1β2...βd...βi...βn

with βi > βd and any letter strictly between βd and βi is less than βd. Also

the number of letters not between βd and βi must be exactly |α|. Therefore,

we can embed α as

η = α1...αd0...0αd+1...αa,

such that αd+1 is embedded in position i. To see this is the only possible
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embedding suppose there is another embedding η̂ 6= η. Since there cannot

be a zero before the descent there must be a zero after η̂i. This implies

it would also be possible to embed the sequence αd...αa after the descent,

leaving a zero before the descent, contradicting our requirement for E3.

If η is a valid embedding, then βd−2βd−1βd must be of one of two forms,

either c(c + 1)(c + 2) or c(c + 2)(c + 3). Otherwise we could build valid

embeddings of the form

α1...αd−200...0αd−1αdαd+1...αa,

which has a zero before the descent, contradicting our requirement for E3.

We also know that there are |β|− |α| ≥ 3 letters smaller than βd that occur

after βd. Therefore, the embedding η can only exist if there is an occurrence

of either 456123 or 356124 in β. Since β avoids both these permutations η

cannot be a valid embedding. So if E1 is empty the embeddings cannot be

split into disjoint zero sets.

An analogous argument shows that if E2 is empty, then the embeddings

cannot be split into disjoint zero sets.

Now suppose E3 is empty but E1 and E2 are not. As E3 is empty there

can be no increasing sequence of length |α| spread across both sides of

the descent. Using this we can repeat the same argument as above showing

that βd−2βd−1βd must be of one of the forms c(c+1)(c+2) or c(c+2)(c+3).

Therefore, if β avoids 456123 and 356124 this case cannot arise.

Therefore, if π ∈ P1 and π avoids 456123 and 356124, then for any

1 ≤ α ≤ β ≤ π the embeddings of α in β cannot be split into two sets

with disjoint zero sets. Thus, by Lemma 74, the interval [α, β] cannot be
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disconnected. Therefore, [1, π] has no disconnected subintervals of rank 3

or more.
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Part IV

A Formula for the Möbius

Function of the Permutation

Poset Based on a Topological

Decomposition
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Abstract

We present a two term formula for the Möbius function of in-

tervals in the poset of all permutations, ordered by pattern con-

tainment. The first term in this formula is the number of so called

normal occurrences of one permutation in another. Our definition

of normal occurrences is similar to those that have appeared in sev-

eral variations in the literature on the Möbius function of this and

other posets, but simpler than most of them. The second term in the

formula is complicated, but we conjecture that it equals zero for a

significant proportion of intervals. We present some cases where the

second term vanishes and others where it is nonzero. Computing the

Möbius function recursively from its definition has exponential com-

plexity, whereas the computation of the first term in our formula is

polynomial and the exponential part is isolated to the second term,

which seems to often vanish. We also present a new result on the

Möbius function of posets connected by a poset fibration related to

a result of Björner, Wachs and Welker.
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6.1 Introduction

Let σ and π be permutations of positive integers. We define an occurrence

of σ in π to be a subsequence of π with the same relative order of size as the

letters in σ. For example, 132 occurs twice in 23541, as the subsequences 254

and 354. The permutation poset P consists of all permutations with the

partial order σ ≤ π if there is an occurrence of σ in π. An interval [σ, π]

in P is the subposet {z ∈ P |σ ≤ z ≤ π}. The Möbius function for a poset

is defined recursively as: µ(a, b) = 0 if a 6≤ b, µ(a, a) = 1 for all a and,

for a < b:

µ(a, b) = −
∑
a≤z<b

µ(a, z).

The first systematic study of the Möbius function of general posets ap-

peared in [Rot64] and the first result pertaining to the Möbius function of

intervals of P appeared in [SV06], where a formula for intervals of layered

permutations was presented. A layered permutation is the direct sum of

decreasing permutations, where the direct sum σ⊕π of two permutations σ

and π is obtained by appending π to σ after adding the length of σ to each

letter of π. For example, 312⊕ 213 = 312546. There is an analogous skew

sum σ 	 π where π is appended to σ after the length of π is added to each

element of σ. In [BJJS11] a formula for the Möbius function is presented

for intervals of decomposable permutations, that is, permutations that can

be written as the direct sum of two or more non-empty permutations. This

formula, however, is recursive and bottoms out in intervals bounded by in-

decomposable permutations, for which there is no general formula for the

Möbius function.
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Furthermore, in [BJJS11] a formula is presented for intervals of

separable permutations, that is, permutations that avoid 2413 and 3142,

or equivalently, permutations that can be written using only direct sums,

skew sums and the singleton permutation 1. A formula for the Möbius

function of intervals of permutations with a fixed number of descents is

given in [Smi14b], where a descent occurs at position i in a permuta-

tion π = π1 . . . πn if πi > πi+1. Further results have been presented

in [MS15, Smi14a, ST10]. However, the proportion of intervals [σ, π] which

satisfy any of these properties approaches zero as the length of π increases.

There are indications that the formula we present here reduces the compu-

tation of the Möbius function to polynomial time for a significant proportion

of intervals.

Many of the results on the Möbius function of intervals of P , and also of

some posets of words, are linked to the number of what have been termed

normal occurrences, or normal embeddings, in the literature, see [Bjö90,

Bjö93, BJJS11, SV06, Smi14b]. The first appearance of normal occurrences

is in Björner’s paper [Bjö90] where a formula for the Möbius function of

intervals of words with subword order is presented. The definition of a

normal occurrence has varied in these papers, but all follow a similar theme.

Our definition of normal occurrences, which is simpler than most previ-

ous ones, is based upon the adjacencies of a permutation, where an adja-

cency in a permutation is a maximal sequence of increasing or decreasing

consecutively valued letters in consecutive positions and the tail of an ad-

jacency is all but its first letter. A normal occurrence of σ in π, in our

definition, is any occurrence that includes all the tails of all the adjacencies
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of π. This definition of normal occurrences based on adjacencies does not

seem to have been considered previously, but in [Smi14b] we presented a

slightly different version.

We present a formula, in Theorem 94, that shows the Möbius function

of [σ, π] is, up to a sign, equal to the number of normal occurrences of σ

in π plus an extra term that seems to vanish for a significant proportion

of intervals. For example, we know this extra term vanishes if σ and π

have the same number of descents, which is a consequence of the result

in [Smi14b]. Using interval blocks, which appear in [ST10], we prove that

if for all permutations λ ∈ [σ, π) there is a singleton interval block, that

is, a letter of π which belongs to no occurrence of λ, the second term of

the formula vanishes. The above mentioned cases are of zero proportion

when the length of π goes to infinity, but computer tests indicate that for a

substantial proportion of intervals the second term of our formula vanishes.

Why that is the case is still a mystery, but this suggests that many more

families of intervals than are now known may turn out to have a tractable

Möbius function.

It is shown in [MS15] that if π is decomposable and has equal consecutive

components then for any subpermutation σ obtained by removing k > 1 of

the equal components, the interval [σ, π] contains a disconnected subinter-

val. Many of the definitions of normal occurrences have an extra condition

for the case when π has this property. We prove a result that indicates

the second term of our formula for the Möbius function is often non-zero

in this case. Exactly what the connection is between this second term and

the topology of such intervals is another mystery.
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Computing the Möbius function using the original recursive formula has

exponential complexity, whereas our formula splits the computation into

two parts. The first part, that is, computing the number of normal occur-

rences, can be done in polynomial time and the second part has exponential

complexity in the general case, but computational evidence suggests that

in a significant proportion of cases this second term vanishes. Our formula

here is the first formula for arbitrary intervals of permutations that seems

to have polynomial time complexity for a significant proportion of intervals.

In Section 6.2 we introduce some definitions, give a brief introduction to

the topology of posets and present a poset fibration of [σ, π] that we later use

to compute µ(σ, π). In Section 6.3 we present and prove our main result,

that the Möbius function of intervals of P equals the number of normal

occurrences plus an extra term that we define. In Section 6.3.1 we present

a result that links the Möbius function of two posets connected by a poset

fibration satisfying a certain condition. This indicates there is possibly a

more general condition for the main result of Björner, Wachs and Welker

in [BWW05]. In Section 6.4 we apply our formula to show that the Möbius

function of [σ, π] equals the number of normal occurrences of σ in π if for

each λ ∈ [σ, π) there is at least one letter of π which is not in any occurrence

of λ. We also show that the value of the second term of our formula for the

Möbius function of [σ, π] is often nonzero when π has a decomposition into

a direct sum with consecutive equal components. Furthermore, we consider

for which permutations all occurrences are normal.
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6.2 Definitions and Preliminaries

In this section we introduce some definitions required to present our main

result. We begin with an important property of permutations that is fun-

damental to our results:

Definition 76. An adjacency in a permutation is a maximal sequence, of

length ` ≥ 1, of increasing or decreasing consecutively valued letters in

consecutive order. The tail of an adjacency of length at least 2 is all but

the first letter of the adjacency. An adjacency of length 1 does not have a

tail.

Example 77. The permutation π = 2314765 has adjacencies 23, 1, 4

and 765 and the tails are 3 and 65.

Next we define embeddings and our version of normal embeddings. Em-

beddings are in one-to-one correspondence with occurrences, and we use

embeddings instead of occurrences throughout the rest of the paper be-

cause they allow for easier presentation of the required definitions.

Definition 78. Consider permutations σ ≤ π. An embedding η of σ in π

is a sequence of the same length as π such that the nonzero letters in η are

the letters of an occurrence of σ in π and in the same positions in η as in π.

An embedding η of σ in π is normal if the positions of all the letters in

all the tails of the adjacencies in π are nonzero in η. We denote the number

of normal embeddings of σ in π as NE(σ, π).

Example 79. For σ = 132 and π = 2314765 the sequence 0300065 is the

only normal embedding of σ in π, so NE(σ, π) = 1.
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Proposition 80. Computing NE(σ, π) for a fixed σ can be done in time

polynomial in the length of π.

Proof. Counting the number of occurrences of σ in π, of lengths k and n,

respectively, can be done in polynomial time O(nk) by exhaustive search,

and testing for normality is linear.

We use the adjacencies of a permutation to break down the permutation

and embeddings into smaller components.

Definition 81. Consider permutations σ ≤ π and an embedding η of σ

in π. Let π̂ = (π̂1, . . . , π̂t) be the decomposition of π into its adjacencies,

that is, π̂i is a maximal increasing or decreasing permutation corresponding

to the i-th adjacency of π.

Define η̂ := (η̂1, . . . , η̂t) where η̂i is the permutation obtained from the

nonzero letters that η embeds in the i’th adjacency of π. If η does not embed

in any letters of the i’th adjacency then η̂i = ∅.

Example 82. If σ = 132 and π = 2314765 then π̂ = (12, 1, 1, 321) and the

embedding η = 0010760 gives η̂ = (∅, 1, ∅, 21).

When considering embeddings the selection of letters within an adja-

cency is usually irrelevant. This is made formal by the following equivalence

relation.

Definition 83. Let Eσ,π be the set of embeddings of σ in π. Define an equiv-

alence relation on embeddings where η ∼ ψ if the only differences between η

and ψ occur within adjacencies of π. Define Êσ,π as the set containing the
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rightmost embedding, that is, the embedding where the nonzero letters are

the furthest right, of each equivalence class of Eσ,π/ ∼.

Consider η ∈ Êσ,π and define the zero set of η as Z(η) = {i | ηi = 0}.

Define EZσ,π to be the set of sets of embeddings in Êσ,π such that for each

set S ∈ EZσ,π we have
⋂
η∈S Z(η) = ∅.

When defining Êσ,π we choose the rightmost embedding to ensure that

all normal embeddings are in Êσ,π. Note that if η ∼ ψ then η̂ = ψ̂, which

can be used as an equivalent definition of the equivalence relation. The

set EZσ,π is upwards closed under containment because if we take any

set S ∈ EZσ,π adding a new embedding to S will result in a set that still

has empty intersection of zero sets.

Example 84. If σ = 132 and π = 413265 then the embedding 013200 has

zero set Z(013200) = {1, 5, 6} and

Eσ,π ={013200, 400065, 010065, 003065, 000265},

Êσ,π ={013200, 400065, 010065, 000265},

EZσ,π ={{013200, 400065}, {013200, 400065, 010065},

{013200, 400065, 000265}, {013200, 400065, 010065, 000265}}.

Using our decomposition we build posets from embeddings in the fol-

lowing way:

Definition 85. Given an embedding η ∈ Eσ,π define the poset P (η) :=

[η̂1, π̂1]× · · · × [η̂t, π̂t] and

Aσ,π :=
⋃

η∈Êσ,π

P (η)o,
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(∅, 1, 21, ∅)

(1, 1, 21, ∅) (∅, 1, 21, 1)

(1, 1, 21, 1) (∅, 1, 21, 21)

(1, 1, 21, 21)

P (013200) = [∅, 1]× [1, 1]× [21, 21]× [∅, 21]

(1, ∅, ∅, 21)

(1, 1, ∅, 21) (1, ∅, 1, 21)

(1, 1, 1, 21) (1, ∅, 21, 21)

(1, 1, 21, 21)

P (400065) = [1, 1]× [∅, 1]× [∅, 21]× [21, 21]

(∅, 1, ∅, 21)

(1, 1, ∅, 21) (∅, 1, 1, 21)

(1, 1, 1, 21) (∅, 1, 21, 21)

(1, 1, 21, 21)

P (010065) = [∅, 1]× [1, 1]× [∅, 21]× [21, 21]

(∅, ∅, 1, 21)

(1, ∅, 1, 21) (∅, 1, 1, 21)
(∅, ∅, 21, 21)

(1, 1, 1, 21)
(1, ∅, 21, 21) (∅, 1, 21, 21)

(1, 1, 21, 21)

P (000265) = [∅, 1]× [∅, 1]× [1, 21]× [21, 21]

(∅, 1, 21, 21) (1, 1, 1, 21) (1, ∅, 21, 21) (1, 1, 21, 1)

(∅, 1, 1, 21) (∅, ∅, 21, 21) (1, 1, ∅, 21) (∅, 1, 21, 1) (1, ∅, 1, 21) (1, 1, 21, ∅)

A132,413265

Figure 6.3: The posets of the embeddings of 132 in 413265 and the
union A132,413265 of their interiors.
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where P (η)o denotes the interior of P (η), that is, P (η) with the top and

bottom elements removed.

Example 86. Consider [132, 413265] and let η1, η2, η3 and η4 be the em-

beddings listed in Êσ,π in Example 84. Then π̂ = (1, 1, 21, 21) and η̂1 =

(∅, 1, 21, ∅), η̂2 = (1, ∅, ∅, 21), η̂3 = (∅, 1, ∅, 21) and η̂4 = (∅, ∅, 1, 21). See

Figure 6.3 for P (ηi) and A132,413265.

The poset Aσ,π consists of the elements η̂ for all η ∈ Êλ,π and

all λ ∈ (σ, π). Therefore, we define a surjective poset map f from Aσ,π

to (σ, π) in the following way:

Definition 87. Let f : Aσ,π → (σ, π) be the map which maps all elements η̂,

where η ∈ Êλ,π, to λ.

Example 88. If [132, 413265] and η̂ = (1, ∅, 1, 21) then η = 400265 ∈

Ê2143,π, so f(η̂) = 2143.

6.2.1 The Topology of a Poset

We study the topology of a poset by constructing a simplicial complex from

the poset in the following way:

Definition 89. Let P be a poset. A chain in P is a totally ordered subset

{z1 < · · · < zt}. The order complex of P , denoted ∆(P ), is the simplicial

complex whose vertices are the elements of P and whose faces are the chains

of P .

When we refer to the order complex of an interval [σ, π] we mean the

order complex of the interior (σ, π), which we denote ∆(σ, π).
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Example 90. Consider the interval I = [123, 4567123]. An example of a

chain in (123, 4567123) is 4123 < 456123. The order complex and Hasse

diagram of I are given in Figure 6.4.

We refer to a poset and its order complex interchangeably, so a topo-

logical property of a poset refers to that property of its order complex.

For further background on order complexes and poset topology in general

see [Wac07].

We can use the order complex of [σ, π] to calculate µ(σ, π) due to the

following formula, which is an application of the Philip Hall Theorem and

the Euler-Poincaré formula for the reduced Euler characteristic, see [Wac07,

Section 1.2]:

µ(σ, π) = χ̃(∆(σ, π)) =

|π|−|σ|∑
i=−1

(−1)iβ̃i(∆(σ, π)), (6.5)

where χ̃ is the reduced Euler characteristic and β̃i is the i’th reduced Betti

number, that is, the rank of the i’th reduced homology group. There-

fore, by calculating the homology of [σ, π] we can compute the Möbius

function. For example, if we can show that ∆(σ, π) is contractible this im-

plies µ(σ, π) = 0, and if ∆(σ, π) and ∆(α, β) are homotopically equivalent

then µ(σ, π) = µ(α, β).

The first explicit results on the topology of intervals of permutations

appear in [MS15] and [Smi14a].
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4123 2341 1234

45123 34512 23451

456123 345612

4123

45123

456123

34512

2341

345612

23451

1234

Figure 6.4: Left: Hasse diagram of (123, 4567123). Right: The order com-
plex ∆(123, 4567123).

6.3 The Main Result

We use the map f in Definition 87 to calculate the Möbius function of [σ, π]

by calculating µ(Aσ,π) and the effect on the Möbius function when apply-

ing f . First we compute µ(Aσ,π). Given a set A of posets the Möbius

function of the union of A can be calculated using the following inclusion-

exclusion formula, which can be seen as a consequence of the inclusion-

exclusion formula for the Euler characteristic and Equation (6.5):

µ

(⋃
a∈A

a

)
=
∑
S⊆A
S 6=∅

(−1)|S|−1µ

(⋂
a∈S

a

)
, (6.6)

For more background on this see [Nar74]. Applying Equation (6.6) to Aσ,π

gives:

µ(Aσ,π) =
∑

S⊆Êσ,π
S 6=∅

(−1)|S|−1 µ(
⋂
η∈S

P (η)o). (6.7)

To calculate this we need to know the Möbius function of the intersec-

tions ∩η∈SP (η)o. Note that when calculating the Möbius function of the

interior (or intersection of interiors) we add the top and bottom elements
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back in. Therefore, a contractible intersection has Möbius function 0, an

empty intersection has Möbius function −1 and µ(P (η)o) = µ(P (η)).

Lemma 91. If S ⊆ Êσ,π and |S| > 1 then:

µ(
⋂
η∈S

P (η)o) =

−1, if S ∈ EZσ,π

0, otherwise

.

Proof. Let π̂ = (π̂1, . . . , π̂t) and define the join of S to be

∨S = (maxη∈S(η̂1), . . . ,maxη∈S(η̂t)). The join is well defined because for

each i the set {ηi | η ∈ S} forms a chain, so there is a ηi that contains all

others. The join of S is the smallest element contained in everything in S,

so it is the bottom element of the intersection I =
⋂
η∈S P (η)o. Therefore,

if ∨S < π̂ then I is contractible and so has Möbius function 0, other-

wise ∨S = π̂ so I is empty and thus has Möbius function −1. If ∨S = π̂

this implies that every letter of π is non-zero for some η ∈ S, that is, S has

empty intersection of zero sets, so S ∈ EZσ,π.

Example 92. Consider our running example of [132, 413265]. If S1 =

{013200, 010065} then 013200 decomposes to (∅, 1, 21, ∅) and 010065 de-

composes to (∅, 1, ∅, 21), so the join is:

∨S1 = (max(∅, ∅),max(1, 1),max(21, ∅),max(∅, 21)) = (∅, 1, 21, 21).

Therefore, ∨S1 < π̂ so the intersection is contractible. We can check this

by looking at Figure 6.3 where we can see that the intersection P (013200)∩

P (010065) is the single point (∅, 1, 21, 21), which is contractible.

Now that we know the Möbius function of the intersections we can

compute µ(Aσ,π):
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Lemma 93.

µ(Aσ,π) = (−1)|π|−|σ|NE(σ, π) +
∑

S∈EZσ,π
(−1)|S|.

Proof. We can split Equation (6.7) into two parts:

µ(Aσ,π) =
∑
η∈Êσ,π

µ(P (η)o) +
∑

S⊆Êσ,π
|S|>1

(−1)|S|−1µ(
⋂
η∈S

P (η)o). (6.8)

By Lemma 91 the second part of the right hand side of Equation (6.8)

equals
∑

S∈EZσ,π
(−1)|S|.

By the definition of P (η), and the identity µ(A × B) = µ(A)µ(B), we

know

µ(P (η)) =
∏

1≤i≤t

µ(η̂i, π̂i).

We know that [η̂i, π̂i] is always a chain, so by the definition of normality if η

is not normal there is some i such that |η̂i| ≤ |π̂i|−2, so µ(η̂i, π̂i) = 0 which

implies µ(P (η)) = 0. If η is normal then |π̂i| − |η̂i| = 0 or 1, so µ(η̂i, π̂i) = 1

or −1, for all i. There are |π| − |σ| parts [η̂i, π̂i] with µ(η̂i, π̂i) = −1,

one for each zero in η, and the remaining have µ(η̂i, π̂i) = 1. Therefore,

µ(P (η)o) = µ(P (η)) = (−1)|π|−|σ| for each normal embedding, so the first

term in the right hand side of Equation (6.8) equals (−1)|π|−|σ|NE(σ, π).

We now present our formula for the Möbius function that applies to any

interval of permutations:

Theorem 94. For any permutations σ and π:

µ(σ, π) = (−1)|π|−|σ|NE(σ, π) +
∑

λ∈[σ,π)

µ(σ, λ)
∑

S∈EZλ,π
(−1)|S|. (6.9)
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Proof. We take the poset Aσ,π and for each λ ∈ (σ, π) we retract Êλ,π to a

point we denote λ. This transforms Aσ,π into the interval (σ, π). We need

to know what effect this has on the Möbius function of Aσ,π.

We work our way from the bottom to the top so we can assume that

all elements below the elements of Êλ,π have already been retracted and

all elements above have not. Define the poset W (λ) := {τ ∈ Aσ,π | τ ≤ η

or τ ≥ η for some η ∈ Êλ,π}. When we retract the elements of Êλ,π to λ we

retract W (λ) onto a contractible poset, since in that poset the element λ

is comparable to all other elements and thus represents a cone point in

the corresponding order complex. This implies the change to the Möbius

function is −µ(W (λ)).

To compute µ(W (λ)) we split W (λ) into two disjoint parts

W (λ)< := {τ ∈ W (λ) | τ < η for some η ∈ Êλ,π},

W (λ)≥ := {τ ∈ W (λ) | τ ≥ η for some η ∈ Êλ,π}.

The poset W (λ)< is isomorphic to (σ, λ) because all points below λ have al-

ready been retracted. The poset W (λ)≥ is equal to
⋃
η∈Êλ,π(P (η)\ π̂) which

has Möbius function −
∑

S∈EZλ,π(−1)|S|, by Lemma 91 and the inclusion-

exclusion formula (this also follows from the Crosscut Theorem, see Propo-

sition 104).

Because every element of Êλ,π lies above every element of (σ, λ) this

implies W (λ) = W (λ)< ? W (λ)≥, where ? denotes the topological join.

Therefore,

−µ(W (λ)) = −µ(W (λ)<)µ(W (λ)≥) = µ(σ, λ)
∑

S∈EZλ,π
(−1)|S|.
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So we start with µ(Aσ,π), given by Lemma 93, and then subtract µ(W (λ))

for each λ ∈ (σ, π), which gives the desired formula.

Remark 95. Computer tests indicate that about 95% of intervals [σ, π],

where

|π| < 9, satisfy µ(σ, π) = (−1)|π|−|σ|NE(σ, π). Thus, for these intervals

the latter term in Equation (6.9) is zero.

Remark 96. The complexity of counting the number of normal embed-

dings is polynomial so in the cases where we can show that the latter term

of Equation (6.9) equals zero we have a polynomial time formula for the

Möbius function. This is a dramatic improvement over the original recur-

sive formula that has exponential complexity. However, computing the latter

term of Equation (6.9) also has exponential complexity.

Tests show that using Equation (6.9) is often much quicker than com-

puting the Möbius function using the recursive formula. When computing

the Möbius function of the rank 15 interval

[54123, 9 7 10 4 8 1 2 6 5 3 19 17 20 14 18 11 12 16 15 13],

the formula in Equation (6.9) took 1.75 minutes and the recursive for-

mula took 13.5 hours. Note that this interval has Möbius function −3

but no normal embeddings so the latter term of Equation (6.9) is nonzero

in this case. Furthermore, using Equation (6.9) we were able to compute

the Möbius function of a rank 16 interval in 1 hour and a rank 17 in-

terval in 6 hours. However, if σ has a large number of occurrences in π

then using Equation (6.9) can be quite slow. For example, if σ = 2413
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and π = 2 4 6 8 10 1 3 5 7 9 then there are 35 occurrences of σ in π and µ(σ, π)

can be computed in 0.06 seconds using the recursive formula but takes 15.5

hours using Equation (6.9).

6.3.1 Poset Fibration

In this subsection we present a generalisation of the argument used to prove

Theorem 94. We can view the pair ((σ, π), {Êλ,π}λ∈(σ,π)) as a poset fibration

which makes f the projection map and Aσ,π the total space. In [BWW05]

various theorems are presented which relate two posets P and Q linked

by a poset fibration f satisfying a certain condition, see Theorem 2.5

of [BWW05] for the most general form of this condition. However, our

poset fibration does not always satisfy this condition, for example the con-

dition is not true on the interval [1, 456123]. We present a new result with

a different condition on the poset fibration that generalises the argument in

the proof of Theorem 94. We let f ∗ and f−1 denote the image and preimage

of f , respectively.

Proposition 97. Let f : P → Q be a surjective poset map such

that f ∗(P<p) = Q<q, for any q ∈ Q and p ∈ f−1(q). Then

µ(Q) = µ(P )−
∑
q∈Q

µ(Q<q)µ(f−1(Q≥q)).

Proof. We begin with P and for each q ∈ Q we retract f−1(q) to a single

point and observe the effect this retraction has on the Möbius function

of P . We do this inductively from the bottom to the top, so when consid-

ering q ∈ Q we assume all points in P<p, for all p ∈ f−1(q), have been

retracted.
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To calculate the effect the retraction has on the Möbius function of the

poset we consider

W (q) := {p ∈ P | p < λ or p ≥ λ for some λ ∈ f−1(q)}.

When we retract f−1(q) to a point we retract W (q) to a contractible poset,

which implies the change to the Möbius function is −µ(W (q)). We can

rewrite W (q) in the following way:

W (q) =
⋃

p∈f−1(q)

P<p ? P≥p =
⋃

p∈f−1(q)

Q<q ? P≥p

= Q<q ?
⋃

p∈f−1(q)

P≥p = Q<q ? f
−1(Q≥q).

We can replace P<p with Q<q because our induction assumption is that P<p

has been retracted and our condition of the proposition is f ∗(P<p) = Q<q.

Therefore, −µ(W (q)) = −µ(Q<q)µ(f−1(Q≥q)) and summing over all q ∈ Q

completes the proof.

Remark 98. An interesting question is whether Proposition 97 can be gen-

eralised to show homotopy equivalence. Also, is there a more general condi-

tion that encompasses the conditions of both Proposition 97 and Theorem 2.5

of [BWW05]?

6.4 Applications

By Theorem 94 we know that the Möbius function is linked to the number

of normal embeddings, which depend on the adjacencies.
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Lemma 99. The average total number of letters in the tails of adjacencies

in a permutation of length n is 2(n−1
n

). In particular, when n tends to

infinity the average number of letters in the tails of adjacencies tends to 2.

Proof. Note first that k = 1 cannot be in the tail of an increasing adjacency

and n cannot be in the tail of a decreasing adjacencies. For k > 1 the

number of permutations of length n in which k is in the tail of an increasing

adjacency is (n − 1)!, because these are precisely all permutations of the

letters 1, 2, . . . , n where (k − 1)k is regarded as a single letter. So the

probability that a letter k > 1 is in the tail of an increasing adjacency

is (n− 1)!/n! = 1/n. Likewise, the probability that a letter k < n is in the

tail of a decreasing adjacency is 1/n. Therefore, the probability that k is

in the tail of an adjacency is
1
n
, if k = 1 or n

2
n
, otherwise

.

Summing over all letters k = 1, . . . , n completes the proof.

An embedding in a permutation π is likely to be normal if there is only

a small proportion of letters in the tails of the adjacencies of π. Therefore,

Lemma 99 indicates that the proportion of embeddings of λ in a random

permutation π that are normal increases as the length of π increases. If a

permutation has no adjacencies of size ` > 1 then all embeddings will be

normal, the proportion of such permutations tends to 1/e2 as the length of

the permutations increase, see [Slo91].
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By Remark 95 we suspect that the second part of Equation (6.9) van-

ishes for a significant proportion of intervals. The key to simplifying Equa-

tion (6.9) is answering the following question:

Question 100. Given an interval [σ, π], for which λ ∈ [σ, π) is the following

sum nonzero?: ∑
S∈EZλ,π

(−1)|S|. (6.10)

A consequence of Proposition 3.3 in [Smi14b] is that if σ and π have the

same number of descents then the sum in (6.10) equals zero for all λ ∈ [σ, π).

Another case where the sum in (6.10) equals zero is when EZλ,π is always

empty, which leads us to the following definition and proposition:

Definition 101. We say an interval [σ, π] has a single block if there exists

some i such that ηi = 0 for any η ∈ Êσ,π. That is, there is a letter in π

that is not contained in any of the occurrences in Êσ,π.

We say an interval is single if for all λ ∈ [σ, π) the interval [λ, π] has a

single block.

Our notation here follows from the idea of interval blocks in [ST10].

Computer tests show that 78.6% of intervals [σ, π], where |π| < 9, are

single and we found that about 39% of 48300 random rank 10 intervals,

where |σ| = 5 and |π| = 15, are single. We suspect that the proportion

of intervals that are single approaches zero as the rank tends to infinity,

because the likelihood that there exists some λ ∈ [σ, π] such that [λ, π] does

not have a single block increases as the rank of the interval increases.

Proposition 102. If [σ, π] is single then µ(σ, π) = (−1)|π|−|σ|NE(σ, π).
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Proof. If [λ, π] has a single block then EZλ,π must be empty which

implies
∑

S∈EZλ,π(−1)|S| = 0. Therefore, if [σ, π] is single then∑
S∈EZλ,π(−1)|S| = 0 for all λ ∈ [σ, π), combining this with Equation (6.9)

completes the proof.

Intervals that contain a disconnected subinterval of rank at least 3 are

non-shellable, as shown by Björner in [Bjö80], and thus not amenable to

some of the elegant methods of topological combinatorics, see [MS15] for

further background. In the rest of the paper we consider a particular type of

interval that is known to be disconnected and show that the sum in (6.10)

is nonzero for these intervals. Whether there is a topological “reason”

for (6.10) being nonzero in these cases we don’t know.

We consider decomposable permutations and write them in the form

π1 ⊕ · · · ⊕ πn where each πi, which we call a component of π, is inde-

composable. Consider a permutation π, with a sequence of ` ≥ 2 equal

consecutive components, and λ ≤ π obtained from π by removing k of the

components from this sequence, where ` > k ≥ 1. The interval [λ, π] is

disconnected, which follows from results in [MS15], specifically Lemma 4.2

and Theorem 5.6. These intervals are the cause of the extra conditions in

the formulas for the Möbius function that appear in [BJJS11] and [MS15].

The simplest permutations with equal consecutive components are the

following:

Definition 103. Given an indecomposable permutation λ let

λn := λ⊕ · · · ⊕ λ︸ ︷︷ ︸
×n

.
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Before we continue let us introduce a very useful result for computing

the Möbius function of lattices known as the Crosscut Theorem. We denote

the join of A ⊆ X as ∨A := min{x ∈ X |x ≥ a for all a ∈ A}:

Proposition 104. (Crosscut Theorem, see [Sta12, Corollary 3.9.4]) Let L

be a finite lattice with top element 1̂ and bottom element 0̂. Let X be a

subset of L such that 0̂ 6∈ X and for all s ∈ L, s 6= 0̂, there is some t ∈ X

such that s ≥ t. Then

µ(0̂, 1̂) =
∑
A⊆X
∨A=1̂

(−1)|A|.

The Crosscut theorem is traditionally used to compute the Möbius func-

tion of a lattice, but we can use it in reverse if we can represent our problem

as a lattice for which we already know the Möbius function.

Consider the interval [λm, λn], for some indecomposable permutation λ,

the embeddings of λm in λn can be considered as subsets of [n] := {1, . . . , n}

of size m. So we can regard our problem as that of computing the Möbius

function of a sublattice of the Boolean lattice:

Definition 105. The Boolean lattice Bn is the poset of subsets of [n] with

the partial order given by inclusion.

Define the truncated Boolean lattice B≥kn as the subposet of Bn where

all elements a ∈ Bn such that |a| ≤ k are retracted to a single point 0̂.

Similarly, define B≤kn as the subposet of Bn where all elements a ∈ Bn such

that |a| ≥ k are retracted to a single point 1̂.

We take the notation for a truncated Boolean lattice from [Wac07, Sec-

tion 3.2.1]. See Figure 6.5 for examples of truncated Boolean lattices.
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1234

123 124 134 234

12 13 23 14 24 34

0̂

1̂

1 2 3 4

∅

Figure 6.5: The truncated Boolean lattices B≥2
4 and B≤1

4 .

The embeddings of λm in λn can be viewed as the atoms of the truncated

Boolean lattice B≥mn , so using the Crosscut theorem we can compute the

sum in (6.10) for [λm, λn] by computing µ(B≥mn ). The Möbius function of a

Boolean lattice is given by µ(Bn) = (−1)n, see [Rot64, Section 3]. We can

use this to compute the Möbius function of the truncated Boolean lattice.

Lemma 106. The Möbius function of a truncated Boolean lattice is

given by:

µ(B≤kn ) = (−1)k−1

(
n− 1

k

)
and µ(B≥kn ) = (−1)n−k−1

(
n− 1

k − 1

)
.

Proof. First consider B≤kn . For each element λ ∈ B≤kn , with |λ| = `, the

interval [∅, λ] is isomorphic to the boolean lattice B`, therefore µ(∅, λ) =

(−1)`. There are
(
n
`

)
elements in B≤kn with size `, for 0 ≤ ` ≤ k. To

compute µ(B≤kn ) we need to sum all elements and negate, we do this by

summing over `. We can then apply an identity on the alternating sum of

binomial coefficients, a proof of which can be found in Section 0 of [Kle63],

this gives:

µ(B≤kn ) = −
k∑
`=0

(−1)`
(
n

`

)
= (−1)k

(
n− 1

k

)
.
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Note that the lattice B≥kn is isomorphic to (B≤n−kn )∗, the dual of B≤n−kn ,

that is, the lattice with the partial order reversed. Therefore, µ(B≥kn ) =

µ((B≤n−kn )∗) = µ(B≤n−kn ) which completes the proof.

We can now present our result for the interval [λm, λn]:

Proposition 107. Let λ be an indecomposable permutation, of length ` > 1,

and consider the interval [λm, λn]. Then:∑
S∈EZλm,λn

(−1)|S| = (−1)n−m−1

(
n− 1

m− 1

)
.

Proof. We can consider each embedding of λm in λn as a subset a ⊆

{1, . . . , n} with |a| = m. Therefore, the embeddings correspond to the

atoms of the lattice B≥mn . So we can apply the Crosscut theorem and

Lemma 106 to complete the proof.

We can generalise this result by adding in other components to the

permutations to get the following proposition:

Proposition 108. Consider a decomposable permutation π = π1⊕· · ·⊕πn
with a sequence of consecutive components πi+1 = · · · = πi+α, with α > 1.

Let λ = λ1 ⊕ · · · ⊕ λm be the subpermutation of π obtained by reducing the

sequence of equal components to length `, for 0 ≤ ` ≤ α. Then:∑
S∈EZλ,π

(−1)|S| = (−1)α−`−1

(
α− 1

`− 1

)
. (6.11)

Proof. Let π̃ := πi+1 ⊕ · · · ⊕ πi+α and λ̃ := λi+1 ⊕ · · · ⊕ λi+`. Note

that π̃ = παi+1 and λ̃ = π`i+1.
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Given any set S ∈ EZλ,π let S̃ ∈ EZ λ̃,π̃ be the unique set which has

the elements η̃ = ηi+1 ⊕ · · · ⊕ ηi+α, for each η ∈ S, with repetitions re-

moved. Moreover, given any A ∈ EZ λ̃,π̃ consider the set gλ,π(A) := {S ∈

EZλ,π | S̃ = A}. We can rewrite the sum in Equation (6.11) as:∑
S∈EZλ,π

(−1)|S| =
∑

A∈EZλ̃,π̃

∑
S∈gλ,π(A)

(−1)|S|.

If we can show that
∑

S∈gλ,π(A)(−1)|S| = (−1)|A| for each A ∈ EZ λ̃,π̃ then

the result follows from Proposition 107.

Claim 1. Given any A ∈ EZ λ̃,π̃ we have
∑

S∈gλ,π(A)

(−1)|S| = (−1)|A|.

Proof. We proceed by induction on n, the number of components of π.

If n = α, that is, π̃ = π, then gλ,π(A) = {A} and the result follows trivially.

Suppose that the claim is true if n = α+ t− 1 and consider the case where

we prepend a component to π so n = α + t, the case for appending a

component is analogous. Let π>1 := π2⊕· · ·⊕πn and λ>1 := λ2⊕· · ·⊕λm.

For each set S ∈ gλ,π(A) we can remove η1 from each η ∈ S to get a

unique set S>1 ∈ gλ>1,π>1
(A). Moreover, given a B ∈ gλ>1,π>1

(A) define the

set f(B) = {S ∈ gλ,π(A) |S>1 = B}. Then we can reformulate the sum in

the claim as: ∑
S∈gλ,π(A)

(−1)|S| =
∑

B∈gλ>1,π>1 (A)

∑
S∈f(B)

(−1)|S| (6.12)

To compute the final sum in Equation (6.12) we need to consider what

sets are in f(B) given some set B ∈ EZλ>1,π>1
, with cardinality k. We can

extend B to a set in S ∈ EZλ,π by choosing where to embed λ1 in π. For
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each embedding in B = {η1, . . . , ηk} let ρj be the location of the leftmost

component of π>1 that ηj embeds in, so 2 ≤ ρj.

First we check that when extending B we get a set S in EZλ,π, that is,

for all i there exists some ψ ∈ S such that ψi = πi. We know this is true

for i > 1 because B ∈ EZλ>1,π>1
and it is true for i = 1 because λ1 = π1

and there is some embedding ηj ∈ B for which ρj = 2 which implies that

to extend ηj we must embed λ1 in π1. Therefore, however we extend B it

is in EZλ,π.

So we can extend each embedding ηj ∈ B by choosing to embed λ1 in

one of π1, . . . , πρj and we can take any number t ≥ 1 of these embeddings

to create a set in f(B). This gives us the following equation:

∑
S∈f(B)

(−1)|S| =

|B|∏
j=1

ρj∑
`=1

(−1)|B|+`
(
ρj
`

)
= (−1)|B|. (6.13)

So by Equation (6.13) we can replace the final sum in Equation (6.12)

with (−1)|B| and we can use the inductive hypothesis to complete the proof.

Example 109. Consider the permutation π = 2 1 5 3 4 8 6 7 11 9 10 13 12

which has the decomposition 21 ⊕ 312 ⊕ 312 ⊕ 312 ⊕ 21 and so has a

sequence of equal components π2 = π3 = π4 = 312 of length α = 3.

If λ = 21 ⊕ 312 ⊕ 312 ⊕ 21 = 2 1 5 3 4 8 6 7 10 9, so ` = 2, then Proposi-

tion 108 says ∑
S∈EZλ,π

(−1)|S| = (−1)3−2−1

(
3− 1

2− 1

)
= 2.
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We conjecture that we can generalise this further by removing elements

from more than one sequence of equal components:

Conjecture 110. Consider a decomposable permutation π = π1⊕ · · · ⊕ πn
which has t sequences of equal components πi+1 = · · · = πi+αi 6= 1 of

respective lengths αi, for 1 ≤ i ≤ t. Let λ = λ1⊕· · ·⊕λm be the permutation

obtained from π by, for each i, reducing the i-th sequence to length `i, with

0 ≤ `i ≤ αi. Then:

∑
S∈EZλ,π

(−1)|S| = (−1)α−`−1

t∏
i=1

(
αi − 1

`i − 1

)
,

where α = α1 + · · ·+ αt and ` = `1 + · · ·+ `t.

Example 111. Consider the permutation π = 2 1 4 3 7 5 6 10 8 9 13 11 12

which has the decomposition 21⊕ 21⊕ 312⊕ 312⊕ 312 so has 2 sequences

of equal components 21, 21 and 312, 312, 312 of lengths α1 = 2 and α2 = 3.

If λ = 21⊕ 312⊕ 312 = 21534867, so `1 = 1 and `2 = 2, the sum in (6.10)

equals −2, this agrees with the formula in Conjecture 110:

(−1)5−3−1

(
2− 1

1− 1

)(
3− 1

2− 1

)
= −2.
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Birkhčauser (Boston), 1996. Cited on pages 68 and 70.

[Sta12] Richard P. Stanley. Enumerative Combinatorics. Vol. 1. Cam-

bridge Studies in Advanced Mathematics. Cambridge University

Press, second edition, 2012. Cited on pages 7, 71, and 113.

123

http://oeis.org
http://oeis.org/A002464
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