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Mathematical modelling of semiconductor

photocatalysis

Grant MacDonald

Abstract

Semiconductor photocatalysis can be extremely effective in the complete miner-

alisation of hundreds of organic materials and has been utilised in various different

commercial systems, for example, self-cleaning glass, purification of water, the

purification of air, sterilisation/disinfection and detecting oxygen in food pack-

aging. The aim of this thesis is to further the understanding of semiconductor

photocatalysis using mathematical models. One of the main issues considered is

the applicability of assuming that reaction intermediates remain in a steady-state

throughout the majority of any reactions taking place. We show that this assump-

tion is not always valid.

First, we consider an intelligent ink that is used to test the effectiveness of self-

cleaning glass. The system is modelled by a diffusion equation for the transport of

dye molecules in the film coupled to an ordinary differential equation describing

the photocatalytic reaction taking place at the glass surface. A finite difference

method is introduced to solve the equations arising from the model. We are able to

show that the proposed model can replicate experimental results well. The model

also offers an explanation as to why the initial reaction rate is dependant on film

thickness for several different reaction regimes considered.

Second, we consider models motivated by systems where photocatalytic re-

actions take place throughout the domain as opposed to exclusively at domain

boundaries. We present a numerical method to solve such systems, and based on

informal experimental results, explain the reasons behind the initial reaction rate
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being dependent on the size of the domain.

Third, we consider four previously published models based on the removal of

organic pollutants using semiconductor photocatalysis. We introduce more general

mathematical models and demonstrate that by doing so there are a wider range

of systems that the models can be applied to. One model involves an expanding

domain and we present a moving mesh finite difference method that is used to

solve such systems.

Fourth, we propose a moving mesh finite element method for coupled bulk-

surface problems in two-dimensional time-dependant domains. These problems

are motivated by a system where semiconductor photocatalysis is used to destroy

organic dirt across a domain which is increasing in size.

Finally, we show how to determine the colour of a substance based on its

absorbance spectrum. By comparing predictions made from experimental data to

published photographs we are able to demonstrate that we can accurately predict

the colour of a substance.
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Chapter 1

Introduction

1.1 Heterogeneous catalysis

Catalysis is a term which describes the property of substances that facilitate chem-

ical reactions without being consumed during the reaction [17]. Although a broad

definition includes materials which limit the rate of a chemical reaction, usually

catalysis involves increasing the rate of a reaction. The difference between homo-

geneous catalysis and heterogeneous catalysis is the phase of the catalyst used in

a reaction. Homogeneous catalysts are present in the same phases as the reac-

tant and products taking part in a reaction, whereas, heterogeneous catalysts are

present in a different phase to the reactants and products present [17]. Generally,

heterogeneous catalysts are solid, while the reactants are gases or liquids. One of

the main advantages of using heterogeneous catalysts, as opposed to homogeneous

catalysts, is the fact that the catalysts are either automatically removed in the

process, or are easily separated from reactants and products using simple methods

[29]. Deutschmann et al. [19] report that, in 2008, the catalyst global market

reached a turnover of 13 billion U.S dollars. This demonstrates the wide use and

applicability of catalysts in industry. Hence, gaining a better understanding of

heterogeneous catalysts and how they work could be incredibly valuable.

Herrman [30] gives a brief summary of the overall process of heteregeneous
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Chapter 1 2

photocatalysis. This involves transport of reactants in the fluid phase to the pho-

tocatalyst surface followed by adsorption of at least one of the reactants onto

the surface. Once adsorbed, the reactant will be converted into products. These

products will then be desorbed from the surface and removed from the interface

region. The difference between heterogeneous photocatalysis and traditional het-

eregeneous catalysis is the mode of activation of the catalyst. In the photocatalysis

case photonic activation replaces thermal activation, which occurs in traditional

catalysis [30].

1.2 Basic principles of semiconductor photochem-

istry

The energy levels of a semiconductor correspond to a large number of discrete

quantum states of electrons. Close to the atomic nucleus, energy levels are filled

with electrons and are referred to as the valence band (VB). Higher energy levels of

a semiconductor will be mostly empty and are referred to as the conduction band

(CB). The difference in energy between these two bands is called the bandgap

energy (EBG). Figure 1.1 illustrates the basic electron energy features of a semi-

conducting material [54].

The absorption of a photon of ultra-bandgap light, i.e. hv ≥ EBG, will cause

an electron to be promoted from the valence band to the conduction band, where

h represents Planck’s constant and v represents the frequency of light. Excited

electrons leave behind electron holes, i.e. unoccupied states in the valence band.

This process is illustrated in the insert diagram of Figure 1.1. Although the holes

themselves do not physically move, neighbouring electrons can move and will fill

existing holes leaving new holes behind. This gives the impression that the holes

are moving and positively charged.

What happens to the electron-hole pair, (e−, h+), will determine the photoac-
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Figure 1.1: Illustration of the major processes that occur on a semiconductor particle upon absorption of a
photon of ultra-bandgap light (diagram copied from [54]).

tivity of the semiconductor. If the electron-hole pairs merely recombine, they will

generate heat (processes (a) and (b) in Figure 1.1), and the semiconductor will

show no photoactivity. On the other hand, if the electron and hole can make their

separate ways to the surface of the semiconducting material, it is possible that an

interaction with a surface species could occur. For example, if an electron donor,

D, is present at the surface, then the photo-generated hole can react with D to

generate an oxidised product, D+ (process (d) in Figure 1.1). Also, if there is

an acceptor, A, present at the surface, the electron promoted from the valence

band to the conduction band can react with A to produce a reduced product, A−

(process (c) in Figure 1.1). The overall reaction can be summarised as follows:

A + D
semiconductor−−−−−−−−→

hv≥EBG

A− + D+.

Electron-hole recombinations usually dominate the photocatalytic process. In

designing efficient photocatalytic systems, one aim is often to improve the reaction

efficiency by the introduction of sacrificial electron donors to prevent electron-hole

recombinations.
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The semiconductor photocatalyst most commonly used is titania, TiO2, as it

is chemically and biologically inert, photocatalytically active, easy to produce and

use, activated by sunlight and inexpensive. Titania does have one substantial

limitation in that it does not absorb visible light; however, it does absorb UV

light. For anatase titania EBG = 3.2 eV [53]. Hence, if EBG ≤ hv, after converting

frequency v into wavelength λ, we must have that λ < 388 nm. Since visible

light corresponds to a wavelength range of 400 to 700 nm, UV light is required to

ensure that EBG is large enough to allow sufficient electrons to be promoted to the

valance band. For both research and commercial applications, TiO2 is the preferred

semiconducting material to use in the field of semiconductor photochemistry [54].

1.3 Applications of semiconductor photocatalysts

One reason for the commercial interest in semiconductor photocatalysis is how

effective it can be in the complete mineralisation of hundreds of organic materi-

als. Semiconductor photocatalysis has been used for various different commercial

systems. Mills and Lee [54] give examples of numerous companies involved in the

development of semiconductor photocatalyst systems which can be used in the

purification of water, the purification of air, sterilisation/disinfection and many

other commercial applications.

Pilkington Glass are the producers of the world’s first self-cleaning glass, ActivTM,

which is available in numerous countries throughout the world [5]. Several other

companies have developed, or are developing, similar products [54], and a consid-

erable amount of research has been performed in this area [11, 27, 70, 72].

Figure 1.2 shows the main steps involved in self-cleaning glass. A thin nano-

coating is applied to a piece of glass, as shown in Figure 1.2 (a). The coating

consists of a thin film of TiO2 and is usually 15-20 nm thick [58]. When UV light

reaches the glass, the TiO2 is activated. This causes surface reactions to take place

which help break down organic dirt on the glass, as shown in Figure 1.2 (b). This
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Dirt Coating Glass UV light Rain Water
sheets

(a) (b) (c)

Figure 1.2: Illustration of the processes of self-cleaning glass [5].

effectively loosens any dirt which is on the glass. Rain water is then able to wash

away dirt particles on the surface. Due to the hydrophilic nature of the coating,

water droplets will spread across the surface forming sheets, as demonstrated in

Figure 1.2 (c). This prevents streaks from forming after the water has left the

surface [5].

There are many areas where the presence of a particular gas is undesirable and

the detection of this gas is important. One example is oxygen in food packaging.

By minimising the amount of oxygen in food packaging, the shelf-life of many foods

is greatly increased. Therefore, it is useful to know if a particular package of food

has been contaminated with an excessive amount of oxygen. Lee et al. [40] have

devised a semiconductor film which, under UV illumination, will change colour

irreversibly under an atmosphere of nitrogen, air and oxygen. Several other groups

have considered the use of oxygen indicators in food packaging [38, 48, 51, 89].

Semiconductor photocatalysis technology has been used to create self-cleaning

and antibacteric ceramic tiles [28, 43, 85, 86]. One key difference in these products,

in comparison to self-cleaning glass, is the lack of UV light available to activate

the photocatalyst. One solution to this issue is to create a coating which contains

both TiO2 and silver (Ag). Several authors have found that Ag-doped titania

coatings were significantly more photocatalytically active than titania coatings in

the absence of UV light [18, 64, 69]. These kinds of products could be particularly
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useful in hospitals and other care facilities.

Catalytic clothing is a recent project which is investigating how clothing coated

with semiconductor photocatalysts can be used to help break down air-borne pol-

lutants [6]. Research into how semiconductor photocatalysis can be used in self-

cleaning cotton has also been undertaken by several groups [73, 90, 93].

1.4 Need for models of semiconductor photocatal-

ysis

Performing physical experiments can prove to be expensive and time consuming.

Mathematical models can be used to try and further understand the key limiting

steps of the overall reaction mechanism involved in semiconductor photocatalysis.

This information can then be used to optimise the systems under consideration.

The interaction between the transport of reactant in the bulk region, coupled to

the surface bound reactions, create challenges when modelling semiconductor pho-

tocatalysis. Furthermore, for some applications of semiconductor photocatalysis,

the domain of the chemical system may be time dependent. This presents addi-

tional challenges when attempting to model these systems and solve the associated

equations.

In this thesis, we will focus on systems where the transport of reactant in the

bulk is via diffusion. Coupled with the diffusive transport of reactant, we consider

situations where the photocatalysed reactions take place in the bulk or on surfaces.

Hence, modelling these systems will result in having reaction-diffusion systems to

solve.

Chapwanya et al. [14] consider non-standard finite difference methods for solv-

ing Michaelis-Menten type reaction-diffusion equations. Hisaka and Sugiyama

[31] also consider reaction-diffusion equations with Michaelis-Menten type reac-

tion terms. An explicit finite difference method was presented where the time step
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used was automatically adjusted to ensure a sufficiently accurate solution was be-

ing calculated. Singh et al. [79] consider similar systems to Hisaka and Sugiyama

[31] and propose both finite difference and finite element methods.

Several groups have considered the solution of coupled bulk-surface reaction-

diffusion equations in two and three dimensions. Madzvamuse et al. [45] formulate

models for systems of bulk reaction-diffusion equations coupled to surface reaction-

diffusion equations via linear Robin-type boundary conditions. The bulk-surface

finite element method introduced by Elliot and Ranner [23] is used to numerically

solve the coupled system of equations. Rätz and Röger [74] consider a problem

where a system of reaction-diffusion equations on a boundary is coupled to a

diffusion equation in the bulk via a Robin-type boundary condition. A diffuse-

interface method is used to numerically solve the arising equations. A description

of this method can be found in [41]. In chapter 2 we will introduce a diffusion

equation with non-linear boundary conditions which arises when the quasi-steady

state assumption (QSSA) is invoked. Douglas and Dupont [21] consider Galerkin

methods for solving these kind of systems.

Skakauskas and Katauskis [80, 81, 82] have studied two dimensional mathemat-

ical models of the kinetics of unimolecular heterogeneous reactions. Alternating

direction implicit finite difference methods were used to solve these systems [76].

Ambrazevicius [9] considers the solvability of the coupled systems of equations

considered by Skakauskas and Katauskis. Vijayendran et al. [88] consider sim-

ilar systems to Skakauskas and Katauskis. The systems are explicitly solved by

the method of lines, where the time derivatives were integrated using a fifth-order

Runge-Kutta-Fehlberg algorithm and spatial derivatives were approximated using

second-order finite difference methods.
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1.5 Modelling the reaction mechanism

In this section we consider reaction mechanisms which arise from semiconductor

photocatalysis. Within this section we will ignore limiting effects such as bulk

diffusion. However, this limitation is relaxed in the rest of the thesis where diffusion

as a bulk transport mechanism will be considered in conjunction with the surface

reaction mechanisms discussed in this section.

1.5.1 Langmuir-Hinshelwood slow-step model

Ollis [68] gives a comprehensive list of studies which have made use of the Langmuir-

Hinshelwood kinetics model within the heterogeneous photochemistry field. The

Langmuir-Hinshelwood (LH) rate form has frequently been used to describe liquid-

phase kinetics for suspended or immobilized solid photocatalysts. If a reactant U

is being adsorbed onto a surface, it is assumed that it is being adsorbed to a free

site S at a rate k1 to form the complex W . After W is formed, it can be desorbed

at a rate k−1 or can form a product, P , at the reaction rate k2. Hence, the overall

reaction involves at least three steps:

U + S
k1−→←−
k−1

W
k2−→P + S. (1.1)

Let u, w and p represent the concentrations of U , W and P , respectively, and

let stot represent the concentration of the total number of adsorption sites at the

photocatalyst surface. Assuming the law of mass action kinetics, we have that

dw(t)

dt
= k1u(t)stot − (k1u(t) + k−1 + k2)w(t).

The rate of reaction −r is given by

−r = k2w(t).
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Ollis gives a brief description of the simplest form of the Langmuir-Hinshelwood

approach, which is referred to as the slow-step model. The LH rate form involves

assuming one relatively rapid reaction achieving adsorption equilibrium, followed

by a single, slow surface reaction step which is rate determining [68]. This involves

making the assumption that w(t) remains constant throughout the reaction, i.e.

dw
dt

= 0, after an initial rapid reaction, which gives

w(t) =
Kstotu

Ku+ k−1+k2
k−1

, (1.2)

where K = k1
k−1

. Note that this assumption is often referred to as the quasi-steady

state assumption (QSSA). Additionally, it is assumed that k2 is small relative to

k−1. This results in the approximation

−r = k2Ka,appstotu

Ka,appu+ 1
, (1.3)

where Ka,app = K in this particular case. From this approximation, if Ku ≫ 1,

we have that −r ≈ k2stot, i.e. the reaction rate is approximately zeroth-order.

Similarly, if Ku ≪ 1, we have that −r = k2Kstotu, i.e. the reaction rate is

first-order.

In their review of the applications of semiconductor photocatalysis, Hoffmann

et al. [32] considered nine studies of photocatalytic systems utilising titania for

phenol and 4-clorophenol degradation. For each of the studies, the parameters

k2 and K were estimated and, by plotting 1
K

against k2, it was shown that k2

and K have positive correlations. The slow-step model does not incorporate this

correlation. Also, several studies [25, 47, 92] have found that the rate constants,

k2 and K, are both light intensity dependent. Again, the slow-step model does not

include this dependency. Ollis points out that experimental results have suggested

that the dark adsorption equilibrium constant, K in (1.2), is not equal to the

apparent adsorption constant, Ka,app in (1.3). This is at variance with the slow-
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step model, as (1.3) follows directly from (1.2).

1.5.2 Pseudo-steady state assumption

As an alternative to the slow-step model, Ollis [68] proposes a PSSA (pseudo-

steady state approach) model. This involves assuming that pseudo-steady state

analysis can be applied to reaction intermediates involved in the photocatalytic

reaction process. A significant difference between the PSSA model and the slow-

step model is that the PSSA approach does not necessarily assume that k2 is small

relative to k1u and k−1. Additionally, Ollis assumes that the surface reaction rate

k2 is light intensity dependent. As mentioned earlier, when a semiconductor is illu-

minated with sufficient energetic photons, electron-hole pairs are produced. These

pairs migrate to the surface and may react with an absorbed reactant directly or

produce active oxygen species. We therefore expect the concentration of active

oxygen species to be dependent on photon flow. These hydroxyl radicals will in-

teract with reactants in the system. Hence, we have k2 = k′2(OH), where (OH)

represents the concentration of surface hydroxyl radicals and k′2 is a reaction rate

constant. The intensity dependence arises because the photon adsorption rate is

the ultimate driver for the formation of hydroxyl radicals. In [68] it is assumed

that k′2(OH) = αIn, where α and n are constants and I is the intensity of light

illuminating the reactant. There are two circumstances which commonly arise;

low intensity where k2 varies with I
1.0, and high intensity where k2 varies with I

0.5

[68].

By invoking the QSSA, i.e. dw
dt

= 0, the equivalent of (1.2) for the PSSA model

is

w(t) =
Kstotu

Ku+ k−1+αIn

k−1

,

which in turn gives

−r = αInKa,appustot
Ka,appu+ 1

, (1.4)
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where Ka,app = k1
k−1+αIn

. Note that both k2 and Ka,app depend on intensity and

that k2 and Kd,app (where Kd,app = 1
Ka,app

) depend on the intensity raised to the

power n. The slow-step model predicted that the rate equation would only depend

on intensity through k2.

1.5.3 Evidence supporting a PSSA approach

Ollis [68] cites several papers which support the PSSA approach. Emeline et al.

[25] recently reported on the photocatalyzed oxidation of phenol in water and

found that both k2 and Kd,app varied with I1.0. Xu and Langford [92] studied the

photocatalytic rate of disappearance of a reactant, acetophenone, and found that

estimates obtained for k2 show that it could plausibly fit either a first or half order

dependence on intensity. From the data it is possible that k2 and Kd,app have the

same dependency on I as predicted. Another study was carried out by Martyanov

and Savinov [47] who explored oxidation of methyl viologen (MV) in TiO2 slurries.

The curves for MV oxidation rate versus MV concentration fit the LH form and

the experimental results are consistent with the hypothesis that Kd,app should vary

as intensity to a power (either 0.5 or 1.0 depending on the regime). Mills et al.

[59] attempted to further validate the steady-state model by reanalysing previous

results from a study of the photo-assisted mineralization of 4-clorophenol (4-CP)

by titania films and dispersions as a function of incident light intensity [56]. It was

found that the kinetics of 4-CP removal appear to depend on Iβ (where β = 0.6 or 1

when the TiO2 is in dispersed or film form). It was shown that the PSSA model is a

fairly good fit for the experimental data. The same year, Mills et al. [60] made use

of the PSSA model proposed by Ollis [68] to explain the kinetics of organic removal

by semiconductor photocatalysis in aqueous solution. In this study, Mills et al.

[60] use the model to explain the kinetics of concominant reduction by oxygen.

The study found that this model provides a simple explanation for the observed

kinetics associated with the oxidation of the organic and the reduction of oxygen.

Brosilion et al. [13] have reported that photocatalytic degradation of metolachlor
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in water and butyric acid in air displayed the same intensity dependence predicted

by Ollis. This claims to be the first study where this result was observed in gas

phase (as opposed to liquid phase).

Ollis [68], as well as several other groups, find several flaws with the widely used

slow-step model. The model proposed by Ollis [68] can be used to fit several sets

of experimental data fairly well. A fundamental step in the PSSA model proposed

by Ollis is assuming that the surface coverage θ is constant. This assumption

allows Ollis to find an analytical expression for θ, and subsequently, an analytical

expression for the initial reaction rate. An additional assumption is that the

transport of reactant, i.e. diffusion, does not play a role in determining the overall

reaction rate.

We will make use of the PSSA model proposed by Ollis to model reactions

taking place at the photocatalyst surface. However, we will not make the assump-

tion that the surface coverage θ is constant. Additionally, we will consider the

transport of reactant throughout the domain via linear diffusion. By adding these

two complexities to the model proposed by Ollis, we have a significantly more

challenging system to model.

1.5.4 Quasi-steady state assumption

As discussed in the previous section, it is common practice to assume that the

concentration of intermediates (in this case w(t)) is constant throughout the ma-

jority of a reaction. This is commonly known as the quasi-steady state assumption

(QSSA).

Any experimental measurements which are explained using the QSSA are per-

formed after an initial, relatively short pre-steady state period before the reactant

concentration decays appreciably. After this initial period of time, if the rate of

production of products is constant, then the concentration of intermediates must

be constant (in our case the intermediate is W ). Applying the QSSA to our pro-
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posed reaction scheme leads to the assumption that

dw(t)

dt
= 0.

This assumption is made in the slow-step model and the PSSA model discussed

previously. Considerable research has been done to determine the applicability of

the QSSA [36, 77, 78] and in particular a considerable amount of research has been

carried out for systems where there is a continuous supply of reactant [12, 26].

1.5.5 Alternative surface reaction mechanisms

Ollis [68] briefly explains that other mechanisms are available and specifically

references the Eley-Rideal (ER) mechanism considered by Emeline et al. [25].

An ER mechanism involves a bimolecular reaction, whereas the model proposed

by Ollis [68] involves a unimolecular reaction. However, a Langmuir-Hinshelwood

(LH) mechanism can also be used to describe bimolecular reactions, and in fact,

traditionally, the term LH mechanism is used to describe the bimolecular case, as

opposed to the unimolecular case which we have considered in this introduction

[66]. The main difference between a LH mechanism and an ER mechanism is that a

LH mechanism involves two adsorbed molecules reacting together, whereas an ER

mechanism involves one adsorbed species reacting directly with another reactant

which has not been adsorbed [17]. Several groups have used ER mechanisms when

modelling semiconductor photocatalysis [13, 24], including an often cited paper by

Turchi and Ollis [87].

Monllor-Satoca et al. [63] propose a “Direct-Indirect” model. Their model

is based on the degree of electronic interaction of the semiconductor surface with

dissolved reactant molecules. This approach is fundamentally different to all mech-

anisms we have considered. One major difference is that Monllor-Satoca et al. do

not believe that OH radicals, photo generated from OH− groups adsorbed on ter-

minal Ti atoms, behave as active species in interfacial oxidational reactions. This
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is due to their opinion that adsorbed OH− groups cannot be photo-oxidized with

valence band holes.

Throughout this thesis we will assume a reaction mechanism based on the

PSSA model. However, when modelling surface reactions (and bulk reactions

later in the thesis), we will not necessarily invoke the QSSA. This adds a level of

complexity to the model and will allow us to determine whether or not the QSSA is

an appropriate assumption to make for any given parameter regime of a particular

system. Additionally, we will consider the transport of reactant throughout the

domain and couple this with reactions taking place at the boundary (or throughout

the domain).

1.6 Outline of thesis

We have presented a basic introduction to semiconductor photocatalysis and its

applications. We then explored the literature outlining how these kinds of reactions

can be modelled. One commonly used modelling technique involves assuming that

a steady-state of intermediates exists (QSSA). We will investigate the validity

of this assumption throughout this thesis. Finally, we looked at the numerical

methods which can be used to solve the mathematical models which we will present

in this thesis. We now turn our attention to the work presented in this thesis.

Chapter 2 discusses current and possible future methods of testing the photo-

catalytic activity of self-cleaning glass. After presenting a general model, we go on

to apply this model to a resazurin-based ink. We present a numerical method which

allows us to efficiently and accurately solve the model equations, where we have a

reactant diffusing throughout a domain and reacting exclusively at the boundary.

Note that all numerical methods discussed in this thesis were implemented using

Matlab. Additionally, Matlab was used to present all simulation results. We use

experimental data to verify the model presented. In particular, we focus on the

dependency of the reaction rate on the film thickness, where numerical predictions
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agree well with experimental data. An abbreviated explanation of the dependence

of the kinetics on the film thickness, based on the numerical experiments in this

chapter, appears in [62].

In Chapter 3 we consider several systems where catalysed reactions take place

throughout the bulk domain. After considering a couple of previously published

models ([46] and [67]), we consider a system where gas diffuses into a domain and

reacts with a reactant distributed uniformly throughout the domain. We use a

similar numerical technique to that presented in Chapter 2. As in Chapter 2, we

use our model to investigate the effect that film thickness has on the reaction rate.

For two of the models considered, we are able to explain interesting results which

are observed when the film thickness is varied.

Chapter 4 discusses three simplified models presented by Ollis [67] for the

photocatalysed removal of carbonaceous and sulfur films on self-cleaning surfaces.

We present more general models in each case and demonstrate that we can replicate

the results found by Ollis using these more general models. Our proposed models

involve solving a diffusion equation over an expanding or contracting domain,

where novel numerical techniques are used to solve these models.

In Chapter 5 we consider a two-dimensional version of one of the general models

presented in Chapter 4. We present a computational framework for the solution

of coupled bulk-surface reaction-diffusion equations in two dimensions based on

a conservative finite element Arbitrary Lagrangian-Eulerian (ALE) scheme to ap-

proximate the solution of the PDEs. A description of the numerical method and

its application to a model bulk-surface problem on a stationary domain appears in

the publication [42]. In this publication, the numerical method is utilised by one

of the co-authors to model biological cell migration.

In Chapter 6 we consider what future work could be undertaken to further

explore the topics considered in this thesis.

Finally, in Appendix A we consider the problem of converting adsorbance spec-

trum data into a colour. We then apply the technique to experimental data we
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considered in Chapter 2. The colours predicted compare well to published pho-

tographs of the colours observed during experiments.



Chapter 2

Testing photocatalytic activity of

self-cleaning glass

It is important to have a quick and easy way to determine whether or not a piece

of glass is self-cleaning. This would not only be useful to ensure that the glass is

still displaying photocatalytic activity, but is vital to ensure that any glass sold as

self-cleaning genuinely is.

Mills and McFarlane [55] describe several methods which are currently used

to test the activity of semiconductor photocatalysts. The stearic acid (SA) test

works by applying a thin layer of SA to a photocatalytic film and monitoring

the disappearance of SA to determine the activity of the film. This method is

currently very popular for a number of reasons. Firstly, the SA being applied to

films provides a reasonable model for the types of compounds likely to deposit on

self-cleaning surfaces. Secondly, SA is stable under UVA illumination when not

applied to a photocatalytic surface. This will ensure that any disappearance of

SA can be attributed to the photocatalytic activity of the film it is applied to.

Thirdly, the kinetics of the disappearance of SA are straightforward and do not

depend on the thickness of the photocatalytic film being tested. This removes

one factor when interpreting experimental results. Finally, there are numerous

different ways to monitor the progress of the reaction, although the most common

17
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method used is infra-red absorbance spectroscopy.

One fundamental problem with the SA test is the difficulty making measure-

ments in the field. Due to the need for trained technicians and expensive equip-

ment, this test is not particularly easy to perform. Additionally, it can take hours

for a SA film to completely disappear when applied to self-cleaning glass due to

the very thin nature of photocatalytic films used in self-cleaning glass.

Mills et al. [57] have devised an ink, containing resazurin (Rz), which when

applied to a photocatalytic film (for example self-cleaning glass) changes colour

from blue to pink rapidly and irreversibly within minutes. After the ink has

changed colour it will be completely bleached, however this bleaching takes place

over a larger time scale than the initial colour change. There are several ways of

applying the Rz based ink to a surface, for example, the ink could be included in a

felt-tip pen [58]. The ability to test the photocatalytic activity of a surface quickly

and easily without the need for any expensive equipment or personnel makes this

test attractive compared to the SA test and other alternatives [50].

2.1 General mathematical model

We consider a general situation where we have a reactant U which forms a layer

over a semiconductor photocatalyst surface. At the surface, if illuminated with

sufficient photons of light, the photocatalyst will interact with the reactant caus-

ing the concentration to decrease. Figure 2.1 shows the initial setup, where the

photocatalyst can be illuminated from the front or back.

We let the reactant layer be of thickness L and assume that the concentration

of reactant U is given by u(x, t), where x represents position and t represents time.

At x = L assume that no reactant can pass through the boundary and at x = 0

(i.e. the surface of the photocatalyst) the concentration of reactant depends on the

surface reaction kinetics. Within the reactant layer molecules are free to diffuse

throughout the domain. We will assume that molecules of U are transported
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Figure 2.1: Diagram of the initial set-up.

through the reactant layer via the linear diffusion equation

∂u

∂t
= D

∂2u

∂x2
, (2.1)

where D is the diffusion coefficient of the reactant.

2.1.1 Surface reaction mechanism

We begin with the same three reaction steps shown in (1.1) of Section 1.5.1. At the

surface of the photocatalyst, molecules of U are adsorbed to unoccupied adsorption

sites at a rate k1 to form the complex W . Once W is formed, molecules of U can

be desorbed at a rate k−1 or can go on to form a product P at the reaction rate

k2.

Let stot represent the concentration of the total number of adsorption sites

at the catalyst surface and let w(t) represent the concentration of bound reac-

tant molecules at a time t. Hence, assuming the law of mass action kinetics, the

following differential equation describes the kinetics of u(0, t) and w(t);

dw(t)

dt
= k1u(0, t)stot − (k1u(0, t) + k−1 + k2)w(t). (2.2)
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Similarly, we have
dp(t)

dt
= k2w(t), (2.3)

where p(t) represents the concentration of product being formed at the photocat-

alyst surface.

Recall, from Section 1.5.2, that Ollis [68] assumes that the surface reaction is

dependent on light intensity reaching the surface. Hence, we assume that k2 =

k′2I
β, where k′2 is a reaction rate constant, I is the intensity of light reaching the

surface, and β represents an exponent which is thought to vary between 0 and 1

[50] (or 0 and 0.5 [68]).

If the film is irradiated from behind, we will assume that the intensity of light

reaching the photocatalyst surface is constant throughout the reaction. Alter-

natively, if the photocatalyst is illuminated from the front, the intensity of light

reaching the photocatalyst will increase as the concentration of reactant decreases.

This model of the surface reaction mechanism is very similar to the model

presented in Section 1.5.2, however there is a substantial difference. In this case we

do not assume that the concentration of the intermediate species w(t) is constant.

We will go on to investigate the applicability of this assumption throughout this

chapter.

2.1.2 Nondimensionalisation

We nondimensionalise (2.1), (2.2) and (2.3) using the following scalings:

t̂ =
t

T
, û =

u

u0
, x̂ =

x

L
, (2.4)

where u0 represents the initial concentration of reactant which we assume is evenly

distributed throughout the layer, and we let the characteristic time be T = L2

D
.
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Additionally, we have

k̂1 = k1u0
L2

D
, k̂−1 = k−1

L2

D
, k̂2 = k2

L2

D
, (2.5)

ŵ =
w

Lu0
, ŝtot =

stot
Lu0

, p̂ =
p

Lu0
. (2.6)

The nondimensional version of (2.1) therefore takes the form

∂u

∂t
=
∂2u

∂x2
, 0 < x < 1, (2.7)

where the hat notation has been dropped for convenience. Similarly we can nondi-

mensionalise (2.2) and (2.3) where, once the hat notation has been dropped, the

nondimensional version is identical to the dimensional version. From this point

forward, unless stated otherwise, all equations and parameters are nondimensional.

2.1.3 Boundary conditions

At x = 1 we have zero flux which simply means that no reactant can pass through

the boundary. Hence, by Fick’s first law, we have ∂u
∂x
(1, t) = 0. At x = 0 we

assume we have reaction kinetics as described in Section 2.1.1.

Given the global conservation of reactant molecules and a reactant layer of

cross sectional area dA we have

Molecules bound to the surface
︷ ︸︸ ︷

dA w(t) +

Molecules in the bulk
︷ ︸︸ ︷

dA

∫ 1

0

u(x, t) dx+

Molecules transformed into products
︷ ︸︸ ︷

dA k2

∫ t

0

w(a) da

= dA

∫ 1

0

u(x, 0) dx.

︸ ︷︷ ︸

Total initial molecules

(2.8)
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Differentiating (2.8) with respect to t we find that

dw(t)

dt
+

∫ 1

0

∂u(x, t)

∂t
dx+ k2w(t) = 0,

where we assume that w(0) = 0 (i.e. initially there are no molecules bound to the

surface). Making use of (2.7) and the zero flux boundary condition at x = 1 gives

an expression for the rate of change of u at the boundary given by

∂u

∂x

∣
∣
∣
∣
x=0

=
dw(t)

dt
+ k2w(t). (2.9)

Substituting for dw(t)
dt

from (2.2), our boundary condition for u at x = 0 is given

by
∂u

∂x

∣
∣
∣
∣
x=0

= k1u(0, t)stot − (k1u(0, t) + k−1)w(t). (2.10)

2.1.4 Initial conditions

We assume that initially u(x, 0) = 1 and w(0) = 0, i.e. the instant after the reac-

tant is applied to the photocatalyst all reactant is evenly distributed throughout

the domain and there is no reactant bound to the photocatalyst surface. Prior to

the system being illuminated by UVA light, molecules are free to diffuse across the

domain and free to adsorb onto and desorb from the photocatalyst surface until

the system is in equilibrium. Before the system is illuminated we have k2 = 0,

since k2 is intensity dependent. If the surface concentrations are in equilibrium,

we must have ∂w
∂t
(t) = 0 for all t > T0, where T0 is the time it takes the system to

reach equilibrium, and will depend upon the adsorption/desorption rates as well

as the rate of diffusion and the thickness of the film. Note that when the system is

in equilibrium we have ∂u(x,t)
∂x

= ∂u(x,t)
∂t

= 0. We define uq and wq as the equilibrium

concentrations of u(x, t) and w(t) when t > T0 and k2 = 0. Assuming the system
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is in equilibrium, solving (2.2) for wq gives

wq =
k1uqstot

k1uq + k−1

. (2.11)

Assuming a global conservation of reactant, substituting k2 = 0 into (2.8) and

simplifying gives

wq + uq = 1. (2.12)

By substituting wq from (2.11) into (2.12) we find that uq is a solution of the

quadratic equation

Kuq
2 + (Kstot + 1−K)uq − 1 = 0, (2.13)

where K = k1
k−1

. It can be shown that (2.13) has only one positive solution, namely

uq =
−(Kstot + 1−K) +

√

(Kstot + 1−K)2 + 4K

2K
.

Substituting uq into (2.11) will give wq.
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Figure 2.2: Initial equilibriated value of the surface bound reactant wq as a function
of the association constant K for several choices of the concentration of adsorption
sites stot.

Figure 2.2 shows, for four different values of stot, how wq varies with K. For all
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stot values considered, as K is increased, wq tends to stot. This is hardly surprising,

by increasing K the rate at which molecules can be adsorbed to the surface will be

far higher than the rate at which they are desorbed, hence, if K is large enough,

approximately all available sites will be occupied.

From this point forward we will let t = 0 refer to a time when the film is first

illuminated and the system is initially in equilibrium. The full system therefore

evolves according to the equations







∂u

∂t
=
∂2u

∂x2
, 0 < x < 1,

∂u

∂x
(0, t) = k1u(0, t)stot − (k1u(0, t) + k−1)w(t),

∂u

∂x
(1, t) = 0,

u(x, 0) = uq, 0 ≤ x ≤ 1,

(2.14)







dw

dt
= k1u(0, t)stot − (k1u(0, t) + k−1 + k2)w(t),

w(0) = wq,

(2.15)







dp

dt
= k2w(t),

p(0) = 0.

(2.16)

2.1.5 Quasi-steady state assumption

As discussed in Chapter 1, it is common practice to assume that the concentra-

tion of intermediates (in this case w(t)) is constant throughout the majority of a

reaction. This is commonly known as the quasi-steady state assumption (QSSA).

Any experimental measurements which are explained using the QSSA are per-
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formed after an initial, relatively short pre-steady state period before the reactant

concentration decays appreciably. After this initial period of time, if the rate of

production of products is constant, then the concentration of intermediates must

be constant (in our case the intermediate is W ). Applying the QSSA to our pro-

posed reaction scheme leads to the assumption that

dw(t)

dt
= 0.

Segel and Slemrod [78] use singular perturbation theory to show that the QSSA

is valid if ǫ is small where

ǫ =
stot

Km + u
, (2.17)

u is the concentration of reactant at the surface and Km = k−1+k2
k1

. Segel and

Slemrod [78] do not consider transport of reactant in their analysis, hence we will

investigate the applicability of (2.17) to the system we are considering.

We will consider two extreme cases. Firstly, if the rate of diffusion is quick

enough to ensure that there is a constant supply of reactant at the photocatalyst

surface (reaction-limited regime), then we effectively have that there is a con-

tinuous supply of reactant ready to react at the surface for the majority of the

reaction. Hence, the equivalent to u in this case will be the total concentration

of reactant in the bulk at t = 0. Due to our choice of nondimensionalisation this

total concentration will be uq. Hence, for our particular system, assuming we are

in a reaction-limited regime, the QSSA is valid if ǫQ is small where

ǫQ =
stot

Km + uq
. (2.18)

On the other hand, if we assume that diffusion is the limiting factor in our

system, we will have that the concentration of reactant at x = 0 is very small

throughout the reaction (after some initial rapid decrease). This means that the

other parameters (stot, Km and the initial concentration of reactant) are largely
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irrelevant in terms of predicting the validity of the QSSA. We would expect that

in a completely diffusion-limited regime, the QSSA is a valid assumption to make.

This is because if u(0, t) remains small throughout the reaction, there will be very

little reactant available to bind to the surface, and any bound molecules will react

quicker than they can be replaced. This implies that w(t) would remain close to

zero throughout the reaction.

Hence, for a completely reaction-limited regime we can use (2.18) to estimate

whether the QSSA holds, and for an entirely diffusion-limited regime we expect

the QSSA to hold. In an intermediate regime it is not immediately clear how we

can approximate whether the QSSA is a valid assumption to make or not.

Assuming that the QSSA is a valid assumption to make, we can solve (2.2) for

the steady-state concentration wQ(t). By substituting dw(t)
dt

= 0 and wQ(t) into

(2.9) we can define a new boundary condition at x = 0. This allows us to simplify

the coupled system of equations (2.14) and (2.15) into the following differential

equation






∂u

∂t
=
∂2u

∂x2
, 0 < x < 1,

∂u

∂x
(0, t) =

k1k2u(0, t)stot
k1u(0, t) + k−1 + k2

,

∂u

∂x
(1, t) = 0,

u(x, 0) = uq, 0 ≤ x ≤ 1.

(2.19)

Additionally, by replacing w(t) with wQ(t) in (2.16) we have

dp

dt
=

k1k2u(0, t)stot
k1u(0, t) + k−1 + k2

. (2.20)

2.1.6 Analysis

Adsorbance data can be used to estimate the average concentration of a sample.

To investigate the kinetics of the average concentration we integrate both sides of
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(2.7) from x = 0 to x = 1 and hence

∫ 1

0

∂u

∂t
dx =

(
∂u

∂x

∣
∣
∣
∣
x=1

− ∂u

∂x

∣
∣
∣
∣
x=0

)

.

The average of the concentration of U over the x region from 0 to 1 is

ū(t) =

∫ 1

0

u(x, t) dx.

Hence, making use of the boundary condition at x = 1 we find that

dū

dt
= −∂u

∂x

∣
∣
∣
∣
x=0

, (2.21)

which shows how the boundary condition and the overall rate of reaction are

related. From (2.10) and (2.21) we have that

dū

dt
= −k1u(0, t)stot + (k1u(0, t) + k−1)w(t). (2.22)

This expression gives an indication of how the overall concentration of reactant in

the bulk decreases with respect to the concentration of reactant at the boundary.

It is difficult to immediately draw any conclusions from (2.22) as to how the

concentration may decrease due to the presence of w(t) in this expression. However,

assuming we are in a regime where the QSSA is valid, from (2.19) and (2.21), we

have
dū

dt
= − k1k2u(0, t)stot

k1u(0, t) + k−1 + k2
. (2.23)

This expression can be used to predict how dū
dt

behaves for different parameter

regimes. For example, if we have a k2 value which is significantly larger than

k1u(0, t) and k−1 we would have

dū

dt
≈ −k1u(0, t)stot,
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which is clearly first-order with respect to concentration. Similarly, if we have an

extremely large k1 value we have that the denominator of (2.23) is dominated by

k1u(0, t) (assuming u(0, t) is not extremely small) and

dū

dt
≈ −k2stot,

which is clearly zeroth-order. However, as u(0, t) approaches zero, k−1 and/or k2

could start to dominate the denominator and we would have

dū

dt
≈ −k1k2u(0, t)stot

k−1 + k2
,

which is once again first-order. Hence the kinetics of the overall reaction would

initially be zeroth-order before transitioning to first-order towards the end of the

reaction.

Note that the right hand side of (2.23) can be re-written as

kLHKau(0, t)

1 +Kau(0, t)
,

where Ka =
k1

k−1+k2
and kLH = k2stot, which is of the same form as the right hand

side of (1.4).

2.1.7 Analytical approximations

Analytical solutions of the model equations can be obtained in certain limiting sit-

uations. We first consider the situation that we are in a reaction-limited regime. A

reaction-limited regime could refer to a situation where the adsorption/desorption

rate is very slow, or a regime where the adsorbed species is being converted into

product very slowly. Within this regime we can assume that concentration profiles

of u(x, t) are approximately flat, or equivalently, ∂u(x,t)
∂x

≈ 0. If, in addition, we

assume that the QSSA is valid we can solve (2.23) analytically for ū(t), with the

initial condition ū(0) = uq. Chapwanya et al. [14] illustrate how (2.23) can be
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solved. Using the separation of variables method, we find that

ū(t) +Km ln(ū(t)) = uq +Km ln(uq)− k2stott. (2.24)

Dividing (2.24) by Km, taking exponentials of both sides and again dividing by

Km we have
ū(t)

Km

exp

(
ū(t)

Km

)

=
uq
Km

exp

(
uq
Km

− k2stot
Km

t

)

. (2.25)

We can now solve (2.25) to give

ū(t) = KmW

(
uq
Km

exp

(
uq
Km
− k2stot

Km
t

))

, (2.26)

where W represents the Lambert W function [15]. Hence, when in a reaction-

limited regime, assuming the QSSA is valid, we have an analytic approximation

to the solution of (2.19).

We will now assume that the overall reaction rate is limited by the transport

of reactant to the photocatalyst surface, i.e. diffusion-limited. For systems in this

regime, the rate of reaction at the surface is far quicker than the diffusion process.

Hence, as soon as molecules reach the photocatalyst surface they will react, leaving

behind an empty site. Due to the slow rate of diffusion, these vacant sites will not

be immediately filled and will remain almost entirely empty for the duration of

the reaction.

If we assume that the surface reaction is quick enough to ensure that u(0, t) = 0,

after some initial short period of time, we can analytically solve an approximation

of (2.7) for u(x, t). Hence, our fully coupled system of equations (2.14) and (2.15)
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can be simplified into the following system







∂u

∂t
=
∂2u

∂x2
, 0 < x < 1,

u(0, t) = 0,

∂u

∂x
(1, t) = 0,

u(x, 0) = uq, 0 ≤ x ≤ 1.

(2.27)

Due to the assumption that diffusion is the limiting factor in the overall process

(and due to our choice of nondimensionalisation) we have that the approximate

solution of (2.27) will be independent of all parameters, other than uq. Crank [16]

gives the solution of (2.27) as

u(x, t) =
4uq
π

∞∑

n=1

(−1)n
2n+ 1

exp

(

−(2n + 1)2π2t

)

cos

(

(2n+ 1)πx

)

. (2.28)

Hence, we have shown that for two extreme parameter regimes we can find

an approximation to our solution analytically. This will allow us to compare our

numerical results with analytic solutions for both regimes. However, when the

parameters are such that we are outside of both extreme regimes, an alternative

way of approximating the solution to our system is required.

2.1.8 Numerical method

A finite difference method is used to find a numerical solution to the systems of

equations introduced in this chapter. We divide the spatial domain (0, 1) into

N equal intervals, and the temporal domain (0, T ) into NT equal intervals, with

mesh spacings ∆x and ∆t, respectively. We will find approximations of u at all

grid points, denoted by unj = u(j∆x, n∆t). Additionally, when solving the full

system of equations (2.14) and (2.15) we need to approximate w at each time step,
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denoted by wn.

To solve the nondimensional system of equations given by (2.14) and (2.15)

and the system given by (2.19) a Crank-Nicolson scheme is proposed. A Crank-

Nicolson discretisation of both diffusion equations in (2.14) and (2.19) is given

by

un+1
j − unj
∆t

=
1

2(∆x)2

(

(un+1
j+1 − 2un+1

j + un+1
j−1 ) + (unj+1 − 2unj + unj−1)

)

,

for j = 0, 1, 2, ..., N and n = 0, 1, 2, ..., NT − 1. If we let V = ∆t
2(∆x)2

we have

−V un+1
j+1 + (1 + 2V )un+1

j − V un+1
j−1 = V unj+1 + (1− 2V )unj + V unj−1. (2.29)

At x = 1, i.e. x = xN , we have a zero flux boundary condition. Using a central

difference approximation at x = 1 we discretise in the following way:

unN+1 − unN−1

2∆x
= 0 ∀n, (2.30)

where unN+1 is a ghost node which will not appear explicitly in the numerical

scheme. Hence

unN+1 = unN−1 ∀n. (2.31)

Evaluating (2.29) with j = N , making use of (2.31) gives

(1 + 2V )un+1
N − 2V un+1

N−1 = (1− 2V )unN + 2V unN−1. (2.32)

How we proceed at this point is dependent on what system of equations we aim

to solve.

2.1.8.1 Solving the full system

The diffusion equation in (2.14) is discretised by a Crank-Nicolson method for

nodes j = 0, ..., N with a ghost node approach from Section 2.1.8 being imple-
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mented at both boundaries. Additionally, (2.15) is discretised in time by the

Crank-Nicolson method. Hence, at each time step we need to solve for u (at all

N + 1 nodes) and w (at x = 0). This gives a system of N + 2 nonlinear algebraic

equations to solve at each time step. Note that the system is nonlinear due to

a product of w(t) and u(0, t) appearing in the boundary condition of (2.14). We

refer to this as the full system.

At x = 0 we have the flux boundary condition shown in (2.14) which can be

discretised using a central difference approximation to give

un1 − un−1

2∆x
= k1u

n
0stot − (k1u

n
0 + k−1)w

n ∀n, (2.33)

where un−1 is a ghost node which will not be explicitly present in our numerical

scheme. Rearranging (2.33) gives

un−1 = un1 − 2∆x(k1u
n
0stot − (k1u

n
0 + k−1)w

n). (2.34)

Hence, evaluating (2.29) with j = 0, and making use of (2.34) gives

− 2V un+1
1 + (1 + 2V + 2V∆xk1(stot − wn+1))un+1

0

= 2V un1 + (1− 2V − 2V∆xk1(stot − wn))un0 + 2V∆xk−1(w
n + wn+1). (2.35)

Using (2.29), (2.32) and (2.35) we can solve for un+1 at all grid points assuming

we have an estimate for wn+1.

Our approach involves finding an estimate of wn+1, which is then used to find

an estimate of un+1 at all grid points. We will refer to the initial estimate of wn+1

as w[n+1,1], which we obtain by discretising (2.15) using a forward Euler method

to give
w[n+1,1] − wn

∆t
= k1u

n
0stot − (k1u

n
0 + k−1 + k2)w

n,



Chapter 2 33

which can be rearranged to give

w[n+1,1] = wn +∆t(k1u
n
0stot − (k1u

n
0 + k−1 + k2)w

n). (2.36)

We can now use the approximation w[n+1,1] to solve (2.29), (2.32) and (2.35) for u

at the following time step, which we will refer to as u[n+1,1].

By discretising (2.15) using a Crank-Nicolson method, we can make use of

u[n+1,1] to update our approximation to wn+1. We will refer to this improved

approximation as w[n+1,2]. Hence, we have

w[n+1,2] − wn

∆t
=

1

2

((

k1u
[n+1,1]
0 stot − (k1u

[n+1,1]
0 + k−1 + k2)w

[n+1,2]

)

+

(

k1u
n
0stot − (k1u

n
0 + k−1 + k2)w

n

))

, (2.37)

which can be rearranged to give

w[n+1,2] =

wn +
∆t

2

(

k1u
[n+1,1]
0 stot + k1u

n
0stot − (k1u

n
0 + k−1 + k2)w

n

)

1 +
∆t

2

(

k1u
[n+1,1]
0 + k−1 + k2

)
. (2.38)

At this stage we have obtained approximations for un+1 and wn+1, given by u[n+1,1]

and w[n+1,2], by solving one system of N + 1 linear algebraic equations and two

scalar linear algebraic equations. We can either: set un+1 = u[n+1,1] and wn+1 =

w[n+1,2] and move onto the next time step, repeat the process a predetermined

number of times or, finally, repeat the process as many times as required until

max

{

max
(
|u[n+1,it−1] − u[n+1,it−2]|

)
, |w[n+1,it] − w[n+1,it−1]|

}

< tol, (2.39)

where it represents the number of iterations required for the solution of un+1

and wn+1 to converge within some defined tolerance, tol. Solving to convergence
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involves solving a N +1 system of linear algebraic equations it times, and a single

linear algebraic equation it+ 1 times.

In summary, we can use the following scheme to solve for un+1 and wn+1 until

convergence at each time step; In practice we do not propose solving until conver-

Algorithm 1 Solving the full system until convergence at each time step

1: Approximate w[n+1,1] using a forward Euler method as shown in (2.36);
2: Calculate the approximation u[n+1,1] using a Crank-Nicolson scheme by solving

the system of equations given by (2.29), (2.32) and (2.35) using the approxi-
mation w[n+1,1];

3: Using the approximation u[n+1,1] calculate w[n+1,2] using a Crank-Nicolson
scheme as shown in (2.38);

4: For m =2:it, repeat steps 2 and 3 using the estimates u[n+1,m−1] and w[n+1,m]

to find the improved approximations u[n+1,m] and w[n+1,m+1] using (2.39) to
monitor the difference in each subsequent approximation.

5: Set un+1 = u[n+1,it] and wn+1 = w[n+1,it+1] and proceed to the following time
step.

gence at each time step. We instead propose performing steps 1 to 3 of Algorithm

1 at each time step.

2.1.8.2 Conservation of reactant molecules for the full system

Recall that (2.8) gives an expression which equates the total number of reactant

molecules within our system to the sum of molecules within the bulk, molecules

bound to the surface and molecules which have been converted into product. It

is important that any numerical scheme we propose maintains this global conser-

vation of molecules. We will show that the discrete analogue of (2.8) holds. Note

that throughout this analysis we assume that the iterative process described in

Section 2.1.8.1 is carried out until convergence at each time step.

If we consider the conservation of reactant given by (2.8), cancelling by a factor

dA and letting p(t) represent the concentration of product formed, we have

w(t) +

∫ 1

0

u(x, t) dx+ p(t) =

∫ 1

0

u(x, 0) dx, ∀t > 0. (2.40)
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For ∆t > 0, we therefore have

w(t+∆t)− w(t) +
∫ 1

0

(u(x, t+∆t)− u(x, t)) dx+ p(t +∆t)− p(t) = 0. (2.41)

If we can establish a discrete equivalent to (2.41) satisfied by our numerical method,

then this will imply that our numerical scheme maintains the continuous result

that the total number of molecules in our system remains constant throughout the

reaction.

If we define the discrete equivalent of ū(tn) =
∫ 1

0
u(x, tn) dx as

ūn ≡ ∆x

2

N−1∑

j=0

(unj+1 + unj ),

then, the discrete analogue of
∫ 1

0
(u(x, tn +∆t)− u(x, tn)) dx is given by

ūn+1 − ūn =
∆x

2

N−1∑

j=0

(

(un+1
j+1 + un+1

j )− (unj+1 + unj )

)

=
∆x

2

N−1∑

j=0

(

(un+1
j+1 − unj+1) + (un+1

j − unj )
)

. (2.42)

From the Crank-Nicolson discretisation (2.29) we have that

un+1
j+1 − unj+1 = V (un+1

j+2 − 2un+1
j+1 + un+1

j + unj+2 − 2unj+1 + unj ), j = −1, ..., N − 1,

and similarly

un+1
j − unj = V (un+1

j+1 − 2un+1
j + un+1

j−1 + unj+1 − 2unj + unj−1), j = 0, ..., N.
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Hence, we have

(un+1
j+1 − unj+1) + (un+1

j − unj )

= V

(

un+1
j+2 − un+1

j+1 − un+1
j + un+1

j−1 + unj+2 − unj+1 − unj + unj−1

)

. (2.43)

Substituting (2.43) into (2.42) we find that almost all terms cancel with each other

and

ūn+1 − ūn =
∆x

2
V

(

(un+1
−1 − un+1

1 ) + (un−1 − un1)

+ (un+1
N+1 − un+1

N−1) + (unN+1 − unN−1)

)

. (2.44)

From (2.30) we have that unN+1 − unN−1 = 0 ∀n, and from (2.34) we have that

un1 − un−1 = 2∆x

(

k1u
n
0stot − (k1u

n
0 + k−1)w

n

)

.

Hence, substituting into (2.44), we have

ūn+1 − ūn = −V (∆x)2
(

k1u
n+1
0 stot − (k1u

n+1
0 + k−1)w

n+1

+ k1u
n
0stot − (k1u

n
0 + k−1)w

n

)

. (2.45)

From (2.37) we have that the discrete analogue of w(tn +∆t)−w(tn) is given by,

wn+1 − wn =
∆t

2

(

k1u
n+1
0 stot − (k1u

n+1
0 + k−1 + k2)w

n+1

+k1u
n
0stot − (k1u

n
0 + k−1 + k2)w

n

)

. (2.46)

Similarly, if we discretise (2.3) using a Crank-Nicolson method we have that the

discrete analogue of p(tn +∆t)− p(tn) is given by

pn+1 − pn =
∆t

2
k2

(

wn+1 + wn

)

. (2.47)
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Using (2.45), (2.46) and (2.47) we therefore have

(wn+1 − wn) + (ūn+1 − ūn) + (pn+1 − pn)

=
∆t

2

(

k1u
n+1
0 stot − (k1u

n+1
0 + k−1)w

n+1 + k1u
n
0stot − (k1u

n
0 + k−1)w

n

)

−V (∆x)2
(

k1u
n+1
0 stot − (k1u

n+1
0 + k−1)w

n+1 + k1u
n
0stot − (k1u

n
0 + k−1)w

n

)

= 0,

since V (∆x)2 = ∆t
2
. Hence, we have shown that the discretisation of the full system

of equations, (2.14), (2.15) and (2.16), maintains the conservation of molecules as

in the continuous case. Note that conservation of molecules will only apply if

Algorithm 1 is used to calculate the surface and bulk concentrations, where the

solutions converge at each time step.

2.1.8.3 Solving the QSSA system

By invoking the QSSA we eliminate the equation for the evolution of the concen-

tration of the complex W on the boundary. Hence, we have a slightly different

system to solve, given by (2.19). We now only have to solve an equation for u in

the bulk with a nonlinear boundary condition. Hence, we have a N + 1 system of

nonlinear algebraic equations to solve at each time step. Although in one respect

we have simplified our equation system, we have an additional complication due

to the existence of a nonlinear boundary condition.

Discretising the left hand boundary condition from (2.19), we have

un1 − un−1

2∆x
=

k1k2u
n
0stot

k1un0 + k−1 + k2
,

which can be rearranged to give

un−1 = un1 − 2∆x

( k1k2u
n
0stot

k1u
n
0 + k−1 + k2

)

.
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Substituting into (2.29) with j = 0 we have

− 2V un+1
1 + (1 + 2V )un+1

0 + 2V∆x

( k1k2u
n+1
0 stot

k1u
n+1
0 + k−1 + k2

)

= 2V un1 + (1− 2V )un0 − 2V∆x

( k1k2u
n
0stot

k1u
n
0 + k−1 + k2

)

. (2.48)

As there is only one nonlinear equation in our entire system, we attempt to

linearise (2.48) using un0 as an estimate for un+1
0 . The only term which we approx-

imate using this method is the un+1
0 term in the denominator of the final term of

the left hand side of (2.48). Hence, we have

− 2V un+1
1 +

(

1 + 2V + 2V∆x

( k1k2stot

k1un0 + k−1 + k2

))

un+1
0

= 2V un1 + (1− 2V )un0 − 2V∆x

( k1k2u
n
0stot

k1u
n
0 + k−1 + k2

)

. (2.49)

We can now solve (2.29), (2.32) and (2.49) for an approximation of un+1, which we

will refer to as u[n+1,1]. Using this improved estimate of un+1
0 we can solve again

for an improved approximation of un+1 at all nodes. Hence, using u
[n+1,1]
0 as an

estimate for un+1
0 in (2.48), we have

− 2V un+1
1 +

(

1 + 2V + 2V∆x

( k1k2stot

k1u
[n+1,1]
0 + k−1 + k2

))

un+1
0

= 2V un1 + (1− 2V )un0 − 2V∆x

( k1k2u
n
0stot

k1un0 + k−1 + k2

)

, (2.50)

and we can solve (2.29), (2.32) and (2.50) for an improved approximation of un+1,

which we will refer to as u[n+1,2]. Similar to our previous approach, we can either

set un+1 = u[n+1,2] and proceed to the following time step, perform a predeter-

mined number of iterations or, finally, we can repeat this process as many times
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as required until

max(|u[n+1,it] − u[n+1,it−1]|) < tol, (2.51)

where it represents the number of iterations required for the solution of un+1 to

converge within a specified tolerance, tol, at each time step.

In summary, we will use the following scheme to solve for un+1 until convergence

at each time step;

Algorithm 2 Solving the QSSA system until convergence at each time step

1: Solve (2.29), (2.32) and (2.49) for u[n+1,1];

2: Using u
[n+1,1]
0 as an approximation to un+1

0 solve (2.29), (2.32) and (2.50) for
an improved approximation to un+1 which we will refer to as u[n+1,2].

3: Form = 3 : it repeat Step 2 as many times as necessary using u
[n+1,m−1]
0 to find

the improved approximation u
[n+1,m]
0 using (2.51) to monitor the difference in

each subsequent approximation.
4: Set un+1 = u[n+1,m] and proceed to the next time step.

As in our approach to solving the full system, we will investigate whether it is

necessary to solve until convergence at each time step to maintain accuracy in our

numerical solutions.

2.1.8.4 Conservation of reactant molecules for the QSSA system

Using a similar technique to that used in Section 2.1.8.2 we can show that conser-

vation of reactant also holds for the QSSA system. When we assume the QSSA,

(2.44) remains valid. Hence, with the adapted boundary conditions (2.19), we

have that the equivalent to (2.45) when the QSSA is invoked is given by

ūn+1 − ūn = −V (∆x)2
(

k1k2u
n+1
0 stot

k1u
n+1
0 + k−1 + k2

+
k1k2u

n
0stot

k1un0 + k−1 + k2

)

.
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By invoking the QSSA we are assuming that w(t) remains constant, hence the

equivalent to (2.46) will simply be

w̄n+1 − w̄n = 0.

In terms of the product, if we discretise (2.20) using a Crank-Nicolson method we

have that the equivalent of (2.47) is given by

p̄n+1 − p̄n = −∆t
2

(
k1k2u

n+1
0 stot

k1u
n+1
0 + k−1 + k2

+
k1k2u

n
0stot

k1u
n
0 + k−1 + k2

)

.

Hence, it is straightforward to show that

(wn+1 − wn) + (ūn+1 − ūn) + (pn+1 − pn) = 0,

as was the case for the full system.

2.1.8.5 Accuracy of the numerical scheme used to solve the full system

We will define the error in the approximation of u at each time step n (1 ≤ n ≤
NT ) as

En
u = max{|unj − u(xj, tn)|, j = 0, 1, ..., N)}, (2.52)

and the error in approximating w at each time step as

En
w = |wn − w(tn)|. (2.53)

For the systems we are solving we do not have an exact solution. To allow us

to determine the convergence rates of our proposed numerical methods we will

calculate a reference solution using a large number of time steps and as many

iterations of the iterative process outlined above as required to ensure that our

solutions are converging at each time step. When we are investigating temporal

accuracy we will keep the number of spatial grid points constant for all numerical
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experiments. Similarly, when we are testing for spatial accuracy we will keep the

number of time steps used constant.

To ensure that our proposed method of solving our system is effective across

a range of different parameters, we will consider four different regimes. Namely,

we will consider a diffusion-limited regime, a surface reaction-limited regime, an

adsorption-limited regime and an intermediate regime. In Section 2.1.9 we present

several plots for each regime demonstrating how the spatial profiles and average

concentrations vary between different regimes.

Ideally, we want to perform as few iterations as possible of our proposed method

at each time step. Hence, we will consider two different methods of solving our

full system, both of which involve solving one (N + 1) system of linear equations

at each time step.

• Method 1 - Perform steps 1 to 3 of Algorithm 1 at each time step, i.e. predict

wn+1, solve for un+1 once before correcting the initial approximation to wn+1.

• Method 2 - Perform steps 1 to 2 of Algorithm 1 at each time step, i.e. predict

wn+1 and solve for un+1.
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Figure 2.3: Temporal convergence results of u and w for a diffusion-limited regime
showing that Method 1 is second-order convergent in time.



Chapter 2 42

ln(NT )
8 10 12 14

ln
(E

N
T

w
)

-20

-18

-16

-14

-12

-10

-8

1

1

1

2

ENT
u Method 1

ENT
u Method 2

ln(NT )
8 10 12 14

ln
(E

N
T

u
)

-14

-12

-10

-8

-6

-4

-2

1

2

1
1

ENT
u Method 1

ENT
u Method 2

Figure 2.4: Temporal convergence results of u and w for a reaction-limited regime
showing that Method 1 is second-order convergent in time.
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Figure 2.5: Temporal convergence results of u and w for an adsorption-limited
regime showing that Method 1 is approximately second-order convergent in time.
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Figure 2.6: Temporal convergence results of u and w for an intermediate regime
showing that Method 1 is second-order convergent in time.

Figure 2.3 shows temporal convergence results when parameters are chosen

such that we are in a diffusion-limited regime. The following parameters were

used; k1 = 500, k−1 = 0.01, k2 = 5000, stot = 0.2, T = 0.2, N = 1600. For our most

accurate solution NT = 1.4 × 106 with tol = 1 × 10−15. To test the accuracy of
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our scheme a range of time steps from NT = 3.2 × 103 to NT = 5.12 × 104 were

used. From both plots of Figure 2.3 we can see that Method 1 converges far more

quickly than Method 2 for u and w. Additionally, the error is considerably smaller

for all NT values considered. With Method 1 we have second-order temporal

convergence, whereas Method 2 only gives first-order convergence.

Figure 2.4 shows the results when we have chosen parameters such that we are

in a reaction-limited regime. The following parameters were used; k1 = 250, k−1 =

1, k2 = 0.01, stot = 0.1, T = 10, N = 400. For our most accurate solution NT =

6.4 × 106 with tol = 1 × 10−15. The number of time steps used varied from

NT = 8 × 102 to NT = 2.56 × 104. The results are very similar to the previous

case.

Figure 2.5 shows the results when we have chosen parameters such that we are

in an adsorption-limited regime; k1 = 5×10−3, k−1 = 10, k2 = 50, stot = 1, T = 10,

N = 400. For our most accurate solution NT = 5.12 × 106 with tol = 1 × 10−15.

To test the accuracy of our scheme the number of time steps used varied from

NT = 800 to NT = 2.05 × 105. The results presented in Figure 2.5 are very

similar to the previous two regimes.

Figure 2.6 show the results when we have chosen parameters such that we are

not in any of the previous regimes considered and are instead in an intermediate

regime. The following parameters were used; k1 = 1, k−1 = 1, k2 = 1, stot = 1, T =

1, N = 400. For our most accurate solution NT = 1.2× 106 with tol = 1× 10−15.

To test the accuracy of our scheme a range of time steps from NT = 1.6× 103 to

NT = 5.12× 104 were used. Figure 2.6 shows that the results are similar to those

presented for the three previous regimes.

By looking at four different parameter regimes we have demonstrated that

Method 1 is consistently far more accurate than Method 2 and is second-order

convergent in time. In reality we would not suggest using Method 2, as it is

only marginally less expensive than Method 1, but gives significantly less accurate

results.
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Figure 2.7: Spatial convergence results of u and w for an intermediate regime
showing that Methods 1 and 2 are second-order convergent in space.

Figure 2.7 shows spatial convergence results when parameters are chosen such

that we are in an intermediate regime. For our most accurate solution N = 1000

with tol = 1 × 10−15. To test the accuracy of our scheme a range of spatial grid

points from N = 10 to N = 80 were used. For all spatial convergence simulations

NT = 9× 106. The results show that, spatially, both Method 1 and 2 are second-

order convergent. The plots show that for this particular set of parameters the

errors are almost identical. This is due to the large number of time steps used.

This means that the benefit of using Method 1 over Method 2 is negated. These

results are consistent across the four different regimes considered above during the

temporal convergence tests.

2.1.8.6 Accuracy of the numerical scheme used to solve the QSSA

system

We will now perform similar convergence tests for all four parameter regimes when

we invoke the QSSA. Our approach of calculating reference solutions and errors is

the same as the approach outlined in the previous section. We will consider two

different methods of solving the QSSA system based on the algorithm presented

earlier.

• Method 1Q - Perform steps 1 and 2 of Algorithm 2 once at each time step

i.e. solve for un+1 twice at each time step.
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• Method 2Q - Perform step of Algorithm 2 once at each time step i.e. solve

for un+1 once each time step.

For each number of time steps chosen, and for each method, we compared u at

the final time step with the reference solution at the final time step, and calculated

the error using (2.52). Throughout our tests we will use similar parameters to those

used when testing our method of solving the full system.
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Figure 2.8: Temporal convergence re-
sults of u for a diffusion-limited regime
when the QSSA is invoked showing that
Method 1Q is second-order convergent
in time.
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Figure 2.9: Temporal convergence re-
sults of u for a reaction-limited regime
when the QSSA is invoked showing
the difference in errors obtained when
Methods 1Q and 2Q are used.
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Figure 2.10: Temporal convergence re-
sults of u for an adsorption-limited
regime when the QSSA is invoked show-
ing a comparison between the errors ob-
tained when Methods 1Q and 2Q are
used.
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sults of u for an intermediate regime
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the difference in errors obtained when
Methods 1Q and 2Q are used.
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Figure 2.8 shows the results when have chosen parameters such that we are in

a diffusion-limited regime. The following parameters were used; k1 = 500, k−1 =

0.01, k2 = 5000, stot = 0.2, T = 0.2, N = 1600. For our most accurate solution

NT = 1.4× 106 with tol = 1× 10−15. To test the accuracy of our scheme a range

of time steps from NT = 5.6 × 103 to NT = 8.96 × 104 were used. Figure 2.8

shows the temporal convergence results for Methods 1Q and 2Q. As was the case

when solving the full system, Method 1Q gives second-order convergence whereas

Method 2Q only gives first-order convergence.

Figure 2.9 shows the results when we have chosen parameters such that we are

in a reaction-limited regime. The following parameters were used; k1 = 250, k−1 =

1, k2 = 0.01, stot = 0.1, T = 10, N = 400. For our most accurate solution NT =

6.4× 106 with tol = 1× 10−15. To test the accuracy of our scheme a range of time

steps from NT = 6.4× 103 to NT = 2.05× 105 were used.

From Figure 2.9 we can see that, as in the previous case Method 1Q gives a more

accurate result than Method 2Q. However, in this case the error obtained from

Method 1Q is not reducing at a constant rate. Instead it decreases rapidly before

slowing down considerably. This could be due to the relatively simple system we

are aiming to solve. Due to the choice of parameters, the spatial profiles of u are

likely to be almost flat and varying very slowly in time. Hence, very few time steps

are required to approximate the solution accurately. This may make it difficult to

demonstrate second-order convergence for Method 1Q with this particular set of

parameters.

Figure 2.10 shows the results when we have chosen parameters such that we

are in an adsorption-limited regime. The following parameters were used; k1 =

5 × 10−3, k−1 = 10, k2 = 50, stot = 1, T = 10, N = 400. For our most accurate

solution NT = 1.4× 106 with tol = 1× 10−15. To test the accuracy of our scheme

a range of time steps from NT = 800 to NT = 2.56 × 104 were used. We can

see that both Method 1Q and Method 2Q give identical results. Like the previous

case, the solution of u will vary very little in space and time. This may make it
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difficult to demonstrate second-order convergence. In this case we see that the

error decreases very quickly before tailing off as NT is increased further. There is

no benefit of using Method 1Q over Method 2Q. This could be because, even with

relatively small NT values, our scheme is able to approximate the solution fairly

accurately.

Figure 2.11 shows the results when we have chosen parameters such that we are

in an intermediate regime. For all simulations the following parameters were used;

k1 = 1, k−1 = 1, k2 = 1, stot = 1, T = 1, N = 400. For our most accurate solution

NT = 1.2 × 106 time steps were used with tol = 1 × 10−15. To test the accuracy

of our scheme a range of time steps from NT = 1.6 × 103 to NT = 5.12 × 104

were used. We see similar results to those presented in Figure 2.8, however in this

instance Method 1Q is not quite second-order (the gradient of the straight line

fitted to the data points is approximately 1.6). However, Method 1Q does perform

considerably better than Method 2Q.
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Figure 2.12: Spatial convergence results of u for an intermediate regime showing
that Methods 1Q and 2Q are second-order convergent in space.

Figure 2.12 shows spatial convergence results when parameters are chosen such

that we are in an intermediate regime. For our most accurate solution N = 1000

with tol = 1 × 10−15. To test the accuracy of our scheme a range of spatial grid

points ranging from N = 10 to N = 80 were used. For all simulations testing

spatial convergence, NT = 9 × 106. The results presented in Figure 2.12 are

the same as those presented when the full system was solved. Spatially both
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Method 1Q and 2Q are second-order. The plots show that for this particular set

of parameters the errors are almost identical. This is due to using such a large

number of time steps, which negates the benefit of using Method 1Q over Method

2Q. These results are replicated across all four regimes considered.

For the four parameter regimes considered we have shown that for two cases

Method 1Q is significantly more accurate than Method 2Q. However, for the

adsorption-limited and reaction-limited cases our results are slightly less convinc-

ing. We found that when we have relatively flat concentration profiles of u, Method

1Q is less convincing. However, in seven of the eight cases we considered (when

testing the full system and the QSSA system) we found that Method 1 and Method

1Q give a considerable improvement over using Method 2 and Method 2Q, however

the improvement is far better when the full system is being solved.

2.1.9 Typical concentration profiles

In this section we present plots showing concentration profiles, and average concen-

trations when we choose parameters such that we are in the four regimes considered

earlier in the chapter.

For each set of parameters we will solve our full system, (2.14), (2.15) and

(2.16), numerically and plot concentration profiles of u(x, t) against x at 10 uniform

times ranging from t = 0 to t = T along with plots of w(t) against t and ū(t)

against t. Additionally, we will present plots for each regime to confirm that our

earlier analysis in Section 2.1.8.2 holds, i.e. that we have conservation of reactant.

Note that at t = 0 molecules absorbed onto the surface and in the bulk are in a

steady-state, as discussed in Section 2.1.4.

With the same sets of parameters, we will solve the QSSA system (2.19) and,

if appropriate, we will compare the analytic approximations found earlier with

results from the other two systems. We will plot ū(t) obtained from both, or all

three if applicable, methods used to solve the system. This will allow us to directly

compare all three methods and will give an indication of whether or not the QSSA
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is valid and whether the assumptions made which allow us to analytically solve

our system within certain regimes are valid.

2.1.9.1 Diffusion-limited regime

To demonstrate a diffusion-limited regime, the following parameters were used;

stot = 0.2, k1 = 500, k−1 = 0.01, k2 = 5000 and T = 2. Due to choosing a very high

adsorption to desorption ratio, i.e. k1/k−1, any available reactant molecules present

at the boundary will quickly bind to the reaction sites. Furthermore, we have

chosen a relatively large value of k2. As the diffusion coefficient is effectively equal

to one due to our nondimensionalisation, we are in a regime where the adsorption

and subsequent reaction taking place at the surface happens far more quickly than

the diffusion process which transports reactant throughout the domain. Choosing

stot = 0.2 in this instance has little impact on the overall kinetics, as due to k2

being large, there will not be a large amount of reactant able to bind to the surface

at any one time. By performing additional simulations with similar parameters,

we were able to confirm that the following results were typical of a diffusion-limited

regime. Additionally, by slightly varying a selection of the parameters used, we

confirmed that our results were not sensitive to slight changes in the parameter

values chosen. To solve the full system, Method 1 was used with N = 100 and

NT = 1 × 104. Similarly, when solving the QSSA system, Method 1Q was used

with N = 100 and NT = 1× 104.

Figure 2.13 shows the results when the full coupled system (2.14) and (2.15) is

solved. From the first plot of Figure 2.13 we can see that, close to x = 0, u(x, t) is

very small. This is due to the reaction taking place at the surface being far quicker

than the rate of diffusion. These types of profiles are typical of a diffusion-limited

parameter regime. Additionally, this plot shows that the equilibrated concentra-

tion of reactant at t = 0 is significantly smaller than 1. This is due to the high k1

to k−1 ratio coupled with the relatively large value of stot (which equals 0.2). The

second plot of Figure 2.13 shows how w(t) varies with time for this particular set of
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parameters. Note that for this plot the y-axis has been converted to a logarithmic

scale. The plot shows that w(t) decreases rapidly and remains very small for the

remainder of the reaction. This is unsurprising, considering that at t = 0 there is

a significant amount of reactant already absorbed onto the surface which is ready

to react. The very large size of k2 means that any reactant bound to the surface

will react very quickly, leaving vacant sites behind. However, due to the relatively

slow nature of the diffusion process, there is little reactant available to bind to the

surface, which is required for the reaction to proceed.

The final plot of Figure 2.13 shows how the average concentration ū(t) varies

with time. It appears that the reduction of ū(t) is first-order with respect to time,

i.e. dū(t)
dt

= Cū(t), where C is some constant. Plotting ln(ū(t)) against t produces

a straight line which confirms that this is the case.
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Figure 2.13: Simulation results obtained by solving the full system in a diffusion-
limited parameter regime.

Figure 2.14 shows a comparison of the average concentration when all three

methods are used to solve our system. The average concentration obtained by

invoking the QSSA is very similar to the plot produced when the full system

is solved. This suggests that the QSSA is a valid assumption to make in this

parameter regime. Note that the ǫQ value calculated from (2.18) is 0.5553, which

is relatively large. Hence, if we were to base our prediction of whether the QSSA

was valid or not entirely on ǫQ, we would assume that the QSSA would not be valid.
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Figure 2.14: A plot showing a comparison between the average concentration
predicted from all three methods.

However, as the results in Figures 2.14 demonstrate, with this set of parameters

the QSSA is a fair assumption to make. As was discussed earlier is Section 2.1.5,

this is due to being in a regime which is diffusion-limited.

The results obtained using the approximate analytic solution (2.28) presented

in Figure 2.14 are also very similar to results obtained from the full system. This

suggests that the analytic solution is accurate for this particular set of parameters.

Note that, although not shown here, the concentration profiles obtained from the

QSSA system and the analytic solution are almost identical to those obtained when

solving the full system.

Figure 2.15 shows that the conservation of reactant holds when our full system

is solved numerically for this particular set of parameters. We can see that there is

a substantial amount of product formed for t close to zero. This corresponds to the

substantial concentration of reactant which is initially bound to the photocatalyst

surface being converted into product.

To test that conservation of reactant holds for the full system we calculate a

discrete equivalent of the left hand side of (2.40) and compare it to a discrete

equivalent of the right hand side of (2.40). The error in the total amount of

reactant in the system is defined as the difference between these values at each
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Figure 2.15: A plot showing that the conservation of reactant holds throughout
the simulation using the fully coupled system.
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Figure 2.16: Convergence results for the error in the total concentration of reactant
Ec showing that Method 1 is second-order convergent.

time step. We define the error in the total concentration of reactant Ec as the

maximum difference between the total concentration calculated at each time step

and the total concentration at t = 0. We found that if the fully convergent method

described in Algorithm 1 is used, conservation holds to machine zero. However,

when Method 1 is used, the error in the conservation is of order (∆t)2. This

is shown in Figure 2.16, where a range of time steps from NT = 1 × 104 to

NT = 8× 104 were used. This was also the case for conservation of reactant when

the QSSA was invoked. Note that convergence results of this kind will be omitted

for the remainder of regimes considered.
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Figure 2.17: A plot showing that the conservation of reactant holds throughout
the simulation when the QSSA system is solved.

Figure 2.17 demonstrates that the conservation of reactant holds when the

QSSA is invoked for this particular case. The total reactant in the bulk is very

similar to the results obtained when solving the full system, however there is

a significant difference in both the total concentration formed and the reactant

bound to the surface. By invoking the QSSA we are assuming that dw
dt

= 0, hence

w(t) must remain constant throughout. This means that we constantly have some

reactant bound to the surface, and hence, the amount of product formed will not

tend to one in this case.

2.1.9.2 Reaction-limited regime

We next consider a reaction-limited regime where the following parameter values

were used; stot = 0.1, k1 = 250, k−1 = 1, k2 = 0.01 and T = 1500. By choosing a

very high adsorption to desorption ratio, we ensure that any available molecules

of reactant will quickly bind to any free surface reaction sites. Additionally, the

small value of k2, relative to the diffusion coefficient, ensures we are in a regime

where the conversion of bound species to products taking place at the surface is

far slower than the transportation of reactant to the surface, and slower than the

adsorption process. Hence, there is a constant supply of bound reactant at the
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surface until the reactant is exhausted. By setting stot = 0.1, we are limiting the

maximum amount of bound species on the surface, which will have an impact

on the overall kinetics of the system. By performing additional simulations with

similar parameters, we were able to confirm that the following results were typical

of a surface reaction-limited regime. Additionally, by slightly varying a selection

of the parameters used, we confirmed that our results were not sensitive to slight

changes in the parameter values. To solve the full system, Method 1 was used with

N = 100 and NT = 1.5× 105. Similarly, when solving the QSSA system, Method

1Q was used with the same values of N and NT .

Figure 2.18 shows the results when the full coupled system (2.14) and (2.15) is

solved. From the first plot we can see that the concentration profiles are approxi-

mately flat. This is because diffusion is quick enough to ensure that any reactant

which binds to the surface is immediately replaced, and, simultaneously, all re-

maining reactant in the bulk is evenly distributed throughout the domain. These

types of profiles are typical of a reaction-limited parameter regime. Additionally,

this plot shows that the equilibrated reactant concentration at t = 0 is approxi-

mately 0.9. This is due to the high k1 to k−1 ratio coupled with the relatively small

value of stot (which equals 0.1). Due to the size of stot the maximum concentration

of w(t) is 0.1.

The second plot of Figure 2.18 shows how w(t) varies with time. Due to the

slow surface reaction coupled with the reactant diffusing relatively quickly, w(t)

initially remains approximately constant. The concentration of bound reactant

starts to decrease when there is insufficient reactant left in the bulk to fill vacant

surface reaction sites.

The final plot of Figure 2.18 shows how the average concentration ū(t) varies

with time. It appears that the reduction of ū(t) is zeroth-order with respect to

time, i.e. dū(t)
dt

= C, where C is some constant. This is evident due to the fact that

the plot of ū(t) is a straight line for the vast majority of the simulation. Towards

the end of the reaction the constant reduction of ū quickly tails off.
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Figure 2.18: Simulation results obtained by solving the full system in a reaction-
limited parameter regime.
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Figure 2.19: A plot showing a comparison between the average concentration
predicted from the three methods. The right hand plot shows the same data as
the left hand plot on a different axis.

Figure 2.19 shows a comparison of the average concentration when all three

methods are used to solve our system. The results show that for the majority

of the simulation, both the QSSA method and the analytic approximation (2.26)

give a very similar average concentration to that obtained when the full system is

solved. The ǫQ value calculated from (2.18) is 0.0996, which is very small. Hence,

if we were to base our prediction of whether the QSSA was valid or not entirely

on ǫQ, we would assume that the QSSA would be valid. In this particular regime,

using ǫQ as an estimate is appropriate as there is a constant supply of reactant at
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the surface, until the reactant is exhausted.

Towards the end of reaction there is a slight difference between solving the full

system and the other two systems (as demonstrated by the second plot of Figure

2.19). The period of time where there is a difference between the solution obtained

from solving the full method and the solution obtained from other methods cor-

responds to the period of time where w(t) is no longer approximately constant.

Hence, for this particular set of parameters the QSSA and the analytic solution

give a fairly good approximation to the solution obtained from the full system for

the vast majority of the reaction.

As in the previous case, the concentration profiles obtained from the QSSA

system and the analytic approximation are qualitatively very similar to those ob-

tained when solving the full system.
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Figure 2.20: A plot showing that the conservation of reactant holds throughout
the simulation using the fully coupled system.

Figure 2.20 shows that the conservation of reactant holds numerically for this

particular set of parameters and reinforces the fact that w(t) remains relatively

constant throughout the majority of the reaction. This suggests that the QSSA will

be a valid approximation to make in this particular regime. The figure also demon-

strates that the bulk concentration of reactant decreases at an approximately con-

stant rate while the concentration of product is increasing at an approximately
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Figure 2.21: A plot showing that the conservation of reactant holds throughout
the simulation when the QSSA system is solved.

constant rate.

Figure 2.21 shows that when the QSSA is invoked the conservation of reactant

holds. Comparing Figure 2.21 with Figure 2.20 demonstrates well that the QSSA

system gives a good approximation to the full system for the majority of the

simulation. Towards the end of the reaction, when the full system is solved we

find that the total reactant bound to the surface slowly tends to zero. By invoking

the QSSA we assume that w(t) remains constant, hence the QSSA method does

not predict this final reduction of w(t). Also, because we have that there is still

reactant bound to the surface we do not have the total product being formed

tending to one, which we would expect.

2.1.9.3 Adsorption-limited regime

To demonstrate an adsorption-limited regime the following parameter values are

used; stot = 1, k1 = 5 × 10−3, k−1 = 10, k2 = 50 and T = 1000. In this case, we

have selected parameters such that k1 is much smaller than k−1. By choosing k2

to be relatively large, the adsorption of reactant which is the rate-limiting step

as opposed to the conversion of bound species into product, which was the rate-

limiting step in the previous section. As in the previous case, the rate of diffusion
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is far quicker than the reaction taking place at the surface. Due to the very low

adsorption to desorption ratio, the choice of stot in this case does not play a role in

limiting the overall reaction rate, assuming stot is not very small. By performing

additional simulations with similar parameters, we were able to confirm that the

following results were typical of an adsorption-limited regime. Additionally, by

slightly varying a selection of the parameters used, we confirmed that our results

were not sensitive to slight changes in the parameter values. To solve the full

system, Method 1 was used with N = 100 and NT = 1 × 105. Similarly, when

solving the QSSA system, Method 1Q was used with N = 100 and NT = 1× 105.

Figure 2.22 shows the results when the full coupled system is solved. From

the first plot of Figure 2.22 we can again see that the concentration profiles are

approximately flat, as in the previous case. Additionally, this plot shows that the

equilibrated concentration at t = 0 is approximately 1. This is due to the small

k1 to k−1 ratio. Note that, even though stot is fairly large, this fails to play a role

due to the fact that reactant is being adsorbed to the surface far more slowly than

it is being desorbed or converted into product. The second plot of Figure 2.22

shows how w(t) varies with time. The plot shows that w(t) remains very small

throughout the simulation. This is due to k1 being considerably smaller than k−1

and k2, which stops a substantial amount of reactant binding to the adsorption

sites. The final plot of Figure 2.22 shows how the average concentration ū(t)

varies with time. It appears that the reduction of ū(t) is first-order with respect

to time. This can be demonstrated by plotting ln(ū(t)) versus t, which gives an

approximately straight line.

Figure 2.23 shows that both the QSSA system and the analytic approximation

(2.26) give very similar plots of ū(t) against t to those obtained when the full system

is solved. This suggests that both the QSSA and the analytic approximation are

valid for this regime. The ǫQ value calculated from (2.18) is 8.3326×10−5, which is

extremely small. Hence, if we were to base our prediction of whether the QSSA was

valid or not entirely on ǫQ, we would assume that the QSSA would be valid. In this
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Figure 2.22: Simulation results obtained by solving the full system in an
adsorption-limited parameter regime.
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Figure 2.23: A plot showing a comparison between the average concentration
predicted from the three methods in an adsorption-limited regime.

particular regime, using ǫQ as an estimate is appropriate as w(t) ≈ 0 throughout

the entire reaction.

Once again, the concentration profiles of ū obtained by solving the QSSA and

using the analytic approximation are very similar, qualitatively and quantitatively,

to those obtained by solving the full system.

Figure 2.24 shows that the conservation of reactant holds when our full system

is solved numerically. Unsurprisingly, the plot also shows that the rate that product

is being produced is very similar to the rate at which reactant in the bulk is
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Figure 2.24: A plot showing that the conservation of reactant holds throughout
the simulation using the fully coupled system.
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Figure 2.25: A plot showing that the conservation of reactant holds throughout
the simulation when the QSSA system is solved.

decreasing. This is due to being in a regime where very little reactant is bound

to the surface throughout the reaction. From this plot it is also clear that the

concentration of reactant bound to the surface remains very small throughout the

entire reaction.

Figure 2.25 shows that the conservation of reactant holds when our QSSA

system is solved numerically. Additionally, by comparing Figure 2.25 with Figure

2.24 we see that the total concentrations of reactant in the bulk, reactant bound

to the surface and product formed are very similar for both systems throughout
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the simulation.

2.1.9.4 Intermediate regime

With the following parameter values; stot = 1, k1 = 1, k−1 = 1, k2 = 1 and T = 15,

we would expect that no one process will entirely limit the overall reaction rate. By

performing additional simulations with similar parameters, we were able to confirm

that the following results were typical of an intermediate regime. Additionally, by

slightly varying a selection of the parameters used, we confirmed that our results

were not sensitive to slight changes in the parameter values. To solve the full

system, Method 1 was used with N = 100 and NT = 1 × 104. Similarly, when

solving the QSSA system, Method 1Q was used with N = 100 and NT = 1× 104.

Figure 2.26 shows the results when the full coupled system is solved. From

the first plot of Figure 2.26 we can see that the profiles have a slight gradient,

which indicates that diffusion could be playing a role in the overall reaction rate.

Additionally, the equilibrated concentration at t = 0 is approximately 0.6. This is

due to the ratio of k1 to k−1 equaling one and the fact that stot = 1, allowing a

substantial amount of reactant to bind to the surface. The second plot of Figure

2.18 shows that w(t) varies considerably throughout the reaction. Without any

further considerations this would suggest that the QSSA will not be valid in this

parameter regime. The final plot of Figure 2.18 shows that the reduction of ū(t)

is first-order with respect to time. As in previous cases this can be demonstrated

by plotting ln(ū(t)) versus t, which gives a straight line.

Figure 2.27 shows the results obtained by solving the QSSA system are notice-

ably different to the results obtained from the full system. The ǫQ value calculated

from (2.18) is 0.3333, which is not particularly small. Hence, we would assume

that the QSSA is invalid. Note we have not included an analytical solution in this

comparison due to being in a region where neither analytic approximation is valid.

By looking at concentration profiles of u, we found that both methods give

qualitatively similar results, however quantitatively they are quite different. This
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Figure 2.26: Simulation results obtained by solving the full system in an interme-
diate parameter regime.
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Figure 2.27: A plot showing a comparison between the average concentration
predicted from the full system and the QSSA system for an intermediate regime.

suggests that, for this particular set of parameters, the QSSA is not valid.

Figures 2.28 and 2.29 show that the conservation of reactant holds when both

our full system and our QSSA system are solved numerically. However, by com-

paring both plots we can see that there is a significant difference in the total

concentration of reactant in the bulk, reactant bound to the surface and total

amount of product formed.

By showing different sets of results for various parameter regimes we have shown

two extreme parameter regimes where our analytic approximations are very close
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Figure 2.28: A plot showing that the conservation of reactant holds throughout
the simulation using the fully coupled system.
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Figure 2.29: A plot showing that the conservation of reactant holds throughout
the simulation when the QSSA system is solved.

to solutions obtained from solving our full system. Similarly, we have given sev-

eral examples where the QSSA gives a very close approximation to the solutions

obtained from solving the full system. Additionally, we have demonstrated that

using ǫQ from (2.18) to decide if the QSSA will hold (outwith a diffusion-limited

parameter regime) is a fairly accurate approach. By giving an example of an in-

termediate case, we have demonstrated that for certain parameter regimes solving

our full system is the only way to accurately solve the system due to the possible

errors which may arise by invoking the QSSA.
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2.2 Experimental procedure and results

The system used to assess the activity of self-cleaning glass is based on a water-

based ink containing a redox dye, resazurin (Rz), mixed with a sacrificial electron

donor (SED), glycerol, and a polymer, hydroxyethylcellulose (HEC) [50]. Once the

ink is applied to the surface of a photocatalyst, if irradiated with sufficient energy

to overcome the band gap, the TiO2 will react to produce holes and electrons. The

photo-generated holes then oxidise the SED, which prevents the TiO2 electron-

hole pairs recombining. This allows the photo-generated electrons TiO2(e
−) to

irreversibly reduce the dye,

TiO2(e
−) + Dox −→ TiO2 +Dred,

where Dox represents the dye Rz and Dred is the reduced form of the dye, resorufin

(Rf). As the reduction occurs, the ink changes colour from blue to pink [58].

The colour change happens within a few minutes and after further irradiation the

system completely bleaches the ink where the Rf is converted into its colourless

form dihydroresorufin. Figure 2.30 shows the chemical structure of resazurin,

resorufin and dihydroresorufin.

Figure 2.30: Chemical structure of resazurin, resorufin and dihydroresorufin.

Figure 2.31 shows typical absorbance spectra of the three chemicals. The blue

arrows indicate how the absorbance peaks change with time as resazurin is con-

verted to resorufin. For example, at approximately 582 nm the absorbance is

increasing, whereas at 382 nm and 608 nm the absorbance is decreasing. Once

the resorufin is completely exhausted the spectrum becomes almost flat for wave-
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Figure 2.31: Typical absorbance spectra of resazurin (red line), resorufin (blue
line) and dihydroresorufin (black line), where 608 nm and 582 nm refer to the
wavelengths at which resazurin and resorufin have absorbance peaks, respectively.

lengths greater than approximately 400 nm.

Experiments were carried out by Nathan Wells and Professor Andrew Mills

at Queen’s University Belfast to determine the influence of film thickness on the

initial reaction rate [62]. A total of seven film thicknesses were used ranging from

219 nm to 1483 nm. The ink used for experiments consisted of 1.5 g HEC (hydrox-

yethylcellulose) in 98.5 ml double distilled H2O. Additionally, 0.1333 g of resazurin

sodium salt and 13.3333 g of glycerol were added. The ink was refrigerated, and

stirred vigorously for 10 minutes immediately prior to use. Ink samples were pre-

pared for irradiation by drawing down onto a 25 x 25 mm ActivTM glass plate.

The sample was then purged in argon before being illuminated with UVA light

through the back of the glass plate as shown in Figure 2.32.

Absorbance spectra were recorded at regular intervals until a perceived end

point was reached for each thickness of film. The absorbance spectra for all films

are shown in Figures 2.33 - 2.39. As the dye changes colour gradually from blue

to pink, the initial absorbance spectrum has been plotted in blue and the final

absorbance spectrum plotted in pink. The colour of the intermediate spectra give

an estimate of how the colour of the dye may change throughout the reaction.

Note that in Appendix A we explain how the absorbance spectrum of a substance
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Figure 2.32: Diagram showing how the samples are illuminated with UVA light.

can be used to approximate its colour.

The Beer-Lambert law states that

Abs(λ) = ǫ(λ)Lc, (2.54)

where λ represents wavelength, Abs(λ) represents the absorbance, ǫ(λ) is the mo-

lar absorptivity, L is the path length which light has to pass through and c is the

concentration of the absorbing species in the material. It is assumed that c is con-

stant throughout L. Since ǫ(λ) is constant at a particular wavelength, absorbance

is proportional to the concentration [83]. Hence, the concentration of Rz can be

estimated based on the absorbance and thickness of the film. We are ultimately

interested in the reaction rate of the reduction of Rz, i.e. the rate at which the

concentration of Rz is decreasing. Hence, by measuring the absorbance at various

times throughout the reaction we are able to estimate the reaction rate.

The absorbance was measured at 608 nm as this is where the greatest change

in absorbance occurred. We define Abs608(t) as the absorbance measured at 608

nm at time t after the initiation of UVA irradiation. The change in absorbance

is measured by taking the final absorbance at 608 nm for each experiment and
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subtracting it from the measured absorbance,

∆Abs608(t) = Abs608(t)− Abs608(T ),

where T is the time at the end of each experiment. Hence, in all cases ∆Abs608(t)

will tend to zero as t→ T .

To determine the initial reaction rate from ∆Abs608(t), a straight line is fitted

through the data points corresponding to the period of time where the absorbance

appears to be decreasing linearly with time. This straight line is plotted in Figures

2.33 - 2.39. The slope m of the straight line fit then gives an approximation of the

initial reaction rate. As the initial absorbance is dependent on film thickness, to

allow us to compare results from different films we divide m by the initial change

in absorbance to calculate a normalised reaction rate

Ri =
−m

∆Abs608(0)
.
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Figure 2.33: Experimental results using a 549 nm thick film. In the right hand
plot the stars represent experimental data and the dashed line is a best fit straight
line fitted to this data.

Figures 2.33 - 2.39 show very similar qualitative behaviour; the absorbance peak

at 608 nm decreases whereas the peak at 582 nm increases. As L is increased, the

experimental results show that the absorbance peak at 608 nm increases. This is



Chapter 2 68

Wavelength (nm)
300 400 500 600 700 800

A
b
so
rb
an

ce

0

0.2

0.4

0.6

0.8

1

t (s)
0 100 200

∆
A
b
s 6

08
(t
)

0

0.05

0.1

Figure 2.34: Experimental results using a 855 nm thick film. In the right hand
plot the stars represent experimental data and the dashed line is a best fit straight
line fitted to this data.
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Figure 2.35: Experimental results using a 1217 nm thick film. In the right hand
plot the stars represent experimental data and the dashed line is a best fit straight
line fitted to this data.

unsurprising since from the Beer-Lambert law (2.54), if the concentration remains

constant, as L is increased, the absorbance must increase. From all seven sets of

data it is clear that ∆Abs608(t) decreases initially at an approximately constant

rate. However, towards the end of the reaction it appears that the absorbance

decreases at a slower rate.

Figure 2.40 shows the initial rate Ri plotted against film thickness L (blue

stars). Figure 2.41 shows ln(Ri) plotted against ln(L) with a straight line fitted

through the data. By calculating the equation of this straight line, we can calculate
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Figure 2.36: Experimental results using a 2140 nm thick film. In the right hand
plot the stars represent experimental data and the dashed line is a best fit straight
line fitted to this data.
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Figure 2.37: Experimental results using a 3418 nm thick film. In the right hand
plot the stars represent experimental data and the dashed line is a best fit straight
line fitted to this data.

the approximate relationship between Ri and L (which is plotted in red in Figure

2.40). The slope of this line is -1.1949. Hence we can deduce that the initial

reaction rate is approximately first-order with respect to film thickness i.e.

Ri ∝
1

L
.

The diffusion coefficient for the dye in this system is estimated to be approxi-
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Figure 2.38: Experimental results using a 3614 nm thick film. In the right hand
plot the stars represent experimental data and the dashed line is a best fit straight
line fitted to this data.
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Figure 2.39: Experimental results using a 4014 nm thick film. In the right hand
plot the stars represent experimental data and the dashed line is a best fit straight
line fitted to this data.

mately 10−13 m2 s−1 [50]. The diffusive time scale is given by

tD =

√

L2

2D
. (2.55)

Hence, the time taken for a molecule of dye to diffuse across the ink layer will be

approximately 1.5 s for the thinnest film and 9 s for the thickest film. However,

the overall reaction takes place over a far longer time scale (over 100 s in the case

of the thinnest film, and well over 1500 s for the thickest). This suggests that, for
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Figure 2.40: Experimentally observed
initial reaction rate plotted against L.
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Figure 2.41: Experimental results
showing ln(Ri) plotted against ln(L)
with a straight line fitted through the
data.

this particular system, the transport of dye molecules to the photocatalyst surface

is not the process which limits the overall reaction rate.

Lachheb et al. [37] reported that many dyes are strongly adsorbed onto a

photocatalyst surface. This suggests that the adsorption of Rz molecules onto the

photocatalyst surface is not the process which limits the overall reaction rate.

It therefore seems likely that the one process likely to have the greatest impact

on the overall reaction rate is the reaction taking place on the semiconductor

surface which converts bound species into products. This is due to the low UVA

irradiance which the semiconductor is illuminated with.

The usual expectation would then be that the initial reaction rate Ri should be

independent of L. However, the experimental data presented in Figures 2.40 and

2.41 suggest that the initial reaction rate is approximately inversely proportional

to film thickness. In the next section, we will apply our simple mathematical model

to this particular system with the aim of explaining this apparent contradiction.
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2.3 Mathematically modelling resazurin case

It is assumed that both glycerol and resazurin are required at the photocatalyst

surface for the oxidation of resazurin to take place, which results in the dye chang-

ing colour. As there is a high concentration of glycerol in comparison to resazurin

we will assume that there is enough glycerol to ensure that the surface reaction is

never limited due to the lack of glycerol at the photocatalyst surface. Hence, we

will not consider glycerol in our model. This assumption allows us to apply the

model derived in the previous section.

Applying our model to this particular problem, our concentration of reactant

u(x, t) represents the concentration of resazurin and w(t) represents the concentra-

tion of resazurin bound to the photocatalyst surface. The product p(t) represents

the converted form of resazurin, resofurin. All other parameters are as described in

the previous section. Figure 2.42 shows the initial setup for this particular system.

We assume that we have a thin semiconductor photocatalyst applied to a piece of

glass. An ink layer is applied directly to the TiO2. Note that since the system is

illuminated from behind, the surface reaction rate k2 will remain constant.

Glass
Ink
Layer

x = 0 x = L

UVA Light
TiO2

Figure 2.42: Diagram of the initial set-up.

To use our mathematical model we first need to convert any dimensional pa-
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rameters into nondimensional form using (2.4)-(2.6). The predicted results then

have to be expressed in terms of dimensional units to be compared with experi-

mental data.

2.3.1 Estimating the initial reaction rate

To compare the results obtained from our model with experimental results we have

to estimate the initial reaction rate Ri. This is done by calculating the average

concentration ū(t) at each time step and determining the half-life (t1/2) of the

reaction, which we define as the time taken for ū(t) to decrease by half. The half-

life is a parameter which is simple and easy to measure for any kinetic system [50].

A straight line of slope m is then fitted to all data points corresponding to times

ranging from zero to t1/2. Dividing by the initial concentration uq, we have that

the normalised initial rate is given by

Ri =
−m
uq

. (2.56)

By applying this method of calculating the initial reaction rate to the experimental

data from Section 2.2, we come to the same conclusions as those presented earlier,

i.e. that Ri was approximately inversely proportional to L.

2.3.2 Interpreting experimental results

Assuming we are in a surface reaction-limited regime, we would expect k2 to be

relatively small. Lachheb et al. [37] reported that many dyes are strongly absorbed

onto a photocatalyst surface. Hence, we will assume that k1 > k−1. We have a

dimensional equivalent of (2.23), given by

dū

dt
= − 1

L

(
k1k2u(0, t)stot

k1u(0, t) + k−1 + k2

)

. (2.57)
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Due to the initial concentration being very large (as well as the small k2 value,

and large k1 value relative to k−1), the denominator of (2.57) will be dominated

initially by k1u(0, t), and hence

dū

dt
≈ − 1

L
k2stot.

This implies that the initial reaction rate is zeroth-order and that it is inversely

proportional to film thickness, i.e.

dū

dt
∝ 1

L
.

This is the approximate behaviour observed in the physical experiments.

As the concentration of dye decreases we will eventually be in a situation where

k1u(0, t) no longer dominates the denominator. Hence, as u(0, t) approaches zero

we have that
dū

dt
≈ − 1

L

k1k2u(0, t)stot
k−1 + k2

,

which is first-order in time. This predicted change from zeroth-order to first-order

kinetics is observed in the experimental data presented earlier.

If we assume that we are in a regime where the QSSA is valid, and that the

surface reaction is the rate limiting process we clearly have that

Ri ∝
1

L
. (2.58)

Before our system is able to find equilibrium we assume that u0 is constant for

all films. This means that by increasing L we are increasing the total number

of dye molecules. Although the rate at which product is being formed at the

photocatalyst surface is independent of L, the total number of molecules still in

the ink layer will increase with thickness. This means that although du(0,t)
dt

is

independent of film thickness, the rate at which ū(t) decreases must be dependent
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on L. For example, a 10% drop in average concentration of dye within a thin film

will occur far more quickly than a 10% reduction within a thick film. This is why,

in this particular surface reaction-limited regime, the initial overall reaction rate

is L dependent.

2.3.3 Numerical simulations

In this section we present results from numerical simulations which aim to replicate

the experimental data presented earlier using physical parameters appropriate for

this particular system. We have three options when solving our system: we can

solve the full coupled system expressed in (2.14) and (2.15), we can assume the

QSSA and solve the differential equation (2.19), or we can use the analytical

solution (2.26) for an estimate of ū (assuming that we are in a surface reaction-

limited regime).

When choosing which parameters to use in our model, we will make use of

published data and data presented earlier in this chapter. For example, as was

noted earlier, for this particular system we have that D =10−13 m2 s−1 [50]. We

will also use the same range of film thicknesses used in the experimental results

presented earlier, i.e. L ranges from 5.49 ×10−7 m to 4.014 ×10−6 m. Using

the initial measured absorbance data, the thickness of each film, and a published

estimate for ǫ(λ) at 608 nm [50] we can use the Beer-Lambert law (2.54) to estimate

the initial concentration. Hence, we estimate that u0 is equal to 36.9 mol/m3 for

the entire range of films we consider.

This leaves us with several parameter values to estimate. As was shown earlier,

with these particular physical parameters we have that the diffusive time scale

will be 1.7 s for the thinnest film, and 12.7 s for the thickest. As we assume

that diffusion is not rate limiting we must choose k1, k−1, k2 and stot to ensure

that the adsorption/desorption and surface reaction timescales are appropriate.

We also know that in these particular systems the reactant is strongly absorbed

to the surface (i.e. k1 > k−1) and that k2 must be relatively small due to the
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low UVA irradiance which illuminates the photocatalyst surface. In the numerical

simulations that follow we therefore set k1 = 5.833 × 10−3 m3/mol s−1, k−1 =

0.833× 10−3 s−1, k2 = 1.073× 10−2 s−1 and stot = 1× 10−5 mol/m2.

Based on these parameters, we would expect to be in a regime where the

transport of reactant to the photocatalyst surface is not the one process which

slows down the overall reaction process. However, it is not immediately clear

whether or not we will be in a regime where the overall reaction is entirely surface

reaction-limited. By redefining (2.18) for dimensional systems, we can calculate

ǫQ values for this particular system. A dimensional version of ǫQ is given by

ǫQ =
stot

L(Km + uq)
. (2.59)

This can give an indication of whether or not the QSSA is valid. However, as we

may not be in a completely reaction-limited regime, it is uncertain whether ǫQ will

give an accurate indication of the validity of the QSSA. Figure 2.43 shows the ǫQ

values calculated from (2.59) for the range of L values which we are investigating.

We can see that for the thinnest film, ǫQ is almost equal to 0.5, which is fairly large.

This suggests that the QSSA may not be valid for the thinnest films. However,

for the thickest film, ǫQ is less than 0.1 and hence the QSSA may be applicable.

Using our model, we are able to test how accurate these predictions are for this

particular system.

In addition to comparing results between the full system and the QSSA system,

we will calculate the approximate analytical solution given in (2.26).

For each film we use all three solution methods. Figures 2.44 - 2.50 show the

results for all seven films considered. As was previously mentioned, the numerical

simulations were performed after converting dimensional parameters into nondi-

mensional form. For all cases considered, when solving the nondimensional full

system, Method 1 was used with N = 200 and NT = 2 × 104. Similarly, when

solving the nondimensional QSSA system, Method 1Q was used with N = 200
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Figure 2.43: Variation in QSSA parameter ǫQ (2.59) as a function of film thickness
L.

and NT = 2 × 104. Any results shown have been converted back to their dimen-

sional form. In each figure, the first plot shows profiles of u(x, t) against x at 10

uniform times ranging from t = 0 to t = T , where T is the time at which the

simulation ends. The blue solid lines show the profiles when the full system, (2.14)

and (2.15), is solved and the red dashed lines show the results when the QSSA is

invoked (2.19). The second plot shows the concentration w(t) against t when the

full system is solved. The third plot shows the average concentration ū against t

when the full system is solved along with a straight line fitted to the initial data.

The final plot shows a comparison of the normalised average concentration for all

three methods. The average concentration obtained from solving the full system is

plotted as a solid blue line, the concentration found by solving the QSSA system

is plotted as a red dashed line, the approximate analytic solution is plotted in a

dash-dot black line, and the normalised experimental data is plotted as red stars.

The first plot of Figures 2.44 - 2.50 show that the concentration profiles are

approximately flat throughout the reaction for all seven films. However, for the

final three films (Figures 2.48 - 2.50) there is a slight gradient in the profiles.

This is reminiscent of the profiles shown in Figure 2.26 which corresponded to an

intermediate regime. This is understandable, due to the films being thicker the
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Figure 2.44: Simulation results obtained by solving the full system, the QSSA
system and the analytical approximation for a reaction-limited parameter regime
with L = 549 nm. The final plot shows a comparison between simulation results
and normalised experimental data.
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Figure 2.45: Simulation results obtained by solving the full system, the QSSA
system and the analytical approximation for a reaction-limited parameter regime
with L = 855 nm. The final plot shows a comparison between simulation results
and normalised experimental data.
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Figure 2.46: Simulation results obtained by solving the full system, the QSSA
system and the analytical approximation for a reaction-limited parameter regime
with L = 1217 nm. The final plot shows a comparison between simulation results
and normalised experimental data.
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Figure 2.47: Simulation results obtained by solving the full system, the QSSA
system and the analytical approximation for a reaction-limited parameter regime
with L = 2140 nm. The final plot shows a comparison between simulation results
and normalised experimental data.
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ū(t)/ū(0) (Full System)
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Figure 2.48: Simulation results obtained by solving the full system, the QSSA
system and the analytical approximation for a reaction-limited parameter regime
with L = 3418 nm. The final plot shows a comparison between simulation results
and normalised experimental data.
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Figure 2.49: Simulation results obtained by solving the full system, the QSSA
system and the analytical approximation for a reaction-limited parameter regime
with L = 3614 nm. The final plot shows a comparison between simulation results
and normalised experimental data.
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Figure 2.50: Simulation results obtained by solving the full system, the QSSA
system and the analytical approximation for a reaction-limited parameter regime
with L = 4014 nm. The final plot shows a comparison between simulation results
and normalised experimental data.

reactant will take longer to be transported through the domain. In terms of the

validity of the QSSA, it is clear that as the film thickness is increased the QSSA

becomes more accurate. This is in agreement with our earlier predictions made by

calculating ǫQ (Figure 2.43).

The second plots of Figures 2.44 - 2.50 show that the surface bound reactant

concentration behaves in a similar way for all seven films. In all cases there is

an initial rapid decrease in w(t). This happens at roughly the same time for all

films, however, as the figures all have different time scales this is not immediately

obvious. In all cases, for the first half of the simulation w(t) is varying very little,

before decreasing far more quickly in the latter stages of the reaction. As the film

thickness is increased, the variation in w(t) during the first half of the reaction

decreases. We would expect that during the first half of the simulations the QSSA

will be more accurate as L increases.

The third plots of Figures 2.44 - 2.50 show the average concentration of reactant

in the bulk when the full system is solved. The dashed blue line shows a straight

line fitted to the data corresponding to t ranging from 0 to t1/2. Qualitatively, all

seven plots are very similar. Although, for the thinnest films, uq is significantly

smaller than for the largest films.

The final plots of Figures 2.44 - 2.50 shows a comparison between the three
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methods used to solve our system and normalised experimental data. For all seven

cases, by using the full system, we get very good agreement with the experimental

data. Although, for the thinnest of films the prediction is not as convincing as the

thicker films. In terms of the validity of the QSSA, the plots show that, as the film

thickness is increased, the predictions using the QSSA becomes more accurate.

The plots also demonstrate that there is very little difference between using the

QSSA and the analytic approximation. Although, for the thickest of films, there

is a slight difference between the two plots. This is not surprising, as the profiles

of u are no longer completely flat for the thickest film (as shown in Figure 2.50).
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Figure 2.51: Model simulation results
showing Ri plotted against L when the
full system is solved.
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Figure 2.52: Model simulation results
showing ln(Ri) plotted against ln(L)
when the full system is solved.

Figure 2.51 shows the initial reaction rate Ri plotted against film thickness L

for each of the seven films obtained by solving the full system. Figure 2.52 shows a

plot of ln(Ri) versus ln(L). By fitting a straight line through the ln− ln data, we

can determine an approximate relationship between Ri and L. Re-arranging the

equation of this straight line allows us to find a function which fits the Ri versus

L data shown in Figure 2.51 and plotted in red. From the equation of the best

fit straight line we have that the gradient is approximately -1.193. This is very

similar to the corresponding value calculated from the experimental data (which

was -1.1949). This implies that Ri is approximately inversely proportional to L
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and is in agreement with the experimental data.
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Figure 2.53: Model simulation results
showing Ri plotted against L when the
QSSA is invoked.
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Figure 2.54: Model simulation results
showing ln(Ri) plotted against ln(L)
when the QSSA is invoked.
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Figure 2.55: Model simulation results
showing Ri plotted against L when the
analytical approximation is used.
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Figure 2.56: Model simulation results
showing ln(Ri) plotted against ln(L)
when the analytical approximation is
used.

Figures 2.53 and 2.54 show the same results presented in Figures 2.51 and

2.52 when the QSSA has been invoked. Similarly, Figures 2.55 and 2.56 show

the results when the approximate analytic solution is used to solve the system.

When the QSSA system is solved, the gradient of the best fit straight line is ap-

proximately -1.2476. Similarly, the approximate analytic solution gives a gradient
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of approximately -1.2434. This demonstrates that these two methods give very

similar results.
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Figure 2.57: Model simulation results
showing Ri plotted against L when all
three methods are used to solve the sys-
tem.
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Figure 2.58: Model simulation results
showing ln(Ri) plotted against ln(L)
when all three methods are used to
solve the system.

All three methods give similar results in term of approximating the initial

reaction rate Ri as shown in Figures 2.57 and 2.58. From this comparison it is

clear that solving the full system gives the best results in terms of replicating the

experimental data.

We have shown that, using physically realistic parameters, our model can repli-

cate the experimental results fairly well. Additionally, our earlier finding that, for

particular regimes, the initial reaction rate is inversely proportional to the film

thickness holds in this case. However neither the experimental results or the simu-

lation results give the exact relationship predicted. The experimental results and

our model results suggest that

Ri ∝ L−a,

where a is approximately equal to -1.2, as opposed to the -1 value predicted from

our analysis.

Recall that when arriving at the relationship (2.58) between R and L we as-

sumed that the QSSA was valid. However, by calculating ǫQ and comparing nu-
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merical results obtained when the QSSA was and was not assumed, we have shown

that the QSSA is not particularly accurate for the entire range of films we have

considered. This perhaps explains why the relationship between Ri and L is not

exactly what our analysis suggests it should be. For the larger films, we see that

diffusion is starting to play a role and is no longer quick enough to ensure a constant

supply of reactant at the photocatalyst surface. This contradicts an assumption

made in Section 2.3.2, that within this regime the overall rate was entirely reaction-

limited. Were our parameters to fall within a regime where the QSSA is valid and

the overall reaction rate is completely reaction-limited, we would expect to find

that our simulation results would be far closer to what was predicted earlier in

Section 2.3.2.

2.3.4 Experimenting with film thickness

We can further study the relationship between Ri and L by expanding the region

of L values which we consider. When defining the initial reaction rate we have pre-

viously used the half-life in our approximations. For the previous regime this was

an appropriate measure, as the initial reduction of ū was approximately constant.

However, over a wider range of L values, this is not always the case. For example,

in a diffusion-limited regime, fitting a straight line through initial data ranging

from t = 0 to t = t1/2 is not appropriate. For this reason, we will now replace t1/2

with t1/10 when considering the initial reaction rate as defined in Section 2.3.1.

For all cases considered, to solve the nondimensional full system, Method 1

was used with N = 320 and NT = 4 × 105. The L values considered range from

L = 1.16×10−10 m to L = 3.5×10−3 m (ln(L) ranges from approximately -22.9 to

-5.7 for this range of L values). The first plot of Figure 2.59 shows ln(Ri) plotted

against ln(L). From this plot there appears to be three distinct regimes. In the

left hand plot, we have fitted three straight lines to different ranges of data points.

Each straight line represents a regime where we have, approximately, Ri ∝ Lm,

where m = 0,−1 and -2. The second plot reinforces the existence of these three
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Figure 2.59: The left hand plot shows ln(Ri) versus ln(L). Within this figure there
are three clear regimes. Straight lines have been fitted to each of the three regimes.
The right hand plot shows the rate of change of ln(Ri) with respect to ln(L) plotted
against ln(L). This plot confirms the existence of three distinct regimes.
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Figure 2.60: The first plot shows uq plotted against ln(L) and demonstrates that
for L large enough uq is approximately equal to u0, and for L small enough,
uq is approximately zero. The second plot shows uq plotted against ln(L) and
demonstrates that wq tends to stot for large L, and tends to zero for small L.
The vertical dotted black line in each plot represents the L value where the total
reactant in the system (u0L) equals stot.

distinct regimes. By plotting the derivative of ln(Ri) with respect to ln(L) against

ln(L), we are able to show the there are three distinct regimes where the derivative

is approximately 0, -1 and -2.
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Figure 2.61: The first plot shows ln(uq) plotted against ln(L) with straight lines
fitted to the data points corresponding to the four largest L values considered and
the four smallest L values considered. The first plot shows ln(wq) plotted against
ln(L) with straight lines fitted to data points corresponding to the four largest L
values considered and the four smallest L values considered. The vertical dotted
black line in each plot represents the L value where the total reactant in the system
(u0L) equals stot.

Figure 2.60 shows how uq and wq vary over a wide range of L values. For

very small L values, uq is almost zero, as when L becomes very small the total

concentration of reactant, in comparison to stot, is small. Hence, practically all

reactant in the system is able to bind to the surface. For very large L, the total

amount of reactant in the system will be large compared to stot, meaning that even

if all surface reaction sites are saturated with reactant, uq will remain very close

to u0. The second plot demonstrates that for large enough L values, the surface

sites will be completely saturated, and wq tends to stot. The plot also shows

that wq tends to zero as L decreases. By plotting the point at which u0L = stot

(L = 2.71 × 10−4 m), we have shown that there is a clear difference in how both

uq and wq vary with L. For uq, when L is smaller than this value, we have that

uq quickly tends to zero. When L is larger than this value, uq tends to stot. The

change in wq is similar, but due to the ratio of k1 to k−1, we have that for any

L value greater than L = 2.71 × 10−4 m, wq is approximately equal to stot. Due
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to the presence of uq in the definition of Ri (2.56), it is important to consider uq

when discussing the results presented in Figure 2.59.

For the largest L values considered, we have, from both plots of Figure 2.59,

that Ri is approximately proportional to 1
L2 . This is typical of a diffusion-limited

regime. For large L values, we have, from Figure 2.60, that uq remains constant.

Hence, uq is not having an influence in determining Ri for this particular regime.

For the intermediate regime, we have, from both plots of Figure 2.59, that Ri

is approximately inversely proportional to L. Our explanation behind this result

is as previously explained. The rate at which the total amount of reaction is

reducing is constant. However, as L is decreasing, the total amount of reactant

in the system is decreasing. Hence, although the rate that the total amount of

u is being reduced remains independent of L, the rate that the average of u is

decreasing must be dependent on L. However, this explanation is dependent on

uq being constant, due to the presence of uq in the definition of Ri. For the range

of L values corresponding to ln(L) ranging from approximately -17 to -12.5, uq is

varying significantly. This corresponds to the region where Figure 2.59 shows a

transition between the region where Ri ∝ L0 and Ri ∝ L−1.

For very small L values, we have the perhaps surprising result, that Ri is

approximately independent of L. We have, from the first plot of Figure 2.61, that

for the smallest L values considered, that u is proportional to L. In almost all

cases we have previously considered, we had that dū
dt

would decrease as u decreased.

Hence, for this regime, because uq is decreasing with L, we would have that dū
dt

at

t = 0 would decrease with L (this can be shown numerically). So for this regime,

the rate at which the total amount of u is decreasing is proportional to L (this

can be shown numerically). However, as uq is also decreasing proportionally with

L, we find that Ri is constant.

By performing similar simulations with different sets of parameters, we con-

firmed that the results described above are not unique to this particular set of

parameters. For each simulation performed we found that there were, as above,
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three distinct regions where Ri was proportional to 0,1 and 2. However, for each

additional set of parameters we tested, the values of L where the observed kinetics

transitioned from one region to the next varied for each set of parameters. Quanti-

fying, for a given set of parameters, exactly where we expect the observed kinetics

to transition from one region to another would be an interesting extension of the

work presented in this chapter.

2.4 Conclusions

In this chapter we have shown that our mathematical model is able to replicate

existing data fairly well using physically realistic parameter values. This was the

case for results showing how the concentration of resazurin decreases with time for

seven different films and the results showing how the initial reaction rate varies

with L. Additionally, we have given an explanation as to why experimental results

show a 1
L
dependence in the initial reaction rate.

For the parameter regime used to replicate the experimental results considered

in this chapter, the validity of the QSSA is questionable. Hence, solving the full

system for this particular regime would be advisable.
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Photocatalytic reactions

occurring throughout a domain

For all the systems considered in this chapter we assume that reactions are taking

place throughout the domain. This is significantly different to the model presented

in the previous chapter, where a reaction was taking place exclusively at a photo-

catalyst surface. The work in this chapter was motivated by informal experimental

results for a system where gas diffuses into a polymer film before reacting with a

dye throughout the film. We propose a model which could be used to approximate

such systems.

3.1 Simple model for photocatalytic reactions oc-

curring throughout a domain

Ollis [67] considers a transparent organic substance distributed throughout a porous

photocatalyst. A discrete model is proposed which splits the photocatalyst into

five layers and assumes that the intensity of light able to reach each layer decreases

as the depth of the layers increases. It is assumed that the intensity which reaches

the first layer is equal to I0 and the intensity which reaches each subsequent layer

89
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I = I0

I = I0/2

I = I0/4

I = I0/8

I = I0/16
x = L

x = 0

Figure 3.1: Diagram of the initial set-up of a discrete model proposed by Ollis [67]
showing how I varies with x.

is halved (as shown in Figure 3.1). Treating each layer independently, Ollis calcu-

lates the mass of the reactant remaining in each layer and sums to find the total

mass remaining. Ollis assumes a zero order rate constant k0 and effectively treats

the photocatalyst layer as five separate layers where the zeroth-order rate constant

is halved for each successive layer. Hence, letting Mi(t) (i = 1, . . . , 5) represent

the mass of reactant at time t in each layer, Ollis derived the following equations

Layer 1 :M1(t) =
M0

5
− k0t

Layer 2 :M2(t) =
M0

5
− k0

2
t

Layer 3 :M3(t) =
M0

5
− k0

4
t

Layer 4 :M4(t) =
M0

5
− k0

8
t

Layer 5 :M5(t) =
M0

5
− k0

16
t,

where M0 represents the initial total mass of reactant. From these five equations

it is straightforward to calculate the total mass Mtot(t) =
∑5

i=1Mi(t) remaining
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at any time. Figure 3.2 shows a replication of the plots presented by Ollis, demon-

strating how Mtot

M0
varies with k0t and how ln

(

Mtot

M0

)

varies with k0t. Additionally,

by plotting a best fit straight line in the second plot of Figure 3.2, we can see that

the reduction of Mtot(t) is approximately first-order.

k0t
0 5

Mtot

M0

0

0.5

1

k0t
0 5

ln(Mtot

M0
)

-3

-2

-1

0

Figure 3.2: A replication of the results presented by Ollis [67] showing how Mtot

M0

varies with k0t (left hand plot) and how ln

(

Mtot

M0

)

varies with k0t, where the red

line shows the best linear fit (right hand plot).

3.1.1 Experimental data

Allain et al. [8] show a first-order relationship between the absorbance of a stearic

acid film and irradiation time. As the thickness of the film remains constant,

assuming the Beer-Lambert law, the absorbance of the film must be proportional

to the concentration of reactant [83]. Hence, the model proposed by Ollis can help

rationalize the apparent first-order rate dependence. Figure 3.2 was produced using

the model proposed by Ollis and is qualitatively very similar to the experimental

data produced by Allain et al.
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3.2 General model for photocatalytic reactions

occurring throughout a domain

We initially consider a reactant distributed throughout a porous photocatalyst.

In this case we expect the reactions to occur throughout the domain, as opposed

to only taking place at the photocatalyst surface as in the systems considered in

the previous chapter. We initially assume the photocatalyst is porous, hence, the

absorbance by the photocatalyst will cause the intensity of light to depend on x

(where x ranges from 0 to L, the thickness of the porous photocatalyst). At the

surface of the photocatalyst (x = 0) the intensity will equal I0, and as x increases

we expect the intensity to decrease as shown in Figure 3.3.

x = L

x = 0

I0

Semiconductor
photocatalyst

I = I0

I = I0 exp(−
L
2 )

I = I0 exp(−L)

Figure 3.3: Diagram of the initial set-up showing how the light intensity varies
with x.

Let u(x, t) represent the concentration of reactant at time t and position x. We

assume that the light intensity is dependent on x but independent of t. Assuming

the same intensity dependence proposed by Ollis [67], we have

I(x) = I0 exp(−βx),
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where β is the absorbance coefficient.

We assume the same reaction mechanism considered in Section 2.1.1; however,

in this case we have reactions taking place throughout the domain, hence

∂u

∂t
= D

∂2u

∂x2
− k1stotu+ (k1u+ k−1)w, (3.1)

∂w

∂t
= k1ustot − (k1u+ k−1 + k2(x))w, (3.2)

∂p

∂t
= k2(x)w, (3.3)

where u and w represent the free and absorbed concentrations of reactant through-

out the layer and p represents the concentration of product being formed. As we

assume that reaction sites are immobile, there will be no transport of w or p via

diffusion. The parameters k1, k−1 and k2 are as previously defined, although in this

case they are defined throughout the domain as opposed to being defined purely

at the boundary. Recall from Section 2.1.1 that we defined our surface reaction

constant as k2 = k′2I. In this case we have

k2(x) = k′2I(x) = k′2I0 exp(−βx),

where k′2 is a rate constant.

If we assume the QSSA is valid then we have

∂u

∂t
= D

∂2u

∂x2
− k1k2(x)stotu

k1u+ k−1 + k2(x)
,

∂p

∂t
=

k1k2(x)ustot
k1u+ k−1 + k2(x)

.

3.2.1 Immobile reactant

We will now apply the model we introduced in Section 3.2 to the problem presented

in Section 3.1. Ollis assumed that the reactant remains stationary and hence, we
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will apply our model with the diffusion coefficient D equal to zero. In this case

(3.1) will become
du

dt
= −k1stotu+ (k1u+ k−1)w, (3.4)

and (3.2) and (3.3) will continue to define the evolution of w and p.

Prior to any reactions taking place we assume that the concentration of reactant

u is uniformly distributed throughout the domain. We will refer to this pre-reaction

concentration as u0. As in Section 2.1.4, we assume that molecules of reactant are

free to adsorb onto and desorb from the photocatalyst surface until the system is

in equilibrium. We define the equilibrium concentrations of u and w as uq and

wq, respectively. The method used to calculate uq and wq is similar to the method

described in Section 2.1.4. At t = 0 we assume that u(x, 0) = uq, w(x, 0) = wq

and p(x, 0) = 0. We will refer to this as the full system.

Alternatively, assuming the QSSA we have

∂u

∂t
= − k1k2(x)stotu

k1u+ k−1 + k2(x)
= −k2(x)stotu

u+Km
, (3.5)

where Km = k−1+k2
k1

. Rearranging (3.5) and integrating with respect to t gives

u+Km ln(u) = u0 +Km ln(u0)− k2(x)stott.

Hence, solving for u we have

u = KmW

(
u0
Km

exp

(
u0
Km

− k2(x)stot
Km

t

))

. (3.6)

Note the similarities between (3.6) and (2.26) [14]. The only major difference being

that in this case u is defined throughout the domain, hence, (3.6) will have to be

solved for all x where a solution is required.

To nondimensionalise the full system (3.1)-(3.3) we use a similar scaling to that

presented in Section 3.4.3. However, in this case, diffusion does not occur and we
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only consider one reactant, as opposed to two in Section 3.4.3. The same scaling

is used to nondimensionalise the QSSA system.

3.2.2 Numerical method - Solving the full system

We discretise (3.2) using a forward Euler method to find an approximation of w

at the forward time step. This allows us to discretise (3.4) using a Crank-Nicolson

method to find an approximation of u at the forward time step. We can then

correct our initial approximation of w at the forward time step by discretising

(3.2) using a Crank-Nicolson method, which makes use of our approximation of

u at the forward time step. Using the most recent approximation of w at the

forward time step, (3.3) can be discretised using a Crank-Nicolson method to find

an approximation of p at the forward time step.

3.2.3 Simulations

In this section we present simulations when both the full system and QSSA system

are considered. When choosing which parameters to use L, u0 and I0 were kept

equal to one due to our choice of nondimensionalisation. Figures 3.4 - 3.8 show

profiles of u(x, t) against x for 10 uniform times between 0 and T , k2(x) against x,

uave(t) (where uave(t) =
∫ 1

0
u(x, t)dx) against t and ln (uave) against t (which will

show if the reaction is first-order with respect to u). The red line in the final plot

of each figure shows the best linear fit of ln (uave) against t. We solve both the full

system and the QSSA system for each set of parameters. When the full system

is solved we show profiles of w(x, t) and the average concentration of w versus t.

For all simulations presented, when solving the full system we have N = 100 and

NT = 5× 104.

Figures 3.4 and 3.5 show the results when we have k1 = 100, k−1 = 1, k′2 =

10, β = 3.2 and stot = 0.1. These parameters were chosen to replicate the results

presented by Ollis. By choosing the k1 to k−1 ratio to be large relative to k2(x), we
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Figure 3.4: Results when the full system is solved with k1 = 100, k−1 = 1, k′2 = 10,
β = 3.2 and stot = 0.1.
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Figure 3.5: Results when the QSSA system is solved with k1 = 100, k−1 = 1, k′2 =
10, β = 3.2 and stot = 0.1.

have that the surface reaction will be rate-limiting as opposed to the adsorption

process. Note that in this case, choosing stot = 0.1 will limit the amount of reactant

able to bind to reaction sites. Furthermore, β and k′2 are chosen to ensure that
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k2(x) is much larger at x = 0 than at x = 1. The chosen parameter regime is

representative of all regimes where the adsorption/desorption process is not the

rate-limiting step, and k2(x) varies significantly from x = 0 to x = 1. Figure 3.4

shows the results when the full system is solved and Figure 3.5 shows the results

when the QSSA system is solved. The first plot of both figures shows that at

x = 0, u(x, t) decreases far more quickly than at x = 1; this is not surprising when

looking at how k2(x) varies with x. In this case k1 is very large in comparison to

k−1 and k2, hence molecules of reactant will be very quickly adsorbed onto reaction

sites. Once the reactant is adsorbed onto sites, the rate of reaction will be limited

by the reaction rate k2, which is why we see a significant difference between the

overall reaction rate at x = 0 and x = 1.

Using (2.18) we can calculate ǫ for each set of parameters used. For the first

set of parameters used (Figures 3.4 and 3.5), ǫ(x) ranges from 0.099 to 0.11, where

ǫ is dependent on x due to k2 varying with x. Hence, in this parameter regime, we

would expect the QSSA to be an accurate approximation. Our results show that

there is very little difference between the two sets of results to plotting accuracy.

The parameters used during this simulation were chosen to replicate the dis-

crete prediction made by Ollis (as shown in Figure 3.2). As the QSSA is valid for

this regime we must have that (3.5) is a valid approximation. As k1u is signifi-

cantly larger than k−1 and k2(x) throughout the domain for the majority of the

reaction, we have, from (3.5), that

∂u

∂t
≈ −k2(x)stotu = −k′2I0stot exp(−βx)u.

Hence, the reduction of u is controlled by k2(x), where k2(x) decreases as x in-

creases. For this set of parameters we have demonstrated that our continuous

model predicts the same first-order reduction of the total amount of u as the

discrete model proposed by Ollis.

Figures 3.6 and 3.7 show the results when we are in an adsorption-limited
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Figure 3.6: Results when the full system is solved with k1 = 1, k−1 = 1, k′2 = 1000,
β = 3.2 and stot = 1.
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Figure 3.7: Results when the QSSA system is solved with k1 = 1, k−1 = 1, k′2 =
1000, β = 3.2 and stot = 1.

regime, with k1 = 1, k−1 = 1, k′2 = 1000, β = 3.2 and stot = 1. These parameters

were chosen such that k2(x) is large enough throughout the domain, relative to

the adsorption/desorption rate constants, to ensure that the adsorption process is
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rate-limiting throughout the domain. Note that, as stot is relatively large, it will

not play a role in determining the overall reaction rate. The following results are

representative of all parameter regimes where k2(x) is much larger than k1 and

k−1 throughout the domain and is not sensitive to small changes in parameters.

Figure 3.6 shows the results when the full system is solved and Figure 3.7 shows

the results when the QSSA system is solved. Note that the fifth plot of Figure 3.6

shows wave against t for t ranging from 0 to 0.5 as opposed to from 0 to 5. This

was done to demonstrate how quickly wave approaches zero.

The first plot of both figures shows that the profiles of u are almost flat through-

out the simulation. When the full system is solved, w(x, t) decreases rapidly and

remains zero for the remainder of the simulation. This is due to k2(x) being far

larger than both k1 and k−1 throughout the domain. In this regime, the fact that

k2(x) decreases as x increases, does not play a role in the overall reaction rate.

This is because it is the adsorption process which slows down the overall reaction.

For the second set of parameters (Figures 3.6 and 3.7) ǫ(x) ranges from 1.0×
10−3 to 2.4 × 10−2, and hence, we would expect the QSSA to be an accurate

approximation. As in the last case, our results show almost identical results when

the QSSA is and is not used. The final plot, of each figure, shows a very convincing

first-order fit of uave with respect to time.

As the QSSA is valid for this regime, (3.5) is a valid approximation. As k2(x)

is significantly larger than k1u and k−1 throughout the domain for the entirety of

the reaction, from (3.5) we have that

du

dt
≈ −k1ustot.

Hence, the overall reduction of u is first-order, with respect to u. We have demon-

strated that even in a completely different regime to the previous case, we still

predict a first-order reduction of u.

Figures 3.8 and 3.9 show the results when we have k1 = 5, k−1 = 1, k′2 = 0.1,
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β = 3.2 and stot = 1. These parameters were chosen to ensure that ǫ(x) is large for

all x considered. The following plots are merely one example of an instance where

the QSSA is not valid, there are numerous other regimes which show similar results.

Figure 3.8 shows the results when the full system is solved and Figure 3.9 shows

the results when the QSSA system is solved. The results are qualitatively similar

to the case shown in Figures 3.4 and 3.5 in that the reactions taking place at x = 0

are far quicker than the reactions taking place at x = 1. Similar to the previous

case, the plots of ln(uave) versus t show a fairly convincing first-order fit. However,

in this case there is a distinct difference between the full system results and the

QSSA system results. Although qualitatively the results are similar, quantitatively

they are significantly different. This is demonstrated in Figure 3.10, which shows

how uave differs when the full and QSSA systems are solved. The ǫ(x) values

corresponding to this set of parameters range from 1.73 to 1.79.
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Figure 3.8: Results when the full system is solved with k1 = 5, k−1 = 1, k′2 = 0.1,
β = 3.2 and stot = 1.

We have shown that the general model we introduced in Section 3.2 can be

applied to the problem described in Section 3.1. Our model agrees with the findings

made by Ollis (which agreed with experimental results) that the reduction of u
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Figure 3.9: Results when the QSSA system is solved with k1 = 5, k−1 = 1, k′2 = 0.1,
β = 3.2 and stot = 1.
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Figure 3.10: Comparison of uave versus t when the full system and QSSA system
are solved with k1 = 5, k−1 = 1, k′2 = 0.1, β = 3.2 and stot = 1. In both plots the
solid lines show the results when the full system is solved, and the dashed lines
show the results when the QSSA system is solved.

is approximately first-order. This was the case for all three cases considered.

However, our general model shows that there are different regimes where a first

order reduction of the total amount of u occurs. By choosing parameters such that

k2(x) does not play a role in the overall reaction rate we were able to demonstrate

that a fundamentally different regime can still predict a first-order reduction in

concentration. Additionally, by choosing parameters such that ǫ(x) was large, we



Chapter 3 102

were able to show that the QSSA is not valid for all parameter regimes, meaning

that, for certain regimes, solving the full system is necessary.

3.3 Oxygen diffusion in an indicator/polymer ma-

trix

Modified-atmosphere packaging (MAP) is a method of packaging which decreases

the oxygen content of a package by flushing the package volume with nitrogen or

carbon dioxide. It is a common technology used by both the wholesale and retail

food packaging industry due to its ability to prolong the shelf-life of foods by a

factor of 3-4 times that in air [40].

Current methods of detecting and monitoring the oxygen concentration in food

packaging are expensive and require the package to be destroyed [46]. Oxygen

indicators placed inside a food package can monitor the presence of oxygen within

the package. One possible solution is the use of UV or visible light activated redox

indicators which change colour in the presence of oxygen. This gives a cheap

and easy way of determining whether a food substance within a package has been

exposed to oxygen since it has been packaged.

Although considerable research has focused on the development and charac-

terisation of indicators, the embedding of such indicators has not been sufficiently

examined [46]. Oxygen indicators are often contained in sachets or tablets which

act as oxygen scavengers. However, oxygen scavengers have to be stored under

anaerobic conditions and are relatively expensive. Integrating oxygen indicators

into polymer foils could enable cheap, large-scale production of food packages

which can detect the presence of oxygen.

Marek et al. [46] consider the use of oxygen indicators as a time-monitoring

sensor. Such an indicator changes colour irreversibly once exposed to oxygen. This

not only shows that a package has been damaged, and hence exposed to oxygen,



Chapter 3 103

but shows how long a package has been exposed to oxygen. Oxygen passes through

a diffusion channel within the package causing a colour change after a desired time

(which will depend on the shelf-life of the product).

The proposed oxygen sensor is based on methylene blue (MB) and riboflavin.

Both riboflavin and MB are dissolved in water where they both exist in an oxidised

state, which we will refer to as Rb+ and MB+, respectively. The overall system is

green due to the colour of MB+ (blue) and Rb+ (yellow). The system is activated

by UV-light irradiation. The riboflavin acts as an electron donor towards MB

resulting in the colourless leuco methylene blue (LMB) and the oxidised form of

riboflavin (which is yellow, as is the overall system at this stage). In the presence

of oxygen, LMB is oxidised back to MB, which will result in a green colour of the

overall system. Hence, the system will be yellow if no oxygen is present in the

system and green if oxygen is present.

3.3.1 A model for reaction-diffusion kinetics in a polymer

film

Marek et al. [46] present a model describing the simultaneous diffusion of oxygen

and reaction between oxygen and LMB. Oxygen diffusion coefficients and kinetic

parameters were determined experimentally. Marek et al. were able to demon-

strate that their proposed model could accurately replicate experimental results.

In this section we will present a numerical method which could be used to solve the

system of equations arising from the model proposed by Marek et al. After demon-

strating that our proposed method can accurately replicate the results presented

by Marek et al., we perform simulations to determine how the initial reaction rate

will vary with film thickness for this particular system.

It is assumed that the polymer film has a rectangular geometry, as shown in

Figure 3.11, with oxygen diffusing into the system at both sides. Hence, it is

assumed that the system is symmetrical which allows us to consider only half the
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total domain.

O2 O2

x = Lx = 0 x = 2L

Figure 3.11: Model of oxygen diffusing into a water-swollen polymer film from two
sides. The oxygen can penetrate the film only from the surface in x-direction at
x = 0 and x = 2L [46].

Marek et al. [46] have proposed the following model which describes the con-

sumption of diffusing oxygen by the oxidation of LMB. By Fick’s second law, the

change in oxygen concentration with respect to time is given by

∂[O2]

∂t
= D

∂2[O2]

∂x2
− k[O2]

p[LMB]m,

where x represents position, t represents time, [O2] represents the concentration

of O2, [LMB] represents the concentration of LMB, k represents a reaction rate

constant, D represents the diffusion coefficient of oxygen in a polymer matrix, p

is the order of reaction with respect to oxygen concentration and m is the order

of reaction with respect to LMB concentration. When considering the change in

concentration of LMB and MB with respect to time, it is assumed that neither
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diffuse throughout the domain, hence we have

∂[LMB]

∂t
= −k[O2]

p[LMB]m = −∂[MB]

∂t
,

where [MB] represents the concentration of MB. In this case MB is the product

being formed by the system.

Initially, it is assumed that the oxygen concentration in the film is zero every-

where except at the film surface where the concentration remains equal to [O2]0.

Hence, at x = 0 we have

[O2](0, t) = [O2]0.

At the middle of the film, a no-flux boundary condition is assumed due to the

system being symmetric. Hence, at x = L (where L represents half of the total

film thickness) we have
∂[O2]

∂x
(L, t) = 0.

It is also assumed that initially [LMB](x, 0) = [LMB]0 everywhere except at x = 0,

where any LMB has been completely converted to MB. Similarly, [MB](x, 0) = 0

everywhere except at x = 0 where [MB](0, 0) = [LMB]0.

The system is therefore modelled by the following equations







∂[O2]

∂t
= D

∂2[O2]

∂x2
− k[O2]

p[LMB]m, 0 < x < L,

[O2](0, t) = [O2]0,

∂[O2]

∂x
(L, t) = 0,

[O2](x, 0) = 0, 0 < x ≤ L,

(3.7)
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





∂[LMB]

∂t
= −k[O2]

p[LMB]m, 0 ≤ x ≤ L,

[LMB](0, 0) = 0,

[LMB](x, 0) = [LMB]0, 0 < x ≤ L,

(3.8)







∂[MB]

∂t
= k[O2]

p[LMB]m, 0 ≤ x ≤ L,

[MB](0, 0) = [MB]0,

[MB](x, 0) = 0, 0 < x ≤ L.

(3.9)

As [MB] is only present in (3.9), it does not play a role in the evolution of [O2] or

[LMB].

This system is similar to the model introduced in Section 3.2 in that reactions

are taking place throughout the domain. However, in this case we do not have

adsorption/desorption taking place and we now have two reactants which are re-

quired to react together to form products. The reaction is also non-linear due to

[O2] and [LMB] being raised to the power of p and m, respectively.

3.3.2 Nondimensionalisation

We nondimensionalise (3.7), (3.8) and (3.9) using the following scaling:

t̂ =
t

T
, x̂ =

x

L
, u =

[O2]

[LMB]0
,

w =
[LMB]

[LMB]0
, v =

[MB]

[LMB]0
, k̂ = T

[LMB]p+m
0

[LMB]0
k,
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u0 =
[O2]0

[LMB]0
, v0 =

[MB]0
[LMB]0

,

where we let the characteristic time be T = L2

D
. Hence, our nondimensional version

of the system is given by







∂u

∂t
=
∂2u

∂x2
− kupwm, 0 < x < 1,

u(0, t) = u0,

∂u

∂x
(1, t) = 0,

u(x, 0) = 0, 0 < x ≤ 1,

(3.10)







∂w

∂t
= −kupwm, 0 ≤ x ≤ 1,

w(0, 0) = 0,

w(x, 0) = 1, 0 < x ≤ 1,

(3.11)







∂v

∂t
= kupwm, 0 ≤ x ≤ 1,

v(0, 0) = v0,

v(x, 0) = 0, 0 < x ≤ 1.

(3.12)

where the hat notation has been dropped for convenience. In the following section

we will present the numerical method which is used to solve the nondimensional

system (3.10) - (3.12). For all simulation results which we present in this chapter,

the dimensional system is converted into a nondimensional form, before being

converted back to the original dimensional form to present the results.
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3.3.3 Numerical method

A finite difference method is used to find a numerical solution to the nondimen-

sional system of equations (3.10) - (3.12). We will not include details of how v

is approximated as it is very similar to how w is approximated. We divide the

nondimensional spatial domain (0, 1) into N equal intervals, and the temporal

domain (0, T ) into NT equal intervals, with mesh spacings ∆x and ∆t, respec-

tively. We will find approximations of u and w at all grid points, denoted by

uni = u(i∆x, n∆t) and wn
i = w(i∆x, n∆t), respectively.

We use a forward Euler method to discretise the non-linear reaction term of

(3.10) and a Crank-Nicolson method to discretise the diffusion term, which gives

un+1
j − unj
∆t

=
1

2(∆x)2

(

(un+1
j+1 −2un+1

j +un+1
j−1 )+(unj+1−2unj +unj−1)

)

−k(unj )p(wn
j )

m,

for j = 0, 1, 2, ..., N and n = 0, 1, 2, ..., NT − 1. If we let V = ∆t
2(∆x)2

we have

−V un+1
j+1 +(1+2V )un+1

j −V un+1
j−1 = V unj+1+(1−2V )unj +V u

n
j−1−∆t k(unj )

p(wn
j )

m.

(3.13)

At x = 0 we have that u = u0. At x = 1, i.e. x = xN , we have a zero flux boundary

condition. Using a central difference approximation at x = 1 we discretise in the

following way:
unN+1 − unN−1

2∆x
= 0 ∀n,

where unN+1 is a ghost node which will not appear explicitly in the numerical

scheme. Hence

unN+1 = unN−1 ∀n. (3.14)

Evaluating (3.13) with j = N and making use of (3.14) gives

(1 + 2V )un+1
N − 2V un+1

N−1 = (1− 2V )unN + 2V unN−1 −∆t k(unN)
p(wn

N)
m. (3.15)
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Hence, using (3.13) and (3.15), we can solve for u[n+1,1], which represents our first

approximation of u at the forward time step.

We now discretise (3.11) using a forward Euler method, which, after rearrang-

ing, gives

wn+1
j = wn

j −∆t k(unj )
p(wn

j )
m. (3.16)

Hence, (3.16) can be solved for wn+1
j at all grid points. We will refer to this initial

estimate as w
[n+1,1]
j . As we now have estimates of u and w at the forward time

step, we discretise both (3.10) and (3.11) using a Crank-Nicolson method. Using

u[n+1,1] and w[n+1,1] as an approximation of un+1 and wn+1, respectively, a revised

discretisation of (3.10) is given by

− V un+1
j+1 + (1 + 2V )un+1

j − V un+1
j−1 = V unj+1 + (1− 2V )unj + V unj−1

− ∆t

2

(

k(unj )
p(wn

j )
m + k(u

[n+1,1]
j )

p
(w

[n+1,1]
j )

m
)

. (3.17)

Similarly, a revised discretisation of (3.15) is given by

(1 + 2V )un+1
N − 2V un+1

N−1 = (1− 2V )unN + 2V unN−1−
∆t

2

(

k(unN)
p(wn

N)
m + k(u

[n+1,1]
N )

p
(w

[n+1,1]
N )

m
)

. (3.18)

We now solve (3.17) and (3.18) for an improved estimate of un+1, denoted by

u[n+1,2]. Similarly, a revised discretisation of (3.8) is given by

wn+1
j = wn

j −
∆t

2

(

k(unj )
p(wn

j )
m + k(u

[n+1,2]
j )

p
(w

[n+1,1]
j )

m
)

, (3.19)

which can be solved for an improved estimate of wn+1, denoted by w[n+1,2].
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3.3.3.1 Accuracy of the numerical scheme

We will now perform convergence tests using the method described in the previous

section. Our approach of calculating a reference solution and using this reference

solution to estimate the error in other calculations is the same as the approach

outlined in Section 2.1.8.5. We will consider two methods of solving the system of

equations (3.7) and (3.8).

• Method 1 - Initially, solve (3.13) and (3.15) for u[n+1,1] and solve (3.16) for

w
[n+1,1]
j . Using these initial estimates, calculate u[n+1,2] using (3.17) and

(3.18) and then calculate w[n+1,2] using (3.19).

• Method 2 - Solve (3.13) and (3.15) for u[n+1,1] and solve (3.16) for w
[n+1,1]
j .

For each number of time steps chosen, and for each method, we compared u and

w at the final time step with the reference solution (calculated using Method 1)

at the final time step. The error in u is defined using (2.52), and the error in w is

defined in the same way.

For the convergence tests the following dimensional model parameters were

used: L = 100 µm, [O2]0 = 0.062 mol m−3, [LMB]0 = 0.31 mol m−3, D = 1.35 ×
10−11 m2s−1, k = 0.45 mol−1s−1, p = 1.2 and m = 0.8. These were the parameters

used in simulations carried out by Marek [46]. Note that the parameters were

converted into dimensionless form using the scalings given in Section 3.3.2 before

performing any convergence tests. For the convergence tests we used T = 300

throughout.

Figures 3.12 and 3.13 show the temporal convergence results when we apply

Method 1 with 1.28× 105 time steps for our most accurate reference solution. To

test the accuracy of our scheme, a range of time steps were used varying from 1600

to 1.28 × 104. For all simulations in this test, N = 200. The results show that,

for both u and w, Method 1 is second-order convergent where as Method 2 is only

first-order.



Chapter 3 111

ln(NT )
7 8 9 10

-24

-22

-20

-18

-16

-14

-12

2

1

1

1
ln(ENT

u ) Method 1

ln(ENT
u ) Method 2

Figure 3.12: Temporal convergence
results of u using Methods 1 and 2.
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Figure 3.13: Temporal convergence
results of w using Methods 1 and 2.

Figures 3.14 and 3.15 show the spatial convergence results when we apply

Method 1 with N = 500 to find our reference solution. To test the accuracy of our

scheme, N was varied from N = 10 to N = 80. For all simulations in this test,

NT = 1.28 × 105. The results show that, for both u and w, Method 1 and 2 are

both second-order convergent in space.
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Figure 3.14: Spatial convergence re-
sults of u using Methods 1 and 2.
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Figure 3.15: Spatial convergence re-
sults of w using Methods 1 and 2.

Similar to the QSSA system considered in the previous Chapter, we have to

solve for both u and w at least twice at each time step. Ideally we would only be

solving once each time step, however, by recalculating u and w once at each time

step we have demonstrated that Method 1 is second-order convergent in time and

space.
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3.3.4 Numerical simulations

3.3.4.1 Replicating existing results

To compare our predictions with those of Marek et al. [46] the model param-

eters used were as follows: L = 100 µm, [O2]0 = 0.062 mol m−3, [LMB]0 =

0.31 mol m−3, D = 1.35× 10−11 m2s−1, k = 0.45 mol−1s−1, p = 1.2 and m = 0.8.

These quantities were obtained from a combination of experiments and modelling.

All further simulations, along with the convergence tests presented in the previous

section, were performed using these parameters unless specifically stated other-

wise. For all simulations, the scaling covered in Section 3.3.2 was used to convert

dimensional parameters into a nondimensional form. As before, all results pre-

sented are in a dimensional form. For the simulation results presented in Sections

3.3.4 and 3.3.4.2 Method 1 was used with N = 100 and NT = 1× 104.

Figure 3.16 shows concentrations of LMB and O2 at ten uniform positions

(ranging from x = 10 µm to x = 100 µm), where the arrow indicates the smallest

x values ranging to the largest. Our numerical results are identical to those of

Marek et al. [46] to plotting accuracy. It is evident that the concentration of LMB

decreases far more quickly close to the film surface than in the middle of the film.

Similarly, the concentration of O2 increases far more rapidly at the film surface

than in the middle of the film. This is due to there being a constant supply of

O2 at the surface. Hence, in the middle of the film the increase in O2 is slowed

down by the need for molecules to diffuse across the film. Similarly, the decrease

in LMB is caused by a reaction between LMB and O2. Hence, as the supply of O2

is limited in the middle of the film, the decrease in concentration of LMB will also

be limited. It is clear from the plots presented that the diffusion of O2 determines,

at least to some extent, the overall rate of conversion of LMB to MB.

Marek et al. [46] have shown that their model can predict numerous experi-

mental results very well. By showing that we can replicate the predictions made

by Marek et al. we are in a position where the proposed model can be used to
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Figure 3.16: Concentration profiles of LMB and O2 plotted at ten uniform positions
ranging from x = 10 µm to x = 100 µm.

make further predictions.

3.3.4.2 Further results

In addition to the plots shown in Figure 3.16, the following figures were produced

using the same parameters. Figure 3.17 shows concentration profiles of O2, LMB

and MB at 20 different times ranging from t = 200 s to t = 4000 s. The arrows
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indicate how the profiles change with time. It appears that the diffusion process

limits the progress of the overall reaction, as the lack of oxygen able to transport

through the layer causes the reaction to happen far more quickly at x = 0 than at

x = L.

0 0.5 1

x 10
−4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x (m)

[O
2
]
m
o
l
m

−
3

0 0.5 1

x 10
−4

0

0.1

0.2

0.3

0.4

x (m)

[L
M
B
]
m
o
l
m

−
3

0 0.5 1

x 10
−4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x (m)

[M
B
]
m
o
l
m

−
3

t

t

t

Figure 3.17: Evolution of concentration profiles of O2, LMB and MB in equal time
increments from t = 200 s to t = 4000 s.
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Figure 3.18: Average concentrations of O2, LMB and MB against time produced
using the same parameters as Figure 3.16.

Figure 3.18 shows the average concentrations of O2, LMB and MB plotted

against time. We can see that the reaction is almost complete just after t = 2000 s

once LMB has been completely converted into MB. There is a slight increase in O2
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concentration after the conversion is complete which is due to oxygen continuing

to diffuse into the film until it is completely saturated.

3.3.4.3 Experimenting with film thickness

One aspect of this system which was not investigated by Marek et al. [46] was

the influence that film thickness has on the initial reaction rate. Like the previous

model in Chapter 2, there are several different parameter regimes which will display

typical behaviour. For example, if the rate of diffusion of oxygen throughout the

domain is slow in comparison to the rate of the reaction between O2 and LMB we

say the overall process is diffusion-limited. Alternatively, if the overall reaction is

slowed down by the reaction between O2 and LMB we say the overall process is

reaction-limited.

As before, we expect that in a diffusion-limited regime the initial reaction rate,

Ri will be inversely proportional to the film thickness squared, i.e.,

Ri ∝
1

L2
,

where we define Ri to be the rate at which the average concentration of product

is increasing, i.e.

Ri =
∂[MB]ave

∂t

∣
∣
∣
∣
t=0

,

where [MB]ave(t) =
∫ L

0
[MB](x, t) dx. Similarly, within an entirely reaction-limited

regime we expect the initial rate to be independent of film thickness.

During experiments carried out by Marek et al. [46] the film thickness used was

200 µm (equivalent to L = 10−4 m when performing simulations). We carried out

numerical simulations using L values ranging from 10−6 m to 10−3 m (correspond-

ing to ln(L) ranging from -13.8 to -6.5). We are mainly interested in the initial

reaction rate Ri of the increase of the average concentration of MB. There are a

number of ways of estimating Ri from simulation data. One common method is to

fit a straight line through data points close to t = 0 and measure the gradient of
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the line. We expect the average concentration of MB to tend to a specific value,

[MB]max. This is due to there being a limited amount of LMB which can be con-

verted into MB. We measure how long it takes for 10% of the final concentration

of MB to be formed and fit a straight line through the data corresponding to this

period of time. The gradient of this line gives an approximation to Ri. Note that

we choose to use 10% in this case because the production of MB (or destruction

of LMB) does not happen at a constant rate for the range of parameters which we

are considering.
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Figure 3.19: Plot of ln(Ri) against ln(L) with straight lines fitted through different
sets of data (LHS) and a plot showing the derivative of ln(Ri) with respect to ln(L)
(RHS) with L ranging from L = 10−6 m to L = 10−3 m.

Figure 3.19 shows simulation results when a wide range of L values are used.

The left hand plot shows ln(Ri) plotted against ln(L). For the three distinct

regimes, a best fit straight line is fitted to selected data points. The gradients of

the three lines show that there are three regimes where Ri ∝ 1
La and a = 0, 1 and

2. The second plot of Figure 3.19 shows the derivative of ln(Ri) with respect to

ln(L) plotted against ln(L). From this plot we can see the two extreme cases very

clearly, where minus the derivative of ln(Ri) is approximately equal to zero for

L small enough and equal to approximately two for L large enough. There also

appears to be an intermediate regime where minus the derivative is approximately
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equal to one, corresponding to an initial reaction rate inversely proportional to

film thickness.

The left hand plot of Figure 3.19 shows that, for the extreme cases, we see

the expected kinetics. For very small L we see that Ri is approximately constant.

In this regime, we have that diffusion of oxygen will be very quick relative to the

reactions taking place. Hence, throughout the regime, reactions will be occurring

at the same rate throughout the domain. As L is further decreased, the rate at

which reactions are taking place at each point in the domain will remain the same,

however, as L is decreasing there will be less space available for reactions to take

place at. Hence, we find that, the rate of production of MB is independent of L,

assuming L is small enough. For large values of L, Ri is approximately inversely

proportional to L2. This is typical of a diffusion-limited regime. Additionally,

similar to the resazurin case considered in Section 2.3.2, there appears to be a

region where Ri is inversely proportional to L.

To further investigate the intermediate region, where we have that Ri is ap-

proximately inversely proportional to L, we consider three films; L = 0.65× 10−4

m, L = 1.25× 10−4 m and L = 2.5× 10−4 m. The three films correspond to ln(L)

ranging from -9.68 to -8.29, which is part of the approximate region where Ri is

inversely proportional to L. Figure 3.20 shows the average concentration of MB

divided by the maximum average concentration against t for the three films con-

sidered. The figure shows that by increasing the film thickness it takes longer for

the average concentration to decrease. Figure 3.21 shows the total amount of MB

plotted against t for the same three films as Figure 3.20. This figure shows that,

for the three films studied, the rate at which the total amount of MB is increasing

is approximately independent of L. Recall that the rate at which MB is being

produced is the same as the rate that LMB is being destroyed. Hence, similar to

the resazurin case discussed in the previous chapter, the apparent 1
L
dependence is

due to the fact that the rate at which the total amount of LMB is being destroyed

remains constant, but by increasing L the total amount of LMB in the domain will
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increase. We have a situation where there is a finite amount of LMB which can be

converted into MB at any one time, so by increasing the total amount of LMB in

the system the rate at which the average concentration of LMB is decreasing will

have to decrease as L is increased.
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Figure 3.20: Simulations showing
[MB]ave
[MB]max

plotted against t for three dif-
ferent film thicknesses.
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Figure 3.21: Simulations showing
[MB]ave
[MB]max

plotted against t for three dif-
ferent film thicknesses.
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Figure 3.22: Simulations showing
[MB]ave
[MB]max

plotted against t for three dif-
ferent film thicknesses.
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Figure 3.23: Simulations showing
[MB]ave
[MB]max

plotted against t for three dif-
ferent film thicknesses.

Figures 3.22 and 3.23 show the same results as Figure 3.20 and Figure 3.21

plotted on alternative axes with t ranging from 0 to 15,000 s. These plots demon-

strate that by increasing the film thickness the total amount of MB produced will

increase. Additionally, in terms of the total amount of MB being produced, all

three films give very similar results until t equals approximately 550 s. At this
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point, for the thinnest film the total amount of MB produced is approaching the

maximum possible value. Between t = 0 and t = 2500 s we have the two thick-

est films give almost identical results until the second film reaches the maximum

amount of MB which that particular system can produce.

Figures 3.24 - 3.26 show concentration profiles of O2, LMB and MB for the

three different films considered. The first three figures show profiles which were

plotted at 20 uniform times ranging from t = 0 to t = 200 s. These figures

demonstrate that, for all three films, the behaviour of O2, LMB and MB is almost

identical. This suggests that, over the period of time studied, the reaction kinetics

are independent of film thickness in terms of total production of MB.

Figures 3.27 - 3.29 are similar to Figures 3.24 - 3.26, however in this case

the profiles are plotted at 20 uniform times ranging from t = 0 to t = 3, 000

s and the x-axes have been increased. These figures show that the kinetics for

all three films are very similar until the LMB at x = L starts to react with O2.

The concentration profiles of MB and LMB for the three films considered show

similar travelling wave type behaviour. It is this behaviour which causes the 1
L

dependence. We have that the waves of MB being produced are travelling at

approximately the same rate for all three films. However, because we are using

the average of MB to define the initial reaction rate, our results show that Ri is

approximately inversely proportional to L for this regime.

After initially replicating the results produced by Marek et al. [46] we were

able to use the proposed model and carry out further simulations. By performing

simulations over a wide range of L values we were able to show that there are

three distinct kinetic regimes and give reasons why the system is demonstrating

this kind of behaviour.
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Figure 3.24: Concentration profiles at 20 uniform times ranging from t = 0 to
t = 200 s with L = 0.65× 10−4 (m).
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Figure 3.25: Concentration profiles at 20 uniform times ranging from t = 0 to
t = 200 s with L = 1.25× 10−4 (m).
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Figure 3.26: Concentration profiles at 20 uniform times ranging from t = 0 to
t = 200 s with L = 2.5× 10−4 (m).
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Figure 3.27: Concentration profiles at 20 uniform times ranging from t = 0 to
t = 3000 s with L = 0.65× 10−4 (m).
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Figure 3.28: Concentration profiles at 20 uniform times ranging from t = 0 to
t = 3000 s with L = 1.25× 10−4 (m).
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Figure 3.29: Concentration profiles at 20 uniform times ranging from t = 0 to
t = 3000 s with L = 2.5× 10−4 (m).
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3.4 Reactant activated by diffusion of gas

The work in this section is motivated by preliminary experimental results for a sys-

tem where gas diffuses into a polymer film before reacting with a dye throughout

the film. The experimental results show that the initial reaction rate is approxi-

mately inversely proportional to the film thickness. The general model we present

in this chapter could be applied to such a system.

As shown in Figure 3.30, we consider a polymer film of thickness L lying on

a glass support. Molecules of reactant are homogeneously distributed throughout

the film. Molecules of gas continuously enter the film and diffuse throughout

the domain, reacting with molecules of reactant. The reactant in this case could

represent various substances, for example a dye.

Reactant

x = 0 x = L

Support

Diffusion
of gas

Figure 3.30: Diagram of the initial set-up showing how gas diffuses through a
polymer film.

3.4.1 Initial model

The model we propose in this section is similar to the model introduced in Section

3.2. In both cases we have an adsorption/desorption process taking place and

have reactions occurring throughout the domain. However, in this case we have



Chapter 3 123

two reactants in the system which are both adsorbing/desorbing and reacting

together. This makes the model more complicated than the model described in

Section 3.2.

We assume that the gas molecules can be in two states. Molecules are either

free to diffuse, denoted by UA, or they have been adsorbed and are ready to react,

WA. Similarly, reactant molecules are either free to diffuse, UB, or they have been

adsorbed and are ready to react, WB. We assume that the gas molecules are

adsorbed at the rate kA1 and desorbed at the rate kA−1. The reactant molecules can

be adsorbed at the rate kB1 and desorbed at the rate kB−1. We assume that

θA + θB + θE = 1, (3.20)

where θA = wA

stot
represents the fraction of sites occupied by gas molecules, θB = wB

stot

represents the fraction of sites occupied by reactant molecules, θE represents the

fraction of empty sites. Furthermore, wA represents the concentration of WA, wB

represents the concentration of WB and stot represents the concentration of the

total number of adsorption sites. In this case, reactant and gas molecules share

the same sites. If adsorbed gas molecules and adsorbed reactant molecules are

present at any reaction site they will react irreversibly to produce a product at the

rate k2.

We assume the following reaction scheme

UA + S
kA
1−→←−

kA
−1

WA : Gas adsorption/desorption

UB + S
kB
1−→←−

kB
−1

WB : Reactant adsorption/desorption
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WA +WB
k2−→ P : Creation of product,

where S represents unoccupied adsorption sites.

Note that the proposed reaction mechanism is very similar to the mechanism

proposed in Chapter 2. The adsorption/desorption process assumed for both gas

and reactant molecules is identical to the previous process. However, in this case,

we assume that there are adsorption sites throughout the domain as opposed to

purely existing at the photocatalyst surface. Hence for this system we have an

adsorption/desorption process going on throughout the domain for both gas and

reactant. Additionally, for products to be created both gas and reactant have to

be present at an adsorption site.

The mechanism is also similar to the model proposed by Marek et al. [46]

which we discussed in Section 3.3. However, there are substantial differences.

Firstly, in our proposed model we consider two diffusing reactants as opposed

to one stationary reactant and one diffusing reactant. Secondly, we consider an

adsorption/desorption Langmuir type mechanism throughout the domain whereas

Marek et al. [46] considers a constant reaction rate and includes parameters which

can define the order of the reaction with respect to the concentration of gas and

reactant.

We will define uA, uB and p as the concentrations of UA, UB and P , respectively.

For this particular model, uA, uB, wA, wB and p will all be dependent on x and

t. We will assume that molecules of UA are transported through the polymer film

via linear diffusion, hence, assuming the law of mass action kinetics we have

∂uA
∂t

=

Diffusion in polymer film
︷ ︸︸ ︷

DA
∂2uA
∂x2

−
Local adsorption
︷ ︸︸ ︷

kA1 θEstotuA +

Local desorption
︷ ︸︸ ︷

kA−1θAstot ,

∂wA

∂t
=

Molecules which are reacting
︷ ︸︸ ︷

−k2θAθBs2tot +

Local adsorption
︷ ︸︸ ︷

kA1 θEstotuA −
Local desorption
︷ ︸︸ ︷

kA−1θAstot ,
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where DA is the diffusion coefficient of the gas.

Using (3.20) and the fact that θA = wA

stot
and θB = wB

stot
we have that

∂uA
∂t

= DA
∂2uA
∂x2

− kA1 uA
(
stot − wA − wB

)
+ kA−1wA, (3.21)

∂wA

∂t
= kA1 uA

(
stot − wA − wB

)
− kA−1wA − k2wAwB. (3.22)

Similarly, for free and adsorbed reactant molecules we have

∂uB
∂t

= DB
∂2uB
∂x2

− kB1 uB
(
stot − wA − wB

)
+ kB−1wB, (3.23)

∂wB

∂t
= kB1 uB

(
stot − wA − wB

)
− kB−1wB − k2wAwB, (3.24)

where DB is the diffusion coefficient of the reactant.

Using the law of mass action kinetics we have the following equation for the

concentration of products p;
dp

dt
= k2wAwB.

3.4.2 Boundary and initial conditions

We assume that at x = L there is a continuous supply of gas molecules able to

diffuse through the polymer film. At x = 0 we again have a zero flux boundary

condition, hence the boundary conditions for uA are given by

∂uA

∂x

∣
∣
∣
∣
x=0

= 0 uA(L, t) = uBC
A ,

where uBC
A is a constant concentration which will determine how much gas is able

to enter into the system.

For the reactant we have zero flux boundary conditions at both ends of the

film (i.e. at x = 0 and x = L) due to the symmetry in the system. Hence, our
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boundary conditions are given by

∂uB

∂x

∣
∣
∣
∣
x=0

=
∂uB

∂x

∣
∣
∣
∣
x=L

= 0.

Before the reaction has commenced, the concentration of free gas molecules

will be zero everywhere, except at x = L where the concentration will equal uBC
A .

Initially we expect uB = uB0 and wB = 0, where uB0 represents the initial concen-

tration of reactant which is evenly distributed throughout the domain. However,

before any gas enters the system, we assume that reactant molecules are free to

adsorb and desorb until equilibrium is reached. We will describe exactly how the

equilibrium concentrations are calculated later in this chapter. Initially, we have

that wA(x, 0) = 0 and p(x, 0) = 0.

3.4.3 Nondimensionalisation

We nondimensionalise (3.21)-(3.24) using the following scaling:

t̂ =
t

T
, x̂ =

x

L
, ûA =

uA
uBC
A

,

ûB =
uB
uBC
A

, ŵA =
wA

uBC
A

, ŵB =
wB

uBC
A

, p̂ =
p

uBC
A

,

and we let our characteristic time be T = L2

DB
. Additionally, we have

k̂A1 = kA1 u
BC
A

L2

DB
, k̂A−1 = kA−1

L2

DB
, k̂2 = k2u

BC
A

L2

DB
,

k̂B1 = kB1 u
BC
A

L2

DB

, k̂B−1 = kB−1

L2

DB

, ŝtot =
stot
uBC
A

, D̂A =
DA

DB

.
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Once the hat notation has been dropped, the nondimensional versions of (3.21)-

(3.24) are identical to the dimensional versions, however due to our choice of scaling

we have eliminated the diffusion coefficient from (3.23). Note that all simulations

perfromed in Section 3.4 are nondimensional.

3.4.4 Pre-reaction concentrations

We assume that uB and wB are in equilibrium before the reaction begins. Hence,

before reactant and gas molecules can react together, adsorption and desorption of

reactant molecules will take place until both concentrations tend to their equilib-

rium values. Before the initial adsorption/desorption takes place we assume that

uB(x, 0) = uB0 and wB(x, 0) = 0. To calculate the equilibrium concentrations of

uB and wB, which we define as uBq and wBq, we set both ∂uB

∂t
and ∂wB

∂t
equal to

zero with k2 = 0 and wA = 0 (due to the reaction having not started at this point).

Hence we have
∂2uBq

∂x2
− kB1 uBq(stot − wBq) + kB−1wBq = 0.

Initially all reactant molecules are evenly distributed throughout the domain, since

the adsorption/desorption process will be the same throughout the domain we will

have that ∂uB

∂x
= 0, and hence

kB1 uBq(stot − wBq)− kB−1wBq = 0. (3.25)

As the reaction is yet to start, we must have that all dye molecules are either free

or adsorbed, so that

uB0 = uBq + wBq. (3.26)

Substituting (3.26) into (3.25) gives the following

uBq =
−(kB1 (stot − uB0) + kB−1) +

√

(kB1 (stot − uB0) + kB−1)
2 + 4kB1 k

B
−1uB0

2kB1
,
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where it can be shown that we must take the positive root otherwise we will have

a negative solution. By substituting uBq into (3.26) we can find wBq. These

equilibrium values become our initial conditions for uB and wB.

Hence we have the following system of equations







∂uA

∂t
= DA

∂2uA

∂x2
− kA1 uA

(
stot − wA − wB

)
+ kA−1wA, 0 ≤ x ≤ 1,

∂uA

∂x

∣
∣
∣
∣
x=0

= 0, uA(1, t) = 1, ∀t ≥ 0,

uA(x, 0) = 0, 0 ≤ x < 1,

(3.27)






∂wA

∂t
= kA1 uA

(
stot − wA − wB

)
− kA−1wA − k2wAwB, 0 ≤ x ≤ 1,

wA(x, 0) = 0, 0 ≤ x ≤ 1,

(3.28)







∂uB

∂t
=
∂2uB

∂x2
− kB1 uB

(
stot − wA − wB

)
+ kB−1wB, 0 ≤ x ≤ 1,

∂uB

∂x

∣
∣
∣
∣
x=0

= 0,
∂uB

∂x

∣
∣
∣
∣
x=1

= 0,

uB(x, 0) = uBq, 0 ≤ x ≤ 1,

(3.29)







∂wB

∂t
= kB1 uB

(
stot − wA − wB

)
− kB−1wB − k2wAwB, 0 ≤ x ≤ 1,

wB(x, 0) = wBq, 0 ≤ x ≤ 1.

(3.30)







∂p

∂t
= k2wAwB, 0 ≤ x ≤ 1,

p(x, 0) = 0, 0 ≤ x ≤ 1.

(3.31)
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3.4.5 Quasi-steady state assumption

As in the last model we can invoke the QSSA in an attempt to simplify our system.

This would entail setting (3.28) and (3.30) equal to zero which gives

wAQ =
kA1 uAstot − kA1 uAwBQ

kA1 uA + kA−1 + k2wBQ

, (3.32)

wBQ =
kB1 uBstot − kB1 uBwAQ

kB1 uB + kB−1 + k2wAQ

, (3.33)

where wAQ and wBQ represent the QSSA concentrations of wA and wB respectively.

By solving (3.32) and (3.33) simultaneously we can find expressions for wAQ

and wBQ in terms of uA, uB and various parameters. Hence, we are effectively

able to eliminate wA and wB from our system. However, unlike our previous

model, the QSSA concentrations wAQ and wBQ come from solving a complicated

quadratic equation and hence do not significantly simplify the overall system of

equations. Hence, unless further assumptions are made, invoking the QSSA for

this particular model does not significantly simplify our overall system or enable us

to do any significant analysis which would not be possible to do otherwise. Hence,

for this model we will focus on the full system of equations (3.27) - (3.30).

3.4.6 Measuring the initial reaction rate

We define the average concentration of product, p(t) as p̄(t) =
∫ 1

0
p(x, t)dx.We are

mainly interested in the initial rate of production of product. As in the previous

model, we measure how long it takes for 10% of the final product to be formed

and fit a straight line over this period of time. We define the gradient of this line

as our approximation to Ri.
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3.4.7 Numerical method

As for previous systems considered, we will use a finite difference method to find

a numerical solution to the systems of equations (3.27) - (3.31). We again divide

the spatial domain (0, 1) into N equal intervals, and the temporal domain (0, T )

into NT equal intervals, with mesh spacings ∆x and ∆t, respectively. We will

find approximations of uA, uB, wA, wB and p at all grid points, denoted by uA
n
i =

uA(i∆x, n∆t), uB
n
i = uB(i∆x, n∆t), wA

n
i = wA(i∆x, n∆t), wB

n
i = wB(i∆x, n∆t)

and pni = p(i∆x, n∆t), respectively.

Our approach for solving this system is similar to the approach used to solve

the full system in the resazurin case in Chapter 2. We initially approximate wA

and wB at the forward time step using a forward Euler method. These approxi-

mations are used for a Crank-Nicolson discretisation of (3.27) and (3.29). Once an

approximation of uA and uB have been found we can recalculate wA and wB using

a Crank-Nicolson method. As in the previous model this process can be repeated

a number of times until a sufficiently accurate solution is found.

We initially discretise (3.28) and (3.30) using a forward euler method. We

refer to these initial approximations of wA
n+1 and wB

n+1 as wA
[n+1,1] and wB

[n+1,1],

respectively. Hence we have

wA
[n+1,1]
j − wA

n
j

∆t
= kA1 uA

n
j (stot − wA

n
j − wB

n
j )− kA−1wA

n
j − k2wA

n
jwB

n
j ,

for j = 0, 1, 2, ..., N and n = 0, 1, 2, ..., NT − 1, which can be rearranged to give

wA
[n+1,1]
j = wA

n
j +∆t

(
kA1 uA

n
j (stot − wA

n
j − wB

n
j )− kA−1wA

n
j − k2wA

n
jwB

n
j

)
. (3.34)

We find a similar expression for wB
[n+1,1]
j given by

wB
[n+1,1]
j = wB

n
j +∆t

(
kB1 uB

n
j (stot − wA

n
j − wB

n
j )− kB−1wB

n
j − k2wA

n
jwB

n
j

)
. (3.35)
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Having found wA
[n+1,1] and wB

[n+1,1] we can now discretise (3.27) and (3.29) using

a Crank-Nicolson method.

We have the following discretisation of (3.27) where uA
[n+1,1] represents the

initial approximation to uA
n+1;

uA
[n+1,1]
j − uAn

j

∆t
=

DA

2(∆x)2

(

(uA
[n+1,1]
j+1 − 2uA

[n+1,1]
j + uA

[n+1,1]
j−1 ) + (uA

n
j+1 − 2uA

n
j + uA

n
j−1)

)

−1
2

(

kA1 uA
[n+1,1]
j (stot − wA

[n+1,1]
j − wB

[n+1,1]
j )− kA−1wA

[n+1,1]
j

+ kA1 uA
n
j (stot − wA

n
j − wB

n
j )− kA−1wA

n
j

)

,

for j = 0, 1, 2, ..., N − 1 and n = 0, 1, 2, ..., NT − 1. If we let VA = DA∆t
2(∆x)2

we have

−VAuA[n+1,1]
j+1 + (1 + 2VA+

∆t

2
kA1 (stot − wA

[n+1,1]
j − wB

[n+1,1]
j ))uA

[n+1,1]
j − VAuA[n+1,1]

j−1

= VAuA
n
j+1 + (1− 2VA−

∆t

2
kA1 (stot − wA

n
j − wB

n
j ))uA

n
j + VAuA

n
j−1

+
∆t

2
kA−1(wA

[n+1,1]
j + wA

n
j ). (3.36)

At x = 0 we have a zero-flux boundary condition. We again use a ghost node

approach, hence with j = 0 (3.36) gives

−2VAuAn+1
1 + (1 + 2VA+

∆t

2
kA1 (stot − wA

[n+1,1]
0 − wB

[n+1,1]
0 ))uA

n+1
0

= 2VAuA
n
1 + (1− 2VA−

∆t

2
kA1 (stot − wA

n
0 − wB

n
0 ))uA

n
0

+
∆t

2
kA−1(wA

[n+1,1]
0 + wA

n
0 ). (3.37)
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At x = 1 we have that uA = 1, hence with j = N − 1, (3.36) gives

(1 + 2VA+
∆t

2
kA1 (stot − wA

[n+1,1]
N−1 − wB

[n+1,1]
N−1 ))uA

[n+1,1]
N−1 − VAuA[n+1,1]

N−2

= (1− 2VA−
∆t

2
kA1 (stot − wA

n
N−1 − wB

n
N−1))uA

n
N−1 + VAuA

n
N−2

+
∆t

2
kA−1(wA

[n+1,1]
N−1 + wA

n
N−1) + 2VA. (3.38)

Hence, we can now solve (3.36), (3.37) and (3.38) for uA
[n+1,1]. By undertaking a

similar approach for uB we can find uB
[n+1,1] using the following discretisations

−VBuB [n+1,1]
j+1 + (1 + 2VB+

∆t

2
kB1 (stot − wA

[n+1,1]
j − wB

[n+1,1]
j ))uB

[n+1,1]
j − VBuB [n+1,1]

j−1

= VBuB
n
j+1 + (1− 2VB−

∆t

2
kB1 (stot − wA

n
j − wB

n
j ))uB

n
j + VBuB

n
j−1

+
∆t

2
kB−1(wB

[n+1,1]
j + wB

n
j ), (3.39)

where VB = ∆t
2(∆x)2

, for j = 0, 1, 2, ..., N and n = 0, 1, 2, ..., NT − 1. At x = 0 we

have a zero-flux boundary condition. We again use a ghost node approach, hence

with j = 0 (3.39) gives

− 2VBuB
n+1
1 + (1 + 2VB +

∆t

2
kB1 (stot − wA

[n+1,1]
0 − wB

[n+1,1]
0 ))uB

n+1
0

= 2VBuB
n
1 +(1−2VB−

∆t

2
kB1 (stot−wA

n
0 −wB

n
0 ))uB

n
0 +

∆t

2
kB−1(wB

[n+1,1]
0 +wB

n
0 ).

(3.40)

At x = 1 we have a zero-flux boundary condition. We again use a ghost node

approach, hence with j = N (3.39) gives

(1 + 2VB +
∆t

2
kB1 (stot − wA

[n+1,1]
N − wB

[n+1,1]
N ))uB

[n+1,1]
N − 2VBuB

[n+1,1]
N−1

= (1−2VB−
∆t

2
kB1 (stot−wA

n
N−wB

n
N))uB

n
N+2VBuB

n
N−1+

∆t

2
kB−1(wB

[n+1,1]
N +wB

n
N ).

(3.41)
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Hence, we can now solve (3.39), (3.40) and (3.41) for uB
[n+1,1].

We can now improve our initial approximations of wA
n+1 and wB

n+1 which

we will refer to as wA
[n+1,2] and wB

[n+1,2]. We discretise (3.28) and (3.30) using a

Crank-Nicolson method where uA
[n+1,1], uB

[n+1,1], wA
[n+1,1] and wB

[n+1,1] are used

as approximations to uA
n+1, uB

n+1, wA
n+1 and wB

n+1, respectively. Hence, we

have that

wA
[n+1,2]
j − wA

n
j

∆t
=

1

2

(

kA1 uA
[n+1,1]
j (stot − wA

[n+1,2]
j − wB

[n+1,1]
j )

− kA−1wA
[n+1,2]
j − k2wA

[n+1,2]
j wB

[n+1,1]
j

+ kA1 uA
n
j (stot − wA

n
j − wB

n
j )− kA−1wA

n
j − k2wA

n
jwB

n
j

)

,

which can be rearranged to give

wA
[n+1,2]
j =

f1
f2
, (3.42)

where

f1 =wA
n
j +

∆t

2

(

kA1 uA
[n+1,1]
j (stot − wB

[n+1,1]
j )

+ kA1 uA
n
j (stot − wA

n
j − wB

n
j )− kA−1wA

n
j − k2wA

n
jwB

n
j

)

,

and

f2 =1 +
∆t

2

(

kA1 uA
[n+1,1]
j + kA−1 + k2wB

[n+1,1]
j

)

.

Hence, we now have an improved approximation for wA
n+1
j . A similar approxima-

tion of wB
n+1
j can be found from

wB
[n+1,2]
j =

g1
g2
, (3.43)
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where

g1 =wB
n
j +

∆t

2

(

kB1 uB
[n+1,1]
j (stot − wA

[n+1,2]
j )

+ kB1 uB
n
j (stot − wA

n
j − wB

n
j )− kB−1wB

n
j − k2wA

n
jwB

n
j

)

,

and

g2 =1 +
∆t

2

(

kB1 uB
[n+1,1]
j + kB−1 + k2wA

[n+1,2]
j

)

.

Once uA, uB, wA and wB have been approximated at the forward time step, (3.31)

can be discretised using a Crank-Nicolson method, and rearranged, to give

p
[n+1,1]
j = pnj +

∆tk2
2

(

wA
[n+1,2]
j wB

[n+1,2]
j + wA

n
jwB

n
j

)

, (3.44)

for j = 0, 1, 2, ..., N and n = 0, 1, 2, ..., NT − 1. Note that p could have been

approximated at the forward time step earlier in the process using earlier approx-

imations of wA
n+1 and wB

n+1. However, using the updated approximations of

wA
n+1 and wB

n+1 will give a more accurate approximation of pn+1.

Hence, at this stage we set wA
n+1 = wA

[n+1,2], wB
n+1 = wB

[n+1,2], uA
n+1 =

uA
[n+1,1],uB

n+1 = wB
[n+1,1] and pn+1 = p[n+1,1] and proceed to the following time

step. In summary, we can use the following scheme to solve for uA
n+1, wA

n+1,

uB
n+1, wB

n+1 and pn+1 at each time step:

1. Calculate wA
[n+1,1] and wB

[n+1,1] using (3.34) and (3.35);

2. Calculate uA
[n+1,1] and uB

[n+1,1] using a Crank-Nicolson scheme by solving

the system of equations given by (3.36), (3.37) and (3.38) and (3.39), (3.40)

and (3.41);

3. Calculate wA
[n+1,2] and wB

[n+1,2] using (3.42) and (3.43);
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4. Calculate an approximation to pn+1 using (3.44) using the most recent ap-

proximations to wA
n+1 and wB

n+1, and proceed to the following time step.
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3.4.8 Accuracy of numerical scheme

We will define the error in the approximation of uA, uB , wA, wB and p as follows;

En
uA

= max{|uAn
j − uA(xj , tn)|, j = 0, 1, ..., N)},

En
uB

= max{|uBn
j − uB(xj , tn)|, j = 0, 1, ..., N)},

En
wA

= max{|wA
n
j − wA(xj, t

n)|, j = 0, 1, ..., N)},

En
wB

= max{|wB
n
j − wB(xj , t

n)|, j = 0, 1, ..., N)}.

En
p = max{|pnj − p(xj , tn)|, j = 0, 1, ..., N)}.

We will consider two methods

• Method 1 - Carry out one iteration of our algorithm at each time step. This

involves solving for uA
n+1 and uB

n+1 only once and solving for wA
n+1 and

wB
n+1 twice, i.e. perform steps 1 to 3 of the algorithm at each time step.

• Method 2 - Solve once for wA
n+1 and wB

n+1 and solve for uA
n+1 and uB

n+1

only once before proceeding to the next time step, i.e. perform steps 1 and

2 of the algorithm at every time step.

Our approach to testing the accuracy of the proposed numerical scheme is very

similar to the approach outlined in Section 2.1.8.5. To test temporal convergence

we will calculate a reference solution using Method 1 with a large number of time

steps. We will then vary the number of time steps used and compare our solution

to the reference solution. For all simulations the number of grid points used will

remain constant.

We considered an intermediate regime and performed a similar temporal con-

vergence test to those performed previously. The results presented are very similar

to results presented in the previous chapter. The following parameters were used;

kA1 = kA−1 = kB1 = kB−1 = 1, k2 = 20, stot = 0.5, uB0 = 1, DA = 0.1, T = 5, N = 400.
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For our most accurate solution 1.6×106 time steps were used. To test the accuracy

of our scheme, a range of time steps from NT = 2 × 103 to NT = 1.6× 104 were

used.
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Figure 3.31: Temporal convergence results for uA, uB , wA , wB and p when the
kinetic parameters are chosen such that we are in an intermediate regime. All
plots show that Method 1 is second-order convergent in time.
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A spatial convergence test was also carried out. The following parameters were

used; kA1 = kA−1 = kB1 = kB−1 = 1, k2 = 20, stot = 0.5, uB0 = 1, DA = 0.1, T = 5,

NT = 9.6 × 104. For our most accurate solution we have N = 800. To test the

accuracy of our scheme a range of grid points from 10 to 80 were used.
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Figure 3.32: Spatial convergence results for uA, uB , wA and wB when the kinetic
parameters are chosen such that we are in an intermediate regime. All plots show
that Method 1 is second-order convergent in space.



Chapter 3 139

The results presented in Figures 3.31 and 3.32 clearly demonstrate that by using

Method 1 we are able to maintain second-order temporal and spatial convergence

when solving this system. The improved performance of Method 1, in comparison

to Method 2, justifies the slight extra cost which is required to perform this method.
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3.4.9 Typical concentration profiles

As in previous models there are a number of different parameter regimes. In this

case there will be a wider range of regimes due to the overall reaction rate being

dependent on the concentration of both reactant and gas. For example we now

have to consider the adsorption process of both gas and reactant. However, the

overall kinetics are similar to those presented in the previous chapter.

For this model we will present various plots when we choose parameters such

that we are in an intermediate parameter regime. That is, no single process will

be completely rate limiting. The following parameters were used throughout our

simulations; kA1 = kA−1 = kB1 = kB−1 = 1, k2 = 20, stot = 0.5, uB0 = 1, DA = 0.1, T =

25. In this case we have chosen DA to be relatively small to ensure we are in a

regime where diffusion of gas influences the overall reaction kinetics. However, the

rest of the parameters chosen are not large enough to ensure that the system is

entirely limited by the diffusion of gas. The results presented in this section are

not sensitive to small changes in the parameter values used. Note that, there are

several other regimes which will give substantially different results. As we are now

considering two different reactants in the one system, there are a wider range of

possible regimes. When solving the numerical system Method 1 was used with

N = 50 and NT = 8.6× 104.

Figure 3.33 shows concentration profiles of uA, uB, wA, wB and p plotted at

10 uniform times ranging from t = 0 to t = 25. The first plot shows that gas

molecules are diffusing from x = 1 throughout the domain, and the concentration

is tending to 1 throughout. The second plot demonstrates that close to x = 1 there

is more gas being adsorbed than at x = 0. Due to the fact that gas molecules have

to travel across the domain, at x = 0 the adsorbed concentration of gas is less.

Similar to uA, wA tends to 1. The third plot shows that uB profiles remain fairly

flat throughout the reaction. This is not surprising considering that the initial

profile is completely flat, and we expect molecules to be adsorbed/desorbed at
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Figure 3.33: Concentration profiles of uA, uB, wA, wB and p at 10 uniform times
ranging from t = 0 to 25 when parameters are chosen such that we are in an
intermediate regime.

roughly the same rate throughout the domain. From the fourth plot we can see

that the adsorbed concentration of reactant decreases more quickly at x = 1 than
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x = 0. This is due to the increased concentration of wA being able to react with

wB close to x = 1. The final plot shows that the product forms more quickly at

x = 1 than x = 0 and that the final concentration of p is significantly larger at

x = 1 than x = 0.
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Figure 3.34: Average concentrations of uA, uB, wA, wB and p plotted against time
when parameters are chosen such that we are in an intermediate regime.

Figure 3.34 shows average concentrations of uA, uB, wA, wB and p plotted

against time. From these plots we can see that, although the increase in uA and

wA is slightly different, the decrease in uB and wB does not look unlike the plots

presented in the previous chapter. Similarly, the production of product look fairly

similar to previous systems.

3.4.10 Experimenting with film thickness

As in previous models, we are interested in how Ri varies with L, where Ri is

defined in Section 3.4.6. Using the nondimensional scalings given in Section 3.4.3,

we are able to redefine our parameters such that we are always solving over an

x region ranging from 0 to 1. This simply means that we rescale our parameters

appropriately before numerically solving the system. To present our results we

scale all parameters back to their original form. For each simulation, Method 1

was used with 20 grid points and 2.5× 106 time steps.

Both plots of Figure 3.35 show the results when ln(L) is varied from approxi-
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Figure 3.35: The left hand plot shows how ln(Ri) varies with ln(L) and the right

hand plot shows how d ln(Ri)
d ln(L)

varies with ln(L). Both plots show that there are
three distinct regions.
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Figure 3.36: The three plots show simulation results when we have L = 13, L = 26
and L = 52. All three plots show profiles of p(x, t) plotted at 10 uniform times
ranging from t = 0 t = 150. The x-axis in each plot corresponds to x = L− 2 to
x = L.

mately -6 to 7. The first plot shows ln(Ri) plotted against ln(L). For the smallest L

values considered, Figure 3.35 shows that the initial reaction rate is approximately

constant, whereas for the largest values of L considered, the initial reaction rate is

approximately proportional to 1
L2 . These extreme parameter regimes are similar
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Figure 3.37: Plot of p̄(t) against t for L = 13, L = 26 and L = 52. The plot
demonstrates that as L is increased, it takes longer for p̄(t) to reach 0.1.

to the Marek case discussed in Section 3.3.4.3. There is an intermediate regime

where we have that Ri is approximately proportional to L−0.72. Note that this is

different to previous models where we found distinct regimes where Ri is approx-

imately proportional to L−1. The second plot of Figure 3.35 reinforces the fact

that there are three distinct regions for the range of L values we have considered.

Although in this case we do not have a clear 1
L

dependence on the initial

reaction rate, from the second plot of 3.35 we can see that there is a small region

where we would expect the initial reaction rate to be inversely proportional to

L. We consider three different films where L = 13, 26 and 52 (corresponding to

ln(L) values of approximately 2.6, 3.3 and 4.0, respectively). Figure 3.36 shows

profiles of p(x, t) plotted at 10 uniform times ranging from t = 0 to t = 150 for

the three different films considered. For each film, the plots presented focus on

the increase in p(x, t) close to the right hand boundary. The plots show that, the

production of p is very similar across the three films. Hence, the rate that the total

amount of product is being produced is constant for this regime; however, as we

are considering the average of p when calculating Ri, we have that Ri is inversely

proportional to L. This is illustrated in Figure 3.37, which shows that the average

concentration of product increases less quickly for larger values of L. However, this
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Figure 3.38: Concentration profiles of uA, uB, wA, wB and p at 10 uniform times
ranging from t = 0 to t = 25 when parameters are chosen such that we are in an
intermediate regime with L = 26.

behaviour is only observed for a very small range of L values. When we decrease

L below 13, the film is not thick enough to ensure that diffusion of reactant is

slow enough to ensure that what happens at the boundary is independent of film

thickness. Hence, we do not see a wider range of L values where Ri is inversely

proportional to L. The reason behind the distinct region where Ri is approximately
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proportional to -0.72 is not clear.

Figure 3.38 shows concentration profiles of uA, uB, wA, wB and p plotted at

10 uniform times ranging from t = 0 to t = 150 with L = 26. For this particular

regime, we have that the constant supply of UA is allowing a continual supply of

WA at x = L. Due to the relatively fast rate of diffusion of UB, relative to UA, the

amount of WB at the boundary is continually replenished to allow the reaction to

continue close to x = L. As the reaction is happening close to x = L, varying L

does not have an influence on the rate at which the total amount of P is increasing,

which is why we have the result of Ri being approximately inversely proportional

to L for a small region of L values.

3.5 Conclusions

In this chapter we have considered a number of systems where reactions take place

throughout the domain. We devised a general model which we initially applied

to a simple model proposed by Ollis [67]. We were able to replicate the results

presented by Ollis. Additionally, we were able to show that there is a parameter

regime outwith the case considered by Ollis where the same qualitative results can

be observed. We also considered the applicability of the QSSA for this system and

were able to show that, although for two cases the QSSA gave very similar results

to the full system, the QSSA is not valid universally for this system.

In Section 3.2.3 we were able to replicate results presented by Ollis, which par-

tially validated the general model we proposed. Further experimental data would

be useful to validate our model in a range of different parameter regimes. For

example, we considered a regime where the adsorption process was significantly

quicker than the surface reaction rate. This was a regime that the simple Ollis

model could not replicate. This scenario could be explored experimentally by cre-

ating a system where the intensity of light at the photocatalyst surface is very low.

This would lead to a slow surface reaction rate, relative to adsorption/desorption
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process, and our model could potentially be used to model this system. Alternative

systems which are known to have a quicker adsorption rate than surface reaction

rate could be explored to further probe our proposed model.

By replicating the numerical results presented by Marek et al. [46] we were

able to use this previously proposed model to experiment with film thickness. We

were able to demonstrate that there is range of L values where the initial reaction

rate was approximately proportional to 1
L
. As in the previous chapter, we gave a

suggestion as to why this may be the case. Our results could be further validated

by experiments examining how varying the film thickness influences the reaction

rate. In particular, if experiments focused on films ranging from extremely thin to

extremely thick films we may be able to validate our identification of three distinct

regimes.

Finally we presented a general model which was motivated by informal exper-

imental results for a system where gas diffuses into a polymer film before reacting

with a dye throughout the film. For one particular set of parameters, like previous

systems, we explored how the initial reaction rate varied with the film thickness.

Although, unlike previous systems, there was not a distinct region where the initial

rate was inversely proportional to the film thickness, there was a small region of L

values where this behaviour was demonstrated. Interestingly, there was a regime

where the initial reaction rate was inversely proportional to the film thickness

raised to the power of 0.72. The reason for this was not clear.

Future work could further explore the reason behind this dependence. Addi-

tionally, a good set of experimental data would allow us to fit realistic parameters

to our proposed model. Performing experimental results over a range of films vary-

ing in thickness, as was done in chapter 2, would be extremely useful in validating

our proposed model.
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A kinetic model for the

photocatalysed removal of organic

pollutants

4.1 Introduction

Photocatalyzed films are self-cleaning in that the majority of organic pollutants

deposited onto a surface are readily mineralized by oxygen via the photocatalytic

process [58]. Ollis [67] has developed four simple reaction kinetics models for

photocatalyzed removal of carbonaceous and sulfur films on self-cleaning surfaces.

We consider three of these within this chapter; the other case considered by Ollis

was discussed in Section 3.1:

Case 1. Non-porous photocatalyst, non-porous transparent organic overlayer (e.g.

stearic, palmitic acids).

Case 2. Non-porous photocatalyst, non-transparent porous overlayer (e.g. sul-

fur).

Case 3. Non-porous photocatalyst, adjacent organic layer (e.g. soot).

148
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Ollis shows that his proposed models provide a good fit to published data available

for each system.

The systems considered in this chapter are similar to the resazurin case con-

sidered in Chapter 2. However, within this chapter, all systems considered involve

domains which either increase or decrease in size as a function of time. We de-

velop general models and apply them to three cases considered by Ollis. We will

investigate the accuracy of the QSSA as we did in previous chapters. As we are

proposing more general models, which make fewer assumptions than the models

proposed by Ollis, there is potential to apply our models to a far wider range of

systems than the simple models presented by Ollis.

4.2 Case 1: Non-absorbing film overlayer on a

photocatalyst

Catalyst

Film

O2

x = 0

x = h(t)

I = I0

I = I0

Figure 4.1: Diagram of the initial set-up of Case 1 (Ollis [67]) where a continuous
supply of oxygen enters a non-absorbing film layer on a photocatalyst support.

Ollis considers a non-absorbing film overlayer on a non-porous photocatalyst

support as shown in Figure 4.1. At one end of the film it is assumed that there is an

unlimited supply of oxygen, meaning that the concentration of oxygen at one end
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of the film remains constant throughout. Oxygen is free to diffuse throughout the

film layer. At the photocatalyst surface it is assumed that oxygen is adsorbed and

reacts with electron-hole pairs to form OH radicals. As the film is non-absorbing,

the intensity of light reaching the catalyst is assumed to be constant. Hence, it

is assumed that the rate at which bound oxygen molecules are converted to OH

radicals is constant. The OH radicals are then assumed to react with organic

molecules at the photocatalyst surface which results in the thinning of the film

overlayer and the release of CO2. We therefore assume the following reaction

mechanism at the photocatalyst surface

O2 + S
k1−→←−
k−1

O2S
k2−→OH+Products, (4.1)

where the notation used is similar to previous chapters and S represents surface

binding sites. This reaction is followed by the subsequent reaction between OH

radicals and organics

OH + Organics
k−→CO2 + Products, (4.2)

where k represents the rate at which CO2 and products are produced. Assuming

simple mass action kinetics the rate equation for (4.2) is given by

d[CO2 + Products]

dt
= k[OH][Organic]S,

where t represents time, k is a reaction rate constant, square brackets denote

concentrations and [Organic]S, specifically refers to the concentration of organic

directly at the photocalyst surface. We assume that this concentration remains

constant. This is due to the fact that as soon as any organic substance reacts at

the photocalyst surface, any remaining organic substance will instantly fill the gap

left by the organic which was involved in the reaction. This is what we assume
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causes the film thickness to decrease. Hence, we assume the following reaction

d[Organic]T
dt

= −k[OH][Organic]S,

where [Organic]T represents the total amount of organic substance in the system.

Hence, as we assume that the concentration of the organic at the photocatalyst

surface remains constant throughout the reaction, then we have that

d[Organic]T
dt

= −k̂[OH],

where k̂ is an effective rate constant. As it is assumed that the density ρ of the

organic substance within the film is constant, we have that ρh(t) = m[Organic]T

(where m is the molar mass of the organic substance), hence

ρ
dh(t)

dt
= −k̄[OH], (4.3)

where k̄ is an effective rate constant.

Ollis assumes that mass transfer of oxygen is not the rate limiting step in the

reaction. For thin films it is therefore assumed that the rate of oxygen diffusion is

rapid in relation to the rate of reaction at the photocatalyst surface. Hence, the

concentration of reactant (OH radicals) at the surface is assumed constant until

the film has disappeared completely. This assumption allows Ollis to simplify (4.3)

to give

ρ
dh(t)

dt
= −k0, (4.4)

where k0 is an effective rate constant and the film mass per unit surface area is

given by ρ times h(t). Integrating (4.4) with respect to t gives

h(t) = h(0)− k0t

ρ
.
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Multiplying by the total film area A and ρ gives

M(t) =M(0)− Ak0t,

where M(t) is the total mass of the film. Hence, Ollis predicts a zeroth-order

reduction in film thickness with respect to concentration of reactant. It follows

that the total film mass loss rate is also zeroth-order.

4.2.1 Experimental results

Two studies of multilayer carboxylic acid films (which appear to be non-porous)

show zeroth-order reduction of film thickness. Paz et al. [71] have published data

showing the integrated infra-red absorbance of stearic acid on TiO2/fused quartz

slides as a function of exposure to 365 nm light. It follows from the Beer-Lambert

law that absorbance is proportional to film thickness [83]. Hence, as the absorbance

is decreasing at an apparently constant rate, so is the thickness of the film. Hence,

the rate at which the film thickness is decreasing is zeroth-order. Roméas et al.

[75] have shown how the total concentration of palmitic acid decreases with time.

Ollis has shown that this data is approximately zeroth-order, and hence agrees

with the predictions obtained from the model.

4.3 Proposed model

We now present a general model which can be applied to the system discussed

in the previous section. Our model will make less assumptions than the model

presented by Ollis. Specifically, we will not assume that the transport of reactant

(oxygen in the previous example) is rapid in relation to the reaction at the photo-

catalyst surface. We will also consider a reaction mechanism at the photocatalyst

surface similar to the mechanism introduced in Section 2.1.1 to model the adsorp-

tion/desorption and subsequent conversion of reactant into product (equivalent to
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the conversion of oxygen into OH radicals from the previous example). Finally,

we will consider the reaction between the product at the surface and the organics

within the film. This reaction results in a reduction in film thickness.

Hence we present a generalisation of (4.1) and (4.2), given by

U + S
k1−→←−
k−1

W
k2−→P + Products,

P +Organic
k3−→Products, (4.5)

where U represents a reactant, which once transported across the domain, can be

adsorbed at the rate k1 onto a vacant surface reaction sites S to form a bound

species W . The bound species can then either desorb at the rate k−1, or alterna-

tively, if illuminated with sufficient photons, be converted into a product P at the

rate k2. This product P reacts with organics at the rate k3 to produce additional

products. This final reaction results in the film thickness reducing. This reaction

scheme is similar to those presented in the previous two chapters; however, in this

case there is an intermediate formed which goes on to form another product.

We let the film thickness be of length h(t) (as shown in Figure 4.1) and assume

that the concentration of reactant U (this would represent oxygen in the previous

section) is given by u(x, t). We will assume that molecules of U are transported

through the reactant layer via linear diffusion;

∂u

∂t
= D

∂2u

∂x2
, 0 < x < h(t), (4.6)

where D is a diffusion coefficient.

At x = 0 we will assume that there is a constant supply of reactant, which

is represented by u(0, t) = u0. At x = h(t) we assume the reaction mechanism
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described in (4.5), and hence

∂u

∂x

∣
∣
∣
∣
x=h(t)

=
1

D

(

− k1u(h(t), t)stot + (k1u(h(t), t) + k−1)w(t)

)

, (4.7)

where w(t) represents the concentration of adsorbed reactant, and (2.2) defines

how w(t) varies with time.

We will assume that prior to our system being illuminated, the reactant is free

to enter the system and adsorb/desorb from the photocatalyst surface before a

surface reaction occurs. As in Section 2.1.4, we can find pre-illumination concen-

trations uq and wq which we will make use of when defining our initial conditions

for u and w, respectively.

When finding the pre-illumination equilibrium concentrations we assume that

u and w are constant in time. Hence, by integrating the right hand side of (4.6)

we have that u(x, t) = ax+ b, where a and b are constants. At x = 0 we have that

u = u0 at all times. At x = h(0) we assume that u = uq. Hence, pre-illumination

(with k2 = 0) we have that

u(x, t) =

(
uq − u0
h(0)

)

x+ u0. (4.8)

We differentiate (4.8) with respect to x and equate to the boundary condition (4.7)

where, assuming we are in equilibrium, u(h(0), t) = uq, hence

uq − u0
h(0)

= − 1

D
(k1uqstot − (k1uq + k−1)wq). (4.9)

Assuming the system is in equilibrium we can find an expression for the equilibrium

concentration wq by setting our equation for dw
dt

(given by (2.2) in Section 2.1.1)

equal to zero (with k2 = 0), which gives

wq =
k1uqstot

k1uq + k−1

. (4.10)
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We can now solve (4.9) and (4.10) simultaneously for uq and wq. The process

is similar to our approach in Section 2.1.4. From this point forward we will as-

sume that t = 0 refers to a time where our system is already in pre-illumination

equilibrium.

In previous chapters we assumed that the rate of change of the concentration

of products p (equivalent to OH radicals from Section 4.2) at the photocatalyst

surface is directly proportional to w (as in (2.3)). However, in this case the product

P reacts with organics within the film. Therefore, by mass action kinetics we have

dp(t)

dt
= k2w(t)− k3p(t), (4.11)

where k3 is the reaction rate constant which dictates the rate at which the surface

product is reacting with organics. Following a similar argument to that presented

in the previous section we have the equivalent of (4.3) is given by

ρ
dh(t)

dt
= −k3p(t). (4.12)

As in the previous models we have considered, we can assume that the bound

surface species are in a quasi-steady state. This will lead to an alternative bound-

ary condition for u given by

∂u

∂x

∣
∣
∣
∣
x=h(t)

=
1

D

(

− k1k2stotu(h(t), t)

k1u(h(t), t) + k−1 + k2

)

. (4.13)

By setting dw
dt

= 0 we can solve (2.2) for the steady state concentration of w(t). In

this case we have that w and p are both intermediate concentrations, hence if we

apply the QSSA to both concentrations, we set (4.11) equal to zero and have

k2w(t) = k3p(t).

Hence, substituting the steady state concentration of w(t) into (4.12) gives the
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following

ρ
dh(t)

dt
= − k1k2stotu(h(t), t)

k1u(h(t), t) + k−1 + k2
.

The nondimensionalisation in this case is similar to the process outlined in

Section 2.1.2. However, in this case h0 will replace L in all scalings and we will

have to nondimensionalise ρ and k3 in the following way

ρ̂ =
ρ

ρ0
, k̂3 =

k3h0
2

D
,

where ρ0 represents the density of any film being considered. Otherwise, there

is no difference to the previous nondimensionalisation. Unless stated otherwise,

all equations are nondimensional. As before, we will drop the hat notation for

convenience.

The full system therefore evolves according to the equations







∂u

∂t
=
∂2u

∂x2
, 0 < x < h(t),

u(0, t) = 1,

∂u

∂x
(h(t), t) = −k1u(h(t), t)stot + (k1u(h(t), t) + k−1)w(t),

u(x, 0) = (1− uq)x+ uq, 0 ≤ x ≤ h(0),

dw

dt
= k1u(0, t)stot − (k1u(0, t) + k−1 + k2)w(t), w(0) = wq,

dp

dt
= k2w(t)− k3p(t), p(0) = 0,

(4.14)





ρ
dh

dt
= −k3p(t), h(0) = 1. (4.15)
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Similarly, when the QSSA is invoked we have







∂u

∂t
=
∂2u

∂x2
, 0 < x < h(t),

u(0, t) = 1,

∂u

∂x
(h(t), t) = − k1k2stotu(h(t), t)

k1u(h(t), t) + k−1 + k2
,

u(x, 0) = (1− uq)x+ uq, 0 ≤ x ≤ h(0),

(4.16)

{

ρ
dh

dt
= −

k1k2stotu(h(t), t)

k1u(h(t), t) + k−1 + k2
, h(0) = 1. (4.17)

4.4 Numerical method

The numerical method we propose is very similar to the method used to solve

the system presented in Section 2.1.8. Note that, although we initially consider

a contracting domain, the method of solving our systems is easily applied to an

expanding domain.

We will use a similar method to that outlined by Mackenzie and Mekwi [44].

We will present the following analysis assuming we are solving the full system of

equations; however, the method will be similar if the QSSA is invoked.

Let T > 0 and for each t ∈ [0, T ], Ωt be a time dependent domain in IR . We

shall use the notation

QT = {(x, t) ∈ IR2 : x ∈ Ωt, t ∈ (0, T )}.
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We consider the linear diffusion equation

∂u

∂t
− ∂2u

∂x2
= 0, (x, t) ∈ QT

u = (1− uq)x+ uq, x ∈ [0, h(0)], t = 0

u(0, t) = 1, t ≥ 0

∂u

∂x
(h(t), t) = −k1u(h(t), t)stot + (k1u(h(t), t) + k−1)w(t), t > 0.







(4.18)

Let At be a family of mappings, which at each t ∈ [0, T ] maps the point ξ of a

reference or computational domain Ωc, into the points of the domain Ωt at time t.

Then, for each t ∈ [0, T ]

At : Ωc → Ωt, x(ξ, t) = At(ξ).

We assume that At is bijective and Ωt = At(Ωc) is bounded. For a function

g : QT → IR defined on the physical domain, the time derivative in the reference

domain is

ġ ≡ ∂g

∂t

∣
∣
∣
∣
ξ

: QT → IR .

If u : QT → IR is regular enough, then by the chain rule

u̇ =
∂u

∂t

∣
∣
∣
∣
x

+ ẋ
∂u

∂x

∣
∣
∣
∣
x

,

where ẋ represents the ALE velocity. The diffusion equation of (4.18) in the

physical domain therefore takes the form

u̇− ∂2u

∂x2
− ẋ∂u

∂x
= 0, (x, t) ∈ QT . (4.19)
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By the chain rule,

uξ =
∂u

∂x
xξ,

which can be rearranged to give

∂u

∂x
=
uξ
xξ
. (4.20)

By the chain rule, differentiating (4.20) with respect to x gives

∂2u

∂x2
=

(
uξ
xξ

)

ξ

1

xξ
. (4.21)

Hence, by substituting (4.20) and (4.21) into (4.19) and multiplying by xξ, we can

rewrite the spatial derivatives in terms of the computational coordinate to get

xξu̇−
(
uξ
xξ

)

ξ

− ẋuξ = 0, (ξ, t) ∈ QC ,

where

QC = {(x, t) ∈ IR2 : x ∈ ΩC , t ∈ (0, T )}.

This is a non-conservative formulation and is the form that we will use when

proceeding with our numerical method.

Instead of solving the diffusion equations given in (4.14) and (4.16) we now

have to solve (4.19). Both u̇ and ẋ must be included in our numerical scheme to

account for the time dependent domain. Throughout each simulation we will use

a constant number of grid points, hence as h(t) decreases, ∆x will decrease (as

shown in Figure 4.2).

We will again use a finite difference method to find a numerical solution to the

systems of equations (4.14) (full system) and (4.16) (QSSA system). We divide

the spatial domain (0,h(t)) into N equal intervals, and the temporal domain (0, T )

into NT equal intervals with mesh spacings ∆x(t) and ∆t, respectively. We will

find approximations of u at grid points, denoted by uni = u(i∆x(t), n∆t). When
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h(tn+1)

h(tn)

∆t

∆xn

∆xn+1

0

t

x

Figure 4.2: An example of how h(t) changes at each time step and how the grid
changes to accommodate a contracting domain.

the QSSA is not invoked we will also approximate w at each time step, denoted by

wn = w(n∆t). Additionally, for both systems we will approximate p and h at each

time step, which will be denoted by pn = p(n∆t) and hn = h(n∆t), respectively.

To solve the full system (4.14) and the QSSA system (4.16), a Crank-Nicolson

scheme is proposed. A discretisation of (4.19) is given by

un+1
j − unj
∆t

−
(
xn+1
j − xnj
∆t

)
1

2

(
un+1
j+1 − un+1

j−1

2∆xn+1
+
unj+1 − unj−1

2∆xn

)

=
1

2

(
un+1
j+1 − 2un+1

j + un+1
j−1

(∆xn+1)2
+
unj+1 − 2unj + unj−1

(∆xn)2

)

,
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for j = 0, 1, 2, ..., N and n = 0, 1, 2, ..., NT − 1. If we let V n = ∆t
2(∆xn)2

we have

un+1
j+1

(

− xn+1
j − xnj
4∆xn+1

− V n+1

)

+ un+1
j

(

1 + 2V n+1

)

+ un+1
j−1

(
xn+1
j − xnj
4∆xn+1

− V n+1

)

= unj+1

(
xn+1
j − xnj
4∆xn

+ V n

)

+ unj

(

1− 2V n

)

+ unj−1

(

− xn+1
j − xnj
4∆xn

+ V n

)

.

(4.22)

At x = 0 we have that u remains constant, where un0 = 1 for all n. Evaluating

(4.22) at j = 1 and simplifying gives

un+1
2

(

− xn+1
1 − xn1
4∆xn+1

− V n+1

)

+ un+1
1

(

1 + 2V n+1

)

= un2

(
xn+1
1 − xn1
4∆xn

− V n

)

+ un1

(

1− 2V n

)

− xn+1
1 − xn1
4∆xn+1

− xn+1
1 − xn1
4∆xn

+ V n + V n+1.

(4.23)

How we proceed at this point depends on the system we are solving.

4.4.1 Solving the full system

At x = h(t) we have the boundary condition defined in (4.14), which we discretise

using a central finite difference approximation to give

unN+1 − unN−1

2∆xn
= −k1unNstot + (k1u

n
N + k−1)w

n, (4.24)

where unN+1 is a ghost node which does not appear explicitly in our numerical

scheme. Rearranging (4.24) gives

unN+1 = unN−1 + cnunN + dn,
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where cn = 2∆xnk1(w
n − stot) and dn = 2∆xnk−1w

n. Hence, evaluating (4.22) at

j = N and simplifying gives

un+1
N

(

1 + 2V n+1−cn+1
(
− xn+1

N − xnN
4∆xn+1

− V n+1
)
)

+ un+1
N−1

(

− 2V n+1

)

= unN

(

1− 2V n − cn
(
− xn+1

N − xnN
4∆xn

+ V n
)
)

+ unN−1

(

2V n

)

+dn
(
xn+1
N − xnN
4∆xn

+ V n

)

− dn+1

(

− xn+1
N − xn+1

N

4∆xn+1
+ V n+1

)

.

(4.25)

Our approach involves finding an initial estimate of wn+1 and using this esti-

mate to approximate pn+1, and ultimately to define how the boundary moves at

each time step. We will refer to this initial estimate of wn+1 as w[n+1,1]. We obtain

this estimate by discretising the differential equation defining dw
dt

from (4.14) using

a forward Euler method to give

w[n+1,1] = wn +∆t(k1u
n
Nstot − (k1u

n
N + k−1 + k2)w

n). (4.26)

A Crank-Nicolson discretisation of the differential equation defining dp
dt

from (4.14)

gives

p[n+1,1] =
pn + ∆t

2
(k2(w

[n+1,1] + wn)− k3pn)
1 + ∆tk3

2

. (4.27)

Discretising (4.15) using a Crank-Nicolson method gives

h[n+1,1] = hn +
∆t k3
2

(p[n+1,1] + pn). (4.28)

At this stage we can solve (4.22), (4.23) and (4.25) for an approximation of

un+1 which we will refer to as u[n+1,1]. Using this approximation we can correct

our approximation w[n+1,1], which we will refer to as w[n+1,2]. Discretising the

differential equation defining dw
dt

from (4.14) using a Crank-Nicolson method we
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have

w[n+1,2] = wn +
∆t

2

(

k1u
n
Nstot − (k1u

n
N + k−1 + k2)w

n

+k1u
[n+1,1]
N stot − (k1u

[n+1,1]
N + k−1 + k2)w

[n+1,1]

)

. (4.29)

We can now recalculate an approximation of pn+1 from (4.27) by replacing w[n+1,1]

with w[n+1,2].

In summary, we use the following scheme to solve our full system:

1. Approximate w[n+1,1] using a forward Euler method from (4.26);

2. Approximate p[n+1,1] using a Crank-Nicolson method from (4.27);

3. Calculate h[n+1,1] using a Crank-Nicolson method from (4.28) and create a

uniform grid over the new domain [0, h[n+1,1]];

4. Calculate u[n+1,1] using a Crank-Nicolson method by solving (4.22), (4.23)

and (4.25);

5. Calculate w[n+1,2] using a Crank-Nicolson method from (4.29) using the ap-

proximation u[n+1,1];

6. Calculate p[n+1,2] using a Crank-Nicolson method from (4.27) replacing w[n+1,1]

with w[n+1,2].

As in previous cases, we can perform an iterative process at each time step by re-

peating Steps 4 to 6 as many times as required. However, we will demonstrate that

the above algorithm is sufficient to maintain second-order temporal convergence.
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4.4.2 Solving the QSSA system

If the QSSA is invoked, at x = h(t) we have the boundary condition defined in

(4.13), which we discretise using a central finite difference approximation to give

unN+1 − unN−1

2∆xn
= − k1k2u

n
Nstot

k1unN + k−1 + k2
. (4.30)

Note that unN+1 is a ghost node which does not appear explicitly in our numerical

scheme. Rearranging (4.30) gives

unN+1 = unN−1 − 2∆xn
(

k1k2u
n
Nstot

k1u
n
N + k−1 + k2

)

.

Hence, evaluating (4.22) at j = N and simplifying gives

(

un+1
N−1 − 2∆xn+1

(
k1k2u

n+1
N stot

k1u
n+1
N + k−1 + k2

))(

− xn+1
N − xnN
4∆xn+1

− V n+1

)

+un+1
N

(

1 + 2V n+1

)

+ un+1
N−1

(
xn+1
N − xnN
4∆xn+1

− V n+1

)

=

(

unN−1 − 2∆xn
(

k1k2u
n
Nstot

k1u
n
N + k−1 + k2

))(
xn+1
N − xnN
4∆xn

+ V n

)

+unN

(

1− 2V n

)

+ unN−1

(

− xn+1
N − xnN
4∆xn

+ V n

)

. (4.31)

We linearise (4.31) by using unN as an approximation for un+1
N in the denominator

from the first line and hence we replace

k1k2u
n+1
N stot

k1u
n+1
N + k−1 + k2

with
k1k2u

n+1
N stot

k1unN + k−1 + k2
.
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This allows us to simplify (4.31) giving

un+1
N

(

1 + 2V n+1 − 2∆xn+1

(
k1k2stot

k1u
n
N + k−1 + k2

)(

− xn+1
N − xnN
4∆xn+1

− V n+1

))

+un+1
N−1

(

− 2V n+1

)

= −2∆xn
(

k1k2u
n
Nstot

k1unN + k−1 + k2

)(
xn+1
N − xnN
4∆xn

+ V n

)

+ unN

(

1− 2V n

)

+ unN−1

(

2V n

)

.

(4.32)

A forward Euler discretisation of the equation defining the evolution of h(t) from

(4.16) gives

h[n+1,1] = hn −∆t

(
k1k2u

n
Nstot

k1u
n
N + k−1 + k2

)

. (4.33)

We next produce a uniform grid covering the interval [0, h[n+1,1]] and solve (4.22),

(4.23) and (4.32) for an estimate of un+1 which we will refer to as u[n+1,1].

Having an estimate of u at the forward time step allows us to improve the

approximation of hn+1 using the following discretisation

h[n+1,2] = hn − ∆t

2

(
k1k2u

n
Nstot

k1unN + k−1 + k2
+

k1k2u
[n+1,1]
N stot

k1u
[n+1,1]
N + k−1 + k2

)

. (4.34)

After updating hn+1 using (4.34) we use u
[n+1,1]
N to replace

k1k2stot
k1unN + k−1 + k2

with
k1k2stot

k1u
[n+1,1]
N + k−1 + k2

in (4.31) and solve for an improved approximation

u[n+1,2]. As previously, this routine can be repeated as many times as required.

In summary, we can use the following scheme to solve our QSSA system

1Q. Approximate hn+1 using a forward Euler method given in (4.33) and create a

new grid;

2Q. Calculate u[n+1,1] using a Crank-Nicolson method by solving (4.22), (4.23) and

(4.32);

3Q. Calculate h[n+1,2] using a Crank-Nicolson method given in (4.34) and create a
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new grid;

4Q. Calculate u[n+1,2] using a Crank-Nicolson method by solving (4.22), (4.23) and

(4.32) using u
[n+1,1]
N .

4.4.3 Accuracy of the numerical scheme

We define the errors in the approximations as we did in (2.52) and (2.53) in Section

2.1.8.5. Our approach to testing temporal convergence will be very similar to the

previous method. However, in this case, as the size of the domain is dependent on

the solution at each time step, we have that the size of the domain possibly differs

depending on the size of time step used. For example, by taking fewer time steps

the solution will be less accurate, hence the approximation of how the domain is

changing will be less accurate.

Recall that when we previously tested for temporal convergence we would cal-

culate a solution using a large number of time steps and use this as our most

accurate solution. This allowed us to approximate the rate of convergence. We

will use the same approach in this case. From our most accurate solution we can

determine how the domain size h(t) changes with time. When testing the conver-

gence rates of u, w and p we will simply ensure that the domain is changing at the

same rate as the most accurate solution by using linear interpolation to determine

the size of domain at each time step. Hence, although we will solve for u, w and

p at each time step, we will not use these approximations to determine how the

domain is changing.

To approximate the convergence rate of h we perform a similar test to the one

described above. For this test we calculate h(t) in each simulation as opposed to

interpolating from the most accurate solution. Using the most accurate approxi-

mation of h(T ), we simply vary the number of time steps and compare h(T ) with

our most accurate solution in each case.

When solving the full system, Method 1 involves performing steps 1-6 of the
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algorithm whereas Method 2 involves performing steps 1-4 only. When solving

the QSSA system, Method 1Q involves performing steps 1Q to 4Q before repeating

steps 3Q and 4Q to calculate h[n+1,3] and u[n+1,3]. Method 2Q involves performing

steps 1Q to 4Q, and Method 3Q involves performing steps 1Q to 2Q.

We will choose parameters such that we are in an intermediate regime. The

following parameters were used during simulations to test temporal and spatial

convergence; stot = 1, k1 = 1, k−1 = 1, k2 = 1, k3 = 1, ρ = 1 and T = 3.

We initially test the temporal convergence rates when solving our full system.

For these simulations we have N = 200. For our most accurate solution we have

NT = 1.24×105. We compare this solution with solutions obtained when we vary

NT from 800 to 1.28 × 104. The results in Figures 4.3 - 4.6 show that Method 1

gives second-order temporal convergence when the full system is solved using this

particular set of parameters and Method 2 is only first-order convergent.

The results in Figures 4.7 - 4.10 show that we have second-order spatial con-

vergence when the full system is solved using Method 1 and Method 2. For all

simulations NT = 1.28×105. For our approximation to the exact solution N = 400

grid points were used. We compared this exact solution with the solution when

we varied N from 5 to 40. Note that we have chosen NT large enough to ensure

that there is little to no benefit of solving for un+1 more than once per time step.

This is true for both the full system and QSSA system.
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Figure 4.3: Temporal convergence re-
sults for u using Methods 1 and 2.
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Figure 4.4: Temporal convergence re-
sults for w using Methods 1 and 2.
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Figure 4.5: Temporal convergence re-
sults for p using Methods 1 and 2.
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Figure 4.6: Temporal convergence re-
sults for h using Methods 1 and 2.
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Figure 4.7: Spatial convergence re-
sults for u using Methods 1 and 2.
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Figure 4.8: Spatial convergence re-
sults for w using Methods 1 and 2.
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Figure 4.9: Spatial convergence re-
sults for p using Methods 1 and 2.
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Figure 4.10: Spatial convergence re-
sults for h using Methods 1 and 2.

The same convergence test was carried out when we solve the QSSA system

using the same parameters. For the spatial convergence tests we vary NT from

3,200 to 5.1 × 104 and use NT = 5.5 × 105 to calculate the reference solution.

Throughout the simulation N = 400 grid points were used. The results presented
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in Figures 4.11 and 4.12 are less convincing than when the full system is solved.

Both figures shows that for second-order convergence Method 1Q has to be used.

This method involves solving a linear system for un+1 three times at each time

step which is expensive.

We also performed spatial convergence tests using the same set of parameters.

Convergence results for u and h are shown in Figures 4.13 and 4.14, respectively.

For these simulations NT = 5.5 × 105 throughout. For the reference solution we

use N = 400 and compare the solution when we vary N from 5 to 40. Both plots

show that we have second-order spatial convergence.
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Figure 4.11: Temporal convergence
results for u when the QSSA is in-
voked.
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Figure 4.12: Temporal convergence
results for h when the QSSA is in-
voked.

ln(N)
1 2 3 4

ln(ENT
u )

-16

-15

-14

-13

-12

-11

1

2

ENT
u Method 1Q

ENT
u Method 2Q

ENT
u Method 3Q

Figure 4.13: Spatial convergence re-
sults for u when the QSSA is invoked.
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Figure 4.14: Spatial convergence re-
sults for h when the QSSA is invoked.

The temporal convergence results presented above are very similar to those pre-

sented earlier when solving on a stationary domain (Sections 2.1.8.5 and 2.1.8.6).

When we are solving the full system our method gives second-order temporal
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convergence by calculating u and h only once at each time step (followed by re-

calculating w and p at each time step). However, when solving the QSSA system,

for this particular set of parameters, we must solve for u and h three times at each

time step to maintain second-order temporal convergence. Hence, it is more effi-

cient to solve the full system as fewer assumptions are made and it is less expensive

to maintain second-order temporal convergence. However, we will continue to use

our numerical method to investigate the applicability of the QSSA.

4.4.4 General model

We can apply the model presented in Section 4.3 to the problem described in Sec-

tion 4.2. In this case u(x, t) represents the concentration of oxygen throughout

the domain and w(t) represents the adsorbed concentration of oxygen at the pho-

tocatalyst surface. The reaction occurring at the surface causes the thickness of

the film to decrease.

Ollis [67] assumes that diffusion does not play a major role in the overall ki-

netics, i.e. that diffusion is not the rate limiting step, and has assumed that the

surface reaction rate is zeroth-order; our model does not make either of these

assumptions.

We initially assume that diffusion is fast in comparison to the reaction ki-

netics at the boundary. We came to the conclusion in Section 2.1.5 that if this

was the case the QSSA will only hold for certain parameter regimes. However,

our previous model did not consider a moving domain or a constant supply of

reactant. Recall that we previously calculated ǫ using (2.18) from Section 2.1.5.

However, this was assuming that we were solving over a stationary domain (which

we nondimensionalised) and assumed that there was a finite amount of reactant

in the system. Previously, due to our choice of scaling when nondimensionalising

we had that L was effectively one. However, in this case, as h(t) varies with time,

we would have to include h(t) in our expression for ǫ (which would also be time

dependent). Hence, due to the substantial differences between this current system
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and the previous system considered we will not use ǫ to estimate the applicability

of the QSSA.

Table 4.1 shows the parameters used for two different simulations. The pa-

rameters used in case (a) were chosen to replicate the results presented by Ollis

[67]. As Ollis has assumed that the mass transfer of oxygen is not the rate-limiting

step, we have chosen k1, k−1, k2 and k3 to be small relative the diffusion coeffi-

cient, which is effectively one. Ollis also assumed a constant supply of hydroxyl

radicals at the photocatalyst surface. In our model this is equivalent to p(t) re-

maining constant. One way of ensuring that p(t) remains approximately constant

is choosing parameters to ensure that p(t) remains close to zero. By choosing k3

to be large relative to k2, any product p at the photocatalyst surface will react

very quickly, relative to how quickly p(t) is produced. Hence, as p(t) is being used

up more quickly than it is being formed, p(t) remains close to zero for the whole

of the simulation. Hence, p(t) remains relatively constant. A range of parameter

regimes were considered, and our simulations showed that, in all cases where dif-

fusion was not the rate limiting step, and k3 was large relative to k2, the results

were qualitatively similar to the results we present in this chapter. Hence, case (a)

is representative of a wide range of parameter regimes. Additionally, the results

presented are not sensitive to small changes in the parameters chosen.

Figures 4.15 and 4.16 show a comparison between using the full system, the

QSSA system, and an analytic approximation with the same set of parameters. For

each set of parameters we compare how h(t) varies with t for all three methods. We

also plot u(h(t), t), w(t) and p(t) against t, obtained from solving the full system,

and u(h(t), t) when the QSSA system was solved, which we refer to as uQ(h(t), t).

k1 k−1 k2 k3 ρ stot T
(a) 0.01 0.1 0.01 0.1 1 1 1200
(b) 0.1 0.01 0.1 0.1 1 1 30

Table 4.1: Table showing the parameters used for the two different regimes con-
sidered.
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Figure 4.15: Case (a) simulation results demonstrating that the QSSA is a good
approximation to the full system with this set of parameters.
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Figure 4.16: Case (b) simulation results demonstrating that the QSSA system and
the full system give significantly different results.

Figure 4.15 gives an example of a regime where the QSSA system and the full

system give almost identical results (in terms of u(h(t), t) and h(t)). Due to the

choice of parameters we are in a regime where very little product is formed at the

boundary and w(t) remains constant throughout. Hence, it is unsurprising that
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the QSSA holds in this case. The results also agree with the findings from the

Ollis model, that h(t) decreases at a constant rate.

If we apply the assumptions made by Ollis to our model we have that the

QSSA is valid, hence h(t) decreases according to (4.17). If we further assume, like

Ollis, that the concentration of oxygen at the photocatalyst surface, u(h(t), t) in

our model, remains constant throughout the reaction, we have that

dh

dt
= −K0, (4.35)

where K0 =
1

ρ

( k1k2stotu(h(t), t)

k1u(h(t), t) + k−1 + k2

)

. This approximation of how h(t) varies

with time is almost identical to the results obtained when the QSSA has been

invoked, as demonstrated in Figure 4.15.

Although our model can replicate the results presented by Ollis, we are also

able to simulate a far wider range of systems. For example, Figure 4.16 shows a

parameter regime where the QSSA is not valid. The parameters chosen for case

(b) were deliberately chosen such that k2 was of a similar size to k3. This means

that k3 is not large enough to ensure that any product formed is reacting much

more quickly than it is being formed. Hence, unlike the previous case, we would

not expect p(t) to remain approximately equal to zero throughout the simulation.

Furthermore, k1 and k−1 were chosen to ensure that the adsorption process is not

the rate-limiting step. If the adsorption was rate-limiting, we would expect w(t) to

remain approximately equal to zero, leading to a regime where the QSSA is valid.

Note that there are numerous other regimes where the QSSA will not be a valid

assumption to make for this model. As in previous cases, the results presented in

this section are not sensitive to small changes in parameter values.

The left hand plot of Figure 4.16 shows that, although w(t) remains approxi-

mately constant throughout the simulation, p(t) varies significantly. This example

demonstrates that our model is able to predict significantly different behaviour

than the simple model proposed by Ollis.
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If we again apply the assumptions made by Ollis to this regime, we find that

the approximation (4.35) is not particularly accurate, as is shown in Figure 4.16.

Again, the approximation is very similar to the results obtained when the QSSA

is assumed. This demonstrates that the assumptions made by Ollis do not hold

for this particular parameter regime.

4.5 Case 2: Absorbing film overlayer on a pho-

tocatalyst

4.5.1 Ollis model

x = h(t)

x = 0

O2

Catalyst

Film

I = I0

I = I0 exp(−βh(t))

Figure 4.17: Diagram of the initial set-up of Case 2 (Ollis [67]).

Ollis considers an absorbing film overlayer on a photocatalyst surface. Like

Case 1 discussed in Section 4.2, h(t) will decrease with time. As the film overlayer

absorbs light, the intensity reaching the surface depends on the film thickness.

Ollis assumes a Beer’s law decline of intensity in the film layer and assumes

that diffusion does not influence the reduction of h(t). As before, Ollis assumes

that the concentration of reactant at the photocatalyst surface remains constant
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throughout. The rate of change of the film thickness is given by

dh(t)

dt
= −r = −k0 exp(−βh(t)), (4.36)

where k0 is a zero order rate constant and β is the absorbance coefficient. Inte-

grating (4.36) with respect to t gives

h(t) =
1

β
ln (exp(βh0)− βk0t). (4.37)

Note that this is very similar to the model proposed by Ollis which we presented

in Section 4.2, however in this case k0 is replaced with k0 exp(−βh(t)) to represent

the fact that light is being absorbed by the film.

4.5.2 Experimental results

Mills et al. [49] have published a study on the disappearance of a sulfur layer

on a typical thick titania film in air by semiconductor photocatalysis. Mills et

al. plot the change in absorbance (at a wavelength of 600nm) due to sulfur on

a typical titania film against irradiation time. It appears that the kinetics are

initially zeroth-order before becoming first-order. As absorbance is proportional

to concentration, and in this case film thickness, it is possible to compare these

results with the prediction made by Ollis given in (4.37). The model proposed by

Ollis is a fairly good fit for the experimental data [67].

4.5.3 Generalised model

We will apply the model proposed in Section 4.3 to the problem described in this

section. In this case sulphur replaces the organic in reaction (4.2). In this case we
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have that k2 varies with h(t), hence we will define k2 as

k2(t) = k′2I(h(t)) = k′2I0 exp(−βh(t)).

The numerical method used to solve both the full system and the QSSA system

is as described in Section 4.2. However, since k2 is time dependent, we update k2

at each time step. The numerical method used to solve the system is very similar

to the methods presented in Sections 4.4.1 and 4.4.2.

4.5.4 Simulations

We use the same parameters as those shown in Table 4.1, however, we reduce

the k2 value from case (a) by a factor of 10 for this simulation to replicate the

results presented by Ollis. Note that, were we to use the original k2 value, i.e.

without reducing by a factor of 10, the observed kinetics would be qualitatively

very similar to those presented in this section. This is due to k3 being substantially

larger than k2 in both cases. We compare results when the full system is solved and

the QSSA system is solved. For both simulations we set I0 = 1 and β = 1. The

results presented in this section are not sensitive to small changes in parameter

values. The first set of parameters relate to a regime, when k2 was constant, where

the QSSA was a good approximation. Figure 4.18 shows that, even with a time

dependent k2, the QSSA is a fairly good approximation.

Similar to the previous model, if we make similar assumptions to Ollis, we

assume the QSSA is valid and we have that the equivalent of (4.35) would be

given by
dh

dt
= −1

ρ

(
k1k

′
2I0 exp(βh(t))stotu(h(t), y)

k1u(h(t), t) + k1 + k′2I0 exp(β(h(t))

)

.

If we assume that k′2I0 exp(β(h(t)) is small in comparison to k1u(g(t), t) and k−1

(which is the case for the parameters we have chosen), we have that

dh

dt
≈ −K0 exp(βh(t)),
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Figure 4.18: Case (a) simulation results demonstrating that the QSSA is a good
approximation to the full system for this set of parameters.

where K0 =
1

ρ

(k1k
′
2I0stotu(h(t), t)

k1u(h(t), t) + k−1

)

. This is similar to the expression which arose

from the Ollis model. Figure 4.18 shows that this approximation is similar to the

QSSA results and the full system results. However, it should be noted that this

finding is dependent on an extra assumption regarding the size of k2 in comparison

to other parameters and concentrations. Hence, we have shown with this particular

set of parameters, that we can qualitatively replicate the results presented by Ollis,

i.e. the reduction of h(t) predicted in Figure 4.18 is very similar to the reduction

predicted by the simple model proposed by Ollis.

Figure 4.19 shows an example of a parameter regime where the full system,

QSSA system and analytical approximation all give different results. We use the

same case (b) parameters as those shown in Table 4.1. Note that the full system

and QSSA results are similar to the results presented in Figure 4.16. Note that
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the results presented in this section are not sensitive to small changes in parameter

values. In this case the QSSA and the approximation are substantially different

as the approximation (4.38) contains h(t) which is not updated to allow for the

reduction of h(t). This was not an issue in the previous example as k′2I0 exp(βh(t))

was small in comparison to k1u(g(t), t), as previously discussed.

This demonstrates that the model proposed by Ollis is only applicable to a

specific parameter regime. For this particular parameter regime, solving the full

system is the only way of accurately approximating the solution of this system.

Hence, we have shown that our model can replicate results presented by Ollis when

parameters are chosen appropriately. Additionally, we have shown that our model

has the potential to solve a far wider range of problems than the model proposed

by Ollis.
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Figure 4.19: Case (b) simulation results demonstrating that the QSSA system and
the full system give significantly different results.
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4.6 Case 3: Film adjacent to a photocatalyst

layer

4.6.1 Ollis model

In this case Ollis considers a lateral oxidation example. The initial setup is shown

in Figures 4.20 and 4.21. As shown in Figure 4.21, there is an initial soot layer

uniformly deposited on exposed titania and glass surfaces. The overlayer of soot

on the titania is directly oxidized over a relatively short time scale. Once the

overlayer, which is in direct contact with the titania, is completely oxidized (as

shown in the second diagram of Figure 4.21), lateral oxidation of the adjacent

soot layer begins. As shown in the third diagram of Figure 4.21, a growing gap

g(t) is created between the edge of the photocatalyst and the soot layer, which is

receding. Mobile oxidants, in this case OH radicals, react at the edge of the soot,

causing the soot edge to move. Ollis models the period of time after the initial

soot layer on exposed titania is completely oxidized.

Glass

TiO2

Figure 4.20: Aerial view of how a semiconductor photocatalyst could be applied
to a piece of glass in a striped pattern.

Ollis assumes a constant concentration [OH]0 of OH radicals on the photocat-

alyst surface. The OH radicals at the surface are free to diffuse to the soot edge,
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Figure 4.21: Initial set-up of Case 3. This diagram shows a side-on view of one
particular strip of TiO2 applied to a glass structure.

where they react with the soot to produce CO2 and increase the gap g(t). As-

suming the reaction is in a pseudo-steady state, the rate at which the OH radicals

diffuse must equal the edge reaction rate which is dependent on the concentration

of OH radicals at the soot layer [OH]S. Ollis assumes a first-order reaction rate

at the soot edge with respect to [OH], i.e. r = kcat[OH]S, where kcat is a reaction

constant. This simply means that the rate at which hydroxyl radicals are being

transported to the soot edge is equal to the rate at which the radicals are reacting

at the soot edge. Hence,

D([OH]0 − [OH]S)

g(t)
= kcat[OH]S, (4.38)

where D is the diffusion coefficient. To arrive at (4.38) Ollis assumes that the

change in concentration from [OH]0 − [OH]S is linear. The reaction rate at the
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soot edge is directly proportional to the velocity of the soot edge. Hence,

dg(t)

dt
= kcat[OH]S. (4.39)

Solving (4.38) for [OH]S and substituting into (4.39) gives

dg(t)

dt
=

kcat[OH]0

1 + g(t)kcat
D

. (4.40)

Solving (4.40) and taking the positive root gives

g(t) =
−1 +

√

1 + 2kcat
D
kcat[OH]0t

kcat
D

.

With a = kcat
D

and b = kcat[OH]0, g(t) is given by

g(t) =
−1 +

√
1 + 2abt

a
. (4.41)

Two extreme cases are considered by Ollis. Firstly, for a fast reaction, relative to

diffusion, it is assumed that abt≫ 1, hence, (4.41) simplifies to give

g(t) ≈
√

2bt

a
. (4.42)

This expression for g(t) corresponds to a diffusion-limited regime. For a slow

reaction, relative to diffusion, it is assumed that abt ≪ 1. If τ = 2abt, f(τ) =
√
1 + τ and expanding f(τ) about τ = 0 gives

f(τ) ≈ f(0) + f ′(0)(τ − 0) +
f ′′(0)

2!
(τ − 0)2 +

f ′′′(0)

3!
(τ − 0)3 + . . .

= 1 +
1

2
τ − 1

8
τ 2 +

1

16
τ 3 + . . . .
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Substituting f(τ) =
√
1 + 2abt expanded about 2abt = 0 into (4.41) gives

g(t) ≈ −1 + 1 + 1
2
τ − 1

8
τ 2 + 1

16
τ 3 + . . .

a
.

= bt− 1

8

(2abt)2

a
+

1

16

(2abt)3

a
+ . . . .

Ignoring all terms of 2abt of power 2 or larger, we have

g(t) ≈ bt. (4.43)

This expression corresponds to a reaction-limited regime.

4.6.2 Experimental data

Ollis compared results obtained from the model outlined above with experimental

data produced by Lee and Choi [39]. Ollis identifies a time delay of approximately

5 hours in the experimental data before any significant diffusion takes place. With

the time shift, Ollis fits the two parameter model to two points of the experimental

data and obtains a = 0.0156 and b = 1.063.

Figure 4.22 shows plots of gap length g(t) against time t for the three cases

Ollis considered. The reaction-limited case (4.43) (red dash-dot line), the diffusion-

limited case (4.42) (green dashed line) and the full rate form (4.41) (blue solid line)

for chosen a and b values are plotted in Figure 4.22. Ollis demonstrates that the

full rate form plot fits the experimental data well and concludes that the experi-

mental data is influenced by both surface reaction and diffusion, hence the data

appears to be a combination of both cases.



Chapter 4 183

t (hours)
20 60 100 140

g(t− 5)(µm)

0

20

40

60

80

100

120

140

Full rate form
−1+

√
1+2ab(t−5)

a from (4.41)

Reaction-limited case
b(t− 5) from (4.43)

Diffusion-limited case
√

2b(t−5)
a from (4.42)

Figure 4.22: Replication of the predictions made by the Ollis model showing how
g(t) varies with time for a reaction-limited case (red dash dot line), a diffusion-
limited case (green dashed line) and the full rate form (blue solid line).

4.6.3 Generalised model

We apply a model similar to the one introduced in Section 4.3 to the problem

described above. The main difference in this case is that there is only one reaction

taking place. We assume that a constant supply of hydroxyl radicals are produced

at x = 0, which diffuse through the domain and, after an adsorption/desorption

process, react with organics at the photocatalyst surface causing the gap to widen.

In this case there is no subsequent reaction which takes place after the adsorp-

tion/desorption/surface reaction process. Additionally, the domain expands rather

than contracts. However, our model, and indeed the numerical method, are similar

to those previously described.

4.6.4 Simulations

Parameters are chosen to illustrate how the increase in the gap length (which we

refer to as h(t) in our plots) varies depending on the parameter regime. Throughout

all simulations, we have that k1 = 1, k−1 = 1, h0 = 0.1, stot = 1. Note that the
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parameters chosen are representative of a wide range of parameter regimes. A

number of regimes were tested. In all cases the results were qualitatively similar

to the results presented in this section. Additionally, the results presented in this

section are not sensitive to small changes in any of the parameters used. By varying

k2 and keeping all other parameters constant we can demonstrate two extreme

regimes (i.e. surface reaction-limited and diffusion-limited) and also investigate

intermediate regimes. Note that we effectively have a diffusion coefficient of one

due to our nondimensionalisation.

Figure 4.23 shows how h(t) increases with time for six different choices of k2.

In each plot we have also plotted a straight line from the origin to (T, h(t)) to

illustrate how each plot is qualitatively changing as k2 is increased.
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Figure 4.23: Plots of h(t) versus t with k1 = 1, k−1 = 1, h0 = 0.1 and stot = 1 with
various different k2 values. The dashed red line shows a straight line plotted from
(0, h(0)) to (T, h(T )).

From the first plot of Figure 4.23 we can see that the increase in h(t) looks
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Figure 4.24: Plot of h(t) with k1 = 1, k−1 = 1, h0 = 0.1, stot = 1 and various
different k2 values.

very similar to the diffusion-limited case presented in Figure 4.22. Although we

are using fairly conservative parameter values (k1 = 1, k−1 = 1 and k2 = 1), the

domain is increasing quite quickly which causes diffusion to be the limiting step

at an early stage in the simulation. From the plot we can see a clear decrease in

the rate at which h(t) increases as the domain grows larger.

The final plot of Figure 4.23 shows very similar results to the reaction-limited

case presented in Figure 4.22. This is unsurprising considering we have set k2 =

0.05. This means that even with h(t) larger than 12, we have that the rate of

diffusion is still quick enough to ensure it is the surface reaction which is limiting

the overall rate. For this set of parameters we have that h(t) is increasing at an

approximately constant rate.

From the four intermediate plots of Figure 4.23 we can see a gradual change

from diffusion-limited behaviour to reaction-limited behaviour. This would rein-

force the conclusion reached by Ollis that the experimental results are due to being

in a regime where both diffusion and the surface reaction play a role in determining

the overall reaction rate.

Figure 4.24 shows all six cases plotted on the same axis. This demonstrates

that, unsurprisingly, by decreasing k2 the time it takes for h(t) to reach a specific



Chapter 4 186

value will increase. For each of the six cases we also plotted the results obtained

from the QSSA in dashed lines. For all six cases, the results from the QSSA and

the full system are almost identical to plotting accuracy.

Figure 4.25 shows a situation where the QSSA is not a valid assumption to

make. The following parameters were used: stot = 10, k1 = 1, k2 = 0.1, k−1 = 0.1

and T = 200. Note that the following results are not sensitive to small changes in

the parameters used. In this regime, by choosing a large stot value and setting k1 to

be large relative to k−1, we allow a large amount of reactant to bind to the surface

sites initially. However, as the domain increases it takes longer for the reactant to

diffuse to the boundary and replace any molecules which have reacted. This causes

w(t) to decrease significantly as the boundary increases. Figure 4.26 illustrates

this point and helps to explain why the QSSA is invalid for this particular regime.

This particular regime has demonstrated that the QSSA is not always valid when

considering this system.
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Figure 4.25: Comparison between solving the full system and assuming the QSSA
with the following parameters: stot = 10, k1 = 1, k2 = 0.1, k−1 = 0.1 and T = 200.

4.7 Conclusions

In this chapter we have considered three photocatalyst systems where the domain

considered varied with time. General models were presented and applied to three
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Figure 4.26: Plot showing how w(t) varies with time.

different cases considered by Ollis [67]. For the first case, where we considered

a non-absorbing film overlayer on a photocatalyst, we were able to replicate the

results obtained from the simple model proposed by Ollis for a particular set of

parameters. In this instance we were able to show that the results obtained when

solving the full system were very similar to results obtained from the QSSA system.

Additionally, for an alternative set of parameters we were able to show that our

model predicts a reduction in film thickness significantly different to the reduction

predicted by the Ollis model. For this set of parameters our results suggested that

the QSSA was not valid.

Additional experimental data would be useful to validate the proposed general

model. Unlike the simple model proposed by Ollis, our model considers the trans-

port of reactant throughout the domain. Ollis made the assumption that diffusion

was quick enough to not limit the overall reaction rate. By considering a thicker

film, diffusion would potentially start to play a role in limiting the overall reaction

rate. Such a system could be used to test the applicability of our proposed model.

For the second system considered, absorbing film overlayer on a photocayalyst,

with our general model we were again able to replicate the results obtained from

the simple model proposed by Ollis. For this set of parameters the QSSA was a

valid assumption to make. We demonstrated that for another set of parameters
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the QSSA gave significantly different results to the results obtained from the full

system. As the QSSA was assumed by Ollis, this particular set of parameters

demonstrated that the simple model proposed by Ollis would be applicable for all

parameter regimes.

Similar to the first system discussed above, further experimental data would be

useful to further validate our proposed model. As this system involved an intensity

dependence, experiments where the initial intensity applied to the system is varied,

with all other parameters remaining constant, would be useful to test our proposed

model. By varying the intensity from very low values to very high values, we would

expect to see a range of kinetic regimes.

For the final system considered, film adjacent to a photocatalyst layer, the

general model we proposed was able to replicate predictions made by Ollis for

three different regimes. However, we were also able to give an example, using our

proposed model, where the QSSA was not valid. Similar to the previous case,

as Ollis invoked the QSSA, the simple model proposed by Ollis would not be

applicable for all parameter regimes.

To further validate both the simple model proposed by Ollis, and our more gen-

eral model, it would be useful if the two extreme parameter regimes, i.e. reaction-

limited and diffusion-limited, could be tested experimentally. For the diffusion-

limited case this could involve using thicker films to ensure that diffusion starts to

play a role in the overall reaction rate. For the reaction-limited case, this could

involve using a very low intensity of light and as thin a film as possible to ensure

that the surface reaction is rate-limiting. We presented an example of a regime

where the QSSA was not valid. This regime involved setting stot to be large. If

experiments could be performed where the concentration of surface reaction sites

is very large relative to the initial concentration of reactant, we could test the ap-

plicability of our proposed model for a regime which the simple Ollis model could

not be applied to.

For all three models we have presented, we have been able to replicate the
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predictions made by Ollis when appropriate parameters are used. Additionally,

we have been able to give, in all three cases, examples of situations which, using

the simple models proposed, Ollis would not be able to accurately simulate.
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A moving mesh finite element

method for surface catalysed

reactions in two-dimensional

time-dependant domains

In this chapter we consider two-dimensional systems based on the semiconductor

photocatalysis process studied in previous chapters. We will initially present a

general computational method which can solve coupled differential equations in two

dimensions before applying the method to problems motivated by semiconductor

photocatalysis.

As before, the main focus is on the coupling between a diffusing bulk species

and a surface species. Computational modelling in two dimensions is considerably

more challenging than the one-dimensional case. In two dimensions the boundary

is an infinite collection of points and we have the additional potential geometric

complexity of the boundary and the bulk domain to deal with.

We will initially consider circular domains, before moving onto more challenging

geometries. In previous chapters we exclusively used a finite difference method;

190
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however, as we now consider more complex geometries, a finite element method will

be used. The first problem considered is a simple coupled system on a stationary

circular domain. In this particular instance we are able to find an analytical

solution which is used to validate our numerical approximations. We then consider

a situation where we have the reaction mechanism introduced in Section 2.1.1

taking place at the boundary on a stationary domain. Using this example we will

demonstrate that the developed numerical method has the desirable property of

predicting the global conservation of reactants and products.

We then consider cases where the boundary of the domain is expanding. Ini-

tially, we assume a constant rate of expansion before considering systems where

the reaction taking place at the surface is causing the boundary to expand. We

initially consider a simple circular geometry before giving an example of a more

complex geometry. The final situation considered will involve an internal source

of reactant where the boundary will expand due to the reaction taking place at

the surface.

5.1 Model system equations

We consider a general system where the bulk concentration is coupled to a surface

concentration through a flux boundary condition. For each t ∈ [0, T ], T > 0, let

Ω(t) ⊂ R
2 be a smooth bounded time-dependent domain with boundary Γ(t). Let

n = (n1, n2) denote the unit outward normal to Γ(t) and let N (t) be any open

subset of IR2 containing Γ(t). For any function ζ , which is differentiable in N (t),

we define the tangential gradient on Γ(t) by∇Γζ = ∇ζ−(∇ζ ·n)n, where · denotes
the usual scalar product and ∇ζ denotes the usual gradient on IR2. For a vector

function ζ = (ζ1, ζ2) ∈ IR2, the tangential divergence is defined by

∇Γ · ζ = ∇ · ζ −
2∑

i=1

(∇ζi · n)ni.
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The Laplace-Beltrami operator on Γ(t) is defined as the tangential divergence of

the tangential gradient ∆Γζ = ∇Γ · (∇Γζ).

We consider the behaviour of a single chemical species with a straightforward

generalization to a system of interacting chemicals. Let us define

QT = {(x, t) ∈ R
3 : x ∈ Ω(t), t ∈ (0, T )}.

The equation for mass conservation for a chemical C, which diffuses with constant

D, is given by
∂c

∂t
= D∆c, (x, t) ∈ QT , (5.1)

where c(x, t) is the concentration at position x ∈ Ω(t) at time t.

Simultaneously, we consider the evolution of a chemical species Cs that resides

on the boundary Γ(t). The bulk species C will be coupled to Cs through the

generally nonlinear flux boundary condition

Diffusive flux
︷ ︸︸ ︷

− D ∂c

∂n

∣
∣
∣
∣
Γ(t)

=

Rate of surface reaction
︷ ︸︸ ︷

g(c|Γ(t), cs), (5.2)

where cs(x, t) denotes the concentration of Cs at the point x ∈ Γ(t), n is the

outward unit normal to Γ(t), and g(c|Γ(t), cs) is a reaction term which couples c

and cs.

We will assume that the boundary species evolves such that

∂cs
∂t

= Ds∆Γcs + g(c|Γ(t), cs) + h(cs), (x, t) ∈ Γ(t)× (0, T ), (5.3)

where Ds is the boundary diffusion coefficient, h(cs) is an additional surface re-

action term. We can use this approach to implement a Langmuir-Hinshelwood

surface adsorption and reaction mechanism by choosing g(c|Γ(t), cs) and h(cs) ap-
propriately, which we will demonstrate later in the chapter.
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5.1.1 ALE reformulation

When the domain is time-dependent, a common frame of reference adopted for

computational purposes is the Arbitrary Lagrangian Eulerian (ALE) frame [20, 35].

Let At be a family of bijective mappings, which at each t ∈ I = [0, T ], map points

in a reference or computational configuration Ωc with coordinates ξ = (ξ, η), to

points in the current physical configuration Ω(t) with coordinates x = (x, y), so

that

At : Ωc ⊂ R
2 → Ω(t) ⊂ R

2, x(ξ, t) = At(ξ).

The computational configuration could simply be the initial physical configuration

Ω(0). We leave the discussion on how to construct the mapping At to Section 5.3.

For an arbitrary function g : QT → R, defined on the fixed Eulerian frame, its

temporal derivative in the ALE frame is defined as

∂g

∂t

∣
∣
∣
∣
ξ
: QT → R,

∂g

∂t

∣
∣
∣
∣
ξ
(x, t) =

∂ĝ

∂t
(ξ, t), ξ = A−1

t (x),

where ĝ : Ωc × I → R is the corresponding function in the ALE frame; that is

ĝ(ξ, t) = g((x, t), t) = g(At(ξ, t)). Taking the time derivative of the ALE mapping

defines the ALE velocity w as

w(x, t) =
∂x

∂t

∣
∣
∣
∣
ξ
(A−1

t (x), t).

To relate the time derivatives with respect to the ALE transformation to the

material derivative, a standard application of the chain rule gives

∂c

∂t

∣
∣
∣
∣
ξ
=
∂c

∂t

∣
∣
∣
∣
x
+w · ∇c. (5.4)

The reformulation of (5.1) in terms of the ALE reference frame therefore takes the
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form
∂c

∂t

∣
∣
∣
∣
ξ
−w · ∇c = D∆c, ξ ∈ Ωc. (5.5)

On the boundary, the equivalent of (5.4) is

∂cs
∂t

∣
∣
∣
∣
ξ
=
∂cs
∂t

∣
∣
∣
∣
x
+w · ∇Γc.

Hence, the ALE formulation of (5.3) takes the form

∂cs
∂t

∣
∣
∣
∣
ξ
−w · ∇Γc = Ds∆Γc + g(c|Γ(t), cs) + h(cs), ξ ∈ ∂Ωc. (5.6)

The ALE reformulated equations (5.5) and (5.6) remain coupled through the flux

boundary condition (5.2).

5.1.2 A conservative weak ALE formulation

To construct a weak formulation of (5.5), we consider a space of admissible test

functions defined on the reference domain made of function v̂ ∈ H1(Ωc). The

ALE mapping then defines a set H(Ω(t)) of test functions on the domain Ω(t), as

follows:

H(Ω(t)) =
{
v : Ω(t)→ R : v = v̂ ◦ A−1

t , v̂ ∈ H1(Ωc)
}
, t ∈ I.

A weak formulation of (5.5) can be obtained using Reynolds transport formula

which states that if ψ(x, t) is a function defined on Ω(t), and Vt ⊆ Ω(t) such that

Vt = At(Vc) with Vc ⊆ Ωc, then

d

dt

∫

Vt

ψ(x, t) dx =

∫

Vt

(

∂ψ

∂t

∣
∣
∣
∣
ξ
+ ψ∇ ·w

)

dx =

∫

Vt

(
∂ψ

∂t

∣
∣
∣
∣
x
+∇ψ ·w + ψ∇ ·w

)

dx.

(5.7)



Chapter 5 195

As functions v̂ ∈ H1(Ωc) do not depend on time, then for any v ∈ H(Ω(t)) we can
establish from (5.7) that

d

dt

∫

Ω(t)

v dx =

∫

Ω(t)

v∇ ·w dx (5.8)

and
d

dt

∫

Ω(t)

vψ dx =

∫

Ω(t)

v

(

∂ψ

∂t

∣
∣
∣
∣
ξ
+ ψ∇ ·w

)

dx. (5.9)

Multiplying (5.5) by a test function v ∈ H(Ω(t)), integrating over Ω(t) and the

use of (5.2), (5.8) and (5.9) gives the conservative weak form: find c such that

d

dt

∫

Ω(t)

cv dx−
∫

Ω(t)

(∇ · (wc)) v dx+D

∫

Ω(t)

∇c · ∇v dx (5.10)

+

∫

Γ(t)

gv ds = 0, ∀v ∈ H(Ω(t)). (5.11)

Similarly, on the boundary we have the weak formulation: find cs such that

d

dt

∫

Γ(t)

csvs ds−
∫

Γ(t)

(∇Γ · (wcs)) vs ds +Ds

∫

Γ(t)

∇Γcs · ∇Γvs ds (5.12)

=

∫

Γ(t)

(g + h)vs ds, ∀vs ∈ Hs(Γ(t)),

where

Hs(Γ(t)) =
{
vs : Γ(t)→ R : vs = v̂s ◦ A−1

t , v̂s ∈ H1(Γc)
}
, t ∈ I,

is the space of test functions on Γ(t).
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5.2 Moving finite element discretisation

5.2.1 Spatial semi-discretisation

We will assume that for each t ∈ [0, T ], the physical and reference domains Ω(t)

and Ωc are approximated by polygonal domains Ωh(t) and Ωc,h, respectively. We

will assume that Ωc,h is covered by a fixed triangulation Th,c with straight edges,

so that Ωc,h = ∪K∈Th,cK. The approximation of the boundary domain Γh(t) is

chosen to be simply the boundary of Ωh(t). The total number of elements of Th,c
will be denoted by N . The total number of vertices of Th,c will be denoted by

N and the number of vertices on the boundary as Ns. We define the Lagrangian

finite element space on Th,c as

L1(Ωc,h) = {v̂h ∈ H1(Ωc,h) : v̂h|K ∈ P1(K), ∀K ∈ Th,c},

L1
0(Ωc,h) = {v̂h ∈ H1(Ωc,h) : v̂h|K ∈ L1(Ωc,h) : v̂h = 0, ξ ∈ Γc,h},

where P1(K) is the space of linear polynomials on K.

In Section 5.3 we will describe a procedure for evolving the nodal positions

of the triangulation covering Ωh(t). Given the location of the mesh nodes, the

ALE mapping will be interpolated using piecewise linear elements giving rise to a

discrete mapping Ah,t ∈ L1(Ωc,h)
2 of the form

xh(ξ, t) = Ah,t(ξ) =
N∑

i=1

xi(t)φ̂i(ξ),

where xi(t) = Ah,t(ξi) denotes the position of node i at time t, and φ̂i is the

associated nodal basis function in L1(Ωc,h). The discretised ALE velocity therefore

takes the form

wh(ξ, t) =
N∑

i=1

ẋi(t)φ̂i(ξ).

Let Th,t be the image of the reference triangulation Th,c under the discrete ALE
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mapping Ah,t. Since the mapping is linear, each Kt, which is the image of a triangle

K ∈ Th,c, is also a triangle with straight edges. Using the ALE mapping, the finite

element test space on Ωh(t) is therefore defined as

Hh(Ωh(t)) = {vh : Ωh(t)→ R : vh = v̂h ◦ A−1
h,t, v̂ ∈ L1(Ωc,h)}.

The finite element spatial discretisation of the conservative ALE formulation (5.11)

then takes the form: find ch(t) ∈ Hh(Ωh(t)) such that

d

dt

∫

Ωh(t)

chvh dx−
∫

Ωh(t)

(∇ · (whch))vh dx+D

∫

Ωh(t)

∇ch · ∇vh dx

+

∫

Γh(t)

gvh ds = 0, ∀vh ∈ Hh(Ωh(t)). (5.13)

Similarly, on the boundary we have the weak formulation: find cs,h ∈ Hs,h(Γh(t))

such that

d

dt

∫

Γh(t)

cs,hvs,h ds−
∫

Γh(t)

(∇Γ · (whcs,h)) vs,h ds+Ds

∫

Γh(t)

∇Γcs,h · ∇Γh
vs,h ds

=

∫

Γh(t)

(g + h)vs,h ds, ∀vs,h ∈ Hs,h(Γh(t)).(5.14)

The finite element approximation of the bulk and surface species can be expressed

as

ch(x, t) =
N∑

j=1

cj(t)φj(x, t), and cs,h(x, t) =
Ns∑

j=1

cs,j(t)φs,j(x, t),

where {φj(x, t)}Nj=1 and {φs,j(x, t)}Ns

j=1 are the time-dependent bulk and surface

nodal basis functions. IfC(t) = {ci(t)}Ni=1 andCs(t) = {cs,i(t)i}Ns

i=1, we can express
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(5.13) as the system of ordinary differential equations

d

dt
(M(t)C(t)) + [K(t)− A(t,wh(t)) +B(t,wh(t))]C(t) +D(C(t),Cs(t)) = 0,

(5.15)

where

[M(t)]ij =

∫

Ωh(t)

φi(t)φj(t) dx

is the (time-dependent) mass matrix, while

[K(t)]ij = D

∫

Ωh(t)

(∇φj(t) · ∇φi(t)) dx,

[A(t,wh(t))]ij =

∫

Γh(t)

[wh · n]φi(t)φj(t) ds,

[B(t,wh(t))]ij =

∫

Ωh(t)

[wh · ∇φi(t)]φj(t) dx,

[D(C(t),Cs(t))]i =

∫

Γh(t)

g(ch(t), cs,h(t))φi(t) ds.

Note that the vector D will be sparse as only those values of i corresponding to

boundary vertices will be non-zero. The spatial discretisation of the boundary

equation (5.14) also results in a system of ODEs

d

dt
(Ms(t)Cs(t)) + [Ks(t)−As(t,wh(t))]Cs(t) = Ds(C(t),Cs(t)) +H(Cs(t)),

(5.16)

where

[Ms(t)]ij =

∫

Γh(t)

φs,i(t)φs,j(t) ds,

[Ks(t)]ij = Ds

∫

Γ(t)

(∇Γφs,j(t) · ∇Γφs,i(t)) ds,

[As(t,wh(t))]ij =

∫

Γh(t)

([∇Γ ·wh]φs,iφs,j + [wh · ∇Γφs,j(t)]φs,i(t)) ds,

[H(Cs(t))]i =

∫

Γh(t)

h(cs,h(t))φs,i(t) ds.
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and Ds are the appropriately reordered non-zero elements of D.

5.2.2 Temporal integration

To obtain a temporal discretisation of (5.15) and (5.16) we subdivide [0, T ] into NT

equal time intervals of size ∆t = T/NT and denote tn = n∆t, n = 0, 1, . . . , NT .

We will discretise the ALE mapping using linear interpolation between time levels.

That is we will define

Ah,∆t(ξ, t) =
t− tn
∆t
Ah,tn+1(ξ) +

tn+1 − t
∆t

Ah,tn(ξ), t ∈ [tn, tn+1),

where Ah,t is the piecewise linear map at time t. The mesh velocity is therefore

piecewise constant in time and is given by

wn+1
h,∆t(ξ) =

Ah,tn+1 −Ah,tn

∆t
, t ∈ [tn, tn+1),

wn+1
h,∆t(x, t) = wn+1

h,∆t(ξ) ◦ A−1
h,∆t(x).

The temporal discretisation of the coupled systems (5.15) and (5.16) is obtained

using a modified Crank-Nicolson semi-implicit approach. We begin by predicting

the boundary solution C̃
n+1

s using a semi-implicit backward Euler method where

the linear diffusion and mesh movement terms are treated implicitly and the non-

linear reaction and coupling terms are treated explicitly. The predicted boundary

solution therefore satisfies the linear system

[Mn+1
s +∆t(Kn+1

s −An+1
s )]C̃

n+1

s =Mn
s C

n
s +∆t[Ds(C

n,Cn
s ) +H(Cn

s )]. (5.17)

The bulk approximation is then updated using a Crank-Nicolson step

[Mn+1 + 1
2
∆t(Kn+1 − An+1 +Bn+1)]Cn+1 = [Mn − 1

2
∆t(Kn − An +Bn)]Cn+1

+1
2
∆t[F (Cn+1) + F (Cn)−D(Cn+1, C̃

n+1

s )−D(Cn,Cn
s )]. (5.18)
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Finally, to ensure that the boundary solution is second-order in time, we perform

a Crank-Nicolson correction step

[Mn+1
s + 1

2
∆t(Kn+1

s − An+1
s )]Cn+1

s = [Mn
s − 1

2
∆t(Kn

s − An
s )]C

n
s

+1
2
∆t[Ds(C

n+1, C̃
n+1

s ) +Ds(C
n,Cn

s ) +H(C̃
n+1

s ) +H(Cn
s )]. (5.19)

A direct solver is used to solve the linear systems (5.17)-(5.19). Note that this

predictor-corrector method for solving the discretised coupled system is similar to

the method used in one dimension.

5.2.3 A model bulk-surface problem in a stationary do-

main

To get an indication of the spatial and temporal convergence rate of the cou-

pled bulk-surface finite element discretisation, we apply it to the solution of the

following model problem:
∂c

∂t
= ∆c, x ∈ Ω (5.20)

∂cs
∂t

= ∆Γcs + c− cs, x ∈ Γ, (5.21)

− ∂c
∂n

= c− cs, x ∈ Γ. (5.22)

where Ω is the unit circle.

This problem can be tackled analytically using polar coordinates x = r cos θ,

y = r sin θ so that

∂c

∂t
=
∂2c

∂r2
+

1

r

∂c

∂r
+

1

r2
∂2c

∂θ2
, x ∈ Ω

∂cs
∂t

=
∂2cs
∂θ2

+ c|r=1 − cs, x ∈ Γ,
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and

−∂c
∂r

∣
∣
∣
∣
r=1

= c|r=1 − cs.

Similar to Novak et al [65], we look for a solution in the form

cs(θ, t) = Ae−k2t cos θ,

and

c(r, θ, t) = ρ(r)cs(θ, t).

The following exact solution has been used in this test:

c(r, θ, t) = J1(rk)e
−k2t cos θ

and

cs(θ, t) =
J1(k)

2− k2 e
−k2t cos θ,

where J1 is the first-order Bessel function of the first kind and k = 1.177706027.

Figure 5.1 shows the computed approximate solutions in the bulk domain and

on the domain boundary using an isotropic mesh with maximal cell diameter

h = 0.1 and a time step ∆t = 2 × 10−4. We can see that the method performs

well for these values of the discretisation parameters. To test the spatial rate

of convergence of the algorithm, simulations were performed on a sequence of

increasingly refined isotropic meshes. To ensure that the error was dominated

by its spatial component, a sufficiently small time step of ∆t = 10−3 was used.

Figure 5.2 (a) shows the maximum error, over all grid nodes, for both the bulk and

surface numerical solutions. We can see that both solution components converge

at the rate of O(h2), as expected. To investigate the temporal rate of converge,

simulations were performed using a fine mesh with N = 150, 000 elements and

various time steps. We can see from Fig. 5.2 (b) that the decoupled solution

procedure results in approximations which are second-order accurate in time.



Chapter 5 202

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1  

x

ch(x)

 

y

−0.1

−0.05

0

0.05

0.1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

−π 0 π

θ

cs,h (θ)

t = 0.25

t = 0.5

t = 0.75
t = 1

 

 

Exact solution
Approximate solution

(a) (b)

Figure 5.1: Numerical solution of coupled model problem (5.20)-(5.22) on a sta-
tionary unit circle. (a) Approximate bulk solution ch(x) at t = 1. (b) Approximate
solution cs,h(θ) on the boundary compared to the exact solution.
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Figure 5.2: Second-order convergence of the maximum nodal error as (a) h → 0
and (b) ∆t→ 0 for a coupled model problem on a unit circle.

5.3 Practical evaluation of ALE mapping

For the ALE mapping to be useful, it must satisfy a number of properties. First,

it must be inexpensive to construct, relative to the cost of solving the physical

problem. Second, the meshes must evolve smoothly in time to avoid the need to

use small time steps to maintain numerical stability.
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5.3.1 Bulk domain mesh generation

To avoid potential mesh crossings or foldings, we derive a suitable evolution equa-

tion for the inverse ALE mapping A−1
t (x) = ξ(x, t) rather than At(ξ) = x(ξ, t)

(see, for example, the discussion in [22]). As shown in Fig 5.3, a mesh Th,t on Ωh(t)

can then be generated as the preimage of a fixed mesh Th,c on Ωc,h. As introduced

in [34], we choose the mapping ξ(x) corresponding to a fixed value of t in order

to minimise the functional

I[ξ] =
1

2

∫

Ωt

[(∇ξ)T (∇ξ) + (∇η)T (∇η)] dx, (5.23)

where ∇ is the gradient operator with respect to x. Rather than directly attempt

to minimise (5.23), a more robust procedure is to evolve the mapping according

to the modified gradient flow equations

∂ξ

∂t
=
P

τ
∇ · (∇ξ), and

∂η

∂t
=
P

τ
∇ · (∇η). (5.24)

Here, τ > 0 is a user-specified temporal smoothing parameter, which affects the

temporal scale over which the mesh moves to minimise (5.23), and P is a positive

function of (x, t), chosen such that the mesh movement has a spatially uniform

time scale [33].
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Ωc Ω(t)

x(ξ, η, t)

ξ(x, y, t)

Figure 5.3: A moving mesh covering Ω(t) is the image of a fixed mesh on a reference
domain Ωc through a time-dependent ALE mapping At(ξ) = x(ξ, t).

In practice, we interchange the roles of the dependent and independent vari-

ables in (5.24) since it’s the location of the physical mesh points {xi(t)}Ni=1 that

defines the ALE map. The resulting moving mesh partial differential equations

(MMPDEs) take the form

τ
∂x

∂t
= P (axξξ + bxξη + cxηη), (ξ, η) ∈ Ωc, (5.25)

where

a =
x2η + y2η
J2

, b = −2(xξxη + yξyη)

J2
, c =

x2ξ + y2ξ
J2

,

and J = xξyη − xηyξ is the Jacobian of the ALE mapping. To complete the

specification of the coordinate transformation, the MMPDE (5.25) must be sup-

plemented by suitable boundary conditions g(ξ, t), ξ ∈ ∂Ωc; these are obtained

using a one-dimensional moving mesh approach outlined in Section 5.3.2.

The numerical solution of (5.25) requires both spatial and temporal discretisa-

tion. In space, we discretise using standard linear Galerkin finite elements. In the

time direction, we use a backward Euler integration scheme to update the solution

at t = tn+1, and to avoid solving nonlinear algebraic systems, we evaluate the

coefficients a, b, c at time t = tn. We therefore seek xn+1
h (ξ, t) ∈ (L1(Ωc,h))

2 such
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that

τ

∫

Ωc,h

(
xn+1
h − xn

h

∆t

)

v̂h dξ +

∫

Ωc,h

[
(xn+1

h )ξ · (anv̂h)ξ + (xn+1
h )η · (cnv̂h)η+

1

2
[(xn+1

h )ξ · (bnv̂h)η + (xn+1
h )η · (bnv̂h)ξ]

]

dξ = 0, (5.26)

for all v̂h ∈ (L1
0(Ωc,h))

2. The resulting linear systems are solved using the iterative

method BiCGSTAB and an incomplete LU (ILU) factorization as a preconditioner.

An analysis of the performance of this iterative solver for the discretised MMPDE

equations can be found in [10].

5.3.2 Boundary mesh generation

We use the method described in [42] to determine how the mesh points at the

domain boundary move. Given a rate at which the boundary is expanding in

the normal direction, the method will not only define a new set of boundary

points at the appropriate locations, but will also equidistribute the points in the

tangential direction while maintaining the shape of the boundary. This helps to

ensure that boundary points do not cross and cause a tangled mesh in areas where

the boundary has a high degree of curvature.

5.4 The complete algorithm

At the start of the time step t = tn we have a mesh Th,tn and finite element

approximations cnh and cns,h of the bulk and surface bound species, respectively.

The following steps are then carried out to advance the mesh and approximation

solutions forward in time.

1. Update the physical mesh

(a) Define the normal velocity of the boundary points (this will be discussed

in Section 5.5).
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(b) Use the method described in Section 5.3.2 to update the boundary

points.

(c) Using the updated boundary points as fixed Dirichlet data, update the

interior mesh points by solving the linear systems arising from (5.26).

2. Update the finite element solution in the bulk and the surface

(a) Use the meshes Th,tn+1 and Th,tn to define the discrete ALE velocity wh.

(b) Predict the solution on the boundary cn+1
s,h by solving (5.17).

(c) Update the solution in the bulk cn+1
h by solving (5.18).

(d) Correct the solution on the boundary cn+1
s,h by solving (5.19).

5.5 Application to Langmuir-Hinshelwood sur-

face reaction mechanism

We now apply the computational method described above to solve two-dimensional

models where we assume the same Langmuir-Hinshelwood adsorption kinetics as

described earlier. The flux boundary condition and surface concentration equation

take the form

−D ∂c

∂n

∣
∣
∣
∣
Γ(t)

= k1(stot − cs)c|x∈Γ(t) − k−1cs, (x, t) ∈ Γ(t)× (0, T ),

and

∂cs
∂t

= Ds∆Γcs + k1(stot − cs)c|x∈Γ(t) − k−1cs − k2cs, (x, t) ∈ Γ(t)× (0, T ).

This is equivalent to setting g(c|Γ(t), cs) = k1(stot − cs)c|x∈Γ(t)− k−1cs and h(cs) =

−k2cs, where all parameters are as previously described (note that stot, c|Γ(t) and
cs are defined at all points on the boundary).
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As before, we will define p as the concentration of product formed at the

boundary and assume it evolves so that

∂p

∂t
= k2cs, (x, t) ∈ Γ(t)× (0, T ). (5.27)

In this model we assume that product molecules instantaneously desorb from the

surface and that the active site becomes available to bind molecules of the bulk

species.

At each time step, the algorithm presented in Section 5.4 is used to update ch

and cs,h at the following time step. By discretising (5.27) using a Crank-Nicolson

method, we define the approximation of p at the forward time step as

pn+1
h = pnh +

∆tk2
2

(cn+1
s,h + cns,h).

When considering an expanding boundary we will assume that the rate at which

the boundary is expanding is equal to the rate at which the bound species is being

converted into product. Hence, we have that the outer boundary is expanding

in the normal direction at a rate of k2cs. Note that this is the two-dimensional

equivalent to (4.3), where we have the boundary expanding in the direction of the

outward facing normal.

5.5.1 Stationary domains

5.5.1.1 Circular domain

We will initially consider a stationary unit circle domain. The following results

were produced with k1 = k−1 = k2 = 1, stot = 1, D = 1, Ds = 1 and T = 10.

These parameters were chosen such that no one process (adsorption of reactant,

surface reaction, or transport of reactant to the boundary) are completely rate-

limiting. The results presented in this section are not sensitive to small changes

in parameters. For the simulations we used NT = 103 time steps and an isotropic



Chapter 5 208

mesh with N = 888 elements, which gives a maximum edge length of h = 0.08. The

initial conditions for the bulk, the surface species, and the product are ch(x, 0) = 1,

cs,h = 0, and ph = 0 .
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Figure 5.4: Plots of surface and bulk concentrations when k1 = k−1 = k2 = 1,
stot = 1 at t = 0, 0.5, 1, 2 and 5. The mesh used has a maximum edge length of
h = 0.08 and NT = 1000 time steps were used. The plots on the left hand side
demonstrate how the bulk concentration varies with time. The right hand plots
show that, at the surface, the bulk concentration ch is continuously decreasing
whereas cs,h increases initially before decreasing.
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Figure 5.4 shows plots of the bulk concentration of reactant (left hand side)

and the concentration of the unbound reactant and concentration of the bound

reactant at the boundary plotted against the angular coordinate of the boundary

(right hand side). We can see initially that molecules of the bulk species adsorb

onto the boundary where they react to form the product. Due to the time taken for

bulk molecules to diffuse to the boundary, this results in a spatially inhomogeneous

distribution of the bulk concentrations. As time progresses, the bulk concentration

decreases and becomes increasingly flat. The right hand side plots of Figure 5.4

show that both concentrations at the boundary are approximately flat. This is

due to having initial conditions which are constant in space and having a radially

symmetric domain.
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(||ch||L1(Ω) + ||cs,h||L1(Γ) + ||ph||L1(Γ))

Figure 5.5: Plot showing the total concentration of reactant in the bulk (||ch||L1(Ω))
and on the surface (||cs,h||L1(Γ)), the total concentration of product formed
(||ph||L1(Γ) ) as well as the sum of all three concentrations ( ||ch||L1(Ω)+||cs,h||L1(Γ)+
||ph||L1(Γ) ).

By integrating ch over the entire domain we can calculate the total amount

of ch in the system, which we define as ||ch||L1(Ω). Similarly, by integrating cs,h

and ph over the boundary we can calculate the total amount of bound reactant

and the total amount of reactant converted into product, which we will define

as ||cs,h||L1(Γ) and ||ph||L1(Γ), respectively. Figure 5.5 shows the total amount of
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||ch||L1(Ω), ||cs,h||L1(Γ) and ||ph||L1(Γ) against time, along with the total combined

amount of reactant and product ( ||ch||L1(Ω) + ||cs,h||L1(Γ) + ||ph||L1(Γ) ). The plot

demonstrates that the numerical method does an excellent job of mass conservation

in this example. Note that Figure 5.5 is qualitatively very similar to the plot of

the one-dimensional intermediate case in Figure 2.28.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

y

Figure 5.6: An example of a mesh produced using the MESH2D tool [7] after the
boundary points have been equidistributed and a new interior mesh is found.

5.5.1.2 Non-circular domain

We now consider a non-circular domain, where the boundary is defined by the

equation r(θ) = 1+0.1 sin(θ), and r and θ are polar coordinates. We again assume

the same initial conditions as in the previous example. Similarly, we use the same

parameters as those used in the previous simulation. As in the previous example,

our results are not sensitive to small changes in parameter values. As the boundary

is not radially symmetric in this example, it will take longer for molecules of the

bulk species to diffuse to certain parts of the boundary. This will result in the

concentrations of c and cs not remaining constant in space. Figures 5.7 and 5.8
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were produced with identical kinetic parameters to those used previously.
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Figure 5.7: Plots of surface and bulk concentrations when k1 = k−1 = k2 = 1,
stot = 1 at t = 0, 0.5, 1, 2 and 5. The mesh used has an approximate maximum
edge length h = 0.3 and NT = 5000 time steps were used. The plots on the left
hand side demonstrate how the bulk concentration varies with time. The right
hand plots show that, at the surface, the bulk concentration ch is continuously
decreasing whereas cs,h increases initially before decreasing. Simultaneously, the
surface concentration profile of ch is gradually becoming flatter.
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The mesh used to approximate the domain is shown in Figure 5.6. The mesh

was produced using the automatic mesh generation tool MESH2D [7]. The software

allows a user to specify a number of boundary points and creates a mesh based on

these specifications. We produced an initial mesh using MESH2D. This mesh does

not necessarily have a good distribution of points along the boundary. Hence, we

used the method described in Section 5.3.2, without expanding the boundary, to

reposition the boundary points to ensure that they equidistribute the arc-length

of the boundary. Using the newly defined boundary points as Dirichlet boundary

conditions, the method described in Section 5.3.1, using the initial mesh produced

using MESH2D, is used to solve for new interior mesh points. The mesh used for

the simulations has a maximum edge length h = 0.308 and NT = 5 × 103 time

steps were used.

We can see from Figures 5.7 and 5.8 that the results are qualitatively and

quantitatively very similar to the previous case considered. The plots on the

right hand side of Figure 5.7 show that the bulk concentration at the surface is

not spatially uniform. The plots in Figure 5.7 at t = 0.5 show that ch at the

surface is not spatially uniform. The peaks in this plot are due to certain points

of the boundary being closer to the centre of the domain. When molecules of the

bulk species are adsorbed onto surface sites, the concentration of bulk species will

decrease at the surface. For points on the surface closer to the centre of the domain,

molecules of the bulk species will be more quickly transported to the boundary

to replenish any molecules which have been adsorbed. Hence, we find that ch at

the surface becomes more spatially uniform as t increases. Due to assuming that

the bound species cs,h will diffuse along the domain, we have that cs,h remains

approximately spatially constant throughout the simulation.
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Figure 5.8: Plot showing the total concentration of reactant in the bulk (||ch||L1(Ω))
and on the surface (||cs,h||L1(Γ)), the total concentration of product formed
(||ph||L1(Γ) ) as well as the sum of all three concentrations ( ||ch||L1(Ω)+||cs,h||L1(Γ)+
||ph||L1(Γ) ).

5.5.2 Expanding circular domains

We next consider an example where we expand the circular boundary at a constant

rate, so that r(t) = 1 + 4t. The parameters used in this case are the same as the

previous two cases, except k2 has been reduced from 1 to 0.1. The reason for

reducing k2 was to replicate the qualitative behaviour of the results presented in

the previous section. In this case, the concentration of surface bound species will

be reduced due to the expanding boundary, hence to ensure that the concentration

of boundary species wasn’t approximately zero, we set k2 to be smaller to limit the

amount of bound species being converted to reactant. As in previous simulations,

the results presented in this section are not sensitive to small changes in parameter

values. The initial mesh used in this case is identical to the previous circular case

considered. Instead of solving for our outer boundary mesh points at each time

step and then solving for the interior points, we will simply expand all points

radially outwards at a constant rate.
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Figure 5.9: Plots of surface and bulk concentrations when k1 = 1, k−1 = 1, k2 = 0.1,
stot = 1 at t = 0, 0.5, 1 and 2. The mesh used has a maximum edge length h = 0.08
and NT = 5000 time steps were used. The plots on the left hand side show how the
bulk concentration varies with time as the domain expands. The right hand plots
show that, at the surface, the bulk concentration ch is continuously decreasing,
whereas cs,h remains close to zero throughout.

Figure 5.9 shows how the bulk and boundary concentrations behave when the

domain expands at a substantial rate. We can see that ch, close to the boundary,
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decreases far more quickly than at the centre of the domain. This is due to the

reaction taking place at the boundary, but also because the domain is expanding

making it more difficult for bulk reactant molecules to replenish molecules adsorbed

onto the surface.

As was mentioned previously, for this example we are not solving for a new

domain, or solving for a new mesh. Hence when applying the algorithm given in

Section 5.4, step 1 will not be necessary. Throughout the following simulations we

will consider two methods. Method 1 involves performing steps 2 (a) - 2 (c) at

each time step, and Method 2 involves performing steps 2 (a) - 2 (d). In practice,

we would not propose using Method 1 over Method 2 as step 2 (d) is relatively

cheap to perform. However, Method 1 is included here for comparative purposes.

Figure 5.10 shows temporal convergence of ch and cs,h when k1 = 1, k−1 =

1, k2 = 0.1, stot = 1 at t = 2. Throughout the simulations we used h = 0.1. As

an approximation of the exact solution we used NT = 8000 and to compare with

this solution we used NT = 160, 320, 640 and 1280. We denote the maximal node

errors in ch and cs,h as Ech = ‖c− ch‖l∞ and Ecs,h = ‖cs − cs,h‖l∞ , respectively.

The plots show that Method 2 is second-order convergent (in terms of ch and cs,h)

while Method 1 is only first-order convergent; this demonstrates the advantage of

performing step 2 (d) in Section 5.4.

For spatial convergence tests we used NT = 8000. For our exact solution we

used h = 0.02 and to compare with this exact solution we used h = 0.1, 0.2, 0.4

and 0.8. Figure 5.11 shows that second-order spatial convergence for our method

still holds when we have an expanding domain.
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Figure 5.10: Temporal convergence of bulk-surface FEM on a time-dependent
domain. Kinetic parameters are k1 = 1, k−1 = 1, k2 = 0.1, stot = 1 and the final
time is T = 2. The left hand plot shows convergence of the error in ch and the right
hand plot shows convergence of the error in cs,h. Both plots show that Method 2
is second-order convergent in time, while Method 1 is only first-order.
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Figure 5.11: Spatial convergence of bulk-surface FEM on a time-dependent do-
main. Kinetic parameters are k1 = 1, k−1 = 1, k2 = 0.1, stot = 1 and the final
time is T = 2. The left hand plot shows convergence of the error in ch and the
right hand plot shows convergence of the error in cs,h. Both plots show that both
methods are second-order convergent in time.

We now consider an example where the domain expands due to the reaction

taking place at the boundary. We will assume that the outer boundary expands

outwards in the normal direction at a velocity of k2cs. The following parameters are

used; k1 = 1, k−1 = 1, k2 = 10, stot = 1, T = 2, h = 0.1 and NT = 1× 103. In this

case we increased k2 substantially to ensure that the expansion of the boundary
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was not happening over a particularly large time-scale. The simulation results in

this case are not sensitive to small changes in the chosen parameter values. The

initial conditions are as in the previous case and we again use an initial isotropic

mesh. Figure 5.12 shows plots of the bulk concentration ch, as well as the surface

concentrations ch and cs,h at t = 0, 0.5, 1, 1.5 and 2. Due to the finite amount of

bulk reactant initially in the system, there is a limit to how far the boundary can

expand. Figure 5.12 shows the results when the same parameters as the previous

example are used. For this example, a new mesh is generated at each time step.

A temporal smoothing parameter of τ = 1× 10−3 was used for the simulation.

The plots show that the boundary is expanding. Due to the circular initial

boundary and initial conditions we have that the domain will remain circular

throughout the simulation. Other than the slight expansion of the boundary, the

results are very similar to those obtained from the stationary circular domain prob-

lem. Note that cs,h remains close to zero throughout due to k2 being significantly

larger than k1 and k−1.
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Figure 5.12: Plots of surface and bulk concentrations when k1 = 1, k−1 = 1, k2 =
10, stot = 1 at t = 0, 0.5, 1, 1.5 and 2. The mesh used has a maximum edge
length h = 0.1 and NT = 1000 time steps were used. When generating the
moving meshes, a temporal smoothing parameter of τ = 1 × 10−3 was used. The
plots on the left hand side demonstrate how the bulk concentration varies with
time as the domain expands. The right hand plots show that, at the surface, the
bulk concentration ch is continuously decreasing whereas cs,h remains close to zero
throughout.
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5.5.3 Expanding domain with boundary source of reactant

Finally, we consider a problem where we have a localised source of reactant. The

location of this source is represented in this example by a fixed circular inner

boundary in the middle of the domain. This means that we now have two bound-

aries in our system. As the inner boundary represents a constant source of reactant,

the concentration of reactant at this inner boundary is kept constant throughout

the simulation. In our FEM this is represented with constant Dirichlet boundary

conditions at the inner boundary. This system is designed to be a two-dimensional

equivalent of the system solved in Section 4.3 [67]. If we applied our model to such

a system we would have that the inner boundary represents the source of hydroxyl

radicals which will diffuse to the outer boundary and react with soot/dirt and

cause the gap to expand.

The mesh used to cover the initial domain is shown in Figure 5.13 and was again

produced using the automatic mesh generation tool MESH2D [7]. The outer and

inner boundaries are defined by the equations r1(θ) = 1+0.1 sin(θ) and r2(θ) = 0.1,

respectively, where r1,2 and θ are polar coordinates. Using MESH2D we were able

to specify the number of boundary points on both the inner and outer boundaries.

A relatively fine initial mesh was chosen to allow us to expand the domain while

still maintaining an acceptable mesh. We deliberately chose to have a large number

of grid points at the inner boundary as, for the example considered, this is where

we see the steepest gradients in the bulk concentration field. As with the example

discussed in Section 5.5.1, we equidistributed the points on the outer boundary

and solved for a new mesh. The initial mesh used for the following simulation had

a maximum edge length h = 0.1439 (shown in Figure 5.13) and NT = 5×103 time

steps were used. The following parameters are used; k1 = 5, k−1 = 1, k2 = 0.5,

stot = 1 and T = 4 and the following results are not sensitive to small changes in

the parameter values used. Notice that the k1 to k−1 ratio is large, which allows

reactant to easily bind to reaction sites. By setting k2 to be relatively small, we
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limit the rate that the boundary can expand. If k2 was large, due to the constant

supply of reactant, we would see the boundary expand more quickly.
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Figure 5.13: The initial mesh used to simulate diffusion in the bulk coupled to
surface reactions at the domain boundaries.

The following plots demonstrate typical behaviour of such a system. Figure 5.14

shows plots at t = 0, 1, 2, 3 and 4. The plots show that as the domain expands the

outer boundary becomes more and more circular. This is unsurprising considering

the source of reactant is circular. Reactant will be transported to the points of

the boundary which are closer to the source more quickly than the points which

are further away. This increased supply of reactant allows these points to expand

more quickly and causes the outer boundary to eventually resemble a circle.
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Figure 5.14: Plots of surface and bulk concentrations when k1 = 5, k−1 = 1, k2 =
0.5, stot = 1 at t = 0, 1, 2, 3 and 4. The mesh used has a maximum edge length
of h = 0.14 and NT = 5000 time steps were used. Additionally, a temporal
smoothing parameter of τ = 1 × 10−3 was used. The plots on the left hand side
demonstrate how the bulk concentration varies with time as the domain expands
and the plots in the centre show how the domain is gradually becoming more
circular. The right hand plots show that, at the surface, the bulk concentration
ch is gradually decreasing whereas cs,h initially increases, and remains relatively
constant throughout the simulation.
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5.6 Conclusions

In this chapter, we have presented a computational framework for the solution of

coupled bulk- surface reaction-diffusion equations in two dimensions. The proposed

algorithm is based on a conservative finite element ALE scheme to approximate

the solution of the PDEs. A MMPDE approach has been used to simulate a

curve moving in the normal direction that also allows control of the tangential

distribution of mesh points. The overall algorithm has been shown to work well

when applied to a model problem with a known analytical solution. The method

has been applied to a system motivated by semiconductor photocatalysis and could

be used for a range of different problems.
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Conclusion

6.1 Summary of main contributions

In Chapter 2 we introduced a numerical method for solving a system which models

a reactant diffusing throughout a domain and reacting exclusively at a photocata-

lyst surface. This resulted in a coupled system of equations, where the bulk species

was coupled to the surface species via a non-linear boundary condition. We pro-

posed a method which involved explicitly solving for the concentration of surface

species present at the boundary, before solving for the concentration of the bulk

species using a Crank-Nicolson method. Once the bulk concentration has been

approximated, we correct our initial approximation of the concentration of sur-

face species using a Crank-Nicolson method. We demonstrated that our proposed

technique was second-order convergent in space and time for a range of different

parameter regimes. Throughout this thesis we used this numerical method, with

slight modifications when required, and demonstrated that, for a range of different

systems, our method was second-order convergent in space and time.

In Chapter 2, after presenting a general mathematical model, we considered a

chemical system used to assess the activity of self-cleaning glass. We were able

to replicate experimental data and use our model to explain the reason behind

observed experimental results. In particular, we provided an explanation as to

225
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why the initial reaction rate is inversely proportional to the thickness of the films

considered.

For several of the systems considered in this thesis we explored the validity of

the quasi-steady state assumption (QSSA). For every system where we considered

the QSSA we were able to give examples of regimes where the QSSA was not

valid. It is common practice to assume that the QSSA is valid for semiconductor

photocatalyst systems as it can often significantly simplify the system. By show-

ing that the QSSA is often not valid, our research suggests that care should be

taken when invoking this assumption. Similarly, when modelling semiconductor

photocatalysis systems it is often assumed that diffusion is quick enough to ensure

that the transport of reactant is not rate-limiting. This assumption, along with

the QSSA, is often used to simplify systems. However, for systems where these

assumptions are not valid, more sophisticated methods will need to be considered.

Throughout this thesis we have presented how the equations arising from various

models can be solved without making either of these assumptions.

Chapter 3 focused on systems where reactions were taking place throughout

the domain, as opposed to exclusively at the boundary, which was the case in

Chapter 2. For two different systems we considered how the initial reaction rate

varied with film thickness. For one of the systems considered we identified a

regime where the initial reaction rate was inversely proportional to film thickness.

Using our model we were able rationalise this observed result. Interestingly, for

an alternative system considered, we identified a distinct regime where the initial

reaction rate was inversely proportional to the film thickness raised to the power

of 0.72. Further work could involve additional consideration of the reason behind

this dependence.

Many semiconductor photocatalyst systems involve the destruction of organ-

ics at a photocatalyst surface. This can lead to systems where the domain being

considered is either expanding or contracting in size. In Chapter 4 we presented a

numerical method which can be applied to systems where the domain is expand-
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ing or contracting and a reaction is taking place at a boundary. We considered

three models proposed by Ollis [67], and, for each model, we presented a more

general model which makes fewer assumptions than the models proposed by Ollis.

We demonstrated that our models could replicate the results presented by Ollis.

Furthermore, we gave examples of situations where our general models could be

applied, but the simple models proposed by Ollis would not be applicable.

In Chapter 5 we expand the work presented in Chapter 4 by considering surface

catalysed reactions in two-dimensional time-dependant domains. We presented a

computational framework for the solution of coupled bulk-surface reaction-diffusion

equations in two dimensions. We showed that our approach works well by applying

our method to a model problem with known solution. We went on to demonstrate,

for several different regimes, that our proposed method was second-order conver-

gent in space and time. The final simulations presented in this chapter gave an

example of how our proposed method could be applied to a system where we have

a source of hydroxyl radicals at an inner boundary which diffuse and react with

soot/dirt at an outer boundary causing the outer boundary to expand.

6.2 Future work

For many of the systems considered, and some regimes in particular, there are

periods of time where the solution varies rapidly with time. By adapting the size

of the time step in line with how quickly the solution is varying, the methods we

proposed could be made more efficient. For example, if we introduced a measure

of how quickly the solution was changing between each time step we could decide

to reduce the size of time step until the change in solution between two time steps

was lower than some predefined tolerance. This would avoid a situation where we

may be forced to use extremely small time steps throughout a simulation due to

behaviour which is occurring exclusively at the start of the simulation.

Similarly, at times there are parts of the domain where the gradient of the
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solution is very steep. This is particularly apparent when a solution decreases

rapidly at a boundary. By determining the position of grid points based on the

solutions being calculated, the efficiency of the proposed numerical methods could

be improved.

In addition to exploring adaptive grids and adaptive time steps, our numerical

method could potentially be improved by considering alternatives to the Crank-

Nicolson method. Throughout the work presented in this thesis, the Crank-

Nicolson method is used frequently as was our predictor-corrector approach. There

are a range of other schemes which could be explored.

We did not consider the desorption kinetics of any product formed and its po-

tential diffusion back into the bulk in any of the models we proposed in this thesis.

Instead, we assumed that once a product had been formed, it no longer plays a

role in any subsequent reactions. Furthermore, we have assumed that the reaction

binding sites become available for further reactions. Potential enhancements to

our models could involve considering what impact allowing reactant to desorb into

the bulk would have on the overall kinetics of the systems we considered. Another

interesting expansion of our work could involve considering a source of reactant at

an outer boundary which is able to diffuse throughout a domain and react with a

substance present at an inner boundary. It would also be interesting to consider

two-dimensional systems where we have reactions occurring throughout the do-

main as opposed to exclusively at an outer boundary. This could be used to create

two-dimensional models based on the systems considered in Chapter 3.

In all systems considered we assumed that any transport of reactant was en-

tirely due to diffusion and ignored any potential convective transport. This would

be particularly important were we to consider to ability of photocatalytic tiles and

paint to remove airborne pollutants such as nitrogen oxides.

The final model presented in Chapter 3 was motivated by preliminary experi-

mental results for a system where gas diffuses into a polymer film before reacting

with a dye throughout the film. With more complete experimental data we would
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aim to use our proposed model, with physically realistic parameters, to replicate

experimental results before making predictions about the underlying system. Al-

though this would be particularly useful for the material considered in Chapter

3, making use of additional experimental data would be beneficial for all models

proposed. Throughout this thesis we have given an indication of how experimen-

tal results could be used to further validate our proposed models. In particular,

we have suggested that if existing experiments could be reperformed using films

that were substantially thicker than initial films used in experiments, the diffusion

process would potentially become rate-limiting. This would allow us to further

validate our proposed models which allowed for diffusion of reactant. Similarly, if

experiments could be performed where the intensity of light applied to the pho-

tocatalyst is varied over a wide range of values, our models could potentially be

used to replicate results ranging from reaction-limited (when the intensity of light

is low, resulting in a slow surface reaction rate) through to diffusion-limited (when

the intensity of light is high, the surface reaction rate will be quick).

In Chapter 5 we presented a numerical method for the solution of coupled

bulk-surface reaction-diffusion equations in two dimensions which were motivated

by the final case considered in Chapter 4. Numerical experiments carried out in

this chapter suggest second-order spatial and temporal convergence. It would be

useful to establish these rates theoretically. Consideration should be given with

regards to how our model and the numerical technique proposed can be applied to

a range of real life chemical systems. Again, experimental data would be helpful

in helping to validate our proposed model and to make further enhancements and

improvements.
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Colour prediction

In Chapter 2 we considered a resazurin-based intelligent ink, which, under UV

illumination, changed colour when applied to self-cleaning glass. In this appendix

we demonstrate how experimental data can be analysed to predict what colour a

material may be based on its absorbance spectrum.

An absorbance spectrum shows the fraction of incident radiation absorbed by

a material at a certain frequency. This spectrum determines what colour we see

when looking at a particular material. Using a standard formula we can convert

an absorbance spectrum into CIE XY Z tristimulus values which can, in turn, be

converted into RGB values which can be easily displayed by a computer [84]. The

Commission internationale de l’éclairage (International Commission on Illumina-

tion, i.e. the CIE) has published selected colorimetric tables [4] which we make

use of to predict what colour a material will be at a particular time based on its

absorbance spectrum.

A.1 Calculating CIE tristimulus values

The CIE originally defined the tristimulus values in terms of the integrals

X = k

∫

λ

S(λ)x̄(λ)β(λ)dλ, (A.1)
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Y = k

∫

λ

S(λ)ȳ(λ)β(λ)dλ, (A.2)

Z = k

∫

λ

S(λ)z̄(λ)β(λ)dλ. (A.3)

Here, S(λ) is the spectral concentration of the radiant power of the source illu-

minating the object, x̄(λ), ȳ(λ) and z̄(λ) are the CIE 1931 standard colorimetric

observers (shown in Figure A.1), where
∫

λ
x̄(λ)dλ =

∫

λ
ȳ(λ)dλ =

∫

λ
z̄(λ)dλ [2].

This means that, if an object has a completely flat absorbance spectrum, then

X = Y = Z. The spectral reflectance of the illuminated and viewed object is

represented by β(λ), and k is a normalising factor given by

k =
100

∫

λ
S(λ)ȳ(λ)dλ

. (A.4)

Equations (A.1)-(A.4) also apply when a material is transmitting instead of re-

flecting radiant power. This allows us to use the spectral transmittance T (λ) of

an object instead of the reflectance factor β(λ) in (A.1)-(A.4). The transmittance

of an object is the fraction of incident light that passes through a sample at a

particular wavelength and can be written as

T (λ) =
I(λ)

I0(λ)
, (A.5)

where I0(λ) is the intensity of the incident light and I(λ) is the intensity of the

light coming out of the object. Both I and I0 have units measured in the form of

power divided by area. The definition of k makes the Y tristimulus value equal

100 exactly when the material is a perfect reflecting diffuser (i.e. β(λ) = 1 at all

wavelengths λ). If an object is transmitting radiant power the perfect reflecting

diffuser is replaced with the perfect transmitting diffuser (where T (λ) = 1 at

all wavelengths λ) [91]. The XY Z values will be largest when we have a perfect

reflecting/transmitting diffuser, leading to maximum values ofX = 95.04, Y = 100

and Z = 108.85.
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Figure A.1: The CIE 1931 standard colorimetric observers x̄(λ), ȳ(λ) and z̄(λ) [2].

From [83] we have that the relationship between the absorbance Ab(λ) and the

transmittance T (λ) is given by

Ab(λ) = − log10
I(λ)

I0(λ)
,

which, making use of (A.5), can be re-arranged to give

T (λ) = 10−Ab(λ). (A.6)

The absorbance of an object is usually given in a discrete form at unit wavelength

intervals. Hence we can substitute (A.6) into (A.1)-(A.4) and approximate the

integrals with sums so that

X = k

λb∑

λ=λa

S(λ)x̄(λ)10−Ab(λ)∆λ, (A.7)

Y = k

λb∑

λ=λa

S(λ)ȳ(λ)10−Ab(λ)∆λ, (A.8)
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Z = k

λb∑

λ=λa

S(λ)z̄(λ)10−Ab(λ)∆λ, (A.9)

k =
100

λb∑

λ=λa

S(λ)ȳ(λ)∆λ

. (A.10)

The visible spectrum of wavelengths is (λa, λb), where we assume that λa = 380

nm and λb = 780 nm [91].

The CIE have published data [4] that allows us to calculate (A.7)-(A.9). The

data includes the colour-matching functions of the 1931 standard observer (x̄(λ),

ȳ(λ) and z̄(λ)) and standard illuminant data for D65 (which simulates average

daylight conditions with a correlated colour temperature of approximately 6504

K) which is S(λ) in this case. There are various other standard illuminants which

are used to simulate different lighting conditions and are widely available on the

internet. However D65 is the main standard illuminant recommended by the CIE.

Using the built-in Matlab function xyz2rgb, it is straightforward to convert the

1931 CIE X, Y and Z values into RGB values and ultimately display the predicted

colours.

A.2 Making colour predictions using published

data

Mills [50] published plots of the absorbance spectra of a typical Rz photocata-

lyst film indicator ink coated onto ActivTM self-cleaning glass at 16 uniformly

distributed times throughout a 15 minute period of illumination with UVA light

(3.3 mW cm−2). It should be noted that the experiment was carried out under

anaerobic conditions (i.e. without oxygen). This data is shown in Figure A.2.

At time t = 0 there is a clear absorbance peak at approximately 608 nm.

However, as time increases the peak at 608 nm gradually decreases, while a new
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Figure A.2: UV/Visible absorbance spectra of a typical Rz photocatalyst indica-
tor ink coated onto ActivTM self-cleaning glass at 16 uniformly distributed times
throughout a 15 minute period of illumination with UVA light (3.3 mW cm−2).

peak is simultaneously formed at approximately 580 nm. The initial spectrum

corresponds to the Rz ink before the reaction has occurred whereas the spectrum

after 15 minutes corresponds to the reduced form of the ink resorufin (Rf). As

Rz is reduced to Rf there is a distinct colour change from blue to pink which

corresponds to the change in absorbance spectra. Note that the spectra shown in

Figure A.2 are qualitatively very similar to the spectra presented in Figures 2.33

- 2.39 from Section 2.2.

Using (A.7)-(A.10) we calculate the CIE X , Y and Z co-ordinates correspond-

ing to the 16 absorbance spectra shown in Figure A.2 and calculate the RGB

values. Figure A.3 shows the colours predicted from the 16 absorbance spectra

plotted in Figure A.2. There is a very clear colour change from light blue to pink.

Mills [58] published pictures of the indicator ink applied to plain glass and Activ

glass after 3 minutes of UV irradiation. Although the images were not obtained un-

der the exact same experimental conditions as the data we have used to make our

colour predictions, the pictures give us a qualitative idea of what kind of colours
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we should be expecting to see as the ink changes colour throughout the reaction.

The predictions in Figure A.3 are good estimates of what the colour change looks

like in reality.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mins

Figure A.3: The gradual colour change predicted using the 16 absorbance spectra
from Figure A.2 with the initial colour at the far left and the colour after 15
minutes at the far right.

Brian Reid [1] has also designed an applet which predicts what colour a material

should be based on its absorbance spectrum. A screenshot of the application is

shown in Figure A.4, where the background colour of the graph is the colour which

the application predicts that the absorbance spectrum corresponds to. Using the

image manipulation programme GIMP we can easily extract the RGB values from

the colour predicted by the application.

To compare the predictions made using Reid’s applet with our own code we

used two sets of absorbance data published on the internet [3]. Figures A.5 and

A.6 show the comparison between the colours we predict from two different ab-

sorbance spectra and the colours predicted by the applet. The colours predicted

are almost identical to look at, which would suggest that the method used to make

our predictions is very similar to that used to make the predictions on the website.

For further comparison we entered the absorbance spectra shown in Figure A.2

into the applet and compared the colours with those which we predicted from our

own calculations. The colours predicted by the applet are shown in Figure A.7 and

are very similar to those predicted using our method, although they do appear to
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Figure A.4: A screenshot taken of Reid’s website showing the application which
predicts what colour a material will be based on its absorbance spectrum [1].

Figure A.5: Comparison of the colour
predicted from the absorbance spectrum
of the dye Malachite Green using our
code (on the left) and the applet from
Reid’s website [1] (on the right).

Figure A.6: Comparison of the colour
predicted from the absorbance spectrum
of Rosebengal using our code (on the left)
and the applet from Reid’s website [1] (on
the right).

be slightly darker. Figure A.8 shows the RGB values obtained from our Matlab

code (solid lines) and from the website application (dashed lines). The behaviour

of both sets of RGB values is very similar, although the values obtained from the

applet are slightly lower throughout, which is the reason why the colours appear

to be slightly darker.
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Figure A.7: The gradual colour change predicted using the applet [1] corresponding
to the 16 absorbance spectra from Figure A.2. The initial colour is at the far left
and the colour after 15 minutes is at the far right.
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Figure A.8: The RGB values taken from the colour prediction made using our
method (solid lines) and from the Reid website application [1] (dashed lines).
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A.3 Making colour predictions using experimen-

tal data

We performed the same colour predictions on the absorbance spectra we presented

earlier in Figures 2.33 - 2.39 from Section 2.2. We will focus on three films; the

thickest, the thinnest and an intermediate film.

Figures A.9 - A.11 show that for the thinnest film the colour predictions look

pale in comparison to published photographs [58] and earlier predictions (Figure

A.3). The change from blue to pink is visible, but very weak. For the middle

film we see a far more convincing colour change which looks similar to the colour

prediction made earlier. For the thickest film we see a far stronger colour change,

however, the change is similar to the middle film.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

Figure A.9: The gradual colour change predicted with the initial colour at the far
left and the colour after 1800 seconds at the far right from the absorbance spectra
from a 549 nm thick film.

From the RGB plots we can see that qualitatively the R, G and B values are

fairly similar for all three films, although quantitatively there is a significant differ-

ence. The overall absorbance is far higher for the thickest of films considered. This

is unsurprising, as the Beer-Lambert law states that absorbance is proportional to

path length (i.e. film thickness in this case) [83]. Our results suggest that thicker

films will give a stronger colour change. Again, this is not surprising as thicker

films will have a greater total number of dye molecules.
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Figure A.10: The gradual colour change predicted with the initial colour at the far
left and the colour after 900 seconds at the far right from the absorbance spectra
from the 2140 nm thick film.
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Figure A.11: The gradual colour change predicted with the initial colour at the far
left and the colour after 1800 seconds at the far right from the absorbance spectra
from the 4014 nm thick film.
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Figure A.12: Absorbance spectra for the 549 nm film (where spectra are plotted
in our predicted colours) and the corresponding RGB values.
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Figure A.13: Absorbance spectra for the 2140 nm film (where spectra are plotted
in our predicted colours) and the corresponding RGB values.

A.4 Conclusions and further work

We have demonstrated that we can predict the colour of a substance based purely

on its absorbance spectrum. Our predictions are very similar to published pho-
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Figure A.14: Absorbance spectra for the 4014 nm film (where spectra are plotted
in our predicted colours) and the corresponding RGB values.

tographs. We have also shown that the strength of the colour change is dependent

on film thickness. This is due to thicker films containing more dye molecules and

hence showing a stronger colour.

It can be noted from Figures A.13 and A.14 that the red RGB value changes

most dramatically throughout the reaction process. This observation has been used

in [52] and [61] to develop a cheap and quick means to determine quantitatively the

activity of photocatalytic films via resazurin-based intelligent inks. Using either a

digital scanner [52] or a mobile phone app [61] RGB data can easily be acquired

and the R channel plotted as a function of time. The time taken for the R channel

to reach 90% of its final maximum value, ttb(90), has been shown to correlate well

with the inverse of the rate of the surface reaction. This follows if the reaction is

approximately zeroth order in time up to the time ttb(90). Using the algorithm

presented here we can further analyse the correlation between the absorbance data

and the change in colour estimates. In particular, the algorithm could be used to

identify dominant colour channels or combinations of channels whose dynamics

are an accurate reflection of reaction rates deduced from changes to absorbance

data.
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