Thesis
Bioencapsulation in silica sol-gel nano-pores and intrinsic protein fluorescence : ensemble and single molecule
可下载的内容
下载PDF文件- Creator
- Rights statement
- Awarding institution
- University of Strathclyde
- Date of award
- 2009
- Thesis identifier
- T12707
- Qualification Level
- Qualification Name
- Department, School or Faculty
- Abstract
- The ability to measure and understand protein fluorescence depends on the development of light sources which can excite the intrinsic aromatic amino acids, tryptophan, tyrosine, and phenylalanine. In recent years the time-resolved study of protein fluorescence has been limited to the excitation of tryptophan and tyrosine. The availability of the shorter wavelength, 265nm light source, allows for the excitation of phenylalanine which until recently has been limited. In this thesis the direct excitation of phenylalanine is demonstrated, using pulsed light emitting diodes, and the bi-exponential nature of its fluorescence decay is investigated, and the effect of pH on the fluorescence lifetimes. One of the major difficulties with the study of proteins is the lack of immobilisation techniques for the study of proteins at the single-molecule level, which provide little perturbation of the protein. To try to achieve this, the fabrication of novel molecular nanoenvironments, based on sol-gel techniques, which allow control and enhancement of protein fluorescence has been developed. In this thesis the application of sol-gel techniques is demonstrated for the environment sensitive trimeric form of allophycocyanin (APC) at both the ensemble and single-molecule level. The optimisation of the sol-gel technique as a generic approach to entrapment of proteins was developed using the environment sensitive probe 6-propionyl-2-(N,N-dimethylamino)naphthalene (PRODAN), which enabled monitoring of the hydrolysis and methanol removal stage of the process. For earlier diagnosis, ultra sensitive monitoring and breakthroughs in understanding the causes of many diseases, we urgently need to develop clinical single molecule sensing. Downstream, this might be accomplished by means of the fluorescence nanosecond/nanometre microscopy of single biomacromolecules.
- Resource Type
- DOI
- Date Created
- 2009
- Former identifier
- 820303
关系
项目
缩略图 | 标题 | 上传日期 | 公开度 | 行动 |
---|---|---|---|---|
PDF of thesis T12707 | 2021-07-02 | 公开 | 下载 |