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In this thesis, novel signal processing and machine learning techniques are presented 

in the field of myoelectric control.  Specifically, algorithms for activity detection, 

noise identification and noise reduction are introduced, evaluated and discussed.  The 

ultimate aim has been to develop algorithms to improve the performance of 

prosthetic control systems that use myoelectric signals. 

Such systems must be an ability to distinguish between electromyographic signals 

and background noise.  For this, the behaviour of One-Dimensional Local Binary 

Pattern histograms were used to identify the presence of myoelectric activity in 

recorded signals that originated from electrode sensors on the surface of the skin.  

This technique was compared against two other activity detection methods and it was 

found to give better performance in some circumstances.  In particular, a lower False 

Positive Rate was achieved. 

Noise is always present in myoelectric signals, and if it can be identified then steps 

can be taken to quantify and/or mitigate it.  Pattern recognition was used to identify a 

single noise type in pre-recorded myoelectric signals.  A set of Radial Basis Function 

Support Vector Machines were trained and tested on clean myoelectric signals that 

have been artificially contaminated with five typical noise types.  The behaviour of 

the features and the nature of the confusion are discussed.  Identification was shown 

to be possible, but confusion between noise types grew as the SNR increased.   

Spectral Enhancement, which is normally used on speech signals, is applied to 

myoelectric signals in an attempt to mitigate noise.  Spectral Enhancement based on 

Improved Minima Controlled Recursive Averaging (IMCRA) was found to improve 

the classification accuracy, and by corollary the signal quality, with signals that had 

white noise artificially added (which can be present in recorded myoelectric signals) 

and with intrinsically noisy signals.  The improvement was higher when fewer 

channels were used.  
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yoelectric, or electromyographic (EMG) signals are electrical signals that 

occur due to muscle contractions.  EMG signals can be measured on the 

surface of the skin and used to control prostheses.  Modern myoelectric forearm 

(hand) prostheses usually measure the voltage at two surface sites on the forearm: 

one on a flexor group and one on an extensor group (though as many as six have 

been used [1]).  The Mean of the Absolute Value (MAV) of the voltage is calculated 

and then used as a direct rate control for the movement.  The prosthetic wearer 

activates the flexor group to close the hand and the extensor group to open it.  This 

control strategy is called Direct Control (DC).  The ‘pincer’ type myoelectric 

prosthetic claws are an example of a device that uses DC.  The first DC myoelectric 

prosthetic that was used clinically became available in 1964 [2]. 

The most advanced and expensive prosthetic hands currently on the market have 

individually articulated fingers that automatically stop when enough grip has been 

applied.  The articulation allows a wider range of gestures to be realised compared 

with simpler open/close ‘claw’ models.  Unfortunately, the muscle activations 

required to perform additional gestures do not correspond to the natural muscle 

activation that would be needed [3].  This is unintuitive, and because of this, not all 

amputees are able to make full use of the functions available in their prosthesis.  The 

situation is exacerbated by the lack of sensory feedback from current clinical 

prosthetics [4].  A more intuitive system is needed; one that works based on the 

interpretation of muscle signals that correspond more closely to the desired gesture, 

and this is what Pattern Recognition promises. 

1.1. Author Publications 

[5] Paul McCool, Graham D. Fraser, Adrian D. C. Chan, Lykourgos Petropoulakis, 

John J. Soraghan, “Identification of Contaminant Type in Surface Electromyography 

(EMG) Signals”, IEEE Transactions on Neural Systems and Rehabilitation 

Engineering, in press. 

[6] Paul McCool, Navin Chatlani, Lykourgos Petropoulakis, John J. Soraghan, 

Radhika Menon, Heba Lakany, “1-D Local Binary Patterns for Onset Detection of 

M 
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Myoelectric Signals”, EUSIPCO 2012, Bucharest, Romania, 27 – 31 August 2012, 

pp. 499-503. 

[7] Paul McCool, Navin Chatlani, Lykourgos Petropoulakis, John J. Soraghan, 

Radhika Menon, Heba Lakany, “Lower Arm Electromyography (EMG) Activity 

Detection using Local Binary Patterns”,  accepted by IEEE Transactions on Neural 

Systems and Rehabilitation Engineering on 5th August 2013, in press. 

[8] Paul McCool, Lykourgos Petropoulakis, John J. Soraghan, Navin Chatlani, 

“Improved Pattern Recognition Classification Accuracy for Surface Myoelectric 

Signals using Spectral Enhancement”, submitted to Elsevier Biomedical Signal 

Processing and Control. 

1.2. Research Motivation 

The aim of this research has been to contribute towards the robustness of pattern 

recognition and therefore to ultimately improve control strategies for prosthetic 

hands.  The first issue to be addressed is that of muscle activity detection.  The 

pattern recognition system must be able to distinguish between background noise 

(i.e. the subject is at rest) and muscle activity, to reduce the likelihood of unwanted 

or incorrect limb movement.  There are many onset and activity techniques already 

in existence, but each has its limitations.  The new technique is another tool that 

performs well with noisy multi-channel data. 

The second issue that has been addressed is the issue of noise identification in 

surface myoelectric signals.  Noise is inevitable due to the nature of the measurement 

scenario: in the case of myoelectric control, a bipolar sensor sits against the skin all 

day, subject to changes in skin condition, sweat, movement relative to the skin and 

other noise sources.  There are also electrical noise sources such as power line 

interference or amplifier saturation, and if the sensor is on the torso then there can be 

ECG interference.  The noise must be detected and identified so that the clinician or 

researcher can decide whether to keep or discard the data, or to attempt some 

mitigation process. 

The final issue to be addressed is noise reduction in EMG.  Spectral enhancement has 

been refined over many decades to enhance single-channel speech signals by 
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estimating the noise and speech within the signal without a noise reference source, 

then reducing the noise component.  Spectral enhancement was investigated for use 

with muscle signals to attempt to improve the signal quality and therefore the 

classification accuracy. 

1.3. Aims 

A key task in this PhD has been in-depth investigation and implementation of EMG 

pattern recognition systems that are found in the literature.  A few commonly-cited 

papers have been found to form a standard against which new work is compared [9, 

10]. 

As the research progressed, the potential utility of One-Dimensional Local Binary 

Patterns and spectral enhancement techniques for use with myoelectric signals 

became evident.  During my placement at Carleton University, Ottawa, Canada, I 

was working with one of the leading researchers in the field of myoelectric control, 

Professor Adrian D. C. Chan.  The subject of the placement and subsequent journal 

paper [5] was the automatic identification, using pattern recognition, of contaminant 

types that are commonly found in myoelectric signals. 

The aims were: 

 Develop a way of inferring muscle activity in EMG signals by taking advantage 

of the behaviour of One-Dimensional Local Binary Patterns.  Specific histogram 

bins have been observed to be higher in amplitude during EMG activity and 

others during inactivity.  Our EUSIPCO conference paper [6] demonstrated the 

potential of this process, and the journal paper [7] described the approach taken, 

refinements made and results for both real and simulated EMG signals. 

 Investigate the feasibility of using Pattern Recognition to detect and identify the 

types of noise that are commonly found in EMG signals. 

 Apply spectral enhancement to EMG signals in an attempt to obtain higher 

gesture classification accuracy in Pattern Recognition.  Algorithms that were 

designed for voice signal noise reduction were adapted for EMG signals by 

analysing the assumptions made and modifying them empirically.  Results have 

indicated that a Pattern Recognition (PR) system with the extra Noise Reduction 
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stage has an improvement in classification accuracy when the signals are 

contaminated with Additive White Gaussian Noise, and that there is also an 

improvement in classification accuracy when applied to data sets with a low 

channel count that are naturally contaminated with noise. 

1.4. Summary of original contributions 

The contributions are shown in the context of a Pattern Recognition system in Figure 

1.1. 

 

Figure 1.1 – Organisation of novel contributions in the context of a Pattern 
Recognition system 

The Accept/Reject EMG stage in Figure 1.1 is a decision taken by the experimenter 

for each recording, based on noise type and level, before pattern recognition 

commences. 

The first contribution is a new muscle activity detection algorithm that uses One-

Dimensional Local Binary Patterns [6, 7].  The properties of One Dimensional Local 

Binary Pattern histograms can be used as a means of muscle activity detection when 

applied to EMG signals.  This is useful because the best sensor site for pattern 

recognition purposes is not necessarily the site with the highest EMG amplitude [11].  

A single active/inactive declaration is made across multiple EMG channels without 

the need for tuning for each channel.  Each activity/inactivity decision is made within 
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a window, without reference to the histogram bin activity in adjacent windows and 

its performance is tested against two popular methods. 

The second contribution a demonstration that Pattern Recognition can be used to 

identify and distinguish between contaminants that are commonly found in EMG 

signals [5].  To do this, steady state EMG was artificially contaminated with 

representative noise types, and then classifiers were trained based on features 

extracted from the noisy signals.  The accuracy of the classification decreased as the 

SNR increased, where the contaminant has less impact on the usefulness of the EMG 

for prosthetic control and telehealth. 

The final contribution was to show that spectral enhancement techniques designed 

for speech can be configured for use with myoelectric signals [8].  Spectral 

enhancement was found to restore signal quality, with a subsequent improvement in 

classification accuracy, for EMG signals when Additive White Gaussian Noise is 

present and when real noisy EMG was processed. 

1.5. Organisation of thesis 

Chapter 1 is this general introduction to the thesis. 

Chapter 2 describes myoelectric signals and the issues involved in measurement.  

Pattern recognition-based EMG control is then introduced, and each step of the 

pattern recognition process is explained. 

Chapter 3 gives a description of Digital Signal Processing as applied to EMG such as 

onset and activity detection and objective signal quality measures.  The tools that 

will be used in the later chapters are introduced. 

Chapter 4 describes One-Dimensional Local Binary Patterns as applied to 

myoelectric signals for muscle activity detection.  EMG activity is detected within 

recordings by observing the behaviour of the 1-D LBP histogram bins and a 

technique called LBP-based Activity Detection (LBPAD) is introduced.  Muscle 

activity is inferred from the EMG activity.  LBPAD is compared with two popular 

algorithms and is found to be superior in some circumstances. 

Chapter 5 describes noise identification for myoelectric signals.  Pattern recognition 

is shown to be an effective tool for identifying common types of noise that are found 
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in surface EMG signals.  Clean steady-state EMG is artificially contaminated with 

one of five noise types at several SNR levels, and classification accuracy at low 

SNRs is high.  At higher SNRs, the classifiers confuse the contaminants in particular 

ways, and this is analysed. 

Chapter 6 describes the application of spectral enhancement to surface myoelectric 

signals for improving PR classification accuracy.  The adaptations to the spectral 

enhancement techniques are discussed, and then the effects of spectral enhancement 

on EMG signals are explained.  Measurements of the change in signal quality are 

given.  The changes in classification accuracy are discussed for real EMG with white 

noise added artificially and real EMG recordings that have intrinsic noise. 

Chapter 7 is a summary chapter, in which areas for future development and issues for 

future research are discussed.



CHAPTER 2  MYOELECTRIC CONTROL 

7 

 

2.1. Introduction 

In this chapter, forearm prostheses will be introduced and discussed, and then the 

myoelectric signal will be described along with the issues that arise when it is used 

for the purposes of prosthetic control.  Human reaction time is explained, then 

pattern recognition is analysed in the same context.  Finally, the types of noise that 

are commonly found in myoelectric signals are discussed. 

2.2. Biosignal-controlled Prostheses 

he purpose of prosthetics is to provide some degree of functionality for a 

missing body part.  The simplest type of prosthetic enhances cosmetic 

appearance by restoring a more ‘natural’ bodyline.  Such prostheses are called 

‘passive’.  Passive prosthetic hands date at least as far back as the Roman Empire: 

Marcus Sergius had an iron hand made for him after suffering injuries in battle [12]. 

Body-powered prostheses, which fall under the category of ‘functional’ prostheses, 

allow the user to realise mechanical movement of joints on the prosthetic by moving 

their own body to control them.  For example, with a body-powered claw, straps 

around the user’s shoulders allow the user to shrug to open and close the claw.  This 

arrangement gives the wearer a degree of proprioception, which is knowledge of the 

position of the limb relative to the body (i.e. amount that the claw is open). 

The third type of prosthetic functions by reading biological signals (biosignals) from 

the wearer that are subsequently interpreted into commands for the prosthesis’ 

functions.  It is tempting to immediately imagine prosthetic hands that respond 

directly to brain signals, and indeed a brain-controlled arm has been developed [13].  

In [13], sensors are surgically implanted into the brain to read groups of neurons and 

allow complex and intricate control of an arm and hand.  The issues with this 

approach are the need for brain surgery, the lack of miniaturisation of the control 

system and the fact that the arm is not yet attached to the patient. 

Electroencephalogram (EEG) signals are a measurement of electrical activity from 

the brain that has the benefit of being non-invasive.  The feasibility of EEG as a 

T 
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control signal has been analysed [14, 15], but at the time of writing, the author was 

unable to find evidence of research in which EEG is used to directly control a 

prosthetic hand.  EEG signals relate to the movement of the entire body, so careful 

filtering and signal processing would be required to extract arm and hand control 

signals. 

A myoelectric (or electromyographic – EMG) limb measures voltages that are 

generated when muscles move, which are called myoelectric signals.  The first 

myoelectric hand was demonstrated at a fair by Reinhold Reiter at an exhibition in 

1948 [16].  The first myoelectric limb that was used clinically was introduced by 

Soviet engineers in 1964 [2].  Each successive model of myoelectric hand has 

incremental improvements in capability, each of which improves the quality of life 

for the wearers.  For example, the power supply and control unit have been moved 

from the belt of the wearer to inside the hand or its socket. 

If a patient has a shoulder disarticulation, surgery can be performed to have nerves 

that would have gone to the arm and fingers routed instead to upper torso muscles.  

This is known as Targeted Muscle Reinnervation (TMR) [17].  Surface sensors can 

be used to read the myoelectric signals, and pattern recognition is performed to 

identify the gestures that the patient intended for their prosthetic arm. 

Though myoelectric and other biosignal-controlled prostheses tend to capture the 

imagination of the public, they cannot completely replace passive or body-powered 

prostheses because the nature of each patient’s amputation or deformity is different, 

and therefore the patient may not be able to use a biosignal-controlled prosthesis to 

its full potential.  Bilateral amputees often use a myoelectric prosthesis and one other 

kind of prosthesis together.  In addition, an amputee might own more than one kind 

of prosthesis for different purposes or even choose not to wear a limb for some tasks. 

The more advanced and expensive myoelectric hands currently on the market have 

individually articulated fingers that automatically stop when enough grip has been 

applied to the object being held, so that it is not crushed.  A microcontroller 

constantly monitors the currents to the motors that operate the fingers and stalls them 

once a threshold is exceeded.  The iLimb, the first version of which came out in 

2007, is a commercial myoelectric limb that has been developed from research on the 
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Edinburgh Modular Arm System by Touch EMAS (also known as Touch Bionics).  

The most recent model (at time of writing), the in the Touch Bionics iLimb Ultra 

Revolution™, has two powered degrees of freedom for its thumb.  Thanks to regular 

incremental updates, the iLimb maintains its reputation as the most advanced 

myoelectric prosthetic hand on the market, beating the still impressive RSLSteeper 

BeBionic and Otto Bock Michelangelo limbs in terms of capability.   

In all three of these limbs, clever re-use is made of the open-close commands in 

order to realise more gestures.  For example, the limb can be programmed such that a 

second ‘open’ command causes a pointing gesture, or a double co-contraction of 

flexors and extensors together might move a degree of freedom of the thumb.  The 

user can choose which additional gestures he/she would like by programming the 

limb using their PC or smartphone over Bluetooth.  Despite this sophistication, this is 

still Direct Control, albeit a more functional updated version. 

There is a high-profile programme to develop better prosthetics for US veterans, 

known as Revolutionizing Prosthetics [18], which has produced dextrous robot hands 

and advanced PR-based control systems, but it has yet to produce prosthetic hands 

for use outside of the research environment. 

Non-amputees have feedback on their actions because their fingers and arm can be 

seen to move through proprioception.  Amputees can see muscles moving on their 

residual limb, but there is only a feed-forward system for finer controls [4].  

Amputees can undergo surgery to restore some sensory feedback.  The Krukenberg 

Procedure crafts a functional pincer from the residual limb [19] and recently the 

radial and ulnar nerves were stimulated to provide touch sensations from sensors on 

the fingertips of the prosthetic [20]. 

2.3. The Myoelectric Signal 

 

When a human wants to move his or her arm, the brain signals the nervous system.  

Electrical signals are sent down the nerves to the lower arm.  The locations at which 

the muscle fibres are innervated are called Motor Units.  The voltage that is 

generated at the MUAP when the Motor Unit fires is called a Motor Unit Action 
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Potential (MUAP).  It is caused by the movement of ions across cell membranes.  

Hodgin and Huxley won the 1963 Nobel Prize for their model of this phenomenon 

[21].  Detailed descriptions of motor unit function can be found in [22, 23]. 

2.3.1.1. Surface EMG 
The myoelectric signal or surface electromyogram (sEMG) is a measure of the 

attenuated summation of MUAPs within range of an electrode sensor, with additive 

noise [24] which, during a steady-state contraction, can be represented as: 

𝑥[𝑛] = ∑ ∑ 𝑚𝑖𝑙[𝑛 − Φ𝑖,𝑙] + 𝑣[𝑛]
+∞

𝑙=−∞

𝑅

𝑖=1

 
(2.1) 

 
 

where 𝑥[𝑛] is the measured sEMG signal and sample number is n, R is the number of 

active motor units, 𝑚[𝑛] is lth MUAP belonging to motor unit i, Φi,l is the 

occurrence time of 𝑚𝑖𝑙[𝑛] and 𝑣[𝑛] is additive noise [25]. 

The characteristics of EMG, such as its frequency content and amplitude, change 

depending on its anatomical original.  Gait EMG differs from forearm EMG as it has 

periodicity.  Sample rates for surface forearm EMG are usually 2-3kHz.  Signals are 

normally band pass filtered between 6-500Hz, because the majority of the sEMG 

energy is within this bandwidth [26].   A detailed description of the myoelectric 

signal can be found in [25].  There is always a small background level of EMG, 

which is caused by motor units firing to provide muscle tone [22]. 

The size of a motor unit is determined by the number of muscle fibres that are 

innervated by a single motoneuron.  When a contraction is initiated, the motor units 

begin firing in order from smaller to larger.  To sustain contractions, motor units take 

turns firing so the individual motor units are not fatigued too quickly [22].  If an 

individual MUAP is examined, it consists of a repeating and voltage pattern with a 

distinctive shape (𝑚[𝑛] in equation (2.1)) as cell membranes polarise and depolarise.  

sEMG is often called ‘interference’ EMG because it is the interference pattern 

between the MUAP trains that is being measured, especially at high levels of 

Maximum Voluntary Contraction (MVC). 

It was shown in [27] that the use of interference EMG for prosthetic control gives a 

‘bigger picture’ of muscle activity, which is more useful than looking at the 
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individual MUAP trains for pattern recognition-based control (PR is discussed in 

Chapter 3).  The shape and spacing of electrodes has a profound effect on measuring 

process, so to guide EMG researchers, consensus for the recommended 

configurations for sEMG sensors was reached in the SENIAM project [28-30]. 

When measuring sEMG on the forearm of non-amputees, it has been found that 

placing the sensors above specific muscles works no better than simply placing the 

sensors on a band round the arm in terms of the classification accuracy that can be 

obtained from a system that uses Pattern Recognition-based control [31]. 

2.3.1.2. Invasive EMG 
Needles can be inserted into the muscle to measure the activity of a few (or even 

single) motor units within the vicinity of the needle tip.  This is called invasive EMG 

and it is mainly used for diagnosis of myopathies, because the shape of the MUAP 

can indicate the health of the muscle or nerve for the purposes, for example, of 

assessing a neuromuscular disease [23].  The bandwidth of invasive EMG is greater 

than for surface EMG because the low-pass ‘tissue filter’ effect does not apply [25].  

Invasive EMG does not suffer from crosstalk and there is therefore less redundancy 

between channels, but it is less suitable for control because: 

 It is hard to predict whether and when a specific motor unit will fire during a 

muscle contraction, which makes it unreliable 

 MUAPs must be located every time the needles are reinserted, which is time-

consuming 

 Having needles in the muscle could be uncomfortable, which would impair 

prosthetic control activities 

 The increased possibility of infection due to their percutaneous nature 

Implantable sensors can be used to measure EMG for control [32].  Tests on 

macaque monkeys showed that pattern recognition-based control could be achieved 

with high accuracy using seven implantable sensors, which were powered through 

induction.  One group showed that there is no improvement in classification accuracy 

(compared with sEMG) when implanted sensors are used [31], and concluded that 

clinical factors are more important when deciding on sensor type. 
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It has been said that the spatio-temporal information in muscle crosstalk can 

“implicitly add discriminatory information” [33, 34] for pattern recognition.  On the 

other hand, if closely spaced individual muscles in a residual limb are to be used to 

control individual prosthetic functions, then it is preferable to minimise crosstalk 

[35-37]. 

 

There is a difference in myoelectric signals between people with limb loss and non-

amputees [38].  Specifically, there is a wider frequency range and less sharp 

frequency distribution peak in the power spectral density for amputees and those 

with congenital limb absence.  This is related to the muscle structure, electrode 

orientation, muscle type, the way the muscle is used based on the type of amputation, 

type of contraction and the way the muscle developed [38]. 

 

Simulated EMG is used to make noise-free reference signals with which to test 

algorithms.  The parameters of the simulated EMG can be easily changed, including 

SNR and frequency content.  Once demonstrated on simulated EMG, the algorithms 

can be tested on real EMG.  There are three main types of EMG model: descriptive, 

phenomenological and structural [25].  An example of a descriptive mode is the 

presumption of a relationship between EMG amplitude and muscle force.  An 

example of a phenomenological model is an autoregressive model.  A structure-

based or structural model describes the system in a reductionist manner, for example, 

individual MUAPs can be modelled and summed to create a simulated signal. 

Band-limited Gaussian noise can be used as a simulated EMG signal [39, 40].  In this 

phenomenological model, unambiguous onset and offset times can be decided by the 

experimenter, allowing accuracy assessment for onset detection techniques.  The 

SNR can be set by varying the amount of white noise added to the bandpassed signal. 

A transfer function can be used to make a phenomenological model to control the 

frequency content of simulated EMG: 

𝐻𝐸𝑀𝐺(𝑓) =
𝑗𝐾𝑓ℎ

2𝑓

(𝑓𝑙 + 𝑗𝑓)(𝑓ℎ + 𝑗𝑓)2
 (2.2) 
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The parameters 𝑓𝑙 and 𝑓ℎ are used to adjust the shape of the EMG spectrum.  K can 

be modified to normalise the energy content of the signal.  f is the frequency. 

A data set of dynamic simulated EMG was created for use in the activity detection 

section of this thesis (Chapter 4).  To do this, the parameters in (2.2) were changed 

randomly for each simulated gesture, but kept constant during a gesture to simulate a 

static contraction.  A simulated recording of a ‘rest-gesture-rest’ was generated of 

length 15s that has a gesture of length 5±0.5s in duration starting 5-10s into the 

signal.  An onset and offset were generated by 100-sample ‘ramps’ at either side of 

the stationary contraction [40], as opposed to the truncated Gaussian used in [39].  

Finally, Additive White Gaussian Noise was added to the signal at the required SNR.  

Figure 2.1 (a) shows a clean EMG gesture, which has AWGN added Figure 2.1 (b) to 

produce the signal shown in Figure 2.1 (c). 

 

 (a) (b) (c) 

Figure 2.1 - The creation of simulated recording of an EMG corresponding to a 
gesture is created. 

In Figure 2.1, the clean EMG, which has well-defined onset, steady state and offset 

locations (a) has noise (b) added to it (c).  In this example, fl = 59, fh = 129, fs = 

2000, SNR = 0dB. 

 

2.3.5.1. Data Set 1 
This data set consists of four gesture classes (tripod, pinch, point, and lateral grip) 

recorded from three volunteers with full limbs who performed thirty sessions, each 

consisting of five gestures, as shown in Figure 2.2. 
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Figure 2.2 - Gestures in Data Set 1 

The gestures were formed by isotonic muscle contractions and held as isometric 

contractions for five seconds, with five seconds of rest between each gesture.  The 

gestures were recorded in random sequences.  The data set, also used in [6], was 

recorded in the Department of Biomedical Engineering, University of Strathclyde, 

UK.  All protocols were ethically approved.  Technical details are given in Table 2.1. 

Sample rate 2000Hz 

Pass band 500Hz Low Pass 

Power line filter details Notch @ 50Hz 

Number of channels 2 

Number of fully-limbed subjects 3 

Number of amputee subjects 0 

Number of trials per subject 30 

Number of gestures per trial 5 

Electrode type Dry bipolar 

Gestures Tripod 

Pinch 

Point 

Lateral Grip 

Table 2.1 - Details of Data Set 1 

Two channels were recorded because most contemporary commercial myoelectric 

prostheses use two channels.  Dry bipolar electrodes (Figure 2.3) were placed on the 

volunteers’ forearms at sites corresponding to the extensor digitorum and the flexor 

carpi radialis, which were located using palpation [41, 42].  The experiments were 

conducted with the elbow flexed and forearm in mid-pronation, rested comfortably 
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on a table, with the arm stationary and only the fingers moving to form the gestures.  

The sensors had the same form factor as those used in modern myoelectric limbs, 

with which conducting gel is not used.  The amplifiers, built-in to the sensors, had a 

high Common Mode Rejection Ratio and a low-pass filter with a cut-off frequency of 

500 Hz and a 50Hz notch filter to eliminate power line interference. 

   

Figure 2.3 - Bipolar sensor of the kind used to collect Data Set 1 

The movement onset was controlled by displaying visual cues on a screen, and 

recording the muscle activity.  The volunteers responded to these visual cues, which 

stated the name and the image of the gesture to adopt (or a ‘rest’ instruction).  In 

total, about 50% of the data is activity and 50% is rest.  The timestamps of the 

movement cues were logged. 

2.3.5.2. Data Set 2 
The data set was recorded from thirty volunteers, with eight channels recorded using 

bipolar sensors; shown in Figure 2.4 [43], with a reference 3M™ Red-Dot electrode 

on the wrist as ground reference. 
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Figure 2.4  - Locations of sensors for Data Set 2 taken from [43] 

The timestamps of the movement cues had been logged.  Details of the data set are 

shown in Table 2.2. 
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Sample rate 3000Hz 

Pass band 1Hz-1kHz 

Power line filter details Notch @ 60Hz 

Number of channels 8 

Number of fully-limbed subjects 30 

Number of amputee subjects 0 

Number of trials per subject 4 sessions of 6 trials = 24 

Electrode type Wet bipolar with common reference 

Gestures Hand open 

Hand close 

Wrist Pronation 

Wrist Supination 

Wrist Flexion 

Wrist Extension 

Table 2.2 - Details of Data Set 2 

Details of the amplifier and electrodes can be found in [43].  Seven movement 

classes (shown in Figure 2.5), wrist pronation/supination, wrist flexion/extension and 

rest) were recorded.  The gestures were performed either from the previous gesture 

or from rest and then held, corresponding to isotonic followed by isometric muscle 

contractions, in three second intervals, with five seconds of rest at the start and end 

of each recording. 

 
 

 

   

Figure 2.5 - Depictions of gestures in Data Set 2 

Each gesture was performed four times per trial in randomized order.  The recordings 

include transitions between gestures, as opposed to returning to rest between every 

gesture, such that 14.1% of the time between the first and last gestures is rest. 
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2.3.5.3. Data Set 3 
Data Set 3 was recorded at Carleton University, Ottawa [44].  A single recording 

consisted of 10s of EMG during an isometric, isotonic contraction.  Five trials were 

performed for each subject, with a trial consisting of three contraction levels for each 

muscle: 20%, 40% and 60% Maximum Voluntary Contraction (MVC).  There were 

225 recordings (5 subjects  5 trials  3 muscles  3 contraction levels).  Each 

recording of the real data set was assessed manually to exclude EMG recordings that 

appeared to be contaminated; 113 EMG recordings were found to have negligible 

contamination and were therefore retained for this research.  More details on the 

EMG data acquisition and assessment are given Table 2.3 and in [44]. 

Sample rate 3003Hz 

Pass band 0.3-1000Hz 

Power line filter details None 

Number of channels biceps brachii 

quadriceps femoris (rectus femoris) 

tibialis anterior 

Number of fully-limbed subjects 5 

Number of amputee subjects 0 

Number of trials per subject 5 

Number of gestures per trial 3 

Electrode type Wet AgCl (MVAP-II, MVAP Medical 

Supplies Inc., Newbury Park, CA, 

USA) 

Gestures 20% MVC 

40% MVC 

60% MVC 

Table 2.3 - Details of Data Set 3 

A pair of Ag-AgCl surface electrodes (MVAP-II, MVAP Medical Supplies Inc., 

Newbury Park, CA, USA) was positioned above the muscle of interest, according to 

SENIAM guidelines [28-30].  The signals were amplified (Model 15A54 Grass 

amplifier, Grass Telefactor, West Warwick, RI, USA) and sampled at 3000 Hz (12-

bit, PCI-6071E, National Instruments, Austin, TX, USA).  The amplifier was 

programmed with a bandwidth of 0.3 Hz – 1000 Hz and a gain of 2000 (or 5000 if 

the EMG amplitude was low). 

Table 2.4 shows the number of 5s recording segments that were kept for each 

subject.  Note that there were no data retained for Subject 5 as they were all deemed 

to have excessive contamination. 



CHAPTER 2  MYOELECTRIC CONTROL 

19 

 Number of recordings 

per subject 

Subject number 1 2 3 4 5 

M
u

sc
le

s 

biceps brachii 24 30 26 0 0 

quadriceps 

femoris (rectus 

femoris) 

12 24 0 16 0 

tibialis anterior 24 26 26 24 0 

 Total 226 

Table 2.4 – Number of clean 10-second recordings per subject and per muscle 
from Data Set 3 

Stationarity of the signals was verified by calculating the CCN across 5s windows of 

the signals (CCN is described in section 3.5).  It changed little as the recordings 

progressed:  The mean value for the first and the second windows was 0.9935 

(standard deviation 0.0065) and 0.994 (standard deviation 0.0062), respectively.  The 

mean change in CCN between the first and last 5s windows was therefore less than 

half a standard deviation.  The same test was done across 1-second windows and no 

discernable trend was observed. 

2.3.5.4. Data Set 4 
This data set was created by Dr Christian Cipriani of ARTS Lab, Italy.  Due to 

uncertainty during recording, it is unclear which channel corresponds to which 

surface location on the arm.  Details are shown in Table 2.5. 
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Sample rate 1600Hz 

Pass band  

Power line filter details None 

Number of channels 16 

Number of fully-limbed subjects 5 

Number of amputee subjects 0 

Number of trials per subject 2 

Number of gestures per trial 60 

Electrode type Wet AgCl 3M™ Red Dot 

Gestures 1. Thumb flexion 

2. Thumb opposition 

3. Index finger flexion 

4. Middle finger flexion 

5. Ring finger flexion 

6. Little finger flexion 

7. Thumb extension 

8. Thumb "antiopposition" (radial 

abduction) 

9. Index finger extension 

10. Middle finger extension 

11. Ring finger flexion 

12. Little finger flexion 

Table 2.5 - Details of Data Set 4 

The advantage of Data Set 4 is the presence of real noise, which means that it can be 

used to test the effects of noise reduction on classification accuracy (Chapter 6). 

2.4. Human Reaction Time 

For the purposes of real-time pattern recognition control systems for prosthetics, 

human reaction time is one of the most important limitations.  If a prosthetic takes 

too long to respond to the wearer’s command then sluggishness is experienced, 

which is fatiguing as it requires more concentration.  The wearer might even stop 

using their prosthesis.  Human reaction time for myoelectric control has been found 

to be around 200-300ms [9, 45, 46].  Another study found that the best compromise 

between classification error and controller delay was 150-250ms [47].  220ms was 

used in [46] to assess whether motion discrimination was successful.  The use of 

overlapping windows helps to compensate for longer windows. 

Usually the window length from which the features are calculated is as long as 

possible to allow for more stable features [4], however a shorter window length gives 

a denser stream of training points with which to train classifiers (which are discussed 
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in the next section).  It is common to use overlapping windows to obtain a denser 

stream of class labels for longer windows.  Modern microcontrollers would 

otherwise be idle for much of a long window [4]. 

2.5. Pattern Recognition 

There are two main kinds of myoelectric control: Direct Control (DC) and Pattern 

Recognition.  For DC, a sensor is placed on the flexor group and one on the extensor 

group, and then level-coded control is implemented in which the averaged and 

rectified voltage of the myoelectric signal is used: The group with the highest level 

causes the limb to move in that direction.  If only one muscle group is available, the 

hand can be made to close when lower amplitude is present and open when it is at a 

higher level [25].  The main limitation of DC is the difficulty in controlling more 

than two or three functions.  A detailed discussion about myoelectric control 

strategies is given in [25]. 

The simplest definition of Pattern Recognition is that it takes an input or set of inputs 

and assigns a label to them based on their values.  It can be said to be the 

demodulation of control commands that are encoded in features extracted from the 

signals [48].  Classification is an example of Pattern Recognition, where input(s) are 

assigned to one of a set of classes.  In the case of prosthetic control, the inputs are 

voltage readings from sEMG sensors on the forearm or residual limb, and the classes 

can be finger movements, gestures or contraction levels. 

The aim of pattern recognition for myoelectric control is to enable to user to 

command their prosthesis using muscle movements that correspond more naturally to 

the intended movement, so that more functions can be implemented and accessed.  

To be able to do this, the PR controller must be trained in such a way that it will 

correctly respond to patterns that it has not seen before.  The type of training is called 

supervised learning and the ability to respond to previously unseen patterns is called 

generalisation. 

These challenges are more easily addressed in a controlled laboratory environment, 

and for this reason, there is an armoury of research papers into Pattern Recognition 

on myoelectric signals for prosthetic control.  High classification accuracies have 
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been achieved in laboratory conditions with few (or even single [49]) channels and 

for many gestures [50], but until recently, no pattern recognition systems have yet 

been robust enough for clinical use.  The feasibility of PR-based prosthetic control 

from surface EMG was demonstrated in [9], but there was insufficient mobile 

computational power at the time for mobile implementation on a prosthetic. 

The developments in low-powered, high-performance microcontrollers mean that 

implementing pattern recognition on a prosthetic hand is now feasible.  At present, 

the control systems used for Targeted Muscle Reinnervation (TMR) prosthetics 

already use Pattern Recognition to interpret the myoelectric signals from the torso 

into arm and finger commands for the prosthetic arm [17].  This fundamental change 

in control strategy will lead to more accurate and reliable control for prosthetic 

hands.  Figure 2.6 shows a block diagram of the typical components of a pattern 

recognition system for EMG analysis. 

 

Figure 2.6 - Diagram of pattern recognition system for EMG 

When classifying, inputs are always assigned to one of the gesture types: there is 

usually no ‘unknown’ gesture type.  One way to achieve this is to use a series of 

classifiers, each trained to recognise a single gesture or ‘something else’.  If all of the 
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classifiers produce ‘something else’, then the input the decision could either be made 

that the input was unknown or ‘suspended’ [51]. 

Sampling takes the continuous EMG signal and produces a discrete signal that is 

suitable for processing by a digital system.  The sampling of EMG signals is at a rate 

of 2-3kHz and normally of a resolution of between 8 and 12 bits.  EMG is then band-

pass filtered before use to remove motion artifacts (below 20Hz) and higher 

frequencies within which there is little EMG energy (above 500Hz) [26]. 

 

The raw voltages from the EMG electrodes are time sequences of numbers (i.e. 

samples) which, if fed into a classifier as such, would present a difficult challenge for 

the classifier [4].  Multiple channels of EMG represent a multi-dimensional space, 

which exacerbates the problem.  Due to the stochastic nature of EMG, it is 

impossible to exactly repeat a signal voltage pattern [9].  For these reasons, it is 

common to infer the characteristics of the EMG by extracting mathematical 

representations of the signals from the concurrent EMG channels over a finite 

duration (a window).  These are called features, and several different features are 

often combined into a feature set.  The classifier in Figure 2.6 is presented with the 

features.  Figure 2.7 depicts several features being extracted from each channel of the 

signal (concurrently).  The features are concatenated into a single feature vector, 

along with a class label, for presentation to the classifier. 
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Figure 2.7 - Feature extraction for concurrent window 𝒘[𝒏] of m channels of 

EMG signals labelled 𝒙𝟏[𝒏] to 𝒙𝒎[𝒏]  

In Figure 2.7, the m feature vectors are combined into a single feature vector and 

used with the class label for the supervised learning of the classifier. 

 

For any type of myoelectric control, it is common to infer muscle movement by 

using an onset or activity detection algorithm.  This is done by measuring when some 

property of the signal changes enough to cross a threshold.  Feature extraction and 

classification can then be performed to interpret the myoelectric signal into finger or 

hand movement commands for the prosthesis. 

The simplest EMG activity detection technique is visual inspection of myoelectric 

signals by a trained expert.  This is considered to have poor reproducibility and is 

affected by the subjectivity of the operator [52].  It is also very time-intensive if a 

large data set has been recorded. 

A distinction is made in this thesis between onset detection and activity detection.  

Onset detection senses the transition in a signal from ’rest’ state to EMG activity.  

Activity detection identifies and distinguishes between the transitions from rest to 

EMG activity and then back to rest; as such, EMG activity duration is detected.  This 
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is useful for control because the prosthesis must respond to muscle activity for as 

long as it continues. 

The effectiveness of onset and activity detectors is measured in three ways: overall 

accuracy, True Positive Rate (TPR) and False Positive Rate (FPR).  Overall accuracy 

is simply a measure of how often the algorithm correctly identifies activity as activity 

and rest as rest. 

Consider a vector the same length (in samples) as an EMG signal, which contains 

only ones and zeroes.  The ones indicate that the algorithm detected activity at that 

sample in the signal, and zeroes indicate inactivity.  True Positive (TP) is a measure 

of the number of times that activity was correctly identified and is also known as the 

Probability of Detection.  False Negative (FN) is a measure of the number of times 

that an activity was incorrectly identified as inactivity.  The TPR is then defined as: 

𝑻𝑷𝑹 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 (2.3) 

The False Positive (FP) is a measure of the number of times that inactivity was 

incorrectly identified as activity.  The true Negative (TN) is a measure of the number 

of times that inactivity was correctly identified.  The FPR is then defined as: 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 (2.4) 

The FPR can also be called the False Alarm Rate.  There are two main types of 

onset/activity detection: single threshold and double threshold.  Single threshold 

allows FPR to be adjusted and double threshold allows FPR and Probability of 

Detection to be controlled separately.  Examples will be discussed in detail in section 

3.2. 

A Receiver Operating Characteristic (ROC) curve is a graph of the change in TPR as 

the FPR is swept between 0 and 1.  This is achieved by changing the thresholds 

between two extremes: 

 So high that no activity is detected (0% TPR and 0% FPR) to 

 So low that 100% of the signal is detected as activity (100% TPR and 100% 

FPR).   
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The behaviour of interest is between these two extremes.  ROC curves will be used 

in Chapter 4 to compare the performance of activity detection methods. 

The presence of noise in EMG affects the accuracy of all onset and activity detection 

methods.  In all of the data sets used in this work, it is assumed that the subject has 

correctly responded to all of the gesture/MVC instructions. 

 

Each feature used in the feature set can be thought of as a dimension in a feature 

space.  One of the problems of classification is the curse of dimensionality [53], 

where there is exponential growth in the complexity of the functions needed to 

describe a feature space as the number of features is increased.  The purpose of 

dimensionality reduction is to condense the most salient discriminatory information 

from the feature space into fewer dimensions to allow the data to be described by a 

simpler function, and therefore to improve the classifier’s generalisation. 

Principal Components Analysis (PCA) identifies the direction (axis) in the feature 

space that has the highest variance between the feature vectors.  This is designated as 

the first of the new dimensions.  A second axis orthogonal to the first is then 

calculated with second-highest variances.  The dimensions with the lower variances 

can then be ignored, leaving lower-dimensional data that should be easier to classify. 

The problem with PCA is that it treats all the feature vectors without taking the 

individual statistics of the classes into consideration.  Individual Principal 

Components Analysis (iPCA) was applied to the raw EMG signals in [33].  Each 

feature vector is translated into a separate feature space depending on its class label 

in an attempt to spatially de-correlate the data before feature extraction.  An 

improvement in classification accuracy was obtained.  PCA was also used in [54], 

where two independent control signals were obtained from the first two significant 

principal components (which accounted for 90% of the data variance), which were 

used to perform three prehensile gestures. 

 

The purpose of Blind Source Separation (BSS) is to separate signal sources from 

signals that contain mixtures of each of the sources.  For example, it is possible to 

isolate the voices of two people speaking simultaneously in a room when provided 
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with a stereo audio recording.  BSS is only capable of separating the sources if there 

the number of mixtures is greater than or equal to the number of sources.  Such a 

limitation was highlighted in [55], where BSS was used to isolate five ‘synchronies’ 

from five EMG recordings made from the hand and forearm.  Independent 

Components Analysis (ICA) has also been tested on EMG where convolved mixtures 

of the EMG signals at 10% MVC were decomposed into MUAPs [56]. 

 

A classifier has feature vectors as inputs and class labels as outputs.  Its class label 

decisions are based on prior training using labelled feature vectors.  When it comes 

to choosing a classifier, the ‘no free lunch’ theorem applies.  This states that no 

classifier is inherently superior, but some classifiers are more suitable than others for 

specific tasks [57]. 

Another consideration is the ‘hot coffee’ problem [58].  The classifier might 

correctly instruct a prosthetic hand to hold a cup of hot coffee 99.9% of the time, but 

of course dropping hot coffee even once in the real world would be dangerous and 

unacceptable.  This highlights the practical difference between laboratory 

performance and real-world expectations. 

Classification of individual finger movements on amputees using only surface EMG 

was demonstrated in [59-61], thus showing the rich information that is available in 

sEMG. 

In the case of EMG, it has been shown that Linear Discriminant Analysis (LDA) has 

been shown to be as effective as several other classifiers that are more complicated to 

implement [9, 10].  The aim of Linear Discriminant Analysis is to find a linear 

combination of features to separate one or more classes [57].  Between-class distance 

is maximised within-class distance is minimised by taking the class means and 

variances into account.  Several types of hyperplanes can be used, including linear 

and polynomial. 

Neural networks are classifiers that take inspiration for their designs from biological 

brains [9, 53].  Each neuron in the network outputs a level based on the sum of 

weighted inputs and a bias term.  A neural network is a connected network of such 

neurons.  It usually consists of three layers: an input, hidden and output layer of 
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multiple neurons.  It is trained by adjusting the weights and biases to produce a 

desired output based on training inputs.  The performance is then tested by using 

separate validation data points and the generalisation is tested using cross-validation 

and a previously untested portion of the data set.  The inputs to the input layer are the 

features and the outputs of the output layer are the class labels.  The output layer can 

be linear, a step threshold or some nonlinear function (e.g. a tanh function). 

The aim of a Support Vector Machine is to distinguish between two classes by 

calculating the best possible separating hyperplane in feature space [53].  The feature 

vectors can be projected into a higher (possibly infinite) dimensional space in order 

to find a hyperplane that linearly separates the classes.  In calculating the hyperplane, 

support vectors are calculated from the input training data.  The support vectors that 

are closest to the hyperplane are by definition the hardest to classify.  SVMs were 

compared against LDA and neural networks in [62] where they were found to match 

or exceed their performance (with non-amputee data), and with a low computational 

load. 

To be able to discriminate between more than two classes, it is necessary to use 

multiple SVMs.  This can take the form of 1 versus 1 [53], in which the labelled 

feature vectors from a class are classified against each of the other class labelled 

feature vectors.  The alternative is 1 versus Rest, the feature vectors of a single class 

are compared against all the other classes’ feature vectors in one go.  Each vector is 

labelled by the classifier as ‘belonging to this class’ or ‘belonging to another class’. 

Support Vector Machines can be kernel-based, such as the Radial Basis Function 

(RBF) kernel, which allows mapping to a higher-dimensional feature space without 

the need for explicit computation of the data points in the new feature space.  Instead, 

dot products between the feature vectors can be computed in the original space.  This 

greatly reduces the computational burden, and it is called the kernel trick [53].  

LibSVM [63] is a toolbox that includes a Matlab component.  It allows multi-class 

Support Vector Machine classifiers to be implemented easily. 

A Hidden Markov Model (HMM) is a system whose state can only be inferred from 

outputs of the system.  It is completely defined by three parameters: 

1. Initial state probability vector  
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2. State transition probability matrix A 

3. State observation probability matrix B 

The previous states of the HMM have no influence on the future states.  HMMs were 

used in [64] to discriminate six movement classes without the requirement for 

segmentation of the incoming data and with a lower computational burden than 

neural networks.  In [65], the state of the HMM is used determine the best 

autoregressive sub-model for reaching movements. 

Fuzzy C-Means Clustering is used in [58] on signal mean and standard deviation to 

achieve a high classification accuracy for three and four separate patterns with 

amputees and non-amputees respectively. 

Kato et al developed a continuous online training method [46] where learning data 

(feature vectors) for the classifier were automatically added or removed through 

Automatic Addition, Automatic Elimination and Selective Addition.  These 

processes depend on the ‘strength’ of the gesture decision and the nearby decisions in 

the class label stream.  The paper concludes that the system did not perform as well 

on data from an amputee. 

In this thesis, LDA, SVMs and NNs are used for comparison against activity 

detection methods.  In Chapter 4, SVMs are used for contaminant identification in 

Chapter 5 and SVMs are used for gesture classification in Chapter 6.  Each choice is 

justified in the respective chapters. 

2.5.5.1. Post-processing 
When a classifier is well trained and generalised, misclassifications can still occur.  

These can take the form of spurious class labels within a larger stream of 

homogenous class labels, especially when a transition between gestures (or between 

rest and gesture) occur.  The isolated labels are unlikely to represent an intention on 

the part of the limb user to change gesture for the duration of a single 

window/overlap period: It is more likely a misclassification has occurred.  To 

address this, a majority vote mechanism is often used [43].  Class labels are not 

considered in isolation.  Instead, a group of class labels are considered from the 

stream at the same time, and the class label that occurs the most within the group is 
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declared as the most likely label for a given time slot.  This helps to address the ‘hot 

coffee problem’, but it does introduce controller delay [66]. 

A velocity ramp was used in [66] to mitigate the effects of misclassifications.  The 

rate of movement of the limb ramps up from zero while a gesture is performed and 

held by the user, but there is a trade-off between improvement in controllability and 

the responsiveness. 

A maximum likelihood post-processor is used in [67].  The mean global muscle 

activity levels are used alongside LDA gesture classifications.  Better performance 

than velocity ramp and majority vote were observed, though their method was only 

tested with offline data. 

 

2.5.6.1. Short Time Fourier Transform (STFT) 
The spectrum of a signal provides detailed frequency information, but the times of 

the occurrences of the frequencies are lost.  For example, a high-pitched sound could 

be present at the start of a recording and low-pitched sound at the end, but the 

spectrum indicates only the presence of high frequency and low frequency content.  

To address this, the Short Time Fourier Transform (STFT) of a signal takes the 

Discrete Fourier Transform (DFT) of windows of the signal at regular intervals 

across it [68].  This leads to a trade-off: There can be high frequency resolution or 

high time resolution, but not both at the same time.  This can be assuaged by using 

overlapping STFT windows, where the spectrum at the overlaps is averaged.  The 

STFT of the noisy signal can be thought of as the STFT of the signal plus the STFT 

of the noise: 

𝑋(𝑘, 𝑙) = 𝑆(𝑘, 𝑙) + 𝐷(𝑘, 𝑙) (2.5) 

X is signal plus noise, S is STFT of signal, D is STFT of noise for frequency bin k 

and time frame l.  STFT is used in spectral subtraction, Minimum Statistics and 

IMCRA, which are discussed in Chapter 6. 

2.5.6.2. Empirical Mode Decomposition (EMD) 
Empirical Mode Decomposition (EMD), which is also called the Hilbert-Huang 

Transform [69], is a non-linearly breaks down a signal into orthogonal functions that 

are based on the properties of the signal itself rather than of some basis function, 
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such as those used in wavelet analysis.  The orthogonal functions that are generated 

by the process are called Intrinsic Mode Functions (IMFs), which are generated as 

follows [69]: 

1. Calculate extrema of the signal 

2. Form the upper and lower envelopes of the signal 

3. Compute the mean between the upper and lower envelopes across the signal 

4. Extract the detail signal 

5. Determine whether the Zero Mean stopping criteria is met.  If not, go back to 1.  

If so, go to 6 

6. Assign the detail signal as an IMF 

7. Assign whatever is left as the residual 

8. Determine whether the number of zero crossings is less than two 

The EMD can be expressed as the sum of its N IMFs and the residual, as shown in 

(2.6). 

𝑥[𝑛] = ∑ 𝐼𝑀𝐹𝑗[𝑛] + 𝑟[𝑛]

𝑁

𝑗=1

 
(2.6) 

𝐼𝑀𝐹𝑗[𝑛] is the nth IMF. 

The IMFs, considered together, have behaviour similar to a filter bank [70].  Higher 

frequencies tend to be present in the lower-numbered IMFs, and lower frequencies 

tend to be present in the high-numbered IMFs. 

The way the IMFs are used to reconstruct the signal determines the type of noise 

reduction that is to be performed.  Detrending is the removal of IMFs with greater 

low-frequency content.  Denoising is the removal of IMFs with higher frequency 

content [71]. 

2.5.6.3. IMFs as features 
The means and variances of IMFs have been used as features for pattern recognition-

based control [49].  Several properties can be extracted as features from the IMFs: 

 Energy 

 Singular Value Decomposition (SVD) coefficients 

 Standard Deviation 

 Variance 

Each of these feature types were tested as a feature set.  For all of them, no particular 

advantage was found when used in place of the Hudgins time domain feature set, 

which will be discussed in section 3.3.  In [72], time domain features were taken of 
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the EMG data as well as of the IMFs.  An improvement in classification accuracy 

was shown. 

2.6. Noise types in EMG 

EMG usually contains several distinct types of noise [73], which obscures the useful 

information in the EMG.  Noise types include: 

 Motion artifact from cable movement and the movement of sensors relative to 

the skin 

 ECG, in particular when TMR is used 

 Additive White Gaussian Noise (AWGN) from the electronic components 

and measurement noise 

 Amplifier Saturation, quantisation noise and clipping when the measuring 

apparatus has been improperly configured or if the conditions change (e.g. 

sensor slippage) 

 Power Line interference, which is 50Hz in most countries and 60Hz in North 

America 

 Baseline wander 

As discussed in section 2.3.1, a little EMG activity is still present when the subject is 

relaxed, which maintains muscle tone.  The only other energy content at rest is noise.  

When muscles are active, the energy content in the sEMG signal that is not caused 

by motor unit activity is considered to be noise. 

 

Several types of contaminant can be commonly found in EMG signals.  Figure 2.8 

(top) shows a recording of clean, real, steady state EMG from Data Set 3 and its 

power spectral density (bottom). 
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Figure 2.8 - Clean real steady state EMG from Data Set 3 (top) and PSD 
(bottom) 

In the following sections, several types of noise will be added to the example shown 

in Figure 2.8 by way of demonstration.  Methods of simulating or adding the noise to 

EMG will also be explained. 

2.6.1.1. Motion Artifact 
Motion artifact noise is caused by the movement of the sensor relative to the skin 

[74] and by cable movement relative to the sensor.  The frequency band within which 

motion artifacts reside is 0-20Hz [26].  The example steady state EMG shown in 

Figure 2.8 is artificially contaminated with motion artifact at 0dB SNR and is shown 

in Figure 2.9. 
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Figure 2.9 - Steady-state EMG contaminated with Motion Artifact at 0dB SNR 
(top) and PSD (bottom) 

Motion artifact is eliminated, in accordance with SENIAM guidelines, by using a 

high pass filter on the EMG.  This also removes any EMG information in the 

spectrum below 20Hz, which is assumed to have a “fairly linear” distribution 

between 0-20Hz in clean EMG [75]. 

In this work, recordings of motion artifacts that were recorded for [44, 76] were used.  

The recordings were made by measuring inactive parts of the body under ambulatory 

conditions.  The recordings were resampled and added to the EMG at the required 

SNRs. 

2.6.1.2. ECG 
The electrocardiogram is the electrical signal from the muscles of the heart during 

beating [77].  It has a distinct and regular shape and consists mainly of low frequency 
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components.  For EMG measurement purposes, ECG can be problematic when 

measuring on or near the torso, such as when TMR is used [78].  The example EMG 

recording has been artificially contaminated with ECG at 0dB SNR in Figure 2.10. 

 

Figure 2.10 - Steady-state EMG contaminated with ECG at 0dB SNR (top) and 
PSD (bottom) 

For ECG interference, recordings of real ECG from one subject were used as a 

source of contamination, following the procedure described in [5, 44].  To 

contaminate signals, an ECG vector was chosen randomly from four recordings, and 

multiplied by amplitude scaling to produce the required SNR.  The ECG recording 

was resampled, repeated and truncated as necessary to match the sample rate and 

length of the EMG recordings. 
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2.6.1.3. Additive White Gaussian Noise 
AWGN occurs across the frequency range.  It can be the result of noise from the 

electronic components or from measurement noise.  It is common to add AWGN to 

signals to test noise reduction techniques.  In the case of EMG, AWGN has been 

used to test the noise reduction performance of wavelets [79]  [80].  The sample 

EMG recording, artificially contaminated with AWGN at 0dB SNR, is shown in 

Figure 2.11. 

 

 

Figure 2.11 - Steady-state EMG contaminated with AWGN at 0dB SNR (top) 
and PSD (bottom) 

To add AWGN artificially, it is simply generated in Matlab with a flat power 

spectrum and added at the required SNR to the EMG signal. 
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2.6.1.4. Amplifier saturation 
Amplifier saturation occurs when the amplifier starts to operate outside of its linear 

zone.  The result is that the higher EMG values are attenuated in a nonlinear manner 

towards the maximum saturation level.  Amplifier saturation can be simulated using 

(2.7) [73].  SNR is set by calculating the distortion with reference to a signal that is 

linearly amplified to the same gain: 

𝑥[𝑛] = 𝐴𝑚𝑝𝑚𝑎𝑥 (
2

1 + 𝑒
−2𝐺

𝐴𝑚𝑝𝑚𝑎𝑥

− 1) (2.7) 

The nonlinear range of the signal is defined by the following criterion: 

|𝑠[𝑛]|𝐺

𝐴𝑚𝑝𝑚𝑎𝑥
> 0.4 

(2.8) 

Ampmax = 10V.  G is the artificial amplifier gain.  The same nonlinear range of 

operation was used as in [73]; that is, (2.8) had to be satisfied for a sample to be 

considered in the nonlinear range of the amplifier.  The example EMG recording, 

artificially subjected to amplifier saturation, is shown in Figure 2.12. 
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Figure 2.12 - Steady-state EMG processed with amplifier saturation at 0dB 
SNR (top) and its PSD (bottom) 

2.6.1.5. Power line interference 
Power line interference is ubiquitous in electronic equipment.  It is either 50Hz or 

60Hz, depending on the country, and happens to occur in the peak frequency range 

within which EMG can be found.  This means that filtering it using a notch filter also 

removes a lot of EMG power.  An example of steady state EMG that has been 

artificially contaminated with power line interference at 60Hz at 0dB SNR is shown 

in Figure 2.13. 
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Figure 2.13 - Steady-state EMG contaminated with power line interference at 
0dB SNR 

In this work, a sine wave with a random phase (without harmonics) was added to the 

signals to the required SNR level to simulate power line interference.  Its frequency 

was set randomly between 59.5 Hz and 60.5 Hz (in 0.25 Hz increments). 

2.7. Conclusion 

In this chapter, an introduction to myoelectric control was given.  Myoelectric 

signals were described along with the issues relating to the measurement of EMG for 

control of forearm prostheses.  Pattern Recognition for EMG-based control was 

described, which will be used in later chapters.  Finally, the noise types commonly 

found in EMG were discussed.  The presence of any of these noise types in EMG 



CHAPTER 2  MYOELECTRIC CONTROL 

40 

would degrade gesture classification accuracy when Pattern Recognition is 

performed, and render the EMG less useful for telehealth.  In the next chapter, tools 

to address the issues of activity detection, noise identification and noise reduction 

will be examined. 
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3.1. Introduction 

n this chapter, an overview of DSP as applied to myoelectric signals is given, 

with a particular focus on pattern recognition and the tools that will be used in 

the subsequent chapters.  Onset and activity detection techniques are introduced and 

discussed, and then the feature types that are commonly used with myoelectric 

signals are described.  Several objective measures of EMG signal quality will be 

explained.  Finally, Spectral Enhancement and One-Dimensional Local Binary 

Patterns are introduced. 

For more information, thorough coverage of myoelectric control is given in [25], and 

a survey of myoelectric control papers up until 2007 is given in [4].  Since 2007, 

EMG noise detection has been developed [44], sensory feedback has been 

successfully tested [20] (though with the need for surgery), novel features such as 

wavelets have been tested [81] and wavelets have also been used for de-noising 

(discussed in this chapter).  The first iLimb (by Touch EMAS) came out in 2007, and 

its hardware and software has been steadily refined in a series of new models since 

then. 

3.2. Onset and Activity Detection 

Onset detection is crucial for DSP, whether it be musical note detection [82], Voice 

Activity Detection [83] or earthquake onset detection [84].  The methods shown in 

Table 3.1 have been used with myoelectric signals. 

  

I 
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Technique Reference(s) Threshold 

type 

Mechanism and Comments 

SD + RMS [58] Single Absolute value of the signal must 

be greater than standard deviation 

plus several times RMS.  

Sensitive to noise 

Mean Value 

Comparison 

[85] Single MAV of signal must be greater 

than a threshold.  Sensitive to 

noise 

Energy [9] Single Energy content of window of 

signal must be greater than a 

threshold or difference in energy 

content between windows must be 

greater than a threshold.  Sensitive 

to noise 

Sliding 

Window 

Average 

[85] Single Phase shift in frequency domain 

Group delay in time domain 

50-150ms response 

Marple-Horvat 

Gilbey 

[85, 86] Single Maximum difference in mean 

values of signal between windows 

Sensitive to noise and motion 

artifact 

Difference of 

Magnitude 

[87] Single Difference in magnitude of signal 

envelope between two time slots 

Slow to respond 

Surf [87] Single Slope of signal envelope 

Extra computational time needed 

Slow to respond 

Fractional 

Power 

Envelope 

[87] Single Convolution of fractional power 

of the signal envelope with an LTI 

filter then threshold the convolved 

result 

High 

Frequency 

Content 

[87, 88] Single Detect increase in HF content at 

onsets 

Detects onsets only 

Maximum 

Value 

Detection 

[85] Double Count peaks in a window of the 

signal.  Segment length is based 

on electrode distance and tissue 

conduction speed 

Bonato [39] Double Count number of times that a 

threshold is exceeded in a window 

Designed for gait analysis 

Trained 

Classifier 

[89] N/A Train a classifier to recognise 

between activity and rest 

Requires classifier training 

Table 3.1 – Onset and Activity Detection methods that have been used with 
myoelectric signals 
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The techniques listed in Table 3.1 will now be discussed in more detail. 

 

One of the simplest onset detection methods, although sensitive to noise, is to 

measure when the absolute value of the signal is greater than the Root Mean Square 

plus several standard deviations of a quiescent period of the signal [58].  Mean Value 

Comparison [85] compares the mean of absolute value of windows of the signal to a 

threshold.  Activity is declared for a window if the threshold is exceeded. 

The energy of the signal can be used to detect onset and activity.  In the Short Term 

Energy, either the absolute value of the energy in a window must be above a 

threshold, or the difference in energy between two adjacent windows of the signal 

must be above a threshold for onset to be declared [9].  This is also simple to 

implement and can be effective but is sensitive to noise. 

In the sliding window average [85], the Mean Absolute Value (MAV) of the signal 

within a window is calculated.  Onset is declared at a sample if the MAV goes above 

a threshold.  The Marple-Horvat and Gilbey algorithm [85, 86] detects EMG activity: 

two adjacent windows are used and the MAV is calculated within each.  If the 

difference of values exceeds or goes below a positive or negative threshold, onset or 

offset is declared respectively.   

Many single-channel onset detection methods are based on the properties of the 

signal envelope.  The simplest of these is Difference of Magnitude, which uses the 

difference in maximum envelope magnitudes between signal windows [87].  The 

Surf Method detects onset based on the slope of the envelope [87] and is more 

resilient to noise.  Fractional Power Envelope [87] also considers the background 

noise.  However, as stated in [39], the results for envelope methods depend strongly 

on the choice of envelope detection technique and threshold.  In addition, the 

response time of envelope methods can be high [39]. 

High frequency content [87, 88] is based on the observation that the high frequency 

content of myoelectric signals is higher during onset.  It detects onsets only but is 

said to be sensitive to background noise. 
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Double threshold activity detection allows probability to be controlled, in addition to 

FPR.  This is usually achieved by specifying that a first threshold must be exceeded 

by a specified number of times (the second threshold) within a window.  In 

Maximum Value Detection (MVD) [85], the peaks in a window of the signal are 

counted and onset is declared if the number of peaks exceeds a threshold.  Movement 

can also be detected by measuring the joints of the forearm using sensors such as 

accelerometers or goniometers.  This is more suitable if measuring sEMG from an 

intact forearm or if there are useable joints on the residual limb of an amputee.  Such 

information can be used to assist the classifier through sensor fusion [90]. 

The widely-cited technique introduced by Bonato [4] is a double-threshold onset 

detection technique designed for gait analysis using surface EMG [39].  An active 

and a quiescent period are identified so that the characteristics of the detector can be 

calculated.  The signal is first whitened (see section 3.4 for details of whitening), and 

then the sum of squares of consecutive odd and even samples is calculated and used 

as an auxiliary time series.  Onset is declared if this goes above a threshold for a 

specified number of consecutive times within a window.  In this way, the TPR and 

FPR (as discussed in section 2.5.2) can be separately controlled, but there is a 

processing overhead when the signal is whitened.  Bonato’s method includes a 

postprocessor to remove events of duration ≤30ms.  The steps are as follows [39]: 

1. Select length of observation window – longer observation windows are 

preferable, but this impairs the reaction time of the detector 

2. Select second threshold – the second threshold is the number of times that the 

first threshold must be exceeded within a window before onset is declared 

3. Feasibility of the detector - It must be determined whether the desired Pd and Pfa 

are feasible with the parameters chosen in the previous steps.  This can be done 

by referring to the ROC curves in [39]. 

4. Selection of first threshold – this is chosen to obtain the desired detection rate 
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Another approach to activity detection is to train a classifier to recognise ‘no motion’ 

as a class in the pattern recognition process [89].  If used in a real-time scenario, the 

classifier is then continuously active and producing class labels, once trained.  A 

disadvantage is the need for training of the classifier, which requires a training data 

set. 

3.3. Features 

Englehart et al demonstrated that the choice of feature set is more important than the 

choice of classifier [10].  It was also shown that time domain features give the best 

results for myoelectric pattern recognition.  The Hudgins Time Domain feature set is 

a commonly used standard in the field of myoelectric research against which other 

features are tested.  It consists of five features (taken from [9]): 

Mean of 

Absolute 

Value 

The mean value of the 

absolute of the signal 𝑋�̅� =
1

𝑁
∑ |𝑥[𝑘]|𝑁

𝑘=0  for i=1,…,I 

Zero 

Crossings 

Number of times that the 

signal crosses the time 

axis.  A threshold can be 

set to compensate for 

noise 

𝑍𝐶 = ∑ 𝑓(𝑥)

𝐿

𝑛=0

 

where 

𝑓(𝑥)

= {
1 𝑖𝑓 (𝑥[𝑘] > 0 𝐴𝑁𝐷 𝑥[𝑘 + 1] < 0)

𝑂𝑅 (𝑥[𝑘] < 0 𝐴𝑁𝐷 𝑥[𝑘 + 1] > 0)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

Waveform 

Length 

Sum of Absolute 

Differences between 

samples 
𝑊𝐿 = ∑(|Δ𝑥[𝑘]|)

𝐿−1

𝑘=1

 

Slope 

Sign 

Change 

Number of times that the 

slope of the signal 

changes 

𝑓(𝑥)

= {
1 𝑖𝑓(𝑥𝑘 < 𝑥𝑘+1 𝐴𝑁𝐷 𝑥𝑘 < 𝑥𝑘−1

𝑂𝑅(𝑥𝑘 > 𝑥𝑘+1 𝐴𝑁𝐷 𝑥𝑘 > 𝑥𝑘−1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Mean of 

Absolute 

Value 

Slope 

Number of times that the 

slope of the Mean of 

Absolute Value changes 
∆𝑋�̅� = �̅�𝑖+1 − �̅�𝑖 for i = 1,…,I-1 

Table 3.2 – Hudgins Time Domain features taken from [9] 

Table 3.3 shows other features that have been used with EMG signals. 
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Name Reference Comment 

Autoregressive [91] Prior values of the EMG in a signal can be used to 

predict future values with autoregressive prediction 

Cepstrum [4] Rate of change in the bands of the spectrum 

Constraint 

Sample Entropy 

[92] Constrained measure of entropy of the EMG 

EMG 

Histogram 

[91] Measures “the frequency at which the EMG signal 

reaches multiple amplitude levels” 

Energy [4] Sum of squares of absolute values of all the samples 

in a window of the signal 

Kurtosis [38] Third moment of the PSD of the EMG 

Sample Entropy [93] Measure of entropy of the EMG 

Skew [38] Fourth moment of the PSD of the EMG 

Wavelet 

coefficients 

[94] Properties of wavelet coefficients are used as 

features 

Willison 

Amplitude 

[95] Number of times that the difference between 

successive samples of the EMG cross a threshold 

Table 3.3 – Other features used with EMG 

For autoregressive coefficients, prior values of the EMG in a signal can be used to 

predict future values with autoregressive prediction [96].  A multi-tap filter is created 

to try to predict the next sample, and the coefficient values of the taps are calculated 

using a least squares approach.  These coefficients can be used as features.  The order 

of AR ranges from 3, 4 in [50] [43, 91] to 6 in [49] and 11 in [97].  The order must 

be large enough to take noise into account [91]. 

Hudgins’ feature set has been used as a reference throughout the literature.  

Therefore, in this thesis, gesture classification using pattern recognition will be 

obtained using this feature set. 

3.4. Whitening 

Whitening is performed on EMG to improve signal amplitude estimation.  The EMG 

is assumed to be the output of a linear filter that has white noise as an input, so 

inverting the filter produces the original white noise [98].  In [98], the whitening 

improved amplitude estimation, but calibration difficulties arose.  In [99], an 

adaptive whitening filter is introduced that improves MVC estimation at levels below 

10%, where whitening normally does not help because of the overwhelming 

measurement noise. 
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3.5. EMG signal quality measurements 

In [44] four steps were identified for dealing with noise in EMG signals: 

Detection - The fact that noise exists in the signal can be established without 

necessarily knowing what it is.  That it can be detected at all might mean that it is 

strong enough to render EMG readings unusable. 

Identification allows the type(s) of contaminant to be distinguished.  This helps in 

deciding whether steps should be taken to either discard the data or mitigate the 

noise. 

Quantification can allow a decision on whether the noise is of a level that will cause 

problems for the intended use of the data. 

Mitigation might be, for example, to not use contaminated channels, which is an 

option with high density EMG recording.  The type of mitigation depends on 

whether the data is real-time or recorded.  Depending on the type of contamination, 

mitigation can be straightforward.  For example, high pass filtering can reduce or 

eliminate motion artifact noise, though this is at the expense of any EMG that was 

present in the lowest frequency bands (usually below 20Hz). 

Not all of these steps need be applied all the time.  For example, detection of noise 

can be sufficient to justify discarding an EMG recording. 

Objective measurements of EMG quality can be used to help decide whether to 

discard EMG or process it to improve the SNR.  Some of them detect the presence of 

noise, while others provide information about the identity and quantity of the noise. 

Signal to Noise Ratio (SNR) - The signal to noise ratio is simply a measure of the 

ratio of the signal power (i.e. power during a gesture) to the noise power. 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑃𝐸𝑀𝐺

𝑃𝑛𝑜𝑖𝑠𝑒
) (3.1) 

This assumes a high SNR.  If not, then the assumption that the noise is negligible 

during a gesture may not be valid, so the noise power might need to be subtracted 

from the EMG power thus: 

𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑃𝐸𝑀𝐺 − 𝑃𝑛𝑜𝑖𝑠𝑒

𝑃𝑛𝑜𝑖𝑠𝑒
) 

(3.2) 
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Equation (3.2), of course, assumes that the location at which EMG and noise start 

and end in the signal are known. 

Signal to ECG Ratio (SER) - For Signal to ECG Ratio (SER), the ECG is estimated 

by computing a moving average of the recorded EMG.  In [77], ECG interference 

was mitigated by estimating the ECG using a combination of a 10ms and 50ms 

moving average of the recorded EMG.  The 10ms moving average was used during 

QRS complexes because of their high frequency components, and the 50ms moving 

average was used everywhere else, because it suppresses the EMG more in the ECG 

estimate.  Switching between the two moving averages was based upon QRS 

detection.  In the work presented in Chapter 5, a 20ms moving average filter is used 

to obtain the ECG estimate, which is a compromise between suppressing the EMG 

and over-smoothing the QRS complexes.  The use of a single moving average 

eliminates the need for QRS detection, which would be difficult or impossible when 

the level of ECG contamination is low.  The ECG moving average estimate is 

computed as: 

�̂�𝐸𝐶𝐺[𝑛] =
∑ 𝑟[𝑛]𝑛+𝑚

𝑛−𝑚

1+2𝑚
 where 𝑚 = ⌈

𝑓𝑠

100
⌉ (3.3) 

r[n] is the recorded EMG signal and �̂�𝐸𝐶𝐺[𝑛] is the estimated ECG signal, which is 

subtracted from the recorded EMG.  The signal power is then estimated from the 

resulting signal.  The SER is the ratio of the estimate of the EMG signal power and is 

defined as 

𝑆𝐸𝑅 = 10𝑙𝑜𝑔10 (
𝑃𝐸𝑀𝐺

�̂�𝐸𝐶𝐺

) 
(3.4) 

where �̂�𝐸𝑀𝐺 is the estimated EMG power, and the estimated ECG power is �̂�𝐸𝐶𝐺 

[77]: 

Signal to Power Line Ratio (SPR) - The Signal to Power line Ratio (SPR) is a 

measure of the ratio of the estimated EMG power to estimated power line power 

[100] in a signal.  The power line noise is estimated using an iterative steepest 

descent, least squares method described in [100]. The amplitude (A), phase and 

frequency of the power line interference are estimated.  The power of the power line 

interference is computed using the amplitude estimate: 
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𝑃𝑝𝑜𝑤𝑒𝑟𝑙𝑖𝑛𝑒 =
𝐴2

2
 

(3.5) 

SPR is expressed in Decibels. 

SN Ratio - The SN Ratio is a type of SNR that takes the shape of the EMG spectrum 

in the high frequency range into account in its calculation [75].  It is based on the 

assumption that there is no EMG activity in the upper 20% of the frequency range.  

This makes it liable to give falsely high values if ECG or motion artifact noise are 

present in the signal because the frequency content is then distorted, which causes 

falsely high SN Ratios. 

DP Ratio - The DP Ratio is a measure of the ratio to “the higher mean power density 

of the spectrum to the lowest mean power density” [75] of thirteen points between 35 

and 600Hz.  Its purpose is to determine whether “the power spectrum is adequately 

peaked in the frequency range” where EMG is present. 

Ω Ratio - The Ω Ratio is an “index of spectral deformation” [75]. 

Ω =
(
𝑀1

𝑀2
⁄ )1/2

(
𝑀1

𝑀0
⁄ )

 (3.6) 

where M0 is , M1 is and M2 are spectral moments calculated using this equation from 

[75]: 

𝑀𝑛 = ∑ 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑖

𝑖𝑚𝑎𝑥

𝑖=0

. 𝑓𝑛
𝑖 (3.7) 

Moments are therefore weighting functions for the power spectrum.  The Ω Ratio is 

sensitive to changes in the symmetry and peaking of the power spectrum and additive 

disturbances in the high frequency and low frequency regions [75]. 

Signal to Motion Artifact Ratio (SMR) - The SMR is a measure of the ratio of 

power estimate of the signal to a power estimate of the motion artifact content of the 

signal [75].  It was designed with respiratory motion artifacts in mind, but it is also 

useful for cable motion artifacts.  There are two assumptions made when SMR is 

calculated [75]: that motion artifacts occur below 20Hz and that power distribution 

of the spectrum of uncontaminated EMG is “fairly linear” between 0 and 20Hz.  
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Anything that deviates from the straight line is assumed to be energy caused by 

motion artifact.  The ‘highest mean power density’ is also calculated: the mean 

power density of thirteen consecutive points is calculated in a window that is slid 

between 35 and 600Hz, and the highest of these means is taken.  The SMR is the 

ratio of this highest mean to the motion artifact power. 

Classification Accuracy - The presence of noise in EMG signals affects the 

classification accuracy of any pattern recognition systems that have been trained to 

recognise gesture by using features derived from noisy data.  It is therefore asserted 

in this thesis that, other parameters being equal, the change in classification accuracy 

can be used as a measure of the effectiveness of noise reduction algorithms.  If a 

noise reduction method is effective, then a classifier trained and tested with the 

processed data should have a higher classification accuracy compared with a 

classifier that was trained and tested with features extracted from the original, 

unprocessed data. 

Correlation Coefficient Test for Normality (CCN) - The Pearson Correlation 

Coefficient Test for Normality was originally developed to identify amplifier 

saturation.  It is a measure of how closely the distribution of a histogram matches a 

Gaussian distribution.  In [73],the CCN was measured between a 10-bin histogram of 

the recorded EMG amplitude distribution and a normal probability density function 

(PDF) with equal mean and variance [101].  Contaminant-free EMG has a high CCN, 

whereas the CCN value decreases as the level of contamination increases [73, 101]. 

CCN was demonstrated to be also applicable to power line interference, ECG 

interference and motion artifact in [73].  The correlation coefficient decreased with 

decreasing signal-to-noise ratio (SNR) for all contaminants.  However, it was noted 

that the rate of decrease differed between contaminant types.  This permitted 

contaminant detection and the potential for quantification. 

Single-class SVMs  - Single-class SVMs were used in [44] to detect the presence of 

contamination in steady-state real and simulated EMG.  A single contaminant was 

added artificially to the clean EMG recordings/simulations at SNRs between -20dB 

and +20dB in increments of 5dB.The contaminated data then was split into training 

and test data at each SNR.  This was performed for all of the contaminants: power 
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line interference, ECG interference, motion artifact, quantisation noise, clipping and 

amplifier saturation.  It states in [44] that it was possible to detect contamination 

using trained single-class SVMs, and that the effectiveness varied depended on the 

contaminant and the SNR. 

 

In this section, recent EMG noise reduction research is described and discussed. 

LTI Filtering - It is common to use Linear Time Invariant (LTI) filters to filter EMG 

signals.  In accordance with SENIAM guidelines [28-30], a simple band pass filter is 

normally applied to surface myoelectric signals to restrict the frequency range to that 

in which most of the energy of sEMG signals can usually be found. 

Low-pass filtering is performed to remove frequency bands in which there is little, if 

any, EMG activity.  High-pass filtering is performed to remove motion artifact and 

ECG interference.  Band pass filtering removes some of the sEMG signal. 

EMD-Based De-noising - The application of EMD to EMG signals was first 

discussed in [102], where its potential utility was compared with FFT.  The first three 

IMFs were summed in [65] , purportedly to reduce noise, though the mechanism by 

which noise reduction was to be achieved is not explained in the paper.  The same 

kind of thresholding as applied to wavelet Detail signals is performed on the IMFs 

[103, 104]. 

EMD-based Filtering (EMDF) was developed to remove low-frequency noise from 

speech signals [105].  It works by examining the variances of the IMFs and 

comparing with the IMF variances that could be expected for clean signals.  

Specifically, there should be a single ‘peak’ in the variance graph, as shown in 

Figure 3.1 (left). 
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Figure 3.1 – Illustration of a comparison between the variances of IMFs of 
clean data (left) and data contaminated (right) with Low Frequency noise. 

In Figure 3.1, the ‘peaks’ are circled. Note the extra ‘peak’ in the variances for the 

contaminated data.  An extra ‘peak’ is present in the variances of the IMFs in Figure 

3.1 (right).  This is caused by low-frequency noise, which increases the energy 

content of the higher-numbered IMFs due to the filter bank-like behaviour [70].  

Now that the IMFs with the noise content have been identified, they can be filtered.  

The sum of the filtered IMFs should result in a cleaner signal.   

When LTI high-pass filtering is performed on EMG, 5-10% of the signal energy is 

lost [25].  It was hoped that EMD could be applied to the EMG to remove the low-

frequency noise while keeping the low-frequency components of the EMG relatively 

intact.  This should lead to an improvement in classification accuracy due to the 

retained information.  This will be discussed in section 6.7. 

Wavelet Analysis and de-noising - Wavelet and Wavelet Packet analysis are 

methods of signal decomposition, and are normally used for image analysis and 

compression (e.g. JPEG2000).  In wavelet analysis, the signal is decomposed into 

Approximation and Detail components.  Each Approximation is then further 

decomposed to produce a decomposition tree.  Unlike STFT, which has a fixed time-

frequency ‘tiling’, the time-frequency scaling can be adjusted as necessary by 

changing the wavelet type and depth [4].  For example, smaller ‘tiles’ can be used in 

the higher frequency range to extract more detail.  This has led to wavelet analysis 
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being described as a ‘mathematical microscope’ [106].  In Wavelet Packet analysis, 

both Approximation and Detail components are further decomposed.  Figure 3.2 

shows a wavelet decomposition into three Approximation and three Detail signals. 

 

Figure 3.2 - Wavelet decomposition tree to three levels 

Features have been extracted from wavelets for pattern recognition and, after 

dimensionality reduction such as Principal Components Analysis (PCA), 

classification accuracy superior to time domain features was claimed in [94, 107]. 

Noise has been reduced in EMG by using wavelets [80, 108], and ECG noise in 

EMG has been reduced by processing the coefficients that corresponded to low 

frequency components [78].  A careful choice of wavelet, threshold and level of 

decomposition is needed: The choice of wavelet is not a solved problem, though 

some have been suggested [108].  In this work, the Daubechies db2 with four levels 

of decomposition from [108] was used with a hard threshold.  The wavelet transform 

assumes that the signal is stationary.  To address the problem of the dynamic nature 

of the EMG, the transform is performed in windows for a time scale within which the 

EMG can be assumed to have stationary characteristics.  Therefore, like EMD, this 

method is applied to windows of the signal just prior to feature extraction, in contrast 

to the other methods where the filtering is applied to the entire signal before the 

signal is divided into windows for feature extraction. 

Filtering for ECG reduction - Simple high pass filtering of ECG removes some 

useful EMG information [78], so other techniques are used to attempt to minimise 

the distortion of the EMG.  Spike Clipping, Template Subtraction, Wavelet 

Transform and Adaptive Filtering [78] are options. 

Reducing power line interference - A notch filter is the simplest method of 

reducing power line interference.  A third order Butterworth filter was used in this 
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work.  The problem with a notch filter is that the exact frequency of the power line 

interference can be slightly different from the country’s official frequency, meaning 

that some residual interference is present.  As notch filters cannot be perfect ‘brick 

wall’ filters, energy from frequencies next to the mains supply frequency are also 

removed, which happens to be in the middle of where much of the EMG energy is 

present [26]. 

Adaptive filtering addresses these two problems.  The power and exact frequency of 

the interference are estimated using a least squares method.  A sine wave of the same 

power, frequency and phase [100] is generated then subtracted from the original 

signal to leave a cleaned signal.  The trade-off is an increased processing overhead. 

3.6. Spectral Enhancement 

 

Spectral enhancement is used for speech is to estimate and reduce noise when access 

to only a single microphone (i.e. sensor) is possible [109] and no noise reference is 

available.  It is assumed that the speech and the noise are uncorrelated and that the 

statistical distributions of the STFT of the speech and the noise are “asymptotically 

independent and complex Gaussian” [110]. 

The simplest form of spectral enhancement is Spectral Subtraction.  An estimate of 

speech presence across the signal is calculated in the time-frequency domain, across 

each of the STFT frequency bins.  The noise estimate is then subtracted from the 

spectrum of the original noisy signal to leave speech that is more intelligible.  

However, this can cause excessive attenuation of sections of the signal that consist of 

only noise (i.e. low SNR), which leads to musical-sounding tones called ‘musical 

noise’ [111]. 

Minimum Statistics Noise Estimation (MSNE) is a means of reducing noise in 

speech whilst also reducing musical noise.  This is achieved by smoothing the power 

spectrum of each STFT frequency bin in the time domain, then estimating the noise 

based on the minimum level of the frequency bin in between peaks caused by speech.  

This recursive process is a crucial difference from other noise estimation techniques.  

Firstly, a perfect Voice Activity Detection (VAD) is normally required in order to be 
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able to operate properly [109, 112].    Secondly, the sensitivity of the VAD must be 

adjusted to trade between noise attenuation and loss of weak speech components 

Like MSNE, Improved Minima Controlled Recursive Averaging (IMCRA) also uses 

recursively averaged STFT power spectra to estimate the noise floor without the 

trade-off discussed above.  Unlike MSNE, the noise estimate is updated during 

speech to compensate for rapid changes in noise level.  More information about the 

structure of IMCRA can be found in Appendix A. 

For clarity in this thesis, the noise estimation process is called IMCRA and the 

spectral subtraction process is called Spectral Enhancement based on IMCRA 

(IMCRA SE).  IMCAR SE has also been called IMCRA/OMLSA in [105].   In 

Chapter 6 it will be shown that it can be applied to myoelectric signals to improve 

the classification accuracy of pattern recognition-based control.  In a similar way to 

speech, the estimator excludes the strong myoelectric activity that corresponds to 

gestures. 

IMCRA attempts noise estimation even during long speech segments with few 

pauses.  In the case of EMG, long gestures and pauses are present in the Data Sets 

used in this work.  The applicability of spectral enhancement for EMG signals, 

specifically Minimum Statistics and IMCRA, will be discussed in Chapter 6. 

3.7. Local Binary Patterns 

 

Two-Dimensional Local Binary Patterns (2-D LBPs) are a texture classification 

technique [113] that have been widely used to extract features from images for 

texture classification due to their invariance to monotonic changes and rotation.  

They were used as part of a facial paralysis quantification system [114].  One-

Dimensional Local Binary Patterns (1-D LBPs) are a recent adaptation for one-

dimensional signals, in which histograms are generated from data using 1-D LBP 

codes [115] (histograms are explained in section 3.7.3). 
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A 1-D LBP code is a number that represents the behaviour of the samples 

surrounding a specific sample.  The 1-D LBP code is calculated by comparing the 

neighbouring samples to sample 𝑥[𝑛].  This comparison is condensed into (3.8): 

LBPP(x[n])= ∑ {S [x [n+r-
P

2
] -x[n]] 2r+S[x[n+r+1]-x[n]]2r+(P 2⁄ )}

(P 2)⁄ -1

r=0

 
(3.8) 

where 𝑆[. ] is a threshold function: 

𝑆[𝑓] =  {
1 for 𝑓 ≥ 0
0 for 𝑓 < 0

 (3.9) 

P is an even number that determines the number of Local Binary Patterns: There are 

2P possible Local Binary Patterns.  From (3.8) and (3.9), a number, called an LBP 

code, is derived which reflects the local activity of the signal around a sample 

relative to its value.  The LBP code is thus independent of the absolute amplitude of 

the signal and of any Direct Current present in the signal.  Figure 3.3 depicts a 

discrete signal with a sample number n of value 𝑥[𝑛]. 

 

Figure 3.3 - An example of calculation of an LBP code.  The six nearest 
samples (i.e. P = 6) to sample n in signal x are thresholded relative to its value 

x[n]. 

The solid black markers are the six nearest samples to sample n because P = 6*.  The 

dashed horizontal line shows the value 𝑥[𝑛].  Of the six samples nearest to sample n, 

the two either side of it are greater or equal in value to 𝑥[𝑛].  Equations (3.8) and 

(3.9) can now be used to calculate the LBP code for sample n.  No threshold 

calculation is performed on sample n, only on the surrounding samples.  A worked 

                                                 
*The value of P is set to 6 throughout this section as an example 
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example is shown in Figure 3.4.  Note that the least significant bit for LBPs is on the 

left. 

 

Figure 3.4 - Obtaining a ‘standard’ 1-D LBP code using equations (3.8) and 
(3.9), P = 6, 𝒙[𝒏] = 𝟏𝟎 

There are three other code types that can be used to form histograms: Uniform (U), 

Rotationally Invariant (RI) and Uniform Rotationally Invariant (URI).  These will 

now be described. 

Uniform Code 
Uniform histograms have unique bins for each pattern that has at most two 0 to 1 or 1 

to 0 transitions.  The other patterns are classed as non-uniform and given the same 

code [113].  Uniform code calculation is shown in Figure 3.5. 

Local Binary 

Pattern 

𝑳𝑩𝑷𝟔 

𝑆[. ] (eqn. (3.9)) 

… 7 8 15 10 11 6 5 … 

Sum 

Standard LBP code = 12 

Multiply by binomial weights: 

0*2
0
 0*2

1
 1*2

2
 1*2

3
 0*2

4
 0*2

5
 

 

Subtract 𝑥[𝑛] from the 

values of samples 

around n 

-3 -2 5 · 1 -4 -5 

0 0 1  1 0 0  

Sequence of samples from the 

signal – centre value is x[n] 



CHAPTER 3 DSP FOR EMG 

58 

 

Figure 3.5 Calculation of ‘Uniform’ 1-D LBP code for P=6 

The first few uniform binary patterns when 𝑃 = 6 are shown in Table 3.4. 

Uniform binary patterns: 

000000 

100000 

010000 

110000 

001000 
101000 non-uniform 

011000 

111000 
000100 
100100 non-uniform 

010100 non-uniform 

110100 non-uniform 

001100 
⋮  ⋮ 
mth uniform pattern 

Table 3.4 – The first few uniform binary patterns with 𝑷 = 𝟔 

As an example, pattern 001100 (in Figure 3.4) has nine uniform binary patterns 

between 000000 and itself, so the Uniform LBP code is 8, counting from zero. 

LBP code = 2
6
-1 = 63 

 

𝐿𝐵𝑃6 pattern 

Count the number of uniform patterns between 

000000 and 𝐿𝐵𝑃6, inclusive 

At most two 

0 1 

transitions? 

Uniform code = m 

Yes 

Uniform 

Non-

uniform 

No 
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Rotationally Invariant Code 
To create a Rotationally Invariant LBP, bitwise rotations are performed to minimise 

the value of the pattern as a binary number, with the least significant bit on the left.  

This is done using the LBPROT operator, which is adapted from equation (8) in 

[113] for 1D LBP: 

𝐿𝐵𝑃𝑃
𝑟𝑖 = 𝑚𝑖𝑛{𝑅𝑂𝐿(𝐿𝐵𝑃𝑃, 𝑖) | 𝑖 = 0,1, … , 𝑃 − 1} (3.10) 

where ROL is the binary Rotate Left operator.  All rotated versions of the binary 

pattern are compared, and the version that has the minimum value is taken as the 

rotationally invariant pattern.  In this way, a unique code is created for each 

rotationally minimum pattern.   Figure 3.6 shows the process. 

 

Figure 3.6 Flowchart for the calculation of the ‘Rotationally Invariant’ 1-D LBP 
code for P=6 

Table 3.5 shows the first few RI binary patterns for P=6. 

RI binary patterns: 

000000 

100000 

010000 not rotationally minimum 

110000 

001000 not rotationally minimum 

101000 

011000 not rotationally minimum 

Table 3.5 - The first few RI binary patterns with 𝑷 = 𝟔 

𝐿𝐵𝑃6
𝑟𝑖 pattern 

𝐿𝐵𝑃6 pattern 

Count the number of 

Rotationally minimum 

patterns between 000000 

and 𝐿𝐵𝑃6
𝑟𝑖, inclusive 

Rotationally 

Invariant code = m 

min 𝑅𝑂𝐿(𝐿𝐵𝑃𝑃, 𝑖) | 𝑖 = 0,1, … , 𝑃 − 1  
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As an example, pattern 001100 is rotated to the left twice using (3.10) to become 

110000, giving a Rotationally Invariant code of 2 as it is the third RI pattern 

counting from all zeroes and counting from 0, inclusive: 000000, 100000 then 

110000. 

Uniform Rotationally Invariant Code 
Uniform Rotationally Invariant LBP codes also take into account the transition from 

the last bit to the first bit when determining uniformity [113].  Figure 3.7 shows the 

process. 

 

Figure 3.7 - Flow chart for the calculation of the ‘Uniform Rotationally 
Invariant’ 1-D LBP code 

Table 3.6 shows the first few Uniform Rotationally Invariant binary patterns with 

P=6. 

Count the number of 

Uniform Rotationally 

Invariant patterns 

between 000000 and 

𝐿𝐵𝑃6
𝑢𝑟𝑖, inclusive 

min 𝑅𝑂𝐿(𝐿𝐵𝑃𝑃, 𝑖) | 𝑖 = 0,1, … , 𝑃 − 1  

𝐿𝐵𝑃6 pattern 

At most two 

0 1 

transitions inc. 

1
st
 to last bit? 

Yes: 

Uniform 

Uniform Rotationally Invariant 

𝐿𝐵𝑃6
𝑢𝑟𝑖 pattern 

Uniform Rotationally Invariant 

LBP code = P+1 = 7 

No: 

Non-

uniform 

Uniform 

Rotationally 

Invariant code = m 
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Uniform RI binary patterns: 

000000 

100000 

010000 not rotationally minimum 

110000 

001000 not rotationally minimum 
101000 not uniform 
011000 not rotationally minimum 
111000 

000100 not rotationally minimum 

100100 not uniform 
⋮  ⋮ 

m
th

 Uniform RI pattern 

Table 3.6 - The first few Uniform RI binary patterns with 𝑷 = 𝟔 

As an example, pattern 110001 is rotated left five times to become 111000 giving a 

Uniform Rotationally Invariant LBP code of 3, counting from zero. 

 

2-D LBP histograms describe the texture of a portion of an image [113].  In a similar 

way, 1-D LBP histograms effectively describe the ‘texture’ of a window of a one-

dimensional signal.  Using one of the methods described above, LBP codes are 

calculated for the signal or window of length N from sample number 
𝑃

2
+ 1 to sample 

number 𝑁 − (
𝑃

2
+ 1).  Once the LBP codes are calculated, a histogram is formed 

from them.  The total number of histogram bins equals the number of possible unique 

LBP codes, which depends on the chosen value of P and type of histogram selected. 

The distribution of LBP codes within a signal (or within a windowed portion of it) is 

called the LBP histogram [115] and it is calculated as: 

𝐻𝑏 = ∑ 𝛿(𝐿𝐵𝑃𝑃(𝑥[𝑛]), 𝑏)
𝑃
2

≤𝑛≤𝑁−
𝑃
2

 
(3.11) 

where Hb is histogram bin number b (each bin corresponds to an LBP code), the 

signal or windowed portion is of length N, b = 0..B-1, B is the number of histogram 

bins and 𝛿(𝑖, 𝑗) is the Kronecker Delta.  Figure 3.8 shows how the LBP codes are 

calculated across a window of an example discrete signal. 
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Figure 3.8 – Example of creation of standard 1-D LBP histogram 

In Figure 3.8, a Standard 1D LBP histogram (bottom) is calculated from a window of 

three samples from the discrete time-domain signal with P=4 (top).  Once all the 

codes have been added to the histogram, it is normalised so that: 

∑ 𝐻𝑏

𝐵

𝑏=0

= 1 (3.12) 

The number of bins in a rotationally invariant histogram is equal to the total number 

of unique binary patterns obtainable when each binary number from 0 to 2𝑃 − 1 is 

rotated, by bitwise rotation using (5), to its minimum possible value.  The number of 

bins for each histogram type is shown in Table 3.7. 

  

0  1   2  3   4   5   6  7 … 

m=3 

Discrete signal x 

m=7 

b 

x[n] 

n 

m=0 

LBP histogram 
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Histogram 

type 
Total number of bins 

Standard 2𝑃

 Uniform 𝑃(𝑃 − 1) + 3 

Rotationally 

Invariant 

Number of unique RI patterns between 0 

and 2P-1 

Uniform 

Rotationally 

Invariant 
𝑃 + 2 

Table 3.7 – Number of bins for each histogram type for a given value of P 

The algorithm to generate RI histograms first creates a bin for each unique RI binary 

number between 0 to 2𝑃 − 1. 

 

To obtain a better understanding of bin behaviour, it is helpful to use test signals.  

Several test signals are shown in Figure 3.9 and Figure 3.10.  The signal (or a portion 

of it) on the left and the corresponding 1-D LBP histogram is on the right. 
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DC signal 

 
 

Single square wave period 

 
 

Signal with Nyquist/2 frequency (i.e. [-1 1 -1 1 
-1 1 ...]) 

 

 

Single sine wave period 

 
 

Higher frequency sine wave 

 
 

Noise with uniform PSD 

 
 

Noise with Gaussian PSD 

 
 

Figure 3.9 - 1-D LBP histograms of test signals or a window thereof (left) and 
their ‘standard’ 1-D LBP histograms with P=4 

More test signals and their corresponding LBP histograms are shown in Figure 3.10. 
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Real steady-state unfiltered EMG [44] 

 
 

 

Noisy sine wave -single period 

 
 

Higher frequency noisy sine wave 

 
 

Saw wave ([-1 0 1 0 -1 0 1 ...]) 

 
 

Simulated EMG 

 
 

Gaussian noise with HPF 

 
 

Gaussian noise with LPF 

 
 

ECG [77] 

 
 

Figure 3.10 – More test signals with corresponding ‘standard’ 1-D LBP 
histograms with P=4 
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The histograms of the test signals in Figure 3.9 and Figure 3.10 show that bin 

behaviour changes in response to trends within the range of P.  It must be stressed 

that this is not the same as pure monotonicity, where each successive sample in the 

chronological order is greater or less than its preceding sample.  Distinctive bin 

behaviour can be seen for each of the signal types, but with limitations: For example, 

a pure sine wave can be identified by its histogram but its frequency cannot be 

determined.   

Trends within the signal are reinforced by any periodicity and by the presence of 

more channels that show similar behaviour, because the number of identical LBP 

codes is then increased.  However, it can be seen from the figures that if strong 

enough noise corrupts a periodic signal, the trend within the range of P is obscured 

and therefore the histogram bin behaviour changes to that of the noise. 

 

One-dimensional LBPs have been used for Voice Activity Detection of speech 

signals [115].  Voiced and unvoiced parts of speech signals were distinguished based 

on histogram behaviour.  The Resistor Average Distance (RAD) was used as a metric 

for assessing the histograms of consecutive windows of the signal, and this was used 

as a criterion for segmenting the signal.  A threshold was set for the RAD, and if this 

was exceeded between two of the histograms, the start of a new segment of the signal 

was declared.  This is discussed in detail in section 4.2.1.  The concept of using 1-D 

LBP for VAD was further refined by Zhu et al [116]. 

1-D LBPs were used in bone texture characterisation to identify osteoporotic bone 

structure [117].  It was found that the 1-D LBPs produced superior classification 

accuracy compared with 2-D LBP histograms of the images of the osteoporotic 

bones. 

1-D LBP histograms have been used in an attempt to improve facial recognition 

[118], where the face is divided into blocks, then each block is projected into a one-

dimensional space.  When 1-D LBP was combined with PCA, robust facial 

recognition was achieved. 
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Histograms can be used to assess characteristics of a signal.  They are used to 

measure the frequency of occurrence of values within the signal or some 

representation of the signal.  For example, a histogram of an image indicates the 

proportions of light and dark areas.  It is often necessary to compare histograms 

between signals or within parts of the same signal.  Several tools exist for this 

purpose.  The Kullback Leibler Divergence [114, 115] is a non-commutative 

measure, which means that the ‘distance’ measured from one histogram to another 

differs depending on which histogram is designated as p and which as q. 

𝐷𝐾𝐿(𝑝||𝑞) = ∑ 𝑝(𝑘) log(𝑝(𝑘)) − log (𝑞(𝑘)) 

𝑛

𝑘=1

 (3.13) 

In (3.13), 𝑝(𝑘) and 𝑞(𝑘) are probability distributions of discrete random variable k.  

To overcome this, the resistor average distance uses the FLD in the formulation of a 

symmetric measure of the difference between two histograms [114, 115].  It is 

calculated thus: 

𝐷𝑅𝐴𝐷(𝑝, 𝑞) = [(𝐷𝐾𝐿(𝑝||𝑞)−1) + (𝐷𝐾𝐿(𝑞||𝑝)−1)]−1 (3.14) 

 

The Resistor Average Distance will be used in this thesis as a measure between two 

histograms. 

3.8. Conclusion 

In this chapter, single- and double- threshold activity detection methods were 

discussed.  It was shown that double thresholds allowed control over TPR and FPR.  

All of the onset and activity detection algorithms discussed in this chapter require at 

least one threshold to be adjusted until the best results are achieved.  This is 

exacerbated if methods are combined or if there are concurrent channels, as there are 

then multiple thresholds to set [85] and co-ordinate.  Parameters are calculated and 

compared against user-defined thresholds, which are decided by comparing 

characteristics of parts of the signal with and without movement present.  A 

quiescent period of the signal must therefore be identified, which is simple in manual 

offline analysis but might be difficult to achieve in real-time. 
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EMG signal quality measures were described and discussed.  Each method, though 

potentially useful for analysing EMG, has limitations and assumptions.  EMG noise 

reduction methods were introduced and discussed, all of which assume that the noise 

type has been identified in the first place and that the noise is strong enough to justify 

the processing to remove it.  EMD was introduced and EMDF was identified as a 

method of low-frequency noise identification and reduction.  Spectral enhancement 

was introduced in the context of speech signals.  The application of spectral 

enhancement for EMG will be discussed in Chapter 6.  One-Dimensional Local 

Binary Patterns were introduced, and 1-D LBP histograms were explained.  These 

will be used in the next chapter for EMG activity detection. 
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4.1. Introduction 

his chapter explains how the changing behaviour of 1-D LBP histogram bins 

between windows of activity and windows of rest can be used as a means of 

muscle activity detection for myoelectric signals.  A new algorithm called One 

Dimensional Local Binary Pattern Activity Detection (LBPAD) is introduced.  The 

performance of the new method is compared with established methods and the 

LBPAD is shown to be advantageous in some circumstances.  The True Positive 

Rate (TPR) and False Positive Rate (FPR) can be controlled by changing several 

parameters. 

A myoelectric control system needs to be able to distinguish which part of the 

sensors’ signals are EMG and which are noise.  In DC, a threshold is set, below 

which the limb does not move.  In pattern recognition, a threshold can also be used, 

but the best sensor site for pattern recognition purposes is not necessarily the site 

with the highest EMG amplitude [11].  The signal could be of low power due to the 

gesture being performed, or if the movement was slow.  In these cases, a trade-off 

between false alarm rate and detection would be necessary if a threshold method was 

used.  For this reason, it would be advantageous to use some property of the signal 

other than one related to envelope, amplitude or energy in order to recognise EMG 

activity. 

As discussed in section 3.2.3, a gesture class called ‘no motion’ can be implemented, 

such that the classifier outputs ‘no motion’ labels when it detects only the 

characteristics of the background noise (i.e. no muscle activity).  However, this does 

not allow control of TPR and FPR, which were discussed in section 2.5.2.  To do 

this, the methods in section 3.2 would need to be used.  It is favourable to have zero 

FPR, even at the expense of TPR.  If a low FPR is coupled with a limited TPR, the 

wearer will have to try harder to activate the limb, and the possibility of unintentional 

trigger will be lower. 

T 
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4.2. Histogram Bin Behaviour for Activity Detection 

 

Here the Resistor Average Distance (3.14) is tested as a method of EMG 

segmentation to achieve activity detection.  A single channel of a single recording 

from Data Set 1 is shown in Figure 4.1 (a), which has the activity detections based on 

RADs shown in a lighter shade as ‘boxes’ around the EMG.  The EMG is channel 1 

of trial 17 from subject 1 from Data Set 1 was used.  P=8 and window length is 60 

samples. 

 

(a) 

 

(b) 

Figure 4.1 - (a) EMG recording with segmentation based on RAD indicated (b) 
RAD of the 1-D LBP histograms of windows of the signal shown in (a). 

In Figure 4.1(b), the RAD between 1-D LBP histograms of successive windows of 

the signal is shown.  The horizontal line is the threshold used to generate the 

segments.  The horizontal line is the threshold, which in this case was chosen 

empirically to be 0.3.  The horizontal lines are tuned to indicate ‘activity’ where the 

RAD is similar between windows.  The RAD fluctuates greatly during the ‘rest’ 

periods, whereas the RAD between windows of a gesture is low and relatively stable.  

We can refine the detection a little by using an inverted version of the smoothing 

algorithm described in section 4.4: The ‘inactivity’ regions are joined together if they 

occur within 0.5s of each other.  The result is shown in Figure 4.2. 
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Figure 4.2 - RAD-based activity detection with smoothing filter to join regions 
of similar RAD 

Figure 4.2 shows the potential of 1-D LBP histograms for segmentation of signals 

between activity and rest.  However, a manual threshold had to be chosen and the 

length of the smoothing filter in this case was too long for real-time use.  Most 

importantly, the segmentation was not very accurate.  We will now look at a way in 

which segmentation can be performed based on the properties of specific histogram 

bins, as opposed to the properties of the overall histogram. 

 

The normalised 1-D LBP histogram is calculated using the method described in 

Section 3.7.3 for a single channel of a recording (Channel 1 of Subject 1, Trial 1, 

Data Set 1) in which several different gestures are performed.  The recording site is 

on the skin adjacent to the extensor digitorum muscle.  This is shown in Figure 4.3.  

It is clear that the signal consists of five periods of activity interspersed with ‘rest’, or 

inactivity, periods. 

 

Figure 4.3 - Single channel (extensor digitorum) of real unfiltered EMG from 
channel 1 trial 1 Subject 1 of Data Set 1 – Tripod, Pinch, Point, Tripod, Pinch 

A single normalised 1-D LBP histogram is generated for the entire signal with P=6 

and a standard histogram type, shown in Figure 4.4. 
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Figure 4.4 - 1-D LBP histogram of signal shown in Figure 7, P=6 and standard 
histogram type 

Figure 4.4 indicates that several of the bins have a higher value across the signal than 

others.  If windows of the signal are now taken, the standard deviations of the 

histogram bins across the windows can be calculated.  Histograms of consecutive 

300ms windows of the signal were generated, and the standard deviations of the 

histogram bins were calculated.  These are shown in Figure 4.5. 

 

Figure 4.5 - Standard deviations across 300ms windows of the real EMG 
shown in Figure 4.3.  P=6 and standard histogram type 

Figure 4.5 shows that the three bins that have the highest amplitude also have a much 

higher standard deviation between the windows than the rest.  A distinction will now 

be made between the rest and activity periods of the signal, and the histogram bin 

behaviour in each will be examined separately.  Histograms are calculated of short 

windows of rest and activity parts of the signal as shown in Figure 4.6(a).  The bins 

with the highest amplitudes are circled in Figure 4.6(b) and Figure 4.6(c). 
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(a) 

 

 (b) (c) 

Figure 4.6 - Sketch of a comparison of histograms between a window of 
activity and a window of rest P=6 standard histogram from (a).  (b) shows 

inactivity bin circles and (c) shows activity bins 

Figure 4.6(a) shows a single channel of a gesture from a recording of real EMG.  1-D 

LBP histograms were taken from a rest period and an activity period respectively, as 

indicated by the two windows.  Figure 4.6(b) shows the normalised 1 D LBP 

histogram from the first window.  Figure 4.6(c) the normalised 1 D LBP histogram 

from the second window.  The histograms for the ‘noise only’ and EMG are similar 

to the histograms for the corresponding test signals in section 3.7.4 Figure 3.9 and 

Figure 3.10. 

The three bins with the highest amplitudes in each window can now be considered in 

isolation.  A plot can be made of their values across the successive windows of the 

signal.  Bins 7 and 56 from Figure 4.6 (c) are summed and shown in Figure 4.7. 
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Figure 4.7 – Sum of bins 7 and 56 from 1-D LBP histograms of successive 
windows of the signal shown in Figure 4.6(a) 

Figure 4.7 shows the sum of bins 7 and 56 for successive windows of the signal 

shown in Figure 4.3.  It is clear from Figure 4.7 that a threshold could be set to infer 

EMG activity for each of the windows.  A threshold of around 0.2 would allow this.  

It is, however, not necessary to set a manual threshold.  Instead, the bin values in 

Figure 4.7 can be compared directly with bin 63, which is the bin with the highest 

standard deviation shown in Figure 4.6(b).  The histograms are normalised, so a 

direct comparison between their amplitudes can be made.  This is shown in Figure 

4.8. 

 

Figure 4.8 - Comparison of normalised (bin 7 + bin 56) with bin 63 from 1-D 
LBP histograms of successive windows of the signal shown in Figure 4.6(a) 
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Figure 4.8 shows that bin 63 is higher in value than the sum of the other two bins 

when there is no EMG activity.  The locations where the relative amplitudes change 

are defined here as ‘crossovers’.  This can be used to develop an algorithm for 

automated activity detection.  The process can be condensed into a flow chart.  

Figure 4.9 depicts the stages involved in 1-D LBP Activity Detection (LBPAD). 

 

Figure 4.9  Flow chart for the One Dimensional LBP EMG Activity Detection 
(LBPAD) 

LBPAD is described by the following steps: 

1. For a single channel, the signal is first split up into windows by applying a 

window 𝑤[𝑗] of length W: 

𝑥[𝑗] = 𝑤[𝑗]𝑥[𝑛] (4.1) 

2. The 1-D LBP codes of all the samples in each window are calculated using 

equations  (3.8) and (3.9). 

3. The Standard LBP histogram for each of the windows is calculated using 

equation (3.11) and Figure 3.4. 

4. The Standard LBP histogram bin values are then mapped to the histogram bins of 

the chosen histogram type using equation (3.10), Figure 3.5, Figure 3.6 and 

Figure 3.7. 

𝑤[𝑗]𝑥[𝑛] 

1-D LBP histogram 

LBP codes 

‘Inactivity’ bins 

Activity bins > 

Inactivity bins 

Yes 

No 

Activity 

No 

activity 

‘Activity’ bins 

x[n] 
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5. The histogram bins corresponding to ‘activity’ and ‘inactivity’ are then 

determined based on Table 4.1 below. 

6. For each window, determine whether the normalised ‘activity’ bin value(s) is/are 

higher than the normalised ‘inactivity’ bin value 

7. Filter the resulting activity vector such that windows with activity detections that 

are within human reaction time of each other are considered part of the same 

activity.  Use the smoothing algorithm in section 4.4 for this. 

In step 5, the ‘activity’ and ‘inactivity’ bins were identified by observing bin 

behaviour in real sEMG signals.  All of the histogram types were found, by 

systematic observation, to have specific bins that were higher in amplitude during 

quiescent periods and other bins that were higher in amplitude during EMG.  From 

these observations, the formulae to determine the bin numbers were calculated, 

which are listed in Table 4.1. 

Histogram 

type 

Total number 

of bins 
Activity bin number(s) 

Inactivity 

bin 

number(s)  

Standard 2𝑃

 
2(𝑃 2⁄ ) − 1 2𝑃 − 2𝑃 2⁄  2𝑃 − 1 

Uniform 𝑃(𝑃 − 1) + 3 
(7𝑃2 − 10𝑃 + 8)

8
 

−1

48

−1

48
𝑃4

+
13

24
𝑃3

−
115

24
𝑃2

+
217

12
𝑃 − 20 

𝑃(𝑃 − 1)
+ 2 

Rotationally 

Invariant 

Number of 

unique RI 

patterns 

between 0 and 

2P-1 

2(𝑃 2⁄ )−1 B-1 

Uniform 

Rotationally 

Invariant 
𝑃 + 2 𝑃 + 1 𝑃 2⁄  

Table 4.1 - List of activity bins and inactivity bins for each histogram type for 
LBPAD 
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Note that the ‘activity’ bin formulae for Uniform histograms in Table 4.1 work as 

high as P = 10, which is adequate for the uses described in this thesis.  The equation 

was obtained by creating a polynomial equation that produced the empirically 

determined activity bin numbers from each even value of P from 2 to 10.  The 

‘inactivity bin’ for all but the Uniform Rotationally Invariant histogram happens to 

also be the last bin in the histogram.  Bin numbering in all cases starts from zero. 

Other bins have a little response to activity/inactivity.  From Figure 4.6 where P=6 

with a standard histogram, bins 0, 4, 6, 8, 15, 24, 31, 39, 47, 55, 57, 59, 60, 61 and 62 

also have some degree of response to the presence of EMG.  For RI histograms in 

addition to the second-last bin the first and last bins have increased amplitude in 

‘inactivity’ windows.  These were added to activity/inactivity bin calculations too, 

but in general, the results were less accurate and so the choice of bins was kept to the 

bins listed in Table 4.1. 

4.3. 1-D LBP EMG Activity Detection 

 

Figure 4.10 (a) shows a dynamic simulated EMG signal created using the method in 

2.3.4, with a sampling rate of 2kHz and SNR of 6dB.  The vertical markers indicate 

actual onset and offset markers (with 100 sample ‘ramps’ after each event [40]), and 

the horizontal line shows the activity estimation by LBPAD. 
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(a) 

 
 

(b) 

Figure 4.10 (a) LBPAD applied to a dynamic simulated EMG signal of SNR 
6dB.  (b) normalised RI histogram bin activity 

An example of a ‘gesture’ of simulated EMG is shown in Figure 4.10.  The box 

indicates the activity detected by LBPAD.  Figure 4.10(b) shows normalized 

histogram bin activity corresponding to the signal in (a).  This is the bin behaviour 

that is used to determine when onset and offset occur for an RI histogram with P = 4, 

window size of 600 samples with 50% overlap.  During EMG activity, the value in 

the last bin (𝐻𝐵−1) decreases and the value in bin 𝐻
2(𝑃

2⁄ )−1 increases. 

Figure 4.11 (a) shows LBPAD applied to a single gesture of a real sEMG signal 

(surface site corresponding to extensor digitorum muscle) from Data Set 1.  The 

vertical markers indicate movement and rest cues that were given to the subject.  The 

dashed horizontal line is the activity detection based on the algorithm above.  Figure 

4.11 (b) shows the ‘active’ and ‘inactive’ Rotationally Invariant histogram bins 

(P=4) taken from windows of the signal. 

Actual onset 

Actual offset 

𝐻2(𝑃 2⁄ )−1 

𝐻𝐵−1 
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(a) 

 
(b) 

Figure 4.11 (a) Surface myoelectric signal from Data Set 1 (b) Normalized RI 
histogram bin activity 

Figure 4.11(a) shows an example of a surface myoelectric signal from Data Set 1, 

which has activity detection and movement cues superimposed.  Figure 4.11(b) 

shows the normalised histogram bin activity from the signal in (a).  The dark line is 

RI ‘inactivity’ bin and the marked line is the RI ‘activity’ bin.  The window length is 

120 samples with no overlap. 

4.4. Quiescence Detection and Smoothing Filter 

The output of onset detection methods is usually an array in computer memory that 

contains markers at the samples where onsets are detected.  Activity detection 

methods produce an array that contains markers to indicate both onset and 

subsequent EMG activity.  The array is seldom an exact representation of the 

activity: There can be several markers around an onset and spurious inactivity 

markers during an active period.  To address this, human reaction time period 

(discussed in section 2.4), which is about 300ms, can be taken into consideration: all 

markers in the array that are within this period are assumed to form part of the same 

intentional movement.  Activity detection, feature extraction and classification must 

all be calculated within the aforementioned time.  Figure 4.12 shows the smoothing 

algorithm used in this work. 

H2(P 2⁄ )−1 
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Figure 4.12 - Illustration of the smoothing algorithm 

The ‘gaps’ between activity markers are ‘filled in’ if they occur within human 

reaction time of each other: 

1. Search sequentially from the start of the array for an activity marker 

2. When an activity marker is found, look for at least for one other activity marker 

within human reaction time of found marker 

3. If at least one other marker is found  (circled in Figure 4.12(a)), set the next 

marker to ‘active’ if it is not already (left circled in Figure 4.12(b)) and look 

within human reaction time after that marker (right circled in Figure 4.12(b) and 

(c)) 

4. If no other ‘active’ maker is found within human reaction time (Figure 4.12(d)), 

look sequentially for next ‘active’ marker and repeat the process 

4.5. Performance Evaluation 

Data Sets 1 and 2, described in section 2.3.5, were used to evaluate the performance 

of LBPAD.  It was compared to the Energy activity detection method (energy within 

a window must be above a threshold) and Bonato’s method as explained in section 

  

  

    

              

Human reaction time 

    Activity marker Inactivity marker 

                  Window 

number 

  

                    
Window 

number 

       

(a) 

(b) 

                              Window 
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(c) 

                              Window 
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2.5.2.  Bonato was configured in accordance with the parameters in [39] with the 

exceptions of h, which was varied to make the Receiver Operating Characteristic 

(ROC) curve.  T1 was set to 1: changing it to 2, 3 or 4 altered the performance of 

Bonato’s method as shown in Figure 4.13.  Several of the methods described in 

section 3.2 detect onsets only, so were not included in this comparative study. 

Both channels of Data Set 1 were used together.  Bonato’s method was applied 

separately to each channel and activity was declared if at least one channel was 

active.  For Energy, the sum of the energy of both channels within a window had to 

be above a threshold for activity to be declared.  For LBPAD, a single histogram was 

created from the sum of the LBP codes of both channels together within a window.  

The Energy and Bonato thresholds were varied to obtain the ROC curves [119].  All 

sessions of all subjects were used.  Adjacent windows of size 60ms (120 samples) 

were used, with no overlap.  The resulting curves are shown in Figure 4.13.  The 

quiescent period for Bonato’s method was taken as the time between the first two 

markers (‘start of trial’ marker and first movement cue). 

 

 (a) (b) 

Figure 4.13 – (a) ROC curves and points for activity detection on Data Set 1.  
(b) The same ROC curves with different axis locations 

Figure 4.13 (a) and (b) show ROC curves for Energy, Bonato (T1 = 1) and LBPAD 

(P = 4) for Data Set 1.  The window length was 120 samples (60ms) with no overlap 

and a 200ms smoothing window for both Energy and LBPAD. 

It was observed that the time between a movement cue and EMG activity for all 

subjects in Data Set 1 was about 200ms.  This value was therefore taken as the 
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reaction time throughout this experiment: EMG onsets and offsets were assumed to 

be consistently 200ms after the movement and rest cues.  All the activity detection 

methods were compared against this.  To investigate the consistency of this standard, 

different assumptions about the delays were tested: Using 180ms and 220ms 

assumptions respectively slightly deteriorated the results for all methods.  

Consequently, a value of 200ms for the reaction time was considered appropriate for 

Data Set 1. 

It is necessary to create a reference template, or ‘gold standard’, against which 

activity detection methods can be compared for each trial in the data sets.  For this, 

the movement cues that were recorded with the data sets were used along with the 

assumption about reaction times discussed above.  For an EMG recording session, an 

‘activity/inactivity’ array is made, which is the same length as the recording, where 

‘1’ represents activity and ‘0’ represents inactivity’ for each sample of the recording.  

The activity detectors were programmed to produce this same format of output, so 

that a direct comparison can be made.  This way, True Positive Rate (TPR), False 

Positive Rate (FPR) [119] and accuracy can all be calculated on a sample-by-sample 

basis. 

Figure 4.13 shows ROC curves for the Energy and Bonato methods and symbols to 

represent the markers for each of the four LBP histogram types, where there are no 

ROC curves since there are no manual thresholds to sweep.  ROC curves are direct 

indicators of performance (accuracy and robustness).  The target for ROC curves is 

simultaneous maximization of TPR and minimization of FPR values.  Figure 4.13 

shows that superior TPR and FPR values are possible using LBP with P=4 (chosen 

experimentally) compared to both Energy and Bonato, for Data Set 1, when using the 

combined results for all three subjects.  For each subject individually, the TPR/FPR 

achieved was better than or similar to the results for Energy and Bonato’s method. 

The much noisier Data Set 2 was used for a comparison between the two methods 

that gave the best results for Data Set 1: Energy and LBPAD.  The Bonato method 

would have required a subjective majority vote system across all eight channels and 

did not perform as well on Data Set 1. 
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The results from all thirty subjects were used and the mean values of the combined 

results were plotted for comparison (Figure 4.14).  For LBPAD, the window length 

was 300ms with 50% overlap for all trials and subjects, with P set to 4.  The Energy 

method’s performance was better with 60ms windows, which was used.  The human 

reaction time was assumed to be 300ms for this data set (reaction time is discussed in 

section 2.4), so this was used as the duration of the smoothing filter. 

The energy threshold at which 100% False Positive was achieved was first 

determined.  The threshold was then swept between zero and this value in fifty steps 

logarithmically spaced (i.e. more steps closer to zero) the TPR was calculated at each 

step.  This was done for all 24 trials for each of the 30 subjects, giving 720 ROC 

curves.  The mean TPR at each of the FPR steps was calculated, and the result is 

shown in Figure 4.14.  The markers indicate the results for LBPAD; specifically they 

are the mean TPRs and FPRs for each of the histogram types.  The superior LBPAD 

performance is evident: the Standard histogram has lower FPR for the same TPR 

compared to the Energy method. 

 

Figure 4.14 - ROC depicting a comparison between Energy and LBPAD 
combined results from all subjects in Data Set 2. 

In Figure 4.14, the ROC curves and points were calculated with P = 4, window 

length 60ms for Energy and 300ms with 50% overlap for LBPAD 
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4.6. Comparison with classifiers trained to recognize ‘no motion’ 
class 

LBPAD was also compared with classifiers that were trained to recognize ‘motion/no 

motion’ classes.  Data Set 1 was used.  A Linear Discriminant Analysis (LDA), a 

Neural Network and a 1v1 Support Vector Machine (SVM) were tested.  The mean 

of the accuracy, TPR and FPR were determined for the three subjects of the data set.  

The results are shown in Table 4.2. 

Method Accuracy % SD () TPR FPR 

LBPAD, both channels 

(RI P=4) 

93.9 7.8 0.8829 0.0216 

Linear Discriminant 88.2 7.83 0.89 0.08 

Linear Support Vector 

Machine 

89.5 6.75 0.83 0.04 

NN (3 runs per subject) 92.9 3.21 0.92 0.06 

NN with PCA pre-

processing (3 runs per 

subject) 

93.2 2.86 0.92 0.05 

Table 4.2 Comparison of LBPAD with classifiers 

The parameters used in Table 4.2 were as follows: Window length 60 milliseconds 

using all subjects of Data Set 1, Two channels of Hudgins’ Time Domain feature set 

[9], 40 windows taken 200ms after movement/rest cue, 60ms windows with 30ms 

overlap, 60/40 training/test ratio. 

In this case, the neural network had similar accuracy, better TPR, but worse FPR 

than LBPAD.  In practical prostheses applications, consistency and robustness are 

important, so superior FPR performance is preferable to avoid unintentional 

movement.  The author’s discussions with Touch EMAS2 have indicated that 

prosthetic users can compensate for a lower TPR by retrying.  Moreover, the 

statistical nature of neural network training means that the results were not consistent 

between runs, unlike LBPAD. 

                                                 
2 Touch EMAS, also known as Touch Bionics, design and manufacture the iLimb, as discussed in chapter 2  
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A separate test was also performed in which the entire Data Set 1 was used.  Hudgins 

Time Domain features were calculated for the EMG signals for windows of the 

signals the first index marker of each session for each subject, except for 200ms 

transitional periods that occur between gestures and rest.  Assign 'active' or 'rest' 

labels were assigned to each feature vector as appropriate.  SVM, NN and LDA were 

then trained with identical training data and test with identical validation and test 

data.  These results were compared with the accuracy, TPR and FPR obtained with 

all of the LBP histograms types and for several values of P.  Results are shown in 

Table 4.3. 

Accuracies P=2 P=4 P=6 P=8 

Histogram Type 

Standard 94.26 93.72 91.89 88.85 

RI 94.24 94.28 92.73 90 

Uniform  93.72 91.9 88.85 

Uniform RI 61.9 83.49 90.48 93.16 

 

TPRs P=2 P=4 P=6 P=8 

Histogram Type 

Standard 0.93 0.9234 0.9117 0.8482 

RI 0.92 0.9242 0.9202 0.8618 

Uniform  0.9234 0.9117 0.8418 

Uniform RI 0 0.9977 0.9952 0.9801 

 

FPRs P=2 P=4 P=6 P=8 

Histogram Type 

Standard 0.019 0.019 0.017 0.016 

RI 0.019 0.02 0.018 0.016 

Uniform  0.019 0.017 0.016 

Uniform RI 0 0.11 0.065 0.053 

 

Classifier Accuracy TPR FPR 

Classifier Type 

LBP (RI P=8) 90 0.8618 0.016 

SVM 95.89 0.941 0.0261 

LDA 92.2 88.35 0.0458 

NN 93.4 0.9069 0.0433 

Table 4.3 – Results for additional comparison test 
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It was found that higher overall classification accuracies are gained when NN and 

SVMs are used.  However, it is possible to get a lower FPR at the expense of some 

TPR and accuracy when LBP is used. 

4.7. Comparison between 1-D LBP histogram types for activity 
detection 

The performances of the histogram types were tested across all of Data Set 1 and 

results are shown in Table 4.4. 

Histogram 

type 

Accuracy 

(%) 

TPR FPR SD 

Standard 83.3 0.6071 0.0098 0.1 

Uniform 93.3 0.8661 0.0203 0.0501 

Rotationally 

Invariant 
93.9 0.8829 0.0216 0.0476 

Uniform 

Rotationally 

Invariant 

85.4 0.9903 0.2414 0.0706 

Table 4.4 Comparison between histogram types for activity detection across 
Data Set 1, P=4, window length 60 milliseconds 

Table 4.5 shows a comparison of the different histogram types and their performance 

in LBPAD.  The Rotationally Invariant and the Uniform Histograms can be seen to 

have the best balance between accuracy, TPR and FPR with little difference between 

them for Data Set 1.  The parameters should be chosen experimentally for a given 

data set and with the SNR taken into consideration. 

P Accuracy 

(%) 

TPR FPR 

2 93.9 0.8852 0.0232 

4 93.9 0.8829 0.0216 

6 92.2 0.8374 0.0187 

8 89.1 0.7562 0.0159 

10 83 0.6042 0.0124 

Table 4.5 Comparison between values of P for Rotationally Invariant 
histogram across Data Set 1, window length 60 milliseconds 

Table 4.5 shows the accuracies, TPR and FPR for different values of P across all of 

Data Set 1.  An RI histogram and window length of 60ms (120 samples) were used.  

The smoothing algorithm was used with length 200ms.  P=2 and P=4 produce 

similar results with this data set. 
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4.8. Isolation of transitional periods 

The LBPAD algorithm does not detect transitions between non-rest gestures; only 

transitions to and from rest are identified.  As such, all transitions between gestures 

should be detected as ‘activity’.  For Data Set 2, the accuracy of detection for these 

transitional periods between gestures was assessed and the mean was 92-93% for all 

the histogram types. 

4.9. Effects of varying the parameters 

 

The window length and overlap affect the responsiveness of detection.  An activity 

decision is made for every interval equal in duration to window length minus any 

overlap.  It is generally necessary to use longer windows for lower SNRs, so 

increasing the overlap improves the responsiveness.  However, using very short 

windows was found experimentally to increase the FPR.  Figure 4.15 shows that the 

accuracy does not vary significantly for window lengths above about 50ms for Data 

Set 1. 

 

Figure 4.15 - Accuracies obtained by varying the window length across Data 
Set 1 using LBPAD, Rotationally Invariant histogram, P=4 

The window length determines the smoothness of the activity detection, but as 

window length increases, resolution decreases.  The use of overlapping windows was 

found to mitigate this.  Degrees of overlap were compared for a fixed window length.  
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The results in Figure 4.16 indicate that adjusting the overlap improves the FPR 

slightly but does little to improve the accuracy for Data Set 1. 

 

Figure 4.16 - Accuracies obtained by varying the amount of window overlap 
across Data Set 1 using LBPAD, window length 60 milliseconds, Rotationally 

Invariant histogram, P=4 

The length of a window and the overlap are decided by: 

 SNR – based on tests with simulated EMG, lower SNRs require longer window 

lengths 

 Desired resolution of activity detection 

 Desired smoothness of activity detection 

 Value of P – typically this was an even value between 4 and 8, inclusive 

I can be seen from Figure 4.15 that for Data Set 1, there is little change in TPR or 

FPR for window lengths longer than about 100ms.  There is a steady decline in 

accuracy as window length approaches 1s in duration, which makes sense as the 

resolution of LBPAD declines as window length increases.  Figure 4.16 shows that 

window overlap changes the TPR and FPR very little for this data set, but that the 

accuracy actually declines, and more sharply as it exceeds 50%.  The good 

performance of LPBAD on Data Set 1 and the fact that changing the window 

parameters has little impact is due to gesture/rest durations being longer than the 

window lengths tested here.  The relatively high SNR is also a factor. 

LBPAD does not detect transitions between non-rest gestures; transitions to and from 

rest are identified. 
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Specificity and sensitivity can be influenced by the choice of histogram type, as 

shown in the ROC curve in Figure 4.14.  The difference in performance between the 

histogram types and choice of P value can be accounted for by the level of detail that 

is retained within each window of the signal: The window is described in a different 

way by each of the histogram types.  For example, when the Uniform Rotationally 

Invariant histogram is used, any local activity that is not uniform and rotationally 

invariant is placed in the same histogram bin, thus sacrificing any potentially useful 

discriminatory information that is held within these bins for a higher TPR at the cost 

of a higher FPR. 

The value of P sets the number of samples that are used to calculate LBP codes.  

Changing P therefore changes the scope of the observation for the trends that are 

categorised by the ‘activity’ bins. 

 

It is common to perform noise reduction such as band pass filtering on EMG signals.  

However, this changes the behaviour of LBPAD.  Band passing can reduce the 

performance of LBPAD.  For example, the same signal used in Figure 4.6 was taken, 

and then the LBPAD was performed.  The resulting activity detection is shown in 

Figure 4.17(a).  The distinctive ‘crossover’ phenomenon of the activity and inactivity 

bins can be seen in Figure 4.17(b). 

 

 (a) (b) 
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 (c) (d) 

 

 (e) (f) 

Figure 4.17 – (a) The signal from Figure 4.6 with LBPAD (b) Histogram bin 
behaviour (c) Signal after band pass filter with LBPAD (d) Histogram bin 

behaviour (e) Signal after band pass filter with LBPAD with mean removal (f) 
mean-removed histogram bins 

Figure 4.17(c) shows the same signal, but bandpassed, with the activity detected 

using LBPAD superimposed.  It can be seen that the entire signal is detected as 

activity, and this is because of the loss of bin crossover behaviour in Figure 4.17(d).  

If the parameters are changed (window length/overlap) and then the mean of both the 

activity and inactivity bin vectors are subtracted, the bin amplitudes can be directly 

compared again, as shown in Figure 4.17(f).  The resulting activity detection is 

shown in Figure 4.17(e).  The alternative to this ‘Mean Removal Trick’ would be to 

apply a manual threshold to the sum of the ‘activity’ bins.  This, however, negates 

one of the key advantages of LBPAD, i.e. that manual thresholds need not be set. 

4.9.3.1. Effect of power line interference 
The performance of LBPAD was tested on Data Set 4.  It was discovered that pre-

filtering the data by notch filtering was necessary to allow LBPAD to perform at all.  

This indicates that power line interference has a detrimental effect on the 

performance of LBPAD. 
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4.10. Discussion 

 

As discussed in 3.2, the sum of the energy across all channels within a window must 

exceed a threshold before activity is declared for that window.  This is why energy 

was chosen for comparison against LBPAD.  To get the best possible accuracy for 

the multi-channel energy method, it was necessary to get the best threshold (and 

therefore the best results) for each EMG recording in the data set.  The window 

length and overlap were kept at the same values throughout. 

For each EMG recording, the energy threshold was swept from 0 (i.e. 100% of the 

signal detected as ‘activity’) to the highest maximum energy level in the entire EMG 

recording (i.e. the value at which none of the recording was detected as activity) in 

1000 steps, and the best of these was used for comparison against LBP. 

For LBPAD, several values of P were tested with each of the four histogram types, 

and each combination of P/histogram type was tested on the entire data set without 

adjustment.  The best combination of P and histogram type was then chosen for 

comparison against the energy method. 

Knowledge is not required of the properties (e.g. variance) of a quiescent period or of 

any thresholds that define such a period.  Other approaches rely on the assumption 

that estimates of the noise can be obtained in this way.  Instead, activity/inactivity 

decisions are made based on the properties of the signal within each window 

In the results shown in 4.9.1, the best histogram types for activity detection are 

Rotationally Invariant and Uniform.  The Uniform histogram was also found 

experimentally to be useful when testing on noisier simulated data.  The Uniform 

Rotationally Invariant method was the most sensitive; it had a higher FPR than the 

other histogram types, especially if the data was noisy and, therefore, it may not be 

as useful as an activity detector unless it can be improved by post-processing. 

In all the cases studied, choosing window length, P (therefore the number of 

histogram bins) and histogram type to obtain the best accuracy depends on the SNR.  

For example, for Data Set 1, due to the high SNR, a lower value of P, shorter 

window length and RI histogram were found to be more appropriate.  Objective 

measures of signal quality were discussed in 3.5. 
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With multiple channel outputs, fair comparisons with methods that are primarily 

developed for individual channel use, are not easy.  In the case of Bonato, a 

comparison for eight channels would have required a subjective majority vote 

approach. 

Both Energy and LBPAD had lower performance with the noisy Data Set 2, but 

LBPAD displayed more robustness even though the parameters were not separately 

adjusted to get the best results for each of the 240 trials that were used. 

 

LBPAD gives an activity detection decision for each window of the signal.  Some 

refinements were tested in an attempt to obtain more accurate activity detection 

locations.  The resolution of LBPAD is determined by window length and amount of 

overlap.  A different method was tried: 

1. Perform LBPAD 

2. Take the two windows where the transition from rest to activity were evaluated 

3. Go back halfway between the two windows and calculate another LBP histogram 

4. Determine activity/inactivity for this window 

5. If ‘active’, go left a quarter window, if ‘inactive’ go right a quarter window 

6. Repeat until window size is too small to continue. 

The main problem with this approach is that there can be more than one ‘active’ to 

‘inactive’ crossover within the two windows.  Overall activity detection accuracy 

was not found to increase when this method was tested. 

4.11. Conclusion 

In this chapter, the problem of onset and activity detection for EMG was described.  

Methods were described and discussed.  A novel multi-channel EMG activity 

detection algorithm was presented in this chapter, which uses histograms obtained 

from the recently developed one-dimensional local binary pattern method.  There are 

a few parameters to set: Window length/overlap, histogram type and P, which 

determines the number of histogram bins.  These are set once for an entire data set, 

and for the data sets used, results rivalling or improving on those of the Energy and 

Bonato methods were obtained. 
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The advantage of the proposed method is that a single activity/inactivity decision is 

given for multiple channels.  The process requires no pre-processing such as 

whitening.  For multiple concurrent EMG channels, the LBP codes, across the 

concurrent window of each channel, are simply amalgamated into a single histogram, 

rather than requiring a, usually subjective, Majority Vote mechanism.  Increased 

robustness has also been demonstrated both in terms of lower FPR and in the 

presence of noise. 

4.12. LBP histograms as features for pattern recognition 

It was discovered that 1-D LBP histograms extracted from windows of gestures 

could be used as features for pattern recognition.  The results were similar to the 

Hudgins feature set when higher numbers of channels were available.  This leads to 

the possibility of using the same extracted histogram for LBPAD and as a feature set. 
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5.1. Introduction 

his work was started by the author at Carleton University, Ottawa, Canada.  It 

was carried out under the supervision of Prof Adrian Chan of Department of 

Systems and Computer Engineering at Carleton University as part of the CleanEMG 

project.  The aim of the CleanEMG project described in [120] is to provide open 

source, user-friendly methods to automatically assess the quality of EMG signals.  

Previous research included methods targeted towards the specific contaminant types 

in EMG recordings that were discussed previously in section 2.3.5. 

It is not possible to know in advance what kind of contaminant might be present.  

Currently, verification of the EMG signal quality during acquisition is performed by 

human operators using visual inspection, or semi-automated approaches, if it is done 

at all.  In the majority of signal processing algorithms and in pattern recognition, 

there is an assumption of adequate EMG signal quality, which can lead to invalid 

results or interpretations if this assumption is incorrect [4, 121, 122]. 

Quality analysis of biosignals can be organized into the four categories of detection, 

identification, quantification and mitigation.  In [123], it was noted that the 

“literature base is close to non-existent” with regards to automated biosignal quality 

analysis.  There has recently been a rapid growth in research in this area, which 

acknowledges a growing need that cannot be met by methods that rely on human 

involvement, as they are subjective, unreliable or impractical (e.g., time and cost), or 

simply not feasible (e.g. in real-time prosthetic control).  This need is driven by a 

number of factors including: 

1) An increase in monitoring applications 

2) The increased use of multichannel systems 

3) Continuous monitoring 

4) Monitoring in unsupervised environments (e.g., telehealth) 

5) Ensuring signal quality in practical implementations (e.g. prosthesis control) 

T 
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Increased research activity can also be seen in biosignal quality analysis for EMG 

[44, 75, 100, 101, 120, 124-129]. 

Biosignal quality analysis provides a link between the signal acquisition and 

processing by validating the recorded signal to ensure sufficient signal quality prior 

to subsequent processing.  Since the contaminant type would not be known a priori, 

a means of identifying the contaminant in a measurement enables an informed 

response.  For example, automatic identification of the contaminant type could direct 

an operator how to adjust an acquisition setup to improve the quality of the 

recording.  Identification of the contaminant type could also enable judicious 

application of signal processing to mitigate contaminants in the recorded signal, 

possibly paving the way towards real-time contaminant evaluation and mitigation 

systems. 

It was reported in [44] that contaminant detection was achieved using a one-class 

support vector machine (SVM) to determine whether an EMG recording was free of 

contaminants.  In this chapter, several analysis methods are combined for particular 

contaminants to perform contaminant identification (i.e., determine the type or 

source of contaminant).  The outputs from these methods are used as input features to 

a classifier to evaluate the potential of discerning the contaminant type.  The 

performance of this identification method is evaluated on simulated and real EMG 

data. 

5.2. Methodology 

Figure 5.1 shows a block diagram of the pattern classification system.  Contaminant 

identification is performed through pattern classification using Support Vector 

Machines (SVMs).  As indicated in Figure 5.1, the feature extraction process 

involved quantifying the contamination in the EMG signals using seven of the 

methods discussed in section 3.3.  The outputs of these methods were used as 

features for a classifier that identified the contaminant type. 
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Figure 5.1 - Pattern classification system for identification of the EMG 
contaminant type 

Data Set 3 was used and a simulated EMG data set (see 2.3.4) was made that was the 

same size and sample rate as Data Set 3. 

 

As shown in Figure 5.1, the contaminants chosen were: 

 ECG 

 Motion Artifact 

 Power Line Interference 

 Amplifier Saturation 

 Additive White Gaussian Noise 

These represent the main contaminant types that can be found in sEMG. 

5.3. Classifier Training and Testing 

For the simulated EMG data, the dataset was randomly split into four subsets of the 

same size as the real EMG subsets (as explained next).  The classifier training was 

performed using three of the subsets and testing was carried out on the remaining 

subset.  This process was repeated a total of four times such that each subset was 
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used as test data on separate neural networks.  For the real EMG data, the dataset was 

split into four subsets based on the four subjects (the number of recordings per subset 

ranged from 40 to 80). 

As shown in Figure 5.1, the features chosen were: 

 Signal to Power Line Ratio (SPR) 

 Signal to Motion Artifact Ratio (SMR) 

 Maximum-to-Minimum Drop in Power Ratio (DPR) 

 SNRatio 

 Power Spectrum Deformation (Ω) 

 Signal to ECG Ratio (SER) 

 Correlation Coefficient Test for Normality (CCN) 

The EMG data for the training data (Data Set 3) was artificially contaminated with 

each of the five different contaminants in turn, with an SNR ranging from -20dB to 

0dB in steps of 10dB (if the number of EMG signals used in the training dataset was 

Ntrain then the number of training signals was Ntrain  5 contaminant types  3 noise 

levels).  The EMG data for the testing data was artificially contaminated with each of 

the five different contaminants, with an SNR ranging from -20dB to 20dB in steps of 

5dB (if the number of EMG signals used in the training dataset was Ntest then the 

number of test signals was Ntest  5 contaminant types  9 noise levels).  With this 

setup, only lower levels of SNR were used in the training data, while the testing data 

uses levels of SNR that are not used for the training data, including high levels of 

SNR where the contaminant is not visible. 

The behaviour of the features is shown in Figure 5.2 to Figure 5.8.  Left-hand graphs 

are for simulated EMG and right-hand graphs are for real EMG. 

 

Figure 5.2 – SMR feature behaviour.  Left-hand graphs are simulated EMG data 
set and right-hand graphs are real EMG data set 
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Figure 5.3 – DPR feature behaviour.  Left-hand graphs are simulated EMG data 
set and right-hand graphs are real EMG data set 

 

Figure 5.4 – SNRatio feature behaviour.  Left-hand graphs are simulated EMG 
data set and right-hand graphs are real EMG data set 

 

Figure 5.5 - Ω Ratio feature behaviour.  Left-hand graphs are simulated EMG 
data set and right-hand graphs are real EMG data set 

 

Figure 5.6 – CCN feature behaviour.  Left-hand graphs are simulated EMG data 
set and right-hand graphs are real EMG data set 
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Figure 5.7 – SPR feature behaviour.  Left-hand graphs are simulated EMG data 
set and right-hand graphs are real EMG data set 

 

Figure 5.8 – SER feature behaviour.  Left-hand graphs are simulated EMG data 
set and right-hand graphs are real EMG data set 

In all graphs in Figure 5.2 to Figure 5.8, the error bars are ±σ (standard deviation) 

across all recordings.  The legend is given above Figure 5.2 applies to all the graphs. 

5.4. Results 

Accuracies for each contaminant across the range of SNRs are shown in for 

simulated EMG in Figure 5.9(a) and for real EMG in Figure 5.9(b).  As expected, 

most are misclassified as the SNR increases because the amount of contaminant is 

low at high SNR, making the contaminant type hard to discern.  The type of 

misclassifications differs between real and simulated EMG. 
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(a) (b) 

Figure 5.9 - Accuracy of classification for each contaminant as the SNR is 
changed for simulated EMG (a) and real EMG (b). Classifier is 1v1 Support 

Vector Machine system with RBF kernels 

Figure 5.10 shows confusion matrices for the SNR levels -20 dB to 20 dB in 10 dB 

steps for (a) simulated EMG and (b) real EMG.  The target classes are listed on the 

horizontal axis and the classifier’s output classes are listed on the vertical axis.  

There were 1130 test vectors at each SNR classified by the SVM.  The correctly 

classified contaminants are on the diagonal running top left to bottom right.  For 

example, in Figure 5.10(a) (top), ECG is in the first vertical column.  In Figure 

5.10(a) (middle), the second box in the first column indicates that ECG is incorrectly 

classified as motion artifact for 32.74% of the vectors, at 0dB. 
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Figure 5.10 - Confusion matrices for different contamination levels simulated 
EMG (left) and real EMG (right) 
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Figure 5.10 shows confusion matrices for different contamination levels of simulated 

EMG (left) and real EMG (right).  The darker colours indicate higher errors, so lower 

values on the top-left to bottom right diagonal have darker shading if accuracy is 

lower.  Higher off-diagonal values have darker shading to show higher confusion. 

5.5. Discussion 

In Figure 5.10, high classification accuracy was observed at low SNR levels: For 

simulated EMG, the values for the overall classification accuracies were observed as 

100% at -20dB and 97.79% at -10dB.  For real EMG, overall classification 

accuracies were 100% and 95.75% for -20dB and -10dB, respectively.  The 

classification accuracy was around 20% at an SNR of 20 dB, which is equivalent to 

random chance given that there are five contaminant types.  At high levels of SNR, 

the classifier identifies the contaminants as motion artifact or amplifier saturation for 

the simulated EMG (Figure 5.10(left) bottom), whereas the classifier seems to favour 

amplifier saturation and ECG for the real EMG (Figure 5.10(right) bottom). 

It is evident from Figure 5.10 that, in general, features in isolation are unable to 

reliably distinguish between all of the contaminants, especially those with similar 

characteristics.  There is a feature, or combination of features, that can uniquely 

identify each of the contaminants: 

 ECG can be detected by SNRatio, Ω Ratio, SER, although these features are also 

sensitive to motion artifact. 

 SMR, SNRatio, Ω Ratio and SER are sensitive to motion artifact; these features 

could be used for its detection but there is the potential for confusion with ECG. 

 Power line interference is best identified by SPR due to the excellent 

quantification estimate across the range of SNRs tested and the distinct behaviour 

of SPR towards the other contaminants. 

 CCN can be used to detect, but not quantify, amplifier saturation. 

 AWGN is detected by DPR, but DPR is sensitive to changes in all of the 

contaminants. 

At low SNR (-20 dB and -10 dB), the proposed method is successful at identifying 

the contaminant types with high accuracy.  At 0 dB, the contaminants become 
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difficult to visually discern and, as it would be anticipated, classification accuracy 

begins to drop (Figure 5.9 (a) and (b)).  At high SNR, the classifier performance is 

equivalent to random chance. 

The results obtained in this work are, at this stage, for individual contaminant types 

but they illustrate the potential which exists for developing methods to identify and 

mitigate the influence of contamination on acquired EMG signals.  This is an 

important consideration in case of low SNR as it can potentially result in cleaner 

signal output, whilst preserving a larger frequency spectrum by avoiding 

indiscriminate signal filtering. 

The results also indicate potential issues that need to be resolved by any such 

methods when applied to signals where there is simultaneous existence of multiple 

contaminants.  Figure 5.10 for example, shows that when misclassification occurs for 

motion artifact and ECG interference, they are often misclassified as each other.  The 

spectrum of motion artifact completely overlaps that of the ECG and its morphology 

often resembles that of the P, QRS and T waves [130].  In fact, biosignal quality 

analysis methods that have attempted to mitigate motion artifact in ECG recordings 

have noted difficulties due to the similarities of the two signals [130, 131]; therefore, 

misclassification between motion artifact and ECG interference would be 

anticipated.  Bottom-up approaches that are directed towards a particular 

contaminant type could be employed to resolve these identification errors; for 

example, the ECG exhibits characteristics that are near cyclostationary and this could 

be used to discern it from motion artifact.  Other complementary bottom up 

approaches could similarly be integrated to further increase classification accuracy. 

 

Due to the length of contractions recorded in the real EMG, there is the possibility 

that fatigue could affect its frequency spectrum and therefore the features.  To test for 

this, the median frequency of the first 5s of each real EMG recording was compared 

with the median frequency of the second 5s.  No trend was discernable, with some 

increasing in median frequency and some decreasing.  The changes were less than 

half of a standard deviation.  In addition, the similarity in the results between the 
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simulated EMG, which definitely would not exhibit fatigue, and real EMG indicates 

that fatigue had little effect on the signals. 

As the SNR increases, the impact of the contaminant upon signal usefulness is 

reduced.  A contaminant detection method such as the one in [44] could be used, 

before the contaminant identification process, to screen out data that is 

uncontaminated or has high SNR. 

To investigate the effect of using shorter windows, the 10-second recordings were 

split into 1s and 2s analysis windows.  The classification accuracies compared 

against 5s windows are shown in Figure 5.11. 

 
 (a) (b) 

Figure 5.11 - Overall classification accuracies for 1 s, 2s and 5s windows for 
(a) simulated EMG and (b) real EMG 

Figure 5.11 shows that at low SNR levels, the classification accuracy decreased as 

the length of the analysis window decreased; this would be anticipated as a reduced 

number of data points would result in an increased variance in the signal features.  

This decrease was more apparent in the real EMG, perhaps associated with the larger 

variability that could be expected with real data, relative to the simulated data.  At 

higher SNR levels, the classification accuracy appeared to be better for shorter 

analysis windows, with a larger difference noted for the real EMG.  At the highest 

SNR level (20dB) the classification accuracies were all around 20% (equivalent to 

random guessing) but the influence of the contaminant is less significant.  This 

suggests that a minimum useful window length in this case is between 1s and 2s. 

The results obtained in this work indicate that automated procedures to detect the 

presence of contaminants, and even identify the types of contaminants present in 

signals, are indeed possible, particularly when SNR values are low.  Automated 
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identification of contaminants could trigger bottom-up approaches (e.g. moving 

average [77]), for quantifying, mitigating or simply rejecting the contaminated 

signals. 

5.6. Classifier Choice 

The choice of classifier was Radial Basis Function Support Vector Machines.  Linear 

and Quadratic Discriminant Analysis were tested, but these variants would not 

converge to a solution when the SNR was high.  Fuzzy Logic was considered, but 

time constraints during the placement precluded their use.  Linear SVMs did 

converge but the RBF SVMs produced better results at higher SNRs.  The trade-off 

was that the grid search for the best RBF parameters took a long time [62]. 

5.7. Other feature types 

Several other feature types were tested in place of (not in addition to) the signal 

quality feature set.  The Hudgins Time Domain features were tested in place of the 

signal quality features.  The results were significantly worse because they are not 

directly designed to respond to the presence of the noise types used in this work.  As 

discussed in section 2.5.6.3, the variances of the IMFs can be used as a means of 

noise identification.  For example, the variance of IMFs of a signal consisting of 

steady-state simulated EMG are shown in Figure 3.1.  The results were encouraging, 

but no better than the results when the measurements discussed in section 3.5 were 

used.  The applicability of the IMF variance behaviour for noise identification is 

worthy of further study. 

5.8. Conclusion 

Several identification methods were combined and used as features for the 

classification system in this chapter.  It has been shown that a classifier can be 

trained to produce a single decision on the identity of the contaminant.  The 

methodology presented in this chapter expands on previous work where the presence 

of contaminants was detected [44] by also identifying the type of contaminants.  

Identification of the contaminant type can validate measurement setups, providing 

direction to operators for appropriate action if the signal quality is inadequate.  The 
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initial findings for shorter windows indicate that future real-time evaluation and 

mitigation of contaminants in EMG signals could be possible. 

It is encouraging that the results for simulated and real EMG are similar.  This shows 

that the effects of any residual contamination in the real EMG are low to negligible. 
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6.1. Introduction 

n this chapter, the applicability of Spectral Enhancement for EMG signals will be 

examined.  Minimum Statistics Noise Estimation (MSNE) and Spectral 

Enhancement based on IMCRA (IMCRA SE, which referred to as IMCRA/OMLSA 

in [105]) will be investigated as means of improving the classification accuracy of a 

pattern recognition system that is trained to recognise gestures from noisy multi-

channel EMG.  It will also be compared against other noise reduction methods. 

MSNE and IMCRA SE were developed for single-channel speech where neither a 

clean reference signal nor a noise reference source are available.  Some noise 

reduction methods such as Wiener Filtering [132] require such a reference.  In 

forearm EMG, there is no clean reference, but there are often multiple surface 

channels with crosstalk and therefore redundant information between the channels, as 

discussed in Section 2.3.2. 

The only prior instance of the application of spectral enhancement to EMG was 

spectral subtraction in [81], where the mean spectrum of the noise is calculated 

across several ‘noise only’ STFT windows to account for its variation.  The mean 

noise spectrum is then subtracted across the STFT windows of the entire signal. 

Figure 6.1 shows spectral enhancement placed in the context of a pattern recognition 

system that is trained to recognise gestures from featured extracted from EMG. 

 

Figure 6.1 - EMG is pre-processed using Spectral Enhancement on each 
channel individually, and then pattern recognition is performed 

In Figure 6.1, the pattern recognition system is trained and validated using features 

extracted from the spectrally enhanced EMG.  As discussed in section 3.6, spectral 
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enhancement assumes that the signal and noise are uncorrelated, which is the case for 

white noise in EMG [99].  Dynamic recordings of real EMG were needed, and for 

this reason, Data Set 2 and Data Set 4 (see Section 2.3.5) were used for the noise 

reduction research.  AWGN was added to Data Set 2, and Data Set 4 was already 

noisy. 

A detailed description of IMCRA and MSNE can be found [109, 133] and an outline 

of IMCRA is given in Appendix A. 

6.2. IMCRA SE applied to EMG 

In this section, the behaviour of spectral enhancement upon EMG will be 

demonstrated.  The example in Figure 6.2 below is of a single channel of EMG from 

Data Set 1 consisting of five five-second recordings separated by five-second 

inactivity periods.  The signal is shown in the time domain in Figure 6.2(a).  IMCRA 

SE was applied to the signal, and the result is shown in a lighter shade on the same 

graph.  In Figure 6.2 (a), (b) and (d), the gesture instructions are shown by thick solid 

vertical lines and rest instructions by thin dashed vertical lines. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 6.2 (a) Bin 27 from a recording of EMG of five gestures from Data Set 1 
(b) magnitude of the STFT of the signal and its cleaned version (c) square of 

STFT bin and smoothed version of the first gesture (d) smoothed power 
spectrum 

One DFT bin was chosen to demonstrate the behaviour of IMCRA towards EMG.  

Figure 6.2(b) shows the absolute value of the STFT of bin 27 (centre frequency 

158.2Hz) before and after IMCRA SE is applied.  It can be seen that the inactivity 

periods have been attenuated more than the gesture periods.  Figure 6.2(c) shows the 

square of the DFT bin (light) and the smoothed power spectrum (dark) for bin 27.  A 

single gesture is shown for clarity.  Figure 6.2(d) shows the first iteration of the 

smoothed power spectrum (continuous line), the second iteration (dashed line) and 

the minima tracking (dotted line) for bin 27.  The figure indicates that the recursive 

spectral smoothing in IMCRA SE is effective at omitting the three stronger gestures 

from the spectral noise estimate. 

All the channels of Trial 4 of Session 2 of Subject 11 from Data Set 2 were examined 

in the time and time-frequency domain.  Then the data was band pass filtered and 

IMCRA SE was applied.  The results are shown in Appendix B.  The solid vertical 
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lines represent an instruction to the subject to perform a gesture and the dashed 

vertical lines represent ‘rest’ instructions. 

AWGN contains noise at all frequencies, so it is useful for assessing the performance 

of noise reduction algorithms across frequency and time.  AWGN was added to 

channel 6 (a dorsal site near the lateral epicondyle) from a recording from Data Set 2.  

The result is shown in Figure 6.3. 

 

Figure 6.3 - Example of IMCRA SE applied to EMG from Data Set 2 that has 
AWGN added 

Figure 6.3(a) shows time domain representations of the noisy and clean signals.  The 

lighter-coloured de-noised signal is shown superimposed on the signal with added 

noise.  The movement sequence is hand close; wrist extension; wrist flexion; wrist 

extension; rest.  Figure 6.3(b) shows the spectrogram of the original signal.  Figure 

6.3(c) shows the spectrogram of the signal with AWGN added, and finally Figure 

6.3(d) shows the spectrogram of the signal after IMCRA SE has been applied.  These 

spectrograms suggest that the added AWGN is reduced while much of the energy 

from the stronger gestures remains, which indicates that IMCRA SE is capable of 

estimating background noise in offline EMG signals. 

Three different examples have been given, which indicate that IMCRA is applicable 

to EMG signals for the purposes of spectral enhancement.  In the following section, 

the parameters will be configured. 
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6.3. Configuring IMCRA for EMG 

In order to get the best possible improvement in classification accuracy when 

applying IMCRA SE to Data Sets 2 and 4, it was necessary to change the values until 

the best possible classification accuracy was obtained for the entire data set.  The 

values of many of the parameters given in [109, 133] were optimised for speech 

sampled at 16kHz, so empirical tests had to be performed to determine the best 

values of the parameters for EMG.  The parameters were changed one at a time and 

then, if there was an improvement in accuracy, the best value was kept and the other 

values were then tested.  IMCRA SE was applied to each EMG channel 

independently.  IMCRA assumes that the first window of the signal contains only 

noise, which is true for Data Sets 2 and 4. 

The most important parameters were found to be L, V and U.  L is the size of the 

STFT window in IMCRA, which determines (by definition) the number of FFT bins 

and is therefore a power of two in length.  U and V set the number of samples and 

frames over which the minima are tracked and updated.  The values used for IMCRA 

with Data Sets 2 and 4, which are shown in Table 6.1, were decided with empirical 

tests in which a range of values for each parameter were systematically tested in turn 

to assess the effect upon classification accuracy. 
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Name Description Value used 

Data Set 2 

Value used 

Data Set 4 

L Length of FFT window 256 512 
V Minimum of current sub-window of V 

samples 
15 10 

U Number of sub-windows within the V 

samples for minima tracking 
4 4 

α Smoothing factor for recursive spectral 

estimation 
0.92 0.92 

αd Smoothing factor for noise 0.85 0.85 
αs Smoothing factor for minima spectrum 0.9 0.9 

Table 6.1 – Values used for IMCRA Spectral Enhancement for Data Set 
2 and Data Set 4 

The conditional gain Gh was tested in place of the recursively-smoothed conditional 

gain G, and the classification accuracy was found to consistently improve for Data 

Set 2.  Therefore, Gh was used throughout this work, which means that the presence 

probability was not used in the recursive smoothing of the spectral gain. 

The quantities α, αd and αs are smoothing factors, the values of which determine the 

smoothness of the recursive spectral estimation for the signal, noise and minima 

spectrum respectively.  These were also configured experimentally by assessing the 

change in classification accuracies. 

IMCRA compares the PDF of the STFT coefficient magnitudes with a PDF, in order 

to estimate the noise content of the signal [73].  This is discussed in Appendix A.  A 

Gaussian PDF was chosen for this work, but a Gamma distribution might also be 

considered to be appropriate depending on the contraction level in the window [134, 

135].  For example, a Gaussian distribution was chosen in [135] based on the 

assumption of constant-force, constant-angle and non-fatiguing contractions.  The 

short FFT window sizes mean that the EMG can be considered effectively stationary 

[65]. 

The purpose of the bias of the minimum noise estimate, Bmin, is to minimise 

attenuation of weak speech components.  A value was calculated using the inverse of 

the mean of 𝑆𝑚𝑖𝑛(𝑘, 𝑙) in accordance with [109, 133] and found to be 0.04 for Data 

Set 2.  However, using this value in fact reduced the classification accuracy. 
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6.4. Methodology 

Spectral enhancement (MSNE and IMCRA SE) were compared against other noise 

reduction techniques.  Three different approaches were taken.  Firstly, the change in 

signal quality for noisy simulated EMG was tested before and after the application of 

each noise reduction method.  Second, the change in classification accuracy was 

measured for Data Set 2 with added AWGN added at various levels.  Finally, 

classification accuracy for Data Set 4 was examined for different numbers of 

channels with and without noise reduction.   

Table 6.2 lists the noise reduction methods against which spectral enhancement was 

compared.  Details of these methods were given in section 3.5. 

A EMG with AWGN added I EMD: sum of first three IMFs 

applied to signal A 

B Band pass of A J EMD: sum of first three IMFs then 

band pass applied to signal A 

C IMCRA SE applied to signal A K EMD: IMF thresholding [104] 

applied to signal A 

D IMCRA SE then band pass applied 

to A 

L EMD: IMF thresholding [104] then 

band pass applied to signal A 

E Wavelet [81] applied to signal A M Band pass of the raw EMG (i.e. 

EMG with no added AWGN) 

F Wavelet [81] then band pass 

applied to signal A 

N Wiener applied to signal A 

G MSNE [111] applied to signal A O Wiener then band pass applied to 

signal A 

H MSNE [111] then band pass 

applied to signal A 

Table 6.2 - Noise reduction methods that were compared 

It was necessary to check whether the application of spectral enhancement adversely 

affected the signal quality.  To do this, the objective measures of signal quality 

discussed in section 3.5 were used.  SNR, DP Ratio, Ω Ratio and SNRatio were 

assessed before and after the application of IMCRA SE for both data sets. 

For each of the seven lower-arm channels of each recording in Data Set 2, the mean 

power of the ‘gesture only’ parts was calculated.  Three contaminated data sets were 

created by adding AWGN at -10dB, -5dB and 0dB relative to these values for every 

channel of every trial. 
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A set of linear Support Vector Machines (SVMs) was used to classify gestures 

because LDA classifiers failed to converge at the higher noise levels and because the 

grid method for finding optimum RBF SVM [62] parameters took excessively long 

to calculate (i.e. several days per subject).  For the feature extraction, window length 

was 300ms with an overlap of 150ms, and ten windows were taken from each 

gesture.  For each subject, half of the data (12 of the trials) were used for training and 

half for testing.  This was done for each trial all thirty subjects.  The mean and 

standard deviations of all of the accuracies across all trials of all subjects was then 

taken.  Classification accuracy from the bandpassed ‘clean’ data was used as the 

reference. 

For Data Set 4, Linear Discriminant Analysis was used for classification [10].  The 

gesture classification accuracies for all combinations of two channels out of sixteen 

were calculated, and then the mean across all combinations for all five subjects was 

taken.  This was repeated for four, six, eight, ten, twelve and fourteen channel 

combinations for each of the processes tested, to allow a comparison of spectral 

enhancement against the effectiveness of adding more channels.  The mean accuracy 

across all subjects when all sixteen channels were used was assessed for each process 

and used as the reference. 

6.5. Results 

 

The properties of the simulated EMG that was contaminated with AWGN at 0dB 

were investigated before and after each of the noise reduction techniques.  The 

results varied greatly depending on whether band pass filtering was also used.  For 

this reason, results both with and without band pass filtering are given below.  The 

SNR, DP Ratio, SN Ratio and Ω Ratio before and after noise reduction were 

investigated using the methods described in section 3.5.  The results are shown in 

Figure 6.4. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6.4 - Mean change in signal properties for each of the filtering types 
with AWGN @ 0dB SNR.  (a) SNR, (b) DP ratio, (c) Ω Ratio, (d) SN Ratio. 

Some recommended values were given in [75]: maximum Ω Ratio is 1.4 (lower is 

better), minimum DP Ratio is 30dB, minimum SNRatio is 15dB.  Figure 6.4 shows 

the mean change in the signal properties for each of the filtering types across the 500 

simulated gestures with AWGN added at 0dB SNR.  In Figure 6.4(b) the horizontal 

line is minimum DP Ratio.  In Figure 6.4(c) the horizontal line is the maximum Ω 

Ratio [75].  In Figure 6.4(d), the horizontal line is the SN Ratio for the raw signal.  

For parts (b)-(d), the methods that have adequate performance (in accordance with 

the limits from the references) are highlighted in white. 

Figure 6.4 shows that Wiener (N and O with and without band pass respectively) has 

the most consistent improvement in all criteria compared with the other methods.  

However, Wiener filtering requires a clean reference, which is available for this 

simulated data set, but will be unavailable in a real EMG-based control system.  The 

results obtained using IMCRA SE along with band passing restored the DP Ratio, Ω 

Ratio and SN Ratio to within the ranges recommended in [75].  Figure 6.4(d) shows 

that band passing the signal improves the Ω Ratio regardless of any additional 

processing. 
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The changes in classification accuracy for each of the processing types was 

investigated using the method listed in Table 6.2.  The classification accuracy results 

are shown in Figure 6.5. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 6.5 - Mean accuracies across all subjects of Data Set 2 for all 
processes with AWGN added (a) at -10dB, (b) at -5dB, (c) at 0dB 

Figure 6.5 shows the improvement in classification accuracy when Data Set 2 has 

been contaminated with white noise at various levels relative to the mean power of 

the ‘gesture’ parts of each of the signals.  The error bars are ±1 Standard Deviation 

(SD). Processes labels are defined in Table II.  IMCRA with band pass is 

highlighted.  In all parts of Figure 6.5, bar ‘M’ shows the accuracy for the unfiltered 

clean data, which is 92%.  Figure 6.5 (a) show the results for noise added at -10dB 

relative to the mean gesture power, where the accuracy ‘A’ (signal with AWGN 

added) is 43%.  IMCRA SE (labelled D in the graphs) is best at restoring the 

accuracy to 59.9%.  There is a similar trend in improvement at -5dB in (b) and at 

0dB in (c). 

 

Data Set 4 has high levels of power line interference, so notch filtering is applied 

along with band pass filtering before IMCRA SE is applied.  The classification 
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accuracy for all possible combinations of two channels was calculated (e.g. channels 

1 and 2, then channels 1 and 3 up to channels 15 and 16), and then the mean across 

all these combinations was taken.  The same process was repeated for all 

combinations of 4 channels, and then all combinations of 6, 8, 10, 12 and 14 

channels.  These results are shown in Figure 6.6. 

 

Figure 6.6 - Mean accuracies across all five subjects for Data Set 4 

Figure 6.6 shows the classification accuracy for 2-16 channels with and without 

IMCRA SE.  The error bars are ±1 standard deviation.  Classification accuracy for 

Data Set 4 is high for all five subjects when all sixteen channels are used.  As could 

be expected, the accuracy drops as fewer channels are used.  The drop-off is lessened 

if IMCRA SE is applied, and the improvement is greater for fewer channels.  For 

example, for two channels, the accuracy jumps from a mean of 43.9% to 50.6%.  For 

four channels, the mean accuracy jumps from 61.5% to 68.3%.  For sixteen channels, 

the mean accuracy across all subjects increases slightly from 88.58% to 90.2%. 

The mean improvements range between 1.5× standard deviation for two channels to 

1.3× standard deviation for 16 channels. 

6.6. Discussion 

Figure 6.4 shows that the measurements of signal quality found in [75] are affected 

in different ways by each of the methods, and that both MSNE and IMCRA SE 

restore the values of the measurements to within the acceptable ranges given in [75].  



CHAPTER 6  SPECTRAL ENHANCEMENT FOR EMG 

118 

Confidence that noise is being removed is increased by the observation that the 

classification accuracy of the pattern recognition systems is improved when IMCRA 

SE is used on Data Sets 2 (with noise added) and 4 (with intrinsic noise).  A possible 

mechanism by this is achieved might be that the ‘overwhelming’ measurement noise 

is reduced in the parts of the signals that have a low MVC [99]. 

IMCRA SE was shown to be superior to wavelet-based noise reduction and 

Empirical Mode Decomposition.  This was tested using real myoelectric signals with 

artificially added white noise, as well as with intrinsically noisy signals.  Figure 6.5 

shows that, of all the methods tested, IMCRA SE is the most effective at recovering 

the classification accuracy in this situation. 

IMCRA is sensitive to initial conditions: it is important that the first window consist 

only of noise.  A test was performed in which the noise estimation started during a 

gesture.  The IMCRA estimator assumed that this was the noise floor, so the rest of 

the signal was attenuated accordingly, which rendered the signals useless for pattern 

recognition. 

The results from Data Set 2 changed mostly by a little either way if IMCRA SE was 

applied to the ‘clean’ signals.  This indicated that the noise estimation was not 

overzealous. 

The length of the window (L) is determined by the need for the classifier to respond 

within human reaction time: Changing L to 1024 for the real EMG increased the 

accuracy slightly for Data Set 4, but this is longer than the 300ms reaction time. 

To determine the effects of varying parameters, the values of the smoothing factors 

are critical.  The values of α and V determine the trade-off between signal attenuation 

and noise reduction.  V must not be too high or too much of the weaker spectrogram 

components of the EMG will be excessively attenuated.  The forgetting factor, α, a, 

must not be too low or the spectral peaks caused by gestures will be insufficiently 

strong.  The values of αd (recursive time-smoothing parameter for the noise) and αs 

(smoothing parameter for second iteration of noise estimation) are also important.  

Most of the parameter values for IMCRA in [109, 133] were found to be lead to an 

improvement in signal quality and classification accuracy without any adjustment. 
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Figure 6.6 shows IMCRA SE can recover some classification accuracy for Data Set 4 

(noisy real EMG) when fewer channels are used.  There were diminishing returns on 

the use of IMCRA SE as more channels were used.  It was discovered that increasing 

the number of EMG channels improves the classification accuracy for very noisy 

data even if noise reduction is not used.  If there are fewer channels, then IMCRA SE 

provides its most significant improvement in accuracy.  

IMCRA was found to give a greater improvement in the classification accuracy when 

alternative feature types were used.  For example, the average percentage 

improvement in accuracy for autoregressive features was greater.  However, the 

overall performance of autoregressive features was inferior. 

The results have shown that band passing should always be performed regardless of 

the other noise reduction types employed. 

There is a practical limit in terms of computational load.  It may not be worth 

performing IMCRA SE on multi-channel EMG for the sake of a few percent 

improvement in classification accuracy.  Instead, IMCRA SE is more suitable for 

data sets where there are only a few (2-4) noisy channels, which of course is a 

common number of channels in the current generation of forearm prostheses. 

6.7. Empirical Mode Decomposition-based Filtering (EMDF) as 
an Alternative to Low Pass Filtering 

In order to assess the usefulness of the EMG below 20Hz, it was decided to test 

whether it was possible to classify gestures based only on features extracted from the 

signal below 20Hz.  This would include EMG, but in Data Set 2, there are also high 

levels of motion artifact noise in the 0-20Hz band.  The data was put through a third-

order low-pass Butterworth filter with a cut-off frequency of 20Hz.  The accuracy 

was better than chance but was disappointing.  The results indicated that there is 

some useful discriminatory information below 20Hz, which could be either the EMG 

or some repeatable property of the motion artifact that correlates to specific gestures. 

It was hoped that EMDF (described in section 3.5.1) would remove motion artifact 

while retaining these useful low-frequency components of the EMG.  High passing is 
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done to remove the often-overwhelming motion artifact noise.  This also removes 

any low frequency EMG that may be present.  An example is shown in Figure 6.7. 

 
(a)  

 
(b) 

 
(c) 

 
(d) 

 
(e) 

  
(f) 

Figure 6.7 – (a) a time domain signal from Data Set 2.  (b) The same signal in 
the time-frequency domain (c) signal after HPF, in Time Domain (d) signal after 

HPF, in time-frequency domain (e) EMDF applied in time domain (f) EMDF in 
time-frequency domain 

Figure 6.7(a) shows an example of an EMG signal from Data Set 2 with some of the 

motion artifacts circled.  The motion artifacts are also evident in the spectrogram of 

the signal Figure 6.7(b).  The signal is high-pass filtered in Figure 6.7(c) and (d) and 

EMDF is applied using 100-sample windows in Figure 6.7(e) and (f).  It appears that 

EMDF is better at preserving the lower-frequency structure.  Despite this apparent 

retention of information, a commensurate improvement in classification accuracy 

was not observed. 
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6.8. Summary 

This chapter has shown the potential of spectral noise estimation and noise reduction 

for improving the classification accuracy of a pattern recognition-based myoelectric 

control system.  Firstly, the change in signal quality caused by IMCRA SE and 

MSNE for EMG signals with added AWGN was measured and found to be 

satisfactory.  Spectral Enhancement techniques, compared against several other 

techniques, performed best at improving the classification accuracy in the presence 

of added and intrinsic noise, which implies that Spectral Enhancement was effective 

at preserving spectral information from the EMG while reducing the noise.  The 

resulting improvement if the data is already clean is marginal, so the additional 

processing required for the spectral noise reduction is not advantageous. 

The parameters of IMCRA SE were configured to respond appropriately to EMG.  In 

this way, stronger EMG components were removed from noise estimations.  Signal 

quality was restored and classification accuracy was improved for both AWGN and 

‘naturally’ noisy data.  The improvement in accuracy gained for the noisy data would 

make the operation of prosthetic hands easier.
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n this thesis, novel methods of EMG activity detection and noise identification 

have been introduced.  An algorithm designed for speech noise reduction has 

been shown to be effective for EMG signals for both white and intrinsic noise.  

These developments will ultimately lead to improvement in the performance of 

myoelectric control and automated clinical EMG analysis. 

 

LBPAD takes advantage of the behaviour of 1-D LBP histogram bins in order to 

identify the presence of EMG in offline recordings.  It allows accurate multi-channel 

activity detection with a lower FPR than the methods against which it was tested in 

Chapter 4.  This was achieved without the need to tailor thresholds for each 

individual EMG recording in the data sets, which was necessary for energy and 

Bonato methods. 

LBPAD must be tested in real-time in future work and implemented in a prosthetic 

under changing SNR conditions.  The fitting of currently available commercial 

myoelectric prosthetic hands to patients requires manual calibration of threshold 

settings by clinicians according to each patient’s ability.  It is common for patients to 

return to the clinic for threshold values readjustment because conditions change such 

as muscle tone and sensor slippage.  An investigation of the benefits of LBPAD to 

reduce the need for recalibration could be carried out by testing LBPAD in the 

presence of the common types of noise found in EMG, added artificially to clean real 

EMG at multiple SNRs.  An understanding of the relationship between the LBP 

parameter values and the noise levels present in the EMG needs to be established, 

and the mathematical rigour behind 1-D LBPs must be developed further. 

LBPAD has not been tested on recordings of slow, intentional movements.  The 

possibility of modifying LBPAD to detect changes between gestures without going 

through ‘rest’ first should be investigated. 

LBPAD should be adapted for and tested on other types of signal such as speech.   

I 



CHAPTER 7  CONCLUSION 

123 

 

It is necessary to be able to identify the contaminant types present in EMG signals in 

order to be able to decide whether to discard or filter the signals, or to adjust the 

recording apparatus or telehealth setup to reduce the noise.  Manual identification 

methods have existed for a while, but the method presented in Chapter 5 combines 

some of them to perform automated identification of five contaminants. 

The contaminant identification system discussed in Chapter 5 is capable of producing 

a class label identifier for a single contaminant.  Future work should focus on the 

identification of multiple contaminants that may be simultaneously present.  Such a 

system may identify the dominant contaminant, as discerning the number and type of 

each contaminant may not be feasible.  In this work, analysis was limited to 

isometric, isotonic contractions, which could be applied to calibration or verification 

contractions performed at the beginning and end of data acquisition.  Additional 

work should investigate the effect of short analysis windows and the applicability of 

similar analysis in dynamic contractions for real-time assessment. 

As discussed in section 3.5, the previous One-class SVM system [44] detected noise 

regardless of its type.  The system presented here will misclassify previously unseen 

data types.  To address this, future work should investigate the possibility of 

developing a confidence measure that uses the one-class SVM. 

Another possible approach to the contaminant issue would be ‘brute force’, where 

the EMG is subjected to every type and combination of noise reduction methods until 

the best classification accuracy is achieved.  Though this would be time-consuming, 

the results could form a basis against which to compare the classification from the 

SVMs.  If the SVM classification was accurate, then the most appropriate filter for 

the identified contaminant(s) should be the ones that produced the highest 

classification accuracy. 

Future work should identify the ranges of SNR within which the noise has non-

negligible impact upon the signal quality.  As well as the quality metrics discussed in 

Section 3.5, gesture classification accuracy could be used, which was done in this 

thesis as a signal quality metric in Chapter 6. 
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The ultimate aim of contaminant identification in the context of forearm prostheses is 

improvement in usability of the prosthetic.  For telehealth, the ultimate aim is the 

transmission of clean biosignals that can be used for remote diagnosis.  With this in 

mind, future work should focus on achieving real-time signal analysis and filtering. 

 

In Chapter 6, Spectral Enhancement, which was developed for speech signals, was 

shown to have potential for use on EMG signals.  An improvement in classification 

accuracy implied that the noise in the EMG signals had been reduced, particularly for 

instances where there was a low channel count, which is the case for the current 

generation of prosthetic control systems for hands. 

More work is needed to tailor the spectral estimation mechanism in the spectral 

enhancement techniques based on the spectral properties of the EMG.  For example, 

the best choice of statistical distributions for myoelectric signals need to be 

determined, though these problems have not yet been solved for speech [109]. 

Different distributions might be used depending on the MVC, as it has been shown 

that the distribution changes as MVC changes [134]. 

Because IMCRA SE reduces the measurement noise, it would be possible to compare 

it against the adaptive whitening filter in [99] for the purposes of improving 

amplitude estimation in EMG. 

As there are usually multiple concurrent EMG channels, multi-channel versions of 

the spectral noise estimation techniques could be adapted to take advantage of the 

redundancy and crosstalk.  IMCRA SE should be tested in a real time situation and 

the processing time then compared with other methods in real time such as wavelets 

and EMD. 

The hope was that EMDF would preserve low-frequency information from the EMG 

better than a high-pass filter, and that this would lead to higher classification 

accuracy.  The tests of EMDF performed as part of this work indicated that this was 

not the case.  More work is needed to indicate conclusively whether EMDF has 

utility for EMG signals.  For example, EMDF might be useful in the process of 

MUAP decomposition, which was not the focus of this work. 
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7.2. Combined system 

The novel contributions could be integrated into a system as shown in Figure 7.1. 

 

Figure 7.1 - Proposed structure of future system that incorporates LBPAD, 
SVM-based noise identification and Spectral Enhancement 

Noise identification would be integrated into a pattern recognition system in a 

manner similar to that shown in Figure 7.2. 
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Figure 7.2 – Suggested pattern recognition system with additional stage 
for noise detection, identification, quantification and mitigation 

Figure 7.2 shows a pattern recognition system with an additional stage for noise 

detection, identification, quantification and mitigation [5, 44, 73].  If the noise in the 

EMG has been deemed negligible, then the noise mitigation stage can be bypassed. 

In this work, the classification accuracy is measured purely as the number of times 

that the classifier produces a correct class label.  A more sophisticated approach 

[136, 137] is to measure the completion of tasks classed under Activities of Daily 

Living (ADL).  This would be a logical next stage for any system that was to be used 

in clinical trials. 

The effects of fatigue upon the performance of each of the novel algorithms should 

be investigated [25]. 

The gap between academic and industrial research for myoelectric prosthetic limb 

control is discussed in [138].  High classification accuracy in lab-based myoelectric 

controllers, but this is not reflected in the relatively small percentage of amputees 

who use myoelectric forearm prostheses.  Future research should bear this in mind. 

The algorithms presented here could contribute towards myoelectric toolboxes such 

as BioPatRec [139]. 

Blind Source Separation was discussed in 2.5.4.  Degenerate Unmixing Estimation 

Technique (DUET) [140] is a BSS technique that is capable of separating an 

arbitrary number of sources from a few mixtures.  DUET was tested during this PhD 

research on multi-channel EMG, and the physical meaning of the sources extracted 

from the EMG could not be identified.  This is perhaps because DUET in its 

unmodified form does not account for either the ‘tissue filter effect’ or any 

reverberation.  There is scope to develop an algorithm based on DUET for use with 

EMG signals. 

7.3. The future of forearm myoelectric control 

The main development in the near future of forearm myoelectric control will be the 

release of a commercialised pattern recognition control system in a lower-arm 

prosthetic.  Longer term, the lessons learned from ambitious programmes such as 
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Revolutionizing Prosthetics will lead to prosthetics that are more functional and 

intuitive. 

Several technologies could improve prostheses.  Injectable wireless sensor implants 

have the advantages of invasive sensors without the problems associated with 

percutaneous sensing [36].  Osseointegration [141] is the permanent addition of a 

connector on the bone on the residual limb, to which a prosthetic can be attached.  

This would likely reduce sensor slippage for surface sensors. 

Muscle Synergies are instances of multiple concurrent muscle movements, presumed 

to be initiated by a single neural command signal [142].  Unlike features that have 

been dimensionally reduced, synergies have a time dimension [65].  The feasibility 

of muscle synergies to refine EMG control is an area ripe for future research. 

In the longer term, prosthetic hands will be made that perform better than natural 

hands in certain situations.  Prosthetic hands will then be developed that are as good 

as or even superior to those with which we are born.  Until then, incremental 

improvements, such as the tools presented in this thesis, will lead to a gradual 

improvement in the quality of life of prosthetic users. 
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Overview of IMCRA 

In this appendix, IMCRA will be explained based on [109, 133].  The aim of IMCRA 

is to continuously estimate the noise in a speech signal without access to a noise 

reference, and to exclude stronger speech components from this noise estimate.  A 

smoothed power spectrum is generated for each DFT bin across windows of the 

signal.  The location of stronger speech components are estimated and excluded from 

a second smoothed spectrum.  This STFT of the noisy signal is smoothed and 

Minimum Statistics is used to track the minimum.  The second smoothed spectrum is 

used to generate a gain, which can be applied to the noisy signal to reduce noise.  

Once the noise estimate is made, its STFT can be subtracted from the STFT of the 

noisy speech (this step has been called Spectral Enhancement using IMCRA, or 

IMCRA SE, in this thesis, but was called IMCRA/OMLSA in [105]). 

The noisy speech can be thought of as the clean speech plus additive noise: 

𝑦(𝑛) = 𝑥(𝑛) + 𝑑(𝑛) 

Where y(n) is the noisy speech, x(n) is the clean speech and d(n) is the additive noise.  

The STFT of the speech is to be estimated by minimising some distortion measure.  

The STFT is: 

𝑌(𝑘, 𝑙) = 𝑋(𝑘, 𝑙) + 𝐷(𝑘, 𝑙) 

where l is the time frame index (l=0,1,…,N-1) and k is the frequency bin index 

(k=0,1,…N-1).  Subscripts can be used: 

𝑌𝑘𝑙 = ∑ 𝑦(𝑛 + 𝑙𝑀)ℎ(𝑛)

𝑁−1

𝑛=0

𝑒−𝑖
2𝜋
𝑁

𝑛𝑘
 

where h(n) is an analysis window of size N and is usually a Hamming window.  M is 

the framing step.  If an estimate of STFT of the clean speech is available, the ISTFT 

can be used to obtain an estimate of the clean speech: 

�̂�(𝑛) = ∑ ∑ �̂�𝑡𝑘ℎ̃(𝑛 − 𝑙𝑀)𝑒𝑙
2𝜋
𝑁

(𝑛−𝑙𝑀)

𝑁−1

𝑘=0𝑙

 

The aim of IMCRA SE is to obtain an estimate of the clean speech and use it as �̂�𝑡𝑘  

The vector ℎ̃(𝑛) is a synthesis window that is biorthogonal to the analysis window 
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h(n) and the ISTFT is implemented by using the weighted overlap-add method.  The 

steps for IMCRA are as shown in Figure 0.1 

 

Figure 0.1 – IMCRA flow chart [109] 

The noise spectrum estimate obtained from Figure 0.1 is used for IMCRA SE. 
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the STFT, and then calculate a gain function, which is used to attenuate the noise.  

Several distributions can be used in the MMSE spectral estimation: 

 Gaussian, where the MMSE estimator uses a Wiener filter 

 Gamma, where the MMSE estimator uses a scaled complementary error 

function erfcx(𝑥) 

 Laplacian, where the MMSE estimator uses parabolic cylinder functions. 

A choice is available because the best choice of estimator has not been solved for 

speech [109].  Neither has it been solved for EMG.  Once a noise estimation has been 

performed using IMCRA, the spectrum of the noise estimation is subtracted from the 

noisy signal.
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This appendix shows effect of IMCRA SE upon a trial from Data Set 2.  Eight channels 

are shown in the time domain and time-frequency domain in Figure 0.1, Figure 0.2 and 

Figure 0.3.  Throughout this appendix, the solid vertical lines indicate that the subject 

has been instructed to change gesture.  Dashed vertical lines indicate that the subject has 

been instructed to rest. 

The 23 gesture instructions are (starting from the first vertical solid bar): 

Hand close, pronation, hand close, pronation, wrist extension, 

rest, 

Hand open, supination, 

rest, 

Wrist extension, pronation, 

rest, 

Supination, hand close, wrist extension, pronation, hand open, hand close, wrist flexion, 

supination, wrist flexion, wrist extension, hand open 
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Figure 0.1 – The signals before and after IMCRA SE in the time domain, with the lighter colour representing the processed 
signal 
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Figure 0.2 – STFT of the signals before IMCRA SE 
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Figure 0.3 – STFT of the signals after IMCRA SE
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