{ L1560

UNIVERSITY OF STRATHCLYDE, GLASGOW

ACCELERATED GRADIENT TECHNIQUES

AND ADAPTIVE SIGNAL PROCESSING

MOHAMMAD YAMINYSHARIF

DEPARTMENT OF ELECTRONIC AND ELECTRICAL ENGINEERING

DOCTOR OF PHILOSOPHY 1987



True riches are spiritual, not material.
Maturity a matter of intelligence, not of years.

(SAADI)



ABSTRACT
The main objective of this thesis is to demonstrate the application
of the accelerated gradient techniques to various fields of

adaptive signal processing.

A variety of adaptive algorithms based on the accelerated gradient
techniques are developed and analysed in terms of the convergence

speed, computational complexity and numerical stability.

Extensive simulation results are presented to demonstrate the
performance of the proposed algorithms when applied to the fields
of adaptive noise cancelling, broad band adaptive array processing
and narrow band adaptive spectral estimation. These results are
very encouraging in terms of convergence speed and numerical

stability of the developed algorithms.

The proposed algorithms appear to be attractive alternatives

to the conventional recursive least squares algorithms.

In addition, the thesis includes a review chapter in which the
conventional approaches (ranging from the least mean squares
algorithm to the computationally demanding recursive least squares
algorithm) to three types of minimization problems (namely
unconstrained, linearly constrained and quadratically constrained)

are discussed.
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LIST OF SYMBOLS

AG Accelerated gradient

AGA Accelerated gradient algorithms
ANC Adaptive noise cancelling

AR Autoregressive

BD Backward

BICGM Block data implementation conjugate gradients

BIELS BLock data implementation exact linear search

CD Computationally demanding

Ct Computationally efficient

CGM Conjugate gradients method
DFT Discrete Fourier transform

DS Directional spectra

DSD Differential steepest descent
EED Eigenvalue eigenvector decomposition
ELS Exact linear search

EVR Eigenvalue ratio

FD Forward

FIR Finite impulse response

fl Floating point

I1IR Infinite inpulse response
LMS Least mean square

LMSE Least mean squared error

LPC Linear prediction coding

LRS Linear random search

LSL Least squares Lattice



MMSE Minimum mean squared error

PGA Projection gradient algorithm
RCs Reflection coefficients

RLS Recursive least squares

SGD Stochastic gradient descent
SNR Signal to noise ratio

B Transfprm based

TDL Tap delay line

VLSI Very large scale integration
EC.) Expectation

G(W) Gain matrix

\AQY Gradient (derivative)

‘72(.) Second derivative

tr(R) Trace of R, R = a matrix

| .| Vector norm

|.|2 Second norm (two norm, Euclidean norm)
.t Transposition

S Complex conjugate

.* Optimum

L Denotes the dimension

|w| (WtW)% , W = a vector
|W|2 wtw y W = a vector
J(.) Function of (.)

I Identity matrix
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By definition



Upper triangular matrix

Bk Lower triangular matrix with the exception

of the diagonal terms

o

—Sgk The gradient with respect to a,

§7J(.)w Gradient of the function J(.) with respect to W
In addition, various English letters and mathematical symbols

are used throughout this thesis, the meaning of which is clearly

explained in the corresponding paragraph, formula or section.
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CHAPTER 1

INTRODUCTION




1.1 Definition: As an initial definition of adaptive systems,

one refers to the systems that can automatically adapt in the
face of changing environments. In other words, adaptive systems
are systems which can adjust their structure in order to meet
some desired criterion. Adaptive systems can be trained to
perform specific filtering and decision-making. Adaptive systems
have been variously referred to as self-optimising systems,
learning systems, updating systems, programmable systems etc.

and by their very nature are time varying systems. These systems
involve an iterative procedure to achieve the desired performance
objective, and it is during this iterative period that the system

is said to be "adapting" or "learning" or '"self optimizing".

Current applications for adaptive systems include such fields

as communications, radar, sonar, seismology, mechanical design,
navigation systems and biomedical electronics. The above list

is by no means exhaustive and despite a wide and ever increasing
range of applications of adaptive systems, this thesis is concerned
only with types of systems designed primarily for the purposes

of adaptive signal processing.

1.2 Historical review

The origins of adaptive systems can be traced back to Newton;
the root finding algorithm for a polynomial is the first ever
implementation of the steepest descent technique. Similarly the
minimization via the Newton-Raphson technique is another

manifestation of an adaptive computing technique. It was during



the 1960's that the subject of adaptive processing became an
important research topic and since then adaptive processors have
subsequently been applied in many practical systems mainly as

adaptive filters or adaptive antennas.

Theoretical work on adaptive filters (processors) was reported

in 1961 in the United States by Glaser and in the same year in

the United Kingdom by Gabor et al. Other notable early developments
occurred at the Technische Hochschule Karlsruhe in Germany and

at Standford University, where adaptive pattern recognition

systems were initiated in 1959. Collaboration in 1964 between

these institutions produced a comparative evaluation of their
respective techniques [Steinbuck and Widrow] which subsequently

led to the development of the most widely used algorithm; the

least mean square algorithm for processor weight adjustment.
Further relevant work was being conducted simultaneously at the
Institute of Automatics and Telemechanics in Moscow. In the early
and middle 1960's, work on adaptive systems intensified. Hundreds
of papers on adaptation, adaptive controls, adaptive filtering,

and adaptive signal processing (the main objective of this thesis)
appeared in the literature. An excellent summary of the status,

in the middle 1960's, of adaptive processors (adaptive filters)

and early relevant references for their use in adaptive equalization
is provided by Rudin [1]. More recently, simple review articles
have been prepared on echo cancellation in telephony [2] and

adaptive equalization [3],[7].



The author does notpropose to outline the detailed evolution of
adaptive systems over a period of three decades, but to give

a brief historical review of this important subject. Today
adaptive systems are of paramount importance and they are being
applied to a wide variety of scientific, engineering, economic
and biomedical problems. Extensive studies have been conducted
in the field of adaptive systems. Hundreds of published papers
as a result of three decades of research on this subject, form
comprehensive and useful research literature. In recent years

a few text books [4-9] have been published which provide a
coherent and comprehensive introduction to the subject of adaptive
systems covering the basic theory, practical realization and

current applications.

1.3 Conventional approaches to the problems in the field of adaptive

systems and a review of the existing limitations

This section provides an essay type introduction to various convent-

ional adaptive techniques and the existing trade-off between them.

The main objective of all adaptive algorithms is to determine

the minimum of a performance surface by means of an iterative
searching procedure. Most practical procedures capable of searching
a performance surface to find its optimum point are based on the
method of steepest descent or Newton's method and employ the
gradient estimates to indicate the direction in which the minimum
of the surface lies. They are thus referred to as '"descent methods".

In addition to these descent techniques, there exist another class



of algorithms referred to as random search algorithms which can
be employed to determine the minimum of a performance surface.
The random search algorithms search a performance surface in a

random pattern for its minimum.

The method of steepest descent can readily be implemented and
has proven its value in a wide variety of practical applications.
Generally speaking, the technique involves measurements of the
gradient of the objective function (performance surface). Since
in most applications ah exact measurement of the gradient is not
available, an estimate of the gradient based on a limited
statistical sample is used. Two general methods of estimating
the gradient are the "derivative measurement" and the
"instantaneous measurement" [5, 8, 10]. The former teéhnique
known as differential steepest descent (DSD) algorithm, is
straightforward and easy to implement and involves the direct
measurement of the derivatives which are estimated numerically
by taking symmetric differences. The latter method is the basis
for the least mean square (LMS) algorithm and requires specific
knowledge about the nature of the performance surface

(unlike the DSD method which requires only very general knowledge
of the performance surface). The DSD method is less efficient
(in terms of speed of adaptation and misadjustment - a dimensionless
measure of the difference between the actual and approximated
optimum point) but more economical than the LMS algorithm and

it is used where technical or economical considerations preclude

use of the LMS algorithm or where high speed of adaptation is

not required [5, 8, 10].



However, it is the LMS algorithm that is generally regarded as
the best choice for many different applications of adaptive
signal processing. The LMS algorithm is important because of

its simplicity and ease of computation, thus it is an attractive
solution for many practical problems. The main disadvantages

of the LMS algorithm are related to its convergence properties.
Although the LMS algorithm offers higher speed of adaptation
with respect to the DSD algorithm, it is much slower than other
computationally demanding techniques (such as those techniques
based on Newton's method) particularly during ill condition

situations. This is a major disadvantage of the LMS algorithm,

Newton's method is another standard descent method for finding

a minimum of an objective function and offers a higher speed

of adaptation (unlike steepest descent method). It is a
computationally demanding technique and involves matrix inversion
at eaqh iteration cycle (each step in the search procedure).

Thus it is frequently difficult to implement in practice. Néwton‘s
method which 1is a grédient search technique requires knowledge

of the first and second derivative of the objective function.

In practical applications, however, an exact measurement of the
first derivative (the gradient) and the second derivative (Hessian
matrix) of the objective function is not available and estimates
based on a limited statistical sample are used. The algorithms
that approximate Newton's method are referred to as Recursive
Least Squares (RLS) algorithms. In spite of their superior perfor-

mance (with respect to LMS algorithm), their use in adaptive



signal processing applications has been relatively limited,

due to their higher computational requirements. In recent years
there has been a renewed interest in RLS techniques, especially
in their "fast" (computationally efficient) versions, which have

been applied to many problems of adaptive signal processing.

As stated earlier, the third possibility of searching a performance
surface for its minimum is based on Random search procedures.
Unlike Newton's and the steepest descent method that are systematic
surface search procedures, the Random search techniques, by contrast
search for the minimum point by making random changes (in random
directions or by selection of random points). Two practical
implementations of Random search methods are the Linear random
search (LRS) and the Genetic optimizer (GO) techniques [5, 8,

10].

Although use of random search techniques may be appropriate

in cases where the performance surface for the adaptive process
is not well behaved and has both local and global optima, they
are less efficient than techniques based on the Newton's or the
steepest descent methods, thus they are not an attractive choice

for various practical applications [5, 8, 10].

So far, various techniques of finding the optimum point of an
objective function have been outlined along with their fundamental
advantages and disadvantages. Generally one can divide these
techniques into two types considering the computational complexity

and the speed of adaptation. Among various computationally efficient



techniques (eg. LMS, DSD, Random search methods), the LMS algorithm
is regarded as the best choice, due to its simplicity and efficiency
and is a standard technique in adaptive signal processing whenever
simplicity is a prime objective and not the speed of adaptation.

On the other hand, for applications where speed of adaptation

is of primary importance the RLS technique, which is computationally
demanding, is more popular. These two techniques (LMS, RLS)

are the basis of algorithm design for adaptive signal processing

- their fundamental trade-off being the computational complexity
against the speed of adaptation. In other words, the most.popular
algorithms used in signal processing are either computationally
efficient - primarily based on the LMS algorithm - or are
computationally demanding - primarily based on the RLS algorithm-

but are often not both.

The existing trade-off has been a fundamental issue in the
development of new algorithms ie. algorithms that exhibit both
high speed of adaptation and low computational complexity, and

this forms the main issue emphasised throughout this thesis.

1.4 The scope of the thesis

Having discussed various techniques used in adaptive signal
processing, their advantages and disadvantages, it remains to

outline the contribution that this thesis intends to make.

The second chapter of the thesis presents a brief development

and analysis of all currently used adaptive algorithms ranging



from the simple LMS algorithm to computationally demanding RLS
algorithms. Both TDL and Lattice realizations of the above

algorithms are outlined along with their advantages and

disadvantages.

Chapter three presents the main contribution of this thesis.

In this chapter new adaptive algorithms are presented which are
based on the accelerated gradient algorithms (AGA). Various
adaptive AGA are established and analysed which match the
performance of RLS algorithms. The proposed algorithms have

better numerical stability in comparison with RLS techniques.

In chapter four the numerical stability of the AGA is discussed

with a view to the effects of finite word length implementation.

Chapter five presents the results. Results are obtained by
simulations performed on the VAX/VMS computer using single
precision FORTRAN. Various conventional and recently developed
algorithms are simulated and their relative performance in terms
of speed of adaptation and computational efficiency are compared
as applied to the fields of adaptive noise cancelling, adaptive

array processing and adaptive spectral estimation.

The concluding chapter of this thesis is chapter six.



CHAPTER 2

FUNDAMENTALS AND CONVENTIONAL TECHNIQUES
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2.1 Introduction

This chapter presents the basic aspects of adaptive signal
processing. Three types of frequently arising minimization
problems - namely; unconstrained, linearly constrained and
quadratically constrained problems - in adaptive signal

processing are considered.

Various conventional approaches to these problems are discussed

along with their advantages and disadvantages.

2.2 Adaptive processors

Adaptive filters (processors) can be realized as adaptive finite
impulse response (FIR), adaptive infinite impulse response (IIR)

and transform based (TB) adaptive filters.

The IIR adaptive filters, though more economical (than FIR
counterparts) to use in some applications, have had limited
application because of the stability problem. TB adaptive filters,
once again more economical than FIR versions, are also shown

to introduce problems due to the introduction of circular
convolution and block processing in the discrete fourier transform
(DFT). By far, the most important adaptive filters are FIR
versions, which are fundamental to adaptive signal processing

and appear in most adaptive systems in one form or another.
Because of their simple structure, they are easy to understand
and analyse and offer the best performance (with respect to

IIR and TB adaptive filters) in most applications.

11



The structure of the non-recursive adaptive filter (ie. FIR)

1s shown in Figure 2.1 , which is also known as the adaptive

linear combiner.

The processor presented in Figure 2.1 1s used in a wide range
of applications in adaptive signal processing. It is simply
an adaptive version of a digital non-recursive filter in which

tap weights Wis Woy W w, can be adjusted by an adaptive

3t L
algorithm. Its input-output relation at each iteration K can

be written using vector notations,

= X W, = WX (2.1)

where, Yy = output signal,
t
Wy = (w1, Wos Wy eeoen wL)
t
X = O Xeqo X ooee XKL’

X,, is the data vectdr, WK is the weight vector and t denotes

transposition.

2.3 Optimum linear estimation

The concepts of optimum linear estimation are fundamental to
any treatment of adaptive filters. Adaptive filtering problems
involve two estimation procedures; first, estimation of the
required filter output and secondly, estimation of the filter

weights required to achieve the former objective. The second

12



of these two procedures is required because the input signal
characteristics are not known apriori in the adaptive filtering
situation. In a previous section, the importance of FIR adaptive
filter structures, which are the most commonly used structures

in adaptive systems, was emphasised. Thus, in this section the
theoreticgl basis of optimum non-recursive estimation, known

as Wiener-Hopf estimation, is established. A detailed explanation

of optimum recursive estimation is presented in [7].

In a non-recursive estimation, the estimate yK is defined in
terms of a finite linear polynomial in XK’

Y, = Z X W (2.2)

where w, are individual weights in the non-recursive FIR filter
illustrated in Figure 2.2. Equation (2.2) may be written in vector

notation as,

t t
= = 203
Y = XM= WX (2.3)

Because of its mathematical tractability the minimum or least
mean squared error (MMSE) or (LMSE) criterion is the most
common cost function used in adaptive systems. Thus, regarding

Figure 2.2, the MMSE function becomes
2y _ tx )2 (2.4)
E(eK) = E(dK - W XK)

where, dK = desired signal and E denotes the expectation.

13



The equation (2.4) presents a well behaved quadratic performance
surface with a single unique minimum. Differentiating (2.4) with

respect to Wt yields,

t

24 _
<7E[eK] = 2E(xKwa - deK) (2.5)

and setting (2.5) equal to zero results in,
E(d,X,) = E(X,XtW) (2.6)
K'K” ™ K"K :

Assuming that the weight vector W and the signal vector XK are

uncorrelated, then

Eow’ (2.7)
E(d X,) = E(X X0 .
or
P =RW | (2.8)

where,‘P = E(dKXK) is the cross-correlation between the input
signal and the desired signal, R = E(XKX&) represents the
autocorrelation matrix of the input signal sequence which is

a symmetric and positive definite matrix, and W* = the optimum
weight vector. The equation (2.8) is known as the Wiener-Hopf
equation. The optimum MMSE or the Wiener solution for W 1s

given by,

w* - R'1p (2.9)

14



To obtain the Wiener solution,
(2.9), conventionally requires the inversion of a Toeplitz matrix
in addition to the evaluation of many cross and autocorrelation
functions. This requires an enormous amount of computing, even
for one solution vector of tap weights, without the added
complication of having to repeat the process every time an update
is required due to the changing input statistics. This difficulty
leads to the necessity of designing adaptive algorithms. Algorithms
with low computational requirements that can obtain optimum

or near optimum solution.

2.4 Stochastic approximation estimation

The overall aim of stochastic approximation is a convergence

onto the true parameter values by some search method, sometimes
referred to as hill climbing or valley-descending on some defined
error surface. All stochastic approximation methods are of the

form,

Weoq = W - G WV IW) - (2.10)
where, VJ(W) is the partial derivative with respect to the
parameter vector WK at the K-th step of iteration. This derivative
represents the gradient of a performance surface. Use of equation
(2.10) therefore involves three steps:

1. The definition of a performance criterion sometimes termed

the loss function or cost function and its form is quite arbitrary

and may be chosen as the most appropriate for any specific problem.

15



2. The determination of the derivative of the performance surface.
The method usually assumes that J(W) has a single extremum at

W = W*, and that J(W) is continuously twice differentiable with
respect to W. In this case the optimal value W = W* will satisfy

the vector equation, ‘7J(W*) = 0.

3.. The definition of a gain matrix G(W) which determines the
weight to be placed on the gradient of the performance criterion.
This is a function of the parameter values and various forms

may be chosen, the problem being to choose the best form to

achieve most rapid convergence to optimal (minimal) value of

J(W).

The choice of stochastic approximation schemes therefore reduces
to a problem of choosing between the three elements; the form

of the performance criterion, method of calculating the derivative
of the performance surface and the choice of the gain matrix.
Extended discussion of the stochastic approximation is outside

the scope of this section and for a detailed treatment of the
subject see [11, 12]. However, the most important element in

the method is the choice of the optimal gain matrix G(W). There
are a number of useful choices of the matrix gain that can be
made, the major ones being;

1. Steepest descent; the gain is set to,
G(W) = al (2.11)

where, a is a scalar constant and I is an identity matrix.

16



2. Newton-Raphson method; the gain is set to the inverse of
the second derivative with respect to the parameter, W, of the

performance surface J(W), [11, 12].

2.5 Quadratic function

A function expressable in the form,

IW) = wiRW - 2Pt + ¢ (2.12)

where, R is a L by L symmetric matrix and c is a scalar constant,
is called a quadratic function.It is convenient to say that
J(W) is a positive definite quadratic function when R is a positive

.
definite matrix. Let W be a solution of the linear equation

RW = P (2.13)
Then RW* = P and a simple calculation yields the formula

* *t *
J(W) = J(W ) + (W=W )~ R(W-W) (2.14)

Suppose that R is a positive definite matrix. Then considering,
(2.14), JI(W) )»J(W*) whenever W # W* so that W* is the unique
point of J(W). Moreover the level surfaces(J(W) = constant) of
J(W) are (L-1) dimensional ellipsoids having W as their common
centre, as shown schematically in Figure 2.3 for the cases
L=2andl = 3. When L = 2 the level surfaces of J(W) are curves

and are in fact ellipses [12, 13, 14]. Positive definite quadratic

17



functions play a significant role in analysis of adaptive
systems and a general knowledge of their properties is an
essential background requirement. A more complete account of

quadratic functions is given in [12, 13, 14].

2.6 Unconstrained minimization problem and conventional

adaptive algorithms

This section presents the application of the conventional adaptive
algorithms to the unconstrained minimization problem. The problem

can be outlined as;

minimize JW) = wERwW - 2PtW + ¢ (2.15)

The function of J(W) has a unique minimum point (if R is a positive

definite matrix) which is expressible as;
W =R P (2.16)

2.6.1 The steepest descent method

The steepest descent method is an iterative scheme based on the
gradient of the cost function J(W) and can be characterized by

the equation;

wK+1

- (2.17)
Wy a‘7J(WK)
where, a = the convergence factor or the step length, and

_ - (2.18)
VJ(WK) = 2RW, 2P _

18



‘7J(WK) denotes the gradient of the J(WK) at iteration cycle
K. For any arbitrary initial value W, the equation (2.17)
converges to the optimal tap weight vector W*. The algorithm
thus includes a correction term at each iteration which is
proportional to the gradient of J(WK), and represents a step
taken in the direction of the gradient of J(WK) where the step

size 1is controlled by a.

*
Defining V,, = W, - W and using equation (2.18), (2.17) can be

expressed as,

Vior = (I - ZaR)VK (2.19)

where, I represents the identity matrix. To see a more precise
behaviour of the error vector, VK’ equation (2.19) may be
decoupled into L independent equations by applying a similarity

transformation [5, 8].

Since the covariance matrix (autocorrelation matrix), R , is

symmetric and positive definite, it can be decomposed into,
R = UDU (2.20)

where, U is an orthonormal matrix of eigenvectors of R,and D

is a diagonal matrix containing its eigenvalues such that,

D = diag[m1, Myy My oeees mL] (2.21)

19



References [13-15] give a good introduction to the underlying
theory of matrices, eigenvalues, eigenvectors, similarity

transformation, etc. Utilizing equation (2.20) in equation (2.19)

leads to,

t
U™V, = (I - 2aD)u vK (2.22)

Considering the similarity transformed vector,
uv, =V (2.23)

then, equation (2.22) can be written as,

/ 4
VK+1 = (I - ZaD)VK (2.24)
Because the eigenvalue matrix, D, is a diagonal matrix, equation

(2.24) represents a set of L equations and the l-th equation

can be written as,

1

A ,
Obviously equation (2.25) will converge if
0< | 1 - 2amy | <1 (2.26)

for all eigenvalues, mys 1=1, 2, .+e... L, of D. The condition

is most certainly satisfied if,

0<a < | (2.27)
M

20



where, M = largest eigenvalue of R and represents the worst
case requirement for equation (2.25). Equation (2.25) is an
extremely important relationship as it yields the bounds within
which the step length parameter, a, should lie for the iterative
algorithm (2.17) to converge. Condition (2.27) is necessary
and sufficient for convergence of the steepest descent algorithm
with a quadratic performance surface. If condition (2.27) is

satisfied it follows that

1im vé =0 (2.28)
K --—» ©
and

*
1lim wK = W (2.29)
K ——=2 00

Equation (2.25) also provides an indication of the rate at which
the various modes of the error equation (2.19) decay to zero.
Defining the time constant of the 1-th mode by Tl, (assuming

that am, << 1), then,

-1
Tl 1
1-2am =e = 1 -— (2.30)
Tl
or
1

- (2.31)

Tl b Zaml

21



Therefore, the longest time constant involved in the error system

is given by

T = 2am (2.32)

where, m = the minimum eigenvalue of the covariance matrix R.

From equation (2.27) and (2.32) one concludes that,

M

max >—F

(2.33)

In other words, the larger the eigenvalue spread of the covariance
matrix R, the longer it will take for the steepest descent method

to converge [4-10, 13, 14].

2.6.2 The stochastic gradient descent algorithm, LMS algorithm

The steepest descent method described above required the knowledge
of the exact gradient of the cost function J(W). However, in
practice an exact gradient will not be known apriori and an
estimate of the gradient should be used. A number of algorithms
have been developed (eg. stochastic gradient descent SGD algorithm
[5, 8, 10], DSD algorithm and LMS algorithm) that employ an
estimate of the gradient. The most popular of these is called

the LMS algorithm first proposed by Widrow [10] in the context

of adaptive signal processing. The LMS algorithm uses an

instantaneous estimate of the gradient, ie.

z t
Y?J(wK) = 2K X MW - 2d X, (2.34)
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which can be written as;

VW) = ~2e, X, (2.35)
Equation (2.35) represents an instantaneous estimate of the
gradient. Substituting equation (2.35) in equation (2.17) results
in,

WK+1 = WK + ZaeKXK (2.36)

which is the well known LMS algorithm [10].

The LMS algorithm has several attractive features. It is simple
and easy to implement, it requires no apriori information or
data storage and is well suited for real time processing. On
the other hand, the algorithm can be very slow to converge
(will be clarified afterwards) requiring a long data sequence
to compute the coefficients W*. Note that the gradient estimate
in (2.35) can easily be shown to be unbiased when the weight

vector is held constant ie.,

E[VIW)] = -2E(e, X, )
t
= _2E(deK - XX W)
= 2(RW - P)
= VI(W) (2.37)

Since the mean value of the gradient estimate, (2.35) is equal
to the true gradient VJ(W), one could convert the LMS algorithm
into a true steepest descent algorithm, at least in the limiting

case, by estimating the time-averaged stochastic gradient but
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hold the weight vector constant for a block of data. This procedure
results in an algorithm known as the stochastic gradient descent

algorithm which can be expressed as,

WK+1 = WK - aVJ(WK)
T KN
‘7J(WK) = - eiXi (2.38)
1=(K=1)N+1

where, K = number of iterations, N = the averaging time interval,
and ‘7J(WK) is the stochastic gradient of the time-averaged

mean square error.

N)2 = — KN e? (2.39)

i=(K=-1)N+1

The stochastic gradient descent algorithm has the advantage of
using a more realistic estimate of the gradient of the mean
squared error than the LMS algorithm with a consequently increased
computational cost. Note that for N = 1, the algorithm reduces

to the LMS algorithm.

A key issue in the analysis of any stochastic algorithm is the
question of convergence. Extensive studies have been conducted
on the convergence properties of the LMS algorithm [4-10,
16-26] which provide a comprehensive research literature useful
for understanding the basic performance characteristics and
properties of the algorithm. At this stage it is appropriate

to study the fundamental convergence properties of the LMS

algorithm and outline some recently published results.
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2.6.3 Convergence analysis for the LMS algorithm

Referring to the LMS algorithm, the updating vector is given

by,

wK+1 = W+ zaerK (2.40)

Defining an error vector at iteration K,
V, =W, - W (2.41)

and utilizing ensemble averaging, equation (2.40) can be written

as
E(V,, )= E((I - ZaXKXE)VK) (2.42)

Assuming that X, and V, are statistically independent, then,

K K

ECv, ,) = (I -ZaR)E(VK) (2.43)

K+1
which indicates that the mean of the error vector behaves exactly
as if the true gradient vectors were known. R = EéXKXE) is a
symmetric ¢
positive definite'matrix and it can be expressed as R = UDU.

Utilizing the same approach as (2.18 - 2.24) yields the well

known bounds for the step length a,
1< aL ! (2.44)

M

where, M = the largest eigenvalue of the covariance matrix R.
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Within bounds (2.44), the speed of adaptation and also the noise
in the weight vector solution are determined by the size of a.
Since M cannot be greater than the trace of R (ie. sum of

diagonal elements of R), the bounds on a can be restated as,

I<aL 1 (2.45)
tr(R) '

which is much easier to apply than (2.44) since tr(R) can easily

be estimated.

For an adaptive filter, the variance of the filter output 1is

often used as a measure of its performance, which can be expressed

as,

_ 2\ _ * rtavt
EIW)) = E(e) = I ) + v, DYy

L .
_ * 11,2
= J(W ) + Zmi(VK ) (2.46)
i=1

(assuming stationary data and no correlation between XK and VK),

where, m. = i-th eigenvalue of the covariance matrix R and

v}'<i - i-th element of the transformed vector v; = uth [5-9].

Utilizing the same approach illustrated by equations

(2.20-2.26), (2.30-2.31), it can be shown that the elements of

V; approach zero at exponential rates given by,
’ 1
V- (2.47)
i
2am,
i

which is the time constant associated with the i-th mode. Since

1
J(WK) involves a sum of the squares elements of VK’ it will
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decay at an exponential rate that is twice the rate of decay

of VK' Thus, the time constant for the i-th made is,

TS = (2.48)

Due to the noisiness of the coefficient error vector VK’ the

actual output variance will be larger than the predicted one
given by (2.46) which results in a factor known as misadjustment.

Considering the error vector V the cost function can be

K’

expressed as,

xtv ) (2.49)

E(IMW,)) = IW) + E(VEXK Vi

Assuming independent vectors X ,6 and VK’ equation (2.49) can

K

be written as,
E(I(H,)) = IW) + tr(RE(VKVE)) (2.50)

¥*
It is shown in [5, 7, 8] that E(vaE) = aJ(W)I, where I = identity

matrix. Thus,

IW) + aJ(WHtr(R)

ECICH)) (
IW) + aJ(W*)Z m, (2.51)
1=1

The misadjustment is defined as the ratio of the excess mean

squared error to the minimum mean squared error [5-9].
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misadjustment

EQIW,)) = IW)

I

atr(R) (2.52)

Obviously the misadjustment is directly proportional to the step
size parameter, a, indicating a trade-off between the misadjustment
and the rate of adaptation. For design purposes it is useful

to express the misadjustment factor in terms of the filter order
and the speed of adaptation. An alternative relation for the
misadjustment factor can be obtained in terms of the average
settling time of the cost function and the number of filter

coefficients [5-9],

misadjustment = L (2.53)

47
avg

Note that the above analysis was carried out for stationary

data and assuming statistically independent input vectors. For
most applications, the independence assumption is absolutely
unjustified; however, it does simplify the analysis considerably.
Results obtained under this assumption seem to agree with
experimental results using small step size [7-8, 16, 21-23,25,
26]. Convergence analysis of the LMS algorithm with correlated
data (stationary or non-stationary data) is presented in

[17-20, 24], and is much more complex than the results outlined
above. References [19, 20] provide the results for stationary

and correlated data, and results for non -stationary and correlated

data are given in [17-18].
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From the results outlined so far, it is clear that the convergence
factor, a, plays a crucial role in the performance of the LMS
algorithm. The choice of,a,involves a trade-off between the

speed of adaptation and the steady state of misadjustment. Large

a results in; high speed of adaptation and large steady state
misadjustment. Small a results in; low steady state misadjustment

and low speed of adaptation.

Gersho [22] has shown that the fastest convergence takes place
(channel equalization, assuming stationary data and independent

data vectors) for,
a = (2.54)

where, m and M denote the minimum and the maximum eigenvalues
of R. However, in recent works [7, 27] it has been shown that
the step length a must be restricted to an interval significantly
smaller than the domain stated by relation (2.44), and it was

shown that stability is ensured if and only 1if,

0<ag (2.55)

3M
The step length, a, is not the only factor affecting the performance
of the LMS algorithm and there is a second factor affecting its
performance which is the spread of the eigenvalues of the data
covariance matrix. As in the case of the steepest descent

algorithm the maximum time constant is (see equation 2.33),

[
V M (2.56)
max > ——
2m
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Thus, the larger the eigenvalue spread of the data covariance
matrix, R, the longer it takes for the LMS algorithm to converge.
This is a major disadvantage of the LMS algorithm, since the
convergence can be very slow if the ratio M/m (known as condition
number of the covariance matrix) is too large and generally
speaking this is the case in most practical situations. Convergence
of the LMS algorithm can be accelerated by the orthogonalizing
technique (ie. making all the eigenvalues of the covariance

matrix ideﬁtical). Various techniques can be utilized to achieve

orthogonalization and are explained in the next section.

2.6.4 Self orthonormalizing adaptive algorithms

With reference to the steepest descent algorithm, the mean
squared error at iteration K can be expressed in terms of its

optimum value and the excess mean squared error (EMSE),

[5, 7, 8].
* t
J(WK) = JW) + VKRVK (2.57)
where,
= - 2.58
V, = (I -2aR)V, _, (2.58)

using similarity transformation, equations (2.57) and (2.58)

can be expressed in their decomposed forms, ie.,

_ * "y (2.59)
J(WK) = J(W ) + vKDvK
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and

(I -2aD)Vy _, (2.60)

Yk

From (2.59) and (2.60), it is easy to show that the EMSE evolves

according to [5, 7, 8],
EMSE = ZL b.m.(1 - 2a )ZK (2.61)
TR M '

where the coefficients bi of the L exponential modes are determined
by the initial weight vector W1. Obviously, the problem of selecting
a value for a to yield fast convergence is affected by the eigen-
value spread m . The most successful modification of gradient
descent algorithm to obtain fast convergence is to use the inverse

. . -1 .
covariance matrix R ', ie.,

_ -1
wK+1 = W, - aR <7J<wK) (2.62)

which reduces to

-1
= - 2.63
wK+1 1 Za)wK +2aR™'P) ( )

in which case (2.69) is modified to
2K L
EMSE = (1 - 2a) Z b.m. (2.64)
2, 1

Thus, for orthogonalized algorithm (2.62), convergence in (2.64)

occurs in one step with the step size parameter a = % [5,7,8,].
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The algorithm (2.62) which is a non-stochastic modified gradient
descent algorithm can be extended to stochastic modified gradient

descent algorithm by replacing the deterministic deflected gradient

with its stochastic version, —ZeKR;11 XK’ which results in a

modified LMS algorithm, thus,

W, . =W, + 2ae,R. . X (2.65)
K+1 K K'K-1 K :

where, R;j1 is obtained from some stochastic data sub-algorithm
(see Appendix 1). The algorithm (2.65) is known as the LMS/Newton
algorithm [8], or deflected-stochastic gradient (DSG) algorithm.
The DSG algorithm is clearly much more complex than the LMS
algorithm due to the requirement of estimating the inverse of

the covariance matrix. The detailed convergence properties of
algorithm (2.65) are not presented here, however, references

[5, 7, 8, 28-33] give a good introduction to its underlying
theory. Obviously the only computationally demanding procedure

involved in (2.65) is to estimate R recursively. It is shown

K-1
in Appendix 1, that using matrix inversion lemma [5, 7, 8, 81],
R—1 can be computed by D(Lz) operations.

K-1

Using an estimate of the inverse of the covariance matrix is

not the only technique to achieve orthogonalization. An
alternative method of orthogonalization is to use a whitening
filter in order to decorrelate the input data Xe The most popular
technique of decorrelating the input data involves Lattice

structures which are explained in the next section.
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2.6.5 The lattice gradient algorithms

Lattice confiqurations form an important class of architectures
for signal processsing. They possess reqularity of structures
comprising of identical stages (sections), which have orthogonal
properties and involve bounded coefficients [7, 34-36]. Lattices
are thus inherently stable. These properties make them particularly
attractive for adaptive processing. Digital lattice filters can

be realized to have pole-zero transfer function, all pole transfer
function, or all zero transfer function in which the latter is

the most common confiquration used in adaptive signal processing.
Figure 2.4 represents an L-stage all zero digital lattice filter.
The fundamental equations describing the lattice filter structure

illustrated in fFigure 2.4 are,

A i, i-1
fu = fk  — Kby
(2.66)
i i-1 i i-1
by = bK_1 - K fy

where, F& and b; are referred to as the forward (FD) and back-

ward (BD) residuals at i-th stage, k' are the lattice coefficients

known as the reflection coefficients (RC), i =1, 2, ..... L,
K=1,2, ..... N, and fl = b; = Xy where Xy = input data sequence.

The lattice structure shown in Figure 2.4 was originally proposed
by Itakura and Saito [37] for performing speech analysis. The
orthogonalization of Xy is done by recursion (2.66). Obviously
the lattice filter has a more complex structure and requires
more numerical operations to implement a transfer function than

does the tap-delay line counterpart. However, the increased
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complexity is offset by several advantageous properties of the
lattice structure, including a stage by stage orthogonalization

of the input signal, good numerical properties when finite precision
arithmetic is used and its suitability for VLSI implementation.

The lattice filter structure naturally evolves from a prediction

filter where orthogonality conditions are applied.

The most important advantage of the lattice structure is the

fact that for each stage the BD prediction error at the output

is orthogonal to both prediction errors at the input. This
decouples successive stages, thereby enabling the optimization

of each stage of the lattice independently [7, 34-37]. This is

in contrast to the tap-delay line structure where the coefficients
are adjusted jointly, leading to poor convergence properties

(related to the statistics of the input signal) [5, 7, 8,].

There are a number of different algorithms available for
calculating the RC of the lattice filter [7, 34-38]. The method
of choice is generally the Burg's algorithm (also known as the
harmonic mean algorithm) [38], which gives the optimum value

of the reflection coefficients as being the ratio of the
expectations of the negative crosspower and the mean output

power of the FD and delayed BD prediction errors,

. il i
Ao -2E0R * by q] (2.67)
2]

1,2 i
EL(F )T + EL(b )

Burg's algorithm is chosen because it has a significant theoretical

basis and minimizes a well defined, reasonable error criterion,
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namely, the sum of the FD prediction error power and BD prediction

error power [38].

The algorithm (2.67) can be implemented recursively (coefficients
recomputed with each new data sample) by means of either a gradient
techniqug or a recursive least squares technique. This section
presents recursive estimation of the RCs using gradient techniques
and their recursive computation by means of RLS technique will

be presented in a later section.

Consider both FD and BD residual error power at i-th stage,

EL(FH?T = E0Cr D2 - 2k ECCrT") * (b))
+ (KDL (by )]
E0(b1)%] = EL(oi- D2 - 2l ]) L ()]
+ (DT (2.68)

- 1
For a stationary process E[(b;_1)] = E[(f; ) I

Thus, FD residual power = BD residual power.

Now, consider the cost function for stage, i, with respect to

both FD and BD residual energies,
a0ty = F et 2y 4+ ereei 21 - b ervih + (ri-M1d
= K-1 + K K-1 K

cah? bereith? v e (2.69)
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Taking the gradient of (2.69) with respect to k' and equating

it to zero yields,

A 2L * () (2.70)
EL(by %1 + ELCF )]

which is the Burg's method for computing the optimum value of

Kk [38].

A recursive gradient descent algorithm can be used to calculate
the RCs for the lattice when the statistics of the prediction
errors are precisely known. This algorithm is based on the sum

of the FD and BD prediction error gradients and is given by,

i i i i
kK+1 = kK - a VI(k) (2.71)
It is easy to show that the step size parameter, al, is inversely
proportional to the sum of the FD and BD prediction error power,

thus (2.71) can be written as,

1 i i
Keor = Ky oai VI(k™) (2.72)
P
where, @ = small positive constant and pl = sum of the FD and

BD prediction error power. Since the precise statistics of the
gradient Y?J(ki) and the prediction error power pi are not known
apriori, their estimates are used. Utilizing the instantaneous
estimates of ‘7J(ki) yields the stochastic lattice gradient

algorithm [7, 39-43], (see Appendix 2 for a detailed derivation),
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i 1 (87 i+1 i i i+1

kKH-kK—TiEf * b + f, *b i (2.73)
p

where, 51 = an estimate of the joint prediction error power.

: . ~i :
Various estimators can be used to calculate p recursively of

which the most common one is [7, 39-43],
| iy2 i2
B = BBeq + (-8 Ferb? « ol (2.74)

where, (3 = positive constant (0.95 to 0.99) which controls the

extent of smoothing [7, 39-43].

The algorithm (2.73 - 2.74) was presented by Griffith and utilizes
two adaptation parameters, & and[S . The adaptation parameter 6
can be set to the range 0K 3 1-a, where & is selected in

the range 0.95 to 0.99. However, [3 = 1-« represents the
theoretical best case (closest to the Burg's formula) [7].
References [7, 39-43] provide a good introduction to the
underlying theory of various lattice gradient descent algorithms

for computing the RCs.

So far the techniques for computing the lattice coefficients
have been discussed and it remains to outline the conventional
algorithms for adaptive joint processing using a lattice structure

which is shown in Figure 2.5.
Figure 2.5 is an equivalent representation of Figure 2.2 using

a lattice structure mainly for orthogonality purposes. The lattice

filter processes the input signal Xk using RCs and provides a
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set of BD orthogonal signals to the combiner (NB., initially
signals

of course, the BD/will not be orthogonal [39-43]. Ortho-
signals
gonality of BD/ is only approached in steady state. This issue
will be discussed in more detail in chapter 3 ). Generally,
there are two gradient methods which may be used to update the
combiner tap-weights. The first technique combines all the
lattice outputs in a single global combining structure as shown
in Figure 2.5. This results in the same error signal being used
in each tap-weight update loop [42]. An alternative method [42]
is to derive individual error signals for each of the update
loops. This method is more suitable for hardware multiplexing
than the global type, but suffers from an increased level of
algorithm noise [42]. Ignoring the effects of algorithm self-
noise, either technique should produce identical results.
However, the results of some recent experiments carried out in
[42] indicate that the self noise of method two may be

considerably greater than that of method one. Thus, the gradient

algorithm which implements the first technique is outlined below.

i i i, i, i+ .
Wit = M+ 3 ™ by * ey (2.75)
where,

) L+1 . :

e, = d -2, bk rw (2.76)
i=1

and the step size a; is computed by,

i i i2
- (1- 2.77
5K+1 = (1 a)aK + (bK) ( )
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. 1
al z —
K+1 = di

K+1

(2.78)

Note that in algorithms (2.75-2.78), different ddaptive step
sizes are used in order to keep the overall convergence rate

of the adaptive lattice algorithm insensitive to the eigenvalue
disparity [41-42]. For a detailed analysis of the lattice

gradient algorithms see references [7, 39-43].

It has been shown by many [40-43] that lattice gradient algorithms
offer a faster convergence than the gradient TDL algorithms.
Although lattice gradient algorithms are more complex than their

TDL counterparts, they have been widely used in channel equalization
linear predictive coding (LPC) of speech waveforms for bandwidth

compression, high resolution adaptive spectral analysis, etc.

2.6.6 The recursive least squares algorithms

The RLS algorithms are practical implementations of Newton's
method. The Newton's method of searching the minimum of a
quadratic function involves the first derivative and the inverse
of the second derivative of the cost function and can be expressed
as [5, 7, 13-15],

W =W, - RV Vau,) (2.79)

For a quadratic function, Newton's method proceeds to the optimum

solution, W*, in one step [5, 7, 13-15].
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In most practical situations, the exact value of the first
derivative, Y7J(WK), and the inverse of the second derivative,
R, (data covariance matrix) of the cost function are not known
apriori and their estimates must be used. The best estimate

of the data covariance matrix, R, is its maximum likelihood

estimate (MLE) [5, 7] which can be expressed by,

1 K ¢
RK = K Z XiXi (2.80)
i=1

Using the estimator (2.80) and employing matrix inversion lemma
(5, 7, 44, 81], (see Appendix 1), yields the RLS algorithm,

W =W, + RTe X (2.81)

K+1 K K "K"K
The RLS algorithm (2.81) converges to an optimal value of the
weight vector, W*, using any initial estimate W1. However, the
recommended value of the initial estimate of the weight vector
is W1 = 0 [5, 7]. The initial value of R§1 may be obtained
simply by letting R; = QI, where, & is a large positive
number (eg. 100) [5, 7]. For a detailed derivation and
explanation refer to Appendix 1. The estimator (2.80) is the
best unbiased estimate of R under stationary conditions. In
adaptive situations where Xy is non stationary, the estimator
(2.80) would not be a good estimate of the data covariance matrix.
Because of its infinite memory, this estimate would become
insensitive to the data non-stationarities for large values

of K. This problem can be overcome by introducing a factor,

known as a forgetting factor, which provides a finite memory
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in the estimate of R. The modified estimator is [5, 7, 8],

K-1, t
Ry = Zxoz XX (2.82)

Using the estimator (2.82) and matrix inversion lemma yields

the exponentially weighted RLS algorithm (see Appendix 1).

Referring to algorithm (2.81), the output variance and the
misadjustment are shown to be [7] (assuming stationary data,

uncorrelated X, and W , and « = 1),

K
E )) * ¥* L
L
Misadjustment = E (2.83)

In the finite memory case, the misadjustment can be closely

approximated by,

L

‘Misadjustment = ( ) . (2.84)

21n
The RLS algorithm suffers from excess complexity. Also, the
RLS algorithm typically requires 32 bit floating point arithmetic
in order to remain stable [7]. Some benefits in numerical
stability may be obtained by the use of RLS lattice forms which
will be discussed in the following section. On the positive
side RLS algorithms do have fast, consistent convergence
characteristics with convergence guaranteed within 2L input
samples for a noise free signal. Performance, however, does

degrade in the presence of interfering noise. In recent years
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there has been a renewed interest in the RLS algorithms, due
to availability of its fast (computationally efficient) versions

(45, 46, 47) (not applicable to spatial arrays).

2.6.7 The recursive least squares lattice algorithms

The recursive least squares lattice algorithms (LSL) have
attracted much attention recently because of their excellent
convergence behaviour and fast parameter tracking capability.

The LSL algorithms allow the exact solution to the least squares
problem to be updated for every newly observed data sample. These
adaptive estimation techniques use the properties of the lattice
structure to efficiently implement the adaptation. The LSL
algorithms look similar to the lattice gradient algorithms

except that optimal weighting factors are calculated. To
understand the underlying structure of the LSL algorithms requires
a general knowledge of linear prediction which is explained

below.

The linear prediction model assumes that a data sample Xy at
time K, can be approximated as Yo @ weighted sum of previous
data samples. Thus, for a L-th order linear prediction with

coefficients (w1, Ceeaee wL),

C W X (2.895)

The coefficients are to be chosen so as to minimize the mean-

square error between Xy and the estimate, Yy The L-th order
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covariance matrix of the process X0 is expressed as,

i} t
R = E[X, _.X

i K-i] (2.86)

Minimizing the square of the prediction error with respect to
the predictor coefficients, Wi requires that the predictor

coefficients satisfy,

t
where, R = E(XKXK) , P = E(xKXK) , XK = (x

qr e X )

The equation (2.87) is referred to as Yule-Walker equation or
normal equation. To solve (2.87) requires the inversion of the

L by L covariance matrix R, which involves in the order of

(LB) computations (multiplications). However, assuming
stationary data, then the covariance matrix is a Toeplitz Matrix.
Using the Levinson algorithm [48], the normal equation (2.87)

in Toeplitz form can be solved in the order of (Lz) computations.
The Levinson algorithm is an order recursive technique that

uses the solution for an L-th order predictor to generate the

solution for (L+1)-th order predictor [7, 34, 48].

A detailed derivation of the Levinson algorithm is outlined

in references [7, 34, 48]. In order to develop a complete

LSL algorithm using Levinson recursion, it is necessary to define
a suitable estimator for the various statistical quantities

which are involved along with detailed time evolution of these
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estimates within the overall lattice structure. This is beyond
the scope of this section and for a comprehensive derivation
and explanation, the works of Morf and Lee [49], Satorious and
Pack [50], Friedlander [34] and Ljung et al [51] should be

consulted.

In addition to LSL algorithms developed as an extension of the
Levinson recursion, other LSL algorithms have been developed
that do not employ the Levinson algorithm and are presented in

references [8, 52, 53].

To gain a general idea, this section reviews the concept of
conventional LSL algorithms which arise from the basic work of
Morf and Lee [49]. These algorithms are referred to as mixed
time and order recursive LSL algorithms (for reasons that are
clarified below). In the development of LSL algorithms, two
aspects of the solution of the normal equation (2.87) are
important. The first aspect is the efficient inversion of the
covariance matrix that gives rise to the order update recursions.
Secondly, the time update structure allows exact least-squares
solutions to be computed in a recursive manner for each new data
sample. This enables the LSL algorithm to achieve extremely

fast convergence and excellent tracking capabilities.

Referring to Figure 2.6, the orthogonal signals are generated

throughout the recursions,
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iv1 i i i
by = by 4+ kK_1(f) * fy
(2.88)
i+1 i i i
ik = o+ ko (B) X by
where, f1 = b1 = x,, and ki (f) ki (b) are called the forward
K K K’ K-1 7 TK-1
and backward reflection coefficients, i = 1, 2, ..... L. To meet

the least square criterion, the RCs must be adjusted as follows

(7, 34, 49, 50],

. i
Weey = —K
K i1
Pr-1
i
i %K
L 1=
Py
where,
pa 1 (b) = EL(b 1) (b )]
GG T

RGN )

(2.89)

(2.90)

(2.91)

(2.92)

are termed the backward, forward and cross residual energy and

play a central role in the derivation of LSL algorithms. The

order recursion for p;-1(b), p;_1(f) are obtained as follows,

1]

p&(f)

i i-1 1
pp(b) = by q + k(D) *

pé-1(f) + k;(f) * ¢

1-1

i-1
2.93
. (2.93)

(2.94)
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The order recursion for the interproduct c;-1 can not be established

since it does not exist. Therefore, a time recursion is used

in LSL algorithms as follows,
b =ct .+ Oc (2.95)

The quantity 50; can be interpreted as a time differential of
the cross residual energy c; expressing the innovation caused
by the current sample of input data. The time recursion (2.95)

is the underlying formula in all conventional LSL algorithms

[7, 49].

Bc; is computed from the residual signals of the lattice form

inverse filter [7, 49] as follows,

e pd
scl - KK (2.96)
K Bl
K
i-1.2
. . (b1™)
31 _xi-1 o K1 (2.97)
K K 1—1(b)
Pk-1

Finally, the residual signals Fi, bi are computed by the recursion
(2.88).

The factor CS& obtained by recursion (2.97) is termed the
likelihood variable and is limited to the range Ogd‘i( <1

(7, 49].
The recursions (2.88-2.97) outlined above express the concept

of conventional mixed time and order recursion LSL algorithms

and require in the order of (Lz) operations per time sample.
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Exploiting the orthogonalizing nature of the lattice structure,
an exact LSL algorithm can be established which requires only
in the order of (L) operations to update per time sample

[54-57].

2.7 Linearly constrained minimization problem

and conventional adaptive algorithms

In some practical problems, not all possible values of the variables
are acceptable and it is often necessary or desirable to impose
constraints. A frequent form of constrained minimization problem

is the linear equality constraints which can be stated as,

minimize J(W)
t (2.98)
subject to C'W = f

where, W = L--parameter vector, the i-th row of m by L matrix
C contains the coefficients of the i-th linear constraint, and

f is an m-vector [13, 14, 15].
The function J(W) is twice continuously differentiable. Generally,
it is assumed for simplicity that the rows of C are linearly

*
independent. A necessary condition for W to be a minimum of

linear equality constrained problem is
*
vaw') = ¢ty (2.99)

where, 'Y* is the m-vector of Lagrange multipliers (13, 14, 15].
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Let Z denote a matrix whose columns form a basis for the set
of vectors orthogonal to the rows of C. A condition equivalent
to (2.99) is [13-15],

t *
Z-* VI(W) =0 (2.100)

Another necessary condition for W* to be a minimum of the linear
equality constrained problem is that the matrix ZtR(W*)Z should
be positive semi definite [13-15], where the L by L matrix

R(W*) is the second derivative of J(W*). The vector ZtY7J(W)

is called the projected gradient of J(W) and the matrix

ZtR(W)Z is called the projected Hessian matrix. For a detailed
explanation and derivation of the optimality condition for

linear equality constrained problems see references [13-15].

2.7.1 Linearly constrained LMS algorithm

Consider the augmented cost function,

I, Y) = swtRw 2Pt + o) + YW - f) (2.101)

where, 'Yt = vector of the Lagrange multipliers. The derivative

of J(W, Y) with respect to W, is given by,

VIW,Y) = RW - P + CY (2.102)

Equating (2.102) to zero yields,
W= R'P - RTCY (2.103)
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Using the constraint equation ctW = f in equation (2.103) and

solving for 7Y results in,
v = ctRTo) e - etrToyetr e (2.104)

or equivalently,

t

v=(f - ctrlo)(ctR o) (2.105)

Substitute equation (2.105) into (2.103) to obtain the optimal

solution for W subject to the linear constraints,

* -1
W =QR P + F (2.106)
where,

0 =101-rcetr o) el (2.107)

is a projection operator to the constraint plane and

F =R ccctRTo)f (2.108)

is the orthogonal vector to the constraint plane. In order to
establish a linearly constrained LMS algorithm, replace all
quantities in equation (2.102) by their instantaneous values
at time K, and utilise the steepest descent approach to update

the weight vector, ie.,
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W = WK + a(eKX

K+1 Kk - YY) (2.109)

where, a is the gradient step size and 'YK is an estimate of
the vector of the Lagrange multipliers at time K. Use the

constraint equation CtWK+1 = f in equation (2.109) and solve
for Wk.’Substitute the solution for Wk back into equation

(2.109) to obtain the linearly constrained LMS algorithm,

_ tay-1
Weoq = P[wK - aeKXK] + c(cc) 'f (2.110)
where,
P=(I- C(th)‘1ct (2.111)

is a projection matrix and operates on the instantaneous gradient
vector (WK - aeKXK) in order to convert it to a form orthogonal
to the constraint matrix C, and the term C(CtC)-1f translates
this orthogonally constrained vector so as to satisfy the desired

constraint [58-59].

The constrained LMS algorithm is widely applied to the practical
problem of sensor array processing for signal detection in the
presence of spatial interference [58-59]. Generally, constrained
adaptation is employed for sensor arrays when a desired signal
is not available. The augmented cost function for this case can

be expressed as,

W, Y) = swtrw « YECtW -f) (2.112)
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The optimal solution (2.106) for this case is reduced to

W =F (2.113)

where, F is given by equation (2.108).
Utilizing the same approach as for the case with the desired
signal available, the constrained LMS algorithm can be expressed

as

Weeq = POW, - ayy X1 + C(C ey - (2.114)

where, Yy = output sequence. The algorithm (2.114) was devised
and analysed in detail by Frost for multichannel adaptive array

processing [5, 8, 60], shown in Figure 2.7.

2.7.2 Linearly constrained RLS algorithm

Consider the optimal solution (2.106) for W,

W o= QR'P 4+ F (2.115)

Express this solution in its stochastic form at iteration K

to obtain the RLS solution, ie.,

C -1
2.116
Weer = QR P+ Fy ( )
where,
T ntg=Tay=1at
- - 17
Q = [T - Ry C(CR,C) C7] (2 )
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and

“1.,.t -1
FK = RK c(C RKC) f (2.118)

Substitution of the unconstrained solution WK+1 = R;1PK into
the constrained solution (2.116) yields the linearly constrained
RLS algorithm (or known as the projected RLS algorithm),

c
Wit = Ol *+ Fi (2.119)

where,

= W, + R X e (2.120)

Wt = Wi + Re Xeey

and R;1 is computed as shown in Appendix 1.

In general, the constrained RLS algorithm (2.119-2.120) requires
storage of the previous deflection matrix (an estimate of the
inverse of the covariance matrix) and the previous unconstrained

weight vector WK'

For the case of the constrained adaptation without a desired
signal, the constrained RLS algorithm (2.119-2.120) is

modified and reduced to

C
= 2.121
wK+1 - FK ( )

where, FK is given by equation (2.118) [5, 7, 8, 61, 62].
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The constrained RLS algorithms (2.119-2.120) and (2.121) are

known to offer much faster convergence than the constrained

LMS counterparts. However, the drawback is their higher
computational requirement. References [5, 7, 8, 58-60, 63] and

(5, 7, 8, 61, 62, 63] provide a good introduction to the underlying
theory of the constrained LMS algorithm and constrained RLS

algorithms respectively.

2.8 Quadratically constrained minimization problem

and conventional adaptive algorithms

A frequently arising minimization problem in adaptive signal
processing is minimizing a quadratic function subject to

quadratic or norm constraints. The problem can be stated as,

minimize J(W)
£ (2.122)
subject to W'W =B

where, W = L--parameter vector, J(W) is twice continuously

differentiable and B is a positive constant usually set to 1.
This type of minimization problem involves the determination
of the minimum eigenvalue, m, of the covariance matrix R and

the corresponding eigenvector. Consider the augmented cost function,

IW,Y) = wERw - Y(utw - B) (2.123)

where, Y = Lagrange multiplier. Equating the gradient of

J(W,?Y) with respect to W to zero yields,
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RW = YW (2.124)

The equation (2.124) is recognised as the classical eigen
equation with the eigenvalue Y and eigenvector W. Note that
the quadratic function thw is bounded as

2 _ .t
m|wW) 2 wERW M|w|2 (2.125)
where, m and M are the minimum and maximum eigenvalues of the
covariance matrix R respectively and |W|2 is the two-norm, or

2 .t
|

Eueclidean norm, |W|® = W'W. For B = 1, the relation (2.125)

becomes [13-15],
n S Wi M (2.126)

The minimum of J(W,”Y ) is the minimum eigenvalue of the covariance

matrix R with the corresponding eigenvector defined by

*
RW = mW (2.127)
where, W* = optimum weight vector (eigenvector).

The quadratically constrained algorithms are frequently applied

to array processing problems [5, 58]. Also, they are utilized

in gain optimizing algorithms for adaptive arrays [64]. Recently
the quadratically constrained algorithms have been used in high

resolution adaptive spectral analysis, see Figures 2.8 and 2.9,

[65-76].
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2.8.1 Quadratically constrained LMS algorithm

Referring to the augmented cost function (2.123) and motivated
by stochastic descent techniques, the quadratically constrained

LMS algorithm can be expressed as [68-70], see Figure 2.8,

=
H

W

Ke1 = Mk - Ay (2.128)

1 = Wear” DWql (2.129)
where, the normalizing step (2.129) implements the quadratic
constraints. Alternatively, the algorithms (2.128-2.129) can

be compactly expressed as a single update recursion [68-70].

The effectiveness of this adaptive technique was demonstrated

in [68-70], where the algorithm was utilized in a high resolution
adaptive spectral technique for estimating frequency of sinusoids
corrupted by Gaussian white noise [68-70]. For global convergence
behaviour of the quadratically constrained LMS algorithm, a

useful insight can be found in references [68-70].

The constrained LMS algorithm (2.128-2.129) can be simply
modified and utilized in adaptive directional spectral estimation
for incoming narrow band signals [65], see Figure 2.9. It is

a technique of spatial filtering for high-resolution spectral

analysis of array data.

2.8.2 Quadratically constrained RLS algorithm

Because of the quadratic constraints on the weight vector, an

exact least squares solution does not exist as clarified below.

55



The second derivative of the least squares cost function
K
W 2
I(W) = %Z1yi (2.130)
1=

can be written as,

1 K
~ -t 2
R = ZZ ((Z; -y, W(Z; -y ;W)™ - yiD) (2.131)
[W|* 1=1
where,
W
W= —
|W|
wex
i = —1
[W|
Zl = Xi - Wyi

I = identity matrix

Due to the presence of the term y?I which is a full rank matrix,

it is not possible to establish a direct recursion for the second
derivative. Therefore, an approximation of the second derivative

must be used. As it is shown in [70], a suitable approximation

is (assuming that E(Ziyi) =0 ),

1 K
= t
R _—ZZ zizjL (2.132)
Wl i=1

Using (2.132), an approximate quadratically constrained RLS

algorithm can be developed [70].
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where aK+1 is a scalar constant whose value is chosen such that
the updated weight vector has a unit norm. Using the matrix
inversion lemma [44], a recursion for §Q11 can be obtained as

shown in Appendix 1.

An alternative and more common approach to computing the eigenvector

W, corresponding to the minimum eigenvalue m, is the inverse
power technique [65, 77]. Consider the eigenvector-eigenvalue

equation,

RW = YW (2.134)

The inverse power technique [65, 77] is an iterative method of

solving equation (2.134) and can be expressed as,

~ -1
Wewr = R Mk
~ ~/
= 2.135
wK+1 - wK+1 /IWK+1| ( )
where, WK+1 = an estimate of the eigenvector at step K of the
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iteration cycle. Once again, the technique requires an estimate
of the inverse of data covariance matrix R;1 which must be

computed iteratively as data becomes available.

2.9 Discussion and conclusions

An ideal adaptive algorithm must have the following properties;

I Rapid initial convergence speed.

IT Good tracking capability.

III Computationally efficient.

The former two of these properties are often in direct conflict
with the latter, since rapidly converging algorithms with a good
tracking capability tend to be computationally demanding, while
computationally efficient algorithms lack rapid initial convergence

speed and suffer from poor tracking capability.

Generally, adaptive algorithms can be divided into two broad
cateqgories;

I Computationally efficient but slowly converging algorithms
(consequently poor tracking capability).

II Computationally demanding but rapidly converging algorithms

(consequently good tracking capability).

Among all computationally efficient algorithms, the LMS algorithm
is the most popular due to its simplicity and is used in a wide
range of practical problems where the computational efficiency

is of primary importance, not the speed of convergence. On the

other hand, the LMS algorithm is not a suitable approach to those
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practical problems with rapid convergence requirements. In this
case improved performance may be obtained by using lattice gradient
algorithms which can be regarded as variants of the LMS algorithm
(the trade-off is "of course" increased complexity due to lattice

structure).

Although the lattice gradient algorithms offer higher speed of
adaptation than the LMS algorithm, they can be classified as

slowly converging algorithms when compared with RLS techniques.

The RLS techniques are attractive because of their rapid convergence
properties. Their main disadvantage is their high computational
requirement. The RLS algorithms require in the order of L2

2 + 4L).

multiplications per adaptation cycle (approximately 2.5L
Furthermore, RLS techniques are sensitive tO0 numerical round-

of f effects.

Complexity of RLS algorithms can be reduced to order L multi-
plications per adaptation cycle by making use of the shifting
property of the input vector, ie. data redundancy technique.
However, the data redundancy technique is only applicable to

TDL linear combiners but not to spatial arrays.

Numerical stability of RLS algorithms may be improved by
implementing them using a lattice structure. As a result of
several research efforts [86, 87, 88] and extensive
experimentation with least squares lattice (LSL) algorithms,

it is now widely accepted that these algorithms possess better
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numerical properties than their direct structure (TDL)
counterparts. Thus, there is a great interest in their
application to practical problems. Alternatively, the numerical
stability of RLS algorithms may be improved by introducing a
step size parameter in order to smooth the deflected gradient,
thus ensuring that excessively large steps are avoided. The

adverse effect would be reduced convergence speed.

The main objective of this chapter was to outline various
conventional adaptive algorithms along with a brief discussion
of their properties, advantages and disadvantages. These
algorithms are well documented and further insights into their
properties can be obtained by referring to the technical

literature.

Figure 2.10 represents a decision tree for designing adaptive
algorithms in terms of computational efficiency, where CE and CD
denote computationally efficient and computationally demanding
respectively.

In this chapter conventional adaptive algorithms based on the
steepest descent and Newton methods were discussed. However,
there exist alternative minimization methods which are also
descent methods. These techniques are widely known as
accelerated gradient algorithms. Although there is a significant
background literature available on these algorithms, there has
been very little work reported on their application to adaptive
signal processing. This is the main issue emphasised throughout

the remainder of this thesis.
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Figure 2.1 : Adaptive linear combiner in the form of
single input adaptive transversal filter.
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Figure 2.2 : Optimum non-recursive estimation or
Wiener estimation.
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Figure 2.3 : (L-1)-- dimensional ellipsoids having

*
W as their common centre.
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Figure 2.4 : Schematic diagram of an all zero digital Lattice filter.

2 3
k1 kZ
XK _..___4
k
k1 2
2‘1 2 2—1 2 7\
1 2 3
bgiiafq bK bK
W W W
1 2 3 . dK
B 3 y
°K

Figure 2.5 : Adaptive joint processing using Lattice structure.
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Figure 2.6 : Adaptive Lattice filter, all zero configuration.
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Figure 2.9 : Constrained directional spectral estimator.
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Adaptive algorithms

CE

Random search
algorithms

l

Descent based
algorithms

CD

CE
Accelerated gradient
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\4
Steepest descent Newton
method method
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Differential Lattice Lattice
steepest gradient least
descent algorithms squares
algorithms algorithms
Stochastic Recursive
gradient least
algorithms squares
algorithms

Figure 2.10 :

CE

Least mean
square
algorithms

CE - computationally efficieni
CD - computationally demanding
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CHAPTER 3

ACCELERATED GRADIENT TECHNIQUES AND THEIR

APPLICATIONS TO ADAPTIVE SIGNAL PROCESSING
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3.1 Introduction

Generally, all gradient methods estimate the minimum of a

function using a direction vector A which is the descent

direction.

This chapter presents various gradient techniques that offer
high speed of adaptation and which use second order statistics
of the data to compute the direction vector 9y - These techniques

will be referred to as the accelerated gradient (AG) techniques.

Throughout the chapter, the application of AG methods to three
types of minimization problems (unconstrained, linearly
constrained and quadratically constrained) is discussed along
with a study of their convergence analysis, stability and

computational complexity.

3.2 Un-constrained minimization

Consider the quadratic cost function (multivariate),
Iw) = whRW - 2Pt + ¢ (3.1)

The process of finding the minimum of J(W) using gradient
techniques which involve a search along the vector qy from

the current point WK can be expressed as,

(3.2)

a1 = e ™ 3%

where, a, = step size and q = direction vector which is a descent

direction.
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Fundamental in the development of gradient methods is the
generation of the descent direction vector Qy and the step size
a, so that J(WK+1)<< J(WK). In chapter 2 it was shown that when
a, is a small positive constant and 9 = 9 = -Y7J(WK), then
the convergence to the Wiener solution W* = R_1P was guaranteed
by the linear search (3.2). But the drawback was shown to be
the very slow rate of convergence. Various techniques can be
employed to increase the rate of convergence which the most
straightforward technique is finding the minimum of a quadratic
cost function by the method of exact linear search (ELS). In
this case a, is chosen to minimize J(WK + aKqK) precisely for

a given WK and qy -

3.2.1 Minimization by exact linear search (ELS)

Referring to the relationship (3.2) and using Taylor's
expansion formula, the function J(WK + aKqK) can be expressed

as,
t 2 t
= = - 3.3
J(WK+1) = J(W, + aKqK) = J(WK) 2a,9,q, + a,9Ra, (3.3)

where, 9 = -‘7J(WK) with respect to WK. The optimum value of

a. that minimizes (3.3) precisely is obtained by equating the

K
gradient of (3.3) (with respect to aK) to zero.

VJ(wK + aKqK) =0 (3.4)
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It follows,
ot t
3 = 9 / aRay (3.5)

When 3, 1s obtained by equation (3.5), the procedure is said

to be an exact linear search [13-14].

To characterise A algebraically consider the Taylor series expansion

2
K= 0.

of J(WK+1) in terms of J(WK) and g, as a
IW, )~ IW,) - 2a,q8
K+1’ = Mk KK K (3.6)

To satisfy J(WK+1)<< J(WK) with a, >0, it follows immediately
t .
that 9,9 > 0. Equation (3.6) can be written in the form,

IW ) = AW o - aK|gK||qK|cos 8 (3.7)

K+1
where, 8 = the angle between 9y and qy - Holding s |gK|, IqKI
constant and varying 8, then the right hand side of (3.7) is
most negative when 8 = 0%r 360°. Thus, the greatest reduction
in the function value is obtained in the direction

9 = 9y = -<7J(WK), which is the negative gradient direction

or steepest descent direction. Using q, = g, in (3.3) yields,

t t
= 3.8
a = 9 7 IRk (3.8)
Thus (3.2) can be written as,
= (3.9)
Weer = M+ 2%

which is the method of steepest descent with exact linear search.
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3.2.2 Convergence of the method of steepest descent

with exact linear search

With exact linear search it can be shown that (see Appendix 3),

[14].
I, + ag) - I S1AM) - 3W)) (3.10)

*
where, J(W ) = minimum value of the quadratic function and
2 .
1=(M-m)/ M+m))°, Mand m being the maximum and the

minimum eigenvalue of R. Rearranging (3.10) we have,
¥*
I(W, + a,9,) <1 IW) + (1 - 1) IW) (3.11)
It is obvious from,
2
1=(M-m)/ (M+m)) (3.12)

that, in general, the convergence rate decreases as the condition

number M/m increases.

A simple explanation of the slow rate of convergence for a large
condition number is given by the fact that in the ELS method

the successive search directionng are orthogonal. Successive
iterations generate a zig-zag path to the minimum. This can
result in very small steps being taken in a region away from

the minimum if the condition number is large corresponding to
substantially ellipsoidal contours of the cost function. This

situation is illustrated in figure 3.1.
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Referring to the above convergence discussion, if M/m is close
to unity the contours of the cost functions are hyperspherical
in the region of the minimum and the method of ELS exhibits
quadratic termination. As it is illustrated in Figure 3.1, a
large condition number corresponds to ellipscidal contours thus
slow convergence near the minimum. In this case the ELS does

not appear to be a practical technique!

However, in most practical adaptive signal processing situations
we are dealing with non-stationary data and as a result a variable
optimum point. The fundamental requirement in a non-stationary
situation is the initial speed of response of the adaptive
algorithm to data non-stationarities. In other words, it is

the tracking property of the adaptive algorithm which must be

taken into consideration, not its final rate of convergence.

Figure 3.1 shows the convergence behaviour of the ELS method
for a situation in which M/m is assumed to be large (ellipsoidal

contours).

Considering the zig-zag path it is clear that very large steps
are taken initially, corresponding to the rapid initial rate
of convergence of the algorithm which is the main requirement
in most practical situations (ie. rapid tracking of the data

non-stationarities).

This interesting property of the method of steepest descent with
ELS is utilized to establish adaptive algorithms which will be

presented in various sections of this chapter.
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Furthermore, the concept of conjugacy and linear independence
is used to generate a set of search vectors said to be mutually
conjugate vectors which, when used sequentially with ELS, result

in quadratic termination [13, 14].

3.2.3 Exact linear search adaptive algorithms

The algorithm outlined in sections (3.2.1) and (3.2.2) can be
carried over to adaptive filtering problems by simply choosing
a statistical estimator for covariance matrix and cross-
correlation vector, ie. a sample covariance matrix RK and a
sample cross-correlation vector PK. In this case RK and PK are

updated by one or more new data samples at each iteration.

Assuming that all signals can be modelled as zero mean Gaussian
processes, then the maximum likelihood estimates of the covariance
matrix and cross-correlation vector can be formed using the

sample covariance matrix and sample cross-correlation vector

given by [5, 8],

2
1

K
1 .
e I
i=1

1 K
« =% 2. 9%
i=1

(3.13)

o
it

where, XE = (x1, Xpy eeeees xL)t is the vector of tap signals

and d. = the desired signal (or primary signal, refer to Figure
i

2.2).
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Using the estimators given by (3.13) and employing ELS

minimization technique results in the following adaptive

algorithm.

0
i

= (R (K1) + X X5) / K

o
1]

= P K1)+ 4 X)) /K
9 = Py = RWy (3.14)

t t
K = 9% 7 KRuI

Q
1

Mear = M+ 39
The algorithm (3.14) is the adaptive version of the method of
steepest descent using ELS technique. The convergence is guaranteed

for any arbitrary initial estimate W,. The sample covariance

1.
matrix RK can be assumed to be positive definite yielding the
optimal step length a, in successive iterations K. This statement

will be discussed in more detail in the following section.

The algorithm (3.14) has little practical significance, since

it is only suitable for stationary situations and its tracking
capability is limited. This is obvious as the estimators (3.13)
treat all signal samples equivalently. Therefore, as K increases
the tracking capability of the algorithm decreases. This problem
can be overcome by employing windowing techniques which provide

a finite memory in the estimates of the covariance matrix and
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cross-correlation vector thus regarding the new data samples

as being more important than the previous ones.

A common windowing technique is the exponential windowing which
results in the following estimators of the covariance matrix

and cross-correlation vector,

20
1]

K ]
K-i t
) XX
i=1

(3.15a)

o
~
1
R
Q
=
>
=

where, 0 < @ < 1. Employing the estimators (3.15a) the ELS adaptive

algorithm can be outlined as follows,

R, = QR 4 + xKxE

P = 0P 4+ dXy (3.16)
9, = Py - Ry

% = 9K / 9F¥IK

W =W, + a

K+1 K ¥ 35

The algorithm (3.16) is an exponentially weighted ELS adaptive
algorithm that regards the new data samples more important than
the previous ones. Note that estimators (3.15a) yield biased

estimates of R and P. This bias can be removed by scaling (3.15a)
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in accord with,

K
1- o ki, ot
R, =
K 1_aK E 04 XiXi
i=1

) (3.15b)
1- @ -
P = 2 o x,
1- o 4 *
i=1
which result in the following update recursions,
K-1
s -
R = > 1 * - ali %
(1-oa™) (1-a™)
(3.15¢)
(- e (1- @)
"k = K "ot K, %"k
(1-a™) (1-a™)

An alternative data weighting scheme is the one that allows for
past data samples to be regarded as more or less important than
the new data samples [5]. The sample covariance matrix and sample
cross-correlation vector that employ this type of data weighting

scheme are obtained by,

pme]
1

t
K (1 —B )RK_,I + BXKXK
(3.17)

-
1

K (1 - B )PK-'I + 6dKXK

where, 0 < 3 < 1. For B = —;—- each sample is equally weighted.

Employing the estimators (3.17) the ELS adaptive algorithm can

be outlined as follows,

t
Ry = (1= BIRq + BXKy
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)
]l

k= (0= BIP_y + BdX,

9% = Pk — RyMy

(3.18)

[sV]
|

t t
K T %% 7 9Pk

W =W, + a

K+1 K K9K

Note that, for K smaller than L, the ELS adaptive algorithms

have a growing dimension, which means a singular matrix RK' To
ensure that RK for K less than L be positive definite, R1 can
be initialized as R1 = X1X$-+ 31, where, & is a positive

quantity and I is the identity matrix.

3.2.4 0On the optimality of the convergence factor a,
In section (3.2.1) it was shown algebraically that

t t .. . . .
a, = 99y / gKRgK minimizes J(WK) precisely yielding a convergence

rate given by 1 = ((M = m) / (M + m))z. This is true if and only
if R is a positive definite matrix thus ensuring the following

well known inequalities [14-15], (see Appendix 3),

2 t 2
mlg | < 9Ra < Mgyl

2
IQKI

— S oR g (3.19)

t
9,9
1 KK 1
M <5 tR 55 m
9k "9k
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Sample covariance matrices given by (3.13), (3.15) and (3.17)

are all positive definite matrices except for K less than L.

Therefore, to satisfy the inequalities (3.19), RK
t

initialized as R1 = X1X1 + I as was mentioned previously.

can be

Figures 3.2 and 3.3 illustrate the relative behaviour of the
convergence factor ay and the inverse of the maximum and the
minimum eigenvalues of the covariance matrix when the ELS technique
was used to minimize a quadratic function of the form,

IW) = whRw - 2Pt + o (3.20)

with the known R, P and c. Figure 3.2 shows the behaviour of
ay for R having a small condition number and Figure 3.3 illustrates

this behaviour for a large condition number.

Figures 3.4, 3.5, ..... 3.9 demonstrate the variation of the

step length a, with respect to the inverse of the maximum and

K
inverse of the minimum eigenvalues of the estimated covariance
matrix. In this case the same quadratic function (3.20) had to
be minimized but to illustrate the effect of various estimators
(3.13, 3.15b, 3.17) on behaviour of ay R and P were assumed
to be unknown and were estimated adaptively as the data samples
became available (an adaptive noise cancelling scheme)

Figures 3.4-3.5, 3.6-3.7, and 3.8-3.9 show the variation of a,

(for small and large condition numbers) with respect to the

estimated eigenvalue boundary when estimators 3.13, 3.15b and

3.17 were used respectively.
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From these results it is clear that the inequality

1 1
-Tﬂz < ay < _E; y where, MK and m, are the maximum and

K
minimum eigenvalues of the sample covariance matrix at each
iteration K, is satisfied irrespective of the condition number
or type of estimator. These results are used to extend the
convergence behaviour of the deterministic algorithm outlined

in sections (3.2.1) and (3.2.2) to convergence behaviour of

its adaptive versions given by (3.14), (3.16) and (3.18).

3.2.5 Convergence of adaptive algorithms with ELS

To study the convergence of the ELS adaptive algorithms, it

is essential to make the fundamental assumption that estimates
of the covariance matrix are positve definite at each iteration.
This assumption will enable the derivation of convergence
relationships in terms of the maximum and minimum eigenvalues

of the estimate of the covariance matrix at each iteration K.

Referring to algorithms (3.14, 3.16, 3.18), the cost function
at each iteration can be expressed as a scaled sum of squares

of error.

t
- 3.21
R W ZPKW + oy ( )

t
IW) = WR My K

Since RK is a positive definite matrix then the quadratic function
* -
(3.21) has a unigue minimum J(WK). Also using the Taylor expansion

formula, the updated cost function J(WK + aKgK) can be expressed

as,
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J(w - _ t 2 t
( K+1) J(WK) 2a,9,9, + a,9R,9, (3.22)
The derivative of (3.22) is equal to zero if ay is given by,

ot £
3 = 9 /7 IRy (3.23)
which is the convergence factor for algorithms (3.14, 3.16, 3.18).
Now with reference to convergence analysis of the method of

steepest descent with exact linear search outlined in section

(3.2.2), we have,

I, + a,g,) - IO K LMW - IW)) (3.24)
or
I, ) = I < 1, QW) - IM)) (3.25)
where,

2
lK = ((MK - mK) / (MK + mK)) (3.26)

and MK’ m, are the maximum and minimum eigenvalues of the estimate

of covariance matrix RK'

The above discussion can be repeated for successive iterations.
Therefore, it can be stated that, successive cost functions :

J(WK), J(WK+1)’ ..... ., etc. have unique minimum points
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J(WK), J(wK+1), J(W

*
K+2), oooooo

, etc and as a result of ELS

adopted at each iteration,the following relationships can be

established.

Wiy = I € L, QM) - I))

*
J -
(WK+2) J(WK+1) 5; lK+1(J(wK+1)
*
J(wK-o-B) - J(WK+2) 5; 1K+2(J(WK+2) - J(W
etc.
where,

o= (M = m) / (M + m )

1 = (M

etc.

and M M

K’ "K+1’ "K+2

the maximum and minimum eigenvalues of RK, R

etc.

Rearranging (3.27) results in,

ko1 = (Mg = M) /7 Mg+ me 1))
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2

2
Kez = M™ea2? 7 (Mo + meio))

M, , ceeees etc., Mes M qo M

K+1))

K+2))

(3.27)

(3.28)



J(W +)<13(W)+(1-1)J(W)

IMyp) € 1y 90 )+ (1 - 1 )3W, o) (3.29)
IW,3) K Ly p 3 ) + (1= 1 )30 2

etc.

Solving (3.29) in terms of the initial value of the cost function

yields,
K+1 K
W, ) S o 1.)3(W,) + Z G 1000 - 1 )J<w ) (3.30)
i=1 j=2 h=j

where, J(W ) = initial value of the cost function. If J = K+1,

then GT 1 )
hJ

function J(WK+1) to its initial value and unique optimum values

1. Equation (3.30) relates the value of the cost

J(W1), J(WZ), ..... ’ J(WK).

3.2.6 Convergence of ELS adaptive algorithms

in a stationary environment

Assuming stationary inputs, then the resultant quadratic cost

function has a single fixed minimum point. In this case there
*

exists one optimum weight vector W that minimizes the cost

function.

In stationary situations all data samples can be equally weighted.

This is achieved by employing the estimates of covariance matrix

81



and cross-correlation vector given by (3.13) which result in

unbiased estimates of R and P as K ---=.

It is well known and also experienced (computer simulations)

by the author that estimators (3.13) result in a good estimate
of R and P approximately after twenty to thirty iterations.This
can be verified by referring to Figures 3.2, 3.3, 3.4, 3.5 which
show the true and estimated inverse of the maximum and the

minimum eigenvalues of R and its estimates R, given by (3.13)

K

respectively.

In the case of stationary data, the variable optimum point of
J(W;) in (3.29) and (3.30) can be represented by the unique
optimum value of the cost function J(W*), (neglecting the first
few iterations before convergence of RK and PK to R and P).

Therefore, as K --— oOthe first term on the right hand side

of (3.30) vanishes since li < 1 and gg li<<3: 1. The second
i=1

term on the right hand side of (3.30) reduces to

*
(1 - fD)J(W ) since estimates R, --— R and thus MK’ mK———>M,m

K

as K ——» o . Therefore, equation (3.30) reduces to

IW, ) ~ IW) as K ————> 0. (3.31)

K+1

With regard to the above discussion we may state that, assuming
stationary data, the ELS adaptive algorithm (3.14) minimizes

the quadratic cost function and results in the Wiener solution

as K =——> .
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Due to unbiased estimates RK = R and PK =P at K =@, the
algorithm (3.14) at K = @ behaves like the deterministic
steepest descent method with ELS and therefore results in zero

steady state misadjustment (neglecting the effects of finite

word length implementation).

3.2.7 Convergence of ELS adaptive algorithms in

a non-stationary environment

In the case of non-stationary signals, the minimum point and
orientation of the cost function could be changing over time.
Figure 3.170 illustrates a two dimensional time varying cost

function for a non-stationary process.

Due to data non-stationarities and as a result a variable optimum
point, the data samples can not be equally weighted and alternative
data weighing schemes must be employed. Two of the most well

known data weighting schemes are those given by (3.15) and (3.17).

For a non-stationary cost function a logical approach would be
to define an optimum parameter vector (weight vector) W; that
minimizes the cost function at time K [17, 24, 78]. This is

the approach taken in section (3.2.5) in order to establish the

relationship (3.30).

Equation (3.30) relates the value of the estimate of the cost
function to its initial value and its optimal value at each
iteration. The tracking capability of the algorithm is determined

by the variable factor li which in turn is related to the variable
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condition number of the estimated covariance matrix.

Due to the data non-stationarities, it is meaningless to

study the convergence of an adaptive algorithm with regard to
its steady state solution. This is because there is no steady
state solution as data statistics vary over time. In this case,
it is the tracking capability of the algorithm, at any time K,
that must be taken into consideration (ie. the response of the

algorithm to a sudden statistical change).

The tracking capability of the ELS adaptive algorithm is demonstrated
by simulating a non-stationary adaptive noise cancelling scheme

which is presented in chapter 5.

3.2.8 0On the convergence of the weight vector

It is shown in section 3.2.2 [Appendix 3] that using the method

of steepest descent with ELS, the quadratic function J(WK) converges
to its optimal value by a constant rate 1. Since J(WK) is a
quadratic function of WK’ then it implies that WK converges

to its optimum W* with a rate l%. The discussion can be extended

to ELS adaptive algorithms simply by considering the relationship,

2 =30 € 130D = I)) (3.32)

W)

The equation (3.32) implies that after ELS the cost function
is closer to its optimum value at time K by a factor lK. Since

J(WK) is a quadratic function of WK, then after each adaptation
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1

wK would be closer to its optimum value W; by a factor lé. In
* 1

other words WK tracks WK by a factor l&. Note that W; is the

optimum value of W, 6 at iteration K.

K

3.2.9 Stochastic interpretation and convergence in the mean

Consider the equally weighted least squares optimization

problem,
1 2
minimize —— Z (di - WK+1Xi) (3.33)
i=1

The solution to this problem is given by,

N T T T
e = Ce 2 X0 (e 3 94Ky (3.36)
i=1 1=1
or
- (3.35)
- 3.35
Weer = Rk Pk

Minimization of (3.33) by ELS results in one step approximation

of the solution (3.35) at each iteration K.

Assuming stationary stochastic data, then all time averages can

be replaced in the limit by expected values. It follows that,

1 oy 4 E A (3.36)
lim —— Z X, X{ =R .
K-> 0 i=1
K
. 1 ty-1 A -1 (3.37)
lim ( X Z Xixi) = R
K>0 i=1
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K
1
Lim —— %" d.;x, &P (3.38)
K> i=1

and therefore,

_ *
lim WK =W (3.39)

K->wo

As a result of (3.36 to 3.39), in the limit ELS adaptive algorithm
behaves like its non-stochastic version and converges to the

Wiener solution.

A useful measure of an adaptive algorithnis performance is to
study its behaviour in the mean (ie. ensemble averaging). In
this case the output variance (the mean squared error) can be
expressed in terms of its minimum value and the excess mean

squared error.

* t
E(I(W)) = JW ) + ECVRV,) (3.40)
*
where, VK = WK - W . Assume that the ensemble averaging is taken
over a very large number of individual runs with equal initial
vector

weight/W1, so that the expected error vector behaves like its
non stochastic version. Therefore, the expectation operation
on V, in (3.40) may be deleted.

* t
E(J(WK)) = J(W ) + VKRVK (3.41)

Expanding by Taylor series and taking 9 = 9y = -RVK, the optimum

value of a, that maximizes the convergence speed is obtained
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by equating the derivative (with respect to aK) of the expanded

function to zero.

e
VKR VK
Using the bound,
th2, < yte3 t,2
mV RV, S VR VK< MV, RV,
in the denominator yields,
1 <y 1
— S K —
M o (3.43)

where, m and M are the minimum and the maximum eigenvalues of

R.

If the adaptive algorithm is convergent (which it is as long

as a, satisfies (3.43)), then in the limit (3.40) reduces to

K

Lim E(I(W,)) = IWH) (3.44)
K-> o

with a convergence rate given by

1=M-m2/ M+ m? (3.45)
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3.2.10 Computational complexity of ELS adaptive algorithms

A complexity measure of any adaptive algorithm is the required
number of multiplications (divisions) per iteration. That is

the higher the number of required multiplications the more complex

the adaptive algorithm.

With regard to ELS adaptive algorithms proposed in section (3.2.3)

we can see that a direct realization of these algorithms requires

4L2 + 5L + 1 multiplications per cycle of adaptation. Thus,

the algorithms appear to be unsuitable for on line adaptive

signal processing applications.

However, utilizing the symmetric property of RK’ XKXE and

g’t(RKgK a great reduction in number of multiplications can be

~achieved. This procedure is discussed and outlined below.

) t
We start with XKXK

|
: : t
essential to compute its upper triangular matrix (XKXK) :

which is a symmetric matrix and it is only

(for ease of presentaion assume L = 4).

X1%4 X1Xy XXz XgXy
¢ XXz XXz X2%4 546
(X X)) = 3.46
KK X3X3 X3%4
X4Xa
- -
¢ S
The required number of multiplications to form ( XKX K) is
L-1 _
equal to Z (L-i). Therefore, there is a saving of
i=0
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L-1
}E: (L-i) multiplications. Note that to weight the new data
i=1

vector XK (in accord with algorithms 3.14, 3.18) requires an

additional L multiplications.

Next consider the symmetric matrix R Because of its symmetrical

K-1"

structure it is only necessary to store its upper triangular

elements. Therefore, we have (assuming L=4),

11 T2 T3 Tag
q T22 T23 Tos
Ry = (3.47)
-1 T35 T34
a4
g L-1
' ' ix R requires (L-1)
To weight the upper triangular matrix K1 ‘z:
i=0

L-1
multiplications which correspond to a saving of }E: (L-1)

i=1

multiplications if all elements of RK—1 were to be weighted.

A
K-1’

covariance matrix RK will take a form as follows,

q .
With regard to (XKX;) and R the equation for updating the

RK = HK—1 + AK
(3.48)
9 I\
RK = RK + RK
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where, HK 1= welghted RK 1 in accord with algorithms 3.14, 3.16

AV,
and 3.18. A = ( — K K K) , or (X X )V, or ([3X in accord

with algorithms 3.14, 3.16 and 3.18 respectively. Eb represents
the upper triangular elements in R;q (with the exception of the

diagonal terms) written in its lower triangular section.

Finally,consider the scalar gERKgK written in its expanded form

for L=4.
9171191 * | 9979292+ 99Tq4393 v GqT4494 ¢
92T2191 | 7 99F029 |+ 9pT2z93  * T84 7
(3.49)
93C3499 | + | 93T3292 |+ 93F3393  *+ | 93T3,9, +
94T4191 | * | 9454292 | Y| 944393 | 0 94T449%

. t
where, 9,5 9p» 93» g, are elements of 9ys 1€. gy = (91’92’93’94)K‘

It can be observed in summation (3.49) that several of the product
terms occur twice. This is demonstrated by encircling these terms.
Therefore, the scalar gERKgK can be formed by a fewer number

of multiplications than L2 + L, as follows.

L-1 L L
t i ) (3.50)
9Rk Ik = Z 29 Z rii9 * Z (9,9, )ty
J:1 i:J+1 =1
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The products 9,9, are formed by operation gEgK in the numerator
t .
of 9 Iy / gKRKgK. This means that the second term on the right

hand side of equation (3.50) only involves L multiplications.

Utilizing equation (3.50) to calculate gERKgK, there will be
a great reduction in the required number of multiplications in
order to form the convergence factor ay - For instance, if L=10,
then the total number of multiplications te form a, would be

K

75 which corresponds to a saving of 121-75 = 46 multiplications.

Table (a) outlines the total number of operations - multiplication
(division) - for direct realization of algorithms 3.14, 3.16

and 3.18 and their realization using the techniques explained

in this section. It is obvious that there is an increasing reduction

in the required number of operations as dimension L increases.

It must be noted that direct realization of ELS adaptive algorithms
in low dimensional systems is not a great concern with today's
computing power cost. However, for large dimensional systems

there is a severe technological limitation due to the large

number of required multipliers. In this case, using techniques
outlined in this section result in a significant reduction in

the required number of operations thus reducing the complexity

of the system.

3.2.11 Block implementation of ELS adaptive algorithms

Block implementation of adaptive algorithms involves the
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calculation of a block or a finite set of filter outputs from
a block of input values and adjustment of the weight vector
once per block of data. Block implementation of adaptive
algorithms allow efficient use of parallel processors and as

a result , high speed signal processing.

It must be noted that updating the weight vector for each data
sample yields the highest rate of convergence of the adaptive
algorithm, if convergence rate is measured in terms of the number
of data samples. However, if the convergence rate is measured

in terms of algorithm iterations, then speed of convergence

increases as the number of data samples in each block increases.

The block data adaptive algorithms are suitable for applications
in which the adjustment of the weight vector can be time consuming
and costly (eg. Satellite antenna array adaptation using micro-

wave power dividers).

Block LMS adaptive algorithms are discussed and analysed extensively

in [16, 18, 79, 80].

The application of a block processing scheme to ELS adaptive
algorithms yields a great reduction in computational requirement.
Furthermore, employing a block adaptation technique facilitates
generation of mutually conjugate search vectors which, when

used sequentially with ELS method, results in quadratic

termination.
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Consider the estimated cost function over N data samples.

N I Nt N

J (WK) = WKRKWK - ZPK WK + cy (3.51)
N . . .

where, RK = estimate of covariance matrix over N data samples,

N :
PK = estimate of cross-correlation vector over N data samples

and CE = constant.

Taking the gradient of JN(WK) with respect to WK yields,

N
I

N NN
= -V = Py - Wy (3.52)

Employing ELS technique, the update equation for WK can be written

as,

N
W = W + a,9, (3.53)
where,
N.t, N
a (g,) (gy) (3.54)
N tE_N, N
(g,) Ry (g

Equations (3.52), (3.53) and (3.54) represent the block
implementation of the ELS, (BIELS), adaptive algorithm. Obviously
a direct realization of BIELS involves the computation RE,

PN and gs over a block of data which is costly. Also, computation

K

of ay requires a large number of multiplications.

The computational requirement of BIELS can be greatly reduced

by assuming stationary data. So that,

93



Re = Ry (3.55)
N N
PR = P, (3.56)

As a consequence of (3.55) and (3.56) the following procedure

can be established.

I. For WK constant over N data samples compute gs by

= % g (3.57)

II. For WK constant over another N data samples, (gN)tRN( )

can be computed by,

(g) Ry (g) = IE: CCHRPIEEHD (3.58)

III. Compute a by
N t, N
a, = (g) "(gy) (3.59)
1 N
= Nyt t, N
I MECCHIEBICHERD
j=1

requires 2N data samples, N data samples due

K
Nyt N
to 92 and N data samples due to (gK) R (

Computation of a

IV. Update WK by,

W = W + a (3.60)

N
K+1 K * 2%
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Having updated the weight vector by (3.60), it is held constant
over 2N more data samples to allow the computation of gE+1,

N t N N
(gK+1) RK+1(gK+1) and IR Note that for a, equal to a constant

the algorithm outlined above reduces to the conventional stochastic

gradient descent algorithm (2.38) [8, 16, 18, 79, 80].

It is worth mentioning that the larger the block size the closer
the estimates RE and PE are to R and P respectively. In this

case BIELS adaptive algorithm behaves like that of deterministic
steepest descent method with ELS, with a convergence rate
affected by the condition number of R. Therefore, the convergence
speed deteriorates as the condition number of R increases. This
problem can be overcome by employing a conjugate gradients method

(CGM) which yields the solution after a finite number of iterations.

3.2.12 Minimization by a conjugate gradients method

The CGM was first introduced by Hestenes and Stiefel [82] for
solving a set of simultaneous linear equations having a symmetric
positive definite matrix of coefficients and it was later
extended to non-linear functions by Fletcher and Reeves [83].
There are many variations of the CGM proposed by various authors.

Reference [14] presents a full treatment of CGM techniques.

Generally, CGM is a modification of the method of steepest descent
with ELS in which the successive direction vectors q, are chosen
so that Ay is a linear combination of the negative gradient at

the K-th iteration and previous direction vectors,

q ) G _p » Qqs such that the R-orthogonality condition,
K-1 -
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qERQ~ =0 K £ j (3.61)

is satisfied. As a consequence of (3.61) any point in an
L-dimensional space can be reached by a suitable linear
combination of at most L of them. A brief discussion of the
concept of conjugacy and linear independence, quadratic
termination and the construction of conjugate search vectors

is given in Appendix 4. For a detailed discussion see [13, 14].

It is shown in Appendix 4 that the successive direction vectors

can be obtained by,

- 3.62
% T I+ kK- (3.62)
where, bK is a positive scalar given by,
2

b = oyl (3.63)
K__.__.._

a1

-1

Using the direction vector (3.62) in (3.9) the following algorithm

can be established [13, 14],

g, = - VI(W) = P - RW,

by = gEgK / 9&-19K-1

a = 9 * by Ay _1 (3.64)
ay = quK / qﬁRqK

Weer = W ¥ %K

where, b1 = 0 and qq = 9q-
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The scalar a, can be computed by
_t t
a = 99 / qKRqK (3.65)

. t i
since q _.g, = 0 (qK_1 is orthogonal to g, a@s it is shown in

Appendix 4) which results in

t
W I

t
(g + byay_1) "9y

t
9y (3.66)

Minimization by algorithm (3.64) yields the minimum after
L-iterations (neglecting the round-off error). This is true if

the condition number is not too large and in the case of an ill
conditioned situation the algorithm (3.64) takes longer to converge

(2L to 3L iterations) [13, 14].

Clearly the adaptive implementation of CGM algorithm (3.64)
involves a great amount of computation if the weight vector
WK is to be updated for each data sample. This high computational

requirement is a drawback for on line signal processing.
The computational requirement of algorithm (3.64) can be
substantially reduced if block data adaptation is employed along

with the assumption of stationary data.

3.2.13 Adaptive implementation of a conjugate gradients algorithm

Assume stationary data so that (3.55) and (3.56) are satisfied.

N NyEN, N, .
The the same techniques used to compute g, and (gK) RK(gK) in
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the BIELS adaptive algorithm can be used to compute gz and

t N . .
qKRKqK in algorithm (3.64). This results in the following

block CGM (BICGM) adaptive algorithm.

N
N 1
% =N Z e X;
i=1

Nyt, N N |t
k = (9) (g / (9¢_4) (g _4)

o
"

N b
- gK + KqK—1 (3.67)

0
X
|

0]
1]

t, N y
RS AR o S (CRERICHERY
j=1

W =W, +a

K+1 K K%

_ _ N
where, b1 = 0 and 9 = 94

Algorithm (3.67) is the adaptive version of algorithm (3.64)
in which the weight vector WK is held constant over 2N data
samples, N data samples to allow the computation of gE and

N more data samples to allow the computation of qEREqK.

Therefore, each algorithm iteration requires 2N data samples

to allow the computation of a, Gy - Note that BIELS and BICGM
adaptive algorithms outlined in section (3.2.11) and the present
section are valid only for processing of stationary data. Also
in the case of BICGM adaptive algorithm, the estimates R: and

PN must be a realistic estimate of R and P to enable L-step

K
convergence. In other words, BICGM adaptive algorithm (3.67)
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will converge after L iterations (L2N data samples) if the size

of each block of data is large enough so that the following

conditions are satisfied.

N
RK = RK+1 = .ee.... =R (3.68)
N N

PK = PK+'| T i eeennn =P (3.69)

An accelerated gradient method using the exact linear search

and Schmidt orthogonalization technique is proposed in [5] for
adaptive array processing. The technique is an adaptive version
of the algorithm proposed by Powell [14, 84], for finding
stationary values of a function. The technique requires far more
iterations than L-iterations to converge which contradicts the
basic definition of L-step convergence. This is due to the lack

of an appropriate restarting technique and small blocks of data.

It will be verified by simulations that the BICGM algorithm outlined
in this section is superlinearly convergent (L to 2L-step
convergence) in a well condition situation, a property that can

be guaranteed even in an ill condition situation by adopting

a restarting method.

3.2.14 Computational complexity of BIELS and

BICGM adaptive algorithms

Considering BIELS and BICGM algorithms it can be seen that by

adopting block data adaptation, computational requirement of
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ELS and CGM adaptive algorithms is significantly reduced. This

is because of elimination of all matrix vector products which
require L2 multiplications. Also, using block adaptation eliminates
the need for storing a matrix (or upper triangular matrix) which
simplifies the implementation even further. BIELS and BICGM

algorithms require in the order of L multiplications per

algorithm iteration.

Obviously if block data adaptation is to be adopted, then BICGM
algorithm is far more efficient than BIELS algorithm since it

guarantees L-step convergence for a slight increase in complexity

of the system.

Note that to implement the BIELS and BICGM adaptive algorithms
parallel processing is required, one processor with the weights
equal to WK and one processor with the weights equal to a

(or gy in the case of BIELS).

3.2.15 On the choice of the initial estimate of the weight

vector in accelerated gradients algorithms

* -
Defining an error vector VK = (WK - W ), a quadratic function

can be expressed by

* t
J(WK) = JW ) + VRV, (3.70)
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If W1 is chosen equal to W*, then any iterative algorithm terminates
in one step since W, = W and J(W,) = J(W'). But this is hardly

the case because W* is not known apriori. Considering the second
term on the right hand side of (3.70), it is clear that the larger
|V1|, the larger would be the error term VtRV . A suitable choice

11

for W1_w0uld be W1 = 0 which results in a maximum initial error.

t *to ¥
V,IRV1 = (W) RW) (3.71)

Although all descent algorithms do converge for any arbitrary

initial value of the weight vector, an arbitrary W, can give

1

rise to a large initial value of error V:’RV1 which 1is undesirable.
The value of W,I = 0 is the recommended value for all descent

algorithms.

3.2.16 On the implementation of the exact linear search

gradient technique using lattice structure

A linear combiner using lattice structure instead of a TDL
involves two minimization procedures, one due to that of finding
an optimum set of reflection coefficients and the other due to
finding a set of optimum combiner weights. As it was discussed
in section (2.6.5), the most important advantage of using the
lattice structure instead of TDL is its orthogonalizing property
which decouples successive stages enabling optimization of each

stage of the lattice independently.
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Minimization of individual cost functions at each stage of the
lattice by adopting ELS yields a step length which is inversely
proportional to the sum of the FD and BD prediction error power
pi at that stage. Since pi is not known, an estimate of it’Bi

can be used (see equation 2.74) which is the procedure adopted

in most conventional gradient algorithms.

These algorithms use an instantaneous estimate of the gradient
at each iteration K (see equation (2.73) and Appendix 2), which
has an adverse effect on the speed of convergence. To overcome
this problem, similar estimators to (3.13), (3.15) and (3.17)
(one dimensional) can be used to generate a more realistic
estimate of the gradient. Clearly the trade-off would be the

increased computational requirement.

Due to orthogonalized signals generated by lattice structure,

the combiner weights can be updated individually using a step
length inversely proportional to the signal power at the corres-
ponding lattice output and an instantaneous (or a more realistic)
gradient estimate of one dimensional quadratic cost function

due to that weight. This is the method adopted in conventional

lattice adaptive gradient algorithms (see equations 2.75 - 2.78).

However, the lattice filter outputs are a set of orthogonal
signals only after complete convergence of the reflection coeffic-
jents. Thus there exists an initial degree of correlation between
these signals which decreases as the reflection coefficients

approach their optimal value. The larger the condition number
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of the process, the higher is the initial degree of correlation
between the lattice output signals. Therefore, the initial
convergence rate of the conventional gradient algorithms
deteriorates as the eigenvalue spread gets larger. This problem
can be overcome by using a combined update recursion for the

combiner weights and adopting ELS method.

It should be noted that the most interesting property of the

ELS technique is its rapid initial rate of convergence "irrespective
of the eigenvalue spread of the covariance matrix" (althoqgh

its final rate of convergence deteriorates as eigenvalue spread

gets larger). Therefore, there would be very little to gain

(or none) to implement the ELS technique by a lattice linear
combiner instead of implementing it using a TDL linear combiner.
This is as a result of increased algorithm noise and higher
computational requirement due to the lattice structure. The

above discussion will be verified by simulations in chapter 5.

3.3 Linearly constrained minimization by ELS

Referring to the sections 2.7 and 2.7.1, the augmented cost

function for a linearly constrained problem can be written as,

t

I, Y) = swERw = 2ptw + o) + YRt - ) (3.72)

.y t .
where, ’Yt = vector of the Lagrange multipliers, € = m by L matrix

of the linear constraints and the factor 4 is added for simplifying

the analysis.
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The negative gradient of J(WK,'Y) with respect to W, is

K

- VIW,Y) =g, - CY, (3.73)

where, 9, = negative gradient of the quadratic function. Equating

(3.73) to zero yields,

9y (3.74)

Multiply both sides of (3.74) by Ct, then

t t
CCY = Crgy (3.75)

Therefore,

Yy = = ety ety (3.76)

where, 7Y, is an estimate of the Lagrange multipliers corresponding

K

to WK' Substitute (3.76) into (3.73) to obtain,

-1 t

-VIM,,Y) = gy - C(C te) 9,

(1 - cc'e)'chg,

= Zg, (3.77)

-1 t is a projection matrix and operates

where, Z = (I - C(C C)
on the negative gradient 9y in order to convert it to a form
orthogonal to the constraint matrix C. The projection matrix

Z represents the null space of the constraints, so that CZ= 0O
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(ie. rows of the constraint matrix C are orthogonal to the columns
of the projection matrix). The negative gradient of the augmented

function is a projected gradient of the quadratic function.

Adopting the steepest descent method, the update recursion for

WK can be expressed by,

Weoq = W + aZgy (3.78)

Equation (3.78) represents the projection gradient algorithm

(PGA) .

An alternative form of PGA can be established by considering
the update recursion for WK using the negative gradient of the

augmented function.

=
]

K1 WK + ay VJ(WK, YK)

W + a, (g, + c‘YK) (3.79)

Substitute for W from (3.79) into the constraint equation,

K+1
t _ .
C WK+1 = f to obtain,
t t _ (3.80)
CW, + aKC (gK + C'YK) = f

Solve (3.67) for Wk,

Y, = (ctc>’1cth + —%- (ctC)‘1(ctwK _ ) (3.81)
K
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Substituting Wk back into (3.79) results in

)y + cctoy e

=
)

= (I - C(ctC)‘1ct)(wK +

K+1 aKgK

tay-1
Z(WK + aKgK) + C(CC) 'f (3.82)

which 1is an alternative PGA.

A simple geometrical interpretation of the algorithms (3.78)

and (3.82) is illustrated by Figure 3.11. A fundamental difference
between these algorithms is that, the former algorithm projects
the gradient 9y onto the subspace and adds the projected vector
to the past weight vector (Figure 3.11a). However, the algorithm
(3.82) makes the unconstrained step, projects onto the subspace
and then adds the vector C(CtC)-1f, producing a new weight

vector WK+1 that satisfies the constraints (Figure 3.11b).

This different updating procedure has a practical significance

as explained below.

Practical implementation of constrained algorithms involves
computational errors causing deviation of the weight vector from
the constrained plane which deteriorates the performance of the
algorithm. Consequently constrained algorithms must have an error
correcting capability and this is a useful property of algorithm
(3.82) as illustrated geometrically by Figure 3.12 (WK is assumed

to be off constraints).
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In order to implement PGA using ELS technique, a, and g, can
be computed by the same method outlined for unconstrained ELS
adaptive algorithms in section (3.2.3). It follows that,

9% = Pk = ReWy

t t
9,9, / 9,Rg (3.83)
K9k K 9K

[$V]
oy
"

Weq = Z0H + agg,) + ceteyTr

K+1 K9k

with W,| = C(CtC)_1f. RK and PK must be computed according to

stationary or non-stationary data (estimators; 3.13, 3.15, 3.17).

Note that in the absence of a desired signal, P, = 0 and

K

gK = —RKWK.

Application of algorithm (3.83) to the broad band array processing
with look direction constraints is discussed in chapter 5 and

simulation results are presented to illustrate its performance.

3.3.1 Linearly constrained minimization by CGM

To apply CGM to a linearly constrained problem requires that
the problem be transformed to an unconstrained problem and be
represented by a set of linear equations. The procedure usually
involves the projection of the second derivative and the

projection of the first derivative of the function [13].

107



Alternatively, a linearly constrained problem can be transformed

to an unconstrained problem as explained below.

Referring to the augmented function (3.72), compute the gradient

of J(W, Y ) with respect to W and Y, so that,

VJ(W,'Y)W:RW—P+C’Y
(3.84)
Viw, ¥) =CW-f
Y
Equating (3.71) to zero yields the linear equations
RW+CY =P
(3.85)
CW + O = f
For simplicity, write (3.85) as,
where,
- R C .
R = (m+ L by m+ L) - matrix
ct o
Wt - (W, Y ) (m + L) - vector
Bt = (P, f) (m + L) - vector

Given R, C, P and f, the linear equation (3.86) can be solved
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by a CGM to obtain‘m* which contains the optimum weight vector
W* and the optimum vector of the Lagrange multipliers'Y*. It
should be emphasised that the augmented matrix E is not
necessarily a positive definite matrix and CGM may terminate
giving a wrong solution. This complicates the problem since
the CGM method must be modified to ensure (m + L) - step
convergence to a right solution. A modified CGM is proposed in
[14] which guarantees (m + L) - step convergence but involves
a great amount of computation per iteration and even a block
implementation does not appear to be a practical approach.

However, the above procedure is outlined only to demonstrate

a theoretical approach to the problem.

Generally, the application of the CGM to a constrained problem
causes substantial increases in computational requirement, in
particular if one sample adaptive implementation is adopted.
Some reduction in the required computations may be achieved

if a block implementation is employed with stationary data.

3.4 Quadratically constrained minimization by ELS

Referring to section (2.8), the augmented function for a

quadratically constrained problem can be written as,

I, Y) = whrw - Y(wtw - B) (3.87)

where, Y = Lagrange multiplier and B is a positive constant usually

set to 1 so that WtW = 1. Taking the negative gradient of (3.87)
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with respect to W and equating it to zero yields the eigenvalue -

eigenvector relationship.

RW = YW (3.88)

where, Y is the eigenvalue corresponding to eigenvector W.

Multiply both sides of (3.88) by wt to obtain,

whrw = vYwtw
¢ (3.89)

v = R

ww

Note that if WtW = 1, then

Y = wERW (3.90)

Equation (3.89) is known as Rayleigh quotient. Minimum eigenvalue
m of the symmetric positive definite matrix R is formed by
minimizing the Rayleigh quotient [13, 14, 15]. Minimization of
(3.87) or (3.89), (with B = 1), by ELS technique results in

the following constrained algorithm (based on the same principles

discussed in section (3.2.1)),

9y = mKWK - RWK
t t
a, = 9,9, / gRay
(3.91)

~J
a1 = W 3%

=
1"

~p ~S
ka1 = Mear 7 Il

t
where, m, = WKRWK’
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The last step is added to satisfy the norm constraints

t s
WKWK = 1. The initial estimate of the weight vector W1 must
satisfy the norm constraints, eg. W: = (1, 0,0 ..... )t.

Adaptive implementation of algorithm (3.91) involves an
estimate of the covariance matrix RK’ that must be estimated
by a suitable estimator (eg. 3.13, 3.15, 3.17).

Application of algorithm (3.91) to the field of adaptive spectral
estimation is discussed in detail in chapter 5 and simulation

results are presented to illustrate its performance.

3.4.1 Quadratically constrained minimization by CGM

Minimization of (3.87) by CGM requires the modification of the

algorithm (3.91) so that

Weer = W * 3%

gy *+ quK-’I (3.92)

o))
1]

t t
K = 9% 7/ R

where, b,, must be chosen such that 9y be a linear combination

K
of 9y and Q1 9gop? =voce The algorithm is not a practical
approach for adaptive signal processing due to its computational
requirement. A block implementation of the algorithm may be

useful if a long data record is available. For a typical

quadratically constrained CGM algorithm see [74].
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3.5 Discussion and conclusions

The main objective of this chapter was to design rapidly

converging robust adaptive algorithms for various fields of
adaptive signal processing. Throughout the chapter the emphasis

was on the method of exact linear search. Due to their rapid
initial speed of convergence and moderate computational requirement,
the ELS adaptive algorithms appear to be attractive alternatives

to RLS algorithms for relatively well condition problems.

The final convergence rate of the ELS algorithm deteriorates
as the condition number increases. This is hardly a problem
in the case of adaptive signal processing since it is the initial
convergence speed which plays a crucial role in a non-stationary

situation, not the final convergence speed.

The ELS adaptive algorithms involve only one matrix-vector
product which is the price to pay for a realistic gradient

estimate (residual vector) of the cost function.

Adopting block adaptation (for stationary data) and a parallel
processing technique, the computational requirement of the ELS
technique can be reduced to an order of L. Also block adaptation
enables the generation of a set of mutually conjugate search
vectors which, when used sequentially with ELS technique result

in quadratic termination (with a computational requirement in

the order of L).
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The application of accelerated gradient techniques to the fields
of adaptive noise cancelling, broad band adaptive array processing
with look direction constraints and adaptive spectral estimation

is discussed 1in chapter 5 and simulation results are presented

to illustrate their performance.
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Figure 3.1 : The zig-zag progress of the steepest descent
method with ELS on a typical quadratic
function with ellipsoidal contours.
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Figure 3.10 : Time varying cost function due
to a non-stationary process
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Figure 3.11

: Geometrical interpretations of the PGA algorithms.

a) algorithm 3.78 b) algorithm 3.82
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Figure 3.12

C'W = f

CtW:O

: Geometrical interpretations of the PGA algorithms.

WK is assumed off-constraints.
a) algorithm 3.78 (allows the error to accumulate)

b) algorithm 3.82 (corrects deviations from the constraii
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L DIRECT REALIZATION OF
REALIZATION | ELS ALGORITHMS
OF ELS USING THE
ALGORITHMS SYMMETRICAL
PROPERTY
3 55 45
5 131 100
10 461 325
20 1721 1150
30 3781 2475
50 10301 6575

Table a :

The required number of multiplications

of ELS algorithms

126




CHAPTER 4

NUMERICAL STABILITY OF AG ALGORITHMS
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4.1 Effects of finite word length

Various algorithms were developed in chapter 3, assuming infinite
precision implementation and no reference was made to the possible
performance degradation due to the effects éf finite word length.
Practical implementation of these algorithms involves finite
precision arithmetic. This results in performance degradation

due to the quantization of the input signals, round-off

errors as a result of each arithmetic operation and quantization

of the digital filter coefficients.

4.2 Numerical stability of ELS adaptive algorithms

The ELS adaptive algorithms (for one sample update) involve the
computation of estimates of the covariance matrix and cross-
correlation vector (if it exists) and then performing an exact
linear search. The quantization of the input signals and
round-off errors due to finite precision arithmetic result in
biased estimates of R and P. This has no effect on the stability
of the algorithm (as long as the properties of R are preserved)
simply because, instead of the original cost function, its

approximation is minimized which yields an approximated solution.

Regarding the step length a it is assumed to be the optimal
step (at iteration K) satisfying the optimality condition. Due
to finite precision arithmetic, the optimal step length cannot
be determined exactly and its computed value might violate the

1 1

optimality condition —Wgakg—m—‘g .
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Note that a, can have any value within this bound. Thus the
larger the eigenvalue bounds the faster would be the accumulation
of errors (due t i '

(due to successive computation of 9yr Ao WK+1).
Logically, the violation of the lower bound has no effect on
the stability of the algorithm, while resulting in the reduced
convergence speed. It is the upper bound on a, that plays a crucial
role in the stability of the ELS adaptive algorithms. The algorithm
will be unstable for a, > ! . To ensure that a, does not exceed

m

the upper bound, a relaxatioﬁ factor 0< @ <1 can be introduced,

so that
= CXaK (4.1)

Obviously, the smaller the &, the slower would be the convergence

speed of the algorithm.

Further errors are introduced because of finite precision implement-
ation of RKWK’ 9y s 39> WK+1’ Yy and dK—yK which result in
performance degradation and possibly instability of the algorithm.
The smaller the number of bits, the faster would be the
accumulation of errors. A possible approach to decrease the
accumulation of errors is to reduce the relaxation factor & in

(4.1). The adverse effect would be reduced convergence speed.
Due to the time limitations of this project, it was not possible

to carry out a detailed analytical study of the numerical stability

of the ELS adaptive algorithms. However, simulation results are
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presented in chapter 5 which were carried out by considering

the effects of finite word length implementation.

4.3 Numerical stability of block data implementation

of ELS and CGM algorithms

In sections (3.2.11) and (3.2.13), it was shown that the
computational load of BIELS and BICGM algorithms can be reduced
substantially by assuming the stationary data and adopting a
parallel processing technique. As a consequence of reduced
computational load, the errors (due to finite precision
implementation) do not accumulate as rapidly as the errors due
to one sample iteration.

In BIELS and BICGM algorithms, a, is computed using two different

K
sets of data samples. For these algorithms to be stable, ay must
satisfy the eigenvalue bounds as mentioned in the previous section.
Therefore, it is important that the size of the data block, over
which a, is computed, be large enough to enable ay to preserve

K
its optimality.

Numerical stability of CGM is discussed in detail in [14, 82]
and various correction procedures are proposed. Theoretically,
the CGM is L-step convergent. A property that can hardly be met
in practice due to the propagation of round-off errors. The
reasons for this are;

a. successive search directions lose conjugacy,

b. a. cannot be computed exactly. While the former results in

K
reduced convergence speed, the latter may cause instability.
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It is shown in [14, 82], that if the initial estimate W1 is

chosen such that the residual vector 9, is close to the
eigenvector corresponding to the minimum eigenvalue of R, then
the ratio aK/aK_1 is always less than unity and the CGM is

always stable with respect to round-off errors. However, this

is not applicable in the case of adaptive implementationof CGM,
since knowledge of such an initial estimate is not known apriori.
In this case an applicable and simpler method to ensure stability,

would be to modify the CGM by setting b, = 0 [in algorithms (3.64)

K

and (3.67)] so that g = gy and selecting a, in accord with (4.1).

K

This results in a relaxed ELS algorithm.

131



CHAPTER 5

RESULTS
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5.1 Introduction

In this chapter application of the accelerated gradient techniques
(developed in chapter 3) to the fieldsof adaptive noise cancelling,
broad band adaptive array processing and adaptive spectral
estimation is discussed and results are presented to illustrate
their pgrformance. The results are obtained by simulations performed

on a VAX/VMS computer using single precision FORTRAN.

The numerical stability of the ELS adaptive algorithm when
applied to an adaptive noise cancelling problem is demonstrated
(and compared with the numerical stability of the RLS algorithm)
by considering the effects of floating point round-off errors

due to the finite precision implementation.

5.2 Adaptive noise cancelling (ANC)

A standard problem which occurs frequently in various fields
such as control, communication, biomedical engineering, etc.

is that of extracting a signal buried in noise (the term
"noise" signifies all forms of interference). The usual method
of estimating a corrupted signal is to pass it through a filter
which tends to suppress the noise while leaving the signal

relatively unchanged.

With regard to the type of signals and the available information
about their statistics, different techniques like match
filtering, kalman filtering can be employed to detect the signal.

However, adaptive noise cancelling technique is used when the
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only available information is the fact that the signal is
uncorrelated with the noise and if a secondary source is
available which yields to a reference input correlated in

some unknown way with the primary noise.

Figure 5.1 shows the basic problem and its adaptive noise
cancelling solution [89]. A signal S is transmitted over a
channel to a sensor which also receives a noise n
uncorrelated with the signal. A second sensor receives a noise
x uncorrelated with the signal but correlated in some unknown
way with the noise N, This sensor provides a reference input

to the canceller.

Assume that S, ngs % and the filter output y are statistically
stationary with zero means and S is uncorrelated with ng and

x. It follows,

2 2

e = (no - y)2 + ZS(n0 -y) + S

£(e?) = EC(n_ - B + 2E(S(ny - y)) + E(S7)

E(ez)

E((n, -y)?) + E(sD) (5.1)

The signal power E(Sz) will be unaffected as the filter is

. 2
adjusted to minimize E(e™).
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Therefore,
. 2 )
min E(e”) = min E((no - y)2) + E(Sz) (5.2)

As a result of (5.2), minimizing E(ez) corresponds to minimizing
E((n0 - y)z). The filter output y is then the best least squares
estimate of n, and e is the best least squares estimate of S.

In other words, minimizing the total output power minimizes the

output noise power and maximizes SNR [89].

In a non-stationary situation, the signal S, the noise ng and
the reference signal x can be statistically non-stationary. In
this case minimizing the mean squared error corresponds to tracking

of a variable minimum point.

The advantage of the ANC technique is that no apriori knowledge
of S, ng» X OT their interrelationship is required. ANC technique
has been applied to various problems such as ECG and EEG in
biomédical engineering, echo cancellation on long distance
telephone lines, infer-symbol interference suppression, flight
deck communication systems to remove the aircraft noise,
suppression of high level transients and broad-band noise trans-
ducers in process control, improvement of auditorium accoustics,
cancelling antenna sidelobe interfererce, cancelling periodic
interference (eg. in the playback of speech or music 1in the

presence of tape hum or turntable rumble), etc.[2,3,5,7,8,89].
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The cost function for the system shown in Figure 5.1 is,

J(W) = WtRW -ZPtW + C (5.3)
where,
2

J(W) = E(e“) Expected value of the output power

t
R = E(XX") L by L data covariance matrix
P = E(dX) L-vector of cross-correlation
c = E(dz) Constant scalar

W = L-weight vector of the adaptive filter
X = L-vector of the tap voltages (data vector)

d = Primary or desired signal

The main task of an adaptive algorithm is to minimize (5.3) as

data becomes available. Since R and P are not known apriori,

their statistical estimates are used.

5.2.1 Statistically stationary data

In order to compare the speed of convergence of the ELS adaptive
algorithm (3.14) and the RLS algorithm, computer simulations

were carried out using single precision FORTRAN.

The primary input (the desired signal) was taken to be a sine
wave of amplitude 4.5 corrupted by additive Gaussian white noise of
relative power 20dB (ie. SNR=-10dB). The reference signal was obtained

by a second order autoregressive (AR) filter with its input Gaussian
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white noise of power 20dB, so that,

x(K) = nO(K) + u1x(K-1) + uzx(K—Z) (5.4)

where, u, and u, are the autoregressive (AR) parameters.

The size of the TDL adaptive filter was equal to ten. The RLS

and ELS adaptive algorithms were initialized according to,

RLS ; «

"
-_—
o
e
1l
RN
o
o
—
=

ELS 3 R, = X, X, + I, W, = (0,0, ..... )

Note that in the case of ELS adaptive algorithm, the error
signal ek is not involved in updating the weight vector.
Therefore, the block diagram for adaptive noise canceller is

modified as is shown in Figure 5.2.

Example 1
With AR parameters equal to u, = 0.6 and u, = 0.05, the

corresponding eigenvalue ratio (EVR) was 20 (ie. the ratio

of the maximum to the minimum eigenvalue of the 10 by 10 data

covariance matrix).

Figures 5.3-5.4, 5.5-5.6, 5.7-5.8 show the learning curves
(averaged over 20 individual runs), the convergence of the norm
of the weight vector IWKI and the output of the noise canceller

(ie. eK) for ELS and RLS algorithms respectively.
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Example 2

To demonstrate the effect of EVR on the initial speed of
convergece of the ELS algorithm, the AR parameters were set to

u, = 0.9 and u, = 0.05. This resulted in EVR = 402.
Figures 5.9 through to 5.14 present the results for ELS and
RLS algorithms (based on the same order of presentation as

example 1).

5.2.2 Statistically non-stationary data

The tracking capability of the ELS algorithm (3.16) and the

RLS algorithm was tested by the following experiments.

Examgle 3

Signal, noise and reference inputs were generated as explained
in the previous examples, but this time the signal amplitude,
nolse power and AR parameters were abruptly changed after a
specific number of iterations. Table 5.a outlines the values

of the various parameters over 500 iterations.

Figures 5.15 through 5.20 show the learning curves (averaged
over 20 individual runs), tracking capability of |WK| and the
output waveforms for ELS algorithm (3.16) (R and P were

estimated by 3.15C) and RLS algorithm.

Example 4

The same as example 3 but the noise power was kept constant.
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Table 5.b outlines the values of the various parameters during

500 iterations.

Figures 5.21 through 5.26 depict the results for ELS algorithm
(3.16) and RLS algorithm (based on the same order of presentation
as example 3). Note that the tracking behaviour of the ELS and
RLS algorithms depend on the value of factor ¢ . The smaller

the & , the noisier would have been the results.

5.2.3 Adaptive noise cancelling using lattice filter

One of the advantages of using a lattice filter instead of a
TDL is to decorrelate the input signal (reference signal), thus
reducing the EVR. This is the main reason that the lattice gradient

algorithms converge faster than their TDL counterparts.

As mentioned in section (3.2.16), using a lattice filter
(instead of a TDL) and employing an ELS adaptive algorithm would
have no effect on the initial speed of convergence for reasons

that were discussed in that section.

However, to compare the performance of ELS and a conventional
lattice gradient algorithm (see equations 2.73 - 2.78), the

following simulation was carried out.

Example 5
The same as example 2 but TDL was replaced by a 10-stage lattice

filter. Figures 5.27 and 5.28 show the learning curves (averaged
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over 20 individual runs) for ELS and a conventional lattice

gradient algorithm (see equations 2.73 - 2.78) respectively.

From these results, it is clear that, although the ELS algorithm
performs better than a conventional lattice gradient algorithm,
its performance is degraded with respect to its TDL implementation
(see Figure 5.9). This verifies the remarks made in section

(3.2.16).

5.2.4 Adaptive noise cancelling using BIELS and BICGM algorithms

To examine the performance of BIELS and BICGM algorithms (3.60
and 3.67) simulations were performed as is explained in the

following examples.

Example 6

The signal amplitude (a sine wave) = 4.5, noise power = 10dB,

filter size = 5, AR-parameters u, and u, = 0.6 and 0.08,

1
EVR = 12, and the block size = 50 data samples. The weight

(0,0, .....). Figures 5.29 and

vector was initialized as W1
5.30 illustrate the behaviour of the norm of the weight vector
for BIELS and BICGM respectively. As it is expected, the

convergence behaviour of both algorithms is relatively similar

at low EVR.

Example 7

The same as example 6, but the AR-parameters were, u, = 0.9,

u, = 0.08 and EVR = 365. Figures 5.31 and 5.32 show the
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convergence of the norm of the weight vector for BIELS and BICGM

algorithms respectively.

These results clearly demonstrate the superior performance of
BICGM algorithm and its quadratic convergence behaviour. Also,
these results reveal the most interesting property of BIELS
algorithm which is its rapid initial rate of convergence
irrespective of EVR (consider the convergence behaviour of the

algorithm over the first ten iterations).

Note that in these simulations the size of the block of data

was 50. The larger the block size, the closer would be the
performance of the BIELS and BICGM algorithms to the performance
of their non-stochastic versions. A small block size deteriorates
the performance and may result in instability, mainly because

the step length, . is computed using two different blocks of

data.

5.2.5 Finite precision implementation effects

Recall that, the results presented so far in this chapter were
obtained by simulations performed on a VAX/VMS computer using

single precision FORTRAN, ie. 32 bit floating point arithmetic

operations.

To examine the numerical stability of any algorithm the
simulations can be performed using a micro-computer with

smaller processor size or writing the programs using Assembly
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language thus allowing costrel of precision.

Alternatively, the simulations can be carried out using a high
level language on any computer system but taking into account
the effects of the errors that would have been introduced as

a result of lower precision operations. This technique can
demonstrate (although not precisely) the performance degradation

as a result of finite precision operations.

The error introduced by floating point operations can be modelled

as follows [96].

fl(xy) = xy(1+em) 5.5)
5.5
fl(x+y) = (x+y)(1+e8)

where, e and e, denote errors due to the floating point
multiplication and floating point addition and can be modelled
as zero mean white noise independent of x and y, xy. It is shown
in [97] that the variance of e and e is approximately given

2B

by 0.18 * 2", where B is the number of bits used to present

the mantissa. Note that the e and e, are statistically

independent.

To illustrate the effects of floating point round-off errors

on ELS adaptive algorithm, the following simulation was carried

out.
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Examgle 8

The signal amplitude (a sine wave) = 4.5, noise power = 20dB,
filter size = 5, AR-parameter = 0.9 and 0.08, EVR =365 and the

weight vector was initialized as W1 = (0,0, «.... ). Two

-16

independent white noise sequences of variance 0.18 * 2 ,

(ie. B = 8bit) were added to all required arithmetic operations

(in accord with (5.5)) in order to illustrate the effects of
floating point round-off errors. Figure 5.33 shows the learning
curve (averaged over 20 individual runs) for ELS adaptive algorithm
(3.16) --- Ry and PK were computed by (3.15C) with « = 0.99.

From this result it is clear that the algorithm is stable.

The same experiment was repeated for RLS algorithm with forgetting
factor equal to 0.99. The algorithm was unstable (rapidly diverging)

for B = 8 and B = 16 bits. Figure 5.34 shows the learning curve

for B

20 bits verifying the sensitivity of the RLS algorithm
to the effects of finite precision arithmetic. This is a well

recognised feature of the RLS algorithm.

The above simulations by no means demonstrate the precise effects
of floating point errors (and quantization errors due to
quantizing the input signals and filter coefficients). However,
they give an indication of relative numerical stability of ELS

adaptive algorithms with respect to standard RLS algorithms.
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5.3 Broad band adaptive array processing

Adaptive arrays are becoming increasingly important in such
fields as radar, sonar and communications. The fundamentals

of adaptive arrays are by no means new, but applications in
practice have been limited both by technology and lack of

robust algorithms suitable for real time operations. However,
today's computing power cost enables complicated signal
processing in real time at an economical cost. This has led

to an increased interest in designing robust and computationally

demanding algorithms for adaptive array processing (eg. RLS,ELS).

In order to examine the performance of an ELS adaptive algorithm,
when applied to a linearly constrained problem, the practical
broad band array processing system with the look direction

constraints [60] is simulated.

The advantage of imposing the look direction constraints on
required

array processing is that the only apriori/information is the

desired "look" direction (or the direction of the arrival of

the desired signal). The technique ensures that a chosen frequency

resporse of the overall array processor is maintained while the

interference and the background noise are minimized. For detailed

explanations see [5, 60].

Referring to Figure 2.7, the augmented cost function for the

broad band antenna system under look direction constraints can

be expressed by ,

Jwm= whrw + Yt - F) (5.6)

144



where,

t
R = E(XX") mL by mL data covariance matrix
t
Y~ = L-vector of the Lagrange multipliers

t .
C” = mL by m matrix of the linear constraints

f = m-vector of the look direction
X = mL-vector of the tap voltages (data vector)
W = mL-weight vector

L = number of sensors

3
"

number of taps per sensor

Computer simulations were performed for a linear array of five
elements, each being processed through a filter of five tap weights.
The environment had three broadband point noise sources of power
1.0, 10.0 and 10.0 located at 0, 30, 45 degrees respectively.

The background and sensor noise was set to 0dB per sensor. The

look direction was assumed to be O degrees (normal to array).

The broad band signals were generated by passing Gaussian white
noise sequences through three digital bandpass filters with
different passbands and centre frequencies. There was no correlation
between the desired signal (incident at 0 degrees) and two strong
interferences (incident at 30 and 45 degrees). Figure 5.35 shows

the power spectrum of the incident signals (128 data samples).
Simulations were carried out using the constrained LMS algorithm

(2.114) [5, 60] and the constrained ELS algorithm (3.83). In

the case of the LMS algorithm, the convergence factor.a, was set
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to 0.00001 (note that the eigenvalues of the covariance matrix
were not computed and the step size was chosen by trial and error
to achieve the fastest convergence and at the same time ensuring
the stability of the constrained LMS algorithm). In the case

of the constrained ELS algorithm (3.83), the covariance matrix
was estimated by (3.13), an equal data weighting. Both algorithms

were initialized according to W, = C(CtC)-1f.

1
Figures 5.36 and 5.37 show the power spectrum of the array output
sequence (128 data samples, ie. 128 iterations) obtained from

LMS and ELS algorithms respectively. Complete suppression of

the interferences by ELS algorithm and far less noisier output
spectrum (unlike the output spectrum when the LMS algorithm

was used) verify the rapid speed of convergence of the algorithm.
However, the price to pay for this result is increased complexity
which can be a drawback for applications with simplicity

requirement.

5.4 Adaptive spectral analysis by eigenvalue-eigenvector

decomposition of the data covariance matrix

Eigenvalue-eigenvector decomposition (EED) algorithms are well
recognised in yielding the most accurate spectrum of narrow

band signals in additive noise. These algorithms are based on

the Pisarenko's method of spectral estimation [90, 91] and involve
the computation of the minimum eigenvalue and the corresponding
eigenvector of the data covariance matrix. The EED algorithms
offer tolerance to the correlated and noisy signals (unlike the
maximum likelihood and the maximum entropy techniques which can

lead to severe bias and loss of resolution due to the correlated
signals and noisy environment).
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Applications of the EED algorithms include such fields as
radar, sonar and communications whenever there is a need to
detect and remove (or enhance) narrow band signals which are
either buried in broad band noise or are interfering with the

broad band desired signal.

Recently, several authors have addressed various techniques for
adaptive implementation of Pisarenko's method [65-76, 92-95]
for estimating the frequency of the sinusoids buried in broad
band noise and estimating the directional spectra of narrow

band signals received by spatially distributed arrays of sensors.

In this section the application of the method of ELS to the above
problems is discussed and simulation results are presented to
illustrate its performance. The fundamentals of Pisarenko's
method are not discussed here, although detailed explanations
are given in [90, 91]. Reference [65] presents an extension of
Pisarenko's frequency estimation method to the estimating of

the directional spectra of narrow band signals received by an

array of sensors.

5.4.1 Adaptive harmonic retrieval by method of

exact linear search

Referring to Figure 2.8, the augmented cost function for the

quadratically constrained adaptive filter is given by,

J(W,Y)= wERW - YWt - 1) (5.7)
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where,

t
R = E(XX") L by L data covariance matrix
X = L-vector of the tap voltages (data vector)
W = L-weight vector

Y = Lagrange multiplier

Adaptive minimization of (5.7) by the method of ELS involves
the quadratically constrained adaptive algorithm developed in

section 3.4.

In this case the computational requirement of algorithm 3.91
can be significantly reduced by assuming stationary data and
noting that the eigenstructure of R is invariant to any scalar

multiplication of R. As a result R can be estimated by,

K t
RK - Z xixi (5.8)
i=1

Furthermore, using the shifting property of the data vector

XK and symmetrical structure of RK’ RK can be updated with only

L multiplications per algorithm iteration. Estimating RK by (5.8)
results in the increase of its norm as K increases but this has
no effect on its eigenstructure. In addition, the scalar

WiRW in algorithm 3.91 may be computed either as
t
K

3
"

K

R W

2 . .
m, = W Wy orf my %zzK’ where Y 18 the filter output.

In the following examples the weight vector is initialized to
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t
W1:(1, 0, 0, 0 ..... ) and the size of the filter is chosen so
that, L >2n + 1, where n is the number of the distinct sinusoids.
The algorithm is run for a finite number of iterations (eg. 100

’

500) and the AR-spectrum is computed as,

1
| W D(F) |
where,
Db(f) = (1, 92 gmiwmf . g-iLonfy (5.10)

Example 9

In this example the signal was a sinusoid of normalized frequency
0.2 in additive Gaussian white noise. The signal to noise ratio,
SNR, was 10dB and the filter size L = 3. Figure 5.38 shows the
spectral estimates for K = 100 and K = 500. The broken and the
solid curves represent the spectral estimates for K = 100 and

K = 500 respectively.

Example 10

The same as example 9 but the signal contained two sinusoids
of equal power and normalized frequencies of 0.18 and 0.38. The
filter size and the SNR were L = 5, 10dB respectively. Figure

5.39 shows the spectral estimates for K = 100 and 500 (broken

and solid curves).
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Example 11

The same as example 10 but SNR was 0dB. Figure 5.40 shows the

spectral estimates for K = 100 and 500 (broken and solid curves).

These results clearly verify the rapid initial speed of convergence
of the algorithm both at high and low SNR conditions. Further
simulations revealed that the algorithm was able to peak up the
spectral peaks only after 20 to 50 iterations under various SNR
conditions, while a good spectral precision was achieved about

100 iterations.

5.4.2 Adaptive directional spectral estimation by

method of exact linear search

Figure 2.9 shows the constrained narrow band array system. The

augmented cost function for this system is given by,
to,+ t, +
J(WY)= WRW - Y WwW -1) (5.11)

where,

R = E(X+Xt) L by L data covariance matrix (Hermitian)
X = L-vector of the tap voltages (data vector)

Y = Lagrange multiplier

Jos complex conjugate

Application of the method of ELS to this minimization problem

results in a complex version of the algorithm 3.91 which is

150



outlined below,

9% = MM - RW,

t

_ + t, +
(5.12)
Mewr = Mg+ a9
_ ~ Nt ~y %
wK+1 - wK+1 /IWK+1WK+1|
t +
where, me = WKRWK' Assuming stationary data and noting that the

eigenstructure of R is invariant to any scalar multiplication

of R, R can be estimated by
X +,t
R, = :z: X XS (5.13)
i=1

The growing norm of RK has no effect on its eigenstructure. Also,
- t +
the scalar m, may be computed either as m = WKRKWK or
+ . . . "
m ;E}KYK’ where Y 1is the filter output. Note that R is Hermitian

and positive definite, thus all its eigenvalues are real.

A detailed theoretical analysis of the eigenfilter spectral
analysis is presented in [65]. However, to appreciate the

simulation examples presented in this section, a brief explanation

will be useful.

Assuming n narrow band incident signals, then the covariance

matrix has n eigenvalues corresponding to n sources. Also, there
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exists L-n eigenvalues corresponding to the power of the
additive noise (background and sensors noise). It can be shown
that L-n eigenvectors corresponding to the minimum eigenvalue
are orthogonal to all source direction vectors. As a result one
can compute the eigenvector of R corresponding to its minimum

eigenvalue. The zeros of the function
t *
S(B) = D (B)W (5.14)

. . . * . .
give the source directions. Where W 1is the eigenvector correspond-

ing to the minimum eigenvalue and

jmd j2m(L-1)d
pt) = (1, e 1 S8 . e 1 sin 8, (5.15)

is the direction vector which describes the phase shift at each
sensor due to an incident signal. d = sensor spacing in
wavelength, 8 is the bearing of the narrow band incident signal

and 1 is the wavelength.

A better indication of source directions is given by the eigen-

vector spectrum [65],

_ 1 (5.16)
26 = PRGN

This spectrum has strong peaks in the directions of sources due

* - - .
to orthogonality of D(B8) and W at B8 = bearing of incident signals.
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In the following examples the weight vector is initialized to

t

Wy=(1, 0, 0, .... ) and the size of the filter is chosen greater

than the number of incident signals. The algorithm is run for
a finite number of iterations (eg. 150, 200) and the directional

spectra (DS) is computed by (5.16).

Example 12

In this example the incident field contained three narrow band
signals , in additive Gaussian white noise, with bearing 10,

45, and 60 degrees at SNR = 15, 20, 15 dB respectively. The signals
incident at 45 and 60 degrees were correlated with a mutual
correlation coefficient 0.72. The noise per sensor was 0dB (all

the noise terms were statistically independent). The narrow band
signals were generated by passing three Gaussian white noise

through three band pass filters.

Figure 5.41 shows the DS-estimates for K = 150 and 200 (broken

and solid curves respectively).

Example 13

The same as example 12 but in order to examine the effect of

a low SNR condition, the signal to noise ratios were set to

10, 15, 10 dB respectively.

Figure 5.42 shows the DS-estimates for K = 150 and 200 (broken
and solid curves respectively). These results demonstrate the
ability of the algorithm to estimate the spatial spectra,

offering a good precision after a short number of algorithm

iterations.
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It must be noted that the peaks heights bear no relationship
to signal power. Estimates of the source powers can be obtained
(if required) by a least squares fit to the array data, based

on the apriori knowledge of the source directions [66].
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K >1 K > 200| K > 350
(04 0.99 0.99 0.99
SIGNAL POWER 2.0 40.0 10.0
SIGNAL FREQ. 0.2 0.2 0.2
NOISE POWER 10.0 20.0 10.0
U, 5 U, 0.9, 0.05 |0.6, 0.35]0.45,0.@5
EVR 402 207 8.0
W | 1.1 1.28 1.36
Table 5.a : Values of the various parameters

over 500 iterations
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K >1 |K > 200 [K > 300 [K > 400

o 0.99 0.99 0.99 0.99
SIGNAL POWER 2.0 20.0 60.0 20.0
SIGNAL FREQ. 0.2 0.1 0.05 0.3
NOISE POWER 10.0 10.0 10.0 10.0
Uy 5 u 0.6, 0.05 (0.7, 0.05|0.8, 0.05|0.9, 0.05

EVR 20 37 87 402
|w*| 1.2 1.24 1.28 1.25
Table 5.b : Values of the various parameters

over 500 iterations
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CONCLUSIONS
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The major objective of this thesis was to develop rapidly
converging adaptive algorithms based on the accelerated
gradient techniques for various applications of adaptive
signal processing. The main emphasis was on the simplest AG
technique, method of steepest descent with ELS. Because of its
simplicity and its rapid initial convergence speed, the ELS

technique appears to be a suitable approach to "relatively

well conditioned problems".

The convergence analysis of the algorithm indicates its slow
progress, in the case of the large condition numbers, to
locate the minimum point, but reveals no information about
what happens in the earlier iterations. It is illustrated in
various optimization text books eq. [98], that the initial
convergence speed of the modified Newton technique and ELS
technique is comparable and both techniques achieve the same
degree of accuracy within the first few iterations though the
final convergence rate of ELS algorithm is severely affected
by eigenvalue spread. This is the main disadvantage of the ELS

technique.

Based on the above discussion, it is clear that the convergence
speed of the ELS adaptive algorithms will deteriorate for
extremely large condition numbers (eg. in the order of thousands).
In this case faster convergence can be obtained by using RLS

algorithms or preferably least squares lattice algorithms with

the same computational requirement.
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On the positive side, ELS adaptive algorithms appear to be effective
minimization techniques for "relatively well conditioned” problems.
Simulation results presented in chapter 5 clearly demonstrated

the close performance of the standard RLS and ELS adaptive
algorithms for eigenvalue ratios of up to several hundreds

(which can be regarded as a high figure). Nevertheless, with

a computational load equal to that of RLS algorithms and a
convergence speed affected by eigenvalue spread of the data
covariance matrix, ELS adaptive algorithms can offer nothing

but a better numerical stability over standard RLS techniques.

This was verified by simulation results presented in chapter

5 which were obtained by considering some effects of the

finite precision implementation.

This property of ELS adaptive algorithms is worth investigating

in detail both analytically and experimentally.

The ELS algorithm can be modified by using the concepts of the
conjugacy and linear independence. The result will be a conjugate
gradients algorithm. A wide variety of CG algorithms are available
and can be implemented adaptively. But one sample update
implementation of these algorithms involves two cycles of
computations. The first cycle involves the computation of

the first and the second order statistics for each new data

sample and the second cycle is to compute the least squares
solution at that iteration. This type of implementation is a
drawback for on line signal processing due to increased hardware

complexity associated with the implementation and the attendant
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increased computing burden.

However, adopting block data adaptation and a parallel processing
technique, various AG algorithms can be implemented efficiently
for processing of stationary data. A typical example is the

BICGM algorithm presented in chapter 3. With a computational
requirement in the order of L and its consistent convergence
properties, the algorithm is well suited for processing of long

length, statistically stationary data.

In general, to take full benefit of the convergence properties
of CGM algorithms in adaptive signal processing, block data

adaptation and parallel processing techniques must be employed.

On the other hand, computationally efficient AG techniques can
be developed for adaptive processing of short length stationary
(or non-stationary) data by combining the ELS technique with

a CGM as is explained below.

Recall that, the ELS technique offers rapid initial convergence
speed and very slow convergence speed in the neighbourhood of

the minimum point if the eigenvalue spread of the data covariance
matrix is very high. Also, considering that the CGMs are L-step
convergent, a property that can be preserved by choosing an
appropriate initial estimate of the weight vector. Then the
following unconstrained (though the idea can be extended to the

constrained problems) adaptive algorithm can be proposed.
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I. Initialize W1

II. For K =1, 2, ..... up to a finite number N update the weight
vector by means of an ELS technique.

III. For K = N, WK corresponds to a good estimate of the weight
vector. Employ a CGM to compute the least square solution w;.
If N is large enough, then the estimates of the sample covariance
matrix and sample cross correlation vector will be unbiased and
in this case W; :rW*. In practice unbiased estimates of the

covariance matrix and cross correlation vector can be obtained

after 2L to 3L iterations by using estimators (3.13) and (3.15b).

The above algorithm will be suitable for adaptive joint processing

purposes where only a short length data is available.

In conclusion, the main contribution of this thesis was to

develop various adaptive algorithms based on AG techniques
suitable for "on line signal processing". The application of

the proposed algorithms to the fieldsof adaptive noise cancelling,
adaptive array processing and adaptive spectral estimation was
discussed and extensive simulation results were presented to

verify the theoretical findings of the thesis.
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APPENDIX 1

Recursive Least Squares Algorithm (RLS)

Consider the weighted least squares optimization problem,
K
t

Y Kked 2
minimize 4=, o (di- WK+1Xi) (1.1)

The solution to the problem (1.1) is,

-1
= 1.2
Weer = R P (1.2)
where,
K

R = Zu ot x xt (1.3)

K i=1 11

_ K-1 (1.4)

Py =521 7 di%y

It follows directly from (1.3) and (1.4) that Ry and PK obey

the recursions,

) t (1.5)
RK = OZRK_1 + XKXK

- X (1.6)
Py = aP, 4+ d X¢

Application of matrix inversion lemma to (1.5) yields [81],
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-1 t -1

_’] _1
R R 1% kR -1
kK = 1 Req- ] (1.7)
o r— :
o+ XKRK-1XK

From (1.2), we have

RMer = Py (1.8)

Substitute (1.8) into (1.6) to obtain,

RKWK+1: ORK-1WK + deK (1.9)

Substituting (1.5) into (1.9) yields,

R, W = (R

t
Mt - xKxK) wK + d X (1.10)

K K K

-1

Multiplication of both sides of (1.10) by R

results in,

W, + R, dX (1.11)

. -1 _ . . I _ _
since RK RK = I. Using relations Y = WKXK and ey = dK Yy

in (1.11) yields,
W =W, +R X, e (1.12)

which is the RLS algorithm.
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In order to ensure that R;1, given by (1.7), be a positive

definite matrix for i< L, RK

is initialized as

)
]

1 JI (1.13)

where, & is a positive quantity, eg. 100, and I is the identity

matrix.

The exponential weightingOt!K_l is included to enable the adaptive
estimators to track the data non-stationarities. Choosing
&= 1 corresponds to equally weighted data samples. In this case

the adaptive estimators for RK and PK are expressed by,

1K t
RK = -K—Z xixi (1.14)
i=1
1 (1.15)
_ 1 1.15
PK K dixi
i=1

Note that the estimators (1.3) and (1.4) result in biased estimates
of R and P. These estimators can be modified to yield unbiased

estimates by scaling them in accord with the formulae,

- K-iy yt
R, = ) o X, X{ (1.16)
-a o
K .
p - -« ot d X, (1.17)
K = —. § : i
1
1-o
i=1
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APPENDIX 2

The Lattice Gradient Algorithm

Consider the cost function for stage, i+1, with respect to both

FD and BD residual energies,

i+1 1 2 i2 i+1 1 1
I = Elb, D1+ EL(ROST - kT EL(b ) (F)]

N R = (O I (G § (2.1)

Taking the instantaneous gradient of (2.1) with respect to

1+1

kK yields,
i+1 i1 1+1 1,2 1 2 2
V3 = 2 by g+ ke LRDT + (b )7 (2.2)
Rearranging (2.2) we obtain,
i+1 1 i i+1 i i+, 1 2
‘7JK = —fK(ZbK_1 - kK fK) + kK (bK—1)
i 1 i+1 .1 i+1 1 2 (2.3)
= flby g+ (B g =g i) ke (Byy)

Using the equation for BD residuals in (2.3) results in

i i i+ it1 i (2 (2.4)
o1 " fx b, + ky (bK_1)
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Rearrange (2.4) to obtain,

1+ 1 i i+1 i 1,141
J = - - -
VI, by_q (Fy = ke by_1) - e b (2.5)

Using the equation for FD residuals in (2.5) yields the simplified

equation for the instantaneous gradient for (i+1) -th stage,

i+1 1 i+1 i, 1+1
v, = (b4 i+ fe b ) (2.6)
To prove that the step size parameter al+1 is inversely proport-
ional to the sum of the FD and BD prediction error power, take

the gradient of Jl+1 with respect to al+1 and equate it to zero

which results in

i+1

i (2 i2 (2.7)
E[(bK_1) ] + E[(fK) ]

Because pl is not known apriori, its estimate'ﬁi is used which
is calculated recursively as data becomes available. A suitable

estimator is the one given by (2.74).



APPENDIX 3

Convergence of the Method of Steepest

Descent with Exact Linear Search

Assume that R is a symmetric positive definite matrix with M
and m being its maximum and minimum eigenvalues. It follows
that for any vector V #Z 0 (an eigenvector of R) the following

inequalities are satisfied [14, pp. 11-45].

V|2 < vy M) 2 (3.1)
2 £ -1 2
Vg vRTvg Y (3.2)
M m
vt (3.3)
m K VRV M
2
V]
1 |v|2 1 (3.4)
- < t—< -
M VRV m
_ 2
verv vER TV (M+m) (3.5)
1 < < —
vz v)? M

215



Consider the quadratic function,

IW) = woRW - PEW + ¢ (3.6)

where, R is a symmetric positive definite matrix. The function

J(W) has a unique minimum which is the solution of
VI(W) = RW = P = 0 (3.7)

which is accordingly given by

W= Rp (3.8)
or
RW* = P (3'9)

Define the residual vector (or error vector) of J(W) at W by,

g=-VJIW) =P - RW (3.10)

Substitute (3.9) into (3.10), then

g = RIW - W) (3.11)

Defining the vector q by

q=W -W=R g (3.12)
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and using the Taylor expansion formula yields,
J(W+g) = J(W) - Zth + qth (3.13)

It follows,

IW) = JOH+W W) = (w=w O ER(W-w™) (3.14)
or
IW) - IW) = gt g (3.15)

Referring to the inequalities (3.1) and (3.2), we have,

alw - W12 < A - 3" < mpw - w2 5169
2 * 2

lg|” < IW) - IWH K g (3.17)

M m

where, M and m are the maximum and the minimum eigenvalues of

R.

Now, with g=q, the function J(W+ag) can be expressed as,

t
J(W+ag) = J(W) - Zagtg + azg Rg (3.18)

Equating the gradient of (3.18) with respect to a to zero yields,

a = gtg/gth (3.19)
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Substitute for a from (3.19) into (3.18) to obtain,

4
J(W) - J(W + ag) = Igl

(3.20)
gth
Combining (3.20) with (3.15) yields,
[9l* .
J(W) - I + ag) 9 (I(W) = J(W ) (3.21)
(g"Rg) (g"R™'g)
Rearranging (3.21) we have,
I+ ag) - IW) < 1(IM) - IW)) (3.22)
where,
4
L =1 . ldl (3.23)
(gRq) ('R 'g)
Substitute from (3.5) into (3.23) to obtain,
1 =1 - Wm (3.24)
(M+m)
2
1 = (M - m) (3.25)
(M + m)2

With regard to the above analysis, it can be stated that after
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each ELS the value of the quadratic function is closer to its
optimal value by a factorl . The above analysis can be used to
express the value of the quadratic function after the (K+1)-th

iteration in terms of its initial value and its optimum value.

So that,
* K *
J(WK+1) - J(W )ig 1 (J(W1) - JW)) (3.26)

where, J(W1) is the initial value of the quadratic function.
*

Since 1<1 it follows that J(WK) --> J(W ) linearly with

constant 1. Also, J(WK) is a quadratic function of W, .

* Y
Therefore, W, --> W linearly with a constant 1?.
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APPENDIX 4

CONJUGATE GRADIENTS METHOD

Conjugacy and Linear Independence

A set of vectors qy are said to be mutually conjugate with respect
to a positive definite matrix R if and only if R-orthogonality

condition,

t .
qKqu =0 K # j (4.1)

t

is satisfied. For K = j, I

qu is strictly positive if

Ay Z 0 for all K.

A set of conjugate vectors are linearly independent and there

can be no more than L vectors mutually conjugate with respect

to any L by L matrix R. This useful property of mutually conjugate
search vectors implies that any point in a L-dimensional space

can be reached by a suitable linear combination of at most L

mutually conjugate search vectors.

Quadratic Termination

Consider the equation,

WK+1 = WK + aKqK

where, a, is the exact step to the minimum along ShE
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Define

OW

1]
=

|
=
1]
Q

K K+1 K
6gK = gK+1 = QK (Q.Q)

where, 9y is the gradient of the quadratic function with respect

to WK' It follows,

R(SWK = b9y (4.5)

The gradient Iy is related to 91 by,

K-1
% = 9juq * Y. 09 J

i=j+1

1]

o
T
-

(4.6)

Multiply (4.6) by qg to obtain,

K-1
t t t )
Q. = q.q. . + 2: - 0q.
ngK ngJ+1 qJ gl J
i:J+1

(4.7)

"
o
e
|
—_

Note that ELS implies that,

0
—_ J(WK + 3,4,

-0 (4.8)
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As a result of (4.8), the first term on the right hand side

of (4.7) is zero. Using (4.5) and (4.3) in (4.7) yields,

K-1

t t

. = . W.

959 Z qJRﬁ :
1=j+1
K-1

= Z aiQ.qu
iz j+1

=0 ’ j =0, K-1 (4.9)

The equality (4.9) follows from the conjugacy property (4.1).

Set K = L, then

9:9, = 0, jg=0,1L -1 (4.10)

If the gradient vector 9, # 0, then it must be orthogonal to
all qj : J=0, K- 1. But q\j sy J =0, K- 1 are linearly
independent and consequently (4.10) implies that there exists
L + 1 linearly independent vectors in an L dimensional space.
But this is not possible and (4.10) proves that g, = 0,

which is proof of quadratic termination due to ELS and linearly

independent direction vectors.

The Construction of Conjugate Search Vectors

A set of mutually conjugate directions can be obtained by taking

9, as the steepest descent direction and computing each subsequent
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direction as a linear combination of 9y and the previous search

directions 1ie.

K-1
9 = + gy + Z bquj (4.11)
j=0

As a result of (4.11), 9y is a linear combination of
g » g 9 cenee- 9 s and

. =0 i < K (4.12)
gKgl - 1 .
Also, qK can be constructed to be conjugate to Qg s cveee
as follows. Multiply (4.11) by q?R and use the conjugacy
condition (4.1) and the relationship

59K = R(WK+1 - WK) = aquk , to obtain

t t K-1 t
q;Rq = + q;Rg, + Z bKququ
j=0
1
= + t t
— (95,4 = 95 9 * By;95Ray

a

K
for 1 = 0, cveve.. K-1. (4.13)

The equation (4.12) implies that the first term on the right
hand side of (4.13) vanishes for i < K-1. Therefore, to make
q conjugate to qQ; for i <€ K-1, simply choose bKi equal to
zero, which results in one non Zzero coefficient bK,K-1

= i ccessary to obtain a value for
(denote bK,K—1 = bK—1)' It is ne y

by _1 to ensure that q, be conjugate to q, , - Multiply (4.11)
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. . t
by 6gK_1 and apply the orthogonality condition 6gK-1qK = 0
to obtain,
_ t t
0= 09y 19 *+ by_q 89191 (4.14)
or,
t
b - 0919
I T (4.15)
K-1 t
09k 19
Therefore, q, can be written as,
Y = I * Py 1% 1 (4.16)

Note that there are various possible choices for bK (which can
be obtained by using the orthogonality of the gradient vectors

and the definition of the direction vectors) given by

5t g
_ %1%
bK-1 = (4.17)
E R
Ik -1
IgKlz (4.18)
by_q = .
lg, ,1°
K-1

For a detailed explanation of constructing conjugate search

vectors see [13, 14].
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Convergence of CGM

In theory the CGM is L-step convergent if exact arithmetic is

used. However, in practice rounding errors cause the computed
directions to lose conjugacy, and CGM behaves like the ELS

method requiring a large number of iterations to converge.
Furthermore, in the case of an ill conditioned system, CGM requires

more than L iterations to converge, eg. 2L to 3L iterations.
To ensure the L-step convergence property of CGM, a restarting

strategy must be used in order to preserve the conjugacy of the

direction vectors q [13, 14].
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ADAPTIVE SIGNAL PROCESSING USING A MODIFIED GRADIENT ESTIMATION TICHNIQUE

M Yaminysharif and T S Durrani

Abstract

In this paper an algorithm based on the gradient descent approach is proposed
for adaptive signal processing. The proposed algorithm has the advantages of
low camputational overheads, and fast convergence properties - very close to
those of the Oonjugate-Gradient-Method (QGM). Besides it does not require an
adhoc choice of step length and is applicable to both single channel and multi-
channel data. In this paper extensive camputational results are presented to
"illustrate the algorithm's performance in terms of convergence properties, and
its applications in adaptive noise cancelling, array processing, harmonic
retrieval and eigen spectral analysis. The aspects of camputational camplexity
of the proposed algorithm are discussed when used in different applications of
adaptive filtering and are compared with alternative techniques.

1 Introduction

Conventional techniques for adaptive signal processing have primarily evolved
fram the Least-Mean-Square (IMS) algorithm or its variants, and extensive
studies have been conducted on its convergence characteristics and performance
properties |see Ref 1 for a recent camprehensive reviewl]. The most attractive
feature of the IMS algorithm is its simple computational requirements. On the
other hand, the relatively slow convergence factor (step length) represents a
bandicap which has to be taken into account when considering high speed applic-
ations. Thus in applications where rapid convergence and speed are important,
Recursive-Least-Squares (RLS) algorithms are gaining favour. These techniques
though more camplex than IMS algorithms, in general offer faster convergence.

Recently a special class of algorithms called the Conjugate Gradient ((OG)
algorithms have been proposed for adaptive filtering |2 ]. For a modern survey
of these algorithms, see (3]. Although these algorithms lead to optimal
solutions in the mean square sense, they involve significant camputational
overheads and, as such, bhave rarely found applications in practice, particularly
for real time processing.

In this paper we propose an algorithm based oo a gradient descent approach which
is easy to implement for both single-channel and multi-channel data. In the
next section a development of this Gradient Descent Based Algorithm (GDBA) is
outlined and its coovergence properties are discussed. In section (3.1) the
application of (GM and GDBA to adaptive noise cancelling is discussed and the
simulation results are presented to campare their relative performance. In
section (3.2) two approaches, namely IMS and GDBA to the broad band adaptive
array processing are discussed and their relative performance is compared by
means of simulated examples. In sections (3.3) and (3.4) the application of
GDBA to the adaptive implementation of Pisarenko's harmonic retrieval method and
eigenfilter directional spectral estimation is discussed and gimulation results
are presented to illustrate its performance and convergence behaviour.

M Yaminysharif and T S Durrani are with the Department of Electrooic and
Electrical Engineering, University of Strathclyde, Glasgow, Scotland.



2 Problam Formulation

Three types of minimization problems frequently isi
: y arising in adaptive signal
processing theory are to minimise the following cost functions: e

minimize J = W'RW - 2 P + C (1)

minimize J = WRW (2)
subject to some linear constraints

minimize J = W'RW (3)
subject to the norm constraints

where: VW = adaptive filter weight vector, C = constant, R = data covariance
matrix, _?_ = cross correlation vector between the reference and the desired
signal, and t denotes transposition.

The conventional approach to these problems is the gradient descemt technique
leading to same sort of IMS or constrained IMS algorithm when the gradient is
replaced by its instantaneous estimate. As pointed out earlier, these
algorithms involve compramises besed on choice of step length vs convergence
rate and, as a result, the associated problems of misadjustment and speed arise.
Different techniques such as RLS and OGM can be applied to these problems which
yield substantial improvement 1in overall performance and the speed of
convergence at the cost of increasing camputational complexity.

However, in order to obtain rapid convergence at the expense of a modest
increase in camputational complexity, we propose the following algorithm which
is based on the gradient descent approach. For K = 1, 2, ... campute,

R = (Bg)*(k-1) + XeXe®)/K
(Pg-1*(K=1) + dgXe)/K
= RgW - K e
Ix'rg / Ik "Relg

+1~ ¥ - agly
where: X = vector of the tap voltages and d = the desired signal. For
minimization problems (2) and (3) the algorithm is modified since Iy = .
The attractive festure of this algorithm is the recursive estimation of

parameters in particular the convergence factor ag vhich satisfies the
optimality condition for an optimumn step sequence (W A Gardper 1.

&
'

L
]

Although the above modified gradient algorithm requires more camputations than
the IMS algoritbm (this is not a great concern with today's camputing power
cost), it is a rapidly converging algorithm which is the essential requirement
for a wide range of practical applicatioms. The performance of the algoritim
has been studied when used in a range of sapplications of adaptive filtering.
Extensive simulation studies have illustrated a substantial improvement in the
speed of convergence and reduced final misadjustment over the cooventional IMS
slgorithm. Figure 1 illustrates the variation of the convergence factor ag of
the proposed algorithm, with respect to the inverse of the largest and the
smallest eigenvalues of the covariance matrix. This illustrates that ay
satisfies the optimal boundary condition for an optimum step sequence (1].
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3 Application of the Proposed Algorithm

3.1  Adaptive noise cancelling (ANC):

The application of the IMS algorithm to ANC yields the very well known update
formula of Widrow-Hoff. In order to apply (OGM to ANC, camputations are carried
out in two steps. The first step is to campute the estimate of the gradient
rg for Kk =1, 2, ... . The second step is to use OGM and campute the optimum
solution @ The procedure is outlined below:

I. Omputetheestimteofthegndientzx-nx!x-gx.
II. Select an arbitrary initial estimate of k-
III. Use OGM to solve ry and obtain WQ.

Minimization criterion using GDBA is straight forward and results in an exact
recursive formulation (4). Figures 2 and 3 represent the learning curves
obtained by OGM and GDBA for different values of SNR. In these simulations the
primary input was a &ine wave of amplitude five representing the signal,
corrupted by Gaussian white noise. The reference signal was a first order
autoregressive white noise. In the case of OM the ry was estimated by the
same recursive equations as listed in (4). An arbitrary htnl estimate of W,
= (0-5,0-5, ...) was chosen for all these simulations and tbe adaptive filter
had five taps. These results clearly show the close performance of (GM and
GDBA with higher final misadjustment of OG®M for low SNR conditions. Thus it is
obvious that a great reduction in camputational camplexity can be achieved with
performnace similar to OGM when using GDBA.

3.2 Adaptive array processing:

The performance of the IMS algorithm and GDBA is illustrated in Figures 4, 5 and
6. A silmlation was set up with a linear array of five elements, each being
processed through a filter of five tap weights which were updated according to
the IMS algorithm (with convergence factor 0-00001 set arbitrary) and GDBA.
The environment had three point noise sources of power 1, 10 and 10 located at
0, 30 and 45 degrees respectively and noise per sensor was set at O dB. The
look direction was assuned to be 0 degree (normal to array). There was no
correlation between the desired signal (located at 0 degree) and two strong
interferences (located at 30 and 45 degrees). Figures 5 and 6 show the
spectral output obtained (128 data samples) from the IMS and GDB algorithms.
It is clear that GDBA has campletely suppressed the two strong interferences
unlike the LMS algorithm.

3.3 Adaptive implementation of Pisarenko's barmonic retrieval method:

The proposed algorithm was tested for the camputation of spectra of sinusoids by
implementing Pisarenko's technique as an adaptive GDBA. The result is shown in
Figure 7. Note that the algorithm is able to pick up the spectral peaks after
only N = 100 data points even for the very poor SNR of = 2 dB.

3.4 Eigenfilter approach to array spectral analysis:

The algorithm has been applied for estimating the spatial spectra fram data
received for an array of narrow band sources. The performance of the algorithm
has been tested for both correlated and uncorrelated sources. Here a
representative result is included for spectral estimates (Figure 8) for sources
located at 10, 45 and 60 degrees respectively. Sources at 45 and 60 degrees
are correlated with the mutual correlation coefficient, (0.8 the SNR for the

)



sources are 5, 10 and 5 dB. Note that the algorithm allows a clear and
unambiguous estimation of the spatial spectra even for as short a data length as
N = 128.

4 OConclusions

In this paper we have presented an algorithm for oo-line adaptive filtering.
The main objectives of the algorithm were to increase the speed of convergence,
to eliminate the requirement for an adhoc choice of coavergence factors and to
reduce the final misadjustment. Extensive camputer simulations for different
applications of adaptive filtering verified the excellent speed, accuracy and
convergence properties of the proposed algorithm. However, the cost associated
with these achievements is the increase in computational requirements which is
modestly increased in comparison with that of the LMS algorithm, but signif-
icantly reduced when compared with those of alternative techniques such as OGM
and the techniques requiring the inverse of the oovariance metrix.
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ADAPTIVE SIGNAL PROCESSING USING A MODIPIED GRADIENT ESTIMATION TECHNIQUE

M Yaminysharif and T S Durrani

Dept of Electronic & Electrical Engineering
University of Strathclyde,
Glasgow Gl 1X¥ Scotland UK

ABSTRACT

Ao algorithm based on the gradient descent
approach 18 proposed for adaptive signal
processing. The slgorithm outperforms the least
mesn square algorithm (1MS) in terms of coaver—
gence speed and misadjustment noise, and meets the
performance characteristics of the conjugate
gradient (CG) and recursive least squares (RLS)
methods without the attendant computational
camplexity. It is simple to implement and lends
itself to real time processing. The algorithm
can be implemented using lattice or tap-delay line
structures. In this paper extensive camputa-
tional results are presented to illustrate the
algorithm performance in terms of convergence
properties, and its applications in adaptive poise
cancelling and adaptive spectral analysis.

1 INTRODUCTION

In the main, adaptive signal processing 1is
performed using an PIR filter with coefficients
that are updated to achieve same presecribed
performance criterion.

Many of the algoritims proposed for use
adaptive signal processing are based oo
gradient descent approach and can be expressed
the following form:

a1 = Tpt 5@y -K %) )

K=1, 2, 3 ... vhere = filter weight vector,
ag = step length, = estimate of the cross
correlation vector P, = estimte of the dgta
covariance matrix R, P = E(dgXg), R = E(XgXg"),
dy = desired signal, Xy = vector of the tap
voltage, and data vector, E(°+) denotes the
expectation, and t denotes transpositiocun. The
design choice of » Pg, and depends on the
particular application and involves a trade—off
betwesn the speed of convergence and oomputatiocoal
camplexity. The most computatiooally lttnctiv‘
choice ag = coustant, Py -Jx‘. and Ry =

leads to the well knowm widely used

algorithm. Ouo the other band, wben the speed of
coanvergence is of primary importance more
congistent estimates of P and R are required along
vith a variable step length e which st satisfy

ia
the
in

an optimal bound in order to maximize the
convergence speed. In this case, the conjugate
gradient methods (O@M) (1] can be utilised for
maximizing the speed of convergence.

To implement these algorithms the computatiocn is
generally carried out io two steps due to the
nDecessity of generating mutually conjugate
vectors. The f{irst step 1is to compute the
estimates Py and and the secood step is to use
CGM and compute the weight vector +° This
type of implementation is a drawback Yof oo-line
signal processing due to increased bardware
canplexity associated with the implementation and
the attendant increased camputing burdem.

In this paper, we propose an algorithm btased on
(1) which is simple to implement for both single
channel and multichannel data. In the opext
section, a development of this gradient descent
based algorithm (GDBA) 1is outlined and its
coavergence properties are discussed. In Section
3.1, GOBA is applied to adaptive noise cancelling
and the simulation results are presented to
canpare its performance with OGM. Simlation
results are also presented when the algorithm is
implementad using a lattice structure, and are
compared with the results obtained whea a
conventional lattice gradient algoritha is used.
In Section 3.2, the application of GDBA to the
adaptive spectral analysis, single channel
Pismrenko's technique and multichannel directional
spectral anmalysis is discussed, and simulation
results are presented to 1illustrate its
performance.

2 PROBLEM PORMULATION

Defining the following:

V‘ - " -'.

X - Kk-KkW

where ¥, = optimum weight vector (for noo~

stationary case Wy = ¥, ¢ = the parameter vector
wvhich minimizes the cost 'Rmcum at time K), (1)

can be expressed as:

¢ r K
o (8 £,)V ¢+ T (1 Joa s (2)
X1 (1_1 Jne O fa)ay3y



where f; = (I - aRy), K )1 and fp =~ 1 4f m DK,
I = identity mmtrix. in order 10 analyse the
convergence behaviour of (1) using (2) one must
find a sufficient coodition on the sequences ag,
ZK' and RK for which the system output would
converge. Extensive studies bave beea conducted
on this issue based on the assumptions;
stationary or noo-stationary data, dependent or
independent observations of Py and Ry, see for
instance |2,3]. In these papers, (1) has been
analysed for ay = constant, Py = dgXg, and
a,i-x?xx to obtain & bound on the quadratic mean
o

k]

However, the most obvious and necessary condition
for (2) to converge is:

ol 5l €1, tg= 1 - a0 @)

Equation (3) i{s not satisfied unless satisfies
an optimal bound which is strictly determined by
the eigenvalue ratio (EVR) of the estimate of the
coavariaace matrix Ry. Eﬂuntion (3) would
definitely be met 1if ag <EV of Ry, but to

maximize the speed of omvergen%e; and at the same
time to meet (3) let us coosider two extreme
situations:

EV,
a) It m-_'”“>1, then (3) is met 1f
E"'mj.n

0 {ag {2

EVpin

K,
b) If EVR = 22X ), then (3) is met 1f
EVmin

Anlg—iv- S O

To maximize the convergence speed the lower bound

(LB) must be kept well awmy from m? and a

suitable and permissible LB would be = RO
mx

Now for ag = upper bamnd (UB), (2) can be amalysed
in order to obtain a bound for quadratic mean of
|Vg} utilizing the eame approach as that of (2,3).
Hence, ocoe can state that the actual bound on
E(¥g|2) would be smller, since ax { UB.

Therefore, to maximize the convergence speed we
propose the following recursion to update L'

Rg = (Rpy*®-1) + Xx )

P = (g *(X-1) + & X)X

x - Rg%-K )
w = /iR

g1 = o x X

The attractive feature of this algorithm is the

recursive estimation of {its parameters, in
particular the step length age Although this

algorithm requires more cowputations than the Li3
algorithm (this 1s not a great coocern with
today's computing power cost) it 1s a rapidly
converging algorithm which i{s an essential
requirement for a wide range of practical
applications.

Figure 1 shows the evolution of the step length
ag of the proposed algorithm vith respect tn the
inverse of the largest, amllest,

: eigenvalues of Rg. Pigure la ebows
the variation of ag for EVR » 1, and Pigure 1b
illustrates this behaviour for EVR ) 1.

3  APPLICATIONS

3.1 Adaptive Noise Cancelling (ANC)

FPigures 2 and 3 represent the learning curves for
ANC obtained by (GM and @BA for different values
of SNR. The primary input was a aine wave of
amplitude five representing the sigoal, corrupted
by Gaussian white noise. The reference signal
was a first order autoregressive sequence. In
the case of CGM, and were estimated by the
same recursive equations as listed in (4). An
arbitrarily small ioitisl estimate of ¥; was
chosen for all these simulations and the adaptive
filter used was a tap delay line with five taps.
These results clearly show the cloee performance
of CGM and GDBA.

The algorithm (4) can also be applied to ANC when
a noise canceller is isplemented using lattice
structure. This type of implementation tas its
advantages, since the lattice filter preprocesses
its input signal (using a set of partial
correlation coefficients, KT, wvhose values are
obtained by an adaptive algorithm) and supplies a
set of orthogooal signals (backward residumls) to
the combiner structure. Due to these
orthogonalized signals, the weight on each tap of
the caobiner is given a step size which s
inversely proportional to the signmal power at the
corresponding lattice output (this gives all taps
the same rate of coovergemnce) (5], However the
lattice filter outputs are a set of orthogoml
signal samples only after complete convergence of
the PCC. Thus there exists a degree of
correlation between these signmals which decreases
as FCC approach their optimal values. Based on
this discussion, a cambined update recursion for
the combiner weights would increase the initial
rate of couvergence, in particular if EVR ) 1.

Figure 4 represents the learning curves for ANC
when implemented using & ten stage lattice filter,
forchenmdairsddml(ummzmn.
The reference signal was a highly correlated first
order autoregressive eequences (vith correlation
coefficient 0-8) resulting in EVR = 45, The
solid curve represents the result obtained by a
conventional lattice gradient algorittm (3] and
tbohmknwmwummutmm(l).
For the latter case, ROC were wxdated using =
conventional recursion procedure [5) vhile the
combiner weights were updated using 4). These



results illustrate faster initial rate of conver—
gence that can be achieved using (4). However,
this is a preliminary result and related aspects
dot tlhle algorithm are being investigated in more
etail.

3.2 Adaptive Spectral Analysis

The proposed algorithm was tested for computation
of spectra of sinusoids (adaptive implementation
of Pisarenko's technique [6,7]), and estimating
the spatial spectra from data received for an
array of narrow band sources (eigenfilter
directional spectral estimation) (8]. These
techniques involve estimating the minimm eigen~
value of the data covariance matrizx and the
corresponding eigenvector. If (1) is convergent,
then the expected value of the cutput power would
be an estimate of EVpin The algorithm (4) is
applicable to these pﬂiﬁm nnply by estimating
Pg = E(Yg?)Wx, and thus, rg = - E(Yg z)Ir

ere Yy = output of tbe ﬂlter (use complex
notation for eigenfilter problem). Pigure S
represents the spectral estimates for two
sinusoids of normelized frequency 0-18 and 0-38
for poor SNR = O dB. Note that the algorithm is
able to pick up the spectral pesks after ouly
N = 100 data points which 18 a campatible result
with those obtained using RLS aod O |6,7].
Figure 6 represents a computer result for
directional spectral estimates for sources located
at 10, 45, and 80 degrees. Sources at 45 and 60
degrees are correlated with a mutual correlation
coefficient 0:72, the SNR for the sources are S,
10 and 5 dB. The unambiguous estimation of the
spatial spectra even for as short a data length as
N = 150 indicates rapid rate of convergence of the
algorithm and its performance campatibility with
RLS techniques |8].

4 OONCLUSION

In this paper we have presented an algorithm for
on-line adaptive filtering. The main objectives
of the algorithm were to increase the speed of
convergence, to eliminate the requirement for
adhoc choice of comvergence factors and to reduce
the finsl misadjustment. Extensive camputer
simulations for different applications of adaptive
filter verified the excellent speed, wcu:cylnt:
convergence properties of the gor
and its performance campatibility with RLS and a;
techniques. To increass the initial rate of
coavergence the algorithm can be applied to the
lattice structures with a trade-off of increased
canputational caomplexity.
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