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ABSTRACT

The main objective of this thesis is to demonstrate the application

of the accelerated gradient techniques to various fields of

adaptive signal processing.

A variety of adaptive algorithms based on the accelerated gradient

techniques are developed and analysed in terms of the convergence

speed, computational complexity and numerical stability.

Extensive simulation results are presented to demonstrate the

performance of the proposed algorithms when applied to the fields

of adaptive noise cancelling, broad band adaptive array processing

and narrow band adaptive spectral estimation. These results are

very encouraging in terms of convergence speed and numerical

stability of the developed algorithms.

The proposed algorithms appear to be attractive alternatives

to the conventional recursive least squares algorithms.

In addition, the thesis includes a review chapter in which the

conventional approaches (ranging from the least mean squares

algorithm to the computationally demanding recursive least squares

algorithm) to three types of minimization problems (namely

unconstrained, linearly constrained and quadratically constrained)

are discussed.
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are used throughout this thesis, the meaning of which is clearly
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CHAPTER 1

INTRODUCTION
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1.1 Definition: As an initial definition of adaptive systems,

one refers to the systems that can automatically adapt in the

face of changing environments. In other words, adaptive systems

are systems which can adjust their structure in order to meet

some desired criterion. Adaptive systems can be trained to

perform specific filtering and decision-making. Adaptive systems

have been variously referred to as self-optimising systems,

learning systems, updating systems, programmable systems etc.

and by their very nature are time varying systems. These systems

involve an iterative procedure to achieve the desired performance

objective, and it is during this iterative period that the system

is said to be "adaptin~" or "learning" or "self optimizing".

Current applications for adaptive systems include such fields

as communications, radar, sonar, seismology, mechanical design,

navigation systems and biomedical electronics. The above list

is by no means exhaustive and despite a wide and ever increasing

range of applications of adaptive systems, this thesis is concerned

only with types of systems designed primarily for the purposes

of adaptive signal processing.

1.2 Historical review

The origins of adaptive systems can be traced back to Newton;

the root finding algorithm for a polynomial is the first ever

implementation of the steepest descent technique. Similarly the

minimization via the Newton-Raphson technique is another

manifestation of an adaptive computing technique. It was during
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the 1960's that the subject of adaptive processing became an

important research topic and since then adaptive processors have

subsequently been applied in many practical systems mainly as

adaptive filters or adaptive antennas.

Theoretical work on adaptive filters (processors) was reported

in 1961 in the United States by Glaser and in the same year in

the United Kingdom by Gabor et ale Other notable early developments

occurred at the Technische Hochschule Karlsruhe in Germany and

at Standford University, where adaptive pattern recognition

systems were initiated in 1959. Collaboration in 1964 between

these institutions produced a comparative evaluation of their

respective techniques [Steinbuck and Widrow] which subsequently

led to the development of the most widely used algorithm; the

least mean square algorithm for processor weight adjustment.

Further relevant work was being conducted simultaneously at the

Institute of Automatics and Telemechanics in Moscow. In the early

and middle 1960's, work on adaptive systems intensified. Hundreds

of papers on adaptation, adaptive controls, adaptive filtering,

and adaptive signal processing (the main objective of this thesis)

appeared in the literature. An excellent summary of the status,

in the middle 1960's, of adaptive processors (adaptive filters)

and early relevant references for their use in adaptive equalization

is provided by Rudin [1]. More recently, simple review articles

have been prepared on echo cancellation in telephony [2] and

adaptive equalization [3] [7].,
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The author does notpr:opose to outline the detailed evolution of

adaptive systems over a period of three decades, but to give

a brief historical review of this important subject. Today

adaptive systems are of paramount importance and they are being

applied to a wide variety of scientific, engineering, economic

and biomedical problems. Extensive studies have been conducted

in the field of adaptive systems. Hundreds of published papers

as a result of three decades of research on this subject, form

comprehensive and useful research literature. In recent years

a few text books [4-9] have been published which provide a

coherent and comprehensive introduction to the subject of adaptive

systems covering the basic theory, practical realization and

current applications.

1.3 Conventional approaches to the problems in the field of adaptive

systems and a review of the existing limitations

This section provides an essay type introduction to various convent

ional adaptive techniques and the existing trade-off between them.

The main objective of all adaptive algorithms is to determine

the minimum of a performance surface by means of an iterative

searching procedure. Most practical procedures capable of searching

a performance surface to find its optimum point are based on the

method of steepest descent or Newton's method and employ the

gradient estimates to indicate the direction in which the minimum

of the surface lies. They are thus referred to as "descent methods".

In addition to these descent techniques, there exist another class
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of algorithms referred to as random search algorithms which can

be employed to determine the minimum of a performance surface.

The random search algorithms search a performance surface in a

random pattern for its minimum.

The method of steepest descent can readily be implemented and

has proven its value in a wide variety of practical applications.

Generally speaking, the technique involves measurements of the

gradient of the objective function (performance surface). Since

in most applications an exact measurement of the gradient is not

available, an estimate of the gradient based on a limited

statistical sample is used. Two general methods of estimating

the gradient are the "derivative measurement" and the

"instantaneous measurement" [5, 8, 10]. The former technique

known as differential steepest descent (OSO) algorithm, is

straightforward and easy to implement and involves the direct

measurement of the derivatives which are estimated numerically

by taking symmetric differences. The latter method is the basis

for the least mean square (lMS) algorithm and requires specific

knowledge about the nature of the performance surface

(unlike the OSO method which requires only very general knowledge

of the performance surface). The OSO method is less efficient

(in terms of speed of adaptation and misadjustment - a dimensionless

measure of the difference between the actual and approximated

optimum point) but more economical than the lMS algorithm and

it is used where technical or economdcal considerations preclude

use of the lMS algorithm or where high speed of adaptation is

not required [5, 8, 10].
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However, it is the LMS algorithm that is generally regarded as

the best choice for many different applications of adaptive

signal processing. The LMS algorithm is important because of

its simplicity and ease of computation, thus it is an attractive

solution for many practical problems. The main disadvantages

of the LMS algorithm are related to its convergence properties.

Although the LMS algorithm offers higher speed of adaptation

with respect to the DSD algorithm, it is much slower than other

computationally demanding techniques (such as those techniques

based on Newton's method) particularly during ill condition

situations. This is a major disadvantage of the LMS algorithm.

Newton's method is another standard descent method for finding

a minimum of an objective function and offers a higher speed

of adaptation (unlike steepest descent method). It is a

computationally demanding technique and involves matrix inversion

at each iteration cycle (each step in the search procedure).

Thus it is frequently difficult to implement in practice. Newton's

method which is a gradient search technique requires knowledge

of the first and second derivative of the objective function.

In practical applications, however, an exact measurement of the

first derivative (the gradient) and the second derivative (Hessian

matrix) of the objective function is not available and estimates

based on a limited statistical sample are used. The algorithms

that approximate Newton's method are referred to as Recursive

Least Squares (RLS) algorithms. In spite of their superior perfor

mance (with respect to LMS algorithm), their use in adaptive
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signal processing applications has been relatively limited,

due to their higher computational requirements. In recent years

there has been a renewed interest in RL5 techniques, especially

in their "fast" (computationally efficient) versions, which have

been applied to many problems of adaptive signal processing.

As stated earlier, the third possibility of searching a performance

surface for its minimum is based on Random search procedures.

Unlike Newton's and the steepest descent method that are systematic

surface search procedures, the Random search techniques, by contrast

search for the minimum point by making random changes (in random

directions or by selection of random points). Two practical

implementations of Random search methods are the Linear random

search (LR5) and the Genetic optimizer (GO) techniques [5, 8,

10].

Although use of random search techniques may be appropriate

in cases where the performance surface for the adaptive process

is not well behaved and has both local and global optima, they

are less efficient than techniques based on the Newton's or the

steepest descent methods, thus they are not an attractive choice

for various practical applications [5, 8, 10].

50 far, various techniques of finding the optimum point of an

objective function have been outlined along with their fundamental

advantages and disadvantages. Generally one can divide these

techniques into two types considering the computational complexity

and the speed of adaptation. Among various computationally efficient
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techniques (eg. lMS, DSD, Random search methods), the lMS algorithm

is regarded as the best choice, due to its simplicity and efficiency

and is a standard technique in adaptive signal processing whenever

simplicity is a prime objective and not the speed of adaptation.

On the other hand, for applications where speed of adaptation

is of pr~mary importance the RlS technique, which is computationally

demanding, is more popular. These two techniques (lMS, RlS)

are the basis of algorithm design for adaptive signal processing

- their fundamental trade-off being the computational complexity

against the speed of adaptation. In other words, the most popular

algorithms used in signal processing are either computationally

efficient - primarily based on the lMS algorithm - or are

computationally demanding - primarily based on the RlS algorithm

but are often not both.

The existing trade-off has been a fundamental issue in the

development of new algorithms ie. algorithms that exhibit both

high speed of adaptation and low computational complexity, and

this forms the main issue emphasised throughout this thesis.

1.4 The scope of the thesis

Having discussed various techniques used in adaptive signal

processing, their advantages and disadvantages, it remains to

outline the contribution that this thesis intends to make.

The second chapter of the thesis presents a brief development

and analysis of all currently used adaptive algorithms ranging
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from the simple LMS algorithm to computationally demanding RLS

algorithms. Both TDL and Lattice realizations of the above

algorithms are outlined along with their advantages and

disadvantages.

Chapter three presents the main contribution of this thesis.

In this chapter new adaptive algorithms are presented which are

based on the accelerated gradient algorithms (AGA). Various

adaptive AGA are established and analysed which match the

performance of RLS algorithms. The proposed algorithms have

better numerical stability in comparison with RLS techniques.

In chapter four the numerical stability of the AGA is discussed

with a view to the effects of finite word length implementation.

Chapter five presents the results. Results are obtained by

simulations performed on the VAX/VMS computer using single

precision FORTRAN. Various conventional and recently developed·

algorithms are simulated and their relative performance in terms

of speed of adaptation and computational efficiency are compared

as applied to the fields of adaptive noise cancelling, adaptive

array processing and adaptive spectral estimation.

The concluding chapter of this thesis is chapter six.
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CHAPTER 2

FUNDAMENTALS AND CONVENTIONAL TECHNIQUES
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2.1 Introduction

This chapter presents the basic aspects of adaptive signal

processing. Three types of frequently arising minimization

problems - namely; unconstrained, linearly constrained and

quadratically constrained problems - in adaptive signal

processing are considered.

Various conventional approaches to these problems are discussed

along with their advantages and disadvantages.

2.2 Adaptive processors

Adaptive filters (processors) can be realized as adaptive finite

impulse response (FIR), adaptive infinite impulse response (IIR)

and transform based (TB) adaptive filters.

The IIR adaptive filters, though more economical (than FIR

counterparts) to use in some applications, have had limited

application because of the stability problem. TB adaptive filters,

once again more economical than FIR versions, are also shown

to introduce problems due to the introduction of circular

convolution and block processing in the discrete fourier transform

(OFT). By far, the most important adaptive filters are FIR

versions, which are fundamental to adaptive signal processing

and appear in most adaptive systems in one form or another.

Because of their simple structure, they are easy to understand

and analyse and offer the best performance (with respect to

IIR and TB adaptive filters) in most applications.
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The structure of the non-recursive adaptive filter (ie. FIR)

is shown in Figure 2.1 , which is also known as the adaptive

linear combiner.

The processor presented in Figure 2.1 is used in a wide range

of applications in adaptive signal processing. It is simply

an adaptive version of a digital non-recursive filter in which

tap weights w1, w
2,

w
3

..... w
L

can be adjusted by an adaptive

algorithm. Its input-output relation at each iteration K can

be written using vector notations,

(2. 1 )

where, YK = output signal,

X
K

is the data vector, W
K

is the weight vector and t denotes

transposition.

2.3 Optimum linear estimation

The concepts of optimum linear estimation are fundamental to

any treatment of adaptive filters. Adaptive filtering problems

involve two estimation procedures; first. estimation of the

required filter output and secondly, estimation of the filter

weights required to achieve the former objective. The second

12



of these two procedures is required because the input signal

characteristics are not known apriori in the adaptive filtering

situation. In a previous section, the importance of FIR adaptive

filter structures, which are the most commonly used structures

in adaptive systems, was emphasised. Thus, in this section the

theoretical basis of optimum non-recursive estimation, known

as Wiener-Hopf estimation, is established. A detailed explanation

of optimum recursive estimation is presented in [7].

In a non-recursive estimation, the estimate YK 1S defined in

terms of a finite linear polynomial in xK'

(2.2)

where w. are individual weights in the non-recursive FIR filter
1

illustrated in Figure 2.2. Equation (2.2) may be written in vector

notation as,

(2.3)

Because of its mathematical tractability the minimum or least

mean squared error (MMSE) or (LMSE) criterion is the most

common cost function used in adaptive systems. Thus, regarding

Figure 2.2, the MMSE function becomes

(2.4)

where, d
K

= desired signal and E denotes the expectation.

13



The equation (2.4) presents a well behaved quadratic performance

surface with a single unique minimum. Differentiating (2.4) with

respect to Wt yields,

(2.5)

and setting (2.5) equal to zero results in,

(2.6)

Assuming that the weight vector Wand the signal vector XK are

uncorrelated, then

or

*P = RW

(2.7)

(2.8)

where, P = E(dKX
K)

is the cross-correlation between the input

signal and the desired signal, R = E(XKX~) represents the

autocorrelation matrix of the input signal sequence which is

*a symmetric and positive definite matrix, and W = the optimum

weight vector. The equation (2.8) is known as the Wiener-Hopf

equation. The optimum MMSE or the Wiener solution for W is

given by,

(2.9)
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To obtain the Wiener solution,

(2.9), conventionally requires the inversion of a Toeplit~ matrix

in addition to the evaluation of many cross and autocorrelation

functions. This requires an enormous amount of computing, even

for one solution vector of tap weights, without the added

complication of having to repeat the process every time an update

is required due to the changing input statistics. This difficulty

leads to the necessity of designing adaptive algorithms. Algorithms

with low computational requirements that can obtain optimum

or near optimum solution.

2.4 Stochastic approximation estimation

The overall aim of stochastic approximation is a convergence

onto the true parameter values by some search method, sometimes

referred to as hill climbing or valley-descending on some defined

error surface. All stochastic approximation methods are of the

form,

(2.10)

where, ~J(W) is the partial derivative with respect to the

parameter vector W
K

at the K-th step of iteration. This derivative

represents the gradient of a performance surface. Use of equation

(2.10) therefore involves three steps:

1. The definition of a performance criterion sometimes termed

the loss function or cost function and its form is quite arbitraFY

and may be chosen as the most appropriate for any specific problem.

15



2. The determination of the derivative of the performance surface.

The method usually assumes that J(W) has a single extremum at

*W= W , and that J(W) is continuously twice differentiable with

*respect to W. In this case the optimal value W= W will satisfy

*the vector equation, VJ(W ) = o.

3. The definition of a gain matrix G(W) which determines the

weight to be placed on the gradient of the performance criterion.

This is a function of the parameter values and various forms

may be chosen, the problem being to choose the best form to

achieve most rapid convergence to optimal (minimal) value of

J(W).

The choice of stochastic approximation schemes therefore reduces

to a problem of choosing between the three elements; the form

of the performance criterion, method of calculating the derivative

of the performance surface and the choice of the gain matrix.

Extended discussion of the stochastic approximation is outside

the scope of this section and for a detailed treatment of the

subject see [11, 12]. However, the most important element in

the method is the choice of the optimal gain matrix G(W). There

are a number of useful choices of the matrix gain that can be

made, the major ones being;

1. Steepest descent; the gain is set to,

G(W) = aI

where, a is a scalar constant and I is an identity matrix.

16
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2. Newton-Raphson method; the gain is set to the inverse of

the second derivative with respect to the parameter, W, of the

performance surface J(W), [11, 12].

2.5 Quadratic function

A function expressable in the form,

(2.12)

where, R is a L by L symmetric matrix and c is a scalar constant,

is called a quadratic function.It is convenient to say that

J(W) is a positive definite quadratic function when R is a positive

*definite matrix. Let W be a solution of the linear equation

RW = P (2.13)

*Then RW = P and a simple calculation yields the formula

(2.14)

Suppose that R is a positive definite matrix. Then considering,

* * *(2.14), J(W) »J(W ) whenever Wi W so that W is the unique

point of J(W). Moreover the level surfaces(J(W) = constant) of

*J(W) are (L-1) dimensional ellipsoids having W as their common

centre, as shown schematically in Figure 2.3 for the cases

L = 2 and L = 3. When L = 2 the level surfaces of J(W) are curves

and are in fact ellipses [12, 13, 14]. Positive definite quadratic
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functions playa significant role in analysis of adaptive

systems and a general knowledge of their properties is an

essential background requirement. A more complete account of

quadratic functions is given in [12, 13, 14].

2.6 Unconstrained minimization problem and conventional

adaptive algorithms

This section presents the application of the conventional adaptive

algorithms to the unconstrained minimization problem. The problem

can be outlined as;

(2.15)

The function of J(W) has a unique minimum point (if R is a positive

definite matrix) which is expressible as;

(2.16)

2.6.1 The steepest descent method

The steepest descent method is an iterative scheme based on the

gradient of the cost function J(W) and can be characterized by

the equation;

(2.17)

where, a = the convergence factor or the step length, and

(2.18)
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~J(WK) denotes the gradient of the J(WK) at iteration cycle

K. For any arbitrary initial value W, the equation (2.17)

*converges to the optimal tap weight vector W . The algorithm

thus includes a correction term at each iteration which is

proportional to the gradient of J(WK), and represents a step

taken in the direction of the gradient of J(WK) where the step

size is controlled by a.

*Defining VK = WK - Wand using equation (2.18), (2.17) can be

expressed as,

(2.19)

where, I represents the identity matrix. To see a more precise

behaviour of the error vector, VK, equation (2.19) may be

decoupled into L independent equations by applying a similarity

transformation [5, 8].

Since the covariance matrix (autocorrelation matrix), R , is

symmetric and positive definite, it can be decomposed into,

R = UDU t (2.20)

where, U is an orthonormal matrix of eigenvectors of R,and D

is a diagonal matrix containing its eigenvalues such that,

(2.21)
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References [13-15] give a good introduction to the underlying

theory of matrices, eigenvalues, eigenvectors, similarity

transformation, etc. Utilizing equation (2.20) in equation (2.19)

leads to,

t(I - 2aO)U VK
(2.22)

Considering the similarity transformed vector,

then, equation (2.22) can be written as,

V~+1 = (I - 2aO)V~

(2.23)

(2.24)

Because the eigenvalue matrix, 0, is a diagonal matrix, equation

(2.24) represents a set of L equations and the I-th equation

can be written as,

(2.25)

Obviously equation (2.25) will converge if

o< I 1 - 2aml I < 1 (2.26)

for all eigenvalues, m
l,

1=1, 2, L, of O. The condition

is most certainly satisfied if,

1

M

20
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where, M = largest eigenvalue of R and represents the worst

case requirement for equation (2.25). Equation (2.25) is an

extremely important relationship as it yields the bounds within

which the step length parameter, a, should lie for the iterative

algorithm (2.17) to converge. Condition (2.27) is necessary

and sufficient for convergence of the steepest descent algorithm

with a quadratic performance surface. If condition (2.27) is

satisfied it follows that

lim (2.28)

K ---> CO

and

*lim WK = W

K ---+ CO

(2.29)

Equation (2.25) also provides an indication of the rate at which

the various modes of the error equation (2.19) decay to zero.

Defining the time constant of the I-th mode by Tl , (assuming

that am
l
« 1), then,

-1
Tl

1
1 - 2aml

1 (2.30)= e = -
Tl

or

1

T - 2am
l1 -

21
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Therefore, the longest time constant involved in the error system

is given by

1

T = 2ammax (2.32)

where, m = the minimum eigenvalue of the covariance matrix R.

From equation (2.27) and (2.32) one concludes that,

T M
max >-zm (2.33)

In other words, the larger the eigenvalue spread of the covariance

matrix R, the longer it will take for the steepest descent method

to converge [4-10, 13, 14].

2.6.2 The stochastic gradient descent algorithm, LMS algorithm

The steepest descent method described above required the knowledge

of the exact gradient of the cost function J(W). However, in

practice an exact gradient will not be known apriori and an

estimate of the gradient should be used. A number of algorithms

have been developed (eg. stochastic gradient descent SGD algorithm

[5, 8, 10], DSD algorithm and LMS algorithm) that employ an

estimate of the gradient. The most popular of these is called

the LMS algorithm first proposed by Widrow [10] in the context

of adaptive signal processing. The LMS algorithm uses an

instantaneous estimate of the gradient, ie.

(2.34)
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which can be written as;

(2.35)

Equation (2.35) represents an instantaneous estimate of the

gradient. Substituting equation (2.35) in equation (2.17) results

in,

(2.36)

which is the well known LMS algorithm [10J.

The LMS algorithm has several attractive features. It is simple

and easy to implement, it requires no apriori information or

data storage and is well suited for real time processing. On

the other hand, the algorithm can be very slow to converge

(will be clarified afterwards) requiring a long data sequence

*to compute the coefficients W . Note that the gradient estimate

in (2.35) can easily be shown to be unbiased when the weight

vector is held constant ie.,

E[~j(W)] = -2E(e
KX K)

-2E(dKX K -
t

= XKXKW)

= 2(RW - P)

= ~J(W) (2.37)

Since the mean value of the gradient estimate, (2.35) is equal

to the true gradient ~J(W), one could convert the LMS algorithm

into a true steepest descent algorithm, at least in the limiting

case, by estimating the time-averaged stochastic gradient but
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hold the weight vector constant for a block of data. This procedure

results in an algorithm known as the stochastic gradient descent

algorithm which can be expressed as,

WK+1 = W - aVJ(W
K)K

VJ(WK)
1 KN

= -NL e.X. (2.38)
1 1

i=(K-1)N+1

where, K = number of iterations, N = the averaging time interval,

and VJ(W K) is the stochastic gradient of the time-averaged

mean square error.

=
1 KN

-NL
i=(K-1)N+1

2
e.

1
(2.39)

The stochastic gradient descent algorithm has the advantage of

using a more realistic estimate of the gradient of the mean

squared error than the LMS algorithm with a consequently increased

computational cost. Note that for N = 1, the algorithm reduces

to the LMS algorithm.

A key issue in the analysis of any stochastic algorithm is the

question of convergence. Extensive studies have been conducted

on the convergence properties of the LMS algorithm [4-10,

16-26] which provide a comprehensive research literature useful

for understanding the basic performance characteristics and

properties of the algorithm. At this stage it is appropriate

to study the fundamental convergence properties of the LMS

algorithm and outline some recently published results.
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2.6.3 Convergence analysis for the LMS algorithm

Referring to the LMS algorithm, the updating vector is given

by,

(2.40)

Defining an error vector at iteration K,

(2.41)

and utilizing ensemble averaging, equation (2.40) can be written

as

(2.42)

Assuming that X
K

and VK are statistically independent, then,

(2.43)

which indicates that the mean of the error vector behaves exactly
- t

as if the true gradient vectors were known. R = E(XKX K) is a
symmetric t

positive definite'matrix and it can be expressed as R = U DU.

Utilizing the same approach as (2.18 - 2.24) yields the well

known bounds for the step length a,

0<a<_1_
M

(2.44)

where, M = the largest eigenvalue of the covariance matrix R.
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Within bounds (2.44), the speed of adaptation and also the noise

in the weight vector solution are determined by the size of a.

Since M cannot be greater than the trace of R (ie. sum of

diagonal elements of R), the bounds on a can be restated as,

(2.45)10< a< __
tr(R)

which is much easier to apply than (2.44) since tr(R) can easily

be estimated.

For an adaptive filter, the variance of the filter output is

often used as a measure of its performance, which can be expressed

as,

*= J(W ) + (2.46)

(assuming stationary data and no correlation between XK and VK),

where, m. = i-th eigenvalue of the covariance matrix Rand
1

. I t
V~l = i-th element of the transformed vector VK = U VK [5-9].

Utilizing the same approach illustrated by equations

(2.20-2.26), (2.30-2.31), it can be shown that the elements of

V~ approach zero at exponential rates given by,

I

T~ -
1

1

2am.
1

(2.47)

which is the time constant associated with the i-th mode. Since
I

J(W
K

) involves a sum of the squares elements of VK, it will
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decay at an exponential rate that is twice the rate of decay

of VK• Thus, the time constant for the i-th mode is,

(2.48)
1

4am.
1

T~ =--
1

Due to the noisiness of the coefficient error vector VK, the

actual output variance will be larger than the predicted one

given by (2.46) which results in a factor known as misadjustment.

Considering the error vector VK, the cost function can be

expressed as,

(2.49)

Assuming independent vectors XK and VK, equation (2.49) can

be written as,

(2.50)

t *It is shown in [5, 7, 8] that E(VKV K) = aJ(W )1, where I = identity

matrix. Thus,

* *= J(W ) + aJ(W )tr(R)

* * L= JeW ) + aJ(W )L mi
.i e l

(2.51)

The misadjustment is defined as the ratio of the excess mean

squared error to the minimum mean squared error [5-9].

27



misadjustment =

*J(W )

= atr(R) (2.52)

Obviously the misadjustment is directly proportional to the step

size parameter, a, indicating a trade-off between the misadjustment

and the rate of adaptation. For design purposes it is useful

to express the misadjustment factor in terms of the filter order

and the speed of adaptation. An alternative relation for the

misadjustment factor can be obtained in terms of the average

settling time of the cost function and the number of filter

coefficients [5-9],

misadjustment = L

4T
J

avg

(2.53)

Note that the above analysis was carried out for stationary

data and assuming statistically independent input vectors. For

most applications, the independence assumption is absolutely

unjustified; however, it does simplify the analysis considerably.

Results obtained under this assumption seem to agree with

experimental results using small step size [7-8, 16, 21-23,25,

26]. Convergence analysis of the LMS algorithm with correlated

data (stationary or non-stationary data) is presented in

[17-20, 24], and is much more complex than the results outlined

above. References [19, 20] provide the results for stationary

and correlated data, and results for non -stationary and correlated

data are given in [17-18].
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From the results outlined so far, it is clear that the convergence

factor, a, plays a crucial role in the performance of the LMS

algorithm. The choice of,a,involves a trade-off between the

speed of adaptation and the steady state of misadjustment. Large

a results in; high speed of adaptation and large steady state

misadjustment. Small a results in; low steady state misadjustment

and low speed of adaptation.

Gersho [22] has shown that the fastest convergence takes place

(channel equalization, assuming stationary data and independent

data vectors) for,

2
a =

m+M

(2.54)

where, m and M denote the minimum and the maximum eigenvalues

of R. However, in recent works [7, 27] it has been shown that

the step length a must be restricted to an interval significantly

smaller than the domain stated by relation (2.44), and it was

shown that stability is ensured if and only if,

0< a< _1_ (2.55)

3M

The step length, a, is not the only factor affecting the performance

of the LMS algorithm and there is a second factor affecting its

performance which is the spread of the eigenvalues of the data

covariance matrix. As in the case of the steepest descent

algorithm the maximum time constant is (see equation 2.33),

,
TV M
max>

2m
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Thus, the larger the eigenvalue spread of the data covariance

matrix, R, the longer it takes for the LMS algorithm to converge.

This is a major disadvantage of the LMS algorithm, since the

convergence can be very slow if the ratio M/m (known as condition

number of the covariance matrix) is too large and generally

speaking this is the case in most practical situations. Convergence

of the LMS algorithm can be accelerated by the orthogonalizing

technique (ie. making all the eigenvalues of the covariance

matrix identical). Various techniques can be utilized to achieve

orthogonalization and are explained in the next section.

2.6.4 Self orthonormalizing adaptive algorithms

With reference to the steepest descent algorithm, the mean

squared error at iteration K can be expressed in terms of its

optimum value and the excess mean squared error (EMSE),

[5, 7, 8].

(2.57)

where,

VK = (I -2aR)VK_1
(2.58)

using similarity transformation, equations (2.57) and (2.58)

can be expressed in their decomposed forms, ie.,

(2.59)
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and

v~ = (I -2aD)V~_1 (2.60)

From (2.59) and (2.60), it is easy to show that the EMSE evolves

according to [5, 7, 8],

EMSE
~L 2K= ~ b.m.(1 - 2am.)
i=1 1 1 1

(2.61)

where the coefficients b. of the L exponential modes are determined
1

by the initial weight vector W1. Obviously, the problem of selecting

a value for a to yield fast convergence is affected by the eigen-

value spread m.. The most successful modification of gradient
1

descent algorithm to obtain fast convergence is to use the inverse

-1covariance matrix R ,ie.,

which reduces to

-1= ((1 - 2a)WK +2aR P)

in which case (2.69) is modified to

(2.62)

(2.63)

EMSE
L

= (1 - 2a)
2K.L:

1=1
b.m.

1 1
(2.64)

Thus, for orthogonalized algorithm (2.62), convergence in (2.64)

occurs in one step with the step size parameter a = ! [5,7,8,].
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The algorithm (2.62) which is a non-stochastic modified gradient

descent algorithm can be extended to stochastic modified gradient

descent algorithm by replacing the deterministic deflected gradient

with its stochastic version, -2eKR~~1 XK, which results in a

modified lMS algorithm, thus,

(2.65)

-1
where, RK_ 1 is obtained from some stochastic data sub-algorithm

(see Appendix 1). The algorithm (2.65) is known as the lMS/Newton

algorithm [8], or deflected-stochastic gradient (DSG) algorithm.

The DSG algorithm is clearly much more complex than the lMS

algorithm due to the requirement of estimating the inverse of

the covariance matrix. The detailed convergence properties of

algorithm (2.65) are not presented here, however, references

[5, 7, 8, 28-33] give a good introduction to its underlying

theory. Obviously the only computationally demanding procedure

involved in (2.65) is to estimate R~~1 recursively. It is shown

in Appendix 1, that using matrix inversion lemma [5, 7, 8, 81],

-1 2R
K_ 1

can be computed by O(l ) operations.

Using an estimate of the inverse of the covariance matrix is

not the only technique to achieve orthogonalization. An

alternative method of orthogonalization is to use a whitening

filter in order to decor relate the input data xK. The most popular

technique of decorrelating the input data involves lattice

structures which are explained in the next section.
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2.6.5 The lattice gradient algorithms

Lattice configurations form an important class of architectures

for signal processsing. They possess regularity of structures

comprising of identical stages (sections), which have orthogonal

properties and involve bounded coefficients [7, 34-36]. Lattices

are thus inherently stable. These properties make them particularly

attractive for adaptive processing. Digital lattice filters can

be realized to have pole-zero transfer function, all pole transfer

function, or all zero transfer function in which the latter is

the most common configuration used in adaptive signal processing.

Figure 2.4 represents an L-stage all zero digital lattice filter.

The fundamental equations describing the lattice filter structure

illustrated in Figure 2.4 are,

fi i-1 kibi-1= f KK K-1

(2.66)

bi i-1 ki fi-1= b
K_1K K

where, fl and bi are referred to as the forward (FD) and back-K K
ward (80) residuals at i-th stage, ki are the lattice coefficients

known as the reflection coefficients (Re), i = 1, 2, ..... L,

K = 1, 2, •••.. N, and f~ = b~ = xK' where xK = input data sequence.

The lattice structure shown in Figure 2.4 was originally proposed

by Itakura and Saito [37] for performing speech analysis. The

orthogonalization of x
K

is done by recursion (2.66). Obviously

the lattice filter has a more complex structure and requires

more numerical operations to implement a transfer function than

does the tap-delay line counterpart. However, the increased
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complexity is offset by several advantageous properties of the

lattice structure, including a stage by stage orthogonalization

of the input signal, good numerical properties when finite precision

arithmetic is used and its suitability for VLSI implementation.

The lattice filter structure naturally evolves from a prediction

filter where orthogonality conditions are applied.

The most important advantage of the lattice structure is the

fact that for each stage the BO prediction error at the output

is orthogonal to both prediction errors at the input. This

decouples successive stages, thereby enabling the optimization

of each stage of the lattice independently [7, 34-37]. This is

in contrast to the tap-delay line structure where the coefficients

are adjusted jointly, leading to poor convergence properties

(related to the statistics of the input signal) [5, 7, 8,].

There are a number of different algorithms available for

calculating the RC of the lattice filter [7, 34-38]. The method

of choice is generally the Burg's algorithm (also known as the

harmonic mean algorithm) [38], which gives the optimum value

of the reflection coefficients as being the ratio of the

expectations of the negative crosspower and the mean output

power of the FO and delayed BO prediction errors,

(2.67)

Burg's algorithm is chosen because it has a significant theoretical

basis and minimizes a well defined, reasonable error criterion,
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namely, the sum of the FO prediction error power and SO prediction

error power [38].

The algorithm (2.67) can be implemented recursively (coefficients

recomputed with each new data sample) by means of either a gradient

technique or a recursive least squares technique. This section

presents recursive estimation of the RCs using gradient techniques

and their recursive computation by means of RLS technique will

be presented in a later section.

Consider both FO and SO residual error power at i-th stage,

(2.68)

i-1 i-1)]For a stationary process E[(bK_ 1)] = E[(fK .

Thus, FO residual power = SO residual power.

Now, consider the cost function for stage, i, with respect to

both FO and SO residual energies,

(2.69)
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Taking the gradient of (2.69) with respect to ki and equating

it to zero yields,

_2E[(b i - 1) *
K-1 (2.70)

which is the Burg's method for computing the optimum value of

ki [38J.

A recursive gradient descent algorithm can be used to calculate

the Res for the lattice when the statistics of the prediction

errors are precisely known. This algorithm is based on the sum

of the FO and BO prediction error gradients and is given by,

(2.71)

iIt is easy to show that the step size parameter, a , is inversely

proportional to the sum of the FO and BO prediction error power,

thus (2.71) can be written as,

i
P

(2.72)

where, ex = i
small positive constant and p = sum of the FO and

BO prediction error power. Since the precise statistics of the

gradient ~J(ki) and the prediction error power pi are not known

apriori, their estimates are used. Utilizing the instantaneous

estimates of ~J(ki) yields the stochastic lattice gradient

algorithm [7, 39-43J, (see Appendix 2 for a detailed derivation),

36



.... i
P

f fi+1 * bi + f
K
i * bKi+1~

K K-1 (2.73)

,.,i
where, p = an estimate of the joint prediction error power.

Various estimators can be used to calculate pi recursively of

which the most common one is [7, 39-43],

(2.74)

where, ~ = positive constant (0.95 to 0.99) which controls the

extent of smoothing [7, 39-43].

The algorithm (2.73 - 2.74) was presented by Griffith and utilizes

two adaptation parameters, a and ~ . The adaptation parameter ~

can be set to the range 0~ ~ ~ 1-a, where a is selected in

the range 0.95 to 0.99. However, ~ = 1- a represents the

theoretical best case (closest to the Burg's formula) [7].

References [7, 39-43] provide a good introduction to the

underlying theory of various lattice gradient descent algorithms

for computing the RCs.

So far the techniques for computing the lattice coefficients

have been discussed and it remains to outline the conventional

algorithms for adaptive joint processing using a lattice structure

which is shown in Figure 2.5.

Figure 2.5 is an equivalent representation of Figure 2.2 using

a lattice structure mainly for orthogonality purposes. The lattice

filter processes the input signal xK using RCs and provides a
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set of SO orthogonal signals to the combiner (NS., initially
signals

of course, the SO/will not be orthogonal [39-43]. Ortho
signals

gonality of SOl is only approached in steady state. This issue

will be discussed in more detail in chapter 3 ). Generally,

there are two gradient methods which may be used to update the

combiner tap-weights. The first technique combines all the

lattice outputs in a single global combining structure as shown

in Figure 2.5. This results in the same error signal being used

in each tap-weight update loop [42]. An alternative method [42]

is to derive individual error signals for each of the update

loops. This method is more suitable for hardware multiplexing

than the global type, but suffers from an increased level of

algorithm noise [42]. Ignoring the effects of algorithm self-

noise, either technique should produce identical results.

However, the results of some recent experiments carried out in

[42] indicate that the self noise of method two may be

considerably greater than that of method one. Thus, the gradient

algorithm which implements the first technique is outlined below.

(2.75)

where,

(2.76)

iand the step size aK is computed by,

(2.77)
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1

i
~K+1

(2.78)

Note that in algorithms (2.75-2.78), different la~aptive step

sizes are used in order to keep the overall convergence rate

of the adaptive lattice algorithm insensitive to the eigenvalue

disparity [41-42]. For a detailed analysis of the lattice

gradient algorithms see references [7, 39-43].

It has been shown by many [40-43] that lattice gradient algorithms

offer a faster convergence than the gradient TDL algorithms.

Although lattice gradient algorithms are more complex than their

TDL counterparts, they have been widely used in channel equalization

linear predictive coding (LPC) of speech waveforms for bandwidth

compression, high resolution adaptive spectral analysis, etc.

2.6.6 The recursive least sguares algorithms

The RLS algorithms are practical implementations of Newton's

method. The Newton's method of searching the minimum of a

quadratic function involves the first derivative and the inverse

of the second derivative of the cost function and can be expressed

as [5, 7, 13-15],

(2.79)

For a quadratic function, Newton's method proceeds to the optimum

*solution, W , in one step [5, 7, 13-15].
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In most practical situations, the exact value of the first

derivative, ~J(WK)' and the inverse of the second derivative,

R, (data covariance matrix) of the cost function are not known

apriori and their estimates must be used. The best estimate

of the data covariance matrix, R, is its maximum likelihood

estimate (MLE) [5, 7] which can be expressed by,

R =K

1

K

K

L
i=1

tX.X.
1 1 (2.80)

Using the estimator (2.80) and employing matrix inversion lemma

[5, 7, 44, 81], (see Appendix 1), yields the RLS algorithm,

(2.81)

The RLS algorithm (2.81) converges to an optimal value of the

*weight vector, W , using any initial estimate W
1.

However, the

recommended value of the initial estimate of the weight vector

is W1 = 0 [5, 7]. The initial value of R~1 may be obtained

simply by letting R~1 = ~I, where, ~ is a large positive

number (eg. 100) [5, 7]. For a detailed derivation and

explanation refer to Appendix 1. The estimator (2.80) is the

best unbiased estimate of R under stationary conditions. In

adaptive situations where xK is non stationary, the estimator

(2.80) would not be a good estimate of the data covariance matrix.

Because of its infinite memory, this estimate would become

insensitive to the data non-stationarities for large values

of K. This problem can be overcome by introducing a factor,

known as a forgetting factor, which provides a finite memory
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in the estimate of R. The modified estimator IS [5 7 8], , ,

R
K

=t aK-ix.x~
. 1 1 1
1=

(2.82)

Using the estimator (2.82) and matrix inversion lemma yields

the exponentially weighted RLS algorithm (see Appendix 1).

Referring to algorithm (2.81), the output variance and the

misadjustment are shown to be [7] (assuming stationary data,

uncorrelated XK and WK, and a = 1),

* * LE(J(WK)) = J(W ) + J(W )--K--

L
Misadjustment -

K
(2.83)

In the finite memory case, the misadjustment can be closely

approximated by,

L
. Misadjustment :. ( )

zino
. (2.84)

The RLS algorithm suffers from excess complexity. Also, the

RLS algorithm typically requires 32 bit floating point arithmetic

in order to remain stable [7J. Some benefits in numerical

stability may be obtained by the use of RLS lattice forms which

will be discussed in the following section. On the positive

side RLS algorithms do have fast, consistent convergence

characteristics with convergence guaranteed within 2L input

samples for a noise free signal. Performance, however, does

degrade in the presence of interfering noise. In recent years
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there has been a renewed interest in the RLS algorithms, due

to availability of its fast (computationally efficient) versions

[45, 46, 47] (not applicable to spatial arrays).

2.6.7 The recursive least sguares lattice algorithms

The recursive least squares lattice algorithms (LSL) have

attracted much attention recently because of their excellent

convergence behaviour and fast parameter tracking capability.

The LSL algorithms allow the exact solution to the least squares

problem to be updated for every newly observed data sample. These

adaptive estimation techniques use the properties of the lattice

structure to efficiently implement the adaptation. The LSL

algorithms look similar to the lattice gradient algorithms

except that optimal weighting factors are calculated. To

understand the underlying structure of the LSL algorithms requires

a general knowledge of linear prediction which is explained

below.

The linear prediction model assumes that a data sample xK at

time K, can be approximated as YK' a weighted sum of previous

data samples. Thus, for a L-th order linear prediction with

coefficients (w1, ...•..• wL) ,

(2.85)

The coefficients are to be chosen so as to minimize the mean

square error between xK and the estimate, YK. The L-th order
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covariance matrix of the process xK' is expressed as,

tR = E[XK ,XK .] (2.86)
-1 -1

Minimizing the square of the prediction error with respect to

the predictor coefficients,

coefficients satisfy,

*RW = P

w., requires that the predictor
1

(2.87)

The equation (2.87) is referred to as Yule-Walker equation or

normal equation. To solve (2.87) requires the inversion of the

L by L covariance matrix R, which involves in the order of

(L3) computations (multiplications). However, assuming

stationary data, then the covariance matrix is a Toeplit~ Matrix.

Using the Levinson algorithm [48], the normal equation (2.87)

in Toeplit~ form can be solved in the order of (L2) computations.

The Levinson algorithm is an order recursive technique that

uses the solution for an L-th order predictor to generate the

solution for (L+1)-th order predictor [7, 34, 48].

A detailed derivation of the Levinson algorithm is outlined

in references [7, 34, 48]. In order to develop a complete

LSL algorithm using Levinson recursion, it is necessary to define

a suitable estimator for the various statistical quantities

which are involved along with detailed time evolution of these
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estimates within the overall lattice structure. This is beyond

the scope of this section and for a comprehensive derivation

and explanation, the works of Morf and Lee [49], Satorious and

Pack [50], Friedlander [34] and Ljung et al [51] should be

consulted.

In addition to LSL algorithms developed as an extension of the

Levinson recursion, other LSL algorithms have been developed

that do not employ the Levinson algorithm and are presented in

references [8, 52, 53].

To gain a general idea, this section reviews the concept of

conventional LSL algorithms which arise from the basic work of

Morf and Lee [49]. These algorithms are referred to as mixed

time and order recursive LSL algorithms (for reasons that are

clarified below). In the development of LSL algorithms, two

aspects of the solution of the normal equation (2.87) are

important. The first aspect is the efficient inversion of the

covariance matrix that gives rise to the order update recursions.

Secondly, the time update structure allows exact least-squares

solutions to be computed in a recursive manner for each new data

sample. This enables the LSL algorithm to achieve extremely

fast convergence and excellent tracking capabilities.

Referring to Figure 2.6, the orthogonal signals are generated

throughout the recursions,
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bi+1 i i fi= b
K_ 1

+ k
K_ 1(f) *K K

(2.88)

fi+1 i i
* b

i
= f K + kK_ 1(b)K K-1

where, 1 b1 i i
f K = K = xK' and k

K_1(f),
k

K_ 1(b) are called the forward

and backward reflection coefficients, i = 1 , 2, ..... L. To meet

the least square criterion, the Res must be adjusted as follows

[7, 34, 49, 50],

k~( f) =

where,

i-1
PK_1(b)

(2.89)

(2.90)

(2.91)

(2.92)

are termed the backward, forward and cross residual energy and

playa central role in the derivation of LSL algorithms. The

i-1 i-1order recursion for P
K

(b), PK (f) are obtained as follows,

i-1
* cK

(2.93)

i-1 i() i-1= PK-1 + kK b * cK
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T i-1he order recursion for the interproduct cK can not be established

since it does not exist. Therefore, a time recursion is used

in LSL algorithms as follows,

c~ = c~_1 + oc~ (2.95)

The quantity oc~ can be interpreted as a time differential of

the cross residual energy c~ expressing the innovation caused

by the current sample of input data. The time recursion (2.95)

is the underlying formula in all conventional LSL algorithms

[7, 49].

oc~ is computed from the residual signals of the lattice form

inverse filter [7, 49] as follows,

(2.96)

~i _~i-1 _
K - K

(2.97)

i biFinally, the residual signals f
K,

K are computed by the recursion

(2.88).

The factor ~ i obtained by recursion (2.97) is termed the
K

likelihood variable and is limited to the range 0~ ~~ ~ 1

[7, 49].

The recursions (2.88-2.97) outlined above express the concept

of conventional mixed time and order recursion LSL algorithms

and require in the order of (L2) operations per time sample.
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Exploiting the orthogonalizing nature of the lattice structure,

an exact LSL algorithm can be established which requires only

in the order of (L) operations to update per time sample

[54-57].

2.7 Linearly constrained minimization problem

and conventional adaptive algorithms

In some practical problems, not all possible values of the variables

are acceptable and it is often necessary or desirable to impose

constraints. A frequent form of constrained minimization problem

is the linear equality constraints which can be stated as,

minimize J(W)

subject to CtW = f
(2.98)

where, W= L--parameter vector, the i-th row of m by L matrix

C contains the coefficients of the i-th linear constraint, and

f is an m-vector [13, 14, 15].

The function J(W) is twice continuously differentiable. Generally,

it is assumed for simplicity that the rows of C are linearly

*independent. A necessary condition for W to be a minimum of

linear equality constrained problem is

* = Ct-v*V'J (W ) I (2.99)

where, "1* is the m-vector of Lagrange multipliers [13, 14, 15].
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Let Z denote a matrix whose columns form a basis for the set

of vectors orthogonal to the rows of C. A condition equivalent

to (2.99) is [13-15],

*Another necessary condition for W to be a minimum of the linear

t *equality constrained problem is that the matrix Z R(W )Z should

be positive semi definite [13-15], where the L by L matrix

* * tR(W ) is the second derivative of J(W ). The vector Z '7J(W)

is called the projected gradient of J(W) and the matrix

ztR(W)Z is called the projected Hessian matrix. For a detailed

explanation and derivation of the optimality condition for

linear equality constrained problems see references [13-15].

2.7.1 Linearly constrained LMS algorithm

Consider the augmented cost function,

(2.101)

where, ~t = vector of the Lagrange multipliers. The derivative

of J(W,~) with respect to W, is given by,

'7J (W, ~) = RW - P + C~

Equating (2.102) to zero yields,

W* = R-1P _ R-1C~
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Using the constraint equation CtW = f in equation (2.103) and

solving for 'Y results in,

(2.104 )

or equivalently,

(2.105)

Substitute equation (2.105) into (2.103) to obtain the optimal

solution for Wsubject to the linear constraints,

* -1W = QR P + F

where,

is a projection operator to the constraint plane and

(2.106 )

(2.107)

(2.108 )

is the orthogonal vector to the constraint plane. In order to

establish a linearly constrained LMS algorithm, replace all

quantities in equation (2.102) by their instantaneous values

at time K, and utilise the steepest descent approach to update

the weight vector, ie.,
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(2.109)

where, a is the gradient step size and "I K is an estimate of

the vector of the Lagrange multipliers at time K. Use the

constraint equation ct WK+ 1 = f in equation (2.109) and solve

for 'YK• Substitute the solution for 'Y
K

back into equation

(2.109) to obtain the linearly constrained LMS algorithm,

(2.110)

where,

(2.111)

is a projection matrix and operates on the instantaneous gradient

vector (WK - aeKX K) in order to convert it to a form orthogonal

( t )-1to the constraint matrix C, and the term C C C f translates

this orthogonally constrained vector so as to satisfy the desired

constraint [58-59].

The constrained LMS algorithm is widely applied to the practical

problem of sensor array processing for signal detection in the

presence of spatial interference [58-59]. Generally, constrained

adaptation is employed for sensor arrays when a desired signal

is not available. The augmented cost function for this case can

be expressed as,

(2.112)
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The optimal solution (2.106) for this case is reduced to

*W = F

where, F is given by equation (2.108).

(2.113)

Utilizing the same approach as for the case with the desired

signal available, the constrained LMS algorithm can be expresse~

as

(2.114)

where, YK = output sequence. The algorithm (2.114) was devised

and analysed in detail by Frost for multichannel adaptive array

processing [5, 8, 60], shown in Figure 2.7.

2.7.2 Linearly constrained RLS algorithm

Consider the optimal solution (2.106) for W,

(2.115)

Express this solution in its stochastic form at iteration K

to obtain the RLS solution, ie.,

where,

51

(2.116)

(2.117)



and

(2.118)

Substitution of the unconstrained solution W
K

+
1

= RK
1P

K
into

the constrained solution (2.116) yields the linearly constrained

RLS algorithm (or known as the projected RLS algorithm),

(2.119)

where,

(2.120)

-1and RK is computed as shown in Appendix 1.

In general, the constrained RLS algorithm (2.119-2.120) requires

storage of the previous deflection matrix (an estimate of the

inverse of the covariance matrix) and the previous unconstrained

weight vector WK.

For the case of the constrained adaptation without a desired

signal, the constrained RLS algorithm (2.119-2.120) is

modified and reduced to

where, F
K

is given by equation (2.118)
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The constrained RLS algorithms (2.119-2.120) and (2.121) are

known to offer much faster convergence than the constrained

LMS counterparts. However, the drawback is their higher

computational requirement. References [5, 7, 8, 58-60, 63] and

[5, 7, 8, 61, 62, 63] provide a good introduction to the underlying

theory of the constrained LMS algorithm and constrained RLS

algorithms respectively.

2.8 Quadratically constrained minimization problem

and conventional adaptive algorithms

A frequently arising minimization problem in adaptive signal

processing is minimizing a quadratic function subject to

quadratic or norm constraints. The problem can be stated as,

minimize J(W)

subject to WtW = B
(2.122)

where, W= L--parameter vector, J(W) is twice continuously

differentiable and B is a positive constant usually set to 1.

This type of minimization problem involves the determination

of the minimum eigenvalue, m, of the covariance matrix Rand

the corresponding eigenvector. Consider the augmented cost function,

(2.123)

where, 'Y = Lagrange multiplier. Equating the gradient of

J(W, 'Y) with respect to W to zero yields,
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RW = 'YW (2.124)

The equation (2.124) is recognised as the classical eigen

equation with the eigenvalue "I and eigenvector W. Note that

the quadratic function WtRW is bounded as

(2.125)

where, m and M are the minimum and maximum eigenvalues of the

covariance matrix R respectively and IwI 2 is the two-norm, or

Eueclidean norm, IwI 2 = WtW. For B = 1, the relation (2.125)

becomes [13-15],

(2.126)

The minimum of J(W, "I) is the minimum eigenvalue of the covariance

matrix R with the corresponding eigenvector defined by

* *RW = mW

*where, W = optimum weight vector (eigenvector).

(2.127)

The quadratically constrained algorithms are frequently applied

to array processing problems [5, 58]. Also, they are utilized

in gain optimizing algorithms for adaptive arrays [64]. Recently

the quadratically constrained algorithms have been used in high

resolution adaptive spectral analysis, see Figures 2.8 and 2.9,

[65-76].
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2.8.1 Quadratically constrained LMS algorithm

Referring to the augmented cost function (2.123) and motivated

by stochastic descent techniques, the quadratically constrained

LMS algorithm can be expressed as [68-70], see Figure 2.8,

(2.128)

(2.129)

where, the normalizing step (2.129) implements the quadratic

constraints. Alternatively, the algorithms (2.128-2.129) can

be compactly expressed as a single update recursion [68-70].

The effectiveness of this adaptive technique was demonstrated

in [68-70], where the algorithm was utilized in a high resolution

adaptive spectral technique for estimating frequency of sinusoids

corrupted by Gaussian white noise [68-70]. For global convergence

behaviour of the quadratically constrained LMS algorithm, a

useful insight can be found in references [68-70].

The constrained LMS algorithm (2.128-2.129) can be simply

modified and utilized in adaptive directional spectral estimation

for incoming narrow band signals [65], see Figure 2.9. It is

a technique of spatial filtering for high-resolution spectral

analysis of array data.

2.8.2 Quadratically constrained RLS algorithm

Because of the quadratic constraints on the weight vector, an

exact least squares solution does not exist as clarified below.
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The second derivative of the least squares cost function

can be written as,

(2.130)

R =
1 ~K - _ t 2

---~2 ~ «l. - y.W)(l. - y.W) - y.I)Iwi .i e l 1 1 1 1 1
(2.131)

where,
W-

W=

-
l. = X. Wy.
111

I = identity matrix

2Due to the presence of the term y.I which is a full rank matrix,
1

it is not possible to establish a direct recursion for the second

derivative. Therefore, an approximation of the second derivative

must be used. As it is shown in [70], a suitable approximation

is (assuming that E(l.y.) = 0 ),
1 1

R .:. _1_
2
I K

t . l ~
IWI i=1 1 1

(2.132)

Using (2.132), an approximate quadratically constrained RLS

algorithm can be developed [70].
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- - --1
WK+1 = aK+1(WK RK+1ZK+1YK+1)

--1 CLK
Z.Z~)-1RK+1 =

i=1 1 1

-
ZK+1 = XK+1 - WKYK+1

,.J _

aK+1 = \wKI / IWK+1 I

where aK+1 is a scalar constant whose value is chosen such that

the updated weight vector has a unit norm. Using the matrix

--1inversion lemma [44J, a recursion for R
K

+
1

can be obtained as

shown in Appendix 1.

An alternative and more common approach to computing the eigenvector

W, corresponding to the minimum eigenvalue m, is the inverse

power technique [65, 77J. Consider the eigenvector-eigenvalue

equation,

RW = 'Y W (2.134)

The inverse power technique [65, 77J is an iterative method of

solving equation (2.134) and can be expressed as,

-
f'OJ IV

WK+1 = WK+1 /IWK+ 1 I (2.135)

where, W
K

+
1

= an estimate of the eigenvector at step K of the
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iteration cycle. Once again, the technique requires an estimate

of the inverse of data covariance matrix R~1 which must be

computed iteratively as data becomes available.

2.9 Discussion and conclusions

An ideal adaptive algorithm must have the following properties;

I Rapid initial convergence speed.

II Good tracking capability.

III Computationally efficient.

The former two of these properties are often in direct conflict

with the latter, since rapidly converging algorithms with a good

tracking capability tend to be computationally demanding, while

computationally efficient algorithms lack rapid initial convergence

speed and suffer from poor tracking capability.

Generally, adaptive algorithms can be divided into two broad

categories;

I Computationally efficient but slowly converging algorithms

(consequently poor tracking capability).

II Computationally demanding but rapidly converging algorithms

(consequently good tracking capability).

Among all computationally efficient algorithms, the LMS algorithm

is the most popular due to its simplicity and is used in a wide

range of practical problems where the computational efficiency

is of primary importance, not the speed of convergence. On the

other hand, the LMS algorithm is not a suitable approach to those
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practical problems with rapid convergence requirements. In this

case improved performance may be obtained by using lattice gradient

algorithms which can be regarded as variants of the LMS algorithm

(the trade-off is "of course" increased complexity due to lattice

structure).

Although the lattice gradient algorithms offer higher speed of

adaptation than the LMS algorithm, they can be classified as

slowly converging algorithms when compared with RLS techniques.

The RLS techniques are attractive because of their rapid convergence

properties. Their main disadvantage is their high computational

requirement. The RLS algorithms require in the order of L2

multiplications per adaptation cycle (approximately 2.5L2
+ 4L).

Furthermore, RLS techniques are sensitive to numerical round-

off effects.

Complexity of RLS algorithms can be reduced to order L multi

plications per adaptation cycle by making use of the shifting

property of the input vector, ie. data redundancy technique.

However, the data redundancy technique is only applicable to

TDL linear combiners but not to spatial arrays.

Numerical stability of RLS algorithms may be improved by

implementing them using a lattice structure. As a result of

several research efforts [86, 87, 88] and extensive

experimentation with least squares lattice (LSL) algorithms,

it is now widely accepted that these algorithms possess better
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numerical properties than their direct structure (TDL)

counterparts. Thus, there is a great interest in their

application to practical problems. Alternatively, the numerical

stability of RLS algorithms may be improved by introducing a

step Slze parameter in order to smooth the deflected gradient,

thus ensuring that excessively large steps are avoided. The

adverse effect would be reduced convergence speed.

The main objective of this chapter was to outline various

conventional adaptive algorithms along with a brief discussion

of their properties, advantages and disadvantages. These

algorithms are well documented and further insights into their

properties can be obtained by referring to the technical

literature.

Figure 2.10 represents a decision tree for designing adaptive

algorithms in terms of computational efficiency, where CE and CD

denote computationally efficient and computationally demanding

respectively.

In this chapter conventional adaptive algorithms based on the

steepest descent and Newton methods were discussed. However,

there exist alternative minimization methods which are also

descent methods. These techniques are widely known as

accelerated gradient algorithms. Although there is a significant

background literature available on these algorithms, there has

been very little work reported on their application to adaptive

signal processing. This is the main issue emphasised throughout

the remainder of this thesis.
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Figure 2.1 Adaptive linear combiner in the form of
single input adaptive transversal filter.
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Figure 2.2 Optimum non-recursive estimation or
Wiener estimation.

L=2 L=3

Figure 2.3 (L-1)-- dimensional ellipsoids having
*W as their common centre.
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Figure 2.4 Schematic diagram of an all zero digital Lattice filter.

Figure 2.5 Adaptive joint processing using Lattice structure.
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Figure 2.6 Adaptive Lattice filter, all zero configuration.
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Figure 2.9 Constrained directional spectral estimator.
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Figure 2.10 Decision tree for designing adaptive algorithms.
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CHAPTER 3

ACCELERATED GRADIENT TECHNIQUES AND THEIR

APPLICATIONS TO ADAPTIVE SIGNAL PROCESSING
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3.1 Introduction

Generally, all gradient methods estimate the minimum of a

function using a direction vector qK which is the descent

direction.

This chapter presents various gradient techniques that offer

high speed of adaptation and which use second order statistics

of the data to compute the direction vector qK' These techniques

will be referred to as the accelerated gradient (AG) techniques.

Throughout the chapter, the application of AG methods to three

types of minimization problems (unconstrained, linearly

constrained and quadratically constrained) is discussed along

with a study of their convergence analysis, stability and

computational complexity.

3.2 Un-constrained minimization

Consider the quadratic cost function (multivariate),

The process of finding the minimum of J(W) using gradient

techniques which involve a search along the vector qK from

the current point WK can be expressed as,

(3.1)

(3.2)

h step size and qK = direction vector which is a descentwere, aK =

direction.
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Fundamental in the development of gradient methods is the

generation of the descent direction vector qK and the step size

aK so that J(WK+ 1) « J(WK). In chapter 2 it was shown that when

aK is a small positive constant and qK = gK = -~J(WK)' then

the convergence to the Wiener solution W* = R-1P was guaranteed

by the linear search (3.2). But the drawback was shown to be

the very slow rate of convergence. Various techniques can be

employed to increase the rate of convergence which the most

straightforward technique is finding the minimum of a quadratic

cost function by the method of exact linear search (ElS). In

this case aK is chosen to minimize J(WK + aKqK) precisely for

a given WK and qK.

3.2.1 Minimization by exact linear search (ElS)

Referring to the relationship (3.2) and using Taylor's

expansion formula, the function J(WK + aKqK) can be expressed

as,

(3.3)

where, gK = - ~J(WK) with respect to WK. The optimum value of

a
K

that minimizes (3.3) precisely is obtained by equating the

gradient of (3.3) (with respect to aK) to zero.

(3.4)
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It follows,

(3.5)

When aK is obtained by equation (3.5), the procedure is said

to be an exact linear search [13-14].

To characterise qK algebraically consider the Taylor series expansion

of J(WK+1) in terms of J(WK) and gK' as a~ ~ 0.

(3.6)

To satisfy J(WK+1) < J(WK) with aK> 0, it follows immediately

t
that gKqK >0. Equation (3.6) can be written in the form,

(3.7)

where, e = the angle between gK and qK' Holding aK, IgKI, IqKI

constant and varying B, then the right hand side of (3.7) is

o 0most negative when 8 =°or 360 . Thus, the greatest reduction

in the function value is obtained in the direction

qK = gK = -~J(WK)' which is the negative gradient direction

or steepest descent direction. Using qK = gK in (3.3) yields,

(3.8)

(3.9)

Thus (3.2) can be written as,

WK+1 = WK + aKgK

which is the method of steepest descent with exact linear search.
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3.2.2 Convergence of the method of steepest descent

with exact linear search

With exact linear search it can be shown that (see Appendix 3),

[14] .

(3.10)

*where, J(W ) = minimum value of the quadratic function and

1 = ((M - m) / (M + m)2, M and m being the maximum and the

minimum eigenvalue of R. Rearranging (3.10) we have,

It is obvious from,

1 = ((M - m) / (M + m»2

(3.11)

(3.12)

that, in general, the convergence rate decreases as the condition

number M/m increases.

A simple explanation of the slow rate of convergence for a large

condition number is given by the fact that in the ELS method

the successive search directims gK are orthogonal. Successive

iterations generate a zig-zag path to the minimum. This can

result in very small steps being taken in a region away from

the minimum if the condition number is large corresponding to

substantially ellipsoidal contours of the cost function. This

situation is illustrated in Figure 3.1.
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Referring to the above convergence discussion, if M/m is close

to unity the contours of the cost functions are hyperspherical

in the region of the minimum and the method of ELS exhibits

quadratic termination. As it is illustrated in Figure 3.1, a

large condition number corresponds to ellipsoidal contours thus

slow convergence near the minimum. In this case the ELS does

not appear to be a practical technique!

However, in most practical adaptive signal processing situations

we are dealing with non-stationary data and as a result a variable

optimum point. The fundamental requirement in a non-stationary

situation is the initial speed of response of the adaptive

algorithm to data non-stationarities. In other words, it is

the tracking property of the adaptive algorithm which must be

taken into consideration, not its final rate of convergence.

Figure 3.1 shows the convergence behaviour of the ELS method

for a situation in which M/m is assumed to be large (ellipsoidal

contours).

Considering the zig-zag path it is clear that very large steps

are taken initially, corresponding to the rapid initial rate

of convergence of the algorithm which is the main requirement

in most practical situations (ie. rapid tracking of the data

non-stationarities).

This interesting property of the method of steepest descent with

ELS is utilized to establish adaptive algorithms which will be

presented in various sections of this chapter.
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Furthermore, the concept of conjugacy and linear independence

is used to generate a set of search vectors said to be mutually

conjugate vectors which, when used sequentially with ELS, result

in quadratic termination [13, 14].

3.2.3 Exact linear search adaptive algorithms

The algorithm outlined in sections (3.2.1) and (3.2.2) can be

carried over to adaptive filtering problems by simply choosing

a statistical estimator for covariance matrix and cross-

correlation vector, ie. a sample covariance matrix RK and a

sample cross-correlation vector PK. In this case RK and PK are

updated by one or more new data samples at each iteration.

Assuming that all signals can be modelled as zero mean Gaussian

processes, then the maximum likelihood estimates of the covariance

matrix and cross-correlation vector can be formed using the

sample covariance matrix and sample cross-correlation vector

given by [5, 8],

1
K

t
RK = K L x.x.

1 1

i=1 (3.13)

1
K

PK = K L d.X.
1 1

i=1

..... , xL)t is the vector of tap signals

and d. = the desired signal (or primary signal, refer to Figure
1

2.2).
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Using the estimators given by (3.13) and employing ELS

minimization technique results in the following adaptive

algorithm.

(3.14)

The algorithm (3.14) is the adaptive version of the method of

steepest descent using ELS technique. The convergence is guaranteed

for any arbitrary initial estimate W
1•

The sample covariance

matrix RK can be assumed to be positive definite yielding the

optimal step length aK in successive iterations K. This statement

will be discussed in more detail in the following section.

The algorithm (3.14) has little practical significance, since

it is only suitable for stationary situations and its tracking

capability is limited. This is obvious as the estimators (3.13)

treat all signal samples equivalently. Therefore, as K increases

the tracking capability of the algorithm decreases. This problem

can be overcome by employing windowing techniques which provide

a finite memory in the estimates of the covariance matrix and
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cross-correlation vector thus regarding the new data samples

as being more important than the previous ones.

A common windowing technique is the exponential windowing which

results in the following estimators of the covariance matrix

and cross-correlation vector,

K
K-iX Xt

RK = L ex ..
1 1

i=1
(3.15a)

K K-i
PK = L ex d.X.

1 1

i=1

where, 0 < ex < 1. Employing the estimators (3. 15a) the ELS adaptive

algorithm can be outlined as follows,

(3.16)

The algorithm (3.16) is an exponentially weighted ELS adaptive

algorithm that regards the new data samples more important than

the previous ones. Note that estimators (3.15a)yield biased

estimates of Rand P. This bias can be removed by scaling (3.15a)
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in accord with,

1-a K
K-i X XtRK = L a ..

1- a K 1 1

i=1

K
(3.15b)

1- a K-iP
K =

1- a K L a d.X.
1 1

i=1

which result in the following update recursions,

RK
(1_a K-1)a

R
K

_
1

+ (1- a) t=
(1- a K) XKX K(1- a K)

(3.15c)

P
K

(1_aK-1)a
PK- 1

(1-a) d x=
(1_a K)

+
(1_aK) K K

An alternative data weighting scheme is the one that allows for

past data samples to be regarded as more or less important than

the new data samples [5J. The sample covariance matrix and sample

cross-correlation vector that employ this type of data weighting

scheme are obtained by,

(3.17)

where,D « ~ « 1. For ~ = -t- each sample is equally weighted.

Employing the estimators (3.17) the ELS adaptive algorithm can

be outlined as follows,
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(3.18)

Note that, for K smaller than L, the ELS adaptive algorithms

have a growing dimension, which means a singular matrix R
K.

To

ensure that RK for K less than L be positive definite, R
1

can

tbe initialized as R1 = X1X1 + ~ I, where, ~ is a posi tive

quantity and I is the identity matrix.

3.2.4 On the optimality of the convergence factor aK

In section (3.2.1) it was shown algebraically that

t taK = gKgK / gKR9K minimizes J(WK) precisely yielding a convergence

rate given by 1 = «M - m) / (M + m»2. This is true if and only

if R is a positive definite matrix thus ensuring the following

well known inequalities [14-15], (see Appendix 3),

m
(3.19)

1
M

1
m
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Sample covariance matrices given by (3.13), (3.15) and (3.17)

are all positive definite matrices except for K less than L.

Therefore, to satisfy the inequalities (3.19), R
K

can be

tinitialized as R1 = X1X1 + ~I as was mentioned previously.

Figures 3.2 and 3.3 illustrate the relative behaviour of the

convergence factor aK and the inverse of the maximum and the

minimum eigenvalues of the covariance matrix when the ELS technique

was used to minimize a quadratic function of the form,

(3.20)

with the known R, P and c. Figure 3.2 shows the behaviour of

aK for R having a small condition number and Figure 3.3 illustrates

this behaviour for a large condition number.

Figures 3.4, 3.5, ....• 3.9 demonstrate the variation of the

step length aK with respect to the inverse of the maximum and

inverse of the minimum eigenvalues of the estimated covariance

matrix. In this case the same quadratic function (3.20) had to

be minimized but to illustrate the effect of various estimators

(3.13, 3.15b, 3.17) on behaviour of aK ' Rand P were assumed

to be unknown and were estimated adaptively as the data samples

became available (an adaptive noise cancelling scheme) .

Figures 3.4-3.5, 3.6-3.7, and 3.8-3.9 show the variation of aK

(for small and large condition numbers) with respect to the

estimated eigenvalue boundary when estimators 3.13, 3.15b and

3.17 were used respectively.
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From these results it is clear that the inequality

1 1
~ ~ aK~ -m; where, MK and mK are the maximum and

minimum eigenvalues of the sample covariance matrix at each

iteration K, is satisfied irrespective of the condition number

or type of estimator. These results are used to extend the

convergence behaviour of the deterministic algorithm outlined

in sections (3.2.1) and (3.2.2) to convergence behaviour of

its adaptive versions given by (3.14), (3.16) and (3.18).

3.2.5 Convergence of adaptive algorithms with ELS

To study the convergence of the ELS adaptive algorithms, it

is essential to make the fundamental assumption that estimates

of the covariance matrix are positve definite at each iteration.

This assumption will enable the derivation of convergence

relationships in terms of the maximum and minimum eigenvalues

of the estimate of the covariance matrix at each iteration K.

Referring to algorithms (3.14, 3.16, 3.18), the cost function

at each iteration can be expressed as a scaled sum of squares

of error.

(3.21)

Since R is a positive definite matrix then the quadratic function
K

* .(3.21) has a unique minimum J(WK) . Also using the Taylor expansIon

formula, the updated cost function J(WK + aKg K) can be expressed

as,
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(3.22)

The derivative of (3.22) is equal to zero if aK is given by,

(3.23)

which is the convergence factor for algorithms (3.14, 3.16, 3.18).

Now with reference to convergence analysis of the method of

steepest descent with exact linear search outlined in section

(3.2.2), we have,

(3.24)

or

(3.25)

where,

(3.26)

and M
K,

m
K

are the maximum and minimum eigenvalues of the estimate

of covariance matrix RK·

The above discussion can be repeated for successive iterations.

Therefore, it can be stated that, successive cost functions

J(W
K),

J(W
K
+
1),

.....• , etc. have unique minimum points
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+ * *
J(WK), J(WK+1), J(WK+2), , etc and as a result of ELS

adopted at each iteration,the following relationships can be

established.

* *J(WK+1) - J(WK) ~ lK(J(WK) - J(WK»

J(WK+2)
* * (3.27)- J(WK+1) ~ lK+1(J(WK+1) - J(WK+1»

J(WK+3)
* *- J(WK+2) ~ lK+2(J(WK+2) - J(WK+2»

etc.

where,

( (MK - mK) / (M
K

2
lK = + mK»

( (MK+1 - mK+1) / (MK+1
2

(3.28)lK+1 = + mK+1»

- mK+2) / (MK+2
2

lK+2 = ( (MK+2 + mK+ 2»

etc.

and MK, MK+1 , MK+2 .....• etc., mK, mK+1, mK+2 .....• etc. are

the maximum and minimum eigenvalues of RK, RK+1, RK+2, .... ,

etc.

Rearranging (3.27) results in,
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(3.29)

etc.

Solving (3.29) in terms of the initial value of the cost function

yields,

(3.30)

where, J(W1) = initial value of the cost function. If j = K+1,

K
then (1T Ih) = 1. Equation (3.30) relates the value of the cost

h=j

function J(WK+1) to its initial value and unique optimum values

* * *J(W1), J(W2), ...•• , J(WK)·

3.2.6 Convergence of ELS adaptive algorithms

in a stationary environment

Assuming stationary inputs, then the resultant quadratic cost

function has a single fixed minimum point. In this case there

*
exists one optimum weight vector W that minimizes the cost

function.

In stationary situations all data samples can be equally weighted.

This is achieved by employing the estimates of covariance matrix
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and cross-correlation vector given by (3.13) which result in

unbiased estimates of Rand P as K --~co.

It is well known and also experienced (computer simulations)

by the author that estimators (3.13) result in a good estimate

of Rand P approximately after twenty to thirty iterations. This

can be verified by referring to Figures 3.2, 3.3, 3.4, 3.5 which

show the true and estimated inverse of the maximum and the

minimum eigenvalues of R and its estimates RK given by (3.13)

respectively.

In the case of stationary data, the variable optimum point of

*J(W
K)

in (3.29) and (3.30) can be represented by the unique

*optimum value of the cost function J(W ), (neglecting the first

few iterations before convergence of

Therefore, as K --~ COthe first term

of (3.30) vanishes since 1. < 1 and
1

RK and PK to Rand p).

on the right hand side

CO
1 • The second-rr 1. «

. 1 11=

term on the right hand side of (3.30) reduces to

(1 - P::»J(W*) since estimates R
K

---> R and thus MK, mK--~M,m

as K --~ CO. Therefore, equation (3.30) reduces to

*J(W
K

+
1

) '"<J J(W ) as K ----> CO. (3.31)

With regard to the above discussion we may state that, assuming

stationary data, the ELS adaptive algorithm (3.14) minimizes

the quadratic cost function and results in the Wiener solution

as K ---> CO.

82



Due to unbiased estimates RK = Rand PK = P at K =00 , the

algorithm (3.14) at K = 00 behaves like the deterministic

steepest descent method with ELS and therefore results in zero

steady state misadjustment (neglecting the effects of finite

word length implementation).

3.2.7 Convergence of ELS adaptive algorithms in

a non-stationary environment

In the case of non-stationary signals, the minimum point and

orientation of the cost function could be changing over time.

Figure 3.10 illustrates a two dimensional time varying cost

function for a non-stationary process.

Due to data non-stationarities and as a result a variable optimum

point, the data samples can not be equally weighted and alternative

data weighing schemes must be employed. Two of the most well

known data weighting schemes are those given by (3.15) and (3.17).

For a non-stationary cost function a logical approach would be

*to define an optimum parameter vector (weight vector) WK that

minimizes the cost function at time K [17, 24, 78]. This is

the approach taken in section (3.2.5) in order to establish the

relationship (3.30).

Equation (3.30) relates the value of the estimate of the cost

function to its initial value and its optimal value at each

iteration. The tracking capability of the algorithm is determined

by the variable factor Ii which in turn is related to the variable
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condition number of the estimated covariance matrix.

Due to the data non-stationarities, it is meaningless to

study the convergence of an adaptive algorithm with regard to

its steady state solution. This is because there is no steady

state solution as data statistics vary over time. In this case,

it is the tracking capability of the algorithm, at any time K,

that must be taken into consideration (ie. the response of the

algorithm to a sudden statistical change).

The tracking capability of the ELS adaptive algorithm is demonstrated

by simulating a non-stationary adaptive noise cancelling scheme

which is presented in chapter 5.

3.2.8 On the convergence of the weight vector

It is shown in section 3.2.2 [Appendix 3] that using the method

of steepest descent with ELS, the quadratic function J(WK) converges

to its optimal value by a constant rate 1. Since J(WK) is a

quadratic function of WK, then it implies that WK converges

* 1
to its optimum W with a rate 12 • The discussion can be extended

to ELS adaptive algorithms simply by considering the relationship,

(3.32)

The equation (3.32) implies that after ELS the cost function

is closer to its optimum value at time K by a factor lK. Since

J(W
K)

is a quadratic function of WK, then after each adaptation
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* 1WK would be closer to its optimum value WK by a factor l~. In

* 1 *other words WK tracks WK by a factor l~. Note that WK is the

optimum value of WK at iteration K.

3.2.9 Stochastic interpretation and convergence in the mean

Consider the equally weighted least squares optimization

problem,

minimize 1
K

K

L
i=1

2
(d , - WK 1X. )

1 + 1
(3.33)

The solution to this problem is given by,

1
K

X.X~)-1( 1 K
WK+1 = (

K L L d. X, )
1 1 K 1 1

i=1 i=1

or

(3.34)

(3.35)

Minimization of (3.33) by ELS results in one step approximation

of the solution (3.35) at each iteration K.

Assuming stationary stochastic data, then all time averages can

be replaced in the limit by expected values. It follows that,

I
, 1
1m -

K
K~m

K

L
i=1

t~X.X. _ R
1 1 -

(3.36)

lim (

K-> m

1
K

K
" X.X~)-1 ~ R-

1
~ 1 1 -

i=1
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lim

K~CD

1
K

K

L
i=1

d.X. ~ P
1 1 -

(3.38)

and therefore,

*lim WK = W

K-> CD

(3.39)

As a result of (3.36 to 3.39), in the limit ELS adaptive algorithm

behaves like its non-stochastic version and converges to the

Wiener solution.

A useful measure of an adaptive algorithnls performance is to

study its behaviour in the mean (ie. ensemble averaging). In

this case the output variance (the mean squared error) can be

expressed in terms of its minimum value and the excess mean

squared error.

(3.40)

*where, V
K

= W
K

- W . Assume that the ensemble averaging is taken

over a very large number of individual runs with equal initial
vector

weight/W
1,

so that the expected error vectorbehaves like its

non stochastic version. Therefore, the expectation operation

on V
K

in (3.40) may be deleted.

(3.41)

Expanding by Taylor series and taking qK = gK = -RVK, the optimum

value of a
K

that maximizes the convergence speed is obtained
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by equating the derivative (with respect to a
K)

of the expanded

function to zero.

Using the bound,

(3.42)

in the denominator yields,

1

M

1

m (3.43)

where, m and M are the minimum and the maximum eigenvalues of

R.

If the adaptive algorithm is convergent (which it is as long

as a
K

satisfies (3.43», then in the limit (3.40) reduces to

*lim E(J(WK» = J(W )
K-> co

with a convergence rate given by

1 = (M - m)2 / (M + m)2
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3.2.10 Computational complexity of ELS adaptive algorithms

A complexity measure of any adaptive algorithm is the required

number of multiplications (divisions) per iteration. That is

the higher the number of required multiplications the more complex

the adaptive algorithm.

With regard to ELS adaptive algorithms proposed in section (3.2.3)

we can see that a direct realization of these algorithms requires

4L Z
+ 5L + 1 multiplications per cycle of adaptation. Thus,

the algorithms appear to be unsuitable for on line adaptive

signal processing applications.

t
However, utilizing the symmetric property of RK, XKX K and

tgKRKgK a great reduction in number of multiplications can be

achieved. This procedure is discussed and outlined below.

We start with XKX~ which is a symmetric matrix and it is only
t~

essential to compute its upper triangular matrix (XKX K)

(for ease of presentaion assume L = 4).

x1x1 x1xZ x1x3 x1x4

t ..
xZxZ x2x3 xZx4

(3.46)
(XKX K) = x3x3 x3x4

x4x4

t 'q

The required number of multiplications to form ( XKX K) is
L-1

equal to L (L-i). Therefore, there is a sav ing of

i=O
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L-12: (L-i) multiplications. Note that to weight the new data

i=1

vector XK (in accord with algorithms 3.14, 3.18) requires an

additional L multiplications.

Next consider the symmetric matrix RK_1 . Because of its symmetrical

structure it is only necessary to store its upper triangular

elements. Therefore, we have (assuming L=4),

r 11 r 12 r 13 r 14

~

r 22 r 23 r 24
R

K_ 1 = (3.47)
r 33 r 34

r 44

(L-i)
L-1

2:
i=O

L-1
multiplications which correspond to a saving of 2: (L-l)

i=1

~
To weight the upper triangular matrix RK_ 1 requires

multiplications if all elements of RK_1 were to be weighted.

t ~ ~
With regard to (XKX

K)
and R

K_ 1, the equation for updating the

covariance matrix R
K

will take a form as follows,

~
RK = H

K_ 1 + AK
(3.48)

~ s,
RK = RK + RK
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· ~where, HK_ 1 = welghted RK_ 1 in accord with algorithms 3.14, 3.16

1 'J t\J t~.and 3.18. AK = ( -K-XKXK) , or (XKX K) , or ({3 XKX K) i n accord

with algorithms 3.14, 3.16 and 3.18 respectively. ~ represents

the upper triangular elements in R~ (with the exception of the

diagonal terms) written in its lower triangular section.

tFinally,consider the scalar gKRKgK written in its expanded form

for L=4.

+ +

+

+

+

+

+

+

+

+

+

(3.49)

where, g1' g2' g3' g4 are elements of gK' ie.

It can be observed in summation (3.49) that several of the product

terms occur twice. This is demonstrated by encircling these terms.

tTherefore, the scalar gKRKgK can be formed by a fewer number

of multiplications than L2 + L, as follows.

L-1

=L:
j=1

2g.
J

L

L:
i=j+1

L
r .. g.+""
Jl 1 ~

h=1
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The products ghgh are formed by operation g~gK in the numerator

t
of gKgK / gKRKgK. This means that the second term on the right

hand side of equation (3.50) only involves L multiplications.

Utilizing equation (3.50) to calculate g~RKgK' there will be

a great reduction in the required number of multiplications in

order to form the convergence factor aK• For instance, if L=10,

then the total number of multiplications to form aK would be

75 which corresponds to a saving of 121-75 = 46 multiplications.

Table (a) outlines the total number of operations - multiplication

(division) - for direct realization of algorithms 3.14, 3.16

and 3.18 and their realization using the techniques explained

in this section. It is obvious that there is an increasing reduction

in the required number of operations as dimension L increases.

It must be noted that direct realization of ELS adaptive algorithms

in low dimensional systems is not a great concern with today's

computing power cost. However, for large dimensional systems

there is a severe technological limitation due to the large

number of required multipliers. In this case, using techniques

outlined in this section result in a significant reduction in

the required number of operations thus reducing the complexity

of the system.

3.2.11 Block implementation of ELS adaptive algorithms

Block implementation of adaptive algorithms involves the
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calculation of a block or a finite set of filter outputs from

a block of input values and adjustment of the weight vector

once per block of data. Block implementation of adaptive

algorithms allow efficient use of parallel processors and as

a result , high speed signal processing.

It must be noted that updating the weight vector for each data

sample yields the highest rate of convergence of the adaptive

algorithm, if convergence rate is measured in terms of the number

of data samples. However, if the convergence rate is measured

in terms of algorithm iterations, then speed of convergence

increases as the number of data samples in each block increases.

The block data adaptive algorithms are suitable for applications

in which the adjustment of the weight vector can be time consuming

and costly (eg. Satellite antenna array adaptation using micro

wave power dividers).

Block LMS adaptive algorithms are discussed and analysed extensively

in [16, 18, 79, 80].

The application of a block processing scheme to ELS adaptive

algorithms yields a great reduction in computational requirement.

Furthermore, employing a block adaptation technique facilitates

generation of mutually conjugate search vectors which, when

used sequentially with ELS method, results in quadratic

termination.
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Consider the estimated cost function over N data samples.

(3.51 )

where, R~ = estimate of covariance matrix over N data samples,

p~ = estimate of cross-correlation vector over N data samples
N

and cK = constant.

Taking the gradient of IN(WK) with respect to W
K

yields,

(3.52)

Employing ELS technique, the update equation for W
K

can be written

as,

(3.53)

where,

(3.54)

Equations (3.52), (3.53) and (3.54) represent the block

implementation of the ELS, (BIELS), adaptive algorithm. Obviously

Na direct realization of BIELS involves the computation RK,

p~ and g~ over a block of data which is costly. Also, computation

of a
K

requires a large number of multiplications.

The computational requirement of BIELS can be greatly reduced

by assuming stationary data. So that,
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(3.55)

(3.56)

As a consequence of (3.55) and (3.56) the following procedure

can be established.

NI. For WK constant over N data samples compute gK by

(3.57)

N t N NII. For WK constant over another N data samples, (gK) RK(gK)

can be computed by,

1
N

N

L:
i=1

(3.58)

III. Compute a
K

by

1 N
NL:

j=1

(3.59)

Computation of aK requires 2N data samples, N data samples due

N N t N N
to gK and N data samples due to (gK) RK(gK)'

IV. Update WK by,

(3.60)
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Having updated the weight vector by (3.60), it is held constant

over 2N more data samples to allow the computation of g~+1'

N t N N
(gK+1) RK+1(gK+1) and aK+1· Note that for aK equal to a constant

the algorithm outlined above reduces to the conventional stochastic

gradient descent algorithm (2.38) [8, 16, 18, 79, 80].

It is worth mentioning that the larger the block size the closer

the estimates R~ and P~ are to Rand P respectively. In this

case BIELS adaptive algorithm behaves like that of deterministic

steepest descent method with ELS, with a convergence rate

affected by the condition number of R. Therefore, the convergence

speed deteriorates as the condition number of R increases. This

problem can be overcome by employing a conjugate gradients method

(CGM) which yields the solution after a finite number of iterations.

3.2.12 Minimization by a conjugate gradients method

The CGM was first introduced by Hestenes and Stiefel [82] for

solving a set of simultaneous linear equations having a symmetric

positive definite matrix of coefficients and it was later

extended to non-linear functions by Fletcher and Reeves [83].

There are many variations of the CGM proposed by various authors.

Reference [14] presents a full treatment of CGM techniques.

Generally, CGM is a modification of the method of steepest descent

with ELS in which the successive direction vectors qK are chosen

so that qK is a linear combination of the negative gradient at

the K-th iteration and previous direction vectors,

q
'

s uch that the R-orthogonality condition,q ,qK 2' .....•. , 1K-1 -
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K i j (3.61)

is satisfied. As a consequence of (3.61) any point in an

L-dimensional space can be reached by a suitable linear

combination of at most L of them. A brief discussion of the

concept of conjugacy and linear independence, quadratic

termination and the construction of conjugate search vectors

is given in Appendix 4. For a detailed discussion see [13, 14].

It is shown in Appendix 4 that the successive direction vectors

can be obtained by,

(3.62)

where, b
K

is a positive scalar given by,

(3.63)

Using the direction vector (3.62) in (3.9) the following algorithm

can be established [13, 14],

gK = -VJ(WK) = P - RWK

t t
b

K = gKgK / gK-1gK-1

qK = gK + bKqK-1

t /
t

aK = qKgK qKRqK

WK+ 1 = WK + aK
qK

(3.64)
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The scalar aK can be computed by

(3.65)

since (qK-1 is orthogonal to gK as it is shown in

Appendix 4) which results in

t
(gK + bKqK_1) gK

t
= gKgK

Minimization by algorithm (3.64) yields the minimum after

(3.66)

L-iterations (neglecting the round-off error). This is true if

the condition number is not too large and in the case of an ill

conditioned situation the algorithm (3.64) takes longer to converge

(2L to 3L iterations) [13, 14].

Clearly the adaptive implementation of CGM algorithm (3.64)

involves a great amount of computation if the weight vector

WK is to be updated for each data sample. This high computational

requirement is a drawback for on line signal processing.

The computational requirement of algorithm (3.64) can be

substantially reduced if block data adaptation is employed along

with the assumption of stationary data.

3.2.13 Adaptive implementation of a conjugate gradients algorithm

Assume stationary data so that (3.55) and (3.56) are satisfied.

N N t N N .
The the same techniques used to compute gK and (gK) RK(gK) In
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the BIELS adaptive algorithm can be used to compute N
gK and

tRN .
qK KqK 1.n algorithm (3.64). This results in the following

block CGM (BICGM) adaptive algorithm.

N 1 N
gK = -N- L e.X.1. 1.

i=1

b
K

N t N
/ N t= (gK) (gK) (gK-1) (gK-1)

(3.67)

aK = (qK)t(g~) / ~ ~ «qK)tXj)(X~(qK))
j=1

where, b1 = 0

Algorithm (3.67) is the adaptive version of algorithm (3.64)

in which the weight vector WK is held constant over 2N data

samples, N data samples to allow the computation of N andgK

N more data samples to allow the computation of t N
qKRKqK·

Therefore, each algorithm iteration requires 2N data samples

to allow the computation of aKqK' Note that BIELS and BICGM

adaptive algorithms outlined in section (3.2.11) and the present

section are valid only for processing of stationary data. Also

in the case of BICGM adaptive algorithm, the estimates R~ and

pN must be a realistic estimate of Rand P to enable L-step
K

convergence. In other words, BICGM adaptive algorithm (3.67)
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will converge after L iterations (L2N data samples) if the size

of each block of data is large enough so that the following

conditions are satisfied.

••• •• •• = R

=P

(3.68)

(3.69)

An accelerated gradient method using the exact linear search

and Schmidt orthogonalization technique is proposed in [5] for

adaptive array processing. The technique is an adaptive version

of the algorithm proposed by Powell [14, 84], for finding

stationary values of a function. The technique requires far more

iterations than L-iterations to converge which contradicts the

basic definition of L-step convergence. This is due to the lack

of an appropriate restarting technique and small blocks of data.

It will be verified by simulations that the BICGM algorithm outlined

in this section is super linearly convergent (L to 2L-step

convergence) in a well condition situation, a property that can

be guaranteed even in an ill condition situation by adopting

a restarting method.

3.2.14 Computational complexity of BIELS and

BICGM adaptive algorithms

Considering BIELS and BICGM algorithms it can be seen that by

adopting block data adaptation, computational requirement of
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ELS and CGM adaptive algorithms is significantly reduced. This

is because of elimination of all matrix vector products which

require L
2

multiplications. Also, using block adaptation eliminates

the need for storing a matrix (or upper triangular matrix) which

simplifies the implementation even further. BIELS and BICGM

algorithms require in the order of L multiplications per

algorithm iteration.

Obviously if block data adaptation is to be adopted, then BICGM

algorithm is far more efficient than BIELS algorithm since it

guarantees L-step convergence for a slight increase in complexity

of the system.

Note that to implement the BIELS and BICGM adaptive algorithms

parallel processing is required, one processor with the weights

equal to WK and one processor with the weights equal to qK

(or gK in the case of BIELS).

3.2.15 On the choice of the initial estimate of the weight

vector in accelerated gradients algorithms

*Defining an error vector VK = (WK - W ), a quadratic function

can be expressed by

(3.70)
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*If W1 is chosen equal to W , then any iterative algorithm terminates

*in one step since W
1

= W *and J(W1) = J(W ). But this is hardly

*the case because W is not known apriori. Considering the second

term on the right hand side of (3.70), it is clear that the larger

\V 1 I, the larger would be the error term V~RV1' A suitable choice

for W1 .would be W1 = 0 which results in a maximum initial error.

(3.71)

Although all descent algorithms do converge for any arbitrary

initial value of the weight vector, an arbitrary W
1

can give

rise to a large initial value of error V~RV1 which is undesirable.

The value of W1 = 0 is the recommended value for all descent

algorithms.

3.2.16 On the implementation of the exact linear search

gradient technique using lattice structure

A linear combiner using lattice structure instead of a TDL

involves two minimization procedures, one due to that of finding

an optimum set of reflection coefficients and the other due to

finding a set of optimum combiner weights. As it was discussed

in section (2.6.5), the most important advantage of using the

lattice structure instead of TDL is its orthogonalizing property

which decouples successive stages enabling optimization of each

stage of the lattice independently.
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Minimization of individual cost functions at each stage of the

lattice by adopting ELS yields a step length which is inversely

proportional to the sum of the FD and SO prediction error power
i .

p at that stage. Since pl is not known, an estimate of it pi

can be used (see equation 2.74) which is the procedure adopted

in most conventional gradient algorithms.

These algorithms use an instantaneous estimate of the gradient

at each iteration K (see equation (2.73) and Appendix 2), which

has an adverse effect on the speed of convergence. To overcome

this problem, similar estimators to (3.13), (3.15) and (3.17)

(one dimensional) can be used to generate a more realistic

estimate of the gradient. Clearly the trade-off would be the

increased computational requirement.

Due to orthogonalized signals generated by lattice structure,

the combiner weights can be updated individually using a step

length inversely proportional to the signal power at the corres-

ponding lattice output and an instantaneous (or a more realistic)

gradient estimate of one dimensional quadratic cost function

due to that weight. This is the method adopted in conventional

lattice adaptive gradient algorithms (see equations 2.75 - 2.78).

However, the lattice filter outputs are a set of orthogonal

signals only after complete convergence of the reflection coeffic-

ients. Thus there exists an initial degree of correlation between

these signals which decreases as the reflection coefficients

approach their optimal value. The larger the condition number
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of the process, the higher is the initial degree of correlation

between the lattice output signals. Therefore, the initial

convergence rate of the conventional gradient algorithms

deteriorates as the eigenvalue spread gets larger. This problem

can be overcome by using a combined update recursion for the

combiner weights and adopting ELS method.

It should be noted that the most interesting property of the

ELS technique is its rapid initial rate of convergence "irrespective

of the eigenvalue spread of the covariance matrix" (although

its final rate of convergence deteriorates as eigenvalue spread

gets larger). Therefore, there would be very little to gain

(or none) to implement the ELS technique by a lattice linear

combiner instead of implementing it using a TDL linear combiner.

This is as a result of increased algorithm noise and higher

computational requirement due to the lattice structure. The

above discussion will be verified by simulations in chapter 5.

3.3 Linearly constrained minimization by ELS

Referring to the sections 2.7 and 2.7.1, the augmented cost

function for a linearly constrained problem can be written as,

(3.72)

where, t . 1" Ct b Lt·l = vector of the Lagrange multlp lers, . = myrna rlX

of the linear constraints and the factor t is added for simplifying

the analysis.
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The negative gradient of J(W
K,

'Y) with respect to W
K

is

(3.73)

where, gK = negative gradient of the quadratic function. Equating

(3.73) to zero yields,

c'Y K = gK

Multiply both sides of (3.74) by Ct, then

Therefore,

(3.74)

(3.75)

(3.76)

where, 'YK is an estimate of the Lagrange multipliers corresponding

to WK. Substitute (3.76) into (3.73) to obtain,

-VJ(WK,'Y) = gK C(CtC)-1 ct9K

= (I _ C(C tC)-1 ct)gK

= Z9K (3.77)

( ( t C)-1 Ct . . t i t r i d twhere, Z = I - C C 1S a proJec 10n ma r1X an opera es

on the negative gradient gK in order to convert it to a form

orthogonal to the constraint matrix C. The projection matrix

Z represents the null space of the constraints, so that CZ= 0
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(ie. rows of the constraint matrix C are orthogonal to the columns

of the projection matrix). The negative gradient of the augmented

function is a projected gradient of the quadratic function.

Adopting the steepest descent method, the update recursion for

WK can be expressed by,

(3.78)

Equation (3.78) represents the projection gradient algorithm

(PGA).

An alternative form of PGA can be established by considering

the update recursion for WK using the negative gradient of the

augmented function.

W
K

+
1

= WK + aK VJ(WK, 'Y K)

= WK + aK(gK + C 'Y K) (3.79)

Substitute for W
K

+
1

from (3.79) into the constraint equation,

tC WK+ 1 = f to obtain,

Solve (3.67) for 'YK,

(3.80)

'Y K
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Substituting ~K back into (3.79) results in

WK+ 1 = (I - C(C tC)-1 ct)(W
K

+ aKg
K)

+ C(C tC)-1 f

= Z(WK + aKgK) + C(CtC)-1 f

which is an alternative PGA.

(3.82)

A simple geometrical interpretation of the algorithms (3.78)

and (3.82) is illustrated by Figure 3.11. A fundamental difference

between these algorithms is that, the former algorithm projects

the gradient gK onto the subspace and adds the projected vector

to the past weight vector (Figure 3.11a). However, the algorithm

(3.82) makes the unconstrained step, projects onto the subspace

and then adds the vector C(C tC)-1 f, producing a new weight

vector WK+ 1 that satisfies the constraints (Figure 3.11b).

This different updating procedure has a practical significance

as explained below.

Practical implementation of constrained algorithms involves

computational errors causing deviation of the weight vector from

the constrained plane which deteriorates the performance of the

algorithm. Consequently constrained algorithms must have an error

correcting capability and this is a useful property of algorithm

(3.82) as illustrated geometrically by Figure 3.12 (WK is assumed

to be off constraints).
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In order to implement PGA using ELS technique, a
K

and gK can

be computed by the same method outlined for unconstrained ELS

adaptive algorithms in section (3.2.3). It follows that,

(3.83)

. t -1
wlth W1 = C(C C) f. RK and PK must be computed according to

stationary or non-stationary data (estimators; 3.13, 3.15, 3.17).

Note that in the absence of a desired signal, P
K

= 0 and

Application of algorithm (3.83) to the broad band array processing

with look direction constraints is discussed in chapter 5 and

simulation results are presented to illustrate its performance.

3.3.1 Linearly constrained minimization by CGM

To apply CGM to a linearly constrained problem requires that

the problem be transformed to an unconstrained problem and be

represented by a set of linear equations. The procedure usually

involves the projection of the second derivative and the

projection of the first derivative of the function [13].
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Alternatively, a linearly constrained problem can be transformed

to an unconstrained problem as explained below.

Referring to the augmented function (3.72), compute the gradient

of J(W, ~ ) with respect to Wand ~ , so that,

VJ(W, ~) = CW - f
~

VJ(W, ~ )W = RW P + c~

(3.84)

Equating (3.71) to zero yields the linear equations

RW + C~ = P

CW + 0 = f

For simplicity, write (3.85) as,

--- -RW = 0

where,

(3.85)

(3.86)

,.i _ [R cJR - t
C 0

""t
W = (W, ~ )

Nto = (P, f)

(m + L by m + L) - matrix

(m + L) - vector

(m + L) - vector

G' Rep and f the linear equation (3.86) can be solved
.1ven " ,
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N*
by a CGM to obtain W which contains the optimum weight vector

* *Wand the optimum vector of the Lagrange multipliers ~ . It
N

should be emphasised that the augmented matrix R is not

necessarily a positive definite matrix and CGM may terminate

giving a wrong solution. This complicates the problem since

the CGM method must be modified to ensure (m + L) - step

convergence to a right solution. A modified CGM is proposed in

[14J which guarantees (m + L) - step convergence but involves

a great amount of computation per iteration and even a block

implementation does not appear to be a practical approach.

However, the above procedure is outlined only to demonstrate

a theoretical approach to the problem.

Generally, the application of the CGM to a constrained problem

causes substantial increases in computational requirement, in

particular if one sample adaptive implementation is adopted.

Some reduction in the required computations may be achieved

if a block implementation is employed with stationary data.

3.4 Quadratically constrained minimization by ELS

Referring to section (2.8), the augmented function for a

quadratically constrained problem can be written as,

(3.87)

where, ~ = Lagrange multiplier and B is a positive constant usually

set to 1 so that WtW = 1. Taking the negative gradient of (3.87)
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with respect to Wand equating it to zero yields the eigenvalue

eigenvector relationship.

RW = 'Y W (3.88)

where, 'Y is the eigenvalue corresponding to eigenvector W.

Multiply both sides of (3.88) by Wt to obtain,

WtRW = 'Y WtW

WtRW
(3.89)

'Y =
WtW

Note that if WtW = 1, then

Equation (3.89) is known as Rayleigh quotient. Minimum eigenvalue

m of the symmetric positive definite matrix R is formed by

minimizing the Rayleigh quotient [13, 14, 15]. Minimization of

(3.87) or (3.89), (with B = 1), by ELS technique results in

the following constrained algorithm (based on the same principles

discussed in section (3.2.1»,

gK = mKWK - RWK

t / t
aK = gKgK gKR9K

(3.91)
N

WK+1 = WK + aKgK- / IWK+11WK+1 = WK+1

t
h re m = WKRWK•we, K
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The last step is added to satisfy the norm constraints

t
WKWK = 1. The initial estimate of the weight vector W

1
must

satisfy the norm constraints, ego wi = (1, 0, 0 ..... )t.

Adaptive implementation of algorithm (3.91) involves an

estimate of the covariance matrix R
K,

that must be estimated

by a suitable estimator (eg. 3.13, 3.15, 3.17).

Application of algorithm (3.91) to the field of adaptive spectral

estimation is discussed in detail in chapter 5 and simulation

results are presented to illustrate its performance.

3.4.1 Quadratically constrained minimization by CGM

Minimization of (3.87) by CGM requires the modification of the

algorithm (3.91) so that

-WK+1 = WK + aKqK

qK = gK + bKqK-1 (3.92)

t /
t

aK = gKqK qKRqK

where, b
K

must be chosen such that qK be a linear combination

..... . The algorithm is not a practical

approach for adaptive signal processing due to its computational

requirement. A block implementation of the algorithm may be

useful if a long data record is available. For a typical

quadratically constrained CGM algorithm see [74].
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3.5 Discussion and conclusions

The main objective of this chapter was to design rapidly

converging robust adaptive algorithms for various fields of

adaptive signal processing. Throughout the chapter the emphasis

was on the method of exact linear search. Due to their rapid

initial speed of convergence and moderate computational requirement,

the ELS adaptive algorithms appear to be attractive alternatives

to RLS algorithms for relatively well condition problems.

The final convergence rate of the ELS algorithm deteriorates

as the condition number increases. This is hardly a problem

in the case of adaptive signal processing since it is the initial

convergence speed which plays a crucial role in a non-stationary

situation, not the final convergence speed.

The ELS adaptive algorithms involve only one matrix-vector

product which is the price to pay for a realistic gradient

estimate (residual vector) of the cost function.

Adopting block adaptation (for stationary data) and a parallel

processing technique, the computational requirement of the ELS

technique can be reduced to an order of L. Also block adaptation

enables the generation of a set of mutually conjugate search

vectors which, when used sequentially with ELS technique result

in quadratic termination (with a computational requirement in

the order of L).
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The application of accelerated gradient techniques to the fields

of adaptive noise cancelling, broad band adaptive array processing

with look direction constraints and adaptive spectral estimation

is discussed in chapter 5 and simulation results are presented

to illustrate their performance.
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Figure 3.1 The zig-zag progress of the steepest descent
method with ELS on a typical quadratic
function with ellipsoidal contours.
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Figure 3.10 Time varying cost function due
to a non-stationary process
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a)

b)
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~

w
. K+1

Figure 3.11 Geometrical interpretations of the PGA algorithms.
a) algorithm 3.78 b) algorithm 3.82
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a)

b)

/
/

/
/

/

ctW = f

Figure 3.12 Geometrical interpretations of the PGA algorithms.
WK is assumed off-constraints.

a) algorithm 3.78 (allows the error to accumulate)

b) algorithm 3.82 (corrects deviations from the constrail
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L DIRECT REALIZATION OF
REALIZATION ELS ALGORITHMS
OF ELS USING THE
ALGORITHMS SYMMETRICAL

PROPERTY

3 55 45

5 131 100

10 461 325

20 1721 1150

30 3781 2475

50 10301 6575

Table a The required number of multiplications

of ELS algorithms
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CHAPTER 4

NUMERICAL STABILITY OF AG ALGORITHMS
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4.1 Effects of finite word length

Various algorithms were developed in chapter 3, assuming infinite

precision implementation and no reference was made to the possible

performance degradation due to the effects of finite word length.

Practical implementation of these algorithms involves finite

precision arithmetic. This results in performance degradation

due to the quantization of the input signals, round-off

errors as a result of each arithmetic operation and quantization

of the digital filter coefficients.

4.2 Numerical stability of ELS adaptive algorithms

The ELS adaptive algorithms (for one sample update) involve the

computation of estimates of the covariance matrix and cross-

correlation vector (if it exists) and then performing an exact

linear search. The quantization of the input signals and

round-off errors due to finite precision arithmetic result in

biased estimates of Rand P. This has no effect on the stability

of the algorithm (as long as the properties of R are preserved)

simply because, instead of the original cost function, its

approximation is minimized which yields an approximated solution.

Regarding the step length aK, it is assumed to be the optimal

step (at iteration K) satisfying the optimality condition. Due

to finite precision arithmetic, the optimal step length cannot

be determined exactly

optimality condition

and its computed
1 1

-M~aK~- .K mK
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Note that aK can have any value within this bound. Thus the

larger the eigenvalue bounds the faster would be the accumulation

of errors (due to successive computation of gK' aK, WK+1).

Logically, the violation of the lower bound has no effect on

the stability of the algorithm, while resulting in the reduced

convergence speed. It is the upper bound on aK that plays a crucial

role in the stability of the ELS adaptive algorithms. The algorithm

1will be unstable for aK ;> . To ensure that aK does not exceed
mKthe upper bound, a relaxation factor o~a ~1 can be introduced,

so that

(4.1)

Obv iously, the smaller the a, the slower would be the convergence

speed of the algorithm.

Further errors are introduced because of finite precision implement-

ation of RKWK, gK' aKgK, WK+1, YK' and dK-YK which result in

performance degradation and possibly instability of the algorithm.

The smaller the number of bits, the faster would be the

accumulation of errors. A possible approach to decrease the

accumulation of errors is to reduce the relaxation factor a in

(4.1). The adverse effect would be reduced convergence speed.

Due to the time limitations of this project, it was not possible

to carry out a detailed analytical study of the numerical stability

of the ELS adaptive algorithms. However, simulation results are
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presented in chapter 5 which were carried out by considering

the effects of finite word length implementation.

4.3 Numerical stability of block data implementation

of ELS and CGM algorithms

In sections (3.2.11) and (3.2.13), it was shown that the

computational load of BIELS and BICGM algorithms can be reduced

substantially by assuming the stationary data and adopting a

parallel processing technique. As a consequence of reduced

computational load, the errors (due to finite precision

implementation) do not accumulate as rapidly as the errors due

to one sample iteration.

In BIELS and BICGM algorithms, aK is computed using two different

sets of data samples. For these algorithms to be stable, aK must

satisfy the eigenvalue bounds as mentioned in the previous section.

Therefore, it is important that the size of the data block, over

which a
K

is computed, be large enough to enable aK to preserve

its optimality.

Numerical stability of CGM is discussed in detail in [14, 82]

and various correction procedures are proposed. Theoretically,

the CGM is L-step convergent. A property that can hardly be met

in practice due to the propagation of round-off errors. The

reasons for this are;

a. successive search directions lose conjugacy,

b. a
K

cannot be computed exactly. While the former results in

reduced convergence speed, the latter may cause instability.
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It is shown in [14, 82], that if the initial estimate W1 is

chosen such that the residual vector g1 is close to the

eigenvector corresponding to the minimum eigenvalue of R, then

the ratio aK/a K_1 is always less than unity and the CGM is

always stable with respect to round-off errors. However, this

is not applicable in the case of adaptive implementationof CGM,

since knowledge of such an initial estimate is not known apriori.

In this case an applicable and simpler method to ensure stability,

would be to modify the CGM by setting bK = 0 [in algorithms (3.64)

and (3.67)] so that qK = gK and selecting aK in accord with (4.1).

This results in a relaxed ELS algorithm.
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CHAPTER 5

RESULTS
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5.1 Introduction

In this chapter application of the accelerated gradient techniques

(developed in chapter 3) to the fieldSof adaptive noise cancelling,

broad band adaptive array processing and adaptive spectral

estimation is discussed and results are presented to illustrate

their performance. The results are obtained by simulations performed

on a VAX/VMS computer using single precision FORTRAN.

The numerical stability of the ELS adaptive algorithm when

applied to an adaptive noise cancelling problem is demonstrated

(and compared with the numerical stability of the RLS algorithm)

by considering the effects of floating point round-off errors

due to the finite precision implementation.

5.2 Adaptive noise cancelling (ANe)

A standard problem which occurs frequently in various fields

such as control, communication, biomedical engineering, etc.

is that of extracting a signal buried in noise (the term

"noise" signifies all forms of interference). The usual method

of estimating a corrupted signal is to pass it through a filter

which tends to suppress the noise while leaving the signal

relatively unchanged.

With regard to the type of signals and the available information

about their statistics, different techniques like match

filtering, kalman filtering can be employed to detect the signal.

However, adaptive noise cancelling technique is used when the
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only available information is the fact that the signal is

uncorrelated with the noise and if a secondary source is

available which yields to a reference input correlated in

some unknown way with the primary noise.

Figure 5.1 shows the basic problem and its adaptive noise

cancelling solution [89]. A signal 5 is transmitted over a

channel to a sensor which also receives a noise no

uncorrelated with the signal. A second sensor receives a noise

x uncorrelated with the signal but correlated in some unknown

way with the noise

to the canceller.

n •o This sensor provides a reference input

Assume that 5, n , x, and the filter output yare statistically
o

stationary with zero means and 5 is uncorrelated with no and

x. It follows,

e = 5 + n - yo

e2 = (n _ y)2 + 25(n _y) + 52
o 0

(5.1)

The signal power E(52) will be unaffected as the filter is

2
adjusted to minimize E(e ).
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Therefore,

(5.2)

As a result of (5.2), minimizing E(e2) corresponds to minimizing

E((no - y)2). The filter output y is then the best least squares

estimate of no and e is the best least squares estimate of S.

In other words, minimizing the total output power minimizes the

output noise power and maximizes SNR [89].

In a non-stationary situation, the signalS, the noise nand
o

the reference signal x can be statistically non-stationary. In

this case minimizing the mean squared error corresponds to tracking

of a variable minimum point.

The advantage of the ANC technique is that no apriori knowledge

of 5, n , x or their interrelationship is required. ANC techniqueo

has been applied to various problems such as ECG and EEG in

biomedical engineering, echo cancellation on long distance

telephone lines, inter-symbol interference suppression, flight

deck communication systems to remove the aircraft noise,

suppression of high level transients and broad-band noise trans-

ducers in process control, improvement of auditorium accoustics,

cancelling antenna sidelobe interfere~e, cancelling periodic

interference (eg. in the playback of speech or music in the

presence of tape hum or turntable rumble), etc. [2,3,5,7,8.89].
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The cost function for the system shown in Figure 5.1

where,

is,

(5.3)

2J(W) = E(e )

R = E(XX t
)

P = E(dX)

2c = E(d )

Expected value of the output power

L by L data covariance matrix

L-vector of cross-correlation

Constant scalar

W= L-weight vector of the adaptive filter

X = L-vector of the tap voltages (data vector)

d = Primary or desired signal

The main task of an adaptive algorithm is to minimize (5.3) as

data becomes available. Since Rand P are not known apriori,

their statistical estimates are used.

5.2.1 Statistically stationary data

In order to compare the speed of convergence of the ELS adaptive

algorithm (3.14) and the RLS algorithm, computer simulations

were carried out using single precision FORTRAN.

The primary input (the desired signal) was taken to be a sine

wave of amplitude 4.5 corrupted by additive Gaussian white noise of

relative power 20dB (ie. SNR=-10dB). The reference signal was obtained

by a second order autoregressive (AR) filter with its input Gaussian
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white noise of power 20dB, so that,

where, u1 and u2 are the autoregressive (AR) parameters.

(5.4)

The size of the TDL adaptive filter was equal to ten. The RLS

and ELS adaptive algorithms were initialized according to,

RLS a 1 . 0, -1 1001, W
1 (0,0, ..... )= R1 = =

ELS R1
t I, W1 (0,0, ..... )= X1X1 + =

Note that in the case of ELS adaptive algorithm, the error

signal eK is not involved in updating the weight vector.

Therefore, the block diagram for adaptive noise canceller is

modified as is shown in Figure 5.2.

Example 1

With AR parameters equal to u1 = 0.6 and u2 = 0.05, the

corresponding eigenvalue ratio (EVR) was 20 (ie. the ratio

of the maximum to the minimum eigenvalue of the 10 by 10 data

covariance matrix).

Figures 5.3-5.4, 5.5-5.6, 5.7-5.8 show the learning curves

(averaged over 20 individual runs), the convergence of the norm

of the weight vector IwKI and the output of the noise canceller

(ie. e
K)

for ELS and RLS algorithms respectively.
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Example 2

To demonstrate the effect of EVR on the initial speed of

convergence of the ELS algorithm, the AR parameters were set to

u1 = 0.9 and u2 = 0.05. This resulted in EVR = 402.

Figures 5.9 through to 5.14 present the results for ELS and

RLS algorithms (based on the same order of presentation as

example 1).

5.2.2 Statistically non-stationary data

The tracking capability of the ELS algorithm (3.16) and the

RLS algorithm was tested by the following experiments.

Example 3

Signal, noise and reference inputs were generated as explained

in the previous examples, but this time the signal amplitude,

noise power and AR parameters were abruptly changed after a

specific number of iterations. Table 5.a outlines the values

of the various parameters over 500 iterations.

Figures 5.15 through 5.20 show the learning curves (averaged

over 20 individual runs), tracking capability of IwKI and the

output waveforms for ELS algorithm (3.16) (R and P were

estimated by 3.15C) and RLS algorithm.

Example 4

The same as example 3 but the noise power was kept constant.
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Table 5.b outlines the values of the various parameters during

500 iterations.

Figures 5.21 through 5.26 depict the results for ELS algorithm

(3.16) and RLS algorithm (based on the same order of presentation

as example 3). Note that the tracking behaviour of the ELS and

RLS algorithms depend on the value of factor a . The smaller

the a , the noisier would have been the results.

5.2.3 Adaptive noise cancelling using lattice filter

One of the advantages of using a lattice filter instead of a

TDL is to decorrelate the input signal (reference signal), thus

reducing the EVR. This is the main reason that the lattice gradient

algorithms converge faster than their TDL counterparts.

As mentioned in section (3.2.16), using a lattice filter

(instead of a TDL) and employing an ELS adaptive algorithm would

have no effect on the initial speed of convergence for reasons

that were discussed in that section.

However, to compare the performance of ELS and a conventional

lattice gradient algorithm (see equations 2.73 - 2.78), the

following simulation was carried out.

Example 5

The same as example 2 but TDL was replaced by a 10-stage lattice

filter. Figures 5.27 and 5.28 show the learning curves (averaged
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over 20 individual runs) for ELS and a conventional lattice

gradient algorithm (see equations 2.73 - 2.78) respectively.

From these results, it is clear that, although the ELS algorithm

performs better than a conventional lattice gradient algorithm,

its performance is degraded with respect to its TDL implementation

(see Figure 5.9). This verifies the remarks made in section

(3.2.16).

5.2.4 Adaptive noise cancelling using BIELS and BICGM algorithms

To examine the performance of BIELS and BICGM algorithms (3.60

and 3.67) simulations were performed as is explained in the

following examples.

Example 6

The signal amplitude (a sine wave) = 4.5, noise power = 10dB,

filter size = 5, AR-parameters u1 and u2 = 0.6 and 0.08,

EVR = 12, and the block size = 50 data samples. The weight

vector was initialized as W
1

= (0,0, ..... ). Figures 5.29 and

5.30 illustrate the behaviour of the norm of the weight vector

for BIELS and BICGM respectively. As it is expected, the

convergence behaviour of both algorithms is relatively similar

at low EVR.

Example 7

The same as example 6, but the AR-parameters were, u1 = 0.9.

u
2

= 0.08 and EVR = 365. Figures 5.31 and 5.32 show the
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convergence of the norm of the weight vector for BIELS and BICGM

algorithms respectively.

These results clearly demonstrate the superior performance of

BICGM algorithm and its quadratic convergence behaviour. Also,

these results reveal the most interesting property of BIELS

algorithm which is its rapid initial rate of convergence

irrespective of EVR (consider the convergence behaviour of the

algorithm over the first ten iterations).

Note that in these simulations the size of the block of data

was 50. The larger the block size, the closer would be the

performance of the BIELS and BICGM algorithms to the performance

of their non-stochastic versions. A small block size deteriorates

the performance and may result in instability, mainly because

the step length, aK, is computed using two different blocks of

data.

5.2.5 Finite precision implementation effects

Recall that, the results presented so far in this chapter were

obtained by simulations performed on a VAX/VMS computer using

single precision FORTRAN, ie. 32 bit floating point arithmetic

operations.

To examine the numerical stability of any algorithm the

simulations can be performed using a micro-computer with

smaller processor size or writing the programs using Assembly
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language thus allowing cOBtrel of precision.

Alternatively, the simulations can be carried out using a high

level language on any computer system but taking into account

the effects of the errors that would have been introduced as

a result of lower precision operations. This technique can

demonstrate (although not precisely) the performance degradation

as a result of finite precision operations.

The error introduced by floating point operations can be modelled

as follows [96].

fl(xy) = xy(1+e )m

fl(X+y) = (x+y)(1+e )
a

where, e and e denote errors due to the floating pointm a

(5.5)

multiplication and floating point addition and can be modelled

as zero mean white noise independent of x and y, xy. It is shown

in [97] that the variance of e and e is approximately givenm a

by 0.18 * 2-2B, where B is the number of bits used to present

the mantissa. Note that the e and e are statisticallym a

independent.

To illustrate the effects of floating point round-off errors

on ELS adaptive algorithm, the following simulation was carried

out.
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Example 8

The signal amplitude (a sine wave) = 4.5, noise power = 20dB,

filter size = 5, AR-parameter = 0.9 and 0.08, EVR =365 and the

weight vector was initialized as W
1

= (0,0, ••... ). Two

independent white noise sequences of variance 0.18 * 2-16,

(ie. B = 8bit) were added to all required arithmetic operations

(in accord with (5.5)) in order to illustrate the effects of

floating point round-off errors. Figure 5.33 shows the learning

curve (averaged over 20 individual runs) for ELS adaptive algorithm

(3.16) --- RK and PK were computed by (3. 15C ) with a = 0.99.

From this result it is clear that the algorithm is stable.

The same experiment was repeated for RLS algorithm with forgetting

factor equal to 0.99. The algorithm was unstable (rapidly diverging)

for B = 8 and B = 16 bits. Figure 5.34 shows the learning curve

for B = 20 bits verifying the sensitivity of the RLS algorithm

to the effects of finite precision arithmetic. This is a well

recognised feature of the RLS algorithm.

The above simulations by no means demonstrate the precise effects

of floating point errors (and quantization errors due to

quantizing the input signals and filter coefficients). However,

they give an indication of relative numerical stability of ELS

adaptive algorithms with respect to standard RLS algorithms.
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5.3 Broad band adaptive array processing

Adaptive arrays are becoming increasingly important in such

fields as radar, sonar and communications. The fundamentals

of adaptive arrays are by no means new, but applications in

practice have been limited both by technology and lack of

robust algorithms suitable for real time operations. However,

today's computing power cost enables complicated signal

processing in real time at an economical cost. This has led

to an increased interest in designing robust and computationally

demanding algorithms for adaptive array processing (eg. RLS,ELS).

In order to examine the performance of an ELS adaptive algorithm,

when applied to a linearly constrained problem, the practical

broad band array processing system with the look direction

constraints [60] is simulated.

The advantage of imposing the look direction constraints on
required

array processing is that the only apriori/information is the

desired "look" direction (or the direction of the arrival of

the desired signal). The technique ensures that a chosen frequency

re~me of the overall array processor is maintained while the

interference and the background noise are minimized. For detailed

explanations see [5, 60].

Referring to Figure 2.7, the augmented cost function for the

broad band antenna system under look direction constraints can

be expressed by ,

(5.6)
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where,

mL by mL data covariance matrix

~t = L-vector of the Lagrange multipliers

t
C = mL by m matrix of the linear constraints

f = m-vector of the look direction

X = mL-vector of the tap voltages (data vector)

W= mL-weight vector

L = number of sensors

m = number of taps per sensor

Computer simulations were performed for a linear array of five

elements, each being processed through a filter of five tap weights.

The environment had three broadband point noise sources of power

1.0, 10.0 and 10.0 located at 0, 30, 45 degrees respectively.

The background and sensor noise was set to OdS per sensor. The

look direction was assumed to be 0 degrees (normal to array).

The broad band signals were generated by passing Gaussian white

noise sequences through three digital bandpass filters with

different passbands and centre frequencies. There was no correlation

between the desired signal (incident at 0 degrees) and two strong

interferences (incident at 30 and 45 degrees). Figure 5.35 shows

the power spectrum of the incident signals (128 data samples).

Simulations were carried out using the constrained LMS algorithm

(2.114) [5, 60] and the constrained ELS algorithm (3.83). In

the case of the LMS algorithm, the convergence factor,a,was set
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to 0.00001 (note that the eigenvalues of the covariance matrix

were not computed and the step size was chosen by trial and error

to achieve the fastest convergence and at the same time ensuring

the stability of the constrained LMS algorithm). In the case

of the constrained ELS algorithm (3.83), the covariance matrix

was estimated by (3.13), an equal data weighting. Both algorithms

were initialized according to W
1

= C(C tC)-1
f.

Figures 5.36 and 5.37 show the power spectrum of the array output

sequence (128 data samples, ie. 128 iterations) obtained from

LMS and ELS algorithms respectively. Complete suppression of

the interferences by ELS algorithm and far less noisier output

spectrum (unlike the output spectrum when the LMS algorithm

was used) verify the rapid speed of convergence of the algorithm.

However, the price to pay for this result is increased complexity

which can be a drawback for applications with simplicity

requirement.

5.4 Adaptive spectral analysis by eigenvalue-eigenvector

decomposition of the data covariance matrix

Eigenvalue-eigenvector decomposition (EED) algorithms are well

recognised in yielding the most accurate spectrum of narrow

band signals in additive noise. These algorithms are based on

the Pisarenko's method of spectral estimation [90, 91] and involve

the computation of the minimum eigenvalue and the corresponding

eigenvector of the data covariance matrix. The EED algorithms

offer tolerance to the correlated and noisy signals (unlike the

maximum likelihood and the maximum entropy techniques which can

lead to severe bias and loss of resolution due to the correlated

signals and noisy environment).
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Applications of the EED algorithms include such fields as

radar, sonar and communications whenever there is a need to

detect and remove (or enhance) narrow band signals which are

either buried in broad band noise or are interfering with the

broad band desired signal.

Recently, several authors have addressed various techniques for

adaptive implementation of Pisarenko's method [65-76, 92-95]

for estimating the frequency of the sinusoids buried in broad

band noise and estimating the directional spectra of narrow

band signals received by spatially distributed arrays of sensors.

In this section the application of the method of ELS to the above

problems is discussed and simulation results are presented to

illustrate its performance. The fundamentals of Pisarenko's

method are not discussed here, although detailed explanations

are given in [90, 91]. Reference [65] presents an extension of

Pisarenko's frequency estimation method to the estimating of

the directional spectra of narrow band signals received by an

array of sensors.

5.4.1 Adaptive harmonic retrieval by method of

exact linear search

Referring to Figure 2.8, the augmented cost function for the

quadratically constrained adaptive filter is given by,

(5.7)
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where,

R = E(XXt)
L by L data covariance matrix

X = L-vector of the tap voltages (data vector)

W = L-weight vector

'Y = Lagrange multiplier

Adaptive minimization of (5.7) by the method of ELS involves

the quadratically constrained adaptive algorithm developed in

section 3.4.

In this case the computational requirement of algorithm 3.91

can be significantly reduced by assuming stationary data and

noting that the eigenstructure of R is invariant to any scalar

multiplication of R. As a result R can be estimated by,

tX.X.
1 1

(5.8)

Furthermore, using the shifting property of the data vector

XK and symmetrical structure of RK, RK can be updated with only

L multiplications per algorithm iteration. Estimating RK by (5.8)

results in the increase of its norm as K increases but this has

no effect on its eigenstructure. In addition, the scalar

t in algorithm 3.91 be computed either asmK = WKRWK
may

t n2
where YK is the filter output.m

K = WKRKWK or mK = YK'

In the following examples the weight vector is initialized to
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t
W1=(1, 0, 0, 0 ....• ) and the size of the filter is chosen so

that, L ~2n + 1, where n is the number of the distinct sinusoids.

The algorithm is run for a finite number of iterations (eg. 100,

500) and the AR-spectrum is computed as,

where,

Dt ( f ) = (1 e- j 2nf e-j4~ -jLenf), , , .•..• e

Example 9

(5.9)

(5.10)

In this example the signal was a sinusoid of normalized frequency

0.2 in additive Gaussian white noise. The signal to noise ratio,

SNR, was 10dB and the filter size L = 3. Figure 5.38 shows the

spectral estimates for K = 100 and K = 500. The broken and the

solid curves represent the spectral estimates for K = 100 and

K = 500 respectively.

Example 10

The same as example 9 but the signal contained two sinusoids

of equal power and normalized frequencies of 0.18 and 0.38. The

filter size and the SNR were L = 5, 10dB respectively. Figure

5.39 shows the spectral estimates for K = 100 and 500 (broken

and solid curves).
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Example 11

The same as example 10 but SNR was OdS. Figure 5.40 shows the

spectral estimates for K = 100 and 500 (broken and solid curves).

These results clearly verify the rapid initial speed of convergence

of the algorithm both at high and low SNR conditions. Further

simulations revealed that the algorithm was able to peak up the

spectral peaks only after 20 to 50 iterations under various SNR

conditions, while a good spectral precision was achieved about

100 iterations.

5.4.2 Adaptive directional spectral estimation by

method of exact linear search

Figure 2.9 shows the constrained narrow band array system. The

augmented cost function for this system is given by,

(5.11)

where,

L by L data covariance matrix (Hermitian)

x = L-vector of the tap voltages (data vector)

1 = Lagrange multiplier

+ = complex conjugate

Application of the method of ELS to this minimization problem

results in a complex version of the algorithm 3.91 which is
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outlined below,

(5.12)

t +

where, mK = WKRWK. Assuming stationary data and noting that the

eigenstructure of R is invariant to any scalar multiplication

of R, R can be estimated by

(5.13)

The growing norm of RK has no effect on its eigenstructure. Also,

the scalar mK may be computed either t +as mK = WKRKWK or

mK llKY~' where YK is the filter output. Note that R is Hermitian

and positive definite, thus all its eigenvalues are real.

A detailed theoretical analysis of the eigenfilter spectral

analysis is presented in [65]. However, to appreciate the

simulation examples presented in this section, a brief explanation

will be useful.

Assuming n narrow band incident signals, then the covariance

matrix has n eigenvalues corresponding to n sources. Also. there
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exists L-n eigenvalues corresponding to the power of the

additive noise (background and sensors noise). It can be shown

that L-n eigenvectors corresponding to the minimum eigenvalue

are orthogonal to all source direction vectors. As a result one

can compute the eigenvector of R corresponding to its minimum

eigenvalue. The zeros of the function

(5.14)

give the source directions. Where W* is the eigenvector correspond-

ing to the minimum eigenvalue and

EQ
1 sin 8= (1, e e

j2TT(L-1 )d
1 (5.15)

is the direction vector which describes the phase shift at each

sensor due to an incident signal. d = sensor spacing in

wavelength, 8 is the bearing of the narrow band incident signal

and 1 is the wavelength.

A better indication of source directions is given by the eigen-

vector spectrum [65],

5(8) = 1 (5.16)

This spectrum has strong peaks in the directions of sources due

*to orthogonality of 0(8) and W at 8 = bearing of incident signals.
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In the following examples the weight vector is initialized to

t
W1=(1, 0, 0, .... ) and the size of the filter is chosen greater

than the number of incident signals. The algorithm is run for

a finite number of iterations (eg. 150, 200) and the directional

spectra (OS) is computed by (5.16).

Example 12

In this example the incident field contained three narrow band

signals , in additive Gaussian white noise, with bearing 10,

45, and 60 degrees at SNR = 15, 20, 15 dB respectively. The signals

incident at 45 and 60 degrees were correlated with a mutual

correlation coefficient 0.72. The noise per sensor was OdB (all

the noise terms were statistically independent). The narrow band

signals were generated by passing three Gaussian white noise

through three band pass filters.

Figure 5.41 shows the OS-estimates for K = 150 and 200 (broken

and solid curves respectively).

Example 13

The same as example 12 but in order to examine the effect of

a low SNR condition, the signal to noise ratios were set to

10, 15, 10 dB respectively.

Figure 5.42 shows the OS-estimates for K = 150 and 200 (broken

and solid curves respectively). These results demonstrate the

ability of the algorithm to estimate the spatial spectra,

offering a good precision after a short number of algorithm

iterations.
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It must be noted that the peaks heights bear no relationship

to signal power. Estimates of the source powers can be obtained

(if required) by a least squares fit to the array data, based

on the apriori knowledge of the source directions [66].
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K >1 K > 200 K > 350

ex 0.99 0.99 0.99

SIGNAL POWER 2.0 40.0 10.0

SIGNAL FREQ. 0.2 0.2 0.2

NOISE POWER 10.0 20.0 10.0

u1 ' u2 0.9, 0.05 0.6, 0.35 0.45,0.az~

EVR 402 207 8.0

IW*I 1 . 1 1.28 1.36

Table 5.a Values of the various parameters
over 500 iterations
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K >1 K > 200 K > 300 K > 400
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NOISE POWER 10.0 10.0 10.0 10.0

u1 ' u2 0.6, 0.05 0.7,0.05 0.8, 0.05 0.9, 0.05

EVR 20 37 87 402

IW*I 1 .2 1 .24 1 .28 1.25

Table 5.b Values of the various parameters
over 500 iterations
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Figure 5.38 : Spectral estimates,
f = 0.2.
Broken curve K = 100,
Solid curve K = 500.
L = 3, SNR = 10dB.
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CONCLUSIONS
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The major objective of this thesis was to develop rapidly

converging adaptive algorithms based on the accelerated

gradient techniques for various applications of adaptive

signal processing. The main emphasis was on the simplest AG

technique, method of steepest descent with ELS. Because of its

simplic~ty and its rapid initial convergence speed, the ELS

technique appears to be a suitable approach to "relatively

well conditioned problems".

The convergence analysis of the algorithm indicates its slow

progress, in the case of the large condition numbers, to

locate the minimum point, but reveals no information about

what happens in the earlier iterations. It is illustrated in

various optimization text books ego [98], that the initial

convergence speed of the modified Newton technique and ELS

technique is comparable and both techniques achieve the same

degree of accuracy within the first few iterations though the

final convergence rate of ELS algorithm is severely affected

by eigenvalue spread. This is the main disadvantage of the ELS

technique.

Based on the above discussion, it is clear that the convergence

speed of the ELS adaptive algorithms will deteriorate for

extremely large condition numbers (eg. in the order of thousands).

In this case faster convergence can be obtained by using RLS

algorithms or preferably least squares lattice algorithms with

the same computational requirement.
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On the positive side, ELS adaptive algorithms appear to be effective

minimization techniques for "relatively well conditioned" problems.

Simulation results presented in chapter 5 clearly demonstrated

the close performance of the standard RLS and ELS adaptive

algorithms for eigenvalue ratios of up to several hundreds

(which can be regarded as a high figure). Nevertheless, with

a computational load equal to that of RLS algorithms and a

convergence speed affected by eigenvalue spread of the data

covariance matrix, ELS adaptive algorithms can offer nothing

but a better numerical stability over standard RLS techniques.

This was verified by simulation results presented in chapter

5 which were obtained by considering some effects of the

finite precision implementation.

This property of ELS adaptive algorithms is worth investigating

in detail both analytically and experimentally.

The ELS algorithm can be modified by using the concepts of the

conjugacy and linear independence. The result will be a conjugate

gradients algorithm. A wide variety of CG algorithms are available

and can be implemented adaptively. But one sample update

implementation of these algorithms involves two cycles of

computations. The first cycle involves the computation of

the first and the second order statistics for each new data

sample and the second cycle is to compute the least squares

solution at that iteration. This type of implementation is a

drawback for on line signal processing due to increased hardware

complexity associated with the implementation and the attendant
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increased computing burden.

However, adopting block data adaptation and a parallel processing

technique, various AG algorithms can be implemented efficiently

for processing of stationary data. A typical example is the

BICGM algorithm presented in chapter 3. With a computational

requirement in the order of L and its consistent convergence

properties, the algorithm is well suited for processing of long

length, statistically stationary data.

In general, to take full benefit of the convergence properties

of CGM algorithms in adaptive signal processing, block data

adaptation and parallel processing techniques must be employed.

On the other hand, computationally efficient AG techniques can

be developed for adaptive processing of short length stationary

(or non-stationary) data by combining the ELS technique with

a CGM as is explained below.

Recall that, the ELS technique offers rapid initial convergence

speed and very slow convergence speed in the neighbourhood of

the minimum point if the eigenvalue spread of the data covariance

matrix is very high. Also, considering that the CGMs are L-step

convergent, a property that can be preserved by choosing an

appropriate initial estimate of the weight vector. Then the

following unconstrained (though the idea can be extended to the

constrained problems) adaptive algorithm can be proposed.
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I. Initialize W
1

II. For K = 1, 2, ..... up to a finite number N update the weight

vector by means of an ELS technique.

III. For K = N, WK corresponds to a good estimate of the weight

*vector. Employ a CGM to compute the least square solution WK.

If N is large enough, then the estimates of the sample covariance

matrix and sample cross correlation vector will be unbiased and

* *in this case WK ~ W . In practice unbiased estimates of the

covariance matrix and cross correlation vector can be obtained

after 2L to 3L iterations by using estimators (3.13) and (3.15b).

The above algorithm will be suitable for adaptive joint processing

purposes where only a short length data is available.

In conclusion, the main contribution of this thesis was to

develop various adaptive algorithms based on AG techniques

suitable for "on line signal processing". The application of

the proposed algorithms to the fieldSof adaptive noise cancelling,

adaptive array processing and adaptive spectral estimation was

discussed and extensive simulation results were presented to

verify the theoretical findings of the thesis.
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APPENDIX 1

Recursive Least Squares Algorithm (RLS)

Consider the weighted least squares optimization problem,

minimize ( 1. 1 )

The solution to the problem (1.1) is,

where,

K_L K-i t
R

K
- . 1 01. X. X.

1= 1 1

( 1 .2)

(1 .3)

t K-i
PK = .i e l 01. d.X.

1 1

(1 .4)

It follows directly from (1.3) and (1.4) that RK and PK obey

the recursions,

( 1 .5)

( 1 .6)

Application of matrix inversion lemma to (1.5) yields [81],
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-1
= .1 [ RK_1a

From (1.2), we have

-1 t -1

RK_1XKXKRK_1

t -1
a + XKR K_ 1XK

] (1. 7)

( 1 .8)

Substitute (1.8) into (1.6) to obtain,

Substituting (1.5) into (1.9) yields,

(1 .9)

(1.10)

-1
Multiplication of both sides of (1.10) by RK results in,

(1.11)

-1 Wt dsince RK RK = I. Using relations YK = KXK an eK =

in (1.11) yields,

-1
WK+ 1 = WK + RK XKeK

which is the RLS algorithm.
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I -1n order to ensure that RK ' given by (1.7), be a positive

definite -1matrix for i« L, RK is initialized as

(1.13)

where, ~ is a positive quantity, ego 100, and I is the identity

matrix.

The exponential weighting a K- i is included to enable the adaptive

estimators to track the data non-stationarities. Choosing

a= 1 corresponds to equally weighted data samples. In this case

the adaptive estimators for R
K

and P
K

are expressed by,

RK= ~LK XiX~
i=1

(1.14)

(1.15)

Note that the estimators (1.3) and (1.4) result in biased estimates

of Rand P. These estimators can be modified to yield unbiased

estimates by scaling them in accord with the formulae,

1-a

i
1-a

1-a

i
1-a

K

L
i=1

K

i=1

K-i t
AI X.X.
\.A.. 1 1

K-ia d.X.
1 1
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APPENDIX 2

The Lattice Gradient Algorithm

Consider the cost function for stage, i+1, with respect to both

FD and SO residual energies,

'12 [ . 2 . 2]
+ (k

1+)
tE[(b~_1) J + E[(b~_1) J1

Taking the instantaneous gradient of (2.1) with respect to

ki+1 yields,
K

(2.1)

(2.2)

Rearranging (2.2) we obtain,

=
(2.3)

Using the equation for SO residuals in (2.3) results in

(2.4)
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Rearrange (2.4) to obtain,

V J i +1 l (iK = -b K_ 1 f K (2.5)

Using the equation for FO residuals in (2.5) yields the simplified

equation for the instantaneous gradient for (i+1) -th stage,

(2.6)

T th t th t en vs i t i+1 . . 1 to prove a e s ep s i ze parame er a lS .mve r se y propor -

ional to the sum of the FO and BO prediction error power, take

the gradient of Ji+1 with respect to a i+1 and equate it to zero

which results in

i+1
a

1

=----------- = 1
pi (2.7)

Because pi is not known apr iori, its estimate p~ is used which

is calculated recursively as data becomes available. A suitable

estimator is the one given by (2.14).
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APPENDIX 3

Convergence of the Method of Steepest

Descent with Exact Linear Search

Assume that R is a symmetric positive definite matrix with M

and m being its maximum and minimum eigenvalues. It follows

that for any vector V i 0 (an eigenvector of R) the following

inequalities are satisfied [14, pp. 11-45].

(3.1)

(3.2)

M

1 IVI 2
1

~ -t-~
M V RV m

m

(3.3)

(3.4)

1~

2
(M+m)

~---
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Consider the quadratic function,

(3.6)

where, R is a symmetric positive definite matrix. The function

J(W) has a unique minimum which is the solution of

~J(W) = RW - P = 0

which is accordingly given by

or

*RW = P

(3.7)

(3.8)

(3.9)

Define the residual vector (or error vector) of J(W) at Wby,

g = - ~ J (W) = P - RW

Substitute (3.9) into (3.10), then

*g = R(W - W)

Defining the vector q by

* -1
q = W - W= R g
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and using the Taylor expansion formula yields,

It follows,

(3.13)

*J(W) - J(W+W -W) =

or

* t *(W-W ) R(W-W ) (3.14)

Referring to the inequalities (3.1) and (3.2), we have,

* 2 * * 2mIW- W I ~ J(W) - J(W ) ~ MIW- W I

2 * 2I9 I ~ J(W) - J(W ) ~ I9 I

(3.15)

(3.16)

(3.17)

M m

where, M and m are the maximum and the minimum eigenvalues of

R.

Now, with g=q, the function J(W+ag) can be expressed as,

J(W+ag)
t 2 t

= J(W) - 2ag 9 + a 9 Rg (3.18)

Equating the gradient of (3.18) with respect to a to zero yields,

t t
a = g gig Rg
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SUbstitute for a from (3.19) into (3.18) to obtain,

4
J(W) - J(W + ag) - Igi

-t
9 Rg

Combining (3.20) with (3.15) yields,

(3.20)

J(W) - J(W +
4

aq ) ~ Igl
-....::: ------

(gtRg)

*(J(W) - J(W )) (3.21 )

Rearranging (3.21) we have,

* *J(W + aq ) - J(W ) ~ 1 (J(W) - J(W ))

where,

1 = 1

t t -1(g Rg) (g R g)

Substitute from (3.5) into (3.23) to obtain,

(3.22)

(3.23)

1 = 1

1 =

4Mm

(M+m)

2
(M - m)

2
(M + m)

(3.24)

(3.25)

With regard to the above analysis, it can be stated that after
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each EL5 the value of the quadratic function is closer to its

optimal value by a factor 1 . The above analysis can be used to

express the value of the quadratic function after the (K+1)-th

iteration in terms of its initial value and its optimum value.

50 that,

(3.26)

where, J(W
1)

is the initial value of the quadratic function.

*Since 1 <1 it follows that J(WK) ---> J(W ) linearly with

constant 1. Also, J(W
K)

is a quadratic function of WK·

* 1
Therefore, W

K
---> W linear ly with a constant 12".
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APPENDIX 4

CONJUGATE GRADIENTS METHOD

Conjugacy and Linear Independence

A set of vectors qK are said to be mutually conjugate with respect

to a positive definite matrix R if and only if R-orthogonality

condition,

K i j (4.1)

is satisfied. For K = j,

qK i 0 for all K.

t
qKRqj is strictly positive if

A set of conjugate vectors are linearly independent and there

can be no more than L vectors mutually conjugate with respect

to any L by L matrix R. This useful property of mutually conjugate

search vectors implies that any point in a L-dimensional space

can be reached by a suitable linear combination of at most L

mutually conjugate search vectors.

Quadratic Termination

Consider the equation,

where, a
K

is the exact step to the minimum along qK·
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Define

(~.3)

where, gK is the gradient of the quadratic function with respect

to WK. It follows,

(4.5)

The gradient gK is related to gK+1 by,

K-1
gK = gj+1 + L Og. j = 0, K-1 (4.6)

1

i=j+1

Multiply (4.6) by
t to obtain,q.
J

t t K-1 t (4.7)
qjgK = qjgj+1 + L q.Og. j = 0, K-1

J 1

i=j+1

Note that ELS implies that,

(4.8)
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As a result of (4.8), the first term on the right hand side

of (4.7) is zero. Using (4.5) and (4.3) in (4.7) yields,

K-1
= ~ q~R OW.
~ J 1
i=j+1

K-1

=L:
i=j+1

= 0

ta.q.Rq.
1 J 1

j = 0, K-1 (4.9)

The equality (4.9) follows from the conjugacy property (4.1).

Set K = L, then

(4.10)

If the gradient vector gL ~ 0, then it must be orthogonal to

all q. j = 0 , K - 1. But q. , j = 0 , K - 1 are linearly
J J

independent and consequently (4.10) implies that there exists

L + 1 linearly independent vectors in an L dimensional space.

But this is not possible and (4.10) proves that gL = 0 ,

which is proof of quadratic termination due to ELS and linearly

independent direction vectors.

The Construction of Conjugate Search Vectors

A set of mutually conjugate directions can be obtained by taking

q as t he steepest descent direction and computing each subsequento
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direction as a linear combination of 9K and the previous search

directions ie.

K-1
qK = + gK + L

j=O

bK·q·
J J

(4.11)

As a re~ult of (4.11), gK is a linear combination of

qo ' q1 ' qK ' and

i < K (4.12)

Also, qK can be constructed to be conjugate to qo ' ..... q~1

as follows. Multiply (4.11) by q~R and use the conjugacy
1

condition (4.1) and the relationship

09K = R(WK+1 - WK) = akRqk ' to obtain

K-1

L
j=O

t
bK·q·Rq.

J 1 J

= +
1 t t

(g. 1 - g.) gK + bK·q·Rq.
1+ 1 1 1 1

for i = 0, K-1. (4.13)

The equation (4.12) implies that the first term on the right

hand side of (4.13) vanishes for i < K-1. Therefore, to make

qK conjugate to qi for i < K-1, simply choose b Ki equal to

zero, which results in one non zero coefficient bK K-1,
(denote b

K,K-1
= b

K_ 1).
It is neccessary to obtain a value for

b
K_ 1

to ensure that qK be conjugate to qK-1 . Multiply (4.11)
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by 09K_1 and apply the orthogonality condition Ogt q = a
K-1 K

to obtain,

or,

(4.14)

t
OgK-1 gK

Og~-1qK-1
(4.15)

Therefore, qK can be written as,

(4.16)

Note that there are various possible choices for bK (which can

be obtained by using the orthogonality of the gradient vectors

and the definition of the direction vectors) given by

bK_1 =-----
2IgK_11

bK_1 = ----

For a detailed explanation of constructing conjugate search

vectors see [13, 14].
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Convergence of CGM

In theory the CGM is L-step convergent if exact arithmetic is

used. However, in practice rounding errors cause the computed

directions to lose conjugacy, and CGM behaves like the ELS

method requiring a large number of iterations to converge.

Furthermore, in the case of an ill conditioned system, CGM requires

more than L iterations to converge, ego 2L to 3L iterations.

To ensure the L-step convergence property of CGM, a restarting

strategy must be used in order to preserve the conjugacy of the

direction vectors qK [13, 14].
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M Yaminysharif and T S furra.ni

Abstract

In this paper an algoritlJD taeed 011 the gradient descent approach 18 pI'Op:leed
for adaptive signal processing. The proposed algoriUn bas the advan tages of
low CClDpUtational overheads, and fast convergence properties - very close to
those of the Chnjugate-Gradient-Metbod (aiM). Besides it does DOt require an
adhoc choice of step length and is applicable to both single channel and Imllti
channel data. In this plper extensive cxmputatiooal results are presented to

. illustrate the algoritbD's perfonDILDce in terms of convergence properties, and
its applicatioos in adaptive noise cancelling, array processing, harmonic
retrieval and eigen spectral analysis. The aspects of ccmputatiooa.l oauplexity
of the proposed algorithm are discussed when used in different applications of
adaptive f11 tering and are CCItIJ1red wi th alternative techniques.

1 Introduction

Conventional techniques for adaptive signal processing have pr1ma..rlly evolved
fran the Least-Mean-Square (lMS) algori tl'ln or its variants, and extensive
studies have been conducted on its convergence cha..ra.cteristics and performance
properties lsee Ref 1 for a recent canprehensive review 1. The tlD6t attractive
feature of the l.MS algorithm is its simple ocmputationa! requiranents. ()l the
other band, the relatively slow convergence factor (step length) represents a
handicap which bas to be taken into account when OOIlsidering high speed applic
ations. '!bus 1D applications where rapid convergence and speed are important,
Recursive-I..a.st-Squares (RlS) algorithms are gaiDing favour. These techniques
though IOOre ccmplex than I..MS algorithms, in general offer faster convergence.

Recently a special class of algoritims called the Conjugate Gradient (0:;)
algoritiIDs have been proposed for adaptive filtering l2 J. For a andere survey
of these algoritbms, see l3 l- Although these algorithms lead to optimal
solutions in the mean square sense, they involve significant ocmputatiooal
overheads and, as such, have rarely found applications 1D practice, particularly
for real time processing.

In this paper we propose an algorit1ln t.ased 00 a gradient descent approach which
is easy to 1mp18DE!llt for both s1ng1e-chanDel and IILl1ti-cha.nnel data. In the
next section a developnent of this Gradient Descent Based Algoritbn (GDBA) is
outlined and its coovergence properties are discussed. In section (3.1) the
application of a:iIt and GDBA to adaptive noise cancelling is discussed and the
siJllllatioo results are presented to ccmpare their relative perfOnl:lLDce. In
section (3.2) two approaches, namely lJIS and GOOA to the broad band adaptive
array processing are discussed and their relative performance is 0CJJIPI.l"8d by
means of s1D11lated eumples. In sections (3.3) and (3.4) the application of
GDBA to the adaptive 1mplEmentat1oo of Pisa..renko's h&rDJnic retrieval method and
eigenfUter directional spectral est1aatioo 16 discussed and s:1DI11atioo results
are pi noted to illustrate its perfol"lllLDce and coovergence behaViour.

III YamiDysbarU and T S D1rraDi are with the DepllTtmeDt of Electroolc and
Electrical _1Deering, university of Strathclyde, GlasgCWi. Scotland.



2 Problem Formulation

Thret., types of minimization pronl ens frequently arising in adaptive signal
processlGg theory are to minimise the following cost functions:

minimize J • !t~ - 2 ~t! + c

minimize J • I'tRW

subject to sane linear constra1Dts

1D1n1m1ze J • .tRf

subject to the norm constraints

(1)

(2)

(3)

(4)

where: 1'. adaptive filter weight vector, C • coaatant , R • data covariance
matrix, ~ • cross correlation vector between the reference and the desired
s1.gnal, and t denotes transposition.

The conventional approach to these problElnS is the gradient descent technique
leading to scme S)rt of L\IS or coostrained I..MS algori tiIn when the gradient is
replaced by its instantaneous estimate. As po1Dted out earlier, these
algori thins involve ccmprcm1ses based 00 choice of step length vs eonvergence
rate and, as a result, the associated problans of misadjustment and speed arise.
Different techniques such as RLS and CXiM can be applied to these problEmS which
yield substantial improvement in overall performance and the speed of
convergence at the cost of increasing ccmputatiooal canplexity.

However, in order to obtain rapid convergence a t the expense of a lOOdest
increase in canputa tional canplexlty, we propose the following algor! thm which
is based 00 the gradient descent approach. For K • 1, 2, ••• canpute,

~ • (a.c_l.(k-l) + ~~t)/K

Be - (Eg_l·(K-l) + ~)/K

!x • Rg!g - Ex
Iltc - !xt!g I !xt~

Wx:+l- !x - SCic

where: X· vector of the tap voltages and d • the desired signal. For
minimization problems (2) and (3) the algoritiln is axxl1fied since .!X • Rrltr.
The attractive feature of this algorltbn is tbe recursive estimaticm otUTts
parameters in particular the convergence factor &[ which satisfies the
optillal1ty coodi tioo for an opt1JmJn step sequence lW A Gardner 1).

Although the above DrJdified gradient algoritlln requires mre canputations than
the UlS algoritbn (this is not a great coocern with today's OCIIIpUting JX)Wer
cost), it is a rapidly oooverging algoritbn whicb is the essential requ1l"'EJDeDt
for a ride range of practical appl1catioos. '!be perfonmnce of tbe algoriUID
bas been studied when used in a range of appl1catiODS ot adapt!ve fll tering.
ErteDsive s.1DI1latioo studies tave illustrated a substantial 1mprovement in the
speed of OOIlvergence aDd reduced final m1.sadjustment over the CODventioaal I.KS
algor! thm. Figure 1 illustrates the variatioo of the ooovergeoce factor ~ of
the jJlvposed algori tan. wi th respect to the 1.averse ot the lArgest and the
smallest eigenvalues ot the covariance matrix. This illustrates that ~
sa. tisfies the optimal tnmdary oood!tioc for an opt1mlJn step sequence [1).
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3 Application of th( Proposed Al~orithm

3.1 Adaptive noise cancelling (ANC):

The application of the I1dS algorittln to ANC yields the very well known update
formula of Widrow-Hoff. In order to apply CXiM to ANC, canputations are carried
out in two steps. '!be first step is to canpute the estimate of the gradient
rK for K~ 1, 2, ...• The second step is to use aiM and ccmpute the Clpt1JmJn
solution "Ie' '!be procedure is outlined below:

1.

II.

III.

Chnpute the est1nate of the gradient !x • R& - Ex.
Select an arbitrary initial est1nate of !K.

Use aiM to solve !x and obtain !i.
Minimization criterion using GDBA is straight forward and results in an exact
recursive formulation (4). Figures 2 and 3 represent the learning curves
obtained by aiM and GDBA for different values of SNR. In these s1.Dlllatioos the
primary input was a sine wave of amplitude five representing the signal,
corrupted by Gaussian wh1te noise. '!be reference signal was a first order
autoregressive white noise. In the case of aiM the rK was estimated by the
same recursive equations as listed in (4). An arbitrary 1.n1 t1a.l estimate of WI
• (0·5,0-5, ••• ) was chosen for all these simulations and the adaptive f11 ter
had five taps. '!bese results clearly show the close performance of aiM and
GDBA with higher final mi.sadjustment of aiM for low SNR conditions. '!bus it is
obvious that a great reduction in canputational oc.mplexity can be achieved with
performnace similar to (XjM when using GDBA.

3.2 Adaptive array processing:

The perfol'lllUlce of the IJ&S algorittln and GDBA is illustrated in Figures 4, 5 and
6. A simulation 1i18.S set up with a linear array of five elElDE!!1ts, each being
processed through a filter of five tap we1.ghts which were updated according to
the IJ&S algorithm (with convergence factor O-OO(X)l set arbitrary) and GDBA.
The environment bad three point noise sources of power 1, 10 and 10 located at
0, 30 and 45 degrees respectively and noise per sensor was set at 0 dB. '!be
look direction was ILSS\.IDed to be 0 degree (nonnal to array). '!bere was no
correlation between the desired signal (located at 0 degree) and two strong
interferences (located at 30 and 45 degrees). Figures 5 and 6 show the
spectral output obtained (128 data samples) fraD the IMS and GOB algorithms.
It is clear that GDBA bas cxmpletely suppressed the two strong interferences
unlike the IJ&S algorittln.

3.3 Adaptive implElDE!!1tation of Pisa.renko's bLn!DDlc retrieval method:

The proposed algorittIn was tested for the cxmputatioo of spectra of sinusoids by
implemeoting Pisarenko's teehD1que as an adaptive GDBA. '!be result is~ in
Figure 7_ Note that the algorittln is able to pick up the spectral peaks after
0011 N • 100 dB.ta points even for the very poor ~ of • 2 dB.

3.4 Eigen!ilter aAll'Q&Ch to array spectral analysis:

The algori tJJn t-.s been applied for estiJlating the spatal spectra frem data
recelved for an array of narrow bLnd sources. '!be perfonDlJlCe of the alcori tlmI
bas been tested for both correlated and UDcorrelated S)U!"CeS. Here a
represel2tative result is included for spectral estiJlatee (Pigure 8) for sources
located at 10, 45 and M deglees respectively. saurces at 45 and M deglees
are correIated ri th the DlJtual correIatioo coefficient, O· 8 the ~ for the

...
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sour-ces are 5, 10 and 5 dB. Note that the algorithm al Ioes a clear and
unambiguous estilmtioo of the spatIa l spectra even for as short a. data Ieng th as
N .. 128.

4 Conclusions

In this paper' we have presented an algoritan for on-line adaptive fil ter1ng.
The main objectives of the algorithm were to increase the speed of convergence,
to el1m:1.nate the requirement for an adhoc choice of coovergence factors and to
reduce the final misadjustment. Extensive ocmputer simulations for different
applications of adaptive f11 tering verified the excellent speed, accuracy and
convergence properties of the proposed algoritllD. However, the cost associated
wi th these achievements is the increase in caDpUtational requirements which is
modestly increased in caDPU'ison with that of the I..MS algoritbD, but signif
icantly reduced when CCIIIpLJ'ed with those of alternative techniques such as <XiM
and the techniques requiring the iDverse of the covariAnce mtru.
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ADAPl'IVE SIGNAL PROCESS J1(j osI~ A lIDIPI ED GRADI00' ESTI WATI(If 'l"EDM:QUE

W Yam1.nysharlf and T S ~1

Dept ot Electronlc • Electrlcal EDg1Deerlnc
Unlversl ty ot Stratbclyde,

G18.SgOlf Gl 1XI Scotland U"It

1 INmCfXJCl'Iaf

In the 1II&1n, adapUve sllnal Procesa1D1 ls
perfonued usinc an PIR til ter with coett1c1eots
tbat are upda ted to achieve scme prescribed
pertomance crlt.erioo.

llaDy of tbe algor1tiID8 PI0fXll9I8d tor 181 10
adapt1 ve signal procees1nc are based CIl the
poa.d1eat deeoeDt apprc.c.b and can be~ 10
tbe tollOlf'1llg tona:

an opUlII&l bound 1n order to m.x1mize the
COQvergeDOe speed. In this cue, the CCIljupte
gradlent IIIIrtboda (aJI) (I J can be ut11181llli for
llaX1III1zJ.nc the speed of ooovel'leooe.

To 1qllement u.e- algor1thaB the <XJlIPJtaUoa 1.
lenerally cur1ed out 10 two ~ due to the
oecesslty of leneratlnl mutually eoojuaata
vector8. 'lbe first step 1. to COIIp.lte the
est1JDatea Pr and Rr and the eecood step 1. to U98

caw and caDpute die welght vector "'+1' Thi.
type ot ~ltlllll!l1t&tioa 1. a drawback '"tor cn-liJle
s1gnal proeE8Ilnc due to increued bardftre
callPlexity UIl!IOCUted with the 1JIIpItlllllDtatioa and
the atteodaAt 1.Dcreased ~tiaI burdeD.

In thi. JaP8I', " propose an allQl'1~ t:aaed CIII
(1) wb.1cl1 is s1Jllp1e to 1JIIpl_t tor both a1JICl.
cm.anel and DllticbuDel ciata. In tbe nat
sectlca, a developDl!llt of thi. cndl_t deaceDt
based algorltt. (GDBA) ls outlined and ita
COQvergeooe properties are d18CU88St. In SecUoa
3.1, ca::&\ 1. appl1ed to IldaptiYe DOL. cucelltae
and the B1D.IlattCll resul ta are preeeated to
~ lts pertonance with <nt. S1JIIJlaUoa
resulta are alao presented IIbeD the alCorlUD 18
1q:llEIIIeDted us1nl a lattice Iltructure, and are
compared witb the results obtained Yben a
COIIYeDttooal lattice 1J"lLd1.t alaorlt!11 18 188d.
In sect1ca 3.2. the appl1catlCll of CDlol to the
adaptlY. spectral analy.i.. 81011. cbaDnel
PlareaJro'. tecbD1que and Dllt1ebannel d1nl1CUooa1
spectral a.aal,.18 18 d1~, and 81allaUCIII
result. are preaented to illuatrat. it.
pertonanoe.

(1)"1:+1 - "I: +~~ - Its: "1:)

An algorl thla based 00 tbe gradlent descent
approach ls proposed tor adaptlve slgoal
processlng. 'Ibe algorlt1'11l outpertol'llll the least
IIlE&D square algorltJ:a (lJIS) 10 tel'llll ot ooover
geoce speed &lid III1sadjUStl1lerlt DOlse, &lid meets the
pertoJ'DlUlCe cha.raeterlstics ot the ooaJugate
gradlent (a:;) and recurslve least !lQlareB (RUJ)
JDetbods without tbe attendant computational
caupledty. It 1.8 Simple to 1qllaDeDt and lendll
1tselt to real t1Jlle processlng. The algorltiD
can be 1q>lenented us1DC lattice or tap-delay l1ne
structures. In this paper extenslve OCJIIp1ta
tiooal results are presented to 1llustrate the
algorl thm pertol'WUlce 10 tenas ot ooovergeooe
propertles, and lts appllcatt0D8 10 adaptlve DOL.
C&!loelUng and adaptive spectral analysts.

~ - I, 2, 3 ••• when ~ - filter -1Ibt ?eCtor.
a~ - .tep lenltb. ~ - eeti_te of tbe croee
correlatioD yector p. ~ • estiate of the citta
covarlance ...tria I. P • I(~~). R • B<Xz.Xc ).
d~ - de.lred 81lnal. !E • yector of ttie tap
901 tale. and data -.ectOr. I( .) denote. tb.
e~tat1aa. aDd t deDow. t.I'a.Upoe1tiaa. ".
de.11D cholce of ~. 'I. &Del ~ depend. CIl tile
pa.rtieu1ar appl1catrca ind lo90r... a ~f
betweeD tbe &peed of oooverpooe and OCDIPJtatiOlW.1
~lezity. '!be.-t CCJlIPltati0l».11, attract1~

choiee ~ - coo.tant. Px - cS.r~. and "K -~ ..
lade to tbe _11 kDoft ul Widel, Ueed"'lJb
allor1ttD. OIl tbe other baDd. wbeD tile speed of
conyercence 1. of pr1.lDa.r7 U1port&JIc. -:>N
ccos1stellt est1Jlatee of P and R are required alOllll
witb a nr1abl. step leaeth ~ mtcb -.t aUafJ

2 FRCIllBIlI fQUO.ATI<Jf

Detlo1DC the tollOlr1nl:

V~ • ~ - I.

~ • ~ - ~ I.

wber. I. • optl.u. wellbt yector (tor aca
atatiooary caM I. • '0 I - the pu'lIlBeteJ' ftCtal'
wbieb "'n1m1.,. the 008't 'f'UDcUCIII at U. K). (1)
can be expr9l!l8ed ..:

~ ~ ~
"1:+1 - (. f 1 ) ·V1 + t ( • r.)oajIJ (2)

1-1 J-l .J+l



a)

wbere f i • (I - aiRi)' " ). 1 and fill· I if !D) It,
I • ideO tl t)' _ trlz. 1n order to ana 1yse the
convergence behaviour of (l) using (2) ooe IIlJSt
find a suttlcient coDditloo on the sequences Itr,
ZK' and RK for wbicb the system output wourd
coovel'ie. Extensive studies have beeo conducted
on tbill issue based 00 tbe assumption8;
statlonary or DOIrstatlonary data, depeDdent or
independent observation8 of PK and RI, see for
1.J1staD<:e l2, 3 ) • Ia these IBpera, (1 ) t.s been
aaalyse~ for alt • constant, P" • dKXK' and
fir • Itcltc to obtain a bouDd on the quadratic IIle&D

0'1 IVIc/.
However, the IIlOSt otwious aDd nee ry oooditiOll
for (2) to OODvel'ie 18:

o <: ~ tit II (.1 , fit • (I - ~) (3)

Equation (3) i8 not satisfied unless Itr sat1stles
an opt1Jla1 boood which ill strictl)' detennlned by
tbe eigenvalue ratio (EVa) of the est1Jlate of the
convariaace matriz RIt • Efuation (3) would
definitely be met it a,c <: __ of ~, bJt to

EVlII&z
1IIlJ[1nL1.ze the speed ot coevergence aDd at the same
t1me to llleet (3) let us cooslder two extl"Elll8
si tuatloos:

EV
It EVa • ~:> 1, thea (3) 1& met it

EVm1.D

o <a,c 4_1_
EVm1.D

BY.
b) It EVa •~~ 1, then (3) 1B met 11

EVm1.D

O<~~EV ~EV <EV
2

(4).
IIIlJ[ m1.D lII&.I

To 1llU1m1.ze the COOYeI'ieDC8 speed the la-er bouDd
(LB) IIIJIIt be kept well aft)' trcJII zezp aDd a
suitable and permissible lB .wld be __ -'a,c.

BVlII&.I

Now tor 'I( • IJRl8r bouDd (UB), (2) can be .m.lysed
ia order to obta1Jl a bouod tor qw.dratle IIISJl of
I¥tI utll1.zlDC the -.me appro&cb as tlat of (2,3).
Renee. ODe C&D state tbat the actual bouDd 011
B( IVxI 2) would be ...l1er. s1Dce 11K" tm.

'lberetore. to _v_1 _ the OODftI'ieD08 speed we
propoee the toll~ recund.0II to update lrr:

~ • <Rat_le(K-l) + I.a: ~t)fI
pt • <Pt_Ie(K- l ) + "I ~)fI
I't • ~ lrr - pt (4)

At[ • I'lt I'l I I'lt t'K I'l

'It+l • ,( - -.: I't
The attraetl~ tatuN of thi8 aIgoritiD i8 the
recur.ive est 1JDa Uoa ot 1 til parameters. 1a
parUcular tbe step lenlth ~.. 11 tboulb thi.

algorl tm requi,.. IDt'e oalIp.Itat1~ t..t.JI the UC3
algorltm (thi. ill DOt a great ooocena nth
today'. ~t1nc ~r OOlIt) it 1. a rapidly
converging algorlttw which is aa essential
requirement for a wlde ",nge of practical
appl1catlOO8.

Figure 1 ~ the evolutlon of the lltep lenctb
alt of the proposed algorlUJ11 nth re:srect tn the
l.nverse of the 1arcest. _11est ,

. eigenvaluea of Rtt. P11U"t 1& &boN
the variation of &r for EVR »1, and Pigure lb
illustrates thill bebi. vlcur for EVIl)- 1.

3 APPUCATICHJ

3.1 Adaptive Noi. C&Dce1l1.Dl (Ale)

Flgures 2 aDd 3 iepl'! nat the learnlD1~ for
Ale obtalned by cnI aDd <DlA for dlffen!llt valuee
of SNR. 1be pr1Jar7 lJIPlt ... a aiM wave of
ampl1 tude Uve repreeeotlDl the II1pal. corrupted
by GaussiaD white D0188. The refereoce sigDa!
wa.s a tirst order autorecreaal.. 1II!lqU8DCe. In
the case ot criM, f\. aDd "It were est1Jlated bJ the
same recurslve equail008 LS listed 10 (4). An
arbltrarll)' 8mall inltial esti_te of W1 ....
chosen for all tbe8e II1allatl0D8 ud the adaptive
filter used ... a tap dela, line nth Uve tapa.
These results clarly ~ the cloee perfonaaaoe
ot <Df aDd a:&\.

The algoritln (4) can &1eo be applied to Ale wbeD
a DOlse caDeeller 18 1IIpl_ted us1JII 1&ttica
structure. Thi. tJpe of .1_tatlOll baa Ita
advantaeee. 111008 the lattice fil tar sreP'~iooe...
its input lIignal (u.ial a aet of partial
correlatlOll ooefticlenta. PO:. wboee valU88 are
obtained by aD ldaptlve algoritla) ud auppl1ee a
set ot ort.boConal cpal. (tacbud reeldual.) to
the combiner IItructure. Du. to the••
orthogona11z.ed sipal.. the we1&bt 00 each tap of
the ecnb1.ner 111 given a lltep .1zAt which 18
ioversely proportional to the a1pal poNr at tbe
coliespoodlOC lattice Q.ltpJt (thi. pvee all tapa
the .me rate ot OODfEl'.......) [5). !Ic:Jft'Nr tbe
lattice tilter outplta are a _ of 0I"tbc.C0D&1
sipal samplee onl)' alter CCIIIPleta CXIJYeI"i'!D08 of
tbe PCC. ThUll tbere ed.t. ad...... ot
correlatlOll betweeD t.beee at.caal- which decreuee
.. 10: apprcacb their optial valuea. Baaed ca
tbl. d1.8cu8S1011, a CCIIIb1.Ded update recww1ca fel
the CCIIIb1.Der weighta walld 1Dc,... tbe iJlltW
rate of 0009'8l"leDOe, 1D Eartieular if IYR»1.

Figure 4 rep. ta the leanUDI eurvee tel AM:
wbeD 1JIIp1emeated usiDl a tA!Il ataee lattice tUt.r'.
tor the __ cs.tred dcxal (aa ncur- 2 &ad 3).
nMt retereooe signal .. a b1&b11 corre1&ted t1rwt
order auto.iliJ~"~ (91th ccrre1&tica
ooetttc181lt 0·8) realltlDC 10 IMl • 415. ".
solid curve repi .ta tbI result obU.1ned bJ a
oooventioaal lattica lJ'dieat allOritla (5) &ad
the brok8l CW"98 •ep ta the reclt us1.aC (4).
Por the latter e:a-. 10: were updated .uc •
oooventional recurslOll pI'C)C*tuN (51 whil. tbe
canb1.ner we1&bta were updated II81DC (4). on-
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resul ts l11~rate taster lnl tlal rate of conver
gence that can be achleved using (4). ~r,

tbls ls a prel1Jn1nary result and related aspects
of the algorlttrn are being invest1gated in roore
deta11.

3.2 AdapUve Spectral Analysis

Tbe Plopoeed algoritln ..... tested for OCIIlpJtaUoo
of spectra of sinusoids (adapUve 1ql18'llel1taUoo
of Pisa.renko' 8 technique [6,7]) , aDd est1all.tins
the spaUal spectra frau data received for an
array of narrow band sources (elgenfilter
direcUonal spectral est1matioo) (8]. These
tecbD1ques involve estiJlattns the m1D1JIuD eigeD
value of the data OOftl'lance IIB.tru and the
correspoodins eigenvector. If. (1) 18 convergent,
then the expected value of the output poRr would
be aD _UIIate of ~ll' The algoritm. (4) 18
applicable to the8e 11E1118 81JlIpl, by est1JlaUns
IV • B(Y1Z )"K' and thus, l'K. Rtc"K - E(YJ{2)'w ,
w1iere Y1 • ou tput of tbe fll ter (use cOlIIprez
DOtaUoo for eigeuf11ter problElII). Figure 5
represents the spectral est1Jllates for two
sinusoid. of no1"lll8.11zed frequenq 0 ·18 and 0'38
for poor SNR • 0 dB. Note that the algoriUn 18
able to plck up the spectral peaU after ooly
N • 100 data points wblch i8 a oc:mpaUble result
wi th thoee obtained usinc RLS and <nI l6 ,7 ].
Figure 6 represent. a computer resu1 t for
d i rectiooal spectral est1mates for sources loeated
at 10, 4.5, and eo de8reea. Sources at 4.5 and eo
decrees are oorrelated with a artual oorrelatioo
coefficient 0,72, the SNR for the sources are 5,
10 and 5 dB. The unambiguous est1JllaUoo of the
spaUal spectra 8geD for as ebort a data lengtb as
N • 150 l.Ddicates rapid rate of convergeooe of the
algoriUn and its perfol'lll&llCe <XJIIP&Ubllity with
RLS techniques L8] •

[5]

[6]

l8]

Grant P II( and ~tter II( J: "Appl1catioo ot
gradlent adaptive lattice t11 teMl to ~l
equaUaUon", lEE Proc, V01-131, Pt P, No 5,
AUI 1984.

Reddy V U et d: ''Least!quare8 latUce tn
algorlUm for adaptive 1q)1811elltatioo of
P1sarenko's banDoolc retrleval method", lBEB
TTans ASSP, V01-30, No 3, June 1982.

~i T S and Sba.naaD I C: ''E1geofUter
appr0ache8 to adapUve uray procees1nc", III
Proc, V01-130, Pta P and R, No I, Feb 1...

In thi. IBper we have presented an algonU. for
oo-lloe adaptive filterinc. The lIB.in Objectivee
ot the algori thai were to iDe,... the speed of
coovergeooe, to el1JD1.Date the requ1rt1DllDt for
a.dboc cboice 01. conv~eoce facto... and to reduce
the fiDal IIl1sadjus1meDt. £:IteDshe oaIplUlr

s1JllulaUoaa for d11.fereot appl1caUClIl8 01. adaptive
tll tar ver11.1ed the ucelleot 1Ipeeli, aa::ura.c7 and
cooveJ"lElOC8 properU_ ot the propA8d algoritta
and Its perfol"lll8.D08 caJlP&t1b1lity with Rl1I aDd CD
techD1ques. To 1Dereaae the W tial rate 01.
coo~eooe the algorltha1 C&D be applied to the
lattice structure8 with a tradfH>ft 01. 1.Dc.reaaed
caJIP1tatl00&l caDPla1ty.

5~

Tbe autbon w1ab to tbaDk the (J[ Scleooe a.od
Eng1neeriDC Research 0JuDc11 tor aJppOrt1nc this
work.
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