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Abstract

Lipopolysaccharide (LPS) and Cytosine-phosphate-guanosine oligodeoxynucleotides
(CpG ODNSs) cause macrophages to produce the proinflammatory cytokines IL-12, IL-6
and TNF-a. Pre-treatment of the macrophages with ES-62, an anti-inflammatory
glycoprotein secreted by the parasitic filarial nhematode Acanthocheilonema viteae
suppresses the production of these cytokines. Although able to prevent disease
development in mouse models of allergy and autoimmunity, ES-62 is not suitable for
drug therapy due to its potential immunogenicity. A library of small molecule analogues
(SMAs) therefore was designed and tested for the previously mentioned inhibitory
effects. SMAs 11a and 12b among library members were found to mimic ES-62’s anti-
inflammatory effects. These findings rationalised further testing in order to determine
their mechanism of action based on their effects on the metabolome of primary

macrophages.

From analysis of cellular extracts using hydrophilic interaction chromatography in
combination with high resolution mass spectrometry it could be seen that stimulation of
macrophages with either LPS or CpG produced metabolic changes in various pathways.
Stimulation of macrophages with LPS or CpG in the presence of SMAs 1la and 12b
revealed that many of the metabolic shifts were the same as observed with LPS and
CpG alone. However, there were clear effects of the SMAs in producing downregulation

in creatine metabolism/uptake and upregulation in glutathione biosynthesis.

By downregulating creatine metabolism/uptake, the SMAs may be controlling the
availability of creatine for transporting high energy phosphate from the mitochondria to
where it is required for biological functions including cell signalling, phagocytosis and
motility. By causing an upregulation of the glutathione biosynthesis pathway the SMAs
may be protecting the cells from oxidative stress and of note SMA12b has been

previously linked to increased activity of the Nrf2/ARE/HO-1 anti-oxidant pathway. The



SMAs may be downregulating the availability of the energy produced by oxidative
phosphorylation in general without targeting the TCA cycle directly since they do not
affect NADH levels in comparison with LPS or CpG stimulation alone. Finally, in the
process of examining the response of the cells to LPS and CpG additional potential anti-

inflammatory targets were revealed.
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Chapter 1. General introduction



1.1 Introduction to the immune system

1.1.1 Innate and adaptive immune systems

The immune system brings into play, various mechanisms to protect against a
variety of pathogens and allergenic substances (Chaplin, 2010a). The
implemented mechanisms can be divided into two lines of defence, innate and
adaptive immunity. The two immunity arms have the same ability to differentiate
between self and non-self-antigens but they are different in the way they do this.
Innate immunity has the ability to recognise a series of conserved molecular
structures of microorganisms via a limited number of receptors and secretory
proteins encoded in the germline. However, adaptive immunity uses a process
of somatic cell gene rearrangement to generate an enormous group of antigen

receptors that are capable of distinguishing closely related molecules.

The innate immune defence recognition system is initiated via host recognition
of conserved molecular structures known as pathogen-associated molecular
patterns (PAMPSs) (Janeway and Medzhitov, 2002). These PAMPs are sensed
by the host’'s genome encoded pattern recognition receptors (PRRs), which are
expressed on innate immune system cells such as dendritic cells, macrophages
and neutrophils (Blasius and Beutler, 2010, Medzhitov, 2007, Takeuchi and
Akira, 2010, Kawai and Akira, 2010a) . However, although the innate immune
system provides immediate recognition and initiates a rapid response against
infection, it has been characterised as a temporary system that often cannot
compete with the demands for complete eradication of the microbes (Gonzalez

et al., 2011).

The adaptive immune system is a second line of defence, which is usually
triggered by antigens or the recognition of their fragments in order to mount

stronger and long-lasting attacks against microbes (Gonzalez et al., 2011). The



adaptive immune response is dependent on antigen-specific receptors
expressed on T and B lymphocytes. An important feature of the adaptive
response is immune memory that is possible due to the long-life span of B and
T cells allowing them to persist in a dormant state, but they can be re-activated

when they encounter a specific antigen for a second time (Chaplin, 2010b).

1.1.2 Cellular elements of the immune response

An effective immune response entails a combination of different subsets of
leukocytes. Each subset has a specific job to detect or clear the pathogen. This
starts with hematopoietic stem cells (HSC) from bone marrow, which are divided
into common myeloid progenitor (CMP) cells or common lymphoid progenitor
(CLP) cells (Kawamoto et al., 1997, Kondo et al., 1997). Lymphoid progenitor
cells differentiate to give B cells, T cells, natural killer (NK) cells, NK-T cells and
innate lymphoid cells (ILCS) (Chaplin, 2010b). ILCS are a relatively newly
described group of of innate immune cells which are defined by absence of an
antigen specific B or T cell receptor because of the lack of recombination
activating genes (RAGSs). ILCs also do not express myeloid or dendritic cell

markers (Spits and Cupedo, 2012).

The myeloid progenitors are antecedents of many cell types, which include
megakaryocyte/erythrocyte progenitors (MEPS) or granulocyte/macrophage
progenitors (GMPs). MEPs are differentiated into platelets and erythrocytes
(Akashi et al., 2000, Adolfsson et al., 2005). GMPs are also differentiated into
monocytes, which give rise to macrophages or dendritic cells and varied types
of granulocyte, for example basophils, neutrophils, eosinophils, and mast cells
(Kumar and Jack, 2006b, Chaplin, 2010b). In addition, there is another
subgroup that has been identified as a new subset of cells. This subgroup
shares numerous features with myeloid progenitors and is known as
macrophage/dendritic cell progenitors (MDPs) (Fogg et al., 2006). MDPs also

3



differentiate into monocytes and common DC antecedents (CDPs) (Varol et al.,

2007). A summary of immune system cell development is shown in Figure 1.1.



Figure 1.1: Immune system cell lineage

Hematopoietic stem cell (HSC) differentiation in bone marrow, blood and
tissues: (CLPs) common lymphoid progenitors, (CMPs) common myeloid
progenitor cells, (NK) natural killer cells, NK-T cells, (ILCs) innate lymphoid
cells, Pro-B and Pro-T cells (which further transform into tissue B-cells and T-
cells respectively), (GMPs) granulocyte/macrophage progenitors, (MEPS)
megakaryocyte/erythrocyte progenitors, (CDPs) DC precursors.



1.1.3 Macrophages

Macrophages, which are phagocytic cells, are distinct from circulating
monocytes. Blood distributes these cells to distinct tissues in a constant
manner, or as a reaction to inflammation, creating types of tissue macrophage
such as macrophages of the central nervous system (microglial cells),
macrophages of the liver (kupffer cells), macrophages of the connective tissue
(histiocytes), as well as the alveoli, spleen, gastrointestinal, and peritoneum
macrophages (Kumar and Jack, 2006a).

Elie Metchnikoff 100 years ago, raised the idea of “stimulate the phagocytes” in
which he explained the phagocytic process as a vital one for the immune
response (Nathan, 2008b). Macrophages were then considered to be immune
effector cells, in addition to being the first line of the host defence. Furthermore,
they have crucial homeostatic functions that immunologists frequently disregard
(Mosser and Edwards, 2008). Macrophages clear around 2x10*! erythrocytes
to recycle around 3 kg of the iron and heamglobin for the host to be reused in
this process (Kono and Rock, 2008a). In addition, macrophages eliminate dead
cells and debris from tissue trauma (Kono and Rock, 2008a, Kumar and Jack,
2006a). These critical procedures are facilitated by scavenger receptors,
thrombospondin and integrins and complement receptors (Erwig and Henson,
2007).

Moreover, it is observed that the physiology of macrophages significantly varies
when necrotic cellular debris is engulfed. This involves changing surface-protein
expression and cytokine production. The identification and elimination of
necrotic cellular debris is unlike the clearance of apoptotic cells and tissue
debris. It is usually mediated via Toll-like receptors which makes the process

part of the innate immune response (Kono and Rock, 2008).



1.1.3.1 Activated macrophage phenotypes

At present, there is widespread acknowledgement that macrophages can
exhibit incredible plasticity which allows them to alter their phenotype to respond
efficiently to various environmental stimuli. This plasticity involves managing
physiological modifications, regardless of whether they enhance the immune
reaction or downgrade it, so as to prevent harmful outcomes. Several distinct
macrophage activation states have been identified, such as innate activated
macrophages, alternatively activated macrophages, classically activated
macrophages and regulatory macrophages. These types are discussed below

and displayed in figure 1.2.
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Figure 1.2: Macrophage phenotypes

Stimuli like microbial LPS induces innate activated macrophages whereas
Interferon-B (IFN-B), interferon-y (IFN-y) and tumor necrosis factor (TNF),
supplied either by innate immune or adaptive immune elements, stimulate
macrophages towards a classical phenotype. Interleukin-4 (IL-4) and
Interleukin-13 (IL-13) prime macrophages towards an alternative phenotype
while various types of stimuli such as immune complexes, prostaglandins,
apoptotic cells, corticosteroids and interleukin-10 (IL-10) are needed to activate

regulatory macrophages.



1.1.3.2 Innate activated macrophages

The response of macrophages to microbial stimuli (when there is a lack of I[FNy
or IL-4 or IL-23) has been explained as leading to the generation of “innate
activated macrophages” (Forlenza et al., 2011). Nonetheless, these cells show
similarity to classically activated cells in their phagocytic function and in their
production of inflammatory cytokines, nitric oxide (NO) and reactive oxygen
species (Forlenza et al., 2011, Gordon and Taylor, 2005, Zucchi et al., 1989).
They differ in certain other aspects and most notably they express arginase
(Menzies et al., 2011) and have marked but transient physiological changes
upon stimulation (Mosser and Edwards, 2008). It is indicated that ligation of cell
surface receptors such as Toll like receptors (TLRS) through lipopolysaccharide

(LPS) is responsible for producing such macrophages (Forlenza et al., 2011).

1.1.3.3 Classically activated macrophages

Classically activated macrophages (CAM®) or type 1 macrophages indicate
macrophages that are activated by interferon y (IFN y) and tumour necrosis
factor (TNF) or TLR ligands (normally LPS). This phenotype increases
microbicidal and tumoricidal capability and proinflammatory cytokine production
(O'shea and Murray, 2008). The macrophages are transiently stimulated by NK
cells, which constitute an initial source of IFN-y, subsequently produced by Th1
cells, which provides constant macrophage activation to produce pro-
inflammatory cytokines which in turn enhances immune function and provides
better resistance against infections (Dale et al., 2008). Macrophages can be
activated through MyD88-dependent TLR signalling which induces TNF
release. IFN-y and TNF both stimulate autocrine activation of macrophages
(Mosser and Zhang, 2008). The activation of the TRIF-dependent pathway
through IFN regulatory factor 3 (IRF3) releases interferon-f (IFN-B) which
replaces IFN-y in the form of the classically activated signal (Yamamoto et al.,
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2003).It is crucial to regulate the classically activated macrophages as
excessive cytokine production and synthesis of other immune mediators, can
cause host tissue damage and autoimmune diseases (Szekanecz and Koch,

2007).

1.1.3.4 Alternatively activated macrophages

Alternatively activated macrophages (AAM®) are also called wound healing
macrophages. IL-4 and IL-3 stimulation leads to the production of this kind of
macrophage, which up-regulates expression of the mannose receptor (Stein et
al., 1992a).These cells play a significant role by converting arginine into
ornithine via the arginase enzyme. Ornithine is taken to be a precursor of
collagen and polyamines which are important components of wound healing
and tissue regeneration (evaluated by (Varin and Gordon, 2009).The over-
stimulation of the IL-4 receptor is also linked to dysregulation or over-generation
of the wound healing matrix, as witnessed for example with tissue fibrosis with
schistosomiasis (Hesse et al., 2001). Macrophages which do not have the IL-4
receptor or have been subjected to a treatment which blocks the IL-4 receptor

do not show this phenotype (Hesse et al., 2001)

1.3.1.5 Regulatory macrophages

This macrophage population is distinct from CAM® and AAM®. It is produced
via varied stimuli and is actually not usually grouped as a single population.
Nonetheless, all of the population’s members have the similar capability to
produce large amounts of IL-10 (examined by Mosser and Zhang, 2008). A
combination of two signals is typically needed for generation of regulatory
macrophages. The first signal is provided by immune complexes (Gerber and
Mosser, 2001), prostaglandins (Strassmann et al., 1994), glucocorticoids,
apoptotic cells (Erwig and Henson, 2007), adenine nucleotide (Hasko et al.,
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2007) or IL-10 (Martinez et al., 2007) and is simultaneously imposed with the
next signal, which is the TLR stimulus. A macrophage population that is created
by these signals will have an effective anti-inflammatory response (evaluated
by Mosser and Edwards, 2008) that relies on the inclusion of IL-10 and down
regulation of IL-12 (Gerber and Mosser, 2001). Regulatory macrophages
function as antigen presenting cells as they mostly express CD80 and CD86 co-
stimulatory molecules (Edwards et al., 2006). There are certain bacteria,
parasites and viruses that provide the appropriate signals to lead to the creation
of regulatory macrophages and this supports the spread and survival of these

microorganisms (Mosser and Edwards, 2008).

1.1.4 Toll like receptors (TLRS)

An important step in providing protection is the identification of non-self
(microbes). After acknowledging a foreign body, the immune response is usually
initiated (Beutler, 2009), but it needs to determine how to identify microbes.
Several years of research were required to answer this question, leading to the
identification of a distinct group of germ line-encoded receptors on various kinds
of characteristic immune cells. These receptors were known as pattern
recognition receptors (PRR) (Janeway, 2001), and consisted of various classes,
each having a particular role, such as activation of the complement system,
opsonisation, or phagocytosis (Pasare and Medzhitov, 2004). TLRs can be
considered to be conserved receptors that signify the first line of defence
against an extensive range of attacking microorganism, and represent an
important part of the immune system (Doyle and O’Neill, 2006). Previously,
these receptors were believed to be vital receptors for Drosophila defence
against fungal infection via the innate immune response (Lemaitre et al., 1996).
TLRs certainly identify several microbial structures that are found within
microorganisms and not within mammals. These molecular structures are called
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pathogen-associated molecular patterns (PAMPS). When various PAMPs are
identified, several signalling pathways are activated, leading to inflammatory
gene expression and the production of pro-inflammatory cytokines, type-1
interferons a/B and chemokines which facilitate the elimination of infectious
agents (Kawai and Akira, 2005, Kopp and Medzhitov, 2003, Takeda and Akira,
2003). The production of these cytokines and chemokines can play a role in the
stimulation of the adaptive immune system and in maturing dendritic cells (DCs)
(Kawai and Akira, 2005, Takeda and Akira, 2003).

TLRs are type-1 membrane glycoproteins which comprise of an extracellular
domain, consisting of leucine rich repeats (LRR) which are responsible for
identifying distinct types of PAMPs, a transmembrane, spacing component and
a cytoplasmic part which is identical to that of the interleukin-1 receptor (called
Toll-IL-1 receptor domain or TIR (Takeda and Akira, 2003)). At present, it has
been found that there are 13 members of TLRs in mammals (Uematsu and
Akira, 2006).Humans and mice both have TLR1-9; TLR10 is found in humans,
while TLR11-13 are only found in mice. It is not yet evident what role is played
by TLR10 in humans and by TLR12 and TLR13 in mice (Kawai and Akira, 2010).
There is expression of TLR 1, 2, 4, 5 and 6 on the plasma membrane at the cell
surface. These receptors can identify molecules obtained from fungi, bacteria
and protozoa, whereas TLR3, 7, 8 and 9 are found within the cell in the
endocytic compartments, which play a role in detecting nucleic acids obtained
from viruses or intracellular bacteria (Kawai and Akira, 2010b, Kumar et al.,

2009).
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1.1.5TLRs and their ligands

Lipopolysaccharide LPS from Gram negative bacteria consists of lipid A, core
oligosaccharide, and o-side chain, and the molecule is identified by TLR4
through detection of the lipid A moiety (Miller et al., 2005, Shimazu et al., 1999).
It has been found that the fusion (F) protein of respiratory syncytial virus (RSV)
and mouse mammary tumour virus envelope protein (MMTV) are identified by
TLR4 (Kawai and Akira, 2009; Kumer et al., 2009a). TLR4 identifies the fungal
element glucuronoxylomannan, while TLR4 and TLR2 identify the protozoan
elements glycoinositol-phospholipids (GIPLs) and glycosylphosphatidyl-inositol
anchors (GPl-anchor) obtained from Trypanosoma (species), Plasmodium
falciparium, and Toxoplasma gondii (Kawai and Akira, 2009; Kumer et al.,
2009a). TLR2 also identifies bacterial, fungal and viral elements. Triacyl
lipopeptide can be identified through a TLR2 and TLR1 heterodimer, whereas
diacyl lipopeptide structures on bacteria, mycobacteria, and mycoplasma can
be identified through TLR2 and TLR6 dimers (Takeuchi et al., 2001; Takeuchi
et al., 2002, Kumer et al., 2009b). It has been found that RSV induce cytokines
and chemokine signalling with the help of TLR2 and TLR6 (Murawski et al.,
2009). TLR3 can identify double stranded RNA (dsRNA) (Alexopoulou et al.,
2001), while flagellin from bacteria can be identified through TLR5 (Kawai and
Akira, 2010b, Kumar et al., 2009).

TLR7 and 8 can recognise viral RNA while genomic DNA of DNA viruses and
other microorganisms are recognised by TLR9 (Takeda et al., 2003; Wagner,
2009). Mouse TLR11 identifies profilin from T. gondii (Kawai and Akira, 2009,

Kumar et al., 2009). A summary of TLRs and their ligands is shown in table 1.1.
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Table 1.1: TLRs and their Ligands (adapted from Kumar et al., 2009). TF,

transcription

factor;

RSV,

respiratory  syncytial

virus;

MCMV, murine

cytomegalovirus; HSV, herpes simplex virus; CPG, cytidine-phosphateguanosine.

TLR Location of PAMPs recognized by TLR Co-receptor (s) | Signali | Transcr Effector
TLR ng i-ption cytokines
adapto | factor( induced
r s)
TLR1/2 Plasma Triacyl lipopeptides (Bacteria and Hetrodimer of TIRAP, NFkB Inflammatory
membrane Mycobacteria) TLR1/2 formsa | MyD88 cytokines (TNF-
(cell surface) functional a, IL-6 etc.)
receptor
TLR2 Plasma Peptidoglycan  (Gram-positive CD36, RP105 TIRAP, NFkB Inflammatory
membrane bacteria), LAM (Mycobacteria), MyD88 cytokines (TNF-
(cell surface) Hemagglutinin (Measles virus, a, IL-6 etc.)
phospholipomannan (Candida),
Glycosylphosphophatidyl inositol
mucin (Trypanosoma)
TLR3 Endosome ssRNA virus (WNV, dsRNA TRIF NFkB, Inflammatory
virus (Reovirus, RSV, MCMV) IRF3,7 cytokines (TNF-
a, IL-6 etc.),
type | IFNs
TLR4 Plasma LPS (Gram-negative bacteria), MD2, CD14, TIRAP, NFkB Inflammatory
membrane Mannan (De Rosa et al.), LBP, RP105 MyD88 | ,IRF3,7 | cytokines (TNF-
(cell surface) Glycoinositolphospholipids , TRAM a, IL-6 etc.),
(Trypanosoma), Envelope and type | IFNs
proteins (RSV and MMTV) TRIF
TLR5 Plasma Flagellin (Flagellated bacteria) MyD88 NFkB Inflammatory
membrane cytokines (TNF-
(cell surface) a, IL-6 etc.)
TLR6/2 Plasma Diacyl lipopeptides Hetrodimer of TIRAP, NFkB Inflammatory
membrane (Mycoplasma), LTA TLR6/2 or MyD88 cytokines (TNF-
(cell surface) (Streptococcus), Zymosan | dectin-1 forms a, IL-6 etc.)
(Saccharomyces) a functional
receptor(
Kumar et al.,
2009)
TLR7 Endosome ssRNA  viruses (VSV,Influenza MyD88 NFkB, Inflammatory
virus) IRF7 cytokines (TNF-
a, IL-6 etc.),
type | IFNs
TLR8 Endosome sSRNA from RNA virus MyD88 NF«kB, Inflammatory
(in IRF7 cytokines (TNF-
human) a, IL-6 etc.),
type | IFNs
TLR9 Endosome dsDNA viruses (HSV, MCMV), MyD8 NFkB, Inflammatory
CpG motifs from 8 IRF7 cytokines (TNF-
bacteria and viruses, Hemozoin a, IL-6 etc.),
(Plasmodium) type I IFNs
TLR11 Plasma Uropathogenic bacteria, MyD88 NFkB Inflammatory
(expres membrane profillin-like molecule cytokines (TNF-
sed in (cell surface) (Toxoplasma gondii) a, IL-6 etc.)
mouse)
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1.2 The Hygiene Hypothesis:

The term “Hygiene Hypothesis” was coined in the 1980s and 1990s by both
Strachan and Matricardi, together with their colleagues who noted that there is
an inverse correlation between family size and hay fever incidence (Strachan,
1989). It was initially applied to the field of allergy and then later on it developed
further to include application to the field of autoimmune diseases such as
inflammatory bowel disease (IBD) and type 1 diabetes (T1D) (Bach, 2002). This
hypothesis relates the decrease in communicable diseases in developed
countries to the increase in allergic and autoimmune diseases. Taking the
examples of the United Kingdom, Australia and New Zealand, the
predominance of asthma was considered to increase by 15% in the last 15 years
because of a rise in sanitation (Okada et al., 2010). The earliest explanation
underlying the hypothesis was dependent on the idea that there was an
imbalance between T helper 1 (Th1l) and T helper 2 (Th2) responses. Disease
such as allergy develops when the body responds inappropriately to an
otherwise harmless substance and this inappropriate immune response is
driven primarily by Th2 responses. Therefore, the imbalance theory relates the
ability of pathogens to induce a Thl-mediated immune response, which would
in turn lead to the over production of Th2 cells in order to maintain a well-
regulated immune response (Yazdanbakhsh et al.,, 2002a, Matricardi and
Bonini, 2000, Romagnani, 1992). However, this Th1/Th2 imbalance theory was
considered unacceptable by 1989, as there was a simultaneous rise in Thl-
mediated chronic inflammatory diseases experienced in the same countries as
those showing the rise in allergic disorders (Rook et al., 2004). There is another
argument that individuals infected with helminths, who develop Th2 responses,

are less likely to have either allergic sensitization or allergic disorders, and that
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treating people infected with the helminths with anthelminthics may lead to

increased allergic sensitization (Yazdanbakhsh et al., 2002b).

The old friends’ hypothesis (Rook, 2010, von Hertzen et al., 2011) relates
protection from allergy and autoimmune diseases to continuous exposure to
various types of organism, which are known to be a part of mammalian
evolutionary history. Their continuous presence in the environment suggested
that they must be tolerated by the immune system and examples are,
environmental saprophytes, including mycobacteria and lactobacilli, and
helminths. When these organisms interact with the host they cause a pattern of
maturation of DCs, which in turn drives generation of Treg cells rather than Th1
or Th2 effector cells (Smits et al., 2005, van der Kleij et al., 2002a). This
subsequently leads to two types of response in order to control inappropriate
inflammation. Firstly, the presence of the Old Friends causes continuous
background activation of regulatory DCs and of Treg cells specific for the Old
Friends themselves, thereby resulting in constant background bystander
suppression of inflammatory responses. Secondly, these regulatory DCs
unavoidably sample self, gut contents and allergens, and therefore induce Treg
cells specific for the target antigens of mentioned diseases. Figure 1.3 illustrates

the mechanisms described in the text.
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Figure 1.3: The hygiene hypothesis.

Both helminths and gut antigens on the two arms bind to DCs through PAMP
receptors such as TLRs and drive their maturation to regulatory DCs. This in
turn drives generation of Tregs and drives as well either bystander or specific

suppression.
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Finally, support for the hygiene hypothesis was provided by epidemiology data,
animal models and a few clinical trials in humans. As mentioned eatrlier, it has
been noted that in developing countries, allergy occurrence is low and the
infection rate, with helminths, is high whereas allergy and autoimmune diseases
are high in the developed world and are accompanied by a low infection rate
(Cooper, 2009, Ruyssers et al., 2008). Several studies supported this
correlation, for instance, infection with schistosomes has been shown to have
protective properties against atopy in African children (van den Biggelaar et al.,
2000). Moreover, abolition of helminth infections with anthelminthic treatment
has been revealed to increase allergic disease (Lynch et al., 1993, Flohr et al.,

2006).

1.2.1 Immunomodulation by helminths and helminth products

Helminths are capable of driving immunoregulation as was previously outlined
and the organisms can be found in three unrelated phyla: the acanthocephalans
(thorny-headed worms), the platyhelminths (tapeworms and flukes), and the

nematodes (roundworms).

Helminths cause suppression of the host immune system because they need to
share a long-term survival (Brooker et al., 2006, Subramanian et al., 2004). The
parasitic organisms differ in their target tissue and organ-invading propensity,
size, length of their life cycle, degree of pathogenicity and time required for
maturation. A large number of parasites tend to cause chronic infections (Klion
et al., 1991). Pathology caused by these helminths is limited since obvious
symptoms in human populations are found to be relatively rare. However,

adverse outcomes can be measurable, for example, in reduced growth or
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cognitive development. The general limited level of pathogenicity is likely to be
linked to adaptation by helminths. However, limited effects are not always the
case, for example in the Philippines, in the years between 1967 and 1990,
epidemics of an intestinal capillarid that usually infected fish-eating birds led to

very serious disease and a 6% death rate (Cross, 1992).

Helminths cause immune system suppression or what we call
“immunomodulation”. As alluded to earlier, they can achieve this by promoting
the delineation of DCs that cause Th cell polarization towards Th2 or Treg cell
subsets. In addition to the DC differentiation occurring via live parasites,
excreted-secreted (ES) helminth products interacting with PAMPs may also
promote it. Worm PAMPs sometimes act via TLR family members and other
times through additional classes of inborn receptor (Jenkins and Frohman,
2005, Perrigoue et al., 2008) such as C-type lectins, nucleotide-binding
oligomerization domain-containing protein (Tripathi et al.) receptors or protease-
activated receptors (Gieseler et al., 2013) .With respect to TLRs, the ES-62
molecule derived from the filarial nematode Acanthocheilonema viteae is known
to mediate its immunomodulatory effects on macrophages (Goodridge et al.,
2001a) and DCs (Whelan et al., 2000a) through a TLR4-dependent mechanism.
The Lacto N-fucopentanose Il product is another example of a helminth-derived
secretory product that is known to exert its immunomodulatory effects through
TLR4, producing Th2 polarizing DCs (Thomas et al., 2003). In addition,
schistosome lyso-phosphatidylserine interacts with TLR2 producing Treg-

polarizing DCs (Goodridge et al., 2005b, van der Kleij et al., 2002b).

It has however been argued that the interaction of ES-62 with TLR4 on mast
cells, macrophages and DCs does not engage classical TLR signalling
(Melendez et al., 2007b). What is more, the Th2-inducing effects of schistosome

soluble egg antigen (Yin et al., 2015) on DCs have recently been discovered to

19



rely on MyD88, TLR2 and TLR4. Th2-inducing signals are found not to be
necessarily mediated through classical TLRs but can be through PRRs on cell
types apart from DCs such as Intestinal epithelial cells, basophils (Phillips et al.,
2003, Sokol et al., 2008), mast cells (Melendez et al., 2007b) and eosinophils
(Yang et al., 2008, Zaph et al., 2007) .The eosinophils, acting as an example of
a cell type other than DCs, produce eosinophil-derived neurotoxin (EDN), which
mediates TLR2/Myd88-dependent activation of DCs that drives in vivo antigen-
specific adaptive responses towards a Th2 phenotype. Other examples of
endogenous host molecules include alarmin molecules and cytokines that are
found to be contributing to maturation of Th2-inducing DC phenotypes. In
addition, it is argued that endogenous molecules, donated from damage-
associated molecular pattern molecules (DAMPSs), have been shown to interact
with receptors of the TLR2, TLR3, TLR4, TLR7, TLR8 and TLR9 families, which
in turn causes differentiation of immature DCs with tolerogenic properties
favouring anti-inflammatory Th phenotypes (Wallet et al., 2005, Kim et al., 2004,
Stuart et al.,, 2002, Steinman et al., 2000). Moreover, it even seems that
endogenous molecules drive Treg activity in a worm infection (Kreider et al.,
2007, Rodriguez-Sosa et al., 2002). In the case of anti-helminth Th2 responses,
however, cross-talk between worm PAMPs and the innate immune system
would be expected to be important, as many anti-helminth effectors (e.g. IgE
and mast cells) are recruited that are apparently unconnected to wound healing

(Jackson et al., 2009).

1.2.2 ES-62: structural, functional and immunomodulatory properties

A key ES protein of the rodent filarial nematode Acanthocheilonema viteae that
was first isolated in 1989 by Harnett and colleagues, the 62kDa glycoprotein

ES-62 is considered amongst the most thoroughly investigated helminth
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products and constitutes more than 90% of the protein secreted by this class of
worm (Harnett et al., 1989). ES-62 is most abundantly secreted by adult female
worms (0.038-0.092 ug/hour) (Goodridge et al., 2001b). Detection of ES-62 in
the blood circulation of A. viteae’s natural host, the jird, is possible four hours
following release. ES-62 half-life is dependent on wither the jird is infected and
duration of infection(Harnett et al., 1989).The detection of higher concentrations
of ES-62 seems to be increased with the duration of host infection; for instance,
the blood circulation of a jird with a 14-week infection will contain more ES-62
compared to that of a jird with 5- or 6-week infection. This difference in the
production may be linked to the idea that the immune complexes comprising
ES-62 and anti-ES-62 antibody are not the same size during infection and this
can impact on removal from the circulation (Harnett et al., 1999, Harnett et al.,
1989).ES-62 production is reported to be stage-specific as it is produced after
L3 stages, however its MRNA presence can be detected at every life cycle
stage (Stepek et al., 2004). The uncommon post-translational alteration of
phosphorylcholine (Parry-Billings et al.) moieties bound through N-linked
glycans is a defining feature of ES-62 (Houston et al., 1997). PC’s presence on
ES-62 was suggested after discovering that anti-PC antibodies were
responsible for the recognition of ES-62 in serum samples from infected
humans (Harnett et al., 1989). It was suggested, according to preliminary
research, that PC moieties were present in carbohydrate containing molecules.
Accordingly, [3H] choline-labelled ES-62 was subjected to N-glycosidase F and
this resulted in complete loss of radioactivity suggesting that the PC molecule
was bound to the protein backbone through an N-type glycan (Harnett et al.,
2003). The findings of additional inhibitor studies revealed that PC addition was
a post ER event, since the treatment of A. viteae with Brefeldin A blocks protein

secretion. Moreover, the dependence of PC addition on the formation of a
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suitable substrate during the processing of oligosaccharides was proven by
research employing agents that inhibited N-linked oligosaccharide processing.
The research highlighted the transfer of PC within the medial golgi lumen and
the indicated that the 3-linked branch of MansGIcNAcs or MansGIcNAcs was the
choice of substrate (Houston et al., 1997). The substrate was validated to be
MansGIcNAcs by fast atom bombardment mass spectroscopy, which also
revealed the binding of PC to an N-glycan with a trimannosyl core and 1-4 N-
acetlyglucosamine residues. Additionally, ES-62 was found to have two more
glycans, namely, a glycan with complete trimming to the trimannosyl core and
sub-stoichiometrically fucosylated and a glycan rich in mannose (Haslam et al.,
1997). The structural analysis of ES-62 has revealed the presence of one to two
PC residues in each glycan while ES-62 sequence analysis pointed to the
existence of three N-linked glycosylation binding sites in the protein , meaning
that up to six PC residues were present in every ES-62 molecule (Harnett et al.,

1999, Haslam et al., 1997).

The ES of filarial nematodes Brugia malayi and O. volvulus that affect humans
,was observed to contain ES-62 homologues (Harnett et al., 2003) and the PC
attachment to N-glycans that is likely to be conserved nature in filarial
nematodes (Haslam et al., 1997). Numerous organisms contain PC as a
conserved structural constituent and the most important of the wide range of
functions it fulfils is regulation of the host immune response (Clark and Weiser,
2013). ES-62 can have interaction with immune response cells because it
occurs in the blood of A. viteae-infected hosts. In fact, there is evidence based
on a range of in vitro studies that ES-62 is a major regulator of the immune
response to filarial infection. Several types of cells are targeted by ES-62, such
as T and B lymphocytes, macrophages, DCs and mast cells (Pineda et al.,

2014). Furthermore, a biased immune response toward a regulated TH2/anti-
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inflammatory phenotype may be promoted by ES-62, leading to up-regulation
of production of several cytokines (e.g. IL-4, IL-5 and IL-13), down-regulation in
others (e.g. IL-12, IL-6 and TNF-a), as well as a distorted antibody response
(Goodridge et al., 2007, Harnett and Harnett, 2010, Harnett and Harnett,

1993a).

1.2.3 ES-62 interaction with antigen presenting cells

An investigation was conducted to determine whether the inhibitory effect of ES-
62 on T cells was caused by ES-62’s modulation of macrophages and DCs
(Whelan et al., 2000b, Goodridge et al., 2004).In fact at this point, the capability
of polarising the immune response towards a TH2 phenotype via DC modulation
had so far not been identified in any other helminth molecule apart from ES-62.
Based on evidence of IFN-y being produced by naive CD4+T cells cultured
alongside LPS-matured DCs, it was reported that a TH1 phenotype was
promoted by these DCs, and at the same time, production of the defining TH2
cytokine, IL4, by T cells was encouraged by DCs matured with ES-62 (Whelan
et al., 2000b). Additional investigation revealed that LPS stimulation causes DC
maturation as showed by up-regulation of a number of co-stimulatory molecules
(CD40, CD80, CD86 and CD54), however DCs treated with ES-62 did not
exhibit this effect. Macrophage activity both in vivo and in vitro is regulated by
ES-62, in addition to its priming of DCs toward a TH2 phenotype. LPS and IFN-
Y, which usually stimulate macrophages, had diminished effects after these cells
were treated with ES-62 in experiments conducted on cells in vitro.
Consequently, the cells’ production of TH1 cytokines IL-12, IL-6 and TNF-a was
reduced, but their NO production was unaffected. Such inhibition occurred in
vivo as well, as shown by mouse experiments employing osmotic pumps that
released 0.05 pg ES-62 per hour to imitate natural filarial infection; by

comparison to control mice, ex vivo LPS and IFN-y stimulation of macrophages
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from mice subjected to ES-62 treatment caused a decrease in these cells’
production of IL-12 and TNF-a (Goodridge et al., 2007) . ES-62 actually induces
a small transient amount of pro-inflammatory cytokine in macrophages prior to
blockage of LPS-induced responses. Aborted signalling is a likely the cause of
transient inflammatory cytokine release, leading, later on, to inhibition of
cytokine production. Meanwhile, in addition to regulating macrophage and DC
activity in the blood, ES-62 also seems to influence these cells’ bone marrow
precursors. These precursors will respond poorly to LPS stimulation if they are
exposed to ES-62 beforehand. The mechanism underpinning this inadequate
response seems to involve reduction in the levels of mMRNA and protein of the
IL-12 p40 and p35 subunits, which suppresses production of the cytokine

(Goodridge et al., 2004)

When macrophages and DCs are pre-treated with PC alone or PC conjugated
to OVA or BSA, followed by LPS stimulation there is subsequent suppression
of full activation of DCs and macrophages. It is significant to note that neither
macrophages nor DCs are affected by mock-conjugated OVA protein
(Goodridge et al., 2007). An investigation was conducted to determine detection
of ES-62 via TLRs, since PC is a common PAMP and therefore is targeted for
immune cell detection. For that reason, mouse models with TLR4 and TLR2
knockout (KO) were employed to determine how ES-62 regulated macrophages
and DCs. In the case of the mouse models employing TLR2 KO, macrophages
and DCs exhibited low level production of IL-12 and TNF-q, identical to what
was found with wild-type mice, as well as a subsequent cytokine inhibition
suggesting that ES-62 regulated APCs without requiring TLR2. On the other
hand, in the case of the mouse models employing TLR4 KO, ES-62 modulation
was assessed using BLP, CpG and LPS, ligands of TLR2, TLR9 and TLR4

respectively: here ES-62 function was found to be dependent on TLR4 as after
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IFN-y/ BLP and IFN-y/CpG stimulation the IL-12 and TNF-a production was
inhibited by ES-62 pre-treatment in wild-type mice but not in TLR4 KO mouse
models. However, further evidence indicated that the TLR4 receptor did not
have to be fully active to support ES-62 effects, as deduced from C3H/HeJ mice
that lacked LPS detection and responsiveness, due to a Pro712His point
mutation in the TIR domain of TLR4. As with wild-type mice, IFN-y/BLP
stimulation led first to proliferation and then to inhibition of IL-12 and TNF-a by

the macrophages and DCs of these mice (Goodridge et al., 2005a).

Cells treated with ES-62 did not show any changes in TLR-MD-2 surface
expression, indicating that mouse peritoneal macrophages could detect LPS
even in the presence of ES-62. This suggests that regulation of intracellular
signalling pathways is important for mediation of ES-62 action in this context.
After TLR4 is activated, downstream signalling required the adaptor MyD88,
which seems to be essential for ES-62 to trigger low-level IL-12p40 in
macrophages and DCs, since synthesis is not present in MyD88 KO cells
(Goodridge et al., 2005a). A range of cells has been reported to be associated
with down-regulation of MyD88 expression by ES-62, including macrophages
(Ball et al., 2013b) ,mast cells (Ball et al., 2013b), TH17 cells during collagen-
induced arthritis (CIA) (Pineda et al., 2012), as well as B cells and kidney cells
in MRL/Lpr mice (Rodgers et al., 2015b). Although clarity is yet to be gained
regarding the manner in which ES-62 acts on APCs, there is evidence that the
activation of ERK, JNK and p38 MAPKs and NF-kB that are necessary for
production of pro-inflammatory cytokines is regulated by the parasite molecule.
The production of bioactive IL-12p70, IL-12p40 and IL-12p35 is dependent on
two subunits that are modulated by ES-62 in a differential manner, through
inhibition of LPS-based stimulation of p38 and JNK, without which p35, IL-6 and

TNF-a cannot be produced. The activation of calcium ERK MAPK activation
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was triggered by LPS which negatively decreased production of p40 (Goodridge

et al., 2003, Goodridge et al., 2005a).

1.2.4  ES-62 synthetic Small Molecule Analogues (SMAs) 11a, 12b
and their immunomodulatory properties

The helminth molecule ES-62 has been shown by research employing different
animal models to be highly promising for the treatment of autoimmune and
allergic conditions. However, it is not easy to develop into a medication because
as a large foreign protein it is likely to be immunogenic. On the basis that the
PC moiety of the molecule is the source of numerous immunomodulatory
capabilities, Dr Abedawn Kalaf and Dr Judith Huggan, supervised by Professor
Colin Suckling of the Department of Pure and Applied Chemistry at the
University of Strathclyde, created a library of PC-based small molecule
analogues (SMAS). In vitro examination of the immunomodulatory potential of
the SMAs in macrophages revealed that the suppressing action of ES-62 on
pro-inflammatory cytokines activated by TLR ligation was imitated by the

sulfones 11a and 12b (Rzepecka et al., 2015, Al-Riyami et al., 2013c).

Further research indicated that the SMAs not only protected mice from CIA, but
also down-regulated MyD88, the TLR adaptor protein, thus replicating the action
mechanism of ES-62 (Rzepecka et al., 2015, Al-Riyami et al., 2013c). Moreover,
the protection afforded by 1la inhibited IFN-y and IL-17 responses, thus
imitating ES-62 as well (Al-Riyami et al., 2013c).On the other hand, the
protection afforded by 12b was related to immunomodulatory attributes less
characterised with ES-62. Consequently, the therapeutic action of 12b resulted
in marked down-regulation of several genes in macrophages involved in
inflammasome modulation and IL-13 suppression in vitro. Additionally, in vivo

research led to the same findings, as IL-18 levels in 12b-treated mice with CIA
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were not as high as those in mice treated with PBS as a control (Rzepecka et

al., 2015).

The two SMAs were also tested in MRL/Ipr mice, a mouse model of systemic
lupus erythematosus (SLE) and a decline in proteinuria and thus protection
against kidney disease was observed. In addition, a reduction in the levels of
anti-nuclear antibodies (ANA)and kidney MyD88 and IL-6 levels was observed
with the SMAs and these data are likely to explain the protective effects against

kidney disease (Rodgers et al., 2015a).

To find out how effective they were against allergic reactions, the SMAs were
analysed with regard to effects on mast cell activation. When the cells were pre-
treated with 11a or 12b, the production of pro-inflammatory cytokines induced
by FceR1-bound IgE cross-linking or LPS exposure was suppressed, while
calcium mobilisation and degranulation were diminished, thus again replicating
the effects of ES-62. The in vitro screening investigation was followed by
assessment of the two sulfones in a model of airway inflammation triggered by
ovalbumin (OVA) results showed that lung infiltration by eosinophils was
suppressed by both 11a and 12b (Rzepecka et al., 2014a).Figure 1.4 illustrates

the SMAs general effects on LPS/BLP- and CpG-stimulated macrophages .
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Figure 1.4: Illustration of SMAs general effects on LPS/BLP and

CpG stimulated macrophages.

Adding 12b In A and 11a in B for 18 hours before stimulation with LPS/BLP
and CpG decreases the production of the proinflammatory cytokines IL-1(3,
IL-6 and IL-12 which have been produced in response to LPS/BLP and CpG

alone activation.
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1.3 Introduction to immune metabolism

1.3.1 An overview of metabolic pathways

In order to link a cell’s requirements to develop and survive with the metabolic
system responsible for modulating the generation of the products essential for
those requirements, metabolic pathway activities are controlled by cell intrinsic
and extrinsic signals. However, the immune system is underpinned by particular
metabolic pathway modifications that are aligned with immune effector
functions, especially in the context of production of specific cytokines. To
promote survival and to stimulate cells to develop and proliferate through
production of various biosynthetic intermediates, a range of distinct metabolic
pathways are employed by immune system cells fulfilling different roles to
produce sufficient energy supplies. Despite yielding distinct end-products, these
metabolic pathways are interconnected because they have the same fuel inputs
and depend on the products of one pathway to promote alternative pathways
as essential synthetic precursors. For instance, proliferation requires cell
membranes and additional important structures with a lipid basis, which are
generated through fatty acid synthesis, a process that illustrates the complexity
of metabolic pathway interactions and is dependent on intermediate products of
the cycle metabolism of the glycolytic pathway and tricarboxylic acid (TCA).
Taking into account the close links between cellular metabolic pathways, six
metabolic pathways of vital importance are illustrated in fig 1.5. These pathways
are used for the production of products related to the development and survival
of cells and are addressed in the following section. With singular cellular
functions and controlled by cellular signalling pathways that establish
correlations between their functions and the requirements of the cells, these six

pathways are the glycolytic pathway, the TCA cycle pathway, the pentose
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phosphate pathway, the fatty acid oxidation pathway, the fatty acid synthesis

pathway and the amino acid pathway.
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Figure 1.5: A simplified representation of the cell’s main metabolomic

pathways.

Carbohydrate metabolism is shown in yellow blocks, fatty acid synthesis and
degradation pathways are illustrated as orange blocks while green blocks refer
to protein /amino acids cooperation to cell metabolism. Arrows are indicating

the direction of the metabolic flow.
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1.3.1.1 The glycolytic metabolic pathway

Taking place in the cytosol of the cell outside the mitochondria, glycolysis begins
with formation of pyruvate from glucose breakdown, resulting in two Adenosine
triphosphate (ATP) molecules. This pathway enables the generation of 2
molecules of Nicotinamide adenine dinucleotide reduced form (NADH) from
Nicotinamide adenine dinucleotide (Oxidised form) (NAD+), which serves as a
cofactor for a number of enzymes and promotes development towards anabolic
pathways. Pyruvate conversion to lactate through anaerobic glycolysis is
essential to maintain the glycolysis flux, enabling in turn maintenance of the

levels of NAD+ and reuse of NADH.

By triggering their metabolism through diversion of intermediate metabolites,
the glycolytic pathway is essential for nucleotide, amino acid and fatty acid
pathways. For example, the glycolytic pathway diverts glucose-6-phosphate to
pentose phosphate, to 3-phosphoglycerate for the serine biosynthetic pathway,
while supply of pyruvate metabolites to the Krebs cycle can trigger fatty acids to

generate citrate.

Cells with fast development derive their necessary energy from glycolysis. In
recent times, this process has been afforded great significance because it
supplies the energy required by a number of signalling pathways, including the

phosphatidylinositol 3-kinase (PI13K) pathway and the mitogen-activated protein

kinase (MAPK) pathway.

1.3.1.2 Citric acid cycle (TCA, Krebs)

The primary pathway employed by quiescent cells and by cells without

proliferation is the Krebs cycle, which occurs in the mitochondrial matrix. Ample
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and long-lasting energy supplies are needed for the production of ATP in
sufficient amounts. Thus, pyruvate or fatty acids are initially converted into
acetyl CoA, which forms citrate by condensing with oxaloacetate. The TCA

cycle produces 32 ATP molecules.

Similar to glycolysis, signalling pathways are supported by the TCA cycle
through direction of its intermediates to either generate amino acids and lipids
or to promote TCA metabolite production in what are respectively known as the

processes of cataplerosis and anaplerosis.

1.3.1.3 The pentose phosphate pathway

To proliferate and survive, cells depend significantly on the pentose phosphate
pathway, which occurs in the cell cytosol and consists of an oxidative and a non-
oxidative phase, respectively involving Nicotinamide adenine dinucleotide
phosphate (NADPH) production and 5-carbon sugar production. By diverting
the metabolite glucose-6-phosphate from the glycolytic pathway, it promotes the

generation of nucleotides and amino acid precursors.

1.3.1.4 Fatty acid oxidation

This pathway involves oxidation of fatty acids with long and short chains into
acetyl-CoA so that they can enter the TCA cycle and produce energy as NADH,

Flavin adenine dinucleotide (FADHZ2) and finally ATP.

Unlike fatty acids with short chains, which have no more than six carbons and
therefore their diffusion into mitochondria is passive, fatty acids with medium
and long chain are transported into mitochondria only after conjugation to

carnitine. Within the mitochondria, the carnitine conjugated fatty acids undergo
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conversion into acyl-CoA and finally acetyl-CoA, entering the TCA cycle and
generating ATP in large proportions via the electron transport chain (a single

palmitate molecule can generate 100 ATP molecules).

1.3.1.5 Fatty acid synthesis

To develop and proliferate, cells need lipids produced via the fatty acid
synthesis pathway. The synthesis of fatty acids via malonyl CoA provides
precursor metabolites for the other metabolomics pathways (e.g. citrate for the
TCA cycle). On the other hand, elongation of fatty acids with branched chains
employs branched amino acids (e.g. valine and leucine). The metabolite
glycerol is a product of glycolysis that participates in the synthesis of major
constituents of numerous cell wall structures, namely, triacylglycerols and

phospholipids.

There is evidence that fatty acid synthesis is indirectly promoted by mTOR
signalling via modulation of enzymes of the fatty acid pathway, such as
stimulation of the cleavage and activation of the sterol regulatory element
binding protein (SREBP), which in turn activates generation of endogenous
ligands for PPAR-y, peroxisome proliferator-activated receptor-y, hence
sustaining the transactivation activity of this nuclear receptor. Palmitate serves
as an elongation substrate in the case of other enzymes, such as fatty acid

synthase (FASN) and SREBP triggers acetyl CoA carboxylase (ACC).

1.3.1.6 Amino acid metabolic pathways

Cellular metabolic activities depend to a significant extent on amino acids that

not only supply the key constituents of protein synthesis but also supply
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substrates and manage the de novo synthesis of branched-chain fatty acid
pathways. When cells are starving, the mTOR signalling pathway stimulates
anabolic growth and reuses secondary cellular products via autophagy by
increasing assimilation and synthesis of amino acids. Different amino acids fulfil
different roles within central metabolomic pathways. For instance, ATP
production and fatty acid synthesis are respectively promoted by glutamine by
refuelling the TCA at a-ketoglutarate and at citrate. Meanwhile, aspartate is of
importance for the de novo synthesis of purines and pyrimidines. Furthermore,
the proliferation and anabolic growth of cells depends on amino acids such as
arginine and tryptophan that undergo metabolism via different metabolic

pathways.

1.3.2 Metabolism of immune cells

1.3.2.1 Glycolysis in immunity

Many immune system processes are underpinned by glycolysis. Research has
revealed that macrophage and T cell stimulation causes glycolysis metabolites
to accumulate, resulting in intensified glycolysis (Alonso and Nungester, 1956,
Newsholme et al., 1986). Furthermore, the important function of glycolysis in
the immune system has been highlighted by extensively the use of the
glycolysis inhibitor, 2-deoxyglucose, which has been shown to hinder uptake of
glucose and therefore stops macrophages from becoming activated (Hamilton

et al., 1986, Michl et al., 1976).

Such findings are unexpected because glycolysis yields just two ATP molecules
/ glucose molecule, whereas oxidative phosphorylation yields about 36 ATP
molecules per glucose molecule, which is a much larger amount of energy.

Nevertheless, unlike the energy supply provided by oxidative phosphorylation,
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which can be accessed with some difficulty due to a requirement for
mitochondrial biogenesis, the energy supply of glycolysis, despite being less
abundant, can be accessed much more quickly by cells needing energy to
develop or for a particular immune activity. Furthermore, aside from the rate of
the process, the ability to ensure the availability of metabolites required for

cellular growth also makes glycolysis highly important.

The accumulation of glycolysis metabolites is promoted by many different cell
types, including activated macrophages or DCs (Krawczyk et al.,, 2010,
Rodriguez-Prados et al., 2010b), activated natural killer (NK) cells (Donnelly et
al., 2014) , stimulated effector T cells (Michalek et al., 2011) such as T helper
17 (TH17) cells (Shi et al., 2011) , TH1 and TH2 cells (Michalek et al., 2011),
activated effector CD8+T cells (Gubser et al., 2013), and activated B cells
(Doughty et al., 2006). Stimulation of glycolysis will ensure that the immune cells
will have enough ATP supplies and biosynthetic glycolysis intermediates to
conduct specific effector activities, like phagocytosis and generation of
inflammatory cytokines in the case of macrophages and of DCs , and effector
cytokine production (e.g. IL-17) in the case of T cells such as TH17 cells (Shi et

al., 2011).

It has been observed that the glycolysis pathway is significantly stimulated when
more than one signalling pathway is activated. For instance, a rise in glycolysis
has been related to activation in the mTOR pathway in effector T cell subsets
(Wei et al., 2016, Huynh et al., 2015, Shrestha et al., 2015) as well as to the
intensified activation of hypoxia-inducible factor 1a (HIF1a) as a result of LPS
activation (Tannabhill et al., 2013a) . Furthermore, LPS activation also triggers

NF-kB, which has been associated with increased glycolysis as well, even in

cells without HIF1a (Rodriguez-Prados et al., 2010b).
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In DCs, glycolysis enhancement is achieved by inducing TANK-binding kinase

1 (TBK1) alongside or without suppression of NF-kB kinase ¢ (IKKe) and

hexokinase 2 without dependence on HIF1a (Huynh et al., 2015). By contrast,
in macrophages exposed to LPS, it is the activation of pyruvate kinase
isoenzyme M2 (PKM2) that enhances glycolysis (Palsson-McDermott et al.,
2015). Glycolytic flux reduction occurs with the involvement of PKM2 regulation
via redirection of glycolytic intermediates toward biosynthetic pathways.
Furthermore, besides glycolysis, PKM2 is also involved in stimulating the

expression of HIF1a-dependent genes (Luo et al., 2011, Palsson-McDermott et
al., 2015) and especially IL-18 via interaction with HIF1a following its

translocation into the nucleus. Additionally, it is worth noting that, in order to
encourage glycolysis, PKM2 assumes a dimeric form within the nucleus and
with application of the small molecules TEPP-46 or DASA-58, which can endow
this enzyme with a tetrameric form thus hindering its access to the nucleus,
macrophages can be re-programmed towards an M2 phenotype in their gene
expression profile (Palsson-McDermott et al., 2015). This is consistent with the
idea regarding HIF 1a suppression, whereby the M1 phenotype of macrophages
become M2 due to the external position of PKM2 in relation to the nucleus.
Moreover, the involvement of glycolysis in inflammation has been confirmed by
the fact that in human atherosclerotic-coronary artery disease, a pro-
inflammatory effect was displayed by PKM2 present in activated monocytes and

macrophages (Shirai et al., 2016a).

The significance of glycolysis for immune system activities is also highlighted
by the fact that TH17 cells convert to Treg cells when they are treated with the
glycolysis inhibitor 2-deoxyglucose (Shi et al.,, 2011). The mTOR pathway
signalling may become hyperactive due to elevated glycolysis in Treg cells, with

adverse implications for cell survival and lineage commitment (Wei et al., 2016,
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Huynh et al., 2015, Shrestha et al., 2015). On the whole, there is evidence that,
apart from human Treg cells that use glucose (De Rosa et al., 2015, Procaccini
et al., 2016) , accumulation of glycolysis metabolites in cells can promote
inflammation, whereas an anti-inflammatory phenotype can develop if glucose

is assimilated, as in the case of oxidative phosphorylation.

The effects of glycolysis on TH1 cells have been revealed by glyceraldehyde 3

-phosphate dehydrogenase (GAPDH). Activation of glycolysis in these cells

initiates detachment of GAPDH from IFN-beta mRNA (Chang et al., 2013,
Mukhopadhyay et al., 2009), thus enabling it to be translated and promoting
production of extra ATP. However, elevated glycolysis is believed to induce a
reaction between hexokinase 1, another glycolytic enzyme of macrophages,

and NLRP3, a key regulator of caspase 1 that produces IL-13 and active IL-18

on the external membrane of mitochondria, leading to its activation (Moon et al.,

2015a) and involvement in ATP production.

1.3.2.2 The role of the pentose phosphate pathway within immune

cells

The pentose phosphate pathway is considered important in immune cells as it
contributes to the production of nucleotides and NADPH. In immune cells,
during oxidative burst, ROS production is induced by NADPH through NADPH
oxidase, and the production of glutathione and additional antioxidants is
stimulated as well. The generated ROS are employed by macrophages and
neutrophils to eliminate infectious agents, while antioxidants are subsequently

activated to provide cells with protection against damage.

In DCs, endoplasmic reticulum synthesis underpinning DC activation and

cytokine production is promoted by both NADPH and lipid synthesis (Everts et
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al., 2014). Inhibition of carbohydrate kinase-like protein (CARKL or SHK)
enhances the pentose phosphate pathway in LPS-activated macrophages,
causing the latter to express an M1 phenotype. However, overexpression

results in conversion to M2 phenotype (Haschemi et al., 2012).

There is still no comprehensive understanding as to why the levels of
nucleotides are so high in M1 macrophages. One potential explanation is that
the production of nucleotides in these macrophages is intended to support the
generation of various RNA populations, microRNAs and long non-coding RNAs

needed to regulate cell activities.

1.3.2.3 TCA cycle accompanying immune responses

Recent studies have addressed the functions played by the TCA cycle and
oxidative phosphorylation in immune cells. They possess complete functionality
in all T cells apart from effector T cells, where there is a minor inclination toward
glycolysis (O’Sullivan et al., 2014, Michalek et al., 2011). There is evidence that,
in M2 macrophages, the TCA cycle is whole and is associated with oxidative
phosphorylation, enabling generation of glycan precursors (e.g. UDP-GIcNAc
intermediates) that are crucial in glycosylating receptors related to M2, such as
the mannose receptor (Jha et al., 2015a). By contrast, the TCA cycle is
incomplete in macrophages with the M1 phenotype and in DCs, being disrupted
after citrate and succinate (Jha et al., 2015a, Tannahill et al., 2013a, Everts et
al., 2014). The post-citrate disruption causes citrate to accumulate and be
removed from mitochondria to support generation of fatty acids, membrane
synthesis, antigen presentation, production of nitric oxide and prostaglandins,
and production of itaconic acid with respect to two Salmonella enterica

subspecies (i.e. Enterica serovar typhimurium) and Mycobacterium
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tuberculosis, which is believed to target bacteria directly (Michelucci et al.,
2013). Meanwhile, the post-succinate disruption causes accumulation of

succinate, which stabilises HIF1a and supports IL-1p21 generation in both

normoxia and hypoxia, owing to prolyl hydroxylase suppression.

Accumulation of TCA metabolites in mitochondria benefits the immunity-related
activities of macrophages, including generation of nitric oxide, which disrupts

the electron transport chain in these cells (Clementi et al., 1998).

1.3.2.4 Oxidation of fatty acids and immune function

The regulatory capability of immune cells, particularly those with an anti-
inflammatory phenotype (e.g. M2 macrophages, memory T cells, and Treg cells)
is supported by fatty acid oxidation. Activated macrophages elicit the
accumulation of unsaturated fatty acid metabolites (e.g. oleic acid, linoleic acid
and arachidonic acid), thereby regulating fatty acid oxidation. This triggers foam

cells to produce IL-1a, leading to intensified inflammation (Feingold et al.,

2012b). Hence, it is likely that enhanced inflammation in foam cells is related to
the accumulation of fatty acids and their derivatives (Shoelson et al., 2006,
Lusis, 2000, Carpenter et al., 1995). It is worth noting that fatty acid oxidation is
intensified while cytokine production is diminished when macrophage long-
chain fatty acids are transported to mitochondria via CPT1A (Malandrino et al.,

2015).

Fatty acid oxidation seems to not only reduce the production of cytokines in
macrophages, but also to promote an M2 phenotype. It has been observed that
when macrophages are stimulated with the M2 phenotype promoter, IL-4, the
transcription factor STAT6 and PPARy-co-activator 18 (PGC1p3) are stimulated

as well (Huang et al., 2014, Vats et al., 2006). Nevertheless, M2 polarisation is
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unaffected by Cpt2 deletion (Nomura et al., 2016), which means that it may be
involved in cellular activities other than the transport of fatty acids or
macrophage differentiation, therefore increasing the challenge of determining

its function within the macrophage metabolome.

In the case of T cells, fatty acid oxidation ensures that T effectors and
suppressive Treg cells are balanced, thus ensuring that memory T cells are
activated and that immune function is maintained. To trigger the production of
Treg cells and prevent T effectors from differentiating, the achievement of
equilibrium between the two types of cells requires increasing the Treg fatty
acid oxidation in relation to TH1, Th2 and Th17 cells (Michalek et al., 2011).
Consistency exists between Treg-based enhancement of fatty acid oxidation
metabolites and enhancement of fatty acid gene expression (e.g. Cptla)
compared to Thl7 cells (Gerriets et al., 2015). It is worth noting that the genes
of molecules involved in fatty acid oxidation are down-regulated by effector T
cells (Wang et al., 2011). On the whole, effector T cells promote Cptla
expression and stimulate the fatty acid oxidation pathway by reducing fatty acid
metabolites and hence causing expression of the inhibitory programmed death

1 (PD1) receptor to ligate on T cells (Patsoukis et al., 2015).

A close correlation has been established between the development and survival
of memory CD8+T cells and fatty acid metabolic activities. Fatty acid oxidation
appears to be essential for the ability of these cells to react to antigens they
encounter and this reaction is time-dependent (van der Windt et al., 2013).
Memory CD8+T cells express more Cptla as a result of IL-15 stimulation,
enhancing fatty acid oxidation and ensuring the cells’ ability to survive (van der
Windt et al., 2012). However, de novo synthesis may be necessary to provide
an additional fatty acid supply to support their activities, given that these cells

depend on fatty acid oxidation to such a great extent (O’Sullivan et al., 2014).
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1.3.2.5 Fatty acid synthesis in the immune system

It has been proposed that pro-inflammatory immune cells are associated with
fatty acid synthesis while non-inflammatory immune cells are known to be

associated with by fatty acid oxidation.

Addition of the macrophage colony-stimulating factor (M-CSF) in the process in
which monocytes differentiate into macrophages was discovered to stimulate
the sterol regulatory element-binding transcription factor 1¢ (SREBP1c), which
intensified expression of target genes associated with fatty acid synthesis (e.g.
FASN) and lipid synthesis. In turn, both macrophages and fatty acid synthesis
were stimulated by LPS (Posokhova et al., 2008, Ecker et al., 2010, Feingold et
al., 2012b). Furthermore, fatty acid synthesis in macrophages and inflammation
via activation of the NLRP3 inflammasome has also been reported to be
promoted by the mitochondrial uncoupling protein 2 (UCP2) (Moon et al.,

2015b).

In the case of DCs, TLR stimulation promoted fatty acid synthesis, triggering
these cells to become activated, which in turn stimulated CD8+T cells (Everts
et al., 2014). Fatty acid synthesis has been shown to be necessary for T and B
cell activation (Dufort et al., 2014, Chen et al., 1975). According to the findings
reported by one study, the efficiency of T cells was negatively affected when the
acetyl-CoA carboxylase 1 (ACC1) was deleted, while addition of exogenous

fatty acids corrected this (Lee et al., 2014).

The essential function of fatty acid synthesis in encouraging TH17 cells to
differentiate has been emphasised by the genetic or deliberate deletion of ACC1
in CD4+T cell subsets and at the same time fatty acid synthesis has been
demonstrated to balance effector and regulatory T cells (Berod et al., 2014).

One study notably reported that IL-17 and IL-10 production was diminished

42



when the CD5 antigen-like (CD5L) was expressed in non-pathogenic TH17 cells
(Wang et al., 2015). These cells stimulate the epithelial barrier function to
prevent microbiota attacks in mouse gut (Guglani and Khader, 2010), whereas
in humans they demonstrated a protective effect against Staphylococcus
aureus (Zielinski et al., 2012). Two theories have been formulated regarding the
fatty acid types regulating particular cytokines in TH17 cells. According to one
theory, the binding of polyunsaturated-fatty acids (PUFAs) to fatty acid
synthase is encouraged in non-pathogenic TH17 cells by CD5L, thus supplying
a transcription factor for these cells as well as cholesterol-derived ligands for
RORvyt, improving IL-10 production and restricting IL-23 and IL-17. By contrast,
according to the other theory, the binding of saturated fatty acids to fatty acid
synthase in pathogenic TH17 cells is promoted by CD5L, resulting in ligands for
RORyt, which is beneficial for production of IL-23 and IL-17 but detrimental to
IL-10 production. Thus, it was concluded that anti-inflammatory cytokines (e.g.
IL-10) are promoted by PUFAS, whereas IL-10 production is limited by saturated

fatty acids.

To summarise, in M2 macrophages, Treg cells and memory cells, fatty acid
oxidation promotes anti-inflammatory responses and oxidises lipids for ATP
production, while in effector immune cells, fatty acid synthesis fosters
inflammatory responses and supplies lipids for biosynthesis and fast growth

(Maceyka and Spiegel, 2014, Fessler, 2015).

1.3.3 Amino acid metabolism associated with the immune functions

Immune system cells are regulated with the participation of amino acid
metabolism. When the cells are starved, the availability of amino acids plays a

crucial role in regulating not only the mTOR pathway but also the development
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and proliferation of cells. The metabolic activities of the amino acids glutamine,
arginine and tryptophan are particularly important for the functioning of immune
cells. These amino acids are addressed in the following part and additional
amino acids with essential involvement in immunity are also discussed to gain
a comprehensive understanding of the significance of amino acids for the

metabolism of the immune system.

1.3.3.1 Glutamine metabolism

Plasma, skeletal muscle, foetal fluid and milk are all high in glutamine, an amino
acid that in the case of immune system cells serves as an energy substrate.
Glutamine is catabolised via glutaminolysis, generating mainly glutamate,

aspartate, alanine, lactate, pyruvate and carbon dioxide.

Glutathione is a tripeptide with an essential role in preventing oxidative stress
from damaging immune system cells and is synthesised with the participation
of glutamate. To react to antigen receptor stimulation, glutamine assimilation is
enhanced in T and B cells when these cells become activated (Crawford and
Cohen, 1985, van der Windt et al.,, 2013, Wang et al., 2011). Meanwhile,
glutaminase is involved in ROS stress regulation, since its knockout leads to an
increase in ROS, which is particularly pronounced in hypoxic conditions (Le et
al., 2012). Additionally, glutamine is considered as a key precursor of purine
and pyrimidine nucleotides and therefore is important for the proliferation of

lymphocytes.

Glutamine feeds the arginine pathway (MURPHY and NEWSHOLME, 1998) to
support the antimicrobial effects of macrophages and its withdrawal from culture
medium has been reported to lead to a reduction in the levels of nitric oxide
produced by macrophages activated by Bacille Calmette-Guérin (BCG)

(Bellows and Jaffe, 1999, MURPHY and NEWSHOLME, 1998). Furthermore, in
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the case of macrophages exposed to IL-4 stimulation, they undergo polarisation
to an M2 phenotype when the TCA cycle and hexosamine pathway are fed by
glutamine. By contrast, the growth of macrophages with the M1 phenotype does
not depend on glutamine (Jha et al., 2015a), although this amino acid remains
necessary for IL-1 and TNF-a production via LPS stimulation (Wallace and
Keast, 1992) and for IL-6 and IL-8 generation by human monocytes (Field et al.,

2002).

The deletion of the alanine, serine, cysteine-preferring transporter 2 (ASCT2)
can impair the activity of TH1 and TH17 cells but not Treg cells. This transporter
is involved in the assimilation of neutral amino acids (e.g. glutamine and leucine)
and its deletion in effector T cells results in a decrease in mMTORC1, which is

damaging to the cells (Nakaya et al., 2014).

1.3.3.2 Arginine metabolism

Arginine is a key amino acid for which ample knowledge has been accumulated,
particularly with regard to its role in macrophages (Rath et al.,, 2014). It is
catabolised by macrophages to generate two distinct products that determine
the phenotype of these cells. Thus, one product derived from arginine through
citrulline is nitric oxide, whose generation is controlled by INOS expression
(MacMicking et al., 1997a) and is associated with inflammatory macrophages
or macrophages with the M1 phenotype. Research conducted on mice without
iINOS revealed that macrophages exhibited dysfunctional killing action in vitro.
In contrast ,if the arginine enters via the arginase pathway, this will endow
macrophages with an M2 phenotype related to wound repair (Albina et al.,
1988), but also reduces the potency of the inflammatory response triggered by

effector T cells (Pesce et al., 2009) in visceral leishmaniasis and HIV infection
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(Takele et al., 2013). Meanwhile, in the case of T cells, their proliferation is
promoted by arginase (Rodriguez et al., 2007), which additionally stimulates
expression of T cell receptor constituents (Rodriguez et al., 2002). Furthermore,
arginine may be involved in mTORCL1 regulation because an in vitro study found
that mTORC1 activity diminished in the absence of arginine (Cobbold et al.,

2009).

1.3.3.3 Tryptophan metabolism

Immune system cells also rely on tryptophan metabolism. Studies revealed that
treating an animal with a higher doses of extracellular tryptophan resulted in
development of an autoimmune phenotype characterised by aberrant

eosinophil function (Stahl et al., 2001, Silver et al., 1990).

The enzyme indoleamine-2, 3-dioxygenase (IDO), which acts as a restrictive
agent of tryptophan catabolism, has been examined by many studies concerned
with the significance of tryptophan metabolism. Some studies reported that
elevated levels of this enzyme were found in cells which responded to LPS
exposure and IFNy treatment (Werner et al., 1989, Yoshida and Hayaishi,
1978). The essential role played by tryptophan in immunity has been highlighted
by findings that bacterial development and parasite intrusion were hindered by
tryptophan metabolites in host cells (Schroten et al., 2001, Pfefferkorn, 1984).
T cell stimulation was reduced by IDO expressed in antigen-presenting cells in
an in vitro study, suggesting that tryptophan metabolism was important for cell
proliferation (Munn et al., 1999, Lee et al., 2002). By contrast, levels of charged
tRNAs increased and the unfolded protein response GCN2 was activated when
tryptophan metabolism declined (Liu et al., 2014). Overall, these studies
indicate that immune cell functionality depends on tryptophan and that the
immune cells may even compete with each other to obtain this amino acid.
Furthermore, the significance of tryptophan metabolites for target function was
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confirmed by additional studies. For example, immune system cell functionality
is supported by kynurenine via stimulation of a ligand-induced transcription
factor, aryl hydrocarbon receptor (Berod et al.) (Bessede et al.,, 2014a).
Moreover, IDO was found to be expressed in high levels in tumour cells and
stromal cells related to tumours (Weinlich et al., 2007, Munn et al., 2004,
Okamoto et al., 2005, Uyttenhove et al., 2003), diminishing T cell anti-tumour
action, an effect which was reversed by using 1-methyltryptophan to suppress
IDO (Holmgaard et al., 2013). Nevertheless, further research is needed to clarify

its mechanisms in non-tumorous immune cells.

1.3.3.4 Glycine metabolism

Alone, glycine has good antioxidant properties and can detect free radicals
(Fang et al., 2002). Key metabolites (e.g. purine nucleotides, glutathione and
haem metabolites) are synthesised with glycine participation (Kim et al., 2007).
Additionally, leucocytes rely on glycine to proliferate and fulfil their defensive
function. When activated, a glycine-gated chloride channel in leucocytes has a
diminishing effect on the agonist, which signals the L-type calcium channels with
voltage dependence to open (Froh et al.,, 2002), lowering the levels of
intracellular calcium ions. Cytokine production can be regulated by immune
system cells via this mechanism (Zhong et al., 2003). In macrophages,
monocytes, lymphocytes and neutrophils, the glycine-gated chloride channel is
activated and the plasma membrane is polarised at 0.1-1 mm concentration of

extracellular glycine (Froh et al. 2002).

Wheeler and Thurman (1999) reported that the use of extracellular glycine to

pre-treat LPS-activated macrophages had a negative impact on H»O;
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production and levels of IL-1 and TNFa by reducing the Ca?* flow and, implicitly,

the intracellular accumulation of Ca?* (Wheeler and Thurman, 1999) .

Although IL-2 production in T cells was unaffected when the T cells were
stimulated by immobilised anti-CD3 antibody, the proliferation was inhibited
through attenuating the level of intracellular calcium by glycine dosage in the
range of 0.1-1 mm (Stachlewitz et al., 2000).In a different study, addition of 2
mm of extracellular glycine in the culture medium hindered apoptosis and

enhanced production of antibodies by B lymphocytes (Duval et al., 1991a).

In their in vivo study, Konashi et al. (2000) found that inflammation and morbidity
diminished when they added glycine to the diet given to animals with pathogenic
infections (Konashi et al., 2000). Similarly, Ikejima et al. (1996) reported that
plasma TNF decreased when rats infected with LPS were given a supplement
of 5% glycine (Ikejima et al., 1996). Furthermore, in rats subjected to treatment
with 2,4,6-trinitrobenzene sulphonic acid and dextran sulphate sodium,
experimental colitis was halted by 5% glycine, which also reduced IL-1 and

TNFa expression in the colon (Tsune et al., 2003).

All the above-mentioned studied confirmed that glycine possessed anti-

inflammatory, immunomodulatory and cytoprotective properties.

1.3.3.5 Histidine metabolism

Various immune cell functions, including cell interaction, migration, and removal
of apoptotic cells, were shown to involve the histidine anabolism and catabolism
pathway (Jones et al., 2005). This pathway is significant primarily because it
generates histamine, which crucially controls inflammation not just in stimulated
mast cells and basophils (Tanaka and Ichikawa, 2006), but also in other immune

cells such as macrophages, DCs and T lymphocytes (Dy and Schneider, 2004).
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As explained by Tanaka and Ichikawa (2006), histamine is regulated via
stimulation of its receptor, the histamine 4 receptor, on the target cells, inducing
regulation of platelet aggregation and promotion of Th2 cells by lowering IL-12

production and enhancing IL-10 production (Dy and Schneider 2004).

Histidine metabolism is also important because it yields urocanic acid, which
has several actions, including minimisation of the response of antigen-
presenting cells, reduction of the ability of immune cells to proliferate in
response to stimuli, as well as reduction of IL-2 and IFNy production and

increase of IL-10 production by these cells (Holan et al., 1998).

However, the implications of the use of histidine as diet supplement in culture
environments have been only superficially addressed. Using a 2mm dosage
extracellularly , histidine was found to prevent apoptosis and promote cell
development and antibody production in lymphocytes (Duval et al., 1991b),
while the concentration of plasma proteins, comprising mostly glycoproteins
abundant in histidine, decreased in the absence of histidine, with adverse
consequences for immunity (Jones et al. 2005). Based on the results of the
above studies, it can be argued that immune function benefits from histidine

supplementation.

1.3.3.6 Lysine metabolism

The importance of lysine for protein synthesis by cells, lymphocyte proliferation
and the immune response to infection and foreign agents was demonstrated by
several studies that eliminated lysine from the diet of chickens (Kidd et al., 1997,
Chen et al., 2003, Konashi et al., 2000). Meanwhile, addition of lysine in dosage
of 0.3-2 mm reduces intracellular arginine and synthesis of nitric oxide in

activated macrophages (Closs et al., 2000, Wu and Meininger, 2002).
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Furthermore, Griffith et al. (1981) reported that 1 g of lysine enabled elimination
of infection by the herpes simplex virus quicker, as well as reducing polyamines

required for virus growth by suppressing arginase action (Griffith et al., 1981).

1.3.3.7 Phenylalanine and tyrosine metabolism

Leucocytes depend on phenylalanine to regulate NO synthesis due to its effect
on GTP cyclohydrolase I, the enzyme in charge of the generation of
tetrahydrobiopterin, a key NOS cofactor (Shi et al., 2004). Therefore, in
stimulated macrophages and other leucocytes, sustained production of
tetrahydrobiopterin necessitates a sufficient phenylalanine supply, which is itself

dependent on iNOS-based NO synthesis (Wu and Meininger 2002).

A number of hormones, including epinephrine, norepinephrine, triiodothyronine,
thyroxine, dopamine and melanin, are synthesised with tyrosine as direct
precursor (Kim et al., 2007). Attaching to adrenergic receptors of B cells,
norepinephrine and epinephrine promote generation of cAMP, which is
responsible for activation of protein kinase A that in turn encourages Th1l cells
and B cells to proliferate (Dorshkind and Horseman, 2000, Kin and Sanders,
2006). Meanwhile, in monocytes and macrophages, dopamine and melanin are
believed to alleviate pro-inflammatory cytokines (e.g. TNFa, IL-1j3, IL-6), and in
neutrophils they underpin phagocytosis (Mohagheghpour et al., 2000, Basu and
Dasgupta, 2000). Konashi et al. (2000) reported that the immune response in
chicken was impaired by lack of tyrosine and phenylalanine from the diet, but

supplementation corrected this.
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1.3.3.8 Proline metabolism

According to Duval et al. (1991), the survival, development and antibody
generation of immune cells are all supported by proline catabolism, the key
metabolites of which are pyrroline-5-carboxylate (P5C) and H,O, (Wu et al.,
2005, Wu, 1997). With NADPH mediation, P5C is converted into proline via the
proline-P5C cycle, which also helps generation of ROS and differentiation of
lymphocytes (Phang, 1985). Proline is also important in wound healing and
immunity damage repair because it is a key element of collagen (Abumrad and
Barbul, 2003). Furthermore, Ha et al. (2005) provided evidence that gutimmune

function is impaired in the absence of proline catabolism.

The signalling molecule H,0O, metabolite (Shi et al. 2004) is essential for
pathogen killing (Kim et al. 2007). Meanwhile, some studies on pig placenta and
small intestine from piglets reported a protective effect as reflected in intensified
proline oxidase activity (Wu et al. 2005; Wu 1997). Furthermore, compared to
neonates not fed on maternal milk, those that were fed on maternal milk were
less likely to have intestinal dysfunction, suggesting that proline oxidase which
present in maternal milk may contribute to protection against bacteria and

viruses (Field, 2005, Wu, 1996, Sun et al., 2002).

1.3.3.9 Serine metabolism

Serine is involved in various processes, including glucose synthesis in the liver
and kidney as well as synthesis of glycine, ceramide and phosphatidylserine.
The latter two are cell wall components and act as signalling molecules in T and
B lymphocytes and other immune system cells (Jones et al., 1999, Kim et al.,
2007). Furthermore, T lymphocytes are produced via IL-2 with mediation by

phosphatidylserine in response to a stimulus (Pelassy et al., 1990).
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Glucose is essential for the functionality of macrophages and lymphocytes
(Newsholme et al., 1999) and a suitable supply of glucose requires serine (Wu
et al., 2006). Several studies indicated that addition of 2 mM of serine in culture
medium, which exceeds its plasma concentration, prevented the apoptosis of
lymphocytes and promoted their development and antibody production (Franék
and Sramkova, 1996, Duval et al., 1991b). Furthermore, Konashi et al. (2000)
reported that the immune response in chicken was impaired by serine

deficiency, but this effect could be corrected by supplementing serine.

1.3.3.10 Sulphur-containing amino acids

Synthesis of proteins, particularly those involved in immunity, occurs with the
participation of the key metabolites of methionine and cysteine (Grimble, 2006).
Methionine supplies a methyl group that supports DNA and protein methylation,
synthesis of spermidine and spermine, and control of gene expression (Wu et
al. 2006). Furthermore, methionine also plays a role in the synthesis of choline,
phosphatidylcholine and acetylcholine which is considered to be of significance
in leucocytes (Kim et al. 2007). Meanwhile, cysteine is necessary for the
synthesis of glutathione and H2S in animal cells and its metabolism is markedly
altered in response to infection(Malmezat et al., 2000). The synthesis of
glutathione is triggered when sulphur amino acids are available (Wu et al.,
2004), which is why a positive correlation is believed to exist between
transulphuration pathway activity and the level of glutathione in liver, spleen and
muscle (Malmezat et al. 2000). According to Fratelli et al. (2005), during
immunological challenges, cellular signalling pathways (e.g. nuclear
transcription factor kB pathway) are crucially mediated by intracellular
glutathione, targeting and eliminating free radicals and other ROS (Fratelli et al.,
2005, Fang et al., 2002). If there is not enough cysteine or intracellular GSH,
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CD4 cells decline in number, less IFNy is produced, cytotoxic T cells diminish
their activity, and lymphocytes proliferate dysfunctionally in the presence of
mitogens (Obled et al. 2004). A direct connection has been established between
intracellular glutathione unavailability and a number of diseases, including
cancers, AIDS, and rheumatoid arthritis, whilst trauma, sepsis and injury
enhance the demand for sulphur-containing amino acids (Obled et al. 2004;

Grimble 2006).

Tsiagbe et al., (1987b) conducted a study on chicken presenting with infection
with Newcastle disease and found that addition of methionine in the diet
promoted T cell proliferation in the presence of a mitogen, elevated the plasma
levels of immunoglobulin G, and stimulated migration and antibody titre. In a
subsequent study, Tsiagbe et al., (1987a) obtained similar results when
cysteine was added to the diet of chicken. However, the chicken’s immune
response was adversely affected by excessive supplementation (Tsiagbe et al.,
1987a, Tsiagbe et al., 1987b) which was likely due to overproduction of

homocysteine and sulphuric acid (Wu et al., 2000).

The amino acid of the highest prevalence in lymphocytes is taurine, which
displays potent antioxidant effects (Fang et al. 2002). Taurine chloramine is
generated when taurine reacts with hypochlorous acid present in activated
monocytes and neutrophils (Wright et al., 1986) and has a restrictive effect on
the generation of pro-inflammatory cytokines (i.e. IL-1, IL-6 and TNFa) and
prostaglandin E2 (Chorazy et al., 2002, Weiss et al., 1982). Wojtecka-Lukasik
et al. (2004) carried out research on rats induced with carrageenin and observed
that the release of histamine in neutrophils was triggered by taurine chloramine.
Meanwhile, in another study, bleomycin-induced lung inflammation in rats was
found to be diminished when 1% taurine was added to drinking water (Wojtecka-

Lukasik et al., 2004).

53



1.3.3.11 Threonine metabolism

Animal intestinal mucin and plasma y-globulin have the amino acid threonine as
a fundamental component (Kim et al. 2007). Cell survival and growth as well as
production of antibodies in lymphocytes were supported by supplementation of
culture medium with 2 mM of extracellular threonine in the work carried out by
Duval et al. (1991). Elevated levels of serum antibodies were found to
accompany the use of threonine as supplement in the diet (Defa et al., 1999),
while Bhargava et al. (1971) similarly observed that chickens infected with
Newcastle disease virus benefitted from addition of threonine to their diet
(Bhargava et al., 1971). Furthermore, in a study on sows, (Cuaron et al., 1984)
discovered that threonine supplement in the diet led to a rise in IgG serum

levels.

Likewise, elevated serum levels of IgG were associated with diet
supplementation with threonine in addition to IgG and IgA levels in the jejunal
mucosa (Wang et al., 2006). By contrast, young pigs infected with Escherichia
coli displayed decreased IL-6 levels in the jejunal mucosa. It is clear that, in
animals, immunity depends significantly on threonine used as supplementin the

diet and this may also be true in humans.
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1.4 Introduction to metabolomics

The term “metabolism” from the Greek term for “change”, “metabole”, has given
“metabolomics”, which refers to objective identification and measurement of the
whole metabolome using a highly selective and sensitive analytical method
under particular conditions (Dunn et al., 2005). Although metabolomics has
been defined in various other ways, all definitions acknowledge that the purpose
of metabolomics is the investigation of molecules with low molecular weight that
support the biological metabolic activities (e.g. growth, maintenance) without
which cells could not function effectively (Oliver et al., 1998, Harrigan and

Goodacre, 2012).

Metabolomics can be traced back to 1971, when Linus Pauling et al. carried
out the first untargeted metabolic profiling of human urine and breath vapor
using gas-liquid partition chromatography which was capable of detecting 250
biological compounds (Pauling et al., 1971). This marked the beginning of

metabolomic research.

Based on how the cells interact with their surrounding environment, such
metabolites are the outcomes of cellular expression of genes and proteins
(Fiehn, 2002). Metabolomics requires a multi-disciplinary approach to be
comprehensively investigated and applied, drawing on organic and analytical
chemistry, chemometrics, bioinformatics and bioscience (Fukusaki and
Kobayashi, 2005). Medical diagnosis and treatment assessment, research on
drug effects, microbiology, plant science, and food and plant nutrition are just
some of the areas benefitting from metabolomics (Harrigan and Goodacre,
2012, Bundy et al., 2005, Al Zweiri et al., 2010, Kondo et al., 2011, Kim et al.,

2013).
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1.4.1 Approaches to metabolome analysis

Untargeted, semi-targeted and targeted metabolomics profiling are the three
main methods that enable the examination of metabolic disruptions
accompanying various diseases or treatments (Dunn, 2013). The differences
between these methods stem from their absolute or relative quantitative
potential, how accurate the experiments are, how complex the sample is

depends on the metabolite count, and the research aim.

1.4.1.1 Targeted approach (hypothesis assessment)

The defining characteristic of targeted metabolomics is that it is a quantitative
method concerned with ensuring accuracy and specificity for the targeted
analytes based on already acquired knowledge of the identity of sample
metabolites before analysis. Employing reliable approaches underpinned by
genuine standards, this method evaluates the hypotheses formulated through
the untargeted or semi-targeted methods. Once key metabolites are clearly
identified, inferences can be made regarding how biologically relevant they are

with regard to the hypothesis.

1.4.1.2 Untargeted approach (hypothesis formulation)

Untargeted or global metabolomics enables identification of countless
metabolites with little or no knowledge regarding the expected profile of a
sample of metabolites. The process involves sample analysis and processing
of generated data with various instruments. The outcomes and observations
derived from the data facilitate hypothesis formulation. Not all of the multitude

of metabolites encompassed in this method can be identified and of those that
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are identified not all can be validated due to the high cost and possible

unavailability of the numerous different standards needed to do so.

The recently developed field of metabolomics is rooted in innovations in
analytical approaches and informatics instruments that accelerate and facilitate
examination of samples of great complexity, yielding ample data that can be
subjected to analysis and modelling with a range of software and Internet tools.
Recent applications of these techniques have included detection of new
biomarkers and insight into potential biological processes associated with
various treatments or genetic modifications in vegetal, environmental and

animal systems (Dunn 2013).

1.4.2 Analytical platforms

Initially, cellular metabolites were quantified using enzyme-based assays and
thin layer chromatography (IWATA and YAMASAKI, 1964). Later on,
metabolomics was dependent on nuclear magnetic resonance spectroscopy
(NMR), which has the shortcomings of poor resolution for each metabolite and
detection of a limited number of analytes however, with the development of MS
techniques ,in 1990s, mass spectrometry is employed for metabolomics more
and more often (Zhen et al., 2007, Fardet et al., 2008, Van Ginneken et al.,
2007, Beynon and Morgan, 1978).The introduction of the LTQ Orbitrap Fourier
Transform mass spectrometer (FTMS) (Makarov et al., 2006) has been
beneficial because it enables not only extreme and consistent mass precision,
but also fast scanning that is hecessary to be compatible with chromatographic

systems (Kamleh et al., 2008).

No single analytical platform will be able to fully analyze the entire intracellular

or extracellular metabolome, therefore three chromatographic techniques, MS-
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based metabolomics, can be used to target specific analytes i.e. gas
chromatography (Lee et al.), which suits volatile and derivatized non-volatile
metabolites, liquid chromatography (LC), for polar and non-polar, ionic and
neutral metabolites thats requires little to no derivatization, and capillary
electrophoresis (CE) to target charged metabolites. MS techniques coupled with
the innovation of analytical methods made it possible to obtain numerous
metabolite peaks from a single sample. Furthermore, an effective and reliable
multi- and uni-variate statistical approach is required to undertake the difficult
task of observing and understanding metabolomics transformations and of

detecting dependable biomarkers.

1.4.3 Multivariate analysis

The next ten years are expected to see better medical diagnostics thanks to the
innovations made in high data-density analytical methods. Unparalleled insight
into individual biological structures can be achieved not only through
metabolomics, but also through genomics and proteomics. However, traditional
multivariate  statistics is an inadequate approach for establishing
correspondences between vast amounts of data related to numerous individuals
and their present and even future phenotype. The metabolomics method yields
sets of data that are frequently at odds with the conditions of traditional
multivariate  analysis (MVA), like multiple regression, X-matrix
comprehensiveness, K must be lower than N, and the K variables have to be
without noise and correlations. By contrast, in MVA, N can be lower than K, the
K variables can have multicollinearity, and the X-matrix can have noise and
does not need to be comprehensive. MVA is a statistical approach created by
Wold et al. (1938) as an alternative to traditional statistical methods, to address
existing issues and improve medical diagnosis for different diseases (Wold et
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al., 1983). As argued by Grainger (2003), this approach could facilitate the
development of sophisticated systems capable not only of detecting more than
one disease process at the same time, but also of anticipating the conditions

that are likely to afflict an individual in the future (Grainger, 2003).

Multivariate analysis and univariate analysis are the two sequential stages of
data analysis. There are two sub-stages in multivariate analysis, namely,
general review of data to confirm absence of outliers by employing
unsupervised methods to achieve pattern identification and confirmation of
predictive capacity by identifying biomarkers and verifying model. However,
data processing should be undertaken before proceeding to data visualisation

and detection of biomarkers.

1.4.4 Pre-processing of data: Transformation and scaling

Metabolomic datasets are not entirely normal or homogenously distributed
according to Vinaixa et al. who found a minor discrepancy (<4%) between
parametric and non-parametric tests on four comprehensive LC-MS
metabolomic datasets (Vinaixa et al., 2012) therefore ,if individual variables lack
normal distribution, the data must be ensured to approach normality through the
procedure of transformation (Eriksson et al., 2013). Transformation can be
performed via various approaches, including log2, log10, inverse and neg log in
order to position observations closest to straight line with an acceptable R2
value i.e > 0.9 (Eriksson et al., 2013g) though data transformation should be

handled carefully as it may alter data integrity and hinder data interpretation.

Scaling is another important pre-processing step which deals with smaller
metabolites that might have high biological importance but unfortunately have

lower intensities (Xi et al.,, 2014). Scaling can be performed by different
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parameters: Mean centring, which takes the average of each variable and
subtracting it from the intensity of the variable in each row; Univariate scaling,
i.e., that calculates standard deviation of each variable (column) and dividing it
by the intensity of the variable in each row (sample); Auto scaling, which
represents a combination of univariate scaling and mean centring; Pareto
scaling which takes the square root of each variable in a column and divides it
by the intensity of the variable per row .Among above mentioned scaling
methods, Pareto scaling is recommended and more commonly used to reduce

undesirable effects in spectroscopic data (Xi et al., 2014).

Transformation as well allows outlier removal (Eriksson et al., 2013).Outliers,
on SMICA , are presented by Hotelling’s T2 on the y-axis, namely, the warning
limit and action limit, which are respectively the T2 Crit (95%) and T2 Crit (99%)
denoted by the yellow and red dotted lines. On the x-axis, the red dotted line
stands for DModX with the critical distance DCrit at 0.05 level. Observations
must be above the action limit or above the warning limit together with the

DModX critical limit to be deemed strong outliers.

1.4.5 Hierarchical clustering analysis (HCA)

Hierarchical clustering analysis, otherwise called a dendrogram, is designed to
organise data into groups in such a way that observations are either highly
similar or less similar between groups, being respectively indicative of low or
high variability. This technique allows integration of the two groups or
observations that are closest, followed by the integration of the next two closest
groups or observations and so on until a super cluster is formed (Lozano et al.,

2014). HCA, which performed on PCA model, is particularly useful in cases
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where clustering is unknown and thus serves as a preliminary step towards

supervised multivariate methods.

1.4.6 Unsupervised and supervised techniques

Although it affords a general picture of a set of data, principle component
analysis (Meiser et al.,2016) unsupervised technique, cannot establish
correlations between an individual’s phenotype-disease state and measured
parameters. A few latent variables are generated when PCA analysis is
undertaken by partial least squares-discriminant analysis (PLS-DA) on the Y-
matrix denoting observations and samples. This is followed by interpretation of
the maximum variance in the latent variables based on the developed X-matrix

(descriptors/variables/metabolites) latent variables.

Built on the PLS-DA model, orthogonal partial least squares - discriminant
analysis (OPLS-DA),supervised technique, is more advantageous because it
is capable of isolating variation in X corresponding to Y (horizontal) known as
predictive variation as well as variation in X without Y correspondence
(orthogonal) . No other method has greater efficiency than OPLS-DA in
assessing inter-group distinctions(Kirwan et al., 2012) , detecting dependable
biomarkers closely related to inter-group separation (Trygg et al., 2007) and
establishing correlations between disease processes and metabolic pathway
disruptions (Goodacre, 2007). Consequently, OPLS-DA can provide invaluable

insight into pathophysiology as well as potential targets for therapy.

A supervised model’s significance and quality can be measured with cross-
validation methods via the quality parameters of goodness of fit (R2), goodness
of prediction (Q2), and p-value (P CV-ANOVA) (Wheelock and Wheelock, 2013,

Triba et al., 2015).
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1.4.7 Model assessment

Validation of an applied model can be most effectively achieved based on the
quality parameters R2 and Q2. Reflecting goodness of fit, R2 measures the
fraction of y (observations) elucidated by variation in x (variables) to establish
correlations between y and x. This parameter presents a major problem
because, provided that the number of components is increased, it can be set at
random near the highest value of one. The resulting unbalanced ratio of
variables to observations can cause data over-fitting that could provide false
positive outcomes. However, Q2 derived from cross-validation (CV) corrects
this problem (Kirwan et al. 2012), applying a process to all the data involving
exclusion of a predefined number of observations and readjustment of the
model until all the data have been excluded just one time (Eriksson et al.,
2013b). This is followed by a comparison between the average value of the Q2
and R2 of the readjusted model to determine how much better its predictive

capacity is than chance.

One-seventh of the data is typically excluded by the SIMCA P software when
performing CV. To determine how effective CV is, and hence to improve the R2
of the regression line, an observed plot is compared against a predicted plot
using permutation plot provided by SMICA. Permutation plot is performed to
determine the extent to which the clustering of observations in the two
established classes is more effective compared to arbitrary clustering in two
random classes (Westerhuis et al., 2008). This test involves comparison
between the original and the permuted R2 and Q2 parameters and new quality
parameters, whose values should not exceed those of the initial parameters can
be obtained by repeating this procedure and the horizontal zero line should be
crossed by the predictive model's regression line (Eriksson et al. 2013f).

ANOVA of the cross-validated residuals (CV-ANOVA) enables assessment of
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how significant the variation estimated by the supervised model is. After this
procedure, the receiver operating characteristic (Kono and Rock) curve should
be employed to measure how precise the model is in differentiating

observations according to their metabolic profile.

1.4.8 Cross-validated ANOVA

Cross-validated ANOVA (CV-ANOVA) also permits assessment of how valid
the supervised model is. As explained by Eriksson et al. (2008b), the principle
underlying this process is evaluation of the variation anticipated by the model in
relation to the HO hypothesis of cross-validated predictive residuals with the

same value around the mean.

1.4.9 Receiver operating characteristic

The ability of a supervised model to effectively differentiate samples or
observations with identical and different metabolomics profile is indicated by the
area under the ROC curve (AUROCC). This ability is stronger the greater the
AUROCC is. Sensitivity and specificity are the two most important dimensions
of the ROC curve. According to Bewick et al. (2004), in the context of
metabolomics, biomarker sensitivity represents the number of individuals with a
high biomarker and who have been accurately detected by the test, while
specificity refers to the number of individuals with low biomarker and who have
been accurately detected by the test (Bewick et al., 2004). Multiple sensitivity
and specificity points make up the ROC curve with normalisation of AUROCC
to 1 in order to enable evaluation of how predictable the classifier is: 0.9-1.0 =
excellent; 0.8-0.9 = good; 0.7-0.8 = fair; 0.6-0.7 = poor; 0.5-0.6 = fail (Xia et
al. 2013). In Figure 1.9, the classifier scores higher than 0.9 for every group,
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confirming the model’'s ability to accurately (>90%) identify and estimate the

metabolomic discrepancies among the three groups.

1.4.10 Recognition of biomarkers based on S-plot

In the context of a supervised model, biomarkers can be detected with the S-
plot. Discrepancies among the assigned groups are closely correlated with the
metabolites in the extreme upper right and lower left. However, selection of
metabolites based on the S-plot does not involve clear cut-offs and it is not
comprehensive enough, which means that important metabolites could be left
out. Given this limitation, univariate analysis should be employed instead to
ensure that all the metabolites are treated the same and thus making selection

more objective and minimising the risk of overlooking possible biomarkers.

1.4.11 Corrected p-value

The p-value, usually of 0.05 level (i.e. the likelihood of the difference being
random is less than 5%), is the sole measure of how statistically significant a
variable is. When more than one variable exhibits difference, the likelihood of
random difference is raised to 1-(0.95) k (Eriksson et al. 2013c), with k denoting
the number of variables (e.g. for five variables, there is 22% likelihood of random
difference). This likelihood can be reduced by applying the Bonferroni
correction, whereby the 0.05 a is divided by k (e.g. k = 5 gives a 0.01 a
significance level, meaning that only variables under 0.01 will have
significance). There are hundreds of variables in metabolomics; for instance, for
k = 100, the a level will be 0.0005, which is admissible when human cell lines
serves as a matrix of metabolomics profiling with most conditions being

controlled. However, there is significant variation between individuals belonging
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to the same disease group or control group due to cellular output and
differences in individuals’ diet, with implications for the level of significance of
the variables (Dunn et al., 2011). Owing to these considerations, biological
samples from human subjects are usually analysed with a more flexible tool,

like false discovery rate (FDR) (Benjamini and Hochberg, 1995).
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1.5 Aims:

This study is aimed at further understanding the process of immunomodulation
by Small Molecule Analogues (SMASs) of the parasitic worm product ES-62 in
the context of the macrophage metabolome. The specific aims are:

1: To determine the effect of known immunomodulatory SMAs on the
metabolome of mouse bone marrow-derived macrophages (BMMs)

2: To determine whether the SMAs can reverse changes in the BMM
metabolome induced by LPS or CpG

3: To try and establish whether the effects of the SMAs on the BMM metabolome
can help determine whether the SMA-macrophage fits with any known
phenotype such as M2

4. To establish whether information gained from the metabolomics studies can

be correlated with the SMAs known anti-inflammatory effects
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Chapter 2. Materials and methods
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2.1 Materials:

Table 2.1.1: Cell cultures /biology studies

Materials

Suppliers information

6-8-week old BALB/c mice

Strathclyde University animal house

L929 cells aliquots

European Collection of Authenticated Cell
Cultures: ECACC

SMAs (11a, 12b, 190)

Created by Dr Abedawn Kalaf and Dr Judith
Huggan, supervised by Professor Colin
Suckling of the Department of Pure and
Applied Chemistry at the University of
Strathclyde

Salmonella LPS

Lot# 046M4089V, Sigma-Aldrich

Escherichia coli LPS

L2880-10MG, Sigma-Aldrich

CpG-ODN1826

Cat#tlr1-1826-1,InvivoGen

DMEM media (1X)

Lot#1813354,Gipco

DMEM media (1X),Phenol red
-free

Lot#1801726,Gipco

RPMI-1640 Cat#BE12-167F,Lonza
RPMI-1640 Lot#RNBF7737,Sigma
RPMI-1640 Lot#1838059,Gibco

RPMI-1640 glucose free

Lot#1789610,Gibco

RPMI-1640 L-cyctiene.2HCL
free

Lot#RNBF7736,Sigma

Glutamine solution

Lot#RNBF3688,Lonza

Penicillin/ streptomycin
solution

Lot#065M4794v,Lonza

Fetal Bovine Serum

Lot# 41F07444K.Gibco

PBS

Cat# bel7-516F, Lonza

Cell scrapers

TPP, Switzerland

T75 cell culture flasks

REF#430720U,Corning

Triple layer flask

REF# 353143,CorningFalcon

Ethanol

Lot# STBG4076V, Sigma-Aldrich, Dorset
UK

Cell strainers,40um

REF# 352340,CorningFalcon

Trypan blue stain

Lot#RNBC8659,Sigma, Dorset UK

Bacteriological petri dishes

Thermo Fisher Scientific

6 well cell culture plates

Cat#140685,Thermo Fisher Scientific

96 well cell culture plates

Lot# 20160594, TPP, Switzerland
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Table 2.1.2: Flow Cytometry

Materials Suppliers information

5 ml polystyrene tubes Falcon, BD

Bovine Serum Albumin Lot#SLBR0420V,Sigma-Aldrich
EDTA Sigma-Aldrich

Anti-mouse CD16/CD32

Clone:93,Lot# E03558-
1639,eBioscience

Alexa Fluor® 647 Rat Anti-Mouse
CD11b

Clone:M1/70,Cat# 557688,BD
Pharmingen

Anti-mouse F4/80,FITC

Clone:BMS8,Lot# E00610-
1638,eBioscience

Anti-mouse F4/80,PE,FITC

Clone:BMS8,Lot# E01705-
1637,eBioscience

MitoTracker Green(MTG)

Molecular Probes Cat# M7514;
CAS: 201860-17-5

Tetramethylrhodamine methyl ester
(TMRM)

Molecular Probes Cat# T668; CAS:
115532-50-8

Carbonyl cyanide m-chlorophenyl
hydrazine

Sigma-Aldrich Cat# C2759; CAS:
555-60-2

Oligomycin A

Sigma-Aldrich Cat# 75351; CAS:
579-13-5

FACSDiva immunocytometry system

BD Pharmingen

FlowJo

https://www.flowjo.com/
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Table 2.1.3: Untargeted metabolomics study

Materials Suppliers information

Mouse IL-4 Recombinant protein Lot# 4314738, eBioscience

IFN-y Lot# MFCD00131391,Sigma-Aldrich
Methanol Lot#15A190510,VWR

Acetonitrile Lot#14D028945,VWR

Amonium carbonate

Lot#BCBQ6156V,Sigma-Aldrich

HPLC grade water

Lot#1708940,Thermo Fisher
Scientific

A ZICpHILIC column (150 x 4.6 mm
X 5 um)

Lot#P130326,Merck,Germany

Conical glass insert 200uL

Lot# 00219799,Thermo Fisher
Scientific

Auto sampler vials

Lot# 44383092515DM, Thermo
Fisher Scientific

Cell shaker Thermomixer
comfort,eppendorf, MTB

LC-MS Orbitrap mass spectrometer ,Thermo
Fisher Scientific , Germany

mzmatch http://mzmatch.sourceforge.net/

MZmine-2.10 ans 2.17

http://mzmine.github.io/download.htm
I

SIMCA

Version 14, Umetrics, Ume3,
Sweden

Metaboanalyst 3.0

http://www.metaboanalyst.ca/

Thermo Xcalibur 2.2 SP1.48-
August 12, 2011

Thermo Fisher Scientific

Thermo ToxID 2.1.2 SP2.17-
September 9,2011

Thermo Fisher Scientific
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Table 2.1.4: 13C-glucose label studies

Materials

Suppliers information

13C¢ -glucose

Lot#PR-26833,Cambridge Isotope
Laboratories,Inc.

Table 2.1.5: Mitochondria membrane potential study

Materials

Suppliers information

Coverslips-Round,13mm

13mm Diameter, Lot#29552819,VWR

Paraformaldehyde solution 4% in PBS

Lot# E2016, Chem Cruz

Confocal Leica SP5

Leica Microsystems CMS
GmbH,Germany

DAPI,5mM Aqueous solution
formulated

Lot# 060109, AAT Bioquest

Table 2.1.6: Migration studies

Materials

Suppliers information

ThinCerts for 24 well plate, translucent,
0.8um, TC-treated

Cat# 662638 Greiner Bio-One

Calcein-AM

Cat# 65-0853-78, eBioscience

TrypLE™ Express Enzyme (1X), no phenol
red

Cat# 12604013ThermoFisher
Scientific

Black/clear flat bottom TC-treated 96 well
plate

Cat# 10530753, ThermoFisher
Scientific

PolarStar Omega ,fluorescence plate reader

BMG,Labtech

24 well cell culture plates

TPP, Switzerland

Table 2.1.7: Nitric oxide assay

Materials

Suppliers information

Sodium nitrite

BDH limited pool,
Lot#10256,England

Sulfanilamide P-Aminobenzene
sulphonamide

Cat# 5-9251, Sigma

N-(1-Naphthyl)-ethylendiamine

Cat# 22.248-8,Germany

71




Table 2.1.8: Cytokine stimulation assay and ELISA

Materials

Suppliers information

2-deoxyglucose

Sigma-Aldrich Cat# D3179; CAS: 154-
17-6

Diethyl succinate

Sigma-Aldrich Cat# 112402; CAS: 123-
25-1

Dimethyl malonate

Sigma-Aldrich Cat# 136441; CAS: 108-
59-8

Dimethyl fumarate

Santa Cruz Biotechnology Cat# sc-
239774; CAS: 624-49-7

Methyl pyruvate

Sigma-Aldrich Cat# 371173; CAS: 600-
22-6

Triethyl citrate

Sigma-Aldrich Cat# 14849; CAS: 77-93-
0

Alpha-ketoglutarate

Sigma-Aldrich Cat# 349631, CAS:
13192-04-6

Lactic acid Sigma-Aldrich
Taurine Cat#1372964 ;Sigma-Aldrich
L-Cysteine Lot#BCBD3830V,Sigma-Aldrich

Phosphocholine chloride calcium
salt tetrahydrate

Lot#SLBK5048V, Sigma-Aldrich

Interleukin-6

BD Pharmingin, Oxford, UK

Interleukin-10

R&D Systems, Abingdon, UK

streptavidin horseradish peroxidase
(SAVHRP)

R&D Systems, Abingdon, UK

TMB Substrate

Lot#10219040,KPL

2 (NH3),SO0.

Lot#120669A, invitrogen

High binding 96 well ELISA plates

Greiner BioOne

Epoch microplate spectrophotometer
,Gens

BioTek

Prism 7

https://www.graphpad.com/scientific-
software/prism/

Table 2.1.9: Phenotype Microarray assay

Materials Suppliers information

MC-0 Medium Components list in 2.2.14

PM-M1 ,PM-M2 Plates Technopath Distribution, Tipperary,
Ireland

Biolog Redox Dye Mix MB Technopath Distribution, Tipperary,
Ireland

2% SDS

Cat# 073K00341,Sigma-Aldrich

72




2.2 Methods:

2.2.1 Generation of L-cell conditional medium

Macrophage-colony stimulating factor (M-CSF) was obtained from L929 cells
(European Collection of Authenticated Cell Cultures: ECACC) gifted from by
Professor Robin Plevin, UoS. The L929 cells aliquots were thawed first at 37°C
and then centrifuged at 200g for 5 minutes. The pellet obtained was re-
suspended in 10 ml of complete DMEM medium (DMEM medium from Gipco,
2mM glutamine (Lonza), 50 U/ml penicillin (Lonza), 50 pg/ml streptomycin
(Lonza), 10% FCS (Gipco)) and then was cultured in a T25 cell culture flask
(CorningFalcon) at 37°C in a humidified atmosphere of 5% (v/v) CO2 for 4to 5
days to achieve confluent growing. To harvest the cells, medium was aspirated
and replaced with 5ml cold PBS for 10 minutes incubation at 4°C. Cells were
then scraped gently using a 30 cm cell scraper (TPP, Switzerland). The acquired
cell suspension was centrifuged, at 200g for 5 minutes, and the pellet obtained
re-suspended with fresh 10 ml complete DMEM medium. Suspended cells were
then split into ten T75 cell culture flasks by adding 1ml of cell suspension to
fresh 9 ml of complete DMEM medium and maintained in a CO; incubator at
37°C / 5% CO: until reaching the required 80-90% confluency. Cells were then
harvested as above and re-suspended with fresh complete DMEM medium. A
portion of the cell suspension (6 ml) was added to 44 ml of fresh complete
DMEM medium and placed into one layer of triple layer flask, CorningFalcon.
The total volume of the entire triple layer flask should not exceed 150 ml. Cells
were then maintained in the incubator, at 37°C / 5% CO,, until 90 % confluency
which is approximately acquired in 7 days. The supernatants then were
collected from the flasks, centrifuged at 3000g for 5 min, filtered, distributed in
50 ml tubes and stored at -20°C to be used for differentiating macrophages from

bone marrow stem cells.
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2.2.2 Generation of bone marrow-derived macrophages (BMMs)

Bone marrow was collected from the femur and tibia bones of 6-8-week old male
or female BALB/c mice, bred in Strathclyde University, and killed by cervical
dislocation. Bones were then dissected from adherent tissues and washed
briefly with 70 % ethanol. In sterile conditions, under a tissue culture hood, the
bone ends were cut to allow bone marrow elution through washing the bones
with complete DMEM medium. The eluted bone marrow was then collected,
filtered using a cell strainer, and centrifuged at 400g for 5 minutes. The
supernatants were next aspirated and replaced with a known amount of fresh
complete DMEM medium to count the obtained cells, using trypan blue stain in
order to culture them at the required density. Cells then were plated and cultured
on bacteriological Petri dishes at a density of 2 x 10° cells/ml in complete DMEM
with 20% L929 cell supernatant and maintained at 37°C in a humidified
atmosphere of 5% (v/v) CO.. Fresh complete DMEM was added on day 4 to
feed the macrophages. On day seven the cells were harvested by scraping
them into 5 ml complete DMEM at 4°C to allow adherent cell detachment and
they were then collected for further centrifugation at 400g for 5 minutes. The
viability and number of cells was then checked using trypan blue stain followed
by identification, by flow cytometry, and plating according to the desired

experiments. Flow cytometry is described in 2.2.3.

2.2.3 Flow Cytometry

Re-suspended cells with a density of 0.5 x 10° / FACS tube were incubated with
anti-mouse CD16/CD32 for 5 minutes to block subsequent nonspecific binding
of immunoglobulin to the FC receptor. Cells were next incubated with antibodies

specific for CD11b (BD Pharmingen) and F4/80 (ebioscience) along with the

74



fluorescence Minus One (FMO) controls (ebioscience and BD Pharmingen) and
placed in a dark cool place for 25 minutes after which they were washed in
FACS buffer, (2 % Bovine Serum Albumin (Sigma) in PBS (Lonza) with 2mM
EDTA). The cells were then re-suspended in 300ul of FACS buffer to render
them ready for flow cytometry analysis. Flow cytometry was carried out using a
FACSDiva immunocytometry system (BD Pharmingen) to determine the cell
population that expresses both CD11b and F4/80 surface markers. The cell
population and confluency calculated numerically using FlowJo and the average
macrophages obtained were 95% CD11b* F4/80*. These were employed for
different assays and the minimum percentage acquired was > 90 % CD11b

*F4/807 in initial macrophages metabolomics experiments.

2.2.4 Macrophage treatment conditions for untargeted metabolomics

study/cytokines study

After identification by flow cytometry, the bone marrow-derived macrophages
cells (BMMs) were plated at a concentration of 2 x 10° cells/2 ml of complete
RPMI medium (RPMI-1640 (Lonza), 2mM glutamine (Lonza), 50 U/ml penicillin
(Lonza), 50 pg/ml streptomycin (Lonza), 10% FCS (Gipco)), in 6-well plate, with

5 to 6 replicates / each condition used, and then rested for 5 hours or overnight.

1- To study the effect of adding SMAs (11a, 12b, 190) on the macrophage
metabolome, SMAs were added at a concentration of 5 pg/ml along with an
equivalent amount of medium only added to the control group. Treated BMMs
were then incubated for 18 hours at 37°C in a humidified atmosphere of 5%
(viv) CO.. BMMs were subsequently prepared for metabolite extraction to study

the effects of adding SMAs alone in comparison to unstimulated macrophages.
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2- To identify the effect of SMA pre-treatment on the macrophage metabolome
in the presence of TLR ligands such as Salmonella LPS and CpG, SMAs were
added to rested cells at a concentration of 5 pg/ml for 18 hours and the cells
were maintained at 37°C in a humidified atmosphere of 5% (v/v) CO; with an
equivalent volume of medium only added to the control groups. After 18 hours
incubation, 100 ng/ml of LPS or 0.1 uM/ml of CpG was added to +ve control
groups, samples pre-treated with SMAs for 24 hours and an equivalent volume
of medium only added to the -ve control group. Treated cells then were
extracted to study effects of pre-treatment of macrophages with SMAs in LPS-

or CpG-activated macrophages.

3- To analyse the metabolomic profile caused by effects of different stimulants
which were known for their pro-inflammatory and anti-inflammatory effects i.e.
on cytokine production profiles, the different stimulants were added to rested
macrophages for 24 hours with the exact concentration that was used
previously (100 ng/ml Salmonella LPS, 100 U/ml IFN-y, 100 U/ml IL-4, 100
ng/ml of LPS +100 U/ml IFN-y and 100 ng/ml LPS +100 ng/ml IL-4) to
induce/inhibit cytokine production by macrophages.

All extracts were stored at -80°C until analysed as detailed in section 2.2.7.

2.2.5 Conditions used to study metabolomic effects of SMA-treated

macrophages condition using *Cs-glucose tracer.

Bone marrow-derived macrophages cells (BMMs) were plated at a
concentration of 2 x 10° cells/ 2 ml of complete RPMI in 6-well plate with 4
replicates for each condition used, and rested overnight. The complete RPMI
medium then was aspirated and replaced by 1.5 ml of mixed medium;

containing glucose free RPMI glucose free supplemented with 5.5 mM of *Ce-

76



glucose and 5.5 mM of unlabelled glucose followed by incubation for 90
minutes. SMAs then were added, in the same medium, at a concentration of 5
pg/ml for 4, 8 and 18 hours, and maintained at 37°C in a humidified atmosphere
of 5% (v/v) COg, with an equivalent volume of mixed medium only being added
to the control group. In the case where CpG or LPS stimulation was used the
cells were incubated in the growth medium containing the label for 18h before
addition of LPS or CpG and incubation was carried out for a further 4h, 8h and
24 h in the presence of the stimulants. The extracts were stored at -80°C then

run as described in section 2.2.7.

2.2.6 Cell metabolites extraction protocol

Cell extracts were prepared by washing the cells once with warm PBS before
harvesting the cells in a chilled extraction solution (MeOH/MeCN/H20, 50:30:20
v/v) with a concentration of 1 ml of extraction mix per 2 x 10° cells. Cell lysates
were then collected and shaken at 1200 rpm for 20 minutes at 4 °C before being
centrifuged at 0°C at 13000 rpm for 15 min. The supernatants then were
collected and transferred into auto sampler vials for loading into the LC-MS

autosampler or storage at -80°C until analysis.

2.2.7 Liquid chromatography/mass spectroscopy (LC/MS)

The chromatographic conditions were set as follows: A ZICpHILIC column (150
x 4.6 mm x 5 pm) was eluted with a linear gradient over 30 min between 20 mM
(NH4)2CO3 (pH 9.2)/MeCN (20:80) at 0 min and 20 mM (NH4)2CO3 (pH
9.2)/MeCN (20:80) at 30 min with a flow rate of 0.3 mL/min, followed by washing
with 20 mM (NH4)2CO3 MeCN (95:5) for 5 min and then re-equilibration with
the starting conditions for 10 minutes. LC/MS was carried out by using an

Dionex 3000 HPLC pump coupled to an Exactive (Orbitrap) mass spectrometer
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from Thermo Fisher Scientific (Bremen, Germany). The spray voltage was 4.5
kV for positive mode and 4.0 kV for negative mode. The temperature of the ion
transfer capillary was 275 °C and sheath and auxiliary gas were 50 and 17
arbitrary units, respectively. The full scan range was 75 to 1200 m/z for both
positive and negative modes. The data were recorded using the Xcalibur 2.1.0
software package (Thermo Fisher Scientific). The signals of 83.0604 m/z
(2xACN+H) and 91.0037 m/z (2 x formate-H) were selected as lock masses for
the positive and negative modes, respectively, during each analytical run. The
obtained raw data then were processed using several software discussed in

2.2.8. A summary of metabolomics workflow is showed in figure 2.2.7.1.
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Figure 2.2.7.1 Metabolomic workflow. Cell metabolomics consists of eight
sequential steps: (i) cell culture harvesting/ scraping (ii) Cell culture stimulation,
(Wold et al.,1983) quenching metabolic activity and metabolite extraction (iii),
(iv) shaking cell extracts for further extraction (v) centrifugation for extracts
collection (vi) data acquisition using MS-based spectroscopy techniques to
generate chromatograms and MS spectra, (vii) statistical and chemometric
analysis including univariate and multivariate analyses, (vii) data interpretation
linking metabolomics to biological process using metabolic network or identify

biomarkers.
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2.2.8 Metabolomic data analysis

Raw data ,from untargeted metabolomic studies, were putatively identified and
processed using Mzmine (Pluskal et al., 2010) whereas Mzmatch (Scheltema
et al.,, 2011) was used for putative metabolomic identification on targeted
studies .Prior to further analysis, data were filtered in which metabolites of low
intensities (<1000 peak height) and metabolites which did not show any
significant fold changes were excluded in order to simplify the data for
interpretation. Putatively identified metabolites were then further analysed and
validated with SMICA 14.1 (version 14, Umetrics, Umed, Sweden). Analysis
involves univariate and multivariate analysis; clusters model creation using
PCA, which provides a crude dataset overview and is used for initial exploratory
analysis and OPLAS-DA, for class discrimination, which integrates orthogonal
signal correction. Partitioning of predictor variables improves both model
transparency and interpretability (Bylesjo et al., 2006, Trygg et al., 2007).
Using SIMCA as well will provide validity testing; outliers check, permutation,
AUROC, regression analysis and cross validation (sensitivity and specificity of

created OPLS-DA model).

Metabolite concentrations, in some of the treatments designed above, were log-
transformed to account for non-normal distribution of metabolite data, mean-
centred to improve interpretability of the models generated and scaled to unit
variance to ensure all metabolites, both high range and low range, were given
equal weight in analysis. However, all fold changes were calculated from
original intensities and not from log transformed intensities. Metabolites of
interest then checked by Xcalibur software / ToxID software to confirm existence
of true peaks in comparison to standards. The standard mixtures used for
retention time checking have been described in detail previously (Howe et al,

2018).
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2.2.9 Mitochondria membrane potential study of SMA treatment effects
and LPS/CpG addition effect on SMA pre-treated macrophages, using

Confocal Microscopy and Flow Cytometry

2.2.9.1 Determination of mitochondrial membrane potential study using

confocal microscopy

BMMs were seeded at 0.5 x10° cells/ml suspended in complete RPMI and
rested on sterile 13mm cover slips for 2 hours at 37°C in a humidified
atmosphere of 5% (v/v) CO, to allow adherence. After resting, 2ml of SMAs at
a concentration of 5ug/ml were added on the top of cover slips and the samples
were incubated for 18 hours. Complete RPMI medium was then aspirated and
the glass slides were washed with PBS three times and then placed into a fresh
6-well plate with complete DMEM, phenol red-free, mixed with 20 nM TMRM
and 50 nM MTG and incubated at 37°C in the dark for 30 minutes. Cells were
then fixed, using 4% PFA, ChemCruz, by adding 500 ul to each well for 20
minutes and washed tice with PBS. Cells afterwards permealised in a PBS
solution containing, 1% FBS, 0.5 % Triton X-100, and then washed three times
with PBS containing 1% FBS. To stain cell nuclei, DAPI solution was used, at
lug/ml, AAT Bioquest, and allowed to be incubated for 10 minutes at room
temperature. Cells were then washed twice with PBS, water and left to air-dry
briefly. Coverslips were then mounted with few drops of glycerol and imaged on
a Leica SP5 confocal microscope with an excitation laser of 550 nm and
detection set for 560-650 nM using a 40x oil-objective lens. A number of images

were taken for each treatment.

In the LPS-treated macrophages, which were pre-treated with SMAs for 18
hours, LPS was added at concentration of 100 ng/ml and the samples were
incubated at 37°C in a humidified atmosphere of 5% (v/v) CO; for 24 hours.
Following stimulation, the medium was aspirated and coverslips were washed

81



with PBS three times and then the medium was replaced in the 6-well plate with
fresh complete phenol red-free DMEM containing 20 nM TMRM and 50 nM MTG
and the samples were incubated at 37°C in the dark for 30 minutes. The cells

were then fixed and imaged as above.

2.2.9.2 Mitochondria membrane potential study using Flow cytometry

BMMs were plated and stimulated with SMAs only / SMAs pre-treatment
followed by LPS activation as in section 2.2.4. Stimulated macrophages were
next stained as in section 2.2.13.1. Cells were then analysed using FACS in
which the cells were placed as 0.5 x 10° / FACS tube and stained with anti-
mouse CD16/CD32 for 5 minutes to block nonspecific binding of
immunoglobulin to FC receptors. Cells then were stained with a mix of anti-
CD11b (BD Pharmingen), anti-F4/80 FITC (eBioscience) and anti-mouse F4/80,
PE (eBioscience) along with Fluorescence Minus One (FMO) controls and
placed in a dark cool place for 25 minutes after which they were washed in
FACS buffer. Cells were then re-suspended in 300ul FACS buffer and readout
using a FACSDiva immunocytometry system (BD Pharmingen) to determine the
cell population that express both CD11b and F4/80 surface markers and mean

fluorescent intensity of TMRM and MTG were analysed using FlowJo software.

2.2.10 Migration study of SMA treatment effect on BMMs and LPS/CpG

addition effect on SMA pre-treated macrophages

BMMs, which were generated as in section 2.2.2 and identified as in section
2.2.3, were re-suspended in serum-free medium to a final concentration of
1x10%/ml. Following the Boyden chamber assay (Boyden, 1962b, Chen, 2005),

cell culture inserts, which were designed with 0.8um polyethylene terephthalate
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membranes with a size suitable for macrophages (Greiner Bio-One), were
placed in a 24 well cell culture plate, thereby forming two compartments; the
upper compartment of the insert and the lower compartment of the plate well.
550 ul of complete RPMI were added to the lower compartment of the insert
and 200 pl of prepared cell suspension were loaded into upper compartment of
cell culture insert and rested for 2-4 hours. After resting, 50 ul of SMAs at a
concentration of S5ug/ml were added to the lower compartment with an equal
amount of complete RPMI to the control groups and incubated for 18 hours at
37°C in a humidified atmosphere of 5% (v/v) CO.. After 18 hours, the complete
RPMI, in the lower compartment, was removed and replaced by 450 pl of fresh
serum-free complete RPMI mixed with 8 yM Calcein-AM (eBioscience) and
incubated in dark for 45 minutes at 37°C in a humidified atmosphere of 5% (v/v)
CO; to allow staining of migratory cells. Cells, non-migrated on the upper
compartment, were aspirated and the inserts were placed into a freshly
prepared 24 well cell culture plate containing 500 ul/well of prewarmed
TrypLE™ Express Enzyme (1X) (no phenol red) solution to allow detachment
of stained migratory cells, and then incubated for 10 minutes at 37°C and 5 %
COg, with agitation of the plate from time to time. Cell culture inserts were then
discarded and 200 pl of the TrypLE™ solution was added to the lower
compartment which now contained the migratory cells the samples were then
transferred into a black flat bottom 96 well plate with an equal volume of
TrypLE™ A added as a blank. Cells then were readout at an excitation

wavelength of 485 nm and an emission wavelength of 520 nm.

2.2.11 Measurement of NO production in BMMs

BMMs were plated and stimulated with SMAs only / SMAs pre-treatment
followed by LPS /CpG activation as in section 2.2.4. 50pL of cells supernatants
then were collected and added into wells of a 96 well plate (in triplicate for each
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condition). Greiss Reagents (A+B) were then mixed in a ratio of 1:1 [2% (w/V)
sulphanilamide in 5% (v/v) H3PO4 and 0.2% (w/v) naphylethylenediamine HCI
in water] and 50puL of the mix were added to the cell supernatants in each well.
The 96 well plate was then incubated in the dark for 10 minutes. The
absorbance was then read using a Polarstar Omega plate reader at 540 nm.
Nitrite production was determined relative to a standard curve constructed with
solutions of sodium nitrite (NaNO;) as described by (Griess, 1879) from a 10

mM stock solution of NaNO- prepared in complete RPMI 1640 cell medium.

2.2.12 Cytokine stimulation assay

BMMs, generated as in section 2.2.2 and identified as in section 2.2.3, were
plated in triplicate at a density of 1 x 10° cells/ml and rested for 5 hours in
complete RPMI-1640. The complete RPMI was then aspirated and different
conditions were set by adding 100 pl of:

- SMAs at concentration of 5 pg/ml

- Glycolysis cell culture permeable substrates at a concentration of 5 mM
lactate; 5 mM pyruvate and 1mM 2-deoxy glucose as recommended by (Mills
et al., 2016)

- TCA cell culture permeable substrates at a concentration of 10 mM citrate; 1
mM a-ketoglutarate; 10 mM dimethylmalonate; 25uM dimethylefumurate;1 and
5 mM succinate which as recommended by (Mills et al., 2016)

- Taurine was tested at a concentration of 20 mM which represents its
concentration in leukocytes according to (Fukuda et al., 1982, Learn et al., 1990,
Green etal., 1991) .

All above samples, were added to the cells and incubated at 37°C in a
humidified atmosphere of 5% (v/v) CO,, for 18 hours with an equal amount of
complete RPMI to the control group. LPS (Salmonella and Escherichia coli), at
a concentration of 100 ng/ml, was then added for 24 and 48 hours. Finally,
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supernatants were collected to determine cytokine production/inhibition by

ELISA.

2.2.13 ELISA

Interleukin-6 (BD Pharmingin, Oxford, UK) and IL-13 (R&D Systems, Abingdon,
UK) production and inhibition were measured using enzyme-linked
immunosorbent assays (ELISAs). ELISA was performed according to the
supplied manufacturer’s instructions. 96 well ELISA plates, High binding from
Greiner BioOne, were prepared by adding 50 pl capture antibody diluted in
specified coating buffer; 0.1 M sodium carbonate pH 9.5 for IL-6 and PBS with
pH 7.2-7.4 for IL-1B for the coating step. Plates then were washed three times
in wash buffer containing PBS with 0.05 % Tween 20 and dried by blotting. The
plates then were blocked with 200 ul assay diluent (PBS with 10% FCS for IL-
6; PBS with 2%BSA for IL-1B) and incubated at room temperature for 1 hour.
After washing, as above, 50 ul samples were added to the plates either neat for
IL-1B or diluted in assay diluent for IL-6. Standard cytokine samples that had
been serially diluted were added, 50 pul, per well, to generate a standard curve
and incubated at either room temperature for two hours or at 4°C overnight.
Plates were then washed five times in wash buffer, dried for addition of detection
antibody, 50 ul per well. Detection buffer was diluted in assay diluent, at the
concentration recommended by the manufacturer for both cytokines. For IL-6,
the enzyme reagent, streptavidin-horseradish peroxidise conjugate, was diluted
in the detection antibody [is this correct?] and the plates were incubated for an
hour. For IL-1, plates were incubated with detection antibody for two hours
before washing and addition of the enzyme-streptavidin conjugate, diluted in
assay diluent, for 20 minutes. After seven washes, with a 30-60 seconds-soak
for each wash, 50 pl of TMB substrate solution was added to the plates. All
reactions were stopped using 25 pl of 2 NH»SO.a. Plates then were read at 450
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nm on an Epoch microplate spectrophotometer (BioTek) and the data obtained

analysed using Gen5 and Prism 7.

2.2.14 Phenotype Microarray assay of SMAs alone and LPS/CpG addition

to SMAs pretreated macrophages

BMMs were resuspended, at concentration of 2 x 10%/ml, in the MC-0 Medium,
composed of IF-M1 (Technopath Distribution, Tipperary, Ireland) medium
supplemented with 5.3% (v/v) dialysed foetal bovine serum (dFBS) (Gibco,
Paisley, UK), 1.1% of 100x Pen/Strep solution (Gibco, Paisley, UK), and 0.16%

(v/v) of 200 mM glutamine (final concentration 0.3 mM).

BMmMs then plated, in PM-M1 and PM-M2 plates (Technopath Distribution,
Tipperary, Ireland), at a concentration of 0.04 x 10%/ml in 20 pl and rested for 90
minutes -2 hours. After resting, BMMs were treated with 5 pug/ml SMAs in 30 pl,

using MC-0 Medium, for 18 hours.

With LPS/CpG addition to SMA-pre-treated macrophages; SMAs were added
in MC-0 Medium at the same concentration but in 20 pl volume for 18 hours and
then LPS / CpG added at concentration of 100ng/ml and 100uM respectively in
10 pl volume and incubated at 37°C in a humidified atmosphere with 95% Air-

5% CO, for 24 hours.

Following incubation, the cells were stained with Biolog Redox Dye Mix MB,
(Technopath Distribution, Tipperary, Ireland), by adding 10 puL of 6X per well.
The plates then were sealed with tape to prevent off-gassing of CO, and
incubated from 1 to 24 hours to allow optimum reduction of the tetrazolium dye.
The reaction then was stopped by adding 2% SDS solution and endpoint read
was performed at 590 nm with subtraction of a 750 nm reference reading (A590-

750) which corrects for any background light scattering.
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Results

Chapter 3. Application of untargeted
metabolomics profiling to understand the
mechanism of action of small molecule
analogues (SMAs) of ES-62
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3.1 Introduction

ES-62, a molecule secreted by the filarial nematode Acanthocheilonema viteae,
has a range of immunomodulatory effects which includes rendering B
lymphocytes hypo-responsive to crosslinking of the B cell receptor (BCR) for
antigen recognition (Harnett and Harnett, 1993b), inhibiting FceR1-induced
activation of mast cells (Melendez et al., 2007a) and subverting TLR4 signalling
following PAMP stimulation in macrophages and DCs (Goodridge et al., 2001a)
. Its immunomodulatory effects have been linked to its post-translational
glycosylation and subsequent esterification by phosphorylcholine (Harnett and
Harnett, 2009). However, ES-62 is not suitable for drug therapy due to its
potential immunogenicity and therefore a library of Small Molecule Analogues
(SMAs) was designed based on phosphorylcholine moiety of ES-62 with the aim
of mimicking its anti-inflammatory activities (Al-Riyami and Harnett, 2012, Al-
Riyami et al., 2013a). Initially these SMAs were screened to investigate their
effects on the production of the Th1/Th17- promoting inflammatory cytokines IL-
12p40 and IL-6 by mouse bone marrow-derived macrophages by treating the
cells with the SMAs for 18 hours and then stimulating them with TLR ligands —
LPS (TLR4), BLP (TLR2) or CpG (TLR9) - for 24 hours. During the screening,
it was found that some of the SMAs were indeed able to mimic the effects of
ES-62 on PAMP-induced macrophage cytokine production, whereas some
showed a selectivity for the cytokine being targeted plus, surprisingly, some
increased pro-inflammatory cytokine production (Al-Riyami et al., 2013a), a
result which had not previously been seen as an effect of ES-62.

The SMAs were also screened to check on their abilities to mimic ES-62 in
inhibiting mast cell activation via suppression of calcium signalling (Ball et al.,
2013a). In particular, among 65 screened SMAs, few were found to resemble

ES-62 in its ability to affect FceR1-mediated calcium mobilization. However, the
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SMAs which resembled ES-62 in this assay were further tested for their ability
to inhibit mast cell degranulation as well as the production of IL-6 and TNF-a
after FceRI -mediated IgE crosslinking (Rzepecka et al., 2014b). Only SMAs
1l1a and 12b were found to mimic ES-62 in its efficiency in inhibiting cytokine
responses by macrophages, mast cells, and also dendritic cells (DCs). Low
molecular weight sulfones, other than 11a and 12b, such as 11e, 11h, 11i and
11k were tested on DCs and were found to inhibit LPS-induced pro-
inflammatory cytokines (Lumb et al., 2017). However, 11la and 12b, also
resemble ES-62 in it its ability to protect against arthritis and asthma in mouse
models, illustrating the potential of these compounds to be active against
inflammatory diseases (Pineda et al., 2012) and suggesting the need for further
testing to reveal the mechanism of action underlying their immunomodulatory

effects.
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3.2 Results

3.2.1 Bone marrow macrophages production
A study of the effect of SMAs on the metabolome, in this project, was conducted
with the aid of bone marrow-derived macrophages (BMMs). BMMs were
cultured from the femurs and tibias of 6-8 week-old BALB/c mice in DMEM
medium supplemented with 20% L929 cell medium for 7 days to generate
BMMs. The macrophages were then analysed to confirm their identity by using
flow cytometry. A minimum of 92% and maximum of 98% of co-expression of
CD11b* and MHC II* was recorded for the macrophages used for the
metabolomics studies. Figure 3.1.1 describes the gating scheme used in

phenotyping BMMs.
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Figure 3.1: Macrophage phenotyping using flow cytometric analysis

The bone marrow-derived macrophage (BMM) phenotype was assessed by
flow cytometric analysis of co-expression of CD11b and MHC Il. To assess the
population, size and granularity of BMMs, A: dot plot analysis of FFS versus
SSC was used to give the size and granularity. B: gating on the single cell
population, C: position and percentage of the single positive staining of F4/80-
expressing cells population using fluorescence minus one (FMO) control
system. D: position and percentage of the single positive staining of CD11b-
expressing cells using fluorescence minus one (FMO) control system. E: double
positive staining of CD11b and F4/80 on cells revealing macrophage population
percentage.

91



3.2.2 Effect of SMAs on the BMM metabolome

The list of metabolites affected by the SMAs is shown in Table 3.1.
Immunomodulatory SMAs 11a and 12b induced a number of changes whereas
inactive 190 had very little effect. Oxidative stress can be observed through an
increased production of glutathione disulphide and increased utilisation of L-
cystine by SMAs 11a and 12b. Another main effect produced by 11a/12b SMA
treatment is a significant decrease in taurine and hypotaurine levels. The active
SMAs also decreased the levels of creatine phosphate and guandinoacetate
and creatine in the creatine pathway as well as downregulating the levels of
some acyl carnitines. The SMAs also decreased the levels of
glycerophosphocholine in the cells which is interesting in view of their similarity

to the structure of phosphocholine.

The SMAs 11a, 12b and 190 had almost no effect on either glycolysis or on TCA
cycle metabolites, not showing an alteration in comparison to unstimulated
macrophages. However, the SMAs decreased production of glycerol 3-
phosphate. None of the changes are major, although as will be seen in
subsequent chapters there is a consistent effect on the taurine, creatine and

glutathione pathways and this gives an important directive for the interpretation

of the results in the stimulated macrophages.
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3.3 Discussion

As can be seen from table 3.1, treating macrophages with SMA 11a or 12b significantly
induce some alterations to the metabolism of the macrophages. Starting with their first
main effect, which is increasing the production of glutathione disulfide, it can be
concluded that this is indicative of the metabolism of the macrophages being
challenged by SMA uptake/presence in the culture medium. Up regulating glutathione
disulfide production suggests that the SMAs are subjecting the cells to increasing

oxidative stress by some unknown mechanism.

The SMAs also appear to affect creatine metabolism possibly through decreasing its
precursor guandinoacetate and thus ultimately lead to decreasing phosphocreatine
production. As will be seen in subsequent chapters, control of the formation of
phosphocreatine could have far reaching effects on cell metabolism. It is not clear
whether or not macrophages can make creatine and it is believed that most creatine is
formed in the liver (Daly, 1985).Thus, the SMAs may be affecting creatine uptake from

the culture medium where it is a component of the added FCS.

Another effect observed related to decreased uptake/biosynthesis of taurine as well as
that of its precursor hypotaurine. Taurine is identified generally as an organic osmolyte
(Romio et al., 2001) and the observed changes in taurine uptake might reflect a
mechanism of action for the SMAs as taurine accumulation has been reported to be
linked to cells being in a hyper-osmolality status (Warskulat et al., 1995, Zhang et al.,
1996, Warskulat et al., 1997b, Warskulat et al., 1997a) as well as to macrophages

stimulated with LPS or IFY gamma (Romio et al., 2001).

Generally, the SMAs do not show a clear effect on either glycolysis or TCA

metabolism.

However, decreasing glycerol-3 phosphate, a metabolite that is involved in glycolysis,

in the electron transport chain, in glycerophospholipid metabolism and the
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hyperosmotic stress response was observed. This metabolite is reported as a
promising target in tumor treatment (Lalle et al., 2015). The decrease in glycerol-3
phosphate was observed along with a decrease in diglycerol phosphate as well as sn-
glycero-3-phosphoethanolamine and sn-glycero-3-phosphocholine which are major
components of cellular membranes (Kennedy, 1956b, Kennedy, 1956a, Holub and
Kuksis, 1978). Alteration in membrane glycolipids plays a critical role in signal

transduction (Kojima and Hakomori, 1991, Boggs et al., 2000, Schnaar, 2004)

Several metabolites involved in carnitine metabolism were significantly decreased by
11a or 12b treatment. Among them was the carnitine precursor metabolite 4-
Trimethylammoniobutanoate, which is hydroxylated to L-carnitine via oxidative
decarboxylation of 2-ketoglutarate. Carnitine is essential for the transport of activated
fatty acids across the mitochondrial membrane during mitochondrial beta-oxidation

(Kompare and Rizzo, 2008).

In the next chapter, the above effects obtained from SMA-treatments, will be explored
further through challenging macrophages with LPS or CpG stimulation to see if the
effects produced by the SMAs alone are influencing their possible mechanism of action

in countering the effects of macrophage activators.

97



Chapter 4

Metabolomic profiling of CpG-treated macrophages
pre-exposed to ES-62 SMAs
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4.1 Introduction

Cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODNs) are synthetic
oligonucleotides that contain unmethylated CpG dinucleotides in particular sequence
contexts (CpG motifs) (Krieg et al., 1995). These CpG motifs are present at a 20-fold
greater frequency in bacterial DNA compared to mammalian DNA. CpG ODNSs are
comprised four classes of stimulatory CpG: classes A, B and C, and P which differ in
their immune-stimulatory activities (Krug et al., 2001, Marshall et al., 2005).For
example, CpG-A ODNs have been reported to activate NK cells and stimulate
plasmacytoid dendritic cells (pDCs) and macrophages to produce high levels of
interferon-a (Verthelyi and Zeuner, 2003, Lenert et al., 2003). In contrast, CpG-B ODNs
were found primarily, to stimulate B cell proliferation and secretion of immunoglobulins,
and the cytokines IL-6 and IL-10. In addition, CpG-B ODNs induce maturation and
activation of pDCs and macrophages (Hartmann et al., 2003, Verthelyi and Zeuner,
2003), and protect B cells, pDCs and macrophages from apoptosis (Yi et al., 1998,
Park et al., 2002, Sohn et al., 2006) . CpG-B ODNSs additionally have been shown to
induce macrophage migration via NF-kB activation and MMP-9 expression (Rhee et
al., 2007). Class C oligos are claimed to combine the properties of Class A and B, and
are characterized by their complete phosphorothioate (PS) backbone and palindromic

CpG-containing motifs.

CpG ODNs are recognised by mouse TLR9 (Bauer et al., 2001) which initiates a
signalling cascade leading to the production of pro-inflammatory cytokines and, as a
result, the mounting of rapid responses to microbial pathogens (Hacker et al., 2000).
The immune response to CpG ODNSs is dependent on MyD88 activation (Schnare et
al., 2000) and this response is completely lost in MyD88 knock out mice (Hoffmann et

al., 1999, Takeuchi et al., 2000).
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The SMAs were screened earlier in vitro using CpG-B ODNs to determine their
effects on pro-inflammatory cytokines (Al-Riyami et al., 2013a) . 11a and 12b but not
190 were found to decrease the effect of CpG in promoting IL-6 and IL-12 release
(Al-Riyami et al., 2013a). Therefore, in this study | tried to further understand the
mechanism of action of the SMAs through observing their effects on the metabolome
of CpG-activated macrophages. The results of a metabolomics study of the effect of
CpG on macrophage response are thus reported for the first time and no literature
has been found regarding metabolic profiling of the effects of CpG ODNSs in

macrophages or other immune system cells.
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4.2 Results:

As shown from table 4.1, treating macrophages with CpG for 24 hours alters their
metabolome in many pathways. This can be seen through an increase in the
production of metabolites involved in oxidative stress, taurine metabolism, choline
metabolism, ATP and high energy phosphates, carnitines and carnitine biosynthesis,
purine and pyrimidine metabolism, amino sugar metabolism, arginine metabolism,
glycolysis, TCA cycle, pentose phosphate pathway and creatine metabolism. The
metabolites involved in fatty acid and phospholipid biosynthesis pathways show a

variable pattern between increases in some instances and decreases in others.

In comparison, pre-treatment of the CpG activated macrophages with the SMAs has
changed the CpG metabolome in comparison with CpG treatment alone (table 4.1)
in only a few pathways. The main differences between the metabolomic response to
treatment with CpG alone and CpG in the presence of the the SMAs are in the
creatine metabolism and glutathione biosynthesis pathways. The metabolites
involved in the creatine pathway include glycine, arginine, guandinoacetate, creatine
and phosphocreatine whereas the metabolites included in the glutathione
biosynthesis pathway are L-cysteine, L-phospho-L-serine, L-cystine, gamma-L-
Glutamyl-L-cysteine, glutathione, S-glutathionyl-L-cysteine and glutathione
disulphide. There were some differences between the two active SMAs but there
were also marked changes produced by 190 in comparison to CpG treatment alone
in some cases. Thus, to simplify discussion changes that were consistent with the
effect of the two active SMAs and were > 1.5 or < 0.66-fold relative to CpG treatment

alone have been highlighted in red in table 4.1 for more detailed discussion.

Some isolated metabolites in various pathways showed significant variations in fold

change in comparison to changes induced by CpG treatment alone. These include
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choline phosphate, sn-glycero-3-Phosphocholine, UDP, UDP-glucose, UDP-
glucuronate, GDP-mannose, UDP-N-acetyl-D-glucosamine, D-Ribose 5-phosphate,
phosphoribosylglycinamide, sedoheptulose 7-phosphate, 3-Phospho-D-glycerate,
inosine monophosphate, D-glucosamine and 5'-methylthioadenosine. In order to
simplify discussion and attempt to develop a hypothesis for a mechanism of action

for the SMAs it can be suggested that many of these metabolites depend on ATP
supply.

All metabolites detected and listed in table 4.1, which is from one run with 5 replicates
of each treatment were also consistent in the pattern of change in at least 2/3
metabolomic runs (the majority of the changes occurred in all 3 replicates with 5/6
incubations in each run). Table 4.1 includes the detection mode, mass to charge ratio,
retention time, p-value (P) and fold change (F) which is calculated in comparison to
unstimulated macrophages. The other two runs tables are listed in appendices 11

and 12.

Tables 4.2-4.4 show the data obtained from labelling experiments where *Cg-
glucose was added to the culture medium of the macrophages and then stimulation
with CpG or CpG + SMAs was carried out. The incubation was allowed to continue
for 4, 8 or 24h. The labelling studies gave an indication or the rate of flux through
glycolysis or the TCA cycle which were increased in all treatments in comparison to

the control.
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4.3 Discussion

The main effects of 11a and 12b on CpG-activated macrophages were found to be in
downregulating the creatine pathway and upregulating the glutathione biosynthesis
pathway. Down regulation of the creatine pathway was observed even at the outset
in the macrophages treated with SMAs alone. Thus, the SMAs may be decreasing
the amount of energy produced by oxidative phosphorylation without targeting the
TCA cycle directly as explained below. As the metabolomics experiments were
carried out they suggested various biological experiments to underpin the
metabolomics observations. These are described in chapter 7 but since they are
directly relevant to the metabolomics data the discussion below draws on them to

support the hypotheses arising from the metabolomics data.

The uptake of creatine by macrophages is rapid and it has been proposed the
macrophages have a high requirement for creatine in order to form creatine
phosphate which is required for phagocytosis (Loike et al., 1986). A previous study
measured creatine uptake in macrophages using a medium that substituted Na*
buffer with choline chloride buffer, demonstrating the Na* dependence of creatine
uptake. Creatine is generally synthesised by the liver rather than the tissues that
utilise it so has to be taken up from the blood stream. The creatine transporter has
similar homology to the transporters for various neurotransmitters and for taurine
(Snow and Murphy, 2001). Inhibitors of creatine transport include guanidino
propionate, which has a strongly inhibitory effect, guanidino butyrate and arginine
(Moller and Hamprecht, 1989). Taurine has a weakly inhibitory effect suggesting
some commonality between the transporter for creatine and the transporter for
taurine. The SMAs have some similarities to the structure of taurine and might thus

affect creatine transport in this way. The immunosuppressant molecule cyclosporin
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A has been found to alter the availability of the creatine transporter and thus have an

effect on creatine uptake (Tran et al., 2000) .

Given that creatine tends to be formed in the liver it is likely that uptake of creatine is
being affected by the SMAs rather than its biosynthesis. Guanidino acetate can be
used to biosynthesise creatine but it is not clear if macrophages have the ability to
undertake the single biosynthetic step required for converting guanidino acetate to
creatine. However, guanidino acetate levels are lower in the SMA-treated
macrophages and this could be either due to decreased uptake or increased
biosynthesis of creatine from guanidino acetate within the cells to compensate for
reduced uptake of creatine. The major role of creatine is in the transport of high
energy phosphate from mitochondria to the cytosol. Creatine does this indirectly
through accepting a phosphate group from ATP in mitochondrial intermembrane
space in order to continually regenerate ADP which is then converted once again to
ATP by the mitochondrion (Guimbal and Kilimann, 1993, Wyss and Kaddurah-Daouk,
2000) . The phosphocreatine molecule has a diffusion rate about 3X that of ATP so
it can rapidly export phosphate to wherever regeneration of ATP from ADP is required
(Brown, 1992, Jacobus, 1985) . In addition, creatine has a diffusion rate around 3
orders of magnitude higher than that of ADP so that supplies can move rapidly to
maintain the ADP/ATP ratio if the rate of ATP production by the mitochondria is
increased (Jacobus, 1985). Previous work has suggested that the TCA cycle is
disrupted during the inflammatory response in macrophages and there is a switch
towards anaerobic glycolysis (O'Neill, 2015). However, in the current work it would
appear that all the intermediates in the TCA cycle are elevated and that there is an
increase in NADH levels compared with the control. The NADH/NAD+ ratio is not

greatly changed in the treated versus control cells and is between 35 and 50. It has
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been estimated that the NADH/NAD+ ratio in the cytosol is between 300 and 700
while the ratio in mitochondria is around 7 (Williamson et al., 1967). Thus, it would
seem that the increased levels of NADH originate from mitochondria and thus from
the TCA cycle rather than glycolysis because the ratio of < 50:1 NADH/NAD+ is well
below >300:1 ratio available from glycolysis. Glycolysis can produce two moles of
NADH for each molecule of glucose reaching the TCA cycle assuming that some of
the NADH is not consumed in the production of lactate. The TCA cycle produces 6
moles of NADH and 2 moles of FADH; for each molecule of glucose consumed and
each mole of NADH yields 3 moles of ATP (2 from FADH,). Thus, energy generation
from the TCA cycle is much more efficient than from glycolysis. In order to determine
the flux through the TCA cycle and glycolysis *Ce-glucose labelling was used. The
first thing which was obvious was that much of the label accumulated in lactate and
all the CpG treatments produced labelled lactate at about 20-30% of the unlabelled
lactate in comparison to around 10% incorporation for the control. This indicated that
glycolysis was indeed increased by the treatments. Labelling at the 13C; level was
also observed in itaconate, citrate and malate (table 4.2). The labelling for citrate was
around 6-10% for the CpG control and in the SMA treated cells thus lower than in
lactate but given that ATP production is higher from the TCA cycle this still indicates
appreciable energy generation from this source. There was no strong evidence for a
disrupted TCA cycle as judged from the labelling with malate which incorporated
around 6% of label in comparison to around 1% in the control. Malate is almost at the
end of a complete cycle so the label has passed the reported break in the cycle at
succinate (O’Neill, 2015). In addition, the generation of large amounts of labelled
lactate suggests much of the NADH derived from glycolysis is being used to form
lactate. Thus, it is reasonable to assume that most of the additional NADH in the cells
is formed by the TCA cycle and that thus, creatine is required for export of the high

energy phosphate, generated from NADH, from the mitochondria in the form of
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phosphocreatine. Motility and phagocytosis consume a lot of ATP and are thus
dependent of phosphocreatine to maintain ATP supplies. The behaviour of
macrophages could be considered to be analogous to that of other high energy cells
such as muscle cells. The depletion of phosphocreatine (PCr) and ATP is linked to
the high levels of IMP formation in muscle cells (Dobson and Hochachka, 1987) which
occurs when the regeneration rate for ATP falls below requirement and some of the
“‘endogenous pool” of ATP in muscle cells is consumed and this can lead to some of
the ATP pool entering the oxypurine cycle via formation of IMP from AMP (L Ipata
and Balestri, 2014) . From table 4.1 it can be seen that the SMAs deplete PCr and
this is associated with increased production of IMP. This is also true for the CpG
alone but in this data set the IMP levels are higher for the SMA treated samples. This
suggests a fall in the supply of phosphocreatine resulting in some AMP being lost to
the oxypurine cycle. Overall the ATP pool levels in the cells treated with SMAs are
similar to those treated with CpG alone so the effect of the SMAs is not on ATP levels
per se but rather on the rate of supply to ATP to where it is needed. A biological
observation supporting the effect of reduced rate of supply to ATP where it is required

is the effect of the SMAs in reducing macrophage motility (chapter 7).

A secondary effect of the SMAs on the macrophages was in upregulation of
metabolites indicative of oxidative stress in the cells. As can be seen, pre-treating
BMMs with 11a and 12b but not 190, the negative control, upregulates metabolites
involved in glutathione production resulting in significant increase in glutathione
biosynthesis by SMA pre-treatment in comparison to treatment with CpG alone.
Gamma-L-Glutamyl-L-cysteine, a glutathione precursor, was the most increased
metabolite in this pathway when the cells were pre-treated with 11a and 12b but not

190. This is possibly due to its role in as an intermediate in glutathione production.
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However, additional functions of y-glutamylcysteine have been reported (Sullivan et
al., 2013, Quintana-Cabrera and Bolanos, 2013). A study by Quintana et.al reported
that mitochondrial y-glutamylcysteine was shown to be sufficient to respond to
oxidative stress irrespective of the cytosolic glutathione concentration (Quintana-
Cabrera and Bolanos, 2013). Specifically, y-glutamylcysteine was shown to be an
enzymatic cofactor for glutathione peroxidase 1, and this system was able to control
mitochondrial H>O, concentrations to limit cellular damage. However, it is unclear
how y-glutamylcysteine is partitioned between detoxification and glutathione
synthesis pathways and how oxidized y-glutamylcysteine is reduced, as this process
is not likely to be mediated by glutathione reductase. GSH, GSSG and y-
glutamylcysteine upregulation was reported to be linked to increasing expression of
the Nrf2/ARE/HO-1 pathway and endogenous antioxidants (Gupta et al., 2012).
Interstingly SMA12b has been previously linked to increased activity of the
Nrf2/ARE/HO-1 anti-oxidant pathway (Suckling et al., 2018).The effects of the SMAs
in increasing oxidative stress might stem from their effect on creatine uptake with the
consequent effect on ATP transport out of the mitochondria. A major source of
oxidative stress arises from ROS species escaping from the mitochondria and this
depends on mitochondrial permeability. In chapter 7 the polarisation of the
mitochondrial membrane was explored by using dye staining and it was apparent that
treatment with the SMAs decreased the polarisation of the mitochondrial membrane
in comparison with LPS treatment alone suggesting that the mitochondrial membrane
might be more permeable (as will be discussed in chapter 5, the effects of LPS are
similar but not identical to those of CpG). A reduction in membrane potential reduces
the ability of mitochondria to generate ATP (Zoratti and Szabo, 1995, Huttemann et
al., 2008). ADP is a major inhibitor of mitochondrial membrane permeability and the
increased permeability of the mitochondria fits with the hypothesis that lowered

availability of creatine results in lower levels of ADP. The Biolog microarray data are
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difficult to explain since CpG-treated macrophages produce much greater reduction
of the tetrazolium dye with most of the carbon sources in comparison with cells
treated with CpG + SMAs. However, considering that tetraethyl rhodamine methyl,
used to test mitochondrial permeability, is not strongly retained in the mitochondria of
LPS/SMA-treated macrophages it might be that the tetrazolium dye used in the Biolog
assay is not strongly localised in the mitochondria of LPS/SMA-treated macrophages.
This would result in less efficient reduction of the dye since it largely depends on
NADH (Berridge et al., 2005) and most of the NADH is localised in the mitochondria.
Thus the Biolog assay may be largely measuring the degree of mitochondrial
polarisation with high values being returned where the mitochondria are highly
polarized and the cationic tetrazolium dye becomes localised within the mitochondria.

The SMAs did not change the enhanced glycolysis rate resulting from CpG
activation as this is indicated by the similarity in the lactate production between CpG
and the CpG + SMA incubations. Lactate being a marker for the glycolytic rate
exceeding the TCA cycle rate. This is also supported by the incorporation of the **C-
label into lactate which is higher than control for both CpG ad CpG+ SMA treatments.
While there are differences in the label incorporation between individual runs the
variability makes it difficult to be confident that the SMAs are affecting incorporation
of the label into lactate. It is clear that the rate of incorporation of label in all treated
cells is about 4 x that of the control, but the rate of increase of incorporation of the
label after the first 4 hours in slow and assuming that a steady state would be
indicated by equal amounts of labelled/unlabeled lactate there is still some way to go
at 24 h for the pool of unlabeled glucose in the cells to be replaced by labelled

glucose.

CpG activation increases ribose 5-phosphate production and sedoheptulose 7-

phosphate production greatly in comparison with controls and the pentose phosphate
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pathway enters the biosynthetic pathway for nucleotides in the form of
phosphoribosylglycinamide which is also hugely elevated. This is in line with the
increased demand for high energy phosphates such as UTP, CTP and ATP. A side
effect of enhanced flux through the pentose phosphate pathway is increased
production of NADPH which is required to combat oxidative stress through reducing
GSSG back to GSH. The SMAs have some effect on the pentose phosphate pathway
but the increases in these metabolites are still high in the SMA+ CpG treated cells
compared to control. A decrease in sedoheptulose 7-phosphate production could be
the result of high expression of carbohydrate kinase-like protein (CARKL) which is
known to be highly expressed in M2-like macrophages and suppressing it is a marker
of M1-like macrophages (Haschemi et al., 2012). Even though the SMAs decreased
production of ribose 5-phosphate and sedoheptulose 7-phosphate, this did not affect

NADPH production.

Glycerol 3-phosphate phosphate is decreased by the SMA + CpG treatments in
comparison to CpG treatment alone. This is possibly due to the SMAs affecting
oxidative phosphorylation through decreasing production of glycerol 3-phosphate so
less NADH that is formed by glycolysis in the cytosol will be shuttled via the glycerol
3-phosphate shuttle into the mitochondria in order to generate ATP through oxidative
phosphorylation. This might occur via a feedback mechanism where the mitochondria
in the SMA-treated cells are already overloaded with regard to their ability to export

ATP back into the cytosol.

The TCA cycle in all treatments seemed be more activated than in the control as
judged from the incorporation of the *C-label or from the levels of the intermediates

in the TCA cycle, in particular malate. The levels of NADH were higher in all
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treatments than in the control. Thus, the SMAs do not seem to control the TCA cycle
directly through decreasing NADH production in comparison to CpG as CpG as well
as the SMAs have both produced similar levels of NADH. Although, at 24 h the label
incorporation into malate is on average lower with the 11a and 12 b treatments, with
the level of label being so variable it is difficult to tell if this is significant. Once again,
it should be highlighted that there is no strong evidence for a broken TCA cycle and
it seems both glycolysis and the TCA cycle rates increase in response to CpG
treatments although the increase in the glycolysis rate is faster than the increase in

the rate of the TCA cycle.

SMA-treated cells revealed increased production of NG-Dimethyl-L-arginine in
comparison to cells activated with CpG alone. NG, NG-Dimethyl-L-arginine (ADMA)
is an endogenous inhibitor of nitric oxide synthase. The elevation of ADMA has been

reported to be associated with reduced NO production (Vallance et al., 1992).

SMA-treatment slightly increased production of UDP, UDP —glucose and UDP-
glucuronate and uridine diphosphate-N-acetyl-alpha-d-glucosamine (UDP-GICNAC),
a marker for M2 macrophages. GDP-mannose was also increased. GDP-mannose is
produced by the catalysis of the reaction between mannosel-phosphate and GTP by
GDP-mannose pyrophosphorylase (GDP-MP). UDP-GIcNAc production is required
for the N-glycosylation of proteins, including mannose and lectin receptors to promote

the function of M2-like macrophages (Jha et al., 2015b).

As can be seen in table 4.1 the CpG treatment changed the levels of a huge number

of phospholipids in particular phosphatidylcholine-type lipids containing highly

unsaturated long chain fatty acids. It would seem likely that these changes would be
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associated with an increase in membrane fluidity. However, these changes were not

significantly affected by the SMA treatments.

Altogether, CpG activation of macrophages induced a M1 like macrophage
phenotype with an increased rate of glycolysis and increased levels of high energy
phosphates. The CpG + SMA treated macrophages were metabolically similar in
many respects. However, there were some differences and it was concluded that
SMA-pre-treatment of CpG activated macrophages might act via inhibiting creatine
uptake with a knock on effect on the export of ATP from the mitochondria into the
cytosol. Reducing the availability of ATP at its site of action, via reducing
phosphocreatine levels, might reduce M1 macrophage function without phenotyping

the macrophages to M2.
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Chapter 5

Metabolomic profiling of the effect of SMA pre-
treatment in LPS- treated macrophages
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5.1 introduction

Pathogens are recognized by pattern recognition receptors and are capable of
inducing innate immunity (Medzhitov and Janeway, 2000, Akira et al., 2006). Innate
activation can be triggered by lipopolysaccharide (LPS) which is an outer membrane
component of Gram negative bacteria. LPS is used as potent activator of monocytes
and macrophages and is recognised by TLR4 (Kayagaki et al., 2013) although recent
evidence indicates that recognition can be through TLR4-independent mechanisms
(Hagar et al., 2013). TLR4 activation induces MyD88 and MaL/Tirap (Toll-interleukin
1 receptor domain containing adaptor protein)-dependent pathways which cause pro-
inflammatory changes, e.g., in cytokines (e.g. IFN-B, IL-12, TNF, IL-6, and IL-1B),
chemokines (e.g. chemokine [C-C motif] ligand 2 CCL2, chemokine [C-X-C motif]
ligand 10 [CXCL10], and CXCL11) and antigen presentation molecules, such as MHC
members, co-stimulatory molecules, and antigen-processing peptidases. These
profiles are controlled by nuclear factor of kappa light polypeptide gene enhancer
(NF-kB), activator protein 1 (AP-1), IRFs, STAT1, and EGR (early growth response)

family members, many of which participate in IFN responses (Hu and lvashkiv, 2009).

LPS as well as IFN-y and recently granulocyte macrophage colony-stimulating factor
(GM-CSF) (Hansen et al., 2008) have been used to stimulate macrophages to yield
an M1-like macrophage profile. LPS among other M1 stimulants is the best studied
one in the immunological context (Martinez and Gordon, 2014) and recently in

metabolomics.

The LPS metabolomic profile is mainly characterised by rapid activation of glycolysis
(Kelly and O'Neill, 2015), a broken TCA cycle after citrate and after succinate (O'Neill,

2015), an elevated pentose phosphate pathway (Tannahill et al., 2013b) , as well as
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upregulation of fatty acid biosynthesis (Posokhova et al., 2008, Feingold et al.,
2012a). In their amino acid profile, M1 macrophages are known for their requirement
for an adequate supply of glutamine, for directing arginine for nitric oxide production
with formation of citrulline as a result, as well as stimulating tryptophan catabolism

through the high expression of indoleamine-2,3-dioxygenase (IDO) and increasing

production of kynurenine metabolites which are claimed to activate the aryl
hydrocarbon receptor(AHR), which is a ligand-activated transcription factor (Bessede

et al., 2014b).

Pre-treatment of LPS-activated macrophages by ES-62 SMAs 1la and 12b was
found to down- regulate LPS-induced IL-6, IL-12 and IL-13 secretion significantly (Al-
Riyami and Harnett, 2012, Al-Riyami et al., 2013a, Rzepecka et al., 2014b, Rodgers
et al., 2015c) and thus the SMAs would be predicted to have effects on the LPS-
induced metabolic profile. Through applying the exact conditions carried out

previously for the cytokine studys this was investigated in the current project.
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5.2 Results:

The SMA 190 was included as a negative control in this experiment since it does not
exert immunomodulatory effects and thus most of the effects of interest are observed
in treatment with 11la and 12b. Stimulating macrophages with Salmonella LPS
upregulates several metabolic pathways in comparison to unstimulated ones. This
can be characterised by increases in the production of metabolites involved in
oxidative stress, taurine metabolism, ATP and high energy phosphates, carnitines
and carnitine biosynthesis, purine and pyrimidine metabolism, amino sugar
metabolism, arginine metabolism, glycolysis ,TCA cycle ,pentose phosphate
pathway, creatine metabolism and phospholipid biosynthesis whereas the detected
metabolites involved in fatty acid pathways are showing a variable pattern between
increases in some and decreases in others as shown in Table 5.1. As discussed in
the previous chapter, although there were some differences in the effects of the active
SMAs the changes which are highlighted in the discussion are those where there are
consistent effects for the two SMAs. 190 also had some strong effects on selected

metabolites but is is presumed that these are off target.

In comparison, pre-treating BMMs with SMAs for 18 hours and then stimulating them
with LPS for 24 hours changes the metabolome profile of LPS stimulated
macrophages to some extent but many changes remain broadly the same as those
for LPS stimulation alone. The main differences from LPS treatment alone involve
further upregulation of glutathione biosynthesis, significant downregulation of
creatine synthesis/uptake, increasing taurine uptake and a decrease in ATP and
many high energy phosphate metabolites. To simplify discussion changes that were

consistent with the effect of the two active SMAs and were > 1.5 or < 0.66-fold relative
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to LPS treatment alone have been highlighted in red in table 5.1 for more detailed

discussion.

Upregulation of the glutathione pathway is indicated with the high production of
metabolites such as gamma-L-Glutamyl-L-cysteine, glutathione, S-glutathionyl-L-
cysteine glutathione disulphide, prenyl-L-cysteine, S-allyl cysteine and glutamate. An

increase in NADPH might indicate increased recycling of GSSG back to GSH.

Inhibiting creatine uptake is indicated by downregulation of the metabolites involved
in the creatine pathway including guandinoacetate, creatine and phosphocreatine. It
is likely that the macrophages are creatine-dependent thus need to take it up from
the growth because within the body most creatine is produced in the liver. Thus, the
lower levels in creatine and phosphocreatine in the SMA-treated macrophages might

imply impaired uptake of creatine.

SMA pre-treatment decreases taurine uptake in comparison to LPS-activated
macrophages. It is not clear whether or not the macrophages are taurine-dependent
so this decrease might be due to decreased taurine uptake, there is some degree of
homology between the taurine transporter protein and the creatine transporter (Snow

and Murphy, 2001).

Other changes induced by SMA-pretreatment include a decrease in metabolites that
are involved in the N/O-glycosylation of proteins such as UDP-glucose, UDP-
glucuronate, UDP-N-acetyl-D-glucosamine, CMP-N-acetylneuraminate and N-
acetylneuraminate. Some of this might be attributed to reduced availability of ATP
which is required to make many other high energy phosphates. These metabolites
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were slightly increased by the SMA plus CpG treatment thus the interaction between

LPS and the SMAs is not entirely equivalent to the interaction with CpG.

The LPS appears to have a large impact on glycolysis with very large amounts of
lactate accumulating even more than in the case of CpG treatment. However, there
is no indication of the TCA cycle shutting down particularly with regards to the large
amount of ketoglutarate accumulating. The SMAs exert a variable control in this
experiment. The labelling with 3Cs-glucose again confirmed an increased rate of
glycolysis was stimulated by LPS although the incorporation of the label appeared to
be a bit lower than in the CpG treatment (tables 5.2-5.4). Itaconate, citrate and malate
were also labelled but the label incorporation into malate and itaconate was not as
high as in the CpG treatment. This might suggest that the LPS treatment does not
stimulate glycolysis and TCA cycle metabolism to the same extent as the CpG

treatment and that the onset of the effect of LPS is slower than that of CpG.
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5.3 Discussion

Pre-treating macrophages with either SMA 11a or 12b prior to treatment with LPS,
was found to affect the metabolic changes induced in macrophages by LPS with
respect to various pathways. Their main effects were exerted in
downregulating/decreasing creatine and creatine phosphate in comparison with LPS.
They also decreased taurine levels in the cells and upregulated glutathione
biosynthesis. All of these effects were observed in the metabolome of macrophages
treated with SMAs alone (chapter 3). Similarly, pre-treating CpG- activated
macrophages with 11a or 12b had the same effects on creatine uptake as well as in
glutathione production whereas their effect on taurine levels was very slight in the
case of CpG treatment (chapter 4). The interactions between the SMAs and CpG and
LPS are thus similar but not identical and indeed the effect of LPS on the macrophage

metabolism was not the same as that of CpG.

By decreasing creatine uptake in the face of LPS treatment, the effect of the SMAs
again points towards the importance of creatine metabolism in their mechanism of
action in that this limits an energy supply in the form of ATP to where it is required
thus producing the anti-inflammatory effects of the SMAs as discussed in chapter 4.
The most obvious consequence of the loss of energy supply is the reduced maotility
of the macrophages resulting from the SMA treatments (chapter 7) which might also
be correlated to reduced phagocytosis if the appropriate biological measurement
were made. The levels of NADH are similar for the LPS- and LPS+ SMA-treated cells,
the glycolytic flux is similarly increased in the various treatment groups, although
labelling suggests not to the same extent as in the CpG treatment. As discussed in
chapter 4, creatine is required to maintain ADP levels by accepting a phosphate
group from ATP. In the SMA-treated cells the ADP levels are lower, as well as the

creatine phosphate levels, in comparison with LPS treatment alone. This fits the
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working hypothesis better than the effects observed with CpG treatment where ADP
levels were slightly raised by the SMA treatments. ADP is one of the main factors
protecting the mitochondria from depolarisation and thus impaired ability to convert
NADH to ATP. Increased mitochondrial permeability results in increased oxidative
stress and this is evidenced by an increase in GSSH levels. GSSG itself has been
shown to increase mitochondrial permeability (Zoratti and Szabd, 1995). It seems
that mitochondrial function is impaired to a greater extent by LPS treatment than by
CpG treatment and that the effects of the SMAs are greater in the case of the LPS

treatment.

The second main effect on the metabolome of SMAs in the presence of LPS
activation is in the upregulation of metabolites reported to be involved in protecting
against oxidative stress in the cells (table 5.1). The most increased metabolite
promoted by 11a and 12b is the glutathione precursor gamma-L-glutamyl- L-cysteine
which has been reported to be important in replenishing glutathione production to
protect cells from oxidative stress. Other important functions by y-glutamylcysteine

were explained in chapter 4.

SMASs, 11a and 12b but not 190, decreased the levels of metabolites involved in
taurine metabolism, namely hypotaurine, taurine and cysteate. This effect was
observed when the macrophages were treated with SMAs alone (chapter 3) although
it was less marked in the CpG-activated macrophages (chapter 4). The fact that
several metabolites in the pathway are affected suggests the effect is more likely to
be on taurine biosynthesis rather than uptake. Nevertheless, the diet is the main
source of taurine (Ward et al., 2011), so it is not known if macrophages have the
capability of making enough intracellular taurine from cysteine and methionine. It is

possible that the higher requirement for glutathione biosynthesis in the SMA- treated
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cells diverts cysteine away from the taurine pathway resulting in lower levels of

taurine.

Both CpG and LPS stimulants used alone were found to upregulate taurine
metabolism suggesting taurine metabolism alteration could correspond to M1
activation or an M1 metabolic profile. A study by Romio et al reported that
macrophages activated by LPS or IFN-y under hypertonic conditions activated taurine
transport, thereby increasing its intracellular concentration (Romio et al., 2001). The
same study indicated that the effects of LPS on taurine transport in macrophages is
mediated by the interaction of LPS with TLR4, as indicated by the lack of response
of TLR4-defective macrophages (Romio et al., 2001). However, the effects of LPS in
increasing intracellular taurine levels in the current study are much lower than those
of CpG. Besides being an osmolyte, taurine is reported to have other functions such
as protecting cells from oxidative stress (Raschke et al., 1995, Schuller-Levis et al.,
1995, Trachtman et al., 1994), modulating intracellular Ca?* concentration (Bkaily et
al., 1997), and affecting K* channel activity (Han et al., 1994). Ca?" is one of the
major factors affecting mitochondrial permeability with increased levels of Ca*

strongly promoting mitochondrial depolarisation.

SMAs, 11a and 12b seem to affect glycolysis in comparison to LPS treatment alone
which is indicated by higher production of lactate in LPS + SMA incubations. Although
LPS treatment produces more lactate over the 42h incubation than the CpG treatment
the *3C label incorporation into lactate is consistently slightly lower in the LPS-treated
cells at 4, 8 and 24h. This might suggest that LPS has a slower onset of action than
CpG and that the acceleration of glycolytic flux is slower such that less of the label is
incorporated. This is also supported by the lower incorporation of label into TCA cycle

metabolites in the LPS treatments compared to the CpG treatments. In addition, 11a
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and to some extent 12b, produced significant decreases in the production of D-
Fructose-1,6-bisphosphate. However, glycolysis remains high in all the treatments
including LPS and it seems that this is not indicative of the anti-inflammatory

mechanism of the SMAs.

There is some indication that the TCA cycle is activated by LPS and with all the
treatments. The main indication of this was hugely increased production of 2-
oxoglutarate and a modest increase in NADH plus the labelling studies show a slow
accumulation of label in malate up to 8 h. However, at 24 h the label in malate is lower

possibly indicating less flux through the TCA cycle.

SMA treatment decreased the production of glycerol 3-phosphate by BMMs. This
effect is also observed in SMAs +CpG treatment as well in treatment with the SMAs
alone (chapter 3 and 4). Again, this suggests possibly less requirement for glycerol

phosphate shuttle for transporting NADH equivalents to the mitochondria.

Many phospholipids were upregulated by LPS as expected (table 5.1) and 11a and
12b downregulated phospholipid levels in comparison with LPS treatment alone, thus
revealing an opposing effect to LPS. However, LPS did not produce the same very
large shifts in long chain highly unsaturated phospholipids that were observed to
increase greatly with the CpG treatments. This again points to a marked difference in
the CpG- vs the LPS-activated macrophages. The effects of the SMAs in reducing
the concentrations of many phospholipids might be an indirect one since ATP is also
required in the formation of phospholipid head groups and in the case of the
SMA+LPS combination there is a reduction in ATP levels in contrast to the CoG+SMA

combination where there is no marked effect on ATP levels.
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SMAs decreased the levels of UDP, UDP —glucose and UDP-glucuronate and uridine
diphosphate-N-acetyl-alpha-d-glucosamine (UDP-GIcNAc) in comparison with LPS
treatment alone (table 5.1). Again, the lowered levels correlate with lowered levels
of ATP which would result in lower lowers of activated phosphates such as UTP which

are required to form the activated UDP sugar conjugates.

In conclusion, we cannot determine whether or not the SMA treatment is resulting in

macrophages with the M1 or M2 phenotype due to the difference in metabolic

responses of LPS- and CpG-activated macrophages compared to controls.
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Chapter 6

Untargeted metabolomics profiling of
macrophages following stimulation with LPS,

interferon-y and interleukin 4
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6.1 Introduction

Macrophages play a critical role in immune responses. They have a number of
different forms (histiocytes, Kupffer cells, alveolar macrophages, microglia, and
others) (Kumar and Jack, 2006a) and play a very important role in antigen
presentation, which activates T lymphocytes, as well as in the phagocytosis of
parasites and microbes (Nathan, 2008a). Macrophages need to be either classically
activated (M1) or alternatively activated (M2) in order to exert their physiological

effects.

Differentiation into the classically activated form of macrophages requires two
signals, a priming signal in the form of IFN-gamma (IFN-y) and a stimulus signal such
as bacterial LPS (Nacy and Meltzer, 1991). LPS firstly will be bound by soluble LBP
and this is followed by binding to soluble or membrane bound CD14 receptor, which
will present LPS to the LPS recognition complex, TLR4 and MD-2. LPS-containing
pathogens and their components will be then taken up by phagocytosis and delivered
to lysosomes where degradation enzymes are located. The processed antigens are
then loaded onto MHC class Il molecules and presented to T cells (Harding et al.,
2003). This process will change the morphology and secretory profile of the T cell to
attract neutrophils, immature dendritic cells, natural Killer cells, and activated T cells.
This is followed further by release of pro-inflammatory cytokines including IL-1, IL-
6, and TNF-a as well as production of NO after iINOS upregulation (Nacy, 1984,

MacMicking et al., 1997b).

Contrary to the classical activation form, the differentiation to alternatively activated
macrophages does not require any priming since adding IL-4 and/or IL-13 would
provide sufficient stimulus (Stein et al., 1992b, Doherty et al., 1993). In a manner

similar to M1 cells, M2 cells will present antigen to T cells, as an antigen/MHCII
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complex which will be followed by changes in their cellular morphology and secretory
pattern, mainly by upregulating the enzyme Arginase | which lowers the levels of
arginine in the cell and thus lowers NO production and which is involved in proline
and polyamine biosynthesis (Modolell et al., 1995, Hesse et al., 2001, Wynn, 2004).
Both activation forms, M1 and M2, are needed to determine the function of the

macrophages as bacteriocides as the M1 form or for wound repair as the M2 form.

Since the two activated forms possess different morphology and cytokine profiles as
well as different functions, it would be logical for them to have different metabolomic
profiles that support the energy demands required for their regulatory function. The
classical and alternative metabolomics profiles of macrophages have been studied
by different groups mainly using young C57BL/6 mice (Rodriguez-Prados et al.,
2010a, Freemerman et al., 2014, Jha et al., 2015b, Fei et al., 2016, Kerrinnes et al.,

2017, Sorgi et al., 2017, Serbulea et al., 2018).

For the aforementioned reasons, as well as to assess if pre-treatment with the SMAs
would result in BMMs with possibly either form of activation, the metabolome of
macrophages exposed to molecules that help drive M1 or M2 polarisation was

investigated.
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6.2 Results

As can be seen from table 6.1, treating macrophages with different activators for 24
h changes the macrophage metabolome in comparison to unstimulated
macrophages. The treatment for 24 h is more in line with previous work on LPS
activation whereas for the treatment with SMAs 42 h incubations were used. The
most important differences between treatments involving LPS or IFNy and IL4 are

highlighted in red in table 6.1.

Stimulating macrophages with either LPS or IFN-y or both, to produce a response
indicative of the M 1 phenotype, mainly upregulated the production of 5'-
phosphoribosylglycinamide, citrulline, N-(L-Arginino)succinate, 4-Methylene-L-
glutamine, propanoyl phosphate, glyceraldehyde 3-phosphate and deoxycytidine.
The same stimulants as well induced general upregulation of metabolites linked to
taurine biosynthesis, ATP and high energy phosphate metabolites, C5-Branched
dibasic acid metabolism, glycolysis, the pentose phosphate pathway and TCA cycle
and creatine metabolism. The changes in some instances were not as marked as
those observed with the 42 h treatment with LPS. For instance, the increases in ATP
were not as marked as with the 42 h incubation, however in contrast, the impact of
the 24 h incubation with LPS was similar to that obtained with the 42 h incubation and

indeed even more marked for some glycolytic intermediates.

On the contrary, treating macrophages with I1L-4, mainly upregulated the production
of L-ornithine which is considered as a marker of M2 macrophage phenotype. IL-4
treatment also increased production of 5'-phosphoribosylglycinamide, even doubling
the increase obtained by either LPS or IFNy or both, and also increases metabolites

involved in creatine metabolism.

IL-4 activation increases glycolysis significantly however it did not significantly
change metabolites involved in ATP and high energy phosphate production,
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carnitines and carnitine biosynthesis, aminosugar metabolism, C5-Branched dibasic
acid metabolism, pentose phosphate and TCA cycle and showed a variation in data

relating to fatty acid synthesis and phospholipids.

Moreover the co-stimulation of macrophages with both LPS and IL-4 induces, mainly,
a similar pattern of changes to those obtained by LPS or IFN-y or both showing
upregulation of metabolites linked to taurine biosynthesis, ATP and high energy
phosphate metabolites, C5-branched dibasic acid metabolism, glycolysis ,pentose
phosphate pathway, TCA cycle and creatine metabolism. There was no marked
effect on fatty acid and phospholipid metabolism pathways as observed for the CpG
and LPS treatments for 42 h and this suggests that observation of these changes
requires a longer incubation time. All the metabolites detected and listed in table 6.1
are consistent in pattern of change in at least 2/3 metabolomic runs (the majority of
the changes occurred in 3 replicates) with 5/6 incubations in each run. The tables
include the detection mode, mass to charge ratio, retention time, p-value (P) and fold
change (F) which is calculated in comparison to unstimulated macrophages. The

other two runs tables are listed in tables 24 and 25 in the appendix.
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6.3 Discussion

6.3.1 Metabolomes of LPS-, IFN-y- and LPS+ IFN-y-treated macrophages

The main effects of LPS, IFN-y and LPS+ IFN-y on the metabolome are the
upregulation of metabolites linked to glycolysis, the pentose phosphate pathway,
TCA cycle, C5-Branched dibasic acid metabolism, taurine biosynthesis, ATP and
high energy phosphate metabolites, oxidative stress and creatine metabolism.
However, what is also noticeable is that the fold increase in ATP levels was less than
that observed for the 42 h incubation exposure with LPS where the increase was
twofold. However, the increase in NADH levels was greater than that observed with
the 42 h incubation suggesting that perhaps there is less conversion of NADH into

ATP with a shorter incubation time.

Increased glycolysis is observed with the accumulation of glucose-6-P, D-Fructose
1,6-bisphosphate, glyceraldehyde 3-phosphate, 3-Phospho-D-glycerate, glycerol-3-
P and lactate, see table 6.1. Glycolysis upregulation has been reported to be
associated with the M1 metabolome (Krawczyk et al., 2010, Rodriguez-Prados et al.,
2010) as well as with rapidly proliferating cells or tumour cells. Increased glycolysis
biosynthesis is associated with the upregulation of many signalling pathways

including the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein

kinase (MAPK) pathways (O'Neill et al, 2016). Studies in LPS-activated

macrophages have reported an increase in glycolysis and emphasized its importance
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in the regulation of phagocytosis, cytokine production, activation of hypoxia-inducible
factor 1a (HIF1a) (Tannabhill et al., 2013b), as well as NF-kB (Rodriguez-Prados et
al., 2010b). It is also considered that the mechanism behind maintaining the
upregulation of glycolysis metabolites is through regulating pyruvate kinase
isoenzyme PKM2, which translocates to the nucleus to interact with HIF1a and

promotes the expression of HIF1a-dependent genes (Luo et al., 2011, Palsson-

McDermott et al., 2015), as well as through diversion of glycolytic intermediates to
promotes biosynthesis of the pentose phosphate pathway, the serine pathway and
the TCA cycle (O'Neill et al., 2016). PKM2 was found to be pro-inflammatory in human
atherosclerotic-coronary artery disease according to Shirai et al (Shirai et al., 2016b).

Moreover, upregulating glyceraldehyde 3-phosphate dehydrogenase (GAPDH) has

been claimed to dissociate from IFN-y mRNA allowing its translation. The presence
of hexokinase 1 in the outer mitochondrial membrane was claimed to allow NLRP3

activation (Moon et al., 2015a).
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In the pentose phosphate pathway 2-Deoxy-D-ribose 5-phosphate, ribose 5-
phosphate, sedoheptulose 7-phosphate and NADPH were upregulated (table 6.1).
This is important to note as the pentose phosphate pathway serves as the second
important cytosolic pathway for cell proliferation and survival, firstly due to its
production of nucleotide and amino acid precursors required for cell growth and
proliferation through its non-oxidative branch (O'Neill et al., 2016) and secondly for
the generation of reducing equivalents of NADPH which maintain redox balance and
which are also important for fatty acid synthesis. During an infection, macrophages
require NADPH-dependent functions such as rapid ROS production to kill pathogens
as well as GSH and other antioxidants to prevent excessive tissue damage. Previous
work has indicated that sedoheptulose kinase in M1 macrophages is down regulated
but has high expression in M2-like macrophages, while the generation of nucleotides
is still upregulated (Haschemi et al., 2012). In the current case there is no evidence
for upregulation of the pentose phosphate in the IL-4 treatment but in the case of LPS
and IFNy treatments there is an increase in sedoheptulose phosphate and ribose
phosphate as well as a very large increase in 5'-phosphoribosylglycinamide where

the pentose phosphate cycle joins the pathway for nucleotide biosynthesis.

An increase in part of the TCA cycle was observed with high production of Acetyl-
CoA, citrate, cis-Aconitate and itaconate (Table 6.1). The TCA cycle occurs in
mitochondria and is commonly thought to be the source of energy in non-activated
cells (O'Neill et al., 2016) . It represents the most efficient source of energy generation
in the form of NADH and FADH2 to support oxidative phosphorylation which produces
a much higher yield of ATP than glycolysis. Similar to glycolysis, TCA intermediates
can be diverted to produce lipids and amino acids. In classically activated

macrophages, the TCA cycle has been reported to be broken after citrate and after
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succinate whereas in M2 cells it is claimed to be intact which will allow generation of
UDP-GIcNAc intermediates, which are required for formation of the M2 receptor (e.g.,
mannose receptor) glycosylation (Jha et al., 2015a). There were no marked changes
in malate, fumarate and succinate between the controls and treated cells apart from
in the case of the IFN/LPS treatment where malate in particular was elevated. There
was in fact a large increase in NADH suggesting that the TCA cycle was operating.
Succinate accumulation in M1 cells is reported to stabilise HIF1a and to sustain the
IL-1B production, which might lead to nitric oxide production that would inactivate

mitochondria (Clementi et al., 1998, Tannabhill et al., 2013b).

Consistent with TCA cycle activation, LPS, IFN-y and LPS+ IFN-y upregulate C5-
Branched dibasic acid metabolism (Table 6.1) through increasing production of cis-
aconitate, itaconate, propanoyl phosphate and 4-methylene-L-glutamine. Itaconate
as well has been shown to drive a bactericidal effect against Salmonella enterica
subsp (Michelucci et al., 2013). Interestingly a single treatment by either LPS or IFN-
y increases itaconate production while surprisingly co-stimulation with LPS + IFN-y

decreases it significantly.

The upregulation of glycolysis, pentose phosphate, TCA cycle and C5-Branched
dibasic acid metabolism produces a large amount of energy and this can be seen by

upregulation of ATP and other high energy phosphates metabolites (table 6.1).

L-Citrulline and N-(L-Arginino) succinate production was significantly high with LPS,
IFN-y and LPS+IFY treatments (table 6.1).This is not surprising as it is reported

extensively that arginine via acting as a substrate for NO formation with the formation
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of citrulline will promote M1 polarisation (MacMicking et al., 1997a) and the N-(L-
Arginino) succinate shunt is important in maintaining NO production (Jha et al.,

2015a).

6.3.2 Metabolome of IL-4 treated macrophages

IL-4 activation did not produce a significant increase, in comparison to unstimulated
macrophages of any metabolites involved in ATP and high energy phosphate
production, carnitines and carnitine biosynthesis, aminosugar metabolism, C5-

Branched dibasic acid metabolism, the pentose phosphate pathway and TCA cycle.

It has been reported that the IL-4 treatment causes an upregulation of glycolysis and
intact TCA cycle coupled to oxidative phosphorylation (Jha et al., 2015a) as this
allows production of UDP-GICNAc intermediate for the glycosylation of

M2-associated receptors, such as the mannose receptor (Jha et al., 2015a). IL-4

treatment did induce a slight upregulation of glycolysis since there is a small increase
in lactate formation but not to the same extent as with the LPS and IFNy treatments.
The IL-4 treatment significantly increases production of acetylCoA but it does not

increase the remainder of detected TCA cycle metabolites (table 6.1).

IL-4 treatment does not increase levels of N-L-arginino succinate or citrulline and thus
IL-4 activation does not appear as would be expected to induce nitric oxide production
and it mainly upregulates the production of ornithine (table 6.1) which is considered

as a marker of M2 macrophage phenotype.

Interestingly, all treatments increased production of 5'-Phosphoribosylglycinamide,
however IL-4 gave double the increase obtained with LPS or IFN-y or both and there
is also an increase when macrophages co-stimulated with both IL-4 and LPS which

might suggest a upregulation of nucleotide biosynthesis.
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6.3.3 Metabolomes of IFN-y + IL-4 macrophages

Stimulating macrophages with IFN-y +IL-4 indicated the strength of IFN-y in exerting
its effects in this co-stimulation situation such as upregulation of detected metabolites
linked to cellular oxidative stress status, taurine biosynthesis, ATP and high energy
phosphate metabolites, C5-Branched dibasic acid metabolism, glycolysis ,pentose
phosphate pathway and TCA cycle and creatine metabolism and in their different
pattern of change regarding fatty acid and phospholipid biosynthesis pathways as

seen in table 6.1.

By upregulating levels of both L-ornithine and L-citrulline, this treatment condition
emphasises the importance of arginine pathway in the phenotyping markers M1 and

M2.

6.3.4 Conclusions

The main conclusion regarding the differences between the metabolome of M1 vs M2

macrophages were as follows:

1. There was a clear diversion in the M2 type away from NO biosynthesis resulting in

metabolism of arginine into ornithine.

2. There was clearly a greater increase in glycolysis in the M1 phenotype but this did
not result in the levels of ATP being much higher in the M1 than the M2 phenotype.
3. There was no strong indication of downregulation of the TCA cycle in either M1 or
M2 macrophages and, if anything, the TCA cycle appeared to be upregulated as
judged by NADH production and the increased levels of malate in the IFN-y /LPS

treated cells.

4. Succinate levels appeared to be similar across all treatments.
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5. Itaconate increased in the LPS treatment and IFN-y treatment but decreased in the
combination treatment which when taken with the increase in malate in this treatment

suggests greater flux through the TCA cycle.

6. Metabolising arginine into ornithine in M2 and to citrulline in M1 cells as well as the
upregulation of glycolysis, the pentose phosphate pathway and TCA cycle obtained
in this study is supporting the previously puplished data (O'neill and Hardie, 2013,
O'Neill, 2015, O'Neill et al., 2016) however, the TCA cycle was intact here with

detection of high production of malate (see table 6.1)

7. Comparing SMAs 11a and 12b with either profile shows a unique profilefor the
former as they did not change the upregulation level of glycolysis by M1 /M2 cells

and did not decrease TCA cycle activation as witnessed with IL-4 in this study.
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Chapter 7

Investigating the metabolomic effects of ES-62

SMAs in a biological context
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7.1 Introduction

Treating macrophages with SMA 11a or 12b significantly changes their metabolism
as seen previously in chapters 3, 4 and 5. This is mainly through increasing
glutathione biosynthesis and decreasing creatine/phosphocreatine and taurine
metabolism. Additionally, the SMAs did not alter glycolysis or TCA cycle metabolism
and even SMA-pretreatment of CpG/LPS-activated macrophages did not alter the
upregulated level of glycolysis and TCA cycle induced by both stimulants (see
chapters 3, 4 and 5). From these interesting findings, several hypotheses were
generated suggesting a possible mechanism of action for the SMAs with respect to

their effects on the macrophage metabolome.

As mentioned above, one of the main effects of the SMAs on the BMM metabolome
is to increase metabolites related to glutathione. This upregulation was hypothesised
to stem from their effect of creatine uptake with consequent effect on ATP transport
out of the mitochondria (chapter 4). Oxidative stress can also result from ROS
species escaping from the mitochondria due to increased mitochondrial permeability

(Turrens, 2003).

Another hypothesis assumes that changes in creatine uptake induced by the SMAs,
but not levels of ATP per se, affect the supply rate of ATP in relation to where it is
required and thus possibly lead to a reduction in macrophage motility. Of note, it was
found previously that addition of creatine to the growth medium of tumor cells

reversed the motility inhibition induced by cyclocreatine (Mulvaney et al., 1998).

Moreover, SMA-pre-treatment of CpG/LPS activated macrophages did not disturb the
upregulation of glycolysis or TCA cycle metabolism induced by both stimulants and
therefore it was suggested that effects on these pathways are possibly not involved
directly in producing the SMA —mediated immunomodulatory effects such as
decreasing cytokine production, in particular IL-13 and IL-6.
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Therefore, the above hypothesis was subjected to further biological investigations.

The SMAs first were tested for their effects on mitochondrial permeability using
cationic permeable fluorescent dyes such as tetraethyl rhodamine methyl (TMRM)
and mitotracker green (MTG). In addition, the SMAs were assessed for their possible
effect on macrophage motility using an in vitro transwell migration assay.
Furthermore, the effect of the SMAs on nitric oxide production, which is reported to
be linked to high glycolysis and oxidative phosphorylation were tested by using the
Griess assay. Moreover, to further investigate the effect of the SMAs on glycolysis,
the TCA cycle and any possible involvement of these pathways in SMA-
immunomodulatory effects, substrates affecting glycolysis and the TCA cycle, in
particular dimethyl malonate and 2-deoxy glucose, were added exogenously. In
addition, the exogenous addition of taurine was undertaken since the SMAs lowered
it in both the treated and untreated macrophages. Cytokine production then was
measured using enzyme-linked immunosorbent assay (ELISA) to test if the presence
of the exogenous compounds altered the ability of the SMAs to decrease IL-1B3 and
IL-6. Finally, the Biolog microarray assay was used to measure the effect of SMAs
on output of NADH from various catabolic pathways affected by the SMAs alone and

by SMAs+CpG/LPS in macrophages.
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7.2 Results

7.2.1 Effects of the SMAs on mitochondrial membrane potential (MMP) as

determined using FACS and confocal microscopy

Treating macrophages with SMAs on their own did not change the MMP in
comparison to unstimulated macrophages (figure 7.1 A) whereas SMA 11a and 12b
but not 190 pre-treatments, under normal glucose concentration, were found to
reduce the MMP hyperpolarization produced by LPS treatment significantly (figure
7.1B) and decrease it but not significantly in glucose- and glutamine-deprived
conditions (figure 7.1 C-D). 2-DG, 1L-4 and IL-10 were used as experimental controls
since they are known to dissipate the MMP. Figures 7.2.1-7.2.9 represent qualitative
assessment of effects of SMAs alone and SMAs+LPS in mitochondrial membrane

polarization.
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Figure 7.1: Effects of SMA-18 hours treatement /SMAs+LPS-42 hours treatment
on mitochondrial membrane potential as determined by FACS

SMA pre-treatment on its own did not have an effect on MMP (A), however, LPS
activation hyperpolarises the MMP of macrophages as seen in panels B, C and D. B,
C and D refer to normal glucose stimulation, glucose deprived stimulation and
glutamine deprived stimulation. SMAs 11a and 12b and 2DG pre-treatment, of LPS-
activated macrophages, as well as IL-4 and IL-10 treatment dissipated the MMP, (B,
C and D). SMAs 11a and 12b in addition to 2-DG reduced the effects of LPS further
in the absence of glucose (C) whereas the 2-DG dissipating effect was non-
significantly altered by the absence of glutamine (D). IL-4 and IL-10 were used as
controls for anti-inflammatory phenotype form of MMP. Results are expressed as
mean (of triplicate determinations) + SEM and were analysed using one-way ANOVA
with Bonferroni post-test where *p <0.05, **p <0.01, ***p<0.001; ****p < <0.0001.
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Figure 7.2.1: Mitochondrial membrane potential of the unstimulated

macrophages following 18-hour incubation as determined using confocal
microscopy and FACS

Qualitative assessment of mitochondrial membrane potential of 18 hours-maintained
but unstimulated macrophages. (A) represents, from left to right, DAPI, MTG, TMRM
stains and merge picture of the first field whereas (B) represents the above stains in
a second field. Both (A) and (B) were taken at magnification X40 while (C) represents
the third field with magnification X6. The quantitative analysis of relative fluorescence
intensity was undertaken using FACS.
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Figure 7.2.2: Mitochondrial membrane potential of 18-hour 1la-pre-treatment
of LPS-activated macrophages as determined using confocal microscopy

Qualitative assessment of mitochondrial membrane potential of 18 hours 1la-
treatment of macrophages. (A) represents, from left to right, DAPI, MTG, TMRM
stains and merged picture of the first field whereas (B) represents the above stains
in a second field. Both (A) and (B) were taken on magnification X40 while (C)
represents the third field with magnification X6. Although the images are not always
that clear the quantitative analysis of relative fluorescence intensity was undertaken
by using FACS.

172



| ."

Figure 7.2.3: Mitochondrial membrane potential of 18-hour 12b pre-treatment
on LPS-activated macrophages using confocal microscopy

Qualitative assessment of mitochondrial membrane potential of 18 hours 12b-
treatment but unstimulated macrophages. (A) represents, from left to right, DAPI,
MTG, TMRM stains and merge picture of the first field whereas (B) represents the
above stains in a second field. Both (A) and (B) were taken at magnification X40 while
(C) represents the third field with magnification X6. The quantitative analysis of
relative fluorescence intensity was undertaken using FACS.
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Figure 7.2.4: Mitochondrial membrane potential of 18-hour 190 pre-treatment
on LPS-activated macrophages using confocal microscopy

Qualitative assessment of mitochondrial membrane potential of 18 hours 190-
treatment but unstimulated macrophages. (A) represents, from left to right, DAPI,
MTG, TMRM stains and merge picture of the first field whereas (B) represents the
above stains in a second field. Both (A) and (B) were taken at magnification X40 while
(C) represents the third field with magnification X6. The quantitative analysis of
relative fluorescence intensity was undertaken using FACS.
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Figure 7.2.5: Mitochondrial membrane potential of 42-hour incubation of the
unstimulated macrophages using confocal microscopy

Qualitative assessment of mitochondrial membrane potential of 42 hours incubation of
unstimulated macrophages. A represents, from left to right ,DAPI ,MTG,TMRM stains
and merge picture of the first field whereas (B) represents the above stains in a second
field .Both (A) and (B) were taken on magnification X40 while (C) represents the third
field with magnification X6 . The quantitative analysis of relative fluorescence intensity
was done using FACS.
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Figure 7.2.6: Mitochondrial membrane potential of 42 hours treatment with LPS
on macrophages as determined using confocal microscopy

Qualitative assessment of mitochondrial membrane potential of 24 hours LPS
activation of macrophages. A represents, from left to right ,DAPI ,MTG,TMRM stains
and merge picture of the first field whereas (B) represents the above stains in a second
field .Both (A) and (B) were taken on magnification X40 while (C) represents the third
field with magnification X6 . The quantitative analysis of relative fluorescence intensity
was done using FACS.
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Figure 7.2.7: Mitochondrial membrane potential of 42 hour treatment with 11a +
LPS-activated macrophages as determined using confocal microscopy

Qualitative assessment of mitochondrial membrane potential of 18 hours 1la pre-
treatment effect on 24 hours LPS activation. A represents ,from left to right ,DAPI
,MTG,TMRM stains and merge picture of the first field whereas (B) represents the
above stains in a second field .Both (A) and (B) were taken on magnification X40 while
(C) represents the third field with magnification X6 . The quantitative analysis of
relative fluorescence intensity was done using FACS.
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Figure 7.2.8: Mitochondrial membrane potential of 42 hour treatment with 12b +
LPS activated macrophages as determined using confocal microscopy

Qualitative assessment of mitochondrial membrane potential of 18 hours 12 pre-
treatment effect on 24 hours LPS activation. A represents, from left to right ,DAPI
,MTG, TMRM stains and merge picture of the first field whereas (B) represents the
above stains in a second field .Both (A) and (B) were taken on magnification X40 while
(C) represents the third field with magnification X 2.5 . The quantitative analysis of
relative fluorescence intensity was undertaken using FACS.

178



Figure 7.2.9: Mitochondrial membrane potential of 42 hour treatment with 190 +
LPS activated macrophages as determined using confocal microscopy

Qualitative assessment of mitochondrial membrane potential of 18 hours 190 pre-
treatment effect on 24 hours LPS activation. A represents, from left to right, DAPI
,MTG,TMRM stains and merge picture of the first field whereas (B) represents the
above stains in a second field .Both (A) and (B) were taken on magnification X40 while
(C) represents the third field with magnification X6 . The quantitative analysis of
relative fluorescence intensity was undertaken using FACS.
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7.2.2 Effects of SMAs on macrophage migration in the presence and absence
of LPS or CpG stimulation

Since LPS induces glucose uptake to keep glycolysis turned on, thereby providing
the energy requirements for macrophage activation (Vats et al., 2006, Tannahill et
al., 2013), it was of interest to investigate if the SMAs as a pretreatment (which had
no effect on glycolysis activation) by their ability to decrease creatine (Cr) and
phosphocreatine (Cr-P) could control energy transduction in BMMs activated by CpG

or LPS and thereby inhibiting their migration.

Adding SMAs alone (figure 7.3A) to “starving” macrophages (where no FCS to rule
out its possible invovment in inducing motility at the starting point) did not affect
significantly the migration of macrophages in relation to non-stimulated
macrophages. However, LPS and CpG addition to the starved macrophages
significantly induced cell migration in response to complete medium (complete
medium has FSC which contains creatine) in comparison to unstimulated
macrophages (figure 7.3B-C). IL-4 addition did not alter macrophage migration in
comparison to unstimulated ones (figure 7.3 B-C). SMA (11a and 12b) pre-treatment
inhibits cell migration towards the complete medium in response to LPS activation
and only 11a with CpG stimulation and therefore are showing an interesting effect on

movement responses (figure7.3 B-C).
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Figure 7.3: Effect of ES-62 SMAs on migration of starved macrophages

Pre-incubation of macrophages with SMAs 11a, 12b or 190 alone did not induce
macrophage migration towards complete medium as shown in (A) whereas in (B),
11a and 12b inhibit the migration of the LPS-activated macrophages significantly.
IL-4 alone in (B) did not induce migration of macrophages. 1la inhibits CpG-
activated macrophages significantly while 12b and 190 show a non-significant
decrease in migration (C). In Panel A SMAs were compared to the medium, in panel
B, SMAs+LPS were compared with LPS while IL-4 and LPS were compared to the
medium and in panel C, SMAs+CpG were compared to CpG. Results which were
obtained from triplicate experiments are expressed as a mean (of triplicate
determinations) + SEM and were analysed using one-way ANOVA with Bonferroni
post-test where *p <0.05, **p <0.01, **p<0.001; ****p < <0.0001
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7.2.3 Effects of SMA-pre-treatment and SMAs+LPS/CpG on nitric oxide

production in BMMs

Using the in vitro nitric oxide assay, the Griess test, SMAs were examined for their
ability to produce/inhibit nitric oxide production indirectly via measurement of
breakdown products (nitrite and nitrate) in cell culture supernatants. In particular,
nitrite accumulation is used as an indicator of NO production (Green et al., 1982).
SMAs on their own did not induce any changes to nitric oxide production (figure 7.3)
however it was found that 18 hours pretreatment with SMAs, 11a and 12b but not
190, significantly reduced nitrite production generated after 24 hours exposure to LPS
or CpG (figure 7.3). IL-4 was used on its own in parallel to LPS and CpG, over 24

hours, and was found not to induce any significant changes (figure 7.3).
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Figure 7.4: Measurement of effects of ES-62 SMAs on nitrite production

The effect of LPS- or CpG on nitrite production in macrophages. Nitrite production
was determined relative to a standard curve constructed with solutions of sodium
nitrite (NaNO.) as described by (Griess, 1879) from a 10 mM stock solution of
NaNO; prepared in complete RPMI 1640 cell medium. SMAs in the left side of the
graph were compared to complete medium while SMAs+ LPS/CpG were compared
to corresponding stimulants. Results were obtained from 3 triplicate experiments
and are expressed as a mean (of triplicate determinations) + SEM and were
analysed using one-way ANOVA with Bonferroni post-test where *p <0.05, **p
<0.01, ***p<0.001;****p < <0.0001.
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7.2.4 Testing the effect of SMA-pretreatment on macrophages activated with
Escherichia coli and Salmonella LPS in the presence of exogenous glycolysis
and TCA cycle substrates, taurine, dimethyl malonate and 2-deoxy glucose on
cytokine production

Pre-treatment with SMA 11a or 12b decreases IL-18 and IL-6 production in LPS-
activated macrophages (Al-Riyami et al., 2013). However, their metabolomics profiles
reveal that neither glycolysis nor the TCA cycle were affected to any great extent
(chapter3, 4 and 5). Therefore, it was suggested to add glycolysis substrates, TCA
substrates, taurine, dimethyl malonate and 2-deoxy glucose exogenously and to test

if this would change the ability of the SMASs to decrease either cytokine.

Addition of the TCA cycle substrate pyruvate with the LPS stimulants (E.coli and
Salmonella) for the two tested incubation times (24 and 48 hours) decreased IL-13
production significantly in comparison to LPS alone stimulation (figure 7.5.1: A-D) as
well as decreasing IL-6 production (figure 7.5.2: A-D). However, adding it to 11a- and
12b-pretreated macrophages followed by further LPS stimulation did not alter the

ability of SMAs to decrease either of the cytokines (figures 7.5.1 and 7.5.2: A-D).

Adding lactate did not induce any significant changes in IL-13 (7.5.1 E-H) and IL-6
production (7.5.2 E-H) in comparison to LPS stimulation alone. Adding lactate in
excess to SMA-pretreated macrophages as well did not change the ability of 11a and

12b to decrease both cytokines (figures 7.5.1and 7.5.2 E-H).
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Figure 7.5.1: Pyruvate and lactate exogenous addition and their possible
involvement in IL-18 production

Pyruvate (A, B, C and D) and lactate (E, F, G and H) were added to LPS-activated
macrophages pretreated or not with SMAs 11a, 12b or 190. A, C, E and G refer to
Salmonella-LPS stimulation for 24 (A and E) and 48 hours (C and G) whereas B, D,
F and H indicate Escherichia coli-LPS stimulation in which (B and F) shows 24 hours
stimulation and (D and H) refers to 48 hours stimulation. LPS was compared to the
culture medium while LPS+either substrate was compared to LPS alone.
SMAs+substrates+LPS were compared to LPS+substrates wheras SMAs + LPS
were compared to LPS. Results are expressed as a mean (of triplicate
determinations) = SD and were analysed using one-way ANOVA with Bonferroni
post-test where *p <0.05, **p <0.01, ***p<0.001, ***p < <0.0001.
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Figure 7.5.2: Pyruvate and lactate exogenous addition and their possible
involvement in IL-6 production

Pyruvate (A, B, C and D) and Lactate (E, F, G and H) were added to LPS-activated
macrophages pretreated or not with SMAs 11a, 12b or 190. A, C, E and G refer to
Salmonella-LPS stimulation for 24 (A and E) and 48 hours (C and G) whereas B, D,
F and H indicate Escherichia coli-LPS stimulation in which (B and F) shows 24 hours
stimulation and (D and H) refers to 48 hours stimulation. LPS was compared to the
culture medium while LPS+either substrate was compared to LPS
alone.SMAs+substrates+LPS were compared to LPS+substrates wheras SMAs +
LPS were compared to LPS. Results are expressed as a mean (of triplicate
determinations) £ SD and were analysed using one-way ANOVA with Bonferroni
post-test where *p <0.05, **p <0.01, **p<0.001, ***p < <0.0001.
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The addition of excess TCA cycle metabolites, citrate, a-ketoglutarate, succinate and
dimethyl fumarate was tested for their effects on IL-1B and IL-6 production (figures
7.5.3- 7.5.6). Adding TCA metabolites inhibited IL-18 and IL-6 production in
comparison to LPS alone except for dimethyl fumarate which increased IL-6
production significantly after 24 hours (figure 7.5.6 E-H). Likewise, addition of TCA
metabolites did not interfere with the ability of SMAs to decrease either cytokine

(figures 7.5.3- 7.5.6).
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Figure 7.5.3: Citrate and a- ketoglutarate exogenous addition and their possible
involvement in IL-1B production

Citrate (A, B, C and D) and a-ketoglutrate (E, F, G and H) were added to LPS-
activated macrophages pretreated or not with SMAs 11a, 12b or 190. A, C,Eand G
refer to Salmonella-LPS stimulation for 24 (A and E) and 48 hours (C and G)
whereas B, D, F and H indicate Escherichia coli-LPS stimulation in which (B and F)
shows 24 hours stimulation and (D and H) refers to 48 hours stimulation. LPS was
compared to the culture medium while LPS+either substrate was compared to LPS
alone. SMAs+substrates+LPS were compared to LPS+substrates wheras SMAs +
LPS were compared to LPS. Results are expressed as a mean (of triplicate
determinations) £ SD and were analysed using one-way ANOVA with Bonferroni
post-test where *p <0.05, **p <0.01, ***p<0.001, ***p < <0.0001.
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Figure 7.5.4: Succinate and DMF Citrate exogenous addition and their possible
involvement in IL-1B production

Succinate (A, B, C and D) and DMF (E, F, G and H) were added to LPS-activated
macrophages pretreated or not with SMAs 11a, 12b or 190. A, C, E and G refer to
Salmonella-LPS stimulation for 24 (A and E) and 48 hours (C and G) whereas B, D,
F and H indicate Escherichia coli-LPS stimulation in which (B and F) shows 24 hours
stimulation and (D and H) refers to 48 hours stimulation. LPS was compared to the
culture medium while LPS+either substrate was compared to LPS alone.
SMAs+substrates+LPS were compared to LPS+substrates wheras SMAs + LPS
were compared to LPS. Results are expressed as a mean (of triplicate
determinations) = SD and were analysed using one-way ANOVA with Bonferroni
post-test where *p <0.05, **p <0.01, ***p<0.001, ***p < <0.0001.
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Figure 7.5.5: Citrate and a- ketoglutarate exogenous addition and their possible
involvement in IL-6 production

Citrate (A, B, C and D) and a-ketoglutarate (E, F, G and H) were added to LPS-
activated macrophages pretreated or not with SMAs 11a, 12b or 190. A, C, Eand G
refer to Salmonella-LPS stimulation for 24 (A and E) and 48 hours (C and G) whereas
B, D, F and H indicate Escherichia coli-LPS stimulation in which (B and F) shows 24
hours stimulation and (D and H) refers to 48 hours stimulation. LPS was compared to
the culture medium while LPS+either substrates was compared to LPS alone.
SMAs+substrates+LPS were compared to LPS+substrates wheras SMAs + LPS were
compared to LPS. Results are expressed as a mean (of triplicate determinations) +
SD and were analysed using one-way ANOVA with Bonferroni post-test where *p
<0.05, **p <0.01, ***p<0.001, ****p < <0.0001.
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Figure 7.5.6: Succinate and DMF exogenous addition and their possible
involvement in IL-6 production

Succinate (A, B, C and D) and DMF (E, F, G and H) were added to LPS-activated
macrophages pretreated or not with SMAs 11a, 12b or 190. A, C, E and G refer to
Salmonella-LPS stimulation for 24 (A and E) and 48 hours (C and G) whereas B, D,
F and H indicate Escherichia coli-LPS stimulation in which (B and F) shows 24 hours
stimulation and (D and H) refers to 48 hours stimulation. LPS was compared to the
culture medium while LPS+either substrate was compared to LPS alone.
SMAs+substrates+LPS were compared to LPS+substrates wheras SMAs + LPS
were compared to LPS. Results are expressed as a mean (of triplicate
determinations) = SD and were analysed using one-way ANOVA with Bonferroni
post-test where *p <0.05, **p <0.01, **p<0.001, ***p < <0.0001.
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Since succinate has been reported to act as a metabolic signal in inflammation and
its role in ATP production in mitochondria has been highly studied (Tannahill et al.,
2013) several concentrations of succinate were added to LPS-activated
macrophages. No higher induction of IL-18 and IL-6 production above that for LPS
treatment alone was observed and likewise, none of the concentrations added
interfered with the ability of SMAs to decrease secretion of either cytokine (figure

4.5.7).
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Figure 7.5.7: Succinate exogenous addition and its possible involvement in IL-
6 and IL-1B production

Succinate was added to LPS-activated macrophages pretreated or not with SMAs
11a, 12b or 190 using a range of concentrations in which A and C refers to the IL-6
and IL-1B production respectively in the abundance of 0.5,1 and 2 mM succinate
concentrations whereas B and D indicates IL-6 and IL-13 production respectively in
the abundance of the range of 5, 10 and 20mM. SMAs pretreated macrophages
followed by LPS stimulation alone was used as a control in the left side of each
panel. LPS was compared to the culture medium while LPS+any concentration of
succinate was compared to LPS alone. SMAs+any provided succinate
concentration+LPS were compared to LPS+corresponding succinate concentration
wheras SMAs+LPS were compared to LPS. Results are expressed as a mean (of
triplicates determination) + SEM and was analysed using one-way ANOVA with
Bonferroni post-test where *p <0.05, **p <0.01, ***p<0.001; ****p < <0.0001.

193



2-DG is a glucose-like molecule, which has the 2-hydroxyl group replaced by
hydrogen so that it cannot undergo further glycolysis and has an ability to reprogram
LPS-activated macrophages and decrease IL-13 production (figure 7.5.8 A-D), even
though it is found to increase IL-6 production significantly in E.coli as well as Sal. LPS

(figure 7.5.9 A-D).

Adding dimethyl malonate, a competitive inhibitor of the enzyme succinate
dehydrogenase, decreased significantly IL-13 and IL-6 production in comparison to
stimulation with LPS alone (figure 7.5.8 and 7.5.9:E-H ) but it did not affect the ability

of the SMAs in decreasing IL-13 and IL-6 .
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Figure 7.5.8: Exogenous addition of 2-deoxyglucose and DMM and their
possible involvement in IL-1B production

2-deoxyglucose (A, B, C and D) and DMM (E, F, G and H) were added to LPS-
activated macrophages pretreated or not with SMAs 11a, 12b or 190. A, C,Eand G
refer to Salmonella-LPS stimulation for 24 (A and E) and 48 hours (C and G)
whereas B, D, F and H indicate Escherichia coli-LPS stimulation in which (B and F)
shows 24 hours stimulation and (D and H) refers to 48 hours stimulation. LPS was
compared to the culture medium while LPS+either substrate was compared to LPS.
SMAs+substrates+LPS were compared to LPS+substrates wheras SMAs + LPS
were compared to LPS. Results are expressed as a mean (of triplicate
determinations) = SD and were analysed using one-way ANOVA with Bonferroni
post-test where *p <0.05, **p <0.01, ***p<0.001, ***p < <0.0001.
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Figure 7.5.9: Exogenous addition of 2-deoxyglucose and DMM and their
possible involvement in IL-6 production

2-deoxyglucose (A, B, C and D) and DMM (E, F, G and H) were added to LPS-
activated macrophages pretreated or not with SMAs 11a, 12b or 190. A, C,Eand G
refer to Salmonella-LPS stimulation for 24 (A and E) and 48 hours (C and G)
whereas B, D, F and H indicate Escherichia coli-LPS stimulation in which (B and F)
shows 24 hours stimulation and (D and H) refers to 48 hours stimulation. LPS was
compared to the culture medium while LPS+either substrate was compared to LPS.
SMAs+substrates+LPS were compared to LPS+substrates wheras SMAsS+LPS
were compared to LPS. Results are expressed as a mean (of triplicate
determinations) £ SD and were analysed using one-way ANOVA with Bonferroni
post-test where *p <0.05, **p <0.01, **p<0.001, ***p < <0.0001.

196



Taurine appears to be an important metabolite in the metabolomics profiles produced
by the SMAs and therefore it was considered to be possibly involved in
immunoregulation. Adding exogenous taurine in the presence of LPS was found to
increase production of both IL-18 (24 and 48 hours) and IL-6 after 48 hours incubation
above that obtained with LPS stimulation alone (figures 7.5.10 and 7.5.11). This
categorises it as a proinflammatory metabolite. A study by Levy et al. reported taurine
as a microbial metabolite that regulates the activation of the NLRP6 inflammasome
(Levy et al., 2015). From the taurine levels found in macrophages stimulated with
LPS, CpG, IFNy and LPS+ IFNy reported in chapters 3, 4, 5 and 6 it is clear that its
elevation is part of the macrophage response. This suggests taurine’s involvement in
reprogramming cytokine production in LPS-activated macrophages. However, adding
taurine exogenously did not interfere with the ability of 11a and 12b to decrease both

cytokines (figure 7.5.10 A-D).
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Figure 7.5.10: Exogenous addition of Taurine and its possible involvement in
IL-18 production

Taurine (A, B, C and D) was added to LPS-activated macrophages pretreated or not
with SMAs 11a, 12b or 190. A and C refer to Salmonella-LPS stimulation for 24 and
48 hours respectively whereas B and D indicate Escherichia coli-LPS stimulation for
24 and 48 hours respectively. LPS was compared to the culture medium while LPS+
taurine was compared to LPS. SMAs+taurine+LPS were compared to LPS+taurine
wheras SMAs+LPS were compared to LPS. Results are expressed as a mean (of
triplicate determinations) + SD and were analysed using one-way ANOVA with
Bonferroni post-test where *p <0.05, **p <0.01, ***p<0.001, ****p < <0.0001.
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Figure 7.5.11: Exogenous addition of taurine and its possible involvement in
IL-6 production

Turine (A, B, C and D) was added to LPS-activated macrophages pretreated or not
with SMAs 11a, 12b or 190. A and C refer to Salmonella-LPS stimulation for 24 and
48 hours respectively whereas B and D indicate Escherichia coli-LPS stimulation for
24 and 48 hours respectively. LPS was compared to the culture medium while LPS+
taurine was compared to LPS. SMAs+taurine+LPS were compared to LPS+taurine
wheras SMAs+LPS were compared to LPS. Results are expressed as a mean (of
triplicate determinations) + SD and were analysed using one-way ANOVA with
Bonferroni post-test where *p <0.05, **p <0.01, ***p<0.001, ****p < <0.0001.
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7.2.5 Characterisation of SMA-effects on metabolism of the LPS/CpG activated
macrophages and comparing it with M1 and M2 macrophages using Phenotype
Microarrays

Using Biolog microarrays assay, the effect of SMA pre-treatment on the LPS/CpG
activated macrophages was examined through assessing the consumption of
carbon-energy substrates through measuring the NADH production level and then
comparing with substrate consumption of M1 (LPS alone or LPS+IFNy and M2 (IL-4)

macrophages.

From the Biolog plates’ examination, it was found that many of the carbon sources
were used by the macrophages under study as seen in figures 7.6.1-7.6.6. However,
at the same time, many of the substrates in the microarray plate do not appear to be
useful as carbon sources (figure7.6.1, 7.6.3 and 7.6.5). There was a clear opposing
pattern between LPS/CpG activated macrophages in comparison to SMA-pretreated,
PAMP-exposed macrophages (figures 7.6.1- 7.6.2) and some similarity between the
SMA pre-treatment and IL-4 metabolomic phenotype. In addition, 190 appears to be
often behaving like the other SMAs. LPS-, LPS+IFNy—, IL-4- and CpG-activated
macrophages mainly favoured utilizing glucose and also mannose, glycogen and
maltose as carbon sources and this utilization was slowed down by SMA-
pretreatment (figures 7.6.2, 7.6.4and 7.6.6). Interestingly, SMA-pretreatment
favoured galactose utilisation and this was also the case for IL-4 treatment (figures
7.6.2, 7.6.4and 7.6.6). The SMA-treated macrophages also favoured other carbon
sources such as fructose, trehalose and melibiose showing their possible alternative

carbon sources when there is an energy demands.

Producing more NADH from glucose-6-phosphate, glucose-1-phosphate and inosine,

which also seen to be increased with IL-4- but not LPS+IFNy-, LPS- and CpG-treated
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cells (see figures 7.6.2, 7.6.4and 7.6.6,) and adenosine is suggesting possibly the
conversion of glycolysis to the pentose pathway to provide more NADPH as shown
from the SMAs’ metabolomics profiling (chapter4 and 5). The consumption of inosine
was also high in IL-4-treated macrophages (figure 7.6.6). The SMAs were additionally
found to utilize adenosine (figure 7.6.2) and therefore this limits their ATP production,

which was also seen in their metabolomic screen.

In the absence of glutamine, which is generally provided by complete RPMI medium

but not Biolog media, neither Krebs cycle intermediates nor short chain fatty acids

appear to be useful as carbon sources.
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Figure 7.6.1: Carbon and energy consumption of LPS-activated macrophages
and SMA-pre-treated, LPS-activated macrophages

PM-M1 carbon and energy sources BioLog plates were used to evaluate metabolic
information from macrophages pre-treated with SMAs in comparison to LPS activated
macrophages in which (A) refers to unstimulated macrophages (B) LPS stimulation
(C), (D) and (E) shows the plates of LPS activated macrophages pre-treated with
11a, 12b or 190 respectively. Plate pictures were taken after 24 hour from dye
reduction.
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Figure 7.6.2: Carbon and energy substrate changes induced by SMA
pretreatment of LPS- activated macrophages

Comparison of substrate metabolism of 24 hours LPS activation of macrophages and
LPS activated macrophages pretreated with SMAs 11a, 12b or 190 for 18 hours. Dye
was added after the end of the incubation time in which its reduction rate was
monitored and was developed fully following 6-hour incubation of the treated cells.
After subtracting the background readings, wells with no substrates, from all plates
the reduction in ratio of LPS was calculated by dividing absorption of each substrate
on the LPS plate with the corresponding substrate for the unstimulated macrophage
sample whereas the SMAs ratios were calculated by dividing the absorption of each
substrate on the LPS plate with the corresponding substrate on SMAs plates.
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Figure 7.6.3: Carbon and energy consumption of the CpG-activated
macrophages and SMA pre-treated macrophages followed by CpG treatment

PM-M1, carbon and energy sources, BioLog plates were used to evaluate metabolic
information from macrophages pre-treated with SMAs in comparison to CpG
activated macrophages in which (A) refers to unstimulated macrophages (B) CpG
stimulation (C), (D) and (E) shows the plates of CpG activated macrophages pre-
treated with 11a ,12b and 190 respectively. Plate pictures were taken after 24 hour
from dye reduction.
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Figure 7.6.4: Carbon and energy substrates changes by SMAs pretreatment on
CpG activated macrophages

Comparison of substrate metabolism of 24 hours CpG activation of macrophages and
CpG activated macrophages pretreated with SMAs 11a, 12b or 190 for 18 hours. Dye
was added after the end of the incubation time in which its reduction rate was
monitored and was developed fully following 6-hour incubation of the treated cells.
After subtracting the background readings, wells with no substrates, from all plates
the reduction in ratio of CpG was calculated by dividing absorption of each substrate
on the CpG plate with the corresponding substrate for the unstimulated macrophage
sample whereas the SMAs ratios were calculated by dividing the absorption of each
substrate on the CpG plate with the corresponding substrate on SMAs plates.
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Figure 7.6.5: Carbon and energy consumption of MO, M1 and M2 activated
macrophages

PM-M1, carbon and energy sources, BioLog plates were used to evaluate metabolic
information from different activation status of macrophages over 24 hours. (A) refers
to unstimulated macrophages (B) Co-stimulation of IFNy+LPS (C)LPS and (D) IL-4.
Plate pictures were taken after 24 hour from dye reduction.

206



16.00
W P5Hfy

14.00 mLPS
ni4

12.00
10.00
800

0,00

Reduction (AS90-A750) ratio

400

a1 ‘ |

0 Iul II‘ II| |l I-I IlI _-I I.I I|I I|I | 1 II |I| II
s T [ B & ©oad & S g g

I R & W & . 0 ] . ) ]
"\ ) o i 5 S ) 0 o5 s In: 5 0 T &
A A L U T A N .
Qg ‘-:-'-g ¥ --,'Q f ".r:'b G:b & '@D i -';'::J Q\\h *‘.i'q o W '-,'lﬁ
o "C'w A ..\.‘_‘!:' ;-}' o o .‘.:I" ~ N o " A
o 1}'\. Q o o 2, f\‘ 'Qil' 9 4]
- @ - 'Q .
o [ by o
§ o0 o
& S
[ P
¢ 9 8 g

Figure 7.6.6: Carbon and energy substrate changes by the MO, M1 and M2
activated macrophages

Comparison of substrate metabolism of 24 hours LPS+IFNy, LPS and IL-4 activation
of macrophages. Dye was added after the end of incubation time in which its
reduction rate was monitored and was developed fully following 6-hour incubation of
the treated cells. After subtracting the background readings from the all plates the
reduction ratio of LPS+IFNy, LPS and IL-4 was calculated by dividing absorption of
each substrate on each plate to the corresponding substrate on unstimulated
macrophages.
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7.3 Discussion

Pre-treatment of macrophages with 11a or 12b significantly alters the metabolism of
the cell. Their main alteration involves the ability of the SMAs to upregulate
glutathione biosynthesis, decrease creatine/phosphocreatine and taurine
metabolism. SMAs as well, on their own or during activation with LPS or CpG, did not
alter glycolysis and TCA cycle metabolism in comparison to unstimulated
macrophages. Thus, several hypotheses were made based on changes observed
with their metabolomic profile and investigated using biological assays to interpret as

far as possible the SMAs’ mechanism of action.

It was suggested that increased glutathione biosynthesis and GSSG formation might
stem from the SMAS’ effect on creatine uptake and thus indirectly on ATP transport
out of the mitochondria. ROS species might be escaping from the mitochondria due
to their increased permeability, which was indicated from an increase in oxidative
stress metabolites. SMAs as well did not affect the activation of glycolysis and the
TCA cycle by LPS/CpG so the high ATP pool level remain the same in all treatments
versus control (chapter 3,4 and 5). All these changes would be expected to affect
their mitochondria polarisation and thus it was suggested to investigate the SMAs
effects on mitochondria membrane polarisation. This study was done using co-
loading of cationic permeable fluorescent dye tetraethyl rhodamine methyl (TMRM)
with mitotracker green (MTG). The stains then were assessed quantitatively by
calculating the ratio of TMRM/MTG fluorescence intensities using fluorescence-
activated cell sorting (FACS) in which the increases in TMRM/MTG represents
hyperpolarisation and lower ratios represent the decrease in the polarisation of MMP
while the qualitative assessment of them was undertaken using confocal microscopy

(figures 7.2.1-7.2.9). Adding SMAs on their own did not change the MMP in
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comparison to unstimulated macrophages (figure 7.1 A) whereas SMAs 11a and 12b
but not 190 pre-treatment , under normal glucose stimulation, were found to reduce
the MMP hyperpolarisation induced by LPS treatment significantly and still decrease
it but not significantly in glucose- and glutamine-deprived conditions (figure 7.1 B-D).
The mitochondria hyperpolarisation effect induced by LPS has been investigated
previously and it was claimed that this hyper responsiveness is because mitochondria
are no longer making ATP from oxidative phosphorylation (Tannahill et al., 2013).
However, an increase in the rate of ATP synthesis can also result in an increase in
mitochondrial potential (Brown, 1992). LPS had a significant effect on MMP, in
comparison to unstimulated macrophages, but not in the absence of glucose or in the
absence of glutamine and this suggests the importance of their presence on the MMP
hyperpolarisation. The glutamine is of particular interest since it enters the TCA cycle
as ketoglutarate (in terms of mass spectrometric response it is the most abundant
metabolite in macrophages) and this again suggests the TCA cycle is functioning in

the stimulated macrophages.

When LPS is combined with SMAs 11a, 12b, 2-DG, IL-4 or IL-10 a decrease in MMP
is observed. The dissipating effect observed with IL-4 and more importantly IL-10
treatment perhaps suggests that SMA 11a and 12b pre-treatment is associated with
anti-inflammatory behaviour in comparison to the pro-inflammatory phenotype of high
MMP caused by LPS. 11a and 12b dissipate the MMP to a slightly higher extent in
the absence of glucose in comparison to glutamine absence, suggesting the
importance of glucose abundance to the the effect of SMAs in lowering MMP and
showing again their similarity to 2-DG. 2-DG’s ability to dissipate MMP decreased,
but not significantly, in the absence of glutamine (figure 7.1 D). Moreover, the

reduction in MMP does not suggest depolarisation in general as TMRM dye levels
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were not lost by any treatment used or in unstimulated macrophages (figures 7.2.1-

7.2.9).

The MMP-dissipating effect of the SMAs is not a result of a reduction in oxidative
phosphorylation as none of SMAs affect the increased level of glycolysis and TCA
metabolism stimulated by LPS /CpG. Thus, the hypothesis suggested by these data
and the data in chapters 4 and 5 is that the decreased MMP is due to a lowering of
creatine levels which reduces the ability of mitochondria to generate ATP (Zoratti and
Szab0, 1995, Huttemann et al., 2008). This hypothesis is supported by lower levels
of ADP observed in the SMA-treated macrophages, in the case of LPS treatment,
which is a major inhibitor of mitochondrial membrane permeability. Another
possibility is that ROS species are escaping from mitochondria and thus leaving the
mitochondria membrane more permeable. GSSG has been found to increase
mitochondrial membrane permeability. Taurine might also pay a role since one of the
major effectors for increasing mitochondrial membrane permeability is calcium and it
has been proposed that taurine is able to regulate intracellular calcium levels (Chen
et al., 2001). This can be supported by the decrease in glycerol-3-P as which is

potential sources of ROS exist (Andreyev et al., 2005).

Lowering creatine levels was expected to affect motility of macrophages as creatine
addition to tumor cells restores motility that has been hindered by cyclocreatine (CC)
(Mulvaney et al., 1998) and therefore the effect of the SMAs on macrophage maotility
was tested using an in vitro transwell migration assay, a modified form of the classic
Boyden chamber method (Boyden, 1962a), in which calcein AM was used to label
migrated cells. LPS/CpG which produce an increase in creatine levels (chapter 4 and
5) represented positive controls for motility. Macrophages were starved for 5 hours in

the top chamber (no FCS) and were tested for migration to a complete medium
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supplied with all nutrients. SMA-pretreatment and LPS/CpG stimulation was carried

out using the conditions applied for the cytokine study.

Adding SMAs alone (figure 7.3 A) did not affect migration of macrophages in relation
to non-stimulated macrophages. However, LPS and CpG addition significantly
induced cell migration to complete medium in comparison to unstimulated
macrophages (figure 7.3 B-C). IL-4 addition did not alter macrophage migration in
comparison to unstimulated ones (figure 7.3 B-C). SMA (11a and 12b) - pre-treatment
prior to addition of LPS inhibited macrophage migration towards the complete
medium in comparison with LPS activation alone and but only 11a inhibited migration
with CpG stimulation. Therefore, the SMAs showed an interesting inhibitory effect on
movement response in comparison to stimulation with LPS and CpG stimulation
alone (figure7.3 B-C). This suggests that the SMAs by reducing creatine uptake,
might inhibit macrophage matility that is induced by LPS/CpG where creatine levels

within the cells are increased.

Moreover, SMA-pretreatment of LPS/CpG activated macrophages did not alter the
activation level of glycolysis, TCA cycle and urea cycle, induced by both stimulants.
Thus, it was expected that SMA-pretreatment would not affect nitric oxide production
which is known to be induced when macrophages are activated with M1 stimulators

(Murray and Wynn, 2011).

It was found that 18 hours pretreatment with SMAs alone did not induce/inhibit NO
production (figure 7.4 A); however, pretreatment with SMAs 11a or 12b but not 190,
reduced nitrite production significantly after 24 hours exposure to LPS or CpG (figure

7.4 B-C). IL-4 was used in parallel to LPS and CpG, over 24 hours, and was found
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not to induce any significant changes (figure 7.4 B-C).Thus, this suggests the SMAs
possibly have their own mechanism of action in decreasing NO without altering
glucose uptake which again may be explained by decreasing rate of ATP supply
rather than the level of ATP which leads to mitochondria permeability and eventually
may lead to lowering of oxidative phosphorylation. Certainly, lowering oxidative
phosphorylation was previously reported to lower NO (Vats et al., 2006). Interestingly
a previous study (Goodridge et al., 2001a) showed that ES-62 has no effect on nitric

oxide production.

This effect could be indirect since the SMA-treated PAMP_exposed cells appear to
be under greater oxidative stress than the cells treated with LPS and CpG alone
(chapters 3 and 4) and thus they would require more NADPH to reduce GSSG back

to GSH. NADPH is also required to convert hydroxyarginine to citrulline and NO.

Following on with inability of SMA-pretreatment of LPS/CpG activated macrophages
to induce an alteration in the activation status of glycolysis and the TCA cycle, it was
decided to co-stimulate SMAs pretreated macrophages for 3 hours with exogenous
glycolysis and TCA cycle substrates before LPS stimulation. LPS samples from both
Escherichia coli (E. coli) and Salmonella typhimurium (Sal.) were used in order to
investigate if exogenous addition of substrates would change the ability of the SMAs
to decrease IL-1B as well as IL-6. Other substrates such as dimethyl malonate, 2-

deoxy glucose and taurine were tested as well (figures 7.5.1 - 7.5.11).

Adding the glycolysis substrates (figures 7.5.1-7.5.2) and TCA substrates (figures

7.5.3-7.5.6) did not induce further production of IL-13 or IL-6 by LPS. Adding 2-deoxy
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glucose which inhibited IL-1 (7.5.8) but induced increased production of IL-6 (Figure
7.5.9) in comparison to LPS alone. Moreover, taurine addition induced increased
production of both cytokines in comparison to LPS alone (figures 7.5.10-7.5.11).
Succinate addition was further investigated using macrophages from two strains of
mice C57BL/6 and BALB/c but a range of concentrations from 0.5 mM -20 mM did
not induce further increases in IL-6 and IL-1B3 production in comparison to LPS-
activated macrophages (figure 7.5.7). Pre-treatment of macrophages with SMAs and
then adding the substrates described above 3 hours before LPS stimulation did not
interfere with their ability to decrease either cytokine and therefore high availability
of the substrate had no effect on the SMAs’ immunomodulatory properties and
suggested that their mode of action was not via changing activation of glycolysis or
the TCA cycle by LPS (figures 7.5.1-7.5.8).Taurine which enhanced LPS production
of both cytokines (figures 7.5.10-7.5.11) did not interfere with the SMAs’ ability to
decrease either cytokine and this points to the SMAs having some effect on either
taurine uptake or biosynthesis. Indeed, the role of taurine in the inflammatory process

suggested by the current work requires further investigation.

Another biological investigation was performed using Phenotype Microarrays (PMs)
to examine which part of metabolism (cytosol or mitochondria) produces more energy
in the form of NADH in SMAs+LPS/CpG conditions. Different macrophages activators
IL-4, LPS and LPS + IFNy, were tested as well for comparison. The Phenotype
Microarrays (PMs) assay measures output of NADH production from different
pathways through reducing the tetrazolium dye. The reduction level correlates

positively with activation status (Berridge et al., 2005).
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The SMA treatment appeared to result in less utilisation of glucose and thus less
NADH production in comparison to LPS treatment alone. This is difficult to explain
given that according to the metabolomics data (chapters 3 and 4) the NADH levels in
the CpG- and LPS- treated macrophages were similar to those found in the
macrophages treated with LPS/CpG + SMAs. However, considering that tetraethyl
rhodamine methyl is not strongly retained in the mitochondria of LPS/SMA-treated
macrophages it might be that the tetrazolium dye used in the Biolog assay is not
strongly localised in the mitochondria of LPS/SMA treated macrophages. This would
resultin less efficient reduction of the dye since it largely depends on NADH (Berridge

et al., 2005) and most of the NADH is localised in the mitochondria.

Thus, the Biolog assay is mainly measuring the degree of mitochondrial polarisation
with high values being returned where the mitochondria are highly polarised. The
utilisation of the different substrates other than glucose gives no consistent pattern
and is difficult to interpret particularly since LPS and CpG appear to affect the

macrophages differently with regard to their ability to utilise different substrates.
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Chapter 8

General conclusions and future work
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8.1 General conclusion

Treating macrophages with SMAs and then stimulating them with LPS/CpG for 24
hours decreases production of cytokines such as IL-6, IL-12 and IL-1B (Al-Riyami et
al., 2013b). These important immunomodulatory effects induced by the SMAs
prompted further investigation, in particular investigating their effects on the

metabolome of the macrophages.

Treating the macrophages with SMAs alone induces changes in just a few metabolic
pathways which include glutathione biosynthesis, taurine biosynthesis/uptake,
creatine biosynthesis/uptake and glycerophosphoscholine biosynthesis/uptake (table

3.1).

From the profiles shown tables 4.1 and 5.1 in Chapters 4 and 5, LPS or CpG induce
many significant alterations to the metabolism of the macrophage. These changes
include increasing production of glutathione, glutathione disulphide, NADPH, taurine,
glycolytic metabolites, TCA cycle metabolites, NADH and high energy phosphates
such at ATP, GTP, UTP and creatine phosphate. Pre-treatment with the SMAs
followed by addition of CpG or LPS consistently affected only a few pathways in
comparison to CpG or LPS treatment alone. With data of this complexity it is difficult
to see clear patterns but the most consistent effects of the SMAs were the same in
the presence of LPS or CpG as those shown in table 3.1. They decreased intra-
cellular levels of creatinine phosphate and, in the case of LPS treatment, intracellular
levels of taurine. In addition, the SMAs increased the level of the cellular response to
oxidative stress as indicated by increased levels of GSH and GSSG. These were
largely the same effects as could be observed when the cells were treated with the
SMAs alone. Thus, their key effect may be on controlling intracellular levels of

creatine phosphate which would reduce the rate of ATP supply.
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The question is can the above metabolomic changes be linked to the
immunomodulatory effects of the SMAs? Thus, several assays were carried out to
link the metabolomics effects to those produced by different activators (chapter 6), to
motility (see chapter 7), and to nitric oxide production (chapter 7). Other assays
included adding exogenously taurine, the glycolysis inhibitor 2-deoxy glucose and the
TCA cycle substrate succinic acid to the SMA pre-treated macrophages before LPS
stimulation and testing if the exogenous treatments would reprogramme/change the
SMAs ability to decrease IL-6, IL-12 or IL-18 (chapter7). Moreover, with the increased
level of NADHY/ high activation of TCA cycle by SMA pre-treated macrophages in the
presence of CpG/LPS activation it was of interest to further investigate this changed
mitochondrial membrane potential (chapter 7). Carbon substrate utilisation was
tested by using the BIOLOG assay to investigate whether a sole metabolite/carbon

substrate would contribute more to NADH production (chapter7).

A conclusion from investigating macrophage M1/M2 phenotype, which was
discussed fully in Chapter 6, over a 24h hour stimulation with LPS, IL-4, LPS+ IFNy
and LPS +IL-4 was that IFNy produced many changes which were the same as those
produced by LPS. Combination of IFNy with LPS tended to promote these changes
further. IL4 did not have the same effects as LPS and IFNy on the metabolome. A
major difference between IFNy and IL4 was in the metabolism of arginine which was
diverted into ornithine in case of M2 (IL4 treatment) and citrulline in the case of M1

(IFNy, LPS treatment).

Other differences include a greater increase in glycolysis in the M1 phenotype without
changes in the the levels of ATP in either the M1 or M2 phenotype. Upregulation of
glycolysis/TCA cycle was obvious in either M1 or M2 cells judged by NADH
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production and the increased levels of malate in the IFN-y/LPS treated cells.
Succinate levels were similar across all treatments. Itaconate increased in the LPS
treatment and IFN-y treatment but decreased in the combination treatment with the
higher production of malate in this treatment suggesting greater flux through the TCA
cycle. There was no obvious sign of a broken TCA cycle in all treatments which
contradicts earlier work by O'Neill (O'Neill, 2015). In addition, pre-treating
macrophages with SMAs alone (Chapter3) and then stimulating them with LPS/CpG
(Chapter 4 and 5) did not affect the upregulation of glycolysis and TCA cycle induced
by LPS/CpG as indicated by NADH levels which were not changed among all
treatments. This possibly reveals that the central pathways, glycolysis and TCA cycle,
are not the only pathways that can be linked to cytokine production as has been
reported previously (O'Neill and Hardie, 2013, O'Neill, 2015, O'Neill et al., 2016) as
SMA treatment decreases IL-6, IL-12 and IL-13 without affecting the central pathways
and this was confirmed further using *Cs-glucose labelling (chapters 4 and 5). This
finding can be supported by the results obtained upon addition of glycolysis/TCA
substrates to LPS-treated cells and to cells treated with LPS + SMAs which did not

futher enhance IL-6/IL-1 production (chapter7).

The BIOLOG assay was employed to determine the effect of adding a sole carbon
substrate/metabolite on NADH production in the LPS/CpG vs SMAs. Glucose used
as the carbon substrate produced similar levels of NADH across the LPS and LPS+
SMA treatments (table 5.1) but in the Biolog assay the apparent utilisation of glucose
was much higher in the case of the LPS treatment alone. Thus, it was proposed that
the assay seemed to be largely focused on measuring the degree of mitochondrial
polarisation rather than testing the effect of glycolysis/TCA substrates on central

pathways. BIOLOG produced high values where the mitochondria were highly
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polarized and the cationic tetrazolium dye became localised within the mitochondria

as seen in Chapter 7.

Since the SMAs did not affect the increase in NADH production obtained by exposure
to LPS it was of interest to determine whether the SMAs were having any effect on
the polarisation of mitochondrial membrane (MMP) produced by LPS (Mills et al.,
2016) and thus this was tested (Chapter 7). It was found that the SMAs dissipated
the MMP in contrast to LPS which produced a high MMP. This could suggest that the
mitchondria in the SMA-treated cells are operating at lower potential and thus are
less effective at exporting ATP to be consumed possibly in macrophage maotility,
phagocytosis and perhaps signalling. Thus, motility of macrophages was tested and
it was revealed that LPS-induced motility was significantly inhibited by SMA pre-

treatment (Chapter 7).

As there is no change in activation of the TCA cycle by SMA treatment it was a
consideration that this might be associated with higher nitric oxide production as has
been shown for LPS activation. SMA pre-treatment in the presence of LPS/CpG
activation decreased nitric oxide production significantly, an effect that was not shown

with ES-62 treatment (Goodridge et al., 2001a).

The SMAs produce no effect on the central metabolic pathways when compared to
LPS or CpG alone. Thus, it was clear that the SMA immunomodulatory effects were
possibly arising from other pathways. From the metabolomic profiles, it was indicated
that glutathione synthesis, creatine and taurine metabolism were the most

consistently affected pathways (Tables 3.1, 4.1 and 5.1 in Chapters 3, 4 and 5). The
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upregulation of the glutathione biosynthesis pathway by the SMAs may be providing
more protection to the macrophages from oxidative stress and of note SMA12b has
been previously linked to increased activity of the Nrf2/ARE/HO-1 anti-oxidant

pathway (Suckling et al., 2018).

Overall the striking changes produced by the SMAs were in creatine and taurine
metabolism, and of interest, these pathways have not been widely explored, or
discussed extensively. In the case of taurine, earlier studies indicate that increased
taurine production was linked with a heightening of anti-inflammatory effects (Wright
et al., 1986, Learn et al., 1990, Schuller-Levis et al., 1995, Raschke et al., 1995,
Warskulat et al., 1997b, Gordon et al., 1998, Seabra et al., 1998). However, taurine
has recently been described as a pro- inflammatory metabolite (Guglani and Khader,
2010). In the current study, taurine was found to be pro-inflammatory and it promoted
IL-1B release while the SMAs countered this effect. The decrease in the taurine
biosynthesis/uptake may possibly be caused by the higher requirement for
glutathione biosynthesis in the SMA-treated cells which may result in a diversion of
cysteine away from the taurine pathway thus resulting in lower levels of taurine

(chapter4 and 5).

A decrease in the availability of creatine may be associated with impaired transport
of ATP from the mitochondria to where it is required for biological functions including

cell signalling, phagocytosis, motility and possibly limiting cytokine production.

Overall, the SMAs seem to be exerting their effects by controlling the transport

/availability of energy to where it's needed for possibly a higher control of immune
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functions and this may help explain their immunomodulatory functions without

inducing either an M1 or M2 phenotype.

Thus overall, the current working hypothesis it that the SMAs may be inhibiting
creatine, possibly taurine and possibly even glycerophosphocholine uptake from the
culture medium. This scenario might fit well with the original ES-62 lead compound
which as a protein would be more likely to be active at the cell surface. These

hypotheses are now testable and this will provide the basis for future work.

8.2 Future work

Due to limited/fixed time of lab work during the PhD study, several assays were
planned/discussed but unfortunately could not be tested in this project. One of the
assays was designed to understand the suggested effects of the SMAs in controlling
energy transport/availability through decreasing creatine and taurine
uptake/production. Guanidino propionate is a potent inhibitor of creatine uptake and
it would be possible to test its effect on LPS or CpG stimulated IL-1 production.
Similarly, guanidino ethane sulphonate is an inhibitor of taurine uptake and this could
also be tested. Such studies could possibly reveal new anti-inflammatory drug

targets.

Another interesting thing to investigate would be the effect of the SMAs on taurine
and creatine levels in the growth medium and thus possibly establish if their
biosynthesis what was affected or their uptake were inhibited. This study might be

enhanced by using labelled versions of these substrates to measure rate of uptake.

221



More extensive use of *Cs-glucose labelling could reveal more about the effects of
different treatments on flux through glycolysis and TCA pathways. It would be of
interest to use labelled glutamine to probe the flux through various pathways.
Glutamine is the most abundant metabolite in the macrophages based on its MS
response and is obviously key to their function. Three years was not enough time to

fully probe the complex metabolism of these cells.
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