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Abstract

Digital design of engineering systems, using Computer-Aided Design (CAD) tools for

developing and optimising products, has been used in the manufacturing process since

1957, when Patrick Hanratty built the first commercial numerical-control programming

system known as PRONTO, while he was working for General Electric. One year later,

the French physicist and mathematician Paul de Casteljau invented a system [1] based

on the use of Bernstein polynomials [2], [3] during his employment with the French

automobile manufacturer Citroën. In 1968, another French engineer named Pierre

Bézier, launched on behalf of the automobile manufacturer Renault the CAD/CAM

UNISURF system [4] for surface design, which was fully in use by 1975. The stepping

stone of Computer-Aided Ship Design (CASD) was set in 1963, when the Norwegian

CAD/CAM software Autokon was first used, developed by Trygve Reenskaug. It was 14

years later when parametric modelling in ship design introduced by Prof. H. Nowacki

who pioneered in CASD via coupling form parameters with the then novel technology

of B-splines [5]. Since then, Parametric Modellers (PM) play a crucial role in the devel-

opment and -most importantly- shape optimisation of free-form objects with increased

complexity such as ship-hulls, for they have to represent robustly and efficiently every

solid object.

The purpose of the current work is three-fold:

� Firstly, it is meant to develop and present the corresponding methodology of two

tools:

a) an innovative, robust, and cost-efficient parametric modelling tool for container

and tanker ship-hulls, which are hull forms of increased complexity. The tool is
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named TshipPM and is an extension of the work presented in [6],

b) a ship-hull shape optimisation tool based on geometric criteria, namely volume

moments up to 2nd order.

� Secondly, to evaluate the performance of TshipPM by comparing it with a well-

established, commercial parametric modelling tool, CAESES®1, opting for its

NURBS functionality.

� Finally, was to provide an easy to follow ”handbook” for developers and users on

the development of parametric modelling tools, illustrating as well how a PM can

be utilised for the construction of a given ship-hull.

The key findings of the current work which also coincide with the main objectives, are:

� A method of constructing a T-splines-based parametric modelling tool (TshipPM)

for complex ship-hull design, the development of which is taking into considera-

tion the detailed characteristics of two different ship-hull types, i.e., tankers and

containers.

� A set of geometric and design constraints imposed to TshipPM to tackle the

intricate and complex issue of Geometric Validity, ascertaining the production of

valid models for the whole design space the modeller covers.

� A step-by-step method to remodel (using TshipPM) a great variety of complex

hulls with complexity not-higher than that of tankers and containers.

� The exceptional performance of TshipPM. A comparative study is conducted

to evaluate the performance of TshipPM against CAESES, a well-established

commercial parametric modeller for ship design. This work is published in the

Ocean Engineering2 international journal, titled ”A T-splines-based parametric

modeller for computer-aided ship design [7]”.

1https://www.caeses.com/
2https://www.journals.elsevier.com/ocean-engineering
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� A method for ship-hull shape optimisation with respect to geometric criteria

and especially volume moments up to 2nd order, utilising TshipPM and a multi-

objective Teaching-Learning-based optimisation tool. This part of the work also

stresses the insufficiency of 2nd order moments to perform as complex-shape op-

timisers.

TshipPM is a parametric modelling tool for ship-hull design under geometric and design

constraints. It uses as a mathematical representation of surfaces -and to some extend

solids- the fairly new technology of T-splines, introduced by Sederberg et al. in 2003

[8], which constitutes a generalisation of NURBS, exhibiting several advantages over

the latter. T-splines technology aids towards the development of modellers for complex

ship forms, by providing geometrically valid objects with smooth surfaces and increased

fairness throughout the model’s surface, and much lower complexity in comparison with

PMs employing the standard NURBS technology. TshipPM uses 27 external (or input)

parameters to produce the control cage of the ship-hull, 3 of which are global and

dimensional, while 24 are non-dimensional and of local nature. It employs Autodesk®

T-splines plug-in® v.4.0 for Rhino5® 3D to create the final, smooth T-splines surfaces

using as input the control cage created by TshipPM.

The PhD thesis consists of 6 Chapters, structured in the following way:

The Novelties of the current work and its contribution to the field of parametric

modelling in CASD.

Chapter 1, after a brief discussion on the historical background of splines, it delivers a

comparison between T-splines, the representation underlying TshipPM, and NURBS,

the industrial standard in CAD, which is also used in the context of CAESES (§1.1).

In addition, it introduces the reader to parametric modelling, reviewing in brief the

main advancements in the field (§1.2).

Chapter 2, after the necessary introduction to TshipPM’s features and characteristics

(§2.1), analyses the structure of TshipPM regarding the parameters involved (§2.2),

making the distinction into internal and external, dimensional (or physical) and non-

dimensional. §2.3 demonstrates the process of creating a ship-hull model, starting from
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building the control cage along with its link to external parameters, which are used as

input for TshipPM, up to its conversion into the resulting ship-hull surface with the

aid of T-splines plug-in.

Chapter 3, after a brief introduction on the importance of robust PMs (§3.1), defines

the constraints encountered in ship-hull design and introduces the reader to the con-

cept of geometric validity, illustrating examples of invalid ship-hull models (§3.2). §3.3

presents the geometric and design constraints imposed to TshipPM to ascertain its

robustness as far as the production of geometrically valid models is concerned. In §3.4

we provide an experimental indication of the robustness of TshipPM in its response to

strong parameter values variation. Finally, in the last section (§3.5), we present the

output of a Monte Carlo sampling of 200,000 ship-hull instances produced by TshipPM

for both containers and tankers, and we analyse its output information to determine the

design space of the PM, by measuring TshipPM’s flexibility with regards to geometric

characteristics, namely volume centroid and moments of inertia.

Chapter 4 begins by stressing the need of remodelling a given ship-hull with PMs to

use it as basis for optimisation (§4.1), while §4.2 refers to the remodelling evaluation

criteria. The remodelling process is thoroughly described in §4.3 using as a case study

the MOERI KCS container ship-hull [9], and aims to the reconstruction of a parent

ship-hull CAD model; we use TshipPM for the construction of model’s control cage

and we feed it into Rhino5 to create the corresponding surfaces with the aid of the

T-splines plug-in. Finally, in §4.4 the evaluation of the remodelled MOERI KVLCC

tanker [10] ship-hull is conducted, under a predefined set of criteria, providing feedback

to users and developers for any adjustments and their specific locations. The evaluation

of MOERI KCS container hull is conducted in Chapter 5.

In Chapter 5, TshipPM is compared against CAESES with regards to their outputs

against a parent hull, the KCS container ship-hull [9], which has been extensively used

by the research community for CAD and Computational Fluid Dynamics (CFD) bench-

marking purposes. The comparison criteria are described in §5.1. §5.2 presents the basic

characteristics of the CAESES parametric modelling tool, as well as a description of the
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physical (or dimensional) parameters CAESES uses to remodel KCS ship-hull and the

corresponding external non-dimensional parameters, while §5.3 refers to the common

external parameters both PMs use. Finally, in §§5.4 - 5.8 the comparison of both PMs

is conducted.

Lastly, Chapter 6 presents an in-house, C#-built, shape-optimisation tool using

TshipPM and an adjusted to the needs of the current work Multi-objective Teaching-

Learning-based Optimisation (MO-TLBO) method. TshipPM MO-TLBO is optimising

the shape of a given hull (MOERI KCS) against a set of ship-design criteria, and espe-

cially volume moments up to 2nd order. After the required introduction to the chapter

(§6.1), a brief presentation of the TLBO method is conducted (§6.2). The set of the

objective functions against which the optimisation is conducted is provided in §6.3,

while in §6.4 the method of building TshipPM MO-TLBO, its features and function-

ality are presented in detail. The chapter concludes with §6.5, illustrating the resulted

KCS-ship-hull instances produced by TshipPM MO-TLBO.

The thesis concludes with the Discussion and Summary of the current work, high-

lighting its key points, stressing the delivered novelties and main contributions to the

field of parametric modelling in CASD.
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Novelties

The work presented herein is about an innovative, robust, and cost-effective parametric

modelling tool for ship-hull design, and especially for container and tanker ship-hulls,

introduced in [6]. The current work transforms the parametric modelling tool described

in [6] along several directions, which constitute the methodological and technological

novelties and contributions to the field of parametric modelling in Computer-Aided

Ship Design (CASD), as described below:

� TshipPM has been thoroughly transformed to be capable of producing ship-hull

models for both containers and tankers, taking into consideration the detailed

characteristics of both ship types. It enables a flexible representation of the ship-

hull in geometrically challenging areas, namely bow and stern, as well as in the

transition areas from midship towards the forward and afterward perpendiculars,

by introducing 9 control curves (19 in total) and 3 external parameters (27 in

total). Therefore, it is capable of delivering instances lying in the proximity of a

parent container or tanker hull;

� An in depth, step by step method of remodelling any given container or tanker

ship-hull has been developed. The remodelling process is presented using as a

case study the MOERI Container Ship’s (KCS) hull instance. Utilising TshipPM,

the process consists of the control cage construction and the optimisation of the

control cage to more accurately remodel the given ship-hull;

� As far as the cumbersome and complicated issue of geometric validity is concerned,

after extensive experimentation with the modeller and the instances produced out
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of the whole parameter values range ([0.01, 0.99]), a set of design constraints was

imposed to ascertain the production of valid objects. A large scale sampling

of more than 400,000 instances was derived and examined in Rhino5 to evalu-

ate TshipPM against self-intersections, confirming that TshipPM is capable of

producing 100% valid geometries for the total parameter value range;

� An adjusted for the purpose of the current work Multi-objective Teaching-Learning-

based Optimisation method is introduced, which, integrated with TshipPM, forms

TshipPM MO-TLBO, a tool for shape-optimisation against a set of ship-design

criteria (volume moments up to 2nd order). This is meant to be the foundation

towards an automated remodelling process.

� TshipPM is compared with CAESES, with both PMs’ outputs compared with the

KCS container ship-hull. The employed comparison criteria include the common

external parameters, volume moments (volume, volume centroid, moments of in-

ertia), sectional area curve (SAC), Gaussian and sectional curvatures for assessing

surface and curve fairness respectively, and Hausdorff distance for measuring the

geometric distance between the hulls. This work has been published in November

2019 in the Ocean Engineering3 international journal, titled “A T-splines-based

parametric modeller for computer-aided ship design”.

� We provide the reader with the list of all physical (dimensional) parameters that

characterise the geometry of the instances created by TshipPM along with a

concise description of each one of them, their classification in global and non-

global categories and, finally, their functional interrelation, which also involves

the non-dimensional parameters. In addition, we describe and display graphically

all control curves used in TshipPM, and we provide the functional relations of

their control points with the physical (therefore the non-dimensional as well)

parameters; Furthermore, the current work illustrates a key feature of the control

cage construction process, namely the mapping of the external parameters to the

control points of the T-splines representation, by describing it in detail for the

3https://www.journals.elsevier.com/ocean-engineering
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forward transition part of the hull up to the end of the forward flat of side;

� Finally, as far as the technological contribution is concerned, TshipPM is de-

veloped both in RhinoScript and C#, while TshipPM MO-TLBO is developed

in C#. The C# versions of both tools are built using RhinoCommon®4, the

cross-platform .NET plug-in SDK for Rhino;

4https://developer.rhino3d.com/guides/rhinocommon/
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Chapter 1

Theoretical Background

1.1 From B-splines and NURBS to T-splines

As early as 1946, the Romanian-American mathematician Isaac Jacob Schoenberg in-

troduced the theory of basic splines (B-splines) [11]. He and his colleague B. H. Curry

enriched fundamentally the field of numerical analysis with their work “on spline distri-

butions and their limits” [12]. Nevertheless, Carl de Boor, the author of the fundamen-

tal book on splines entitled ”A Practical Guide to Splines” [13], in his paper-postscript

for Curry’s and Schoenberg’s foundational work, where he elaborates on cardinal B-

splines, he stresses that B-splines appeared even earlier (Favard [14]). On the same note

he refers to Schoenberg who always maintained that B-splines were already known to

Laplace.

The concept of Non-Uniform Rational B-Splines (NURBS) is unclear when was first

introduced, the first systematic non-uniform rational B-splines treatment, though, is

attributed to K. Versprille research work for his PhD [15]. NURBS is the current geome-

try industrial standard for representing curves, surfaces, and solids in CAD (Computer-

Aided Design) systems; see, e.g., [16], [17], [18], [19] and [20]. Although they have being

used and improved in modelling for over 40 years, there are many gaps remain unsolved.

T-splines is a generalisation of NURBS for surfaces and -to some extend- solids, ex-

hibiting several advantages over NURBS:
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Chapter 1. Theoretical Background

� Local refinement with NURBS generates superfluous control points due to the

global-knot-vector nature of this representation (Fig.1.3). T-splines are more

efficient in this aspect, as they allow a row of control points to terminate, creating

a hanging-node, as referred to in the FEM parlance [21], [22], [23]. This hanging-

node configuration in T-splines is called a T-junction. The locally rectangular

control mesh, where T-junctions exist, is called a T-mesh [8]. A control point

PA ∈ R3, and a control weight wA > 0 are assigned to every vertex of the T-

mesh, where the index A denotes a global control-point counter, A = 0, 1, 2, .., n,

n ∈ N.

� NURBS need multiple patches with non-coinciding knot vectors to represent com-

plex shapes, therefore complicating analysis, as well as optimisation when it comes

to parametric modelling (Fig. 1.1). In addition, degenerate shapes are produced,

lacking smoothness at the locations where the neighbouring patches meet and

where at least G1-continuity is needed, as well as with reduced overall fairness.

T-splines are capable of representing complex shapes with a single patch, produc-

ing models with increased smoothness (at least G1-continuous) and fairness.

� Trimmed NURBS are not mathematically watertight as parametric trimming

curves are mathematically incapable (non-NURBS curves) to represent the inter-

sectional curve between two trimmed surfaces, resulting to the development of

non-watertight (non-solid) objects. This issue is of great importance in design

engineering and optimisation, including ship design, as solid objects are a pre-

requisite in CFD analysis. Trimming can be avoided with T-splines, due to their

advantage by using T-junctions [24] (Fig. 1.2).

Figure 1.1: T-splines single patch (top) and NURBS multi-patch (bottom) ship-hulls.
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Chapter 1. Theoretical Background

Figure 1.2: Trimmed NURBS produce non-watertight models with gaps (top), while
T-splines solve this problem taking advantage of T-junctions (bottom) [24].

In this work we opt for odd-degree splines, which possess the “well known” minimum

pseudo-norm property (in engineering terms: linearised-elastic-energy minimisers), each

member of a T-splines basis is associated in a one-to-one manner with each of the control

points. Assuming that RA,p(s, t) represents the Ath polynomial-spline basis function

of bi-degree p = 2ρ+ 1, ρ = 1, 2, ..., for surfaces, the resulting T-splines surface can be

represented as:

c(s, t) =
n∑

A=0

PANA,p(s, t), (s, t) ∈ Ω ⊂ R2, (1.1)

where

NA,p(s, t) =
wARA,p(s, t)∑n
J=0wJRJ,p(s, t)

(1.2)

T-splines bases inherit the basic properties of NURBS bases [25] as summarised below:
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Chapter 1. Theoretical Background

(i) partition of unity:
∑n

i=1NA,p(s, t) = 1 with (s, t) varying in a subdomain ω of

the global domain of definition Ω ⊂ R2;

(ii) non-negativity: NA,p(s, t) ≥ 0 with (s, t) ∈ R2;

(iii) compact support:

NA,p(s, t) = 0 if (s, t) /∈ [sA−(ρ+1), sA+(ρ+1)] × [tA−(ρ+1), tA+(ρ+1)]

(ρ = 1 for the typical bicubic case);

(iv) continuity: in the neighbourhood of a knot line of multiplicity k, NA,p(s, t) is

Cp−k continuous;

(v) convex-hull property: a T-splines
∑n

A=0 PANA(s, t), (s, t) ∈ ω̃ ⊂ R2, lies

within the convex hull of the subset of control points PA, i = 1, ..., n, for which

the compact support of the corresponding basis functions intersects ω̃;

(vi) affine invariance: a T-splines surface is invariant with respect to affine trans-

formations;

(vii) boundary-curve interpolation, via allocating appropriate multiplicity at the

boundary knots, and

(viii) linear independence for a topologically restricted subset of T-splines, referred

to as analysis-suitable T-splines, optimised to meet the needs for both design and

analysis; see, e.g., [22], [26], [27], [28], [29], [30], [31], [32]).

While in NURBS all basis functions are defined via the tensor product of two 1D global

knot vectors, in T-splines a local knot vector is assigned to every basis function, with

each local knot vector having an association with the topology of the whole patchwork

of the object [33]. This difference enables T-splines to permit T-junctions, while for the

same refinement (knot insertion) shorter knot lines are generated. Fig. 1.3 illustrates

this fundamental difference between a NURBS mesh and a T-mesh. In this work, due

to the fact that it suffices for the needs of our application to work with G1-continuous

surfaces, we shall limit our discussion to bicubic T-splines.
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Chapter 1. Theoretical Background

Figure 1.3: NURBS (left) knot lines lie on a global rectangular grid, while T-splines
(right) can form T-junctions due to locally defined knot vectors. Extraneous knot lines
and control points in NURBS are depicted in black border-style lines. Examples of
parametric faces, depicted in red diagonal stripe pattern: one face (rightmost) with 5
vertices (four corner vertices and one T-junction vertex) and two faces with four corner
vertices. Note that all faces, in both NURBS and T-splines meshes, are rectangular.

It is well known from CAD practice that NURBS need multiple patches to represent

complex shapes, complicating the analysis and optimisation of the design. On the

contrary, it is not unlikely that T-splines are capable to represent the same shapes

with a single patch. In addition, refinement with NURBS generates superfluous control

points, as NURBS must lie topologically on a rectangular grid, which is not the case

in T-splines due to the fact that they permit T-junctions. Although, T-splines are

not totally free of superfluous control points. Furthermore, in various cases, trimming

of NURBS surfaces cannot be avoided. A curve stemmed by trimming is generally

not a NURBS curve, therefore approximation is needed to represent it. On the other

hand, T-splines are able to represent such surfaces without trimming with the aid of T-

junctions [24]. In addition, T-splines can produce a valid merging of multiple NURBS

patches into a watertight surface without gaps, see, e.g., Fig. 3 in [8].

Given a T-mesh in the parametric space and a valid knot-interval configuration, we

describe the process of creating the T-splines bicubic basis corresponding, e.g., to the

vertex V0 depicted in Fig. 1.4:
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Chapter 1. Theoretical Background

(i) Starting from the vertex V0, the horizontal knot vector is obtained by marching

towards each of the two horizontal directions until two sequential edges or vertices

are encountered. The corresponding univariate basis is the cubic B-spline N0,3(s)

defined on the local knot vector {s1, s2, s3, s4, s5}:

N0,3(s) ≡ N [s1, s2, s3, s4, s5](s). (1.3)

(ii) Create in directly analogous manner the univariate basis along the vertical direc-

tion.

N0,3(t) ≡ N [t3, t4, t5, t6, t7](t). (1.4)

(iii) The productN0,3(s)N0,3(t) of the two univariate basis functions gives the sought-for

T-splines bicubic basis function corresponding to V0.

Note that a vertex in the parametric space corresponds to a specific control point of

the T-mesh in the physical space.

Figure 1.4: Constructing the T-splines basis function corresponding to the vertex V0

of a valid T-mesh. The extents of the constituting univariate knot vectors are colored
in green, while the boundary of the support of the resulting basis function is depicted
as dashed polygonal line, colored in red.

Finally, it is worth mentioning that T-splines have been successfully used in conjunction
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Chapter 1. Theoretical Background

with Isogeometric Analysis (IGA) in several areas of computational mechanics; see e.g.,

[6], [34], [35], [33], [36], [37], [38], [39]. IGA is a new methodology that eliminates the

need of geometry discretisation (meshing), as it is the case for standard FEM (Finite

Element Methods) and BEM (Boundary Element Method), enabling a seamless and

strong coupling between the geometry representation and the solver 1.

1.2 Parametric modelling

Parametric Modellers (PM) play a crucial role in shape optimisation of engineering

systems, for they have to represent robustly and efficiently every solid object. In general,

a PM is an algorithmic scheme depending on a set of geometric parameters, referred

to as external parameters, accessible to the user, the number of which determines the

dimension of the design space associated with the given PM. Attributing values to all

members of this set, PM is expected to deliver an acceptable instance of the shape to

be optimised. Acceptability is tested against the fundamental requirement that the

bounding surface of the generated object should be free from self-intersections.

We are explaining the concept of parametric modelling quoting the example in [43], as

Fig. 1.5 illustrates. We assume a planar solid L-shaped object, with the lengths of 4 out

of 6 edges controlled by 4 independent parameters. The shape and the characteristics

of the final object depend on the assigned values of those 4 parameters. Comparing the

two objects at the left-hand side, one can observe that d1 > d′1 and d0 > d′0, hence the

difference in their shape. Note that the topology remains the same, which is not the

case when we focus at the third object at the right-hand side of the figure. Here, due

to the fact that d′′3 > d′′1 the object is invalid, as to retain the L-shape it should stand

that d′′3 < d′′1. A constrain therefore should be imposed to ascertain the validity of the

final object.

1The reader interested in the theoretical foundations and research on the analytical properties of
T-splines, e.g., dimension of T-splines spaces, linear independence of T-splines basis functions, can
appeal to an abundance of pertinent papers in the area of Computer-Aided Geometric Design; see,
e.g.,[22], [26], [27], [28], [29], [30], [31], [32], [40], [41], [42].
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Figure 1.5: Parametric modelling: a simple example. Two different, topologically
equivalent valid objects (left and middle) with d1 > d′1 and d0 > d′0. Invalid shape due
to wrong parameter value assignment and lack of constraint(s) imposition.

Furthermore, various application-stemming requirements have to be met, governed by

shape descriptors selected for evaluating the quality of the generated instance. Typ-

ical examples of such descriptors are the smoothness, which is a result of parametric

or geometric continuity [44], and the fairness, i.e., non-oscillatory distribution of in-

trinsic geometric features, such as curvature, torsion, Gaussian curvature, and integral

characteristics, such as moments of various orders, e.g., volume, centroids, moments of

inertia.

Adopting the timeline introduced by Prof. H. Nowacki [45], who pioneered in Computer-

Aided Ship Design (CASD) via coupling form parameters with the then novel technol-

ogy of B-splines [5], the research and user communities celebrated in 2020 the key devel-

opments of CASD since its inception about six decades ago. An early attempt for build-

ing a ship parametric model is due to Lackenby [46], in which hull variants are obtained

by modifying the prismatic coefficient, the centre of buoyancy, and the extent and posi-

tion of the cylindrical mid-body of a parent hull. This approach has been subsequently

generalised towards expanding the geometric coverage and portability of the parametric

model through the use of NURBS. As a result, a number of PMs are currently avail-

able to ship-design practitioners, such as CAESES®2, CATIA®3, the Rhino3D-based

2https://www.caeses.com/
3https://www.3ds.com/
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GRASSHOPPER®4, MARIN/GMS®5, NAPA®6 and PARAMARINE®7.

NURBS-based technology is not however free of shortcomings when applied to para-

metric modelling of complex ship forms involving many and functionally critical regions

of shape transition nature; see, e.g., [47]. One can attribute these limitations to the

underlying tensor-product character of NURBS, which implies the need for building

smoothly connected (at least G1−continuous) NURBS patches over areas with differ-

ent shape characteristics (convex, flat, cylindrical, saddle) and varying scale. As a

result, it is not unlikely that designers and engineers have to deal with highly complex

NURBS models, involving large populations of control points, which may also need

costly healing intervention before feeding them to the solver and optimiser for shape

optimisation. In order to handle the challenge of seamless integration between para-

metric modelling and shape optimisation, more generally, integrating CAD with CAE

(Computer-Aided Engineering), several alternative representations have been developed

in pertinent literature, including hierarchical splines [48], PHT-splines [49], LR-splines

[50] and T-splines [8], [21], [51]. T-splines constitute a generalisation of NURBS tech-

nology that removes several of NURBS deficiencies, e.g., enabling refinement without

the need of adding redundant control points (see §1.1).

Regarding T-splines technology in parametric modelling, it is capable to develop mod-

ellers for complex ship forms, which provide acceptable and smooth (at least)G1− continuous

geometries at the expense of lower complexity in comparison with PMs employing the

standard NURBS-based technology. Herein, for a given set of design parameters and

their ranges, we measure complexity via the number of DoF (Degrees of Freedom) re-

quired for representing the geometry of each instance, i.e., the number of control points

involved in the two competing representations. Since T-splines achieve to span the

same design space with considerable less DoF than NURBS, it is legitimate to assert

that their efficiency, expressed as the ratio of shape-richness over DoF, is higher than

that of NURBS. Furthermore, it is worth noticing that DoF downsizing is beneficial in

4https://www.grasshopper3d.com/
5http://www.marin.nl/
6https://www.napa.fi/
7https://paramarine.qinetiq.com/
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the subsequent steps of shape optimisation, e.g., by decreasing analogously the size of

stiffness matrices involved in the adopted FEM/BEM solver.
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Chapter 2

A T-splines-based Parametric

Modelling Tool for ship-hull

design

2.1 Introduction

In this chapter we present the method of constructing a T-splines-based parametric

modelling tool (TshipPM) for ship-hull design. TshipPM’s development has been based

on two different ship-hulls: a) the MOERI KVLCC tanker [10], and b) the MOERI KCS

container [9] ship-hulls. Herein we use as reference the latter to present TshipPM’s

functionality and features. After a short introduction in the current section on the

philosophy adopted for building the modeller, §2.2 presents the physical (dimensional)

parameters along with a concise description of each one of them, their classification in

global and non-global categories and, finally, their interrelation via the non-dimensional

parameters. Lastly, §2.3 is devoted to the process of defining the geometry and connec-

tivity (topology) of the control cage underlying the T-splines surface. Initially, we refer

to the partition of the ship-hull in segments and elaborate on the concept of control

curves [6], defining all such curves TshipPM makes use of. Additionally, we provide in

detail the mapping of the user-specified parameters to the control points of the control
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cage, using as an example the forward transition part of the hull and especially from

the parallel middle part up to the flat of side. Finally, we illustrate the full output

of TshipPM, i.e., control cage and surface, and discuss the gains with respect to the

required number of control points when using T-splines versus NURBS representation.

TshipPM has been developed in two environments:

� C#, using RhinoCommon®1, which is the cross-platform .NET plug-in Software

Development Kit (SDK) for Rhino ®2;

� RhinoScript ®3, Rhino’s scripting functionality, based on Visual Basic®.

It employs Autodesk® T-splines plug-in® v.4.0 for Rhino5 to create the T-splines

surface using as input the control cage created by TshipPM. Rhino is a broadly used

CAD software, based on NURBS, for modelling curves, surfaces and solids. Autodesk

plug-in adds T-splines functionality to Rhino which with the support of RhinoScript

generates T-splines models. In analogy to the control polygon of curves, the geome-

try and topology of the control cage influences decisively the shape of the underlying

T-splines surface to be generated. It is a network of linear edges connecting the given

control points and, in conjunction with the associated T-splines basis, it delivers the

shape of the surface.

Our approach of constructing TshipPM is threefold: firstly to develop a PM that a) it is

considerably flexible in representing ship-hulls, b) it is robust, meaning it delivers valid

geometries for the whole of the external parameter values, and c) provides instances

lying in the proximity of a given parent ship-hull in terms of geometric variation and

ship-design criteria, such as up to 2nd order moments and SAC. For this purpose,

TshipPM is equipped with the functionality to produce additional transition curves,

enabling a finer control of the geometry construction from midship towards forward

(FP) and afterward (AP) perpendiculars, as well as a flexible and -with regards to the

parent ship- accurate representation of bow and stern. The above enhancements are

1https://developer.rhino3d.com/guides/rhinocommon/
2https://www.rhino3d.com/
3https://developer.rhino3d.com/guides/rhinoscript/
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achieved at the expense of only three parameters in comparison to [6] and a set of

constraints described in 3.3. The number of control points increased from 134 in [6]

to 276, nevertheless the order of magnitude remains the same, O(102), i.e., well below

than that required when using NURBS, O(103).

2.2 Parameters: introduction and handling

TshipPM’s main purpose is to generate the control cage of a ship-hull with the aid

of parameters of both external and internal character. It is currently relying on 27

physical parameters Pi, i = 0, ..., 26, which characterise the geometry of the control

cage under construction. These are dimensional quantities and are classified in global

and non-global, the latter being further categorised in 5 groups, according to which

part of the ship they belong; see Table 1. Besides the first three physical parameters,

P0 = Lwl (length of the waterline), P1 = B (beam) and P2 = T (draft), the remaining

physical parameters are defined according to the following scheme:

Pi = P̂i · fi(P0, .., Pi−1), pi∈(0, 1), i = 3, ..., 26, (2.1)

where P̂i are the non-dimensional parameters ranging in [0.01,0.99], and fi are lin-

ear functions of the physical parameters. In matrix form the above relations can be

represented as:

P′ = diag(P̂ )(AP), P′ = [P3, ..., P26]
T , P̂ = [P̂3, ..., P̂26]

T , (2.2)

where diag(P̂ ) denotes the diagonal matrix defined by the non-dimensional parameters

P̂i, and A is a rectangular matrix of block-triangular structure. Both physical, Pi, and

non-dimensional, P̂i, parameters are of external (user-visible) nature. On the contrary,

internal parameters, which range in (0,1), are accessible only to the developer and are

deployed for shape stabilisation via retaining key-shape characteristics of the type of

the hull the designer is interested in. Their number varies, depending on the complexity

and the number of control curves which identify challenging areas, such as bow and
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stern, but also areas of shape transition between the midship and the bow/stern areas of

the ship. Internal parameters are not inter-dependent to each other or to any external

parameters. Once parameters values are provided to the first three physical and the

24 non-dimensional parameters, Autodesk’s T-splines plug-in is called to create the

smooth surface, using as input the control cage created by TshipPM to produce the

final T-spline model. Fig. 2.1 provides a representative diagram of the execution

process.

Figure 2.1: Steps to create a TshipPM instance: we first attribute values to P0 = Lwl,
P1 = B, P2 = T and the non-dimensional parameters P̂i∈(0, 1), i = 3, ...26, which,
alongside the internal parameters, determine the control cage of the ship-hull; TshipPM
plug-in is then called to produce the smooth surface of the final instance.

Table 2.1: TshipPM parameters and groups; Pi’s: physical parameters.

Pi’s Description Linear functions fi of

Global Parameters

P0=Lwl Waterline Length -

P1=B Beam -

P2=T Draft -

non-Global Parameters

Mid Part Parameters

P4=Mid Pos Longitudinal middle position Lwl

of Middle Body

P3=Mid L Length of Middle Body Lwl, Mid Pos

P5=BilgeR Bilge Radius B or T

Fwd Part Parameters

P6=BatFP Breadth at FP B

Continued on next page
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Table 2.1 – Continued from previous page

Pi’s Description Linear functions fi of

P7=FoS Fwd L Flat of Side Mid Pos, Mid L

P8=FoB Fwd L Flat of Bottom Mid Pos, Mid L

P9=FoS Trans Height between keel T, BilgeR

and FoS at the transition

of Midship to Fwd Part

P 10=FoB Trans Breadth between keel and B

FoB at the longitudinal

position where FoB ends

P 11=FP L fromMS Length from Mid Body to FP Mid Pos, Mid L,

FoB Fwd L

Bow Parameters

P 12=FwdRise Rise of Fwd Part Bulb H

P 13=BulbL Bulbous Length (from FP) Lwl

P 14=BulbH Bulbous Height T

P 15=BulbB Bulbous Width B

P 16=BulbTipH Height of tip of Bulbous Bulb H

Aft Part Parameters

P 17=BatAP Breadth at AP B

P 18=BatAPLow Breadth at the bottom at AP B

P 19=FoS Aft L Flat of Side Lwl, Mid Pos, Mid L

P 20=FoB Aft L Flat of Bottom Lwl, Mid Pos, Mid L

P9=FoS Trans Height between keel T, BilgeR

and FOS at the transition

of Midship to Aft Part

P 10=FoB Trans Breadth between keel and B

FoB at the longitudinal

Continued on next page
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Table 2.1 – Continued from previous page

Pi’s Description Linear functions fi of

position where FoB ends

P 21=AP L FromMS Length from Middle Body to AP Lwl, Mid Pos,

Mid L, FoB Aft L

Stern Parameters

P 22=TransomH Transom Height T

P 23=TransomB Transom Breadth BatAP

P 24=TubeL Tube Length Lwl, Mid Pos, Mid L,

FoB Aft L, AP L FromMS

P 25=TubeR Tube Radius T

P 26=SternFullness Bulkiness of Stern Lwl, B

at the waterline

TshipPM favours the use of non-dimensional parameters, where possible, in order to

handle effectively the interdependency that occurs among them, as it is the case in

Eq. 2.1. For example, if we define ship’s draft T as a physical parameter, the permissible

value would be upper-bounded by the ship’s depth D. On the other hand, by employing

the ratio parameter: r = T
D , its valid range bounds are 0 and 1 regardless of ship’s

depth value, which permits a simpler checking algorithm for the validation of input

parameter values. The benefits of this approach are more evident when we have a

series of interdependent parameters, as in the case of ship’s midship part definition in

the example below.

Let us consider a ship of length l, and two points defining the starting and terminating

points of the midship part respectively. Furthermore, let lS and lE denote the corre-

sponding distances of each of these points from the common origin O; see Fig. 2.2.

If we were to implement lS and lE as physical parameters, we would have to include

validation checks so that, for example, the inequality 0 < lS < lE < l stands true,
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whereas, by introducing ratio parameters rE = lE
l and rS = lS

lE
, we ensure the right

order of the corresponding points by simply bounding both ratios in (0,1); see Fig. 2.2.

Obviously, in this case, no further validation checking is required.

Figure 2.2: Relation between physical (dimensional) and non-dimensional parameters.

Thus, the use of non-dimensional parameters, ranging in subintervals of (0, 1), supports

the robustness of TshipPM, by avoiding the allocation of values to parameters that

would result in delivering non-valid geometries suffering, e.g., from self-intersections.

These subintervals are currently pre-specified by the developer via experimentation

with the available parent hulls. Figs. 2.3 and 2.4 illustrate all physical parameters used

in TshipPM. In the rest of the text the term parameters will be used for referring only

to the three physical and the twenty-four non-dimensional parameters, denoted by the

parameter name and a wide hat symbol, e.g., B̂ulbL denotes the non-dimensional pa-

rameter corresponding to the physical parameter of bulbous-bow length, BulbL. Note

that parameters ̂FoS Trans and ̂Fob Trans are used both in forward and afterward

parts, but their corresponding lengths differ, as an internal parameter has been applied

to both of them for the afterward part.

2.3 From parameters to the control cage and the output

surface

The shape of a typical ship-hull consists of three main parts, namely, a) the midship,

which is the part bounded by FP and AP, b) the bow, which extends from FP to the

forward end of the hull, and c) the stern, extending from AP and afterwards. Midship

consists of the cylindrical (parallel) middle part (Mid Part), the forward (Fwd Part)
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Figure 2.3: TshipPM input parameters for Fwd Part and Aft Part.

Figure 2.4: Bow and Stern Parameters.

and the afterward (Aft Part) parts. To describe adequately the main parts of a ship-

hull, global physical parameters are needed, such as Lwl, B and T. This multi-level

segmentation of the ship-hull should be reflected on the control cage; see Figs. 2.5 and

2.6.

Figure 2.5: Typical segmentation of a ship-hull. Main parts are midship, bow, and
stern.

In order to give shape to the bounding surfaces of a ship-hull and guarantee a fair

transition from a part to its neighbouring ones, control curves are required. Control

curves are of two types, namely, bounding and transition curves. Bounding curves,

such as bow (BowPrfCrv) and stern (SternPrfCrv) profile curves, are used to specify
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Figure 2.6: Segmentation of midship, consisting of the cylindrical (or parallel) middle
part, forward and afterward Parts.

the boundaries of the ship-hull, while transition curves are employed to indicate the

transition between different parts and/or further segmentation of the same part. Pre-

images of these curves on the control cage level are introduced by the so-called control

cage paths, as illustrated in Fig. 2.7.

Figure 2.7: Examples of control cage paths of transition type (left: from flat of side to
forward part, depicted in magenta) or boundary type (middle: stern boundary, right:
bow boundary, depicted in red).

An example of determining control cage paths using both internal and external pa-

rameters is given in Fig. 2.8, where it is assumed that the extent of Mid Part is

already fixed. The external parameter controlling the longitudinal transition from the

terminating point of Mid Part to the forward transition curve at FoS Fwd L, is pa-

rameter ̂FoS Fwd L, while the forward transition curve itself makes use of parameters

FoS Trans, FoB Trans and the internal parameters a1 and a2.
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Figure 2.8: Control cage path of forward transition curve (magenta) and its defining
parameters.

We now elaborate on and define the control curves used by TshipPM with the aid of

Figs 2.9 to 2.18. Distances, which are linear functions of both external and internal

parameters, are denoted as functions of the form: f(“physical parameter”), while di-

mensions which are dependent only on one external parameter, without any internal

parameters applied, are denoted as “physical parameter”. For example, for FTCD in

Fig. 2.12, the horizontal distance between PA and PB is defined by both Fob Trans

(physical dimension) and an internal parameter, therefore it is noted as f(Fob Trans).

On the contrary, the horizontal distance between PB and the dash-dot vertical line on

the right hand side (as Fig. 2.11 indicates the two vertical dash-dot lines define the

breadth of the ship-hull), determines the transition dimension for the end of the flat

of bottom, and it is not a function of any internal parameter but only of the external

parameter FoB Trans, hence the scheme f(“physical parameter”) is not needed. Note

that, in the same figure, the repetition f(Fob Trans) denotes that each of these functions

use a different internal parameter. This is the case in all Figs from 2.9 to 2.18.

Each transition curve in the context of the control cage is a set of contiguous straight

lines (polylines). For the description of the control curves we are segmenting the ship-

hull into 5 segments, namely parallel middle part (Mid Part), forward part (Fwd Part),

bow, afterward part (Aft Part), and stern as Fig. 2.9 illustrates.

Parallel middle part consists of four identical U-shaped polylines, two of them framing

the parallel middle part and another two located slightly closer towards the Mid Pos of
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Figure 2.9: Segmentation of the ship-hull into five segments.

the ship-hull. Since TshipPM uses bicubic T-splines, four collinear control points are

needed (or three collinear line segments) to create a straight line along one parametric

direction. This set-up, in addition to the fact that the four polylines are identical,

ascertains the middle part is cylindrical. Each transition curve is constructed by the

use of three external parameters, as Fig. 2.10 illustrates, and it is comprised of six

coplanar control points (five contiguous coplanar line segments).

Figure 2.10: U-shaped polylines and control points of the parallel middle part and their
interdependency with physical parameters.

Forward and afterward parts consist of four transition curves each. Forward part tran-

sition curves (FTC) FTCA, FTCB, FTCC, and FTCD are formed by five coplanar

control points. FTCA uses parameters T, B, FoB Trans and FoS Trans, while the rest

of the FTCs make use of the first three of them. FTCA and FTCD are located at the

longitudinal position of the end of the flat of side and flat of bottom respectively, while

the rest of the transition curves are in between. Note that the vertical blue line segment

exactly before the magenta-depicted polyline in Fig. 2.8 is necessary to ascertain the

flatness of the flat of the side. The same applies at the afterward part. Figs 2.11 and
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2.12 illustrate all four forward transition curves.

Figure 2.11: First (FTCA) and second (FTCB) forward transition curves. FTCA is
located at the longitudinal position where the flat of side of the forward part ends.

Figure 2.12: Third (FTCC) and fourth (FTCD) forward transition curves. FTCD is
located at the longitudinal position where the flat of bottom of the forward part ends.

Afterward part transition curves (ATC) ATCA, ATCB, and ATCC consist of five copla-

nar control points, while ATCD consists of six. More control points are needed for the

fourth transition curve as the complexity of hull’s surface increases as we approach the

stern. First three curves use parameters T, B, FoB Trans, FoS Trans, and TransomH,

while FTD makes use of all of them except from FoS Trans. ATCB and ATCD are
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located at the longitudinal position of the end of the flat of side and flat of bottom

respectively, while ATCA is between the middle part and ATCB, and ATCC between

ATCB and ATCD. Figs 2.13 and 2.14 illustrate all four afterward transition curves.

Figure 2.13: First (ATCA) and second (ATCB) afterward transition curves. ATCB is
located at the longitudinal position where the flat of side of the afterward part ends.

Figure 2.14: Third (ATCC) and fourth (ATCD) afterward transition curves. ATCD
is located at the longitudinal position where the flat of bottom of the afterward part
ends.

Bow consists of three transition curves, namely the forward perpendicular transition

curve (FP Crv) and two bulb transition curves (BulbCrvA and BulbCrvB), and one

boundary curve, the BowProfCrv. FP Crv is consisted by six coplanar control points

and uses parameters T, B, BatFP, BulbH, BulbB, and FwdRise. More control points

are needed for the FP Crv transition curve as the surface of the hull at this location and

31



Chapter 2. A T-splines-based Parametric Modelling Tool for ship-hull design

towards the bow becomes more complex compared with the regions at Fwd Part. Bulb

curves are comprised of six coplanar control points which are defined by parameters B,

BulbB, BulbH, and FwdRise. Finally, BowProfCrv consists of nine coplanar control

points along the longitudinal direction and uses parameters BulbL, BulbH, BulbTipH,

and FwdRise. The top line segment of the BowProfCrv has also been offset by a

function of BatFP (details are shown in Fig. 4.10, subsection 4.3.4.1). See Figs 2.15

and 2.16 for the control curves of the bow part.

Figure 2.15: Forward perpendicular (FP Crv) and bow profile (BowProfCrv) curves.

Figure 2.16: Bulb Curves.

32



Chapter 2. A T-splines-based Parametric Modelling Tool for ship-hull design

Stern consists of the afterward perpendicular transition curve (AP Crv), and the SternPrfCrv.

AP Crv is formed by eight coplanar control points, making use of parameters T, B,

BatAP, BatApLow, TransomH for its representation, while SternPrfCrv is consisted of

twenty-two control points which are not coplanar and it is represented using parameters

Lwl, B, T, TransomB, TransomH, and SternFullness. The latter is responsible for the

location of one control point which runs along the red straight line (P 0, P 1) (see Fig.

2.18) according to the following equation:

r(t) = (1− c) ·P0 + c ·P1, (2.3)

where r(t) is the location of the control point on the xy-plane and c = ̂SternFullness.

SternPrfCrv includes eight control points which construct the tube profile curve, using

parameters T, TubeL, and TubeR. Figs 2.17 to 2.18 depict AP Crv and three different

views of SternPrfCrv.

Figure 2.17: Afterward perpendicular (AP Crv) and stern profile (SternPrfCrv) curves.

Let us now describe in more detail the process adopted by TshipPM for mapping user-

defined parameters to the control points of the control cage for the configuration de-

picted in Fig. 2.19, associated with the challenging transition area from the middle body

towards FP. To proceed, we assume that the control points M0,i = (Mx
0,i,M

y
0,i,M

z
0,i)

T ,
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Figure 2.18: Two more views of the stern.

i = 0., ..., 5, of the U-shaped control polygon M0 (depicted in black) have been cal-

culated, adopting the choices made in Fig. 6 in §2 of [6], and we aim to compute

the control points of the first two FTCs, namely FTCA (depicted in red) with control

points P0,i, i = 0, 1, .., 5 and FTCB (depicted in green) with P1,i, i = 0, 1, .., 5. TshipPM

calculates the location of the afore mentioned control points using the below formulae

(2.4)-(2.8) for FTCA and (2.9)-(2.13) for FTCB.

P0,0 = M0,0 − (FoS Fwd L, 0, 0)T , (2.4)

P0,1 = P0,0 − (0, 0, FoS Trans)T , (2.5)

P0,2 = (Mx
0,0 − FoS Fwd L, Oy − a0 · FoB Trans, Oz − T )T , (2.6)

P0,3 = (P x0,2, O
y − a1 · FoB Trans, P z0,2)

T , (2.7)

P0,4 = (P x0,3, O
y − B

2
, P z0,3)

T . (2.8)
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P1,0 = M0,0 − (a2 · FoB Fwd L, 0, 0)T , (2.9)

P1,1 = (P x1,0, P
y
1,0 − a3

B

2
, Oz − a4 · T )T , (2.10)

P1,2 = (Mx
0,0 − a2 · FoB Fwd L, Oy − a5 · FoB Trans, Oz − T )T , (2.11)

P1,3 = (P x1,2, O
y − a6 · FoB Trans, P z 1, 2)T , (2.12)

P1,4 = (P x1,3, O
y − B

2
, P z1,3)

T . (2.13)

where O denotes the origin (0, 0, 0)T of the coordinate system, and ai, i = 0, 1, .., 6, are

internal parameters with a0 < a1, and a5 < a6. Regarding the functionality of these

inequalities, they control the relative spatial positioning of control points, e.g., a0 < a1,

secures that P0,3 is placed further than P0,2 and towards P0,4. Furthermore, formulae

(2.4)-(2.13) readily imply that mapping user-defined parameters to control points is

done through affine mappings.

Figure 2.19: Control points of the U-shaped polygonal lineM0 (depicted in black) and
the first two Forward Transition Curves, FTC0 (depicted in red) and FTC1 (depicted
in green).

Once the control polygons of each of the transition curves FTCi, i=0,1 are defined, the

connectivity between them and the vertices of the U-shaped control polygonM0 is set
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as shown in Fig. 2.19. Despite the fact that all three control polygons do not share

the same number of points, T-splines functionality enables us to circumvent this issue

by introducing T-junctions (valence-3 control points), in this case at M0,3. Between

transition curves with the same number of control points, as is the case for FTC0 and

FTC1 of the same figure, we connect each control point of each transition curve with

only one control point of the other, ending with connecting line segments of the form

P0,iP1,i, where P0 and P1 are the two transition curves, and i = 0, 1, .., n is n the

number of the control points of each one of them. Working in this way we are able

to retain, in most cases, quadrilateral topology, i.e., create quadrilateral elements, to

reduce the complexity and increase the quality of the developed surfaces.

In case a control point is necessary to be connected with fewer or more than 4 edges,

extraordinary points have to be introduced. For control points on the boundary of the

T-mesh, but not on the corners, extraordinary points are created when their valence is

higher than 3, while for corner control points, extraordinary are called the points which

are connected with more than 2 lines. An example of a control point of valence-5 is

shown in Fig. 2.20. b0 is an extraordinary point on the FP Crv (depicted in magenta),

connected with b1 of the first BulbCrv (depicted in red).

Figure 2.20: An example of a valence-5 extraordinary point. b0 is located on the
Forward Perpendicular Transition Curve (depicted in green) and is connected with b1

of the first Bulb Curve (depicted in red).
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The computed control cage is then fed to the T-splines plug-in, which in its turn deliv-

ers the corresponding ship-hull instance, represented by one single T-spline polysurface.

Figs. 2.21-2.23 depict a typical output, with hollow rectangles indicating the control

points PA, A = 0, ..., n, of the obtained T-splines hull surface along with their connec-

tivity (dashed lines, showing the control cage), while solid lines constitute the mapping

of T-mesh edges on the surface.

Considering the control points PA, A = 0, ..., n, as the DoF (degrees of freedom) of the

surface representation (1.1), their population of which (= n + 1) is a measure of the

computational complexity of the resulting surface. For the surface in Figs. 2.21-2.23,

n+1 = 157 (for the whole hull n+1=276). On the contrary, DoF of parent ship-hull and

is approximately 5,000. Since every T-splines surface can be accurately represented as a

NURBS multi-patch surface, one can experience the DoF overloading effect of NURBS

by transforming T-splines into NURBS and count the control points. For the surface

in question this operation leads to a multi-patch NURBS surface with approximately

18,000 control points.

Figure 2.21: TshipPM output: perspective view from the bow with control points and
on-surface mappings of T-mesh edges.
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Figure 2.22: TshipPM output: perspective view from the stern.

Figure 2.23: TshipPM output: side view.
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Chapter 3

Geometric Validity of TshipPM

and Data Analysis

3.1 Introduction

The question about PMs’ robustness and their capability to produce valid geometries

for the whole design space they cover, as well as which parameter values may lead to

non-valid models, are “long standing” problems in parametric CAD design, which are

easy to state but difficult to solve; see, e.g., [43]. Herein, by design space we refer to

the subset of R27, determined by the three physical parameters (P0=Lwl>0, P1=T>0,

P2=B>0) and the remaining physical parameters Pi, i=3,..,26 (see Table 2.1) defined

by the linear functions of Eq. 2.1. In this chapter we elaborate on the constraints

imposed to TshipPM to achieve high levels of robustness regarding to the geometric

validity of the outputs. Firstly, in §3.2 we introduce the geometric validity evaluation

criteria of the outputs and the auxiliary terms. Afterwards, in §3.3 we elaborate on

the design constraints imposed to TshipPM, while in §3.4 we illustrate the behaviour

of TshipPM against strong parameter values variation with respect to a parent ship-

hull. Lastly, in §3.5 we assess the robustness of TshipPM against a large set of 100,000

models for each of the KCS and KVLCC ship-hulls, and we analyse the data collected.
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3.2 Definitions and geometric validity evaluation criteria

Constraints in CAD are limitations set either by the nature of the model (e.g. sym-

metry, perpendicularity, etc.), known as geometric constraints, or by the designer to

achieve the desired end product, the so-called design constraints. We define as geomet-

ric validity of complex shapes their attribute to be represented by a single surface or

a set of surfaces capable to form watertight (or solid or closed or not open) objects,

therefore presenting no unnecessary trimmings (holes), to be properly welded (no naked

edges), and for which no self-intersections (intersection of neighbouring surfaces) occur.

We explore the geometric validity of the produced instances with the aid of Rhino5. As

TshipPM creates one single polysurface and not a number of surfaces, it’s out of our

interest to explore areas where neighbouring surfaces are not properly welded. Hence,

we focus our evaluation on two criteria, namely a) self-intersections and b) trimmings.

The evaluation is being conducted using two techniques:

A) We determine whether a model is geometrically valid or not by exploring its water-

tightness. Open objects can occur due to two main reasons: a) the presence of trim-

mings (and/or unwelded surface edges which are out of our scope) as a result of topolog-

ically incorrect control cages (Fig. 3.1), and b) as an end product of self-intersections.

These objects, in most cases, can be identified automatically by Rhino using the isOb-

jectSolid property. Although, there are some open instances that cannot be identified

in Rhino as such, therefore, on top of the isObjectSolid property, we calculate instance’s

volume; if volume is negative, the instance is open, thus invalid. Such an example is

shown in Fig. 3.2, where one symmetric half of the hull is depicted in red colour. The

invalidity at the area of AP is obvious: the encircled surface, part of the red-depicted

half-hull intersects the plane of symmetry and further penetrates the other half-hull.

B) There are some cases of self-intersections,though, where the final object is identified

by Rhino as a closed object, the volume has a positive value, but the geometry presents

self-intersections; in these cases we appeal to user-based visual evaluation. Fig 3.3

illustrates two cases of evident, undetected self-intersections, while Fig. 3.4 shows

a self-intersection which is more cumbersome to identify. The latter group of self-
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intersections is most probable to be encountered in the complex areas of the hull, such

as the stern, as it is the case in Fig. 3.4. Via visual evaluation, one can also identify

shape-abnormalities with respect to a regular-practical container or taker ship-hull.

The development of a PM which produces valid geometries in the whole range of the

input parameter values, or even in most areas of the range, is a matter of extensive

experimentation and very close examination of the sensitive areas of the models pro-

duced. It should be also stressed that, usually, the problematic cases are occurring in

extreme parameter values, lying very close to the boundaries of the values range.

Figure 3.1: An invalid geometry consisting of a trimmed surface.
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Figure 3.2: Example of an invalid, closed object with negative volume. The self-intersection is encircled.
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Figure 3.3: Undetected by Rhino invalid geometries consisting of evident self-inter-
sections.

Figure 3.4: Undetected by Rhino invalid geometries consisting of non-evident self-
intersections.
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At this point it would be important to note that, although part of the detection of the

invalid surfaces can be conducted automatically by integrating certain criteria into the

algorithm, the automated imposition of constraints depends on a set of criteria such

as the ship-hull type, the detailed characteristics of the hull, the richness of the design

space, etc., and it is an intricate process which requires further research.

3.3 Constraints

3.3.1 Transition curve constraints

As described before, TshipPM uses a set of transition curves to control the geometry

construction of the produced ship-hulls. The increased number of transition curves

compared to [6] alongside with the large design space the modeller covers might cause

failures in the construction process, characterised as overlaps and misplacements of

the transition curves. An overlap is when two curves coincide (they share the same

longitudinal position), and a misplacement is when a transition curve, which was sup-

posed to be located after/before another transition curve, is located before/after that.

An example of misplacement is given in Fig. 3.5, where ̂FoS Fwd L > ̂FoB Fwd L,

therefore FTCB is drawn before FTCA, and as a result a shape-abnormality occurs.

Figure 3.5: Misplacement of the second Forward Transition Curve (FTCB), depicted
in red, as it is located before the first Forward Transition Curve (FTCA), depicted in
green.
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To ascertain no overlaps or misplacements among the transition curves which belong

to a certain part of the ship-hull, we have adopted two measures:

Measure 1: Assignment of internal parameters to explicitly determine the topological

location of each transition curve.

We are going to discuss the first measure with the aid of Fig. 3.6. For the for-

ward part of the ship-hull we make use of 4 transition curves. FTCA and FTCD

are located at the end of the flat of side and flat of bottom respectively. No inter-

nal parameters are needed for these two curves, as their topological position is deter-

mined by only the use of physical parameters FoS Fwd L (for FTCA) and FoB Fwd L

(for FTCD). FTCB should be located between FTCA and FTCD, and FTCC be-

tween FTCB and FTCD. Assuming the closest U-shaped polyline of the middle part

is at the longitudinal positions x = 0, FTCA, FTCB, FTCC, FTCD are located at

the longitudinal position FTCA(x) = FoS Fwd L, FTCB(x) = a1 · FoB Fwd L,

FTCC(x) = a2 · FoB Fwd L, and FTCD(x) = FoB Fwd L, where it should finally

stand that FTCA(x) ≤ FTCB(x) ≤ FTCC(x) ≤ FTCD(x), achieved by introducing

internal parameters a1 and a2, where FoS Fwd L
FoB Fwd L < a1 < a2 < 1. The afore mentioned

process is in tandem with the constraint FoS Fwd L ≤ FoB Fwd L which imposes

the length of the flat of side to be less than or equal to the length of the flat of bottom,

and which applies for both forward and afterward parts. This guarantees that there will

be no misplacement among FTCs when FoS Fwd L ≤ FoB Fwd L, but it does not

suffice to prevent FTCA and FTCD from overlapping (see Measure 2). FP Crv and

BulbCrvs are not subject to any constraints. The afterward part has been constructed

in a similar way, with no interdependency between internal parameters a3 and a4, and

both of them lie in (0,1) (Fig. 3.7).
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Figure 3.6: Longitudinal position of the forward transition curves. Internal parameters
ascertain there are no misplacements.

Figure 3.7: Longitudinal position of the afterward transition curves. Internal parame-
ters ascertain there are no misplacements.

Measure 2: Internal decisions for drawing/neglecting transition curves.

Measure 1 does not ascertain the prevention of overlaps. There are cases for which a

decision should be taken in the algorithm about whether or not a transition curve is to

be constructed or neglected. The constraints taken for these cases are outlined below:

(a) If FTCA(x) = FTCB(x), FTCB is neglected.

(b) If FTCA(x) = FTCC(x), both FTCB and FTCC are neglected.
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(c) If FTCA(x) = FTCD(x), all forward transition curves but FTCA are neglected.

(d) If ATCB(x) = ATCC(x), ATCC is neglected.

3.3.2 Other constraints and conditions

Keel plane constraint: Along the afterward part, the second control point (P2,ATCi,

i = A,B,C,D) of each transition curve counting from the waterline length is assigned as

a function of parameters ̂FoS Trans and ̂TransomH, i.e., P 2 = f( ̂FoS Trans, ̂TransomH).

In case extremely high parameter values (e.g., 0.99) are assigned for both of them, con-

trol point P2 of the first two transition curves might be located lower than the keel of

the ship-hull, and as a result a shape-abnormality is created, as shown in Fig. 3.8. A

geometric constraint needs to be imposed to ascertain that P 2,ATCi(z) ≥ Origin(z)−T ,

for i = A,B. The same applies for P ′2(z). The constraint is not applied to ATCC, and

ATCD, as ̂FoS Trans doesn’t have such a significant contribution as it has for ATCA,

and ATCB.

Figure 3.8: P 2,ATCA, P 2,ATCB, and P ′2 have to be constrained so they are always at
the same level with or higher than the keel of the ship-hull.

Stern constraint: Assuming large values for parameters ̂TransomH and T̂ ubeR and

extremely low values for ̂FoS Aft L, ̂FoB Aft L, ̂AP L FromMS, and T̂ ubeL, a self-

intersection is caused at the location where the bottom part of the stern meets the main

body of the hull (Fig. 3.9). To understand the reason behind this invalidity we are
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focusing on the output surface of the invalid model and we compare it with the surface

of the constrained, valid one (Fig. 3.10). We observe that the stern in the proximity

of ship-hull’s main body is bulkier compared to the valid one’s and it intersects with

the surface created between the tube and the main body. The problem occurs because

the profile of the stern at this particular location is created by 3 control points (Fig.

3.9) as compared to the 4 control points of the valid surface, hence the surface of the

stern near the main body is more curved. We prevent this phenomenon by introducing

a series of control points (4 in total, 3 line segments) along the span of the stern in the

proximity of the main body of the hull (Fig. 3.11). These control points are imposed

only when very long stern and smaller main bodies are produced and not for regular

(more practical) instances, since the constraint is not necessary then.

Figure 3.9: Invalid surface: intersection of the neighbouring surfaces of stern and
tube-main body.
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Figure 3.10: Valid surface: the problem has been addressed by introducing a series of
control points along the span of the stern (see Fig. 3.11).

Figure 3.11: Control cage of the valid object: 4 control points along the span of the stern
are needed to ascertain geometric validity at the transition from the main body-tube
to stern.

Middle part constraint Finally, Mid Pos and Mid L have been constrained between

[Lwl/4, 3Lwl/4] and [Lwl/5, 4Lwl/5] respectively, as it is impractical to obtain objects

with their parallel middle part -which is the part with the largest sectional area- in the

proximity of the bow or the stern - where smaller sectional areas are met.
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Apart from the imposed constraints, we have incorporated some conditions which allow

the construction of models with less control points. This is accomplished by neglecting

the construction of some of the transition curves, when one curve is very close (< 0.1m)

to another one. In brief:

(i) If FTCA is very close to FTCB, the latter is neglected.

(ii) If FTCA is very close to FTCC, both FTCB and FTCC are neglected.

(iii) If FTCA is very close to FTCD, all forward transition curves except FTCA are

neglected.

(iv) If ATCB is very close to ATCC, ATCC is neglected.

3.4 Behaviour of TshipPM against strong parameter val-

ues variation

To provide an experimental indication of the robustness of the constructed PM, Figs.

3.12 to 3.19 collect TshipPM’s response to strong variations of 3 design parameters,

namely the bilge radius (BilgeR), the bulb length (BulbL) and the bulb height (BulbH).

Variation is measured in percentage of the parameter values corresponding to the parent

hull (KCS).

In particular, Fig. 3.12 and 3.13 depict TshipPM’s response to BilgeR decrease and

increase by 30% respectively. Figs. 3.14-3.17 illustrate deviations of BulbH and BulbL

up to ±20%. Finally, Fig. 3.18 shows a TshipPM instance where BulbH has been

decreased by 60%, while Fig. 3.19 is an instance where both BulbH and BulbL have

been decreased by 50%.

TshipPM provides at least G1-continuous and fair surfaces for the afore mentioned

significant variations of parameter values. At this point we have to mention that, in

some cases at the stern, and especially at the area where the tube meets the main

body of the hull, assuming extreme parameter values, thus very long sterns with large

tube radius and ATCD very close to the afterward perpendicular, there occur few cases
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where smoothness and fairness are very cumbersome to identify and evaluate, let alone

to demonstrate, mainly in the proximity and around the symmetric axis, and they seem

to be of lower quality than in the rest of the hull, but still no less than G1.
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Figure 3.12: Decreasing B̂ilgeR by 30%. Figure 3.13: Increasing B̂ilgeR by 30%.

Figure 3.14: Decreasing B̂ulbH by 20%. Figure 3.15: Increasing B̂ulbH by 20%.

Figure 3.16: Decreasing B̂ulbL by 20%. Figure 3.17: Increasing B̂ulbL by 20%.

Figure 3.18: Decreasing B̂ulbH by 60%.
Figure 3.19: Decreasing both

B̂ulbL and B̂ulbH by 50%.
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3.5 Data analysis and design space

In this section we present the output of a Monte Carlo sampling of ship-hull instances

produced by TshipPM, both for containers and tankers. Firstly, we explain how the

sampling process was conducted and we elaborate on the extracted information of the

sampling. Furthermore, we analyse the data output to determine the actual design space

of TshipPM, and we measure its flexibility with regards to geometric characteristics,

namely volume and moments of inertia.

Sampling: An iteration process was conducted, using RhinoScript, to create a sam-

ple of 100,000 designs to use as a basis for the evaluation of the robustness of each

TshipPM version, one for containers (TshipPMC) and one for tankers (TshipPMT),

after the imposition of the constraints. We evaluate TshipPM’s capability to produce

geometrically valid instances for any combination of parameter values provided in be-

tween the range [0.01,0.99] using Rhino’s GUI and its features, as explained in §3.2.

The parameter values for each instance were assigned randomly using the Rnd function,

that returns a floating-point value between 0.0 and 1.0. The returned values have been

adjusted affinely to lie in between the desired parameter value range.

Out of the total sampling of the 200,000 produced models of both versions of TshipPM

and after evaluating them with the aid of Rhino5, the results showed that TshipPM

produces geometrically valid objects for the whole range of the external parameters,

i.e. it produces watertight models for its complete design space.

A database which includes the following information for each model has been created:

(i) input file: parameter values;

(ii) output file: dimensions of the physical parameters in absolute lengths, Cb (block

coefficient), volume, volume centroid, and moments of inertia with respect to

volume centroid;

(iii) a 3d object in Rhino’s .3dm format;
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Part of the database for the 3d objects of containers 1 and tankers 2 are accessible in

the online design community of GrabCAD.

Data Analysis and Design Space: One of the most crucial characteristics of a

PM is its capability to produce models of diverse shapes and geometric characteristics,

such as volume moments, therefore creating models of an extensive design space. The

theoretical design space (TDS) of a PM is defined based on the values the physical

parameters can theoretically take according to the underlying linear functions defin-

ing them, assuming no constraints are imposed. On the other hand, the actual design

space (ADS) is created by the values the physical parameters can actually take after

the constraints are imposed. We’re explaining this notion with the aid of the follow-

ing example: we assume TshipPM uses just one parameter, the physical parameter

responsible for the middle position of the ship-hull (Mid Pos), and its corresponding

non-dimensional parameter ( ̂Mid Pos). Mid Pos is defined as:

Mid Pos = ̂Mid Pos · 0.7 · Lwl (3.1)

with ̂Mid Pos ∈ [0.01, 0.99]. Assuming that Lwl = 232.5m, Mid Pos can take values,

before the constraints, in the range [1.74m, 172.63m]. Since Mid Pos’s lower bound is

constrained and cannot be lower than Lwl/4, as explained in §3.3, the actual range of

Mid Pos’s position is [58.125m, 172.63], therefore ADS of the 1-dimensional TshipPM

is 67% of TDS.

To compare TDS and ADS we first calculate the volume of the hypercube they cover

in R24 (Lwl, T, B are assumed constant), which is acquired by the following formula:

V = Π23
n=0∆P i (3.2)

where with Π we denote the product, and ∆Pi is the length of the range of the phys-

ical parameter Pi can take. Therefore, for TshipPMC the volume of TDS and ADS

1https://grabcad.com/library/tshippm-container-models-1
2https://grabcad.com/library/tshippm-tanker-models-1
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are V TDS
container = 1.2 · 1032m24 and V ADS

container = 7 · 1030m24, while for TshipPMT are

V TDS
tanker = 1.1 · 1038m24 and V ADS

tanker = 5.9 · 1036m24. For TshipPMC TDS is 5.6% of

ADS, while forTshipPMT is 5.4%. Tables 3.1 for TshipPMC and 3.2 for TshipPMT,

illustrate all the above information, as well as the range of physical parameters values

for both TDS and ADS, and the percentage difference of each of them between TDS

and ADS. Physical Parameters have been sorted in ascending order as per their per-

centage difference between TDS and ADS. In both tables one can observe that only 9

out of the 24 physical parameters are limited after the imposition of the constraints,

while just 6 parameters have significant contribution to the decrease of ADS, namely

Mid L, TubeL, Mid Pos, AP L From MS, FoB Aft L, and FoS Aft L.

To investigate further the flexibility of TshipPM with regards to geometric character-

istics, we explore the frequency distribution of the samples’ volume and moments of

inertia. Using a dense, representative sampling, strong frequency discontinuities in his-

tograms may reveal inadequacies of the parametric modeller, therefore histograms can

be exploited to heal those inadequacies. Histograms of Figs 3.20a to 3.20d and Figs

3.21a to 3.21d illustrate the frequency distribution of the samples of TshipPMC and

TshipPMT respectively, while Table 3.3 provides information for the samples, namely

volume and MoI range, mean value, standard deviation, and skewness. Both versions

show a very broad range with respect to models’ volume and moments of inertia, with

the range of TshipPMC’s volume lying in [15,302m3 ; 79,027m3] and TshipPMT’s in

[122,219m3; 532,231m3]. Taking as well into consideration the plethora of shapes the

PM can produce, TshipPM is proved to be a very flexible and robust tool for modelling

ship-hull instances.
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Table 3.1: TshipPMC design space.

Parameters TDS range(m) ADS range(m) VADS

VTDS (%)

Mid L 0.42 - 228.45 0.42 - 95.51 41.7

TubeL 0.01 - 228.22 0.01 - 141.69 62.1

Mid Pos 1.74 - 172.63 58.125 - 172.63 67.0

AP L from MS 0.01 - 228.23 0.01 - 156.06 68.4

FoB Aft L 0.01 - 228.24 0.9 - 171.63 74.8

FoS Aft L 0.01 - 228.24 0.49 - 171.63 75.0

FP L from MS 0.01 - 172.41 0.01 - 151.57 88.0

FoS Fwd L 0.01 - 170.7 0.47 - 167.01 97.6

FoB Fwd L 0.01 - 170.70 0.51 - 168.96 98.7

BatAP 0.16 - 15.94 0.16 - 15.94 100

BatAPLow 0.04 - 3.98 0.04 - 3.98 100

BatFP 0.03 - 3.19 0.03 - 3.19 100

BilgeR 0.04 - 3.56 0.04 - 3.56 100

BulbB 0.06 - 6.38 0.06 - 6.38 100

BulbH 0.11 - 10.70 0.11 - 10.70 100

BulbL 0.16 - 15.35 0.16 - 15.35 100

BulbTipH 0.01 - 5.3 0.01 - 5.3 100

FoBS Trans 0.16 - 15.94 0.16 - 15.94 100

FoS Trans 0.06 - 10.65 0.06 - 10.65 100

FwdRise 0.01 - 2.65 0.01 - 2.65 100

SternFullness 0.01 - 0.99 0.01 - 0.99 100

TransomB 0.01 - 15.78 0.01 - 15.78 100

TransomH 0.05 - 5.35 0.05 - 5.35 100

TubeR 0.02 - 1.76 0.02 - 1.76 100

Volume (m24) 1.2·1032 7·1030 5.6
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Table 3.2: TshipPMT design space.

Parameters TDS range(m) ADS range(m) VADS

VTDS (%)

Mid L 0.59 - 323.27 0.64 - 134.88 41.6

TubeL 0.01 - 322.94 0.01 - 203.36 63.0

Mid Pos 2.46 - 244.28 82.25 - 244.28 67.0

AP L from MS 0.01 - 322.96 0.01 - 219.20 67.9

FoB Aft L 0.01 - 322.96 1.36 - 241.95 74.5

FoS Aft L 0.01 - 322.97 0.67 - 241.80 74.7

FP L from MS 0.01 - 243.97 0.01 - 209.05 85.7

FoS Fwd L 0.01 - 241.55 0.66 - 236.43 97.6

FoB Fwd L 0.01 - 241.55 1.02 - 237.62 98.0

BatAP 0.29 - 28.71 0.29 - 28.71 100

BatAPLow 0.07 - 7.17 0.07 - 7.17 100

BatFP 0.05 - 5.75 0.05 - 5.75 100

BilgeR 0.09 - 9.23 0.09 - 9.23 100

BulbB 0.11 - 11.49 0.11 - 11.49 100

BulbH 0.29 - 27.74 0.29 - 27.74 100

BulbL 0.22 - 21.71 0.22 - 21.71 100

BulbTipH 0.01 - 13.74 0.01 - 13.74 100

FoB Trans 0.29 - 28.71 0.29 - 28.71 100

FoS Trans 0.14 - 27.61 0.14 - 27.61 100

FwdRise 0.01 - 6.87 0.01 - 6.87 100

SternFullness 0.01 - 0.99 0.01 - 0.99 100

TransomB 0.01 - 28.42 0.01 - 28.42 100

TransomH 0.13 - 13.87 0.13 - 13.87 100

TubeR 0.05 - 4.56 0.05 - 4.56 100

Volume (m24) 1.1·1038 5.9·1036 5.4
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(a) TshipPMC histogram of moments of Volume. (b) TshipPMC histogram of moments of inertia (Ix).

(c) TshipPMC histogram of moments of inertia (Iy). (d) TshipPMC histogram of moments of inertia (Iz).
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(a) TshipPMT histogram of volume. (b) TshipPMT histogram of moments of inertia (Ix).

(c) TshipPMT histogram of moments of inertia (Iy). (d) TshipPMT histogram of moments of inertia (Iz).
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Chapter 3. Geometric Validity of TshipPM and Data Analysis

Table 3.3: TshipPM data analysis: Histograms information.

TshipPMC TshipPMT

Volume (m3)

Volume of parent hull 52,053 435,577

Range 15,302 - 79,027 122,219 - 532,231

Mean 57,855 409,437

Standard deviation 9,497 58,065

Skewness -0.55 -0.69

Moments of Inertia (Ix, m5)

Inertia of parent hull 3.89·106 1.35·108

Range 9.02·105 - 7.42·106 2.69·107 - 1.81·108

Mean 4.71·106 1.25·108

Standard deviation 1.02·106 2.27·107

Skewness -0.25 -0.47

Moments of Inertia (Iy, m5)

Inertia of parent hull 1.30·108 2.88·109

Range 5.01·106 - 3.47·108 1.15·108 - 4.85·109

Mean 1.73·108 2.64·109

Standard deviation 6.22·107 8.18·108

Skewness 0.01 -0.16

Moments of Inertia (Iz, m5)

Inertia of parent hull 1.33·108 2.96·109

Range 6.00·106 - 3.52·108 1.33·108 - 4.96·109

Mean 1.77·108 2.71·109

Standard deviation 6.29·107 8.32·108

Skewness 0.01 -0.17
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Chapter 4

A Method to Remodel a Parent

Ship-hull using TshipPM

4.1 Introduction

A basic need when it comes to parametric modelling is the capability to reconstruct a

given model. This process, which we will be referring to as remodelling, is deployed to

built a parent CAD model, with the aid of a PM, and use it as a basis for optimisation.

In this chapter we provide in detail the method of remodelling the MOERI Container

(KCS) ship-hull instance from waterline level and below, employing TshipPM. This

very elaborated process consists of two major steps:

a. Control cage construction using TshipPM;

b. Optimisation of the control cage to more accurately remodel the parent ship-hull.

The optimisation process of the control cage is being conducted manually at a

control-point level and it could be used in tandem with the automated optimisation

process (based on ship-design criteria) which is presented in Chapter 6.
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4.2 Geometric and ship-design criteria for remodelling

evaluation

The evaluation of the remodelled instance has been based on a set of criteria of geo-

metric (a-c) and ship-design (c-d) nature:

a. Smoothness: at least G1-continuity. The evaluation of smoothness has been con-

ducted in Rhino5 3D using the isophotes feature (Zebra);

b. Fairness: smooth distribution and proper sign of curvatures, e.g., nearly zero

Gaussian curvature in the area of the cylindrical mid-part. Gaussian curvature

is an intrinsic geometrical property of surfaces used by designers to evaluate

the fairness of the boundary of a 3D object and locate deficiencies versus the

anticipated shape of the surface under consideration. The Gaussian curvature

K(P) at a point P of a smooth surface is be expressed as:

K(P) = κ1(P) · κ2(P) (4.1)

where κi, i = 1, 2 are the principal curvatures at P;

c. Deviation from prescribed kth-order moments, e.g., volume (k = 0), volume cen-

troid (k = 1), moments of inertia (k = 2);

d. Deviation from a prescribed sectional area curve (SAC). Plotting and comparing

SAC among different ship-hulls is a useful tool for evaluating the longitudinal

distribution of sectional area values (SAV) as well as extracting the longitudinal

positions where the major variations of SAVs exist.

4.3 Control cage construction

The remodelling process aims to the reconstruction of a parent ship-hull CAD model. A

prerequisite is the construction of the control cage of the model (using TshipPM) which
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will approximate the parent ship-hull and will be later fed into Rhino5 to create the

resulting surfaces with the aid of the T-splines plug-in. For the control cage construction

the following steps are to be followed:

1. Physical parameters extraction: extract physical parameters from the CAD

model of the parent ship-hull (§4.3.1);

2. Parameter values assignment: assign non-dimensional parameter values in

accordance to the physical parameters and their linear functions describing them

(§4.3.2). Dimensional parameters corresponding to the values of the global phys-

ical parameters Lwl, T, and B, is necessary to be assigned as well;

3. Midship control cage construction: build and interconnect the U-shaped

polylines of the cylindrical middle part, as well as the transition curves at Fwd Part

and Aft Part (§4.3.3);

4. Bow control cage construction: build and interconnect BowPrfCrv, BulbCrvs

and BowOffCrv, and connect them with the forward part of the midship (§4.3.4);

5. Stern control cage construction: build and interconnect SternPrfCrv and

TubeCrv, and connect them with the afterward part of the midship (§4.3.5).

4.3.1 Extraction of physical parameters

We measure on the parent hull’s CAD model all physical parameters used in TshipPM

(Table 2.1), by focusing each time on a specific part of the ship-hull, namely Midship,

Bow, and Stern. We measure longitudinal, vertical, and lateral physical parameters. If

not provided by the technical characteristics of the ship, we measure all three global

physical parameters (Lwl, T, B), and we then proceed to measure all physical param-

eters with local nature.

We identify the physical parameters used to define Midship, Bow, and Stern:

1. Midship

a. Cylindrical Middle Part:
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� Longitudinal: Mid Pos, Mid L;

� Vertical: BilgeR;

� Lateral: BilgeR;

b. Forward Part:

� Longitudinal: FoS Fwd L, FoB Fwd L;

� Vertical: FoS Trans;

� Lateral: FoB Trans;

c. Afterward Part:

� Longitudinal: FoS Aft L, FoB Aft L;

� Vertical: FoS Trans;

� Lateral: FoB Trans;

2. Bow:

� Longitudinal: FP L FromMS, BulbL;

� Vertical: BulbH, BulbTipH, FwdRise;

� Lateral: BatFP, BulbB;

3. Stern:

� Longitudinal: AP L FromMS, TubeL, SternFullness;

� Vertical: TransomH, TubeR;

� Lateral: BatAP, BatAPLow, TransomB, TubeR, SternFullness;

Now we elaborate on the extraction of physical parameters. We first determine the

physical parameters of a more “global” nature, Mid Pos and Mid L, by assuming two

different cases:

Case 1: Ship-hull incorporates a parallel middle part; Mid Pos is then located at the

longitudinal middle of the parallel middle part. Mid L represents the whole length of

the middle part.
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Case 2: Ship-hull doesn’t incorporate a parallel middle part; Mid Pos is then located

at the same longitudinal position as the location of the largest section of the hull. To

determine Mid L, we march towards both forward and afterward parts, and we identify

two sections -one at each direction- with section areas approximately 2% less than the

area of the largest section. Then, we locate Mid L/2 at the longitudinal dimension

from Mid Pos to that section. Mid L is then the dimension bounded by that section

and the symmetric one with respect to Mid Pos.

Secondly, we proceed to the extraction of local physical parameters, a set of which

is straightforward to measure, such as TransomH, TransomB, BulbL, etc., as Fig 4.1

shows, using as an example the KVLCC tanker CAD model which has a transom stern.

Another set of local parameters related to flat surfaces, such as flat of side/bottom of

forward and afterward parts, is measured with the aid of Rhino5 3D properties. We

use single false-color analysis provided by Rhino’s curvature analysis feature, which

evaluates visually the Gaussian curvature (K) of the surfaces. Surfaces for which K

= 0 are either cylindrical -in case one principle curvature is zero- or flat -when both

principle curvatures are zero.

Figure 4.1: Measuring TransomH, TransomB, and BulbL on the KVLCC tanker CAD
model.

An example of measuring physical parameters (i.e., dimensions) on a CAD model is

shown in Fig. 4.2. Flat parts (K=0) are depicted in green and the lengths can be

measured accurately. Having assigned Mid Pos and Mid L physical parameters, we

measure the longitudinal length of the flat of bottom (FoB Fwd L) towards the forward

part, with point of reference the Mid L/2 at the Fwd Part. The breadth at the end of
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the flat of bottom which starts from the symmetric axis and travels laterally (vertically

in the figure) to the location where K 6= 0, provides the length of the flat of bottom

transition dimension (FoB Trans) by subtracting it from the breadth of the half-hull

(B/2).

Figure 4.2: Measuring the length of flat of bottom (FoB Fwd L) at the forward part
and the breadth of flat of bottom transition (FoB Trans), by using Gaussian curvature
from the curvature analysis feature in Rhino5.

4.3.2 Assigning non-dimensional parameter values with respect to

physical parameters

As soon as the process of extracting the physical parameters is completed, we assign the

corresponding non-dimensional parameter values, which are used as input in TshipPM.

The linear functions describing the relationship between a dimensional and its corre-

sponding non-dimensional parameter are described by Eq. 2.1. In example, the linear

function corresponding to Mid Pos is given by:

Mid Pos = ̂Mid Pos · 0.75 · Lwl

Assuming Mid Pos = 135m and Lwl = 232.5m, we should assign ̂Mid Pos with the

value of:

̂Mid Pos = Mid Pos
0.75·Lwl = 0.77

The linear function corresponding to Mid L is given by:

66



Chapter 4. A Method to Remodel a Parent Ship-hull using TshipPM

Mid L = M̂id L · 0.7 · (Lwl −Mid Pos)

To approximately have a middle part measuring 35.5m and Lwl, Mid Pos as before, we

should assign M̂id L with the value of:

M̂id L = Mid L
0.7·(Lwl−Mid Pos) = 0.52

The linear function indicating the location of TransomH with respect to vertical axis,

is given by:

TransomH = ̂TransomH · 0.5 · T

and given that TransomH = 2m, ̂TransomH = 0.37.

4.3.3 Midship control cage construction

In this section the construction of the midship part of the ship-hull is demonstrated.

Midship construction requires the allocation of all necessary U-shaped lines and tran-

sition curves which fully describe the parallel, forward and afterward parts. We should

recall at this point that TshipPM uses a cylindrical middle part which is not the case

for the KCS container parent hull.

4.3.3.1 Cylindrical middle part: U-shaped polylines

We first determine the U-shaped polylines of the Mid Part by extracting the largest

section of the parent hull and which will be located at the Mid Pos of the TshipPM

model. Furthermore, we extract the control points of this section and connect them

with lines, thus forming a polyline, and we determine all four polylines comprising the

cylindrical middle part, by translating the initial polyline. Finally we interconnect

the polylines with parallel transverse polylines. With the aid of Figs. 4.3 and 4.4 we

describe the process, which consists of the following steps:

a. Orient parent ship to match TshipPM instance’s orientation, therefore the tip of

the waterplane is located at (0,0,0).
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b. Extract largest section (located at Mid Pos);

c. Derive sectional curve, which we call extracted curve from the symmetric half of

the largest section. The control polygon of any of the extracted curves shown

herein consists of more than 30 control points, therefore the next step is always

necessary. For this step we use Rhino’s Section command.

d. Rebuild sectional curve with a degree-3 curve and as many control points as

TshipPM uses for the specific curve, forming the rebuilt curve. For this step we

use Rhino’s Rebuild command.

e. Extract control points of rebuilt curve and adjust them for an accurate match,

forming the final, adjusted curve.

f. Assign proper values to external parameters of linear functions (Eq. 2.1) to match

the coordinates of the control points obtained in the previous step (Fig. 2.10);

g. Determine Mid L as described in §4.3.1, and build all four U-shaped polylines

and interconnect them.

As described earlier (Eq. 2.1) the physical parameters are expressed as linear functions

of internal (where necessary) and external parameters. In Fig. 4.3 the variables of each

linear function determining the control points of the U-shaped polylines are illustrated.

The extracted curve is depicted in red, the rebuild curve and its control points in green,

and the adjusted curve in blue. Note that one control point of the rebuilt curve lies

below the flat-of-bottom level of the hull, which, if permitted, would create an invalid

geometry with respect to design criteria, as the bottom of the hull would not be flat

any more. All control points at the bottom part of the parallel middle part have to be

collinear. c 1 and c 2 are internal parameters.

Once control points are extracted and the adjusted curve is defined, we construct the

control cage of the cylindrical middle part of the ship-hull, as Fig. 4.4 illustrates.

Starting from Mid Pos and moving longitudinally towards the forward part of the

parent hull we calculate the sectional areas at the neighbour of the largest section,
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up to the location where sectional area’s value is not more than 2% smaller than the

largest one. At this point we locate the position of Mid L/2, determining at the same

time the symmetric one with respect to Mid Pos (-Mid L/2). Finally, we build all four

U-shaped polylines and interconnect them with parallel transverse lines.

Figure 4.3: Control points extraction of the largest section at Mid Pos and their inter-
relation to external and internal parameters. In red is depicted the extracted curve,
while in green and blue are the rebuilt and adjusted curves, respectively, and their
control points respectively. c1, c2 are internal parameters.

As a reminder, the y- and z-coordinates of the control points of each U-shaped polyline

are the same as translations of the corresponding coordinates of the control points

of the adjusted sectional curve at the largest section, and the U-shaped polylines are

planar. Their x-coordinates are dependent on Mid L/2 for the two outermost and on

Mid L and an internal parameter c for the two inner ones, with c < 0.5 1. The number

of U-shaped polylines is not random, as for bicubic T-splines there should exist four

identical polylines to construct a cylindrical middle part.

1As presented in §2.2, all internal parameters range in (0,1). The only exception is parameter c
which ranges in (0,0.5).
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Figure 4.4: Construction of the cylindrical middle part: define a) Mid L/2 from largest
section (red) of the parent hull, b) U-shaped polylines (blue), and c) parallel transverse
lines (green). With c we denote the internal parameter introduced to determine the
x-position of the two inner U-shaped polylines.

4.3.3.2 Fwd Part/Aft Part: transition curves

Once the control cage of the parallel middle part is set, we proceed to the construction

of the transition curves of the forward and afterward parts in two major steps: Firstly,

we set the longitudinal position of each transition curve depending on physical param-

eter values, i.e., the longitudinal position of the flat of side and bottom. Secondly, at

the longitudinal location of each transition curve, we extract the section of the sym-

metric half of the hull and define sectional curve’s control points in the same way as

in 4.3.3.1, expressing their coordinates with linear functions (see 2.1) to construct the

corresponding part of the control cage, as described in 2.3 with the aid of Fig. 2.19.

Hereof we demonstrate the process of determining the transition curves of the forward

part of the hull and their control points, as well as the construction of the transition

curve at FoS Fwd L. The process is the same for the afterward part. We describe it

with the aid of Figs. 4.5 and 4.6, and consists of the following steps:

A. Setting the location of Fwd Trans Crvs.

1. Extract waterplane’s boundary curve (black curve in Fig. 4.5) from Mid L/2 up

to the tip of the waterplane;

70



Chapter 4. A Method to Remodel a Parent Ship-hull using TshipPM

2. Rebuild curve (degree = 3) with as many control points as the number of the

forward transition curves plus two: one for the control point at the location of

M0 (Mid L/2) and one for the control point at the waterplane tip. Therefore,

the waterplane boundary curve is described by 6 control points;

3. Repeat steps 2 to 4 to determine the control points of the boundary curve at

the flat of bottom (blue curve in Fig. 4.5), starting fromM0 up to FoB Fwd L.

At the end of this process both boundary curves should have the same number

of control points for the parts from M0 up to FoB Fwd L. Therefore, the flat-

of-bottom boundary curve is described by 5 control points;

4. Adjust control points of both rebuilt curves so as every pair of control points,

one at the waterplane and one at the bottom plane boundary curves share the

same x-coordinate (Fig. 4.6). At the end of this process, all transition curves

should be planar.

Figure 4.5: Extracted boundary curves at waterplane and flat of bottom. Both are
extracted starting from M0, with the former extended up to the tip of the waterplane,
and the latter up to the FoB Fwd L, consisting of 6 and 5 control points respectively.

In Fig. 4.6, the waterplane and bottom curves and their control polygons are shown

before and after adjustment. The extracted curves are depicted in red, the rebuilt

curves in green, while in blue are the final, adjusted curves. The control points of

FTCA- and FTCD-rebuilt curves have been adjusted regarding the x-coordinate to be

placed at the same position as the FoS and FoB. The rebuilt curves are then relocated

only towards the y-direction (vertical as for the figure) to build the final adjusted
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curves, as the x-coordinates have to remain the same to impose planarity. Note that

the flat-of-bottom boundary curve has been taken up to the length of the FoB Fwd L

because, from that position and forward, it becomes a straight line up tp the bottom

part of the forward perpendicular.

Figure 4.6: Setting the location of FTCs. Extracting control points of the waterplane
and bottom plane curves and adjustment. In red are the originally extracted curves
and their control polygons, in green are the rebuilt ones, while in blue are the final,
adjusted curves. The control points of both boundary curves have been relocated in a
manner so they share the same x-coordinate. c1 and c2 are internal parameters with
c1 < c2.

B. Extraction of the sections corresponding to forward transition curves (extracted

curves).

C. Rebuild extracted curves (degree-3) with as many control points as TshipPM uses

for each of them (rebuilt curves).

D. Extract control points of rebuilt curves and adjust them for an accurate match,

forming the final, adjusted curves.

E. Assign proper values to external parameters of linear functions (Eq. 2.1) to match

the coordinates of the control points obtained in the previous step (see Figs 2.11

to 2.17);

F. Interconnection of forward and afterward part with the parallel middle part.
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4.3.3.3 Forward and afterward perpendicular curves

Before proceeding to Bow and Stern control cage construction, we need to derive the

sectional curves at FP and AP, and create the final adjusted curves. Similarly as in the

previous section, we extract the control points of the symmetric halves of the sectional

curves at forward (FP Crv) and afterward (AP Crv) perpendiculars, and we express

their coordinates using linear functions. Fig 4.7 illustrates in red the FP and AP

sections, and the final, adjusted FP and AP curves in blue with their control polygons.

Figure 4.7: FP and AP sections in red (top). Adjusted FP (right) and AP (left) curves
with their control polygons depicted in blue (bottom).

4.3.4 Bow control cage construction

Next in the remodelling process of the parent ship-hull comes the construction of the

control cage of the bow and its interconnection with the FP Crv. The process consists

of the following steps:

a. Bow profile curve extraction and rebuilding;

b. Bulb curve extraction and rebuilding, bow offset and overhang offset polylines de-

termination;
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c. Construction of the bow control cage assigning proper values to external parameters

of linear functions (Eq. 2.1) to match the coordinates of the control points obtained

in the previous steps;

d. Interconnection of the bow control cage with the midship.

4.3.4.1 Bow profile curve

The extraction of bow profile curve’s (BowPrfCrv) control points, which is illustrated

in Fig. 4.8, consists of the following steps:

1. Extract BowPrfCrv from parent ship;

2. Rebuild curve (degree = 3) using as many control points as in TshipPM;

3. Adjust if necessary the rebuilt curve for an accurate match with the extracted one.

Note that the control points P1-P
′
1 and P2-P

′
2 are adjusted to be collinear as shown

in Fig. 4.8, as they will define the location of the (planar) bulb curves on a later

stage;

4. Assign proper values to external parameters of linear functions (Eq. 2.1) to match

the coordinates of the control points obtained in the previous step (see Fig. 2.15).
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Figure 4.8: Extraction of bow profile curve (BowPrfCrv) and its control points, and
adjustment. Depicted in red color is the extracted BowPrfCrv consisting of 45 control
points. In black is the degree-3 rebuilt curve with 10 control points. In blue is depicted
the final adjusted curve with a more accurate match in comparison with the rebuilt
curve. Control points P1-P

′
1 and P2-P

′
2 are adjusted to be collinear and they define the

location of the bulb curves.

4.3.4.2 Bulb curves, bow offset and overhang offset polylines

Next step is to provide the bulb its final shape. For this, the construction of Bulb

(BulbCrvs) curves and offset polylines is necessary (Figs. 4.9 and 4.10). TshipPM is

using 2 bulb curves, which are extracted from the parent hull by at the sections located

at P1 and P2 of the rebuilt bow profile curve, as shown in Fig. 4.8. We demonstrate

the extraction and rebuild of one bulb curve, while we show both bow offset and bow

overhang polylines. The steps are as follows:

1. Extract BulbCrv from parent ship;

2. Rebuild curve (degree = 3) using as few as many control points as TshipPM uses;

3. Adjust if necessary the rebuilt curve with an accurate match with the extracted

curve;

4. Assign proper values to external parameters of linear functions (Eq. 2.1) to match

the coordinates of the control points obtained in the previous step (see Figs. 2.15

and 2.16).
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Figure 4.9: Extraction of bulb curve and its control points from parent ship. Depicted
in red color is the extracted curve, in blue is the adjusted curve.

The offset polyline are constructed by directly offsetting a set of control points of

BowPrfCrv, as shown in Fig. 4.10. The bow offset polyline (blue) is essential for

providing shape to bulbous bow, while the overhang offset polyline (red) is necessary

to create the thickness at the straight segment connecting the bow overhang with the

bulb.
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Figure 4.10: Construction of offset curves: depicted in blue is the bow offset polyline and
in red is the overhang offset polyline. In black are the lines used for their interconnection
with the bow profile curve.

Figure 4.11: The control cage of the bulb. BowPrfCrv depicted in red, bulb curves in
green, offset polylines in magenta, and interconnecting lines in black color.

Once bulb curves and offset polylines are set, they are connected with the BowPrfCrv

to eventually form bow’s control cage (Fig. 4.11), which is then interconnected with
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FP Crv’s control polygon.

4.3.5 Stern control cage construction

To finalise the remodelling of the hull we develop the control cage of the stern and

interconnect it with AP Crv. The process consists of the following steps:

A. Construction of AP Crv which shares two control points with SternPrfCrv;

B. SternPrfCrv and Tube Curve (TubeCrv) extraction;

C. Interconnection of the stern with the midship.

4.3.5.1 Afterward perpendicular transition curve and tube curve

Fig. 4.12 illustrates the extraction of Afterward Perpendicular (AP Crv) and Tube

(TubeCrv) curves’ control points. The steps are as follows:

1. Extract AP Crv and TubeCrv from parent ship-hull;

2. Rebuild curves (degree = 3) using as many control points as in TshipPM;

3. Adjust if necessary the rebuilt curves with an accurate match with the extracted

one;

4. Assign proper values to external parameters of linear functions (Eq. 2.1) to match

the coordinates of the control points obtained in the previous step (see Figs 2.17

and 2.18).

The result of the afore-mentioned process is illustrated in Fig. 4.12. It is important

to note that the rebuilt (green) curve has a control point (P0) which is located further

to the left of the vertical symmetric plane. This is not an acceptable location of any

control point as, in case it is moved even further to the left, an invalid geometry would

occur, as the two symmetric halves of the hull would intersect. We resolve this issue

by imposing the adjusted curve (blue) to approximate the extracted (red) curve while
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having three collinear control points (P ′0, P
′
1, P

′
2) which are aligned with the vertical

symmetric plane and constrained to be placed further to the left.

Figure 4.12: Extraction of the control points for Afterward Perpendicular (AP Crv,
middle) and Tube (TubeCrv, right) curves, depicted in blue. In red and green are
depicted the extracted curves (left).

4.3.5.2 Stern profile curve

The extraction of SternPrfCrv is as follows:

1. Extract SternPrfCrv from parent ship, excluding the planar curve which represents

the circumference of the TubeCrv. We result with 3 curves (Figs 4.13 and 4.14);

2. Rebuild curves (degree = 3) using as many control points as TshipPM uses;

3. Adjust the rebuilt curves with a more accurate match with the extracted curves;

4. Assign proper values to external parameters of linear functions (Eq. 2.1) to match

the coordinates of the control points obtained in the previous step (see Fig. 2.17).

In the case of the stern, we end up with 3 curves instead of 1. To begin with, the

part of the SternPrfCrv at the waterline level is extracted. Fig. 4.13 illustrates the

extracted (red), rebuilt (green), and adjusted (blue) curves. Note that both rebuilt

and adjusted curves consist of 4 control points. The latter seemingly has 3 control

points because the KCS parent ship-hull has a transom stern ( ̂TransomB = 0.01 and
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TransomB u 0m). Next we extract the part of the SternPrfCrv which instantiates

at the end of the waterline length on the waterline level and ends at the bottom part

of the FP Crv (Fig. 4.14). Again, the extracted curve is depicted in red, the rebuilt

in green, and the adjusted in blue color. Adjusted curve’s control points PA and PB

belong to the FP Crv, so we do not create any new points, but we adjust P ′A and P ′B

of the rebuilt curve to coincide with PA and PB. PC is located at the middle of the

straight line segment (PAPB). Fig. 4.15 illustrates the control cage of the stern with

all the interconnected lines.

Figure 4.13: Extraction of the part of the Stern Profile Curve (SternPrfCrv) at the
waterline level and adjustment. Depicted in red color is the originally extracted Stern-
PrfCrv, while in green is the rebuilt and in blue is the adjusted curve.

Figure 4.14: Extraction of the stern profile curves and their control points, and adjust-
ment. Depicted in red color are the originally extracted stern profile curves, in green
the rebuilt, and in blue the adjusted one.
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Figure 4.15: Control cage of the stern. SternPrfCrv depicted in magenta, Stern Crv in
blue, TubeCrv in green, interconnections depicted in black color.

4.4 Evaluation and optimisation

With the completion of the control cage construction of the TshipPM model, evaluation

under a predefined set of criteria (§4.2) is conducted, which provides important feedback

to users and developers, indicating whether or not and at which part and/or exact

location of the parametric model there is a necessity for adjustments, during which both

external and internal (only for developers) parameter values should be reconsidered and

re-evaluated.

The optimisation of the parametric model is conducted in two steps:

1. Redefine internal (for developers, if necessary) and external (for both developers

and users) parameter values;

2. Evaluate the parametric model using the set of geometric and design criteria

described in §4.2 for comparing the parametric and parent models.

At this point we should stress that, from a developer’s point view, evaluation process

is of immense importance as it can aid towards the enhancement of the PM under

development. The evaluation of the model is split in two phases:

1. Phase 1: Pre-optimisation evaluation of the parametric model, which is the subse-

quent phase of the control cage construction as described so far, and indicates the
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locations on TshipPM’s produced model which need adjustments to approximate

closer the parent hull;

2. Phase 2: Post-optimisation evaluation of the optimised parametric model.

In between the two phases, the optimisation of TshipPM is conducted, as described

later on (§4.4.2). Scheme of Fig. 4.16 provides diagrammatically the steps of evaluation

and optimisation.

Figure 4.16: Diagram of the evaluation and optimisation process of the TshipPM model.

4.4.1 Pre-optimisation process and results

After the construction of the control cage, Rhino’s T-splines plug-in is executed to

obtain the smooth model. The model is undergoing evaluation with respect to the

parent ship-hull, using a pre-determined set of criteria. For ease of reference we call the

TshipPM model prior to optimisation as PM BO and the parent ship-hull as Parent.

It is important to note at this point that the volume-moment values for the segmented

parts have been calculated for slightly different segmentation locations for the PM BO

model than the optimised model presented in Chapter 5, as the work for the pre-

optimised model had been conducted before the final decision for the exact coordinates

of segmentation was taken.

Smoothness: We are focusing on the bow and stern areas which are the most complex

parts of the ship-hull shape-wise. As Figs. 4.17 and 4.18 show, TshipPM, taking

advantage of T-splines which can represent an object with a single or very few patches,
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produces at least G1-continuous surfaces throughout the ship-hull’s surface. On the

other hand, Parent has locations where neighbouring surfaces have been joined with

C0-continuity, mainly due to the fact that the CAD parent hull model has been build

using many patches around the bow and stern areas, which makes the joining process

of the neighbouring surfaces, with -at least- tangent continuity, cumbersome.

Figure 4.17: Smoothness at bow of PM BO (top) and Parent (bottom). PM BO’s
surface is at least G1-continuous everywhere, while Parent consists of areas of C0-
continuity (indicated by red circles).
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Figure 4.18: Smoothness at stern of PM BO (top) and Parent (bottom). PM BO’s
surface is at least G1-continuous everywhere, while Parent consists of areas of C0-
continuity, encircled in red.

Fairness: Figs 4.19 and 4.20 illustrate the fairness of PM BO and Parent, with views

taken to focus on the bow and stern areas respectively. Fairness has been measured

in terms of the Gaussian curvature provided in Rhino5 by the Curvature Analysis

property, using a curvature range of (-10-6, 10-6). We have opted for a strict range in

the very proximity of zero to identify only the absolutely flat areas and ignore those

who are seemingly flat, but actually are not.

It is clear enough that TshipPM produces instances with much more fair surfaces

comparing to the Parent CAD model all along the length of the hull, and especially in

the more complex areas of bow and stern, and in the transition towards them. This is

due to the fact that TshipPM creates one surface comparing to the multi-patch object

of the parent CAD model, and extraneous sign-variations of the Gaussian curvature

are limited.
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Figure 4.19: Color map indicating the Gaussian curvature of TshipPM and parent
ship-hulls; Bow view.

Figure 4.20: Color map indicating the Gaussian curvature of TshipPM and parent
ship-hulls; Stern view.

Moments: First step is to examine whether or not moment values converge with

respect to Parent. Following the control cage construction process as described in this

chapter, one is to expect deviations for volume and volume centroid of around 1%. As

far as inertia is concerned, deviations of more than 2% is normal to occur, as 2nd order

moments are more sensitive compared to lower order moments.

To investigate with increased accuracy the deviation of moments, we segment PM BO

and Parent into three parts, namely Fwd Part, Parallel Middle Part, and Aft Part. To

do so, we derive the longitudinal positions of starting and end points of the cylindrical

middle body of PM BO, which are x1 = 104.7m, x2 = 151.7m. In Rhino5’s environment,

we create the three segments for both models (Fig. 4.21).
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Figure 4.21: Segmentation of PM BO and Parent to calculate volume moments for
Fwd Part, Parallel Middle Part, and Aft Part.

We then calculate the volume moments up to 2nd-order for each segment of both models

separately, as well as their percentage differences. Although results look pretty accept-

able as far as moments up to 1st are concerned, they witness deviations larger than 1%

for 2nd-order moments with respect to x-axis for Fwd Part, while for Aft Part, there

are deviation of more than 1% for volume and inertia. This is an indication that we

have to look closer and optimise Fwd Part and Aft Part. Tables 4.1 and 4.2 include the

values of moments up to 2nd-order and their percentage deviations for the full ship-hull

and all three segments of both models respectively. All deviations larger than 1% are

highlighted in red color.

Table 4.1: Comparison of moments between KCS parent ship-hull and
PM BO model. (Full model)

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

x: 118.407 Ix: 3,892,800

Parent Ship 52,053 y: 0 Iy: 130,372,480

z: -4.894 Iz: 133,304,065

x: 117.849 Ix: 3,825,544

PM BO 51,663 y: 0 Iy: 128,455,542

z: -4.918 Iz: 131,316,381

Difference (%) x: 0.473 Ix: 1.758

PM1 vs 0.754 y: 0 Iy: 1.492

Parent Ship z: -0.476 Iz: 1.514
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Notes: Inertia has been calculated with respect to Centroid Coordinate Axis. Negative percentage

indicates that parent ship-hull’s absolute value is lower than that of PM BO.

Table 4.2: Comparison of moments between KCS parent ship-hull and
PM BO model. (Segmentation at x1 = 104.7m, and x2 = 151.7m)

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

Forward Part

x: 66.570 Ix: 1,281,763

Parent Ship 20,139 y: 0 Iy: 12,289,833

z: -4.902 Iz: 13,213,492

x: 66.151 Ix: 1,235,346

PM BO 19,990 y: 0 Iy: 12,365,082

z: -4.910 Iz: 13,241,339

Difference (%) x: 0.633 Ix: 3.757

PM BO vs 0.750 y: 0 Iy: -0.609

Parent Ship z: -0.156 Iz: -0.210

Middle Part

x: 123.972 Ix: 1,393,339

Parent Ship 14,993 y: 0 Iy: 2,550,009

z: -5.308 Iz: 3,658,949

x: 123.972 Ix: 1,401,532

PM BO 15,030 y: 0 Iy: 2,563,768

z: -5.321 Iz: 3,679,001

Difference (%) x: 0.076 Ix: -0.585

PM BO vs -0.250 y: 0 Iy: -0.537

Parent Ship z: -0.247 Iz: -0.545

Afterward Part

Continued on next page
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Table 4.2 – Continued from previous page

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

x: 175.178 Ix: 1,212,449

Parent Ship 16,919 y: 0 Iy: 6,415,948

z: -4.519 Iz: 7,319,577

x: 174.501 Ix: 1,184,132

PM BO 16,642 y: 0 Iy: 6,136,896

z: -4.563 Iz: 7,010,778

Difference (%) x: -0.388 Ix: 2.391

PM BO vs 1.667 y: 0 Iy: 4.547

Parent Ship z: -0.974 Iz: 4.405

Notes: Inertia has been calculated with respect to Centroid Coordinate Axis. Negative percentage

indicates that parent ship-hull’s absolute value is lower than that of PM BO.

Sectional Area Curve: We already have an indication that Fwd Part and Aft Part

do not behave as desired. Using sectional are curves (SAC) we can locate the ex-

act intervals or longitudinal positions where sectional area values (SAV) are different

between PM BO and Parent. As illustrated in Fig. 4.22 sectional area values differ

significantly at the longitudinal intervals [10m, 34m], [67m, 100m], and [181m, 224m].

This is an indication the optimisation process should mainly focus in the transition

curves bordered by the limits of those intervals.

4.4.2 Optimisation for a more accurate remodelling of the parent

ship-hull

The evaluation process showed that the instance needs adjustments both in forward

and afterward parts. Herein we illustrate only the adjustments to better approxi-

mate the Fwd Part. SAC comparison showed critical deviations in the longitudinal
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intervals [10m, 34m] and [67m, 100m]. As shown in Fig. 4.23, the former interval is

located between the FP Crv and the FTCD, while the latter starts a few meters before

the FTCC and extends up to the cylindrical middle part. We need to adjust all the

transition curves which lie between those intervals. We are extracting from PM BO

the sectional curves at the same location as the transition curves are located and we

compare them one-by-one with the corresponding sectional curves extracted from the

Parent at the same longitudinal position.

Fig. 4.24 shows all four sectional curves of the Fwd Part both for PM BO and Parent

in blue and red color respectively. Although the sectional curves of the models un-

der investigation are close enough, the mismatch between the corresponding sectional

curves is apparent. The coordinates of the control points used in TshipPM should

be adjusted by manipulating the values of the external parameters (and internal for

developers) which control the location of each curve’s control points. We manipulate

them until the sectional curve of the TshipPM instance approximates -as closely as

desired- Parent’s corresponding sectional curve. The process consists of the following

steps, which are illustrated in the diagram of Fig. 4.25:

1. Extract symmetric-half’s critical sections;

2. Adjust the control points of the TshipPM model so that the section of the

TshipPM model is approximating parent’s corresponding one;

3. Build the T-spline surface from the new control cage;

4. Evaluate the sectional curves;

5. Re-adjust control points and evaluate if required.
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Figure 4.22: Comparison of Sectional Area Curves (SAC) between PM BO and Parent. In green color PM BO SAC is depicted,
Parent ship SAC in red, while their deviation is depicted in blue color.
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Figure 4.23: Longitudinal intervals where analysis using SAC showed critical deviations
between the sectional areas of TshipPM and parent models.

Figure 4.24: Sectional areas of PM BO (blue) and Parent (red) models of the forward
part.

Figure 4.25: Evaluation-optimisation workflow to attain an acceptable ship-hull in-
stance which lies geometrically in the proximity of the parent hull.

In some cases during the evaluation process developers might consider necessary to

implement additional control points on the control curves, or even new control curves,

mainly in areas where the representation of the objects is not accurate in comparison

with the parent object, therefore the optimisation process is unable to create a para-

metric model in the proximity of the Parent. The extra control points will increase the

flexibility of the PM to produce a broader variety of ship-hulls, therefore providing the

capability to approximate the parent hull with increased accuracy.
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4.4.3 Post-optimisation evaluation: results and comparison with

parent hull

In this chapter we present the results and conduct the comparison between TshipPM’s

KVLCC ship-hull instance and Parent, which has been remodelled from the deck line

(not waterline) and below, with Lwl = 329m, T = 28m, and B = 58m. On top of

the employed evaluation criteria, we evaluate TshipPM using Hausdorff distance, as a

metric for geometric variation. The results for KCS, which was the case study for the

remodelling process, are presented in Chapter 5.

Before we proceed to the results, it is necessary to mention that, purposefully, the

version of TshipPM used for the remodelling of KVLCC (TshipPMT) uses fewer tran-

sition curves than that of KCS (TshipPMC). Specifically, as Fig. 4.26 shows, there

are 3 forward and 3 afterward transition curves (including FP Crv and AP Crv), and

1 bulb curve, instead of 5, 5, and 2 respectively in TshipPMC. The purpose of this

is twofold: firstly, KVLCC ship-hull’s geometry is less complex than KCS’s, therefore

fewer control points are needed to remodel the parent ship-hull. In fact, TshipPM uses

190 control points to represent the KVLCC hull, instead of 276 for KCS remodelling.

Secondly, we would like to emphasise on the fact that more accurate remodelling can

be succeeded with the introduction of just a set of 2-3 control curves.

Figure 4.26: KVLCC’s control cage with fewer control curves compared to the version
of TshipPM used for the remodelling of the KCS ship-hull.

Smoothness: As already mentioned, TshipPM is taking advantage of T-splines which

produce at least G1-continuous surfaces throughout the ship-hull’s surface. The smooth-

ness of both hulls is evaluated with the aid of Figs. 4.27 and 4.28.
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Figure 4.27: Bow view: smoothness of TshipPM’s (left) and Parent’s (right) models.
TshipPM’s surface is at least G1-continuous everywhere, while Parent consists of areas
of C0-continuity. An example is indicated by the red circle.

Figure 4.28: Stern view: smoothness of TshipPM’s (left) and Parent’s (right) models.
TshipPM’s surface is at least G1-continuous everywhere, while Parent consists of areas
of C0-continuity. An example is indicated by the red square-frame.

Fairness: In order to use a color map capable to easily reveal sign variations of

the Gaussian curvature, a very short interval around K = 0 has been selected, i.e.,

[−10-6, 10-6]. Blue color illustrates areas of negative K, i.e., principal curvatures are of

opposite sign, implying that the surface has locally a saddle-like (non-convex) shape.

On the contrary, red color implies that both principal curvatures share the same sign,

equivalently the surface is locally convex, resembling the shape of a sphere. Finally,
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green color is used when K = 0, in which case the surface is cylindrical or flat. Figs

4.29 and 4.30 illustrate the fairness of the TshipPM model and the Parent, focusing at

the bow and the stern area respectively. TshipPM produces instances with much more

fair surfaces comparing to the Parent CAD model, while the cylindrical middle part is

represented adequately.

Figure 4.29: Color map indicating the Gaussian curvature of the TshipPM model and
the Parent; Bow view.

Figure 4.30: Color map indicating the Gaussian curvature of the TshipPM model and
the Parent; Stern view.
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Moments: Tables 4.3 and 4.4 present the moments for the whole models and the

segmented ones respectively. For the whole model, volume has a difference of less than

0.5%, and volume centroid values are almost everywhere identical, while difference

in moments of inertia, which are more sensitive, are lower than 1%. As far as the

segmented models are concerned, all differences between the corresponding parts are

lower than 1%, with parallel middle part’s values very close for the two models, while

only moments of inertia with respect to the x-coordinate are higher than 1% but still

lower than 2%.

Table 4.3: Comparison of moments between KVLCC parent ship-hull and
TshipPM model.

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

Whole Model

x: 155.714 Ix: 1.347·108

Parent Ship 435,577 y: 0 Iy: 2.884·109

z: -13.281 Iz: 2.964·109

x: 155.636 Ix: 1.335·108

TshipPM 433,711 y: 0 Iy: 2.861·109

z: -13.281 Iz: 2.940·109

Difference (%) x: 0.05 Ix: 0.9

TshipPM vs 0.431 y: 0 Iy: 0.8

Parent Ship z: 0 Iz: 0.8

Notes: Inertia has been calculated with respect to Centroid Coordinate Axis. Negative percentage

indicates that parent ship-hull’s absolute value is lower than that of TshipPM’s instance.
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Table 4.4: Comparison of moments between KVLCC parent ship-hull and
TshipPM model.
(Segmentation at x1 = 99.69m, and x2 = 192.30m)

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

Forward Part

x: 55.714 Ix: 3.492·107

Parent Ship 121,166 y: 0 Iy: 7.905·107

z: -13.538 Iz: 9.876·107

x: 55.788 Ix: 3.441·107

TshipPM 120,379 y: 0 Iy: 7.883·107

z: -13.542 Iz: 9.810·107

Difference (%) x: -0.1 Ix: 1.4

TshipPM vs 0.132 y: 0 Iy: 0.2

Parent Ship z: -0.03 Iz: 0.8

Middle Part

x: 143.732 Ix: 5.430·107

Parent Ship 157,522 y: 0 Iy: 1.341·108

z: -13.982 Iz: 1.679·108

x: 143.731 Ix: 5.443·108

TshipPM 157,649 y: 0 Iy: 1.342·109

z: -13.992 Iz: 1.681·108

Difference (%) x: 0.001 Ix: -0.2

TshipPM vs -0.081 y: 0 Iy: -0.07

Parent Ship z: -0.071 Iz: -0.1

Afterward Part

x: 244.976 Ix: 4.526·107

Parent Ship 156,889 y: 0 Iy: 1.863·108

Continued on next page
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Table 4.4 – Continued from previous page

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

z: -12.379 Iz: 2.125·108

x: 244.897 Ix: 4.444·108

TshipPM 155,682 y: 0 Iy: 1.849·109

z: -12.360 Iz: 2.106·108

Difference (%) x: 0.03 Ix: 1.8

TshipPM vs 0.78 y: 0 Iy: 0.7

Parent Ship z: 0.01 Iz: 0.9

Notes: Inertia has been calculated with respect to Centroid Coordinate Axis. Negative percentage

indicates that parent ship-hull’s absolute value is lower than that of TshipPM’s instance.

Sectional Area Curve: Fig. 4.31 illustrates the SACs of the instances under inves-

tigation. TshipPM’s instance is shown in green, Parent’s in red, and their deviation

in black. Green and red curves overlap almost all along the length of the hull, with

more significant, though small deviations, in the complex bow area, as well as before

the transition area between the afterward part and the stern, due to the lower number

of transition curves TshipPMT uses in the afterward part. In a nutshell, TshipPM is

capable to produce models with SACs in the proximity of the Parent’s SAC.
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Figure 4.31: Comparison of sectional area curves (SAC) between TshipPM and Parent. TshipPM’s SAC is depicted in green
color, Parent’s in red, while their deviation is depicted in blue color.
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Hausdorff distance: In this section we adopt the concept of Hausdorff distance for

evaluating TshipPM’s model in terms of its geometric deviation from the Parent. Using

the MeshLab® 2 tool and a dense sampling on the surfaces involved (3.6× 105 points),

Fig. 4.32 depicts the distribution of deviation δ(x) of TshipPM’s model from the parent

hull, defined as:

δi(x) = min
y∈PKCS

d(x,y), x ∈ PMi, ı= 1,2 (4.2)

where d(x,y) denotes the Euclidean distance between two points x and y. The

color map ranges over [0, 0.9m], which covers the maximum deviation measured for

TshipPM’s model. Red areas indicate higher deviations while blue lower ones. Mean

deviation is 0.11m. The areas of large deviations are limited at the bow and the tran-

sition area from the parallel middle part towards the afterward part, closer to the

waterplane. Although the Hausdorff distance metric indicates acceptable results in

terms of geometric variation, better results could be attained by introducing an extra

bulb curve and an additional afterward transition curve in between the parallel middle

part and the first afterward transition curve (see results for KCS in chapter 5, §5.8,

where additional control curves are implemented).

Figure 4.32: Hausdorff distance plot illustrating the geometric deviation between
TshipPM’s produced model and Parent.

2http://www.meshlab.net/
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Chapter 5

TshipPM vs CAESES: A

comparative study

5.1 Introduction

This chapter focuses on comparing the performance of TshipPM with a well established

commercial PM for ship design, namely CAESES [52]. This comparison will use the

container-ship model KCS [9] as parent hull and the following criteria:

1. Common external parameters;

2. kth-order moments (k = 0, 1, 2), i.e., volume, volume centroid, moment of inertia;

3. Sectional Area Curve (SAC);

4. Gaussian curvature as a measure of surface shape and fairness;

5. Sectional curvature for assessing the shape and fairness of sections at specific

longitudinal positions;

6. Hausdorff distance to evaluate geometric variation.

The work presented in this chapter has been published in November 2019 in the

Ocean Engineering1 international journal, titled ”A T-splines-based parametric mod-

1https://www.journals.elsevier.com/ocean-engineering
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eller for computer-aided ship design [7]”. Note that the results are slightly different

than those in [7], as the work for the current document has been revisited and improved,

but also the ship-hulls have been segmented in different locations compared to [7].

5.2 CAESES parametric modeller

CAESES adopts the classic naval architecture approach: a set of longitudinal lines,

so-called basic curves, is laid out from which all information can be retrieved to subse-

quently establish the geometry of the ship-hull. This is done in a 3-stage process:

1. Parametric design of a suitable set of basic curves such as deck profile, design

waterline, flat of side and flat of bottom, centerplane profile etc. The basic curves

are built in agreement with a few prominent transversal curves, e.g., the main

frame section, the transom, and, optionally, additional sections in the forward or

afterward body.

2. Parametric modelling of design sections derived from the basic curves.

3. Generation of a set of B-spline surfaces that interpolate or closely approximate

the design sections.

Curve design in CAESES is based on the concept of the F -spline curves [53]. These

curves are formulated considering a base of 4 parameters: a) the starting and termi-

nating positions of the cuvres, b) tangents at starting and terminating positions, c) the

area, and d) the centroid of the area. They secure an inherently smooth and convex be-

haviour and reduce the need for further heuristic computations. Furthermore, Property

Distribution Curves are introduced, representing the variation of important geometric

properties of the hull form along, e.g., the longitudinal direction. Typical examples

include SAC, the distribution curve of rise at the bottom, the design-waterline, deck

profile and others.

In the present study, CAESES has been employed using 31 input (external in the

terminology of TshipPM) parameters, depicted graphically in Fig. 5.1 and categorised
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in Table 5.1 in three groups, namely a) Main Dimensions, b) XmainFrame, and c)

Forebody and Aftbody parameters.

Figure 5.1: CAESES input parameters.

Table 5.1: CAESES Parameters and Groups.

Parameter Description

Main Dimensions

Lpp Distance between perpendiculars

Beam Beam (breadth) of ship

Draft Design waterline of the ship

z Deck Deck height of the ship

y MaxFOB HalfBeam · y MaxFOB Fore Factor

y MaxFOB Fore Factor Factor used in y maxFOB

z MinFOS Height · zMinFOS Fore Factor

z MinFOS Fore Factor Factor used in z MinFOS

XmainFrame

x MainFrame x position of the largest section area

x FP · x MainFrame Factor

x MainFrame Factor Factor used in x MainFrame

Forebody

x Fp x position of Forward Perpendicular

Continued on next page
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Table 5.1 – Continued from previous page

Name of Parameter Association to

Dimensional Parameters

x Peak x position of end point

of Bow Overhang

x BulbTip x position of Bulb Tip

x FOB Fore x position of end point

x FP · x FOB Fore Factor

x FOB Fore Factor Factor used in x FOB Fore

x FOS Fore x position of end point

x FP · x FOS Fore Factor

x FOS Fore Factor Factor used in x FOS Fore

z Fp z position of highest point

of the Forward Perpendicular

z Bulb Bulb Height

z BulbTip Bulb Tip Height

L Bulb Length of Bulbous Bow

L BulbToFp Distance from Bulbous Bow Tip to FP

L BowOverhang Length of Bow Overhang

Aftbody

x FOB Start x position of starting point of Flat of Bottom

x FP · x FOB Start Factor

x FOB Start Factor Factor used in x FOB Start

x FOS Start x position of starting point of Flat of Side

x FP · x FOS Start Factor

x FOS Start Factor Factor used in x FOS Start

x Boss x position of Shaft

x Transom x position of Transom

z Transom Transom Height

Continued on next page
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Table 5.1 – Continued from previous page

Name of Parameter Association to

Dimensional Parameters

Dshaft Diameter of Shaft

In the ensuing sections §§5.3-5.7 we present and discuss the results obtained from using

TshipPM and CAESES for approximating the KCS parent hull. For ease of reference

we call as PM1 and PM2 the models produced by TshipPM and CAESES respectively.

All calculations have been conducted with models spatially located as shown in Fig. 5.2,

with the tip of the bow overhang (most front part of the Lwl) being located at the start

of the coordinate system.

Figure 5.2: Coordinate system and models’ orientation.

5.3 Common parameters

Though the adopted geometric representation and the parametric-modelling method-

ology employed by TshipPM and CAESES are different, the two PMs do share many

common input parameters. In particular, the modellers have 14 common parameters

(52% of TshipPM’s and 45% of CAESES’s parameters) collected in Table 5.2.
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Table 5.2: TshipPM-CAESES common parameters list.

CAESES TshipPM

Parameter Parameter

Global Parameters

Beam B

Draft T

Middle Part Parameters

z MinFOS BilgeR

x MainFrame Mid Pos

Forward Part Parameters

x Fp FP L FromMS

x FOB Fore FoB Fwd L

x FOS Fore FoS Fwd L

z Bulb BulbH

L BulbToFp BulbL

Afterward Part Parameters

x FOB start FoB Aft L

x FOS start FoS Aft L

x Boss TubeL

z Transom Transom H

Dshaft TubeR

5.4 Moments comparison

In this section we present the results from comparing volumetric moments up to 2nd

order, provided by PM1 and PM2 against the KCS parent hull. Comparison has been

conducted both for the whole ship-hulls and for their segmented parts, namely for-

ward (x ∈ [−6.7m, 104.7m)), middle (x ∈ [104.7m, 151.7m)) and afterward parts
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(x ∈ [151.7m, total length]). PM1 and parent ship-hull moments have been calcu-

lated via Rhino3D, while PM2 moments have been calculated using ANSYS Fluent®.

Negative differences indicate that the parent ship-hull value is smaller than the cor-

responding value of PM1 or PM2 and vice versa. The obtained values and resulting

deviations are collected in Tables 5.3 and 5.4.

Focusing on the whole ship-hull, volume, volume centroid, and moment of inertia for

both PM1 and PM2 lie very close to those of the parent hull, with differences less than

1%, with the exception of the moments of inertia of PM2 in the x-coordinate, where a

difference of 1.288% is observed. As for the volume, PM1 overestimates about 0.146%,

while PM2’s estimate differs by 0.073%. As far as centroid location is concerned, PM1’s

estimate deviates by 0.099% and −0.143% along the x− and z−axis respectively, while

PM2’s centroid estimate exhibits a variation of 0.038% and −0.001%, correspondingly.

For both parametric models and the parent hull, the y-coordinate of centroid is zero

in single precision accuracy. In terms of inertia, PM1’s estimate differs from that of

the parent hull by δIx = 0.026%, δIy = −0.458% and δIz = −0.448%. For PM2, the

corresponding quantities vary by 1.288%, 0.756%, 0.767%.

For the segmented hulls, both PM1 and PM2 show satisfactory behaviour for all calcu-

lated moments and for all three segments as differences of lower than 1% occur for all

calculated moments. Specifically, PM1’s volume is larger by 0.116%, x- coordinate of

volume centroid underestimates by 0.069% while z-coordinate overestimates by 0.354%,

δIx = −0.460%, δIy = 0.104%, δIz = 0.013%. For PM2, volume is larger by 0.150%, x-

and z- coordinates of volume centroid are equal to -0.053% and 0.253%, δIx = −0.719%,

δIy = −0.134%, and δIz = −0.340%.
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Table 5.3: Comparison of moments among KCS parent ship-hull, PM1 and
PM2 models (full model).

Models
Volume

(m3)

Volume
Centroid

(m)

Inertia
(m5)

x: 118.407 Ix: 3.892·106

Parent Ship 52,053 y: 0 Iy: 1.304·108

z: -4.892 Iz: 1.333·108

x: 118.332 Ix: 3.901·106

PM1 52,129 y: 0 Iy: 1.310·108

z: -4.899 Iz: 1.339·108

x: 118.290 Ix: 3.843·106

PM2 52,015 y: 0 Iy: 1.294·108

z: -4.896 Iz: 1.323·108

Difference (%) x: 0.099 Ix: 0.026
PM1 vs -0.146 y: 0 Iy: -0.458
Parent Ship z: -0.143 Iz: -0.448

Difference (%) x: 0.038 Ix: 1.288
PM2 vs 0.073 y: 0 Iy: 0.756
Parent Ship z: -0.001 Iz: 0.767

Notes: Inertia has been calculated with respect to Centroid Coordinate Axis. Negative
percentage indicates that parent ship-hull’s value is lower than that of PM1/2.

Table 5.4: Comparison of moments among KCS parent ship-hull, PM1
and PM2 models.
(Segmentation at x1 = 104.7m, and x2 = 151.7m)

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

Forward Part

x: 64.175 Ix: 1.159·106

Parent Ship 18,793 y: 0 Iy: 1.066·107

z: -4.876 Iz: 1.149·107

x: 64.081 Ix: 1.155·106

Continued on next page
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Table 5.4 – Continued from previous page

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

PM1 18,798 y: 0 Iy: 1.073·107

z: -4.874 Iz: 1.155·107

x: 64.151 Ix: 1.160·106

PM2 18,809 y: 0 Iy: 1.069·107

z: -4.877 Iz: 1.152·107

Difference (%) x: 0.9 Ix: 0.685

PM1 vs -0.105 y: 0 Iy: -0.133

Parent Ship z: 0.122 Iz: -0.053

Difference (%) x: 0.025 Ix: -0.652

PM2 vs -0.198 y: 0 Iy: -0.192

Parent Ship z: -0.131 Iz: -0.225

Middle Part

x: 121.505 Ix: 1.486·106

Parent Ship 16,004 y: 0 Iy: 3.082·107

z: -5.305 Iz: 4.264·107

x: 121.499 Ix: 1.495·106

PM1 16,046 y: 0 Iy: 3.100·106

z: -5.319 Iz: 4.29·106

x: 121.501 Ix: 1.485·106

PM2 16,002 y: 0 Iy: 3.081·106

z: -5.304 Iz: 4.263·106

Difference (%) x: 0.005 Ix: -0.602

PM1 vs -0.261 y: 0 Iy: -0.582

Parent Ship z: -0.263 Iz: -0.606

Difference (%) x: 0.003 Ix: 0.0673

Continued on next page
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Table 5.4 – Continued from previous page

Models
Volume

(m3)

Volume

Centroid

(m)

Inertia

(m5)

PM2 vs 0.012 y: 0 Iy: 0.032

Parent Ship z: 0.019 Iz: 0.023

Afterward Part

x: 174.602 Ix: 1.243·106

Parent Ship 17,254 y: 0 Iy: 6.709·106

z: -4.533 Iz: 7.636·106

x: 174.722 Ix: 1.245·106

PM1 17,281 y: 0 Iy: 6.702·106

z: -4.517 Iz: 7.635·106

x: 174.695 Ix: 1.252·106

PM2 17,280 y: 0 Iy: 6.718·106

z: -4.544 Iz: 7.662·106

Difference (%) x: -0.069 Ix: -0.46

PM1 vs -0.116 y: 0 Iy: 0.104

Parent Ship z: 0.354 Iz: 0.013

Difference (%) x: -0.053 Ix: -0.719

PM2 vs -0.150 y: 0 Iy: -0.134

Parent Ship z: -0.253 Iz: -0.340

Notes: Inertia has been calculated with respect to Centroid Coordinate Axis. Negative percentage

indicates that parent ship-hull’s absolute value is lower than that of PM1/2.

5.5 SAC comparison

Fig. 5.9 illustrates the SACs of PM1 (red curve), PM2 (blue curve) and parent (green

curve) ship-hulls. It also shows the difference of SAVs between PM1 and parent hull
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(magenta curve), as well as between PM2 and parent (black curve) with the maximum

deviation |SAVPM1 − SAVparent|max = 9.5m2 occurring at x = 168m, and |SAVPM2 −

SAVparent|max = 3m2 occurring at x = 59m, which correspond to 2.8% and 9� of the

maximum SAV respectively.

It is worth noticing that the red curve is constant along the interval 104.7≤x≤151.7

because TshipPM imposes by construction a strictly cylindrical part along the middle

part of the hull and, as a result, possesses constant SAV in this interval. This is the

reason of the significant deviation occurring at PM1’s SAC with respect to the parent

ship. The problem can be mitigated by introducing an additional afterward transition

curve between the middle part and the first afterward transition curve. Fig. 5.10

shows the improved performance of TshipPM after introducing the extra transition

curve, with |SAVPM1−SAVparent|max = 3.8m2 at x = 163m, 250% smaller than in the

case of 4 transition curves.

5.6 Gaussian-curvature comparison

Figs. 5.3-5.6 depict side, bow, stern and bottom views of the Gaussian curvature plot

of the surfaces of PM1 and PM2. A color map capable to easily reveal sign variations of

the Gaussian curvature has been selected ([−10-6, 10-6]). In general, one can easily spot

extraneous Gaussian-curvature sign variations in several areas of both plots. A more

focused view, though, reveals that the Gaussian-curvature distribution of PM2 exhibits

more extraneous small-scale oscillations between red (convex) and blue (non-convex)

areas; see; Figs. 5.8-5.7. This is attributed to the fact that CAESES’s model has been

constructed using multi-patch NURBS surfaces of high complexity, consisting of many

tiny patches, resulting to unevenly spaced isoparametric curves, and thus it is more

challenging to achieve fairness in transition regions. For example, in Fig. 5.8 one can

observe curvature oscillations at the mid- and bottom-stern which consist of a total of

50 patches. Nevertheless, Fig. 5.6 indicates that, in large scale, the shape of the flat of

side/bottom provided by PM2 is better than that of PM1. In this connection it should

be noted that TshipPM imposes by construction a strictly cylindrical parallel middle
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part, indicated by the green rectangle in Fig. 5.6.

Figure 5.3: Side view of Gaussian-curvature plot of Fwd Part (top) and Aft Part (bot-
tom) of PM1 (left) and PM2 (right).

Figure 5.4: Bow view of Gaussian-curvature plot of PM1 (left) and PM2 (right).

Figure 5.5: Stern view of Gaussian-curvature plot of PM1 (left) and PM2 (right).

Figure 5.6: Bottom view of Gaussian-curvature plot of PM1 (top) and PM2 (bottom).
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Figure 5.7: Small-scale extraneous oscillations of the Gaussian-curvature distribution
of PM2: bottom view.

Figure 5.8: Small-scale extraneous oscillations of the Gaussian-curvature distribution
of PM2: side (top) and stern view (bottom).
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Figure 5.9: SAC comparison among PM1 (red curve), PM2 (blue curve) and the parent hull (green curve): the magenta curve
depicts the deviation SAVPM1 - SAVPM2 with the absolute maximum deviation for PM1 (9.5m) and PM2 (3m) occurring at
x = 168m and x = 59m respectively.
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Figure 5.10: Improved SAC for PM1 (red curve) after introducing an additional afterward transition curve between the parallel
middle part and the first afterward transition curve. The absolute maximum deviation for PM1 (3.8m) occurs at x = 163m.

114



Chapter 5. TshipPM vs CAESES: A comparative study

5.7 Sectional-curvature comparison

By sectional curvature we refer to the curvature distribution of the planar curves ob-

tained by intersecting the ship-hull with planes vertical to its longitudinal axis. When

selected at prescribed distances, called stations, the resulting family of curves is re-

ferred to as the body plan of the hull. In design practice, the fairness of these sections is

evaluated via their curvature distribution depicted as a function of a parameter running

along the curve or in the porcupine format, adopted herein. Figs. 5.11-5.14 indicate

that PM1 and PM2 provide, in general, fair sections which are also free from extraneous

inflection points, with exception to PM2’s sections at x = 146.3m and x = 205.3m, as

shown in Fig. 5.15.

Figure 5.11: PM1 (left), and PM2 (right) porcupine plots of section at x = −1m.
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Figure 5.12: PM1 (left), and PM2 (right) porcupine plots of section at x = 104.7m.

Figure 5.13: PM1 (left), and PM2 (right) porcupine plots of section at x = 151.7m.

Figure 5.14: PM1 (left), and PM2 (right) porcupine plots of section at x = 205.3m.

Figure 5.15: Extraneous inflection points of PM2 for sections at x = 151.7m (left) and
x = 205.3m (right).

5.8 Hausdorff distance comparison

For this comparison we use the MeshLab® 2 tool and a dense sampling as in §4.4.3.

Figs. 5.16 and 5.17 depict the distribution of deviation δ(x) of PM1 and PM2 from the

2http://www.meshlab.net/
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parent hull respectively. The color map for both models ranges over [0, 0.69m], which

covers the maximum deviation measured for PM1 with respect to the parent ship-hull.

PM2’s maximum deviation is 0.3m, while the mean deviation for PM1 is 0.07m and

0.012m for PM2.

The obtained results indicate a considerably better behaviour for PM2, attributed to

the large DoF (276 for PM1 vs O(105) for PM2. PM1’s significant deviations occur

in the transition area from midship towards the afterward part of the hull which is

attributed to the fact that PM1 surface changes abruptly from the cylindrical middle

body towards, especially, the afterward part; see also Fig. 5.6 (top).

Figure 5.16: Hausdorff distance plot of PM1 with respect to the parent ship-hull. Color
map range is [0, 0.69m]

Figure 5.17: Hausdorff distance plot of PM2 with respect to the parent ship-hull. Color
map range is [0, 0.69m]
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A better performance in the geometric variation of PM1 occurs after introducing an

additional afterward transition curve as we did for the SAC comparison. As Fig. 5.18

shows the maximum deviation after the addition of the 5th transition curve is 0.42m,

located at the same transition area as before. Fig 5.19 also illustrates the geometric

deviation of PM1 with respect to the parent hull, but the range of the color map is as

before introducing the extra transition curve, i.e., [0, 0.69m], and makes obvious the

better performance of TShipPM after introducing the additional transition curve at

the afterward part.

Figure 5.18: Hausdorff distance plot of PM1 with respect to the parent ship-hull. Color
map range is [0, 0.42m].

Figure 5.19: Hausdorff distance plot of PM1 with respect to the parent ship-hull. Color
map range is [0, 0.69m]
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Chapter 6

A shape-optimisation tool

integrating a MO-TLBO

algorithm and TshipPM

6.1 Introduction

In this section we present a shape-optimisation tool based on ship-design criteria.

Specifically, it uses up to 2nd order moments, i.e., volume, volume centroid, and mo-

ments of inertia with respect to volume centroid (VC), as objective functions (or cost

functions or costs) to minimise, aiming to create ship-hulls with geometries in the

proximity of a parent hull. It combines both TshipPM and a new, in-house version of

the recently introduced Teaching-Learning-based Optimisation (TBLO) meta-heuristic

optimisation method. The tool has been built in C# and its method has been adjusted

accordingly, to serve the needs of the current work. The goal of the work presented in

the ensuing sections is to introduce the meta-heuristic algorithms in parametric mod-

elling for ship design, integrate them with TshipPM, and create a CASD parametric

modelling tool which will constitute the initial step towards developing automated tools

for remodelling container and tanker ship-hulls, but not limited to them.
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6.2 Introduction to TLBO

Throughout the history of engineering advancements, following the introduction of

computing devices and digital design, intelligent optimisation algorithms have been

used in excess to create high-end products and services, increasing dramatically the

cost-effectiveness in the field of manufacturing technologies. Meta-heuristic algorithms,

either evolutionary, such as genetic algorithms (GA) [54]–[58], genetic programming

(GP) [59]–[62], evolutionary programming (EP) [63]–[65], differential evolution (DE)

[66]–[68], etc., or swarm intelligence, such as stochastic diffusion search (SDS) [69],

[70], ant colony optimisation (ACO) [71], [72], particle swarm optimisation (PSO) [73]

and artificial swarm intelligence (ASI) [74], have significant contribution towards the

rise of a new digital industrial technology, known as Industry 4.0.

Researchers and practitioners who are involved in a variety of complex engineering opti-

misation problems in real-world settings are using all kind of optimisation techniques to

reach the best possible outcomes. Although all of the above population-based optimisa-

tion methods are potentially good candidates for shape optimisation, there is a necessity

of either enhancing the existing algorithms or introducing innovative ones, since the

existing ones are subject to limitations [75]. A major limitation is the requirement of

assigning values to several algorithm-specific parameters. The proper parameter tun-

ing is not trivial, it depends on the characteristics and the nature of each problem and

invalid assignment can lead to algorithmic ineffectiveness, ending up to incapability of

the algorithm to identify the optimum solution. TLBO, introduced in 2011 by R.V. Rao

et al. [76], overcomes this issue and solves both single and multi-objective continuous

and discrete optimisation problems. It is based on a teaching-learning principle, where

the best solution of the population, considered as the teacher, is teaching the learners.

In short, TLBO uses only common control parameters such as population size (PS),

number of generations or stopping criteria based on the objective function(s) and has

two main phases, namely Teaching (TP) and Learning (LP). During the teaching phase,

the goal is to increase the mean result of the class (learners) by a teacher. As a teacher

is assigned the learner with the best result so far, i.e., the solution of which the objective
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function value is closer to the stopping criteria. The best solution (teacher) and the

mean result of the class are then used to provide the final best solution. As far as the

learning phase is concerned, the learners increase their knowledge among themselves by

interacting with each other, where a learner learns from another if and only if it is more

knowledgable. Time-efficiency in TLBO method depends mainly on the dimensionality

of the problem and the number of the objective functions.

TLBO comes in two basic versions: a) the Elitist TLBO algorithm (ELTBO) which

utilises the concept of elitism where the worst solutions are replaced by the best (elite)

solutions, and b) the non-Dominated Sorting TLBO algorithm (NSTLBO) which is

used for multi-objective problems, where no single solution exists that optimises the

cost function, but a set of optimal Pareto solutions instead. The latter is an a posteriori

approach, which generates all the Pareto optimum solutions and the designer selects

one of them. On the other hand, an a priori approach requires a set of preferences

assigned by the designer in the form of weights assigned to the cost functions. Finally,

TLBO incorporates the concept of crowding distance as a technique for obtaining the

best solutions [58].

TLBO has been already used in many engineering fields, for both constrained and un-

constrained single or multi-objective (MO-TLBO) problems. A detailed and easy to

follow presentation of the TLBO algorithm can be found in R. Venkata Rao’s book,

published by Springer (London, UK), under the title ”Teaching Learning Based Opti-

mization Algorithm And Its Engineering Applications”[77].

6.3 TshipPM MO-TLBO: objective functions

TshipPM MO-TLBO has been built in C# with a multi-objective approach, using in

total 18 cost functions. The ship-hull is segmented in 3 main parts, i.e. a) parallel

middle part, b) forward part including bow, and c) afterward part including stern, as

in Fig. 4.21, but with the bow stretching towards the right-hand side, with 6 costs of

same nature correlated to each of them. The 6 costs correspond to a set of ship-design

criteria, namely the 0th, 1st, and 2nd order volume moments. Specifically, the costs are
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the volume (V), the x- and z-coordinates (y-coordinate is zero) of the volume centroid

(VC), and the x-, y-, and z- coordinates of the moments of inertia (MoI) with respect to

the volume centroid of the KCS ship-hull, and are defined by the following equations:

V =

∫
V
dxdydz (6.1)

V Cx = x0 =
Mx

V
, V Cy = y0 =

My

V
, V Cz = z0 =

Mz

V
(6.2)

Ix = Myy +Mzz − 2(y0 ·My + z0 ·Mz) + (y20 + z20) · V (6.3)

Iy = Mxx +Mzz − 2(x0 ·Mx + z0 ·Mz) + (x20 + z20) · V (6.4)

Iz = Mxx +Myy − 2(x0 ·Mx + y0 ·My) + (x20 + y20) · V (6.5)

where Mx, My, Mz are the first volume moments, given by:

Mx =

∫
V
xdV, My =

∫
V
ydV, Mz =

∫
V
zdV (6.6)

V is the volume, and Mxx, Myy, and Mzz are the second volume moments, defined by

the equations:

Mxx =

∫
V
x2dV, Myy =

∫
V
y2dV, Mzz =

∫
V
z2dV (6.7)

In brief, the tool calculates the 18 corresponding values for the parent-hull, 6 for each

segment, i.e., VP , VCP
x , VCP

z , IPx , IPy , IPz , where the superscript P denotes the parent

ship-hull. TshipPM MO-TLBO generates a set of instances (solutions) by providing

random values to the 24 non-dimensional parameters in the range [0.01,0.99] (Lwl, T,

and B are constant), using the .NET Random class. Subsequently, it calculates the

corresponding to each model V, VC, and MoI values (VM , VCM
x , VCM

z , IMx , IMy , IMz ,
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6 costs for each part, M denotes the model). Having already set the stopping criteria,

at the end of each iterative process, a set of optimum solution {P = [p0, p1, . . . , p23]
T }

is returned, where p1 . . . p23 are the external, non-dimensional parameters of TshipPM.

The objective functions for each part to minimise are:

| V
P

VM
− 1|, (6.8)

| V C
P
x

V CMx
− 1|, | V C

P
z

V CMz
− 1|, (6.9)

| I
P
x

IMx
− 1|, |

IPy
IMy
− 1|, | I

P
z

IMz
− 1| (6.10)

and they should be upper bounded by the stopping criteria value SC. The goal at the

end of the process is to create a set of ship-hull models possessing V, VC, and MoI

values in the proximity of a parent ship-hull.

6.4 TshipPM MO-TLBO: method and features

In this section we elaborate on the characteristics and functionality of the TshipPM

MO-TLBO tool. The main characteristic of the tool is that it optimises the three main

parts of the ship-hull separately. Although the total number of the objective functions

to minimise is 18, the tool is developed to handle the three distinct main ship-hull parts

separately and in a specific order. First, the parallel middle part is optimised, then the

forward and last the afterward part, while the latter two are dependent on the middle

part. This provides a significant advantage to TshipPM MO-TLBO, as each time only

6 costs are required to be minimised, but at the end of the algorithmic process all 18

have been minimised. Figure 6.1 illustrates the approach adopted: We have broken

down a global optimisation problem of 24 variables and 18 costs to:

1. Middle part optimisation: number of Variables = 3, number of costs = 6;

2. Forward part optimisation: number of Variables = 11, number of costs = 6;
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3. Afterward part optimisation: number of Variables = 10, number of costs = 6;

Figure 6.1: Costs distinction per segment. Breaking down the problem for a more

time-efficient approach. Parameters ̂FoS Trans and ̂Fob Trans are calculated only
for the forward part, and their value is constant for the afterward part.

According to our numerical experience, a global approach where the 18 costs were to

be minimised simultaneously, in the best case scenario would result in a dramatical

increase of the calculation time, while in the worst case some of the stopping criteria

would never be satisfied. The above-mentioned breakdown is attributed to the method

utilised to develop TshipPM:

� The parallel middle part uses 3 parameters, Mid Pos, Mid L, and BilgeR. The first

two have a more global nature, as their values are used to define the parameters

of the forward and afterward parts. As soon as the costs of the parallel middle

part have been minimised, parameters ̂Mid Pos, M̂id L, and B̂ilgeR have been

obtained, and the algorithm proceeds to minimise the costs of the other two parts.

� The forward and afterward parts are using 11 and 10 parameters respectively, and

are not interdependent, hence the parameters of the forward part do not interfere

in the afterward part and vice versa. Parameters and their corresponding ship

hull parts are described in Table 2.1. Parameters ̂FoS Trans and ̂Fob Trans are

calculated only for the forward part, and their value is constant for the afterward

part.
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It is of crucial importance to start and finish the optimisation of the middle part as

it depends on ̂Mid Pos and M̂id L, two parameters that affect both the forward and

the afterward parts. As soon as the middle part is optimised according to the stopping

criteria, the algorithm progresses to the optimisation of the remaining segmented parts.

A second characteristic of the tool is that it calls TshipPM to create only the part of

the hull under optimisation, including always the middle part. Normally, a PM tool

draws the lines for the control cage of the whole hull, for the final smooth model to be

produced. In this case, TshipPM is called to draw only the lines of the control cage

for the part under optimisation alongside with the middle part, neglecting the third

part. When the middle part is being optimised it is drawn alone. Assuming the middle

part is already optimised, TshipPM is called to draw in the CAD GUI only the lines of

the middle and the forward part, neglecting the afterward part. When the afterward

part is being optimised, the control cage lines of the forward part are neglected. Note

that, time-consumption for drawing the lines as well as for the construction of the final

smooth surface increases with a raise in the number of lines required to be drawn in

the CAD tool. Therefore, this characteristic increases the time-efficiency of the tool by

more than 200%.

The tool uses 6 inputs:

a. Initial population size: IPS = 2,000. The size of the initial population sampled

within the design space of TshipPM. A high value is used to sample instances

covering an area of the design space as broad as possible. IPS size is an impor-

tant parameter of the MO-TLBO algorithm, as the lower the value the less area

of the design space of the PM is scanned, making it almost impossible to find

am optimum solution, while much higher values increase time consumption. The

optimum choice of IPS value depends on the problem. Note that, initial popula-

tion is only sampled once per ship-hull part, therefore only 3 times in the whole

process;

b. Population size: PS = 200. The size of the population used in teaching and learn-

ing phases. Low values is most probable to limit the diversity. Both populations
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are created using Monte Carlo sampling;

c. Number of variables: NoV = 24. All non-dimensional parameters of TshipPM.

Global parameters Lwl, T, and B remain constant.

d. Number of costs: NoC = 6. Volume, volume centroid and moments of inertia,

i.e., V, VCx, VCz, Ix, Iy, Iz;

e. Stopping criteria: SC = 0.02. A deviation of less than 2% is desirable;

f. Rhino’s absolute tolerance: AT = 10-6;

Although in optimisation algorithms the rule of thumb is to use a PS ten times larger

than the dimensionality of the problem to improve diversity, i.e., PS = 10 · NoV ,

the final choice depends upon the individuals and the nature of the problem. After

experimentation we opted for a high IPS to sample instances covering as much of the

design space of TshipPM as possible, and a lower PS to use in teaching and learning

phases to increase the time efficiency of the tool. Lower values of IPS are making

impossible to scan a broad area of TshipPM’s design space, and, subsequently, the

algorithm might stick in local optima which do not satisfy the stopping criteria.

The main body of the algorithm consists of the following 5 basic steps, each of which

is a separate method in the algorithm, while its flowchart is illustrated in Fig. 6.2.

1. Create initial population: Creates the initial population (IP), comprised of 2,000

solutions, by randomly assigning values in the range [0.01,0.99] for all 24 non-

dimensional parameters, except for the following:

a. ̂Mid Pos: [0.533,0.99];

b. M̂id L:

� if (Mid Pos + Mid L / 2 > 4 · Lwl / 5) then Mid L takes values in the

range [0.01,0.68]

� if (Mid Pos - Mid L / 2 < Lwl / 5) then Mid L takes values in the range

[0.01,0.57].
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This choice of the parameter values range of Mid Pos and Mid L has been made

to to secure designs with the middle part close to the longitudinal middle of the

ship. A middle part which is located in the proximity of the bow or the stern

would be impractical, and it would result to increase IPS and PS as the design

space to explore would be larger. Each solution consists of 24 different parameter

values, same as the number TshipPM uses to provide the hull geometry, assuming

that the global parameters Lwl, T, and B are constant.

2. TshipPM execution: We execute TshipPM to build the initial population of 2,000

ship-hull instances, calculating, as well, the 6 costs for each model, using Rhino’s

VolumeMoments command. The execution is faster as we disable redrawing of

the instances, and we convert the T-splines surface into a mesh object using

Rhino’s command Mesh, opting for the default options. The geometric variation

occurring by the transformation from a T-splines to a mesh object is negligible

(approximately 1�).

3. Sorting: Making use of the non-dominated sorting functionality, we determine

the Pareto fronts (each front contains a set of solutions sorted according to the

non-dominance rank) for the initial population. Solutions of which the value of

at least one cost is not dominated by any other solution’s cost-value (for the same

cost type) are forming the first Pareto front (rank = 0). The rest of the fronts

have a rank higher than zero, hence they are appended in ascending order of rank.

Our goal is to end up with the best 200 solutions (PS=200) and feed them into the

teaching and learning phases, which are responsible to teach the learners and find

the optimum solution(s) respectively. The desired-best solutions are contained in

the first Pareto front, which during the teaching-learning iterative process, but

especially after calculating the costs of the initial population (IPS>PS), it might

contain more than 200 solutions. Therefore, we sort in ascending order the costs

of the first front regarding to their mean value, i.e., the mean value of all 6 costs

of each solution. This process ascertains that an updated population (sorted

population) of a maximum size of 200 is acquired.
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4. Teaching phase (TP): Sorted population is fed into the TP. TP uses a random

solution from the first front (where best solutions are stored) of the sorted popu-

lation to modify it and create a new one, based on the best solution (or teacher),

the teaching phase population (TP population). The reason behind using a ran-

dom solution instead of the best mean solution (or any other type of a “best”

solution) is to prevent the optimisation of being stuck in a local optimum which

is not satisfying the stopping criteria. Here we have opted for a deeper scanning

of the design space than for a faster but not robust process. On top of this, the 40

bottom-of-the-list solutions, i.e. the 20% of TP population with the highest mean

values, are replaced by 40 random solutions to increase the diversity and sample

more solutions out of the design space. TP population is then fed into TshipPM

to build the new instances and calculate the corresponding costs. Both sorted

and TP populations are then fed back to the sorting process, to find the new first

front and return the updated -after sorting- population (TP’ population), which

contains the 200 best solutions of the TP.

5. Learning phase (LP): TP’ population is fed into the LP. LP creates a new pop-

ulation (LP population) based on the best mean cost of TP’ population. Both

populations are fed into the sorting process again, as in teaching phase, resulting

to the final (for this iteration) LP’ population, which includes -among others-

the best costs so far at the top of the list. The concept of crowding distance

is not utilised in this version of the optimisation algorithm, as we opted for the

mean-value approach.

The iteration process terminates when at least one solution of the LP’ population

satisfies the stopping criteria. As soon as the middle part is optimised, an initial

population of IPS is sampled for the optimisation of the forward part. The afterward

part is optimised last and only when the optimisation process of the forward part has

been completed. At the end of the whole process, the algorithm provides one or more

optimised models, as the optimum solutions are usually more than one for each part.
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Yes

Yes

TshipPM: builds models of initial 
population and calculates their 

costs

Initialise: a) initial population size (IPS), 
b) population size (PS), c) number of variables (NoV),
d) number of costs (NoC), e) stopping criteria (SC)

All costs < SC

Non-dominated Sorting: finds Pareto fronts, 
sorts first front according to mean cost 

value, and creates sorted population, putting 
on top of the list the solutions from the first 

Pareto front. First front count <= PS

Creates TP population based on a 
random solution from the first front

TshipPM: Creates models using TP 
population and calculates their costs

Initial Population: creates initial 
population (using IPS) by assigning 

values to TshipPM’s variables

Non-dominated sorting: TP’ population 
obtained.

Creates a list with both sorted and TP 
populations (population size = 2·PS) 

Teaching Phase

Creates LP population based on the 
mean cost of TP population

TshipPM: Creates models using LP 
population and calculates their costs

Non-dominated sorting: LP’ population 
obtained.

Creates a list with both TP’ and LP 
populations (population size = 2·PS) 

Learning Phase

No

No

Mid_Part obtained

Fwd_Part obtained

Aft_Part obtained

Yes

No

Yes
Final Design

Figure 6.2: TshipPM MO-TLBO flowchart for shape optimisation using as cost func-
tions ship-design criteria, i.e., volume moments up to 2nd order, namely volume, volume
centroid, and moments of inertia with respect to volume centroid.
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6.5 Results

In this section we present the results of TshipPM MO-TLBO with regards to the

convergence of the produced models with respect to the parent ship-hull. The results

are based in 10 randomly selected models. To evaluate the results the following criteria

are used:

� Objective Function Values (OFV) for each segmented part separately;

� Comparison of V, VC and and MoI for the whole hull. Stopping criteria = 0.02,

therefore the results of this comparison should be lower than 0.02;

� Visual evaluation of the whole hull with the aid of Rhino’s interface;

� Hausdorff distance metric for identifying the geometric variation of the parallel

middle part using MeshLab®;

Each of the models presented has been derived from a different execution of the tool,

therefore none of them belongs to the same optimal Pareto with another. At this point

we should remind that, usually, in the final optimal Pareto front there is contained a

set of optimal solutions and not a single one. In addition, we provide the run time of

each of the executions, as well as the mean run time of all executions. The tool was

executed on a regular desktop PC with Windows®10 on an Intel(R) Core(TM) i7-6700

CPU 3.40GHz, with 16GB of RAM, and a display adapter with a Nvidia Quadro P400

chipset.

Table 6.1 illustrates the OFV for the whole hull but also for each part separately for

the 10 models under evaluation, which are illustrated in Fig. 6.3. The time needed

for optimising and producing each model is shown in the same table as well. Run

time isn’t consistent, as meta-heuristic algorithms are sampling random solutions of

the design space, and the number of iterations can vary significantly. The mean run

time for optimising the KCS container ship-hull using the TshipPM MO-TLBO tool is

155.8 minutes.
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One can observe that, although the costs for all models have been minimised and the

volume moments for the whole hull show sufficient behaviour and they do satisfy the

stopping criteria, the majority of the models’ forward and afterward parts are far from

lying in the proximity of the parent hull’s geometry, with exceptions model 5 and mod-

els’ 10 forward part, which show a better behaviour, not lying in the proximity of the

parent though. Especially, one can observe that the afterward is the most cumbersome

part to approximate, particularly at the stern due to its high complexity, attributed

to the topology of the control cage. The forward part shows a better behaviour in

general. Focusing on the bow, we can observe that the results are better than those at

the stern because of its reduced topological complexity in comparison with the stern.

Nevertheless, the complexity of the bow and the whole forward part is still high, with

an increased local dimensionality (11 parameters). We could conclude that using vol-

ume moments up to 2nd order is not sufficient to optimise the shape of complex shapes

such as bow and stern of ship-hulls with respect to a parent hull.

On the other hand, as Fig. 6.4 illustrates, the parallel middle part shows a much better

behaviour. The maximum geometric variation is observed in Model 5 with max and

mean values of 1.26m and 0.26m respectively. Model 8 demonstrates the minimum-

max geometric variation (0.36m) with a mean value 0.08. Model 2 has the lowest

mean variation (0.07m), and a max value of 0.44m. Shape-wise, middle part is almost

identical in all models, attributed to its decreased complexity, i.e., low dimensionality

with only 3 parameters and a simpler compared to the other parts control cage. The

parallel middle part needs approximately 20-40 minutes to be optimised, the upper

bound indicating the time-consumption for stricter stopping criteria. It should be

reminded at this point that TshipPM uses a cylindrical middle part, while the parent

hull does not, therefore it is expected to have small variations with respect to geometry

at this part. Note that, as far as the orientation of the ship-hull is concerned, the

forward part of the ship-hull is stretched towards the right-hand side of the middle

part.

The simplicity of the parallel middle part allow us to impose stricter stopping criteria,

but only for this segmented part. The complexity of the rest demands a substantial
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increase to the PS and IPS of the algorithm, therefore a dramatical increase in the

run time, otherwise the optimisation is cumbersome to achieve. Assuming SC = 0.002,

TshipPM MO-TLBO produces always models with a middle part lying in the proximity

of Model 11 of Fig. 6.5, with max and mean deviation with respect to the parent ship-

hull of approximately 0.30m and 0.05m respectively. The expense in time-efficiency is

no more than several minutes.

Table 6.1: TshipPM MO-TLBO results.

Model
OFVVC

(%)

OFVMoI

(%)

Volume

(%)

Run time

(min)

Model 1 Whole ship-hull

VCx: 0.33 Ix: 1.31 0.30 117

VCz: 0.08 Iy: 0.46

Iz: 0.49

Forward part

VCx: 0.03 Ix: 1.34 0.84

VCz: 0.63 Iy: 1.34

Iz: 1.51

Middle part

VCx: 0.24 Ix: 0.98 0.84

VCz: 0.08 Iy: 1.28

Iz: 1.22

Afterward part

VCx: 0.16 Ix: 1.09 1.10

VCz: 0.89 Iy: 1.80

Iz: 1.54

Model 2 Whole ship-hull

VCx: 0.84 Ix: 0.46 0.08 57

VCz: 0.33 Iy: 0.22

Continued on next page
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Table 6.1 – Continued from previous page

Model
OFVVC

(%)

OFVMoI

(%)

Volume

(%)

Run time

(min)

Iz: 0.24

Forward part

VCx: 0.78 Ix: 0.55 1.53

VCz: 1.32 Iy: 0.21

Iz: 0.40

Middle part

VCx: 0.02 Ix: 0.95 0.81

VCz: 0.03 Iy: 1.59

Iz: 1.42

Afterward part

VCx: 0.48 Ix: 0.74 1.17

VCz: 0.22 Iy: 1.87

Iz: 1.82

Model 3 Whole ship-hull

VCx: 0.48 Ix: 1.99 0.06 78

VCz: 1.10 Iy: 0.32

Iz: 0.33

Forward part

VCx: 0.71 Ix: 0.34 0.02

VCz: 0.68 Iy: 0.14

Iz: 0.02

Middle part

VCx: 0.49 Ix: 0.10 0.32

VCz: 0.14 Iy: 0.51

Iz: 0.40

Afterward part

Continued on next page
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Table 6.1 – Continued from previous page

Model
OFVVC

(%)

OFVMoI

(%)

Volume

(%)

Run time

(min)

VCx: 0.49 Ix: 0.87 0.46

VCz: 0.36 Iy: 1.32

Iz: 1.64

Model 4 Whole ship-hull

VCx: 0.23 Ix: 0.19 0.49 170

VCz: 1.14 Iy: 0.59

Iz: 0.58

Forward part

VCx: 0.28 Ix: 1.38 1.09

VCz: 1.91 Iy: 0.80

Iz: 0.43

Middle part

VCx: 0.01 Ix: 1.81 0.07

VCz: 0.96 Iy: 1.70

Iz: 0.69

Afterward part

VCx: 0.10 Ix: 0.16 0.37

VCz: 0.56 Iy: 1.07

Iz: 0.82

Model 5 Whole ship-hull

VCx: 1.23 Ix: 0.46 0.24 92

VCz: 0.53 Iy: 1.4

Iz: 1.36

Forward part

VCx: 1.62 Ix: 0.54 0.04

VCz: 1.74 Iy: 0.15

Continued on next page
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Table 6.1 – Continued from previous page

Model
OFVVC

(%)

OFVMoI

(%)

Volume

(%)

Run time

(min)

Iz: 0.23

Middle part

VCx: 0.97 Ix: 1.48 0.32

VCz: 0.62 Iy: 0.14

Iz: 0.54

Afterward part

VCx: 0.95 Ix: 0.68 0.98

VCz: 1.14 Iy: 1.68

Iz: 1.29

Model 6 Whole ship-hull

VCx: 1.14 Ix: 0.33 0.03 214

VCz: 0.74 Iy: 0.42

Iz: 0.42

Forward part

VCx: 1.92 Ix: 1.88 0.02

VCz: 1.90 Iy: 0.28

Iz: 0.50

Middle part

VCx: 0.98 Ix: 0.08 0.11

VCz: 0.06 Iy: 0.22

Iz: 0.13

Afterward part

VCx: 0.92 Ix: 1.22 0.01

VCz: 0.13 Iy: 1.69

Iz: 1.79

Model 7 Whole ship-hull

Continued on next page
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Table 6.1 – Continued from previous page

Model
OFVVC

(%)

OFVMoI

(%)

Volume

(%)

Run time

(min)

VCx: 0.87 Ix: 1.10 0.11 87

VCz: 0.29 Iy: 1.30

Iz: 1.24

Forward part

VCx: 1.72 Ix: 0.42 1.10

VCz: 0.16 Iy: 0.95

Iz: 0.72

Middle part

VCx: 0.32 Ix: 1.62 0.49

VCz: 0.51 Iy: 0.49

Iz: 0.15

Afterward part

VCx: 0.36 Ix: 0.50 0.40

VCz: 0.06 Iy: 1.94

Iz: 1.79

Model 8 Whole ship-hull

VCx: 0.77 Ix: 1.09 0.54 42

VCz: 0.33 Iy: 1.36

Iz: 1.34

Forward part

VCx: 0.60 Ix: 0.09 0.32

VCz: 1.11 Iy: 0.01

Iz: 0.09

Middle part

VCx: 0.25 Ix: 0.74 0.39

VCz: 0.09 Iy: 0.42

Continued on next page
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Table 6.1 – Continued from previous page

Model
OFVVC

(%)

OFVMoI

(%)

Volume

(%)

Run time

(min)

Iz: 0.54

Afterward part

VCx: 0.54 Ix: 0.80 1.61

VCz: 0.15 Iy: 0.04

Iz: 0.04

Model 9 Whole ship-hull

VCx: 0.55 Ix: 0.98 0.13 153

VCz: 0.74 Iy: 0.62

Iz: 0.63

Forward part

VCx: 0.09 Ix: 0.65 1.43

VCz: 0.15 Iy: 0.21

Iz: 0.34

Middle part

VCx: 0.32 Ix: 0.40 0.14

VCz: 0.09 Iy: 0.49

Iz: 0.22

Afterward part

VCx: 0.23 Ix: 0.92 1.81

VCz: 0.92 Iy: 0.31

Iz: 0.18

Model 10 Whole ship-hull

VCx: 0.84 Ix: 0.03 0.30 457

VCz: 0.74 Iy: 0.02

Iz: 0.02

Forward part

Continued on next page
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Table 6.1 – Continued from previous page

Model
OFVVC

(%)

OFVMoI

(%)

Volume

(%)

Run time

(min)

VCx: 0.92 Ix: 1.63 1.94

VCz: 0.40 Iy: 0.29

Iz: 0.53

Middle part

VCx: 0.34 Ix: 1.83 0.49

VCz: 0.69 Iy: 0.57

Iz: 0.94

Afterward part

VCx: 0.38 Ix: 0.56 1.67

VCz: 1.45 Iy: 1.21

Iz: 0.87
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6

(g) Model 7 (h) Model 8

(i) Model 9 (j) Model 10

Figure 6.3: Optimised models resulted from TshipPM MO-TLBO. Bow and stern view
captures are illustrated for each model.
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(a) Model 1: max= 0.42m, mean= 0.15m. (b) Model 2: max= 0.44m, mean= 0.07m.

(c) Model 3: max= 0.70m, mean= 0.13m. (d) Model 4: max= 0.92m, mean= 0.13m.

(e) Model 5: max= 1.26m, mean= 0.26m. (f) Model 6: max= 1.22m, mean= 0.26m.

(g) Model 7: max= 0.56m, mean= 0.14m. (h) Model 8: max= 0.36m, mean= 0.08m.

(i) Model 9: max= 0.40m, mean= 0.10m. (j) Model 10: max= 0.70m, mean= 0.13m.

Figure 6.4: Geometric variation between the parallel middle parts of TshipPM MO-
TLBO models and the parent hull, using Hausdorff distance.
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Figure 6.5: Geometric variation between the parallel middle part of TshipPM MO-
TLBO models and the parent hull, using stricter stopping criteria. Model 11: max=
0.34m, mean= 0.05m.
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Discussion and Summary

The work presented herein is about an innovative, robust, and cost-effective CAD

parametric modelling tool for ship-hull design and especially for container and tanker

ship-hulls, developed both in RhinoScript and C#. TshipPM is responsible for con-

structing the control cage of the desired ship-hull. It uses 27 user-specified parameters,

3 dimensional/physical of global nature, namely length at waterline level (Lwl), draft

(T), and breadth (B), and 24 non-dimensional of local nature lying in the range [0.01,

0.99], and which are mapped to control points through linear mappings. The control

points are interconnected with straight line segments to construct the desired control

cage. TshipPM uses the T-splines representation in the context of Autodesk’s T-splines

plug-in to create the final smooth surface(s). T-splines favour the development of sur-

faces with a much lower number of DoF (degrees of freedom) compared to the standard

NURBS technology, as it takes advantage of T-junctions. For the same reason, this

fairly new technology, provides advantages for local refinement of complex areas. In

addition, TshipPM is able to produce a single model in less than 10 seconds, perfor-

mance which is mainly contributed to the very low number of control points (276) it

deploys for the production of a ship-hull.

This work transforms the parametric modelling tool used in [6] along several directions,

which constitute the contributions to the field of parametric modelling in Computer-

Aided Ship Design (CASD): TshipPM is capable of producing ship-hull models for

both containers and tankers, taking into consideration the detailed characteristics of

both ship types. TshipPM enables a flexible representation of the ship-hull in the

geometrically challenging areas of bow and stern, and the transition areas from midship
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towards the forward and afterward perpendiculars, with a set of newly introduced

transition curves, and a more effective representation of the bow and stern boundary

curves. Therefore, it is eventually capable of delivering instances lying in the proximity

of any ship-hull type, as long as its complexity does not surpass the complexity of

tankers and containers.

Furthermore, a list of all parameters that characterise the geometry of the produced

models is provided, along with a concise description of each one of them and their func-

tional interrelation. We have described graphically all control curves used in TshipPM,

and we provide the functional relations of their control points with the physical and

non-dimensional parameters. In addition, the current work illustrates the mapping of

the external parameters to the control points of the T-splines representation. On top

of this, we present a step-by-step remodelling method for any given container or tanker

ship-hull, using as a case study the MOERI Container Ship’s (KCS) hull instance, which

is extensively used by the research community for CAD and Computational Fluid Dy-

namics (CFD) benchmarking purposes. The process consists of a detailed description

of the control cage construction using TshipPM, and the manual optimisation of the

control cage to more accurately remodel the given ship-hull.

Significant contribution has been attained as far as the cumbersome and complicated

issue of geometric validity is concerned, following the imposition of a set of geometric

and design constraints, which resulted in the production of geometrically valid models

for the whole range of the non-dimensional parameter values. A special attention has

been given and thorough investigation has been conducted as far as the intricate issue

of self-intersection of neighbouring surfaces is concerned. The issue was addressed using

automated techniques provided by Rhino5’s functionality to investigate the watertight-

ness of the output models, as well as a user-based visual evaluation for the cases of

invalid models that could not be identified automatically in Rhino.

Furthermore, we have compared TshipPM with CAESES against a set of comparison

criteria, namely the common external parameters, volume, volume centroid, moments

of inertia, sectional area curve (SAC), Gaussian and sectional curvatures for assessing
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surface and curve fairness respectively, and the Hausdorff distance for measuring the ge-

ometric distance between the hulls. The outcome was extremely positive for TshipPM,

as it performed at the same level with CAESES, and even better in some aspects, with

major advantages: a)the production of models with very low computational complexity

of the resulting surface, with just 276 points compared with the vs O(105) points of

the high fidelity CAESES model, b) the increased fairness with much fewer extraneous

Gaussian-curvature sign variations compared to CAESES and c) increased smoothness

(least G1-continuity) of the surfaces. On the other hand, TshipPM showed not as good

performance as CAESES in representing the flat sides of the ship-hull, and especially

the flat of side of both forward and afterward parts. Although out of scope for the

current work, it is worthwhile to mention that techniques and methods to tackle this

issue have been developed, and they mainly require the introduction of a set of control

points around the areas of interest, without significant expense in the DoF number of

the produced hulls.

Finally, a method and a tool for shape-optimisation against a set of ship-design criteria

(volume moments up to 2nd order) has been introduced, incorporating in TshipPM

an adjusted for the purpose of the current work Multi-objective Teaching-Learning-

based optimisation method. The method takes advantage of TshipPM’s developing

methodology and it breaks down a very demanding and complex optimisation problem

of 24 parameters and 18 costs to 3 separate optimisation problems of 6 costs and 3, 10,

and 11 parameters for the middle, afterward, and forward part of the hull respectively.

As a result, TshipPM MO-TLBO finds a set of optimal solutions in about 155 minutes,

time which can decrease in half given that the optimisation problem of the forward and

afterward parts can be conducted in parallel. The main shortcoming of the method,

proven by the results, is that volume moments up to 2nd order are insufficient shape

optimisers when it comes to complex objects, such as the bow and the stern areas of

a tanker or container ship-hull. A better solution could be attained by using higher

order volume moments.
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