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Abstract 

 

Tactile Imaging (TI) is a technology utilising capacitive pressure sensors to 

image elasticity distributions within soft tissues such as the breast for cancer screening. 

TI aims to solve critical problems in the cancer screening pathway, particularly: low 

sensitivity of manual palpation, patient discomfort during X-ray mammography, and the 

poor quality of breast cancer referral forms between primary and secondary care 

facilities. TI is effective in identifying ‘non-palpable’, early-stage tumours, with basic 

differential ability that reduced unnecessary biopsies by 21% in repeated clinical studies. 

TI has its limitations, particularly: the measured hardness of a lesion is relative to the 

background hardness, and lesion location estimates are subjective and prone to operator 

error. TI can achieve more than simple visualisation of lesions and can act as an accurate 

differentiator and material analysis tool with further metric development and 

acknowledgement of error sensitivities when transferring from phantom to clinical trials. 

This thesis explores and develops two methods, specifically inertial measurement 

and IR vein imaging, for determining the breast background elasticity, and registering 

tactile maps for lesion localisation, based on fusion of tactile and auxiliary sensors. 

These sensors enhance the capabilities of TI, with background tissue elasticity 

determined with MAE < 4% over tissues in the range 9 kPa – 90 kPa and probe 

trajectory across the breast measured with an error ratio < 0.3%, independent of applied 
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load, validated on silicone phantoms. A basic TI error model is also proposed, 

maintaining tactile sensor stability and accuracy with 1% settling times < 1.5s over a 

range of realistic operating conditions. These developments are designed to be easily 

implemented into commercial systems, through appropriate design, to maximise impact, 

providing a stable platform for accurate tissue measurements. This will allow clinical TI 

to further reduce benign referral rates in a cost-effective manner, by elasticity 

differentiation and lesion classification.in future works. 
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Chapter 1 

Introduction  

 

1.1. Chapter Summary 

This thesis explores techniques and technologies to continue the long-term 

development of tactile imaging (TI), a process of measuring mechanical stress 

distributions using a spatially distributed array of pressure sensors, particularly in 

medical applications. Tactile imaging technologies, based on capacitive pressure sensors, 

have been used for decades as a medical imaging tool, particularly for:  breast cancer 

screening (Egorov et al., 2009), internal imaging of the pelvic floor (Egorov et al., 2019) 

and prostate (Egorov et al., 2006), and prevention of foot ulcers (Tao et al., 2020). In 

these applications, medical conditions are commonly identified by ‘hard’ lumps that can 

be detected by measuring stress distribution often before they are palpable by a clinician. 

This thesis, focussing on the field of breast cancer screening and diagnosis, explores the 

requirements for developing TI from a basic screening tool into a high accuracy tool for 

differentiating benign and malignant breast conditions and providing diagnostic metrics 

for use in later stages of the cancer treatment process. This chapter shall introduce TI 

and how it works in a medical context and define the project scope, with the 

requirements for development explored, and fully justified, in Chapter 2.  
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1.2. Introduction to Tactile Sensing 

Tactile sensing in general is a technique for quantifying the sensation of touch 

using force or pressure sensors. In the same way that a person may press or touch a 

material and learn about the material from the reaction forces and deformation of the 

material, so too can a machine view the material properties. The key difference being, 

when a person does this there is only a qualitative assessment of the interaction, however 

when tactile sensors are used there is a quantitative assessment of the interaction which 

allows for further analysis and characterisation of it. This is expanded to tactile imaging 

when multiple tactile sensors are arrayed together, or individual measurements are 

spatially related, to form an ‘image’ of physical reaction stress in response to load 

stimuli. This is commonly used to measure the reaction forces between people and 

common objects, particularly for: anthropological studies and better product design, or 

measuring hardness differences in soft materials for medical condition screening. 

Relating the above to the topic of this thesis, the interaction in question shall be 

the palpation of breast tissue for the identification of hard nodules related to breast 

cancer, which shall be discussed in detail later on in Chapter 2. Although TI can refer to 

the use of any force sensor array, including strain gauges, resistive, and piezoelectric 

force sensors; from this point forward in this thesis, TI shall refer to the use of an array 

of capacitive sensor elements for differentiating soft tissues. 

Capacitive tactile sensors can be thought of as simple parallel plate capacitors, 

which themselves are devices that stores electrical energy, which change their 
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capacitance in response to an applied force. There are other arrangements and topologies, 

however the parallel plate capacitor is the simplest and exhibits the same basic 

properties as more complex architectures. The capacitance is the value that controls the 

energy storage capability of a capacitor at fixed voltage and is expressed in terms of the 

physical properties of the capacitor as shown in Equation 1.1. ε0 is the permittivity of 

free space, the ability of a vacuum to propagate electric fields; εR is the relative 

permittivity of the dielectric material, the material placed between the capacitor plates to 

improve the electric field propagation; A is the overlapping area of the two capacitive 

plates; d is the separation between the capacitive plates or the thickness of the dielectric. 

 

From equation 1.1, it is clear that capacitance increases as the plate separation decreases. 

This results in a variable capacitor that can respond to a change in plate separation as 

shown in Figure 1.1. 

 

Figure 1.1 - Parallel plate capacitor basic diagram. The capacitance changes with the 

plate separation, d, resulting in a variable capacitor that measures the plate 

separation.(Yip et al., 2009) 

𝐶 =   
𝜀0𝜀𝑅𝐴

𝑑
 (1.1) 
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If the dielectric material is made from a springy, elastic, material such that the 

capacitor can be compressed linearly in response to an applied force, then Hooke’s law 

can be applied to describe the compression, or change in plate separation, in response to 

a force (F)  in terms of a spring constant (k). This is shown in Equation 1.2 and 

illustrated in Figure 1.2. The change in an object’s length in response to a load can also 

be described using the material Young’s modulus, which is an extension of Hooke’s law.  

By combining equation 1.1 with equation 1.2, an expression for the basic operation of a 

parallel plate capacitive force sensor can be derived, as described in equation 1.3. 

 

 

Figure 1.2 - Diagram of Hooke's law. Applying a force, F, to an object causes a 

deformation proportional to the applied load, controlled by the spring constant or 

stiffness, k, of the material. 

 

     

Spring constant = k 

𝛥𝑑 =  − 
𝐹

𝑘
 (1.2) 

 

𝐶 =   
𝜀0𝜀𝑅𝐴

𝑑0 −  𝐹 𝑘⁄
 

(1.3) 
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The capacitance of the plate sensor can be measured using a capacitance to 

digital converter (CDC), for recording on a PC. Equation 1.3 can be used in reverse to 

determine the applied load from the capacitance as shown in equation 1.4. 

 

Several capacitive plate sensors can be combined into an array, as shown in 

Figure 1.3. Here, rows and column electrodes are layered with the springy dielectric in 

between them to form a matrix of elements that are read sequentially by a multiplexed 

CDC. This is done by scanning each row and switching in each column sequentially. 

 

Figure 1.3 - Illustration of a Capacitive tactile array. The capacitance to digital 

converter (CDC) is connected using an internal multiplexer (MUX) to each row and 

reads elements sequentially by scanning each row and column. On this 5x5 element 

illustration, the CDC would read from element [3,4], highlighted. 

 

 

 

 

 

 

 

 

CDC 

Electrodes 

Dielectric 

𝐹 = 𝑘(𝑑0 −  
𝜀0𝜀𝑅𝐴

𝐶
) (1.4) 
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The basic tactile array is mounted onto a rigid backing, the shape of which is 

dependent on the required application, additionally, the number and size of the elements 

is variable depending on the application. Data from the tactile array, read by the CDC, 

can be combined into a pressure map,  which displays the pressure distributions across 

the array. This pressure map can then be analysed to design comfortable products or to 

make medical decisions depending on the application. For example, if a person was to 

stand barefoot on a flat array, the pressure map would show the contact points, 

potentially showing things like flatfoot or over pressure that can lead to ulcers as shown 

in Figure 1.4. If a tactile array is pressed into breast tissue, the resultant pressure map 

can indicate hard spots within the breast that may not even be palpable to a clinician, as 

shown in Figure 1.4. These applications shall be discussed in detail later in this thesis. 

                 

Figure 1.4 - Example Tactile Images. Left) Foot contact pressure map used to visualise 

contact stress for designing comfortable footwear and reducing ulcers (Tekscan. Inc., 

US) Right) Tactile image of an embedded breast lesion, used to screen for malignant 

breast conditions (Wellman et al., 1999b). 
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1.2.1. Introduction to Tactile Breast Imaging 

Manual palpation has long been a staple tool in clinical diagnosis, from feeling 

for: a broken limb, bloating of the stomach, or lumps in the breast; with clinical 

experience allowing for correlation of the sensation with a diagnosis. In breast cancer 

diagnosis, but similar for other conditions, the link between the elasticity, or stiffness, of 

a breast lesion is known to be correlated to histological diagnosis (Woods et al., 2011).  

The most common methods of initially detecting breast lesions are the clinical 

breast exam (CBE) or self-breast exam (SBE), where the breast is palpated manually to 

detect lumps or pain, but, since people are unable to quantify the elasticity of a suspected 

lesion or even agree on a qualitative description (Farrugia et al., 2015) this almost 

always requires a secondary care referral for a mammogram, the standard screening 

method, for diagnosis. The number of benign referrals generally is close to 90% 

(McCain et al., 2011), which gives a good indication on the relatively high sensitivity, 

and poor specificity, of the CBE or SBE.  

This is where tactile imaging comes in; introduced as a method of quantifying 

touch, an obvious application for it is in medical palpation. TI is used clinically in 

several countries including US, India, Saudi Arabia and Mexico, but is not generally 

considered to be standard practice by national health boards. The earliest form of tactile 

imaging applied to breast imaging was called full breast mammobarography (Gentle, 

1988). This did not have any advantages over mammography, other than the lack of 

radiation, and so it was quickly adapted into a handheld system for patient comfort 

(Wellman et al., 1999b) able to produce localised images of suspicious lesions. These 
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handheld systems were capable of forming local images under the probe, but the whole 

breast view was largely lost, or made impractical in clinical use. 

Following continued academic and private development (Egorov and Sarvazyan, 

2008), TI was proven to be effective in reducing unnecessary biopsies by 21% by 

successfully classifying lesions as benign or malignant based on the contents of the 

tactile images (Egorov et al., 2009), later independently validated (Tasoulis et al., 2014). 

In these studies, the authors say the classification of benign and malignant conditions 

could be improved with more detailed diagnostic metrics including but not limited to, 

the absolute elasticity of the tissue and spatial information on the lesion such as the 

location and relation to other breast structures. 

Despite the advances in breast TI, the technology is not considered standard 

clinical screening practice in most countries, although the technology is gaining traction 

in countries such as India, Saudi Arabia, and Mexico where x-ray mammography is not 

commonplace as it is in the US and UK (Sarvazyan et al., 2008). The need for cost 

effective screening has led to the introduction of TI in these countries, where median 

incomes are low and cancer rates are high. In the US and UK, TI is used as a hassle free 

tool in private clinics for screening however this always requires referral to a hospital for 

mammography to be sure as it is not considered clinical practice in the UK. Patients may 

be spared a stressful trip to a hospital in the US using breast TI, following a negative 

result, where the use of such devices is more accepted. It is important to improve and 

demonstrate the reliability of TI to ensure adoption in developed countries, and to 

develop safe, reliable, and cost-effective screening tools for less developed countries. 
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1.2.2. Research Questions and Objectives 

The ultimate goal of this thesis, and related future works, is to move towards 

answering: to what extent can the classification accuracy of breast condition using TI be 

improved by new/improved diagnostic metrics? This is in line with a void in the 

literature following the works of (Egorov et al., 2009) and (Tasoulis et al., 2014), where 

improved metrics were postulated to be able to reduce the benign biopsy rate by up to 

80%. Due to constraints on available technology, budget, and logistical issues during the 

period of this work it is impossible to fully realise this goal, however the steps required 

to achieve the ultimate goal can be explored in greater detail, trading breadth of scope 

found in other theses (Wellman, 1999) for detail and practical use considerations for 

generating maximum clinical impact. The preceding questions leading towards the 

ultimate goal are: What metrics are required to improve tactile imaging performance, 

compared with what is currently available from TI? And: What are the fundamental 

requirements for deliverance these metrics, and what technologies can be leveraged to 

deliver them? Answering these questions shall form the theme for an extensive literature 

review, delivered in Chapter 2. During the literature review, key metrics are identified 

and ranked for priority allowing for technology for delivering metrics to be determined, 

that will be addressed in subsequent chapters. 

A pressing point in the medical TI literature is the lack of acknowledgement of 

tactile sensor error sources, which limits the usefulness of current TI to simple 

visualisation. Understanding and mitigating these error sources is critical to developing 

practical systems that function outside of laboratory conditions, and to linking early 
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stage phantom research with live clinical results helping to explain differences in 

performance. To this end we must answer: what error sources affect the output from a 

tactile image and what are the clinical implications of this? 

1.2.3. Research Trajectory and Defined Scope 

It is known that with additional diagnostic information, the clinical performance 

of TI will improve and become more accepted in the clinical environment, and with 

additional burden of proof and proven reliability can become accepted by national health 

boards. It is unlikely that TI will take the place of mammography in developed countries 

with structured healthcare systems such as the UK where mammography is the standard 

for screening, however there is scope for development in less developed countries where 

a cost effective mass screening tool is needed due to the lack of mammography in such 

environments. As such, the trajectory of breast TI in future is towards a high accuracy, 

cost effective screening tool for widespread use in LEDCs (Broach et al., 2016), and a 

hassle free differentiator for MEDCs to save patient exposure to uncomfortable 

mammography and to improve on the subjective reporting of lesions by overstretched 

clinicians (Lefemine et al., 2012). 

It is not feasible to fully realise this goal during the course of this PhD due to the 

current state of clinical TI, resources required and resources/logistic arrangements 

available during this project. The scope of the project is subsequently limited to the 

development of support technology to improve the diagnostic capability of TI, and 

characterisation of the technology in phantom trials to provide a stable technological 

platform for future clinical and societal trials to continue the clinical development of TI. 
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1.3. Knowledge Contribution              

This project has led to a number of valuable research outcomes and contributions 

to knowledge to the benefit of both academia and commercial partners. These 

contributions are both technological and analytical in nature, filling gaps in the literature. 

1.3.1. Formal Contribution to Knowledge 

This thesis presents the following formal contributions to knowledge, in the form of 

publications (P) and/or as thesis chapters (TC), expected to become publications: 

1. Novel elasticity measurement technique using single element tactile sensors 

fused with inertial and orientation sensors (P). 

2. Novel material strain measurement technique using double integration of 

compression acceleration data, with application specific error management (P). 

3. Novel vascular mapping technique based on non-rigid image registration using 

IR cameras and tactile sensors (P). 

4. Novel image rectification technique to rectify local camera/scanner induced 

deformation of the breast using tactile sensors (P). 

5. Novel breast background elasticity measurement from SIFT point tracking in 

camera/scanner palpation images (P).  

6. Novel tactile image mosaicking technique, independent of applied load, based on 

the use of auxiliary IR camera systems (P). 

7. Error analysis of medical tactile imaging systems used in breast cancer imaging, 

with investigation into the effect of error sources in practical use cases (TC). 
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1.3.2. Other Research Outputs 

This thesis presents the following additional research outcomes that, whilst not 

necessarily academically novel, were important to the success of the project, or will 

become important for future works in this area. These outcomes are largely 

‘housekeeping’ research outcomes, or to increase commercial impact, however the lack 

of acknowledgement of such things in the literature validates their worth as valuable 

research outcomes. 

1. IR camera and tactile mapping system integrated into commercial tactile imaging 

system footprint, to ease implementation and increase TRL. 

2. Method for normalising mounted tactile arrays, useful for manufacturers. 

3. Mechanical error analysis of real material dielectric capacitive pressure 

transducers, with low budget methodology. 

4. Inverse error model for parallel plate pressure transducers, with commentary on 

the requirements for implementation, useful for operators of tactile sensors 

1.4. Publications 

A number of academic works have been published, or engaged in, either directly 

through the PhD project or through contacts gained during the process in related fields. 

The accepted journal publications are used as material for this thesis in Chapters 3 and 4 

respectively. Additional publications are in the pipeline or under review at the time of 

thesis submission, based on the works of Chapters 5 and 6. 
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1.4.1. Accepted Journal Publications 

R. Hampson, G. Dobie and G. West, "Elasticity Measurement of Soft Tissues 

Using Hybrid Tactile and MARG-Based Displacement Sensor Systems," in IEEE 

Sensors Journal, vol. 19, no. 22, pp. 10262-10270, 15 Nov.15, 2019, doi: 

10.1109/JSEN.2019.2930207. 

S. Rana, R. Hampson and G. Dobie, "Breast Cancer: Model Reconstruction and 

Image Registration from Segmented Deformed Image Using Visual and Force Based 

Analysis," in IEEE Transactions on Medical Imaging, vol. 39, no. 5, pp. 1295-1305, 

May 2020, doi: 10.1109/TMI.2019.2946629. 

1.4.2. Note on Published Material Re-use 

Chapter 3 of this thesis is entirely derived from the former paper, exploring the 

use of inertial sensors in tactile sensing and elasticity imaging applications. The work 

presented in the paper is entirely my own and copyright permissions have been granted 

for this case. 

Chapter 4 of this thesis is based in part  on the latter paper, exploring the use of 

tactile sensor and IR cameras to produce tactile maps of the breast. The work presented 

in the paper is only partly that of my own, specifically sections relating to hardware 

design, elasticity measurement, calibration, and experimental procedure were the work 

of myself and shall be developed in this thesis. Suitable author differentiation and credit 

is given in the relevant chapter subsections in this thesis. Copyright, and other author, 

permissions have been granted for material use in this case. 
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1.4.3. Works Under Review/ In Preparation 

R. Hampson, G. West, and G. Dobie, “Non-rigid registration of tactile images 

onto the breast vascular network using infra-red vein imaging”, IEEE Transactions on 

Medical Imaging. (In preparation) Based on Chapter 5 of this thesis. 

R. Hampson, R. Matthews, R. Pratico, and G. Dobie, “Effect of environmental 

influence and sensor error on static and dynamic tactile imaging in clinical applications”, 

in IEEE Sensors Journal. (Under Review) Based on Chapter 6 of this thesis. 

 

1.5. Thesis Structure and Chapter Summary 

Chapter 1 of this thesis introduced the problem and formally defined both the 

project goals, with limitations on scope, and the outputs in terms of knowledge 

contributions and published papers. Chapter 2 shall expand on these problems, by 

defining the requirements for successful breast cancer diagnosis and by defining what 

the current capability is, both commercially and academically, for delivering the 

required metrics using TI. This chapter shall answer the question of “what needs done?” 

based on a comprehensive literature review of this and related fields, before offering the 

range of activities to be undertaken. Naturally not every avenue can be explored, so 

priority tasks shall be highlighted, and the remainder shall form the basis of future work 

in this area. Specifically, for this thesis, these areas will be elasticity measurement of 

background breast tissue, and non-subjective lesion localisation on the breast through 

mosaicking of tactile images. 
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Following the definition of requirements from Chapter 2, Chapter 3 shall begin 

solving the problem of measuring the background elasticity of breast tissue which is 

known to be difficult with currently available TI systems. This is done by integrating 

inertial and orientation sensors into TI, allowing for the simultaneous measurement of 

stress and strain, and assessing the system accuracy and reliability over a range of 

realistic breast phantom materials. While this technique shall prove effective in 

measuring the breast elasticity, it is found to be unsuited by itself in producing tactile 

maps of the breast. This, coupled with the practicality of such a system in clinical use, 

shall lead to the abandonment of this technology in favour of technologies capable of 

simultaneous elasticity measurement and mapping. 

Chapter 4 shall develop lesion localisation technology based on the fusion of IR 

cameras and tactile sensors. This technology shall be shown to be effective in both 

measuring the background elasticity of soft materials and producing tactile maps. Lesion 

tracking between cancer screening sessions is important for assessing malignancy and so 

accurate and patient specific localisation of a lesion, with transferable and time trackable 

location markers, is a must for any next generation screening and diagnosis technology. 

Chapter 5 shall explore the changes required to use the developed technology 

from Chapter 4 on live breast tissues and integration with commercial TI systems, 

specifically miniaturising the technology of Chapter 4 into a commercial footprint. This 

provides a working prototype system capable of measuring elasticity and spatially 

relating tactile images, which will lead on to recommendations for implementation in 

future works. These developments will raise the system technology readiness level (TRL) 
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from TRL1 to TRL4 (NASA, 2012). Engineering and supply problems during the course 

of the project limited the scale of integration and subsequent development to TRL5. This 

chapter also shows parametric testing of system performance vs simulated breast tissue 

and scanning conditions to validate this proof of concept system. In this trial the tactile 

mapping accuracy of the system, in terms of the reconstructed scanning path, is tested vs. 

material background elasticity and vs. the number of available tracking points. The 

measurement accuracy of the background elasticity is similarly tested vs. the true 

elasticity vs. the visual feature density. The results are compared against professional, 

commercially available, reference standards for analysis. 

Chapter 6 shall develop the system prototype further by investigating tactile 

sensor error sources applicable to this application and exploring their effects on 

measurements of tactile objects. This leads into an inverse error model being proposed 

and tested for key error sources. This provides a stable foundation for which to do 

detailed material testing in future works, and an expectation of performance when 

transferring between phantom testing and clinical trials. 

Finally, Chapter 7 shall conclude the thesis with a discussion on the efficacy of 

the developed systems in delivering the desired metrics, as well as a discussion on the 

practicality of such systems for use in the clinical environment. This will be followed up 

with recommendations for future work in this line of research. 
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Chapter 2  

Literature Review 

 

2.1. Introduction 

This chapter summarises the UK breast cancer screening pathway, with 

discussion on how tactile sensor systems fit into this pathway worldwide, 

acknowledging that TI is not current clinical practice in the UK. 

Following a detailed review of the clinical significance and performance of TI in 

breast cancer diagnostics, and a general overview of other breast cancer imaging 

modalities and devices, this chapter presents a review of clinical differential metrics for 

breast cancer diagnostics. This allows for a critique of the historical performance of TI 

in automated diagnosis, with comparison with automated detection from other 

modalities in a corresponding time frame. This analysis allows for the project scope to 

be defined, addressing limitations and opportunities presented in the critical review of TI, 

addressing gaps in the literature and commercial landscape towards the goal of 

developing the capabilities and reliability of TI in automated breast cancer diagnosis.  
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2.2. Clinical Breast Imaging Using Tactile Sensors 

2.2.1. Clinical Breast Cancer Screening in the UK 

Referring to Figure 2.1: A simplified flowchart of the current screening process 

derived from the UK National Institute for Health and Care Excellence (NICE) 

guidelines NG101 (NICE, 2018), and discussions with clinical professionals, surgeons, 

and oncologists; a patients view of the process from start to classification is shown The 

flowchart is an over-simplification of a complex and variable screening process 

implemented by clinicians following the NICE cancer referral pathways (NICE, 2020a), 

distilled down to the basic pathway for imaging technology that a patient or member of 

the public would see. Current breast cancer screening is split into 3 primary imaging 

steps, each increasing in both severity and invasiveness, of which the first step in the 

screening process is manual palpation performed in the clinical breast exam (CBE). The 

following steps of mammography (X-ray) and other additional imaging techniques are 

usually performed if there is not enough information for a differentiation, or as part of 

controlled screening in the case of mammography. Note that many technologies are not 

listed, as they are not commonly used for screening and early detection (NICE, 2018), 

and inclusion of all available technologies is not conducive to easily understandable 

diagrams (Public Health England, 2018). 
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Figure 2.1 - Breast cancer screening process in the UK. Progress to the next stage of the 

imaging process is based on whether there is adequate information from the current 

stage for discrimination of malignant/benign. Benign conditions would then be passed 

into regular treatment processes, malignant conditions would then be passed to 

oncology. The consultant decision phase is largely based on what is available at the 

local hospital, as many rural hospitals do not have CT equipment. 
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The rules or guidelines governing the process and the passage of patients through 

the process are complex and vary depending on patient parameters. For example, 

according to NICE guidelines NG12 (NICE, 2020b), a patient in the UK screening 

program aged 50-70 with an inversion or texture change in the nipple, or patients aged 

over 30 with an unexplained lump would receive priority referrals to the next screening 

stage within 2 weeks. Other patients with skin changes related to breast cancer, or aged 

30+ with lump in the axilla, may receive priority referrals. Patients aged <30 with an 

unexplained lump will not be given urgent referrals (within 2 weeks) to the next stage, 

unless exhibiting other symptoms on the skin or nipple (Public Health England, 2018). 

These rules make it difficult to relay the full process to the public in a simple diagram, 

without causing alarm, and so Figure 2.1 only shows the technological pathway, rather 

than the detailed process leading from one technology to another. The basic process for 

breast cancer screening, starting with the CBE at a GP surgery, is outlined below. 

CBE is the process of manually palpating the breast to detect hard or tender areas. 

Formal CBE is typically done by a general practitioner (GP) at a GP surgery and can be 

precipitated either through the UK breast cancer screening program for women aged 50-

71 or, more commonly, by women performing the self-breast exam at home. It is 

difficult to obtain accurate estimates for the voluntary screening program, or for use of 

self-breast exam (BSE), but it is well documented that people go to their GP when they 

exhibit 1 or more of the 5 indicators of breast conditions: A palpable lump which may be 

visible, a change in breast skin texture, a change in nipple appearance, nipple discharge, 

redness or rash around the nipple (Public Health England, 2018). 
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The purpose of the CBE is mainly to collect information for referral to the 

second stage, X-ray mammography, however it is often possible to differentiate benign 

conditions at this stage and recommend a regular treatment program for the condition. If 

there is not enough information at the CBE stage, which is common, or a differentiation 

can be made where the outcome is likely malignant, then the GP will make a referral for 

X-ray mammography (NICE, 2020a). Most patients in screening programs are sent 

directly for mammography due to the current low cost, approximately £150/exam, 

differential ability and sensitivity compared with CBE. Physicians will typically use risk 

to determine their recommendations for treatment or further testing, and so will nearly 

always refer the patient for mammography (>95%) from the CBE. If there is not enough 

information from mammography to differentiate the condition, then the patient will be 

invited back for more scans or assessments which will typically be selected based on the 

availability of local facilities such as: Ultrasound, Computer aided Tomography 

(CT/CAT), Surgical Biopsy, Contrast X-ray, and MRI. Benign conditions diagnosed 

from these methods will be referred to regular treatment programs and malignant 

conditions will be referred to oncology which will perform their own tests typically with 

MRI or CT. It is estimated that 1/25 patients will be invited back for further scans after 

X-ray mammography, due either to genuine conditions or from inconclusive results, 

with ¼ of these patients having genuine cancers (NHS, 2018). The screening process is 

fairly robust, with the false negative result rate estimated at 1/2500. The system may be 

oversensitive, or not specific enough in diagnosis, as 3/200 women screened every 3 

years from age 50-70 are diagnosed with cancer that would not have become life 

threatening. This oversensitivity results in patients receiving unnecessary treatment, 
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increasing the risk to the patient and the burden on the health system. However, as the 

primary purpose of the screening process is to detect cancers whether life threatening or 

not, this problem is low on the priority spectrum, particularly as it is not well understood 

whether the cancer will become life threatening later. The final determinant of breast 

cancer, and gold standard for diagnosis, is surgical biopsy and subsequent analysis by a 

pathologist. Mammography, and the other screening methods or diagnostic methods if 

instigated by symptoms, serve to sort critical patients for diagnosis via biopsy. Sending 

known benign conditions away for regular treatment reduces the number of patients 

subjected to unnecessary biopsies, which does have the risk of complications just like 

any other surgery, and so the use of screening and diagnostic imaging is important for 

reducing patient stress and healthcare burden. 

2.2.2. Issues in Clinical Reporting 

One of the biggest problems faced by overstretched physicians and GPs is the 

quality of reporting during the referral between CBE and X-ray mammography. The 

current process requires a form be filled out detailing the reasons for referral, where a 

typically concise statement would be ‘lump in left breast’. This is not so much a problem 

in facilities that have X-ray machines where the scan is performed/examined by the 

same physician within a short period of time, where the area of interest on the breast can 

be remembered. This becomes an issue when dealing with separate facilities, or separate 

practitioners, particularly if it is not immediately clear from the X-ray where a suspected 

condition may be on the breast. This results in many delays, with patients sent home, or 

repeated testing on a patient that is unnecessary. After X-ray, in later stages of the 
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process, this reporting is less of a problem as there are images and reporting schemes 

such as BI-RADS (American College of Radiology, 2013) that allow for quantisation, or 

discretisation, of subjective measurements. Modern NHS breast cancer referral forms, 

examples of which can be found in Appendix A, go a long way to alleviating the 

reporting issues experienced by physicians of the 1980s and 1990s as the forms typically 

include diagrams that assist with locating the lesion and various fields to provide 

descriptions from the CBE. These forms have been shown to reduce unnecessary 

referrals (Lefemine et al., 2012) when properly filled out. The improvement is limited by 

a lack of physician cooperation, with 25% of referrals still dictated or handwritten 

(Lefemine et al., 2012), and by a lack of widespread standardisation between NHS trusts. 

This is clear from the differences between the forms in Appendix A, where both the 

level of detail and length of the forms vary greatly between trusts in England. There are 

two primary limitations in these forms. Firstly, the information detailed is subjective and 

prone to errors and omissions. Secondly, the increasingly detailed forms developed in 

recent years take increasing amounts of time to complete, which has reduced the number 

of fully completed forms from 83% in 2005 to 58% in 2010 in a random audit (Lefemine 

et al., 2012). The most common omission in the audit was the differential diagnosis, 

indicating whether breast cancer was suspected, which could be reasonably described as 

a valuable piece of information. This could be down to subjectivity, or that the forms are 

still too cumbersome for accurate use. 

The problem of subjectivity is widely acknowledged and has led to the 

introduction of standardised forms for breast cancer referral, which in theory helps with 
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the reporting of issues, but not with the subjectivity in what is detected (Lefemine et al., 

2012). The reason for this comes down to physicians often describing breast conditions 

and breast size using fruit similes (Wellman, 1999), which is obviously not conducive to 

detail measurements of tissue properties for cancer diagnosis. It is these issues that 

handheld TI aimed to solve, and it was successful to a reasonable extent (Egorov et al., 

2009), but more remains to be done to allow TI to compete with mammography and 

other methods in diagnosis and become standard practice. To advance current clinical TI 

the system must be given the ability to view the whole breast similar to mammography 

(Woods et al., 2011), get a global view of the elasticity of the breast and variation 

therein, and be able to spatially locate lesions within the breast without subjectivity for 

later tracking, whilst maintaining the cost effectiveness of the system to a level at least 

that of mammography (Mandrik et al., 2019). The other way of improving cost 

effectiveness is to greatly reduce the costs of the systems by reducing complexity, rather 

than improving diagnostic capabilities, which is the strategy of more recent researchers 

(Broach et al., 2016).  

It is widely acknowledged that there is a balancing act to be done between the 

rigid bureaucracy of detailed forms, and the need for GPs to process patients quickly and 

keep up with ever increasing workloads. It is known that standardised forms are 

effective in reducing rejected referrals, and so the GPs and the public will benefit from 

any system implemented to facilitate easy form completion. This could come from either: 

automatic computer form completion, or from improved differential diagnosis ability to 

remove the subjectivity and fill out this complex form field. 
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2.2.3. General Breast Cancer Screening Globally 

Looking more generally at breast cancer screening, the rates for cancer deaths 

and screening by mammography vary drastically with geographic and political location 

globally. The research of (Sarvazyan et al., 2008) summarises this divide using data for 

2005 in Figure 2.2, where it is shown that ~80% of the female population aged 25-70 

live in less economically developed countries (LEDCs), constituting ~70% of global 

breast cancer deaths, whilst only having access to <10% of global mammograms  (Liang 

et al., 2003) when compared with more economically developed countries (MEDCs). 

This divide was found to still be relevant in recent times (Mandrik et al., 2019). This is 

directly related to the prevalence and cost of mammography in these economic areas. 

 

Figure 2.2 - Divide of mammography, breast cancer deaths, and population across 

geographic areas from (Sarvazyan et al., 2008) for 2005. The result shows clearly that 

the MEDCs have fewer deaths and more mammograms compared with LEDCs, 

correlating lower access to advanced diagnostic and screening techniques with higher 

fatality rates. 
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In MEDC areas, it is easy to simply opt for a mammogram as they are available 

and relatively inexpensive however in LEDC areas it is not feasible or often even 

possible to perform mammography as a default option. In these areas there is a much 

greater reliance on the CBE (Anderson et al., 2006). As such, there has been drives both 

commercially and in the literature to make breast cancer screening more affordable, or 

cost effective, in these economic areas by either reducing the cost of mammography or 

by developing new technologies to improve the diagnostic and differential capability of 

the CBE without the excessive cost of the X-ray mammogram. 

There are numerous alternative methods to mammography including: ultrasound, 

MRI, ultrasound/MRI elasticity imaging, biopsy, and tactile imaging, although none of 

these methods are direct replacements. Ultrasound and MRI are not feasible for mass 

screening in LEDCs, as these machines are rarer than X-ray machines, and it is both 

impractical and dangerous to biopsy everyone, so a remaining option is tactile imaging. 

Tactile imaging, applied to breast cancer screening has been projected to cost 5 

USD/exam in LEDCs and 50 USD/exam in MEDCs (Sarvazyan et al., 2008) (Sure Inc., 

US) when screening is performed by a physician’s assistant. This translates to a 

projected cost effectiveness of 162  USD/QALY compared with 1846 USD/QALY for 

film mammography in LEDCs (India) (Laxminarayan et al., 2006) (Mandrik et al., 

2019). This is only a projection, and there is not enough data from tactile imaging to 

form accurate cost effectiveness figures, as it is not part of standard screening processes 

in most countries; it presents a feel for current screening trajectory. Although much of 

the literature on diagnosis focuses on continuing to develop mammography, as that is 
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here to stay, there is growing attention being paid to developing cheaper and less 

invasive technologies, including tactile imaging (Sarvazyan and Egorov, 2012). 

The key point here is that a national screening program based on advanced 

technologies such as mammography or CT, though effective in MEDC areas, is not 

practical in LEDC areas where the majority of the global population resides. These 

populations require lower cost screening methods, more effective than simple CBE at 

differentiating benign and malignant conditions; Tactile Imaging being one such option 

(Wellman et al., 1999b) (Egorov et al., 2009) (Broach et al., 2016), although these are 

not yet considered to be standard practice. 

2.2.4. Tactile Imaging Use in Current Breast Screening 

Tactile imaging (TI) for breast cancer screening, sometimes referred to as breast 

mechanical imaging (BMI), mechanical imaging (MI),  differential stress imaging (DSI), 

or high resolution pressure elastography (HRPE); is a method of identifying, quantifying, 

and reporting breast conditions by measuring the apparent hardness of a breast lesion 

using tactile pressure sensors (Sarvazyan and Egorov, 2009). TI, on the screening 

flowchart in Figure 2.1, would take the place of CBE in developed countries where X-

ray mammography is the de-facto standard (Sarvazyan and Egorov, 2012) and is used 

instead of CBE and often in place of mammography in LEDCs, where available (Broach 

et al., 2016). It is important to note, for the sake of clarity, that TI is not used as part of 

the standard clinical screening/diagnostic process in any country except Mexico where 

the technology is being adopted. In the US and UK, TI is a commercial tool used in GP 

(equivalent) clinics for patient screening, replacing CBE where available, but still 
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requiring referral to a hospital upon a suspected detection, where the patient would then 

follow the countries national screening pathway as previously described. 

TI, in this case SureTouch™ (Sure Inc., US), is an FDA approved non-invasive 

breast elastography tool, used to quantify the sensation of touch and remove the 

subjectivity inherent in the CBE, improve the reporting quality during subsequent 

referrals whilst reducing the burden on the GP/physician. This has been shown reduce 

the rate of benign referrals of approximately 21% in clinical studies (Egorov et al., 2009), 

meaning the rate of unnecessary biopsies and X-rays are reduced, alleviating some of the 

burden on the healthcare system which is beneficial to the patient, where lower stress 

improves recovery times (Levkovich et al., 2015). 

A patient would attend a participating TI practice where a GP (or equivalent), or 

an orderly (US), would perform a tactile scan in place of CBE. The patient is laid in a 

supine position on an examination bed and the tactile imaging system, after calibration, 

is scanned gently over the breast surface including the armpit as shown in Figure 2.3. 

This process will highlight areas of higher ‘hardness’ than others that will then receive a 

second pass. The second pass images the area of interest in more detail, allowing for 

estimates to be made of the lesion shape and size as shown in Figure 2.4. 

The 12x16 capacitive pressure sensor array on SureTouch, compacted into a 

40mm x 50mm area, is capable of resolving multinodular lesion and estimate the size of 

a lesion with greater sensitivity than CBE or ultrasound (Wellman et al., 1999b), with 15 

times the spatial resolution of similar TI systems such as iBreastExam (UELifeSciences 

– IN).  



 

29 

 

 

Figure 2.3 - Tactile breast exam performed at GP equivalent surgery (US). The 

physician scans the breast using the tactile imaging system (SureTouch – Sure Inc., US) 

using gentle pressure. The tactile imaging system quantifies the sensation of the CBE. 

 

Figure 2.4 - Example of Tactile Images of suspicious breast conditions. Tactile imaging 

uses high spatial resolution to detect complex lesion shapes and differentiate between 

hard and soft features using differential stress on the image. The cross section of the 

lesion can also be determined. The lesion location is then indicated on the 2D 

topography plot (bottom right) for reporting. 
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On completion of the 15 minute scanning process, an output report is 

automatically generated as shown in Figure 2.5, similar to the referral forms in 

Appendix A. The report contains details of the patient, and separate outputs for each 

breast consisting of: A lesion location on the breast highlighted by a cursor point, a 

heatmap and stress plot of the lesion with load condition for inter scan comparison, a 

lesion size estimate, and a relative hardness estimate. This report is then analysed by the 

physician to determine the appropriate action, and will form the basis of a well 

structured referral note if required, providing the subsequent screening physician high 

quality information on the nature of the patients condition. This output report fills in all 

of the important fields in the NHS referral forms, but in a simple digital format. 

 

Figure 2.5 - SureTouch Output Report. The output report from the SureTouch tactile 

imaging system gives patient details, and separate findings for each breast. In this, a 

lesion position is indicated, with a relative hardness value, estimated size, and the exam 

load used for comparison between scans. The tactile image given for each breast is a 

differential stress image over a suspicious area of the breast. 
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There has been several attempts in academic literature to improve the abilities of 

TI, by creating large composite tactile maps of the whole breast using a scanner position 

tracking system (Wellman, 1999), creating tactile maps of the breast using tactile image 

mosaicking by tactile feature tracking (Egorov and Sarvazyan, 2008), and automatically 

differentiating benign and malignant conditions from tactile images (Egorov et al., 2009). 

These developments have not yet been implemented into current clinical TI systems. 

The first method is not implemented as it requires a >$100000 magnetic position sensor 

system, making the system not economically viable. The second is not implemented as 

there is no clinical requirement for such a tactile map in the current screening role of TI, 

to provide information for referral to mammography. Additionally, the tactile maps 

produced by this method are not registered to a fixed location on the breast, there is no 

identifying location metric other than the original SureTouch output report. The third 

method is not implemented as this would change the products FDA classification, and 

there have been insufficient studies done to determine the accuracy of such diagnostic 

methods on large populations. 

If TI is to be used in lieu of mammography however, particularly in LEDCs as 

mammography is well cemented into clinical procedure in MEDCs, then it must have 

the ability to differentiate between malignant and benign conditions without referral for 

mammography (or other methods), and output results with feature detail comparable to 

mammography. New methods of collating tactile data and evaluating diagnostic metrics 

must be developed for this to be successful and adopted in this use case. 
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2.3. Other Medical Applications of TI 

Traditional TI systems, that is capacitive sensor arrays, have been applied to 

other cancer screening applications such as prostate imaging and transvaginal pelvic 

floor imaging, there are many other applications, but these are the most relevant. As 

expected, these are common historic uses for manual palpation in clinical diagnosis. 

Developed in parallel with breast tactile imaging (Sarvazyan, 1997), the prostate and 

transvaginal imagers deployed similar tactile technology to the breast imaging system, 

but compacted into a smaller array for comfortable use as shown in Figure 2.6 and 

Figure 2.7, these are used to detect prostate cancer and pelvic organ prolapse (POP) 

respectively. 

The method of forming tactile images, and measuring tissue properties is similar 

for breast, prostate, and vaginal imaging, however a key difference is that prostate and 

vaginal systems are easily able to form compound tactile images of the full structure in a 

manner not dependent on the applied load. This is done using an insertion depth sensor 

and an orientation sensor that determines the depth and angle from the sphincter/opening 

to the tactile array. This allows the tactile array to be spatially located on the prostate or 

vaginal wall. This is an important distinction from breast tactile imaging, as this 

approach is not possible on the breast as there is no ‘opening’ for position to be 

measured with respect to. Additionally, the relatively constrained nature of the prostate 

in terms of size, shape, and location meant that tactile images can be fit to a pre-

generated model of the prostate for better visualisation. 
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Figure 2.6 - Prostate Mechanical Imaging using TI (Sarvazyan, 1998). The tactile array 

gives a ‘slice’ of the prostate, which are then mosaicked together using spatial relation 

information obtained from probe depth and orientation sensors on the probe handle. 

This is typically used for detection of prostate cancer. 

 

Figure 2.7 - Transvaginal Tactile Imaging (Egorov et al., 2010). Similar to the prostate 

imaging system, the tactile array gives a slice of the vagina wall, with a composite 

image being created from spatial relations obtained from insertion depth and probe 

orientation. This is typically used for detection of pelvic organ prolapse (POP). 
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The authors admit that this makes prostate imaging much simpler than breast 

imaging, mainly due to the hugely variable nature of breast sizes and shapes, as well as 

the pendulous nature of the organ making registration of tactile images onto an area of 

the breast difficult (Sarvazyan and Egorov, 2012).  

Tactile images of breast tissues have been mosaicked into larger tactile maps 

using additional sensors before, however these required major infrastructure and were 

reliant on the patient remaining still (Wellman, 1999) or were not well registered to 

static patient body structures (Egorov and Sarvazyan, 2008). 

The integration of additional simple sensors, such as the depth and orientation 

sensors, coupled with the relatively well constrained nature of the prostate and vagina 

wall has led to this technology being in active development to this day (Egorov et al., 

2019) (Brandt et al., 2020) through clinical product design and clinical trials. This 

indicates an emerging trend in tactile imaging, which is increasing the capabilities 

through integration with other sensor types. 
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2.4. Other Breast Tactile Imaging Systems 

2.4.1. Commercial Systems 

Another primary commercial breast screening tool using tactile imaging is the 

iBreastExam™ (UELifeSciences Inc., IND), shown in Figure 2.8. This device uses a 

4x4 array of micro-palpating piezo-resistive force sensors to measure hardness 

variations beneath the scanner. This has been shown to be effective in classifying 

malignant and benign conditions in clinical trials (Broach et al., 2016). The low spatial 

resolution of the tactile array makes this system unsuitable for detailed lesion 

characterisation like that of SureTouch™, however it is still effective at screening for 

lesions and its simplicity makes it ideal for low income countries like India where this 

product is commonly used in breast screening due to the low mammography availability. 

 

Figure 2.8 – iBreastExam™ device and graphical output (Broach et al., 2016). The low 

resolution array is effective at detecting tactile lumps, but cannot resolve lesion size of 

shape.  This is suitable for screening indications and not detailed lesion characterisation. 
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2.4.2. Academic Systems 

2.4.2.1. Mature Systems 

A mature system that has reached clinical trials in academia, but has not been 

introduced as a clinical product is the hyperspectral tactile imaging system (TIS) 

(Oleksyuk et al., 2016). This system uses a deformable waveguide to indirectly image 

tactile inclusions as shown in Figure 2.9. The elasticity and size of the tactile inclusion is 

determined from the rate of change of image size with respect to the applied load. This 

method has excellent resolution for convex inclusion geometries, but is limited by the 

stiffness of the waveguide in measurements of complex concave lesion shapes that static 

TI can measure. This method has been shown in clinical trials to have similar lesion 

classification accuracy as other TI systems, however this technology is still a long way 

off commercialisation due to lack of integrated product development from the authors. 

 

Figure 2.9 - Hyperspectral TIS device and graphical output (Oleksyuk et al., 2015). The 

deformation of a PDMS waveguide allows light to escape and reach the camera. The 

size and gradient of the image is related to the material elasticity and applied force. 
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2.4.2.2. Early Stage Systems 

An immature tactile sensor system that has not reached clinical trials is the opto-

mechanical tactile sensor (Ayyildiz, 2011) shown in Figure 2.10. This complicated 

system uses contour pins to couple surface stress to a deformable rubber membrane. The 

deformation of the membrane is detected using IR reflective sensors, with the intensity 

proportional to the applied stress, to produce a 10x10 tactile image of the material 

interaction. This system is interesting as the sensing elements are well isolated from the 

material under test, however the spatial resolution is limited by the stiffness of the 

rubber membrane similar to the hyperspectral TIS described previously. This system 

was shown to be effective at measuring lesion hardness and size in phantom trials, but 

has not advanced beyond this initial prototype and work in the literature. 

         

Figure 2.10 - Opto-Mechanical tactile sensor and graphical output (Ayyildiz, 2011). The 

applied stress on a tactile inclusion causes differential strain to actuate contour pins on 

the device. These pins deform a rubber diaphragm, which is detected using IR reflective 

sensors to produce a tactile image of the deformation. 
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2.5. Detail on Current Common Screening Technology 

2.5.1. Mammography by X-Ray  

X-Ray mammography is by far the most ubiquitous breast cancer screening 

method in current clinical practice. It regularly constitutes the front line of breast cancer 

screening programs worldwide. Although there are many different makes and models for 

mammography machines, one typical version is shown in Figure 2.11. The output image, 

also shown in Figure 2.11, is a 2D photograph of the internal density distribution of the 

breast, with lighter areas indicating areas of high density and thus X-Ray absorption. It 

is well known that density, and hardness, of breast tissue is highly correlated with 

histological diagnosis (Woods et al., 2011), and so X-ray mammography is well suited 

for detection of cancers. This technique has been consistently shown, since its 

conception in the early 20th century to today, to be effective in highlighting unpalpable 

cancers and differentiating malignant/benign conditions (Richard H. Gold et al., 1990) 

(Mandrik et al., 2019) as well as being useful in other medical and industrial fields. 

X-ray mammography uses low levels of ionizing radiation to image the breast, 

approximately 13% of natural annual background radiation, which does carry some risk 

to the patient, however it is widely acknowledged that this risk is minor (Public Health 

England, 2018). This risk, coupled with the need for a firm breast compression between 

rigid plates, makes traditional X-ray mammography an unpopular choice for many 

patients, despite its obvious selling point of detecting unpalpable cancers. 
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X-ray mammography can struggle to differentiate cancers in naturally dense 

breast tissue, where the contrast between dense cancerous tissue and the background is 

not well defined. Additionally, fluidic lesions such as cysts cannot be easily identified on 

mammography and so further tests using other screening techniques such as ultrasound 

may be required (Public Health England, 2018). 2D planar mammography views all 

breast material stacked together, and so cannot easily be used to locate a lesion in 3D 

space without multiple views, which also hides cancers beneath other dense tissues. 

Despite these issues, X-Ray mammography remains the most common screening method 

in the world with 126 million mammograms performed annually worldwide (Sarvazyan 

et al., 2008) due to its effectiveness, prevalence, and low cost (Mandrik et al., 2019). 

                       

Figure 2.11 – X-ray Mammography (left) and Output Image (right) (CDC, 2020). The 

breast is flattened, often uncomfortably, and photographed using X-Rays. The output 

image shows a 2D representation of the 3D tissue density distribution within the breast. 
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2.5.2. Ultrasound Imaging 

Ultrasonic mammography, or sonography, is a breast cancer imaging modality 

based on ultrasound where high frequency ‘ultrasonic’ sound waves are directed into the 

breast, and an image is formed from the reflections. Areas with differing elasticities and 

viscosities affect the local speed of sound, allowing for tissues to be differentiated 

effectively as shown in Figure 2.12. This method uses sound waves that are inaudible 

and is non-invasive, and so there are no known clinical risks associated with external 

ultrasonic imaging. 

Traditional sonograms take a 2D ‘slice’ view through the breast tissue, and so 

can resolve objects hidden behind other objects, as shown in Figure 2.12. This is in 

contrast with X-ray mammography, which takes a whole breast image but does not 

resolve stacked objects, as sonograms resolve stacked objects but are limited in their 

field of view to tissue directly below the probe. More advanced machines can form 3D 

views, either using complex scan probes, or using superposition of sequential 2D slices, 

however these are less commonplace in breast cancer screening as they are in other 

fields such as imaging unborn babies in the womb. 

Ultrasound, due to its relative comfort and low risk compared with X-ray 

mammography, is a popular method amongst patients, however it is mainly used in 

characterisation of lesions identified during mammography, to investigate suspicious 

areas for differentiation, or on patients with naturally dense breast tissue (Sarvazyan et 

al., 2008). This is largely due to the labour-intensive nature of imaging the whole breast, 

limiting its usefulness in a large-scale screening role. 
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The scanning method used in sonography, where a probe is gently pressed onto 

the breast surface and scanned over the breast using a coupling gel to reduce friction, as 

well as to improve ultrasonic coupling, is very similar to how TI is used. There is a high 

degree of similarity between TI, from Figure 2.3 and sonography, from Figure 2.12, 

which helps conceptualise the use case of each. Other forms of sonography, particularly 

transvaginal sonography, share similarities with other applications of TI in clinical use. 

The use of ultrasound in screening is limited, particularly as there is little 

literature on the use of ultrasound as an adjunct to mammography, with some studies 

showing its use in screening leading to higher false positives than X-ray mammography 

(Lee et al., 2019). However, it is a straightforward and simple characterisation method 

for pre-identified lesions, similar to MRI but with greatly lower imaging cost. 

                     

Figure 2.12 - Ultrasonic Breast Imaging (left) (BHI Houston, 2020) and Output Image 

(right). The scanner contacts a small area of the breast and images a 2D ‘slice’ of the 

breast using phased array ultrasound, where the y axis of the output image represents 

depth into the breast. Pressure is light and friction is reduced with coupling gel. 
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Medical ultrasound is a broad and rapidly expanding field in the literature, with 

applications ranging from targeted drug delivery (Frazier et al., 2019) to 3D 

visualisation of a foetus, even focussing on breast cancer imaging it is impossible to do 

the field full justice in this thesis. Although ultrasound is not common in current 

screening, its use in the clinical environment generally is widespread (Barr et al., 2015) 

and regularly used in clinical laboratory research on tumours (Elyas et al., 2017) and 

skin variation in response to tumours (Coutts et al., 2016), as well as general material 

characterisation. 

Ultrasound is perhaps the most direct competitor to TI in terms of material 

characterisation and lesion measurement, and has been trialled competitively early on in 

the development of TI (Wellman et al., 1999b). TI was shown to be superior in terms of 

in-vivo lesion size estimation with mean absolute errors (MAE) 3 times less than for 

ultrasound in a limited clinical trial. TI at this time produced an output similar to the 

young’s modulus image from supersonic shear imaging (Cao et al., 2013). This result 

led to further development of TI, described previously in this thesis, as this was 

compelling at the time. Lesion size estimation studies using TI (Egorov and Sarvazyan, 

2008) and ultrasound (Brusseau et al., 2013) have been conducted since the early work 

of Wellman, however there has not been a repeat study directly comparing current TI 

and ultrasound in a like-for-like trial. Going forward in this thesis the assumption will be 

that TI is superior to ultrasound in lesion characterisation, in applicable fields, with the 

understanding that further comparative study is required to accurately determine the 

place of current TI with respect to current state-of-the-art ultrasound imaging. 
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2.5.3. Ultrasound based Elastography 

Ultrasound elastography, or sonoelastography, is an application of ultrasonic 

imaging where complex wavemodes are used to non-invasively ‘agitate’ the tissues of 

the breast, where the resultant microscopic motion of the tissues can be measured and 

translated into the elasticity to the material. There are two main types: strain 

elastography, and shear wave elastography (Youk et al., 2017). Similar to simple 

ultrasound imaging, it is impossible to cover this topic fully, and is included here to 

highlight methods in general breast imaging. 

Strain elastography is the simplest of the two, utilising the compressive force of 

the scanner to palpate the tissues which, through the actions of the Youngs modulus 

(stiffness) of the material, will exhibit a strain in the material which can be measured by 

comparing characteristics of the ultrasonic beam before and after compression. This 

method does not return the absolute elasticity of the tissues, but a relative measurement 

compared with the surrounding tissue as the applied stress is unknown, and so is useful 

for detecting tissue anomalies but does not quantitatively characterise them in terms of 

elasticity. This method has a dependence on the contact mechanics between the probe 

and tissue, requiring uniform stress distributions during scans, and is not used to 

diagnose breast conditions by itself, instead being used to support other ultrasonic 

imaging techniques (Dietrich et al., 2017). The method is being superseded in clinical 

development of breast cancer imaging and diagnosis by shear wave elastography (SWE). 

Shear wave elastography is an advanced ultrasonic imaging technique that 

utilises high frequency ultrasound to micropalpate the tissues under investigation. This 
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process induces shear waves in the tissues, the speed of which can be measured by high 

speed detectors (Park and Kang, 2021). As the speed of shear waves, and the speed of 

sound, through a material is related to the elasticity of the material, this method is able to 

quantify the elasticity of the material in question (Bian et al., 2021). The results from 

SWE have been consistently shown to have high inter and intra-observer repeatability, 

overcoming the limitations of strain elastography (Tian et al., 2017) (Jia et al., 2021).  

The link between elasticity measurements from SWE and the differentiation of 

malignant and benign conditions is well known in the literature (Yang et al., 2020), so 

much of the research in the recent literature focusses on sensitivities and error control 

(Chino and Takahashi, 2018), and evaluation of the boundary conditions of a lesion (Liu 

et al., 2019) which is known to be related to lesion malignancy (Verma et al., 2010). 

Similarly, the literature has introduced new parameters available from SWE other than 

the elasticity and lesion boundary characteristics such as the mass characteristic 

frequency which has been shown to improve differentiation when utilised with other 

metrics from SWE (Gu et al., 2021). One of the key points that SWE offers clinicians is 

the ability to characterise supporting tissues such as axillary lymph nodes, the status of 

which is important in management and prognosis of high likelihood malignancies 

(BIRADS 4 and 5) (Elmesidy et al., 2021). 

SWE offers clinicians valuable information on known diagnostic metrics such as 

lymphatic status, lesion elasticity, and boundary characteristics, but it also provides the 

potential to offer more metrics than are currently used in clinical diagnosis. This makes 

SWE a rapidly developing field, both technically and clinically. 
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2.5.4. Computer Aided Tomography (CT) 

Computer aided tomography, abbreviated to CAT or CT, scans are an advanced 

form of X-ray mammography designed to form a 3D view of the internal breast density 

distribution. This requires a large and expensive machine, and so would not be done as 

part of initial screening, except where a patient attends a properly equipped hospital or 

has multiple palpable lesions. The patient lies in the prone position, face down, allowing 

the breast under examinations to hang freely in a cavity in the machine, shown in Figure 

2.13. A mobile X-ray scanner then revolves around the breast taking multiple images at 

different heights and angles, allowing for the creation of a 3D image of the breast. This 

technology carries the same patient risks as traditional X-ray mammography in terms of 

radiation exposure (Public Health England, 2018) and so is not commonly used in 

screening. The output metrics are identical to that of mammography, but with the added 

ability to estimate size and shape in 3D space, view hidden structures, and glean 

invasiveness information from localisation. 

           

Figure 2.13 - CT Breast Imaging (left) and Output Image (right) (UC Davies Health, 

2020). The patient is supine, with the breast hanging freely in a cavity about which a 

mobile X-ray scanner revolves. This produces a 3D breast density image, viewable in 

2D slices. This allows for viewing of stacked structures invisible to traditional 2D X-ray. 
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2.5.5. Magnetic Resonance Imaging (MRI) 

Magnetic resonance imaging, MRI, is an advanced general purpose body 

imaging technique, applied to breast cancer imaging. This is the most expensive of the 

imaging modalities noted in this literature review, coming in at approximately 8 times 

that of screening X-ray mammography from average US Medicare data from 2005, 

however it is the most detailed imaging technique in terms of resolution and tissue 

differentiation. 

This technique is vastly different in its method of operation to other methods 

detailed in that it operates by exposing the patient to a targeted oscillating magnetic field, 

which polarises the spin of hydrogen atoms in the tissue molecules. The relaxation of the 

hydrogen atoms to their original state releases a radio signal that can be detected and 

triangulated its emission location in the breast. Materials with different hydrogen 

concentrations, such as lipids (fats) and water react differently to the nuclear excitation 

and so can be differentiated. The physics involved is complex and outside the scope of 

this review, but from the point of view of the patient, the requirements are that they 

remain stationary within the MRI machine, shown in Figure 2.14 for the duration of the 

scan and may need a sedative to do this.  

Although there is little risk of harm from NMRI itself, with the ‘nuclear’ part 

removed to form MRI to better public perception, the machine is loud and 

claustrophobic (American Cancer Society, 2019a) and the scan times are long. This, 

coupled with its high false positive rate when compared with X-ray mammography 

(Kuhl et al., 2018), means that MRI is not recommended for screening by itself. That 
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being said, MRI can detect cancers not visible to X-ray mammography, as shown in 

Figure 2.15, although it also detects things that are not cancers causing the costs of 

unnecessary biopsies and tests outweighing the benefits of the clear images in a 

screening context. MRI is not used preoperatively on patients, except those at very high 

risk of breast cancer, and always in conjunction with mammography (NICE, 2018), it is 

also not suitable for patients with metallic implants. MRI is particularly useful in 

characterising cancers already identified by other methods for size, shape, and location. 

This is important for operative intervention, particularly with the namesake MRI guided 

breast biopsy, as well as for continued monitoring of post-operative recovery to ensure 

that the cancer was successfully extracted. The accurate position information obtained 

from MRI, and other methods combined is crucial for reducing collateral damage to 

peripheral tissues during surgical extraction of a cancerous lesion. 

   

Figure 2.14 - MRI Breast Imaging (left) (Cleveland Clinic, 2019) with Output Image 

(right)  (Robert J Miller, 2020a). The patient must remain perfectly still during the MRI 

scan, and may be given a sedative to help with this. The scan produces 2D slices of the 

breast, and other tissues, that are sequenced to form a 3D image for estimating size, 

shape, and location of the lesion. This displays both breasts at once. 
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2.5.6. Comparative Note on Different Use Cases 

This section of the literature review has provided some general background 

information on the most common screening/breast imaging technologies in current 

clinical practice. There are of course other technologies (American Cancer Society, 

2019b) such as scintimammography, a form of nuclear imaging, and positron emission 

mammography, a form of PET scan, to name a few however it exceeds the scope of this 

review to detail each one. This leads to a justification of the screening flowchart 

presented in Figure 2.1, as a simplification of a complex web of ‘what ifs’ and ‘it 

depends’ conditions for the use of each technology. As it is largely unimportant how 

certain imaging techniques work for this review, it is important to understand what is 

gleaned from each one for the purpose of developing novel technology to replicate the 

diagnostic/screening capability of existing systems. 

It should be clear that X-ray mammography is the defined standard technique for 

screening and cancer diagnosis, as it is able to image tissue density in a simple and 

efficient manner. This success is largely based on its ability to image the full breast in 

one scan, making X-ray the regular choice over other methods such as ultrasound in 

most cases. Additionally, there is an important distinction between a mass screening tool 

and a diagnostic tool. X-ray mammography is an excellent screening tool for early 

detection; however, diagnosis often requires more advanced imaging and tissue 

differentiation methods. From this, a new screening tool would need to be able to image 

the full breast either directly as with X-ray, or compositely as with MRI. However, a 

diagnostic tool only needs to survey a pre-identified suspicious site like with ultrasound. 
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With respect to the theme of this thesis, reducing the false positive rate and thus 

increasing the positive predictive value of a screening/diagnostic system is important in 

improving the cost effectiveness of that system or process. From the examples of MRI 

vs. CT/X-ray (Robert J Miller, 2020b), highlighted in Figure 2.15, there is clearly a 

balancing act to be played with when it comes to a suitable sensitivity for large scale 

screening and sufficient specificity to keep the false positive rate at a manageable level. 

From this, the goal of any proposed/developed system should not be to simply increase 

the sensitivity of the screening process, but to simultaneously improve the specificity of 

the system to keep both the false positive and false negative rates low through proper use 

of diagnostic metrics (Kuhl et al., 2018). This reduces the rate of unnecessary 

procedures (reducing patient stress), and the number of missed cancers respectively. 

 

Figure 2.15 - Comparison of MRI and CT images of palpable lesions (Robert J Miller, 

2020b). These were taken on a patient with known cancer measured at 5.1cm after 

mastectomy. CT does not show this clearly, in contrast to MRI, although the mass was 

flagged as ‘suspicious’ during screening. 
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2.6. Metrics for Automated Diagnosis 

Before any decision or diagnosis can be made, it is vital to understand the 

information, or metrics, that are used to make a decision. In breast cancer diagnostics the 

metrics for diagnostics are features of a suspicious lesion and surrounding tissues, as 

well as risk factors relating to the patient although the value of many of these are not 

well documented in the literature. 

One of the most valuable metrics for breast cancer diagnostics is the relative 

density of a lesion compared with background tissue. Lesion density/hardness can come 

from a variety of sources depending on the screening methods available. The most 

common of these is the mammographic breast density, indicative of the proportion of 

breast fat (Woods et al., 2011), which has been standardised in recent years to use the 

breast imaging reporting and data system (BIRADS) (American College of Radiology, 

2013). The breast and lesion densities can also come from manual palpation, although 

this is difficult to quantise (C.D Haagensen, 1986), ultrasound, and increasingly 

commonly tactile imaging (Wellman et al., 1999b). 

As Haagensen points out, the lesion size and shape are other important metrics 

when examining for breast cancer although it is still noted that these are difficult to 

quantise using manual palpation. More advanced screening methods such as 

mammography, ultrasound, and tactile imaging can provide this information as 

presented by Wellman et al. These metrics are expanded upon by defining the 

importance of acutance, that is the nature of the lesion boundary conditions, and its 
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relation to malignancy (Rangayyan et al., 1997). The authors presented the observation 

that benign tumours generally are well defined with sharp boundaries between them and 

the surrounding tissues, as opposed to malignant tumours which are generally blended 

with the surrounding tissues due to the tumours need for nutrients and blood flow. 

The discussion was furthered by showing that 4 discrete measures of shape – 

Round, oval, lobulated, and irregular; with 5 classes of acutance – circumscribed, micro-

lobulated, obscured, ill defined, and spiculated; can be used for the classification of 

malignancy or benign lesions (Verma et al., 2010). The authors presented a thorough 

literature review, summarising nearly a decade of advancements in the classification of 

breast lesions. This improves the confidence in the statement of the metrics used for 

classification. 

The summary of benign breast diseases (Guray and Sahin, 2006) is a useful tool 

for the classification activities presented by other authors. They present the idea that 

because benign lesions are far more common than malignant lesions in western countries, 

it is important that physicians recognise benign lesions confidently to reduce the need 

for surgical biopsy. This will reduce the unnecessary surgical biopsy rate, reducing the 

suffering and rate of complications amongst screening patients. 

Being able to accurately diagnose benign conditions is as important as diagnosing 

malignant condition during the screening process, and the detailed description of benign 

lesion features presented can lead to accurate subclass classification along the lines of 

that predicted by Egorov and Sarvazyan (Egorov et al., 2009). In this paper, the 

importance of lesion mobility is discussed, as well as the difficulties in measuring lesion 
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mobility. The authors show that malignant lesions typically exhibit restricted mobility 

due to lesion bonding with local tissues and blood vessels. This indicates that a highly 

mobile lesion is likely to be benign and based on their research will be easier to detect 

than a restricted lesion. 

The primary metrics presented above that are used for clinical diagnostics are: 

• Breast density 

• Lesion density and elasticity 

• Growth / fluctuation rate 

• Lesion size, shape, and boundary conditions including blood invasion 

• Lesion mobility 

There are other secondary metrics that are publicly considered to be ‘risk factors’ 

but are not considered to be diagnostic features in the literature. These include: 

• Previous history 

• Patient weight / body fat percentage 

• Ethnicity 

• Breast or other related pain 

• Whether the patient smokes or uses narcotics 

• Early beginning to periods 

• Late menopause 

Information on risk factors can be found everywhere, with varying levels of 

credibility, with some being stuck in the public consciousness despite limited academic 

acceptance. The anecdotal difference between causality and correlation often plays a 

role here. The risk factors presented are from the British charity ‘Breast Cancer Care’ 

(2015), a popular and informative institution in the UK. Combining these secondary 
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metrics with primary diagnostic metrics obtained through tactile imaging or other means 

can lead to a better estimation of the confidence in a classification of lesion malignancy. 

Certainly, the secondary metrics should not be used directly for a diagnosis, but they can 

be used to indicate the reliability of a diagnosis. The example is a diagnosis of benign 

from primary metrics, combined with an absence of risk factors, leads to a higher 

confidence in the diagnosis. Similarly, a suspicious condition diagnosis may be initially 

weighted towards malignancy if the patient exhibits several risk factors. 

One of the important but understated determinants of breast cancer, or 

specifically differentiation of breast cancer types, is location within the breast. A 

diagram of the breast is shown in Figure 2.16. The location of a lesion within the breast 

largely governs the type of cancer that it can be, if it is indeed cancer. 

 

Figure 2.16 - Anatomical representation of the breast. Reproduced from: (Memorial 

Sloan Kettering Cancer Centre, 2021). The distribution of tissues within the breast is 

different for each person, and largely dictates the types of cancers that are possible, 

similarly providing markers for disease that can be detected. 
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Specific cancers are unique to certain locations in the breast, for example lobular 

carcinomas can only occur in lobules (milk producing tissues) and ductal carcinoma in 

situ can only occur in ducts (milk pipes), similarly fibroadenomas and fat necrosis are 

benign conditions that occur on fibrous and fatty tissues respectively. Knowledge of 

lymph node locations is also important, as swollen lymph nodes in conjunction with 

other symptoms is an indicator of cancer. This means that a breast scan should include 

the axillary region, where swollen (in this case stiffened) lymph nodes would be 

important to diagnosis. In addition to this, a full breast view gives the relation between 

lymphatic tissue and other suspicious tissues, which can help differentiate one from 

another. For lymphatic and cancerous tissues, stiffness is highly correlated with the 

severity of the conditions. 

2.6.1. Elasticity and Disease 

It is well known, and almost anecdotal, that the stiffness of tissue, or rather a 

change in stiffness from normal, is related to problems of multiple kinds including: 

cancer, inflammation, gaseous build-up, scarring, muscle injury, and many more. The 

ubiquitous lump that commonly denotes cancer in many parts of the body, is detectable 

through manual palpation only because its stiffness differs from that of the surrounding 

tissue, and so clearly stiffness is related to the condition. The properties of healthy and 

diseased breast tissue have been characterised by many authors, each focussing on 

specific areas such as temperature dependence, strain rate dependence, and strain 

dependence of the Youngs modulus of various tissues. There is agreement on the general 

ranges of certain tissues, despite the differences in measurement methods between 
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authors and time periods, with ‘normal’ breast tissue consisting of fatty tissue and 

fibrous glandular tissue being 3-22kPa (9-15kPa typical) and 3-17kPa (6-17kPa typical) 

respectively, although some estimates went to the extreme of 0.2-40kPa each. ‘Diseased’ 

tissues have markedly higher elasticities, but also more variable, depending on the 

condition in question, with more severe conditions having higher elasticities. (Samani et 

al., 2007) (Matsumura et al., 2009) (Rzymski et al., 2011) (Yang et al., 2020). To mark 

this point, conditions such as Ductal Carcinoma in Situ could have elasticities in the 

range of 3-2100kPa depending on the loading conditions. 

The key issue with making diagnostic decisions based on elasticity alone is that 

there is such variability, and subsequent overlap in the elasticity ranges of different 

conditions, and even between healthy and diseased tissues in the literature. This problem 

is compounded by variability even within an individual, with a typical heterogeneity of 

6kPa being quoted for normal breast tissue (Matsumura et al., 2009). This makes it 

impossible to reliably say ‘this object is 19kPa, it must be DCIS (for example)’, because 

it very much depends on the loading conditions and the patient in question. Unless the 

elasticity of a suspicious tissue is far above that of normal tissue, >50kPa, then 

determining the nature of the condition would require comparison with that patients 

normal breast elasticity. The example is for a patient with 4kPa typical breasts, with 

6kPa heterogeneity, a measurement of 30kPa could be considered abnormal and worth 

of investigation, although this difference would not be detectable by hand. 

As yet, there is no way to diagnose a condition based on elasticity alone, unless it 

is extreme, with other metrics being required for diagnosis as stated in this thesis. 
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However elasticity is related to breast cancer diagnosis despite the difficulty in the 

clinical literature in pinning specific numbers on it, as it is commonly used to detect and 

assess severity prior to detailed diagnosis via biopsy. This does not stop researchers 

developing elasticity measurement devices for breast cancer detection, as there may be a 

method for directly utilising the information found in the future, to pin down the relation 

between elasticity and diagnosis definitively. Pinning a number down on the lesion 

elasticity also helps track the lesion growth over time, all valiant reasons for continuing 

with elastography research, and provides justification for pursuing elastography research. 

2.7. Automated Decision Making 

Academics and professionals alike have attempted to remove some of the 

subjectivity and human error from the diagnosis process at all stages using machine 

learning, from initial screening to diagnosis and clinical management. By digitally 

quantifying lesion and patient parameters, machine learning methods can be applied to 

the data for either: simple benign/malignant screening, or complex sub-class diagnosis 

(Nahid and Kong, 2017) 

There is a growing popularity for neural networks and deep learning in academic 

medical imaging, with several high profile papers published in Nature over the last few 

years (Shen et al., 2019) (Hu et al., 2020). Despite the success of such systems on 

recognised datasets such as Wisconsin Breast Cancer Diagnosis dataset (WBCD) and the 

Digital Database for Screening Mammography (DDSM), there is very limited 

commercial or clinical adoption of such systems. This is partly due to the maturity of the 
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stated systems, but even on neural network systems that are decades old (Karabatak and 

Ince, 2009) there is limited commercial adoption. This is because, as Rudin (Rudin, 

2019) points out, neural networks lack the accountability and human interpretability of 

simpler methods such as Bayesian classifiers and logistic regression; shown to have 

comparable results with neural networks in many cases (Ng and Jordan, 2002). 

The point that Rudin makes in regards to medical decision making is: when a 

physician or registrar is asked why a patient was recommended a mastectomy, they 

cannot just say ‘because the machine said so’; they must have a clear decision pathway 

such as a decision tree, or a probability table, or some combination of the two (Jiang et 

al., 2012) (de Campos et al., 2016). This would be more in line with how decision 

making is made by physicians currently, where a list of indicators and risk factors are 

compiled and assessed to determine the proper course of action. 

Naturally, there are some cancer indicators that are more important than others in 

identifying malignant conditions or differentiating between conditions for proper 

treatment. By accepting that the results from the machine learning authors in the 

literature are correct and comparable, because they are tested on the same WBCD 

datasets; the diagnostic metrics used, or prioritised, in each method can be tabulated to 

determine the most significant indicators overall. This is shown in Table 2.1, where a 

range of machine learning techniques from different authors have been compared. The 

authors and works listed in the table have been selected to give a broad range of 

differing techniques applied to the same datasets, as well as the authors have explicitly 

stated in their works what metrics they have used or prioritised with explanations. 
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 It is important to note that the works are not current, but are presented to 

compare the performance of historic TI with other automated analysis works of the 

period as ML applied to TI from ~2010 is not going to be competitive with a 2020 

neural network. 

Table 2.1 - Diagnostic metrics used in automated breast cancer diagnosis studies using 

machine learning. The metrics/features are shown for several prominent lesion classifier 

architectures, using similar datasets for comparison. The datasets and stated accuracy 

results for each author is shown. 

  

COMPARISON OF METRICS USED FOR AUTOMATED BREAST CANCER DIAGNOSIS 
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In the table several classifications of lesion metrics have been grouped together, 

such as: lesion density and hardness, and margin adhesion and boundary acutance; this is 

because they are similar concepts and are often determined using the same methods. On 

the other hand, some metrics have been separated, such as: lesion shape, and lesion size; 

this allows for a better comparison and takes into account the authors notes on the matter. 

The works presented in the table cover a range of machine learning techniques, 

from the deterministic support vector machines (SVM) (Akay, 2009) (Zheng et al., 2014) 

to the abstracted neural networks (NN) (Bhardwaj and Tiwari, 2015) (Onan, 2015). 

These works highlighted that although the accuracies of each method were 

approximately equivalent (>95%), the diagnostic metrics used and prioritised changed 

between each one. This allows for the priority metrics to be determined. 

When ranked, the priority diagnostic metrics used in machine learning in breast 

cancer care, based on use rates from the selected works, are: 

1. Lesion shape, Lesion density and hardness. 

2. Margin adhesion and acutance. 

3. Lesion size, patient age. 

4. Other reporting metrics from BI-RADS, including mammography image 

features, and lesion location w.r.t. blood vessels. 

5. Lesion texture. 

6. Cell size. 

7. Other metrics and indicators, including subtlety value. 
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The tactile imaging with automated decision outcomes trials (Egorov et al., 2009) 

(Tasoulis et al., 2014) are included to link back to tactile imaging; they do not use the 

standard databases for classifier testing, instead using tactile images taken independently. 

The slightly lower accuracies of the tactile imaging Bayesian classifiers (NB) compared 

with a similar Bayesian approach applied to the WCBD (Balamurugan et al., 2011) is 

correlated with the differences in the diagnostic metrics used. 

2.8. Summary of Current Tactile Imaging Capabilities 

2.8.1. Commercial Implementations of Tactile Imaging 

Current commercial and clinically used implementations of TI for breast cancer 

imaging, based mainly on SureTouch™ and iBreastExam™, have the following 

capabilities, though to differing degrees: 

1. Both systems output a differential stress based quantified ‘hardness’ 

value for a suspected lesion. 

2. Both systems can display and record suspected lesion location on the 

breast using operator input, with similar GUIs to allow reporting to 

secondary screening methods. 

3. SureTouch can accurately determine lesion shape and size, and resolve 

multinodular and clustered lesions, iBreastExam lacks the spatial 

resolution to do this to the same degree (Wellman et al., 1999b). 

4. Both systems can interpolate between sensor elements for artificially 

increased spatial resolution (Egorov and Sarvazyan, 2008). 
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5. Both systems have been shown to be effective in their current screening 

role compared with CBE (Egorov et al., 2009) (Broach et al., 2016). 

Each system caters to a different market, with SureTouch (the more advanced 

and expensive system) in operation in typically MEDC areas, and iBreastExam (less 

advanced, but considerably cheaper) serves markets in typically LEDC areas. Each 

system is effective in their own environments, compared with CBE, as is their purpose. 

2.8.2. Problems in Current Commercial System Use 

TI has been shown consistently to be effective in screening, in either commercial 

implementation, when compared with CBE. Additionally, the well documented reports 

generated by TI systems addresses the clinical problem faced by GPs when referring 

patients for further screening. TI is not without its limitations, however, both in its 

current screening role and more generally in developing a standalone diagnostic tool. 

The ‘hardness’ estimate from commercial TI systems is relative to the 

background and is measured using differential stress between the lesion and the 

surrounding tissue as described in Equation 2.1. EL and E0 are the elasticities of the 

lesion and background tissue respectively, PL and P0 are the measured pressure values 

over the lesion and background tissue respectively. This method allows for an indication 

of the elasticity of the lesion without quantifying a true value for it, limiting the systems 

future expansion into diagnosis which requires direct measurements of the lesion. 

 
𝐸𝐿

𝐸0
 ∝  

𝑃𝐿

𝑃0
 (2.1) 
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The lesion location estimate provided in the TI system report is entirely 

subjective and is fully reliant on the operator manually selecting the correct region on 

the breast. The breast template given in the report, in Figure 2.5, is also an ‘idealised’ 

representation of a typical breast in a specific orientation and so may not fit well for 

women with irregular or uneven breasts, a large degree of ptosis, very large or very 

small breasts. This limits the effectiveness of the system as a reporting and referral tool, 

although this is a minor issue due to the tactile image itself being the important 

differentiator, as there is well known operator subjectivity in estimation of locations on 

the breast (Hansson et al., 2014) that can be removed (or reduced) by automated 

methods (Quieregatto et al., 2014). The bigger issue is that without accurate lesion 

position estimates, particularly w.r.t. other breast features such as blood vessels and 

ducts, the diagnostic capability of TI is limited as implied in Table 2.1. TI is not able to 

resolve blood vessels and other soft features and lesions simultaneously, due to the 

vastly different scales, and so TI cannot estimate invasiveness by itself. 

2.8.3. Academic Capabilities not in Commercial Use 

The discussed problems with TI have been prevalent since the 1990’s, when TI 

took its current form as a handheld non-invasive imaging system (Sarvazyan, 1997). 

Incidentally, before this point tactile imaging was very similar to mammography in that 

it compressed the whole breast at once and measured resultant stress distributions in a 

process called ‘mammobarography’ (Gentle, 1988), and so did not have the same 

localisation issue as the more modern handheld implementations. Authors in the 

literature have attempted to address the problems in elasticity measurement, lesion 
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localisation, and lesion circumspection, amongst others over the years. These 

capabilities are summarised below. 

The work of (Wellman, 1999) initially addressed the problem of elasticity using 

complex empirical mechanical modelling of the pressure distribution from the tactile 

array. Though the method was effective in limited trials, the approach showed high 

sensitivity to lesion size and depth, the latter of which could not be well separated from 

the effect of elasticity on the pressure distribution.  

This work additionally implemented a tactile mapping system based on tracking 

the scanner in absolute space using magnetic trackers and superimposing the tactile 

images onto a best fit plane of the breast. This was effective, but highly impractical due 

to the high cost of the position trackers, and that the patient position is not tracked over 

time, meaning the patient must remain perfectly still for the mapping process to be 

effective. 

The elasticity estimation of the embedded lesion was further simplified by 

(Egorov and Sarvazyan, 2008), where an approximation of the background elasticity was 

made using the pressure distribution of ‘normal’ tissue, allowing for lesion elasticity to 

be determined by differential measurement. This was effective, and much simpler than 

earlier works, however it had one fundamental limitation in that the method required a 

tactile image of normal tissue and a separate image with a lesion in order to work. Firstly, 

this assumes that the tissue in the ‘normal’ image is the same as that surrounding the 

lesion, which is known to be highly variable depending on where the image is taken 

(Woods et al., 2011) and thus unreliable in practice. Secondly, there is no spatial 
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information on the relationship between the ‘normal’ tissue and the lesion image, unless 

they are taken in a single continuous scan as there is no ‘global’ tactile map.  

The authors were able to produce a ‘local’ tactile map of tactile images based on 

the correlation between adjacent tactile images allowing for spatial registration of 

lesions with respect to each other. This represented a great leap forward when compared 

with earlier work, as it removed the need for the complex and expensive 3D magnetic 

tracking system, relying only on the tactile images themselves. The limitation of this 

approach was that there was still no information, from the TI hardware, indicating where 

on the breast the tactile map is located, except where the tactile map covers a feature on 

the breast that is visible and is palpable such as the nipple. This limited the usefulness of 

the tactile map as it needed to be registered onto the breast, using the nipple, manually. 

The same authors later added additional functionality without addressing the 

earlier limitations (Egorov et al., 2009), although they are acknowledged in the 

experimental limitations (Sarvazyan and Egorov, 2009). This functionality included an 

estimate of lesion mobility within the breast tissue, accomplished be observing the 

change in apparent lesion size and position over time using the curvature of the tactile 

array. The authors did not go into detail on the efficacy of this method, as it was used as 

a feature for lesion classification which was the true topic of the paper. 

This point represents the terminus of research on tactile imaging, specifically 

pure tactile imaging based on an array of pressure sensors. Later works by these authors 

and others have either been reviews on tactile imaging in general (Sarvazyan and Egorov, 

2012) or independent repeat experiments of the lesion classification study (Tasoulis et 
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al., 2014) and did not add anything new. To summarise, the current academic capability 

in breast tactile imaging is:  

• Lesion elasticity can be determined if a suitable estimate of background 

elasticity can be made. (Egorov and Sarvazyan, 2008), 

• Large tactile maps can be made from sequential spatially overlapping 

tactile images, with global registration on the breast in some cases. 

(Egorov and Sarvazyan, 2008), 

• Size and shape can be easily measured from individual or composite 

tactile images (Wellman et al., 1999b), 

• Lesion acutance and boundary margin can be estimated from tactile 

image pressure gradient, though this has not been separately published 

(Sarvazyan and Egorov, 2012), 

• Lesion mobility can be determined for observing lesion changes over 

time (a few seconds) on tactile images (Egorov et al., 2009). 

The difference between what is possible in the literature and what is 

implemented in commercial systems comes down to 2 key points: Firstly, the academic 

implementations often have subtle limitations, are tested in limited situations not 

representative of real use or are dependent on special processes that cannot be 

guaranteed in general use. Secondly, the clinical demand in most MEDCs where this 

research is typically carried out is not for a diagnostic system, as mammography is the 

de-facto method, but for a screening method and reporting system. There was no real 

commercial need to implement such techniques, however this represents a limitation in 
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research scope as it has been shown that the requirements in LEDCs, where 

mammography is less common, is different (Sarvazyan et al., 2008) (Broach et al., 2016). 

Thus, there is a global demand for breast cancer screening and diagnostic tools, and thus 

the implementation of these advanced academic technologies in commercial systems. 

2.9. Priority Areas and Justification of Scope 

From this literature review the scope of the project can be defined, or rather 

justified from the project introduction in Chapter 1. It is important to note that the 

project direction, and scope, is defined by a combination of: The strategic direction of 

the supporting industrial partners, the needs of the clinical professionals, the availability 

of resources for the project (both manpower and materials), and the personal interests of 

the researcher. 

The iBreastExam is marketed as an advanced screening system for low resource 

environments, particularly based in India and APAC areas, where health services lack 

resources to purchase the advanced features of SureTouch that have been shown to be 

valuable in early detection and classification. From this, it can be argued that there is 

two important directions for the development of general tactile imaging in breast cancer 

diagnosis and screening: Improve the ‘cost effectiveness’ of advanced systems like 

SureTouch, where the benefits of improved diagnostic capability outweighs the financial 

cost in the eyes of national or local health services in LEDCs; or improve the technology 

on less advanced systems that are more financially viable in these areas with clever 

engineering so as to not significantly increase their cost whilst maximising their 
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screening potential. The latter is also equivalent to simplifying and reducing the cost of 

advanced systems to make them affordable to LEDC customers.  

As this project is supported by the manufacturer of SureTouch, and the 

manufacturer of the tactile sensor, in that their sensors are available for use on this 

project, that shall set the direction for the project. The company strategic direction, at the 

start of the project, was to improve the diagnostic capability of the system for later 

automated diagnosis research as such the project shall focus on upgrading the 

capabilities of tactile imaging to deliver key diagnostic metrics identified during this 

review. These metrics and objectives are: 

• Elasticity (E0) of the background tissue, allowing the lesion elasticity to 

be determined from Equation 2.1 by differential measurement. 

• Compound tactile maps, giving spatial information on the lesion 

surroundings and view of the whole breast. 

• Automatically localised lesion positions, allowing for better reporting 

free from subjectivity, and inference of lesion invasiveness. 

These features have been identified as the most important, through literature 

review and discussion with professionals in order to improve the current capabilities in 

screening and to develop the diagnostic capability of TI. 

Throughout this research, and into the future, careful consideration will be made 

on developing ‘appropriate technology’. Based on the demographics and economic 

conditions relating to breast cancer screening, Figure 2.2, appropriate technology serves 
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the purpose without gratuitous expense or unnecessary features. The anecdotal example 

of this is: it is fine to make a proof of concept with multi-thousand-pound metrology 

equipment, but this will not be viable in the target market and will limit impact, so the 

methods/technology/algorithms must be similarly shown to work on simpler (more 

appropriate) technology and sensor systems. Additionally, in order to increase the 

commercial viability and subsequent impact of the research, the technology developed 

must be compatible and complementary to current commercial tactile imaging. The 

fewer modifications required to current commercial systems will increase the speed at 

which research innovations are adopted in industry. 
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Chapter 3 

Inertial Guidance in Elasticity Imaging 

 

3.1. Introduction 

This chapter explores the development of a handheld breast elasticity mapping 

technology based on inertial guidance, an interesting, low cost, and commonplace 

technology found in all manner of devices, that can be used to support TI and enhance 

its functionality leading into further clinical testing of TI with the developed technology. 

The chapter presents the design of custom system hardware, using a single tactile 

element as a proof of concept, featuring a detailed method of operation highlighting 

understanding of displacement measurement using inertial dead reckoning and its 

limitations, with testing on calibrated elastic phantom material. The device proves 

effective in controlled laboratory conditions with MAE <4% over a range of material 

stiffnesses, however the lateral mapping capability is found to be unsuited for measuring 

translation across the phantom breast surface. The chapter is split into 2 parts detailing 

elasticity and translational measurement using the technology respectively. The chapter 

concludes with a discussion on the significance of the results, concluding that this 

technology not be developed further in the thesis due to practicality issues on real tissues. 
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3.2. Tactile Elasticity Measurement Systems 

This chapter addresses the problems of estimating the background elasticity of 

breast tissue and spatially relating tactile images simultaneously through sensor fusion 

between tactile sensors and inertial/orientation sensors, applications of which is a 

developing area of research in the literature. 

Given that absolute elasticity measurement, and material characterisation, can be 

generalised to a force variation with respect to a compressive, or tensive, displacement 

variation, the conventional methods of applying and measuring displacement are applied 

to portable handheld systems in the literature and in industry. These devices can 

typically be broken down into two main components: a force or pressure transducer, and 

a sensor for measuring resultant strain. In some cases, this can be the other way around, 

where a strain is applied and resultant stress is measured, but the effect is the same.  

Typical load transducers include strain-gauge based load cells, capacitive sensors, 

or even the humble spring; the bread and butter of many undergraduate engineering 

projects, though each present their own unique design challenges. Measurement of 

resultant or applied strain is more varied in terms of approaches, with a wide assortment 

of both simple and advanced technologies being employed. Simple methods have 

included: linear potentiometers, linearly variable differential transformers (LVDT), fixed 

actuation using mechanical cams, and piezo crystal deformation. 

Optical and hyperspectral camera based techniques have been developed (Sahu 

et al., 2014) measuring transverse stretching of a lesion for an applied load but, as the 



 

71 

 

camera presents clinical privacy issues this method may face pushback from clinicians 

and patients when moved from academia to industry. 

More traditional methods of measuring elasticity using mechanically driven 

palpating elements (Broach et al., 2016) show more promise in terms of public 

acceptance however, the limitation of the 4x4 mobile tactile element array reduces the 

available spatial resolution compared with the fixed element implementation (Egorov 

and Sarvazyan, 2008) with a 12x16 fixed element array in a similar area. This means 

that though an absolute elasticity value is obtained, size and shape information is lost 

which are each important diagnostic metrics (Rangayyan et al., 1997). 

With these issues in mind, this chapter develops a method of measuring tissue 

compression, without cameras or palpation guide rails, that can be applied to fixed 

element tactile arrays, characterising elasticity whilst maintaining the spatial resolution 

they enjoy. To that end, this chapter presents a novel sensor displacement measurement 

technique based on the double integration of compression acceleration, utilising  

Magnetic, Angular Rate and Gravity (MARG) sensors.  
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3.3. Inertial/Orientation Sensors in Medical Applications 

The measurement of displacement using MARG sensors has been attempted by 

several eminent authors to varying degrees of success. The primary concern addressed in 

the literature is the mitigation of the quadratic drift typical of double integration, 

required to determine displacement from acceleration. The second is the accurate 

estimation of sensor orientation, required to separate the motion acceleration vector from 

the static freefall acceleration (gravity) vector. 

 Rahni and Yahya in 2007 showed that the orientation estimate obtained using a 

simple 6 degree of freedom (DOF) integrated accelerometer and gyroscope, or inertial 

measurement unit (IMU), was insufficient to reliably measure displacement. This was 

due to the limitations in response time and noise rejection from early complementary 

filters and Kalman filters, compounded with the reliance on a drifting gyroscope alone to 

measure orientation. From this point onward a 9 DOF, that is 3 DOF accelerometers 

with aligned 3 DOF gyroscopes and magnetometers, MARG is typically used for 

displacement measurements, as the orientation estimate has been repeatedly shown to be 

drift free and resilient to motion noise (Valenti et al., 2015) (Fan et al., 2017) 

(Madgwick et al., 2011). 

Without an accurate estimation of orientation, it is difficult to differentiate the 

acceleration due to gravity and the acceleration due to motion, but with accurate 

orientation information the gravity vector can be separated from the measured 

acceleration vector to yield a linear acceleration vector related to motion.  
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Mitigation of the quadratic drift from double integration is ultimately achieved 

using expert knowledge concerning the type of motion being measured, namely: 

knowledge on when either velocity or displacement is equal to a known value.  

In the field of human gait tracking, knowing that between steps the velocity of 

the sensor is zero, the integral drift can be determined and corrected for, allowing for 

reduction in displacement error shown by Yun et al., 2007, where an uncorrected 

displacement error of 33.3% can be reduced to 0.3% by applying the velocity 

constrained drift correction. 

Similarly, in the application of Cardiac motion measurement, Krogh et al., 2017, 

shows that by knowing that the motion of the cardiac wall is cyclic, the displacement 

between cycles is zero and thus the displacement drift can be measured and corrected for. 

This type of assumption is more difficult to correct for, in terms of accuracy, relative to 

the velocity drift compensation as the error source is not restricted to the acceleration 

integral alone (Neto et al., 2013). 

With these examples in mind, this chapter will introduce a novel 9 DOF MARG 

displacement algorithm tailored for the specific motion type experienced by an indenter 

insertion and lateral translation of a tactile probe across the breast as shown in Figure 3.1. 

Concisely, for compression this is the situation where, during an insertion cycle, the 

velocity, when displacement is maximal, is zero. This means that both displacement and 

velocity-based compensation methods are utilized simultaneously, and a full description 

of this situation and the algorithm is presented in the following sections and applied to 

elasticity measurement of soft tissues through sensor fusion with tactile sensors.  
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The basic operation of a tactile mapping system is recalled in Figure 3.1, that 

allows visualisation of the two distinct motions being measured, and why they are 

needed. A compressive motion into the tissue generates a reaction force from the 

material under test, varying throughout the material depending on the elasticity of the 

material at a particular point. This elasticity can be measured by measuring the load as a 

function of the compression depth using a tactile sensor and a depth measurement, from 

the proposed MARG algorithm in this case. These individual tactile measurements can 

then be spatially referenced by tracking motion in lateral directions to form a tactile map. 

 

Figure 3.1 - Definition of probe motions and basic concepts in TI. The movement of the 

probe into the breast tissue along the Z axis compresses the material and generates a 

reaction force from Hooke’s law in a linear case that can be measured using tactile 

sensors. Lateral motion in x and y axes are used to spatially related tactile 

measurements to form a large composite tactile map as shown. 
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3.4. Application to Elasticity Measurement 

3.4.1. Displacement in the Context of Elasticity 

The proposed device measures the force vs. displacement relationship of an 

unknown soft material, with the proposed MARG integration algorithm providing the 

displacement measurement. The displacement of interest is the displacement covered by 

the device from the point of first contact to the point of maximum force, as this will be 

the point of maximum displacement into the test material during the compression phase. 

Figure 3.2 shows the four principal phases of device operation, the device pictured was 

fabricated for this purpose as detailed in the following sections. The approach period is 

where the device approaches the test sample linearly along the principal measurement 

axis, and the compression period contains the displacement required for material 

characterisation, from the first indenter contact to the point of maximum force. 

 

Figure 3.2 - Graphical representation of device usage, indicating the direction of 

compression and the need to apply the device perpendicular to the surface of the test 

material. 
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3.4.2. Hardware Description 

The proposed algorithm is implemented in hardware using a SingleTact™ 15mm 

45N rated capacitive pressure sensor (Pressure Profile Systems, US-CA), with <1% 

repeatability and <2% linearity, is coupled between a 15mm diameter hemispherical 

aluminium indenter and a 15mm diameter aluminium probe shaft. The sensor is fixed to 

the indenter tip and shaft using 3M 300LSE double sided tape (3M Company, US-MN). 

A 38mm diameter acrylic guard is used to protect the sensor from excessive load by 

decoupling the excess load, when depth is greater than 7.5mm, from the sensor and 

transferring it directly to the shaft. An ergonomic handle is applied to the end of the 

probe shaft, in which the MARG sensor and interfacing microcontroller are housed. The 

MARG sensor used is a BNO055 (Robert Bosch GmbH, DE), connected to an 

ATMega32U4 microcontroller (Microchip Technology Inc., US-AZ) running at 16 MHz. 

These sensors are commercially available and communicate via I2C. They each 

implement proprietary filters to output their respective variables. The constructed device 

is shown in Figure 3.3. 

Power is supplied via the Universal Serial Bus (USB) port, also used to interface 

the measurement system to an external computer running the proposed algorithm. Data 

is requested from the BNO055 and SingleTact™ sensors at 100 Hz and transmitted to 

the computer immediately without buffering. The SingleTact™ interface board converts 

the capacitance change of the sensor into force and performs internal lowpass filtering. 

The BNO055 MARG sensor is configured to output the absolute orientation quaternion 
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as well as the linear acceleration vector. Its internal fusion algorithm filters the effect of 

intermittent magnetic fields with the gyroscopes. 

Although the handle shape is largely unimportant, what is important is its effect 

on any elasticity measurement. The elasticity, or stiffness, of the handle and sensor must 

be very high with respect to the materials under test such that the elasticity of the handle 

does not significantly corrupt the elasticity measurement of the material under test. The 

deformation of the pressure sensor and adhesive tape is very low (<20μm) at the rated 

load, and thus its elasticity is very high (>500MPa), w.r.t. the material under test (in the 

order of 10-100kPa as described later) which will be deforming ~10mm. 

 

Figure 3.3 - Handheld elastometer hardware implementation. The BNO055 sensor has 

an axis aligned parallel to the normal axis of the SingleTact™ force sensor. The axes 

are radially offset, but this is unimportant to the design and does not affect performance. 
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3.4.3. Theory of Operation 

3.4.3.1. Elasticity Specific Algorithm 

The proposed sensor algorithm is shown in Figure 3.4. A 9 DOF MARG 

orientation fusion algorithm based on a gradient descent method (Madgwick et al., 2011) 

is implemented using the BNO055. This fuses the magnetic field (B), angular rotation 

rate (�̇�), and the acceleration vector (a), to determine the orientation of the sensor with 

respect to the gravity vector. This allows for the gravity vector to be separated from the 

acceleration vector to produce the linear acceleration vector associated with the expected 

linear motion.  

The force (F) measurement is used to trigger and stop the linear acceleration 

integrator. The force measurement is not subject to the free space vibration noise that the 

accelerometer is subject to, and so a sharp rise in force is indicative of the start of 

material compression. Similarly, the turning point of the force measurement indicates 

material relaxation, and thus triggers the integrator to stop. The accumulated 

acceleration data between the start and stop periods will then only be associated with the 

compression of the material. 

The force and linear acceleration data for one measurement cycle is shown in 

Figure 3.5, highlighting the meaning of the start/stop conditions. Acceleration magnitude 

is too small during the relaxation period to reliably measure the material relaxation. The 

approach period, where the sensors are travelling towards the test material through air, 

will result in an unknown initial contact velocity. The acceleration data corresponding to 
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the compression period is integrated to yield velocity (V). The initial velocity parameter 

is estimated by knowing that the end velocity (Vstop) is ideally zero, the estimated 

velocity can then be offset using this Vstop value to give the true velocity during the 

compression cycle (Vcorrected). 

The error in Vcorrected is estimated and eliminated by examining the integral 

displacement (S) with the knowledge that the derivative of displacement, S, must be zero 

at the end of the compression cycle. Should there be an offset error on Vcorrected, the 

subsequent displacement gradient after integration, which is Verror, can be removed from 

Vcorrected and integrated to yield the final displacement estimate (x) that is free from 

integral drift caused by the estimation of initial velocity. 

The displacement vs. time, in the direction of the force sensor principal axis, is 

then used in conjunction with the force vs. time relationship to determine the material 

characteristic curve denoted by force vs. displacement. This relationship is then 

combined with the sensing area and material dimensions to determine the requisite stress 

vs. strain relationship, characteristic of individual material samples. The material 

characteristic curve, the force vs. displacement relationship describing bulk material 

elastic properties, is generated using a quadratic best fit line to the measured force vs. 

displacement data from the MARG based device. The quadratic is suitable for 

representing Hookean and neo-Hookean materials, typically modelled using exponential 

functions, and provides some resilience to noise (Jerison and Burgiel, 2010). 
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3.4.3.2. Calculation of Elasticity from Hemispherical Geometry 

For a hemispherical indenter with radius, r, the cross-sectional contact area, A, is 

a nonlinear function of the displacement depth, x, as shown in equation 3.1. 

Thus, from the general equation for elasticity shown in equation 3.2, the final 

equation for elasticity using a hemispherical indenter is formed in equation 3.3, which 

considers the contact area changes in the estimation of applied stress. In this case the 

original size of the sample, L, is required and known. In (3.3), the term E(x) is used to 

allow for conditions where E is not a constant, and is a function of x. 

 

 

3.4.3.3. Hardware Limit Considerations 

As a result of the sensor guard, force measurements at compression depths 

greater than 7.5mm do not follow the expected Hookean or neo-Hookean response as the 

applied load is no longer being correctly coupled into the sensor and therefore will 

produce erratic results beyond this point as shown in Figure 3.6. Results with depths 

greater than 7.5mm are discounted from the calculation of the quadratic best fit line and 

𝐴 =  𝜋(2𝑟𝑥 −  𝑥2) 
(3.1) 

 

𝐸 =
𝐹

𝐴⁄

∆𝑥
𝐿⁄

 (3.2) 

𝐸(𝑥) =

𝐹(𝑥)
𝜋(2𝑟𝑥 − 𝑥2) ⁄

𝑥
𝐿⁄

 (3.3) 
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estimation material characteristic curve. The decoupling effect of the sensor guard 

manifests as a plateau, followed be a sharp spike as the probe compresses the material to 

the point where the backing dominates the signal. 

 

Figure 3.4 - MARG sensor algorithm flow diagram. Both velocity and displacement 

compensation methods are used to estimate the indenter compression depth. Force and 

displacement are plotted against each other. Orientation is output to assist with valid 

measurement criteria. 
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Figure 3.5 - Graphical representation of integrator start and stop conditions showing 

force and acceleration signals for one full measurement cycle. The acceleration on the 

advancement period will result in the compression beginning with unknown initial 

velocity. 

 

Figure 3.6 - Example of the sensor guard invalidating measurements at depths > 7.5mm. 

The invalid measurement stems from the change in force vs. displacement direction and 

rapid change in gradient. 
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3.4.3.4. Valid Measurement Criteria 

Data cleansing is performed in two stages: pre-processing raw data based, and 

post-processing calculated data based. 

Data pre-process cleansing involves immediately rejecting compression data that 

has a peak acceleration vector component parallel to the principal axis less than 10m/s2, 

approximately freefall. At values below this threshold, quantisation in time and 

quantisation in acceleration compound to produce unreliable displacement 

measurements. The maximum acceptable acceleration is 160m/s2, about 8g, to avoid 

saturating the accelerometer. Additionally, data where the displacement vector direction 

during compression deviates from the principal axis by more than 5° is immediately 

rejected. Beyond this point, the capacitive pressure transducer is experiencing a shear 

component that it is not designed for. Ideally this constraint would be 0°, but as this is a 

manually operated device some deviation is inevitable, and 5° keeps the cosine error 

within 0.5%. Data post-process cleansing removes force, F, vs. displacement, x, best fit 

curves that do not conform to Hookean or neo-Hookean models that typically describe 

biological tissues. Such models can be approximated, over a limited range, by a 

quadratic in the form of equation 3.4 as it is known that although biological tissues 

typically exhibit exponential responses (Wellman et al., 1999a), exponentials can be 

approximated over a limited range by a quadratic (Jerison and Burgiel, 2010). 

 

𝐹(𝑥) = 𝑎𝑥2 + 𝑏𝑥 − 𝑐 , {𝑎 𝑏 𝑐} ≥ 0  (3.4) 
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The implications of this are that viscoelastic materials will not be considered, as 

the test materials can be considered to be neo-Hookean or Hookean. A graphical 

representation of the data processing measurement rejection conditions is shown in 

Figure 3.7. In this situation, any solution that conforms to (3.4), has a direction vector 

within 5° of the principal measurement axes, and an initial impact acceleration greater 

than 10m/s2 shall be considered in the calculation of the mean response. 

 

Figure 3.7 - Representations of data rejection situations: a) Acceleration magnitude 

threshold of 10m/s2. b) Compression angle deviation threshold of 5°, valid solutions 

within the cone. c) Equation form as Hookean or neo-Hookean as in (3.4). 
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3.4.4. Test Methodology 

3.4.4.1. Sample Materials 

The device is designed to compress the material under test in a linear direction, 

parallel to the pressure sensor principal axis. The device is pressed into the test material 

in a fashion akin to a gentle prod, repetitively, in order to be able to generate a range of 

force vs. displacement solutions whose mean will converge on the true value as the 

repetitions increase. These force vs. displacement solutions, in themselves are the 

material stiffness, (k), can then be used to calculate the material elasticity, (E). 

Applying the MARG sensor and pressure sensor to elasticity measurements 

requires soft materials representative of breast tissue to test the system. The test 

materials used in this trial were made from Ecoflex™, 000-35, 00-10, and 00-30 rated 

Polydimethylsiloxane (PDMS) two-part elastomer (Smooth-on, Inc., US-PA) with 

differing A:B mixture ratios and additive thinning agents, Silicone Thinner™ (Smooth-

on, Inc., US-PA) to give a range of materials that can approximate human tissues. These 

materials are listed in Table 3.1. The silicone elastomer samples were cast into uniform 

cylindrical billets with a diameter of 38mm and a height, L, of 20mm. 

3.4.4.2. Test Strategy 

Validation of the calculated characteristic material curve for each material 

sample is performed by comparing the response from the MARG and pressure sensor 

system with the response from an Instron® 3342 universal testing machine (Instron 

Engineering Corp., UK), fitted with a 2519-102 (50N) loadcell. This is a common 
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validation method for elasticity measurement techniques (Ozdemir et al., 2018) (Ettelaei 

et al., 2019) (Matsumura et al., 2009). The Instron® 3342 has a stated accuracy of 0.5% 

and compresses the sample using the same 7.5mm hemispherical indenter as the 

handheld MARG based system. Compression range is restricted to 5mm, or 25% strain, 

rather than the full 7.5mm, or 37.5% strain, as at high strains, ε > 0.33, thin materials 

cannot be relied upon to exhibit bulk properties (Egorov et al., 2008). Similarly the load 

rate is set to 17mm/s, representative of the average load rate of the handheld probe.  

Repeat measurements, for each sample, from the Instron®, and the MARG and 

pressure sensor system are performed, and mean values are used to compare the material 

characterisation ability of each method. The spread of results, from the repeat 

measurements, are presented to show the accuracy of any single measurement and 

compared to show the reliability of the MARG based system vs. the Instron® standard. 

Control of the average loading rate was done manually by rejecting data where the time 

taken to reach the 7.5mm plateau region is outside the range 0.4-0.5s. This keeps values 

representative and comparable  

3.4.5. Results 

The results of sequential compressions of 10 silicone samples by the MARG 

based system and the Instron® standard are shown in Table 3.1. The elasticities for each 

material are calculated using the linear region of (3.3) and are logged as the mean 

response with the interexperimental variability indicated separately as outsider range. 

The mean error in the MARG based estimation of elasticity is taken as the total error 

between the mean elasticity estimations from the Instron® using 4 trials per sample and 
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MARG using 10 trials per sample. These results are presented in graphical form in 

Figure 3.8 which shows the samples were well spaced over the range of 5kPa – 100kPa.  

The results show that the MARG based elasticity estimate successfully tracks the 

ground truth from the Instron® test machine, and that the mean error and 

intraexperimental ranges are sufficiently small as to allow one material to be 

differentiated from another even when there is a greater than 2kPa change between 

materials. The differentiation breaks down on sample 4, which cannot be distinguished 

from sample 3 based on MARG elasticity estimate alone, though the Instron® shows 

they are slightly different. With many malignant tissues often having elasticities of 1:100 

(Wellman et al., 1999a) when compared with healthy tissue, differentiating within 2kPa 

is likely not to be a problem in practice. 

 

Figure 3.8 - Representation of full experimental results, showing the range of elasticities 

covered, the relative spread of each measurement and the agreement between the MARG 

system and Instron. The samples have been ranked for clarity, no correlation between 

samples is implied. 
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Table 3.1 - Material compositions with measured elasticity. Elasticity is taken as the 

mean of repeated cycles, with spread indicated. 
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3.4.5.1. MARG Based System Performance Analysis 

From the results in Table 3.1 the sensitivity of the MARG based system to errors 

borne from elasticity related effects of the material under test is shown in Figure 3.9. 

Additionally, the total intraexperimental scatter, for 10 repeated MARG trials per sample, 

is shown in Figure 3.10. These graphs are required to characterise the response of the 

MARG based system over its operational range.   

 

Figure 3.9 - Systemic Error Vs. Measured Elasticity, Left) Total Error Vs. Elasticity, 

showing a very weak correlation. Right) Error Magnitude Vs. Elasticity, showing a 

stronger correlation, but still weak. 

 

Figure 3.10 - Intraexperimental scatter Vs. Elasticity, Left) Spread as a percentage of 

measured Elasticity showing a weak negative correlation. Right) Spread magnitude, 

showing a very strong positive correlation. 
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The results of repeatibility testing on sample 3, chosen at random, is shown in 

Figure 3.11. It can be seen that utilising a 10 compression cycle measurement regime 

rather than a 6 cycle regime significantly reduces the overall estimation spread. This is 

expected as statistical outliers are easier to identify with higher population numbers. 

Additionally, it is shown that 3 repeated 10 cycle measurements produce 

excellent repeatability over the full compression range. This provides good confidence 

in the measurement technique as we are able to achieve repeatability on the raw force vs. 

displacement response even before statistical outlier rejection is applied. This single 

sample repeatibility is typical of the global system repeatibility and, when mean 

responses are considered, results in mean repeatability within 1.5%. 

 

Figure 3.11 - Comparison between 6 compressions per test and 10, showing overall 

scatter decreases with compression number, and multiple sequential tests with constant 

compression numbers yield repeatable interexperimental results within 1.5%. 
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3.4.6. Results Discussion 

The better than 4% measurement accuracy of the proposed system, shown in 

Table 3.1 and Figure 3.8 is achieved by taking the mean response of 10 repeated 

compression cycles and comparing this with the mean response of the Instron®. This is 

appropriate, as even the Instron® uses internal averaging, but the Instron® can achieve 

this in one compression. If any single compression cycle were taken as being 

representative of the material under test the accuracy would be considerably worse, up to 

50% as indicated in Figure 3.11. Additionally, if fewer compression cycles are taken, 

say 6 for example, outliers cannot be easily identified and so the accuracy of any single 

compression used to calculate the mean response will also be up to 50%. However, by 

taking 10 cycles, outliers can be identified and rejected from the mean calculation 

resulting in the error of any single compression used to calculate the mean typically 

being between 5% and 10% as shown in Figure 3.10. 

If any single full measurement of a tissue, defined as 10 compression cycles, is 

used to characterise a tissue then the accuracy becomes better than 4% when compared 

with the Instron®. Using a higher number of cycles, say 30 does not significantly 

improve the accuracy compared with going from 6 to 10 cycles. In order to facilitate a 

timely measurement, 10 cycles are used for each measurement as this gives acceptable 

accuracy in a reasonable timeframe (<10s). This balances the response time and 

accuracy, a common problem in medical device design. 
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3.4.7. Error Sources and Limitations 

There are 2 primary sources of error in the proposed system. The first is error 

arising from the measurement of applied stress. One of the key requirements of this 

technique is that the probe compresses normally to the surface and have a direction 

vector within 5° of the sensor axes. This angle is used as an inexperienced operator can 

be expected to achieve a successful compression 95% of the time. Ideally this would be 

0°, but people cannot move linearly without guidance due to the hinging nature of the 

elbow. Consequently, if the angle is not 0° the stress measurement will not correlate 

with the strain measurement but, as the angle is low, the shear force is low. The parasitic 

effects of the capacitive sensor in contact with biological tissues is not a significant 

source of error as the sensors are fully shielded. Figure 3.12 shows the effect of touching 

the sensor on the noise floor of the force measurement, where the noise can be 

characterised as Gaussian white noise and so can be mitigated in the mean filtering 

process. The effect of the temperature coefficient, <0.2%/°C, is negligible, particularly 

on the test data where the temperature was carefully controlled. 

The second is error arising from the measurement of strain. As this is done by the 

double integration of acceleration, this is certainly the dominant source of error, despite 

the effect of the MARG fusion algorithm in reducing the effect of integral drift. The 

measurement of strain is most affected by vibration, as the direction is filtered using 

magnetometers and gyroscopes, but the strain is only determined by the acceleration, as 

such the measurement of strain is resistant to intermittent magnetic field variation, 

though this is difficult to validate in practice without special test equipment.  
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Figure 3.12 shows the validation of the displacement measurement vs. a Leica® 

AT403 Absolute Tracking system (Hexagon Metrology Ltd. UK) with accuracy ±15μm 

over 120 manual repetitions on sample 3. These were at a range of depths between 8mm 

and 15mm. This shows the effect of the valid measurement criteria on error reduction. 

The increase in elasticity spread magnitude vs. elasticity, shown in Figure 3.10, suggests 

that the vibration gets worse as the materials stiffen. This is expected as the probe 

compresses the material harder, the stability of the hand reduces and so shakes the 

sensor. This results in variation in the strain measurement by constructive or destructive 

addition of the acceleration vectors although it has been shown through the results that 

this variation, when controlled using tactile sensor fusion, can produce acceptable mean 

errors comparable with a static soft tissue elastometer (Egorov et al., 2008). 

 

Figure 3.12 - Error and repeatability plots, Left) Force sensor noise does not noticeably 

increase near biological tissues, so is immune to parasitic effects. Right) Comparison of 

MARG displacement vs. Leica Tracker, showing that the overall error is reduced by 

applying the valid measurement criteria. 
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3.4.8. Range Compared to Typical Breast Tissues 

As the proposed system is capable of measuring elasticity in the range 9kPa to 

90kPa with accuracy within 4%, up to 115kPa based on the tactile sensor rating, it is 

possible to characterise the elasticity of a broad range of breast tissues directly including 

several malignant conditions such as Phyllodes Tumours and Papilloma (Samani et al., 

2007). Given the tactile sensors can by operated up to 2 times their rating with 

recalibration, the range increases to 250kPa. This allows for measurements of ex-vivo 

samples of malignant tissues such as Lobular Carcinoma and Fibroadenoma at ε < 0.1. 

The intended future application of this system is as a support method for larger 

tactile imaging systems, where this method would be used to measure the background 

breast elasticity, allowing for characterisation of in-vivo lesions by differential 

measurement (Egorov and Sarvazyan, 2008). Consequently the system would be 

typically used on normal tissue and soft benign tissues (Guray and Sahin, 2006), with 

elasticities of approximately 10kPa and 88kPa for fatty tissue and glandular tissues 

respectively. This is within the characterised operational range of the proposed system.  

The major limitation of this type of system in measuring real breast tissues is the 

assumption of elasticity, and subsequent omission of viscoelastic analysis amongst other 

things. The practicality of this system in real use will be limited to the need to define the 

average loading rate that the sample was measured at, as well as the need to take many 

more measurements than is done currently in order to control and vary the average 

loading rate. This is not considered to be a useful thing to do, as the loading rates here 

are considerably faster than calibrated values seen in the literature (Samani et al., 2007). 
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3.5. Clinical Practicality 

The application of this technology is in fixed array tactile imaging, allowing for 

breast and lesion elasticity to be reliably determined together in a non-invasive manner, 

where this technology provides the background breast elasticity. This is an important 

step towards tactile imaging performing on the spot diagnosis of lesions, as commercial 

tactile imaging provides only the relative elasticity of a lesion currently. 

The clinical significance of measuring elasticity of breast tissues is clear in that 

the material elasticity is correlated with histological diagnosis and identification of a 

tissue. The operating range of the proposed system covers the elasticity ranges of fatty 

tissue, glandular tissue, and several malignant tumours and carcinomas. This means that, 

although this technique is intended to support and supplement more established tactile 

imaging methods by measuring background tissue elasticity, which allows for in-vivo 

characterisation of lesions, the proposed system is fully capable of stand-alone usage as 

an elastometer for pathologists in the clinical environment, although this would be in ex-

vivo conditions. 

Despite the demonstrated functionality of the proposed system, the method 

proved to be a little impractical for live clinical use. The method of operation, taking at 

least 10 compression cycles per elasticity measurement, is awkward for the practitioner 

and for the proposed patients. That being said, the proposed system and algorithm 

achieves its intended purpose in that it is capable of determining the elasticity of soft 

elastic materials using the double integration of acceleration. With a ready solution to 
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the problem of elasticity measurement at hand, the next task is spatially registering 

tactile measurements. The MARG based displacement measurements investigated in this 

chapter have shown promise and represent an efficient reuse of technology if used for 

the purpose of measuring lateral translation as well as indenter compression depths. 

 

3.6. Application in Production of Tactile Maps 

3.6.1. Displacement Context and Measurement Problems 

Producing a tactile map based on inertial dead reckoning alone is highly 

impractical due to the type of motion required to get reliable displacement information 

from acceleration double integration. The typical breast scan performed using tactile 

imaging, in the manner of (Egorov and Sarvazyan, 2008) and current clinical usage of 

SureTouch™, scans across the breast tissue with a relatively constant speed in the order 

of 0.05m/s. This presents a primary problem in that the only signals available for 

displacement estimation would occur at the start and end of the scan stroke, with a 

quadratic error building on residual error of the initial acceleration over a few seconds. 

The second problem is that the accelerations at the start and end of a scan stroke 

would be very small indeed, in the order of 0.5m/s2, which would be lost in the noise 

floor of typical low-cost accelerometers. An ideal accelerometer, with no noise profile 

capable of measuring very low accelerations, would not even solve this issue as the 

‘relatively’ constant scan speed is rarely truly constant. Inconsistencies in surface 

friction, the scan head catching on the skin, vibration of the hand, vibration of the patient, 
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and rolling of the scan head produce accelerations that dwarf the acceleration due to 

linear motion. A simple slip produces accelerations 10x the desired linear acceleration. 

Displacement sensing using acceleration integration has been shown to be 

effective over long distances and long time frames (Yun et al., 2007) (Neto et al., 2013) 

even being effective at measuring the perimeter length of a football field with acceptable 

accuracies (~4%) after a distance of 350m at an average speed of 1.56m/s (3.5mph) 

when applied to gait tracking. This is a long time for errors to accumulate from double 

integration… so why does the proposed system face difficulty in mapping the breast? 

The answer comes down to scale… 

In gait tracking the great distances are broken down into manageable chunks, the 

steps themselves. These have easily definable start and end points which are used to 

estimate and control the integral drift. The proposed system has already demonstrated 

the effectiveness of this technique when it comes to material strain measurement. They 

are also short in comparison to the total distance being measured, effectively stopping to 

control the total integral drift 350 times during the total distance measurement (assuming 

1m steps over 350m total). Finally, the steps are the dominant source of both 

acceleration and displacement, with each step being a smooth and natural motion with a 

very high SNR. It is these final two points where the proposed system, with a tactile 

array, fails to produce tactile surface maps. The proposed system would need to measure 

the full path distance in one step, with only the end point to control the integral error and 

would need to do this with a very low SNR which can make defining the end point 

difficult. It should be noted that when used in material strain measurement, the distances 
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and time are very short which precludes the need to sub sample the distance (though that 

would be impossible to achieve anyway), and the linear acceleration of the compression 

stroke is the dominant source of acceleration which provides a good SNR. This is 

combined with clearly defined start and end points from the tactile sensor, resulting in 

acceptable accuracy comparable with the gait tracking authors and fixed elastometers. 

To highlight the problem that the contact between the material under test and the 

tactile scanner has on the measurement of sensor displacement across the material 

surface, needed to produce a tactile map of the surface, a simple experiment shall be 

performed to compare the displacement measurement of the proposed system when 

actuated in free air to that of the proposed system being dragged over an elastic surface. 

3.6.2. Test Methodology 

The proposed system is actuated over a distance of approximately 15cm 

horizontally, a reasonable figure for a single pass tactile breast scan, parallel to the 

surface of an elastic flat breast phantom material, both in free air (not in contact with the 

material), and in contact with the material with a target load of 5N, to determine the 

effect of contact on the accuracy of the displacement measurement. This is in the x/y 

dimension when considering Figure 3.1. Additionally, the effect of stroke speed on 

displacement measurement accuracy will be determined by actuating the proposed 

system slowly at first, at an average rate of about 0.05m/s in line with typical tactile 

imaging, then quickly, at around 0.8m/s in line with the gait tracking examples. A 

Leica® AT403 Absolute Tracking system (Hexagon Metrology Ltd. UK) with accuracy 

±15μm is used to provide a reference ground truth to the displacements and average 
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stroke speeds over 50 actuations of the system for each load and speed case. The target 

load is maintained using a household electronic weighing scale, 5kg rated, and visual 

feedback to the operator to attempt to control the average applied load. The proposed 

system will use a modified form of the gait tracking displacement algorithm developed 

by (Pierleoni et al., 2019) for estimation of displacement as this is more applicable to 

this type of motion than the material strain algorithm presented in this chapter. This 

algorithm additionally uses a sudden jerk, as well as a low acceleration, to signify the 

start and stop conditions at the beginning and end of travel, and assumes the velocity is 

zero at these points. Using this assumption, the integral drift can be estimated and 

removed to yield a useful result. 

The mean difference error, and the sample standard deviation of differences, 

between the ground truth displacement and the MARG algorithm estimate will be 

presented for each load and speed case. This will show the accuracy and, perhaps more 

importantly, the reliability of current MARG based displacement measurement 

algorithms when in constant contact with the measurement surface and moving slowly, 

currently a requirement for tactile imaging of the breast. 

3.6.3. Results 

The results of 50 repeated 0.15m motions, with varying load states and stroke 

rates, are shown in Table 3.2 in terms of mean difference error and standard deviation 

from the Leica® ground truth. These errors, and the relationship between them, are 

shown graphically in Figure 3.13, where a categoric view of loading state and stroke rate 

is used as a continuous sweep of accuracy vs. velocity is impossible in this context. 
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Figure 3.13 – Illustrative graphic of MARG accuracy and repeatability vs. Load vs. 

Stroke Rate. The results show that scanning slowly in any load state is detrimental to the 

accuracy and repeatability, and that loading when scanning quickly does not affect the 

accuracy over 50 trials but severely impacts the repeatability of a single motion. 

Table 3.2 - Results for repeated tests of 50 runs of 0.15m with the MARG probe, with 

varying average stroke speeds and surface loading conditions. 
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The results show that scanning slowly has a massive impact on the mean 

difference error, regardless of load state, when compared with scanning quickly. When 

scanning quickly, either loaded or unloaded, the mean difference error is within 2% of 

the reference values, but when the load state is changed to ‘loaded’ then the standard 

deviation jumps from 14% to 58% as the inconsistency in contact conditions affects the 

reliability. When scanning slowly, the MARG estimation is in the order of 30% under 

the reference on average, but when loaded the mean error increases from -26% to -37% 

despite the standard deviation dropping from 81% to 58%.  

An expected result is that mean error and standard deviation deteriorate when the 

stroke rate is reduced with no load, and this is seen in the data, but a surprising result is 

that the standard deviation of the loaded cases does not depend on the stroke rate which 

would reasonably be expected to deteriorate similarly to the unloaded cases. 

Finally, the results show that the MARG displacement estimation is effective 

over repeated similar motions, with mean errors < 2% when the motion is fast, but that 

the reliability of each individual motion measurement deteriorates significantly when the 

scanner is in contact with the material surface. When the stroke rate is reduced to a 

practical level for tactile imaging, then the mean error becomes untenable at -37% when 

in contact with the material surface. This, and the poor standard deviations of all trials, 

shows that the MARG based positioning system is suitable for situations where a total 

distance travelled value is required after multiple steps, rather than in applications where 

a single step/motion distance is required from only one scan motion as is the case in 

current tactile imaging. 
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3.6.4. Discussion 

The difference in mean error sensitivity to loading state between fast scanning 

and slow scanning, with negligible change whilst fast and 11% change when slow, 

shows that the effect of stroke rate dominates the effect of loading on the mean 

difference error. When the two effects, loading and slow scanning, are combined then 

the worst result of all is obtained.  

The term ‘worst’ refers to the mean difference error, which cannot be removed 

reliably by taking successive measurements as the effect of standard deviation can. The 

mean error in this situation cannot simply be compensated for, as in other applications, 

by characterising the mean error and subtracting it from the final result, as the mean 

error is dependent on both the stroke rate and the loading condition which would each 

need to be parametrically characterised. This sort of activity exceeds the scope of this 

project as the stroke rate and applied load are exceptionally difficult to control manually 

in a dynamic system like this and using a robotic manipulator would not accurately 

simulate the jitter of a hand or the reactions of a human operator. The target loads and 

speeds provide some measure of control., but they cannot be controlled tightly enough 

by manual actuation of the system to obtain a parametric sweep. As such the experiment 

used load and stroke rate values with an order of magnitude difference to obtain a 

categoric relationship sufficient to determine whether the proposed system could indeed 

work in a practical tactile mapping system as opposed to the elasticity imaging system 

application previously demonstrated. 
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The difference in standard deviation between fast and slow unloaded trails, and 

similar lack of change between fast and slow loaded trials is down to the range of 

motion in each case. Moving a probe slowly through the air requires constant feedback 

between the operator’s eyes and the hand resulting in servo vibration, the effects of 

which compound over time and are not repeatable. Similarly, moving the probe across 

the breast surface constrains the motion and rotation of the probe, especially when the 

scan is slow, and so results in a better standard deviation when loaded and scanning 

slowly than when unloaded. The low standard deviation in the fast unloaded case is 

caused by a lack of operator servo control in the movement of the probe (it’s a more 

natural and fluid motion), and so is largely immune to the vibration and rotation artefacts 

that affect the slow scans despite being unconstrained, with the artefacts that are present 

being small and having little time for the error to accumulate. 

The mean errors within 2% from the fast scanning trials can be likened to the 

results of the human gait tracking experiments (Yun et al., 2007), where the mean error 

can be thought of as the total error in end position after 50 motions or ‘steps’. The 

authors obtained a similar result in terms of error after approximately 350 steps, showing 

that the algorithms are effective for large and small distances providing they are broken 

up into finite chunks. It would be reasonable to suggest that if the authors individual step 

displacement were analysed then a similar standard deviation would be obtained to the 

proposed system results for no load. The key point from this, as explained by (Hampson 

et al., 2019), is that these MARG displacement algorithms can be effective when used in 

an appropriate application with their limitations within the application understood. 
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3.7. Conclusions from Inertial Elasticity Mapping 

3.7.1. MARG Based Elasticity Mapping Practicality 

 With a mean error close to 0%, as in the cases of fast scanning, it could be said 

that the proposed system would work for tactile mapping (with errors within 2%) 

providing a sufficient number of similar scans over the same breast area were taken, but 

the system would not work reliably if a single scan were taken due to the poor standard 

deviation of displacement measurements. That being said, the application of multiple 

fast scans to the breast would be highly uncomfortable for the patient and would largely 

defeat the goal of tactile imaging in breast cancer management, to reduce the need for 

painful and traumatic procedures like mammography and biopsies.  

  Similarly, with both a mean error > 37% and a standard deviation of 58% when 

loaded, the proposed system would not work for tactile mapping (using the proposed 

system alone) with a slow stroke rate in any circumstance, as no number of repeated 

measurements will yield an acceptable average result without exhaustive 

characterisation of tracking performance over stroke rate and load. 

 It is clear that MARG based position tracking is not suitable in the location and 

registration of tactile images within a complete map, although it is effective in material 

strain measurements for elasticity estimation due to the repeated compression cycles, 

due to its poor accuracy and reliability in this particular application. The writing is not 

on the wall for a MARG based elasticity mapping system yet though, as the elasticity 

measurement aspect is still effective. When integrated with a tactile array, the array can 
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make differential measurements of lesions and estimate the absolute elasticity of the 

lesion using the background tissue measurement from the MARG based system. This 

quantified tactile image can then be stitched using image mosaicking, a process that has 

been tried in the literature (Egorov and Sarvazyan, 2008) to produce a quantified tactile 

map of the breast tissue. The issue with creating the tactile map using such a technique is 

that there is limited information on where on the breast the scan probe is at any point in 

time, and the information is limited to a quadrant of the breast. This 2D quadrant map is 

subject to change over time through a combination of operator procedure, patient 

orientation, and subtle changes in breast position between scans; and can make tracking 

lesions between scans problematic. 

 On the point of the clinical validity of the elasticity measurements, further 

elaboration is required. The device was effective at measuring elastic materials, when 

the average strain rate matched that of the Instron, however the method will swiftly 

deteriorate when real tissues are used that exhibit viscous and shear thinning properties. 

Unlike with a traditional compression elastometer, the strain rate of the proposed system 

cannot easily be controlled, and is highly variable during compression, and so the device 

is not expected to give accurate results when used in real biological materials with 

complex properties. The method of measuring material strain is fundamentally not 

suitable for the ‘slow’ motion caused by viscous creepage, as highlighted in the mapping 

experiments and so viscous properties other than viscous drag cannot be measured with 

this system. The characterisation of properties in the event of shear thinning is expected 

to be possible, but the number of compressions required to characterise the tissue 
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response vs load and load rate would make the device even more impractical to use than 

it already is. The conclusion from this is that, although the developed algorithm is novel 

and measures strain in the context of elasticity measurement, the method is not well 

suited to the characterisation of biological materials due to the lack of control over the 

strain rate, and the assumption of material linearity used to reject ‘bad’ data limiting the 

usage scope of the technology. By itself, the technology is an interesting academic 

achievement particularly in the field of dead reckoning, but it is not considered to be 

useful clinically after initial testing and should not be explored further for that purpose. 

3.7.2. Summary and Next Steps 

This chapter has developed a novel MARG based displacement estimation 

algorithm for measuring material strain and applied it to elasticity measurement of soft 

elastic tissues with an accuracy of < 4% over a material elasticity range of 9kPa to 

90kPa by employing sensor fusion with a tactile pressure sensor. Explanation has been 

presented on how the single point elasticity measurement system (Hampson et al., 2019) 

can be integrated with a tactile array to form quantified elasticity images that will aid in 

breast lesion diagnosis (Egorov et al., 2009). Despite this, the conclusion drawn is that 

MARG based elasticity measurement, though effective in its own right, is not practical 

in a clinical context due to the awkwardness in use, and that the method involves 

continuous palpations of the tissue that can become uncomfortable to the patient. 

This chapter has also attempted to develop a method using the same MARG 

based displacement estimation technique to register tactile images in relation to each 

other, but through preliminary investigations this was shown to not be a viable solution 
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currently. This is because the current tactile scanning method, a slow single pass of the 

tactile sensor over the surface of the breast with the sensor compressing the tissue, is not 

compatible with MARG based displacement estimation which generally requires 

fast/sharp motion with little deviation from the intended path. 

It is clear that a better method of mapping tactile images is required, one that is 

capable of locating a lesion precisely on the breast without being subject to scanning 

procedure, and that a more practical method of determining the breast background 

elasticity is required to reduce the burden and discomfort of use to the patient. One 

option for tactile image tracking is to develop a system that can track both the scan 

probe and the patient in an absolute coordinate frame. This has been attempted before 

(Wellman, 1999) but fails in tracking the patient movement and so is still dependent on 

strict patient placement. Utilising the popular and widespread camera-based 3D object 

tracking may help in that regard now, as it certainly did not exist outside academic 

circles at the time, but solutions based on external tracking systems involve large 

infrastructure and costs, not suitable for a GP or a home use case. Developing a system 

that can locate the tactile images onto natural features of the patient’s body will be a 

much better prospect, as these features can be tracked between scans and are usually 

stable. Perhaps the easiest method of identifying features on a body is visually, with a 

camera image, which shall be investigated in the next chapter of this thesis. 
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Chapter 4 

Optical and Tactile Breast Imaging 

 

4.1. Introduction 

This chapter explores the development of a handheld breast elasticity mapping 

technology based on infrared vein imaging and tactile sensors, technologies used in 

different aspects of breast imaging that are expected to be complementary. The rationale 

for using vein imaging for mosaicking tactile images into a tactile map is that demarked 

features are required for image based mosaicking to be effective, and blood vessels are 

well defined in infrared. This provides both a functional method of mosaicking tactile 

data to gain a full breast view, but may also give additional information such as 

invasiveness and relation of lesions w.r.t. blood vessels, as well as monitoring lesion 

location changes over time.  

This chapter serves as the theory, design and initial validation for the developed 

technology, leading onto further development and testing in later chapters. The chapter 

concludes with a discussion on the significance of the results, concluding that the 

developed system is practical in isolation, but must be developed further to be 

complementary to TI in clinical imaging. 
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4.2. Opto-Tactile Breast Imaging Systems 

Cameras and tactile sensors have only recently begun being used together in 

breast cancer diagnosis and screening in the academic literature. Authors in the literature 

(Rana et al., 2020) (Saleheen et al., 2013) (Sahu et al., 2013) have realised that tactile 

sensing is limited in its scope of use and have turned to fusion with optical and 

hyperspectral imaging to improve the capabilities of tactile imaging, without significant 

increase in system cost. Although each author has tackled a separate problem in tactile 

imaging, these being lesion localisation and lesion elasticity measurement respectively, 

they have each brought new ideas to the table when considering a final solution in the 

pursuit of an absolute elasticity map of the breast, with lesions localised and analysed, in 

a manner that can be tracked between check-up scans. 

The advantage of a camera-based imaging system over a fully tactile sensor 

system is that of spatial resolution, however a camera-based system must be combined 

with a tactile sensor in order to provide elasticity information. A typical tactile sensor-

based cancer screening system consists of a sensing area of 40mm x 50mm split into 

12x16 sensor elements, or 192 pixels, whereas a camera system would have at least 

500,000 pixels in a similar sensing area (for a 0.5MP camera). This vastly increased 

spatial resolution makes determining the size of a spherical lesion (Oleksyuk et al., 

2015), and producing feature maps of the inspected tissue (Rana et al., 2020), simple. 

Conversely, a camera-based elasticity imaging system, has low resolution in applied 

load distribution which makes resolving complex shapes and lesion structures difficult. 
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Purely tactile imaging systems have attempted to obtain both tactile maps 

(Wellman et al., 1999b) (Egorov and Sarvazyan, 2008) and absolute elasticity of a lesion, 

but the methods were never applied together in a meaningful manner in industry. The 

tactile maps produced were flat planes referenced to a fixed point on the body (Wellman, 

1999), specifically the line connecting the supra-sternal notch to the xiphoid, and so any 

change in breast orientation with respect to this line will be interpreted as a change in 

lesion position between scans. This was later improved by splitting the breast into 

quadrants with a strict scanning procedure (Sarvazyan and Egorov, 2009). This helped 

control deviation between scans, but still required the physician to perform the scan in a 

repeatable process and did not account for the population variance in breast size and 

shape (a generic breast map, not patient specific). 

Other works presented a camera based tactile imaging system that relies on the 

lesion deforming a Polydimethylsiloxane (PDMS) optical waveguide in response to an 

applied measured load (Saleheen et al., 2013). The deformation of the waveguide 

scatters light as total internal reflection no longer holds which can then be detected by a 

monitoring camera. A change in observed image size with respect to the applied load is 

used to calculate the elasticity of the lesion. This method has been shown to work well in 

determining the elasticity and size of spherical lesions, and to their credit was shown to 

be robust to interobserver variability (Oleksyuk et al., 2016). The key drawback of a 

design like this, which is hyperspectral rather than directly optical imaging, is that the 

ability to resolve complex lesion shapes, lesions with multiple nodules, or separate 

lesion in very close proximity to each other is that the ability of the design to resolve 
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lesion shape is determined by the flexibility of the waveguide. A single flexible layer 

cannot conform to complex geometries without the application of a significant 

restraining force, from a solid backing for example, resulting in a blurring of nodules 

into a single mass, shown in Figure 4.1. This is a problem for lesion classification, but 

not for basic screening, and this is not a problem in purely tactile sensor-based systems, 

where complex shapes can be easily identified from the independent sensor elements. 

Additionally, the deformation image of the lesion does not contain information on the 

background tissue or surrounding structures, therefore it cannot be used to create tactile 

maps of the breast surface in its current form. 

Thermography is currently the most widespread camera-based breast cancer 

screening method, with multiple commercial manufacturers and a global market. 

Thermography provides lesion location information on the breast by measuring the 

infra-red emissions from the breast. Higher emission, or temperature, is indicative of 

higher cellular activity typical of malignant breast conditions. An example of a 

thermogram is shown in Figure 4.2. This method does not produce elasticity information 

as the previously described methods do, as it lacks tactile information, and so its 

capability is limited to screening only and will require additional methods such as 

mammography and biopsy for lesion diagnosis. It is important to note how the vascular 

tree (veins in the breast) shows up brightly in IR thermography.  

The benefits of each method: tactile, optical, and thermal; can be combined 

together to alleviate the downsides of each individual method. Tactile sensor arrays 

provide both a method of determining lesion elasticity given knowledge of the 
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background tissue properties and a method of resolving complex lesion relief detail. 

Camera systems boast increased spatial resolution which can be used to produce 

accurate surface maps and can be used to measure elasticity when fused with simple 

tactile sensors. Finally, thermography, specifically IR imaging, provides a continuous 

trackable structure on the breast for locating tactile maps over time, the vein network. 

In this chapter, a fused IR camera and tactile sensor system is proposed and 

demonstrated for the purpose of providing a patient specific and time trackable map with 

background tissue elasticity information. An initial prototype shall consist of simple 

tactile sensors and an IR camera, which will output a map of the vein network and 

background tissue elasticity, providing a proof of concept leading onto the integration of 

a full tactile array to provide accurate lesion elasticity in addition to the vein mapping 

capability. The tactile array is not currently implemented in this system due to the 

significant commercial investment required to create a modified tactile array for this 

application. The description of the proposed system shall be split into the two main 

functional elements in the following sections: elasticity measurement of the background 

tissue, and vein mapping; each investigated separately.  
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Figure 4.1 - Illustrative example of waveguide deformation not being responsive to 

multi-nodal lesions due to waveguide stiffness, resultant image tone is inverted for 

clarity. Tactile imaging does not suffer from this issue as each measurement element is 

independent of its neighbours. 

 

 

Figure 4.2 - Example thermogram of breast tissue, showing prominent vein network and, 

thankfully, no visible breast condition (adapted from Pacific Chiropractic and Research 

Centre – Breast Thermography) 



 

114 

 

4.3. Breast Background Elasticity Measurement 

The first problem to be solved is the measurement of the background elasticity of 

the breast. There are currently no commercial solutions available for this using cameras 

and tactile sensors and so a new hardware setup will be required. A simplified proof of 

concept design with simple geometry and large camera shall be presented initially for 

the purpose of validating the proposed elasticity measurement method. This leads onto 

developing the design into the footprint of commercially available tactile imaging 

systems using miniature cameras. This provides confidence in each step of the design 

process and makes it easier for commercial partners to implement the research. 

4.3.1. Hardware Description 

The proposed system consists of 4 main components: an IR illuminator to 

illuminate the breast tissue, an IR camera to record images, tactile sensors to measure 

the applied load distribution, and a domed lens cover to give a known stress distribution 

on the tissue.  

A ring of 850nm IR LEDs sits behind a frosted clear acrylic diffuser, shown in 

Figure 4.3. In the centre of the LED ring is a 38mm diameter clear lens cap, flush with 

the IR diffuser, to maintain a simple pressure distribution on the tissue. The LEDs are 

supplied with 12V from a generic 1A external power supply. Behind the LED ring are 4 

S8-10N SingleTact™ capacitive pressure transducers (Pressure Profile Systems Inc., 

US-CA) secured in place, for a total normal load rating of 40N, at a radial distance of 

26mm in a square using 3M 300LSE tape (3M Company, US-MN), between the LED 
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ring and a rigid acrylic backing on the camera lens assembly. The camera lens is an 

Azure-0518M10M 2/3”, 5mm, F1.8 C mount lens (Azure Photonics – US-MA). The 

camera used is a FLIR Blackfly BFS-U3-51S5M-C 75FPS 5MP mono camera (FLIR 

Systems UK, UK) arranged with the lens to focus on a distance of 80mm from the 

camera sensor to about 3mm in front of the 38mm acrylic lens cap, to ensure that the 

camera is focused inside the tissue. It is critical to the design that the acrylic lens cap be 

free from scratches, marks, and dust, as blemishes will be visible in the camera image. 

The SingleTact™ sensors have a stated repeatability within 1%, and <2% 

linearity error, and are connected through their 10-bit I2C interface modules to an 

ATMEGA32u4 microcontroller (Microchip Technology Inc, US-AZ) running at 16MHz. 

An InvenSense™ MPU6050 (TDK, JP) accelerometer and gyroscope module is also 

connected to the microcontroller via I2C, which is used to determine the orientation of 

the camera and assist in the calibration process. The microcontroller receives data from 

the SingleTact™ sensors and the MPU6050 at 100Hz, and outputs the data as a serial 

stream to a PC over USB. 5V is supplied to the electronics via USB, the camera is 

interfaced using a separate USB connection. The prototype is shown in Figure 4.4 and 

Figure 4.5. Image capture and load/orientation data capture is performed on the PC by a 

MATLAB 2017 program. The proposed algorithms are similarly implemented in 

MATLAB, in post processing for this prototype. Orthogonal lines passing through the 

centres of opposing SingleTact™ sensors and the scanner centre define a moving right-

handed coordinate frame with the scanner centre as the origin, both the MPU6050 and 

the camera are aligned with these new axes. 
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Figure 4.3 - Breast scanner simple prototype design highlighting key points in the 

mechanical design of the scanner. 

 

Figure 4.4 - Prototype scanner assembly showing electronics interfacing with the 

mechanical system. 
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There is an IR opaque layer between the clear view window and the frosted 

diffuser to stop internal reflection of the LEDs into the lens. The lens is polished and de-

marked using flame polishing and finished with acrylic polish. Frosting of the diffuser is 

achieved by roughing the diffuser surface with coarse sandpaper on both sides. The 

system is held by the camera body; the electronics are sufficiently shielded and coated 

with lacquer such that this is not of concern in terms of interference. 

 The MPU6050 is interfaced with the microcontroller via the I2C bus as 

previously described, however an additional data line is used to allow the MPU6050 to 

interrupt the processor for data transfer. This interrupt is used to synchronise the data 

from the MPU6050 with that from the SingleTacts. 

 

 

 

 

 

 

 

 

 

 

FLIR 

BlackFly 

NFIR Images 5Vdc 

USB 

Figure 4.5 - System Block Diagram of proposed system. Each SingleTact sensor is 

interfaced with a unique electronics module with individually configured I2C addresses. 

In this system, 4K7 resistors are used on the I2C bus. 
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4.3.2. Theory of Operation 

Previous works have presented innovative ideas when it comes to using the 

deformation of a waveguide under load to indirectly image and quantify an embedded 

lesion in terms of shape and elasticity (Saleheen et al., 2013) (Sahu et al., 2014) 

(Oleksyuk et al., 2015). By observing the change in the apparent size of a lesion, 

specifically the size of the deformation of the waveguide, with respect to load the 

stress/strain curve of the lesion can be estimated. This approach is limited by sensitivity 

to background tissue elasticity, a sensitivity the authors had not investigated, which can 

skew both the elasticity measurement and the size estimation similar to conventional 

tactile imaging. The technique is also sensitive to the malleability of the waveguide, 

which can affect size, elasticity, and shape estimation as illustrated in Figure 4.1. 

The idea of observing an apparent change in size (strain) with respect to an 

applied load (stress) can be applied to the estimation of the background breast elasticity. 

Instead of indirectly observing the deformation of the embedded tissue through a 

deforming waveguide, the surrounding tissue can be observed directly by a camera 

deforming under load. By observing the deformation of the tissue directly, in response to 

an applied load, the elasticity of the surface tissues can be estimated whilst providing a 

clear view of the tissue are under inspection for future mapping of tactile images. By 

imaging the breast in the near field infra-red (NFIR) spectrum, the vascular network 

within the breast tissue can be observed as shown in Figure 4.2 and used as the basis of a 

tactile map (Zharov et al., 2004) (Nioka and Chance, 2005). 
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4.3.2.1. Observing Tissue Deformation in Variable Load Images 

Consider a soft inflated rubber balloon. When the balloon is pressed, the surface 

of the balloon stretches in response to being pressed. Specifically, the balloon is 

deforming against the applied stress. In the same way someone may watch a balloon 

stretch when pressed, the deformation of any soft elastic material can be observed in 

response to stress and recorded using a camera. By quantifying the deformation in 

response to an applied load, the elastic properties of the material can be determined. 

A finger pressing a soft balloon, though anecdotally relevant, is difficult to 

picture accurately due to the interesting geometry of the human finger and the inability 

to see through the finger. A simpler example can be applied, where a transparent 

cylinder is pressed straight into the elastic surface. Viewing through the transparent 

cylinder, one would observe the uniform stretching of the surface from the centre of the 

cylinder varying with the amount the cylinder is pressed into the surface. The proposed 

scanner mimics the transparent cylinder and will produce a response as shown in Figure 

4.6, where an increasing stress on the elastic material causes increased deformation of 

the surface that would be interpreted by a camera observer as a stretch perpendicar to the 

applied load. 

The stretching of the material surface, from the camera viewpoint, can be 

thought of as zooming in on the surface, where a small original area of material now fills 

a larger proportion of the image as shown in Figure 4.6. In this situation the material 

features being observed near the periphery of the images would dissappear from view as 

the load increases.  
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Figure 4.6 – Effect of increased normal load on image view plane. The increase in load 

increases the deformation of the homogeneous material equally in all direction, causing 

embedded (uncoupled) features to separate equally in response. This separation, which 

is a simple stretch in the camera view, can be considered an image scaling effect. 
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A similar description can be given to the more complex situation, where the 

applied load is not normal to the material surface. In this situation the applied load is not 

uniform across the scanner surface, and so it is reasonable to say that the deformation 

will not be uniform either. The outcome of the normally loaded case, that the stretching 

and deformation increases with load, and that load usually increases with compression 

depth into the material, can be applied to this situation to describe what is happening 

beneath the scanner surface. 

As the scanner tilts into the material about the centre of the scanner face, for a 

constant average applied load, one side of the scanner will press deeper into the material 

and increase the local load in that area, and the opposing side will retreat and reduce the 

local load in that area as shown in Figure 4.7. With the load changing across the scanner 

face, and knowledge that the deformation of the material increases with load, it is clear 

that the deformation will be changing across the scanner face. The deformation will be 

greatest at the point of maximum load on the scanner face, and least at the point of 

minimum load. The load distribution and material deformation across the scanner face is 

a function of the average applied load, the tilt angle, and the geometry of the scanner 

face. The material deformation will appear in the camera view, as shown in Figure 4.7, 

as an increase in zoom on one side of the image, and a reduction in zoom on the 

opposing side. The effect of shear load and torsional loads on the material will not be 

considered in this project due to the necessary hardware. The effect of shear can be 

reduced using low friction lubricant gel and the effect of torsion can minimised with 

proper experimental procedure. 
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Figure 4.7 – Effect of increasing affine tilt on image view plane. The increase in tilt 

angle θ, for a fixed average load F0, creates a difference between FA and FB (the 

material reaction forces on opposing sides of the scanner) due to the changes in scanner 

depth along its view surface. This causes the embedded tissue features to separate 

unequally. This creates a stretching effect that varies across the image plane and can be 

considered a non-linear image scaling effect. 
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4.3.2.2. Recording Tissue Deformation in Variable Load Images  

Variations in the apparent location of a particular feature in the material, or 

breast, between images can be tracked using an image feature tracking algorithm such as 

the scale invariant feature transform (SIFT) algorithm (Lowe, 2004). It is true that there 

are many other feature identification algorithms out there, such as: MSER, Hessian, A-

SIFT, and SURF; which will likely change system performance (Morel and Yu, 2009), 

however in this application SIFT is appropriate. This project is not about the intricacies 

of each feature transform method, or detailed comparison of each method as performed 

by others in the literature (El-gayar et al., 2013) (Karami et al., 2017) (Nuari et al., 2019), 

it utilises a suitable feature tracking algorithm as a tool for a ‘higher’ purpose. In the 

simplified case of a normal compression into the tissue, with no camera tilt, the observed 

deformation is simply a scaling between images with differing loads as shown in Figure 

4.6, and so the scale invariance of SIFT is utilised to track this (J.M. Morel, 2011), 

without the additional unnecessary complexity and functionality available from other 

algorithms. It is also easy to find well documented open source implementations of SIFT 

feature tracking in several computing languages, likely improving its suitability in many 

applications particularly due to its long history in the literature (Brown and Lowe, 2007). 

SIFT detects image features, or key points, in an image by finding local 

maxima/minima of Difference of Gaussians (DoG) functions that are robust across 

multiple Gaussian blurring scales (Lowe, 2004) (Nuari et al., 2019). This involves 

blurring the test image with different scales of Gaussian blurring, and then finding 

significant points in the scale space by taking the difference of the blurred images. Key 
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points produce strong local maxima and minima in this method but can also be the result 

of noise and imaging artefacts such as image edges. False or insignificant features, 

features that are not robust to small changes in noise, are discarded by interpolating the 

scale space of the DoG functions to firstly determine an accurate position for the feature 

and secondly to determine the local significance of the feature using the ratio of 

principal curvatures. This process eliminates edge responses and low contrast features 

that are not considered robust, as these features will be poorly defined or have severely 

uneven principal curvatures. 

Detected features are then assigned an orientation based on the local image 

gradient, which allows for invariance to image rotation. The feature locations at various 

scales and the feature orientation together provide invariance to image location, scale, 

and rotation. The feature parameters are then concatenated into a key point descriptor, 

robust to minor affine changes, using histograms of orientation and gradient magnitudes 

in the surrounding area of a feature. SIFT features are well known to be robust feature 

descriptors, usually outperforming other methods for low affine distortion where speed 

is not critical (El-gayar et al., 2013) (Karami et al., 2017). 

As mentioned, there are many other feature extraction algorithms that are either: 

similar to SIFT but run faster such as SURF, RIFT, BRIEF, and ORB (Karami et al., 

2017); or outperform SIFT in certain conditions where affine distortion is high such as 

A-SIFT or A-KAZE (Yu and Morel, 2011) (Alcantarilla et al., 2013). SIFT shall be used 

for this project due to its ease of implementation and its understandable documentation 

in the literature and public spheres. 
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To determine deformation, or the motion of feature positions between frames, the 

difference in location must be determined for a particular pair of features common in 

each image. This requires that common feature pairs be found between the images, 

which is done by matching the feature descriptors of features in each image for 

agreement within a certain tolerance. Lowe used a probabilistic nearest neighbour search 

algorithm, which computed the Euclidean distance between a given descriptor vector 

and a key point (Lowe, 2004). The probability of a correct match was estimated using 

the distance ratio between the nearest neighbour and the second nearest neighbour. 

Values with ratios greater than 0.8 were rejected as improbable matches resulting in a 90% 

rejection of false matches with less than 5% rejection of true matches. From these 

matched features, changes in position or rotation between images can be determined. 

The basic process in this application begins by applying a binary mask to the raw 

images from the camera system, to eliminate the view of the inside of the scanner and 

focus only on relevant vein structures as shown in Figure 4.8. The SIFT algorithm 

described above is then applied to each image sequentially to generate a list of robust 

feature descriptions in each image. The features are then matched to find connected 

feature pairs between the images as shown in Figure 4.9. Deformation, or changes, 

between the images can be determined either: using a homography matrix, which is an 

estimation of how the camera has moved, computed using Random Sample Consensus 

(RANSAC) which compares groups of matched features for a common transform; or by 

simple linear algebra when the deformation regime/type is known, as it is in this 

application. This shall be further explored in following sections. 
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Figure 4.8 – Application of a binary mask to raw images of phantom tissue. The camera 

view area in the proposed scanner does not match the area of the scanner window and 

so a binary mask is applied to remove the view of the inside of the scanner assembly. 

This leaves only the image features of interest, specifically the observed tissue. 

    

Figure 4.9 – SIFT point matching between normal load variant images. The SIFT points, 

specifically groups of points indicating key parts of the tissue geometry, spread out in 

response to the applied load. The location of each feature is recorded for each image 

and so the variation in feature position between images can be tracked with respect to 

applied load. As this is a normal loading case, with zero tilt, the features spread equally 

radially from the mask aperture centre as described in Figure 4.6. 
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4.3.2.3. Determine Applied Load and Tilt Angle 

The total load applied by the scanner to the tissue surface is measured directly by 

summing the individual loads of each of the 4 SingleTact™ pressure transducers on the 

proposed scanner. The SingleTact™ sensors present the only points of contact between 

the scanner face and the main body of the scanner, therefore 100% of the applied load 

must be transferred through them. This means that the total applied load FTotal can be 

calculated using Equation 4.1, where F1 and F2 represent the forces on opposing sides of 

the y axis; and F3 and F4 represent the same on the x axis of the scanner. 

  

This is more generally defined as the surface integral of point forces across the 

scanner face surface, as defined in Equation 4.2, but as the individual surface stresses are 

unknown initially and there are 4 known ‘point’ loads coming from the SingleTact™ 

sensors, Equation 4.1 can be applied instead. 

 

As the surface integral is a continuous function which can approach an 

integration of infinite points, it is more useful to think of it as the summation of (Nx x Ny) 

discrete point loads that act in the centres of their respective areas. This is a form of 

finite element problem solving and will make estimation of the applied stress field more 

intuitive later. An illustrative diagram of the finite load nodes is shown in Figure 4.10.  

𝐹𝑇𝑜𝑡𝑎𝑙 =  𝐹1 + 𝐹2 + 𝐹3 + 𝐹4 (4.1) 

𝐹𝑇𝑜𝑡𝑎𝑙 =  ∫ ∫ 𝐹[𝑥,𝑦] 𝑑𝑦 𝑑𝑥

𝑁𝑦

1

𝑁𝑥

1

 (4.2) 
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The total load on the scanner can be transferred to average applied stress, σ, 

simply by dividing by the scanner face area, A. This can be generalised to say that the 

stress at any node location, [x,y], is the load at that node divided by the node sample 

area, as shown in Equation 4.3. 

 

The SingleTact™ sensors will each read a fractional average value of the total 

measured force, which will all be equal if the scanner is pressed normally into a 

homogeneous material. It is this principle that can be used to estimate the applied load at 

any discrete node location on the scan face. 

 

Figure 4.10 -Illustrative example of finite load discretisation. The scan surface is 

divided into an equidistant grid, the nodes are positions of point loads assumed to be the 

total load of their respective surrounding area. The 4 SingleTact™ sensors, as they are 

on a separate layer, can approximate point loads centred at the sensor location. This 

illustration is not to scale. 

𝜎[𝑥,𝑦] =  
𝐹[𝑥,𝑦]

𝐴
 (4.3) 
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 The average load measured by the SingleTact™ sensors, for a normally loaded 

case, is given by Equation 4.4. This can be expanded into a general form that applies to 

the surface of the scanner by realising that the division of the total load is by the number 

of force nodes used in the scanner. For the simple case with the SingleTact™ sensors, 

this value is 4 as the sensor can be considered a node with a separation of 52mm. When 

discretised into N nodes, the node separation becomes 52/N. For the general normally 

loaded case, the load at any node location will be the average of all the nodes and can 

similarly be calculated from Equation 4.4. 

 

 This average value applies at all nodes, when the scanner is normally loaded, 

such that the summation of all nodes still equals the total applied force. When the 

scanner is tilted into the tissue, this average load will only apply in the centre of the 

scanner, with the loads at other locations deviating from this value by a function of the 

change in compression depth across the scanner face. The variation in compression 

depth across the scanner face is a function of the face geometry and the tilt angle that 

can be determined by rotating the plane that defines the scanner face by the respective 

tilt angles about the x and y axes. 

The plane of the scanner face can be described using its normal vector, u, defined 

in Equation 4.5 as it is flat and can then be rotated about the x and y axes of the scanner 

by angles θ and φ respectively using rotation matrices to yield the new orientation of the 

𝐹𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝐹𝑇𝑜𝑡𝑎𝑙

4
=  

𝐹𝑇𝑜𝑡𝑎𝑙

𝑁𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠
=

𝐹𝑇𝑜𝑡𝑎𝑙

𝑁𝑥𝑁𝑦
 (4.4) 
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scanner face. This is also described using its normal vector, u’, which is calculated in 

Equation 4.6. The difference in z coordinates between planes defined by u and u’ gives 

the relative change in compression depth, dz, with respect to the centre of the scanner 

face for face coordinates x and y. The relative change in compression depth is calculated 

in Equation 4.7. 

 

 

 

The relative change in compression depth at a location on the scanner face can 

then be combined with Hooke’s law to estimate the new applied load at a point on the 

scanner surface. Hooke’s law defines change in reaction force in response to an applied 

deformation, or vice versa, as a constant, k, for an elastic material. The application of 

Hooke’s law is shown in Equation 4.8, which allows the point load at any node on the 

scanner face to be calculated for a given tilt angle. The value of k is scaled by a factor of 

NxNy to account for the area change between the full scanner surface and the node area. 

𝑢 =  [0 0 1]𝑇 (4.5) 

𝑢′ =  [
1 0 0

0 cos 𝜃 − sin 𝜃

0 sin 𝜃 cos 𝜃

] [
cos 𝜑 0 sin 𝜑

0 1 0

− sin 𝜑 0 cos 𝜑
] [𝑢] (4.6) 

𝑑𝑧[𝑥,𝑦] =  
−1

𝑢3
′ (𝑢1

′ 𝑥 +  𝑢2
′ 𝑦 + 0) (4.7) 

𝐹[𝑥,𝑦] =  
𝐹𝑇𝑜𝑡𝑎𝑙 − 𝑘𝑑𝑧[𝑥,𝑦]

𝑁𝑥𝑁𝑦
 (4.8) 



 

131 

 

 The tilt angles, θ and φ, can be determined easily from the integrated orientation 

sensor if the initial orientation of the tissue is known, however it is more likely that it 

will unknown and will often be changing as the probe moves around a 3D surface. In 

this case the tilt angles can be calculated with respect to the surface using another 

application of Hooke’s law. By combining the deformation illustration in Figure 4.7 

with Equation 4.8, the SingleTact™ readings on a single axis can be used to determine 

the tilt angle of that axis. For a single axis, with 2 nodes, the expression for FAverage 

becomes Equation 4.9. As there are only 2 nodes, with a known location at distance ±S, 

the deviation in compression depth can be calculated using trigonometry and translated 

into a force at each node using Hooke’s law as shown in Equation 4.10 and Equation 

4.11. By solving these equations simultaneously for θ, an expression for tilt angle can be 

obtained in terms of the 2 SingleTact™ measurements on each axis as shown in 

Equation 4.12. A similar process yields an expression for φ as shown in Equation 4.13. 

𝐹𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝐹1 + 𝐹2

2
 (4.9) 

 

𝐹1 =  𝐹𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑘𝑆𝑦 sin 𝜃 

 

(4.10) 

  

𝐹2 =  𝐹𝐴𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑘𝑆𝑦 sin 𝜃 (4.11) 

 

𝜃 =  sin−1 (
𝐹2 − 𝐹1

2𝑘𝑆𝑦
) 

 

(4.12) 

 

𝜑 =  sin−1 (
𝐹4 − 𝐹3

2𝑘𝑆𝑥
) 

 

(4.13) 
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4.3.2.4. Estimating Elasticity from Variable Load Images 

In the case of normal loading, where F1:4 are approximately equal, the value of k 

can be ignored as it is not required to make a simple elasticity measurement. The 

estimation and calibration of the constant, k, for an elastic material shall be described in 

Section 4.3. Recording the change in image feature positions between images with low x 

and y translation over varying loads is a measure of the material lateral strain in response 

to a longitudinal compression. Combining this strain with the applied stress yields the 

Young’s modulus, E, or elasticity of the material under test. For elastic materials E is a 

constant, but it need not be in real tissues as the method is a characterisation of the 

stress/strain curve of the material. 

As the scanner face is flat, and the load is evenly distributed across the scanner 

face, the lateral strain will be equal in every direction. As such it is convenient to use the 

change in radial distance from the scanner centre as the measure of lateral strain. This 

gives a scalar value that is more intuitive to deal with. The radial distance of a feature 

from the scanner centre is simply the Euclidean distance of the feature from the centre. 

The change in radial distance, dR, between images with varying load can be estimated 

from Equation 4.14 where R and R’ are the feature distances in the lower loaded and 

higher loaded images respectively. The change in radial distance is a linear function of 

the lower loaded image feature distance, meaning that Equation 4.15 is a constant, α, for 

a fixed change in applied load, which is identical to the lateral strain. 
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For multiple concentric images taken at varying loads, the value of the lateral 

strain, εLateral, can be measured with respect to the applied load. The gradient of this 

relationship is a constant for an elastic material and can be used to determine the 

elasticity of the material using the Poisson ratio, ν, of the elastic material (assumed to be 

0.5 for an elastic material) to estimate the longitudinal strain, εLongitudinal, and Equation 

4.16 which relates applied stress, σ, with resultant strain using the elasticity of the 

material. This results in an expression for the elasticity of the material in terms of the 

change in applied load and resultant observed change in image feature radial distance, 

shown in Equation 4.17.  The elasticity value calculated is the mean elasticity of the 

material under the scanner, the background elasticity for tissue without a lesion. In cases 

with an embedded lesion, the mean is a good facsimile of the background providing the 

lesion is small with respect to the scanner area (Egorov and Sarvazyan, 2008). 

 

 

 

𝑑𝑅𝑖 = 𝑅𝑖
′ −  𝑅𝑖 (4.14) 

𝑑𝑅𝑖

𝑅𝑖
= 𝛼 =  𝜀𝐿𝑎𝑡𝑒𝑟𝑎𝑙 =  −𝜈𝜀𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 (4.15) 

𝐸 =  
𝜎𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙

𝜀𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙
 (4.16) 

𝐸 = −𝜈 
𝑑𝐹𝑇𝑜𝑡𝑎𝑙

𝐴𝑆𝑐𝑎𝑛𝑛𝑒𝑟 (
𝑑𝑅𝑖

𝑅𝑖
⁄ )

 (4.17) 



 

134 

 

4.3.3. Practical Validation 

4.3.3.1. Test Material and Method 

The use of SIFT feature tracking in estimating lateral strain, and the use of 

Equation 4.17 in integrating load measurements and lateral strain into an elasticity 

estimate, is validated by using the proposed system on an elastic test material and 

comparing the output with a known reference measurement of the material.  

The test material used in this validation is made from multiple layers of 

Ecoflex™, 000-35 and 00-10 rated Polydimethylsiloxane (PDMS) two part elastomer 

(Smooth-on, Inc., US-PA), as shown in Figure 4.11, with an A:B mixture ratio and 

additive thinning agents, Silicone Thinner™ (Smooth-on, Inc., US-PA) for each material 

layer given in Table 4.1. The silicone elastomer samples were cast sequentially into 

uniform rectangular slabs with dimensions given in Table 4.1. The total dimensions of 

the sample material are 130mm x 130mm x 20mm. The material has a hand-cut phantom 

vein structure, made from silicone mixed with K30050 microfine graphite powder (Kasp 

Security Ltd. UK), to provide representative features for the SIFT algorithm to track in 

the IR spectrum. This is constructed from a cast flat sheet of doped silicone, manually 

cut to a representative pattern based on generic images of breast vein patterns, modified 

to be a single piece for manufacturing reasons. Assessments of the optical properties of 

the materials have been made for PDMS (Laura Di Sieno et al., 2019) (Vaicekauskaite et 

al., 2020), and carbon dust (Papoular and Papoular, 2014), where the current phantom 

will be the superposition of the two although it is out of scope to characterise this. 
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Figure 4.11 - Validation material construction diagram. The vein pattern is a flat 

structure in layer B. The values of dimensions X, Y, and L are: 130mm, 130mm, and 

20mm respectively. 

 

Table 4.1 – Material compositions for the validation sample. The vein layer (B) 

comprises of two separate materials. B1 is the vein pattern itself, with the voids filled in 

with the skin material (A), designated as B2. 

 

 

MATERIAL COMPOSITIONS FOR CAMERA ELASTICITY 
VALIDATION TRIAL 

Sample 

Layer 
 

Material 

A:B 

Ratio 

Thinner  

By Mass 

 

Additives 

By Mass 

Thickness 

 

(mm) 

A 000-35 
 

1:1 

+0% None 4 

B1 00-10 

 
1:3 

+20% Carbon Dust 

 
1:100 

2 

B2 00-10 
 

1:3 

+0% None 2 

C 00-10 
 

1:1 

+10% None 14 
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There is little literature on the properties of PDMS and carbon mixtures, but the 

carbon in this case is there to provide easily demarked features for initial testing of the 

system prior to more representative testing with detailed optical properties. In future 

examples and phantoms, as shown later in this thesis, the mixture of SilcPig PMS488C 

skin pigment (Smooth-on, Inc., US-PA) provides a more representative phantom for 

detailed testing of system performance. The method is supported in the recent literature 

on optical PDMS phantoms for other applications  (Regal et al., 2020) as being 

appropriate for use at 850nm. There is a lack of literature on the effect of these additives 

on the elasticity and mechanical properties of PDMS mixtures, however low 

concentrations of dry powder is expected to harden PDMS, and high concentrations will 

weaken the structure due to cross linker inhibition. The same is true for the liquid 

pigment except for it always weakens the structure (lowering the elasticity), where the 

manufacturer recommends concentrations below 3% to maintain mechanical properties. 

As the assembled structure elasticity is the value of interest, rather than the value of the 

individual layers, this is of little consequence to the validation of the system. 

Validation of the calculated elasticity for the material sample as a whole is 

performed by comparing the response from the proposed system with the response from 

an Instron® 3342 universal testing machine (Instron Engineering Corp., UK) with a 

2519-102 (50N) loadcell. The Instron® 3342 has a stated accuracy of 0.5% and 

compresses the sample using the same sensor cap indenter as the handheld camera-based 

system at a compression rate of 5mm/s. The Instron® reference makes its measurements 

at the centre of the sample material. 
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4.3.3.2. Validation Results 

The proposed scanner is pressed normally into the centre of the test material by 

hand, in the same location as the Instron® reference measurement. The maximum load 

does not exceed 20N, 50% of the total combined rating of the SingleTact™ sensor array. 

Water based ultrasonic coupling gel is used to reduce the surface friction on the scanner 

face, to allow the surface to deform properly (this is standard practice in most forms of 

breast scanning including ultrasound and tactile imaging). The reference value of 

elasticity from the Instron® is 7.03kPa ± 0.22kPa, from 4 repeated measurements. 

In this trial an initial image of the sample material is taken with the scanner 

resting on the material surface, where the applied load is the weight of the scanner itself, 

F0 = 5.27N. Figure 4.12 shows a typical measurement of the differential lateral strain 

between two images of the sample material, the first taken at F0 = 5.27N and the second 

taken at F = 14.1N. This gives a differential load, dFTotal, of 8.83N. The graph shows the 

change in location of a feature position between the two images with respect to the 

measured location on the second image and validates the assertion of Equation 4.15 that 

a constant value can be determined for the apparent stretching of the material between 

the two images. The best fit line of dR/R with 159 feature points gives a lateral strain 

value of 0.133. 

This by itself is sufficient to obtain an elasticity measurement, as we have an 

applied differential load and a measured resultant strain. Assuming the material 

Poisson’s ratio is 0.5, and the contact surface area is 0.0048m2, the value of E can be 

determined as 6.89kPa which is within the Instron® reference window. 
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By utilising the high frame rate of the camera, many measurements can be made 

in a short period of time. Calculating the SIFT feature location changes over many 

images (>100) with respect to the applied load, yields a more stable estimate can be 

determined as shown in Figure 4.13. The value of elasticity from this method, 7.15kPa, 

shows that the initial approach using 2 images yielded an appropriate result, however 

this was subject to the 2nd image being taken in the ‘linear contact’ region of the stress 

strain curve. At low loads, the measurement of strain is dominated by movement of the 

scanner laterally as there is not enough load for friction to hold it in place. Beyond a 

differential stress of ~1250N/m2 (6N), there is sufficient friction to inhibit lateral 

translation of the scanner and so the material can be measured correctly. 

 

Figure 4.12 – dR shown as a linear function of R. For a constant force, the change in a 

features radial location between 2 images is a linear function of the measured location 

of the feature on image 2. This allows a single constant, α, to be determined for the pair 

which is equivalent to the lateral strain at the applied load. 

Original Image Feature Position (Radial Pixels) 
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 The applied load, and resultant measured lateral strain from SIFT feature 

tracking can produce a solution for the material elasticity when taking the mean response 

over the linear contact region as shown in Figure 4.13. This region is limited on the 

upper end by viscous creepage of the test material as the load approaches a maximum 

and is held relatively constant. By selecting any single image from the linear contact 

region and comparing that with the image at F0, the worst-case error is 28% from the 

mean response. Normally, the estimate from a single image will be the mean response 

over multiple images with a standard deviation of 5.23%, or 0.37kPa. 

  

Figure 4.13 – Stress Vs. Strain plot for the validation material as estimated by the 

proposed system. Each lateral strain value is the best fit gradient of each of 225 images 

compared with an initial image at F0 as described in Figure 4.12. These strain values 

are plotted with the applied differential stress when the second image is taken to 

produce the stress/strain plot.  
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 The elasticity estimates obtained from each image in the linear region of the 

material are shown in Figure 4.14. The statistics for all of the camera-based 

measurements are compared with the Instron® statistics in the right figure frame. This 

shows that the camera-based system is effective in producing an elasticity estimate when 

using Equation 4.17 in the linear range of an elastic material, with a mean error of 1.7% 

when compared with the Instron® reference measurement. The individual measurements 

made with two images are relatively good, but outliers exist, and so multiple images 

should be used for an accurate estimate of the material elasticity. 

 

Figure 4.14 – Single compression elasticity measurement statistics. Left) Elasticity 

estimates using the Jth image in the linear region of the material compared with an 

initial image at F0. Right) Statistical distribution of the 121 solutions from a single 

compression cycle of the proposed camera system compared with a reference 

measurement taken over 4 separate cycles to estimate confidence. 
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4.3.4. Discussion 

The elasticity results from the camera-based system, for the sample material with 

a complex, deformable, and observable embedded structure; are compelling when 

compared with the Instron® reference measurements. This means the use of SIFT in 

tracking features with respect to applied load can be validated in that it produces 

appropriate solutions when used in the proposed system. 

As the algorithm is able to produce a realistic solution, with mean error and 

standard deviation within the reference measurement variability, it is safe to say that the 

application of SIFT in measuring material lateral strain is valid. It should be expected 

that for an elastic material Equation 4.17 would be valid, which has been shown in this 

test. However, it is important to note the limitation of applying the elasticity equation to 

obtain realistic results on practical data. 

Making measurements at low loads is not feasible by hand due to the high lateral 

movement of the scanner across the surface. This makes estimating an average radial 

location change difficult, particularly if the motion is in both the x and y axes 

simultaneously. Additionally, SIFT is not totally immune to image noise and 

imperfections (scratches) on the scanner face and dirt/features on the material surface 

can introduce fixed artefacts in the image view. The fixed artefacts and image noise will 

produce SIFT features that are invariant to the applied load and so cannot be used to 

measure the resultant strain. Finally, there is a limit to the elastic range of most real 

materials before they begin exhibiting non-linear behaviour, and so only using solutions 

from the linear portion of the stress/strain curve is vital in calculating the elasticity as a 
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constant. There are several workarounds to these issues, which can negate their effects 

when used practically.  

Firstly, the issue of high lateral translation at low loads, below 6N but typically 

around 1N, can be reduced using less surface lubricant. This is not an ideal solution, as 

the lubricant is required to allow the skin to deform without sticking to the scanner face. 

A better solution is to simply ignore data at low loads, as has been done in this test. For 

clarity these ‘low loads’ are very small indeed and using a larger range of loads, that are 

still comfortable for a patient, will better utilise the dynamic range of the force sensors. 

Secondly, there is little that can be done about image noise other than using 

higher quality cameras but, the artefacts introduced by image noise rarely carry over 

from one image to the next and so the effect of this is relatively low. The bigger effect is 

from fixed artefacts that are invariant to load. Scratched lenses are a common problem in 

computer imaging, which is exacerbated by the acrylic scanner face used in the 

prototype system which is prone to scratching during manufacture. Using a glass scanner 

face would increase the systems resilience to scratching. Naturally, dirt and debris will 

accumulate on the material/skin surface and stick to the residual lubricant on the scanner. 

Regular cleaning of the material and scanner surfaces, particularly prior to use will help 

alleviate this source of error. Despite these basic workarounds, there is a limit to how far 

the issue on fixed image artefacts can be solved; as there will be naturally occurring 

fixed artefacts on the patient’s skin in live use, particularly hair. The hair follicles will be 

able to move, as they will deform with the skin, but the hair itself will stick to the 

scanner face as a result of the lubricant. While this cannot be totally accounted for, the 
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expected effect can be reduced by focussing the camera several millimetres below the 

skin; it would be highly impractical to insist on shaving or waxing prior to clinical 

evaluation using this system. In this situation, the majority of features tracked will be in 

the embedded vein network and not on the skin; as the number of load invariant features 

will be small using this measure, there will be a sufficiently large number of mobile 

features to estimate the material strain. 

Finally, most materials do not exhibit linear elastic responses over a wide range 

of applied loads. This is not necessarily a problem as the primary goal of elasticity 

measurement is the characterisation of the stress/strain curve of the test material. The 

general elasticity formula, Equation 4.16, will assume a linear response over the full 

load range, however Equation 4.17 allows for a non-linear response to be characterised, 

resulting in an elasticity value for a given strain or stress. This is appropriate when 

characterising normal highly non-linear materials with high load ranges (Wellman et al., 

1999a). In this case, the rule on omitting the ‘low load’ region of the stress/strain curve 

would still apply as this region is dominated by lateral motion and not necessarily 

representative of the underlying material properties. 

 This validation trial does not fully test the capability of the proposed system to 

measure elasticity over a range of material parameters, which shall be investigated later 

in this thesis; but proves that SIFT tracking can be used to measure material strain and, 

when integrated with tactile force sensors, characterise the stress/strain curve of an 

elastic material. The system has been validated on a simple material and will now be 

progressed onto mapping applications prior to rigorous testing. 
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4.4. Application in Improved Tactile Mapping 

4.4.1. Introduction 

Tactile mapping is the process of spatially referencing sequential tactile images 

for the purpose of gaining an overall tactile map of a larger structure. This allows for a 

complete picture of the internal tactile structure of the test material, and allows for the 

spatial relationship between tactile features, in this case embedded lesions, to be 

determined and monitored over time w.r.t. each other and w.r.t. other reference locations. 

Performing a tactile scan of the whole breast at once using a single large sensor (Gentle, 

1988) produces a total tactile view without mosaicking smaller images but is impractical 

and will be equally, if not more, uncomfortable than typical X-ray mammography due to 

the need to compress the entire breast in a similar manner.  

Methods of mosaicking tactile images have been proposed in the past using a 

magnetic position tracker to track the spatial relationship between images so that they 

could be superimposed on a flat map (Wellman, 1999), this was effective but limited in 

that the map was not referenced to the breast and was in fact a flat image referenced to 

the suprasternal notch of the patient. This made analysis between subsequent scans 

difficult, as the breast needed to be in exactly the same position/orientation w.r.t. the 

suprasternal notch, a situation made unlikely by the mobile and pendulous nature of 

breast tissue. This was followed up a decade later, where sequential tactile images were 

correlated with one another and overlayed at the point of maximum correlation to 

produce the mosaic (Egorov and Sarvazyan, 2008). This was effective and more 
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practical than the previous iteration as it did not require an external position tracking 

system but was limited in that the images were no longer robustly referenced to anything 

on the body unless the tactile scan passed over the nipple. Additionally, the method was 

not robust to rotation in the tactile images, it could only deal with translation, and so was 

unsuitable for practical implementation (Sarvazyan and Egorov, 2012). 

The ideal situation would combine the basic selling points of both previous 

methods, the body structure referencing and low infrastructure requirement respectively, 

and this can be achieved using the vein images previously collected for elasticity 

measurement. The vein images can be mosaicked using image processing techniques, 

such as the SIFT algorithm previously described, to produce a map of the breast onto 

which tactile images can be referenced, as shall be shown in this thesis. This is a 

common method used in other condition monitoring applications including visual pipe 

inspection (Summan et al., 2018) and robotic guidance (Khan et al., 2020). 

The key benefits of using the developed IR vein imaging system for tactile 

mapping are: firstly, the reuse of developed technology; secondly, the tactile images 

would be directly referenced to a structure within the breast and so would be relatively 

robust to orientation changes between scans; thirdly, the superposition of tactile images 

on the vein network will allow for an indication of the blood inclusion/invasiveness of 

the lesion; finally, the system would be robust to rotation of the scanner in use during a 

scan session, which suggests an implementation based on this system will be effective in 

practical use where rotation and variation is guaranteed by the manual nature of these 

systems in use. 
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4.4.2. Image Affine Deformation Reduction 

The biggest problem in forming a map of the vein structure from images taken 

during tactile imaging is from the deformation of the vein structure as a result of the 

tactile imaging process. It is clear that when the scanning probe is pressed into the tissue 

to obtain the elasticity estimate, the vein structure and other tissues deform. This is not 

useful for creating a map of the original breast as all of the structure features would be 

out of position with respect to each other.  

The SIFT algorithm, currently used for material elasticity estimation, is not able 

to handle relatively large affine tilt angle changes (Morel and Yu, 2009) and Affine 

SIFT (A-SIFT), a SIFT variant capable of handling view angle changes, is very slow and 

unsuited to real-time implementation (Yu and Morel, 2011). In order to reduce the affine 

distortion, and so be able to use SIFT to produce tactile vein maps, the additional sensors 

implemented into the scanner can be used to estimate the affine tilt directly in real-time. 

Knowledge of the tilt angle, from the hardware, and the contact mechanics; based on the 

applied load, scanner geometry, and material properties; allows for the affine 

deformation to be removed and the image recast into an ‘undeformed’ state with zero tilt 

angle. This is, in effect, an inverse transform function to invert the deformation of the 

vein structure caused by the contact during the tactile imaging process. 

From Equation 4.12 and Equation 4.13, it has been shown how the tilt angles can 

be estimated from the load measurement difference, from the tactile sensors, and the 

stiffness coefficient (k) which is constant related to the material properties and geometry. 

The tilt angle can now be used to estimate the stress field across the scanner face. The 
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load, F, at any point on the scanner face is estimated using Equation 4.8. The adapted 

elasticity equation, Equation 4.17, can be rearranged to estimate the ‘undeformed’ radial 

location of an image feature (R) based on its location on a deformed image (R’), the 

applied load (F), and the material properties (E and ν) as shown in Equation 4.18. This 

expression removes the ‘stretching’ between loaded images with zero tilt angle by taking 

into account the applied stress and material properties. The elasticity, E, is determined 

using the originally described process. This process removes visual deformation of the 

images. 

The expression can be generalised to include the tilt angle effect on the stress 

field, calculated in Equation 4.8, by understanding that the deformation, or stretching, 

increases with load. The applied load varies across the scanner face, as a function of the 

tilt angle, and so the deformation across the image will similarly vary. As such, the load 

distribution across the scanner face can be used to estimate the localised strain at a 

particular point on an image. Equation 4.19 shows how to ‘undeform’ an individual 

pixel’s location (P) based on the deformed pixel location (P’), the load at the position of 

P’, and the material properties as an inverse function of the applied contact. The load (F) 

is determined as a function of the tilt angle, scanner geometry, and material constant (k). 

 

𝑅𝑖 =  
𝑅𝑖

′

1 − 𝜈 (
𝐹𝑇𝑜𝑡𝑎𝑙

𝐴𝑆𝑐𝑎𝑛𝑛𝑒𝑟𝐸⁄ )
 (4.18) 

𝑃[𝑥,𝑦] =  
𝑃[𝑥,𝑦]

′

1 − 𝜈 (
𝐹[𝑥,𝑦]

𝐴𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝐸⁄ )
 (4.19) 
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4.4.3. Estimation of Material Constant ‘k’ 

4.4.3.1. Measuring ‘k’ from IMU/MARG Sensor Fusion 

The material stiffness constant ‘k’ is required to determine the affine tilt into the 

material, and thus estimate the stress distribution on the scanner face for affine 

deformation reduction. This is calculated using sensor fusion between the pressure 

sensors and the MPU6050 IMU, using the IMU to provide a reference angle for use in 

estimating the required ‘k’. Equation 4.12 and Equation 4.13 calculated the tilt angles 

based on the constant ‘k’ and the measured difference in pressure measurements on each 

axis, and can be rewritten into Equation 4.20 to estimate ‘k’ based on pressure difference 

and reference angle from the IMU. 

 

4.4.3.2. Measuring ‘k’ Practically 

To measure ‘k’ practically, the pressure sensors must be calibrated for linearity 

after being mounted onto the scanner as described in Appendix B. Then the transform 

between the IMU axes and the pressure sensor axes must be determined, in terms of 

angle offset to allow for the use of IMU orientation in this application. This offset is 

determined once during manufacture to give the corrected orientation of the pressure 

sensor axes. IMU orientation is estimated with respect to the local gravity vector using 

well documented 6DOF sensor fusion (Madgwick et al., 2011). 

 

𝑘 =  
𝐹2 − 𝐹1

2𝑆𝑦 𝑠𝑖𝑛 𝜃
=  

𝐹4 − 𝐹3

2𝑆𝑥 𝑠𝑖𝑛 𝜑
 

 

(4.20) 
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With the pressure sensors calibrated for linearity, and axes offset angle 

determined, an initial orientation estimate can be made using the IMU. When the load 

difference on the pressure sensor axes is zero, then the current IMU orientation is the 

orientation of the material surface, θ0 and φ0. Then: a small angle perturbation can be 

made to a single axis, or both, with the tilt angle being measured as the difference 

between the initial material orientation and the current orientation, θi and φi after the tilt 

perturbation as shown in Equation 4.22. An estimate of ‘k’ can then be made by 

sweeping across angles in a range (±10°) and linearly fitting to the resulting relationship 

between the axial pressure difference and the sine of the angle.  

In an ideal situation the value of ‘k’ measured using x or y axis tilts would be 

equal however, minor differences in materials and imperfections in the sensor 

calibration process can lead to small differences in the estimates of ‘k’ from each axis. 

As such, it is appropriate to use an average of the two as shown in Equation 4.22.                                   

 

 

The constant ‘k’, like the material elasticity ‘E’, must be determined for each 

patient at the start of the scanning process. The process is fast, as there is no image 

processing to do, taking approximately 4 seconds in total, described in Appendix B. 

 

𝜃 =  𝜃𝑖 − 𝜃0,    𝜑 =  𝜑𝑖 − 𝜑0 

 

(4.21) 

𝑘 =  
𝑘𝑦 + 𝑘𝑥

2
 (4.22) 
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4.4.4. Producing Vein Maps by Mosaicking 

Mosaicking is the process of matching spatially distanced, but overlapping, 

images and merging the images with the appropriate spatial relationship to form a single 

larger image. This process is basically the computer equivalent of solving a jigsaw, 

except that we have knowledge that two images should go together, we must simply find 

how they go together, analogous to rotating a jigsaw piece and trying each side of the 

piece for the best fit. In this case, the range of possible image relations in terms of 

translation and rotation is continuous rather than descrete for the simple jigsaw analogy. 

Applying Equation 4.19 to loaded images removes projection distortion from 

loaded/deformed images. This unwarps the loaded images into a planar projection that 

can then be mosiacked over one another, as the images will have similar scale 

throughout the image frame. The SIFT algorithm, previously described and used for 

estimation of the elasticity required to unwarp the images, can be similarly used in this 

situation for mosaicking (Brown and Lowe, 2007) (Khan et al., 2020). The SIFT feature 

descriptors for overlapping images can be matched and a net transform determined using 

Random Sample Consensus (RANSAC) (M.A.Fischler and R.C. Bolles, 1981). 

RANSAC is an optimisation technique to find a transform between matching points that 

rejects outliers and spurious false matches that make it throught the SIFT matching 

function by looking for agreement between random groups of matching points. Although 

RANSAC is a relatively old algorithm, it is still widely used in image processing 

specifically in mosaicking and panorama creation (Summan et al., 2018). When 

RANSAC has found the best fit homography matrix, a transform describing the relation 
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of one image to another via a change in camera position/orientation, the images can then 

be overlayed onto a blank map with the proper relationship. Improvements to visual 

quality can be made upon completion of the imaging process. By appreciating that the 

errors from image mosaicking in this context integrate linearly with image number and 

time (Rana et al., 2020), structure reconstruction can be improved by centring the 

mosaic on the centre-most image which reduces the visual distortion to the overall map.  

The 3x3 transformation matrix, Ti, relating unwarped imagei to unwarped 

imagei+1 is accumulated by matrix multiplication to find the total equivalent transform, 

TEquivalent (i), relative to unwarped imagei=1 as shown in Equation 4.23. Once the 

individual image processing has completed and ‘N’ images have been processed, the 

centre adjusted transform for each image, TAdj (i), can be computed using the inverse 

transform for the centre most image as shown in Equation 4.24. In this context T1 is a 

simple 3x3 eye matrix, and N/2 is the image index of the centre most image in the scan 

process. The initial unwarping process is illustrated in Figure 4.15. 

𝑇𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 (𝑖) =  𝑇𝑖 ∗ 𝑇𝑖−1                                         (4.23) 

 

𝑇𝐴𝑑𝑗 (𝑖) =  𝑇𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 (𝑖) ∗ 𝑇
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 (

𝑁

2
)

−1                             (4.24) 

With the transformation matrices of each unwarped image known, the images 

can be overlayed sequentially on a blank map with relationship TAdj relative to image 1, 

as shown in Figure 4.16. The structure being imaged in this example is the test material 

presented in Figure 4.11, for which elasticity values were previously determined. 
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Figure 4.15 - Projection of loaded tissue images to the unloaded viewpoint. The 

deformed image (Image 2), taken at a high normal load, can be projected onto the 

viewpoint of the undeformed surface (Image 1) using the homography matrix describing 

the transform between image 1 and image 2. The two images have a similar centre and 

so there is only a transform in the z axis (akin to zooming). The difference in observed 

tissue surface area between load states, caused by increased stretching at higher load, 

leads to missing features in the periphery of the image when the deformed image is 

projected into the undeformed view plane as illustrated in Figure 4.6. 
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The vein image mosaic, shown in Figure 4.16, does show clear banding from the 

scan direction where some features do not fully line up, however the total error 

accumulated after the 365 images used here is only 0.3% when compared with reference 

measurements from a VICON photogrametry tracking system (Rana et al., 2020) which 

has approximately 0.5mm positioning accuracy (Summan, 2015). This shows that this 

method is effective for forming maps of deformable vein structures, the validity of 

which over a range of materials and feature densities shall be tested further in Chapter 6. 

Tactile data can then be referenced onto this embedded structure map using the spatial 

relationship between a future tactile sensor and the vein imaging camera. 

 

Figure 4.16 – Mosaicking of affine corrected images. Image ‘I’ and ‘I+1’ are distortion 

corrected to remove affine distortion and recast images to their estimated ‘undeformed’ 

state. Following distortion correction, the homography matrix between image I and I+1 

is calculated using RANSAC on SIFT features. The 2 images are then overlayed using 

the transformation matrix, TAdj (i), to produce a continuous mosaic of registered images. 

Simulated Embedded Lesions Individual Rectified Images 
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4.4.5. Discussion 

The image unwarping technique using Equation 4.19 has been shown to be 

effective in reducing distortion in loaded images, where comparison between image 

matching features for SIFT alone vs. the proposed image unwarping function and SIFT 

together showed approximately 2.5 times as many diagonal inliers for the proposed 

function than for SIFT alone over the 365 images used in the sample trial (Rana et al., 

2020).  Perhaps more importantly, the standard deviation for diagonal matches for SIFT 

alone was >2 times higher than for the proposed function and SIFT together. This is 

summarised in Figure 4.17. This high variability and low average matching feature 

count leads to unreliable solutions for SIFT alone. 

Mosaicking of images deformed in the process of image capture is a difficult 

problem, with several proposed methods in the literature. Comparing the proposed 

system against: basic structure from motion (SFM) photogrammetry (Micheletti et al., 

2015), Finite Element Modelling (FEM) based SFM (Agudo et al., 2016), and Non-rigid 

SFM (Haouchine et al., 2014); Rana shows that the total accumulated positioning error 

of the proposed system is at least 4.1 times less than for the mentioned methods (Rana et 

al., 2020) as summarised in Table 4.2. This margin increases with variation in the 

applied load and deformation, but this shall be discussed in more detail in Chapter 6. 

Further improvement is possible using bundle adjustment, a global optimisation 

scheme to optimise the transforms for all overlapping images (Triggs et al., 2000), 

however the scale of the scanning regime and currently obtained positioning accuracy 

makes implementing this very complex step not resource effective for this project. 
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Figure 4.17 - Comparison of the proposed force-based feature matching function vs. 

SIFT. Note that both methods use SIFT for feature extraction, but the proposed force-

based system, using Equation 4.19, produces more matches with adjacent images than 

SIFT due to reduced image distortion. 

 

Table 4.2 - Total camera position error comparison. The proposed camera system and 

algorithm is compared with other SFM methods, suitable from similar applications, that 

do not factor in the applied load or utilise the extended camera hardware. The 

parameters were 365 images with a total displacement of 764mm. 

 



 

156 

 

The initial results shown here, and in the literature (Rana et al., 2020), show that 

the combined tactile sensor and IR imaging system is effective at reducing distortion on 

images taken during contact tactile scanning, which has the effect of producing higher 

accuracy structures and image registration than other methods that do not utilise the 

additional hardware. Applied to tactile imaging, this well-defined base structure will 

provide the basis for accurate registration of tactile images with respect to one another 

and with respect to the vein structure, when a tactile image is taken simultaneously with 

the IR vein image. If a tactile imaging array were fused with this technology, the implied 

registration accuracy of tactile features would be 0.296% as the two imaging techniques 

would be rigidly spatially related. 

The use of this type of system in tactile mapping, and registration of tactile 

images, has several key benefits over previous tactile image registration techniques. 

These are mainly: There is no need for external tracking systems for tracking probe 

position with respect to the body (Wellman, 1999), the system is referenced to mobile 

structures within the body that are robust to motion of the patient (Quieregatto et al., 

2014), and the system is robust to rotation of the imaging system using the rotation 

invariance of SIFT which is a must for a manually controlled hand held scanner (Egorov 

and Sarvazyan, 2008). 

It is believed that this technology is scalable, allowing the system to be 

implemented in a smaller configuration, for implementation in commercial TI systems 

such as SureTouch™, which will mean the impact of the technology will be greater than 

designing the tactile imaging system around this relatively large camera prototype. 
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4.5. Conclusion from Optical Tactile Mapping 

4.5.1. Prototype Optical Based System Practicality 

The optical system has been shown to be capable of producing an estimate of 

elasticity for an elastic material within the range of typical breast tissues by observing 

the deformation of vein structures under load. The system has also been shown to be 

able to produce accurate global depictions of the vein structure by non-rigid mosaicking 

of local overlapping images (Rana et al., 2020). 

The method of operation, specifically the way the operator collects data using the 

system, is very similar to currently used clinical TI devices (SureTouch™) in that the 

system is scanned gently across the breast to form the mosaic, with a gentle normal 

compression to perform the elasticity measurement. The practicality can thus be 

described as ‘good’ as it is no more awkward than current TI in terms of operator use 

and likely patient experience, especially compared with the MARG based system 

(Hampson et al., 2019) proposed in Chapter 3.  

On the note of public perception: although this system is non-invasive, in that it 

is not harmful nor penetrates the body, the use of a camera can be described as invasive 

in terms of privacy. The camera and lens combination used is capable of resolving the 

vein structure and the patients simultaneously (although they are out of focus), and so 

adoption of this technology in its current form may be hindered by privacy concerns. 

Although this issue is not generally applicable to the population in general, recent trends 

in the media surrounding surveillance and data collection by private entities have shown 
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that there is a subset of the population at large that may find issue with such imaging 

systems. It is well known that such people have a disproportionately loud voice when it 

comes to lobbying and policy making, and so future designs of this technology should 

take this into account. 

4.5.2. Summary and Next Steps 

This chapter has developed a novel handheld breast mapping technology based 

on the fusion of tactile sensors, orientation sensors, and IR cameras capable of forming a 

composite image of the vein structure within 0.3% spatial error that tactile data can be 

referenced to in future (Rana et al., 2020). This chapter has also developed a novel 

implementation and variation of A-SIFT based on physical measurement of contact 

stresses, allowing for reduction in affine and projective distortion. This allows SIFT to 

produce 2.5 times as many feature matches on average over 365 images than it would be 

able to produce otherwise. This chapter has also demonstrated a novel elasticity 

measurement technique based on the tracking of SIFT features with respect to load for 

measuring the background elasticity of a tissue or material within 2% of a reference 

standard with a standard deviation of 5.23%. This provides both a stable structure for 

tactile data to be referenced to, and the background elasticity required for differential 

measurement of lesion elasticity. 

The main limitation of this system, and the implementation of the algorithms, is 

that it has been tested on flat elastic phantoms. It is common to begin on simple 

examples first and validate the response before moving onto complex structures. 

Similarly, it is easy to obtain reference measurements for elasticity and position for flat 
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structures, it is very difficult to obtain reference values for complex geometries and so 

this problem will not be considered for this thesis. On that note, however, the method of 

measuring the tilt angle of the probe into the tissue is robust to surface orientation 

changes from Equation 4.21. Tracking the surface orientation using the difference 

between probe and compression angles will allow for the formation of 3D structures in 

the absence of significant shear on the structure. This simplified test system, using 

initially planar surfaces, does not test the device performance using 3D stacked 

structures, nor features that are less demarked than blood vessels. This limitation is not 

expected to significantly effect performance when applied to such structures/features or 

clinical trials. The SIFT algorithm that forms the basis of the proposed algorithm is 

suitable for 3D objects and additional features, even ones that may not be visible in 

adjacent images, will have a net positive effect on the performance of the system when 

compared to this simplified test example. 

As this system worked and was practical, the initial validation results were 

shortened to simply show the device working and what it would output in context. 

Expansive exploration into elasticity measurement accuracy over a broad range of 

material elasticities must be performed. Similarly, testing over a range of feature 

densities must also done to estimate the practicality of this system on patients with 

varying levels of visible vascular structure without requiring clinical assessment. In the 

current implementation, there is no space for a tactile array to identify tactile lesions in 

situ, and so the system shall be miniaturised to be compatible with current TI technology.  
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Chapter 5 

Prototype System Development and Testing 

 

5.1. Introduction 

This chapter covers continued development of the proof-of-concept system 

demonstrated in Chapter 4 into a practical, handheld, hybrid tactile imaging prototype 

capable of estimating the background elasticity of breast tissue and forming compound 

tactile images. This prototype will be designed to match the geometry of the 

SureTouch™ tactile breast screening system, to accelerate commercial adoption of these 

research outputs and increase the impact of research by working with industry partners. 

The additional developments, beyond the miniaturisation of the technology, involves the 

implementation of continuously updating material properties, adjusting the calculation 

of the applied load distribution to take into account the new probe geometry, the 

registration of tactile sensor data onto the IR vein map, and the analysis of tactile sensor 

data error sources. The developed system will be tested in terms of positioning accuracy 

for tactile mapping and elasticity measurement capability, over a range of simulated 

phantom breast tissue with varying elasticity and vein structures. This will show that the 

proposed technology and algorithms are effective in both regards. This chapter outputs a 

functional and practical tactile mapping prototype that is demonstrated on phantoms. 
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5.2. Integration into Commercial Footprints 

5.2.1. System Design 

The developed system is designed to be easily implementable in the existing 

commercial TI systems, specifically SureTouch™, by condensing the required 

technology and utilising the empty space inside the TI system. This mainly involves 

designing the camera system and optics to fit into a small form factor, around a contact 

surface similar to the SureTouch™ tactile array. An internal view of the developed 

prototype, shown in Figure 5.1, highlights how this is achieved. 

The developed system is based on an Edmund Optics EO-1312M USB board 

level camera (Edmund Optics Inc., US-NJ) which is a 1.3MP, 25FPS monochrome 

camera with a global shutter. This camera is secured to a rigid plastic mounting plate, 

with the appropriate generic M12 size lens protruding through the mounting plate and 

into a simulated SureTouch™ sensor backing. This sensor backing is designed to have 

the same dimensions as the SureTouch™ system, allowing for a tactile array to be 

mounted directly to it in future design iterations. The SureTouch™ backing features a 

hollow centre, containing a 17 x 15mm (OD) 850nm LED ring, and a flush acrylic view 

port with a 12mm x 10mm viewing area. Between the sensor backing and the rigid 

mounting plate are 4 SingleTact™ S8-10N capacitive pressure sensors (PPS Inc., US-

CA) bonded onto each respective surface using 3M 300LSE double sided tape (3M 

Company, US-MN) at known distances from the scanner centre as shown in Figure 5.2. 

These sensors are read using a custom I2C SingleTact electronics controller. 
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Figure 5.1 - Developed prototype system internal view. The system hardware 

components are highlighted in the image. See Figure 5.2 and Figure 5.4 for more details. 

 

Figure 5.2 - Developed prototype system underside view. The positioning of the 

SingleTact™ pressure sensors is shown behind the curved tactile array mould with a 

transparent window. Double-sided tape bonds the SingleTact™ sensors to both surfaces. 
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The SingleTact™ sensor controller is polled at 100 Hz via I2C by the governing 

sensor interface electronics board, which provides 5V to the system peripherals and 

converts the sensor data into a USB data stream using an ATMega32U4 microcontroller 

(Microchip Technology Inc., US-AZ) clocked at 16 MHz. The interface electronics also 

reads orientation data via I2C from a Bosch BNO055 9 DOF MARG absolute orientation 

sensor (Robert Bosch GmbH, DE), implemented as an Adafruit 2472 breakout board 

(Adafruit Industries LLC., US) at 20 Hz. Data is streamed out from the sensor system 

via a USB cable to a PC for use with a MATLAB based serial port reader DAQ program.  

This is shown as a block diagram in Figure 5.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 - Prototype System Block Diagram. The separate electronics modules are 

highlighted, and their purposes clarified. The SingleTact controller is a custom 

proprietary system, for replication 4x SingleTact Electronics modules can be used in 

parallel, as used in the precursor system from Chapter 4. 
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Each electronics module is secured to the rigid mounting plate using standard 

steel PCB spacers, to maintain component alignment in the event of a casing bend. The 

casing is an ergonomically moulded PLA material, secured to the rigid mounting plate 

as shown in Figure 5.4 and not in contact with the internal electronics to maintain sensor 

alignment. The LEDs are controlled using a push button switch on the outer case, so that 

they are not running continuously. This is to limit the heat dissipated by the LED 

module which, if left running continuously, can lead to ‘fogging’ of the view window 

and camera lens. The total power dissipation from the LED ring is limited to 200mW. 

The LED window is sealed from the front to stop liquid ingress. The sensor gap is 

intended to be sealed/covered using the tactile array protective sleeve. 

Alignment between the BNO055 sensor axes, the SingleTact™ sensor axes, and 

the camera [x,y] axes is critical to system operation. Deviations in alignment are 

tolerable, and can be compensated for by rotation matrices, providing they are found 

during manufacture and the calibration process shown in Appendix B.  

The system is completed using a SureTouch™ tactile array disposable sheath, a 

transparent low friction sheet to eliminate shear forces from the contact face. This allows 

for some protection to the SingleTact™ sensors from lubrication gel, and stops the 

system from sticking to test materials. The sheath is pulled tight over the view window, 

such that no creases or bubbles are visible in the camera image. This is a critical step, as 

these artefacts can obscure test features in the relatively small viewing area, leading to 

unreliable results. The final system prototype is shown in Figure 5.4. 
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The geometry of the faceplate does not hold any special academic significance, 

in that the shape does not award performance benefits over any other besides perhaps 

comfort, and was selected as a pragmatic engineering decision to accelerate future 

impact and academic output through the utilisation of existing technology, specifically 

the SureTouch tactile array. This is deemed important to future clinical research into 

breast tactile imaging using this technology, where long development times limit the 

impact of new technology on the clinical landscape. 

 

Figure 5.4 – Prototype system completed view in use. The system fits comfortably in the 

hand, with an easy-to-use push button on the surface to activate the IR LEDs. The hand 

is kept clear of the SingleTact™ pressure sensors, eliminating interference through 

contact. 
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5.2.2. Minor Algorithm Changes for New Geometry 

The geometry of the contact surface is different to that of the initial prototype 

developed in Chapter 4, and so the applied stress can no longer be assumed to be 

uniformly distributed over the scanner face when normally loaded. Due to the curvature 

of the contact surface in the new prototype system, the applied stress at a particular 

location will be function of the geometry and will be maximum at the point of maximum 

compression as expected.  Recalling Equation 4.8, describing the point load at a 

particular position on the scanner surface given some material property, k, and the 

change in compression depth from the centre of the scanner, dz, simplified in Equation 

5.1. In this case, the change in compression depth was estimated as the rotation of a flat 

plane by orthogonal tilt angles θ and φ respectively. For the new prototype, dz cannot be 

described as a flat 2D plane rotated and must be defined as the rotation of a 3D surface. 

This 3D surface is defined in Equation 5.2 and Equation 5.3. Here, z is the change in 

height of the scanner face as a function of the scanner radius, r, and the given location on 

the x axis in the direction of curvature. The scanner is flat in the y axis, and so is not 

used to calculate z. In this system r is 40mm. 

𝐹[𝑥,𝑦] =  𝐹𝐴𝑣𝑒𝑟𝑎𝑔𝑒 − 𝑘𝑑𝑧[𝑥,𝑦] (5.1) 

 

𝑧 =  −𝑟 + √𝑟2 − 𝑥2  

 

(5.2) 

  

3𝐷𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  [𝑥, 𝑦, 𝑧]𝑇 , |𝑥| <
𝑟

2
, |𝑦| < 25𝑚𝑚 (5.3) 
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In a similar manner to the method of Chapter 4 this surface can be rotated by tilt 

angles θ and φ respectively, to determine the change in compression depth from the 

centre of the scanner face as a function of the tilt angles, the x and y location on the face, 

and the curvature of the scanner. Although the scanner face is large, and so the total 

curvature ‘z’ is large, the image view port is small in comparison and so the total 

curvature of the view window is very small, less than 5% of the view port dimensions. 

This is a result of small angle approximations and Equation 5.2. The very small 

curvature of the view window means that the deformation of the tissue visible in the 

view port can be approximated to that of the flat plate described in Chapter 4. However, 

if the view port were larger or the tilt angles are very large (>20°), then the effect of 

lateral stress must be considered. This is not a testable condition, as the SingleTact™ 

sensors used to estimate the stress field are not suitable for the level of shear stress 

obtained at these angles (Hampson et al., 2019). 

The estimation of elasticity, and reduction in image distortion, are similar to the 

method for the flat plate from Chapter 4, with the adjustment of the geometry as 

described. This results in deformation being measured at a cartesian location on the 

array rather than at a radial location. In a similar theme, the single value of k averaged 

from axial estimations cannot be used in this new configuration. The value of k is now 

axis dependant, which means that more measurements are required to ensure stability of 

this value in use.  
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5.3. Automatic Calibration in Use 

5.3.1. Normalisation of Tactile Array 

Prior to use, the tactile array must be normalised to account for slight changes in 

sensor properties since the last calibration. The tactile arrays used come calibrated for 

linearity from the manufacturer, however changes in temperature, initial/previous 

loading conditions, and humidity can affect the linearity and output offset of the sensors 

on an individual element basis. This normalisation is required every time the system is 

used, or when the system is moved to a new location, as described in the SureTouch™ 

training documentation (not publicly available). The normalisation linearises the output 

over a specified range and is only valid for a short period of time, sufficient to perform a 

single scan, but no longer. 

The normalisation technique used for the SureTouch™ array is shown in Figure 

5.5. The SureTouch™ system is entered into its ‘calibration’ mode via the GUI. The 

sensor system is then held still, unloaded, for a short time to get a stable reading of the 

sensor offset for each element. The sensor system is then pressed normally by hand into 

a calibration block of soft, homogeneous, and elastic material on top of a reference scale 

to a target load of 1.5kgf. The internal gain of each element is then adjusted to obtain a 

nominally flat response across the array, with a linear relationship. This method of 

normalisation does not prepare the system for changes in operating temperature, or 

creepage, during operation. These have always been assumed to be small, and their 

effects negligible, for a simple indicator of lesion location (Egorov et al., 2009). 
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Figure 5.5 - Method of normalisation of the SureTouch™ tactile array (adapted from 

SureTouch™ training documentation 2015). The tactile array is normalised in the same 

way as it is done in the SureTouch™ clinical system. An unloaded measurement is taken 

of the current sensor baseline. The array is then pressed firmly, and normally, into an 

elastic soft material to a known load. This allows for a linearisation of the stress output 

for that range, unique for each sensor element, resulting in a flat response for simple 

homogeneous materials. 
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5.3.2. Initial Load and Orientation Sensor Calibration 

The post manufacture calibration of the SingleTact™ load sensors, and the 

BNO055 MARG sensor, to determine the initial axes offset and account for 

manufacturing irregularities is performed as described in Appendix B. The SingleTacts 

are available calibrated from the manufacturer, however once they are mounted in place 

they must be recalibrated to account for the mounting conditions. This is a onetime 

calibration process, and would not be performed by the system operator, or clinician. 

Prior to use, the orientation sensor must be calibrated first, as it is later used to 

normalise the SingleTact™ sensors. This is done following the process outlined in the 

BNO055 datasheet (Sensortec, 2020), and illustrated in Figure 5.6. The integrated 

accelerometers and gyroscopes are calibrated by placing the prototype in the 3 cardinal 

orientations, and their negatives, moving slowly between each and lingering in each 

for >4 seconds. The prototype holder has been designed to achieve the orthogonality 

required. The magnetometers are then calibrated by waving the prototype in a figure 8 

motion. Once the BNO055 signals that calibration is complete, the calibration 

parameters are stored for later use, meaning calibration does not need to be done on 

every use, except when the system is moved to a location with a different magnetic field. 

Following the orientation sensor calibration, the prototype is pressed normally 

into a homogeneous block of soft elastic material up to 1.5kgf, measured with a 

reference scale, similar to the procedure for the SureTouch™ array. The orientation 

sensor is used to confirm normal loading or compensated for slight tilt. A measurement 

is made of each sensor offset, and adjustment is made to the internal gain to achieve a 
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nominally flat response. This process is done each time the system is used to compensate 

for creepage and temperature changes and is valid for only a short time similar to the 

SureTouch™ normalisation process. 

 

Figure 5.6 - Illustrative prototype calibration/normalisation process. The sensor system 

is placed in the 3 orthogonal cardinal directions (insets 1-3) and their negatives, moving 

slowly between them to calibrate both the accelerometers and gyroscopes. The 

magnetometers are calibrated by slowly waving the scanner about in a figure 8 motion. 

Once done, the system can have the SingleTacts normalised in the same process as the 

SureTouch™ array (inset 4) by pressing normally into a calibration block. The 

calibrated MARG sensor is used to confirm the compression angle. 

          

          

(2) 

(3) (4) 

(1) 
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5.3.3. Dynamic Material Property Estimation 

The initial estimation of material properties, required for background elasticity 

and for image registration, is performed as described in Chapter 4. The validity of this 

value is limited in practice to the location where the measurement was taken, as 

biological materials and breast tissues are rarely homogeneous even at the largest scales. 

In order to make the system practical in a general sense, by not using a single value as a 

generalisation of the full test area, a method of re-evaluating the material properties 

during the scanning process is required. 

The base image mosaicking algorithm, utilising the initial material property 

estimates (Rana et al., 2020), is augmented with 2 additional parallel steps, as shown on 

the right of Figure 5.7. As each image is parsed through the physics-based image 

rectification function, processed using SIFT, and compared with the previous image to 

determine the spatial relationship, the displacement is monitored for a near zero 

condition. If this condition is false, then there is a significant spatial separation between 

2 images, and the image is then cached for mosaicking. If the condition is true, then the 

images have very little displacement between them, and so they can be considered to be 

concentric. Sequential images that meet this criterion are added to a separate caches, 

depending on the measured load distribution on the scanner. 

In the case of normal loading, within a small threshold, the images are loaded 

into a cache. When 5 images are accumulated in a small area, with the displacement 

condition still true, a new evaluation of the material elasticity ‘E’ is made, which 

updates the value used for image rectification until a new value can be determined. 
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Figure 5.7 - General flowchart of automatic material property estimation. The vein 

images are rectified, matched, and spatially registered as described in Chapter 4. The 

addition is the processes on the right of the flowchart, where sequential images that 

have very low relative displacement will be separated into a buffer. If 5 images exist 

within a low displacement threshold, then they will be considered concentric and will be 

used to re-evaluate the material properties E, and k, as previously specified in Chapter 4 

providing the images span a suitably large load range. 
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In the case of tilted loading, outside the normal loading threshold, images are 

loaded into a separate cache from the normally loaded static images. When 5 images are 

accumulated in a small area a new evaluation of ‘k’ is made, updating the value used for 

image rectification until a new value can be determined. 

The new estimates require the load and tilt values to span an appreciable range 

for the results to be valid, as shown in Figure 4.13. This can be guaranteed by defining 

the scanning process to include a regular ‘kneading’ motion, with the scanner being 

pressed gently into the tissue a rocked from side to side whilst being passed over the 

breast. This is similar to how SureTouch™ is used in clinical practice, particularly in the 

detailed scan mode, and so is not a major deviation in procedure. If the load/tilt does not 

span a sufficient range, determined from the initial material property estimation, then the 

value will not be updated. 

The values of E and k are spatially related using the IR vein image mosaic, 

allowing for an interpolated surface of values to be created. This surface can be used in 

post processing, as a second pass to further improve the output image, although this is 

not necessary for the current proof of concept trials. The elasticity surface can also be 

used to estimate local areas of background elasticity change. The resources required to 

fully validate and test the efficiency of this practical algorithm change robustly, by 

scanning a fully calibrated test material and verifying system response, are unavailable 

for this project. However, the individual methods of measuring E and k work, and so it 

can reasonably be claimed that this will also work, as it is simply a continuous execution 

of the pre-existing algorithms. 
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5.4. Registration of Tactile Images onto Vein Structure 

5.4.1. Interfacing Tactile and IR Images 

Tactile images are interfaced with IR images practically by equating the apparent 

pixel density of the tactile image with that of the IR images, so that they each cover a 

representative physical area. The tactile images are in fact a 12x16 stress array, but this 

can be interpreted as a 2D colour map or grayscale image. A 12x16 image is not directly 

compatible with a 1.3MP image, so the pixel density is used to enlarge the tactile image 

until there is a similar number of pixels in a given physical area. Figure 5.8 shows the 

types and size of the two imaging technologies being fused. The 12x16 tactile image has 

a scale of 0.4 pixels/mm, with a coverage area of 30mm x 40mm. The IR vein image has 

a scale of 74.2 pixels/mm with a coverage area of 10mm x 12mm. The tactile image is 

up sampled to have the same pixel scale as the IR vein images, by a factor of 180.5 

using cubic interpolation. This allows the images to be integrated together using pixel 

indexes, which is a convenient value to use. 

Continuing the issue of the differences in coverage area between the IR and 

tactile images, the difference in physical location between the imaging media must be 

taken into account. This is done by defining the offset in position and orientation of the 

tactile image w.r.t the IR images as a rigid transform matrix. This allows the different 

media to be overlayed and referenced with the proper spatial relationship as shown in 

Figure 5.9. The rigid transform, consisting of a designed translational offset and a 

rotational alignment is known from system design and manufacture. 
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Figure 5.8 - Tactile and IR Image Re-scaling Stages. Top) A 12x16 (30mm x 40mm) 

Tactile Image is taken of an area of the breast. Middle) A concentric, simultaneous 742 

x 891 IR image is taken (10mm x 12mm). Bottom) The Tactile Image is rescaled with 

interpolation to match the IR image pixel physical scale of 74.2 pixels/mm for plotting. 
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As the tactile images are rigidly coupled to the IR vein images, the image 

mosaicking quality and accuracy will be equivalent to that of the IR images alone. The 

expected output can be gleaned from Figure 5.9, where a tactile scan showing lesions is 

overlayed on the surrounding vein structure for registration and later 

inclusion/invasiveness analysis. The tactile inclusions would not be visible in the region 

of the IR viewport from a single image, however this area would be filled in using 

sequential overlapping images as described in the following section. 

 

Figure 5.9 - Superimposed Tactile and IR Vein Images. The vein image is related to the 

tactile image using a rigid transform, known from system design. This offset includes the 

physical offset between the tactile array and the camera, as well as any misalignment 

between the two during manufacture. Transparency of the IR image is set to 0.85 for 

illustrative purposes. 
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5.4.2. Tactile Image Registration Method 

A key objective of this thesis has been to register tactile images onto the vein 

structure of the breast, to remove subjectivity in lesion location, and allow locations to 

be tracked accurately over time. This can be done during one of two phases in the breast 

scanning process, either: concurrently with the vein image mapping, using the 

relationship between the tactile image and vein image to superimpose the two; or 

retrospectively, registering a vein image and coincident tactile image onto a pre-existing 

vein map. The former method is akin to the current ‘general scan’ from SureTouch™, 

where a scan is made of the entire breast and ‘hotspots’ are identified. The latter method 

is akin to the ‘detailed scan’ from SureTouch™, where an examiner would return to a 

‘hotspot’ for a closer examination, in this case a high-resolution tactile image would be 

obtained for further analysis and diagnosis. 

The homography matrix between two vein images, calculated during the vein 

mapping process, can be used to register tactile images by the same method. The 

relationship between tactile images and the vein images can be described using another 

transformation matrix, detailing the difference in origin position and orientation between 

the two media. This fixed transformation can then be applied to the existing homography 

matrix between the two vein images to register the tactile images onto the vein map. 

This process is shown illustratively in Figure 5.10, where tactile data is mosaicked using 

the IR vein images, filling in areas covered by the IR camera port, independent of load. 

This is the important technological step forward, as the tactile image correlation method 

(Egorov and Sarvazyan, 2008) fails when varying load reduces the ‘visibility’ of lesions. 
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Figure 5.10 - Mosaicked Tactile Data using IR Vein Images on silicone phantoms. The 

IR vein images are used to track the motion between frames, which is independent of 

load, and the tactile images are referenced onto the IR image mosaic. This allows for 

tactile data from the IR camera port to be filled in.  
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In order to mosaic the tactile images in a coherent and meaningful manner, 

overlapping images taken at different loads must be normalised to a common 

background level. This is akin to the IR vein image rectification from Chapter 4, where 

the images are rectified to their equivalent unloaded state. Tactile images cannot be 

normalised to their unloaded state, as the content of tactile images depends on load, and 

so they are rectified to the background elasticity surface at the location of the tactile 

image using background subtraction. Background subtraction reduces the baseline of the 

tactile images to a common value, typically zero, by fitting a second order surface to the 

tactile array data and then subtracting this surface from the tactile image. This method 

does not reduce the measured relative stress of an embedded lesion, and is the standard 

method in the literature and commercial implementations (Egorov and Sarvazyan, 2008).  

The background imaging process is further improved for the purpose of elasticity 

imaging, as opposed to tactile imaging, by adding the interpolated elasticity surface, 

generated by dynamic material property estimation, to the mosaicked, background 

subtracted, tactile data. This results in a coherent tactile mosaic, overlayed on an 

embedded vein structure, with its local baseline set to the background elasticity of the 

underlying tissue at a given location. Although the addition of the background elasticity 

is not important for a simple search for embedded objects, it will be very important for 

the determination of embedded object properties and later classification of lesions 

(Egorov et al., 2009) (Oleksyuk et al., 2016). 
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5.4.3. Deviation in Project Hardware 

The extreme cost and commercial investment required to modify the 

SureTouch™ pressure sensor array to accommodate the imaging system, specifically 

rearranging the electrical connections around the camera hole, necessitates the use of a 

simpler sensor array as a proof of concept before modifications will be made by 

commercial partners. The change in hardware does not make any difference to the image 

registration algorithm as the image registration is performed using the vein images, 

rather than the tactile images.  

The prototype system will be validated, in terms of its ability to register a tactile 

image onto a body structure, using a PN5420 strip sensor (Pressure Profile Systems, US). 

This is a 1x12 element array covering a 5mm x 80mm area, with elements of 5mm x 

6.7mm sampled at 100 Hz. This is secured to the scanner using 3M 300LSE tape. This is 

a large reduction in resolution from the SureTouch™ array, which will inhibit further 

analysis of the tactile images after registration, however this will be suitable for proving 

that tactile images can be registered using vein imaging. The change in physical size of 

the sensors used in the prototype, shown in Figure 5.11, means that the scan speed must 

be controlled to ensure tactile image overlap between acquired frames. The integrated 

prototype output image is shown in Figure 5.12 which illustrates the rigid transform 

between the tactile images and the IR images. Note that the rigid transform describing 

the relationship between the IR camera images and the tactile array will be different for 

different hardware. Similarly, the required scaling to make the TI pixel size match the IR 

image pixel size will change proportionally to the change in element size. 
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Figure 5.11 - Positioning of PN5420 Tactile Array. The Tactile strip is secured to the 

long axis of the contact plate, adjacent and parallel to the view port. The sensor 

electronics are secured to the rear with adhesives for strain relief. The unused portion of 

the sensor array is folded on the opposite side of the scanner and secured with adhesive. 

 

Figure 5.12 - Superimposed Tactile and IR Vein Images. The vein image is related to the 

tactile image using a rigid transform, known from system design. The rescaling is 

similar in process to that shown in Figure 5.9. 
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The PN5420 sensor strip does not have square elements and so the scaling of the 

tactile image, in terms of the pixel scale, is not uniform in order to match the scale of the 

IR images. This scaling follows the same basic process from Figure 5.8, except a 

separate factor is applied to the x and y dimensions respectively. This factor is 556.5 and 

371 for the x and y axes respectively, fixing the pixel scale at 74.2 pixels/mm to match 

the IR vein images. 

The PN5420 is a 1 x 12 element array, however only 6 are utilised for the system, 

fitting well into the contact surface as shown in Figure 5.11. The remaining sensor 

elements are folded gently out of the way and secured with adhesive tape. Similarly, the 

integrated electronics for the array is folded and secured to the rear of the scanner with 

adhesive tape. The sensor array is not configured for OEM applications, and so 

additional interface electronics are required to read data out to a USB terminal. The 

additional system components are shown in Figure 5.13. The integrated array electronics 

are connected to a D710 Bluetooth DAQ (Pressure Profile Systems Inc., US-CA), which 

communicates wirelessly with a Parani® SD1000U USB Bluetooth adapter (Sena 

Technologies Inc., US). Data is recorded by PPS Chameleon DAQ software and 

exported as a .csv file for analysis and post processing in MATLAB. 

Data from the multiple sensor systems in use within this prototype scanner are 

synchronised using a brief compression event, that allows for a common point to be 

identified in the tactile data, the camera data, and the load/orientation sensors. In future 

clinical implementation, all sensor media would be handled by a single controller and so 

would be automatically and implicitly synchronised. 
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Comparing Figure 5.12 with Figure 5.9, clearly the use of the strip sensor will 

have a detrimental effect on the quality of the tactile mosaic in terms of spatial 

resolution and coverage, however this is simply a demonstration that tactile images can 

be registered to non-rigid structures. The information available from the tactile mosaic 

will be better realised with the 2D array. Postproduction interpolation of the tactile 

mosaic can assist in filling in minor holes in coverage, but as stated previously, project 

limitations stop the use of ideal components for further analysis of the tactile data. 

 

Figure 5.13 - Implementation of PN5420 in the Prototype Scanner. The PN5420 array is 

connected to the D710 Bluetooth module, which powers the sensors. This communicates 

wirelessly to the Bluetooth adapter, relaying the data to a PC. The rest of the system, 

shown in Figure 5.3, is unaffected by this additional technology. 
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5.4.4. Registered Tactile Images using Proposed Prototype 

Verifying and demonstrating that the proposed system is capable of registering 

tactile images is done by scanning the test phantom described in Chapter 4. As it is not 

possible to register 1D tactile images without an external translation estimator, 

registration is purely from the IR image mosaicking as previously described. A typical 

scan pattern is shown in Figure 5.14, which clearly shows that the sequency of tactile 

images have been spatially related and registered onto the underlying vein structure. It is 

similarly clear that the spatial relations and post processing steps allow observation of 

complex lesion shapes representative of their true form, allowing lesions to be observed 

when they are not visible in the IR images. The tactile element size limits the resolution 

in the x dimension however the proposed system function is compellingly demonstrated 

with elasticity measurement and lesion contour corresponding well to reality. 

     

Figure 5.14 - Registered Tactile Images from Prototype System. Left) 1D tactile images 

mosaicked using IR vein images to form compound 2D tactile images. Filtration and 

background subtraction allows for complex geometry to be viewed. Right) Diagram of 

the test phantom used for context, with sensor coverage and true lesion areas shown. 
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Figure 5.14 showed that the proposed system and image registration method is 

effective at spatially relating tactile images, particularly as the tactile correlation 

technique proposed in early literature is not possible in this 1D case (Egorov and 

Sarvazyan, 2008). The scan was performed at a typical scan load of 1.5kgf (14.5N), with 

tilt controlled within ±5° at a scan rate of approximately 0.02m/s. The probe is covered 

in a disposable sheath and lubricated with 3-IN-ONE® multipurpose oil (WD-40 Co. 

Ltd., UK) to reduce shear stress. In a general use case, the limited coverage area of the 

IR camera is of little consequence, as the mosaicked tactile image with a large coverage 

area is what is really used for basic medical decision making. Although it is useful to 

have a fully populated vein map for the purpose of locating detailed scans in future, this 

will require many passes with the probe in order to get sufficient overlap. For the 

130x130mm area discussed here, a total of 10 back and forth passes are required to fully 

populate the area with vein images, but only 3 are needed to fully populate the area with 

tactile images with 50% overlap to increase the apparent resolution. 

The tactile array used here is not ideal, the large element size reduces the 

resolution, and the array protrusion reduces the validity of pressure measurements such 

that detailed material analysis cannot be done on this tactile mosaic without additional 

work. The result presented here can be compared to Figure 5.10, where the larger array 

is used to give higher resolution results, allowing extrapolation of how well the system 

will work when implemented with high quality, purpose designed, components. This 

serves as a proof of concept for the generation of new commercial and clinical 

prototypes, the registration accuracy of which shall be investigated in the next sections. 
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5.5. Test Strategy and Methodology 

The developed prototype developed and demonstrated in this chapter is intended 

as a practical solution to elasticity mapping, and so comprehensive testing is required to 

complement the initial validations previously presented. Testing is constrained to 

silicone phantoms with a range of realistic properties to act as proof-of-concept in order 

to build commercial support for future technological developments. It is not feasible to 

test every condition and use case, due to material and control limitations however, 

testing encompasses a representative range of scan motions observed in clinical TI in 

terms of scan speeds, applied load, and tilt angles. 

In this testing the ability of the prototype to measure background tissue elasticity 

and construct IR vein maps, in terms of positional accuracy, shall be determined against 

variations in both background elasticity and vein density on silicone phantoms in order 

to estimate the expected system efficacy in future clinical trials. Additional testing on 

the image matching accuracy vs. the applied load and tilt angle shall prove that the 

image deformation reduction function developed in Chapter 4 is effective for tactile 

mapping. The tactile mapping accuracy of the developed prototype is coupled to that of 

the IR mapping accuracy, and so the developed prototype shall be tested without the 

affixed tactile array. This is not an ideal state of affairs and is necessitated by limitations 

imposed on this project, particularly in terms of available materials, however from the 

testing presented here and the tactile map formed in Section 5.4 the system is suitably 

compelling and rigorously tested within scope to make fully integrated testing 

unnecessary for this proof-of-concept prototype. 
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5.5.1. Test Materials 

The phantom materials used for this testing are similar to those used in the 

validation tests of Chapter 4, in that they are made from layered silicone with an 

embedded IR visible vein pattern. For the purpose of parametric testing, 3 values of 

background elasticity with 3 values of vein density each have been made to represent the 

breadth of real-world conditions.  

The phantoms used in this testing are made from multiple layers of Ecoflex™, 

000-35, 00-10, and 00-30 rated Polydimethylsiloxane (PDMS) two part elastomer 

(Smooth-on, Inc., US-PA), as shown in Figure 5.15, with an A:B mixture ratio, additive 

thinning agent Silicone Thinner™, and pigment Silc-Pig™ (Smooth-on, Inc., US-PA) 

for each material layer given in Table 5.1. The silicone elastomer samples were cast 

sequentially into uniform rectangular slabs with dimensions given in Table 5.1. The total 

dimensions of the sample material are 130mm x 130mm x 20mm. The material has a 

phantom vein structure, made from silicone mixed with carbon dust, to provide 

representative features for the SIFT algorithm to track in the IR spectrum. The use of 

Silc-Pig™ PMS488C light skin pigment on the skin layer is to obscure the vein structure 

partially and increase the realism of the whole system in the visible spectrum. 

The silicone elastomer was mixed according to the manufacturer 

recommendation, with vacuum degassing before and after pouring into the mould. Layer 

C was cast first, with the vein layer cast separately into another similar mould, so as to 

better facilitate the cutting of the vein structures. The cut vein layer was then layered 

over the set layer C, still in its mould, to form layer B1. More of the layer C material, 
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minus the thinner but including pigments, was then poured over the existing layers 

filling in the voids in layer B1 and bringing the overall thickness to the desired level, 

forming layers B2 and A. Although the manufacturer recommends baking the set 

elastomers at a low temperature to fully cure them, this was not done in this case as 

doing so increases the elasticity of the samples. The long-term stability of the prepared 

phantoms is reduced as a result; however, the samples are calibrated before testing. 

               

                

Figure 5.15 - Silicone phantom material construction. Top Left) Thin veins with high 

feature density. Top Right) Medium veins with medium feature density. Bottom Left) 

Thick veins with low feature density. Bottom Right) Phantom layer material stack-up 

and representative breast vein image (adapted from Pacific Chiropractic and Research 

Centre – Breast Thermography) 

X 

Y 
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Table 5.1 - Material compositions for silicone phantom testing. The vein layer (B) 

comprises of two separate materials. B1 is the vein pattern itself, with the voids filled in 

with the skin material (A), designated as B2. Sample numbers of 1-3, etc. represent the 3 

different vein layer structures denoted in Figure . Lengths X and Y are 130mm. 

 

 

MATERIAL COMPOSITIONS FOR PARAMETRIC TESTING OF PROPOSED 
PROTOTYPE ON SILICONE PHANTOMS 

Sample 

Number 

Sample 

Layer 

 

Material 

A:B 

Ratio 

Thinner  

By Mass 

 

Additives 

By Mass 

Thickness 

 

(mm) 

 
 
 
 

 
 

1-3 

A 000-35 
 

1:1 

+0% PMS488C 
 

+1% 

4 

B1 00-10 

 
1:3 

+20% Carbon Dust 

 
1:100 

2 

B2 000-35 
 

1:1 

+0% PMS488C 
 

+1% 

2 

C 000-35 
 

1:1 

+10% None 14 

 
 
 
 

 
 

4-6 

A 00-10 
 

1:1 

+0% PMS488C 
 

+1% 

4 

B1 00-10 

 
1:3 

+20% Carbon Dust 

 
1:100 

2 

B2 00-10 
 

1:1 

+0% PMS488C 
 

+1% 

2 

C 00-10 
 

1:1 

+10% None 14 

 
 
 
 

 
 

7-9 

A 00-30 
 

1:1 

+10% PMS488C 
 

+1% 

4 

B1 00-10 

 
1:3 

+20% Carbon Dust 

 
1:100 

2 

B2 00-30 
 

1:1 

+0% PMS488C 
 

+1% 

2 

C 00-30 
 

1:1 

+10% None 14 
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5.5.2. Test Strategy and Validation 

The aim of this limited testing is to provide a proof-of-concept and build 

commercial confidence slowly, in order to secure additional invaluable commercial 

support in the form of custom tactile arrays for integration into the developed prototype 

in future works. Without the support of commercial entities to handle the reliable 

implementation of tactile sensors, TI cannot develop far beyond its state from the 1990’s. 

Testing of the prototype is performed in 3 key stages, each building confidence 

and understanding on the previous stages. Firstly, the performance in term of image 

feature matching is tested against variation in load and tilt angle, with correlation 

between SIFT matches and load/tilt angle being shown. This will prove whether the 

image deformation reduction technique presented in Chapter 4, is effective compared to 

a test using SIFT alone. This is done using an axial compression of the test materials, 

with no lateral translation, varying the load and probe angle continuously.  

Secondly, the performance in terms of positional accuracy of the reconstructed 

probe path is tested against the applied load and tilt angle, with correlation between 

relative position error between frames and the applied load/tilt angle being shown. This 

will show how effective the whole system is at registering images when the probe is 

moving in a natural manner. This is done using a scan of phantom 5 (medium veins, 

medium elasticity) for illustrative purposes, with an oscillating probe pattern. The 

positional reference comes from a VICON photogrammetry tracking system as used in 

previous literature for this task (Rana et al., 2020) which has approximately 0.5mm 

positioning accuracy (Summan, 2015). 
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Thirdly, the overall effectiveness of the system in registration of images and 

background elasticity estimation respectively is determined vs. the elasticity and vein 

density of the test material. This is required as the changing elasticity alters the total vein 

structure deformation in response to an applied load, and the changing vein density 

alters the number of available image features. The testing for image registration is done 

by scanning each of the 9 samples in a representative manner and measuring the 

difference in end locations of the probe compared with a VICON reference measurement. 

This will show the effectiveness of the prototype system in registering images and 

measuring background elasticity over a simulated range of realistic conditions prior to 

further development and clinical testing outside the scope of this work. The testing for 

the elasticity measurement is done by taking multiple compressive readings with the 

proposed prototype in the centre of each of the 9 samples and comparing them with a 

reference measurement from an Instron® 3342 universal testing machine (Instron 

Engineering Corp., UK) which has a stated accuracy of 0.5% and compresses the sample 

using the same sensor cap indenter as the handheld camera-based system.  

5.5.3. Test Controls 

The testing detailed above has certain control variables that are recorded for 

repeatability and representative comparison between tests. For the purposes of this thesis, 

all testing in this chapter is performed at 22 ± 1°C, humidity is not recorded although is 

implicitly controlled by the constant temperature. Humidity is known to affect tactile 

sensors; however, it is a constant effect like temperature that can be calibrated out and is 

not expected to change during the course of the testing. Calibration for all test cases is 
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performed for accurate steady state response at 22°C, with the normalisation routine 

detailed in Section 5.3 performed before each scan to account for any unexpected drift, 

from creep, hysteresis, or temperature change between scans of the test materials.  

Testing of the image matching and probe tracking vs load and tilt angle has 

additional controls, particularly: the applied load range was restricted to a range of 0-

15N, and the tilt angle restricted to ±20° in order to protect the sensor and probe 

assembly for future testing. Testing of the system ability to measure background 

elasticity has a controlled load range of 0-15N with angle control within ±5°. Testing of 

the system ability to register images, in the general case, has a controlled load of 10 ± 

2N, with tilt angle controlled at ±5°. These controls are not expected to negatively affect 

the conclusion of the tests, as clinical use of TI is typically in this range. 

5.5.4. Testing Limitations 

All testing has limitations in one form or another, and it is important to establish 

both the cause of a limitation and its expected effect on results when considering the 

efficacy of any system for a particular task. There are several important limitations to the 

scope of the testing of the prototype system that must be considered when drawing 

conclusions. The first is that the tactile array is not used for the tests. This is a result of 

the desired tactile array, the SureTouch™ array, not being available for implementation, 

however the accuracy is not related to the tactile array in use and so this will not affect 

the end result but must be considered when discussing the system ability to register 

tactile images. As the tactile array used in the prototype is not optimal, further testing 

with the reduced array described in Section 5.4 is not appropriate and so the tactile 
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mosaicking results from Section 5.4 must be considered along with the accuracy 

presented by this testing when determining the effectiveness of the system. 

Secondly, testing is performed at a single nominal temperature of 22°C. This is 

due to the need to calibrate the elasticity of the test materials at each temperature of 

interest. This is of particular difficulty as the temperature cannot be controlled at values 

other than the ambient background when in the Instron® testing machine, and the 

uncertainty in the elasticity change with temperature will be unacceptable when 

assessing the elasticity measurement accuracy at anything other than the calibration 

temperature. Due to an appropriate sensor error model, which will be developed in 

Chapter 6, this limitation is not expected to affect the results, however a limitation it 

remains as it cannot be reliably tested with the resources available. 

Finally, the testing is performed on flat silicone samples. This is a limitation in 2 

regards: the creation and calibration of 3D silicone breast phantoms was impractical and 

out of scope for this project, and the novel nature of the technology and logistical 

difficulties during the project inhibited clinical testing on truly realistic materials. This 

limitation is common practice in the literature, particularly for early stages of 

technological development (Wellman, 1999) (Ayyildiz, 2011) (Oleksyuk et al., 2015) 

(Rana et al., 2020). This limitation does affect the conclusion, as the validity of the 

system is not tested on realistically shaped 3D samples, however it is common practice 

to begin with a flat system as a proof of concept before developing onto more complex 

samples and testing and so this testing scope is not considered problematic.  



 

195 

 

5.6. Imaging Matching Vs. Load and Tilt Angle 

Following calibration of the prototype as described in Appendix B, and 

subsequent normalisation, each sample phantom was compressively imaged axially with 

the control measures stated previously remaining centred in a consistent position. The 

scan of each sample was lubricated using 3-IN-ONE® multipurpose oil (WD-40 Co. 

Ltd., UK) and assisted using a SureTouch™ disposable sheath to reduce friction. Both 

materials are transparent, and do not affect the captured images. 

Knowing that the proposed image mosaicking algorithm is effective in forming 

representative images (Rana et al., 2020), the sensitivities to operational parameters will 

be focussed on here. A typical response is shown in Figure 5.16, showing the correlation 

between the number of matching SIFT features between concentric images in a scan as a 

function of applied load and tilt angle for SIFT and the proposed algorithm respectively. 

For the SIFT implementation, there is high sensitivity to applied load and tilt angle, 

which is significantly reduced using the proposed algorithm. The sensitivity is expected, 

as increased load reduces the overlap between adjacent images and increasing tilt 

increases the affine distortion which SIFT struggles to deal with. The proposed 

algorithm still exhibits sensitivity to applied load, expected due to the reduction in image 

overlap, however this is smaller than that for SIFT alone due to the algorithm being 

unaffected by slight focal changes under load. Generalising the testing to observe the 

response over multiple samples, the first order surface fits are normalised and combined 

to form an average sensitivity response as shown in Figure 5.17 which accounts for base 

differences in sample feature density. 
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Figure 5.16 - Image Matching Vs. Load and Tilt Angle using SIFT (Left) and the 

proposed algorithm (Right). The sensitivity of image matching to load and tilt angle can 

be expressed by a 1st order surface with R2=0.93 and R2 = 0.30 respectively. Excluded 

data is from when the probe was stationary, where high matching is naturally expected. 

This illustrates the effectiveness of the proposed algorithm in reducing sensitivity to load 

and tilt. 

 

 

Figure 5.17 - Normalised Feature Matching Vs. Applied Load and Tilt Angle. 

Normalisation is used to account for variation in typical image matching between the 9 

samples as a result of differing feature geometry, allowing an average response to be 

computed. The ‘flat’ surface (proposed algorithm) shows little sensitivity to load, or tilt, 

compared with SIFT alone. Error in surface fit is indicated in the inset table. 

 

 

AVERAGE SURFACE FIT PARAMETERS AND 

95% CONFIDENCE INTERVAL 

PARAMTER 

 
SURFACE 

 

 

P00 

 

P10 

 

 

P01 

PROPOSED 0.9862 
 

±0.022 

-0.009782 
 

±0.0018 

0.001734 
 

±0.0041 

SIFT 1.017 

 
±0.034 

-0.06218 

 
±0.0021 

-0.02285 

 
±0.0045 
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Normalisation of the sample scans, consisting of 220 to 373 images each, is done 

by scaling the largest range from the SIFT/Proposed Algorithm matched features from 0 

to 1, and applying the same transfer function to the smaller of the ranges. Normalised 

results for each sample are then averaged, producing the resultant representative surface 

fits shown in Figure 5.17Figure , denoted by Equation 5.4 where P is a fit paramter, F is 

the applied force, and ψ is the tilt (elevation) angle magnitude in spherical coordinates. 

 

The testing for image feature matching sensitivity shows that the performance of 

SIFT reduces with both applied load and tilt angle as expected, and while sensitivity still 

remains in the proposed algorithm the sensitivity magnitude to load and tilt is typically 

reduced by a factor of 6.36 and 13.18 respectively when processed in parallel on the 

same data. Additionally, the 95% confidence intervals from the sensitivity surface fit 

shows reduced variability in sensitivies between samples for the proposed algorithm 

compared with SIFT, although this reduction is small. The sensitivity variation between 

samples, indicated by the surface fit 95% confidence interval, is a result of the physical 

differences between the samples and is entirely expected. The results of this testing 

shows that the proposed physics based image rectification algorithm is effective in 

increasing the number of SIFT feature matches between adjacent images when 

compared with SIFT alone, building upon earlier works to the same effect (Rana et al., 

2020). The number of features is correlated with the registration accuracy (Nuari et al., 

2019) and so this positive result leads into further testing of probe tracking accuracy. 

z =   𝑃00 + 𝑃10𝐹 + 𝑃01𝜓 (5.4) 
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5.7. Probe Tracking Vs. Load and Tilt Angle 

Following initial calibration of the prototype as described in Appendix B, and 

subsequent normalisation, each sample phantom was scanned in full with the control 

measures stated previously. The scan of each sample was lubricated as previously 

specified and conducted at an average stroke speed of 0.03m/s in line with typical TI 

clinical use. A typical representative position estimation response is shown in Figure 

5.18, showing the position estimates generated by the proposed algorithm and by SIFT 

compared with a reference measurement from the Vicon system. It should be noted that 

although the results of the proposed algorithm shown are typical of wider testing, the 

results for SIFT alone are not, as SIFT can often produce unreliable results or none at 

high loads and tilt angles. Due to this, the SIFT results are illustrative of a ‘best case’ 

scenario, and so will not be considered in further testing.  

Error in odometry systems are typically cumulative over time, and the proposed 

system is no different as shown in Figure 5.18. Over a typical simple scan pattern, 

scanning backwards and forwards over the sample surface, small errors in image 

matching and translations add up. This usually means that the overall position error 

increases, however it is possible for the total error to reduce should the image matching 

underestimate the translation between images after consistantly overestimating. The total 

error is a function of time, however the rate of error accumulation is a function of the 

applied load and tilt angle as shown in Figure 5.19, which makes sense from Figure 5.18. 

It is also clear that the proposed algorithm is a significant improvement over SIFT, 

although this comes as no surprise from earlier testing and research (Rana et al., 2020). 
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Figure 5.18 – Typical sample scan position estimation. Left) Position estimation of SIFT 

and proposed algorithm compared with Vicon reference. The scan passes do not overlap, 

but this is not of relevance. Right) Error accumulation over scan duration, shown with 

applied load and tilt. Clearly the error is linked with the load/tilt variation over the scan. 

 

 

Figure 5.19 – Rate of error accumulation sensitivity to load and tilt angle. The results 

are for the same scan detailed in Figure 5.18. The sensitivity to tilt angle is greater than 

for applied load, with SIFT sensitivity (the steeper surface) being significantly larger 

than the proposed algorithm as expected from SIFT failing under high tilts. 
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The typical result shown here aligns favourably with testing performed by other 

researchers (Rana et al., 2020), with the critical difference being that the rate of error 

accumulation is highly variable in this testing whereas earlier research showed a 

relatively linear increase in error as a result of the constant controlled scan load and tilt 

used in that initial research. The mean loads were similar, allowing for comparison, 

although caution must be exercised when drawing detailed conclusions as only orders of 

magnitude can be compared with confidence due to experimental differences. 

It is convenient to use an error ratio metric when evaluating the position accuracy, 

which describes the total position error as a percentage of the total distance travelled. 

For this scan, a value of 0.34% is obtained, which is favourable compared with testing of 

the larger and higher resolution system from Chapter 4 with had 0.29% over a total path 

distance of 1.6m. This suggests that the reduction in camera size not affected the 

accuracy significantly, and the accuracy is improved compared with existing registration 

methods with error ratios typically >1.2% (Rana et al., 2020) as shown in Table 5.2. 

Table 5.2 – Comparison of positioning error obtained on a single scan of similar 

phantom materials with different technologies and algorithms. Testing of three 

additional methods was performed by Dr. Rana (Rana et al., 2020), with 

implementations unavailable for testing on current prototypes. 

 

 

 

COMPARISON OF POSITIONING ERROR TO EXISTING METHODS AND 

PROTOTYPES  

 
System 

 

Metric 

 

Chapter 5 

Prototype 

Proposed 

 

Chapter 5 

Prototype 

SIFT 

 

Chapter 4 

Prototype 

Proposed 

 

 

SFM 

CH4 

Prototype 

 

FEM 

CH4 

Prototype 

 

NRSFM 

CH4 

Prototype 

ERROR 
RATIO 

(%) 

0.337 1.686 0.296 1.833 1.496 1.221 

RMS 
ERROR 

(mm) 

2.091 10.467 2.261 15.263 11.821 12.360 
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Generalising the testing to observe the response over multiple samples with 

similar loading regimes, the first order surface fits are normalised and combined to form 

an average sensitivity response as shown in Figure 5.20. The fit surface paramteres are 

noted, and defined in Equation 5.4. As this testing focusses on the changes in rate of 

error accumulation, rather than total error, there is little variation between samples as 

indicated by the narrow 95% confidence intervals on the fit surfaces. Compared with 

SIFT alone, the proposed algorithm offers a typical improvement in sensitivity to load 

and tilt angle by a factor of 4.99 and 5.01 respectively. The results of this testing shows 

that the proposed algorithm is effective in decreasing the rate of position error 

accumulation when compared with SIFT alone and existing methods in the literature, 

building upon and expanding earlier works to the same effect (Rana et al., 2020). This is 

a positive result that leads into testing of total error in a general use case. 

 

Figure 5.20 - Normalised Error Rate Vs. Applied Load and Tilt Angle. Normalisation is 

used to account for any variation in typical base error between the 9 samples as a result 

of differing feature geometry, allowing an average response to be computed. The ‘flat’ 

surface (proposed algorithm) shows little sensitivity to load, and tilt, compared with 

SIFT alone. Error in surface fit is indicated in the inset table. 

 

 

AVERAGE SURFACE FIT PARAMETERS AND 

95% CONFIDENCE INTERVAL 

PARAMTER 

 
SURFACE 

 

 

P00 

 

P10 

 

 

P01 

PROPOSED 5.85x10-5 

 
±9.45x10-5 

0.00324 
 

±1.3x10-5 

0.01292 
 

±3.0x10-5 

SIFT -0.015 

 
±4.8x10-4 

0.01617 

 
±7.0x10-5 

0.06459 

 
±7.2x10-5 
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5.8. Performance Vs. Elasticity Vs. Feature Density 

5.8.1. Elasticity Measurement 

Compressing the centre of each sample in turn through a load range of 0-15N 

yields elasticity estimates using the method described in Chapter 4 section 4.2.3, that is 

compared with a reference measurement from an Instron® 3342 universal testing 

machine. The testing involves 5 compressions using the proposed system on each 

sample, with each compression consisting of > 100 images over the specified load range. 

These values are then compared against the mean of 4 reference measurements for each 

sample. The results of parametric testing across the 3 hardness classes and 3 vein 

structure classes are shown in Figure 5.21. The first order surface fit to the results 

describes the elasticity absolute error, as a percentage of the reference elasticity 

measurement, as a function of the feature density and reference elasticity. The surface fit 

is defined in Equation 5.5, where P is a fit parameter, E0 is the reference elasticity in kPa, 

and n is the feature density class. 

 

The results, summarised in Table 5.3, show typical elasticity absolute errors of 

2.36% ± 0.93% with worst case error < 4.5% over an elasticity range of 9kPa – 60kPa 

with insignificant sensitivity to both feature density and elasticity. There is no observed 

correlation between either variable and the total spread of elasticity estimates for a given 

sample. This shows that the system is effective over the range of test materials. 

z =   𝑃00 + 𝑃10𝐸0 + 𝑃01𝑛, 𝑛 = [1,2,3] (5.5) 
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Figure 5.21 - Elasticity measurement error sensitivity to sample parameters. The results 

show little sensitivity to feature density and true elasticity as indicated in the inset table. 

The total spread for an individual sample varies, but the mean absolute error is 

relatively constant, with R2 = 0.12. 

 

Table 5.3 – Proposed system elasticity measurement results. The results of repeated 

reference measurements are shown to complement Figure 5.21. The minor natural 

variation in elasticity for each of the hardness classes gives additional coverage over the 

total range. Error values show max/min of testing results range. 
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5.8.2. Probe Position Tracking 

Performing repeated representative scan patterns over the 9 phantom samples, 

lubricated and with load/tilt controls of 10±2N and 0±5° allows the probe position 

estimation accuracy to be determined. The results of 5 repeated overlapping scans with a 

total path length > 1200mm (> 10 passes) are shown in Figure 5.22. where the RMS 

position error describes the conservative typical absolute differences between the 

estimated probe position and the corresponding coincident reference measurement from 

the VICON. The results clearly show that over the range of materials tested, the typical 

position error is within 2mm of the reference with a standard deviation of 0.86mm 

across all results. This means that over the 120x120mm scannable area, the device is 

typically accurate to 2mm when compared with the 0.5mm accurate VICON reference. 

The 1st order surface fit to the data indicates slight sensitivity to both elasticity and 

feature density, with the RMS error typically decreasing for increasing material 

elasticity and feature densities. The surface fit is defined in Equation 5.5, with fit 

parameters detailed in Figure 5.22. 

  The typical RMS error result of 2mm is a good result as accuracy is within 1 

SureTouch™ array sensor element which gives this number some context. In terms of 

path reconstruction, the absolute path length error is another measure of the 

displacement measurement accuracy focussing in 1D which allows for conceptualisation 

of image registration accuracy in a typical scan pass. The results from the previous tests 

are shown using this metric in Figure 5.23. In this situation, the total path length error 

can be used as a measure of the registration accuracy of one image to another. 
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Figure 5.22 - Position tracking RMS error sensitivity to sample parameters. The results 

show sensitivity to feature density and true elasticity, as indicated in the inset table. The 

results show that as feature density and elasticity increase, the position error reduces 

with R2 = 0.47. 

 

 

Figure 5.23 - Path distance measurement sensitivity to sample parameters. The results 

show limited sensitivity to feature density, with larger sensitivity to elasticity as 

indicated in the inset table. The total path error decreases as feature density and 

elasticity increase, with R2 = 0.78. 
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The results from analysis of path error shows that the path reconstruction error is 

typically < 0.5%, over path lengths in the range of 1.2-1.8m (10-15 passes over the 

material). The results show a mean path error of 0.33% with a standard deviation of 0.17% 

when compared with the VICON reference measurement. The worst case observed error 

was 0.62%, which is an excellent result compared with expected performance from 

similar image registration methods that had errors > 1% (Rana et al., 2020). The results 

show similar sensitivity to elasticity and feature density as the RMS error, in that the 

path error decreases as material elasticity and feature density increases. The relative 

sensitivities to these parameters are different from the RMS position error plot, with the 

RMS error having greater sensitivity to feature density than to elasticity, and the path 

error having greater sensitivity to elasticity than to feature density. The sensitivities 

cannot be compared quantitatively as they are measures of different physical concepts, 

but it is important to note that the sensitivities to both feature density and elasticity are 

small for either metric making deviations in error caused by sensitivity to these 

parameters small in comparison to their mean value. 

In summary, considering the surface fit extents as an approximation of the 

continuous variation in probe performance over the test parameters, the proposed system 

has a typical RMS position error of 1.8mm ± 0.65mm over the range of 45 tests, and a 

typical image registration accuracy of 0.33% ± 0.15% over the same test sets. This 

shows that the system is capable of stable operation over the range of simulated breast 

tissues, with positioning errors within the size of a SureTouch™ tactile element. This is 

a positive result that demonstrates the system accuracy and practicality in use. 
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5.9. Discussion 

The results show that the proposed system is effective in measuring both the 

background elasticity of the sample and in registering IR vein images as detailed in the 

previous testing section. This effectiveness was indicated in initial validation testing of 

the core method in Chapter 4, but was comprehensively tested once integrated into a 

practical footprint. The minimal change in error between the proposed methods 

implemented on the Chapter 4 prototype and that implemented on the current prototype, 

highlighted in Table 5.2, shows that the performance has not been significantly impacted 

by the miniaturisation of the system components. 

The background elasticity measurement accuracy of the system is high and is in 

line with other compression based, static desktop, soft tissue elastometers (Egorov et al., 

2008) across the range of available test materials. The very low sensitivity to both the 

elasticity and feature density of the sample materials shows that a relatively flat response 

is expected over the continuous parameter space. The test materials were made to span 

the largest range of normal breast tissues (Wellman et al., 1999a), with sufficient 

spacing to support parametric testing. The choice of purely silicone phantoms for this 

testing was appropriate as the tissue mimicking viscous properties of other materials 

such as agar (Manickam et al., 2014) were not required for the static mechanical tests, 

and the long shelf life of silicone phantoms was considered practically important for 

testing (Cao et al., 2013). Due to material calibration constraints the materials could not 

be tested with the probe immediately after calibration, however the low variability in 

reference measurements for a given sample indicates that this is not a problem.  
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The positioning error presented here, although small, is slightly exaggerated by 

minor differences in motion detected by the VICON and true motion of the probe w.r.t. 

the material surface. The reference measurement is an absolute measurement in 3D 

space, whereas the probe position is relative to the material upper surface. Adhesion 

between the test material and the probe will cause motion observed by the VICON to not 

be visible by the probe to the same extent, with subsequent slippage being seen by the 

probe but not by the VICON. The phantom test materials are large in comparison to their 

thickness and well lubricated so the effect of this will be small, however this limitation 

tends to lead to an overestimation of the positioning errors. This is a better result, as it 

means the performance witnessed in this testing is an upper bound on the positioning 

error. The probe path error is a better metric to look at it in this case, as the direction of 

the slip/adhesion does not affect the total path length as it does the 2D position 

estimation. The results shown for both cases are positive, with the positioning error and 

path error being within one tactile element of the intended SureTouch™ array, meaning 

the tactile registration error will not be detrimental to current screening TI.  

The positive IR image registration results coupled with the tactile array 

registration demonstration in Figure 5.14 proves that tactile frames can be mosaicked 

using IR vein images to form comprehensive tactile maps of tissues. When tactile map 

pixel averaging is used, the effect of the minor registration errors on tactile images will 

be reduced when adjacent scan passes overlap. It is known that further accuracy 

improvements can be achieved using bundle adjustment (Triggs et al., 2000), but is not 

necessary due to the small scan area and relatively high base registration accuracy.  



 

209 

 

5.10. Conclusion to Prototype System Development 

5.10.1. Developed Prototype System Practicality 

The developed system, being a handheld device, is inherently more practical than 

any static piece of equipment. Considering the impracticality of the handheld system 

from Chapter 3, this does not necessarily mean the system is truly practical just because 

it is handheld, but in this case it is. The system is easily scanned across the phantom 

surface with the help of lubrication, as is the case in current TI. The system presented 

here has the same tissue scanning process, other than the additional calibration step for 

the MARG sensor, as SureTouch™ which is known for ease of use.  

The proposed system does not use external components such as reference 

position trackers, other than a PC/Laptop, which makes the system a great improvement 

over previous tactile mapping works that required such devices (Wellman, 1999). 

Additionally, the proposed system does not rely on features on the tactile image to 

mosaic the tactile frames, and so the ability to track motion is independent of the applied 

load which controls visible tactile features. This makes this work a significant 

improvement in practicality over previous works that used tactile image correlation 

(Egorov and Sarvazyan, 2008) as the proposed system works with no tactile features.  

5.10.2. Suitability for Purpose and Engineering Limitations 

The purpose of this prototype was to demonstrate that tactile mapping is feasible 

using tactile image mosaicking, to provide a stable platform for future embedded lesion 

analysis and clinical testing. The proposed prototype has met this objective as 
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demonstrated throughout this chapter and in doing so has met another major project 

objective in measuring the background elasticity of a soft material. The limited 

integration with a tactile array has shown that the proposed system can display elasticity 

differences over a material referenced to the underlying patient specific vein structure in 

simulated phantoms. These outputs: background elasticity, large scale tactile images, 

and tissue differentiation; meet the project objectives in providing a practical proof-of-

concept prototype that can easily be developed further into an integrated system for 

clinical testing. The system developed and tested in this chapter will allow future works 

to focus on tissue differentiation and clinical validation, as measuring background 

elasticity and forming repeatable tactile maps is critical to accurate measurements of 

embedded objects from surface compressions (Sarvazyan and Egorov, 2009). 

As the 1x6 tactile array used is not optimal, and was not designed for this type of 

application, further analysis of the tactile maps for the purpose of accurate embedded 

lesion measurements was not feasible in this project. The prototype has been properly 

demonstrated, with descriptions of how the system would operate using the 

SureTouch™ array, and so it can be safely stated that the proposed prototype is suitable 

for its purpose. In the current implementation, tactile image mosaicking was not possible 

in real-time due to tactile, camera, and auxiliary data not being able to be combined into 

a single data stream, and the subsequent need for a data synchronisation event. This does 

not affect the outcome of the system in any way, and it is well known that image 

processing of this type can be performed in real-time (Summan et al., 2018), so the 
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system is suitable for its purpose and can deliver tactile maps quickly with future 

commercial dedicated sensor integration. 

5.10.3. Summary and Next Steps 

This chapter has presented a novel handheld tactile mapping and elasticity 

measurement system with registration errors of 0.33% ± 0.17% and elasticity 

measurement errors of 2.36% ± 0.93% validated over a wide range of simulated breast 

phantoms. This work has built upon previously published works (Rana et al., 2020) and 

work from Chapter 4 of this thesis, and represents a significant improvement over earlier 

works in this field in terms of practicality and accessibility in a clinical setting (Wellman, 

1999) (Egorov and Sarvazyan, 2008). 

The potential impact of the proposed system is maximised by developing the 

system within the confines of a commercial TI system, allowing the developments 

presented here to be easily adopted in industry. Similarly, the tiered proof-of-concept 

style testing of the core methods and integrated system provides confidence and detail 

on system functionality, adding to the impact as less effort is required by other 

researchers or developers to further this work. The scope of this work has been limited 

by material availability and so its clinical impact cannot be fully assessed. From the 

research presented in Chapter 2 the key metrics for cancer differentiation have been 

delivered and so a resulting improvement in diagnostic and differential accuracy is 

expected when the system is combined with existing tactile analysis methods (Egorov et 

al., 2009). In the mean-time, this chapter has shown that the proposed system is effective 
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in tactile mapping in its own right and demonstrates functionality that can be applied 

into other applications of TI and further afield. 

The next steps, generally, for this research is further component integration and 

implementation with the SureTouch™ tactile array, and subsequent evaluation of 

absolute elasticity measurements of embedded lesions. This is out of scope for this thesis 

due to material availability and so a different trajectory towards the same goal shall be 

taken. In order to perform accurate measurements of embedded lesions, on a fully 

integrated system, there must be confidence in the pressure readings from the tactile 

array. To achieve this, the error sources applicable to TI must be analysed, particularly 

when use conditions differ between phantom and clinical trials. Error sources such as 

temperature sensitivity, amongst others, are known to affect the response of other 

medical imaging technologies (Mulvana et al., 2011) and so it is reasonable to suggest 

that they will affect performance in TI. As there is a lack of error modelling, or 

references to the same, in the medical TI literature the next step of this project is to 

investigate and document applicable error sources, and implement suitable methods to 

mitigate them in a practical use case. This shall be done in Chapter 6. 

The outcome of this analysis will further the commercial impact of this thesis, as 

the error sources and mitigation strategies can be directly implemented into current 

clinical TI. This will provide a stable TI platform allowing for future analysis of 

compound tactile images, for the purpose of detailed lesion characterisation, following 

further commercial system implementation of the proof-of-concept prototype 

demonstrated in this thesis. 
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Chapter 6 

Tactile Sensor Error Modelling 

 

6.1. Introduction 

This chapter explores the analysis, mitigation, and effect of TI sensor error 

sources affecting practical reliability of clinical TI. Following project limitations on 

further clinical testing of the prototype system from Chapter 5, this chapter aims to 

improve the practical reliability of the sensor system itself, addressing key gaps in the 

literature whilst solving a practical problem limiting future development of clinical TI. 

The chapter begins with a review of the relevant literature and illustration of the 

dominant error sources affecting capacitive tactile sensors. Each error source is then 

addressed individually and the effect of each on the output of a tactile breast image is 

shown on phantom tissue. The error effect is modelled and measured for a commercially 

available TI system, leading onto the development of a simple error correction model. 

The error correction model is validated parametrically and is shown to be 

effective in controlling sensor error over a wide range of realistic operating parameters 

expected to be generally applicable in future clinical testing. This will be able to control 

the variability of TI in the literature in future clinical tests beyond the scope of this thesis. 
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6.2. Tactile Sensor Error Analysis and Modelling 

This thesis has focused thus far on practical tactile image registration and 

background elasticity estimation, towards the goal of accurate diagnosis and reporting of 

breast conditions. This functionality was demonstrated and tested in Chapter 5. The next 

stage of the tactile imaging tissue characterisation process, the estimation of embedded 

lesion elasticity, requires both a good estimation of the background elasticity (Egorov 

and Sarvazyan, 2008), and either a representative measurement of the differential stress 

between the background and the lesion (Egorov et al., 2009) or an estimation of the 

lesion deformation (Oleksyuk et al., 2016). Although several methods of measuring 

embedded lesion elasticity using tactile imaging have been presented in the literature, 

with each one being effective in their own right, they have all lacked an 

acknowledgement of tactile imaging error sources and subsequent implementation of a 

suitable reverse error model to keep the results valid over a range of practical use cases. 

The analysis of the accuracy of the tactile sensors, particularly the creep and 

temperature sensitivity, is critical to the goal of measuring the absolute elasticity of an 

embedded lesion in situ from a differential stress image with a background elasticity 

estimate. The lack of an appropriate error model, or acknowledgement of practical error 

sources in the literature relating to clinical TI, limits the usefulness of existing systems 

and their impact in future clinical development. Although a change in sensor properties 

is not likely to affect a system simply searching for where ‘something’ is in the breast or 

not, when it comes to making definitive measurements of the lesion properties in terms 

of size and elasticity, the accuracy of the sensors over a range of practical use conditions 
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must be investigated to provide confidence in any decisions made. This analysis and 

development shall be performed in this chapter, following an introduction on significant 

sensor and environmental error sources in tactile imaging. 

The analysis and testing performed in this chapter focusses on the SureTouch™ 

tactile array, with measurements being valid for that type of sensor system, however the 

applicable error sources are common to all capacitive tactile sensors to varying degrees. 

This means that the importance of detailing the error sources, defining their causes, and 

developing mitigation strategies, is not limited to the current breast cancer imaging topic. 

The error sources presented here affect all medical tactile applications, with magnitudes 

dependent on the particular sensor system and architecture used, and so careful analysis 

of sensor error must be performed in each application using realistic operating 

conditions and system use cases in order to ensure proper accuracy. This type of analysis 

is common in other advanced medical imaging techniques such as ultrasound (Liao et al., 

2015) (Mulvana et al., 2011) as well as in general tactile sensing (Sánchez-Durán et al., 

2015), so it is important to understand these errors to improve general TI reliability. 
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6.3. Tactile Imaging Sensor Error Sensitivities 

The basic parallel plate capacitor force/pressure sensor description, given in the 

project introduction, although true, is a great over-simplification of a complicated 

system prone to error from a wide pool of sources including but not limited to the list 

below. The majority of these effects are governed by the electrical and mechanical 

properties of the dielectric material, although the plate assembly does factor into the 

analysis. A diagrammatic illustration of these effects is shown as referenced, where the 

effect is exaggerated for illustrative purposes: 

• Thermal Baseline sensitivity (Figure 6.1) 

• Thermal Scale Factor (sensitivity) sensitivity (Figure 6.1) 

• Viscoelastic Creep (Figure 6.2) 

• Hysteresis (Figure 6.3) 

• Cross Coupling between adjacent sensor array elements (Figure 6.4) 

• Dielectric changes under load and temperature (Figure 6.1) 

• Manufacturing changes to dielectric material (Figure 6.5) 

• Manufacturing errors in plate/electrode alignment (Figure 6.6) 

Depending on how the plate capacitance is measured, they can also be affected 

by dielectric charge leakage, capacitive fringing, and the equivalent series resistance 

(ESR) of the sensor to varying degrees of severity. Many of these effects should come as 

no surprise, as they are common to all force sensors (Kalinin, 2014) (Jewell Instruments 

LLC., 2020), or are prevalent in traditional capacitors.  
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Consider the general equation for a capacitive plate force sensor, recalled in 

Equation 6.1, calculating the capacitance of a parallel plate capacitor in response to an 

applied load. In this case: C is capacitance, ε0 is the permittivity of free space, εR is the 

relative permittivity of the dielectric, d0 is the initial plate separation, F is the applied 

force, A is the plate area, and E is the elasticity of the dielectric. The capacitive fringing 

effect is not included here, keeping the equation simple, as the size of the tactile 

elements in comparison to the separation makes this negligible (Chen et al., 2019). 

 

The most variable, and thus greatest source of error, term in this expression is d0. 

As a capacitive force sensor is fundamentally a displacement sensor, with the 

displacement related to the applied load, the plate separation and change thereof has a 

large effect on the capacitance. The majority of the listed error sources affect d0 in some 

way, with thermal expansion of the dielectric, hysteresis, cross coupling, and 

viscoelastic creep; each having significant effects. In practical calibration, the individual 

effects can often be inseparable and have unknown coefficients. However, the effects of 

some error sources such as: thermal expansion of the dielectric and electrodes, thermal 

softening of the dielectric, changes in dielectric constituents; can be combined into a 

higher-level term that is measurable and controllable, such as baseline temperature 

sensitivity and scale factor temperature sensitivity.  

𝐶 =   
𝜀0𝜀𝑅𝐴

𝑑0(1 −
(𝐹

𝐴⁄ )

𝐸 )

 
(6.1) 
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Figure 6.1 - Effect of thermal expansion on capacitive plate pressure sensors. Many 

materials expand when heated, but some can contract. This has the effect of varying the 

plate area through L, the plate separation through d, and the average dielectric constant 

through d’ changing the ratio of material to air in vented air mixture dielectric sensors. 

Temperature also changes the stiffness and viscosity of the materials in the dielectric. 

 

 

Figure 6.2 - Effect of viscoelastic creep on capacitive plate pressure sensors. The sensor 

will respond to an applied force as expected, but will then sink further over time with no 

change in load, F. This is due to the dielectric material ‘flowing’ viscously. When the 

load is removed, the sensors return to their original state viscously, with a time 

dependency of the plate separation d on t. 
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Figure 6.3 - Effect of hysteresis on capacitive plate pressure sensors. This is related to 

creep, in that when the material creeps there is an associated energy loss from the 

system as heat. This reduces the elastic potential energy in the springy dielectric and 

thus when the force is removed, the sensor plates do not recover to their original state. 

 

 

Figure 6.4 - Effect of cross coupling on capacitive pressure sensor arrays. The sensor 

array covering, or skin, which is required to maintain the structural integrity of the 

array cannot deform ideally. As the skin couples the elements together, stimulation of 

one element with a load will couple into adjacent elements. This is a 2D effect, for 2D 

arrays, although only 1D is shown in the image. 
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Figure 6.5 - Effect of error in the dielectric distribution on capacitive sensor arrays. 

Small manufacturing variations in the deposition of the dielectric material can change 

how each element responds to an applied pressure. This effect will be amplified by cross 

coupling in this example with a rigid skin. Without the skin, each sensor element 

receives the same pressure, but due to differences in d0 they have different sensitivities. 

 

 

Figure 6.6 - Effect of electrode misalignment on capacitive sensor arrays. Electrode 

misalignment, from manufacture or wear, causes variation in the nominal value of the 

sensor area, A. This changes the sensitivity of the affected elements. The changing 

proximity of elements also changes the effect of cross coupling. 
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6.3.1. Thermal Analysis 

The thermal expansion of the dielectric material, and electrodes affects the terms: 

d0, 𝜀𝑅, and A. This has the effect of changing the baseline capacitance in an unloaded 

state, and subsequently changes the scale factor with an opposing sign. The thermal 

expansion expression is given in Equation 6.2 where: L is the length of a component in a 

particular dimension, L0 is the length of the object at an initial temperature T0, T is the 

temperature, and KTE is the coefficient of thermal expansion for the material. 

 

For a common tactile sensor architecture with copper electrodes and a silicone 

bubble dielectric, which have widely spaced balls of silicone rubber with air in the 

remaining space, coefficients of linear expansion can be found in the literature for each 

material. KTE(Copper) = 16.7ppm/°C (Walt Boyes, 2010), and KTE(Silicone) = 300ppm/°C 

(Albright Technologies, 2020) for the purpose of this discussion. These values are 

variable, however it is the order of magnitude difference that is important here. From 

these values the expansion of the dielectric, which increases d0 thus decreasing C, 

dominates the effect of the electrode expansion, increasing A thus increasing C. 

The increase in d0 and A has the net effect of lowering the zero-load capacitance 

offset of the sensor, which has the secondary effect of lowering the sensitivity to applied 

load. However this effect is countered by the thermal softening of the silicone dielectric, 

estimated as KS(Silicone) = -0.05MPa/°C (Shin-Etsu Chemical Co, 2016), reducing the 

𝐿 =   𝐿0(1 + 𝐾𝑇𝐸(𝑇 − 𝑇0)) (6.2) 
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elasticity (E) of the dielectric as shown in Equation 6.3. This results in increasing the 

deflection range of the sensor in response to an applied load, and thus increasing the 

capacitance sensitivity to applied load. 

 

The effect of these temperature sensitivities combined can be modelled, using a 

parallel plate model based on Equation 6.1 with appropriate temperature terms 

substituted as shown in Figure 6.7. The values the model outputs are subject to 

approximation on how the sensor behaves, however the trend between temperature and 

baseline/sensitivity is the important output, to verify the error discussion in this section. 

 

Figure 6.7 - Modelling of capacitive force sensors. The results show that the 

superposition of the mentioned temperature effects cause a reduction in sensor output 

zero offset, whilst increasing sensitivity to an applied load. 

𝐸 =   𝐸0 + 𝐾𝑆(𝑇 − 𝑇0) (6.3) 
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Although the values given by the model may not be totally accurate, as there are 

many assumptions made on the sensor architecture, the description of effects is clearly 

shown with increasing sensitivity and reducing offset with temperature increase. It is 

often inconvenient to know and calibrate these sensors at this lowest level, and so it is 

common to simply ignore the base physical causes and simply address the symptoms 

directly at the sensor output This is particularly relevant as other sensor topologies are 

known to have different sensitivities, and even polarities to the sensitivity.  

By applying a known pressure to the sensors, as described in Appendix C1, and 

calibrating the sensor to output that value at a fixed temperature, the previous physical 

analysis steps can be skipped. The calibration equation for simple sensors, relating a 

measured pressure P to a reference pressure P0 in terms of the initial calibration 

sensitivity S0 (typically 1) and temperature coefficients for offset and sensitivity 

respectively, is shown in Equation 6.4. The sensor output is calculated from Equation 

6.5, where α and β are calibration constants for sensitivity and offset respectively, which 

can be verified by rearranging Equation 6.1, highlighting that these constants are based 

on physical parameters of the sensors. This is an automatic process handled by the PPS 

Chameleon™ software. With this form of calibration, it is not important to know what 

materials a sensor contains, it is only important to observe the sensor in operation. 

 

𝑃0 =   𝑃(𝑆0(1 + 𝐾𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑡𝑦(𝑇 − 𝑇0)) + 𝐾𝑂𝑓𝑓𝑠𝑒𝑡(𝑇 − 𝑇0) (6.4) 

𝑃 =
𝛼

𝐶
+  𝛽 (6.5) 
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Looking at the SureTouch™ tactile array specifically, the temperature 

coefficients, KSensitivity and KOffset, have been determined and are shown below in Figure 

6.8. The temperature sweep used was from 18°C to 38°C, to fully encompass the range 

of expected operational temperatures from room temperature to above the breast 

temperatures (de Souza et al., 2015) (Lubkowska and Chudecka, 2021), with linear 

results allowing the temperature coefficients to be described as a constant for each 

metric. It is clear that an element-by-element calibration is required from the variation 

measured between elements and based on the variation between elements it is reasonable 

to say that each sensor array will need this analysis done in future. For this tactile array 

KSensitivity and KOffset are 0.0176±0.0014 /°C and -0.0601±0.0009 PSI/°C respectively. 

 

Figure 6.8 – Results of temperature sensitivity analysis. The results for each element are 

averaged from 3 temperature sweeps. The variation between elements is normally 

distributed about the mean values indicated as expected. The sensitivity of the sensors to 

changes in d0 is apparent in both the baseline and scale factor temperature coefficients. 
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6.3.2. Effect of Thermal Sensitivity on Tactile Images 

The acknowledgement and analysis of the temperature sensitivity of tactile 

sensors is particularly important in medical applications where the sensors are in contact 

with the patient. In typical phantom based validation studies, the temperature is well 

controlled in laboratory settings, with authors commonly stating their control 

temperature at either 20°C or 25°C. Live clinical testing features large temperature 

differences between the normalisation cycle, performed at ambient temperatures of 18°C 

to 25°C depending on location, and the tactile scan, performed on a patient with breast 

skin temperatures of typically 34°C (de Souza et al., 2015). Even with an insulating 

jacket or skin over the sensors to slow the temperature change, through the thermal 

impedance of the jacket/skin, the sensors will still exhibit a significant temperature 

change and subsequent error over the scan duration as illustrated in Figure 6.9. There are 

2 modes of operation to consider when determining the size/hardness error from 

temperature change, which are: constant strain, and constant stress (Real use condition). 

Each of these cases has a different response and physical interpretation.  

The constant strain mode is perhaps misleading and is more accurately described 

as a constant reference stress mode, where the measured TI array baseline shifts but the 

true applied stress does not. In this mode, the temperature coefficients cause a reduction 

in the background stress and an increase in the measured lesion stress, as described by 

thermal drift data in Figure 6.9. Over a temperature change between 22°C to 34°C, the 

prominence, or relative hardness, of the lesion has increased by 44.1% which is 

interpreted as an increase in the severity of the lesion and the background estimate has 
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reduced. Interestingly the measured size of the lesion is unchanged in this mode, due to 

the ratiometric method of calculating lesion diameter (Egorov and Sarvazyan, 2008) 

being unaffected by the change in baseline, and linear scaling of the tactile image.  

In this situation the lesion prominence and measured diameter are used to 

visualise the effect of the error under test as they have low sensitivity to scan procedure 

differences in comparison to other lesion parameters such as mobility and elasticity. This 

means that they can be used to easily visualise the effect of the error sources, without 

significant variability from other factors during measurement. 

 

Figure 6.9 - Effect of temperature on tactile pressure distributions of a 10mm phantom 

lesion. The temperature sensitivity causes an increase in lesion severity and reduction in 

measured background pressure, this precipitates a servo-controlled increase in true 

load to maintain this value which increases the severity of the lesion again. 
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The compressions at differing temperatures were made into equivalent systems, 

with a ‘stiff’ 10mm ball bearing (E > 500 kPa) embedded halfway into a 25mm block of 

silicone breast phantom (Sure Inc., US-CA) with E ≈ 12 kPa. The scan load was 

maintained at 2.5kg, increasing to 3.1kg to maintain the baseline. This setup can lead to 

highly non-linear behaviour at high strains, representative of some natural tissues. 

The lesion prominence and diameter are measured using similar features on the 

tactile images particularly: the peak load, the load distribution standard deviation, and 

the approximation of the baseline load. These metrics are described in Equation 6.6 and 

Equation 6.7 respectively. In this case the peak is the maximum pressure value at the 

centre of a lesion, and the background is the value of the second order surface fit of the 

tactile image at the location of the peak load. The diameter is calculated as the extrema 

of a contour line of the pressure distribution (Pd) in the x and y dimensions, with the 

contour ‘C’ defined in Equation 6.8. The value for the contour was determined through 

empirical testing by early researchers in the field to give the best results on phantom and 

clinical samples. 

 

 

𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 =
𝑝𝑒𝑎𝑘 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 (6.6) 

𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 =  𝑚𝑒𝑎𝑛(max(𝐶𝑦) − min(𝐶𝑦) , max(𝐶𝑥) − min(𝐶𝑥)) (6.7) 

0.3 =
𝑃𝑑 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝑝𝑒𝑎𝑘 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
 (6.8) 
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The constant measured stress mode is an operator feedback-controlled system to 

change the true applied stress such that the output of the TI reports a constant scan 

pressure. This is the most likely operation mode for this error to manifest in. In this 

situation there is no apparent baseline shift, despite the actual applied load increasing 

from 2.5kg to 3.1kg as shown by the physically compensated data in Figure 6.9. Due to 

the nonlinearity of the materials, the dynamics of the coupled components, and the 

increase in sensitivity of the tactile array, the prominence of the lesion is increased by 

159% and the size of the lesion has decreased by 17.6% when compared with the 

original measurement due to the stress distribution changing in response the increase in 

true applied load. The vast change in dimensions and prominences are primarily 

governed by temperature sensitivity, but also by the interaction between the lesion, 

tissue, and scanner. As such it is not possible to generate a general empirical equation to 

describe the change in measured lesion properties vs. temperature. It is clear however, 

that careful temperature characterisation at the sensor level is required to control these 

errors when making detailed measurements of lesions. 

The results presented here are relatively crude and represent an exaggeration of 

the current use case of TI. To use TI as an accurate piece of metrology equipment, the 

temperature response would need to be carefully calibrated, or the device needs to be 

calibrated at its operating temperature. In the current screening role of TI, the errors 

witnessed here are not going to be as severe, as TI is only used to detect the presence of 

a lesion and characterisation is not relied upon, and over time it is simply a comparison 

between scans with the same background load but with perhaps different temperatures 
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following natural variation in the order of 4°C, limiting the error that can accumulate as 

shown in Figure 6.10. In this situation, the apparent change in a lesions size and 

prominence is limited to 1.94% and 5.06% respectively for a temperature change of 

31°C to 35°C, a range selected to span the expected range of realistic breast 

temperatures (Lubkowska and Chudecka, 2021) (Lozano et al., 2020) although the 

maximum can exceed 36.5°C. The scans were taken to maintain a constant baseline after 

the temperature drift, and the true applied load is detailed in the figure. The error in this 

case is unlikely to cause problems in current screening TI, as the lesion is still detected, 

and the change is relatively small, however as we transition to detailed characterisation 

these errors must be controlled. 

 

Figure 6.10 - Effect of realistic temperature changes between scans. As subsequent 

scans are compared for changes, the temperature difference between scans must be 

accounted for as this effect can lead to a conclusion of lesion change when there is none. 
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6.3.3. Short Term Creep Analysis 

Short term creep of tactile sensors is caused by the viscoelasticity of the 

dielectric material, as opposed to long term creep which is a form of aging of the sensor. 

Creep is the input dependent rate of output change in response to a fixed constant input. 

Ideal elastic materials do not exhibit this phenomenon, but most real soft materials such 

as silicone and hard foams do. This is where, for the example of the silicone bubble 

dielectric, the material cannot instantly deform and so ‘flows’ much like a liquid until it 

settles at a fixed value. As viscous effects are governed by load rate, this is naturally 

going to be logarithmic with time, specifically that is the creep rate will start at some 

initial value determined by the applied load and drop to zero logarithmically over time. 

This phenomenon is dependent both on the dielectric material, and the architecture of 

the sensor, and so there is no suitable value to pull from the literature.  

As creep leads to lateral expansion and subsequent further axial compression of 

the dielectric in response to a compressive applied load. This means that, in response to 

an applied compressive load, the output will jump to some value before creep will cause 

the output to increase logarithmically with time, as described by the Kelvin-Voigt 

representation of the standard linear solid model, or Zener model, for viscoelastic 

materials (Roylance, 2001) detailed in Equation 6.9. Here: σ is the applied stress, ε is the 

resultant strain, η is the viscosity of the dielectric, and E1 and E2 are characteristic 

elasticities of the dielectric. 

𝜎 +
𝜂

𝐸1 + 𝐸2 
�̇�  =

𝐸1𝐸2

𝐸1 + 𝐸2
𝜀 +  

𝐸1𝜂

𝐸1 + 𝐸2
𝜀̇ (6.9) 
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The key takeaway from the 3-element solid model, is that the initial elastic 

reaction, in terms of strain, will be σ/E1; the sensor will then creep towards a value 

denoted by σ(E1 + E2)/E1E2; with a time-constant of η/E2. Relating the equation to the 

capacitor expression in Equation 6.1, the part describing the response to force, (F/A)/E, 

would be substituted with Equation 6.9 rearranged to solve for the strain ε in response to 

an applied stress σ. Depending on whether dynamic or static response is preferred, the 

array can be calibrated using either response condition as shown in Figure 6.11. 

The complex differential equations required to analytically describe this 

behaviour based on dielectric physical properties can be skipped, again by calibration, 

through observation of the retardation time of the sensors in response to applied loads. 

By observing the change in sensor output in response to a fixed input, the characteristic 

elasticities and viscosity can be determined providing accurate values for the other 

capacitive sensor terms are known. This is not often known, and so the initial 

viscoelastic response can be described as shown in Equation 6.10 (Ryan Roeder, 2013), 

in the absence of other error sources. In this equation: 𝛾 is a constant related to the 

magnitude of overshoot, 𝜏 is a time constant, and t is the time in seconds. 

 

            The creep characteristics for the SureTouch™ array can be determined using the 

method described in Appendix C2. The results of this analysis is shown in Figure 6.12. 

Elasticity and viscosity change with temperature, so calibration is performed at the 

operating temperature of 34°C, based on the mean breast temperature from the literature. 

𝑃 = 𝑃0 (1 + (𝛾 − 1)𝑒−
𝑡
𝜏 ) (6.10) 
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Figure 6.11 - Illustration of creepage in capacitive pressure sensors. The dynamic mode 

gives correct values instantaneously but drift out over time with a steady state response 

governed by coupled elasticities. Steady state mode gives the wrong value immediately 

but converges to the correct solution. 

 

Figure 6.12 - Results of creep parameter analysis. The overshoot factor, when the 

sensors are calibrated for dynamic response is based on the temperature sensitivities 

previously discussed. The small SDs indicate that the elements are fairly homogeneous.  
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6.3.4. Effect of Short-Term Creep on Tactile Images 

Viscoelastic creep at relatively low loads does not affect the prominence or 

measured dimensions of a lesion, in constant true load mode, as both of these quantities 

are measured using a ratio of the peak value to the baseline on a tactile image. The 

sensor overshoot after a sufficiently long amount of time, typically 5𝜏 or greater, settles 

to a constant factor of the applied load denoted by 𝛾, 1.083±0.0148, and so the ratio of 

peak to baseline is unchanged. In the more common constant measured load mode the 

increase in the baseline over time, shown in Figure 6.13, results in a controlled reduction 

in true stress to maintain the sensor baseline. This decrease in contact stress lowers both 

the lesion prominence and measured diameter by 3.69% and 2.12% respectively after 5𝜏, 

for a scan of a 10mm spherical inclusion at an initial scan force of 2.5kg and control 

scan force of 2.31kg. 

The relatively short time constant of 5.444±0.0844s, compared with the overall 

scan duration, means that the sensor will quickly settle to a steady state value in real use. 

When the tactile scan is performed quickly such that creep cannot accumulate (<0.1𝜏) 

the error can be kept in check, however it is impractical to perform measurements at this 

speed. The time constant also means that separate scans, or reapplication of the scanner 

must have a ‘wait’ period of at least 30s so that the creep residuals do not accumulate 

and lead to an overestimation of applied stress. 

The sensors can be calibrated to give proper dynamic response where the elastic 

portion will be equivalent to the applied load and will overshoot to 𝛾 times the load or 

can be calibrated to exhibit steady state response where the sensor will initially 
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undershoot to 1/𝛾 of the applied load before settling at the applied load. For tactile breast 

imaging the latter is more appropriate as it is a static measurement, however in other 

applications where dynamic response is preferred the steady state response will be 

adversely affected. As the estimation of hardness and diameter is ratiometric, the 

overshoot/undershoot does not affect the response in constant true load mode, however 

in the common case of baseline control the creep must be accounted for when making 

detailed measurements. 

 

 

Figure 6.13 - Effect of creep on tactile pressure distributions. The creep in constant true 

load scanning does not affect either the lesion prominence or the diameter, however in 

the realistic constant measured load system, the servo action to maintain the baseline 

reduces both the prominence and the diameter over time. 

Creepage 
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6.3.5. Hysteresis 

Hysteresis is a measure of the energy loss in, or efficiency of, a sensor or 

material in general and is caused by internal friction (Hara et al., 2020). Relating 

specifically to sensors, hysteresis is the non-time-dependant residual offset on a sensor 

output when the input has returned to zero after a non-zero stimulus. The energy loss is 

typically proportional to the energy input, and so the residual offset after a stimulus 

event will be proportional to that stimulus event. This is similar to the overshoot caused 

by viscoelastic creep, which is also proportional to the applied stimulus after some time, 

leading to many authors and engineers to confuse the two. The reason for this can be 

seen in Figure 6.14, where the sensor response to a step load has very high residual 

offset immediately after the load event. Comparing this to the slow response, the 

excessive offset diminishes over time as viscous creep is recoverable, however some 

residual offset remains after a long time, which is the sensor hysteresis. The hysteresis 

loop can be closed with negative pressure inputs, returning the sensor to its starting state. 

Hysteresis in this context is measured using the same apparatus as the 

viscoelastic creep described in Appendix C2, with the result of 1.801 ± 0.118% being 

illustrated in Figure 6.15. Similar to measurements of the other mechanical properties of 

the tactile sensors this is done at the operating temperature of 34°C, as the hysteresis is 

related to the viscous properties of the dielectric. This value is in line with expectations 

from the literature (Sánchez-Durán et al., 2015) for tactile sensors, with the variation 

between elements attributed to the variations in d0 as the sensor dielectric thickness has a 

significant effect on the hysteresis (Hara et al., 2020).  
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Figure 6.14 - Illustration of the coupling between creep and hysteresis. When creep is 

accounted for, either through calibration or waiting for creep to settle, the small 

residual offset when the input is zero is the hysteresis.  

 

 

Figure 6.15 - Results of hysteresis analysis. The value of hysteresis represents the 

‘efficiency’ of the dielectric in recovery of elastic potential energy and is a result of the 

friction within the dielectric. 
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6.3.6. Effect of Hysteresis on Tactile Images 

Hysteresis, in this context, does not affect the tactile images in a variable manner 

like creep and temperature does as a result of the calibration method used for the tactile 

array. The effect of hysteresis, based on steady state calibration, is cumulative over a 

number of loading cycles rather than time, and accumulates at a rate given by the 

hysteresis and the maximum applied load during the cycle.  

The typical hysteresis value of 1.801% does not have a measurable effect on the 

pressure distributions on the tactile array that can be differentiated from the 

measurement uncertainty after 1 repeated loading cycle. The manual control of the 

tactile array during the imaging process cannot reliably achieve a decrease in the 

baseline small enough to compensated for the hysteresis after 1 cycle at 2.5kg scan force. 

By observing the tactile array response over 10 cycles, in both constant true load and 

constant measured load modes, the effect of hysteresis drift can begin to be seen as 

shown in Figure 6.16. The testing involved 10 repeat measurements of a 10mm phantom 

lesion, described previously, each taking > 30s for creep to stabilise with > 60s recovery 

time between trials, without resetting the sensor baseline between trials. The target scan 

force on the reference sensor was 2.5kgf, dropping to 2.36kgf in constant measured load 

mode as a result of manual servo control. 

The testing showed that after 10 independent and aligned measurements, without 

resetting the sensor baseline, the lesion diameter and prominence increased 1.14% and 

1.56% respectively for constant true load and changed 2.24% and -3.11% respectively 
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for constant measured load. It is implied that the change caused by 1 cycle is 

approximately 1/10 of this value, and so is insignificant compared to other error sources. 

This error is not likely to affect clinical TI in a breast cancer screening context as 

this type of extreme load variation is not realistic and the sensor is renormalised between 

independent measurements. This means that the effect of this error can be considered 

negligible over a scan session, however it serves as a reminder that renormalisation of 

the array is important between scans in order to maintain accuracy. 

 

Figure 6.16 - Effect of hysteresis on tactile pressure distributions. The hysteresis does 

not affect the first measurement, but subsequent independent measurements begin to 

drift upwards at a rate prescribed by the hysteresis and the applied load in each cycle. 

The increasing sensor baseline triggers a servo response from the user to maintain the 

baseline that reduces the true contact stress. 
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6.3.7. Element Cross Coupling 

Cross coupling between sensor elements is a phenomenon inherent with closely 

spaced elements on a tactile array, where stimulation of a particular individual element 

causes an unwanted change in adjacent elements. This is mainly caused by the stiffness 

of the sensor array skin, which is unable to ideally deform in response to a point load. 

Consider the analogy of a balloon skin. When an inflated balloon is pressed, the surface 

of the balloon does not conform perfectly around the finger, instead it arches towards the 

fingertip. Lightly inflated balloons conform better than fully inflated balloons, as the 

surface is not so stiff. Similarly, in the case of the capacitive sensor array, compression 

of a single element does not typically result in an ideal deformation of the sensor coating 

in response to the applied load. It bends from its initial position to its deformed state 

gradually, and if that transition region crosses another sensor element then the adjacent 

sensor shall experience a cross coupled compressive load. This was previously 

illustrated in Figure 6.4. 

This phenomenon is governed by several factors, including skin thickness, skin 

stiffness, layer adhesion, and friction; so, it is not trivial to model this behaviour in terms 

of measurable, or inferable quantities and so it shall be measured directly. Using the 

method described in Appendix C3, the cross coupling between elements can be 

determined by loading a single element and observing coupling with adjacent elements 

as a function of applied load. As with other mechanical tests, this is performed at a 

nominal temperature of 34°C. It can be seen from the collated results of all elements, 

shown in Figure 6.17, that the inclusion of the protective silicone skin increases the 
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effect of cross coupling compared with the bare sensors from 0.82 ± 0.36% to 2.88 ± 

0.22%. This is expected due to the increased skin stiffness (Shore 70A) and resultant 

physical coupling between elements. An interesting outcome is the reduction in the 

interelement variation in cross coupling when the skin is introduced, this is likely due to 

the adhesion to the skin reducing the range of motion of adjacent elements. For the 

sensor array used in this analysis, there was no detectable sensor response 2 elements 

away from the actuated element over the sensor calibrated range (0 – 5 PSI), as such 

there is no need to model the cross coupling as a continuous function of displacement. 

 

Figure 6.17 - Results of cross coupling analysis. This shows the signal measured on an 

element adjacent to a stimulated element over the sensors operating range. The addition 

of the silicone skin to the SureTouch™ array has increased the effect of cross coupling; 

however it has significantly reduced the variation between elements. 
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6.3.8. Effect of Element Cross Coupling 

Performing a tactile scan of the same 10mm lesion as before at a scan force of 

2.5kg shows the effect of additional cross coupling. This scan was performed at 22°C 

with the silicone skin on. The typically 2.88% cross coupling causes a decrease in the 

prominence of the lesion of 3.63% with a subsequent increase in measured lesion 

diameter of 1.72% by sharing peak loads across adjacent elements. There is no 

appreciable change in the baseline as a result of cross coupling for this lesion size, and 

so no user servo control was required, maintaining the interaction between the 

scanner/lesion/tissue which limits the effect of cross coupling on tactile distributions as 

shown in Figure 6.18.  

 

Figure 6.18 - Effect of cross coupling on tactile pressure distributions. The 2.88% cross 

coupling reduces the prominence of the lesion and increases the diameter by sharing 

load amongst adjacent elements. The effect is not significant compared with other errors. 
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6.4. Error Summary and Relative Effect Discussion 

The error sources discussed in this chapter and their values are summarised in 

Table 6.1. The relative effect of each error source on the measured lesion properties is 

also noted using (+) for an increase, (0) for no/minimal effect, (0*) for no initial effect, 

and (-) for decrease. The number of notes indicates the severity of the error effect on the 

stated measurement. Only a relative description can be given at this point as the 

magnitude of the effect is dependent on the system dynamics, where nonlinearities in 

material interaction cause large changes in measurements for small condition changes. 

Table 6.1 - Summary of tactile array error terms. The different error values for the 

SureTouch™ array are noted in the table along with the relative effect of the error 

source on the measured size and hardness (prominence) of the simulated lesion. 
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The results for the error parameters are definitive and accurately describe the 

behaviour of the sensor under certain conditions, however the effect of these sensor 

errors on measurements of complex material structures is not trivial to determine as 

shown throughout Section 6.2. Changes to the baseline of the sensors are intuitive for 

some error sources, but the effect on measurement of an embedded lesion is complicated 

and governed by the initial load and the initial geometry of the test material (Egorov and 

Sarvazyan, 2008). Simply allowing the error to accumulate is not realistic, due to the 

typical TI scanning method where a constant baseline is maintained. This baseline is 

measured using the tactile array, which is undergoing variation from error sources, and 

so triggers a manually controlled servo response in order to maintain the value at a 

steady state.  In this situation, not only is the baseline and sensitivity of the sensor 

changing in response to the error source, but also the material interaction with the sensor 

is changing as a result of the manual control. This change in the material interaction, in 

constant measured load mode, causes a change in measured lesion prominence and 

diameter that cannot be corrected using a sensor element error model in post processing, 

unlike the case of constant true load which can be corrected in post processing. 

As a consequence of this, the error model proposed in the next section can only 

be tested on direct sensor errors, with detailed testing on embedded lesions outside of the 

scope for general testing owing to the need to calibrate and model the pressure 

distribution response as a function of applied load for a range of phantom samples. This 

is a process that can be done in future works, following real time implementation of the 

inverse error model on a commercially integrated tactile array. 
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6.5. Reverse Error Model 

It is clear from the illustrative testing of the error effects that detailed 

measurements of material properties, whether it be the lesion diameter or the relative 

hardness, cannot be made without addressing the error terms inherent in tactile sensors. 

This section proposes a basic error control model that helps to mitigate the error from 

the 4 sources covered in this chapter. The basic heirarchy block diagram of this model is 

shown in Figure 6.19. Each sub-model inverts their respective error effect on raw sensor 

data by inverting the governing priniciples discussed in theor respective subsections. 

The addition to the prototype design in terms of technology is a calibrated ‘K’ 

type thermocouple (Electrocomponents plc, UK) required for the thermal compensation 

model, which is read through a NI-DAQ6009 (National Instruments Corp., US-TX) 

integrated with PPS Chameleon™ software. For the proposed model, the sensors are 

calibrated for steady state accuracy, with the thermocouple connected directly adjacent 

to the centre of the tactile array to ensure representative temperature measurements.  

 

Figure 6.19 - Reverse error model hierarchy diagram. The basic system consists of 4 

error inversion functions, one for each variable error source. The model accepts the 

sensor output and peripheral sensors and outputs an ‘ideal’ sensor response. 
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The first error source to be addressed is the temperature sensitivity, as it is the 

most dominant. The error correction model is shown in Figure 6.20. This is a very basic 

model that negates the baseline shift and sensitivity shift from nominal using the 

measured temperature coefficients from Table 6.1. This simple corrective model is 

appropriate, as complex thermal errors such as thermal hysteresis (separate to 

mechanical hysteresis) do not apply in the typical TI use case as the temperatures are not 

oscillating. When temperatures do oscillate, in the case of the device being removed 

from the breast, the system is re-normalised which resets the error to zero. The model 

accepts calibrated pressure and temperature data, outputting compensated pressure. 

The creep compensation model is shown in Figure 6.21, accepting temperature 

compensated pressure data and outputting creep corrected pressure. This is done by 

inverting the 3 element Kelvin-Voigt model (Roylance, 2001) used to define the elastic 

and viscous behaviour of the sensors. Using the known elastic undershoot factor the 

applied load can be predicted from the initial response of the sensor. The model then 

generates an opposing overshooting creep model, based on a first order exponential 

decay function for a step response using the measured creep parameters from Table 6.1. 

The average of the input pressure and opposing creep response results in the original 

applied input pressure being approximated. Although a step response is discussed here, 

as the effect of the error compensation and creep is the most pronounced, this is 

similarly effective for non-step inputs. This type of model is for steady state calibrated 

sensors, where this is the common operating mode for breast scanning TI and handles 

time dependent errors, ignoring mechanical hysteresis as this is handled separately. 
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Figure 6.20 - Thermal compensation model. The temperature coefficients are negated to 

allow for their effects to be subtracted out from the sensitivity and baseline of the sensor 

readings. The model accepts raw sensor readings and temperature measurements and 

outputs temperature compensated results. 

 

 

Figure 6.21 - Viscous creep compensation model. The model takes the immediate 

impulse response from the temperature compensation system and uses that, the time 

constant, and the expected undershoot to generate a control signal that cancels out the 

time domain creep response. 



 

247 

 

The hysteresis correction model is shown in Figure 6.22. This simple model 

accepts the creep compensated pressure reading and corrects for the energy loss in the 

system. This is done by assuming that the hysteresis effect is only applied on the 

decreasing portion of the sensor response, shown in Figure 6.14. This is not universally 

valid but is applicable to these sensors as they are calibrated to have the correct output 

after creep using increasing loads. The model works by adjusting the sensitivity and 

baseline of the sensor dynamically, such that the sensor maintains the calibrated and 

temperature compensated baseline and sensitivity when the input is increasing but 

switches the baseline and sensitivity on decreasing inputs to account for hysteresis. The 

application specific conditions, where creep is known, sensors are calibrated for rising 

steady state response, and the loads are not continuously cycling, allows a simple model 

like this to be used, foregoing complex general creep/hysteresis models such as the 

common Prandtl-Ishlinskii or general Preisach models (Sanchez et al., 2018).  

Cross coupling correction, unlike the other error terms, requires data from all 

elements to be combined into a tactile frame. As the effect of cross coupling can be 

thought of as a Gaussian blur in imaging terms, the corrective function is an image 

sharpening technique to invert the effect of the Gaussian blur as shown in Figure 6.23. In 

this case a 5x5 Gaussian kernel with a standard deviation of 0.365 is used to define the 

cross coupling. This kernel is then used as a frequency domain filter to amplify high 

frequency content in the tactile images, narrowing the peak diameter and increasing peak 

prominence if one is present in the image as desired from Figure 6.18. The large kernel 

size in comparison to the standard deviation limits the amplification of image noise. 
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Figure 6.22 - Linearised hysteresis compensation model. The model accepts the creep 

compensated input and uses the load direction (ascending or descending) to adjust the 

sensitivity and baseline of the sensor output to compensate for hysteresis in steady state. 

The effect of this is continuously accumulating until the sensor is tared (reset). 

 

 

Figure 6.23 - Cross Coupling correction model. The model acts as an image sharpening 

function, undoing the cross coupling which is modelled as a Gaussian filter. The reverse 

process requires transition into the tactile image frequency domain for the filters to be 

effective, followed by transfer back into spatial domain. This process is particular to 

tactile arrays and requires data from all sensors simultaneously to form a tactile frame. 
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6.6. Error Model Validation 

Model validation is performed in 2 parts. Firstly the temperature model is tested 

to observe temperature stability of the proposed system in terms of baseline and scale 

factor tolerance to temperature changes. Secondly, the combined creep and hysteresis 

mechanical model is tested using cyclical loading at the operational temperature of 34°C 

to verify correction of time and load dependant drift. General testing of the error inverse 

model is performed using controlled compressions of the SureTouch™ calibration pad, 

with reference measurement from the D660 load cell as described in Appendix C.  

6.6.1. Thermal Model Validation 

Thermal model validation is performed using repeated independent compressions 

of the SureTouch™ calibration pad at a nominal pressure of 2.5PSI measured using a 

PPS D660 reference load cell (PPS Inc., US-CA). The sensor is calibrated at 26°C and 

tested over 18°C-38°C, to encompass the full range of expected breast temperatures and 

the room temperature state (Lubkowska and Chudecka, 2021) to show performance with 

both positive and negative dT. Further temperature ranges are not practical with the 

current test apparatus. The sensor is thermally cycled back to the calibration temperature 

and tared between compressions. Each compression is 30s with 30s baseline stabilisation 

at the test temperature as shown in Figure 6.24. It can be seen that the sensor baseline is 

reducing with increasing temperature, with the loaded value decreasing. The 

effectiveness of the thermal error compensation model is shown in more detail in Figure 

6.25, showing the model is effective. 
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Figure 6.24 - Temperature model time series plot. The sensor zero value decreases with 

increasing temperature difference from the calibration temperature. The sensor loaded 

response is less affected due to the sensitivity increasing with temperature, which acts to 

counter the baseline shift in this situation. 

 

Figure 6.25 – Thermal model error vs. temperature. Left) baseline shift vs. temperature 

showing 92% reduction in maximum baseline shift over the test range with maximum 

baseline shift < 0.04PSI. Right) sensitivity error vs. temperature showing absolute 

maximum compensated sensitivity errors < 0.85% over the test range. 
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The detailed results from Figure 6.25 show the raw sensor response following the 

typically expected baseline and scale factor (sensitivity) temperature sensitivity 

described in Table 6.1. The thermal inverse model is clearly effective at reducing system 

errors. Considering baseline shift, the absolute maximum baseline shift for the error 

compensation model is < 0.04 PSI compared with 0.51 PSI for the raw sensor. The 

typical maximum shift is < 0.02 PSI over the full test range. Considering sensitivity 

change, the absolute maximum sensitivity error is < 0.85% compared with 14.6% for the 

raw sensor. The typical maximum sensitivity error is < 0.49% over the full test range. 

There is no net sensitivity to temperature for either baseline shift or sensitivity error over 

the test range for the proposed error model that can be differentiated from experimental 

error indicated by the error bounds. The combined effect of baseline shift and sensitivity 

error result in a worst case total steady state error of 2.4% with a typical maximum error 

of 1.24% from repeated testing over the full test range. This shows that the proposed 

thermal error model is effective at controlling thermal sensitivities in tactile arrays. 

6.6.2. Mechanical Model Validation 

Mechanical error model validation is performed with repetitive loading cycles of 

2.5 PSI, equivalent to an extreme scan force of 3.4 kgf, with 50% duty cycle and period 

of 60s using weights as described in Appendix C. These values are selected to test the 

mechanical properties over the broadest realistic range of scan pressures, with sufficient 

time (>5𝜏) for creep to settle for making hysteresis measurements. The low period is in 

line with TI quick scan times. The unloading of the sensor to zero simulates the removal 

of the sensor from the patient, without zeroing the sensor baseline between scans. 
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A close-up view of the cyclical testing response is shown in Figure 6.26. The 

D660 reference sensor shows that the applied load is remaining constant, and that the 

raw sensor response is settling to its steady state value within several seconds. It can be 

seen that the raw sensor output is gradually drifting upwards every cycle as a result of 

the hysteresis. The figure indicates that the mechanical compensation model is effective 

at reducing the sensor error by improving the settling time of the sensor and greatly 

reducing the hysteresis drift. Expanding this testing over 100 repeated cycles, the 

improvement in error from the compensation model can be clearly seen in Figure 6.27. 

The results show that the maximum time domain error is reduced by 

approximately 60% from 10% to 4%, and the 1% settling time is reduced from 6.7s to 

1.48s typically. This shows that the creep model is effective in reducing time domain 

errors. This is built upon looking at the error change with cycle number, which shows 

the error model can settle to 1% error for n < 41, compared with n < 3 for raw data. This 

shows the hysteresis model is effective in stabilising response between measurements. 

Focussing on the region of n<5, the expected worst-case number of cycles without 

renormalisation of the tactile array in clinical TI, the sensor is not capable of settling to 

within 1% of the applied load without the hysteresis model. The gradient of error 

increase is maximum for the raw data in this region and minimum for the proposed error 

model, showing that the error model is designed to absorb the worst of the errors. In this 

region, the steady state error after compensation is typically 0.15% after 5𝜏. This 

confirms that the error model is effective in reducing accumulating errors when 

cyclical loads are applied. 
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Figure 6.26 - Mechanical model time series plot. The cyclical compressions of 2.5PSI 

present time domain errors that accumulate every cycle. The inverse model reduces the 

cyclic error and creep error, but does not completely remove them. 

 

Figure 6.27 – Mechanical model error vs. time and cycles. The model stabilises the 

error at low cycle numbers where the raw data is unstable before deteriorating. The 

model improves the time domain response by reducing settling times. 
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6.7. Discussion 

6.7.1. Results 

The results of the error model validation testing presented in Section 6.5 have 

shown that it is possible by properly characterising tactile sensors to achieve a typical 

worst-case accuracy of 1.24% over the range 18°C-38°C when calibrated for zero steady 

state error at 26°C. It is separately shown that steady state error < 1% is possible for 

large numbers of repeated cycles, with worst case time domain errors of 4% settling to 

<1% within 1.5s at the calibration temperature. This has been shown to be a significant 

improvement over raw sensor data for the range of conditions tested. 

Due to limitations in testing, a full parametric sweep of time, temperature, cycles, 

and load is not feasible in this work, as whole theses are dedicated to this type of testing 

in other fields (Agogo, 2016) (Morgan, 2018). Considering the errors presented in this 

thesis, it is possible to estimate the total system error over a realistically constrained 

range of test parameters. Considering the reduced realistic operating temperature range 

described in Section 6.2.2 of 31°C-35°C with a calibration temperature of 34°C, and 

assuming the hysteresis and creep response will not change significantly in this range, 

the expected steady state error varies is from 0.23% to -0.18% over this range. This is in 

contrast to the total errors from 6% to -2% for uncompensated sensor data over the same 

range for very low cycle numbers. Whilst the proposed error model does not completely 

remove error sensitivities, it is effective in reducing sensor errors, allowing accuracy < 1% 

in the tactile sensor response near the calibration and normalisation points. 
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6.7.2. Limitations in Testing 

It was not feasible to parametrically test mechanical error over a range of 

temperatures due to the difficulty in obtaining reliable measurements with the equipment 

available. Additionally, it was not feasible to test the error model over a wide range of 

applied loads, and so an extreme but realistic value of 2.5PSI was selected to give an 

estimate of the worst-case results. While these limitations do affect the characterisation 

and validity of the error model over the full parameter space, the testing presented here 

is useful in defining the bounds of the possible error compensation.  

Finally, no measurements of tactile lesions have been done, as it is known that 

stabilisation of the sensor output will lead to stabilisation of lesion measurements. This 

does not affect the validity of the error model, as the purpose was to stabilise tactile 

sensor readings rather than directly controlling tactile lesion measurements. The need for 

detailed calibration of test materials inhibits further testing on embedded tactile objects. 

6.7.3. Implementation Practicality 

Implementation of the error model can be performed in real time, as there are no 

buffered signals used in the model and the model is not computationally expensive. This 

means that the error model can be applied directly to clinical TI with commercial 

support with the only additional requirement being a thermocouple. The positioning of 

the thermocouple is important, as it must be thermally coupled to the sensor elements 

such that the measurement is representative of the element temperature whilst being 

spatially separated so as to not interfere with the tactile response. 
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The calibration of the error sources is not trivial, requiring significant investment 

in terms of time and equipment in order to characterise the sensors fully. Further testing 

on multiple units is required to determine the acceptability of using the proposed model 

and characterised parameters generally for a particular TI implementation such as 

SureTouch™ in balancing accuracy with calibration costs, however this is not feasible in 

this thesis. 

 

6.8. Conclusion from Sensor Error Modelling 

6.8.1. Applications and Significance 

The error sources presented in this chapter are applicable to every application of 

TI, as well as other sensor architectures, and so the usefulness of this work is not limited 

to tactile breast imaging. Other medical applications of TI such as prostate imaging 

(Egorov et al., 2006) and transvaginal imaging (Brandt et al., 2020) operate at similar 

operating temperatures and scan conditions as those tested here, and so these 

applications would benefit from a tactile array error model similar to the proposed model. 

Application specific error parameters will need to be determined for these additional 

applications, as the tactile arrays used are physically different. These types of errors are 

inherent in other forms of tactile imaging using other sensor types and physical methods 

(Ayyildiz, 2011) (Oleksyuk et al., 2016) for breast imaging, without being 

acknowledged in the literature. This presents doubt on their accuracy when transitioning 

from phantom to clinical studies, and this work helps to explain some of the variability 
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in performance observed in testing of such systems. The acknowledgement and 

mitigation of these sensor errors is critical in reducing experimental variability and 

providing confidence in measurements made using TI systems. 

Documentation of the physical causes of error in tactile sensors is important for 

informing operators of tactile imaging or sensing equipment generally on the realistic 

expectation of system performance in their particular application. This is a point that is 

often overlooked as operators of TI equipment are physicians and product designers 

rather than measurement scientists, and so by documenting the significant sources of 

error and their physical causes in a clear and intuitive manner, as presented in sections 

6.1 and 6.2, operators can achieve better results even without an inverse model using 

properly informed experimental design. 

6.8.2. Summary and Next Steps 

This chapter has addressed a critical hole in the TI literature by exploring the 

major error sources that affect TI generally before focussing on breast TI, investigating 

the values of error sensitivities to a variety of factors for commercial TI systems. Basic 

testing of the effect of the error sources on measurements of embedded lesions using a 

SureTouch™ tactile array has shown that error sources such as temperature, viscous 

creep, and hysteresis each have a significant effect on measurements of lesion size and 

hardness using standard methods (Egorov and Sarvazyan, 2008). In order to stabilise the 

measurement of tactile features an inverse error model was proposed to directly stabilise 

sensor element pressure readings and thus indirectly stabilising tactile images of 

embedded lesions. 
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Limited validation of the proposed inverse model, using measured sensor error 

parameters described in Table 6.1, showed significant improvement in terms of sensor 

error and error sensitivity compared with raw sensor data. The inverse model was 

demonstrated to produce sensor steady state errors < 1% with settling times < 1.5s 

across a large range of temperatures and loading cycles. When the sensor is used close to 

the calibration point, in terms of temperature and number of loading cycles, the 

estimated steady state error drops to < 0.24% over a realistically constrained range of 

conditions. The typical use case of breast TI means that low steady state error is 

important, rather than low dynamic error, and so this is a very positive result that can be 

applied to commercial TI systems with minimal modifications. 

This error modelling work is presented to supplement the tactile mapping 

prototype system developed in previous chapters, pushing forward the research into 

practical clinical TI in preparation for the integration of the SureTouch™ tactile array 

into the developed prototype by commercial partners. Further testing of error sources is 

limited by the test materials and equipment available during this project. Further testing 

of the effect of error sources and inverse model on the measurement of lesion size 

requires further development and integration of the SureTouch™ array into the 

developed system which is out of scope for this project. 

This error modelling and documentation concludes the work possible within the 

scope of this project and provides a stable platform for future work on tactile lesion 

measurements that can be applied directly to clinical TI independently to other works, or 

integrated into the proposed prototype in future works. This work presented a concise 
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and simple error model that provides a stable sensor platform applicable to clinical TI, 

that helps to explain the variability in tactile measurements observed in early works 

(Sarvazyan and Egorov, 2009) as well as providing an expectation on the change in 

performance when transferring from phantom to clinical testing. 
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Chapter 7 

Conclusion 

 

7.1. General Summary 

This thesis has explored clinical applications of TI, and the requirements for 

development of TI in breast cancer imaging from a simple screening tool to a stand-

alone tissue differentiation and discrimination system for in-situ early diagnosis of breast 

cancer. This functionality was predicted in early clinical works on the subject (Egorov et 

al., 2009). Analysis of literature on automated cancer diagnosis using machine learning 

and the important metrics used, cross referenced with the capabilities of academic and 

commercial breast TI led to the conclusion from Chapter 2 that the required additional 

metrics were: background elasticity of the breast, a large scale view of the whole breast, 

and spatial registration of lesions within the breast structure. These metrics are expected 

to supplement existing TI capabilities and enable discrimination of tissues with the 

accuracies observed for machine learning using modalities such as X-ray mammography. 

Two methods of achieving these metrics were developed in largely blue-sky 

research based on the fusion of tactile sensors with orientation/inertial sensors and IR 

cameras respectively. The use of MARG sensor-based displacement estimation was 
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found to be effective in measurement of material elasticity within 4% MAE, but was not 

found to be practical for tactile mapping of large structures. The use of an IR camera 

integrated with tactile and orientation sensors was found to be effective for both 

elasticity measurement and image mosaicking and was considered to be a practical 

solution suitable for further development. Both technologies developed through 

Chapters 3 and 4 led to high quality publications and collaborations (Hampson et al., 

2019) (Rana et al., 2020). 

The practical IR camera based tactile mapping and elasticity method developed 

in Chapter 4 was developed into a proof-of-concept, hand-held, tactile mapping 

prototype by demonstrating that the technology could be integrated into the footprint of 

clinical TI systems. This integrated prototype was demonstrated in Chapter 5 to be able 

to mosaic tactile array data into a composite tactile map with location accuracies of 0.33% 

± 0.17% and background elasticity measurement errors of 2.36% ± 0.93% over a 

realistic range of phantom tissues. Limitations in the integration of appropriate tactile 

arrays into the prototype inhibited further testing of the prototype system towards 

accurate clinical lesion measurements. 

Thinking ahead to a fully integrated clinical prototype, using a purpose built 

modified SureTouch™ tactile array, error sources affecting the measurement of 

embedded lesion hardness and diameter in current TI were explored and documented. 

Through characterisation of error sensitivity to temperature change, viscous creep, and 

hysteresis, and subsequent limited testing on the relative effect of these on phantom 

lesion measurements, it was determined that these error sources were significant and 
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needed to be addressed in order to advance TI further. A simple reverse error model was 

developed for future real time implementation on a SureTouch™ array. This was 

validated over an extreme range of operating conditions, resulting in stability < 1.25% 

over a temperature range of 18°C to 38°C, and settling to <1% error within 1.5s at the 

calibration temperature. Limitations to testing stopped full parametric testing of 

operating conditions and testing on embedded lesion measurement, however it is well 

understood that providing stable sensor outputs will result in stable lesion measurements. 

This thesis has delivered a practical hand-held tactile mapping prototype based 

on current clinical TI, capable of measuring the background elasticity of soft tissues and 

spatially registering tactile array data, designed for accelerated integration into 

commercial systems for maximum impact. The prototype, and associated error 

modelling, presents a stable tactile mapping platform for future works in embedded 

lesion characterisation by addressing the limitations of early and state-of-the-art breast 

TI (Wellman, 1999) (Egorov and Sarvazyan, 2008) (Sarvazyan and Egorov, 2012). 

The consideration of usefulness driving the generation of the proposed systems 

has led to effective and practical solutions to industrial problems, marrying academic 

novelty with practical solutions for the clinical environment. Critical gaps in the 

academic literature on TI have been addressed in this thesis through the implementation 

of utilitarian solutions, and problems in clinical usage of TI have been solved using 

novel blue-sky research backed up with appropriate and detailed testing. This type of 

development strategy is increasingly important in a world where the requirements for 

academic success rely more and more on commercial impact and support. 
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7.2. Thesis Impact 

The potential impact of this thesis has been maximised through the ethos of 

appropriate technology, conforming to what is already accepted rather than branching 

out onto something completely new. This means that impact can be built upon, whereas 

completely new technology resets the clock on the route to impact with other new 

technologies not advancing clinical performance beyond the earliest stages of TI. 

(Wellman, 1999) (Ayyildiz, 2011) (Oleksyuk et al., 2015). This design strategy allows 

the integrated prototype, with novel adaptations, to progress directly into clinical 

evaluation with the justified expectation that it will be superior to previous TI 

implementations, where it is not guaranteed that a completely novel system architecture 

will be superior to equivalent systems. 

The scope of this thesis limits direct evaluation of the clinical impact of this 

work, however the predictions made during early clinical TI studies (Egorov et al., 2009) 

(Tasoulis et al., 2014) and the analysis of diagnostic metrics from Chapter 2 allows for 

estimation of the clinical impact that can be evaluated in future works. It is estimated 

that the metrics delivered by the proposed system, background elasticity and lesion 

location on a whole breast view, coupled with increased sensor stability shall improve 

the clinical sensitivity of TI from its current level ~85% to > 95%, with a corresponding 

increase in specificity, in line with studies performed on other imaging modalities. This 

will result in further reductions in the benign condition referral rate from the primary 

screening process, reducing the burden on the secondary care system and reducing the 

unnecessary stress and risk to patients with benign conditions. 
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7.3. Future Development and Work 

Continuation of this work shall focus on further integration of tactile array 

technology into the prototype system, which will involve the design and implementation 

of a custom tactile array based on the SureTouch™ array modified for the addition of a 

camera viewport. This requires close commercial support and collaboration due to the 

difficult in producing tactile arrays, with DIY solutions being no better than the earliest 

TI implementations, and the expense of designing custom hardware of this kind. The 

proposals in this thesis provide a compelling case for this support in future works.  

Following integration with appropriate tactile arrays, future work will progress 

onto detailed evaluation of lesion properties from the tactile maps created by the 

developed prototype in terms of elasticity and diameter in phantom studies, with the goal 

being to prove accuracy and reliability is improved compared with existing TI methods 

in the literature. The error model can be progressed separately onto clinical TI systems 

to validate that accuracy and stability of existing metrics are improved. 

Finally, after successful implementation of this work into clinical TI repeated 

clinical testing is required to duplicate previous TI studies in terms of measurement 

accuracy vs. current ultrasound (Wellman et al., 1999b) and lesion classification 

accuracy (Egorov et al., 2009) (Tasoulis et al., 2014). This will accurately assess the 

current standing of TI in breast screening in comparison to competing technologies and 

gauge the incremental improvement to diagnostic accuracy delivered by technology 

developed in this thesis. 
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7.4. Additional Applications of This Work 

The work presented in this thesis is not restricted to breast TI, and parts of the 

developed prototype can be applied to a variety of applications in medical imaging and 

further afield with three key areas of ultrasound, deformable material odometry, and 

clinical needle guidance described below. These additional areas for the application of 

work developed in this thesis increases the overall impact of this work, and present 

exploitable opportunities for future work and collaboration beyond the core research 

path of breast cancer diagnosis. 

Firstly the elasticity measurement and tactile mapping functionality can be 

applied to other exterior medical imaging applications such as abdominal imaging. As 

the image registration method uses IR vein images rather than tactile data, it can be 

applied to assist in registration of other measurement media such as ultrasound. This will 

allow for 2D slices from sonograms to be mosaicked into 3D images of the internal 

material structure. This represents an exciting development, by providing competing 

technologies for complex phased array 3D ultrasound. Additionally, the developed 

system for measuring the probe angle with respect to the surface can be applied to 

general ultrasonic inspection of soft materials providing context to the ultrasound images. 

Secondly, the image mosaicking method using force sensors to correct for the 

deformation of the contact surface has applications in general robotic odometry. If the 

elasticity measurement function is not required, the method can be shrunk further to 

operate on an optical mouse sensor which will allow for accurate robotic positioning on 
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soft or deformable structures. This is of particular interest in contact NDT of large 

composite material structures, where proper probe contact can deform the surface of the 

structure under test. 

This work has an application in clinical needle guidance where knowledge of the 

needle assembly force and tilt angle on the skin can help to localise the tip of the needle 

in 3D space for targeted cancer drug delivery (Frazier et al., 2019) amongst other 

applications including needle core biopsies, anaesthesia injection, and arterial line 

insertion. These precision clinical needle insertion tasks are typically performed with the 

assistance of ultrasound imaging (Zhang et al., 2020a), however the high imaging 

resolution needed makes this difficult when precision application is required. Force 

sensors have already been applied to targeted needle insertion to help with this (Zhang et 

al., 2020b), and so the work presented in this thesis can be applied to further this line of 

research to improve needle localisation accuracy in these applications. 

Finally, the error modelling performed here applies to any form of TI or simple 

tactile sensing and so is of interest in both academic and commercial developments of TI. 

Application of the error correction strategy presented in this thesis can be applied to any 

other research project carried out using tactile sensors. As this is often 

industrially/clinically focussed commercial research, the route to impact of this work is 

short, and represents a valuable tool for commercial partners. 

 

 



 

267 

 

References 

Agogo, G.O., 2016. Statistical modelling for exposure measurement error with 

application to epidemiological data (PhD Thesis). Wageningen University. 

Agudo, A., Moreno-Noguer, F., Calvo, B., Montiel, J.M.M., 2016. Sequential Non-Rigid 

Structure from Motion Using Physical Priors. IEEE Trans. Pattern Anal. Mach. 

Intell. 38, 979–994. https://doi.org/10.1109/TPAMI.2015.2469293 

Akay, M.F., 2009. Support vector machines combined with feature selection for breast 

cancer diagnosis. Expert Systems with Applications 36, 3240–3247. 

https://doi.org/10.1016/j.eswa.2008.01.009 

Albright Technologies, 2020. Coefficient of Thermal Expansion. Part Design. URL 

albrightsilicone (accessed 1.27.21). 

Alcantarilla, P., Nuevo, J., Bartoli, A., 2013. Fast Explicit Diffusion for Accelerated 

Features in Nonlinear Scale Spaces, in: Procedings of the British Machine Vision 

Conference 2013. Presented at the British Machine Vision Conference 2013, 

British Machine Vision Association, Bristol, p. 13.1-13.11. 

https://doi.org/10.5244/C.27.13 

American Cancer Society, 2019a. Breast MRI. Breast Cancer Early Detection and 

Diagnosis. URL https://www.cancer.org/cancer/breast-cancer/screening-tests-

and-early-detection/breast-mri-scans.html (accessed 1.24.21). 

American Cancer Society, 2019b. Newer and Experimental Breast Imaging Tests. Breast 

Cancer Early Detection and Diagnosis. URL 

https://www.cancer.org/cancer/breast-cancer/screening-tests-and-early-

detection/experimental-breast-imaging.html (accessed 1.25.21). 

American College of Radiology, 2013. ACR BI-RADS ATLAS - Mammography. 

Anderson, B.O., Shyyan, R., Eniu, A., Smith, A., Yip, C.-H., Bese, N.S., Chow, L.W.C., 

Masood, S., Ramsey, S.D., Carlson, R.W., 2006. Breast Cancer in Limited‐

Resource Countries: An Overview of the Breast Health Global Initiative 2005 

Guidelines. The Breast Journal 13. https://doi.org/10.1111/j.1075-

122X.2006.00199.x. 

Ayyildiz, M., 2011. A NOVEL OPTO-ELECTRO-MECHANICAL TACTILE 

SENSOR FOR BREAST CANCER IMAGING (Masters Thesis). Koc 

University. 

Barr, R.G., Nakashima, K., Amy, D., Cosgrove, D., Farrokh, A., Schafer, F., Bamber, 

J.C., Castera, L., Choi, B.I., Chou, Y.-H., Dietrich, C.F., Ding, H., Ferraioli, G., 

Filice, C., Friedrich-Rust, M., Hall, T.J., Nightingale, K.R., Palmeri, M.L., 

Shiina, T., Suzuki, S., Sporea, I., Wilson, S., Kudo, M., 2015. WFUMB 

Guidelines and Recommendations for Clinical Use of Ultrasound Elastography: 

Part 2: Breast. Ultrasound in Medicine & Biology 41, 1148–1160. 

https://doi.org/10.1016/j.ultrasmedbio.2015.03.008 

Bhardwaj, A., Tiwari, A., 2015. Breast cancer diagnosis using Genetically Optimized 

Neural Network model. Expert Systems with Applications 42, 4611–4620. 

https://doi.org/10.1016/j.eswa.2015.01.065 



 

268 

 

BHI Houston, 2020. MAMMOGRAM. Breast Health Institute Houston. URL 

https://www.breastinstitutehouston.com/mammogram/ (accessed 12.23.20). 

Bian, J., Zhang, J., Hou, X., 2021. Diagnostic accuracy of ultrasound shear wave 

elastography combined with superb microvascular imaging for breast tumors: A 

protocol for systematic review and meta-analysis. Medicine 100, e26262. 

https://doi.org/10.1097/MD.0000000000026262 

Brandt, J.S., Rosen, T., Raalte, H.V., Kurtenos, V., Egorov, V., 2020. Characterization 

of Perineum Elasticity and Pubic Bone-Perineal Critical Distance with a Novel 

Tactile Probe: Results of an Intraobserver Reproducibility Study. OJOG 10, 493–

503. https://doi.org/10.4236/ojog.2020.1040044 

Broach, R.B., Geha, R., Englander, B.S., DeLaCruz, L., Thrash, H., Brooks, A.D., 2016. 

A cost-effective handheld breast scanner for use in low-resource environments: a 

validation study. World Journal of Surgical Oncology 14. 

https://doi.org/10.1186/s12957-016-1022-2 

Brown, M., Lowe, D.G., 2007. Automatic Panoramic Image Stitching using Invariant 

Features. Int J Comput Vision 74, 59–73. https://doi.org/10.1007/s11263-006-

0002-3 

Brusseau, E., Detti, V., Coulon, A., Maissiat, E., Boublay, N., Berthezene, Y., 

Fromageau, J., Bush, N., Bamber, J.C., 2013. In Vivo Response to Compression 

of 35 Breast Lesions Observed with a Two-Dimensional Locally Regularized 

Strain Estimation Method. Ultrasound in Medicine and Biology 40, 300–312. 

https://doi.org/10.1016/j.ultrasmedbio.2013.02.017 

Cao, R., Huang, Z., Varghese, T., Nabi, G., 2013. Tissue mimicking materials for the 

detection of prostate cancer using shear wave elastography: A validation study: 

Tissue mimicking materials for prostate cancer. Med. Phys. 40, 022903. 

https://doi.org/10.1118/1.4773315 

C.D Haagensen, 1986. Diseases of the Breast, 3rd ed. Saunders, Philadelphia. 

CDC, 2020. What Is a Mammogram? Breast Cancer. URL 

https://www.cdc.gov/cancer/breast/basic_info/mammograms.htm (accessed 

12.23.20). 

Chen, X., Zhang, Z., Yu, S., Zsurzsan, T.-G., 2019. Fringing Effect Analysis of Parallel 

Plate Capacitors for Capacitive Power Transfer Application, in: 2019 IEEE 4th 

International Future Energy Electronics Conference (IFEEC). Presented at the 

2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), 

IEEE, Singapore, Singapore, pp. 1–5. 

https://doi.org/10.1109/IFEEC47410.2019.9015111 

Chino, K., Takahashi, H., 2018. Influence of pennation angle on measurement of shear 

wave elastography: in vivo observation of shear wave propagation in human 

pennate muscle. Physiological Measurement 39. 

Cleveland Clinic, 2019. Magnetic Resonance Imaging (MRI) and Breast Cancer: Test 

Details. Cleveland Clinic. URL 

https://my.clevelandclinic.org/health/diagnostics/8332-mri--breast-cancer/test-

details (accessed 12.23.20). 



 

269 

 

Coutts, L.V., Miller, N.R., Mortimer, P.S., Bamber, J.C., 2016. Investigation of In Vivo 

skin stiffness anisotropy in breast cancer related lymphoedema. Journal of 

Biomechanics 49, 94–99. https://doi.org/10.1016/j.jbiomech.2015.11.043 

de Campos, C.P., Corani, G., Scanagatta, M., Cuccu, M., Zaffalon, M., 2016. Learning 

extended tree augmented naive structures. International Journal of Approximate 

Reasoning 68, 153–163. https://doi.org/10.1016/j.ijar.2015.04.006 

de Souza, G.A.G.R., Brioschi, M.L., Vargas, J.V.C., Morais, K.C.C., Dalmaso Neto, C., 

Neves, E.B., 2015. Reference breast temperature: proposal of an equation. 

Einstein (São Paulo) 13, 518–524. https://doi.org/10.1590/S1679-

45082015AO3392 

Dietrich, C., Barr, R., Farrokh, A., Dighe, M., Hocke, M., Jenssen, C., Dong, Y., Saftoiu, 

A., Havre, R., 2017. Strain Elastography - How To Do It? Ultrasound Int Open 

03, E137–E149. https://doi.org/10.1055/s-0043-119412 

Egorov, V., Ayrapetyan, S., Sarvazyan, A.P., 2006. Prostate mechanical imaging: 3-D 

image composition and feature calculations. IEEE Transactions on Medical 

Imaging 25, 1329–1340. https://doi.org/10.1109/TMI.2006.880667 

Egorov, V., Kearney, T., Pollak, S.B., Rohatgi, C., Sarvazyan, N., Airapetian, S., 

Browning, S., Sarvazyan, A., 2009. Differentiation of benign and malignant 

breast lesions by mechanical imaging. Breast Cancer Research and Treatment 

118, 67–80. https://doi.org/10.1007/s10549-009-0369-2 

Egorov, V., Lucente, V., Shobeiri, S.A., Takacs, P., Hoyte, L., 2019. Biomechanical 

Mapping of the Female Pelvic Floor: Uterine Prolapse Versus Normal 

Conditions 25. 

Egorov, V., Sarvazyan, A.P., 2008. Mechanical Imaging of the Breast. IEEE 

Transactions on Medical Imaging 27, 1275–1287. 

https://doi.org/10.1109/TMI.2008.922192 

Egorov, V., Tsyuryupa, S., Kanilo, S., Kogit, M., Sarvazyan, A., 2008. Soft tissue 

elastometer. Medical Engineering & Physics 30, 206–212. 

https://doi.org/10.1016/j.medengphy.2007.02.007 

Egorov, V., van Raalte, H., Sarvazyan, A.P., 2010. Vaginal Tactile Imaging. IEEE 

Transactions on Biomedical Engineering 57, 1736–1744. 

https://doi.org/10.1109/TBME.2010.2045757 

El-gayar, M.M., Soliman, H., meky, N., 2013. A comparative study of image low level 

feature extraction algorithms. Egyptian Informatics Journal 14, 175–181. 

https://doi.org/10.1016/j.eij.2013.06.003 

Elmesidy, D.S., Eissa, M.A.G.A.M., Hamed, S.T., Youssef, O.Z., Nada, O.M., Hashem, 

L.M.B., 2021. Axillary lymph node status in BIRADS 4-5 female patients: can 

shear wave and strain ultrasound elastography help? Egypt J Radiol Nucl Med 52, 

176. https://doi.org/10.1186/s43055-021-00560-8 

Elyas, E., Papaevangelou, E., Alles, E.J., Erler, J.T., Cox, T.R., Robinson, S.P., Bamber, 

J.C., 2017. Correlation of Ultrasound Shear Wave Elastography with 

Pathological Analysis in a Xenografic Tumour Model. Sci Rep 7, 165. 

https://doi.org/10.1038/s41598-017-00144-5 

Ettelaei, A., Layeghi, M., Zarea Hosseinabadi, H., Ebrahimi, G., 2019. Prediction of 

modulus of elasticity of poplar wood using ultrasonic technique by applying 



 

270 

 

empirical correction factors. Measurement 135, 392–399. 

https://doi.org/10.1016/j.measurement.2018.11.076 

Fan, B., Li, Q., Wang, C., Liu, T., 2017. An Adaptive Orientation Estimation Method for 

Magnetic and Inertial Sensors in the Presence of Magnetic Disturbances. Sensors 

17, 1161. https://doi.org/10.3390/s17051161 

Farrugia, D.J., Fischer, T.D., Delitto, D., Spiguel, L.R., Shaw, C.M., 2015. Improved 

breast cancer care quality metrics after implementation of a standardized tumor 

board documentation template. Journal of Oncology Practice 11, 421–423. 

Frazier, S., Morgan, H., McBride, M., Angela, B., Mulvana, H., Graham, Delyth, 2019. 

Ultrasound and Microbubble Gene Delivery for Targeting Altered Placental 

MicroRNAs in Preeclampsia. IEEE International Ultrasonics Symposium (IUS) 

1551–1555. 

Gentle, C.R., 1988. Mammobarography: a possible method of mass breast screening. 

Journal of Biomedical Engineering 10, 124–126. https://doi.org/10.1016/0141-

5425(88)90086-6 

Gu, J., Polley, E.C., Boughey, J.C., Fazzio, R.T., Fatemi, M., Alizad, A., 2021. 

Prediction of Invasive Breast Cancer Using Mass Characteristic Frequency and 

Elasticity in Correlation with Prognostic Histologic Features and 

Immunohistochemical Biomarkers. Ultrasound in Medicine & Biology 47, 2193–

2201. https://doi.org/10.1016/j.ultrasmedbio.2021.03.039 

Guray, M., Sahin, A.A., 2006. Benign breast diseases: classification, diagnosis, and 

management. The oncologist 11, 435–449. 

Hampson, R., Dobie, G., West, G., 2019. Elasticity Measurement of Soft Tissues Using 

Hybrid Tactile and MARG-Based Displacement Sensor Systems. IEEE Sensors J. 

19, 10262–10270. https://doi.org/10.1109/JSEN.2019.2930207 

Hansson, E., Manjer, J., Ringberg, A., 2014. Inter-observer reliability of clinical 

measurement of suprasternal notch-nipple distance and breast ptosis. Indian 

Journal of Plastic Surgery 47, 61. https://doi.org/10.4103/0970-0358.129625 

Haouchine, N., Dequidt, J., Berger, M.-O., Cotin, S., 2014. Single view augmentation of 

3D elastic objects, in: 2014 IEEE International Symposium on Mixed and 

Augmented Reality (ISMAR). Presented at the 2014 IEEE International 

Symposium on Mixed and Augmented Reality (ISMAR), IEEE, Munich, 

Germany, pp. 229–236. https://doi.org/10.1109/ISMAR.2014.6948432 

Hara, Y., Yoshida, K., Khosla, A., Kawakami, M., Hosoda, K., Furukawa, H., 2020. 

Very Wide Sensing Range and Hysteresis Behaviors of Tactile Sensor 

Developed by Embedding Soft Ionic Gels in Soft Silicone Elastomers. ECS J. 

Solid State Sci. Technol. 9, 061024. https://doi.org/10.1149/2162-8777/aba913 

Hu, Q., Whitney, H.M., Giger, M.L., 2020. A deep learning methodology for improved 

breast cancer diagnosis using multiparametric MRI. Sci Rep 10, 10536. 

https://doi.org/10.1038/s41598-020-67441-4 

Jerison, D., Burgiel, H., 2010. Quadratic Approximation at 0 for Several Examples. MIT 

Press 18.01SC, 3. 

Jewell Instruments LLC., 2020. Tiltmeter Temperature Coefficients: Source, Definition 

and Use to Improve Accuracy. 



 

271 

 

Jia, W., Luo, T., Dong, Y., Zhang, X., Zhan, W., Zhou, J., 2021. Breast Elasticity 

Imaging Techniques: Comparison of Strain Elastography and Shear-Wave 

Elastography in the Same Population. Ultrasound in Medicine & Biology 47, 

104–113. https://doi.org/10.1016/j.ultrasmedbio.2020.09.022 

Jiang, L., Cai, Z., Wang, D., Zhang, H., 2012. Improving Tree augmented Naive Bayes 

for class probability estimation. Knowledge-Based Systems 26, 239–245. 

https://doi.org/10.1016/j.knosys.2011.08.010 

J.M. Morel, 2011. Is SIFT scale invariant? Inverse Problems and Imaging 5, 115–136. 

https://doi.org/10.3934/ipi.2011.5.115 

Kalinin, V., 2014. Modelling of hysteresis and creep in SAW strain sensors, in: 2014 

IEEE International Frequency Control Symposium (FCS). Presented at the 2014 

IEEE International Frequency Control Symposium (FCS), IEEE, Taipei, Taiwan, 

pp. 1–4. https://doi.org/10.1109/FCS.2014.6859976 

Karabatak, M., Ince, M.C., 2009. An expert system for detection of breast cancer based 

on association rules and neural network. Expert Systems with Applications 36, 

3465–3469. https://doi.org/10.1016/j.eswa.2008.02.064 

Karami, E., Prasad, S., Shehata, M., 2017. Image Matching Using SIFT, SURF, BRIEF 

and ORB: Performance Comparison for Distorted Images 5. 

Khan, A., Mineo, C., Dobie, G., Macleod, C., Pierce, G., 2020. Vision guided robotic 

inspection for parts in manufacturing and remanufacturing industry. Jnl 

Remanufactur. https://doi.org/10.1007/s13243-020-00091-x 

Krogh, M.R., Nghiem, G.M., Halvorsen, P.S., Elle, O.J., Grymyr, O.-J., Hoff, L., 

Remme, E.W., 2017. Gravity Compensation Method for Combined 

Accelerometer and Gyro Sensors Used in Cardiac Motion Measurements. Annals 

of Biomedical Engineering 45, 1292–1304. https://doi.org/10.1007/s10439-017-

1798-4 

Kuhl, C.K., Keulers, A., Strobel, K., Schneider, H., Gaisa, N., Schrading, S., 2018. Not 

all false positive diagnoses are equal: On the prognostic implications of false-

positive diagnoses made in breast MRI versus in mammography / digital 

tomosynthesis screening. Breast Cancer Res 20, 13. 

https://doi.org/10.1186/s13058-018-0937-7 

Laura Di Sieno, Hélène Sportouche, David Savéry, Sanathana Konugolu Venkata Sekara, 

Bogdan Rosinski, Andrea Farina, Edoardo Ferocino, Pranav Lanka, Paola Taroni, 

Antonio Pifferi, Alberto Dalla Mor, Rinaldo Cubeddu, 2019. Solid 

heterogeneous phantoms for multimodal ultrasound and diffuse optical imaging: 

an outcome of the SOLUS project for standardization, in: Novel Biophonics 

Techniques and Applications V. Presented at the European Conferences on 

Biomedical Optics, Munich, Germany. https://doi.org/10.1117/12.2526645 

Laxminarayan, R., Chow, J., Shahid-Salles, S.A., 2006. Intervention Cost-Effectiveness: 

Overview of Main Messages. Disease Control Priorities in Developing Countries. 

2nd edition. 52. 

Lee, J.M., Arao, R.F., Sprague, B.L., Kerlikowske, K., Lehman, C.D., Smith, R.A., 

Henderson, L.M., Rauscher, G.H., Miglioretti, D.L., 2019. Performance of 

Screening Ultrasonography as an Adjunct to Screening Mammography in 



 

272 

 

Women Across the Spectrum of Breast Cancer Risk. JAMA Intern Med 179, 658. 

https://doi.org/10.1001/jamainternmed.2018.8372 

Lefemine, V., Osborn, G., Mainwaring, A., Goyal, S., 2012. Have Standardised Referral 

Forms Reduced the Number of Inappropriate Referrals to Breast Clinic? Bulletin 

94, 1–3. https://doi.org/10.1308/147363512X13189526438954 

Levkovich, I., Cohen, M., Pollack, S., Drumea, K., Fried, G., 2015. Cancer-related 

fatigue and depression in breast cancer patients postchemotherapy: Different 

associations with optimism and stress appraisals. Palliative and Supportive Care 

13, 1141–1151. https://doi.org/10.1017/S147895151400087X 

Liang, W., Lawrence, W.F., Burnett, C.B., Hwang, Y.-T., Freedman, M., Trock, B.J., 

Mandelblatt, J.S., Lippman, M.E., 2003. Acceptability of Diagnostic Tests for 

Breast Cancer. Breast Cancer Res Treat 79, 199–206. 

https://doi.org/10.1023/A:1023914612152 

Liao, X., Qiu, Z., Jiang, T., Sadiq, M., Huang, Z., Demore, C., Cochran, S., 2015. 

Functional Piezocrystal Characterisation under Varying Conditions. Materials 8, 

8304–8326. https://doi.org/10.3390/ma8125456 

Liu, G., Zhang, M.-K., He, Y., Li, X.-R., Wang, Z.-L., 2019. Shear wave elasticity of 

breast lesions: would it be correlated with the extracellular matrix components? 

Gland Surg. 8, 399–406. https://doi.org/10.21037/gs.2019.04.09 

Lowe, D.G., 2004. Distinctive Image Features from Scale-Invariant Keypoints. 

International Journal of Computer Vision 60, 91–110. 

https://doi.org/10.1023/B:VISI.0000029664.99615.94 

Lozano, A., Hayes, J.C., Compton, L.M., Azarnoosh, J., Hassanipour, F., 2020. 

Determining the thermal characteristics of breast cancer based on high-resolution 

infrared imaging, 3D breast scans, and magnetic resonance imaging. Sci Rep 10, 

10105. https://doi.org/10.1038/s41598-020-66926-6 

Lubkowska, A., Chudecka, M., 2021. Thermal Characteristics of Breast Surface 

Temperature in Healthy Women. IJERPH 18, 1097. 

https://doi.org/10.3390/ijerph18031097 

Madgwick, S.O., Harrison, A.J., Vaidyanathan, R., 2011. Estimation of IMU and 

MARG orientation using a gradient descent algorithm, in: Rehabilitation 

Robotics (ICORR), 2011 IEEE International Conference On. IEEE, pp. 1–7. 

M.A.Fischler, R.C. Bolles, 1981. Random Sample Consensus: A Paradigm for Model 

Fitting with Applications to Image Analysis and Automated Cartography. Comm. 

of the ACM 24, 381–395. 

Mandrik, O., Ekwunife, O.I., Meheus, F., Severens, J.L. (Hans), Lhachimi, S., Uyl‐de 

Groot, C.A., Murillo, R., 2019. Systematic reviews as a “lens of evidence”: 

Determinants of cost‐effectiveness of breast cancer screening. Cancer Med 8, 

7846–7858. https://doi.org/10.1002/cam4.2498 

Manickam, K., Machireddy, R.R., Seshadri, S., 2014. Characterization of biomechanical 

properties of agar based tissue mimicking phantoms for ultrasound stiffness 

imaging techniques. Journal of the Mechanical Behavior of Biomedical Materials 

35, 132–143. https://doi.org/10.1016/j.jmbbm.2014.03.017 

Matsumura, T., Umemoto, T., Fujihara, Y., Ueno, E., Yamakawa, M., Shiina, T., Mitake, 

T., 2009. Measurement of elastic property of breast tissue for elasticity imaging, 



 

273 

 

in: 2009 IEEE International Ultrasonics Symposium. Presented at the 2009 IEEE 

International Ultrasonics Symposium, IEEE, Rome, Italy, pp. 1451–1454. 

https://doi.org/10.1109/ULTSYM.2009.5442044 

McCain, S., Newell, J., Badger, S., Kennedy, R., Kirk, S., 2011. Referral patterns, 

clinical examination and the two-week-rule for breast cancer: a cohort study. 

Ulster Medical Journal 80, 4. 

Memorial Sloan Kettering Cancer Centre, 2021. Anatomy of the Breast. URL 

https://www.mskcc.org/cancer-care/types/breast/anatomy-breast (accessed 

8.22.21). 

Micheletti, N., Chandler, J.H., Lane, S.N., 2015. Structure from Motion (SfM) 

Photogrammetry. Geomorphological Techniques 13. 

Morel, J.-M., Yu, G., 2009. ASIFT: A New Framework for Fully Affine Invariant Image 

Comparison. SIAM J. Imaging Sci. 2, 438–469. 

https://doi.org/10.1137/080732730 

Morgan, L.E., 2018. Quantifying and Reducing Input Modelling Error in Simulation. 

Lancaster. 

Mulvana, H., Stride, E., Tang, M.-X., Hajnal, J.V., Eckersley, R.J., 2011. Temperature-

dependent differences in the nonlinear acoustic behavior of ultrasound contrast 

agents revealed by high-speed imaging and bulk acoustics. Ultrasound in 

Medicine and Biology 37, 1509–1517. 

Nahid, A.-A., Kong, Y., 2017. Involvement of Machine Learning for Breast Cancer 

Image Classification: A Survey. Computational and Mathematical Methods in 

Medicine 2017, 1–29. https://doi.org/10.1155/2017/3781951 

NASA, 2012. Technology Readiness Level. URL 

https://www.nasa.gov/directorates/heo/scan/engineering/technology/txt_accordio

n1.html (accessed 3.22.21). 

Neto, P., Pires, J.N., Moreira, A.P., 2013. 3-D position estimation from inertial sensing: 

minimizing the error from the process of double integration of accelerations, in: 

Industrial Electronics Society, IECON 2013-39th Annual Conference of the 

IEEE. IEEE, pp. 4026–4031. 

NHS, 2018. Why it’s offered. Breast Cancer Screening. URL 

https://www.nhs.uk/conditions/breast-cancer-screening/why-its-offered/ 

(accessed 10.29.20). 

NICE, 2020a. Suspected cancer recognition and referral: site or type of cancer. 

NICE, 2020b. Suspected cancer: recognition and referral. NG12 86. 

NICE, 2018. Early and locally advanced breast cancer: diagnosis and management. 

NG101 61. 

Nioka, S., Chance, B., 2005. NIR Spectroscopic Detection of Breast Cancer. Technol 

Cancer Res Treat 4, 497–512. https://doi.org/10.1177/153303460500400504 

Nuari, M.R., Utami, E., Raharjo, D.S., 2019. Comparison of Scale Invariant Feature 

Transform and Speed Up Robust Feature for Image Forgery Detection Copy 

Move 6. 

Oleksyuk, V., Saleheen, F., Caroline, D.F., Pascarella, S.A., Won, C.-H., 2016. 

Classification of breast masses using Tactile Imaging System and machine 

learning algorithms. IEEE, pp. 1–4. https://doi.org/10.1109/SPMB.2016.7846857 



 

274 

 

Oleksyuk, V., Saleheen, F., Yi Chen, Won, C.-H., 2015. Tactile Imaging System for 

inclusion size and stiffness characterization. IEEE, pp. 1–6. 

https://doi.org/10.1109/SPMB.2015.7405472 

Onan, A., 2015. A fuzzy-rough nearest neighbor classifier combined with consistency-

based subset evaluation and instance selection for automated diagnosis of breast 

cancer. Expert Systems with Applications 42, 6844–6852. 

https://doi.org/10.1016/j.eswa.2015.05.006 

Ozdemir, M., Ozdemir, G., Erogul, O., 2018. Investigating Ballistic Gelatin Based 

Phantom Properties for Ultrasound Training, in: IFMBE. Presented at the World 

Congress on Medical Physics and Biomedical Engineering 2018, Singapore, pp. 

789–793. https://doi.org/10.1007/978-981-10-9035-6_145 

Papoular, R.J., Papoular, R., 2014. Some optical properties of graphite from IR to 

millimetric wavelengths. Monthly Notices of the Royal Astronomical Society 

443, 2974–2982. https://doi.org/10.1093/mnras/stu1348 

Park, S., Kang, B.J., 2021. Combination of shear-wave elastography with 

ultrasonography for detection of breast cancer and reduction of unnecessary 

biopsies: a systematic review and meta-analysis. Ultrasonography 40, 318–332. 

https://doi.org/10.14366/usg.20058 

Pierleoni, P., Belli, A., Palma, L., Mercuri, M., Verdini, F., Fioretti, S., Madgwick, S., 

Pinti, F., 2019. Validation of a Gait Analysis Algorithm for Wearable Sensors, in: 

2019 International Conference on Sensing and Instrumentation in IoT Era (ISSI). 

Presented at the 2019 International Conference on Sensing and Instrumentation 

in IoT Era (ISSI), IEEE, Lisbon, Portugal, pp. 1–6. 

https://doi.org/10.1109/ISSI47111.2019.9043647 

Public Health England, 2018. Easy Guide to Breast Screening. 

Quieregatto, P.R., Hochman, B., Furtado, F., Machado, A.F.P., Sabino Neto, M., 

Ferreira, L.M., 2014. Image analysis software versus direct anthropometry for 

breast measurements. Acta Cirurgica Brasileira 29, 688–695. 

https://doi.org/10.1590/S0102-8650201400160010 

Rahni, A.A.A., Yahya, I., 2007. Obtaining translation from a 6-DOF MEMS IMU—an 

overview, in: Applied Electromagnetics, 2007. APACE 2007. Asia-Pacific 

Conference On. IEEE, pp. 1–5. 

Rana, S., Hampson, R., Dobie, G., 2020. Breast Cancer: Model Reconstruction and 

Image Registration From Segmented Deformed Image Using Visual and Force 

Based Analysis. IEEE Trans. Med. Imaging 39, 1295–1305. 

https://doi.org/10.1109/TMI.2019.2946629 

Rangayyan, R.M., El-Faramawy, N.M., Desautels, J.L., Alim, O.A., 1997. Measures of 

acutance and shape for classification of breast tumors. IEEE Transactions on 

medical imaging 16, 799–810. 

Regal, S., Troughton, J., Delattre, R., Djenizian, T., Ramuz, M., 2020. Changes in 

temperature inside an optomechanical model of the human eye during emulated 

transscleral cyclophotocoagulation. Biomed. Opt. Express 11, 4548. 

https://doi.org/10.1364/BOE.385016 

Richard H. Gold, Lawrence W, Bassett, Bobbi E. Widoff, 1990. Highlights from the 

history of mammography. 



 

275 

 

Robert J Miller, 2020a. BREAST MAGNETIC RESONANCE IMAGING. About 

Cancer. URL http://www.aboutcancer.com/breast_mri_textbook.htm (accessed 

12.23.20). 

Robert J Miller, 2020b. Breast Cancer Imaging Studies. About Cancer. URL 

http://www.aboutcancer.com/breast_cancer_imaging_misc.htm (accessed 

12.23.20). 

Roylance, D., 2001. ENGINEERING VISCOELASTICITY. 3-11 mechanics of 

materials, Materials Science and Engineering 38. 

Rudin, C., 2019. Stop Explaining Black Box Machine Learning Models for High Stakes 

Decisions and Use Interpretable Models Instead. arXiv:1811.10154 [cs, stat]. 

Ryan Roeder, 2013. Mechanical Characterization of Biomaterials, in: Characterization 

of Biomaterials. Academic Press. 

Rzymski, P., Skórzewska, A., Skibińska-Zielińska, M., Opala, T., 2011. Factors 

influencing breast elasticity measured by the ultrasound Shear Wave 

elastography – preliminary results. aoms 1, 127–133. 

https://doi.org/10.5114/aoms.2011.20617 

Sahu, A., Saleheen, F., Oleksyuk, V., Chen, Y., Won, C.-H., 2013. Tactile and 

hyperspectral imaging sensors for mammary tumor characterization. IEEE, pp. 

1–4. https://doi.org/10.1109/ICSENS.2013.6688136 

Sahu, A., Saleheen, F., Oleksyuk, V., McGoverin, C., Pleshko, N., Torbati, A.H.H.N., 

Picone, J., Sorenmo, K., Won, C.-H., 2014. Characterization of Mammary 

Tumors Using Noninvasive Tactile and Hyperspectral Sensors. IEEE Sensors 

Journal 14, 3337–3344. https://doi.org/10.1109/JSEN.2014.2323215 

Saleheen, F., Oleksyuk, V., Sahu, A., Won, C.-H., 2013. Non-invasive mechanical 

properties estimation of embedded objects using tactile imaging sensor, in: 

Cullum, B.M., McLamore, E.S. (Eds.), . p. 87190K. 

https://doi.org/10.1117/12.2015803 

Samani, A., Zubovits, J., Plewes, D., 2007. Elastic moduli of normal and pathological 

human breast tissues: an inversion-technique-based investigation of 169 samples. 

Phys. Med. Biol. 52, 1565–1576. https://doi.org/10.1088/0031-9155/52/6/002 

Sanchez, J., Mateo, C.M., Corrales, J.A., Bouzgarrou, B.-C., Mezouar, Y., 2018. Online 

Shape Estimation based on Tactile Sensing and Deformation Modeling for Robot 

Manipulation, in: 2018 IEEE/RSJ International Conference on Intelligent Robots 

and Systems (IROS). Presented at the 2018 IEEE/RSJ International Conference 

on Intelligent Robots and Systems (IROS), IEEE, Madrid, pp. 504–511. 

https://doi.org/10.1109/IROS.2018.8594314 

Sánchez-Durán, J., Vidal-Verdú, F., Oballe-Peinado, Ó., Castellanos-Ramos, J., 

Hidalgo-López, J., 2015. A New Model Based on Adaptation of the External 

Loop to Compensate the Hysteresis of Tactile Sensors. Sensors 15, 26170–26197. 

https://doi.org/10.3390/s151026170 

Sarvazyan, A., 1998. Mechanical imaging:: A new technology for medical diagnostics. 

International journal of medical informatics 49, 195–216. 

Sarvazyan, A., Egorov, V., 2012. Mechanical imaging-a technology for 3-D 

visualization and characterization of soft tissue abnormalities: a review. Current 

medical imaging reviews 8, 64–73. 



 

276 

 

Sarvazyan, A., Egorov, V., Son, J.S., Kaufman, C.S., 2008. Cost-effective screening for 

breast cancer worldwide: current state and future directions. Breast cancer: basic 

and clinical research 1, 91. 

Sarvazyan, A.P., 1997. Knowledge-based mechanical imaging, in: Computer-Based 

Medical Systems., 1997. Proceedings., Tenth IEEE Symposium On. IEEE, pp. 

120–125. 

Sarvazyan, A.P., Egorov, V., 2009. Mechanical imaging in medical applications, in: 

Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual 

International Conference of the IEEE. IEEE, pp. 1975–1978. 

Sensortec, B., 2020. BNO055 Intelligent 9-axis absolute orientation sensor Datasheet. 

Shen, L., Margolies, L.R., Rothstein, J.H., Fluder, E., McBride, R., Sieh, W., 2019. 

Deep Learning to Improve Breast Cancer Detection on Screening Mammography. 

Sci Rep 9, 12495. https://doi.org/10.1038/s41598-019-48995-4 

Shin-Etsu Chemical Co, 2016. Characteristic properties of Silicone Rubber Compounds 

[WWW Document]. Meeting the increasingly diverse and sophisticated needs of 

industry with the unique properties of silicone rubbers. URL 

https://www.shinetsusilicone-global.com/catalog/pdf/rubber_e.pdf (accessed 

1.27.21). 

Summan, R., 2015. Spatial calibration of large volume photogrammetry based 

metrology systems 12. 

Summan, R., Jackson, W., Dobie, G., MacLeod, C., Mineo, C., West, G., Offin, D., 

Bolton, G., Marshall, S., Lille, A., 2018. A novel visual pipework inspection 

system. Presented at the 44TH ANNUAL REVIEW OF PROGRESS IN 

QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLUME 37, Provo, 

Utah, USA, p. 220001. https://doi.org/10.1063/1.5031647 

Tao, J., Dong, M., Li, L., Wang, C., Li, J., Liu, Y., Bao, R., Pan, C., 2020. Real-time 

pressure mapping smart insole system based on a controllable vertical pore 

dielectric layer. Microsyst Nanoeng 6, 62. https://doi.org/10.1038/s41378-020-

0171-1 

Tasoulis, M.-K., Zacharioudakis, K.E., Dimopoulos, N.G., Hadjiminas, D.J., 2014. 

Diagnostic accuracy of tactile imaging in selecting patients with palpable breast 

abnormalities: a prospective comparative study. Breast Cancer Res Treat 147, 

589–598. https://doi.org/10.1007/s10549-014-3123-3 

Tian, J., Liu, Q., Wang, X., Xing, P., Yang, Z., Wu, C., 2017. Application of 3D and 2D 

quantitative shear wave elastography (SWE) to differentiate between benign and 

malignant breast masses. Sci Rep 7, 41216. https://doi.org/10.1038/srep41216 

Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W., 2000. Bundle Adjustment 

— A Modern Synthesis, in: Triggs, B., Zisserman, A., Szeliski, R. (Eds.), Vision 

Algorithms: Theory and Practice, Lecture Notes in Computer Science. Springer 

Berlin Heidelberg, Berlin, Heidelberg, pp. 298–372. https://doi.org/10.1007/3-

540-44480-7_21 

UC Davies Health, 2020. Dedicated Breast CT Research. UCDavies Health Department 

of Radiology. URL https://health.ucdavis.edu/radiology/research/bcti.html 

(accessed 12.23.20). 



 

277 

 

Vaicekauskaite, J., Mazurek, P., Vudayagiri, S., Skov, A.L., 2020. Mapping the 

mechanical and electrical properties of commercial silicone elastomer 

formulations for stretchable transducers. J. Mater. Chem. C 8, 1273–1279. 

https://doi.org/10.1039/C9TC05072H 

Valenti, R., Dryanovski, I., Xiao, J., 2015. Keeping a Good Attitude: A Quaternion-

Based Orientation Filter for IMUs and MARGs. Sensors 15, 19302–19330. 

https://doi.org/10.3390/s150819302 

Verma, B., McLeod, P., Klevansky, A., 2010. Classification of benign and malignant 

patterns in digital mammograms for the diagnosis of breast cancer. Expert 

Systems with Applications 37, 3344–3351. 

https://doi.org/10.1016/j.eswa.2009.10.016 

Walt Boyes, 2010. Instrumentation Reference Book - Chapter 21, 4th ed. Elsevier. 

Wellman, P., Howe, R.D., Dalton, E., Kern, K.A., 1999a. Breast tissue stiffness in 

compression is correlated to histological diagnosis. Harvard BioRobotics 

Laboratory Technical Report 1–15. 

Wellman, P., Howe, R.D., Dewagan, N., Cundari, M.A., Dalton, E., Kern, K.A., 1999b. 

Tactile imaging: a method for documenting breast masses, in: [Engineering in 

Medicine and Biology, 1999. 21st Annual Conference and the 1999 Annual Fall 

Meetring of the Biomedical Engineering Society] BMES/EMBS Conference, 

1999. Proceedings of the First Joint. IEEE, pp. 1131-vol. 

Wellman, P.S., 1999. Tactile Imaging - PhD Thesis. Harvard University Press. 

Woods, R.W., Sisney, G.S., Salkowski, L.R., Shinki, K., Lin, Y., Burnside, E.S., 2011. 

The mammographic density of a mass is a significant predictor of breast cancer. 

Radiology 258, 417–425. 

Yang, H., Xu, Y., Zhao, Y., Yin, J., Chen, Z., Huang, P., 2020. The role of tissue 

elasticity in the differential diagnosis of benign and malignant breast lesions 

using shear wave elastography. BMC Cancer 20, 930. 

https://doi.org/10.1186/s12885-020-07423-x 

Yip, M., He, D.D., Winokur, E., Balderrama, A.G., Sheridan, R., Hongshen Ma, 2009. A 

flexible pressure monitoring system for pressure ulcer prevention, in: 2009 

Annual International Conference of the IEEE Engineering in Medicine and 

Biology Society. Presented at the 2009 Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, IEEE, Minneapolis, MN, pp. 

1212–1215. https://doi.org/10.1109/IEMBS.2009.5333964 

Youk, J.H., Gweon, H.M., Son, E.J., 2017. Shear-wave elastography in breast 

ultrasonography: the state of the art. Ultrasonography 36, 300–309. 

https://doi.org/10.14366/usg.17024 

Yu, G., Morel, J.-M., 2011. ASIFT: An Algorithm for Fully Affine Invariant 

Comparison. Image Processing On Line 1. https://doi.org/10.5201/ipol.2011.my-

asift 

Yun, X., Bachmann, E.R., Moore, H., Calusdian, J., 2007. Self-contained position 

tracking of human movement using small inertial/magnetic sensor modules, in: 

Robotics and Automation, 2007 IEEE International Conference On. IEEE, pp. 

2526–2533. 



 

278 

 

Zhang, S., Graeme, George, Qiao, P., Huang, Z., Xia, C., 2020a. Needle-tissue 

interaction force study during simulated regional anaesthesia. J. Phys.: Conf. Ser. 

1544, 012064. https://doi.org/10.1088/1742-6596/1544/1/012064 

Zhang, S., Graeme, George, Qiao, P., Huang, Z., Xia, C., 2020b. Ultrasound-guided 

Needle nerve contact positions detection in Regional Anaesthesia using Needle 

tip force and Opening injection pressure. J. Phys.: Conf. Ser. 1544, 012126. 

https://doi.org/10.1088/1742-6596/1544/1/012126 

Zharov, V.P., Ferguson, S., Eidt, J.F., Howard, P.C., Fink, L.M., Waner, M., 2004. 

Infrared imaging of subcutaneous veins. Lasers Surg. Med. 34, 56–61. 

https://doi.org/10.1002/lsm.10248 

Zheng, B., Yoon, S.W., Lam, S.S., 2014. Breast cancer diagnosis based on feature 

extraction using a hybrid of K-means and support vector machine algorithms. 

Expert Systems with Applications 41, 1476–1482. 

https://doi.org/10.1016/j.eswa.2013.08.044 

 

 

 

 

 

 

 

 

 

 

 



 

279 

 

Appendix A 

Example Referral Forms 

A.  

A.1. Description of Referral Forms 

Section A.2 contains examples of current UK NHS breast cancer referral forms 

from 3 NHS trusts in England. The forms contain basically the same information; 

however, it is clear from a cursory glance that these forms offer significantly different 

levels of detail and are arranged in ascending order of detail. An example of this is in 

form 1 there is no field for whether breast cancer is suspected, which is present in forms 

2 and 3, but it is hidden in the request for symptoms. From looking at the forms, form 2 

from NHS Heart of England has the best balance between length and detail, being 

compressed onto a single page whilst detailing the particulars of the patient and the 

breast condition that can be determined during the CBE. Additionally, the employment 

of a high quality and representative diagram for lesion location is felt to improve the 

reception of the form to physicians and reduces confusion in further tests (Lefemine et 

al., 2012). The forms, although basically containing the same things such as patient 

particulars, symptoms, and a location of the condition; often ask different questions not 

present in other forms such as whether the patient has had a 

mammogram/radiology/pathology recently.  
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A.2. Referral Forms from Various NHS Trusts 
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Appendix B 

Scanner Sensor Calibration 

B.  

B.1. Calibration Apparatus 

The general purpose calibration apparatus is shown in Appendix Figure B.1, 

which is used for the calibration of the prototype systems from Chapter 4 and 5 as well 

as testing on the tactile array from Chapter 6. The apparatus consists of a linear guide 

rail that the sensor system is attached to using machine screws, which is able to be 

moved in or out using a leadscrew in order to vary the load applied to the sensor system. 

The linear guide rail is also tiltable using a vernier and clamp on the back of the 

apparatus, which allows the sensor under test to be angled into a calibration pad 

mounted to the base plate. A PPS D660 load cell (PPS Inc., US-CA) is used to provide a 

measurement of the total load applied to the sensor under test by the apparatus.  

The linear actuation and angle adjustment are performed manually, with the 

values incremented until the angle vernier is correct and the D660 load measurement is 

at the correct value for the test. The D660 is a force sensor, and so must be converted to 

equivalent pressure, for calibrating the pressure sensors on the tactile array of the 

developed system, by dividing the output by the test sensor contact surface area. 
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Appendix Figure B.1 - Calibration and test apparatus. The mechanism holds the sensor 

system under test and allows it to be inserted and held at a defined depth and angle in a 

SureTouch™ calibration pad on the base plate. A reference load cell is used to measure 

the total load applied to the sensor under test. The calibration pad can be placed over 

the reference load cell when this is required. 
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B.2. Pressure Sensor Normal Calibration 

Initial calibration of the 2x2 SingleTact™ array used in the Chapter 4 and 5 

prototype systems is performed using the setup shown in Appendix Figure B.2. In this 

situation the system under test is bolted to the compression apparatus, and a 

SureTouch™ calibration pad is placed over the D660 load cell. The prototype system is 

turned on and pressed steadily into the calibration pad, controlling the total applied force 

using the D660, over the range 0-20N. The SingleTact™ readings are then calibrated in 

their mounted positions using the D660 measurement. 

The loading is not tilted, and so the total force measured by the D660 is expected 

to be shared equally between the array sensors, but slight manufacturing differences and 

irregularities in the sensor backing will cause the load to be unevenly shared between 

sensor elements. As we know that each measurement should be FTotal/4, each element 

output can be forced to this value by a piecewise linear function over the full test range. 

This type of function allows for changes in the load sharing between elements to be 

accounted for, resulting in a typical calibrated linearity error of 2% which is sufficient 

for this purpose. 

It is clear that each element in the 2x2 array would have a different set of 

calibration function as they are functions to account for differences between elements. It 

is also clear, from the fact that the differences are caused by manufacturing tolerances, 

that other units made to this design will have different sets of calibration functions and 

so new calibration of this type is required for duplication of this work. 



 

288 

 

 

 

 

Appendix Figure B.2 – SingleTact™ array normal loading calibration setup. The sensor 

prototype is bolted to the test apparatus with a rubber scratch guard. The prototype is 

then pressed normally to the calibration pad surface, with the SingleTact™ readings 

compared with the D660 reference measurements. 
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B.3. Scanner Tilt Angle Calibration 

The axis offset between the BNO055 MARG sensor used in the system prototype 

and the probe axes is determined using the setup shown in Appendix Figure B.3. The 

prototype is bolted to the apparatus as before and tilted over the desired range using a 

vernier readout. The rotation measured by the BNO055 is expected to be about a single 

axis, but manufacturing tolerance and installation variability will mean that the MARG 

sensor axes are not aligned with the rest of the system. The difference between the 

reference angle and MARG estimation is measured and accounted for using a rotation 

matrix to virtually align the two media. 

 

Appendix Figure B.3 - Tilt angle calibration setup. The prototype is tilted left and right 

over the range -15° to 15° using the vernier angle readout, to calibrate the orientation 

of the MARG sensor to the prototype axes. This is performed in each axis to average out 

measurement error from probe alignment with the tilt apparatus. 
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B.4. Tactile Array Normalisation 

Tactile array calibration and normalisation is performed by pressing the tactile 

array into the calibration pad with zero tilt angle, with discretely incrementing load 

measured using the D660 reference sensor. A second order surface is fit to the tactile 

frame, and the surface is scaled linearly such that the surface mean is calibrated to the 

reference sensor. This allows for a nominally flat array response over the calibration 

range, minimising the error from the curvature of the array. A typical calibrated response 

is shown in Appendix Figure B.4, where a linearity error < 1.9% is achieved over the 

full calibrated range. The sensors are calibrated to have no sensitivity error at 100% FSR 

and no baseline shift at 0% FSR at the calibration temperature. 

 

Appendix Figure B.4 – Example SureTouch™ surface calibrated response. The mean of 

the second order surface fit to the array data is calibrated to the reference sensor using 

piecewise linear functions between test points. This allows linearity < 1.9%. 
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Appendix C 

Temperature and Mechanical Analysis 

C.  

C.1. Temperature Analysis and Apparatus 

Measurement of thermal sensitivity of the sensors is done using a thermal control 

oven as shown in Appendix Figure C.1. The measurement of baseline sensitivity is done 

by incrementing the temperature of the oven by discrete steps and recording the sensor 

baseline when the integrated thermocouple measurement is stable and equal to the oven 

temperature. Measurement of the scale factor thermal sensitivity is performed by 

similarly heating the sensor and the calibration pad. When the materials have reached 

thermal equilibrium, they are removed from the oven and a compression test is 

performed using a reference D660 thermally isolated load cell, to determine the change 

in sensor sensitivity to load. The large thermal mass of the materials and short test times 

maintains temperature stability within 0.2° during the compression test. 

 The thermal oven is a box made from sheets of polystyrene enclosing the sensor 

array and calibration pad. The oven is fan assisted with a 100W incandescent lightbulb 

as the heating element. A ‘K’ type thermocouple of the same type as used for the sensor 

array provides feedback for a Eurotherm 2116 thermostatic controller (Eurotherm 

Controls Ltd. UK). The thermocouple is out of the convection path to give conservative 
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measurements of oven temperature. Thermal control is typically within 5%, however 

measurements are taken when the sensor is at the correct temperature, and so the 

measurements are not affected by the oven control tolerance. Cables for internal 

components are fed through narrow holes in the door that also stop pressure changes 

inside the oven. The heated materials are raised above the oven bed using spacers to 

allow air flow under them for even heating.  

 

Appendix Figure C.1 – General schematic for a thermal control chamber. The 

polystyrene insulated chamber can gently warm the tactile array and test material 

together using the heater and fan to bring all materials to the same temperature evenly. 
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C.2. Creep/Hysteresis Analysis and Apparatus 

The apparatus for mechanical testing of sensor creep and hysteresis is shown in 

Appendix Figure C.2, and is practically identical to the apparatus from Appendix B. The 

lead screw is disengaged and replaced with a container for holding small weights. The 

SureTouch™ tactile array is fixed to the test apparatus using a transparent coupler to 

insulate the electrical components from the test apparatus and allow the cables to pass 

out of the system. Using weights, rather than the lead screw, to press the tactile array 

into the calibration pad allows for the load to be held at a constant value for long periods 

of time. The weights allow the apparatus to compensate for the creepage of the 

calibration pad in response to continuous applied load, maintaining a constant load by 

allowing the tactile array to sink down into the calibration pad to maintain a nominal 

stress. This is a fundamental physical process, and is better than closed loop control of 

the leadscrew. The D660 reference is still used to verify the weights added and to record 

the weights for automated analysis. This process allows the creepage of the calibration 

pad to be separated from the creepage of the tactile array. The zero load condition is 

measured with the tactile array separated from the calibration pad surface. 

Creep and hysteresis are measured in a similar manner, with weights applied and 

continuous measurements taken until the sensor output is stable or 5 minutes, whichever 

is greater, before removing the weights and disengaging the sensor from the surface. 

Readings are taken in the zero load state, following a loading event, for 5 minutes or 

until the sensor is stable at some value related to the hysteresis. 
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Appendix Figure C.2 – Mechanical Creep/Hysteresis test apparatus. The basic 

equipment is identical to the setup from Appendix B, with the lead screw disengaged and 

replaced with a cup for adding weights. Using weights means the creepage of the 

calibration pad will be continuously corrected for, which is verified by the load cell. 
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C.3. Cross Coupling Analysis and Apparatus 

Cross coupling between elements is determined by compressing an individual 

element of a pre-calibrated sensor array and observing the typical response of the 4 most 

adjacent elements as shown in Appendix Figure C.3. This process is repeated for all 

internal elements, allowing for a typical response to be determined. 

The actuated element is compressed using a 1mm diameter cylindrical indenter, 

centred on the element of interest. Position is adjusted to attempt to keep the surrounding 

elements approximately equal with each other. The mean output of the 4 peripheral 

elements is divided by the applied load to determine the cross coupling for that element. 

The values for each element are then averaged to give a typical array response.  

 

Appendix Figure C.3 - Method for measuring interelement cross coupling. Each internal 

element is compressed sequentially with a near point load, and the 4 adjacent elements 

are averaged to determine the coupling between elements. 


