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Abstract

Adiabatic protocols are employed across a variety of quantum technologies, from imple-

menting state preparation and individual operations that are building blocks of larger

devices, to higher-level protocols in quantum annealing and adiabatic quantum com-

putation. The main drawback of adiabatic processes, however, is that they require

prohibitively long timescales. This generally leads to losses due to decoherence and

heating processes. The problem of speeding up system dynamics while retaining the

adiabatic condition has garnered a large amount of interest, resulting in a whole host

of diverse methods and approaches made for this purpose. Most of these methodologies

are encompassed by the fields of quantum optimal control and shortcuts to adiabatic-

ity (STA), which are in themselves complementary approaches. Optimal control often

concerns itself with the design of control fields for steering system dynamics while min-

imising the use of some resource, like time, while the goal of STA is to retain the

adiabatic condition upon speed-up.

This thesis is dedicated to the discovery of new ways to combine optimal control

techniques with a universal method from STA: counterdiabatic driving (CD). The CD

approach offers perfect suppression of all non-adiabatic effects experienced by a sys-

tem driven by a time-dependent Hamiltonian regardless of how fast the process occurs.

In practice, however, exact CD is difficult to derive often even more difficult to im-

plement. The main result presented in the thesis is thus the development of a new

method called counterdiabatic optimized local driving (COLD), which implements op-

timal control techniques in tandem with approximations of exact CD in a way that

maximises suppression of non-adiabatic effects. We show, using numerical methods,

that using COLD results in a substantial improvement over optimal control or approx-
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Chapter 0. Abstract

imate CD techniques when applied to annealing protocols, state preparation schemes,

entanglement generation, and population transfer on a synthetic lattice. We explore

how COLD can be enhanced with existing advanced optimal control methods and we

show this by using the chopped randomized basis method and gradient ascent pulse

engineering. Furthermore, we demonstrate a new approach for the optimization of

control fields that does not require access to the wave function or the computation of

system dynamics. In their stead, we use components of the approximate counterdia-

batic drive to inform the optimisation, owing to the fact that CD encodes information

about non-adiabatic effects of a system for a given dynamical Hamiltonian.
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Lay Summary

“With magic, you can turn a

frog into a prince. With science,

you can turn a frog into a Ph.D

and you still have the frog you

started with.”

Terry Pratchett

Figure 1: A turtle with a jetpack
strapped to its back, illustrating
the speed-up of what is canonically
a slow (adiabatic) process. This
image was created with the assis-
tance of DALL·E 2 [1].

Quantum systems are notoriously volatile crea-

tures. In our quest to build better quantum tech-

nologies, we must first learn the art of controlling

them with very high precision in a way that pro-

duces useful information or work. This must be

done while protecting the information such sys-

tems contain from an environment that is often

hell-bent on making this job as difficult as possi-

ble 1.

A particularly useful type of controlled pro-

cess that we would like to be able to perform is

an adiabatic process, which involves slowly chang-

ing some parameter affecting a quantum system,

e.g. the strength or direction of an electromagnetic field. The ‘slow’ part here is re-

quired to keep the system from getting excited out of the ‘instantaneous’ energy level

1This anthropomorphisation of quantum systems and the environment is for literary effect - I do
not believe that the environment has much in the way of a political agenda to inflict decoherence upon
quantum systems
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Chapter 0. Lay Summary

that it starts in. Think of a magnetic field slowly rotating through some angle such

that a bar magnet placed in said field always stays aligned with it. If the rotation

happens too quickly, the magnet overshoots in the direction of the changing field. An

analogous process happens in the quantum case, where the quantum state ‘jumps’ out

of its energy level. For many applications of quantum technologies, we would like to

avoid such jumps, hence we perform adiabatic (slow) transformations.

Unfortunately, the volatility of quantum systems does not often allow us to abide by

this slow condition. The longer a quantum process takes to complete, the more time it

spends exposed to the environment, leaking information and absorbing heat. In order

to combat this lossiness, entire fields of study have been developed with the sole aim

of imitating the results of adiabatic processes on shorter timescales. The techniques

used to achieve this vary vastly and achieve various levels of success: some suppress the

losses that come with fast processes, others try to avoid them entirely with increasingly

complex protocols.

In this thesis, we present a method which aims to speed up adiabatic processes in a

way that caters to the practical constraints of quantum experiments. We assume that

we are given a limited set of operations that we can actually perform in order to suppress

some of the jumps that occur during fast driving. We then optimise the path through

which the system travels in a way that helps this very restricted set of operations

perform as best as they could. This approach follows the fact that the losses depend on

the path that the system parameter takes: for example, the magnetic field can rotate

from its starting direction to the final one while including detours and oscillations along

the way. If you get the set of rotations just right, it is possible to mitigate or suppress

many of the effects of a fast change quite efficiently in many cases. We demonstrate

this in some of the later chapters with simulations of such optimised counterdiabatic

protocols for different systems and different rates of change in the system parameters.

For more details, I invite you to read my blog post on the topic given by Ref. [2],

which is slightly more technical and detailed, but brief and full of animations to explain

the concepts involved.
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Chapter 1

Introduction

Everything starts somewhere,

although many physicists

disagree.

Terry Pratchett, Hogfather

(1996)

Despite the fact that quantum mechanics has been established for around a cen-

tury, only recently have we begun to harness the unique features found in the quantum

domain, a development spurred by and further proliferating the rapid progress of ex-

perimental advances for quantum systems. It is often control that turns scientific

knowledge into technology. Thus control, or the precise manipulation of and interac-

tion with quantum systems, is a fundamental goal of quantum technologies. This may

be for the purpose of gaining insight into the physics governing quantum systems, in

order to build better devices or in order to solve complex computational problems. We

are currently on the cusp of a new age of quantum technologies and control of quantum

systems, driven by the methodical exploitation of phenomena such as coherence and

entanglement, allowing us to probe and predict the behaviour of quantum systems in

ways that could never be done before.

With this development in experimental capabilities, the demand for theoretical tech-

niques for the time-dependent manipulation of quantum systems has increased consid-

erably. Such techniques are imperative for the development of efficient transformations

2



Chapter 1. Introduction

of quantum states, like in the case of quantum gate design [3], quantum computing [4]

or state preparation for the study of condensed matter physics [5], among many other

examples. Simultaneously, there has been a rise in demand for techniques which re-

fine and enhance existing protocols with the aim of reducing or mitigating decoherence

and unwanted losses, whether through information-theoretic techniques like quantum

error-correction [6], or via approaches for designing driving pulses like in the case of

quantum optimal control methods [7, 8].

Non-adiabatic losses An important example of control imperfections experienced

by a system driven in a time-dependent manner is that of losses in the form of un-

desired transitions that can occur between instantaneous eigenstates of a dynamical

Hamiltonian [9, 10]. There are many processes where one might want to end up in

e.g. the ground state of a given Hamiltonian whose parameters have been modified in

a time-dependent manner. This holds true in the case of state-preparation [5], pop-

ulation transfer [11] or in the case of solutions to combinatorics problems encoded in

ground states of Hamiltonians [12, 13]. This is why many quantum driving protocols

rely on adiabatic dynamics, where the system follows the instantaneous eigenstates of

time-dependent Hamiltonians and transitions are naturally suppressed [14, 15]. Ideal

adiabatic processes are reversible, making them, in principle, highly robust [10, 16].

Ideal adiabatic processes, however, require very slow system dynamics and one must

make compromises on the timescales of competing heating and decoherence processes.

This has led to a rise in the development of methods which aim to speed up adiabatic

dynamics while minimising the undesired transitions associated with fast driving, either

by entirely removing or by suppressing them. These types of methods are collectively

referred to as ‘shortcuts to adiabaticity’ or STA [17,18].

Shortcuts to adiabaticity The field of STA concerns itself with fast routes to the

final results of slow, adiabatic changes of the time-dependent parameters of a system.

Such routes are generally designed via a set of analytical and numerical methods for

different systems and conditions. Speeding up adiabatic protocols to enable their com-

pletion within the system’s coherence time is important for the development of any

3



Chapter 1. Introduction

quantum technologies relying on such protocols. Thus, STA methods have become in-

strumental in preparing and driving internal and motional states in atomic, molecular,

and solid-state physics. Some STA techniques rely on specific formalisms like invari-

ants and scaling [19–21], which exploit symmetries in the physical systems in order to

simplify models of non-adiabatic effects, or fast-forward [22,23], which adds an external

phase to the system wavefunction in order to allow for fast transport. These methods,

within specific domains, can be related to each other and potentially be made equiva-

lent because of underlying common structures. A universal STA approach like this is

counterdiabatic driving or CD, which will be a focal point of this thesis.

Counterdiabatic driving The idea of CD was first introduced by Demirplak and

Rice in the context of physical chemistry [24] and independently developed by Berry [9],

where it was referred to as ‘transitionless’ driving. The aim of CD is the complete sup-

pression of non-adiabatic effects experienced by a system driven at finite time via the

application of an external ‘counterdiabatic’ driving pulse. This is generally not possible,

however, due to the fact that the exact counterdiabatic drive is often difficult to com-

pute in the case of complex systems and may be near-impossible to implement in most

experimental settings, as well as being undefined for e.g. chaotic systems [10, 25, 26].

This has led to the development of several approximate CD methods, like the varia-

tional approach first introduced by Sels and Polkovnikov in [27] as well as the nested-

commutator method of Claeys et al [28]. Such approaches allow for some suppression of

non-adiabatic effects, but their efficacy is highly variable between different systems and

the Hamiltonians driving them. Discrete, quantum gate-based versions of CD and its

approximations have also been developed, under the moniker of ‘digitized counterdia-

batic quantum optimization’ (DCQO) [29], as well as within the context of the quantum

approximate optimisation algorithm or QAOA [30], although this is a relatively new

line of research.

Quantum optimal control A different but complementary approach to achieving

the target state of adiabatic dynamics more rapidly is that of quantum optimal con-

trol theory or QOCT [7, 8]. QOCT is primarily concerned with the development of

4



Chapter 1. Introduction

driving schedules for quantum systems which satisfy specific constraints and behave

optimally with respect to a given metric. Links between optimal control and STA have

existed throughout the development of both approaches [31–33]. This has included

the realisation of CD through fast oscillations of the Hamiltonian [34, 35] as well as a

fusion of machine learning methods and STA, demonstrating significant improvements

for optimizing quantum protocols through machine learning with the inclusion of con-

cepts from CD [36–38]. While QOCT methods certainly play a part in many aspects of

STA, however, they are not applied uniquely to the problem of speeding up adiabatic

dynamics. QOCT techniques are often implemented with the goal of driving a system

to some desired target state, as in the case of much of STA, however they can also be

implemented in determining protocols which satisfy criteria that are unrelated to some

target state, like minimising the magnitude of energy expenditure. Due to the versa-

tility of optimal control techniques, they can often be incorporated into many aspects

of quantum technologies in order to improve them. Examples include the design of

quantum computing gates [3] as well as improving measurement techniques [39], along

with the aforementioned applications to speeding up adiabatic dynamics [17].

Goals and contributions of the thesis Speeding up adiabatic processes while sup-

pressing non-adiabatic losses remains an open problem in most practical settings. In

the case of CD, issues generally arise at the point of implemention, with the counterdia-

batic term requiring operators that are simply not available in an experimental setting,

even if the exact counterdiabatic term could be theoretically obtained. The variational

approach of Sels and Polkovnikov [27], which we refer to as ‘local counterdiabatic driv-

ing’ or LCD, has attempted to circumvent this by constructing approximations which

allow one to choose an ansatz set of operators rather than requiring them to have full

support over the exact counterdiabatic drive. Such an approach makes for a far more

accessible method, however it is also one which has no guarantees of performance due

to the restrictions placed on the operators by CD theory. Optimal control methods, on

the other hand, while far more flexible also generally offer very little insight into the

way an optimal pulse should be constructed in order to suppress non-adiabatic effects.

5
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Thus pure QOCT approaches are often even more ineffective than approximate CD for

this purpose. In this thesis, we present a new combination of LCD and optimal control

methods which aims to improve upon both of the existing approaches while retaining

their advantages. The method, which we will call ‘counterdiabatic optimised local driv-

ing’ or COLD [40], is based on the observation that the effectiveness of a given LCD

approximation depends on the path of the dynamical Hamiltonian and furthermore,

that this path can be optimised using QOCT methods. We will also show that the

optimal control component of COLD can be extended by using an optimisation metric

constructed using information about the counterdiabatic drive. We will demonstrate

the effectiveness and flexibility of COLD and its extensions via numerical analysis,

comparing it to both of its components, LCD and quantum optimal control.

1.1 Thesis overview

The thesis is divided into four parts, prefaced by this introduction. Part I introduces

key background concepts relevant to the new results discussed later in the thesis: quan-

tum adiabaticity and quantum optimal control or QOCT. First, we discuss the concept

of an adiabatic quantum process, with particular focus in Sec. 2.1.2 on what it means

for a change in the Hamiltonian parameters to be ‘slow enough’ to be adiabatic. We

cover how non-adiabatic effects are generated by an operator known as the adiabatic

gauge potential (or AGP) and subsequently introduce the concept of a counterdiabatic

drive. We then discuss the difficulties of obtaining an exact counterdiabatic drive for a

given Hamiltonian and introduce several existing approximations of CD. This includes

LCD, which plays a large part in the rest of the thesis. We introduce QOCT, begin-

ning with the mathematical foundations of optimal control as well as several popular

numerical optimisation methods. We discuss how optimal control techniques can be

applied specifically to quantum systems and describe several QOCT methods that are

implemented in order to acquire the results presented later in the thesis.

In Part II, we introduce the main new material of the thesis: the COLD method

and its extension using several AGP-inspired cost functions. First, we discuss the

ways in which LCD and quantum optimal control methods can be combined to obtain

6



Chapter 1. Introduction

Figure 1.1: Thesis outline. In Part I, we will introduce the concept of quantum adi-
abaticity, the counterdiabatic driving (CD) method and its approximations as well as
quantum optimal control theory (QOCT) and several optimisation techniques that we
will apply later in the thesis. Then, in Part II, we will combine ideas from CD and
QOCT in order to develop a new method for speeding up adiabatic dynamics and the
focal point of this thesis: “Counterdiabatic Optimised Local Driving” or COLD. We
will then extend the method with a new optimisation metric based on information
about non-adiabatic effects experienced by the system in fast driving. In Part III we
will numerically implement the COLD method and its extensions in several different
quantum systems to evaluate their performance and compare it to existing techniques.
Then, finally, in Part IV, we will conclude with a summary of the thesis and a look
towards the future and several open questions that arise from the work presented here.

better results than either approach alone, and how that follows from the dependence

of the counterdiabatic drive on the path of the Hamiltonian in parameter space. We

expand on the optimal control methods used for COLD and introduce the idea of using

information about the counterdiabatic drive itself, like its total power across the driving

time, as a metric for optimising the control pulse in COLD and for the case where no

LCD is applied.

7
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In Part. III we demonstrate implementations of the new methods in numerical

simulations of several example quantum systems. First, in Ch. 6 we present and dis-

cuss results obtained when applying COLD to a simple two-spin annealing protocol, the

Ising spin chain of varying lengths, the case of population transfer in a synthetic lattice,

and finally for the preparation of maximally entangled GHZ states in the setting of frus-

trated spin systems. We compare the results obtained with COLD to those obtained

using un-optimised LCD as well as different optimal control pulses with no counterdia-

batic component. In Ch. 7 we do the same but implement CD-inspired cost functions

in the optimisation of COLD and plain optimal control instead of using fidelity or (as in

the case of GHZ state preparation) entanglement as optimisation metrics. We present

results for the two-spin annealing case, the Ising spin chain, and finally for the GHZ

state preparation protocol in a system of frustrated spins, to compare and contrast

to the case where optimisation is based on final state fidelity. We discuss when such

optimisation metrics may be better than those used in Ch. 6 and in which cases they

might fail.

Finally, in Part IV we conclude with a summary of the thesis and an outlook into

future research directions that are left to be explored. A diagram of the thesis structure

can be found in Fig. 1.1, linking the relevant parts together.

1.2 Publications and manuscripts

The majority of this work is based on the following publications and manuscripts:

(1) Counterdiabatic Optimised Local Driving, Ieva Čepaitė, Anatoli Polkovnikov,

Andrew J. Daley, Callum W. Duncan. PRX Quantum 4, 010309, 2023. Eprint

arxiv:2203.01948. [40]

(2) Many-body spin rotation by adiabatic passage in spin-1/2 XXZ chains

of ultracold atoms, Ivana Dimitrova, Stuart Flannigan, Yoo Kyung Lee, Hanzhen

Lin, Jesse Amato-Grill, Niklas Jepsen, Ieva Čepaitė, Andrew J. Daley, Wolfgang

Ketterle. Quantum Sci. Technol. 8 035018, 2023 Eprint arxiv:2301.00218. [5].
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(3) A numerical approach for calculating exact non-adiabatic terms in

quantum dynamics, Ewen D. C. Lawrence, Sebastian Schmid, Ieva Čepaitė,

Peter Kirton, Callum W. Duncan, Eprint arxiv: 2401.10985 [41].

My contributions to (1) include theoretical work, numerical analysis and writing

of the manuscript. In the case of (2) I contributed to some discussions and some

numerical analysis relating to the results. In the case of (3), my contribution was

confined to theoretical discussions and the writing of the introduction and theoretical

component of the manuscript.

1.3 Talks and presentations

Throughout my PhD I gave several talks on my work, including on topics that are not

covered in this thesis. Here I list most of them.

• “Solving Partial Differential Equations (PDEs) with Quantum Computers”, AWE,

(March 2020)

• “A Continuous Variable Born Machine”, Pittsburgh Quantum Institute Virtual

Poster Session, Online (April 2020)

• “A Continuous Variable Born Machine”, Quantum Techniques in Machine Learn-

ing, Online (November 2020)

• “Variational Counterdiabatic Driving”, University of Strathclyde and University

of Waterloo Joint Virtual Research Colloquium on Quantum Technologies, Online

(November 2020)

• “A Continuous Variable Born Machine”, Bristol QIT Online Seminar Series, On-

line (March 2021)

• “Optimised counderdiabatic driving with additional terms”, APS March Meeting,

Online (March 2021)

• “Counterdiabatic Optimised Local Driving”, DAMOP, Orlando (May 2022)
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• “Counterdiabatic Optimised Local Driving”, QCS Hub Project Forum, Oxford

(January 2023)

• “Counterdiabatic Optimised Local Driving”, APSMarch Meeting, Las Vegas (March

2023)

• “Counterdiabatic Optimised Local Driving”, INQA Seminar, Online (March 2023)
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Background
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Chapter 2

Quantum Adiabaticity

“I saw this movie about a bus

that had to SPEED around a

city, keeping its SPEED over

fifty, and if its SPEED dropped,

it would explode! I think it was

called ‘The Bus That Couldn’t

Slow Down’.”

Homer Simpson, The Simpsons

(S7E10)

The concept of quantum adiabaticity is the central starting point of the work pre-

sented in this thesis. In classical thermodynamics, an adiabatic process is one where no

heat is transferred between a system and its environment. On a microscopic quantum

mechanical level, this means not changing the occupation/population of Hamiltonian

eigenstates. The quantum adiabatic theorem then describes how slowly changes to the

Hamiltonian and therefore the eigenstates have to be made so as not to change the

distribution. To illustrate, imagine a system that starts in some eigenstate of a Hamil-

tonian. If a parameter of the Hamiltonian is varied slowly enough, then the system

is expected to stay in the corresponding eigenstate of the time-independent ‘snapshot’

Hamiltonian throughout the change and the process is ‘adiabatic’. In Sec. 2.1 we will

derive the adiabatic condition and explore what happens when the rate of change in the
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Hamiltonian parameters is too fast for adiabaticity. As we will find, the non-adiabatic

effects that result from fast driving have a geometric interpretation, relating to the

Berry connection [42] and an operator known as the adiabatic gauge potential [10, 16]

or AGP. We will describe the AGP in detail in Sec. 2.2 and proceed to use it in or-

der to define the concept of counterdiabatic driving [9, 24] (CD) in Sec. 2.3. CD is

a method under the more general umbrella of Shortcuts to Adiabaticity [17] (STA),

which aim to suppress the non-adiabatic eigenstate deformations that occur when the

Hamiltonian parameters are changed too fast, in order to achieve pseudo-adiabatic pro-

cesses at shorter timescales. In Sec. 2.4, we will demonstrate that exact suppression

of non-adiabatic effects in the general case turns out to be impractical (if not impossi-

ble) and discuss how one can construct approximate CD protocols which are physically

implementable and can mitigate some level of the losses brought about by fast driving.

2.1 The quantum adiabatic theorem

Imagine a quantum system that finds itself in the ground state of a time-dependent

Hamiltonian at some given point in time. According to the quantum adiabatic theorem,

it will remain in the instantaneous ground state provided the Hamiltonian changes

sufficiently slowly or ‘adiabatically’ (where the meaning of ‘slow’ will become clearer

as this section progresses). We note that the quantum adiabatic theorem is often

presented in the literature as being valid only when the instantaneous eigenstates of

the Hamiltonian are non-degenerate throughout the system evolution. However, more

general versions of the quantum adiabatic theorem do not impose this restriction [43],

e.g. defining it with respect to a system remaining in particular eigenspaces rather than

eigenstates as it evolves. Here we will always work with the simpler version, wherein

the instantaneous eigenstates are non-degenerate.

To take an intuitive example, we can consider a spin in a magnetic field that is ro-

tated from the x direction to the z direction during some total time τ . The Hamiltonian

might be written in a chosen basis as:

H(t) = − cos
(πt
2τ

)
σx − sin

(πt
2τ

)
σz, (2.1)
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Figure 2.1: Bloch sphere illustration of the single-spin system driven by the Hamiltonian
of Eq. (2.1) for different total driving times τ . The red arrow indicates the ground state
of the Hamiltonian at t = τ while the blue path is that taken by the spin during the
evolution.

with the Pauli matrices defined as:

σx =

0 1

1 0

, σy =

0 −i

i 0

, σz =

1 0

0 −1

. (2.2)

If the spin starts in the ground state of H(0),i.e. pointing in the x direction such that

|ψ(0)⟩ = |+⟩, then as the magnetic field is rotated, the spin starts precessing about the

new direction of the field. This moves the spin toward the z axis but also produces a

component out of the x − z plane. As the total time for the rotation becomes longer

(i.e. the rotation gets slower compared to the precession), the state maintains a tighter

and tighter orbit around the field direction. In the limit of τ →∞, the state of the spin

tracks the magnetic field perfectly, and is always in the ground state of H(t) for all t.

This is illustrated in Fig. 2.1, which shows the evolution of the system for increasing

τ (and thus decreasing speed). At very fast times, e.g. when τ = 1, the state of the

spin veers away from the instantaneous ground state completely, while for τ = 50, the

evolution tracks the instantaneous ground state quite closely.

2.1.1 Proof of the adiabatic theorem

The above example gives some intuition for the behaviour of quantum systems as the

time of evolution is slowed down, but it doesn’t quite answer the question of what

it means to be ‘slow enough’ in the general case, i.e. what one would refer to as the
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adiabatic condition. In order to characterise this regime, we first imagine a state |ψ(t)⟩

which evolves under some time-dependent Hamiltonian H(t). For convenience, we re-

define time through the parameter λ = t
τ ∈ [0, 1], such that ψ(t), H(t) → ψ(λ), H(λ)

vary smoothly as a function of λ. This is often done to capture the fact that there may

be a natural parameterisation of the changing Hamiltonian such as, for example, two

different angles describing a varying magnetic field. The parameter space we build gen-

erally has some geometric properties that relate to non-adiabatic effects, so it becomes

important to talk about abstract parameters like λ instead of time.

For each value of λ throughout the evolution, we have a time-independent ‘instan-

taneous’ Hamiltonian which can be diagonalised:

H(λ) |n(λ)⟩ = En(λ) |n(λ)⟩ , (2.3)

where En(λ) are the eigenenergies and |n(λ)⟩ are the eigenstates. The time-evolution

of a system is given by the Schrödinger equation iℏ∂t |ψ(λ)⟩ = H(λ) |ψ(λ)⟩ and since

the family of eigenvectors |n(λ)⟩ constitute a basis at every value of λ, we can expand

the system state as:

|ψ(λ)⟩ =
∑
n

cn(λ)e
iλ̇−1θn(λ) |n(λ)⟩ , (2.4)

where c(λ) are time-dependent coefficients through the parameter λ, λ̇ = dλ
dt and

θn(λ) = −
1

ℏ

∫ λ

0
En(λ

′)dλ′ (2.5)

is commonly referred to as the dynamic (or dynamical) phase.

Thus, the task is now to solve the time-dependent Schrödinger equation:

iℏλ̇ |∂λψ(λ)⟩ = H(λ) |ψ(λ)⟩ , (2.6)

where ∂λ is the partial derivative with respect to the parameter λ. We can use the

expansion Eq. (2.4), differentiate and take the inner product with some eigenstate
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⟨m(λ)| to obtain:

iℏλ̇∂λ
∑
n

cne
iλ̇−1θn |n⟩ = H

∑
n

cne
iλ̇−1θn |n⟩

∑
n

(
∂λcn |n⟩+ cn |∂λn⟩+ iλ̇−1∂λθncn |n⟩

)
eiλ̇

−1θn = − i

ℏλ̇

∑
n

Encne
iλ̇−1θn |n⟩

∑
n

(
∂λcn |n⟩+ cn |∂λn⟩

)
eiλ̇

−1θn = 0

∂λcm = −
∑
n

cn ⟨m|∂λn⟩ eiλ̇
−1(θm−θn),

(2.7)

where the last two lines are a consequence of the fact that iλ̇−1∂λθn(λ) = − i
ℏλ̇
En(λ) and

the orthogonality of |m⟩ and |n⟩ when m ̸= n. Note that we have removed the explicit

dependence on λ for the sake of readability and to make the writing more compact and

will continue with this convention for the rest of the chapter unless otherwise stated.

The above differential equation is exact and describes the evolution of the coeffi-

cients cn, but it does not give much of a clue as to what ‘slow’ time evolution means with

respect to the changes in the Hamiltonian. For that, we can express the term ⟨m|∂λn⟩

in terms of the changing Hamiltonian. This is done by differentiating Eq. (2.3) with

respect to time and then again taking the inner product with ⟨m| to get:

λ̇
(
∂λH |n⟩+H |∂λn⟩

)
= λ̇

(
∂λEn |n⟩+ En |∂λn⟩

)
⟨m|∂λH|n⟩+ ⟨m|H|∂λn⟩ = ∂λEn ⟨m|n⟩+ En ⟨m|∂λn⟩

Em ⟨m|∂λn⟩ − En ⟨m|∂λn⟩ = −⟨m|∂λH|n⟩ , m ̸= n

⟨m|∂λn⟩ = −
⟨m|∂λH|n⟩
Em − En

, m ̸= n

(2.8)

Inserting this into the final line of Eq. (2.7), we find that:

∂λcm + cm ⟨m|∂λm⟩ =
∑
n̸=m

cn
⟨m|∂λH|n⟩
Em − En

eiλ̇
−1(θm−θn). (2.9)

When the term on the RHS is small, which is a condition that will be discussed in

more detail in the next section, we can neglect it and the solution for the remaining
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differential equation of cm is just:

cm(λ) = cm(0)e
iγm(λ), (2.10)

where

γm(λ) = i

∫ λ

0
⟨m|∂λ′m⟩ dλ′ (2.11)

is the geometric (or Berry) phase [42, 44, 45]. It arises from the fact that if the Hamil-

tonian varies according to λ in a closed loop way, i.e. it returns to its starting point at

the end of the evolution, the wavefunction might not. Think of Foucault’s pendulum,

which changes its plane of swinging due to the Earth’s rotation around its own axis and

does not necessarily return to its initial state after a full rotation. Both the appearance

of the geometric phase in Eq. (2.10) and the changing plane of Foucault’s pendulum

are consequences of the geometry or ‘curvature’ of the parameter space in which the

dynamics occur and are related to concepts like parallel transport. To illustrate this,

we can absorb the geometric phase into the adiabatic eigenstates via the transformation

∣∣m′〉 = eiγm(λ) |m⟩ = e−
∫ λ
0 ⟨m|∂λ′m⟩dλ′ |m⟩ , (2.12)

and then take the derivative of the above expression with λ followed by taking the inner

product with ⟨m′|. This gives: 〈
m′∣∣∂λm′〉 = 0, (2.13)

which in other words just means that some change in the parameter λ produces an

eigenvector that is orthogonal to the unchanged eigenstate. This turns out to be the

condition which defines parallel transport along a curve in a curved space, as analogous

to the classical example of Foucault’s pendulum. The choice of phases in Eq. (2.12) is

generally referred to as the parallel transport gauge [46].

The constraint that the RHS of Eq. (2.9) be negligible is exactly the adiabatic

condition, which can be seen by checking that |cm(λ)|2 = |cm(0)|2 in Eq. (2.10). What

this means is that a state starting in a particular eigenstate |m(λ)⟩ will remain in that
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state under these circumstances, e.g. for cm(0) = 1 and cm ̸=n(0) = 0:

|ψ(λ)⟩ = eiλ̇
−1θm(λ)eiγm(λ) |m(λ)⟩ (2.14)

the mth eigenstate stays in the mth eigenstate.

So to understand adiabaticity, we need to understand what conditions lead to the

case where the additional term in Eq. (2.9) is small enough to be neglected, or:

∑
n̸=m

cn
⟨m|∂λH|n⟩
Em − En

eiλ̇
−1(θm−θn) ≪ 1, (2.15)

which is exactly what the next section sets out to do.

2.1.2 The adiabatic condition: how slow is slow?

The condition given by Eq. (2.15) contains terms relating both to the rate of change of

the Hamiltonian with respect to λ (expressed in terms of matrix elements ⟨m|∂λH|n⟩)

and the energy gap between eigenstates Em − En. It is not too hard to see that when

the energy gaps are very large, these terms can be neglected. However, let us try to

derive a more concrete and quantitative measure for ‘slowness’.

First, we can go back to the intermediate result from Eq. (2.9) and write it out as:

∂λcm =
∑
n

cn ⟨m|∂λn⟩ eiλ̇
−1(θm−θn). (2.16)

Since we want to focus on the RHS terms where m ̸= n, we can remove the m = n

term by a change of variables:

dm = cme
∫ λ
0 ⟨m|∂λm⟩∂λ = cme

−iγm (2.17)
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and then, using Eq. (2.16), we find

∂λdm = −
∑
n

cn ⟨m|∂λn⟩ eiλ̇
−1(θm−θn)e−iγm + cm ⟨m|∂λm⟩ e−γm

= −
∑
n ̸=m

dn ⟨m|∂λn⟩ e−i(γm−γn)eiλ̇
−1(θm−θn)

⇒ eiγm∂λ(cme
−iγm) = −

∑
n ̸=m

cn ⟨m|∂λn⟩ eiγneiλ̇
−1(θm−θn)

(2.18)

Now all that is left is integration, which leads to:

cm(1)e
−iγm = cm(0)−

∫ 1

0

∑
n ̸=m

cn ⟨m|∂λn⟩ eiλ̇
−1(θm−θn)ei(γn−γm)dλ. (2.19)

In the above, we can see that when the integral on the RHS is 0, we recover the

result in Eq. (2.10). The intuition is that when the integral is sufficiently small, the

adiabatic condition is valid and the system will follow the instantaneous eigenstate.

Since the integral is made up of a sum of terms of the same form, we can focus on

determining the bound on one of them. We can represent the integral as:

In̸=m(1) =

∫ 1

0
cn
⟨m|∂λH|n⟩
Em − En

eiλ̇
−1(θm−θn)ei(γn−γm)dλ, (2.20)

where we used the result from Eq. (2.8). It may be simplified significantly by using the

fact that:

∂λ

(
cn(λ)

Am,n(λ)

ω2
m,n(λ)

eiλ̇
−1(θm−θn)

)
=∂λ

(
cn(λ)

Am,n(λ)

ω2
m,n(λ)

)
eiλ̇

−1(θm−θn)

− i

ℏλ̇
cn(λ)

Am,n(λ)

ωm,n(λ)
eiλ̇

−1(θm−θn)

⇒ cn(λ)
Am,n(λ)

ωm,n(λ)
eiλ̇

−1(θm−θn) =− iℏλ̇

[
∂λ

(
cn(λ)

Am,n(λ)

ω2
m,n(λ)

)
eiλ̇

−1(θm−θn)

− ∂λ
(
cn(λ)

Am,n(λ)

ω2
m,n(λ)

eiλ̇
−1(θm−θn)

)]
,

(2.21)

where we have used Am,n(λ) = ⟨m(λ)|∂λH(λ)|n(λ)⟩ e−i(γm(λ)−γn(λ)) and ωm,n(λ) =
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Em(λ)− En(λ). This result can now be inserted into Eq. (2.20), leading to:

In̸=m(1) = iℏλ̇
[
cn(λ)

Am,n(λ)

ω2
m,n(λ)

e−
i
ℏλ̇

∫ λ
0 ωm,n(λ′)dλ′

]1
0

− iℏλ̇
∫ 1

0

d

dλ′

(
cn(λ)

Am,n(λ)

ω2
m,n(λ)

)
e−

i
ℏλ̇

∫ λ′
0 ωm,n(λ′′)dλ′′

≈− iℏλ̇
[
cn(1)

Am,n(1)

ω2
m,n(1)

e−
i
ℏλ̇

∫ 1
0 ωm,n(λ′)dλ′ − cn(0)

Am,n(0)

ω2
m,n(0)

]
=− iℏλ̇cn(1)

Am,n(1)

ω2
m,n(1)

e−
i
ℏλ̇

∫ 1
0 ωm,n(λ′)dλ′ ,

(2.22)

where the last line is a consequence of the assumption that the that the system starts in

the eigenstate m, and thus at λ = 0, the coefficient cn̸=m = 0. As for the disappearing

integral on the second line, this is due to the fact that λ̇ = 1
τ and at long times τ →∞,

when the adiabatic condition is supposed to hold, the integrand will oscillate so fast

that it will effectively vanish [47].

The term we’re left with can effectively be bounded from above, since both ex-

ponential terms e−
i
ℏλ̇

∫ 1
0 ωm,n(λ′)dλ′ and e−i(γm(λ)−γn(λ)) (which has been absorbed into

An,m(λ)) have a maximal value of 1. The same goes for cn(1). This leaves us with a

bound on the remaining quantities:

max
n,m

[
max
λ

∣∣∣∣∣ℏλ̇ ⟨m(λ)|∂λH(λ)|n(λ)⟩
(Em(λ)− En(λ))2

∣∣∣∣∣
]
≪ 1, m ̸= n, (2.23)

which is exactly the adiabatic condition, as required.

To illustrate the point more clearly, we can look back to the example Hamiltonian

of Eq. (2.1), where the energy gap between the two eigenstates |ψ1(t)⟩ and |ψ2(t)⟩ is a

constant: Eψ1−Eψ2 = 2, and so are the matrix elements ⟨ψ1|Ḣ|ψ2⟩ = ⟨ψ2|Ḣ|ψ1⟩ = π
2τ .

The dependence on τ of the off-diagonal matrix elements of Ḣ make the results of

Fig. 2.1 immediately clearer: as τ increases (and hence the evolution is slower), the

non-adiabatic component of Eq. (2.23) decreases proportionately to it. More details on

the example and the derivation can be found in Appendix A.

In practice, it is not immediately obvious how the quantity stated in Eq. (2.23)

relates to, say, the fidelity of the final state with respect to the desired state or how
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large τ , the evolution time, has to be in order to lead to a fidelity of some magnitude.

While it is possible to find these bounds, the proof is quite lengthy and not necessary

for the purposes of this thesis, so instead we will refer you to [48,49] for more details.

2.2 The adiabatic gauge potential

The previous section introduced quantum adiabaticity and presented some intuition for

non-adiabatic effects due to fast driving. In this section, we would like to establish the

deeply related concept of the adiabatic gauge potential (AGP) [10], a key player in the

subject matter of this thesis and a fascinating mathematical object in its own right.

While the AGP has primarily been studied in the context of suppressing non-adiabatic

effects [27, 28], as will be its central role in this thesis, in recent years it has also been

shown to be a potential probe for quantum chaos [25] and has been proposed for the

study of thermalisation [50]. This is a consequence of the fact that quantum chaos, as

often defined in the literature, manifests itself through exponential sensitivity of the

eigenstates to infinitesimal perturbations that are generated by the AGP.

2.2.1 The moving frame Hamiltonian

In Section 2.1.1 we spent some time working in the instantaneous eigenbasis of the

Hamiltonian where it is diagonalised, à la Eq. (2.3). For a general Hamiltonian, it is

possible to go to this ‘moving frame’ picture by rotating the Hamiltonian via some

unitary U so that it becomes diagonal at each point in time. If we start with some

arbitrary Hamiltonian H(λ) in a ‘lab frame’ (i.e. one that is viewed from an external,

fixed frame of reference) that depends on time through the parameter(s) λ(t), it can

be diagonalised through H̃ = U †(λ)H(λ)U(λ), where ·̃ implies that we are now in the

basis of the moving frame. In general, whenever the tilde symbol appears above an

operator throughout this section, it means that we are working in this new, co-moving

basis: ·̃ = U † · U .

We can also view the quantum system evolving under the Hamiltonian in this

moving frame picture: |ψ̃⟩ = U † |ψ⟩, which is equivalent to expanding the wave function
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in the instantaneous basis (or moving frame) exactly as was done in Eq. (2.4). Given

this new basis, rewriting the Schrödinger equation reveals:

iℏ
d |ψ̃⟩
dt

= iℏ
(dU †

dt
|ψ⟩+ U †d |ψ⟩

dt

)
= iℏλ̇

∂U †

∂λ
|ψ⟩+ U †H |ψ⟩

= λ̇
(
iℏ
∂U †

∂λ
U
)
|ψ̃⟩+ U †HU |ψ̃⟩

=
(
H̃ − λ̇Ãλ

)
|ψ̃⟩ ,

(2.24)

where the operator Ãλ is the adiabatic gauge potential with respect to the parameter

λ in the moving frame of the Hamiltonian H. From the above, we can see that it can

be expressed as:

Ãλ = iℏU †∂λU. (2.25)

The name ‘gauge potential’ refers to operators that are generators of continuous

unitary translations in parameter space [10] of some unitary transformation U and

generally takes the form of a derivative operator. In fact, the name originates from

quantities under which the physics is invariant. For example, the gauge potential

responsible for translations in space is just the momentum operator p = iℏ∂x. This can

be illustrated in the case of the simple 1D harmonic oscillator with a moving potential

centered on x0(t):

H(x0) =
p2

2m
+

1

2
mω2(x− x0)2, (2.26)

which can be diagonalised with the transformation U(x0) = e−ipx0/ℏ. Then the gauge

potential is simply:

Ãx = iℏeipx0/ℏ∂xe−ipx0/ℏ = p. (2.27)

In this thesis we will restrict ourselves to the specific case of adiabaticity where

the transformation U(λ) explicitly takes a wavefunction in an arbitrary basis to the

adiabatic or instantaneous basis. This is a non-trivial transformation in practice, as

it corresponds to a diagonalisation of the system Hamiltonian at each instantaneous

moment in time. The complexity of U(λ) and its consequences will become apparent
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as the chapter progresses.

As we find in Eq. (2.24), the wavefunction in the moving frame basis evolves under

a combination of a diagonal Hamiltonian H̃ and some additional term proportional

both to the speed at which the parameter λ varies and the AGP. At this point we

can simplify things by applying the inverse unitary operation in order to return to

the lab frame basis: H̃ − λ̇Ãλ
U{·}U†
−−−−→ H − λ̇Aλ. This transformation can be used to

demonstrate that we can think of the AGP in the lab frame as nothing more than the

derivative operator: Aλ = iℏ∂λ. To see this, take any quantum state written in some

basis, e.g. |ψ⟩ =
∑

n ψn |n⟩. Then in the moving frame basis we have:

|ψ⟩ =
∑
n

ψnU
†(λ) |n⟩ =

∑
ñ

ψ̃n(λ) |ñ(λ)⟩ , (2.28)

where ψ̃n(λ) =
∑

n U
†(λ)ψn = ⟨ñ(λ)|ψ⟩ and the dependence on λ enters into the basis

vectors through the rotation U(λ). We can investigate the matrix elements of Aλ in

both bases:

⟨n|Ãλ|m⟩ = ⟨n|iℏU †∂λU |m⟩

= iℏ ⟨ñ(λ)|∂λ|m̃(λ)⟩

= ⟨ñ(λ)|Aλ|m̃(λ)⟩

(2.29)

where the last two lines are simply the statement that in the lab frame Aλ = iℏ∂λ.

2.2.2 Matrix elements of the AGP

What we have seen so far is that when we try to solve the Schrödinger equation for

a quantum system evolving under a time-dependent Hamiltonian in the basis of the

moving frame, i.e. in the basis where the time-dependent Hamiltonian is diagonalised,

we find that the evolution happens under a ‘decorated’ Hamiltonian composed of the

diagonalised H̃ and an additional operator generally known as the adiabatic gauge

potential. We found that in the lab frame, it is the derivative operator with respect to

the time-dependent parameters driving the Hamiltonian. What remains is to link this

to our discussion of adiabaticity and the adiabatic condition of Section 2.1.

Let us return to the matrix elements of the lab frame AGP and see what they
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are in the adiabatic basis of Eq. (2.3), which is the eigenbasis of the instantaneous

Hamiltonian as it varies in time. The first thing to notice is that the diagonal elements

of the AGP are very familiar:

⟨n(λ)|Aλ|n(λ)⟩ = iℏ ⟨n(λ)|∂λ|n(λ)⟩ . (2.30)

The terms on the RHS are something known as the Berry connections and they look

familiar because they are the integrands of the geometric phase (Eq. (2.11)) that we

found when deriving the adiabatic condition. Earlier, we saw that the geometric phase

is related to the geometry or curvature of the parameter space of the adiabatic Hamil-

tonian and the AGP contains information about this geometry.

In order to understand what the off-diagonal elements of the AGP are, we can make

use of the fact that in the instantaneous Hamiltonian basis ⟨m|H|n⟩ = 0 for m ̸= n.

Differentiating with respect to the parameter λ gives:

⟨∂λm|H|n⟩+ ⟨n|∂λH|n⟩+ ⟨n|H|∂λm⟩ = 0

En ⟨∂λm|n⟩+ Em ⟨m|∂λn⟩+ ⟨n|∂λH|n⟩ = 0

(Em − En) ⟨m|∂λn⟩+ ⟨n|∂λH|n⟩ = 0

−i
ℏ
(Em − En) ⟨m|Aλ|n⟩+ ⟨n|∂λH|n⟩ = 0

⟨m|Aλ|n⟩ = iℏ
⟨m|∂λH|n⟩
(En − Em)

,

(2.31)

where, since we’re working in the adiabatic basis, all eigenstates, eigenenergies and the

operators depend on λ. We can now see that Aλ is Hermitian and the final line is

familiar: the off-diagonal elements of the AGP are proportional to the non-adiabatic

contribution we derived back in Eq. (2.22). The full operator in the adiabatic basis is:

Aλ = iℏ
(∑

n

⟨n|∂λn⟩ |n⟩⟨n|+
∑
m ̸=n
|m⟩ ⟨m|∂λH|n⟩

(En − Em)
⟨n|
)
. (2.32)

The outcome of this section then, is the revelation that this (initially mysterious)

operator known as the AGP is deeply linked to the notion of adiabaticity in quantum
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systems: its diagonal terms are related to the geometry of the parameter space of adi-

abatic dynamics while its off-diagonals elements describe the non-adiabatic eigenstate

deformations experienced by a state when it is driven by a time-dependent Hamiltonian.

It is useful to note that in the final line of Eq. (2.24) we found that the Schrödinger

equation corresponding to the evolution of the instantaneous eigenstates is:

iℏ
d |ψ̃⟩
dt

=
(
H̃ − λ̇Aλ

)
|ψ̃⟩ , (2.33)

where now it is not difficult to find how each of these operators contributes to the

results of Section 2.1.1. The moving frame or instantaneous Hamiltonian generates

the dynamical phase factor in Eq. (2.5), the diagonal elements of the AGP produce

the geometric phase factor given by Eq. (2.11) and the off-diagonal elements of AGP

are responsible for the non-adiabatic transitions out of the eigenstates which we upper

bounded in Section 2.1.2. For a more detailed proof of how to derive the adiabatic

theorem starting from Eq. (2.33), refer to [34].

2.3 Counterdiabatic Driving

Having done all this work to characterise and understand the AGP and the adiabatic

theorem, we now come to several important questions, starting with why do we care?

What is it about adiabatic dynamics that makes them important? Why do we want

to quantify non-adiabatic transformations or understand what generates them? The

answer, at least for the most part, is simple: adiabatic processes are useful. The ability

to drive a time-dependent Hamiltonian while remaining in a given eigenstate can be

used to prepare interesting quantum states [5], to solve combinatorics problems encoded

in quantum systems [12, 13] or even to synthesise effective ramps and quantum logic

gates [3] among many other applications. While there are several ways to achieve these

goals, adiabaticity is a comparatively well-understood and general approach, which

lends itself broadly to implementation and analysis.

The most natural way of exploiting adiabatic protocols is by adhering to the adia-

batic condition. However, as is often the case when it comes to the control of quantum
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systems, nothing is quite that simple. In practice, changing a Hamiltonian slowly

enough to satisfy Eq. (2.23) leads to the system being overwhelmed by decoherence.

Furthermore, as system sizes get larger, the energy gaps between the instantaneous

eigenstates tend to get smaller, requiring slower and slower driving, making adiabatic

protocols unscalable. While the adiabatic condition is not impossible to adhere to in

specific cases where simple or highly structured systems are considered, in order to have

any hope of pushing quantum technologies beyond their current limits, it is necessary

to move beyond the adiabatic limit. The result is that we need to find ways to achieve

the same results as adiabatic processes but without requiring the prohibitively long

driving times that are demanded by Eq. (2.23).

Our analysis of the adiabatic condition has given us a clue as to how we might

be able to achieve fast driving without the eigenstate deformations that result from

it. Returning to Eq. (2.14), we may focus our attention on the fact that our goal is

simply to have the system follow the eigenstates of the instantaneous Hamiltonian. The

approach that aims to do exactly this was first developed independently by Demirplak

and Rice [24] and Berry [9]. It began as the observation that one can attempt to

reverse-engineer a Hamiltonian that drives the instantaneous eigenstates exactly. Recall

from Eq. (2.14) that in the case that we have adiabatic evolution, the instantaneous

eigenstates evolve as |ψ(λ)⟩ = eiλ̇
−1θm(λ)eiγm(λ) |m(λ)⟩ with the dynamical phase θm

and geometric phase γm defined in Eq. (2.5) and Eq. (2.11) respectively. If we want to

find a Hamiltonian Ht−less(λ) (transitionless) that drives these states exactly, we can

pick a unitary R(λ) such that:

iℏλ̇∂λR(λ) = Ht−less(λ)R(λ),

⇒ Ht−less(λ) = iℏλ̇(∂λR(λ))R†(λ).
(2.34)

It turns out this unitary is just:

R(λ) =
∑
m

eiλ̇
−1θm(λ)eiγm(λ) |m(λ)⟩⟨m(0)| , (2.35)
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so the transitionless Hamiltonian can be expressed as (from Eq. (2.34)):

Ht−less(λ) = iℏλ̇
∑
m

[(
− iEm

λ̇ℏ
− ⟨m(λ)|∂λm(λ)⟩

)
eiλ̇

−1θm(λ)eiγm(λ) |m(λ)⟩⟨m(0)|

+ eiλ̇
−1θm(λ)eiγm(λ) |∂λm(λ)⟩⟨m(0)|

]
e−iλ̇

−1θm(λ)e−iγm(λ) |m(0)⟩⟨m(λ)|

=
∑
m

|m⟩Em ⟨m|+ iℏλ̇
∑
m

(|∂λm⟩⟨m| − ⟨m|∂λm⟩ |m⟩⟨m|),

(2.36)

where in the last line the dependence on λ has once again been removed from the

eigenstates |m⟩ and the eigenenergies Em noting that all terms for λ = 0 have been

cancelled out. In order to analyse the equation more easily, we rewrite it in terms of

two separate components:

Ht−less(λ) = H0(λ) +H1(λ), (2.37)

where

H0 =
∑
m

Em |m⟩⟨m| ,

H1 = iℏλ̇
∑
m

(|∂λm⟩⟨m| − ⟨m|∂λm⟩ |m⟩⟨m|).
(2.38)

What the above equation shows is that if we can engineer the HamiltonianHt−less(λ),

it is possible to drive the system arbitrarily fast, as it will always follow the instan-

taneous eigenstates. This might seem like a strange statement, but it becomes a lot

simpler when we consider that the term H1 looks quite familiar: it is nothing more

than the negation of the AGP component in Eq. (2.33). To see this, let us recall what

happens to states driven by the Hamiltonian H0 by returning to Eq. (2.33):

iℏ
d |ψ(λ)⟩
dt

=
(
H0 − λ̇Aλ

)
|ψ(λ)⟩ . (2.39)

As previously, recall that the additional AGP term scaled by λ̇ is responsible for the

non-adiabatic effects experienced by a system as it gets driven in a time-dependent
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fashion. From Eq. (2.30), we know that the AGP operator can be expressed as

⟨m(λ)|Aλ|m(λ)⟩ = iℏ ⟨m(λ)|∂λ|m(λ)⟩

= iℏ
∑
m

(|∂λm⟩⟨m| − ⟨m|∂λm⟩ |m⟩⟨m|),
(2.40)

which looks remarkably like H1 from our transitionless Hamiltonian, without the λ̇

scaling factori.e. H1 = λ̇Aλ. Putting these two ideas together, we find that the effective

transitionless Hamiltonian Ht−less(λ) driving the state is just

Ht−less(λ) =
(
H0 − λ̇Aλ

)
+ λ̇Aλ = H0, (2.41)

as expected. In the equation above, the effective Hamiltonian in the moving frame is

simply the diagonalized version of the driving HamiltonianH(λ) in the lab frame, which

drives the instantaneous eigenstates perfectly. This is the idea behind counterdiabatic

driving or CD. The name, unsurprisingly, stems from the fact that the additional ‘coun-

terdiabatic’ term +λ̇Aλ is added in order to ‘counter’ the non-adiabatic or ‘diabatic’

effects that arise in the effective Hamiltonian throughout the system’s evolution. We

will note that the second term in H1 is often neglected in constructing the counter-

diabatic drive, as it does not contribute to excitations out of the desired eigenstate(s),

although it does contribute to a rescaling of their energies. In many applications of

adiabatic processes, such a rescaling is not relevant, thus it may be omitted.

With all this in mind, we can explicitly define the counterdiabatic Hamiltonian:

HCD(λ) = H(λ) + λ̇Aλ. (2.42)

If HCD is known and can be engineered, it is possible to drive a quantum system

arbitrarily fast with no deformations associated with non-adiabatic effects. However, if

this seems too good to be true, that’s because in general it is. The first clue is in the form

of the AGP in Eq. (2.32), which implies that in order to know this CD Hamiltonian,

we’d need to not only know the full eigenspectrum of the lab frame Hamiltonian for

each value of λ throughout the protocol, but also to be able to engineer such terms
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to arbitrary precision in the lab. Furthermore, the off-diagonal elements of Aλ, as

alluded to earlier, are proportional to the inverse of the energy gaps in the system

(En − Em)
−1. These can become exponentially small as the system size increases,

making them diverge or become undefined in the thermodynamic limit [10, 16]. In

chaotic systems, the AGP cannot be local because no local operator can distinguish

many-body states with arbitrary small energy difference [51]. What all of this really

implies is that it is impossible - or at least impractical - to attempt to implement the

exact counterdiabatic Hamiltonian given by Eq. (2.42) in the general case, barring some

very simple and small systems. This makes CD in its basic form quite impractical in

the general case, although several experiments on small and relatively simple systems

have demonstrated its effectiveness [52].

2.3.1 Brief interlude: the waiter and the glass of water

It may seem like our inability to know or implement the exact CD Hamiltonian of

Eq. (2.42) in the general case brings us back to square one in trying to speed up

adiabatic protocols. We will show in the next section that it turns out this is not

the case at all. However, before we dive back into the math, we can take a moment

to illustrate the concept of CD with a classical analogy which is often used in this

circumstance [27], and not only elucidates what we have talked about so far, but also

gives some intuition for how we might overcome the practical problems associated with

the exact AGP. Furthermore, it sets the stage nicely for the rest of the chapter.

The story goes something like this: imagine that you are a waiter tasked with

carrying a glass of water on a tray from the bar to some table on the other side of a

rather large restaurant. As you begin to walk, while holding the tray perfectly level with

the ground, your acceleration induces a force on the glass which causes it to wobble and

the water to splash around. Ideally you would like to stop the water from spilling, so

at this point you have two options: either to (a) walk slowly enough so as to minimize

the force that is destabilizing the glass or else (b) suitably counteract it by, e.g. tilting

the tray.

You may already see where we are going with this. In the analogy, we can view
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the stable, upright state of the glass full of water as the ground state of some quantum

system. The moving waiter then embodies the time-dependent Hamiltonian driving

the system from this initial state, where we can model their changing coordinates as

they move through the bar via the abstract parameter(s) λ. Just as in the case of

the adiabatic condition of Eq. (2.23), the probability of the glass tipping over depends

on both the acceleration and direction of the waiter (the ∂λH term) as well as how

inherently stable the glass is due toe.g. a heavier bottom or more viscous liquid (the

energy gap between the ground state and the nearest excited state). In this picture, the

two methods the waiter can use to stabilize the glass during transport are analogous to

(a) following the adiabatic condition by minimizing the speed at which the Hamiltonian

is deformed or (b) applying some suitable control technique, such as counterdiabatic

driving, to counteract the non-adiabatic force that appears as a consequence of their

fast movement.

This example is not only useful for gaining intuition about adiabaticity and CD,

but can also be used to bring attention to several interesting observations. The first is

that by including a counterdiabatic component, the waiter introduces a new degree of

freedom - a tilt - which would otherwise not show up anywhere in the process or the

start/end points of the journey of the glass. Secondly, from the point of view of someone

standing by the wayside (the lab frame), the glass is nowhere near standing upright

throughout the counterdiabatic tilt, rather it is in some highly excited state, while from

the perspective of the glass (the moving frame) it is quite stable and generally close to

the instantaneous ground state, as can be garnered from looking at Equations (2.41)

and (2.42) which represent the two perspectives.

The most important observation, however, which springboards us into the next

section of this chapter, is precisely one which answers the question: how stable is

the glass throughout the waiter’s counterdiabatic journey? We cannot assume, in any

realistic scenario, that the waiter has perfect knowledge of the movement of every

molecule of water in the glass and can control their movements to such high precision

that they instantly counteract even the smallest deviation from the perceived ground

state. In fact, it is far more likely that the waiter has very limited ability to tilt the
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tray as well as only the roughest, low-resolution model of the ways in which the glass

wobbles. The result is that far from implementing an ‘exact’ CD Hamiltonian as in

Eq. (2.42), the waiter produces only some high-level approximation of the λ̇Aλ term.

And yet, barring extreme circumstances, they manage to quickly and safely transport

the glass from bar to table.

2.4 The approximate counterdiabatic drive

Taking inspiration from the waiter story, we might imagine that a similar idea will hold

true for CD protocols in the quantum setting. Why try to derive and implement the

exact Hamiltonian of Eq. (2.42), when some rough version will cancel out most of the

non-adiabatic effects? Even in our derivation of the adiabatic condition in Sec. 2.1.2 we

upper-bounded the terms responsible for the unwanted transitions out of the eigenstate

rather than trying to work with the full expression. It is this exact philosophy that is

the backbone of the rest of this section, where we explore the different ways in which

the AGP – and thus the counterdiabatic drive – has been approximated, and what are

the advantages and drawbacks of each approach.

2.4.1 Local counterdiabatic driving

The first method we will explore was developed by Sels and Polkovnikov in [27]: a

variational minimization approach which we will refer to throughout this thesis as local

counterdiabatic driving or LCD. Taking inspiration from the story of the waiter in the

previous section, we can imagine constraining our counterdiabatic degrees of freedom in

some way due to physical restrictions. In the case of the waiter, this might be related

to the reaction time and physical capabilities of the human body, while in the case

of quantum systems such degrees of freedom are generally best expressed as operators

which may be implemented in some physical system. In the case of many-body systems,

engineering arbitrary highly non-local many-body operators is hard and experimentally

one tends to have access to and control of only a limited set of physical operators. With

this in mind, it makes sense to focus our approximation of the AGP to operators that
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are highly local or at least physically realisable, so that we could actually implement

them when the time comes.

The task of not only finding a viable approximation of the CD, but also restricting

it to a specific set of operators is not an easy one. Luckily, there is some structure in

the AGP that we can exploit in order to write it in a slightly different form. We start

by differentiating the eigenenergies of the instantaneous basis Hamiltonian:

dE

dt
=

d

dt
⟨ψ̃|H̃|ψ̃⟩

= ⟨∂tψ̃|H̃|ψ̃⟩+ ⟨ψ̃|∂tH̃|ψ̃⟩+ ⟨ψ̃|H̃|∂tψ̃⟩

=
i

ℏ
⟨ψ̃|(H̃ − λ̇Ãλ)H̃|ψ̃⟩+ λ̇ ⟨ψ̃|∂λH̃|ψ̃⟩ −

i

ℏ
⟨ψ̃|(H̃ − λ̇Ãλ)H̃|ψ̃⟩

= λ̇ ⟨ψ̃|∂λH̃|ψ̃⟩ −
i

ℏ
λ̇ ⟨ψ̃|[Ãλ, H̃] |ψ̃⟩

⇒ iℏFλ = [Aλ, H]− iℏ∂λH,

⇒ [Aλ, H] = iℏ (Fλ + ∂λH) ,

(2.43)

where we use the result from Eq. (2.24) that iℏ∂t |ψ̃⟩ = (H̃ − λ̇Ãλ) |ψ̃⟩ and

Fλ = −
∑
n

∂λEn(λ) |n(λ)⟩⟨n(λ)| , (2.44)

is the generalised force operator [10,27,53].

It turns out that this result can be used to quantify how close some arbitrary

operator is to the AGP. In order to do this, we first define an ansatz Hermitian operator

for Aλ which acts on the same Hilbert space and which we denote Aλ. Then, we can

define an operator Gλ:

Gλ(Aλ) = ∂λH +
i

ℏ
[Aλ, H]. (2.45)

We can see that when Aλ = Aλ, i.e. when our guess - or approximation - for the AGP is

exactly correct, then Gλ(Aλ) = −Fλ. This fact essentially allows us to reformulate the

problem of trying to determine the AGP into one of minimization of distance between

the operators Gλ(Aλ) and −Fλ with respect to the ansatz Aλ.

There are several options for a distance metric between two operators, each provid-
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ing different information about their properties . However, for our purpose, the task

can be simplified simply by noticing that in the case where the ansatz is exact, Gλ has

no off-diagonal elements, or [H,Gλ(Aλ)] = 0. Thus a way to minimise the distance

between Gλ(Aλ) and −Fλ is simply to minimise its Hilbert-Schmidt norm, as this fully

and efficiently captures the desired properties of the operator Gλ(Aλ). Let us express

this norm as an action [10] associated with the AGP:

S(Aλ) = Tr
[
G2
λ(Aλ)

]
, (2.46)

which is minimised whenever Aλ satisfies:

δS(Aλ)
δAλ

∣∣∣∣
Aλ=Aλ

= 0 ⇒
[
H, ∂λH +

i

ℏ
[Aλ, H]

]
= 0. (2.47)

This all leads to a relatively simple recipe for finding a local, physically realisable

counterdiabatic drive. To do this, we can choose a set of operators {OLCD} which

satisfy the constraints of our physical system. We can then define an approximate

AGP in the basis of these operators as:

Aλ =
∑
j

αj(λ)O(j)
LCD, (2.48)

where the index j indicates the jth operator in the basis and the coefficients αj(λ)

describe the continuous schedule of the counterdiabatic drive. Once we choose a set

of operators {OLCD}, we can think of them as a fixed parameter, and the minimisa-

tion procedure consists of minimising the resulting action S(Aλ) with respect to the

coefficients αj(λ).

To make this clearer, let us return to the rotating spin Hamiltonian from Eq. (2.1).

In order to simplify things, we can rewrite it with a change in parameters, taking

λ(t) = πt
2τ :

H(λ) = − cos(λ)σx − sin(λ)σz. (2.49)

Since this is such a simple example, the only operators we could possibly include in

the basis for our approximate AGP are single-spin operators. While any of the single-
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spin Pauli operators {σx, σy, σz} are viable choices here, we note that it is not hard

to see from Ãλ = iℏU †∂λU that if the Hamiltonian H(λ) is real, the counterdiabatic

term should be purely imaginary, as follows from the fact that a real Hamiltonian can

always be diagonalised by a real orthogonal matrix U . If a real operator is elected as

the ansatz in this case, we will find that the coefficients αj of such operators will be

equal to 0. This leaves us with a single degree of freedom that could act as the basis

of Aλ, which is σy:

Aλ = α(λ)σy. (2.50)

In fact, as there are no other operators in this basis that could fit the description of

being both a single-spin operator and imaginary, we expect that this ansatz should, for

the correct α, be equal to the exact CD.

Figure 2.2: State of the rotating
spin starting in state |+⟩ driven
without CD as in the Hamiltonian
of Eq. (2.49) (blue) and with CD
as given by Eq. (2.52) (red) for to-
tal driving time τ = 1.

All that remains is to find Gλ(Aλ) and to mini-

mize the corresponding action S(Aλ) with respect

to the driving coefficient α. Once this process is

complete (see Appendix A for details), we find

that

α(λ) = − sin2(λ) + cos2(λ)

2(sin2(λ) + cos2(λ))
= −1

2
, (2.51)

meaning that the counterdiabatic Hamiltonian can

be written simply as:

HCD(λ) = H(λ) + λ̇α(λ)σy

= − cos(λ)σx − sin(λ)σz − π

4τ
σy,

(2.52)

where we have used the fact that λ̇ = π/2τ . In Fig. 2.2, we can see that even at very

fast driving times, the rotating spin does not stray from the plane of rotation when

the CD is applied. We can compare this to Fig. 2.1, where similar dynamics without

the application of a CD drive were only achieved at around 500 times longer driving

speeds.
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In this case, it turns out that the counterdiabatic term is constant as a result of the

choice of basis and H(λ). In general, however, this is not the case and the CD term

depends on λ through the coefficients of the lab frame Hamiltonian. Furthermore, while

for this example only one operator was needed to describe the full CD, the number of

such possible operators for a many-body system grows exponentially with system size,

meaning that restricting to a highly-local and physically realisable basis is quite a

sizeable reduction in the true number operators in the full AGP. One may yet only

hope that the exact gauge potential has significant support only over a small, finite

subset of all the possible relevant operators that could be implemented [41].

2.4.2 Nested commutator expansion

The LCD approach is particularly useful in the case where one wants to implement a

CD approximation constrained by some very limited, pre-determined set of operators,

but it says absolutely nothing about what the operators should be when no constraints

are imposed. A useful question to ask is whether or not there is any way to know

what the operator basis of the approximate CD should be prior to performing the

optimisation. This is useful not only in the case of determining the form of the CD in

order to implement it, but also as a general tool in characterising non-adiabatic effects.

In this section we will focus on an approach developed in [28], where it was found

that the AGP to some ℓth order can be extracted from a series of nested commutators:

Āλ
(ℓ)

= iℏ
ℓ∑

k=1

αk(λ) [H(λ), [H(λ), ...[H(λ)︸ ︷︷ ︸
2k−1

, ∂λH(λ)]]], (2.53)

where the coefficients αk(λ) are used in a similar manner as LCD. The minimisation

procedure outlined in section 2.4.1 can be implemented to determine the coefficients

αk(λ) for all orders of the nested commutator expansion. On the other hand, one

might choose to instead reparameterise and use a different set of coefficients: one α for

each orthogonal operator that is obtained in the nested commutator expansion after a

chosen number of commutations. The primary difference between the two approaches

is merely the parameterisation of the approximate counterdiabatic drive. A more fine-
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grained parameterisation, with a larger number of coefficients α, is liable to give a

better approximation of the drive. In the original work [28], αk(λ) is used rather than

a different parameterisation, as it allows one to easily determine how to engineer a

Floquet Hamiltonian that implements the given counterdiabatic drive. This is due to a

similarity in the structure of the high-frequency expansion of the Floquet Hamiltonian

and the nested commutator expansion described above. In the limit of ℓ → ∞, the

expression in Eq. (2.53) should represent the exact AGP, although there is no guarantee

of convergence prior to this point as during each iteration of the commutations, the set of

operators that are obtained need not be orthogonal to the previous set. This, however,

may not be an issue in practice, as due to previously discussed reasons relating to a

difficulty in implementation, we generally only wish to obtain a simple approximation

of the counterdiabatic terms. As noted in [28], there are several ways to motivate this

form of the AGP, e.g. by noticing that such commutator terms appear in the Baker-

Campbell-Hausdorff (BCH) expansion in the definition of a (properly regularized) [16]

AGP for a fixed λ:

Aλ = lim
ϵ→0+

∫ ∞

0
dte−ϵt

(
e−iH(λ)t∂λH(λ)eiH(λ)t + Fλ

)
, (2.54)

where Fλ is defined in Eq. (2.44). From the BCH expansion, we can find

e−iHt∂λHe
iHt =

∞∑
k=0

(−it)k

k!
[H, [H, ...[H︸ ︷︷ ︸

k

, ∂λH]]], (2.55)

where even-order commutators contribute to Fλ and odd-order commutators to Aλ.

To gain more intuition for Eq. (2.53), one can try to evaluate it in the instantaneous

eigenbasis of H(λ):

⟨m|Āλ
(ℓ)|n⟩ = iℏ

ℓ∑
k=1

αk(λ) ⟨m|[H(λ), [H(λ), ...[H(λ)︸ ︷︷ ︸
2k−1

, ∂λH(λ)]]]|n⟩

= iℏ

[
ℓ∑

k=1

αk(λ)(Em − En)2k−1

]
⟨m|∂λH|n⟩ ,

(2.56)
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where we can see that the term we obtain at the end looks very similar to the matrix

elements we got in deriving the AGP in Eq. (2.31). In the case of the nested commutator

expansion then, the use of the variational LCD approach in determining the coefficients

αk is equivalent to trying to approximate the factor (Em−En)−1 in the exact AGP via

a power-series approximation:

α
(ℓ)
λ (ωmn) =

ℓ∑
k=1

αkω
2k−1
mn , (2.57)

where ωmn = (Em−En). While this shows that the nested commutator approximation

wouldn’t work in regimes where the energy gap is exponentially small or exponentially

big (i.e. where ωmn → 0 or ωmn →∞), this turns out to not be an issue in practice. In

the limit of very large energy gaps, the term ⟨m|∂λH|n⟩ decays exponentially meaning

that the contribution from these elements to the AGP is negligible anyway. As the

energy gaps close, the AGP elements become undefined and generally in speeding up

adiabatic processes, one only cares about suppressing transitions across some energy

gap ∆. In that case, as long as ωmn ≥ ∆, the approximation does its job in the CD

protocol.

While the nested commutator expansion does not appear in later chapters, it forms

a backbone in the research on practical approximations of counterdiabatic protocols

and was used extensively behind the scenes for many of the results presented in the

thesis. As such, we found it prudent to include. For further reading on how one might

combine the results from the rest of the thesis and the nested commutator method to

great success, we refer the reader to [41].
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Quantum Optimal Control

“Neo, sooner or later you’re

going to realize, just as I did,

that there’s a difference between

knowing the path and walking

the path.”

Morpheus, The Matrix (1999)

The future of quantum technologies depends on our ability to control quantum sys-

tems with precision and accuracy. It is a key factor in the realisaton of, for example,

quantum computers [54], communication systems [55] and quantum sensors [56], as

well as being necessary in the exploration and understanding of fundamental physics.

The research field which concerns itself with such control problems is generally known

as Quantum Optimal Control Theory (QOCT) [7, 8] and its primary objective is the

development of techniques which allow for the construction and analysis of strategies,

primarily electromagnetic field shapes, that manipulate quantum dynamical processes

in the most efficient and effective way possible in order to achieve certain objectives.

Common control objectives in the quantum setting can range from state preparation [57]

and quantum gate synthesis [3], to protection against decoherence [58] and entangle-

ment generation [55].

While the field of quantum optimal control is vast and would take an entire book

to summarize [51], this chapter aims to give a broad overview of the topic highlighting
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its structure, mechanisms, and practical applications, in particular with respect to the

methods that are relevant to the rest of the work presented in this thesis. As such, in

Sec. 3.1, we will begin by exploring the general structure of optimal control problems in

detail and showing how an abstract goal can be transformed into a quantitative formula

that guides us toward a desired outcome satisfying a given control objective. First, we

will discuss the mathematical structure of optimal control problems (Sec. 3.1.1) fol-

lowed by an overview and examples of analytical (Sec. 3.1.2) and numerical (Sec. 3.1.3)

methods for finding solutions to said problems, with a focus on methods that will be

relevant to the rest of the content in this thesis. Sec. 3.2 will review how optimal con-

trol is adapted in the quantum setting and the main idea behind QOCT, while Sec. 3.3

will focus on specific methods used for constructing and optimising driving pulses with

quantum systems in mind.

3.1 The structure of optimal control problems

The idea of an optimal control problem is simple: envision a target you want to achieve,

cast it into some form of quantitative or abstract mathematical formula and then use

this formula to derive the ‘best’ path to get to said objective. There may be many

paths to achieve the target and there may be many metrics to determine what ‘best’

means. The aim of the first part of this section is thus to broadly cover the mathematical

structure of optimal control problems and to try and convey an idea of what an optimal

path is and how one might quantify its optimality. Later in the chapter, we will delve

more into practical questions of controllability and the process of optimisation, i.e. once

an optimal control problem is constructed, how could one go about finding the solution

to it. We will cover both analytical methods in Sec. 3.1.2 and numerical approaches

in Sec. 3.1.3 focusing on a select few optimisation algorithms which will be relevant to

further chapters of this thesis.
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3.1.1 Mathematical structure

In general, an optimal control problem is composed of a set of state functions X :

R → Rn, and a set of time-dependent control functions U : R → Rm and the optimal

control problem consists of finding x ∈ X and u ∈ U that minimise some functional

C : X × U → R such that the constraint

ẋ = f(x, u), (3.1)

is satisfied almost everywhere. This is a very abstract description and just about any

control problem can be expressed as a special case of this formulation [59]. To gain

more intuition, we can imagine a more concrete example where, e.g. U and X are sets

of continuous functions on the interval [0, τ ] satisfying x(0) = x0. In this scenario, τ

could be a time interval during which we want to drive the system from an initial state

x0 to a final state xf using the control function u(t), t ∈ [0, τ ]. The choice of functional

C would have to capture the desired outcome of the protocol: that the state of the

system after the driving x(τ) be equal to the target xf . This can be done by choosing

a distance metric that depends only on the drive u and is minimised when x(τ) = xf ,

e.g.

C(u) = ∥x(τ)− xf∥, (3.2)

where ∥·∥ represents some norm on the space X.

The functional C is often referred to in literature as the cost or loss function [60] as

it encodes the quality of the final protocol with respect to the desired outcome of the

protocol. In that sense, we can imagine adding constraints to the problem that may

increase the ‘cost’ of the protocol output if they are not satisfied to some degree. For

example, Eq. (3.2) can be modified to include additional terms:

C(u) = γ∥x(τ)− xf∥2 +
∫ τ

0
∥u(t)∥2dt, (3.3)

where γ is a penalty term on the final state that scales its importance relative to the

additional second term, which is analogous to the cost in the energy required to achieve
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Figure 3.1: Illustration of the Mayer-type optimal control problem: when an initial
value of the system state x0 is fixed, the choice of control function u ∈ U and the
requirement of satisfying Eq. (3.1) determine x uniquely. The task is then to find uopt
such that the functional C(x, uopt) is minimised.

the final state. This updated cost function can be read as introducing a competition

between the quality of the final state and the amount of energy expended to get it

there, mediated by the value of γ.

There are primarily three different types of problem structures in optimal control

centering on different constraints and targets: Mayer-type, Lagrange-type and their

combination, Bolza-type problems [59]. In this thesis, we will mostly focus on Mayer-

type problems, particularly in Ch. 4 and Ch. 6. In Mayer-type problems, the initial

state is specified x(0) = x0 and the cost function is of the form

C(u) = ϕ(x(τ), τ), (3.4)

with ϕ a smooth function and τ the total time of the protocol. These two constraints

and the requirement given by Eq. (3.1) define the state function x uniquely and the

problem is then to determine a control function u on the appropriate set [0, τ ] which

minimises Eq. (3.4). We note that the expression in Eq. (3.4) is quite general and can

include multiple types of ‘constraints’, e.g. as a linear superposition. In Mayer-type

problems, a specific target state can be defined in the cost function as a constraint,

which is the case in Eq. (3.2) and this is illustrated in Fig. 3.1. However, this need not
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be the case as target states can be made implicit by having the cost function target

some property of the state instead, like Euclidean distance from the initial state in the

case of real vectors over Cartesian coordinates.

From the above, we can view Mayer-type problems as being concerned primarily

with the final state of the system and not its path. Lagrange-type problems, on the

other hand, put focus on the behaviour of the system throughout the control trajectory

and they encompass cost functions of the type

C(u) =

∫ τ

0
L(x, u, t)dt, (3.5)

where L is a smooth function. This type of cost function is applicable, for example, in

cases where one wants to minimise the expenditure of some path-dependent resource

during the control procedure, or where a path-dependent quantity is easier to optimise

over than a target state quantity. This type of optimisation is something that will

become relevant in Ch. 5 and Ch. 7.

The most general type of problem is the Bolza-type problem, which combines both

Mayer and Lagrange in a way that puts emphasis both on the target state of the optimal

control and the trajectory that a system takes to get there:

C(u) = ϕ(x(τ), τ) +

∫ τ

0
L(x, u, t)dt, (3.6)

where ϕ and L are smooth functions given in Eq. (3.4). A great example of Bolza-type

problems is the cost function given by Eq. (3.3), which comprises a competition between

distance to a target state and the energy expended to drive the system to said state.

Apart from identifying the basic anatomy of control problems in terms of X, U and

C, there is a myriad of additional information about their mathematical structure that

can help to analyse and thus solve them. For example, it might be useful to identify if,

for a particular optimal control problem, the system in question is controllable [61,62]

i.e. can any initial state be transformed into any desired target state. Equally, it might

be useful to study the related concept of reachable sets [62,63], which are sets containing

all the states that an initial state can be driven to by the set of control functions
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U . It is not hard to see how the concept of controllabilty relates to reachability:

a system is controllable if its reachable set contains all target states. In the case

of Mayer-type problems, for example, it might be sensible to define a reachable set

parameterised by the final evolution time τ such that it contains all possible states that

can be obtained by the system during a driving time τ . Finally, it would be remiss

not to mention the concept of necessary conditions for optimality [64], which focus on

determining what formal conditions need to be satisfied for a specific control u ∈ U to

be optimal. Generally, this involves perturbing an assumed optimal control u by some

small parameter ϵ giving uϵ and then imposing the constraint that

C(uϵ)− C(u) ≥ 0, (3.7)

which is then considered the necessary condition for optimality. The most basic of these

optimality conditions is the Pontryagin maximum principle or PMP [65] (see Appendix

B), which states that for an optimal control problem, the optimal control and state

trajectories should maximize a specific function which combines the system dynamics,

the control inputs, and the Lagrange multipliers which encode the constraints of the

control problem.

3.1.2 Analytical optimisation

While the first part of optimal control is the construction of the problem, the second

part is the search for a solution. The methods used to do this can generally be classified

either as analytical or numerical approaches. While both are widely used in optimal

control theory, this thesis will largely only focus on the latter, as such we will be brief

in introducing the former.

Analytical optimal control techniques are those that leverage mathematical rigor

and formalism to derive solutions or insights, as opposed to relying primarily on numer-

ical simulations, heuristics, or experimentation. They provide a theoretical foundation

for understanding the properties and solutions of optimal control problems and are

closely related to the discussion in Sec. 3.1.1. They can allow for a complete geometric
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understanding of the control problem leading to, for example, knowledge of the struc-

ture of a solution or even some proof about a global optimum. For a given set of con-

straints they might even be used to derive time limits of state transformations, i.e. the

concept of reachability. An example of analytical methods is the aforementioned PMP,

which provides information about the optimal solution via a set of differential equations.

A different analytical control theory tool, the Hamilton-Jacobi-Bellman equation [66],

provides a way to find the optimal protocol via dynamic programming [67]. We note

here that the concepts introduced in the previous chapter may be viewed as a form

of analytical optimisation - computation of the AGP (Sec. 2.2) analytically provides

information about the non-adiabatic effects a system experiences given a certain path

through the Hamiltonian parameter space and CD (Sec. 2.3) then provides an optimal

control protocol that drives a system via a desired trajectory. The cost function can

be viewed as some measure of the magnitude of non-adiabatic effects generated by the

AGP – something we will explore in more detail in Ch. 5.

The trouble with analytical approaches, despite the commonplace rigorous guaran-

tees of optimality and the scope of information they provide about the system, trajec-

tory and structure of the control problems and their solutions, is that they are very

difficult to scale up and quite inflexible to complex problem constraints. Once again,

the concept of CD from the last chapter provides and excellent example of this problem,

since an exact counterdiabatic drive may get exponentially more difficult to compute as

the system scale or complexity increases. As such, analytical approaches are generally

reserved for special cases, when problems have low dimensionality and simple structures

with a cost function that is generally linear in the arguments. Many real-world con-

trol systems require more complexity and flexibility than can be afforded by analytical

methods.

3.1.3 Numerical optimisation

To overcome the drawbacks of analytical approaches, many optimal control problems

are instead solved using numerical optimisation methods. These are generally algo-

rithmic, iterative techniques which explore the cost function landscape step-by-step in
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order to converge to a minimum value. Numerical methods, as a general rule, do not

offer the same analysis or guarantees of optimality that analytical methods do. Their

iterative nature may lead to a dependence of the outcome on the initial conditions of

the algorithm, such as an initial guess for an optimal solution from which the iterations

proceed or the bounds on the search space. Despite these drawbacks, however, nu-

merical methods tend to be far more popular than analytical ones simply due to their

flexibility and applicability. Where analytical approaches fail, the only way forward is

often a numerical method.

A general numerical optimisation technique consists of an initialisation step, a series

of search steps and a termination step. These can be summarised as follows:

(1) Initialisation: set up the necessary constraints of the optimal control problem,

such as bounds on the solution space or an initial guess for the optimal solution.

(2) Search: Perform some iterative search steps (deterministic or stochastic) with

the goal of converging to the minimum of the cost function. What constitutes a

single step varies massively between different techniques.

(3) Termination: Return a solution after some condition is satisfied. This can be

a convergence criterion based on the change in the cost function value between

steps or a limit on the number of search steps that the algorithm is allowed to

perform.

The simplicity of these three components leaves a lot of room for creativity and over

the years many numerical optimisation algorithms and techniques have been developed

to deal with different constraints and topologies of various cost function landscapes. It

would take an entire book [68] to cover the various categories and subcategories that

exist within the field, so we will restrict ourselves to exploring a few key classifications

of the structure of numerical optimisation methods.

One of the more broad ways to classify numerical optimisation methods is into

the categories of gradient-based methods and gradient-free methods. Gradient-based

methods, as the name implies, make use of gradient information (the first derivative of

the cost function) to guide the search for an optimal solution. These methods are often
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efficient and converge rapidly when the cost function is smooth and differentiable. A

popular example of a gradient-based method is the gradient descent algorithm, which

iteratively adjusts the solution in the direction opposite to the gradient, as this direction

is likely the steepest decrease in the cost function value. A typical gradient descent

protocol might look like:

un+1 = un − µ∇uC(un), (3.8)

where n denotes the current iteration of the algorithm, ∇uC(un) is the derivative of

the cost function C with respect to the control parameters u and µ is generally known

as the ‘learning rate’ or ‘step size’ and its job is to control the resolution at which the

algorithm traverses the cost landscape. Larger µ might lead to faster convergence but it

might also mean overshooting the cost function minimum, so adjusting its value is often

a heuristic that requires some experimentation. One way that many popular optimisers,

such as ADAM [69], overcome this issue is by implementing a variable, adaptive value

of µ throughout the optimisation process. Other examples of gradient-based methods

include Newton’s method and quasi-Newton methods [70], which employ information

about the second derivative to guide the search and provide faster convergence as well

as a myriad of other approaches including stochastic methods [71].

Gradient-free methods, on the other hand, do not require gradient information,

making them suitable for optimization problems where the cost function is, e.g. dis-

continuous, non-differentiable, or its gradient is difficult or expensive to compute. Ex-

amples of gradient-free methods include particle swarm optimization [72], the Nelder-

Mead method, which we will explore in more detail in Sec. 3.1.3.1 as well as the Powell

method of Sec. 3.1.3.2. These methods often rely on trial and error, random sampling,

or mimicking natural phenomena like evolutionary mechanisms [73] to explore the so-

lution space. As in the case of gradient-based approaches, there is a veritable zoo of

methods under this umbrella. As the rest of this thesis we will deal almost exclusively

with gradient-free methods, we will provide examples of how these techniques look in

the next couple of sections.

Apart from the gradient-information, another key way to classify optimisation al-

gorithms is either as local or global. Local optimization methods are designed to find a
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local minimum, which is a solution that is better than all other feasible solutions in its

vicinity in the landscape of the cost function. They are typically efficient at converging

to the local minimum, but they provide no guarantee of finding the global minimum

if the cost function is non-convex i.e. the local minimum is not automatically also the

global minimum. Both Nelder-Mead and Powell are local methods.

Global optimization methods, on the other hand, aim to find a global optimum,

which is the best solution among all feasible solutions, not just those in a local neigh-

borhood. These methods typically employ a strategy to explore the entire solution

space, either deterministically or stochastically, to avoid getting trapped in a local op-

timum. As a result of this larger scope, global optimization methods are generally more

computationally intensive than local methods. An example of global optimisation that

we will explore in more detail in Sec. 3.1.3.3 is Dual-Annealing, which combines gen-

eralized simulated annealing [74], a global search algorithm, with local optimisers in

order to find an optimal solution. Global methods are often used when the optimization

problem is complex, non-convex, or the global solution is significantly better than any

local solution.

Finally, in numerical optimal control we can make a distinction between open-

loop and closed-loop optimisation, particularly when referring to the real-life use or

experiments on a given system:

• Open-loop approaches calculate the control sequence ahead of time and apply it

to the system irrespective of the system’s actual behavior during the protocol.

• Closed-loop methods actively adjust the control strategy based on the current

and past states of the system (see Fig. 3.4).

The closed loop approach is more resilient to uncertainties and disturbances but requires

real-time computation or pre-computed feedback laws. In this thesis, the focus will

be exclusively on open-loop approaches, as closed-loop methods require access to live

experimental data which was not available in the case of the methods explored in later

chapters. However, it is important to acknowledge that the results obtained in open-

loop optimisations may not reflect the realistic, complex response a physical system
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might have to a specific control protocol, given that the model we use may not include

the full details of the physical system.

In the following sections we give examples of some common numerical optimisation

methods that were used to obtain the results presented in this thesis.

3.1.3.1 Nelder-Mead

A frequently used gradient-free optimiser is the Nelder-Mead (or downhill-simplex)

method [75] developed by J. Nelder and R. Mead in 1965. It is referred to as a direct

search or pattern search approach and it is a gradient-free local method, making it

generally quite efficient, but not guaranteed to converge to a global optimum of the

cost function. Direct search methods work by varying each optimisable parameter by

some small stepsize from the current minimum in each direction and computing the

cost function at the updated value. The change that leads to the largest decrease in the

cost function value is taken as the new minimum. Once no such variation leads to an

improvement, the stepsize is halved and the process is repeated until some convergence

criterion is satisfied.

The way this direct search approach is adapted in Nelder-Mead is by constructing

simplices, which are geometric objects that generalise triangles in lower and higher

dimensions. For a cost function dependent on n parameters, Nelder-Mead constructs an

n-dimensional simplex. For n = 0 this is a point, for n = 1, 2, 3 a line segment, triangle

and tetrahedron respectively and then higher-dimensional versions as n increases. Thus

a simplex has n+ 1 vertices for n parameters.

The vertices of this simplex then traverse the cost function landscape according

to the Nelder-Mead algorithm in order to converge to some minimum value. In most

of the search steps, the primary change is to shift the highest point of the simplex

(i.e. where the cost function value is largest) through the opposite face of the simplex,

moving to a point with a lower cost function value. These steps are known as reflections

and they are designed to preserve the volume of the simplex, ensuring it remains non-

degenerate. Whenever possible, the method will expand the simplex along a particular

direction, which allows it to take bigger steps in search of a minimum. When the
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Figure 3.2: Illustration of the Nelder-Mead algorithm for a cost function parameterised
by two parameters β1 and β2. The simplex for a 2-dimensional landscape is a triangle
which transforms continuously seeking out a lower cost function value in the landscape
as described in the main text. (a) Examples of three of the transformations that
the simplex performs during the optimisation: 1. expansion, 2. reflection and 3.
contraction. Solid lines indicate the simplex prior to the transformation while dashed
lines indicate its state after. (b) A plot of every third step of the algorithm, with
the changing color of the triangle, starting from red and ending with bright purple,
indicating the iterations. The inset shows a magnification of the final steps of the
algorithm. The cost function landscape is represented by the contour plot and the aim
of the Nelder-Mead algorithm in this case is to find its local minimal value (dark purple,
as indicated by the colorbar).

simplex encounters a region that can be thought of as a ‘valley floor’ in the cost function

landscape, it contracts its dimensions orthogonal to the valley, so that it can slide down.

See Fig. 3.2 (a) for a visual reference. In situations where the simplex has to navigate

through a narrow passage, it shrinks itself in all directions, wrapping itself around its

best (lowest) point, enabling it to continue its search for the minimum. The whole

process is illustrated for a simple example in Fig. 3.2 (b).

This description of the Nelder-Mead method only outlines the basic idea that was

first developed in the original 1965 paper. Many variations and improvements have

been developed in the years since and the actual implementations vary. In general, the

Nelder-Mead approach is simple to understand and implement, as well as being quite

efficient and flexible. However, it often suffers from convergence issues, being both
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likely to return a sub-optimal local minimum and to get stuck without converging far

longer than necessary, undoing any efficiency it otherwise promised. Furthermore, the

simplex method doesn’t scale well in higher dimensions, making it less effective as the

number of parameters increases.

3.1.3.2 Powell’s method

Another approach from the gradient-free, local optimiser crowd is Powell’s method,

first developed by Michael J. D. Powell in 1964 [76]. The algorithm is known as a

conjugate-direction approach, not to be confused with the more common conjugate-

gradient approach [77], although the two are related as the latter can be viewed as a

specialisation of the former.

The basis of Powell’s method relies on the idea of conjugate vectors or conjugate

directions. Two vectors u and v are said to be conjugate with respect to some positive

semidefinite matrix A if uTAv = 0. A set of conjugate directions, thus, is a set of

vectors that are pairwise conjugate. Furthermore, one can make the observation [78]

that the function

f(x) = xTAx− 2bTx+ c (3.9)

for some positive semidefinite matrix A, b ∈ Rn and c ∈ R has a minimum at the point

x =
∑n

i=1 βiui in the space spanned by the set of conjugate vectors {uj}j=1,...,n with

βi =
uTi b

uTi Aui
. (3.10)

This minimum can be calculated efficiently just through evaluating the cost function,

without needing explicit access to A, b or c. This property allowed Powell to develop a

simple but powerful gradient-free approach, which can be summarised in the following

bit of pseudocode.

In other words, the algorithm is initialised with a guess for a solution and a set

of conjugate directions. It then proceeds to find a minimum along each direction and

shifts to a new point along a superposition of their minima, adding the vector along in

which it shifted to the list of conjugate direction vectors and removing the first vector
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Algorithm 1 Powell’s Method

1: procedure Powell
2: Initialise the method with ansatz solution u0 ∈ Rm and n ≤ m conjugate

search vectors {x1, ...,xn}. If none are provided, use columns of the m-dimensional
identity matrix.

3: for i = 1, ..., n do
4: Compute βi to minimise f(ui−1 + βixi)
5: Define ui ← ui−1 + βixi
6: end for
7: for i = 1, ..., n− 1 do
8: xi ← xi+1

9: end for
10: xn ← (un − u0)
11: Compute β to minimize (f(u0 + βxn))
12: u0 ← u0 + βxn
13: end procedure

in the list before starting the next step.

The Powell method is far more complex than is presented here, in particular due to

the fact that several extra steps are usually added in order to guarantee convergence and

and additional features to help optimise it. Additionally, the minimisation procedure

of steps 4 and 11 in the pseudocode is highly non-trivial and can be achieved via several

different algorithms like Brent’s method [78]. It has guarantees of being very efficient

in convex optimisation problems and excels in high-dimensional spaces, unlike Nelder-

Mead. A plot of the search steps of the two methods in Fig. 3.3(a) shows how they

compare in terms of number of steps taken and accuracy in finding the optimum of

some non-convex loss function. Importantly, given the more complicated nature of the

steps in Powell’s method, the fact that it requires fewer steps to converge to a solution

does not necessarily make it more efficient.

3.1.3.3 Dual-annealing

Unlike both Nelder-Mead and Powell’s method, dual-annealing is a global optimization

algorithm, meaning that its primary goal is to find a global minimum of the function.

It is also a stochastic method, since rather than following a pre-defined set of rules or

procedures, it employs probabilistic transitions or decisions during the search. This
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Figure 3.3: An illustration of the optmisation strategy of several numerical optimisation
methods. (a) Local optimisers: steps of the Nelder-Mead method and Powell’s method
when instantiated in two different locations of the loss function landscape. The global
mimimum is illustrated by a green cross. (b) The local minima (crosses) visited by the
Dual-Annealing algorithm in the order indicated by numbered labels. The colour of the
crosses ranges from yellow (high cost function value) to red (low cost function value).

added randomness can help the algorithm escape local optima and explore the solution

space more broadly, however it also adds to the computational complexity of such

approaches. As mentioned earlier, global optimisation algorithms tend to be far less

efficient than local ones, but this is the price that needs to be paid when solutions

obtained in local minima are simply not enough and the cost function landscape is

highly non-convex.

What is particularly interesting about dual-annealing is that it combines General-

ized Simulated Annealing (GSA) [74], a global search algorithm, with a choice of local

optimiser that refines the solution once the global search is done. This is important

because global algorithms, including GSA, are often good at locating the vicinity of

the global minimum (the basin) but not necessarily the minimum itself.

The GSA part of dual-annealing function is, unsurprisingly, a generalisation of the

simulated annealing algorithm [79] inspired by the annealing process of metallurgy

which causes a molten metal to reach its crystalline state which is the global minimum

in terms of thermodynamic energy. In simulated annealing, the cost function is treated

as the energy function of a molten metal and one or more artificial temperatures are
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introduced and gradually cooled. In GSA, this presents itself as a series of probabilistic

jumps across the cost function landscape that depend on an artificial temperature

parameter which decreases as the search progresses.

More concretely, at each step of the search, the algorithm generates a trial jump in

the cost function space from the current temporary solution to a new point. This is done

by sampling from a modified Cauchy-Lorentz distribution over the cost function space.

The distribution peaks around the current temporary solution and its scale parameter

(a variable that controls its spread) is a function of the artificial temperature Tqv . Thus,

the higher the temperature, the more likely it is that the trial jump will be larger, taking

the solver further away from its current location in the cost function space. The qv

parameter can be set to different values in order to speed up or slow down the cooling

process.

Once the trial jump has been generated, it is either accepted or rejected based on

the cost function value at the new point as compared to the current point. If the new

point is better (i.e. the jump is ‘downhill’, towards a lower energy), then the jump is

accepted. If, on the other hand, the jump is worse or ‘uphill’, it might still be accepted

with some probability based on a parameterised Metropolis algorithm [80], where the

probability of acceptance is calculated roughly as

P = exp{−∆C/Tqv}, (3.11)

with ∆C the change in the cost function value from the previous trial solution to the

new one and Tqv the artificial temperature. This allows for the algorithm to potentially

escape local minima. If a jump is accepted, the search then continues in a similar

manner from the new point and the temperature parameter is decreased, reducing the

probability of the next generated jump being far away from the current point and the

potential of accepting a jump to a ‘worse’ value. Once the temperature reaches 0, the

system ‘freezes’ and can only transition to states with lower ‘energy’ or cost function

value in its immediate vicinity until it reaches a local minimum.

The dual-annealing algorithm proceeds by first using GSA to identify a ‘basin’ in the

cost function landscape and then using the best solution so far as an initial guess for a
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local optimisation algorithm like Nelder-Mead or Powell’s method to refine the solution.

The local search is generally called when the artificial temperature decreases below some

pre-defined value and once the local search is done, the whole process restarts again

while keeping track of the current best solution. The entire algorithm terminates when

some convergence criterion is satisfied. Usually this is when some number of search

iterations or cost function evaluations is reached, or there is no more improvement to

the solution below some tolerance. This process is illustrated in Fig. 3.3(b), where

the dual-annealing algorithm returns points 1, 2 and 4 as minima detected during

the annealing stages with 3 and 5 corresponding to minima detected during the local

searches.

The verdict regarding dual-annealing, with respect to the local optimisers that

we addressed previously, is that it is more powerful and can lead to better solutions,

given that it has a better ability to explore the cost function landscape. Many real-

world cost function landscapes are non-convex, high-dimensional and consist of many

local minima. In such cases local optimisers, by virtue of only searching locally, will

always get trapped in a local minimum if initialised near one. If there are many such

local minima, then a local optimiser is highly likely to consistently not find the global

optimum/minimum. A global optimiser like dual-annealing, on the other hand, may

be initialised anywhere on the landscape and will hop around the entire solution space

due to its stochastic nature, ignoring locally good solutions in order to occasionally

move ‘up the hill’. This allows it to converge to a global optimum rather than a local

one with far higher certainty than any local optimiser.

However, dual-annealing is also more computationally expensive than local meth-

ods, as can be made obvious by the fact that local search is merely a subroutine of the

algorithm. The constant hopping around the landscape generally requires far more it-

erations than an algorithm like Nelder-Mead. Ultimately, the choice of which approach

to use comes down to having knowledge about the cost function landscape as well as

trial-and-error. The use of a global optimiser may be overkill when the cost function

landscape lends itself well to local methods (e.g. when it is highly convex) and each

evaluation of the cost function is expensive. If, however, locally optimal solutions are
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not enough, then global methods are by far the best option.

3.2 Quantum optimal control

We’ve now established that the broad goal of optimal control theory is the design of

protocols and strategies which optimise the behaviour of some abstract control system

with respect to some abstract target. Quantum optimal control theory (QOCT), rather

predictably, does this in the setting where the abstract system is a quantum system.

Very broadly then, QOCT concerns itself with the design and analysis of control fields

(usually electromagnetic fields) that manipulate quantum dynamical processes at the

atomic or molecular scale in the best way possible, as illustrated in Fig. 3.4. In this

chapter, we will broadly cover the basics of QOCT, starting with how the mathematical

structure discussed in Sec. 3.1.1 can be adapted to the quantum setting and ending with

detailed descriptions of CRAB (Sec. 3.3.1) and GRAPE (Sec. 3.3.2), popular QOCT

methods which will be relevant to later work presented in this thesis. As the content

of later chapters will focus on closed systems, that will be the perspective we will take

with respect to QOCT. More concretely, we will focus on cases where the generator

of transformations of a quantum system is primarily modelled as the Hamiltonian as

opposed to, e.g. a Liouvillian, but a similar, if generally more complex, analysis holds

in the case of open systems.

Returning to the material covered in Sec. 3.1.1, we can now add more structure

to the abstract notions of system, control function and cost function. In the quantum

setting, the set of state functions X often takes the form of a set of quantum states, be

they complex vectors, density matrices or operators. The set of control functions U is

usually represented by a set of functions of parameterised Hamiltonians. It is common

to decompose a control Hamiltonian into two components: the time-dependent ‘drive’

part and the time-independent ‘drift’ part. The time-dependent part can then be

further decomposed into a set of Nk operators Oopt = {O(k)
opt}k=1,...,Nk

, such that the
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Figure 3.4: A sketch of a quantum optimal control closed-loop set-up. A quantum
system is directly controlled by a set of electromagnetic pulses which are shaped ac-
cording to a set of control functions u(t) that are optimised based on feedback from
the information obtained through measurements of the system.

full control Hamiltonian reads:

H(u(t)) = H0 +

Nk∑
k=1

uk(t)O
(k)
opt, (3.12)

where H0 is the so-called ‘drift’ Hamiltonian which drives the free evolution of the

system and the additional terms made up of control functions uk(t) ∈ u(t) driving the

corresponding operators O(k)
opt.

Given this, we can describe a general quantum optimal control problem in analogy

to Eq. (3.1) as one where the aim is to solve the Schrödinger equation:

iℏ∂t |ψ(t)⟩ = H(u(t)) |ψ(t)⟩ , (3.13)

with the constraint of starting in a state from a set of initial states |ψ0⟩ ∈ Ψ0 and while

minimising some cost function that targets a set of final states |ψT ⟩ ∈ ΨT . We note

that while we are using wavefunctions as representations for the states of the control

system, it is actually quite common in QOCT to instead work in the operator picture,
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where the Schrödinger equation is

∂tO(t) = −iH(u(t))O(t), (3.14)

where O is an operator on some pre-defined Hilbert space. A useful constraint in this

setting is to take the initial state of the operator to be the identity O(0) = 1. The

choice of wave mechanics or matrix mechanics depends on the specific QOCT problem

at hand, although questions of e.g. controllability are usually best-solved with operators

rather than state vectors. For example, if we can show that the set of possible matrices

that can be obtained for system (3.14) is the set of all the unitary matrices (with the

rank of the system Hilbert space), then the system can theoretically be steered to any

arbitrary state and thus it is controllable.

The choice of cost function in the quantum setting is generally informed by the

desired properties of the target state(s) combined with considerations for what infor-

mation can be extracted from the system and other constraints. For example, when

the aim of the optimisation is to prepare a single, well-defined quantum state |ψT ⟩ with

high accuracy, then the most informative cost function is:

CF(τ,u) = 1− F (τ,u) = 1− |⟨ψ(τ,u)|ψT ⟩|2, (3.15)

where F (τ,u) is the fidelity of the final state |ψ(τ,u)⟩ with respect to the desired target

|ψT ⟩. Here |ψ(τ,u)⟩ is generated by driving an initial state |ψ0⟩ ∈ Ψ0 for a time τ via

the time-dependent Hamiltonian H(u(t)). If, on the other hand, the target state need

only be a ground state of some Hamiltonian HT , then it might be far more convenient

to use the final system energy, which encompasses several degenerate states (rather

than a single unique target state) and in such cases often provides better convergence:

CE(τ,u) = ⟨ψ(τ,u)|HT |ψ(τ,u)⟩ . (3.16)

Finally, should one be interested only in a specific property of the final state, like its
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entanglement, then the cost function might look something like:

CS(τ,u) = −S[|ψ(τ,u)⟩], (3.17)

where S[·] is some appropriate measure of entanglement. As well as being informed by

the set of target states, the cost function may include further constraints, like the total

power of the driving fields in the Hamiltonian. This is analogous to the cost function

in Eq. (3.3), which in the quantum case might look something like:

C(τ,u) = CF(τ,u) +

Nk∑
k=1

∫ τ

0
|uk(t)|2dt, (3.18)

which can be read as an optimisation for final state fidelity with the added constraint

that the time-integrated flux of the driving fields is minimised. As in the case of

abstract quantum control, the inclusion of constraints need not be additive - it could be

multiplicative or take on some completely different form, depending on what behaviour

is expected from the loss function landscape. Additive constraints are often easy to

understand when building a problem: if a constraint adds positively to the cost function

value and one wants to minimise the cost function, then optimisation will lead to a

reduction in whatever component corresponds to the constraint.

3.3 Quantum optimal control methods

Both analytical (Sec. 3.1.2) and numerical (Sec. 3.1.3) methods have been developed

for the optimal control of quantum systems in recent decades. Analytical methods in

QOCT generally deal with questions of necessary conditions for controllability [81] or

reachability of states, e.g. exploring quantum speed limits [82–84]. Analytical methods

can be used to find solutions to quantum optimal control problems rather than just

classify their structure, but the Achilles’ heel of analytical approaches remains a general

inability to deal with complex systems. The volatile and often exponentially complex

nature of quantum systems means that numerical approaches tend to be the preferred

method for actually determining solutions to QOCT problems.
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Numerical methods in QOCT tend to consist of the development and analysis of

iterative algorithms focused on optimising pulses for quantum systems. This can be

done by constructing a mathematical description of the pulse, including parameters

that control its shape and which can then be numerically optimised. Most numerical

methods under the umbrella of QOCT involve a classical optimiser, like those discussed

in Sec. 3.1.3, as a subroutine in the approach which finds the optimal values for the

pulse parameters. In this section we will explore two of the more broadly used numerical

approaches in quantum optimal control, CRAB and GRAPE.

3.3.1 Chopped random-basis quantum optimization (CRAB)

The “Chopped random-basis quantum optimization” or CRAB method is a quantum

optimal control method first introduced in [85,86] which revolves around the construc-

tion of a truncated randomized basis of functions for the control fields of a quantum

system. It was originally developed for quantum many-body systems whose time evo-

lution can be efficiently simulated by time-dependent density matrix renormalization

group (tDMRG) [87–89]. It was believed that such systems were mostly intractable for

control optimization using gradient-based algorithms [90], although such potential lim-

itations have been overcome in more recent work [91]. CRAB provides a way to reduce

the space of search parameters, making the optimisation process more efficient, while

retaining access to a large solution space through the added randomisation component.

The key idea is to expand the control pulse u(t) in some truncated basis of dimension

Nk:

u(t) =

Nk∑
i=1

ciui(t), (3.19)

where the cost function landscape is spanned by the coefficients ci, that need to be

optimised over using numerical optimisation methods like those described in Sec. 3.1.3.

Generally this basis is made up of trigonometric functions, since their behaviour is

considered easy to understand, although it could be any basis that spans the space

of admissible controls e.g. something like the generalized Chebyshev polynomials. A

choice of basis can further be enhanced or modified by a shape function g(t) that fixes
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the pulse to some initial and/or final value:

u(g(t), t) =

Nk/2∑
i=1

ci
cosωit

g(t)
+

Nk∑
i=Nk/2+1

ci
sinωit

g(t)
. (3.20)

Importantly, the key to expanding the solution space in order to find better pulses

using the CRAB approach lies in the randomisation of the frequencies ωi. During

each optimisation process, the ωi are chosen randomly around the principal harmonics

within some interval [0, ωmax], allowing the pulse shapes to be more diverse and more

complex than by simply keeping them fixed at a given value. The optimisation process

can then be parallelised, with several optimisation instances running simultaneously

exploring several different sets of random frequencies and the optimal solution can be

picked from the final outcomes of all optimisations.

The CRAB approach lends itself very easily to the incorporation of additional fea-

tures and constraints like the shape function. For example, it is quite easy to start with

a trial pulse, say f(t), which cannot be expanded efficiently or exactly in the chosen

basis and to dress it according to

u(t) = f(t)

(
1 +

Nk∑
i=1

ciui(t)

)
. (3.21)

Another particularly useful alteration to the basic CRAB procedure is what is known

as ‘dressed’ CRAB or dCRAB [92], which in a similar vein aims to iteratively re-dress

solutions obtained from previous optimisations with new sets of basis functions added

onto the existing solution. These super-iterations j can be modelled as

uj(t) = cj0u
j−1(t) +

Nk∑
i=1

cjiu
j
i (t), (3.22)

where uji (t) are new basis functions and uj−1(t) is the pulse obtained from a previous,

(j − 1)st optimisation. The coefficient cj0 can be seen as shifting the solution in the

direction of the previous solution pulse while {cji}i=1,...,Nk
move it in new search di-

rections uji (t). This is, in fact, very similar to Powell’s optimisation method which we
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covered in Sec. 3.1.3.2, wherein a finite set of search directions in cost function space

is continuously updated with linear combinations of their optima. dCRAB can be seen

as doing the same but with updates sampled from an infinite-dimensional search space.

This iterative approach is useful in avoiding local minima and in exploring a far larger

search space, avoiding the hard constraint of a finite set of basis functions for each

optimisation.

There are several key advantages in the CRAB approach that have led to its

widespread use in the QOCT community. For one, the randomization of the control

field basis allows for a more comprehensive exploration of the control landscape, which

can lead to the discovery of better solutions. It also offers relatively quick convergence

as the number of optimisable parameters is usually small when compared to other ap-

proaches (such as GRAPE, which we will explore in the next section). Finally, it is very

flexible: the basis functions can be altered and constraints can be incorporated quite

easily, whether they concern the physical implementation (e.g. the shaping function)

or the efficiency of the optimisation itself.

3.3.2 Gradient Ascent Pulse Engineering (GRAPE)

The “Gradient Ascent Pulse Engineering” (GRAPE) algorithm is yet another widely

used QOCT numerical method. It was first developed in order to design pulse sequences

in NMR spectroscopy [93] and has since been iterated upon and improved a number of

times as well as being integrated into several optimal control packages [94–97]. As the

name suggests, it is a gradient-based optimisation method and while initially it was

used primarily for the preparation of specific target states, its powerful flexibility has

since lent itself to many other applications in the setting of quantum technologies, like

the optimisation of quantum logic gates [98,99].

The key idea behind GRAPE is to replace continuous control functions, like e.g. those

used in the basis functions of CRAB, with piecewise constant control amplitudes uj(tk),

each applied to the control system at time tk ∈ [0, τ ] for a time interval ∆t, where τ is

the total evolution time. One may view this as discretizing the time-evolution of the

system into Nm slices of time ∆t = tk+1− tk. These slices need not all be of equal size,
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but for simplicity let us work in the setting where they are, meaning that τ = Nm∆t.

At this point we can pause and notice that since the control amplitudes uj(tk) are

piecewise constant for all time intervals, they can be treated as a set of parameters that

can be optimised using a numerical optimisation algorithm. This gives Nj ×Nm total

parameters to optimise, as each jth pulse will be made up of Nm time-steps. Given

this relatively large number of parameters, the original GRAPE algorithm includes

an analysis of how to compute the gradient of the cost function with respect to each

uj(tk) in order to implement gradient-based optimisation methods like gradient-descent

(Eq. (3.8)). Recalling the form of the quantum control Hamiltonian from Eq. (3.12),

the propagator for the time-evolution of the quantum system using GRAPE during a

single time step ∆t at time tk is

Uk(∆t) = exp

−i∆t(H0 +

Nj∑
j=1

uj(tk)O
(j)
opt

) (3.23)

for some drift component of the Hamiltonian H0 and some basis of control operators

{O(j)
opt}j=1,...,Nj . The full evolution of the system can thus be captured by the product

of operators (with dependence on ∆t removed):

U(τ) = UNmUNm−1...U2U1, (3.24)

such that for some initial state ρ0 (where we are now working with density matrices

rather than state vectors), the final evolved state can be written as

ρ(τ) = U(τ)ρ0U
†(τ)

= UNm ...U1ρ0U
†
1 ...U

†
Nm

(3.25)

In order to derive a way to compute the gradient of the cost function with respect

to the parameters, it is necessary to define a cost function. In this case we will use the

overlap of the final state ρ(τ) with respect to some target state ρT , a density matrix

version of Eq. 3.15:

C(u) = Tr
{
ρ†Tρ(τ)

}
, (3.26)
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where u in this case is the set of all Nj × Nm parameters to be optimised u :

{uj(tk)}k=1,...,Nm

j=1,...,Nj
. Using Eq. 3.25 and the cyclic property of the trace we can write

C(u) = Tr
{
ρ†TUNm ...U1ρ0U

†
1 ...U

†
Nm

}
= Tr

{
U †
k+1...U

†
Nm

ρTUNm ...k+1Uk...U1ρ0U
†
1 ...U

†
j

}
= Tr{Λkρk},

(3.27)

where Λk = U †
k+1...U

†
Nm

ρTUNm ...k+1 and ρk = Uk...U1ρ0U
†
1 ...U

†
j .

In order to calculate the gradient of C(u) with respect to each parameter uj(tk), we

first investigate what happens to Uk when we perturb each parameter by some small

amount δuj(tk). To first order in δuj(tk) we get

δUk = −iδuj(tk)Uk
∫ ∆t

0
Uk(t

′)O(j)
optUk(−t′)dt′. (3.28)

Then, for small ∆t (i.e. when it is much smaller than the norm of the control Hamil-

tonian), we find that the integral in the expression above can be approximated as the

average value of the integrand, leading to:

δC(u)

δuj(tk)
= −Tr

{
Λk

(
i∆t
[
O(j)

opt, ρk

])}
. (3.29)

Using this, it is now possible to implement gradient-based numerical optimisation

algorithms in order to find optimal values of u, in the vein of gradient-descent from

Eq. 3.8. The method has been improved upon after the initial algorithm was first

published, e.g. in [96] in order to include information about second-derivatives of the

cost function, allowing for more complex gradient-based optimisation like quasi-Newton

methods (see discussion in Sec. 3.1.3). Recent years have also seen improvements similar

to those of dCRAB in the case of the CRAB algorithm, where an iterative optimisation

procedure is applied on top of the basic GRAPE algorithm [95]. It would be pertinent to

mention, that there are very similar approaches to constructing GRAPE-type pulses out

in the literature known as Krotov schemes [100]. The key difference between GRAPE

and Krotov is in the update step in the iterative optimisation procedure: where the
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GRAPE algorithm updates all control parameters in a single iteration at once, the

Krotov-based methods do so sequentially. Furthermore, Krotov-based approaches are

only well-defined in the continuum limit i.e. where the time step ∆t ≪ 1, which need

not be the case for many implementations of GRAPE. In fact, Krotov approaches have

been shown to be monotonically convergent in that limit [101], so they can suffer in the

face of discretisation, something that is a roadblock for some implementations. GRAPE

escapes this fate and, despite in many ways being less sophisticated, can be far more

efficient in more restrictive settings with large time steps far away from the continuum

limit.

Ultimately, GRAPE is a simple and powerful approach for constructing a control

pulse, but it can suffer from the large number of parameters that need to be optimised.

In more simple settings, where the cost function is smooth and convex, it is a very

powerful tool, as on top of the high degree of control over the exact shape of the pulse,

it offers a gradient-based method level of convergence. Gradient-based methods, as

discussed in Sec. 3.1.3), are efficient and converge rapidly given convexity guarantees,

regardless of the number of parameters that describe the control function. There has

been a lot of work done in recent years analyzing the topological and mathematical

properties of quantum control landscapes, including their smoothness [102–104], al-

though these only apply to problems where the cost function is “well behaved” - i.e. is

some polynomial of the final state vector or matrix which itself evolves continuously

on a smooth manifold. However, there is no reason to expect that the cost function

landscape will be particularly smooth nor convex in any specific instance, meaning the

gradient information obtained in the GRAPE algorithm may not be useful. Further-

more, the gradient evaluation step can be quite computationally intensive. At the end

of the day, one can always construct a GRAPE-type pulse and optimise the many pa-

rameters using, for example, a global optimiser like dual-annealing from Sec. 3.1.3.3,

but given how high-dimensional the problem might be due to the many parameters

involved, this can be a very computationally intensive task.

It is useful to compare GRAPE and CRAB, as each offers a different set of advan-

tages and disadvantages. The effectiveness of CRAB, for example, relies a lot on the
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choice of basis functions used in constructing the pulse, but the number of parameters

to be optimised is generally far lower than that of GRAPE. Both offer a lot of flexibility

in terms of incorporating constraints and using different numerical optimisers, although

CRAB generally does not include a systematic way to compute cost function gradients,

leaving it subject to gradient-free methods.
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Optimising approximate

counterdiabatic driving
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Chapter 4

Counterdiabatic optimised local

driving

I feel a need. . . a need for speed.

LT Pete ”Maverick” Mitchell,

Top Gun, 1986

In Ch. 2 we established that adiabatic evolution of a quantum system requires

timescales that scale with the inverse of the energy gap, without which it experiences

non-adiabatic excitations out of its instantaneous eigenstate(s). This presents a prob-

lem, as the results of adiabatic dynamics - i.e. the production of the set of adiabatic

eigenstates of the final Hamiltonian after the system evolution - is useful in many ap-

plications of quantum technologies [5,13,105], but the timescales this requires are often

difficult to achieve due to decoherence and other physical constraints.

The dual motivation of implementing adiabatic evolution and doing so fast has led

to the development of a number of methods and approaches under the umbrella of

STA [17, 18], with a universal STA approach being provided by CD [9, 24], introduced

in detail in Sec. 2.3. However, as established in Sec. 2.3, exact CD is often difficult to

derive and even more difficult to implement in an experimental setting [11,106], leading

to the development of approximate methods such as LCD [27] and the truncated nested-

commutator approach [28] which were discussed in detail in Sec. 2.4.1 and Sec. 2.4.2
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respectively. Apart from the already mentioned techniques, many other approaches

[107–109] have been developed which aim to bypass the inherent complexity of the

exact CD, either in the case of small systems or ones which have scaling transformations

[19,20,110]. These approximate methods all have their advantages and drawbacks when

applied to particular adiabatic processes, owing both to their approximate nature and

the practical aspects of their implementation.

In this chapter we will present a new method for speeding up adiabatic processes:

Counterdiabatic Optimised Local Driving (COLD), which was first developed with the

goal of improving upon the results of LCD while retaining the advantages that it of-

fers. Namely: COLD is a method that, given a time-dependent Hamiltonian and a set

of physical constraints for the system that is being driven, can be used to construct

an approximate counterdiabatic protocol that performs optimally for the given set of

constraints on the Hamiltonian and the system. It does this by combining LCD and

optimal control, which we explored in detail in Ch. 3. What we generally mean by

‘physical constraints’ in this case arises from what can be implemented in an experi-

ment: types of quantum operators, the range of magnitudes that each pulse driving an

operator can take on or any other physical constraint, like the topology of the physical

system. Optimality in this case is also understood to be the ability to drive a system

from some initial state to some target state with minimal loss. While LCD can be used

to implement an approximate CD protocol built out of restricted, physically realisable

operators, COLD does this via finding an optimal path for the system, such that the

approximate counterdiabatic drive is maximally effective in suppressing non-adiabatic

effects.

We will begin the chapter by introducing the COLD method in detail. Then,

in Sec. 4.2, we will explore exactly what part QOCT plays in the new method. This

chapter lays the groundwork for the method of COLD, while in Part III of the thesis we

will present and analyse the results of its numerical implementation in various physical

systems.
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4.1 Counterdiabatic driving and optimal control

Let us begin by explicitly setting the stage for the problem that we want to solve.

Given a Hamiltonian H(λ), which depends on time via the parameter λ(t), and a

system prepared in an eigenstate of H(λ0), where λ0 = λ(0) (often this is the ground

state, but it need not be), our task is to vary the parameter λ from its initial value

λ0 to some final value λf = λ(τ) during a duration of time τ such that at the end of

the process, the system is in the corresponding eigenstate of H(λf ). More precisely, if

e.g. the system starts in the ground state of H(λ0), after the evolution it should be in

the ground state of H(λf ). This can be done quite reliably, as per the discussion of

Ch. 2, as long as the instantaneous eigenstates of the Hamiltonian driving the system

are not degenerate throughout the evolution and the driving happens slowly enough

(see Sec. 2.1.2). However, bearing in mind that such slow evolution is generally not

accessible, our primary goal is to achieve this result while keeping τ small i.e. making

the evolution as fast as possible while still achieving the desired outcomes.

As already mentioned in the introduction to this Chapter, one way to achieve this

task is by using CD (Sec. 2.3). That is, for a given H(λ), it may be possible to

derive and implement an exact counterdiabatic Hamiltonian from Eq. (2.42) which

suppresses all non-adiabatic effects experienced by the system due to fast driving. Exact

CD could, in this way, keep a system in the instantaneous eigenstate of H(λ) during

arbitrarily short driving times (within the geometric speed limit [111]), but exact CD

is not generally accessible for an arbitrary Hamiltonian [10] and often requires highly

non-local operators.

The next best thing to try, then, might be an approximate CD method like LCD.

As discussed in Sec. 2.4.1, LCD not only allows one to variationally approximate the

full CD, thus suppressing some of the losses associated with non-adiabatic effects, but

it also gives one the freedom to choose the basis of operators for the approximation,

making it very attractive in experimental settings where only a limited set of physical

operators are available, e.g. when there is no local control of subsystems and only

global pulses are available. If an ansatz is not forthcoming, it is also possible to use
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the ideas presented in Sec. 2.4.2 to build up a local operator basis which contributes to

the full CD via the nested commutator approach [112] and to then use the variational

method of LCD in order to construct a counterdiabatic schedule made up of a physically

implementable subset of that basis.

The LCD method is powerful, but it is not without its faults. The primary disad-

vantage of such an approach is that the counterdiabatic drive being implemented will

always be an approximation unless the ansatz basis is fully representative of the exact

CD. In cases where the approximation is a poor one, the LCD technique might not

offer any suppression of errors at all. One solution to this would simply be to expand

the ansatz basis in order to access more degrees of freedom in describing the CD, but

this would be counter to the idea of only requiring a physically implementable set of

operators as part of the approximation in order to make it useful in an experimental

setting. Another solution would be to use a different method entirely to achieve the

same result by, for example, taking a page out of optimal control theory as covered

extensively in Ch. 3. It is not obvious, however, that a switch in tactics would lead

to an improvement or what the complexity of designing a new approach might be. As

discussed earlier, optimal control pulses can be constructed in a multitude of different

ways, many of which have structure that may be completely ineffective for suppressing

non-adiabatic effects. In the case of more flexible control pulses like GRAPE, which

might offer a larger solution space, what we often run into is an issue of efficiency as

the number of control parameters increases very quickly.

This is where we come to the new method, COLD, which was developed with

the aim of retaining the advantages of LCD while improving upon its results. The

approach begins with the observation that any counterdiabatic schedule will depend on

the driving path of the original Hamiltonian for which it is constructed, as discussed

extensively in Ch. 2. Namely, if we write a Hamiltonian H(λ) as a sum of NH operators

{O(i)
H }i=1,...,NH

each scaled by a λ-dependent coefficient hi(λ) ∈ h (note that we include

constant functions here too instead of treating them as time-independent):

H(λ,h) =

NH∑
i=1

hi(λ)O(i)
H , (4.1)
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then the CD drive can be expressed as a sum of operators {O(j)
CD}j=1,...,NCD

which are

scaled by functions αj(λ,h) and the rate of change in the parameters λ̇ = dλ
dt . That is to

say the form of the counterdiabatic drive is a function of the time-dependent parameter

λ, the operators O(i)
H and their λ-dependent coefficients. Returning to Eq. (2.42), we

can now write the counterdiabatic Hamiltonian as:

HCD = H(λ,h) + λ̇Aλ

=

NH∑
i=1

hi(λ)O(i)
H +

NCD∑
j=1

λ̇αj(λ,h)O(j)
CD,

(4.2)

where OCD = {O(j)
CD}j=1,...,NCD

is an operator basis of the adiabatic gauge potential Aλ
(AGP) which was introduced at length in Sec. 2.2. We can even see how this relationship

comes about by looking at the matrix elements of the AGP in Eq. (2.32), which are

a function of the instantaneous eigenenergies of H(λ,h) and the matrix elements of

∂λH(λ,h), all of which can be written as functons of λ and h. Note, that in any finite

system the operator basis of AGP will be finite.

In this setting, LCD is a way to variationally find the coefficients αj for a given sub-

set of the full AGP basis OLCD ⊂ OCD which minimise the operator distance between

the generalised adiabatic force from the exact AGP and the force generated by the

approximate AGP. In the case where the ansatz is the full basis set OCD, one should

recover the exact AGP using the variational approach.

The reason for expressing the counterdiabatic Hamiltonian in this way is to make

the dependence of the coefficients αj on the functions h and λ explicit. As mentioned

at the start of this section, the philosophy of COLD begins with the observation that

the form of the counterdiabatic drive will depend on the path of the Hamiltonian

in the parameter space of its coefficients, i.e. if we change either h or λ (or both),

the form of the counterdiabatic drive will change via the functions αj . A different

way of looking at it is to view each specific set of parameters (h, λ) as defining a

new time-dependent Hamiltonian with its own instantaneous eigenbasis that generates

different non-adiabatic effects for a finite evolution time (see, e.g. Eq. (2.24) and the

discussion surrounding the AGP). For clarity, we note that the set of operators OCD
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is not modified by varying h or λ, but could be affected instead if the operators in the

set OH are changed.

Let us return to the problem stated at the beginning of this section: our aim is to

drive a system which started in an eigenstate of H(λ0) to the corresponding eigenstate

of H(λf ) in the shortest amount of time possible. It is important to note that the

problem statement does not say anything about the state for any other value of λ

throughout the evolution, although in the case where exact CD is implemented, the

system should follow the instantaneous eigenstates of H throughout the full dynamics.

This more relaxed condition means that, as long as the time-dependent Hamiltonian

driving the system matches up with the problem Hamiltonian at the start and end of

the dynamics and the system is in the correct eigenstate at those two points, the path

that it takes between them is not particularly important barring any other constraints.

This observation can now allow us to finally introduce COLD.

4.1.1 The method

In Sec. 3.2, we delved into the many ways in which driving pulses for quantum sys-

tems can be systematically constructed and modified or optimised in order to achieve

particular goals. In fact, it is possible to use QOCT to speed up adiabatic protocols

too, something that has been studied extensively, with the resulting methods generally

grouped under the umbrella of STA [17,18]. We could imagine casting our original prob-

lem of driving a system to a particular eigenstate of H(λf ) as simply an optimisation

problem with a cost function focused on state fidelity given by Eq. (3.15).

In the case of COLD, the first step is to construct a control Hamiltonian in the vein

of Eq. (3.12) with the constraints that it be equal to H(λ0) at t = 0 and H(λf ) at

t = τ :

Hβ(λ,h,β) =

NH∑
i=1

hi(λ)O(i)
H +

Nk∑
k=1

βk(λ)O
(k)
opt. (4.3)

Here, βk(λ) ∈ β are the control functions which can be constructed and optimised

using the methods described in Sec. 3.2 and {O(k)
opt}k=1,...,Nk

are controllable operators,

which can be a subset of OH or introduce a new degree of freedom to the Hamiltonian,
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as long as the constraints that Hβ(λ0) = H(λ0) and Hβ(λf ) = H(λf ) are satisfied.

In the second step of defining COLD, we return to LCD and the observation that our

approximate counterdiabatic drive will depend on the coefficients of the Hamiltonian. If

we are given an ansatz set of operators {O(j)
LCD}j=1,...,NLCD

and use them to variationally

determine the approximate CD protocol for the control Hamiltonian Hβ of Eq. (4.3),

the resulting Hamiltonian will look something like this:

HCOLD(λ,h,β) = Hβ(λ,h,β) +HLCD(λ,h,β)

=

NH∑
i=1

hi(λ)O(i)
H +

Nk∑
k=1

βk(λ)O
(k)
opt +

NLCD∑
j=1

λ̇αj(λ,h,β)O(j)
LCD,

(4.4)

which is the COLD Hamiltonian. Note that if the set Oopt is not a subset of OH, then

the operators in OCD and consequently OLCD may be different than in the case when

only driving the bare Hamiltonian.

All that is left now is the third COLD step, which is the optimisation of the co-

efficients βk(λ) using QOCT methods presented in Sec. 3.2. A natural, though not

exclusive, cost function for this process would be the final state fidelity from Eq. (3.15)

with respect to the desired eigenstate of H(λf ). We will provide a more detailed dis-

cussion of the optimal control component of COLD in the next section.

The addition of the control pulse prior to applying LCD makes it such that the

CD coefficients αj are now functions of β, meaning that varying β will change the

shape of the approximate counterdiabatic drive. This is illustrated in Fig. 4.1 with

changing paths in state space of the driven system. We take the set of operators OLCD

to be fixed, since in a practical scenario this set would depend on physical constraints

of the system for which it is implemented. However, the relative contribution of each

operator to the exact counterdiabatic pulse (and thus its effectiveness at suppressing

non-adiabatic effects) is governed by the path of the Hamiltonian. By adding a control

term, we can now optimise the system evolution to follow a path which allows the

truncated counterdiabatic drive to maximally suppress non-adiabatic effects. Fig. 4.1

illustrates how the application of LCD will modify any path in system state space

to end up closer to the target state than in its absence, but for particular paths it

73



Chapter 4. Counterdiabatic optimised local driving

Figure 4.1: A diagrammatic illustration of the COLD method. (left) The set of control
Hamiltonians with control parameters β, with each point within the shape representing
a different instance of β. In the case where the control amplitude is 0 throughout the
evolution, we recover the bare Hamiltonian H(λ,h) (red point). (right) The system
state space with |ψ0⟩ the eigenstate of H(λ0) that the system is prepared in and |ψf ⟩
the corresponding eigenstate of H(λf ), which is the target. The dotted (no LCD drive)
and chalky (LCD drive included) directed lines show how the system is driven across
state space for a fixed total time τ in the case of each control Hamiltonian indicated
on the blue shape. COLD essentially allows one to use optimisation in order to find a
path via the value of β which will lead to the result which is closest to the final state
when LCD is applied, e.g. going from the red path to the purple. Note that in cases
where LCD is equivalent to the exact CD the arrows in the state space will lead from
the initial state to the final state exactly, although the control parameter might change
the shape of the path that they take to get there.

will get much closer. Examples of the effectiveness of COLD in different systems are

demonstrated and analysed in more detail in Ch. 6, where we explore how COLD holds

up against each of its components on their own – LCD and QOCT.

4.2 Optimal control toolbox

With optimal control being one of the two key components of COLD, we will now revisit

the content covered in Ch. 3, linking it to the way one might go about constructing con-

trol pulses in the COLD setting. In Sec. 3.3 we covered “Chopped Randomised Basis”

(CRAB) and “Gradient Ascent Pulse Engineering” (GRAPE), two quantum optimal

control methods that offer very flexible yet powerful approaches to constructing and

optimising control pulses. Consequently, we can use them in the setting of COLD too.
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In our original work presented in Ref. [40], three separate techniques for constructing

optimal control pulses were implemented which will be the focal point of Part III of

the thesis:

• ‘Bare’ pulses, which are functions composed of a Fourier basis where each basis

function is scaled by an optimisable coefficient, similar to those given by Eq. 3.20.

The name ‘bare’ is used to distinguish them from CRAB as they do not include

any randomisation component.

• COLD-CRAB pulses, which are like the bare version but with the inclusion of

randomisation in the frequencies of the basis functions used to construct the pulse,

as discussed in Sec. 3.3.1.

• COLD-GRAPE pulses, wherein the optimisable function is constructed using

the GRAPE approach of parameterised piecewise constant time slices, as was

expanded upon in detail in Sec. 3.3.2.

To illustrate, a ‘bare’ pulse, which will make a return often in the next part of the

thesis, is the function

f(λ,β) =

Nk∑
k=1

βk sin(2πkλ), (4.5)

which fulfills the boundary conditions of H(λ0) and H(λf ) for λ0 = 0 and λf = 1. The

parameters βk for each frequency k can be optimised using a numerical approach from

Sec. 3.1.3. This is a very simple way to construct a control pulse, but the simplicity is

its appeal: it describes a continuous function with very few parameters and a solution

can often be easily analysed once it is found.

The case of COLD-CRAB is more self-explanatory, as it is just an implementation

of the CRAB algorithm, which was discussed in detail in Sec. 3.3.1, to construct the

control pulse for COLD. In the numerical results presented in the next part of the

thesis, the most common implementation is taking the bare pulse that defined above

in Eq. (4.5) and randomising the principal frequencies ωk = 2πk of the trigonometric

functions. This is done by drawing parameters rk from a uniform random distribution

rk ∈ [−0.5, 0.5] at each optimisation instance of the pulse and replacing k → k(1+ rk).
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This makes optimisation more complex - as already discussed in Sec. 3.3.1 - but it

also often allows for far better results without any increase in optimisable parameters.

Depending on the computational resources at hand, especially parallelisation, COLD-

CRAB is a far better option than just the bare pulse in terms of results.

Finally, COLD-GRAPE is exactly what it says on the tin - if the tin were Sec. 3.3.2.

In this case the optimisable pulse is built up out of piecewise constant control ampli-

tudes, as in the original GRAPE algorithm and these are optimised once again using

numerical methods from Sec. 3.1.3. The method generally requires more optimisation

parameters and thus is computationally intensive, but it also removes the need to choose

a good pulse basis, like in the bare and COLD-CRAB cases. It is possible, but not

necessary, to use the gradient information of the cost function that was provided in the

original GRAPE paper [93]. As will become clearer in Ch. 7 however, some of the cost

function landscapes we have to deal with in the case of COLD are highly non-convex

and as such gradient-based optimisation techniques generally do not work well.

One computational issue to address in using GRAPE for COLD is that the coef-

ficients αj of the LCD pulses generally have a dependence on ∂λβ due to the AGP

operator being a function of the matrix elements of ∂λH. These are not well-defined

for a pulse constructed out of piecewise constant amplitudes masquerading as a con-

tinuous function. The way to get around this issue is to use spline interpolation [113],

which is a method used to interpolate between the piecewise components and recover

a continuous pulse which can then be used to calculate the derivatives ∂λβ.

These three methods are by no means the only way to construct optimal pulses for

COLD and, as discussed in Sec. 3.2, the field of quantum optimal control is vast [8].

A consideration that is specific to COLD is the inclusion of constraints in the cost

function on the LCD pulse as well as the control drive, as it can diverge e.g. across

phase transitions [114], something that makes experimental implementation difficult

and goes against the philosophy of COLD as a method. Ultimately, both the LCD

pulse and the control drive should be designed with the goal of making them useful in

an experimental setting and the optimal control component needs to reflect this.
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Adiabatic gauge potential as a

cost function

Always remember, however, that

there’s usually a simpler and

better way to do something than

the first way that pops into your

head.

Donald Knuth

In the previous chapter we presented the COLD method, which combines LCD

(Sec. 2.4.1) and quantum optimal control (Sec. 3.2) in order to speed up adiabatic

quantum processes while minimising transitions out of the instantaneous eigenstates.

The strategy of COLD is largely concerned with implementing optimal control in order

to modify the path of the time-dependent Hamiltonian in parameter space in a way

that maximises the effectiveness of a given LCD drive in driving a system to a target

eigenstate of the adiabatic Hamiltonian. The optimal control component of COLD is

thus constructed around optimising for the final state of the system after evolution:

whether by assessing its fidelity with respect to some target state or a property like

entanglement.

In this chapter we will take a slightly different but complementary perspective on

combining LCD and optimal control by asking the question of what happens when,
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instead of optimising for a particular target state, we use only information about the

counterdiabatic drive - or rather, the AGP from Sec. 2.2 - as the optimal control cost

function. Since the AGP contains information about the non-adiabatic effects experi-

enced by a system, it is reasonable to believe that this information can be extracted

and its analysis can be useful in designing optimal fast driving schedules for adiabatic

protocols.

We will begin the chapter with a brief motivation behind using the counterdiabatic

pulse as a metric for optimising fast adiabatic processes in Sec. 5.1 and then in Sec. 5.2

we will explore several different ways in which the CD pulse can be transformed into

an optimal control cost function. While this chapter will introduce the theory behind

the idea, Ch. 7 will present the numerical simulation results obtained using the ideas

in this chapter.

5.1 Motivation

Returning to the key ideas behind CD, we may recall that the exact CD pulse is

comprised of the AGP operator Aλ scaled by the rate of change of λ(t) (expressed as

λ̇) in the adiabatic Hamiltonian, as given by Eq. (2.42). The AGP is the generator of

adiabatic deformations between quantum eigenstates, and its off-diagonal elements are

responsible for transitions between the instantaneous (or adiabatic) eigenstates. Put

another way, the Frobenius norm of the AGP is the distance between nearby adiabatic

eigenstates [25, 50]. Thus, there are two components comprising the non-adiabatic

effects experienced by a system driven at finite time by a time-dependent Hamiltonian:

the rate of change of the parameters λ̇ and the AGP operator, which can be quantified

e.g. via the magnitude of λ̇ or the norm of the adiabatic gauge potential.

In the design of fast adiabatic protocols such as the techniques under the umbrella

of STA, we are competing against λ̇, since the aim in general is speed rather than

adherence to the adiabatic condition. This leaves us with minimising Aλ, or else, as

in the case of CD, suppressing or mitigating its effects. To whit, LCD does this by

implementing an operator that approximately suppresses the AGP for a given Hamil-

tonian. COLD then aids in this endeavour by modifying the Hamiltonian and thus the
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corresponding AGP operator in a way that allows for a given LCD protocol to perform

better. The optimal control component of COLD in [40] and throughout Ch. 6 is imple-

mented with the target state fidelity (Eq. (3.15)) as a cost function, which is due to the

fact that the primary application of adiabatic protocols in often (though not always [3])

state preparation. The use of fidelity as a cost function, however, necessitates access

to the wavefunction of the final prepared state, something that becomes difficult in the

case of large or highly correlated systems, and may result in a highly non-convex or

complex cost function landscape (see, for example, Fig. 7.5). Furthermore, fidelity is

not a useful cost function in practice, particularly in the case where the target state is

unknown, which is common in e.g. applications of adiabatic protocols to Hamiltonians

whose ground states encode solutions to combinatorics problems [4, 13].

A solution to the problem of fidelity as a cost function might be the use of a different

metric for optimising the Hamiltonian path. We have established that Aλ contains

information pertaining to non-adiabatic losses experienced by a driven system. Thus, a

natural approach to optimising the path of the Hamiltonian would be to minimise the

AGP operator (we will discuss the details of this in the next section), as this should

in principle minimise losses associated with non-adiabaticity. The main advantages of

such an approach would be the fact that the minimisation should be far more efficient

than any attempt to compute the full system evolution, assuming we have access to the

AGP as a function of the Hamiltonian path in parameter space. In the case of LCD,

this is a valid assumption. Furthermore, this process would require no knowledge of the

system wavefunction at any point, removing the drawbacks discussed earlier concerning

the efficiency of implementing the fidelity cost function.

5.2 Designing a cost function around the counterdiabatic

pulse

There are several ways to define a metric for a time-dependent control pulse and in

this thesis we will explore two in particular. In order to do this, we will first return to

Ch. 4, where we expressed the CD pulse as a sum of operators {O(j)
CD}j=1,...,NCD

which
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are scaled by coefficients αj(λ,h) with λ a function of time and h the λ-dependent

coefficients of the Hamiltonian H(λ). In the LCD case, this sum is truncated to a set

of operators OLCD ⊂ OCD which are themselves scaled by a different set of coefficients

α′
j(λ,h). Expressed this way, we can view the operators as static, with the λ- and

h-dependent coefficients αj and α
′
j encoding the shape of the pulse and containing the

information about non-adiabatic effects for given values of λ and h. If we include an

optimal control component parameterised by functions βk(λ) ∈ β as in Eq. (4.3) in

the case of COLD, then the counterdiabatic coefficients become dependent on β too,

allowing us to optimise them by varying the control functions.

Given this form for the counterdiabatic pulses, we can choose two types of metrics:

(i) one which looks at the whole pulse, whether in the case of the exact AGP or some

truncation obtained using LCD, and (ii) one which instead only picks out an extremum

of the pulse, like its maximum amplitude. In the first case, a natural option would be

the time-integrated absolute value of the αj coefficients, which in the optimal control

community is often referred to as the “control effort” [115]:

CI(τ,β) =

NI∑
j

∫ τ

0
dt′|α′

j(λ(t
′),h,β)|, (5.1)

where, as before, τ is the total driving time and here we take the sum over NI coef-

ficients. When the quantity CI(τ,β) is minimised, naturally the contribution of the

operators scaled by the coefficients in the sum will be reduced. When it is 0, then these

operators will not contribute at all to the non-adiabatic losses experienced by the driven

system. It should be noted that understanding the physical meaning behind non-zero

values of CI is quite non-trivial, although it is natural to expect that the larger it is,

the more losses the system experiences.

In the case where we want to minimise the exact AGP, NI = NCD. On the other

hand, when it comes to LCD it may be fruitful to minimise α′
j corresponding to op-

erators which are not actually applied to the system. Say one has access to a set

of operators with a non-zero contribution to the exact CD with the ability to imple-

ment only a subset, e.g. they were obtained via the nested commutator approach from
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Sec. 2.4.2. Then it is sensible to optimise for a path which minimises the contribution

of the subset of operators that cannot be implemented. This should, in theory, reduce

their contribution to the non-adiabatic losses. In this way, an LCD protocol can be used

to both suppress non-adiabatic losses by the application of an approximate counterdia-

batic drive and to optimise for a Hamiltonian path which reduces the non-suppressed

losses experienced by the system.

The second option for a cost function which uses nothing but the counterdiabatic

pulse coefficients is one which instead minimises some extremum of the entire pulse,

such as the maximal absolute amplitude reached by the pulse throughout the evolution,

which we will write as:

CA(τ,β) = max
t′∈[0,τ ]

 NI∑
j

|αj(λ(t′),h,β)|

 . (5.2)

Intuitively, if the integral cost function is 0, then this second approach does not

provide any more information as the two will be equivalent. However, what this cost

function captures is whether or not the path of the system for a given β and τ experi-

ences any critical point in its evolution where the non-adiabatic effects are maximised,

for example in the case of closing gaps between the instantaneous eigenstates. This

cost function may be useful in cases where one wants to avoid such closing gaps within

the system evolution and no path optimally suppresses all non-adiabatic effects. In

particular, it might be used in LCD as a means to avoid cases where the CD opera-

tors which are not countered via a counterdiabatic drive are responsible for most of the

avoided transitions out of the instanteous eigenstate. For example, should one only

be able to apply a counterdiabatic drive to a single subsystem of many, then it would

make sense to aim to create a driving protocol for the full system which minimises

the non-adiabatic effects experienced by every other system that cannot have them be

suppressed in such a way. In other words, if you can’t counter the losses, find a way to

not generate them in the first place.
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Applications of COLD
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Chapter 6

Optimising for properties of the

state

In theory, theory and practice

are the same. In practice, they

are not.

Unknown

In Ch. 4 we introduced COLD, a new method for speeding up adiabatic processes

while suppressing non-adiabatic losses. In this chapter, we will investigate how such a

method might perform for different adiabatic protocols in various physical systems via

results from numerical simulations.

There are a number of parameters that can be varied in each instance of applying

COLD, including different ways to construct the control pulse (Sec. 4.2), physical con-

straints placed on the system, and the operator basis used for the LCD, among others.

Furthermore, it is important to compare the effects of COLD against either of its two

components: LCD and quantum optimal control, which have been implemented with

the same goal as COLD in the past [7,17,27]. We made the claim in Ch. 4 that COLD

should outperform either approach simply by construction and here we will demonstrate

this in practice.

We will begin with an example of a two-spin annealing process in order to illustrate

the COLD approach in detail on a simple toy example. This will also serve as a good
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test bed for the variational method for deriving an LCD pulse and constructing an

optimal control pulse. We will then proceed to illustrate how COLD can be applied

for a series of different example Hamiltonians and systems, starting with the Ising

spin chain in Sec. 6.2, then a case of population transfer in a synthetic lattice via an

adiabatic rapid passage (ARP) protocol in Sec. 6.3 and finally in preparing maximally

entangled states in a system of frustrated spins in Sec. 6.4. We will demonstrate how

driving amplitude constraints affect the performance of COLD and other approaches

in Sec. 6.2.1 and how different optimisation cost functions can inform the results in

Sec. 6.4.1 where we will use entanglement as an optimisation metric instead of final

state fidelity.

6.1 Two-spin annealing

To showcase and explore the use of COLD in a relatively simple setting we will consider

a two spin quantum annealing problem with Hamiltonian

H0(h, λ) = J(λ)σz1σ
z
2 + Z(λ)(σz1 + σz2) +X(λ)(σx1 + σx2 ), (6.1)

where the operator subscripts denote the index of the spin on which they act, H0

is parameterised by the functions h = {J(λ), Z(λ), X(λ)}, with the λ(t) = t
τ term

encoding the time-dependence and where J(λ) = −2J0 and z(λ) = −h0 are constant

functions. The added transverse field allows us to explore a larger operator basis for

the LCD. For this example we use

X(λ) = 2h0 sin
2
(π
2
sin2

(π
2
λ
))

, (6.2)

where we note that since λ(0) = 0 and λ(τ) = 1, the transverse field is tuned from 0

to 2h0 as t goes from 0 to τ . The choice of function is rather arbitrary, but in general

we want driving functions which are smooth, in particular near the beginning and end

of the protocol, since they lead to a more smooth, well-behaved counterdiabatic term

which tends to 0 at the beginning and end of the driving time without any sudden
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jumps in value, making its experimental implementation more amenable. This is a

consequence of the LCD drive’s dependence on the derivatives of the functions in set

h. Fig. 6.2 illustrates the difference in the resulting LCD drives when using the smooth

version of X(λ) given above and a linear protocol. We can see that in the case of a

linearly increasing drive, the LCD driving terms are generally non-zero at the start and

end of the protocol and may exhibit sudden jumps in value due to the larger derivative

of the driving function at certain instances during the driving procedure.

We consider the case where J0/h0 = 0.5, meaning that the initial ground state of

the system is in the |↑↑⟩ state and the ground state at t = τ should be a superposition

of all the symmetric states. As per the discussion in Sec. 2.4.1, since H0 is a real-valued

Hamiltonian, the single-spin LCD operators should be fully imaginary and thus given

by the following ansatz for the adiabatic gauge potential:

A(1)
λ (λ,h) = α(λ,h)(σy1 + σy2), (6.3)

which we will indicate as ‘first-order’ or FO LCD, referring to the fact that these are the

most local spin operators and denoting this fact with the superscript (1). In this case, we

know that the LCD pulse is of the same form for both σy1 and σy2 due to the symmetry

of the Hamiltonian. Thus, we only require one coefficient α for both operators. In

future sections where this is not the case, we will instead differentiate between global

and local LCD pulses. In the case of local LCD, unique pulses may be required for

each separate operator to capture the counterdiabatic effects more faithfully, but for

the sake of simplicity and the commonplace difficulty of highly precise local control of

systems in expreiment, we will generally approximate them with a single coefficient.

Using the methods described in [27] and summarised in Sec. 2.4.1, we can determine

the form of the coefficient α using a variational approach, which we will set out in detail

here to illustrate the method. For the given H0, and Aλ, the first step is to find the
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operator Gλ from Eq. (2.45) (setting, in true Physics fashion, ℏ = 1):

Gλ(A
(1)
λ , H0) = ∂λH0 + i

[
A(1)
λ , H0

]
= ∂λX(σx1 + σx2 )− 2αJ(σx1σ

z
2 + σz1σ

x
2 )− 2αZ(σx1 + σx2 )

+ 2αX(σz1 + σz2),

(6.4)

where the λ-dependence is omitted and the only non-constant function is X(λ), making

it the only non-zero contribution to ∂λH0. We then obtain the action from Eq. (2.46)

defined as S = Tr
[
G2
λ

]
:

1

8
Tr
[
G2
λ

]
= 4α2X2 + (∂λX − 2αZ)2 + 4α2J2, (6.5)

which can be minimised with respect to the coefficient α in order to find the LCD pulse:

∂S
∂α

= 8X2α− 4Z(∂λX − 2αZ) + 8J2α = 0

⇒ α =
1

2

Z∂λX

X2 + Z2 + J2
,

(6.6)

where we find, as expected, that the LCD pulse is a function of λ and the Hamiltonian

coefficients h (and their derivatives with respect to λ). For completeness, the full LCD

Hamiltonian, recalling Eq. (2.42), then reads:

HLCD(h, λ) = H0(h, λ) + λ̇α(h, λ)(σy1 + σy2), (6.7)

where the counterdiabatic pulse is simply the (approximate) AGP scaled by the rate

of change in the time-dependent parameter λ.

We can do the same as above for the next most local, two-spin operators, which

we will refer to as ‘second-order’ or SO LCD. They too should be imaginary and, due

to the Hamiltonian symmetry, can be cast into two groups with two different LCD

coefficients γ and ζ:

A(2)
λ (h, λ) = γ(h, λ)(σx1σ

y
2 + σy1σ

x
2 ) + ζ(h, λ)(σz1σ

y
2 + σy1σ

z
2). (6.8)
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These can be solved for in a similar vein to the method for α, although in this case the

minimisation of S(A(2)
λ ) will happen separately for both γ and ζ, giving a coupled set

of equations which can be solved numerically. Since the whole system is only made up

of two spins, the two orders of LCD ansatz are enough to characterise the AGP fully as

they contain all completely imaginary orthogonal operators in the Pauli basis. Thus,

solving the coupled set of equations


2(X2 + Z2 + J2) −2JX 4JZ

−XJ X2 + 4Z2 −3XZ

4JZ −6ZX 2J2 + 2Z2 + 8X2



α

γ

ζ

 =


Z∂λX

0

J∂λX

 (6.9)

for the coefficients α, γ and ζ should give the exact AGP operator

Aλ(h, λ) = α(h, λ)(σy1 + σy2) + γ(h, λ)(σx1σ
y
2 + σy1σ

x
2 ) + ζ(h, λ)(σz1σ

y
2 + σy1σ

z
2) (6.10)

for the Hamiltonian H0(h, λ). Given any other h and λ, the equations above can be

modified quite easily by changing the form of the action correspondingly.

The different approaches are demonstrated in Fig 6.1(a) via numerical simulations

of the system evolution for different total evolution times τ(h−1
0 ). We compare the

final evolved state |ψ(τ)⟩ of the system with the ground state of H0(λ = 1) denoted by

|ψGS⟩ by computing their fidelity:

F (τ) = |⟨ψGS |ψ(τ)⟩|2 . (6.11)

The results are computed for the case where only the bare Hamiltonian H0(h, λ) from

Eq. (6.1) drives the system and they are then compared to FO LCD (Eq. (6.7)), SO

LCD (the solution to Eq. (6.9) with α set to 0) and the exact counterdiabatic drive

(Eq. (6.10)). The results show that at fast evolution times (τ < 1h−1
0 ) when no counter-

diabatic drive is applied the final state remains far from the ground state of H0(λ = 1)

and only begins to approach the target as the evolution time is increased, exactly as

one might expect given the adiabatic condition (Sec. 2.1.2). In the case of both FO

and SO LCD, however, the system approaches the desired ground state with close to
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Figure 6.1: Optimisation of the annealing protocol for two spin Hamiltonian given
by Eq. (6.1) and with parameters as described in the main text. (a) Final fidelities
of the annealing protocol with triangles (pink) representing the case where no CD is
applied and circles showing the case of FO LCD (orange), SO LCD (blue) as well as
the combination of FO and SO LCD (green). (b) Final fidelities achieved when using
the optimal control method BPO (Nk = 1: red diamonds, Nk = 2: purple diamonds)
and COLD (Nk = 1: blue circles, Nk = 2: aquamarine circles) with FO LCD operators
as described in the text.

unit fidelity even at very short driving times several orders of magnitude faster. As

expected, when the exact CD is applied including all single- and two-spin imaginary

operators, the system reaches the desired state with unit fidelity at arbitrarily short

driving times, as in the rotating spin example we discussed in Ch. 2 and Appendix A.

There is a curious phenomenon, wherein for all pulses barring exact CD (FO + SO

LCD), the system fidelity is flat for some time before rising to 1 at around the same

time. A natural interpretation of this is that around driving time τ = 1h−1
0 the system

enters the adiabatic regime. Prior to this point, it is likely that in each of the different

cases (BPO, FO and SO LCD), there is a different fundamental limit to the control-

lability of the system that depends on what types of external drives are applied, as

the fidelity plateaus at different values for each method regardless of driving time. For

a more in-depth discussion on how this might relate to the quantum speed limit and
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Figure 6.2: Figure illustrating the functional forms of the drives in the two-spin an-
nealing protocol of Eq. (6.1). The dark blue plots indicate the functional form of X(λ)
scaled by (2h0)

−1 (such that X(λ) = 2h0f(λ) where f(λ) is the function being plot-
ted). The solid plots are for the case given in Eq. (6.2), where f(λ) = sin2

(
π
2 sin

2
(
π
2λ
))
,

while the dashed plots describe the case where a linear drive is used instead: f(λ) = λ,
remembering that λ = t

τ . Each set of axes above shows the resulting drives for different
choices of LCD ansatz, as indicated by the inset equations. Note that the case where
Aλ = γ(σz1σ

y
2 + σy1σ

z
2), the resulting drive is zero throughout the protocol and hence it

is not plotted above.

the way that the LCD affects the spectrum of the Hamiltonian, we refer the reader to

Ref. [116].

At this point all we have done is to implement the LCD method for a simple example

where the exact CD can be easily derived. This was done primarily to illustrate how

the LCD pulse is constructed and how it can be used to significantly speed up system

evolution while driving it close to the target state by suppressing a large proportion

of non-adiabatic losses. With these components explored in depth, we can now finally

introduce COLD in a practical setting.

As the goal of COLD is to improve LCD in restricted settings, the most natural

approach to demonstrate it in a simple example like this is to take the FO LCD ansatz

as a fixed approximation for the counterdiabatic drive and to ignore SO terms. This is

a realistic scenario, as even two-spin operators like those found in the SO LCD anstaz

of Eq. (6.8) are generally difficult to engineer in physical systems and thus even in this
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simple case it is unlikely that the exact CD pulse could be implemented, though its

functional form is known.

Revisiting Ch. 4, we find that the first step of COLD is to construct a control

pulse for the Hamiltonian. Ideally, this is something that can be easily controlled in an

experimental setting and for the given H0, we can imagine introducing a λ-dependent

control for the coupling, transverse or longitudinal fields. For simplicity and pedagogy,

we can introduce a ‘bare’ pulse (Sec. 4.2) control component to the Hamiltonian which

drives the (σz1 + σz2) operators (the choice is arbitrary - we may as well have picked

(σx1 + σx2 ) or any other operator form the available degrees of freedom - though the

results would change depending on that choice) and obeys the constraint of being 0 at

the beginning and end of the driving time. This gives a control Hamiltonian:

Hβ(β,h, λ) = H0(h, λ) +

Nk∑
k=1

βk(λ)(σ
z
1 + σz2)

= H0(h, λ) +

Nk∑
k=1

ck sin(πkλ)(σ
z
1 + σz2),

(6.12)

where βk(λ) ∈ β, βk(λ) = ck sin(πkλ), the value Nk denotes the total number of control

functions and the parameters ck can be optimised using a numerical optimal control

method introduced in Sec. 3.1.3. In this case, we will implement Powell optimisation

(Sec. 3.1.3.2) as it is an efficient, gradient-free method that heuristically appears to

avoid local minima in the cost function space better than Nelder-Mead (Sec. 3.1.3.1),

although both can be used given the relatively simple control problem at hand.

Since the control Hamiltonian includes additional non-trivial λ-dependent compo-

nents that H0 did not, we need to re-derive the updated FO LCD pulse for the control

Hamiltonian Hβ, which is not particularly difficult if we follow the earlier recipe:

α(β,h, λ) =
1

2

(Z + fNk
opt)∂λX − (∂λf

Nk
opt)X

(Z + fNk
opt)

2 +X2 + J2
, (6.13)

where fNk
opt =

∑Nk
k=1 βk is the full control pulse constructed out of the Nk components.
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The total COLD Hamiltonian with FO LCD is then:

HCOLD(β,h, λ) = H0(h, λ) + fNk
opt(β, λ)(σ

z
1 + σz2) + λ̇α(β,h, λ)(σy1 + σy2). (6.14)

All that remains is to optimise the parameters ck with Powell’s optimisation al-

gorithm. As our goal is to drive the system to the ground state of H0(λ = 1), we

can implement the fidelity cost function from Eq. (3.15) as a metric for the optimi-

sation. Fig. 6.1(b) shows the results of numerical simulations in the same regime as

for the optimisation-free case, comparing evolution under the optimal control Hamil-

tonian from Eq. (6.12), an approach we call ‘Bare Powell Optimisation’ or BPO and

the COLD Hamiltonian (Eq. (6.14) with a FO LCD pulse included. Even for a sin-

gle optimisable parameter, COLD achieves ∼ 99.5% fidelity at arbitrarily short times,

while BPO remains stuck below ∼ 85% until τ ∼ 0.1h−1
0 . Both approaches show some

improvement with an added control parameter (Nk = 2), with the COLD result start-

ing at ∼ 99.8% fidelity even at short times. Neither approach, however, shows any

noticeable improvement when adding more control parameters beyond this.

Before moving on to the next section, we will note that this example is very simple

and largely pedagogical. It may be possible to improve the results of both BPO and

COLD with more sophisticated optimal control techniques, but it shows that even in the

simplest case, COLD is a powerful method. If reliable access to the operators making

up the exact CD is available, then it is better to implement CD rather than attempting

optimal control. However, as this is almost never the case given the complexity and

non-locality of the exact AGP, COLD is the best way to make the most out of the

limited counterdiabatic capacity available.

6.2 Ising chain

A more complex and widely studied example system that we can apply COLD to is

the one-dimensional Ising spin chain for N spins in the presence of a transverse and

longitudinal field. The Ising model is an often-studied model in quantum mechanics and

its ground states can be used to encode solutions to many combinatorics problems when
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we extend to arbitrary spin-spin couplings [12, 13, 117]. As such, studying annealing

protocols for Ising Hamiltonians with arbitrary connectivity is of particular interest.

While in this section we will look only at the restricted case of the Ising chain, in

Appendix C we derive the coupled equations for FO and SO LCD coefficients for a

model with arbitrary σzσz connectivity between the spins.

The Ising chain is described by the Hamiltonian

H0(h, λ) = J(λ)

N−1∑
j

σzjσ
z
j+1 + Z0

N∑
j

σzj +X(λ)

N∑
j

σxj , (6.15)

where once again λ(t) = t/τ , h = {J(λ), Z(λ), X(λ)} with constant functions J(λ) =

−J0, Z(λ) = Z0 and

X(λ) = X0 sin
2
(π
2
sin2

(π
2
λ
))

. (6.16)

In this section, all results are obtained using J0 = 1, Z0 = 0.02J0 and X0 = 10J0.

Many of the steps in this section will be rehashed from the two spin example as the

approach is very similar. In this case, we will only focus on the FO LCD terms, which

are the single-spin σy operators applied to each spin in the chain, in the same vein as

in the two spin example of Eq. (6.3) due to the Hamiltonian being real:

A(1)
λ (h, λ) = α(h, λ)

N∑
j

σyj , (6.17)

where using the variational LCD approach we find that

α =
1

2

Z∂λX

X2 + Z2 + 2(1− 1/N)J2
, (6.18)

with the N -dependent factor in the denominator is a consequence of the edge effects of

the chain which disappear in the case of a ring.

In order to implement COLD we need to once again construct a control pulse. In

this case, we will start with a similar naive bare pulse as in the two spin case from the
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Figure 6.3: Final state fidelities for the Ising spin chain example described in the text
for N = 5 spins. In (a) we plot the best (1 − F (τ)) obtained from 500 optimisations
for different evolution times τ in the case where only FO LCD is applied (pink dash-
dot line), as well as BPO (Eq. (6.19), blue diamonds) and COLD with FO LCD (red
circles) with a bare pulse control as described in the text. (b) shows implementations
of CRAB and COLD-CRAB, with the best result again chosen from 500 optimisations,
each with a different randomised frequencies in the trigonometric basis as described
in the text. All control pulses use Nk = 1 optimisable parameter. Reprinted with
permission from [40]. Copyright 2023, American Physical Society.

previous section

Hβ(β,h, λ) = H0(h, λ) +

Nk∑
k

βk(λ)
∑
j

σzj

= H0(h, λ) +

Nk∑
k

ck sin(ωkλ)
∑
j

σzj ,

(6.19)

with ωk = 2πk the kth principal frequency. In the case where no LCD is added to this

Hamiltonian, we will again refer to the method as BPO as the numerical optimisation

is carried out using Powell’s method.

To construct the COLD Hamiltonian, the only additional step is to include the LCD

pulse which we will restrict to single-spin terms as in Eq. (6.17):

HCOLD(β,h, λ) = H0(h, λ) + fNk
opt(β, λ)

∑
j

σzj + λ̇α(β,h, λ)
∑
j

σyj , (6.20)

where again fNk
opt =

∑Nk
k βk(λ) represents the full control pulse made up ofNk functions.

As well as the bare pulse, however, in this case we will also implement the CRAB
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algorithm which was first introduced in Sec. 3.3.1 and compare it to the naive approach.

The COLD algorithm with a CRAB-type pulse is thus referred to as COLD-CRAB. In

our case, the inclusion of CRAB simply necessitates adding a randomised component

to the naive basis functions βk(λ). Namely, the pulse fNk
opt is replaced by fNk

CRAB where

the principal frequencies k are modified as k → k(1+rk), with rk drawn from a uniform

random distribution rk ∈ [−0.5, 0.5] such that:

fNk
CRAB =

Nk∑
k

ck sin(2πk(1 + rk)λ). (6.21)

Since each optimisation instance for the CRAB algorithm will implement a slightly

different pulse for the same number of control parameters owing to the randomised

component, it is liable to lead to cost functions that have both better and worse minima

than those of the naive pulse, meaning that the optimisation needs to be carried out

many times in order to be sure of exploring as much of the solution space as possible.

This added complexity is, as already discussed in Sec. 3.3.1, what generally makes

CRAB a better approach in terms of results obtained and a more difficult one due to

the computational overhead required for the optimisation.

In Fig. 6.3(a) we plot the results (note that we now plot infidelity rather than

fidelity) for the FO LCD, BPO and COLD for N = 5 spins, observing that unlike

in the two spin case, the LCD approach for this set of operators no longer shows a

significant speed up, with final state fidelities remaining low even at long times. In

fact, for all plotted times, it shows barely a 1% improvement in fidelity over the bare

Hamiltonian, which is not plotted as it overlaps with the LCD line. The BPO approach,

on the other hand, appears to perform better at longer times with a sharp increase in

fidelity around what is likely a natural timescale for the system, where it dips below

the results produced by COLD. This is likely the phenomenon of a ‘magic time’, as

identified in [118, 119]. The COLD approach, as before, performs really well at short

driving times, where it is orders of magnitude better than either LCD or BPO. At

longer times, this advantage wanes whether due to the optimisation process as multiple

minima emerge in the cost function landscape or due to the fact that the local non-
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adiabatic effects are no longer the main source of losses.

Fig. 6.3(b) shows the results when using CRAB as well as COLD-CRAB in the

same setting, with both performing far better at longer times than their naive BPO

and COLD counterparts in plot (a) respectively, but remaining at similar levels of per-

formance at short times, likely due to something more fundamental like the geometric

speed limit [111]. This is definitely an argument for using something more sophisti-

cated like COLD-CRAB as a general rule, as long as the computational resources are

available for many and/or parallel optimisation instances.

While in Fig. 6.3 we only explore one optimisable parameter Nk = 1 and a system

size of N = 5 spins, the resulting advantage of COLD over bare optimisation scales

with system size and we find that, at least in the case of the naive pulse, increasing the

number of parameters does not seem to make too much of a difference. These results

and more discussion can be found in Appendix D.

6.2.1 Restricting the driving amplitudes

While it is all well and good to talk about practical protocols implementing only local

LCD operators with control drives that can be accessed by real experiments, one thing

that we have so far failed to mention and which is not hard to observe from the form of

the CD drive in Eq. (2.42), is that the amount of power required for the counterdiabatic

pulse at short times scales with the speed of the changing Hamiltonian due to the λ̇

coefficient present in the counterdiabatic term. This means that while both LCD and

COLD may lead to really high final state fidelities at very short driving times, they

might also do this at the cost of impossibly high power requirements for the drives that

implement the counterdiabatic component in either approach. An extensive discussion

of this phenomenon and its consequences can be found in [120–122].

We find, (details in Fig. D.2 in Appendix D), that this is indeed what happens in the

Ising chain case: as the total time of the evolution is reduced, the maximum amplitude

reached by the LCD pulse increases, leading to two orders of magnitude in difference

between the power requirements at τ = 10−3J−1
0 and τ = 10−1J−1

0 . As one of the

goals of COLD as a method is to be practically implementable, this result is inherently
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Figure 6.4: Optimisation of the constrained annealing protocol for the Ising model
for N = 5 spins with a maximum amplitude limit on each term in the Hamiltonian
of Eq. (6.15) of X0 = 10J0. (a) shows a comparison between BPO (blue diamonds).
In (b) the comparison is between CRAB (green diamonds) and COLD-CRAB (purple
circles). The plotted best results are obtained from 200 optimisations for each method.
Reprinted with permission from [40]. Copyright 2023, American Physical Society.

counterproductive, although it may still provide some insights into the diabatic effects

experienced by a system.

In order to solve this issue, we can include penalty terms in the cost function used to

optimise the pulses for all of the different approaches: BPO, COLD, CRAB and COLD-

CRAB. These penalty terms behave as constraints on the behaviour of the optimised

pulse, and they may also include constraints on the LCD pulse that is included in

COLD. If we take our original fidelity cost function from Eq. (3.15), we can modify it

by including terms that are conditioned on the maximum amplitude of a given pulse:

Cconst
F (h,β, λ) = 1− F (h,β, λ) +

∑
m

Λm(h,β, λ), (6.22)

where Λm(h,β, λ) = 0 if the mth constraint is satisfied and Λm(h,β, λ) ≫ min(1 −

F (h,β, λ)) otherwise. We can implement such constraints for all of the driving am-

plitudes for all of the coefficients of each Hamiltonian, e.g. α, fNk
opt and fNk

CRAB. In

Fig. 6.4, this is done for the case where any of the drives exceeds the maximum am-

plitude of any of the bare Hamiltonian H0 coefficients, which in our case if when

X(λ = 1) = X0 = 10J0. We find that, while the resulting fidelities are greatly reduced

in the BPO and COLD cases, the COLD approach outperforms the plain optimal con-
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trol method. Far better results are obtained using CRAB and COLD-CRAB, which

require far more computational resources but, as expected, allow a lot more flexibility

within the constraints to obtain good final state fidelities.

The results presented here are supplemented further in Ch. 7, where we investigate

how to use the ideas from Ch. 5 in order to implement CD-based cost functions to

optimise COLD and BPO for the Ising spin chain. Additional plots for different system

sizes and information on the variances between result outcomes in different optimisation

instances can be found in Appendix D.

6.3 Transport in a synthetic lattice

Let us turn our sights to a completely different type of system for a moment and explore

how COLD might perform. The efficient transfer of states between opposite ends of

a lattice is an important protocol that could have future applications in the settings

of quantum computation and simulation due to its promise of efficient transport of

information [123]. This objective is often tackled in the setting of ultracold atoms in

optical lattices. While the problem can be tuned to be a single-particle system and

the analytical solutions of the corresponding instantaneous Schrödinger equation are

known [124,125], the efficient evolution for state transfer is not straight-forward due to

the states being largely delocalised across the lattice throughout the transfer.

In implementing CD, this delocalisation of states implies the requirement for the

exact AGP operator to be highly delocalised too, which presents a practical difficulty.

While such terms can be generated via the interactions of the atoms with cavity modes

[126,127] or from dipolar interactions [128,129], the most tractable option remains that

of approximate methods like LCD [119,130].

Recently, LCD was successfully applied to improve an adiabatic rapid passage

(ARP) protocol for population transfer across a synthetic lattice [11]. In this reali-

sation, population transfer was achieved in a synthetic tight-binding lattice of laser

coupled atomic momentum states. We will consider the same problem as in [11] but

with the improvement that can be gained by COLD.
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The system is described by the Hamiltonian on N lattice sites

H0(h, λ) = −
N∑
n

Jn(λ)(c
†
ncn+1 +H.c.) +

∑
n

Vn(λ)c
†
ncn, (6.23)

where h = {Jn(λ), Vn(λ)}n=1,...,N , Jn(λ) is the λ-dependent tunnelling that describes

the nearest-neighbour coupling, Vn(λ) is the on-site energy offset with respect to neigh-

bouring sites and c†n (cn) is the creation (annihilation) operator on a given lattice site

n. In the ARP protocol, the population gets moved from one end of the lattice to the

other by linearly ramping the lattice from a positive tilt to a negative tilt via

Jn(λ) = J0(0.1 + λ)

Vn(λ) = nV0(1− 2λ),
(6.24)

where V0 = 4J0 is the initial site energy slope, J0 is the characteristic tunnelling scale

of the lattice and λ(t) = t
τ as previously.

In [11], the first order LCD is constructed by decomposing the tunneling into two

λ-dependent components:

Jn(λ)→ Jn,CD(h, λ)e
−iϕn,CD(h,λ), (6.25)

where

Jn,CD(h, λ) =
√
Jn(λ)2 + (αn(h, λ)/τ)2,

ϕn,CD(h, λ) = arctan

(
− Jn(λ)τ

αn(h, λ)

)
,

(6.26)

and the αn(λ) terms correspond to the LCD coefficients. They can be found by solving

a set of linear equations

− 3(JnJn+1)αn+1 + (J2
n−1 + 4J2

n + J2
n+1)αn

− 3(JnJn−1)αn−1 + (Vn+1 − Vn)2αn

= −∂λJn(Vn+1 − Vn).

(6.27)

In order to implement COLD we once again have to include a control component
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Figure 6.5: Optimisation of state transfer in a synthetic lattice. In (a) we compare
the infidelities obtained via the bare ARP protocol (pink dashed line) and FO LCD
implemented in [11] (purple dash-dot line) to BPO (blue diamonds) and COLD (red
circles). (c) Maximum amplitude of the tunneling term at each driving time for LCD
(green dash-dot line) as given by Eq. (6.25) as well as COLD (red triangles) which
includes additional control parameters (Eq. (6.29)) and BPO (blue triangles) which
omits the modifications due to CD but retains the control terms. In both (a) and (c)
we simulate N = 7 lattice sites and use Nk = 1 parameter for optimisation of BPO and
COLD. (b) Scaling of fidelities with increasing number of lattice sites (where Nk = 1)
for both COLD (red circles) and BPO (blue diamonds). (d) does the same for the
number of parameters while keeping N = 7. Note that both (b) and (d) are simulated
for driving time τ = 0.5J−1 and the best fidelities are obtained across 500 optimisations.
Reprinted with permission from [40]. Copyright 2023, American Physical Society.

into the Hamiltonian:

Hβ(h,β, λ) = H0(h, λ) +
N∑
n

fNk
opt(β, λ)(c

†
ncn+1 +H.c.), (6.28)

where the function fNk
opt =

∑Nk
k βk(λ) is the same as in Eq. (6.19). This control pulse
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can be viewed as modifying the tunneling terms:

Jn(λ)→ Jopt
n (β, λ) = Jn(λ) + fNk

opt(β, λ),

⇒ Jn,CD(β,h, λ) =

√
Jopt
n (β,h, λ)2 + (αn(h,β, λ)/τ)2

⇒ ϕn,CD(β,h, λ) = arctan

(
−J

opt
n (β, λ)τ

αn(β,h, λ)

)
,

(6.29)

and the control functions are optimised using Powell’s method as before by minimizing

with respect to the fidelity of the final state, where the population has been fully

transferred to the opposite lattice site.

Now that all of our ducks are in a row, we first consider a system size of N = 7

sites which was successfully experimentally probed in [11], where final state fidelities

of 0.75 were achieved for τ = 1ms with a final tunnelling strength of J/ℏ = 1/2πkHz

(equivalent to τ ∼ 1J−1
0 in our units). We initially confirm the breakdown of ARP in

this setting for fast times, and the success of the LCD protocol at short times, as shown

in Fig. 6.5 (a) and found in [11]. Implementing BPO on its own manages to enhance

the achievable fidelities at intermediate times of τ > 0.03J−1. However, eventually,

as observed in all scenarios in this work, BPO becomes stuck in the initial state at

fast evolution times. Implementing the COLD protocol achieves an order of magnitude

improvement in the fidelity over LCD. This is also plotted in Fig. 6.5(a).

It may be that COLD achieves this advantage by pumping power into the tunnelling

term, as discussed in the Ising chain example, but we can see in Fig. 6.5(c) that the

maximum amplitude of the tunnelling term tracks that of LCD. A key issue for exper-

iments is the maximum amplitude achievable by a driving term and with this result

we can stipulate that COLD is likely to be feasible in the same regimes as LCD in this

synthetic lattice system, but with far higher resulting fidelities. There is single outlier

at intermediate times as indicated by the single point peaking in maximum amplitude

in Fig. 6.5(c), this is the exception to the rule, where the optimisation has found a

marginally higher fidelity (see the corresponding point in Fig. 6.5(a)) by pumping in

more power. The maximal amplitude plot may also explain the discontinuous jump in

infidelities for the BPO case that happens at very short times: there is also a discon-
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tinuity in the maximal amplitude reached by the drive for the same points. This can

hint either at some controllability limit, wherein a minimal amount of time is required

for the BPO Hamiltonian to shift the population, or more simply this is a consequence

of a local optimiser not being able to find a global minimum which may lead to a higher

fidelity and a higher driving amplitude. As the total driving time increases, the cost

function landscape changes and likely reveals more optimal minima to the optimiser.

Furthermore, we explore the infidelities with increasing system size for both BPO

and COLD in Fig. 6.5(b). While both protocols show a decreasing fidelity with increas-

ing system size as expected, COLD does not suffer from getting stuck in the initial state,

which is what happens in the BPO case as infidelities go to unity for larger systems in

Fig. 6.5(b). This is the same mechanism as for the short driving times in Fig. 6.5(a).

We also find, as plotted in Fig. 6.5(d), that increasing the number of optimisable pa-

rameters Nk in the control pulse does not contribute to an improvement in the results

either for BPO or COLD. This means that, at least in this very simple control setting,

there is no reason to expect that BPO will outperform COLD by simply adding more

complexity to the control pulse.

It is important to acknowledge once again that it may be possible to achieve better

results for both the control Hamiltonian and COLD with the use of more sophisticated

optimal control methods like CRAB/COLD-CRAB or a global optimiser instead of

Powell’s method. Any of these methods might prove to be better, but they are also

far more computationally intensive and the results presented already show significant

imrpovements over LCD or the bare Hamiltonian. In the case where such a protocol

is to be implemented in practice, it would be advantageous to explore more refined

control methods than those presented here.

6.4 Preparing GHZ states in a system of frustrated spins

Multipartite entanglement is a powerful resource for quantum computing and more

broadly in quantum technologies as a whole, offering unique capabilities for information

processing [131], secure communication [132], high-precision measurements [133], and

understanding the foundations of quantum mechanics [134]. An example of such highly
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entangled states is the GHZ (Greenberger–Horne–Zeilinger) state [135] on N > 1 spins:

|GHZ⟩ = 1√
2
(|0⟩⊗N + |1⟩⊗N ), (6.30)

here written in the 0, 1 qubit basis.

It is possible to prepare such states in a system of frustrated spins (see Fig. 6.6(a))

for odd N > 1 via an annealing protocol. The Hamiltonian describing such a system is

H0(h, λ) = J(λ)
(N−1∑

j

σzjσ
z
j+1 +

N−2∑
j

σzjσ
z
j+2

)
+ h(λ)

( N∑
j

(σzj + σxj )
)
. (6.31)

where h = {J(λ), h(λ)} with λ = t
τ , J(λ) = −J0 and

h(λ) = −h0
(
1− sin2

(π
2
sin2

(π
2
λ
)))

. (6.32)

The parameters used for the results in this section are J0 = 1 and h0 = 10J0, meaning

the spins start close to the
∣∣↓⊗N〉 state.

In this case, we will apply both FO LCD and SO LCD ansätze. The former is

the same one as used previously for the Ising chain case, Eq. (6.17), while the latter

will consist of additional operators between next-nearest-neighbour spins to reflect the

geometry of the bare Hamiltonian:

A(2)
λ (h, λ) = γ(h, λ)

(N−1∑
j

σxj σ
y
j+1 +

N−2∑
j

σyj σ
x
j+2

)

+ ζ(h, λ)
(N−1∑

j

σzjσ
y
j+1 +

N−2∑
j

σyj σ
z
j+2

)
.

(6.33)

As H0 is simply the Ising Hamiltonian with added couplings between spins j and j+2,

its LCD coefficients can be found by using the coupled equations in Appendix C and

setting the unused operator coefficients to 0.

What remains is to construct the optimal control pulse, which in this case will be
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done using the GRAPE method from Sec. 3.3.2. The control Hamiltonian is

Hβ(β,h, λ) = H0(h, λ) + fNk
GRAPE(β, λ)

N∑
j

σzj , (6.34)

where the pulse fNk
GRAPE is comprised of Nk time slices ∆λ = λk+1 − λk, such that

Nk×∆λ = 1. During each slice λk, a piecewise constant control amplitude βk(λk) = ck,

is applied to the control system, with ck denoting the optimisable parameter which rep-

resents the amplitude of the pulse in the interval [λk, λk+1). Thus, the pulse comprises

of Nk optimisable parameters for Nk time slices. In order to enforce the constraints

that the control pulse vanish at the beginning and end of the protocol and to make

the pulse more smooth, we also apply a shaping function, which acts during each time

interval [λk, λk+1) as

fshape(βk, λk) = ck tanh(κθ(λk)) tanh(−κθ(λk − τ)), (6.35)

with θ(λ) = sin π
2λ and κ = 30 an offset parameter. As discussed in Sec. 4.2, we use

spline interpolation to calculate the derivatives of the control drive when they are re-

quired to obtain the LCD drives. The resulting function requires more parameters than

the chopped basis we chose to use in previous examples, but it also allows for more

flexibility in the final shape of the drive. Furthermore, due the increased number of

parameters and search space, instead of Powell optimisation as in previous examples

we choose to instead implement dual annealing, first presented in detail in Sec. 3.1.3.3.

Dual annealing is a global optimiser and while computationally more costly, it is gen-

erally far better in the case of a complex parameter space with multiple minima, which

is what may be expected in this case (see Fig. 7.5 later in the thesis). In this case,

instead of referring to the optimised control Hamiltonian of Eq. (6.34) as BPO, we will

instead dub it ‘bare dual-annealing’ or BDA.

As well as implementing the GRAPE pulse for all spins as in Eq. (6.34), as this

is a more interesting and complex system than those encountered previously, we will

include a separate protocol where three separate control pulses are used: one for each
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corner spin (see Fig. 6.6(a)) and one for all the spins in-between. The reason for this

choice of pulses is because it is often easier to independently address the edges of a

lattice in practical implementations of such protocols, rather than attempting to have

local control of all of the spins individually. We will include a ‘-C’ suffix to each method

in order to differentiate the corner approach from that of a global control pulse. The

resulting control Hamiltonian will thus have 3 × Nk optimisable parameters, which

is a very large search space, making the optimisation process very computationally

expensive when compared to all of the previous examples discussed in this Chapter.

In Fig. 6.6(c) we plot the resulting final state fidelities at different total driving

times τ for a 5 spin frustrated system. We implement BDA, FO and SO COLD as well

as their corner-optimised versions while optimising the pulse parameters for final state

fidelity with respect to the GHZ state of Eq. (6.30). We observe that FO COLD is not

particularly effective at short driving times and does not move the system out of its

initial state (see the density matrix plots in (b)), regardless of whether or not separate

control is applied to the corner spins. This is very likely due to the fact that the σy

terms making up FO LCD are only a small contribution to the full counterdiabatic drive

and thus we need to look to higher-order ansätze to see improvements. Notably, the

bare control protocol BDA does not fare any better, refusing to budge from the initial

state at very small τ . SO COLD, on the other hand, shows a five-fold improvement over

the first order when a global optimisable drive is applied and up to a further two more

orders of magnitude improvement when the corner spins are driven separately at short

times (τ = 0.001J−1
0 ). We run optimisations for larger systems at time τ = 0.1J−1

and find that this advantage is retained even with increasing system size, as plotted in

Fig. 6.6(d). This is a large improvement over a recent result presented in [136], where

optimal control was used to directly determine SO LCD coefficients for preparing the

GHZ state on an Ising chain rather than creating a control Hamiltonian. At 10 spins

the final state fidelity for τ = 1J−1
0 obtained in their paper was 0.18, while we reach a

fidelity of 0.72 for 15 spins when using corner optimisation at τ = 0.1J−1
0 .
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Figure 6.6: GHZ state preparation in systems of frustrated spins. Spins are arranged
in triangular formations as depicted in (a) for (i) 3, (ii) 5 and (iii)7 spins, with spins on
the vertices and edges representing couplings. In the case of corner optimisation, three
separate optimisable drives are applied: one for the yellow corner spin, one for the red
corner spin and a third drive for all of the blue spins in-between. (b) Density matrix
plots of the final state of a 3 spin triangle after an evolution time τ = 0.1J−1

0 when
optimised using (i) BDA-C, (ii) FO COLD-C and (iii) SO COLD-C. (c) Final fidelities
of the GHZ state on 5 spins for optimised global drive (red crosses) and locally driven
corner spins (blue rings). (d) Final fidelities at driving time τ = 0.1J−1

0 for different
systems sizes N . In the global case we use Nk = 10 and in the corner case the total
parameters are 3×Nk = 30. The plots are for best results of 5 optimisations for each
data point and the dual-annealing search space was bounded in the range [−50, 50]
for all parameters. Reprinted with permission from [40]. Copyright 2023, American
Physical Society.

6.4.1 Tripartite GHZ entanglement

While throughout this chapter we have focused on using final state fidelity as a cost

function for the optimisation, in the case of GHZ state preparation, the goal is often the

maximal entanglement of such states. Therefore, we can imagine using a cost function

which maximises some entanglement metric like that in Eq. (3.17), rather than the final

state fidelity. This can be done in cases where several maximally entangled states are
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targeted, or where a single target state maximises entanglement. In the latter case, the

advantage may lie in the fact that entanglement as a metric might lead to a smoother

and more convex cost function landscape.

The GHZ state exhibits a particular type of entanglement: when one of the subsys-

tems is measured, the rest are no longer entangled and collapse into a product state.

This is different to the other canonical type of multipartite entanglement exhibited by

the W state [137], which for 3 spins can be written as:

|W ⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩). (6.36)

While measuring the entanglement of a multipartite system is not quite as simple

as in the bipartite case, there exists a notion of entanglement for a system of three

spins: namely, the three-tangle, first introduced in Ref. [138], which is maximised when

a three spin system exhibits maximal GHZ-type entanglement and minimised for W-

type entanglement and product states. The three-tangle is a very efficient metric and

can be expressed as

T3(|ψ⟩) = 4 |d1 − 2d2 + 4d3| ,

d1 = c2000c
2
111 + c2001c

2
110 + c2010c

2
101 + c2011c

2
100,

d2 = c000c001c110c111 + c000c010c101c111 + c000c011c100c111

+ c001c010c101c110 + c001c011c100c110 + c010c011c100c101

d3 = c000c110c101c011 + c100c010c001c111,

(6.37)

where cijk represents the complex coefficient of the state |ijk⟩ of the three spin state

|ψ⟩.

Fig. 6.7(a), shows the results of the final state fidelity when optimising with CF and

optimising solely for the three tangle, using cost function

CT3(β, τ) = 1− T3(|ψf (β, τ)⟩), (6.38)

where |ψf (β, τ)⟩ is the final state obtained throughout the evolution during time τ and
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Figure 6.7: Plots of T3 (Eq. (6.37)) and fidelity (1− F ) with respect to the GHZ state
of the final state prepared after optimising a GRAPE pulse with Nk = 6 parameters
for each value of τ . In (a) we plot final state fidelity when optimisation is performed
using CF and CT3 and in (b) we plot the three-tangle from Eq. (6.38) for the same cost
functions. In both cases, the result is from a single optimisation for each data point and
the dual-annealing search space bounds are [−50, 50] for all optimisable parameters.

with optimal controls β. In Fig. 6.7(b) we investigate the values of T3 obtained when

using the same two cost functions. Both plots show results in a three spin system like

that of Fig. 6.6(a)(i) with only a global control pulse and dual-annealing optimisation.

We find that the value of the three tangle and hence the amount of entanglement

in the system begins to increase prior to any noticeable improvement in fidelity in

the case of BDA and FO COLD, while, as expected, given the much higher fidelities

obtained when using SO COLD, the entanglement is maximised for even for very small

τ . This is an interesting result, as it indicates that SO counterdiabatic operators are

required to be able to speed up entanglement generation. Even when FO terms are

applied, it takes long evolution times to generate entanglement. We find that even

when maximising for entanglement, the results for final T3 values are not very different

to those obtained when optimising for final state fidelity. This is again an indication

that neither FO terms nor the plain control Hamiltonian of Eq. (6.34) are enough

to generate entanglement quickly and that SO terms are necessary for this purpose.

The much lower fidelities obtained with CT3 are unsurprising, as the three-tangle is a

measure of GHZ-type entanglement, which is maximised for several states including

the orthogonal state to that presented in Eq. (6.30). This means that maximising for

entanglement in this case will not always lead to final states that have high fidelity with
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respect to the canonical GHZ state presented at the start of this section. An interesting

future line of work may be to investigate how LCD or COLD impact the generation of

different types of entanglement like W-type entanglement.

6.4.1.0.1 Summary This section contains quite a lot of material, so a brief sum-

mary may be in order to place it firmly in the context of what follows in the next

chapter. So far we have presented several numerical implementations of the COLD

approach for different physical systems. In each case, we optimised the control pulse

using either the fidelity cost function of Eq. (3.15) with respect to the target ground

state of the final Hamiltonian, or a measure of the final state entanglement. We showed

that COLD outperforms both the LCD method, for the same set of ansatz operators in

the approximation of the counterdiabatic drive, and the control pulse on its own. The

next section will revisit several of the systems that were presented here, with the aim

of foregoing optimisation with respect to fidelity and instead optimising for properties

of the approximate CD components instead, as was discussed in Ch. 5.
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Higher order AGP as a cost

function

‘Fast’ was a word particularly

associated with tortoises because

they were not it.

Terry Pratchett, Pyramids

(1989)

In Ch. 5 we discussed the idea of using the AGP operator and its approximations

in order to construct cost functions for the optimisation of Hamiltonian paths in pa-

rameter space. There are several reasons why one might expect this to be a good idea:

for example, a path in the Hamiltonian parameter space which minimises the AGP

norm should, in principle, also minimise the non-adiabatic effects experienced by the

system when it is driven along that path. Furthermore, such cost functions should be

very efficient to compute once they are written in the correct functional form, giving

them an advantage over the fidelity cost function that we used in most examples of

Ch.6. Computing the final state fidelity is an approach which suffers from increasing

complexity and inefficiency with growing system sizes due to requiring access to the

system dynamics along the entire path of the evolution.

In this chapter we will motivate the idea of AGP-based cost functions with numer-

ical results, investigating two types of cost functions presented in Ch. 5: minimisation
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of absolute integrals of the LCD coefficients and minimisation of their maximal am-

plitudes. We will do this for three different example systems which we covered in the

previous chapter: two-spin annealing in, the Ising spin chain, and finally the prepa-

ration of maximally entangled GHZ states in systems of frustrated spins. The last

example will demonstrate a situation where this new approach might not be optimal

and we will discuss the reasons behind this, with the goal of understanding regimes in

which one might want to implement the new method.

7.1 Return to two-spin annealing

In Sec. 6.1 we investigated the COLD protocol in the case of a two-spin annealing

protocol described by the Hamiltonian from Eq. (6.1), where the system starts close to

the state |↑↑⟩ and is driven towards a superposition of all the symmetric states. We

will return to this simple example in order to illustrate how the integral and maximum

amplitude cost functions from Sec. 5, given by Eq. (5.1) and Eq. (5.2) respectively,

behave when used to optimise the Hamiltonian path in parameter space for COLD.

In Ch. 6 we presented the results of optimisation using properties of the final system

state as metrics for success. What we wish to demonstrate here is the use of different

cost functions in the optimisation of the parameters ck from Eq. (6.12). As discussed

in Ch. 5, once we have the AGP or LCD operators expressed as functions of the control

Hamiltonian, they can be used to construct cost functions that can be evaluated very

efficiently, regardless of the scale or complexity of the driven system. This is important,

because while the fidelity cost function CF from Eq. (3.15) that we used in the previous

chapter is very effective – given that it evaluates exactly how close we are to the true

goal of the optimisation – its efficiency scales very poorly with increasing system size.

After all, having access to the final state fidelity requires a calculation of the complete

system dynamics, as well as full knowledge of the target state ahead of time.

In this example, we will use the same control Hamiltonian as the two-spin example

from the previous chapter given by Eq. (6.12) as well as the same FO and SO oper-

ator ansätze for the LCD operators (Eq. (6.3) and Eq. (6.8) respectively). We found

previously that the coefficient α(β,h, λ) which drives the FO LCD terms and the co-
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Figure 7.1: Two-spin annealing plots of fidelity versus driving time when optimising
using different cost functions. In (a)-(b), we show the results for FO LCD (orange
circles) and FO COLD (pink circles) from Fig. 6.1 for comparison. We do the same
in (c) for BPO (red circles). Then, in (a) we plot the resulting final state fidelities at
different driving times τ obtained when applying FO COLD to control Hamiltonians
from Eq. (6.12) with parameters optimised using the maximum amplitude cost function
CA. The results are shown when optimising for γ coefficients (red squares, CA,γ), ζ
coefficients (green squares, CA,ζ) and their sum (blue squares, CA,(γ+ζ)). The same
is done in (b) for the integral cost function CI, where we plot results in the case of
optimising γ coefficients (red diamonds, CI,γ), ζ coefficients (green diamonds, CI,ζ) and
their sum (blue diamonds, CI,(γ+ζ)). In (c), we plot the resulting final state fidelities
when BPO is applied with a control pulse optimised using CI,(α+γ+ζ) (light blue crosses)
and CA,(α+γ+ζ) (purple pluses). In all cases, we use Nk = 1. The optimisation is done
10 times for each data point with the best final fidelity plotted. We use the Powell
optimisation method from Sec. 3.1.3.2 for the minimisation.

efficients γ(β,h, λ) and ζ(β,h, λ) driving the SO LCD terms can be found by solving

the coupled set of equations given in Eq. (6.9). We noted that these three coefficients

and the operators they drive are enough to describe the exact CD pulse for any given

parameters (β,h, λ) in the case of two spins.

We know that applying the exact CD pulse made up of all of the FO and SO LCD

terms returns unit fidelity regardless of driving time or any optimisable parameters, as

shown in Fig. 6.1. We also found, plotted in the same Figure, that applying FO LCD

to the problem without any control pulse performed worse than applying COLD with

FO terms, where a control pulse is included and the control parameters are optimised
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for final state fidelity. Here we will also aim to optimise the control pulse as before,

but in this case we will use a series of cost functions constructed in a similar manner to

Eq. (5.1) and Eq. (5.2). First, we define the cost functions which use the magnitudes

of the coefficient integrals as:

CI,γ(τ,β) =

∫ τ

0
dt′|γ(λ(t′),h,β)|,

CI,ζ(τ,β) =

∫ τ

0
dt′|ζ(λ(t′),h,β)|,

CI,(γ+ζ))(τ,β) =

∫ τ

0
dt′
(
|γ(λ(t′),h,β)|+ |ζ(λ(t′),h,β)|

)
,

CI,(α+γ+ζ))(τ,β) =

∫ τ

0
dt′
(
|α(λ(t′),h,β)|+ |γ(λ(t′),h,β)|+ |ζ(λ(t′),h,β)|

)
,

(7.1)

where the subscript I denotes an integral-based cost function and the letters γ and ζ

simply refer to which pulse coefficient is being minimised for the optimisation process.

We then do the same for the maximum amplitude of the pulses, using the subscript A

to denote ‘amplitude’:

CA,γ(τ,β) = max
t′∈[0,τ ]

|γ(λ(t′),h,β)|,

CA,ζ(τ,β) = max
t′∈[0,τ ]

|ζ(λ(t′),h,β)|,

CA,(γ+ζ)(τ,β) = max
t′∈[0,τ ]

(
|γ(λ(t′),h,β)|+ |ζ(λ(t′),h,β)|

)
,

CA,(α+γ+ζ)(τ,β) = max
t′∈[0,τ ]

(
|α(λ(t′),h,β)|+ |γ(λ(t′),h,β)|+ |ζ(λ(t′),h,β)|

)
,

(7.2)

which are used to optimise the parameters β by minimising the maximum amplitude of

the given LCD coefficients. We recall that the minimisation of these quantities is not

necessarily directly related to the maximisation of final state fidelity, as in each case the

system still needs to take some path in finite time from an initial to a final state while

experiencing some amount of non-adiabatic losses, unless exact CD is implemented.

What we expect to change, however, other than the path in parameter space due to

varying β, is the structure of the non-adiabatic effects, as mandated by the constraints

imposed by each of the cost functions. For example, minimising the total power of

two-body non-adiabatic terms as in CI,(γ+ζ), might inadvertently maximise the effects
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of the local non-adiabatic terms α or even more non-local operators. This is because

the cost function captures nothing about the behaviour of such terms.

The results of optimising for the SO LCD coefficients γ and ζ are plotted in

Fig. 7.1(a) and (b). In (a) we show the results of using CA,γ , CA,ζ and CA,(γ+ζ) as

cost functions for optimising a FO COLD pulse, with FO LCD and FO COLD (op-

timised using fidelity) from Fig. 6.1 plotted for comparison. We do the same for the

respective integral cost functions in (b). The results indicate that while optimising

for final state fidelity, not unexpectedly, shows better final state fidelities when COLD

is applied, the amplitude and integral cost functions still generally perform better in

producing a state close to the target ground state than a naive application of FO LCD

with no optimal control. This is a positive result, as it implies that there is a correla-

tion between properties of the LCD coefficients and the final state fidelity in designing

optimal control pulses. This is exemplified further in plot (c) of the figure, where we

optimise the pulse for a case when no LCD is applied, using a minimisation of the exact

CD pulse comprised of all three LCD coefficients. At short evolution times, the opti-

misation performs as well as the fidelity cost function, while at longer times it begins

to lag a little, with a few outliers appearing potentially due to local minima in the

cost function landscape. This is to be expected, as minimisation of the exact CD pulse

should be equivalent to the minimisation of non-adiabatic effects experienced by the

system, and at very short driving times these will probably dominate the loss of final

state fidelity, while at longer times there may be several paths in parameter space that

are similarly effective.

In order to better understand the relationship between the LCD coefficients and the

value of the final state fidelity with respect to the target, in Fig. 7.2(a-c) we plot the

cost function landscapes for fidelity (CF) at τ = 0.1h−1
0 for two parameters c1 and c2 in

the range [−10, 10]. In (a) we plot the value of CF when FO COLD is applied, which

corresponds to the CF landscape for the orange circle plots in Fig. 7.1(a-b). Then, in

(b) we plot the values of CF when COLD with only the ζ terms σy1σ
z
2 +σ

z
1σ

y
2 is applied.

Finally, in (c), we plot CF for COLD with both of the SO terms γ and ζ applied. We

then do the same for CI,α in (d), CI,ζ in (e) and CI,(γ+ζ) in (f). This is also done for
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Figure 7.2: Contour plots of fidelity and AGP cost function landscapes for two pa-
rameters c1, c2 ∈ [−10, 10] (first introduced in Eq. (6.12)) for two spin annealing, as
discussed in the text. All plots are for total evolution time τ = 0.1h−1

0 . (a-c) show
plots of fidelity cost function CF values when (a) FO COLD is applied (α terms), (b)
SO COLD ζ terms are applied and (c) both SO COLD terms γ and ζ are applied as
discussed in the text. (d-f) show plots of the integral cost function CI values for (d)
the coefficient α, CI,α (e) the coefficient ζ, CI,ζ and (f) sum of the coefficients γ and ζ,
CI,γ+ζ . (g-i) do the same for CA, where (g) shows a plot of CA,α, (h) shows CA,ζ and
(i) is a plot of CA,γ+ζ

the respective maximum amplitude cost functions. The α coefficients for (a), (d) and

(g) are obtained by solving the coupled equations of Eq. (6.9) with γ and ζ set to 0,

while for the plots in (b),(e) and (h) we set α to 0, and find that the γ pulse turns out

to be 0 for all values of β and λ, hence retaining only values of ζ. In (c),(f) and (i) we

solve for the full CD pulse with all coefficients but only plot the SO components. What

we find is that while there appears to be some relationship between the maximum and
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minimum of the AGP cost functions and the final state fidelities, it is not clear cut.

Certainly, where the final state fidelity F (τ) is maximised in (a) (i.e. when the plot

shows a minimum value as CF = 1− F ), the SO LCD plots (e-f) and (h-i) have small

values. However, it appears as though the SO components are also small for values

of c1 and c2 which lead to very bad final state fidelities in (a). It is also clear that

maximising fidelity for FO COLD is not necessarily equivalent to maximising the FO

LCD coefficient. What these plots are intended to illustrate is that while there appears

to be some relationship between the various approximations of the AGP and the final

state fidelity of the system when COLD of various orders is applied, this relationship

need not be clear cut.

We note that there is no contour plot for CF in the case of BPO nor plots of the

integral or amplitude functions for the exact CD pulse comprised of all of the LCD

coefficients and that is because the optimal parameter values of c1 and c2 were very

large (of the order of 1 × 103h−1
0 ) and varied in the results of Fig. 7.1(c), making it

difficult to capture the relevant cost function landscapes visually. The fact that the

COLD optimal control pulses require quite low amplitudes even at short driving times

could, in fact, also be considered an advantage of the method.

While in this simple example it may be more favourable to implement the fidelity

cost function CF given that for two spins it is reasonably efficient to compute the state

evolution, in more complex systems this is no longer the case. Iterative optimisation

procedures like Powell’s method (Sec. 3.1.3.2), which we have been using, may require

hundreds or thousands of cost function evaluations for a single optimisation procedure.

The fact that we get results which are comparable to CF while using a set of cost

functions which become exponentially more efficient to implement as the system size

grows is something that can become very useful in such more complex cases.

7.2 Return to the Ising spin chain

As in the previous section, here we revisit a system that was already explored in the

previous chapter: the Ising spin chain of Sec. 6.2. As in the two-spin case, we are

interested in retaining the same parameters as those explored for COLD with the
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fidelity cost function, changing only the optimisation landscape via the integral and

amplitude cost functions outlined in Eq. (7.1) and Eq. (7.2) respectively. Thus, we use

the same bare Hamiltonian and parameters (Eq. (6.15)) along with the Powell optimal

control pulse from Eq. (6.19), parameterised by the control functions βk ∈ β and by

constant control parameters ck. The FO LCD ansatz is still the same as in Eq. (6.17),

which is a set of local σy operators on each spin and the SO operators are taken to be

all of the nearest neighbour, two-body Pauli terms on N spins, expressed as

A(2)
λ (β,h, λ) =

N−1∑
j

γ(β,h, λ)(σxj σ
y
j+1 + σyj σ

x
j+1)

+
N−1∑
j

ζ(β,h, λ)(σzjσ
y
j+1 + σyj σ

z
j+1),

(7.3)

where γ and ζ are the SO LCD coefficients as in the previous example. In this section

we use the same integral and amplitude cost functions as in Eq. (7.1) and Eq. (7.2),

with the coefficients α, γ and ζ as presented above. These can be solved by using the

results presented in Appendix C, as discussed in Sec. 6.2.

The main difference between the two spin example and this one, in particular when

considering using AGP constructed cost functions, is that for increasing spin chain

lengths we can no longer expect to have access to the exact CD pulse, as the non-

adiabatic effects may become delocalised quickly throughout the chain. Even if the

effects of the delocalised AGP operators are small, they are not necessarily guaranteed

to be non-zero. Thus, we are now operating in a setting where we might not have

all of the information about the non-adiabatic effects on the system and must instead

contend with LCD approximations of the exact counterdiabatic pulse explicitly.

With this in mind, the first thing we explore is whether or not we can use the

FO and SO LCD coefficients in the same vein as in Fig. 7.1(c) to optimise the BPO

pulse. We plot the results in Fig. 7.3 for the cases of N = 2 spins and N = 5 spins,

using CF, CA,(α+γ+ζ) and CI,(α+γ+ζ). We expect that in the two-spin case we will get

a similar result as in Fig. 7.1(c), given that we should be minimising the exact CD

pulse in the case of two spins when using both FO and SO in the cost function and this
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Figure 7.3: Plot of final state fidelities obtained when optimising for the fidelity cost
function CF (pink), the integral cost function for FO and SO LCD pulses CI,(α+γ+ζ)

(green) as well as the maximum amplitude cost function CA,(α+γ+ζ) (blue). We plot
results for two spins (crosses) and five spins (diamonds), optimising separately for
both. Results are plotted for Nk = 1 and different total driving times τ . Optimisation
is performed 10 times for each data point and the lowest obtained value for the cost
function is used to compute the fidelity in the case of CA and CI.

appears to be the case: at short evolution times, the results of the final state fidelity

match up regardless of which cost function is used, while at longer times CF begins to

perform better, although all cost functions show a similar pattern in final state fidelity

scaling with τ . However, in the five spin case, we do not have an explicit reason to

expect a similar behaviour unless higher order LCD does not play a big part in the

non-adiabatic effects experienced by the system. It turns out, in fact, that this is the

case: the behaviour for five spins is comparable to that of two spins: at short times the

cost functions are equally as effective, with differences appearing only at longer times.

We note further, that as well as the results plotted in Fig. 7.1, which indicate a similar

effect of the various cost functions on fidelity, we find the optimised pulse shapes to be

quite similar in each case too. This lends further credence to the fact that in the case

of the Ising spin chain Hamiltonian, the minima of all cost functions are close to each

other in parameter space.
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Figure 7.4: Final state fidelities when control parameters are optimised via integral
and amplitude cost functions of the SO LCD coefficients for the Ising spin chain with
FO COLD applied to the system. In (a) we plot the results obtained when using
the integral cost function CI,(ζ) and in (c) we do the same in the case of maximum
amplitude CA,(ζ) for Ising chains of lengths N = 2 (pink circles), N = 5 (red inverted
triangles) and N = 30 (dark red stars). We also plot results for COLD optimisation
with CF in the case of N = 5 spins from Fig. 6.3(a) for comparison (black crosses). We
investigate how the different cost functions perform for evolution time τ = 0.1J−1

0 for
different system sizes N in the case where (b) FO COLD is applied to the system while
minimising a SO component and (d) when applying both FO terms and one of the SO
terms. For example, in (d), the pink circles are the result of implementing COLD with
FO local σy terms and γ terms σxσy, σyσx while minimising the maximal amplitudes
of the ζ terms σzσy, σyσz. For system sizes above N = 10 we used ITensor [139] MPS
calculations which were converged with a truncation level of 10−14 per time step at each
site reaching a maximum bond dimension of D = 4. In all cases, a single optimisable
parameter is used (Nk = 1) and the best optimisation out of 50 (lowest cost function
value for each cost function) is used. Reprinted with permission from [40]. Copyright
2023, American Physical Society.

The other case that we can explore, then, to improve our results, is to see if we

could implement FO or partial SO COLD while minimising the other LCD term co-

efficients. This is presented in Fig. 7.4, where in (a-b) we implement COLD with FO
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LCD coefficients while minimising the integral cost function CI,(ζ) in (a) and the am-

plitude cost function CA,(ζ) in (c), both for system sizes of N = 2, 5, 30. We also plot

the results from Fig. 6.3(a) which show results when optimising COLD using the final

state fidelity cost function CF in the case of N = 5 spins for fidelity. What we find

is a consistent pattern in the behaviour of the final state fidelity when using either of

the two cost functions, with consistently stable final fidelities at shorter driving times

and, surprisingly, better final fidelities at longer driving times, at least in the N = 5

case. We might attribute this to different cost function landscapes due to the different

cost functions, which might have more or less optimal minima within reach for a local

optimiser like Powell’s method (Sec. 3.1.3.2). Regardless, what we do find is that we

can get final state fidelities consistently above 90% for a system of N = 30 spins while

using an exponentially more efficient cost function for optimisation. While we use ten-

sor network methods to compute the fidelities of chains with N = 10 spins and above

in all cases, these approaches are still orders of magnitude slower at calculating a single

iteration of the CF cost function than in the case of either the integral or amplitude cost

functions. We find that this trend is consistent, if slightly shifted depending on which

AGP-based cost function is used in plot (b) of Fig. 7.4, and that it is also consistent

when minimising one of the SO coefficients and implementing the other along with the

FO terms, at least at relatively short driving times of τ = 0.1J−1
0 .

All of these results are not conclusive proof for the advantage of using the integral

or amplitude cost functions in place of CF, especially if the LCD terms are highly local

with respect to the full system size. However, the results presented do indicate a po-

tential advantage, especially in the case of larger systems, of using knowledge about the

approximate AGP operator in an optimisation procedure of the control Hamiltonian,

assuming the wavefunction of the state is prohibitively difficult to access. In doing so,

it is possible to sacrifice some amount of effectiveness for a large gain in efficiency and,

possibly, this kind of approach could be used in cases where fidelities are simply not a

tractable option in the case of numerical optimisation. Furthermore, as discussed near

the end of Sec. 3.2, this type of optimisation may be more useful in settings where a

specific target state may not be the goal. Rather, we may instead desire a particular
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property of the state, like entanglement. On that note, we move on to the next section.

7.3 GHZ states and frustrated spins

Finally, we return to the GHZ state preparation scheme from Sec. 6.4. Thus far, both

in the two-spin case and in the Ising spin chain case we have seen some evidence for

advantage when it comes to using AGP-informed cost functions to optimise the control

parameters with respect to the final state fidelity. While we have shown that optimising

using the fidelity cost function CF generally guarantees better results, it is also far less

efficient for larger systems. Using the integral cost function CI or the amplitude cost

function CA may not be as effective, but it is far more efficient and can be used to obtain

good results for both COLD and optimal control pulses with no CD added to them.

In this case, we will explore an example of a system and control pulse combination for

which this option may not be viable, at least given the parameters we are working with.

We will set up the problem in the same way as in Sec. 6.4, with the bare Hamil-

tonian from Eq. (6.31), as well as a GRAPE control pulse as given by Eq. (6.34) and

the surrounding description. In this case, from Sec. 6.4.1 we recall that we already

attempted implementing a different cost function to CF, the aim of which was to max-

imise a measure of tripartite entanglement in the three spin case: CT3 from Eq. (6.38).

We will return to both the fidelity and the tangle as measures of success for the final

state and thus we will be looking solely at the N = 3 spin example, both as the simplest

possible example to test out new cost functions on and due to the fact that we have a

non-trivial tripartite entanglement metric like the three-tangle available.

The FO LCD terms are defined as previously to be local σy operators scaled by

the coefficient α(β,h, λ), while the SO terms are those presented in Eq. (6.33). We

will differentiate here between solving for α when only the FO terms are in the LCD

ansatz, denoting this case as α(1) and solving for all of the three coefficients α, γ and

ζ as a combined FO and SO ansatz by using the coupled set of equations presented in

Appendix C, wherein we will refer to the FO coefficient as α(2) instead.

In Fig. 7.5 we plot the cost function landscapes for CF (a-b), CT3 (c-d) and several

integral cost functions CI in (e-h) for a total driving time of τ = 0.1J−1
0 (the results
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Figure 7.5: Contour plots at τ = 0.1J−1
0 of different cost function values for GHZ state

preparation for parameters c1, c2 ∈ [−10, 10] and a GRAPE control pulse. In (a) and
(b) we plot CF in the cases where FO and SO COLD is applied respectively. Then, in
(c-d) we do the same for CT3 , with FO COLD plotted in (c) and SO COLD plotted
in (d). (e-h) are then plots of the integral cost function CI values for the same range
of parameters. In (e) we plot CI,α(1) when only FO LCD is considered, while in (f) we
plot CI,α(2) as described in the text. Then in (g) we plot CI,γ and in (h) we plot CI,ζ ,
corresponding to the SO terms. Note that each plot has its own colour bar, as the
colour encodings and the value scaling in each plot is quite different.

for the maximal amplitude cost functions can be found in Appendix E). The first thing

that one might notice when looking at the plots is that while there appears to be some
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qualitative relationship between the different cost function landscapes, it is certainly

not the case that there is a clear overlap between the minimum or maximum values of

the integral cost functions and the highest fidelities (lowest values in the contour plot,

as CF = 1−F ). This is a fact that holds true in the case of the maximal amplitude cost

functions in Appendix E too. The CF and CT3 landscapes are highly non-convex, with

multiple local minima close to each other, something that may be a consequence of

the GRAPE cost function and the very small number of parameters, as this translates

to very sudden piecewise shifts in the control pulse (see discussion in Sec. 4.2). This

may also be a consequence of the degenerate nature of the ground state. It is possible,

that the reason there is such a disparity between the final state fidelity and the scale

of the LCD coefficients is the small number of parameters in the GRAPE function, but

attempts to optimise the GRAPE control pulse with parameter numbers up to Nk = 12

using dual-annealing (Sec. 3.1.3.3) with CI- and CA-type cost functions as in Fig. 7.4 or

Fig. 7.3 results in the system barely moving out of its initial state regardless of driving

time (not plotted). This is certainly an indication that in a more complex regime with

a degenerate ground state where the target is entanglement generation, the AGP cost

function approach might not work, or at least needs to be investigated further. Perhaps,

as we hope to show in future work, higher orders of the LCD are required in order to

capture the non-adiabatic effects associated with entanglement creation.
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Conclusion
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Chapter 8

Summary

This is The End; my only friend,

The End.

Jim Morrison, “The End”, The

Doors

In this thesis we introduced a new method for speeding up adiabatic quantum pro-

tocols while minimising losses due to transitions out of the instantaneous eigenstate:

COLD. The new method is comprised of two key components: approximate counter-

diabatic driving techniques and quantum optimal control. We discussed the theoretical

framework and motivation behind COLD, beginning in Ch. 2 with a background in-

troduction to quantum adiabaticity and the losses which arise as a consequence of fast

changes in a time-dependent Hamiltonian. We covered how these losses can be de-

scribed by an operator known as the AGP [10], and how the CD technique can be used

to suppress the non-adiabatic effects generated by the AGP [9, 24]. We explored the

reasons why the exact CD pulse is often inaccessible, either in theory or in practice, and

introduced several existing methods for constructing an approximate counterdiabatic

drive. Then, in Ch. 3, we covered the theory and methodology involved in optimal

control theory, which concerns itself with finding optimal path for a system from some

initial state to some final state. We introduced ideas concerning how optimal control

theory can be applied in the setting of quantum systems and then we described several

popular quantum optimal control methods like CRAB and GRAPE.
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These two background chapters paved the way for COLD in Part II. This new

method is the result of combining an approximate CD method we refer to as LCD [27],

with quantum optimal control techniques. Having outlined how LCD allows one to vari-

ationally determine a pulse shape for an ansatz set of physical operators which most

closely resembles the exact counterdiabatic drive for a given time-dependent Hamilto-

nian. The goal of LCD is to suppress as many losses associated with such transitions as

possible within the restrictions imposed by the ansatz set of operators. In Ch. 4, we de-

scribed how COLD can improve upon the LCD approach by using the observation that

the non-adiabatic effects experienced by a system driven by a time-dependent Hamil-

tonian depend on the path of the Hamiltonian through parameter space. We showed

how this path can be changed via the implementation of methods from optimal control

theory, thus allowing COLD to find a path which maximises the effects of the LCD

for a given ansatz set of operators. We then posited, in Ch. 5, that the information

about non-adiabatic effects contained in the AGP operator could be used to construct

optimisation metrics for the optimal control component of COLD.

Finally, in Part III, we demonstrated how COLD performs by numerically simulat-

ing its implementation for various physical systems and time-dependent Hamiltonians.

We compared the results to those obtained when using LCD with no optimal control

component, as well as to optimal control techniques with no counterdiabatic compo-

nent. In Ch. 6, we focused on using optimal control techniques to target properties

of the final state obtained by implementing each method, such as fidelity with respect

to a target ground state or amount of entanglement. We showed results for a simple

two-spin annealing protocol in order to demonstrate in detail how the COLD approach

works. Then, we demonstrated the advantage of using COLD over other approaches

in the case of the Ising spin chain, even when the pulse amplitudes of all of the drives

involved are constrained to be below some value. This was followed by the case of

an ARP protocol for population transport in a synthetic lattice, adapted from [11]

wherein only LCD had been implemented. We capped off the chapter with a more

complex example, the goal of which was to generate a maximally entangled GHZ state

in a system of frustrated spins. We found that COLD showed an advantage in all of
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these examples and that it could be enhanced with various optimal control techniques

like CRAB or GRAPE. In the final example, we discovered that highly local LCD op-

erators cannot generate entanglement through the system at short driving times and

that more delocalised pulses might be needed in such systems. We then demonstrated

how AGP-informed cost functions, first introduced in Ch. 5, performed for some of

the same systems in Ch. 7. In the case of the two-spin example and the Ising spin

chain, we showed that we could implement a far more computationally efficient optimi-

sation protocol than ones which use fidelity as a cost function for finding Hamiltonian

paths that minimise non-adiabatic effects. We showed that this could be done in cases

where either COLD or only optimal control is implemented. We found, however, that

in the case of generating GHZ states, such a cost function did not appear to work as

intended, whether due to the complexity of the problem at hand, drawbacks of the

LCD approximation or issues with the optimal control.
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To boldly go...

Time will explain it all. He is a

talker, and needs no questioning

before he speaks.

Euripides

There is often joy mixed with trepidation in finding that, for all the work that might

have already been done, far more remains to be accomplished. This is certainly true

in the case of the results presented in this thesis. The COLD method is one that was

created with practicality in mind: given a quantum system, a time-dependent Hamilto-

nian driving it and a set of constraints, like the system controllability or computational

resources, it should help one produce an optimal protocol which minimises the non-

adiabatic losses experienced by the system while it is driven from an initial eigenstate

towards the target as quickly as possible. As the space of systems, Hamiltonians and

constraints is vast, merely exploring in which scenarios COLD may or may not have

an advantage over the equally vast set of other possible approaches is no small task.

However, in this brief chapter, we will discuss several open questions and potential

future research directions in a more focused way, including those that arose during the

process of constructing and implementing COLD.
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9.1 Practical aspects

The first thing to note is the fact that the field of quantum optimal control is very

extensive and that we only explored a few common ways to construct control pulses in

this thesis. In general, using a more complex control pulse that has a larger solution

space and increased computational resources will almost certainly be a better option

than simpler choices, unless there is an informed reason to expect a simpler pulse to do

better. In many of the examples in Ch. 6 and Ch. 7 the control pulse we implemented

was the bare pulse from Eq. (4.5), which is quite rudimentary. One reason for doing

this was to save on time and computational resources, as it required very little of either

to implement compared to more complex approaches like CRAB or GRAPE. The other

reason was simply the fact that the results obtained using the bare pulse were already

enough to demonstrate the functionality and advantages of the method, while also being

easier to analyse. In any more focused application of COLD, there would have to be a

strong consideration for how a particular choice of optimal control pulse can interact

with the constraints of the problem and even the LCD pulse itself, which is a function

of the control parameters. A larger gradient in the control pulse could, for example,

lead to a spike in the amplitude of the approximate counterdiabatic pulse, due to the

∂λH matrix elements present in the AGP operator (Eq. (2.32)) or else lead to a large

non-zero counterdiabatic component at the end of the protocol.

Apart from the optimal control component, it would be useful to consider the noise

present in physical implementations and how that might affect the performance of

COLD. The cost function landscapes plotted throughout Ch. 7 give some indication

of how smoothly the final state fidelity reacts to a small shift in optimal control pa-

rameters. While in some cases, like the two-spin example of Sec. 7.1, the fidelity cost

function is quite smooth, this is absolutely not the case for the GHZ state preparation

example in Sec. 7.3. While the highly non-convex nature of the plots might simply

be due to the small number of control parameters involved, there is no guarantee that

such high susceptibility to parameter values would be avoided in any specific example.
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9.2 Extensions of COLD

As well as questions following up from the existing methodology of COLD and the

examples covered in this thesis, we might also look forward to new ideas inspired by

the content that was presented in previous chapters. The composition of Ch. 5 was

born, for example, from several observations about the behaviour of different orders of

LCD operators in optimised versus un-optimised control pulses (see Appendix D for

more details). In a similar vein, we can imagine designing new and better types of

cost functions based on information about the non-adiabatic effects experienced by a

system rather than just those presented in this thesis. The failure of the approach in

the case of GHZ state preparation is certainly a reason to try something different.

We may, for example, opt to optimise the other component of the counterdiabatic

drive: not the AGP operator, but rather the rate of change of the parameters λ̇. It

may be possible to perform a piecewise optimisation of how fast the changes in the

Hamiltonian parameters occur at different critical moments in the system evolution.

As discussed in Ch. 2, the ‘slow’ evolution condition for adiabaticity depends on the

energy gaps between the instantaneous states. As such, it might be interesting to

construct a control pulse which varies ∂λ for each timestep depending on the criticality

of the non-adiabatic effects experienced by the system at that point, with the full

evolution being constrained to some total evolution time τ .

Beyond these ideas, there may be better approaches to computing the approximate

CD components, which is occasionally an arduous task (see e.g. Appendix C). This is

the goal of [41], which explores how the structure in certain Hamiltonians like the Ising

model can be exploited in order to compute the LCD coefficients for a large numbers

of operators very efficiently. Should this be accomplished in a more general setting,

AGP-based cost functions may become an even greater resource, as we might be able

to better characterise the behaviour of different orders of LCD with respect to each

other and the target state. The exact AGP operator may yet have more information

for us to use in designing optimal fast adiabatic protocols.
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Appendix A

Rotating spin Hamiltonian

In Chap. 2 we used the example of a spin rotating in a magnetic field to illustrate

adiabatic processes in quantum systems. We considered a spin starting in the |+⟩ state

and being rotated from the x direction to the z direction during some total time τ

according to the Hamiltonian in Eq. (2.1), which I will reproduce here for convenience:

H(λ) = − cos(λ)σx − sin(λ)σz, (A.1)

with λ(t) = πt
2τ . The AGP operator ansatz Aλ for this system can be described by the

operator σy scaled by some λ-dependent coefficient which we will refer to as α(λ)

Aλ = α(λ)σy (A.2)

as discussed in the main text. We will now proceed to show how we can arrive at the

resulting form of α given in Eq. (2.51) using the LCD method outlined in Sec. 2.4.1.

The first step is to find the operator Gλ given in Eq. (2.45):

Gλ(Aλ) = ∂λH + i[Aλ, H]

= sin(λ)σx − cos(λ)σz + 2α(λ) sin(λ)σx − 2α(λ) cos(λ)σz

= (1 + 2α(λ)) sin(λ)σx − (1 + 2α(λ)) cos(λ)σz,

(A.3)
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Appendix A. Rotating spin Hamiltonian

where we have used ℏ = 1. This can then be used to define the action

S(Aλ) = Tr
[
G2
λ(Aλ)

]
= 2(1 + 2α(λ))2 sin2(λ) + 2(1 + 2α(λ))2 cos2(λ)

= 2(1 + 2α(λ))2.

(A.4)

In order to find the form of α, we need to find the minimum of the action S(Aλ) with

respect to α, which can be easily done:

δS
δα

= 8(1 + 2α(λ))

⇒ α(λ) = −1

2
,

(A.5)

which is the expected result.

It can be checked, for this simple example, that Aλ = −1
2σ

y is the exact AGP

operator Aλ by using Eq. (2.32) where the matrix elements of the AGP are written out

explicitly as:

Aλ = i
(∑

n

⟨n|∂λn⟩ |n⟩⟨n|+
∑
m ̸=n
|m⟩ ⟨m|∂λH|n⟩

(En − Em)
⟨n|
)

= i
(∑

n

⟨n|∂λn⟩ |n⟩⟨n|+
∑
m ̸=n
⟨m|∂λn⟩ |m⟩⟨n|

) (A.6)

In this case, the adiabatic eigenstates of the Hamiltonian H(λ) are

|ψ1⟩ =
1

n1
[(sec(λ) + tan(λ)) |↑⟩+ |↓⟩]

|ψ2⟩ =
1

n2
[(− sec(λ) + tan(λ)) |↑⟩+ |↓⟩] ,

(A.7)

where n1 =
√
1 + |sec(λ) + tan(λ)|2 and n2 =

√
1 + |− sec(λ) + tan(λ)|2 are the nor-

malisation factors. Their derivatives with respect to λ are

|∂λψ1⟩ =
1

n31
sec(λ)

[
(sec(λ) + tan(λ)) |↑⟩ − (sec(λ) + tan(λ))2 |↓⟩

]
|∂λψ2⟩ = (2 + 2 sin(λ))−3/2

[
(sin(λ) + 1)2 |↑⟩+ cos(λ)(1 + sin(λ)) |↓⟩

]
.

(A.8)
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Evaluating ⟨ψ1|∂λψ1⟩ and ⟨ψ2|∂λψ2⟩ we find that they are equal to 0, meaning the

diagonal elements of Aλ are 0. Doing the same for the off-diagonals we find

⟨ψ1|∂λψ2⟩ =
1

2

⟨ψ2|∂λψ1⟩ = −
1

2
,

(A.9)

meaning that the exact AGP operator, as found from evaluating its matrix elements is

just

Aλ =

 0 i
2

− i
2 0

 = α(λ)σy, (A.10)

which is the result obtained previously from the LCD approach.
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Pontryagin maximum principle

This part of the appendix is dedicated solely to introducing the Pontryagin maximum

principle or PMP, which, while not used in the main results of the thesis, forms the

backbone of analytical optimal control theory, which I discuss at length in Ch. 3. In

formal terms, the PMP can be defined [59] by the following theorem.

Theorem 1 (PMP for Mayer problems) For fixed final time τ and free final state

assume u is the optimal control and x the corresponding trajectory solution of Eq. (3.1).

Then, there exists a nonzero vector λ solution of the adjoint equations

λ̇T = −λT f(x(t), u(t)) (B.1)

with terminal condition

λT (τ) = −ϕ(x(τ)) (B.2)

such that, for almost every t ∈ (0, τ ], we have

λT (t)f(x(t), u(t)) ≥ λT (t)f(x(t), v) (B.3)

for every v in the set of the admissible values for the control U . Furthermore, for every

t ∈ [0, τ ]

λT (t)f(x(t), u(t)) = c, (B.4)

for a constant c
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Appendix B. Pontryagin maximum principle

Using this, one can then define the optimal control Hamiltonian:

h(λ, x, u) := λT (t)f(x, u). (B.5)

Now we can recast Eqs. (B.3) and (B.4):

h(λ(t), x(t), u(t)) = c

h(λ, x, u) ≥ h(λ, x, v),
(B.6)

The solution will be of the form u := u(x, λ) and it can be solved with the system of

equations

ẋ = f(x, u(x, λ)),

λ̇T = −λT f(x, u(x, λ))
(B.7)

with the boundary conditions x(0) = x0 and λT (τ) = −ϕ(x(τ)). Every control which

is obtained with this procedure satisfies the necessary conditions of optimality and it

is a candidate to be the optimal control.
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Derivation of the CD coefficients

for an arbitrary Ising graph

In the main text, we discuss deriving the local counterdiabatic driving or LCD terms to

first and second order for an Ising graph of N spins with arbitrary couplings between

them. In this appendix, we will show a full derivation for the coupled set of equations

required to determine the coefficients for said terms.

An Ising Hamiltonian for N spins and with both a transverse and longitudinal field

and with arbitrary couplings can be written as:

H(λ) =

N−1∑
i=1

N∑
j=i+1

Jij(λ)σ
z
i σ

z
j +

N∑
i=1

(
Xi(λ)σ

x
i + Zi(λ)σ

z
i

)
(C.1)

where the coefficients Jij correspond to couplings between spins i and j. Systems like

this can be viewed as undirected graphs, with each spin corresponding to a vertex

and each coupling Jij denoting an edge between the corresponding spins. In the case

of a weighted graph, the magnitude of each Jij can be viewed as the weight of the

corresponding edge. This type of Hamiltonian, for specific values of Jij , Xi and Zi can

be used to describe the two-spin annealing example of Sec. 6.1, the Ising chain from

Sec. 6.2 and the frustrated spin model of Sec. 6.4.

135



Appendix C. Derivation of the CD coefficients for an arbitrary Ising graph

The first order LCD ansatz, as stated in the main text, is just single-spin operators:

A(1)
λ =

N∑
i=1

αi(λ)σ
y
i (C.2)

and the second order can be split up into 4 separate symmetries of operators:

A(2)
λ =

N−1∑
i=1

N∑
j=i+1

(
γij(λ)σ

x
i σ

y
j + γ̄ij(λ)σ

y
i σ

x
j + ζij(λ)σ

z
i σ

y
j + ζ̄ij(λ)σ

y
i σ

z
j

)
. (C.3)

The first order commutators are computed as follows:

i[αiσ
y
i , H] = 2αi

[ N∑
j=i+1

−Jij
(
σxi σ

z
j + σzi σ

x
j

)
+Xiσ

z
i − Ziσxi

]
, (C.4)

where I have omitted the dependence on λ of the terms. The second order expansions,

sadly, look like this:

i
[
γijσ

x
i σ

y
j , H(λ)

]
= 2γij

[ i−1∑
k=1

(Jkiσ
z
kσ

y
i σ

y
j − Jkjσ

z
kσ

x
i σ

x
j ) +

j−1∑
k=i+1

(Jikσ
y
i σ

z
kσ

y
j − Jkjσ

x
i σ

z
kσ

x
j )

+
N∑

k=j+1

(Jikσ
y
i σ

y
j σ

z
k − Jjkσxi σxj σzk) + Ziσ

y
i σ

y
j +Xjσ

x
i σ

z
j − Zjσxi σxj

]

i
[
γ̄ijσ

y
i σ

x
j , H

]
= 2γ̄ij

[ i−1∑
k=1

(Jkjσ
z
kσ

y
i σ

y
j − Jkiσ

z
kσ

x
i σ

x
j ) +

j−1∑
k=i+1

(Jkjσ
y
i σ

z
kσ

y
j − Jikσ

x
i σ

z
kσ

x
j )

+
N∑

k=j+1

(Jjkσ
y
i σ

y
j σ

z
k − Jikσxi σxj σzk) + Zjσ

y
i σ

y
j +Xiσ

z
i σ

x
j − Ziσxi σxj

]

i
[
ζijσ

z
i σ

y
j , H(λ)

]
= 2ζij

[
−

i−1∑
k=1

Jkjσ
z
kσ

z
i σ

x
j −

j−1∑
k=i+1

Jkjσ
z
i σ

z
kσ

x
j −

N∑
k=j+1

Jjkσ
z
i σ

x
j σ

z
k

− Jijσxj −Xiσ
y
i σ

y
j +Xjσ

z
i σ

z
j − Zjσzi σxj

]
i
[
ζ̄ijσ

y
i σ

z
j , H(λ)

]
= 2ζ̄ij

[
−

i−1∑
k=1

Jkiσ
z
kσ

x
i σ

z
j −

j−1∑
k=i+1

Jikσ
x
i σ

z
kσ

z
j −

N∑
k=j+1

Jikσ
x
i σ

z
jσ

z
k

− Jijσxi −Xjσ
y
i σ

y
j +Xiσ

z
i σ

z
j − Ziσxi σzj

]
(C.5)

Combined, the above commutators along with the coefficients of ∂λH give the operator
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Gλ(A
(1,2)
λ ) for an ansatz AGP constructed from both single- and two-spin operators (as

per Eq. (2.45)):

Gλ(A
(1,2)
λ ) =

N∑
i=1

[
(Ẋi − 2αiZi − 2

i−1∑
j=1

Jjiζji − 2

N∑
j=i+1

Jij ζ̄ij)σ
x
i

+ (Żi + 2αiXi)σ
z
i

]

+

N−1∑
i=1

N∑
j=i+1

[
(J̇ij + 2ζijXj + 2ζ̄ijXi)σ

z
i σ

z
j

+ (2γijZi + 2γ̄ijZj − 2ζijXi − 2ζ̄ijXj)σ
y
i σ

y
j

+ (2γijZj + 2γ̄ijZi)σ
x
i σ

x
j

+ (−2αiJij + 2γijXj − 2ζ̄ijZi)σ
x
i σ

z
j

+ (−2αjJij + 2γ̄ijXi − 2ζijZj)σ
z
i σ

x
j

+

i−1∑
k=1

[
(2γijJki + 2γ̄ijJkj)σ

z
kσ

y
i σ

y
j + (2γijJkj + 2γ̄ijJki)σ

z
kσ

x
i σ

x
j

+ (−2ζijJkj − 2ζkjJij)σ
z
kσ

z
i σ

x
j

]
+

j−1∑
k=i+1

[
(2γijJik + 2γ̄ijJkj)σ

y
i σ

z
kσ

y
j + (2γijJkj

+ 2γ̄ijJik)σ
x
i σ

z
kσ

x
j + (−2ζ̄ijJik − 2ζikJij)σ

z
kσ

x
i σ

z
j

]
+

N∑
k=j+1

[
(2γijJik + 2γ̄ijJjk)σ

y
i σ

y
j σ

z
k + (2γijJjk + 2γ̄ijJik)σ

x
i σ

x
j σ

z
k

+ (−2ζ̄ijJik − 2ζ̄ikJij)σ
z
i σ

x
j σ

z
k

]]
.

(C.6)

In order to find the coupled set of equations that allow us to compute each of the coef-

ficients in the approximate AGP according to the LCD approach, we need to minimise

the action S = Tr
[
G2
λ

]
with respect to each of the coefficients. As the Pauli operators

and their tensor products are traceless, this means that the action is merely the sum of

the squares of all the orthogonal operator coefficients of Gλ. Minimising S with respect
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to each αi gives:

αi

[
2Z2

i + 2X2
i +

i−1∑
j=1

2J2
ji +

N∑
i+1

2J2
ij

]
N∑

j=i+1

γij

[
− 2JijXj

]
+

i−1∑
j=1

γ̄ji

[
− 2JjiXj

]
N∑

j=i+1

ζ̄ij

[
4JijZi

]
+

i−1∑
j=1

ζji

[
4JjiZi

]
= ZiẊi −XiŻi,

(C.7)

where i is fixed. Fixing i and j and minimising with respect to each γij gives:

αi

[
−XjJij

]
+ ζij

[
−XiZi

]
+ ζ̄ij

[
− 2XjZi

]
+ γij

[
Z2
i + Z2

j +X2
j +

i−1∑
k=1

(J2
ki + J2

kj) +

j−1∑
k=i+1

(J2
ik + J2

kj) +
N∑

k=j+1

(J2
ik + J2

jk)
]

+ γ̄ij

[
2ZiZj +

i−1∑
k=1

2JkiJkj +

j−1∑
k=i+1

2JikJkj +
N∑

k=j+1

2JikJjk

]
= 0

(C.8)

and likewise for each γ̄:

αj

[
−XiJij

]
+ ζij

[
− 2XiZj

]
+ ζ̄ij

[
−XjZj

]
+ γ̄ij

[
Z2
i + Z2

j +X2
i +

i−1∑
k=1

(J2
ki + J2

kj) +

j−1∑
k=i+1

(J2
ik + J2

kj) +
N∑

k=j+1

(J2
ik + J2

jk)
]

+ γij

[
2ZiZj +

i−1∑
k=1

2JkiJkj +

j−1∑
k=i+1

2JikJkj +

N∑
k=j+1

2JikJjk

]
= 0.

(C.9)
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Finally, for fixed i, j, we minimise with respect to ζij :

αj

[
4ZjJij

]
+ γij

[
− 2XiZi

]
+ γ̄ij

[
− 4XiZj

]
+ ζij

[
2Z2

j + 2X2
i + 2X2

j +
i−1∑
k=1

2J2
kj +

j−1∑
k=i+1

2J2
jk

]
+ ζ̄ij

[
4XiXj

]

+

i−1∑
k=1

ζkj

[
2JijJkj

]
+

j−1∑
k=1

ζkj

[
2JijJkj

]

+

j−1∑
k=i+1

ζ̄jk2JijJjk +
N∑

k=j+1

ζ̄jk2JijJjk = JijẊj − J̇ijXj

(C.10)

and with respect to ζ̄ij :

αi

[
4ZiJij

]
+ γij

[
− 4XjZi

]
+ γ̄ij

[
− 2XjZj

]
+ ζ̄ij

[
2Z2

i + 2X2
i + 2X2

j +

j−1∑
k=i+1

2J2
ik +

N∑
k=j+1

2J2
ik

]
+ ζij

[
4XiXj

]

+
N∑

k=i+1

ζ̄ik

[
2JijJik

]
+

N∑
k=j+1

ζ̄ik

[
2JijJik

]

+
i−1∑
k=1

ζki2JijJki +

j−1∑
k=i+1

ζik2JijJik = JijẊi − J̇ijXi.

(C.11)

armed with this knowledge, we can now explore the non-adiabatic effects generated by

one- and two-spin operators on any random time-dependent Ising graph Hamiltonian.

These results are particularly relevant in the case of the Ising spin chain from Sec. 6.2

and the frustrated spin example from Sec. 6.4.
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Additional plots for the Ising

spin chain example

This appendix contains additional information and plots concerning the Ising spin chain

example from Sec. 6.2, where we investigate implementations of COLD, LCD and BPO

for this particular system. In the plots presented here, all parameters are the same as

those discussed in Sec. 6.2 unless stated otherwise.

As well as the five spin chain which is analysed in detail in the, in Fig. D.1 we

also present a plot of how FO COLD and BPO scale with (a) increasing chain lengths

and (b) increasing number of control parameters Nk when the bare optimisation pulse

from Eq. (6.28) is used on N = 5 spins. We see that the COLD fidelity decreases as

a function of the number of spins N but remains very high when compared to BPO,

while there appears to be no noticeable improvement for ether BPO or COLD when the

number of control parameters Nk of the bare control pulse are increased. This may be

a consequence of the way in which the bare control pulse is constructed, as the impact

of parameterisation on the result should depend heavily on the type of control pulse

used. In the case of GRAPE or CRAB we would not necessarily expect the trend in

Fig. D.1(b) to be replicated.

In Fig. D.2, we plot the scaling of the FO and SO counterdiabatic terms applied to

the five spin Ising chain from Eq. (6.17) and Eq. (7.3) with the λ̇ term included, i.e.

for the coefficient α we plot the exact CD amplitude of the given LCD operator λ̇α.

140



Appendix D. Additional plots for the Ising spin chain example

Figure D.1: Scaling of fidelities in the annealing protocol for the Ising model with (a)
system size N and (b) optimisation parameters Nk at driving time τ = 10−2J−1

0 . Plots
show a comparison between BPO (blue diamonds) and COLD (red circles). Plotted best
fidelities are obtained across 500 optimisations. Reprinted with permission from [40].
Copyright 2023, American Physical Society.

In (a) we see the how the different LCD drive amplitudes scale with increasing driving

time and in (b) we do the same in the case of the optimised pulses for COLD which

were used to obtain the fidelities in Fig. 6.3(a). Note that while we plot the SO terms

for both cases, these were not actually implemented in obtaining the fidelities plotted

in the main text. We find, as expected based on the included λ̇ scaling, that the LCD

coefficients decrease linearly with respect to the driving time τ due to the fact that

λ̇ = 1
τ . The coefficients α, γ and ζ, as expected, stay constant due to their lack of

dependence on τ . We see that the SO term γ is over an order of magnitude larger than

either the FO term α or the other SO term ζ. In (b), however, we find that the FO

term α dominates the maximal amplitude for all driving times τ . Furthermore, there is

no longer a clean, linear dependence of the counterdiabatic coefficients on driving time,

as they are now functions of the control pulse which is optimised for a different set of

control parameter values at each driving time τ . The inversion in the strength of the

SO and FO LCD terms between the COLD and control-free case shows that in this case

COLD implements a dynamical Hamiltonain which is favourable for the applied LCD

operators, which are local σy operators on each spin. This behaviour lends support to

the ideas presented in Ch. 5 as well as the results in Sec. 7.2, wherein properties of the
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Figure D.2: Maximum amplitudes of LCD terms in the Ising model annealing protocol
for (a) FO and SO LCD with no additional optimal control fields and (b) the COLD
approach optimised for the best final state fidelity implementing FO LCD as shown in
Fig. 6.3(a). The plot shows the maximum amplitude reached at any point in the drive
for different driving times τ in the case of FO terms α (red circles) and SO terms γ
(blue diamonds) and ζ in the case when only the FO terms are applied to the system.
Reprinted with changes with permission from [40]. Copyright 2023, American Physical
Society.

LCD coefficients are used to optimise the Hamiltonian control pulse.
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Additional plots on GHZ state

preparation using AGP as a cost

function

In Sec. 7.3, we considered using AGP-based cost functions, which were introduced in

detail in Ch. 5, in GHZ state preparation in a system of N = 3 frustrated spins.

We found that, when using a control pulse constructed from GRAPE, there appears

to be no advantage to using FO or SO LCD information in the optimisation process,

whether integrals or maximum amplitudes of the operator coefficients. In Fig. 7.5 in the

main text, we plotted the cost function landscapes of the fidelity cost function CF, the

tangle cost function CT3 and several integral cost functions CI in the case of different

LCD coefficients for total driving time τ = 0.1J−1
0 and for two control parameters

c1, c2 ∈ [−10, 10]. The results showed a highly non-convex landscape with respect to

the final state fidelity and the three-tangle, which measures the amount of GHZ-type

entanglement in a system. There also appeared to be no significant correlation between

the minimum and maximum values of the integral cost functions and the quality of the

final state, i.e. either the final state fidelity or the amount of entanglement in the final

state.

In Fig. E.1 we reproduce the landscapes of CF and CT3 from Fig. 7.5 and then plot

the results for the maximum amplitude cost function CA in plots (e-h) corresponding

143



Appendix E. Additional plots on GHZ state preparation using AGP as a cost function

Figure E.1: Contour plots at τ = 0.1J−1
0 of different cost function values for GHZ state

preparation for parameters c1, c2 ∈ [−10, 10] and a GRAPE control pulse. In (a) and
(b) we plot CF in the cases where FO and SO COLD is applied respectively. Then, in
(c-d) we do the same for CT3 , with FO COLD plotted in (c) and SO COLD plotted in
(d). (e-h) are then plots of the maximum amplitude cost function CA values for the
same range of parameters. In (e) we plot CA,α(1) when only FO LCD is considered,
while in (f) we plot CA,α(2) as described in the text. Then in (g) we plot CA,γ and in
(h) we plot Ca,ζ , corresponding to the SO terms. Note that each plot has its own color
bar, as the color encodings and the value scaling in each plot is quite different.
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to the same coefficients as were plotted for the integral cost function in the main text.

While there is some minimal difference in the landscapes between CI and CA, they

broadly follow similar trends and show no correlation with fidelity or entanglement.

To be sure that this failure is not a consequence of constructing the control pulse

using the GRAPE algorithm, we also implement a bare control pulse like that described

in Eq. (6.28) and plot the results in Fig. E.2 for the maximum amplitude cost functions

CA as well as integral cost functions CI in Fig. E.3. While the cost function landscapes

are far smoother, the resulting fidelities and entanglement in the final state are orders

of magnitude worse than those using the GRAPE pulse. Furthermore, there once again

does not appear to be any advantage to using the AGP-based cost functions. The

maximum entanglement (in the given range of parameters) when applying SO terms,

for example, as shown in Fig. E.2(d), occurs close to the minimum of the SO pulse

integrals and maximal amplitudes (plots (g-h) in Fig. E.2 and plots (c-d) in Fig. E.3,

which is not what we would expect based on the conjecture that an optimal pulse would

maximise the effects of the LCD operators that are being applied. Any attempts at

optimisation using CI or CA pulses does not return better results than in the GRAPE

case.
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Figure E.2: Contour plots at τ = 0.1J−1
0 of different cost function values for GHZ state

preparation for parameters c1, c2 ∈ [−10, 10] and a bare control pulse. In (a) and (b)
we plot CF in the cases where FO and SO COLD is applied respectively. Then, in (c-d)
we do the same for CT3 , with FO COLD plotted in (c) and SO COLD plotted in (d).
(e-h) are then plots of the maximum amplitude cost function CA values for the same
range of parameters. In (e) we plot CA,α(1) when only FO LCD is considered, while in
(f) we plot CA,α(2) as described in the text. Then in (g) we plot CA,γ and in (h) we
plot CA,ζ , corresponding to the SO terms.
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Figure E.3: Contour plots at τ = 0.1J−1
0 of different cost function values for GHZ state

preparation for parameters c1, c2 ∈ [−10, 10] and a bare control pulse. In (a) we plot
CI,α(1) when only FO LCD is considered, while in (b) we plot CI,α(2) as described in the
text. Then in (c) we plot CI,γ and in (d) we plot CI,ζ , corresponding to the SO terms.
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